N

N

Semimartingales and Contemporary Issues in
Quantitative Finance

Younes Kchia

» To cite this version:

Younes Kchia. Semimartingales and Contemporary Issues in Quantitative Finance. Computational
Finance [g-fin.CP]. Ecole Polytechnique X, 2011. English. NNT: . pastel-00635436

HAL 1d: pastel-00635436
https://pastel.hal.science/pastel-00635436
Submitted on 27 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://pastel.hal.science/pastel-00635436
https://hal.archives-ouvertes.fr

ECOLE POLYTECHNIQUE

Ecole Doctorale: Mathématiques et Informatique

THESE

pour obtenir le titre de

Docteur de I’Ecole Polytechnique

Spécialité : mathématiques appliquées

Younes KCHIA

Semimartingales et Problématiques Récentes en Finance
Quantitative

(Semimartingales and Contemporary Issues in Quantitative Finance)

Directeur de these: Philip PROTTER

préparée au CMAP (Ecole Polytechnique), ORIE (Cornell University)
et Statistics Department (Columbia University)

Jury :
Directeur : Philip PROTTER - Columbia University
Rapporteurs : Hans FOLLMER - Humboldt Universitat zu Berlin
Monique JEANBLANC - Université d’Evry
Ezraminateurs :  Nicole EL KAROUI - Université Paris VI
Jean JACOD (Président) - Université Paris VI
Alex LIPTON - Bank of America Merrill Lynch

Nizar Touzl - Ecole Polytechnique






Acknowledgments

First and for most, I would like to thank my advisor Philip Protter. It has been an honor
and a great pleasure to be his PhD student. I would like to record my gratitude to Philip
for his supervision, advice and guidance through every stage of my PhD. Above all, he was
equally supportive and encouraging and I truly appreciated his availability whenever his
time and advice were needed. His wide mathematical culture together with his intuition
(which turns out to be usually right) and uncountable ideas were exceptionnally inspiring
and stimulating and gave me the chance to work on various projects, both theoretical
and applied. He nourished my intellectual appetite and helped make my PhD experience
productive and very enjoyable. Last but not least, he provided the excellent example
of a brillant mathematician, a successful professor, a thoughtful friend and a generous
man.

I am very grateful to Nizar Touzi, thanks to whom this PhD experience, although unusual,
was possible. Not only did he make it possible, but enjoyable. His advices were timely and
precious and I would also like to thank him for his understanding and support, both moral
and financial. He made it possible for me to visit Philip for more than two semesters,
at Cornell University and Columbia University and supported any initiative I could take
(attending the AMAMEF conference among other things).

I gratefully acknowledge Robert Jarrow for his advice and contribution that made the
research on real time bubbles detection and on discretely sampled variance swaps versus
their continuous approximation interesting from more than one aspect. His expertise in
economic matters was crucial in putting into context many theoretical results. I am also
grateful for references he suggested and for his help in obtaining the data for the dot-com
bubble companies. I take this opportunity to also thank Peter Carr and Arun Verma for
their help in obtaining quickly the tick data for LinkedIn.

I gratefully thank Nicole El Karoui, Hans Follmer, Jean Jacod, Monique Jeanblanc, Alex
Lipton, Philip Protter and Nizar Touzi for their time. I am thankful and honored that
despite their busy schedules, they accepted to be members of my oral defense committee. I
am also particularly grateful to Monique and Hans for accepting to report this thesis.

I am also grateful to Monique for her interest in my thesis during the final stage of this
PhD, for her insightful comments and the interesting references she suggested. Her work
(together with her co-authors) was also an inspiring source for the work on linking progres-
sive and initial filtration expansions (in the third section of the first chapter) and for the
work on information induced credit contagion under the conditional density assumption
with multiple non-ordered defaults (in the third section of the second chapter).

I would like to thank my friend and colleague Martin Larsson. As a colleague, I thank
him deeply and gratefully acknowledge his collaboration all along my PhD. His ideas were
inspiring and his enthusiasm contagious and motivational. I had a lot of fun working
together and very much enjoyed our long productive working hours, in Ithaca, Paris, New



ii

York and Bled. I really hope we will keep up our collaboration in the future. As a friend, I
thank him a lot for his hospitality during my visits to Ithaca and for his wise advices.

I convey special acknowledgement to Alex Lipton and the Commodities Quant team at
Bank of America - Merrill Lynch who welcomed me three times during my Master and
PhD as an intern. These experiences were helpful to keep in mind the issues practitionners
face and provided me with a valuable and complementary work experience. Many thanks
to David, Jean-Frangois, John, Stewart, Ying and Yuanbo for being welcoming and for
their help and their time. A special thank to David, for his help with C*t+. I take also
this opportunity to thank two other quants, Dominique and Pascal, who showed a vivid
interest to my research.

My time at Cornell was made enjoyable in large part due to Sophia and Martin, to whom
I am indebted more than they know. Also, I would like to thank Tia, Matt, Rolf and Colin
among many other graduate students who made a winter in Ithaca very nice and the time
spent at Rhodes interesting.

The semester I spent at Columbia was enriched by the graduate students I shared an office
with and the interesting discussions during Philip’s class with Radka, Johannes, Micheal
and Murad. The New York experience could not be greater thanks to Mariem’s visit
and my amazing flatmates Charlotte, Ahcéne, Aurélie and Alfred. Thank you all for the
priceless memories.

The short amount of time I spent at the CMAP was made enjoyable thanks to my office
mates. I keep a good memory of the coffee breaks with Maisem and I am thankful to Dylan
and Réda for their help with my TA duties when I was abroad and for the interesting
discussions we had and ideas we shared on our different research topics. I would like to
take this opportunity to also thank Caroline for her previous advices.

I would like to thank Nasséra at the Ecole Polytechnique for her indispensable help dealing
with funding my travels back and forth to the US. I am also grateful to Kathy at Cornell
University and Dood at Columbia University for their help dealing with the administrative
matters during my stays in the US.

Words fail to express all my gratitude and appreciation to my family for all their love
and encouragement. To my parents, M’hamed and Ouafa, for their continued prayers and
for raising me with a love of science and supporting me in all my pursuits. To Ali and
Momo, for being such supportive and caring brothers. To my sisters and brothers in law,
Leila, Loubna and Pierre, for their encouragement and the great time we spent together.
And most of all, to my loving and patient wife, Mariem, whose dedication, support and
confidence in me, has taken the load off my shoulders. Thank you.

Finally, I would like to thank everybody who helped consciously or unconsciously to the
successful realization of my thesis and I express my apologies that I could not mention
everyorne.



Semimartingales and Contemporary Issues in Quantitative Finance



iv

Abstract: In this thesis, we study various contemporary issues in quantitative finance.

The first chapter is dedicated to the stability of the semimartingale property under
filtration expansion. We study first progressive filtration expansions with random times.
We show how semimartingale decompositions in the expanded filtration can be obtained
using a natural link between progressive and initial expansions. The link is, on an intuitive
level, that the two coincide after the random time. We make this idea precise and use
it to establish known and new results in the case of expansion with a single random
time. The methods are then extended to the multiple time case, without any restrictions
on the ordering of the individual times. We then look to the expanded filtrations from
the point of view of filtration shrinkage. We turn then to studying progressive filtration
expansions with processes. Using results from the weak convergence of o-fields theory,
we first establish a semimartingale convergence theorem, which we apply in a filtration
expansion with a process setting and provide sufficient conditions for a semimartingale
of the base filtration to remain a semimartingale in the expanded filtration. A first set
of results is based on a Jacod’s type criterion for the increments of the process we want
to expand with. An application to the expansion of a Brownian filtration with a time
reversed diffusion is given through a detailed study and some known examples in the
litterature are recovered and generalized. Finally, we focus on filtration expansion with
continuous processes and derive two new results. The first one is based on a Jacod’s
type criterion for the successive hitting times of some levels and the second one is based
on honest times assumptions for these hitting times. We provide examples and see how
those can be used as first steps toward harmful dynamic insider trading models. In the
expanded filtration the finite variation term of the price process can become singular and
arbitrage opportunities (in the sense of FLVR) can therefore arise in these models.

In the second chapter, we reconcile structural models and reduced form models in
credit risk from the perspective of the information induced credit contagion effect. That
is, given multiple firms, we are interested on the behaviour of the default intensity
of one firm at the default times of the other firms. We first study this effect within
different specifications of structural models and different levels of information. Since
almost all examples are non tractable and computationally very involved, we then work
with the simplifying assumption that conditional densities of the default times exist.
The classical reduced-form and filtration expansion framework is therefore extended to
the case of multiple, non-ordered defaults times having conditional densities. Intensities
and pricing formulas are derived, revealing how information-driven default contagion
arises in these models. We then analyze the impact of ordering the default times before
expanding the filtration. While not important for pricing, the effect is significant in the
context of risk management, and becomes even more pronounced for highly correlated
and asymmetrically distributed defaults. We provide a general scheme for constructing
and simulating the default times, given that a model for the conditional densities has
been chosen. Finally, we study particular conditional density models and the information
induced credit contagion effect within them.



In the third chapter, we provide a methodology for a real time detection of bub-
bles. After the 2007 credit crisis, financial bubbles have once again emerged as a topic
of current concern. An open problem is to determine in real time whether or not a given
asset’s price process exhibits a bubble. Due to recent progress in the characterization of
asset price bubbles using the arbitrage-free martingale pricing technology, we are able
to propose a new methodology for answering this question based on the asset’s price
volatility. We limit ourselves to the special case of a risky asset’s price being modeled by
a Brownian driven stochastic differential equation. Such models are ubiquitous both in
theory and in practice. Our methods use non parametric volatility estimation techniques
combined with the extrapolation method of reproducing kernel Hilbert spaces. We
illustrate these techniques using several stocks from the alleged internet dot-com episode
of 1998 - 2001, where price bubbles were widely thought to have existed. Our results
support these beliefs. During May 2011, there was speculation in the financial press
concerning the existence of a price bubble in the aftermath of the recent IPO of LinkedIn.
We analyzed stock price tick data from the short lifetime of this stock through May 24,
2011, and we found that LinkedIn has a price bubble.

The last chapter is about discretely sampled variance swaps, which are volatility
derivatives that trade actively in OTC markets. To price these swaps, the continuously
sampled approximation is often used to simplify the computations. The purpose of this
chapter is to study the conditions under which this approximation is valid. Our first set
of theorems characterize the conditions under which the discretely sampled variance swap
values are finite, given the values of the continuous approximations exist. Surprisingly,
for some otherwise reasonable price processes, the discretely sampled variance swap prices
do not exist, thereby invalidating the approximation. Examples are provided. Assuming
further that both variance swap values exist, we study sufficient conditions under which
the discretely sampled values converge to their continuous counterparts. Because of its
popularity in the literature, we apply our theorems to the 3/2 stochastic volatility model.
Although we can show finiteness of all swap values, we can prove convergence of the
approximation only for some parameter values.

Keywords: Initial and progressive filtration expansions, progressive filtration ex-
pansion with processes, weak convergence of o-fields, convergence of semimartingales,
dynamic models for insider trading, compensators of random times, multiple non ranked
random times, conditional density assumption, credit contagion, structural models,
reduced form models, martingale theory of asset bubbles, bubbles detection, strict
local martingales, non parametric volatility estimation, RKHS extrapolation, continu-
ously/discretely sampled variance swaps.
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Résumé: Dans cette thése, nous étudions différentes problématiques d’actualité en
finance quantitative.

Le premier chapitre est dédié a la stabilité de la propriété de semimartingale aprés
grossissement de la filtration de base. Nous étudions d’abord le grossissement progressif
d’une filtration avec des temps aléatoires et montrons comment la décomposition de la
semimartingale dans la filtration grossie est obtenue en utilisant un lien naturel entre la
filtration grossie initiallement et celle grossie progressivement. Intuitivement, ce lien se
résume au fait que ces deux filtrations coincident aprés le temps aléatoire. Nous précisons
cette idée et 1'utilisons pour établir des résultats connus pour certains et nouveaux pour
d’autres dans le cas d’'un grossissement de filtrations avec un seul temps aléatoire. Les
méthodes sont alors étendues au cas de plusieurs temps aléatoires, sans aucune restriction
sur 'ordre de ces temps. Nous étudions ensuite ces filtrations grossies du point de vue
des rétrécissements des filtrations. Nous nous intéressons enfin au grossissement progressif
de filtrations avec des processus. En utilisant des résultats de la convergence faible de
tribus, nous établissons d’abord un théoréme de convergence de semimartingales, que 1'on
appliquera dans un contexte de grossissement de filtrations avec un processus pour obtenir
des conditions suffisantes pour qu’une semimartingale de la filtration de base reste une
semimartingale dans la filtration grossie. Nous obtenons des premiers résultats basés sur
un critére de type Jacod pour les incréments du processus utilisé pour grossir la filtration.
Nous nous proposons d’appliquer ces résultats au cas d’un grossissement d’une filtration
Brownienne avec une diffusion retournée en temps et nous retrouvons et généralisons
quelques examples disponibles dans la littérature. Enfin, nous concentrons nos efforts
sur le grossissement de filtrations avec un processus continu et obtenons deux nouveaux
résultats. Le premier est fondé sur un critére de Jacod pour les temps d’atteinte successifs
de certains niveaux et le second est fondé sur I’hypothése que ces temps sont honnétes.
Nous donnons des examples et montrons comment cela peut constituer un premier pas
vers des modéles dynamiques de traders initiés donnant naissance a des opportunités
d’arbitrage nocives. Dans la filtration grossie, le terme & variation finie du processus de
prix peut devenir singulier et des opportunités d’arbitrage (au sens de FLVR) apparaissent
clairement dans ces modéles.

Dans le deuxiéme chapitre, nous réconcilions les modéles structuraux et les modéles
& forme réduite en risque de crédit, du point de vue de la contagion de crédit induite
par le niveau d’information disponible & l'investisseur. Autrement dit, étant données de
multiples firmes, nous nous intéressons au comportement de l'intensité de défaut (par
rapport a une filtration de base) d’une firme donnée aux temps de défaut des autres firmes.
Nous étudions d’abord cet effet sous des spécifications différentes de modéles structuraux
et sous différents niveaux d’information, et tirons, par ’exemple, des conclusions positives
sur la présence d’une contagion de crédit. Néanmoins, comme plusieurs exemples pratiques
ont un coup calculatoire élevé, nous travaillons ensuite avec I'hypothése simplificatrice
que les temps de défaut admettent une densité conditionnelle par rapport a la filtration
de base. Nous étendons alors des résultats classiques de la théorie de grossissement de
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filtrations avec des temps aléatoires aux temps aléatoires non-ordonnés admettant une
densité conditionnelle et pouvons ainsi étendre ’approche classique de la modélisation
a forme réduite du risque de crédit a ce cas général. Les intensités de défaut sont
calculées et les formules de pricing établies, dévoilant comment la contagion de crédit
apparait naturellement dans ces modéles. Nous analysons ensuite I'impact d’ordonner
les temps de défaut avant de grossir la filtration de base. Si cela n’a aucune importance
pour le calcul des prix, l'effet est significatif dans le contexte du management de risque
et devient encore plus prononcé pour les défauts trés corrélés et asymétriquement
distribués. Nous proposons aussi un schéma général pour la construction et la simulation
des temps de défaut, étant donné qu’un modéle pour les densités conditionnelles a été
choisi. Finalement, nous étudions des modéles de densités conditionnelles particuliers et
la contagion de crédit induite par le niveau d’information disponible au sein de ces modéles.

Dans le troisiéme chapitre, nous proposons une méthodologie pour la détection en
temps réel des bulles financiéres. Aprés la crise de crédit de 2007, les bulles financiéres
ont 4 nouveau émergé comme un sujet d’intéret pour différents acteurs du marché et
plus particuliérement pour les régulateurs. Un probléme ouvert est celui de déterminer
si un actif est en période de bulle. Grace a des progrés récents dans la caractérisation
des bulles d’actifs en utilisant la théorie de pricing sous probabilité risque-neutre qui
caractérise les processus de prix d’actifs en bulles comme étant des martingales locales
strictes, nous apportons une premiére réponse fondée sur la volatilité du processus de prix
de Tactif. Nous nous limitons au cas particulier ot 'actif risqué est modélisé par une
équation différentielle stochastique gouvernée par un mouvement Brownien. Ces modéles
sont omniprésents dans la littérature académique et en pratique. Nos méthodes utilisent
des techniques d’estimation non paramétrique de la fonction de volatilité, combinées aux
méthodes d’extrapolation issues de la théorie des reproducing kernel Hilbert spaces. Nous
illustrons ces techniques en utilisant différents actifs de la bulle internet (dot-com bubble)
de la période 1998 - 2001, ou les bulles sont largement acceptées comme ayant eu lieu.
Nos résultats confirment cette assertion. Durant le mois de Mai 2011, la presse financiére
a spéculé sur l'existence d’une bulle d’actif aprés ’OPA sur LinkedIn. Nous analysons les
prix de cet actif en nous basant sur les données tick des prix et confirmons que LinkedIn
a connu une bulle pendant cette période.

Le dernier chapitre traite des variances swaps échantillonnés en temps discret. Ces
produits financiers sont des produits dérivés de volatilité qui tradent activement dans les
marchés OTC. Pour déterminer les prix de ces swaps, une approximation en temps continu
est souvent utilisée pour simplifier les calculs. L’intérét de ce chapitre est d’étudier les
conditions garantissant que cette approximation soit valable. Les premiers théorémes
caractérisent les conditions sous lesquelles les valeurs des variances swaps échantillonnés
en temps discret sont finies, étant donné que les valeurs de ’approximation en temps
continu sont finies. De maniére étonnante, les valeurs des variances swaps échantillonnés
en temps discret peuvent etre infinies pour des modéles de prix raisonnables, ce qui rend
la pratique de marché d’utiliser ’approximation en temps continu invalide. Des examples



sont fournis. En supposant ensuite que le payoff en temps discret et son approximation en
temps continu ont des prix finis, nous proposons des conditions suffisantes pour qu’il y ait
convergence de la version discréte vers la version continue. Comme le modéle & volatilité
stochastique 3/2 est de plus en plus populaire, nous lui appliquons nos résultats. Bien
que nous pouvons démontrer que les deux valeurs des variances swaps sont finies, nous
ne pouvons démontrer la convergence de ’approximation que pour certaines valeurs des
paramétres du modéle.

Mots-clés: Grossiment initial et progressif de filtration, grossissement progressif
de filtrations avec des processus, convergence faible de tribus, convergence de semi-
martingales, modéles dynamiques de traders initiés, compensateurs de temps aléatoires,
temps aléatoires multiples non-ordonnés, hypothése de densité conditionnelle, contagion
de crédit, modéles structuraux, modéles & forme réduite, théorie martingale des bulles
d’actif, détection de bulles financiéres, martingales locales strictes, extrapolation RKHS,
variances swaps échantillonnés en temps discret ou en temps continu.
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1.1 Introduction

One of the key insights of K. It6 when he developed the It6 integral was to restrict the
space of integrands to what we now call predictable processes. This allowed the integral
to have a type of bounded convergence theorem that N. Wiener was unable to obtain



2 Chapter 1. Filtration expansions and semimartingales

with unrestricted random integrands. The It6 integral has since been extended to gen-
eral semimartingales. If one tries however to expand (i.e. to enlarge) the filtration, then
one is playing with fire, and one may lose the key properties It6 originally obtained with
his restriction to predictable processes. In the 1980’s a theory of such filtration expan-
sions was nevertheless successfully developed for two types of expansion: initial expansions
and progressive expansions; see for instance [72| and [92]. More recent partial exposi-
tions can be found in the following books: Yor, Some aspects of Brownian motion, Part
II (see [130]), Dellacherie, Maisonneuve and Meyer, Probabilités et Potentiel, chapitres
XVII-XXIV (see |37]), Protter Stochastic integration and differential equations (see [117,
Chapter VI|) and Mansuy and Yor, Random times and (Enlargement of) filtrations in a
Brownian setting (see [109]). These two main types of filtration expansion are well-studied
topics that have been investigated both in theoretical and applied contexts. For theoreti-
cal results on initial filtration expansion, see for instance |72] and [1]. Good references for
theoretical results on progressive filtration expansion are [92], [86], [116], [60], [102] among
others. The subject has regained interest recently, due to applications in Mathematical
Finance. We refer first the reader to [44], one of the first papers to study filtrations ex-
pansion in the setting of jump processes with applications to finance. The more recent
regain of interest is examplified by the large litterature using progressive expansions of
filtrations in credit risk, see for instance [87], [85], [59], [101], and by the one using initial
filtration expansion in insider trading models, see for instance [2], [18], [71]. The initial
expansion of a filtration F = (F;)¢>0 with a random variable 7 is the filtration H obtained
as the right-continuous modification of (F; V o(7))t>0. A priori there is no particular
interpretation attached to this random variable. The progressive expansion G is obtained
as any right-continuous filtration containing F and making 7 a stopping time. In this
case T should of course be nonnegative since it has the interpretation of a random time.
When referring to the progressive expansion with a random variable in this thesis, we mean
the smallest such filtration. One is usually interested in the cases where F semimartin-
gales remain semimartingales in the expanded filtrations and in their decompositions when
viewed as semimartingales in the expanded filtrations. For the initial filtration expansion
H = (Ht)t>o of a filtration F = (F;)i>0 with a random variable 7, one well-known sit-
uation where this holds is when Jacod’s criterion (which is recalled in Assumption 1) is
satisfied (see 72| or alternatively [117, Theorem 10, p. 371]), and as far as one is concerned
by the progressive filtration expansion G = (Gt):>0, this always holds up to the random
time 7 as proved by Jeulin and Yor and holds on all [0,00) for honest times (see [92]).
Apart from the previous references, we also point out the nice work by Callegaro, Jean-
blanc and Zargari in [17] summarizing the results in both types of filtration expansions
under a stronger assumption than Assumption 1 (equivalence of the conditional laws of 7
w.r.t its law are assumed rather than just their absolute continuity). Under this same
assumption, Amendinger already provided martingale representation theorems for initially
enlarged filtrations in 2000 in [1].

The aim of this chapter is fourfold. In the first section, we introduce the mathematical
tools that will be useful for the two first chapters of this thesis. Yor already noticed that
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the decompositions in the initially and progressively expanded filtrations are related and
showed how one can obtain the decompositions of some F local martingales in the progres-
sively expanded filtration under representability assumptions of some crucial F martigales
related to the random time 7. We refer the reader to [129] for more details. However, these
two filtrations remained then often viewed and studied in the literature one independently
from the other. The purpose of the second section of the present chapter is to build fur-
ther on this idea and demonstrate that these two filtration expansions are not inherently
different—in fact, there is a very natural connection between the initial and progressive
expansions. The reason is, on an intuitive level, that the filtrations G and H coincide
after time 7. We make this idea precise for filtrations H that are not necessarily obtained
as initial expansions. This, in combination with the classical Jeulin - Yor Theorem (see
Theorem 15), allows us to show how the semimartingale decomposition of an F local mar-
tingale, when viewed in the progressively expanded filtration G, can be obtained on all of
[0,00), provided that its decomposition in the filtration H is known. Our result is given
in Theorem 16. As already mentioned, one well-known situation where this is the case is
when Jacod’s criterion is satisfied. This is, however, not the only case, and we give an
example using techniques based on Malliavin calculus developed by Imkeller et al. [71].
Related issues and Malliavin calculus based techniques can also be found in [30]. These
developments, which all concern expansion with a single random time, are treated in Sec-
tion 1.3.1. The technique is, however, applicable in much more general situations than
expansion with a single random time. As an indication of this, we perform en passant the
same analysis for what we call the (7, X)-progressive expansion of F, denoted G(™X) . This
expansion is a particular case of a progressive filtration expansion introduced by Jeulin-
Yor, where some given o-field £ is added at time 7. The time 7 becomes a stopping time
in the larger filtration, and the random variable X becomes QﬁT’X)—measurable, & being
o(X). In Section 1.3.2 we extend these ideas in order to deal with the case where the
base filtration F is expanded progressively with a whole vector 7 = (71, ...,7,) of random
times, and we do not impose any conditions on the ordering of the individual times. After
establishing a general semimartingale decomposition result (see Theorem 19 which is the
primary result of this section) we treat the special case where Jacod’s criterion is satisfied
for the whole vector 7, and we show how the decompositions may be expressed in terms of
[F conditional densities of 7 with respect to its law. This can be compared to results in [86]
where the times are assumed to be recursively initial. This type of decomposition result
is also obtained for a multidimentional (7, X)-progressive expansion of F in Theorem 20.
Finally, in Section 1.3.3 we take a different point of view and study the link between the
filtrations G and H from the perspective of filtration shrinkage. This amounts to pushing
forward Yor’s original idea consisting in projecting down the decomposition in H onto G to
obtain the G decomposition. We know that the optional projection of a local martingale
M onto a filtration to which it is not adapted may lose the local martingale property, see
[50]. However, general conditions for when this happens are not available. In this section,
theorem 21 solves partially the problem when working in a filtration expansion setting.
Starting from an F local martingale that remains H semimartingale, we prove that the
optional projection onto G of the H local martingale part of M is a G local martingale. In
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the case of a random time that avoids all [F stopping times and whose F conditional prob-
abilities are equivalent to some deterministic measure, Callegaro, Jeanblanc and Zargari
already used the idea of projecting down the H decomposition of an F local martingale
to obtain its decomposition in G, see [17]. Some of their results follow from ours, and
our technique allows to avoid the heavy manual computations involving dual predictable
projections that arise naturally in this problem, see Corollary 9.

In the third section of this chapter, we go beyond the simple cases of initial expansion and
progressive expansion with random variables. Instead we consider the more complicated
case of expansion of a filtration through dynamic enlargement, by adding a stochastic
process as it evolves simultaneously to the evolution of the original process. Jeulin al-
ready considered in [89] such enlargement and expanded the natural filtration of a Bessel 3
process with its remaining infimum. He proved that some Brownian motion of the base
filtration remains a semimartingale in the expanded filtration. Ankirchner and al. studied
in [5] arbitrary filtration expansions using the concept of decoupling measures. Ankirchner
also considered in [4] the case of an arbitrary filtration expansion G of a base filtration F
and provided sufficient conditions for a purely discontinuous F martingale M to be a semi-
martingale relative to the filtration G. The primary aim of the third and forth sections
is to provide general theorems for this kind of results to hold when expanding a filtration
with a process. That is, for a given filtration F and a given cadlag process X, the small-
est right-continuous filtration containing F and to which X is adapted will be called the
progressive expansion of F with X and we will investigate the stability of the semimartin-
gale property of F semimartingales in progressive expansions of F with cadlag processes
X. Recall that we were able to link in section 1.3 the initial and progressive filtration
expansions and to extend the usual semimartingale stability results to the multiple time
case, without any restrictions on the ordering of the individual times and more importantly
to the filtration expanded with a counting process Nj* = > | Xilgr,<py, 1.e. the smallest
right-continuous filtration containing F and to which the process N™ is adapted. We apply
these results together with results from the theory of weak convergence of o-fields recently
developed by Antonelli, Coquet, Kohatsu-Higa, Mackevicius, Mémin, and Slominski (see
for instance |7],]28],[29]) to obtain more sophisticated enlargement possibilities. We com-
bine the convergence results with an extension of an old result of Barlow and Protter [11],
finally obtaining a general criterion that guarantees that ' semimartingales satisfying suit-
able integrability assumptions remain semimartingales in the expanded filtration. Our key
results include the forms of the semimartingale decompositions in the enlarged filtrations.
Section 1.4 extends the main theorem in [11] and proves a general result on the convergence
of G™ special semimartingales to a G adapted process X, where (G"),>1 and G are filtra-
tions such that G;* converges weakly to G; for each t > 0. The process X is proved to be, in
Theorem 22, a G special semimartingale under sufficient conditions on the regularity of the
local martingale and finite variation parts of the G™ semimartingales. This theorem is the
first main result of this section. This is then applied to the case where the filtrations G™ are
obtained by progressively expanding a base filtration F with processes N™ converging in
probability to some process N. We provide sufficient conditions for an F semimartingale to
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remain a G semimartingale, where G is the progressive expansion of F with N. We apply
this result to the case where the base filtration [F is progressively expanded with a cadlag
process whose increments satisfy a generalized Jacod’s criterion (see Assumption 2) with
respect to the filtration F along some sequence of subdivisions whose mesh tends to zero.
This leads to Theorem 27, the second main result of this section. An application to the
expansion of a Brownian filtration with a time reversed diffusion is given through a detailed
study, and the canonical decomposition of the Brownian motion in the expanded filtration
is provided. A possible application to stochastic volatility models is then suggested and
the example in Kohatsu-Higa [98| is easily recovered. The techniques developed in this
section require a long preliminary treatment of the weak convergence of o-fields, and to a
lesser extent the weak convergence of filtrations. We treat these questions in a preliminary
section (see section 1.2.4) that summarizes the mathematical tools we need. It is wise to
indicate that the results of practical interest are Theorems 25 and 27, which show how one
can expand filtrations with processes and have semimartingales remain semimartingales in
the enlarged filtrations. We also wish to mention here that the example provided in The-
orem 29 shows how the hypotheses (perhaps a bit strange at first glance) of Theorem 27
can arise naturally in applications, and it shows the potential utility of our results. That
said, the preliminary results on the weak convergence of o-fields have an interest in their
own right.

Finally, section 1.5 focuses on the case where the process X used to enlarge the base filtra-
tion IF is continuous. In this case, new criterions that are sometimes easier to check can be
found to ensure that a given F semimartingale M, satisfying some integrability assump-
tions, remains a semimartingale in the expanded filtration. Now, instead of assuming that
the increments of X satisfy some kind of Jacod’s assumption (as in Assumption 2), we
will instead work with the successive hitting times of X of some given levels. In case these
times are either honest or initial (in the sense that they can be used to enlarge initially
and do not affect the semimartingale property of M in the expanded filtration) the same
conclusions as in the previous section can be reached. This is the aim of both Theorems 36
and 37. The last result allows to recover Jeulin’s example (actually this is Pitman’s theo-
rem that Jeulin proved using filtration expansions techniques), where the natural filtration
of a Bessel 3 process is progressively expanded with its remaining infimum. We also extend
this result to the case where we expand the natural filtration of a transient diffusion R
with its remaining infimum. Many authors studied arbitrage opportunities within insider
trading models (see for instance [98], [70] and [71]). In our last example, we notice that the
finite variation part in the progressively expanded filtration is now singular w.r.t Lebesgue
measure. This provides a dynamic insider trading model with unrisky arbitrage opportu-
nities. We hope that these ideas can constitute first steps toward dynamic insider models,
which would be closer to reality.
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1.2 Mathematical preliminaries

In this section, we recall briefly some basic results from the general theory of stochastic
processes. The well known theorems in initial and progressive filtration expansion are then
given in few details. We emphasize two types of results: the semimartingale decompositions
in the expanded filtrations of a semimartingale in the base filtration, and the compensator
of a random time 7 in the progressive expansion of a filtration with 7, as given by Jeulin-
Yor Theorem. Up to this point, we do not provide proofs since all these results are well
known and an excellent and much more exhaustive review can be found in [114] or [117].
We then provide few extensions to filtration expansions with counting processes and derive
some lemmas useful for section 1.5. Finally, and as already mentioned in the introduction,
we provide preliminary results on the weak convergence of o-fields and of filtrations which
is the crucial tool needed in section 1.4.

Throughout this section, we assume we are given a complete filtered probability space
(Q, F,F, P) that satisfies the “usual hypotheses”, i.e. I is right continuous and Fy contains
all the P null sets of F. Therefore F; contains all the P null sets of F as well, for any
t > 0. We will also assume throughout this section that all filtrations that we consider
satisfy the usual hypotheses.

1.2.1 General theory of stochastic processes

In this subsection, we mainly recall the fundamental notions of optional and predictable
projections and the dual optional and predictable projections. First, recall that the optional
o-field O is the o-algebra defined on Rt x ) generated by all cadlag (right-continuous with
left limits) processes that are F adapted, and that the predictable o-field P is the o-algebra
defined on RT x  generated by all cag (left-continuous) processes that are F adapted. A
time 7 is said to be predictable if the stochastic interval [0, 7[ is predictable.

1.2.1.1 Optional and predictable projections

Theorem 1 Let X be a measurable process either positive or bounded.

(i) There exists a unique up to indistinguishability optional process, called the optional
projection of X and denoted °X, such that

E(XTl{T<oo} ‘ .FT> = OXTl{T<OO} a.s.

for every stopping time T'.

(i) There exists a unique up to indistinguishability predictable process, called the pre-
dictable projection of X and denoted PX, such that

E(XTl{T<oo} ’ FT*) = pXTl{T<oo} a.s.
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for every predictable stopping time T'.
The following characterization for predictable processes appears to be very useful.

Theorem 2 If X is cadlag adapted process, then X is predictable if and only if AXp =0
a.s. on {T < oo} for all totally inaccessible stopping times T and X1lir<co) @8 Fp- mea-
surable for every predictable stopping time T .

1.2.1.2 Dual optional and predictable projections

If the projection operation defines rigourously what we would write formally as E(X; | F),
the dual projection allows to define rigourously the quantity fot E(dAs | Fs) for a right-
continuous increasing integrable process A, which is not necessary adapted.

Theorem 3 Let A be a right-continuous increasing integrable process. Then

(i) There exists a unique up to indistinguishability optional increasing process A°, called
dual optional projection of A, such that

E( / X,dA%) = E( / °X,dA,)
0 0

for every bounded measurable process X .

(i) There exists a unique up to indistinguishability predictable increasing process AP,
called dual predictable projection of A, such that

E(/ XsdA’S’)_E(/ PX dA,)
0 0

for every bounded measurable process X .
The jumps of the dual predictable projection are given by the following lemma.

Lemma 1 Let T be a predictable stopping time. Then AAY = E(AAp | Fr-) a.s. with
the convention AAE, =0

If A is supposed to be optional, then AP is the compensator of A.

Lemma 2 Let A be an optional process of integrable variation. Then AP is the unique
increasing predictable process such that A — AP is a martingale.

Finally, we will also need the following result in section 1.3.3.
Theorem 4 (i) FEvery predictable process of finite variation is locally integrable.

(i) An optional process A of finite variation is locally integrable if and only if there
exists a predictable process A of finite variation such that A— A is a local martingale
which vanishes at 0. When it exists, A s unique. We say that A is the predictable
compensator of A.
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1.2.1.3 Azéma supermartingales and dual projections associated with random
times

The following processes will be of crucial importance in filtration expansions with random
times. Let 7 be a random time and Z the optional projection onto F of 1j . Then Z
is an F supermartingale given by a cadlag version of P(t > t | ;) and is called Azéma
supermartingale. Let a and A be respectively the dual optional and predictable projections
of the process 1{;<;;. Then vy = E(ax | Ft) = ar + Z; is a BMO martingale. Finally let
Zy = My — A; be the Doob-Meyer decomposition of the supermartingale Z. The following
holds.

Lemma 3 (i) If 7 avoids all F stopping times, then Ay = a; is continuous.
(ii) If all F martingales are continuous, a is predictable and consequently A = a.
(iii) Under the two conditions above, Z is continuous.

The aim of the two next sections is to present the theory of filtration expansions. The ques-
tion of interest is the one we already emphasized in the introduction. Do F semimartingales
remain semimartingales in a filtration G containing F?

Definition 1 We say that hypothesis (H/) holds between F and G if every F semimartingale
is a G semimartingale.

When hypothesis (H /) does not hold between F and G we focus on finding conditions under
which a given F semimartingale is a G semimartingale. Of course, one can restrict itself
to F martingales. The reverse situation is known as filtration shrinkage. We do not cite
the known results on filtration shrinkage here, but recall them throughout the thesis when
needed. We refer to [50] for a nice paper on filtration shrinkage issues. However, we do
recall Stricker’s theorem which we will intensively use in the next sections.

Theorem 5 (Stricker) Let F C G two filtrations. If X is a G semimartingale which is
F adapted, then X is also an F semimartingale.

As already mentioned in the introduction, there are essentially two types of filtration
expansions: initial and progressive filtration expansion.

1.2.2 [Initial filtration expansion with a random variable
Let £ be a random variable. Define H = (H;):>0 where

Hy = ﬂ (.7:“\/0(5))

u>t

The main theoretical result has been derived by Jacod which we state in the case where &
takes values in R%. The conditional probabilities of € given F; for ¢ > 0 play a crucial role
in this type of filtration expansion.
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Assumption 1 (Jacod’s criterion) There exists a o-finite measure n on B(R?) such
that P(€ € - | Fy)(w) < () a.s

Without loss of generality, 7 may be chosen as the law of £&. Under Assumption 1, the

Fi-conditional density

pr(u;w) = Pl d&l)}—t)(w

exists, and can be chosen so that (u,w,t) — pt(u w) is cadlag in ¢ and measurable for
the optional o-field associated with the filtration F given by Fi = NustB(RY) ® F,. See
Lemma 1.8 in [72].

We provide the explicit decompositions using the following classical result by Jacod,
see [72], Theorem 2.5.

Theorem 6 Let M be an F local martingale, and assume Assumption 1 is satisfied. Then
there exists a set B € B(R?), with n(B) = 0, such that

(i) (p(u), M) exists on {(t,w) | p— (u;w) > 0} for every u ¢ B,

(ii) there is an increasing predicta,ble pmcess A and anF predictable function ki(u;w) such
that for every u ¢ B, (p(u), M); = fo u)dAs on {(t,w) | ps- (u;w) > 0},

(iii) fo |ks(§)|dAs < 00 a.s. for everyt > 0 and M;— fo £)dAs is an H local martingale.
We provide now two classical corollaries of Jacod’s theorem.

Corollary 1 If ¢ is independent of F then hypothesis (H/) holds between F and G.

The next corollary is also known as Jacod’s countable expansion theorem.

Corollary 2 If £ takes only a countable number of values then hypothesis (H/) holds be-
tween F and G.

Proof. Let n(dz) = Y 72 P(Z = x})dg,(dz) be the law of &, where &, (dz) is the
Dirac measure at 2. Then the regular conditional probabilities P;(w,dz) are absolutely
continuous w.r.t n with Radon-Nikodym density:

— P(¢ =24 | Ft)
; Ple=ng) )

The result follows from Theorem 6. m
We give now an elementary example of such semimartingale decomposition result.

Example 1 Take for F the natural filtration of a Brownian motion B. Let £ = Bp. Then

tAT
Br—B
b [TEoR,
0 — S

is an H Brownian motion where H = (Hi)o<t<r and Hy = ),y (fu v U(BT)).
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Example 1 can be extended to the case £ = fooo f(s)dBs under good integrability assump-
tions on f (see [114] and [117]). In this case, conditionnally to F;, & is gaussian with
mean fé f(s)dBs and variance fg f?(s)ds. Jeulin and Yor also provided examples where
hypothesis H / may not hold but where some local martingales of the base filtration remain
semimartingales in the expanded filtration, see [91]. In this paper, they actually caracterise
all the martingales of a Brownian filtration F that remain H semimartingales, where H is
the initial expansion of ' with Bj, the terminal value of the Brownian motion, and provide
their decompositions in H. The same result is available in [117, Chapter V, Theorem 7].
Note that Example 1, where any F local martingale is claimed to remain a semimartingale
in (Ht)o<t<r but not necessarily including T, is consistent with these results. Of course
there are also many cases where Jacod’s criterion will be violated. Some results when this
is the case can be found in [114]. We present in the next subsection the theory of progres-
sive filtration expansion, which was first developed by Yor [127], and further by Jeulin and
Yor [92| and Jeulin [89].

1.2.3 Progressive filtration expansions

We will distinguish several cases. First we start with the progressive expansion with an
arbitrary random time 7, in which case the results usually hold up to 7. Define the filtration
G = (Gt)t>0 to be the smallest right-continuous filtration containing F and making 7 a
stopping time. That is for each ¢ > 0,

Gt = ﬂ]—"UVU(s/\T,sgu)

u>t

Sometimes, one might need to introduce the larger filtration G™ = (G] );>0 where
g{:{Ae]—"oo:HAte]-“t\Am{r>t}:Atm{r>t}}

We will then focus on the particular case of honest times. This will be useful for our study
in section 1.5. In this case, it can be shown that

gt:{AEFOOElAt,BtGFt|A:(Atﬂ{T>t})U(Btm{T§t})}

We focus then on extending Jeulin-Yor theorem to some more general type of progressive
filtration expansions. The main results of this thesis will assume that the times are such
that they allow an initial expansion (in the sense that they satisfy Jacod’s criterion as in
Assumption 1, or more generally that they are such that hypothesis (H /) holds between F
and H, the initial expansion of F with the random time 7).

1.2.3.1 Progressive filtration expansion with an arbitrary random time

Lemma 4 Let 7 be an arbitrary random time. Then
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(i) If H is a G™ predictable process then there exists an F predictable process J such that
Hilg<ry = Jilji<ry-

(ii) Let X be an integrable random variable which is Foo measurable. Then a cadlag
version of the martingale X; = E(X | G]) is given by

1
X = Zl{r>t}E(X1{‘r>t} | Ft) + X<y

Concerning point (ii), note that the quantity in the denominator cannot vanish since
Zs— > 0on {1 > s}. It is also worth mentionning that Z,_ is the IF predictable projection
of 14754 . A proof of these facts can be found in [117]. We recall now the general form of
Jeulin-Yor Theorem. Its proof can be found in [90] or [60], for instance.

Theorem 7 (Jeulin-Yor) LetF be a filtration, and let G be the progressive expansion of
F with a nonnegative random variable 7. Define Zy = P(T >t | Fy) and let Z = M — A be
its Doob-Meyer decomposition. Then

tAT 1
Lir<yy = /0 7.~ s
is a G martingale. More generally, if H is a bounded G™ predictable process then

tAT
H
dA
Zo

Hrlgr<y —

is a GT martingale.

In [60], this is proved to hold for any progressive expansion G of F that satisfies, for each
t>0,
]:tﬁ{7'>t}:gtm{7'>t}

For an arbitrary random time 7, a decomposition formula is available only up to the
time 7.

Theorem 8 (Jeulin-Yor) Fiz an F local martingale M and define Z, = P(t >t | F)
as the optional projection of 1o - onto ¥, let p be the martingale part of its Doob-Meyer
decomposition, and let J be the dual predictable projection of AM; 1 [ onto F. Then

T QUM 1) s + d
o [0
0 S—

is a local martingale in both G and G.
1.2.3.2 The case of honest times

The following family of random times, called honest times, is important in progressive
filtration expansions.
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Definition 2 (Honest times) Let 7 be a random time with values in [0, 00]. T is said to
be honest if for every t, there exists an F; measurable random variable 1, such that T = 74
on the set {T < t}.

These times can be characterized as ends of optional sets.

Lemma 5 Let 7 be a random time. Then T is an honest time if and only if there exists
an optional set H in [0,00] X Q such that T is the end of H.

Note that ends of optional sets in [0, co[x 2 do not allow to construct all honest times. The
following characterization of G predictable processes turns out to be very useful.

Lemma 6 Let 7 be an honest time. Then H is a G predictable process if and only if there
ezist two F predictable processes J and K such that Hy = Jil(r>4 + Kilr oy

For a honest time 7, a decomposition formula is available not only up to the time 7 but
on all RT.

Theorem 9 An F local martingale M is a G semimartingale and

. /W d(M,Z)s /t d(M, Z)s
! 0 Zs* tAT - Zs*

is a G local martingale. Here Z is the optional projection of 1jg [ onto F.

The previous theorem has been extended by Jeulin to the case of successive progressive
expansions with an increasing sequence of honest times. Assume 7™ is an increasing se-
quence of F honest times such that 7y = 0 and sup,, 7, = 0o0. Let G be the smallest filtration
containing F and that makes all (7"),>1 stopping times. Under these assumptions, the
following holds (see Jeulin [89, Corollary 5.22|).

Theorem 10 (Jeulin) Let M be an F local martingale. Then M — A is a G local mar-
tingale, where

At - Z/O 1{7—n<8§7—n+1}wd<M7 M +_ M >5 (11)
n=0 E 5

where Z™ is the F optional projection of 1o zn[ and M™ is the martingale part in its Doob-
Meyer decomposition.

Theorem 10 is a crucial tool to derive some of the results of section 1.5. In the next sub-
sections, we introduce more general types of progressive filtration expansions. In addition
to a random time we also expand with an associated random variable corresponding to a
Jump size. We then show how to deal with multiple (even countably many) ordered random
times and their associated jump sizes. This allows us to analyze progressive expansions
with integrable, finite activity jump processes. Given the work in [60], this turns out to be
quite easy to do, but is included first for completeness, and second because it introduces
some definitions and tools that would be useful later. The question of interest of this chap-
ter, which is Does a given semimartingale of the base filtration remain a semimartingale
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in the expansion of this filtration with a given process? is naturally postponed to the next
sections of the chapter.

1.2.3.3 The (1, X)-progressive expansion

We present and study in some detail a first generalization of the minimal progressive
expansion.

Definition 3 Given a filtration F, a random time 7 and a random variable X, let G be the
smallest right-continuous filtration containing F, that makes T a stopping time and such
that X is G.-measurable. We refer to G as the (1, X)-progressive expansion of F.

Note that G is well-defined, since it is an intersection over a non-empty set of filtrations
(the constant filtration H given by H; = F for all ¢ is among the candidates.) When X is
constant, the (7, X)-progressive expansion coincides with the usual progressive expansion
with 7. Our (1, X)-progressive expansion can be seen as a particular case of a more general
progressive filtration expansion introduced by the French school where some given o-field £
is added to the base filtration at time 7. In our case, the o-field € is o(X). This section also
uses some ideas already present in Dellacherie-Meyer’s work (see for instance [35] and [37]).
One can easily obtain an explicit description of the (7, X )-progressively expanded filtration.
Let F™ be the progressive expansion of F with 7.

Lemma 7 The (1, X)-progressive expansion G of F is given by Gy = (), GO where

g? :Hva(l{rgt}X>-

Proof. Denote the right side by H?, that is HY = FJ v 0(1{r<pX). The inclusion
H{ C G follows from the Monotone Class Theorem if we can show that Yih(1g <y X)
is G;-measurable for every bounded measurable function A : R — R and every bounded
J{ -measurable random variable Y;. Since F/ C G; it suffices to prove that 1<, X is
Gi-measurable. For an arbitrary set C' € B(R),

(lpapX €eCl=({XeCIn{r<thu{oeC}n{r>t}).

Now, by definition of G, {X € C} € G, = {A € G : AN{T < t} € G, Vt > 0}, so
{X € C}n{r <t} € Gi. The right side of the above display is thus G;-measurable,
as required. Take now intersections to conclude for the inclusion of the right-continuous
modifications.

For G; C Hi = (ot HY, first note that F; C Hy, that 7 is an H stopping time and that H
is right-continuous. Furthermore, X = 1(;<,} X is Hoo-measurable, and

(X € CYn{r<s}={lpcyX € CIN{r < s} € H,

holds for every s > 0, so X is ‘H,-measurable. Since G is the smallest filtration with these
properties, the result follows. m
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In the same spirit as of the work by Guo and Zeng (see [60]), the following lemma is
the crucial result that enables us to extend the Jeulin-Yor Theorem in a straightforward
way.

Lemma 8 Let G be the (1, X)-progressive expansion of F. Then
{T>t}ﬁgt:{7'>t}ﬂ]:t

for all t > 0.

Proof. It is well known that {7 >t} N F] = {7 > t} N F;. With the representation from
Lemma 7 in mind, let H; = Yth(l{TSt}X), where Y; is F/-measurable and bounded, and
h is a bounded Borel function. Then H;1(,~; = Y;h(0)1(;~), which is measurable with
respect to {7 >t} N F] = {r > t} N F;. The Monotone Class Theorem now proves that
{r >t} NG, C {r >t} NF. The reverse inclusion is clear. m

We can now compute the G compensator of X1;.<4. The next result is completely anal-
ogous to the Jeulin-Yor Theorem, with an almost identical proof. The proof we give here
follows that of Guo and Zeng [60].

Theorem 11 Let X be integrable, and suppose G is a filtration that contains F, makes T
a stopping time, and is such that X is G.-measurable. Assume also that {T >t} NG, =
{r >t} NF; for everyt > 0. Let Z, = P(t >t | F;) and let AX be the F dual predictable

projection of X1,<p. Then the process

tAT 1 ¥

is a G martingale.

Proof. The result follows if we prove that for any bounded G predictable process H,

[ [ i)

Let H be such a process. Then {7 >t} NG, = {7 > t} N F; for every ¢ > 0 implies that
there exists an F predictable bounded process J, such that H; = J; on the set {0 <t < 7};
for a proof of this fact, see e.g. [60]. Then

E {/ Hsd(X1{7<~})s} = E(XH;1{;<00))
0
= B(XJ1eny) = B {/ Jsd(Xl{TS})s} .
0

By definition of the dual predictable projection, the right side is equal to E( fooo JsdAX).
Moreover,

B[ naad) = B([ " Jzoan) = B[ Fomgdad),
0 0 ZS* 0
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where the second equality follows from the fact that Z,_ is the predictable projection of
17> (a proof of this fact as well as the fact that Z;_ > 0 on {7 > s} can be found
in [117]). The right side above is equal to E( f;* Hsz%_l{TZS}dAf), which ends the proof.
[

Remark 1 First, Theorem 11 reduces to the original Jeulin Yor Theorem (Theorem 7)
when X = 1. Second, when G is the (1, X)-progressive expansion of F, Lemma 8 implies
that Theorem 11 is applicable. Notice also that Theorem 7 still gives the correct compensator
of Li;<yy in the filtration G, precisely because the criterion Gy N {71 >t} = Fy N {1 >t} is
satisfied. See [60] where the authors were the first to point out this remark.

Remark 2 In credit risk applications, X could represent the recovery in case default occurs
before some specified time horizon. It may be reasonable to assume that this amount is not
observable in the base filtration F. Theorem 11 allows us to model both the default time
and the recovery value independently of F, and then obtain pricing formulas in terms of
F-conditional quantities.

1.2.3.4 Expansion with a jump process

We now have the machinery to expand the base filtration F with a jump process of the
form YV; = Y72, Xil(r, <4y, where each X; is integrable, and the jump times 7; form a
strictly increasing sequence tending to infinity almost surely. The expanded filtration is
the smallest filtration containing F and for which Y is adapted. The canonical example
of such a process Y is the compound Poisson process, but any finite activity pure jump
process with integrable jumps fits into this framework. We will carry out the analysis
under somewhat more general assumptions on the expanded filtrations. The purpose is
to highlight exactly which properties are relevant. Consider the sequence of ranked times
0 =m0 <1 <7 < ... together with a sequence of integrable jump sizes Xi, Xo,...
(conventionally, Xy = 0.) Suppose also we have an increasing sequence of filtrations
F =TF% c F!' ¢ F? C ... with the property that 7; is an F? stopping time and X; is .7-"%
measurable, for each i. Let G be the filtration generated by all the F?. We impose the
following condition on the filtrations F:

Condition 1 For everyi > 1 and every t, {t <7} N Fi ' ={t <7} N FL.

For example and as proved in Lemma 8, this condition is satisfied if F? is the (73, X;)-
progressive expansion of F?~!. A consequence is the following lemma, which is what allows
us to apply Theorem 11 in this setting.

Lemma 9 If Condition 1 holds, then for every j > i > 1 we have, for every t,
{t<nynF'={t<n}nFH.
As a consequence, we also have

{t < TZ'} ﬁf':_l = {t < Ti} N G;.
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Proof. We start with the first statement. By Condition 1, {t < 7,1} N F/ = {t <
Tjiy1} N FIt1 We intersect both side by {t < 7;} and use that 7; < Tj4+1 implies {t <
Ti} C {t < Tjg1} to get {t < 7} N Fl = {t <7} N F*! Hence if the statement is true
for j, it is also true for j + 1. It is true for j = ¢ by assumption, so the result follows by
induction. Regarding the second statement, since G; is generated by all the .Fg , the result
follows from the first one using the Monotone Class Theorem. m

Next we introduce some notation.
o Zi = P(1; > t | FI1), the optional projection of (5. onto F'~1

e Al the F'~! dual predictable projection of Xilir<y

i _ [IAT 1 i
° At =Jo ¢ thAs.
The next result is immediate.

Lemma 10 Suppose Condition 1 holds. Then for every i > 1, the process
M} = Xilyr<p — A
is a G martingale.

Proof. This follows directly from Lemma 9 and Theorem 11. m

Lemma 10 suffices if we are interested in the times 7; separately. To deal with the entire
counting process that they generate, given by

Ny =Y Xilgr<yy,
i>1

some condition is needed to ensure that the process does not blow up, and that the jumps
are not too large (there could be large jumps if several of the 7; coincide.) One possible
condition is the following.

Condition 2 The sequence (7;) is strictly increasing to infinity. That is, T; > T,—1 on the
set where 1,1 < 00, and lim; oo 7, = 00 a.s.

This certainly guarantees that Ny is a.s. finite for all ¢ and that the i:th jump has size X;.
Furthermore, we get the following result, whose proof is standard.

Lemma 11 Under Condition 2, dA: does not charge the set {t :t < 7;_1}.

Proof. We provide two proofs. By basic properties of dual predictable projections, for
each 7 > 1 we have

E [/0 1{t<n1}df4§} =E [/0 Lircr yd(Xilgr<y)i| = E [Xil{rcr 3 Urcoo}]

which is zero by Condition 2. We give now an alternative proof of this result. Let Z; =
P(r; > t|Fi~') = M} — A: be the Doob-Meyer decomposition of the supermartingale Z°.
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By Condition 2, Z: = P(r; > 7,_1|F."1) = 1, so by the supermartingale property we
have, for all t < 7;_1, that 1 > Z} > E(Z;'i71|.7:f_1) = 1. Hence Z} =1 on {t < 751}
Thus on {t < 7;_1}, AL = M} —1is an F*~! predictable increasing process and a uniformly
integrable martingale, so it is constant there. This proves again the lemma. m

We can now extend the Jeulin-Yor Theorem to non-explosive counting processes with non-
overlapping jumps.

Theorem 12 Suppose Conditions 1 and 2 hold. Then the process

A=) A

i>1
is well-defined and finite a.s., and Ny — At is a G local martingale.

Proof. Lemma 11 says that dA% does not charge {t : t < 7;,_1}, and so
) t 1 )
Ai = / l{Ti_1<s§T¢}ZTdA;'
0 s—

Thus A} = 0 for ¢ < 7,1, and since 7; — o0 as i — oo, the sum Y _,-; A} contains finitely
many terms, each of which is finite. So A; is well-defined and finite.

Next, since 7; > 7;_1 a.s. and since A} =0 for ¢t < 7;_1,

n

Nt/\Tn - At/\Tn = Z (1{t§n} - A%) .

i=1

This is a martingale by Lemma 10. Since 7, — o0, this shows that NV — A is a local
martingale with reducing sequence (7,),>1. ®

If it turned out to be quite easy to obtain the results for the compensator of the jump
process in the expanded filtration G, it is much harder to see if an F local martingale
remains a G semimartingale. This is the kind of questions we deal with in sections 1.4 and
1.5 where we expand the base filtration F with a process. Note also that the processes we
will expand with are much more general than counting processes. However, in order to
derive these resuts, we need to introduce the concepts of weak convergence of o-fields and
of filtrations.

1.2.4 Weak convergence of filtrations and of o-fields

Hoover [68], following remarks by M. Barlow and S. Jacka, introduced the weak convergence
of o-fields and of filtrations in 1991. The next big step was in 2000 with the seminal paper
of Antonelli and Kohatsu-Higa [7]. This was quickly followed by the work of Coquet,
Mémin and Mackevicius [29] and by Coquet, Mémin and Slominsky [28]. We will recall
fundamental results on the topic but we refer the interested reader to [28| and [29] for
details. In these papers, all filtrations are indexed by a compact time interval [0,7] and
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we work also within a finite time horizon framework and assume that a probability space
(Q,H, P) and a positive integer T are given. All filtrations considered are assumed to be
completed by the P-null sets of H. By the natural filtration of a process X, we mean
the right-continuous filtration associated with the natural filtration of X. The concepts of
weak convergence of o-fields and of filtrations rely on the topology imposed on the space
of cadlag processes and we use the Skorohod J; topology as it is done in [28]. An outline
of this section is the following. In subsection 1.2.4.1, we recall basic facts on the weak
convergence of o-fields and establish fundamental lemmas for subsequent use. A crucial
lemma is given in subsection 1.2.4.2, and allows to approximate a given G stopping time 7
with a sequence of G" stopping times 7" given that the o-fields Gi* converge weakly to G, for
each t. The last subsection provides a sufficient condition for the semimartingale property
to hold for a given cadlag adapted process based on the weak convergence of o-fields. The
sufficient condition we provide at this point is unlikely to hold in a filtration expansion
context, however the proof of this result underlines what can go wrong under the more
natural assumptions considered in the sections 1.4 and 1.5.

1.2.4.1 Definitions and fundamental results

Let D be the space of cadlag functions from [0,7] into R. Let A be the set of time
changes from [0, 7] into [0,7], i.e. the set of all continuous strictly increasing functions
A :]0,T] — [0,T] such that A\(0) = 0 and A\(T) = T. We define the Skorohod distance as
follows

ds(z,y) = int {I]A = Idlloo V [lz ~ y© X}

for each z and y in D. Let (X™),>1 and X be cadlag processes (i.e. whose paths are
in D), indexed by [0,7] and defined on (2, H, P). We will write X" £ X when (X™")n>1
converges in probability under the Skorohod J; topology to X i.e. when the sequence of
random variables (ds(X"™, X)),>1 converges in probability to zero. We can now introduce
the concepts of weak convergence of o-fields and of filtrations.

Definition 4 A sequence of o-algebras A™ converges weakly to a o-algebra A if and only
if for all B € A, E(1g | A™) converges in probability to 15. We write A™ 5 A.

Definition 5 A sequence of right-continuous filtrations F™ converges weakly to a filtration
F if and only if for all B € Fp, the sequence of cadlag martingales E(1p | F™) converges
in probability under the Skorohod Jy topology on D to the martingale E(1p | F.). We write
F* 5 F.

The following lemmas provide characterizations of the weak convergence of o-fields and

filtrations. We refer to [28] for the proofs.

Lemma 12 A sequence of o-algebras A™ converges weakly to a o-algebra A if and only
if E(Z | A™) converges in probability to Z for any integrable and A measurable random
variable Z.
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Lemma 13 A sequence of filtrations F™ converges weakly to a filtration F if and only if
E(Z | F™) converges in probability under the Skorohod Jy topology to E(Z | F.), for any
integrable, Fr measurable random variable Z.

The weak convergence of the o-fields F}* to F; for all ¢ does not imply the weak conver-
gence of the filtrations F” to F. The reverse implication does not hold neither. Coquet,
Mémin and Slominsky provide a characterization of weak convergence of filtrations when
the limiting filtration is the natural filtration of some cadlag process X. The result, recalled
below, is Lemma 3 in [28].

Lemma 14 Let (X"),>1 be a sequence of cadlag processes converging in probability to a
cadlag process X. Let F™ and F be the natural filtrations of X™ and X respectively. The
following conditions are equivalent.

(i) F* & F
(1) E(f(Xt,...,Xs,) | F*) converges in probability to E(f(Xy,,...,Xy,) | F.) for every
bounded continuous function f : R¥ — R and every points ti,...,t, such that for

each1 <i <k, P(AXy, #0)=0 ort, =T, for each k > 1.

We provide a similar result for the weak convergence of o-fields when the limiting o-field
is generated by some cadlag process X.

Lemma 15 Let X be a cadlag process. Define A = o(X:,0 <t <T) and let (A")n,>1 be
a sequence of o-fields. Then A™ 5 A if and only if

E(f(Xp,.. ., X0) | AN 5 (X, ..., X,)

for all k € N, ty,...,tx points of a dense subset D of [0,T] containing T and for any
continuous and bounded function f : R¥ — R,

Proof. Necessity follows from the definition of the weak convergence of o-fields. Let us
prove the sufficiency. Let A € A and € > 0. There exist k£ € N and ¢1,...,t; in D such
that

E(lf(X4,,..., Xy) —14]) <e.

Let 7 > 0. We need to show that P(|E(14 | A™) — 14| > n) converges to zero.
P(E(a ] AY) =1a[ 2 n) < P(IE(Qa | AY) = BE(f(Xey, -, Xi) [ A" 2 g)

FPOBC Ky X)) A" = (X X)) 2 5) 4 POy, X)) = 1a] 2 3)

6 n
< EE(‘f(XtU’"’th) - 1AD + P(’E(f(Xtu Tt 7th) ’ A ) - f(Xtu cet 7th) 2 g)
6 n i
< 65+P(‘E(f(Xt17“'ath) ‘ A ) - f(thv"'ath)‘ > g)
where the second inequality follows from the Markov inequality. By assumption, there
exists N such that for all n > N,

P(|E(f(Xt1>7th) |An) _f(Xt17-"ath)| > ) <e

w3
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hence P(|E(14 | A™) — 14| > 1) < (% +1)c. m

In [28], the authors provide cases where the weak convergence of a sequence of natural
filtrations of given cadlag processes is guaranteed. We provide here a similar result for the
weak convergence of the associated o-fields.

Lemma 16 Let (X"),>1 be a sequence of cadlag processes converging in probability to a
cadlag process X. Let F™ and F be the natural filtrations of X™ and X respectively. Then
F 5 Fy for all t such that P(AX; #0) = 0.

Proof. Let ¢t be such that P(AX; # 0) = 0. Since X is cadlag, there exists a dense subset
D of [0,t] such that for each £ € N, and ¢1,...,¢; < tin D, P(AXy, # 0) = 0, for all
1 < i < k. By assumption t € D. Let f : R¥ = R be a continuous and bounded function.
By Lemma 15, it suffices to show that

P
E(f(thv" : 7th) | ]_;ﬂ) — f(thv'-‘ 7th)
An application of Markov’s inequality leads to the following estimate

P(|E(f(Xt13"'vth) ‘ ]:tn) - (thv"'ath” > 77)

< PIE(f(Xtys - Xo) = f(X - X0) [ FON = 5)

)

NI o3

+ P(E(f(XGs - X)) [ F) = F(Xy, o X ) 2

4
< HE(If(X,Z,---,XZZ) = f(Xe, - X))

Since X™ 5 X and P(AX,, #0) =0, for all 1 < i < k, it follows that
n n P
(th,...th)—>(th,...th) (12)

and hence f(X},... X[ ) converges in L' to f(Xy,,...Xy,). This ends the proof of the
lemma. =

Definition 6 (Fixed time of discontinuity) For a given cadlag process X, a time t
such that P(AX; # 0) > 0 will be called a fized time of discontinuity of X. We will say
that X has no fized times of discontinuity if P(AX; #0) =0 for all0 <t <T.

Lemma 16 can be improved when the sequence X" is the discretization of the cadlag
process X along some refining sequence of subdivisions (7,,)n>1 such that each fixed time
of discontinuity of X belongs to Ny, my,.

Lemma 17 Let X be a cadlag process. Consider a sequence of subdivisions (m, =
{t}},n > 1) whose mesh tends to zero and let X,, be the discretized process defined by
Xit = Xyn, for all th <t < tryq- Let B and F™ be the natural filtrations of X and X™. If

each fized time of discontinuity of X belongs to Nymy, then F* =5 Fy, for all t.
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Proof. The proof is essentially the same as that of Lemma 16. Now, equation (1.2) holds
because the subdivision contains the discontinuity points of X. m

We will also need the two following lemmas from the theory of weak convergence of o-fields.
The first result is proved in [29] and the second one in [28].

Lemma 18 Let (A"),>1 and (B™)n>1 be two sequences of o-fields that weakly converge to
A and B, respectively. Then

A"V B S AVEB

Lemma 19 Let (A"),>1 and (B")n>1 be two sequences of o-fields such that A™ C B™ for
all n. Let A be a o-field. If A* 5 A then B 5 A.

As pointed out in [28], the results in Lemmas 18 and 19 are not true as far as one is
interested in weak convergence of filtrations.

1.2.4.2 Approximation of a given stopping time

Let (G™),>1 be a sequence of right-continuous filtrations and let G be a right-continuous
filtration such that G} Bt G; for all t. In order to obtain our filtration expansion re-
sults, we need a key theorem that guarantees the G semimartingale property of a limit of
G" semimartingales as in Theorem 22. The following lemma, which permits to approx-
imate any G bounded stopping time 7 by a sequence of G" stopping times, will be of
crucial importance in the proof of Theorem 22, Part (ii). We prove this result using suc-
cessive approximations in the case where 7 takes a finite number of values and show how
this property is inherited by bounded stopping times. We do not study the general case
(unbounded stopping times) since we are working on the finite time interval [0, T'].

Lemma 20 Let (G"),>1 be a sequence of right-continuous filtrations and let G be a right-
continuous filtration such that G = G; for all t. Let T be a bounded G stopping time.
Then there ezists ¢ : N — N strictly increasing and a bounded sequence (T,)n>1 such that
the subsequence (Ty(n))n>1 converges in probability to T and each Ty, is a G*™) stopping
time.

Proof. Let 7 be a G stopping time bounded by T'. Then there exists a sequence 7, of G

stopping times decreasing a.s. to 7 and taking values in {2%, ke {0,1,---,[2"T] + 1} }.
2" 7]4+1
QTL

This is true since the sequence 7, = obviously works. Hence 7, takes a finite

number of values. We claim that

Claim. for each n, we can construct a sequence (Tpm)m>1 converging in probability to T,
and such that 7, ., is a G™ stopping time, for each m.

Assume we can do so and let > 0 and € > 0. Then for each n, limy,—oc P(|Tnm — Tn| >
2) =0, i.e. for each n there exists M, such that for all m > M,,, P(|Tm — ™| > 2) < 5.
Define ¢(1) = M; and ¢(n) = max(M,,¢(n — 1) + 1) by induction. The application
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¢ : N = N is strictly increasing, and for each n, 7, 4(,) is a G?®™ stopping time and
P(I7.¢(n) — Tnl > 7) < 5. Tt follows that

n
)

n
P(‘Tn,qb(n) - T’ > 77) < P(‘Tn,gb(n) - Tn| > 5 9

DA+ Pl -7l > 1) < 2

5 + P(|m — 7| >
Since 7, converges to 7, there exists some ng, such that for all n > ng, P(|7, —7| > 4) < 5.

Hence 7, g(n) B+, So in order to prove the lemma, it only remains to prove the claim
above.

Proof of the claim. We drop the index n and assume that 7 is a G stopping time
that takes a finite number of values #1,---,fp. Since G is right-continuous, 1g;—; is

Gt, measurable, and since by assumption, for all i, G it Gt,, it follows that for all ¢

my P
E(lir=ty | G8)) = ey

Now for i = 1, we can extract a subsequence E(1{;—;y | gff (m)) converging to 1y, a.s.
and any sub-subsequence will also converge to 1y a.s. Also, Q¢1(m % Gi,, hence

E(li— tz} | gg’;l(””) L L{r—t,}, and we can extract a further subsequence E(1{;_,} |
g¢1(¢’2(m ) that converges a.s. to 1{;—,}. Since we have a finite number of possible values,
we can repeat this reasoning up to time tj;. Define then ¢ = ¢1 0o 0 -0 ¢, we get for
allie{1,---, M},

By | G0™) %5 Ly,

Define 7,, = mm{ilE(l{mti}\QQb%} t;. Then

1
{Tm = ti} = {E(l{T:ti} | Qtl) > }ﬂ {Vt < tuE(l{‘r =t;} | gt ) 5}

and hence 7, is a G™ stopping time. Also, obviously, 74 28 7, hence 7, A m

1.2.4.3 Weak convergence of o-fields and the semimartingale property

Assume we are given a sequence of filtrations (F™),,>1 and define the filtration F =
(]}t)ogtgﬂ where F; = V., Fi*. We prove in this section a stability result for F semi-
martingales. More precisely, we prove that if X is an F semimartingale, then it remains
an F semimartingale for any limiting (in the sense FJ* = F;, for all t € [0, T]) filtration F
to which it is adapted.

The crucial tool for proving our first theorem is the Bichteler-Dellacherie characterization
of semimartingales (see for example [117]). Recall that if H is a filtration, an H predictable
elementary process H is a process of the form

k

Hy(w) = hi(w) g, 4,4, (1);

=1
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where 0 < t; < ... < t41 < oo, and each h; is H;, measurable. Moreover, for any
H adapted cadlag process X and predictable elementary process H of the above form, we
write
k
JX(H) = Z h‘i(Xti+1 - Xti)
i=1

Theorem 13 (Bichteler-Dellacherie) Let X be an H adapted cadlag process. Suppose
that for every sequence (Hyp)n>1 of bounded, H predictable elementary processes that are
null outside a fized interval [0, N| and convergent to zero uniformly in (w;t), we have that
limy, 00 Jx (Hyp) = 0 in probability. Then X is an H semimartingale.

The converse is true by the Dominated Convergence Theorem for stochastic integrals. We
can now state and prove the main theorem of this subsection.

Theorem 14 Let (Fm)m>1 be a sequence of ﬁltmtzons Let F be a ﬁltmtzon such that for
all t € [0,T), F* 5 F;. Define the filtration F = (.7-})0<t<T, where F; = V., Fi*. Let
X be an F adapted cadlag process such that X is an F semimartingale. Then X is an
F semimartingale.

Proof. For a fixed N > 0, consider a sequence of bounded, F predictable elementary
processes of the form

Hi' —Zh L m 1(8);

null outside the fixed time interval [0, N] and with A" being JFin measurable. Suppose that

H™ converges to zero uniformly in (w,t). We prove that Jx (H") Lo

For each m, define the sequence of bounded F™ predictable elementary processes

kn
"= ZE(h? | HZ}) ty,t;grl](t);
i=1

By assumption, F;" B Fforall 0 <t <T. Hence for all n and 1 < i < kn, ]—"n it ]:t“
Since A} is bounded (hence integrable) and Fi» measurable, it follows from Lemma 12 that

E(n} | ) A h}' and hence E(h | )(th - Xir) L hi(Xen,  — Xip) for each n and
1<:< k since (thn+1 — thn) is ﬁmte a.s. Let n > 0.

P(|JX(H”7m) Jx(H™)| ) ZP(‘ (| F) — 1Y) (Xep

i+1

- Xu)

>%)

For each fixed n, the right side quantity converges to 0 as m tends to co. This proves that

for each n,

P

Tx(H™™) 5 gy (H™).
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Let § > 0 and € > 0. For each n and m,
o 0
P(Jx(H)| > ) < P(|Tx(H'™) = Jx(HY)| > 0) + PIIx(H'™)] > 5) (13)

From Jx(H™™) 5 Uy (H™), it follows that for each n, there exists M such that for all
m > My,
J
P(|1xc(H™™) = Jx(H")| > 5) < <
Hence P(|Jx(H")| > 0) < &+ P(|Jx(H™M3)| > ). First E(hD | ]-"];[f’n) is bounded,
ﬁt? measurable so that H,' Mg Zf;l E(h} | fﬁf 0 )1]t?,t?+l](t) is a bounded F predictable
process. Since H™ converges to zero uniformly in (w,t), it follows that A} converges to

zero uniformly in (w, ) so that there exists ng such that for each n > ng, for all (w,1),
|h'(w)| < e. Hence, for all (w,t) and n > ng

k'n kn
n, Mg n | =M
[H," 0 (w)] < ZEW% |1 Fen® N @)Ly m, 1 (8) < 52 L, 1(t) <€
=1 i=1

Therefore H™M0' is a sequence of bounded F predictable processes null outside the fixed
interval [0, N| that converges uniformly to zero in (w,t). Since by assumption X is a F semi-
martingale, it follows from the converse of Bichteler-Dellacherie’s theorem that Jx (H™0')
converges to zero in probability, hence, for n large enough, P(|Jx(H™Md)| > g) <3
and

P(lIx(H")| > 6) < e

Applying now Theorem 13 proves that X is an F semimartingale. m

Let X be an F semimartingale. Theorem 14 proves that X remains an [F semimartingale
for any limiting filtration F (in the sense Fj* = F; for all 0 < ¢t < T) to which X is
adapted. Of course, if F C F, Stricker’s theorem (Theorem 5) already implies that X is
an F semimartingale. But there is no general link between the filtration F = V,,, F™ and
the limiting filtration F. A trivial example is given by taking F to be the trivial filtration
(it can be seen from Definition 4 that the trivial filtration satisfies FJ* % F;, for all ¢, for
any given sequence of filtrations ). One can also have \/, F™ C F, as it is the case in
the following important example.

Example 2 Let X be a cadlag process. Consider a sequence of subdivisions {t}} whose
mesh tends to zero and let X™ be the discretized process defined by Xi* = Xyn, for all
ty <t <ty . LetF and F" be the natural filtrations of X and X". It is well known that

for all t, F- C \/,, Fi* C Fi. Also, X™ converges a.s. to the process X, hence X™ = x.
Assume now that X has no fixed times of discontinuity. Then Lemma 16 guarantees that

FPr B Fy, for all t. Moreover, if F is left-continuous (which is usually the case, and holds
for example when X is a cadlag Hunt Markov process) then \/, Fi* = F; for all t.

We provide now another example where \/, F}* is itself a limiting o-field for (F*)n>1, for
each t.
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Example 3 Assume that F" is a sequence of filtrations such that for all t, the sequence
of o-fields (F})n>1 is increasing for the inclusion. Define Fp = V., Fi*. Then for each t,
Fi 8 Fy. To see this, fir t and let X be an integrable F; measurable random variable.
Then M, = E(X | Fi') is a closed martingale and the convergence theorem for closed

martingales ensures that M, converges to X in L', which implies that E(X | FJ) 5 X.
Lemma 12 allows us to conclude.

Checking in practice that X is an F semimartingale can be a hard task. In sections 1.4 and
1.5, we will replace the strong assumption X is an F semimartingale by the more natural
assumption X is an F"™ semimartingale, for each n. Theorem 14 is very instructive since
we see from the proof what goes wrong under this new assumption : the change in the
order of limits in (1.3) cannot be justified anymore and extra integrability conditions will
be needed. These conditions arise naturally in our approach in sections 1.4 and 1.5.

The assumption mentioned above comes out in filtration expansion theory in the follow-
ing way. Assume we are given a base filtration F and a sequence of processes N™ which
converges (in probability for the Skorohod J; topology) to some process N. Let N™ and
N be their natural filtrations and G™ (resp. G) the smallest right-continuous filtration
containing F and to which N™ (resp. N) is adapted. Assume that for each n, every
F semimartingale remains a G” semimartingale. Does this property also hold between F
and G?7 We will answer this question in section 1.4 under the assumption of weak conver-
gence of the o-fields G;* to G; for each t, for a class of F semimartingales X satisfying some
integrability conditions. If moreover G" = G, we are able to provide the G decomposition
of such X.

This ends our mathematical preliminaries section and we start now our filtration expansion
study with the progressive filtration expansion with multiple non ranked random times
under the assumption that for a given local martingale of the base filtration, one knows
what is its decomposition in the initially expanded filtration.

1.3 Progressive filtration expansion under initial-type as-
sumptions

In this section we study progressive filtration expansions with random times. We show
how semimartingale decompositions in the expanded filtration can be obtained using a
natural link between progressive and initial expansions. The link we exhibit and use is, on
an intuitive level, that these two filtrations coincide after the random time. We make this
idea precise and use it to establish known and new results in the case of expansion with a
single random time. We assume that one knows what the decomposition is in some larger
filtration that coincide with the one we are interested in after the random time. Usually, one
can take for this larger filtration the initially expanded one. That is the reason we mention
in the title under initial-type assumptions. The methods are then extended to the multiple
time case, without any restrictions on the ordering of the individual times. Finally we study
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the link between the expanded filtrations from the point of view of filtration shrinkage. As
the main analysis progresses, we indicate how the techniques can be generalized to other
types of expansions, mainly to what we called in the previous section the (7, X)-progressive
filtration expansion and to progressive filtration expansion with counting processes. These
results will be essential for the filtration expansion with a process we focus on in the next
section.

1.3.1 Linking progressive and initial filtration expansion with one ran-
dom time

Assume that a filtered probability space (2, F,F, P) is given, and let 7 be a random time.
Typically 7 is not a stopping time with respect to F. We change a bit notations and
consider now the larger filtrations G™ = (G/ )i>0 and G = (G¢)>0 given by

gl = ﬂ GoT  where 0T — i Vo(r At).

u>t

and
G={AeF3A4ecF|An{r >t} = AN {r > t}}

Now G7 is the progressive expansion of F with 7. Throughout this section G will denote
any right-continuous filtration containing IF, making 7 a stopping time and satisfying

GNn{r>t}=Fn{r>t} forallt >0

Our goal in this section is to analyze how F semimartingales behave in the progressively
expanded filtration G. In particular, in case they remain semimartingales in G, we are in-
terested in their canonical decompositions. Under Jacod’s assumption (see Assumption 1),
this has been done by Jeanblanc and Le Cam [86] in the filtration G™. As one consequence
of our approach, we are able to provide a short proof of their main result. Moreover,
our technique also works for a larger class of progressively expanded filtrations and under
other conditions than Jacod’s criterion. This will be illustrated by an example based on
the absolute continuity of the Malliavin trace.

The G decomposition before time 7 of an F local martingale M follows from the classical
Jeulin and Yor Theorem as given in Theorem 8. The G decomposition before time 7 follows
as a straightforward corollary of Theorem 8 using the following shrinkage result by Foéllmer
and Protter, see [50].

Lemma 21 Let E C F C G be three filtrations. Let X be a G local martingale. If the
optional projection of X onto E is also a local martingale, then the optional projection of
X onto F is an F local martingale.

Putting Theorem 8 and Lemma 21 together provides the G decomposition before time 7
of an F local martingale M as given in the following theorem.
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Theorem 15 Fix an F local martingale M. Then

AT (M, 1) + dJs
T 1
0 S—

is a G local martingale. Here, the quantities Z, u and J are defined as in Theorem 8.

Finding the decomposition after 7 is more complicated, but it can be obtained provided
that it is known with respect to a suitable auxiliary filtration H. More precisely, one needs
that H and G coincide after 7, in a certain sense. One such filtration H when G is taken
to be G7 is, as we will see later, the initial expansion of F with 7. We now make precise
what it means for two filtrations to coincide after 7.

Definition 7 Let G and H be two filtrations such that G C H, and let 7 be an H stopping
time. Then G and H are said to coincide after 7 if for every H optional process X, the

process
1[[7',00[[(X - XT)

is G adapted.

The following lemma establishes some basic properties of filtrations that coincide af-
ter 7.

Lemma 22 Assume that G and H are right-continuous and coincide after 7. Then

(i) For every H stopping time T, TV 7 is G stopping time. In particular, T itself is a
G stopping time.

(ii) For every H optional (predictable) process X, the process 1, (X —X;) is G optional
(predictable).

Proof. For (i), let T be an H stopping time. Then TV 7 is again an H stopping time, so
X = 1qo,7v-] is H optional. Thus

1[[7,00[[(T)(X7" - XT) = _1{T\/T<T‘}

is G,-measurable by the assumption that G and H coincide after 7. This holds for every
r>0,s0 TV Tis aG stopping time since G is right-continuous.

For (ii), let X be of the form X = Al for an Hs-measurable random variable h and
fixed 0 < s < t. Then

Y, = 1[[7,00[[(T)(X7“ -X;) = 1{T§r} (hl{s§r<t} - hl{s§7<t})

is G,-measurable by assumption and defines a cadlag process. Hence Y is G optional, and
the Monotone Class theorem implies the claim for H optional processes. The predictable
case is similar. m

Before giving the first result on the G semimartingale decomposition of an F local martin-
gale, under the general assumption that such a decomposition is available in some filtration
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H that coincides with G after 7, we provide examples of such pairs of filtrations (G, H).
For the progressively expanded filtration G7, it turns out that the filtration H given as the
initial expansion of F with 7 coincides with G” after 7.

Lemma 23 Let H be the initial expansion of F with 7. Then G and H coincide after 7.

Proof. Let X = hlp,, for an Hs-measurable random variable i and fixed 0 < s < t.
Then

Yy = oo (M) (X = X7) = 1rary (Ml o<rery — Ml {acr<ry)
=hls<ranylir<ry — PMls<rcy o<y — Plis<r<r}lir<e)-

It is enough to prove that the three terms on the right side are G]-measurable. Let us
consider the first term, the other ones being similar. First let h be of the form fk(r) for
some Fg-measurable f and Borel function k. Then

hliscrenyir<ry = fR(T) Ls<ranliz<ry = fE(r A T)1s<rennTr<ry,

which is G]-measurable. Using the Monotone Class theorem the result follows for every
HY-measurable h, and finally for every H -measurable h by a standard argument. m

As a corollary we may give an alternative characterization of the progressively enlarged
filtration G” as the smallest right-continuous filtration that contains F and coincides with
H after 7, where H is the initial expansion of F.

Corollary 3 Let H be the initial expansion of F with 7. Then

G™ = ﬂ {@ :FcGcCH, G is right-continuous, and G and H coincide after T}

Proof. To show “C”, let G be an arbitrary element in the class over which we take the
intersection. By Lemma 22, G is a right-continuous filtration that makes 7 a stopping time
and contains F. Hence G7 is included in each G and thus in their intersection. For ‘D7,
Lemma 23 implies that G™ coincides with H after 7. It is right-continuous, so it is one of
the filtrations we are intersecting. m

Let X be a random variable. Consider now the (7, X)-expansion of T, G(™X) . Recall from
Definition 3 that G(™¥) is the smallest right-continuous filtration containing IF, that makes
T a stopping time and such that X is QET’X) measurable and from Lemma 7 that this
filtration is given by

t(T’X) = ﬂ Qg’(T’X) where Q?’(T’X) =FVo(rAt)V O'(Xl{.,.gt}).
u>t

As in Lemma 23 it is easy to prove the following result.

Lemma 24 Let H be the initial expansion of F with (7, X). Then GX) coincides with H
after T.
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Also, G(™¥) satisfies the crucial condition QIST’X) N{r>ty=Fn{r>t}forallt>0as
proved in Lemma 8.

We are now ready to give the first result on the G semimartingale decomposition of an
[ local martingale, under the general assumption that such a decomposition is available in
some filtration H that coincides with G after 7.

Theorem 16 Let M be an F local martingale. Let G be any progressive expansion of F
with T satisfying Gy N {T >t} = FyN{r >t} for allt > 0 and let H be a filtration that
coincides with G after 7. Suppose there exists an H predictable finite variation process A
such that M — A is an H local martingale. Then M is a G semimartingale, and

M /t/\T d<M, M>S + dJs /t A
t— - - = s
0 ZS— tAT

is the local martingale part of its G decomposition. Here Z, i and J are defined as in
Theorem 8.

Proof. The process Mf} = Mip, — Ot/\T W is a G local martingale by the Jeulin-

Yor theorem (Theorem 15). Next, define
MH = 1ﬂ‘r,oo[[(M - M’r)7

where Mt = M;— A;. Since M is an H local martingale, M™ is also. Moreover, if (Th)n>1 is
a sequence of H stopping times that reduce M , then T) = T,V 7 yields a reducing sequence
for M™. Lemma 22 (i) shows that the 7/ are in fact G stopping times, and since G and
H coincide after 7, M™ is G adapted. This implies that MP}/IQT;L is an H martingale that is
G adapted, and is therefore a G martingale. It follows that M™ is a G local martingale.
It now only remains to observe that

tAT M s § t
MéG—l—MH:Mt—/ w_ dAs,,

0 Zsf AT

which thus is a G local martingale. Finally, by Lemma 22 (i7), the last term is G pre-
dictable, so we obtain indeed the G semimartingale decomposition. m

Part of the proof of Theorem 16 can be viewed as a statement about filtration shrinkage.
According to a result by Follmer and Protter [50], if G C H are two nested filtrations and
L is an H local martingale that can be reduced using G stopping times, then its optional
projection onto G is again a local martingale. In our case L corresponds to M™, which is
G adapted and hence coincides with its optional projection.

We now proceed to examine two particular situations where G and H coincide after 7,
and where the H decomposition M — A is available. First we make an absolute continuity
assumption on the F; conditional laws of 7 or (7, X), as in Assumption 1. We then assume
that F is a Wiener filtration, and impose a condition related to the Malliavin derivatives of
the process of F; conditional distributions. This is based on theory developed by Imkeller,
Pontier and Weisz [71] and Imkeller [70].
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1.3.1.1 Jacod’s criterion

In this section we study the case where 7 or (7, X) satisfy Jacod’s criterion, which was
recalled in section 1.2.

Theorem 17 Let M be an F local martingale.
(i) If T satisfies Jacod’s Criterion (Assumption 1), then M is a GT semimartingale.

(ii) Let X be a random variable such that (1,X) satisfies Jacod’s Criterion (Assump-
tion 1), then M is a G™X) semimartingale.

Proof. We prove (i). Let H™ be the initial expansion of F with 7. It follows from Jacod’s
theorem (see Theorems VI.10 and VI.11 in [7]) that M is an H™ semimartingale, which is
G adapted. It is also a G” semimartingale by Theorem 5. The proof of (ii) is similar.
[

We provide the explicit decompositions using the classical result by Jacod recalled in
Theorem 6 in the mathematical preliminaries of this chapter. Immediate consequences of
Theorem 16 and Theorem 6 are the following corollaries.

Corollary 4 Let M be an F local martingale, and assume that T satisfies Assumption 1.
Then M is a GT semimartingale, and

tAT d(M dJ t
M, - / WL [ krjaa,
0 ZS* tAT
is the local martingale part of its G decomposition. Here Z, u and J are defined as in

Theorem 8, and k and A as in Theorem 6 withd =1 and £ = 7.

Notice that this recovers the main result in [86] (Theorem 3.1), since by Theorem 6 (i)

we may write
t t d M s
tAT tAT Ps— (U)

whenever the right side makes sense. See [86] for a detailed discussion.

’
u=T

Corollary 5 Let M be an F local martingale. Let X be a random variable and assume
that (1, X) satisfies Assumption 1. Then M is a G™X) semimartingale, and

M, —/W UM, s + T /t ko (7, X )dA
0 ZS— tAT Y °

is the local martingale part of its G(X) decomposition. Here Z, u and J are defined as in
Theorem 8, and k and A as in Theorem 6 with d =2 and § = (1, X).

1.3.1.2 Absolute continuity of the Malliavin trace

In two papers on models for insider trading in mathematical finance, Imkeller et al. [71] and
Imkeller [70] introduced an extension of Jacod’s criterion for initial expansions, based on
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Malliavin calculus. Given a measure-valued random variable F'(du;w) defined on Wiener
space with coordinate process (W:)o<¢<1, they introduce a Malliavin derivative D, F'(du; w),
defined for all F' satisfying certain regularity conditions. The full details are outside the
scope of the present subsection, and we refer the interested reader to [71] and [70]. We
continue to let H be the initial expansion of F.

The extension of Jacod’s criterion is the following. Let Pi(du,w) = P(7 € du | F3)(w), and
assume that Dy P;(du,w) exists and satisfies

sup E (/01<D3Ps(du),f>2ds> < oo.

FEC(R), [IfII<1

Here Cp(R) is the space of bounded and continuous functions on R, || - || is the supremum
norm, and (F(du), f) = fR+ f(u)F(du) for a random measure F' and f € Cy(R). Assume
also that

D;Pi(du,w) < Py(du,w) a.s. for all ¢t € [0,1],

and let g;(u;w) be a suitably measurable version of the corresponding density. Then they
prove the following result.

Theorem 18 Under the above conditions, if fol lg¢(7)|dt < o0 a.s., then

t
Wt/ gs(T)ds
0

is a Brownian motion in the initially expanded filtration H.

One example where this holds but Jacod’s criterion fails is 7 = supg<;<; Ws. In this case
g¢(7) can be computed explicitly and the H decomposition of W obtained. Due to the
martingale representation theorem in F, this allows one to obtain the H decomposition
for every F local martingale. Using Theorem 16, the decomposition in the progressively
expanded filtration G can then also be obtained.

Corollary 6 Under the assumptions of Theorem 18,

tAT d<W Z) t
%% —/ —=7s —/ gs(T)ds
! 0 ZS* tAT

is a G Brownian motion.

1.3.2 The case of multiple non ranked random times

We now move on to progressive expansions with multiple random times. We start again
with a filtered probability space (2, F,F, P), but instead of a single random time we
consider a vector of random times

T=(T1,...,Tn).
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We emphasize that there are no restrictions on the ordering of the individual times. This
is a significant departure from previous work in the field, where the times are customarily
assumed to be ordered. The progressive expansion of F with 7 is

gt:ﬂgg where G)=FVvo(rinti=1,...,n),
u>t
and we are interested in the semimartingale decompositions of F local martingales in the
G filtration. Several other filtrations will also appear, and we now introduce notation that
will be in place for the remainder of this section, except in Theorem 20 and its corollary.
Let I C {1,...,n} be an index set.

e o7 = max;c; 7; and py = min;egr 7;
e G’ denotes the initial expansion of F with the random vector 7 = (Ti)ier
e H’ denotes the progressive expansion of G! with the random time p;

If I = (), then G = F and H is the progressive expansion of F with py = min;—y ., 7. If
on the other hand I = {1,...,n}, then G/ = H’, and coincides with the initial expansion
of F with 77 = 7. Notice also that we always have G ¢ H'.

The idea from Section 1.3.1 can be modified to work in the present context. The intuition
is that the filtrations G and H’ coincide on [oy, p;[. The G decomposition on oy, p;[ of an
F local martingale M can then be obtained by computing its decomposition in H’. This
is done in two steps. First it is obtained in G! using, for instance, Jacod’s theorem (The-
orem 6), and then in H up to time p; using the Jeulin-Yor theorem (Theorem 8).

The following results collect some properties of the relationship between H! and G, thereby
clarifying in which sense they coincide on [or, pr[. We take the index set I to be given and
fixed.

Lemma 25 Let X be an Hi-measurable random variable. Then the quantity X1l <ty
is Gi-measurable. As a consequence, if H is an H! optional (predictable) process, then
Yo;p[(H — Hyy) is G optional (predictable).

Proof. Let X be of the form X = fk(p; At)[];c; hi(7i) for some Fi-measurable random
variable f and Borel functions k, h;. Then

Xl{ojgt} = fk‘(p[ VAN t) H hi(Ti VAN t)l{afgt}v
el
which is G;-measurable, since o7 and p; are G stopping times and 7; A t is G;-measurable
by construction. The Monotone Class theorem shows that the statement holds for every

X that is measurable for F; V o(7; : 3 € I) Vo(pr At). H! is the right-continuous version
of this filtration, so the result follows.

Now consider an H! predictable process of the form H = hly,, with s < ¢ and h an
H!I-measurable random variable. Then

HTl[[UI,pI[[(r> = h1{5<r§t}1{01§r<p1} - hl{s<01§7"<p[}?
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which defines a G predictable process using the first part of the lemma. An application of
the Monotone Class theorem yields the desired result in the predictable case. The optional
case is similar. =

Lemma 26 Let T}, be an H! stopping time and define T, = (o7 V T,,) A (pr Vn). Then T},
is a G stopping time.

Proof. We need to show that {7} > t} € G; for every ¢t > 0. Careful set manipulations
yield

1{T;L>t} = 1{01\/Tn>t} 1{ﬂIVn>t}

= (1 - Yoy lim<y) (1= Lp<nlinzy) -
We have that 1-1¢, <y 1<y = 1_1{p1§t}(1_1{n>t}) = Lo st 1 p <y Lnseys S0
Lirsty = Yoty — Yor<oy Y ma<oy Loty
+ L <t Linsty — Yor<oy Y mo<oy Lo <ty Linsty-

The first and third terms are G;-measurable since p; is a G stopping time. The second
term is equal to 1¢7, <} 1(5,<t<p;) and is thus Gi-measurable by Lemma 25, which also
gives the measurability of the fourth term. m

The next theorem generalizes Theorem 16 to the case of progressive enlargement with
multiple, not necessarily ranked times.

Theorem 19 Let M be an F local martingale such that My = 0. For each I C {1,...,n},
suppose there exists a G predictable finite variation process Al such that M — Al is a
G! local martingale. Moreover, define

z{ = P(pr >t|G}),

and let ! and J! be as in Theorem 8. Then M is a G semimartingale with local martingale
part My — A;, where

thpr e (M, 11 -|-dJsI
A = Z Lo, <py (/ dAg +/t < MZZ ) :
I 5=

tAor Nor

Here the sum is taken over all I C {1,...,n}.

Notice that when I = ), then o7 = 0 and G! =T, so that A’ = 0 and does not contribute
to A;. Similarly, when I = {1,...,n}, p; = oo and we have Z = 1, causing both (M, u!)
and J to vanish. Note also that it is also a classical fact that Z[. >0 on {p; > t}.

Before proving Theorem 19 we need the two following technical lemmas.

Lemma 27 For any process M, the following identity holds.

Z l{UISP[}(Mt/\PI - Mt/\UI) = My — My
Ic{1,...,n}
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Proof. Fix w € © and let 0 < 7,(1) < ---7y(,) be the ordered times. Then for I of the
form I = {n(1),--- ,n(k)} (for some 0 < k < n, with the convention I = () when k = 0),
one has

1{01§p}(MtAp1 - Mt/\oz) = Mt/\77,(k+1> - Mt/\ﬂ;m

with the convention that 7,11 = co. For other I the term is zero, since in that case o7 > py.
Summing over all subsets of {1,--- ,n} provides the result.

Lemma 28 Let L be a local martingale in some filtration F, suppose o and p are two
stopping times, and define a process Ny = 1is<p)(Linp — Ling)-

(i) N is again a local martingale.

(i1) Let T be a stopping time and define T' = (o VT) A (pV n) for a fired n. Then
Niar = Niarr

Proof. Part (i): This is clear since N can be written

Ny = 1{a§p} (Lt/\p — Lipo) = Linp = Linonp

Part (ii): The proof consists of a careful analysis of the interplay between the indicators
involved in the definition of N and T’. On {o < p} we have

tAT' Np=tAN(VT)AN(pVn)Ap=tA(eVT)Ap

and
tAT' No=tAN(eVT)AN(pVn)Ao=tA(cVT)Ao.

On {T <o} nN{o < p}, these are both equal to ¢ A o, so on this set,

Niarlir<o} = Yo<pyLir<o} (Lino — Ling) = 0.
Hence Niarr = Niarr {74y Similarly, Nyar = 0 on {T' < o}, and hence Niarlirs,) =
Nipr. But on {T' > o} n{o < p},
tA(eVTYANp=tAT Ap and tA(cVTYNo=tAT Ao,
SO Nt/\T’]-{T>o'} = Nt/\T]-{T>a}~ This yields Niarr = Niar as required. m

Proof of Theorem 19. For each fixed index set I, the process M; — f(f dAl is a local
martingale in the initially expanded filtration G by assumption. Now, H’ is obtained
from G! by a progressive expansion with py, so Theorem 8 yields that

tApr tApI d(M I dJI
MtI = Mt/\p] - / dAg - / < ’HZZS + >
0 0 5—

is an H’ local martingale. Define the process

NtI = 1{01§P1} (Mtl/\m - MtI/\GI) :
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Our goal is to prove that N’ is a G local martingale. This will imply the statement of the
theorem, since summing the N’ over all index sets I and using Lemma 27 yields precisely

M — A.

By part (i) of Lemma 28, N7 is a local martingale in H’. Write
NtI = 1{01§t<,01} (MtI - Mé}) + 1{01§,01<t} (M/{I - Mg[) =Y1+Y;

and apply Lemma 25 with X = Y] for the first term and X = Y5 for the second to see
that N7 is in fact G adapted. The use of Lemma 25 is valid because both Y; and Ys are
H!-measurable.

Next, let (T},)n>1 be a reducing sequence for NT in H!. By Lemma 26 we know that
T! = (o7 VTy) A (pr Vn) are G stopping times, and since T, > T, A n we have T) 1 oo
a.s. Moreover, part (ii) of Lemma 28 implies that Ntl/\Tn = NtI/\T,g' Hence (Ntl/\T/z)tZO is
an H! martingale that is G adapted, and therefore even a G martingale. We deduce from
the above that N7 is a G local martingale. A final application of Lemma 25 shows that
A is G predictable, so we obtain indeed the G semimartingale decomposition of M. This
completes the proof of Theorem 19. m

We now proceed to study the special case where the vector 7 of random times satisfies
Jacod’s criterion, meaning that Assumption 1 holds, now with state space £ = R’l. Again
there is no loss of generality to let n be the law of 7. We will further assume that 7 is
absolutely continuous w.r.t to Lebesgue measure, so that n(du) = h(u)du. Provided the
law of 7 does not have atoms, this restriction is not essential—everything that follows goes
through without it—but it simplifies the already quite cumbersome notation.

The joint F; conditional density corresponding to this choice of 7 is denoted py(u;w). That

is,

P(r e du | F) = pi(u)duy - - - duy,

where we suppressed the dependence on w. Now, for an index set I C {1,...,n} with
|I| = m, we have, for ur € R,

P(r; <wus | F) :/ / pe(vr;v_r)dv_rdvy,
vy<ur Jv_;>0

where 77 is the subvector of 7 whose components have indices in I, and where v; and
v_g are the subvectors of v with indices in I, respectively not in I. Inequalities should be
interpreted componentwise. The above shows that 7 also satisfies Assumption 1, so that
there is an appropriately measurable function p! (us;w) such that

P(T[ € dul | ]:t) :ptI(uI)dul.

Moreover, this conditional density p’ is given by

pi(ur) = / pe(ur;u_g)du_r.
R7™
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Define

pe(u_y | 1) = pe(Triu—y)
= fooo...fooopt(T[;U_[)dU—I'

This is the conditional density of 7_; given F; V o(77), as one can verify using standard
arguments. The quantity above is well defined, since the denominator only vanishes if
pt(Tr;u_r) is identically zero for each w_, in which case the numerator and the conditional
density are also null. Defining

ZtI—/ / p(u—r | T1)du_r, (1.4)
t t

we have Z] = P(p; >t | F; V o(77)). One then readily checks that we also have

Zl =P(pr >t |G}).

We can now state the decomposition theorem for continuous F local martingales in the
progressively expanded filtration G, when Jacod’s criterion is satisfied. Recall that o =
max;cy 7; and pr = minj¢1 Tj.

Corollary 7 Let M be an F local martingale, and assume Assumption 1 is satisfied for
T =(11,...,7). Then M is a G semimartingale. For each I C {1,...,n}, let Z' be given
by (1.4) and let p! and J' be as in Theorem 8. Then My — A; is a G local martingale,
where

erd(p! (ur), M),
Ay = 21: Lio,<pr} (/t T )

Nog bs—

+/Mp’ d<M7u’>s+dJs]>
t

I
Ur=Tg Nog Zsf

Here the sum is taken over all I C {1,...,n}.
Proof. We apply Theorem 19 and notice that it follows from Theorem 6 that

Ld(p! (ur), M),
pi_(ur)

A,{:/Ot kL(rp)d(M, M), :/0

UT=T]

This completes the proof. m

We end this section by pointing out that the filtration G(™%) introduced earlier can be
generalized to the multiple time case. To state the precise result, we first suppose that

each random time 7; is accompanied by a random variable X;, and let X = (X1,...,X,,).
Define the filtration G(™X) by

gtT,X) _ ﬂ gg,(‘r,X)7
u>t

where
gf’(T’X) =FVo(mntii=1,...,n)Vo(Xil<pyi=1,...,n).

Let I C {1,...,n} be an index set. Assume for simplicity that P(7; = 7;) = 0 for i # j.
We may then define
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o X = (Xi)ier
o Y = X;«, where ¢* € [ is the index for which p; = 7;«.

For the statement and proof of Theorem 20, we redefine the objects G! and H! as follows.
For an index set I C {1,...,n},

e G’ denotes the initial expansion of F with the random vector (77, X 1) = (74, Xi)ic1.
e H' denotes the (pr, Y7)-expansion of G'.

Theorem 20 Let M be an F local martingale such that My = 0. For each I C {1,...,n},
suppose there exists a G predictable finite variation process Al such that M — Al is a
G! local martingale. Moreover, define

z{ =P(pr >t|G}),

and let p' and J' be as in Theorem 8. Then M is a G™X) semimartingale with local
martingale part My — Az, where

tApr tApr d<M I> + dJI
I y ) s S
At:zl{glﬁﬁl} (/t dAs—l-/t Al > .
I S=

/\O’[ /\0’[

Here the sum is taken over all I C {1,...,n}.

Proof. The proof is the same as that of Theorem 19, except for the following points:
Instead of Theorem 8, we invoke Theorem 15, which is justified by Lemma 8. Moreover,
it must be verified that Lemma 25 remains valid for the redefined H! and G = G(™X).
This is easily done: in the proof of Lemma 25, simply replace X = fk(pr At)[[;c; hi(7i)
by
X = fh(pr ALY, <) [ ] ha(r)gi(Xil <y,
el
where /() and g;(-) are Borel functions. m

Define the process
n
Ny = ZXil{ngt}
i=1
Let N™ be the smallest right continuous filtration containing I and to which the process

N™ is adapted. Under the same assumption as in Theorem 20, F semimartingales remain
N™ semimartingales.

Corollary 8 Let M be an F local martingale such that My = 0. For each I C {1,...,n},
suppose there exists a G predictable finite variation process Al such that M — Al is a
G! local martingale. Then M is a N™ semimartingale.

Proof. Applying Theorem 20, M is a G(™*X) semimartingale. Since N* ¢ G(™-X) and M
is adapted to N, it follows from Theorem 5 that M is a N semimartingale. ®
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1.3.3 Connection to filtration shrinkage

It has been observed that the optional projection of a local martingale M onto a filtration to
which it is not adapted may lose the local martingale property, see Follmer and Protter [50].
In that paper, the following general condition was given that guarantees that the local
martingale property is preserved (see [50|, Theorem 3.7):

Lemma 29 Consider two filtrations F C G and a G local martingale N. If there exists a
sequence of | stopping times that reduce N, then its optional projection onto F is again a
local martingale.

Using this result we establish that certain local martingales that arise in the context of
filtration expansion in fact retain their local martingale property when projected to various
subfiltrations. In particular, if M is an F local martingale and a G-semimartingale, then
°MG, the optional projection onto F of the local martingale part in the G semimartingale
decomposition of M, always remains a local martingale.

Theorem 21 Consider three filtrations E C F C G, and let M be an E local martingale.
Suppose M is also a G semimartingale with canonical decomposition M = N + A. Then
the optional projection of N onto IF, when it exists, is again a local martingale.

Remark. Note that M remains a special semimartingale in G, given that it remains a
semimartingale.

Proof. By Lemma 29 it suffices to show that N can be reduced using E, and hence F,
stopping times. Now, since M is an E local martingale, it is locally in H}, (E). Therefore
it can be reduced with a sequene (7},)n>1 of E stopping times such that for each n, M Tn ¢
HYE). Also, MT" is a G semimartingale with canonical decomposition

MTn — NTn 4 AT
A result by Yor ([128], théoréme 5) then yields
INT 306y < el Ml g)

for some absolute constant c. Since M is in H!(IE), the right side is finite and it readily
follows that N7» is a uniformly integrable G martingale for each n, which was what we set
out to prove. ®

At this point, it is worth mentioning that the result above helps illustrate the role
of our assumptions and shows how they fail to hold for the explicit counterexample
given in [50]. There the authors consider a standard three-dimensional Brownian mo-
tion (Bt)i>0 = (B}, B, Bf)1>0 starting at xp = (1,0,0). Let H be its natural filtration.
It is well known that (||B¢||)¢+>0 is a Bessel(3) process with initial value 1 and that its
reciprocal Ny = ||By||~! is an H strict local martingale. Let F be the natural filtration
of B'. It is proved in [50] that the optional projection of N onto F is not a local mar-
tingale. Theorem 21 therefore implies that N can never appear as the local martingale
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part in the H decomposition M = N + A of any F local martingale M that is also an
H semimartingale.

As an application of Theorem 21 we obtain the following. The filtrations F, G and H are
now as in Theorem 16.

Corollary 9 Let M be an F local martingale and let H be a filtration that coincides with
G after . Suppose M is an H semimartingale with decomposition

M; = ME 4+ A%
and suppose A™ has a G optional projection °A® which is locally integrable in G. *

Then M is a G semimartingale with decomposition M = M + A® and A® = (A")P. In
particular, it follows that

tAT t
d{M d
(AH)€:/ < 7/~L>s+ Js +/ dA]EI
0 ZS— tAT
Here, the quantities Z, p and J are defined as in Theorem 7.
Proof. M is an H semimartingale, hence a G semimartingale by Stricker’s theorem [123].

Since °A™ exists and M is G adapted, °M™ exists. Taking optional projections of the
relation M = M™ + A" and adding and subtracting (A™)P yields

M= [OMH + oAH _ (AHyP] 4 (AHYy.

By Theorem 21, °M™ is a G local martingale, and therefore the quantity in brackets is a
G local martingale. We deduce that A® = (A®)P. The expression for (A®)? now follows
from Theorem 16. m

As a particular case, we recover Proposition 3.3 in [17]. There G and H are the progressive,
respectively initial, expansions of F' with a random time 7 that avoids all I stopping times,
and whose [F conditional probabilities are equivalent to some deterministic measure. Under
these assumptions, the authors compute explicitly the G dual predictable projection of
Al = f(f ks(T)ds, where k is as in Theorem 6, and prove that

tAT t
(ABY? :/ 1.2 +/ k(7)ds.
0 s— tAT

This follows from Corollary 9 since J = 0 when 7 avoids all F stopping times.

1.4 Filtration expansion with processes

In this section we study progressive filtration expansions with cadlag processes. Using
results from the weak convergence of o-fields theory, we first establish a semimartingale

!This assumption guarantees that the dual predictable projection (AH)p exists, and that °A® — (AH)”
is a G local martingale, see Theorem VI1.80 in [36].
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convergence theorem, see Theorem 22 below. Then we apply it in a filtration expansion
with a process setting and provide sufficient conditions for a semimartingale of the base
filtration to remain a semimartingale in the expanded filtration. These main results are
Theorems 25 and 27. Finally, an application to the expansion of a Brownian filtration with
a time reversed diffusion is given through a detailed study and Kohatsu-Higa’s example is
recovered and generalized.

1.4.1 A semimartingale convergence result and applications to filtration
expansion

In preparation for treating the expansion of filtrations via processes, we need to establish
a general result on the convergence of semimartingales, which is definitely of interest in its
own right.

1.4.1.1 A semimartingale convergence theorem

The following theorem is a generalization of the main result in [11].

Theorem 22 Let (G"),>1 be a sequence of right-continuous filtrations and let G be a
filtration such that G = G for all t. Let (X™)n>1 be a sequence of G™ semimartingales
with canonical decomposition X™ = X + M™ + A™. Assume there exists K > 0 such that
for all n,

T
E(/ |[dAY|) < K and  E( sup |[M!]) <K
0 0<s<T

Then the following holds.

(i) Assume there exists a G adapted process X such that E(supy<s<p | X7 — X]) — 0.
Then X is a G special semimartingale.

(i) Moreover, assume G is right-continuous and let X = M + A be the canonical de-
composition of X. Then M is a G martingale and fOT |dAs| and supg<s<p | Ms| are
integrable.

Proof. Part (i). The idea of the proof of Part (i) is similar to the one in [11]. First, X is
cadlag since it is the a.s. uniform limit of a subsequence of the cadlag processes (X")p>1.
Also, since || X§ — Xol||l1 — 0, we can take w.lo.g X' = Xo = 0, and we do so. The
integrability assumptions guarantee that E(sup,|X”|) < 2K and up to replacing K by
2K, we assume that F(sup, |[M?|) < K, E(f(;f |dA?|) < K and E(sup, |X?|) < K. Then
E(sup, | Xs|) < E(sup, |Xs — X7|) + K and by taking limits E(sup, |Xs|) < K.

Let H be a G predictable elementary process of the form H; = Zle hily, 1140 (t), Where
hi is a G;, measurable random variable such that |h;| < 1 and t; < ... <ty <tp41 =T.
Define now H}* = Zle Py, b0 (F), where b = E(h; | Git). Then A} is a G measurable
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random variable satisfying |h}'| < 1, hence H" is a bounded G" predictable elementary
process. It follows that H™ - M™ is a G™ martingale and for each n,

T T
E((H" - X™)p)| < |E( /O HPdAY)| < B /0 dAT)) < K

Therefore, for each n,
[E((H - X)) < |E(H - X)r — (H" - X")7)| + K (1.5)

Since h; is Gy, measurable and G} 2 G, for all t, h} £> h; for all 1 < ¢ < k. Since the set
{1,...,k} is finite, successive extractions allow us to find a subsequence ¢ (n) (independent
from ) such that for each 1 <1i < k, hg)(n) converges a.s. to h;. So up to working with the
G¥(™ predictable elementary processes H¥(™) and the stochastic integrals H¥(™ . X¥(") in
(1.5), we can assume that h]" converges a.s. to h;, for each 1 <1i <k.

Now, |E((H - X)r — (H™ - X™)7)| < XK, B(|h:Y; — hY}|) where Y; = X,
Y =X}

7 tit1

— Xti and

i+1
- Xg. Each term in the sum can be bounded as follows.
E(|hY;i=h7Y"|) < E(JY"(hi' — hi)]) + E(Jhi(Y]" = Yi)|)

< 2E(sup [ X (ki — hi]) + E(|Y;" = Yi))

< 2E(sup [ X — Xi||hi* — hil) + 2E(sup | X[ |hi" — hil) + 2E(sup | X — X,)
S S S

< 6E(sup | X' — X|) + 2E(sup [ X |[hi" — hal)
S S

Since sup, |Xs||h? — h;| converges a.s to zero and that for all n, |h?| < 1, hence
sup, | Xs||h? — h;| < 2sup, |Xs| and sup, | Xs| € L', the Dominated Convergence Theo-
rem implies that E(sup, | Xs||h — hi|) — 0. Since by assumption E(sup, | X} — X;|) — 0,
it follows that |E((H-X)p— (H™- X™)7)| converges to 0. Letting n tend to infinity in (1.5)
gives |E((H - X)r)| < K. So X is a G quasimartingale, hence a G special semimartingale.
Therefore X has a G canonical decomposition X = M + A where M is a G local martingale
and A is a G predictable finite variation process.

Part(ii). Let (7,)m>1 be a sequence of bounded G stopping times that reduces M. Since
for all t, Gi" =2 Gy, it follows from Lemma 20 that for each m there exist a function ¢,

Ti’m (n))

strictly increasing and a sequence (7)%),>1 such that ( n>1 converges in probability

to 7, and TT?;’"(M are bounded G?(") stopping times. We can extract a subsequence
(Tﬁm(wm(n)))nzl converging a.s. to 7,,. In order to simplify the notation, fix m > 1 and up
to working with G" = G¢m(Wm() instead of G (which satisfies the same assumptions),
take ®,, := ¢, © Y, to be the identity. Let H be a G elementary predictable process as

defined in Part (i). Since 7,,, reduces M, E((H-A),,) = E((H-X),,,). We can write
E((H'A)Tm) = E((H'X)Tm_(Hn'Xn)Tm)+E((Hn'Xn)Tm_(Hn'Xn)T,%)"i‘E((Hn'Xn)T%)
We start with the third term. Since H™ - M" is a G" martingale and 7, is a bounded

G" stopping time, it follows from Doob’s optional sampling theorem that E((H"™-X")n ) =
E((H™-A"):n), hence |[E((H™ - X™)m )| < E( OT’” |[dA?|) < K.
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We focus now on the first term. Let Y7 = X, — Xy, and Y™ = X7 — X"

By i= |B((H - X)r, = (H" - X")r,)| < B( sup |(H-X), = (H"- X").])

E(i sup [ — APV

i—1 t;<s<tit1

IN

k
<SE( s VIR -l 4 sup BV - YY)

1 t;i<s<tji1 t; <s<tijt1

<.
Il

ince |h?| <1, S.’ < n si’—'_sup — X[, it follows tha
S |ht] <1, |Ys™"] < 2sup, | X7| and |V = Y| < 2sup,, | X7 — X,], it foll that

k
Ey <2y {E( sup |XP|[A} —hil) + E( sup |Xj—Xu[)}

P 0<u<T 0<u<T
k
< 6kE( sup |X7 - X,) + 23 {E( sup |X.[[h} —hil)}
0<s<T P 0<s<T

We study now the second term Ep := E((H™ - X"), — (H" - X")m). Let 0 < n <
min; |t;+1 — t;|, and define Y™ = H™ - X™. Write now

E(Vz, =Yaul) = BE(Y5, = Yo Wm-mpi<m) + (Y5, = Yo Lir—mpism) = €1+ €2

We study each of the two terms separately. We start with es.

k
e2 < BE((IY2 |+ 1Y Dl —rn sny) < 2E(Z sup | X — XZ|1{|Tm—Tm>n})

i—1 ti<s<tijt1

§4l~:E( sup |X3|1{\rm—nzl>n})
0<u<T

< 4kB( sup |X7 = Xul) +4RE( sup |Xulljr, oo )
0<u<T 0<u<T

We study now e1. On {|7, — 7| < n} and since n < min; [t;41 —;|, we have |Y! — Y| <
28Ups<i<siy | Xi — X[ In fact, one of the two following cases is possible for 7, and
Tp- Either they are both in the same interval (t;,%;41], in which case, Y] — Y| =
he(xn,
the second case, take for example ¢;_1 < 7, < t; < 7} < t;y1, then

_xn Y < n wn . o
X7 )| < Supycpcspy | XL — X7, or they are in two consecutive intervals. For

Yo, = You | = (Wi (X5, = X)) = hila (Xg, = Xg ) = hif (X2 — X3
= [P (X5, = X3 = hi'(X0n = X))l < XD, = X + [ X5 — XT]

<2 sup [X] - X7
s<t<s+n

The case t;—1 < 7} <t; < Tpy < ti41 is similar. Hence

er S2BE( sup | X{" = Xy, —mni<py) S 2E( sup [ X7 — X[)
s<t<s+n s<t<s+n
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Putting all this together yields for each 0 < 1 < min; |t;+1 — ¢;| and each n
k

|E(H - A),,, | < K+2E( sup |X; = X7|)+2)  E( sup | X |[h — hyl)
s<t<s+n i=1 0<s<

+ 4k E( sup | Xs[Lgr,— Tn‘>n})+10kE( sup | X} — X,)
0<s< 0<u<T

Getting back to the general case, we obtain for each m > 1 and each n > 1,

\E(H - A),, | < K+2B( sup | X7 — x () +ZZE sup X [[BSm ) hy))

s<t<s+n i—1 0<s<
+ 4kE( sup |Xs |1 —rff”(")bn}) + 10kE( sup | xZm() _ Xu)
0<s<T 0<u<T

As in the proof of Part (i), successive extractions allow us to find A, (n) (independent from

i) such that for all 1 <i <k, h;\’"(n) converges a.s. to h;. Letting n go to infinity in

\E(H - A),, | < K+2E( sup | XM — x| +2ZE sup_ XL [[h0m ) = b))
s<t<s+n i=1 0<s<

+4RE( sup [Xal1, s })+10kE( sup | X3 — X))
0<s<T Tm N 0<u<T

gives the estimate

|E(H - A);, | <K+ 2limsup E( sup |X}' — X7|)
n—00 s<t<s+n
Let limy, o lim sup,,_, o F(sups<i<siy | Xs — X{'[) = C. Since E(supyjgyy [ Xi' — X7|) <
2E(sup,, |X2|) < 2(E(sup, |M2| + [ |dA?])) < 4K, C < co. Now letting 7 go to zero
yields finally |E(H-A).,, | < K+2C, for each m. Thus E([;™ |dAs|) < K+2C, for each m
and hence E(fOT |dAg|) < K +2C.

Now, M =X —-A=(X—-X")4+ M"+ A" — A, and so
T T
sup |Mg| < sup |Xs— X7 |—|— Sup |M"|+/ |dAZ+/ |dAs|
0<s<T 0<s<T 0

Thus E(supg<g<r |Ms|) < 3K +2C and M is a G martingale. m

Once one obtains that X is a G special semimartingale, one can be interested in charac-
terizing the martingale M and the finite variation predictable process A in terms of the
processes M"™ and A™. Mémin (|111, Theorem 11]) achieved this under extended conver-
gence. Recall the following definition.

Definition 8 We say that (X", G") converges to (X, G) in the extended sense if for every
G € Gr, the sequence of cadlag processes (X}', E(1g | Gi))o<t<T converges in probability
under the Skorohod Jy topology to (X¢, E(1g | Gt))o<t<T-
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The author proves the following theorem in [111] to which we refer for a proof. In the
theorem below, G" and G are right-continuous filtrations.

Theorem 23 Let (X"),>1 be a sequence of G" special semimartingales with canonical
decompositions X™ = M"™ + A™ where M"™ is a G™ martingale and A™ is a G™ predictable
1

finite variation process. We suppose that the sequence ([X™, X"|2),>1 is uniformly inte-
grable and that the sequence (V(A™)r)n>1 (where V' denotes the variation process) of real
random variables is tight in R. Let X be a G quasi-left continuous special semimartingale

1
with a canonical decomposition X = M + A such that ([ X, X]7) < co.

If the extended convergence (X™,G") — (X,G) holds, then (X", M™, A™) converges in
probability under the Skorohod Jy topology to (X, M, A).

In a filtration expansion setting, the sequence X" is constant and equal to some semi-
martingale X of the base filtration. In this case the extended convergence assumption
in Theorem 23 reduces to the weak convergence of the filtrations. We can deduce the
following corollary from Theorems 22 and 23.

Corollary 10 Let (G"),>1 be a sequence of right-continuous filtrations and let G be a
filtration such that GI* % Gy for allt. Let X be a stochastic process such that for each n, X
is a G™ semimartingale with canonical decomposition X = M™ + A™ such that there exists
K >0, E(fOT |dAZ|) < K and E(supg<s<r [ME]) < K for alln. Then

(i) If X is G adapted, then X is a G special semimartingale.

(ii) Assume moreover that G is right-continuous and let X = M + A be the canonical
decomposition of X. Then M is a G martingale and supy< < |Ms| and fOT |dAs| are
integrable.

(i4i) Furthermore, assume that X is G quasi-left continuous and G™ % G. Then (M™, A™)
converges in probability under the Skorohod Jy topology to (M, A).

Proof. The sequence X" = X clearly satisfies the assumptions of Theorem 22, and the
two first claims follow. For the last claim, notice that [X, X]r € L', so \/[X, X]r € L' and
hence (1/[X, X]t)o<t<r is a uniformly integrable family of random variables. The tightness
of the sequence of random variables (V(A")r),>1 follows from E( fOT |[dA?]) < K for any
n and some K independent from n. m

We provide in the next subsection a first application to the initial and progressive filtration
expansions with a random variable and a general theorem on the progressive expansion
with a process. We assume in the sequel that a right-continuous filtration I is given.
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1.4.1.2 Application to initial and progressive filtration expansions with a ran-
dom variable

Assume that I is the natural filtration of some cadlag process. Let 7 be a random variable
and H and G the initial and progressive expansions of F with 7. In this subsection, the
filtration G is considered only when 7 is non negative. It is proved in section 1.3 that if 7
satisfies Jacod’s criterion i.e. if there exists a o-finite measure n on B(R) such that

P(t € | F)w) <n(.) as.

then every F semimartingale remains an H and G semimartingale. That it is an H semi-
martingale is due to Jacod’s theorem. That it is also a G semimartingale follows from
Theorem 5. Its G decomposition is obtained in the previous section and this relies on the
fact that these two filtrations coincide after 7. We provide now a similar but partial result
for a random variable 7 which may not satisfy Jacod’s criterion. Assume there exists a
sequence of random times (7,),>0 converging in probability to 7 and let H" be the initial
expansion of F with 7,,. The following holds.

Theorem 24 Let M be an F martingale such that supg<,<p |My| is integrable. Assume
there exists an H"™ predictable finite variation process A™ such that M — A™ is an H"
martingale. If there exists K such that E(fOT |dAZ]) < K for all n, then M is an H and G

semimartingale.

Proof. Since 7,, converges in probability to 7 and F is the natural filtration of some cadlag
process, we can prove that H} 5 H, for each t € [0, 77, using the same techniques as in
Lemmas 15 and 16. Up to replacing K by K + E(supg<;<p |M:|), M™ = M — A™ and
A™ satisfy the assumptions of Corollary 10. Therefore M is an H semimartingale, and a
G semimartingale by Stricker’s theorem. m

One case where the first assumption of Theorem 24 is satisfied is when 7, satisfies Jacod’s
criterion, for each n > 0. In this case, and if F is the natural filtration of a Brownian
motion W, the result above can be made more explicit. Assume for simplicity that the
conditional distributions of 7, are absolutely continuous w.r.t Lebesgue measure,

P(ry, € du | Fy)(w) = pi(u,w)du

where the conditional densities are chosen so that (u,w,t) — pj'(u,w) is cadlag in t
and measurable for the optional o-field associated with the filtration [ given by F =
Nu>tB(R) ® Fy. From the martingale representation theorem in a Brownian filtration,
there exists for each n a family {¢"(u),u > 0} of F predictable processes (g;'(u))o<t<T
such that

t
() = b+ [ wa, (16)
Corollary 11 Assume there exists K such that E(fOT Zgg:g ds) < K for all n, then W

is a special semimartingale in both H and G.
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Proof. Since 7, satisfy Jacod’s criterion, it follows from Theorem 2.1 in [72] that W} — A}
FAR"(W-W)s | Now, it follows from (1.6) that

U (O

ds and Theorem 24 allows us to conclude. m

is an H local martingale, where A} =

n_ [t (L?(Tn)
AY = Jo vite

Assume the assumptions of Corollary 11 are satisfied and let W = M+ A be the H canonical
decomposition of W. Let m be an F predictable process such that fg m?2ds is locally
integrable and let M be the F local martingale M; = fot msdWs. Theorem VL5 in [117]
then guarantees that M is an H semimartingale as soon as the process ( fot msdAs)e>0 exists
as a path-by-path Lebesgue-Stieltjes integral a.s.

Example 4 In order to emphasize that some assumptions as in Theorem 2] are needed,
we provide now an example where the conclusion of Theorem 24 fails to hold. Let F be
the natural filtration of some Brownian motion B and choose T to be some functional of
the Brownian path i.e. 7 = f((Bs,0 < s < 1)), such that o(t) = F1. Then B is not
a semimartingale in H = (Fy V o(7))o<t<1. Now, define 7, = 7 + ﬁN, where N is a
standard normal random variable independent from F. Then 1, converge a.s. to T and
P(ry <ul| F) = [ E(gn(v—7) | F)dv where gy, is the probability density function of
ﬁN, hence P(1, € du | F;)(w) = E(gn(u—7) | Ft)(w)(du). Therefore, T, satisfies Jacod’s
criterion, for each n and p}(u,w) = E(gn(u—17) | Ft)(w). Thus, B is a semimartingale in
H" = (F: V o(Tn)o<t<1) and HE L H, for each 0 <t <1.

1.4.1.3 Application to filtration expansion with a process

Let (N™),>1 be a sequence of cadlag processes converging in probability under the Sko-
rohod Ji-topology to a cadlag process N and let N® and N be their natural filtrations.
Define the filtrations G = F vV N" and G" by G;" = (,~, G, Let also GO (resp. G) be
the smallest (resp. the smallest right-continuous) filtration containing F and to which N
is adapted. The result below is the main theorem of this section.

Theorem 25 Let X be an F semimartingale such that for each n, X is a G" semi-
martingale with canonical decomposition X = M™ + A™. Assume E(fOT |dA?|) < K and
E(supg<s<r |[M|) < K for some K and all n. Finally, assume one of the following holds.

- N has no fixed times of discontinuity,

- N™ is a discretization of N along some refining subdivision (my)n>1 such that each
fized time of discontinuity of N belongs to Ny,m,.

Then
(i) X is a G° special semimartingale.

(ii) Moreover, if F is the natural filtration of some cadlag process then X is a G spe-
cial semimartingale with canonical decomposition X = M + A such that M is a G
martingale and supy< < | M| and fOT |dAs| are integrable.
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(iii) Furthermore, assume that X is G quasi-left continuous and G™ =5 G. Then (M™, A™)
converges in probability under the Skorohod Jy topology to (M, A).

Proof. Under assumption (i), since N" L N and P(AN; # 0) = 0 for all ¢, it follows from

Lemma 16 that N}* 5 N, for all t. The same holds under assumption (ii) using Lemma
17. Lemma 18 then ensures that Qto’n & GV for all t. Since Q?’n C Nust Ggon — gr, it
follows from Lemma 19 that G = GY for all t. Being an F semimartingale, X is clearly
G° adapted. An application of Corollary 10 ends the proof of the first claim. When F
is the natural filtration of some cadlag process, the same proofs as of Lemmas 16 and 17
guarantee that G;* = G, for all t. Since G is right-continuous, the second and third claims
follow from Corollary 10. =

We apply this result to expand the filtration F progressively with a point process. Let
(1i)i>1 and (X;)i>1 be two sequences of random variables such that for each n, the random
vector (71, X1, ..., Th, Xy) satisfies Jacod’s criterion w.r.t the filtration F. Assume that for
all ¢ and i, P(r; = t) = 0 and that one of the following holds:

(i) For all 4, X; and 7; are independent, E|X;| = u for some pand "2, P(1; < T) < 00

(i) B(JX2|) =cand >0, \/P(1; <T) < .

Let Ni* = >0 Xily,<py and Ny = 372 X;il¢ ;3. The assumptions on N™ and N as of
Theorem 25 are satisfied.

Lemma 30 Under the assumptions above, Ny € L' for each t, N" B N and N has no
fized times of discontinuity.

Proof. We prove the statement under assumption (i). For each ¢,
oo o0
E(INe) < Y B(IXillgr<ry) Spy P(ri<t) < oo
i=1 =1
Therefore, Ny € L'. For > 0 and n integer, we obtain the following estimate.

o
P(sup [Ny —N/'|>n)=P(sup | Y Xilg<y|>n)
0<t<T 0<t<T i

=n+1
o0 [e.¢]
< P( sup Z | Xi|lir<ty > m) = P( Z | Xill{r<Ty = 1)
0st<T ;1 i=n+1
1 oo " 3]
< —E( Z | Xill{r<ty) = = Z P(ri <T)—0
n i=n+1 n i=n+1

This implies N™ £ N. Under assumption (ii), the proof is also straightforward and based
on Cauchy Schwarz inequalities. Finally, since

P(|ANt| 750) §P(3’i|Ti:t) Sip(ﬂ;:t) =0
i=1
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N has no fixed times of discontinuity m

Since the random vector (71, X1,...,7,, X,) is assumed to satisfy Jacod’s criterion, it
follows from Corollary 8 that F semimartingales remain G" semimartingales, for each n.
Therefore, this property also holds between F and G for F semimartingales whose G" canon-
ical decompositions satisfy the regularity assumptions of Theorem 25. Here G is the small-
est filtration containing F and to which N is adapted.

We would like to take a step further and reverse the previous situation. That is instead
of starting with a sequence of processes N™ converging to some process NN, and putting
assumptions on the semimartingale properties of F semimartingales w.r.t the intermediate
filtrations G™ and their decompositions therein, we would like to expand the filtration F
with a given process X and express all the assumptions in terms of X and the F semi-
martingales considered. We are able to do this for cadlag processes which satisfy a criterion
that can loosely be seen as a localized extension of Jacod’s criterion to processes. The in-
tegrability assumptions of Theorem 25 are expressed in terms of Fi-conditional densities.
Before doing this, we conclude this subsection by studying the stability of hypothesis (H)
with respect to the weak convergence of the o-fields in a filtration expansion setting.

1.4.1.4 The case of hypothesis (H)

Recall that given two nested filtrations F C G, we say that hypothesis (H) holds between
F and G if any square integrable F martingale remains a G martingale. This hypothesis
was studied by Dellacherie and Meyer in [35] and Brémaud and Yor, see [14] where a proof
of the next Lemma 31 is available.

Lemma 31 Let F C G two nested filtrations. The following assertions are equivalent.
(i) Hypothesis (H) holds between F and G.
(i) For each 0 <t < T, Fr and G; are conditionally independent given Fy.
(iii) For each 0 <t < T, each F € L*(Fr) and each Gy € L*(Gy),
E(FGi | Fi) = E(F | F) E(Gy | Fi).

Let F C G be two nested right-continuous filtrations and G™ be a sequence of right-
continuous filtrations containing F and such that G converges weakly to G; for each t.
We mentioned that an F local martingale that remains a G semimartingale for each n
might still lose its semimartingale property in G and we provided conditions that prevent
this pathological behavior. In this subsection, we prove that this cannot happen in case
hypothesis (H) holds between [ and each G". One obtains even that hypothesis (H) holds
between F and G.

Theorem 26 Let F, G and (G")p>1 right-continuous filtrations such that F C G, F C G"
for each n and G* 2B Gy for each t. Assume that for each n, hypothesis (H) holds between,
F and G™. Then hypothesis (H) holds between F and G.
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Proof. We use Lemma 31 and start with the bounded case. Let 0 <t < T, F € L*(Fr)
and Gy € L>*(G;). For each n, define G} = E(G; | Gf*). Then G} € L*™(G}'). Since
hypothesis (H) holds between F and G", Lemma 31 guarantees that E(FG} | F;) = E(F |
FO)E(GY | Fi). But Fy C G, hence E(G} | i) = E(E(Gy | G') | Fr) = E(Gy | Fb).
Since G} 2 G, FGY LR FG;. Now FGY is bounded by a square integrable process (by
assumption) so the convergence holds in L' by the Dominated Convergence theorem so
that E(FG} | Ft) K E(FG; | F). This proves that E(FGy | Fy) = E(F | Fo)E(Gy | Fr).
The general case where Gy € L?(G;) follows by applying the bounded case result to the

bounded random variables Ggm) = Gy Am. Then for each m,

E(FG™ | 7)) & B(FG, | )

and the Monotone Convergence theorem allows us to conclude. m

A similar result is straightforward and holds if we assume that the sequence of filtrations
(G™)>1 converges weakly to the filtration G rather than assuming the convergence of the
corresponding o-fields.

Lemma 32 Assume G" 5 G. Let M be a G adapted process such that M is a G™ mar-
tingale for each m > 1. Then M is also a G martingale.

Proof. Since G % G and My is Gr measurable, it follows that E(Mp | G*) — E(Mr |
G.). Now since M is a G" martingale, M = E(Mr | G") is independent from n, therefore
M=EMr|G). m

We can now provide the following result whose proof is immediate given the previous
lemma.

Corollary 12 LetF, G and (G"),>1 right-continuous filtrations such that F C G, F C G"
for each n and G™ 2 G. Assume that for each n, hypothesis (H) holds between F and G™.
Then hypothesis (H) holds between F and G.

1.4.2 Results based on Jacod’s type criterion for the increments of the
process

In this section, we assume a cadlag process X and a right-continuous filtration F are
given. We study the case where the process X and the filtration F satisfy the following
assumption.

Assumption 2 (Generalized Jacod’s criterion) There exists a sequence (Tp)p>1 =
({t?})n>1 of subdivisions of [0,T] whose mesh tends to zero and such that for each n,
(th, Xip—=Xyn, ... , X7—Xyn) satisfies Jacod’s criterion, i.e. there exists a o-finite measure
N on BR"™?) such that P((Xen, X — Xyn, ..., X0 — Xin) € - | i) (w) < 0a(-) as.
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Under Assumption 2, the Fi-conditional density

P((th,Xt? — th, ce ,XT - th) S (duo, cee ,dun+1) ‘ ]-'t)(w)
N (dug, . .., dups1)

(n) (

pp (Uo, ..y Upt1, w) =

exists for each n, and can be chosen so that (ug,...,upt1,w,t) — pgn) (ug, ..., Upt1,w) is

cadlag in ¢ and measurable for the optional o-field associated with the filtration I, given
by Fi = NustB(R"2) ® F,. For each 0 < i < n, define

pé’n(uo, . 7ui) = / » pgn) (UO, ceey un+1)77n(du7;+1, ey dun+1)
R’ﬂ —1

Let M be a continuous F local martingale. Define

Ai,n o /t d<pi7n(u0a s ,Ui), M>S
t in
0 p.- (ug, - .. u;)

VO<k<t,up=X;n—X
SRR UE 35 Ry

Finally define
(n) n t/\t'?+l .
Ay = / dAY"

A

i.e.
(n) n il tz+1 k t .
AY =S vy (X [ dabn+ [ asin) (18)
1=0 k=0""k i

Of course, on each time interval {t7 < t < ¢ ;}, only one term appears in the outer
sum. Let G° (resp. G) be the smallest (resp. the smallest right-continuous) filtration
containing I and relative to which X is adapted. The theorem below is the main result of
this section.

Theorem 27 Assume X and F satisfy Assumption 2 and that one of the following holds.
- X has no fized times of discontinuity,

- the sequence of subdivisions (7p)n>1 in Assumption 2 is refining and each fized time
of discontinuity of X belongs to Nymy,.

Let M be a continuous F martingale such that E(sups<p |Ms|) < K and E(f(;f |dA§") ) < K
for some K and all n, with A" as in (1.8). Then

(i) M is a GY special semimartingale.

(i) Moreover, if F is the natural filtration of some cadlag process Z, then M is a G spe-
cial semimartingale with canonical decomposition M = N + A such that N is a G
martingale and supy< <1 |Ns| and fOT |dAs| are integrable.

Proof. We construct the discretized process X" defined by X3" = Xyn for all £ <¢ <t,,.
That is

n
Xi' = Z Xeplgnaran 3+ X7lg—my
i=0



1.4. Filtration expansion with processes 51

with the convention ty = 0 and ¢}, ; = T'. Let G" be the smallest right-continuous filtration
containing F and to which X™ is adapted.

Now, for 0 <t < T,

n n n
X{'= Xolypecy, )+ Xrlpory = Y Xelugpeg — ) Xl <o+ Xrlyon
=0 =0 =0

n
= (Xep = Xep Vpmary + Xolgpary — Xepln < + Xrlpn | <n)

=1
n+1 n+1
= Xolgen + ) _(Xer = Xon e = D (Xer = Xin )<y
i=1 1=0

with the notation Xy = 0.

For each 0 < i < n + 1, let H*™ be the initial expansion of F with (th — th_l)ogkgi.
Since (th — Xtﬁ,l)oﬁkéi satisfies Jacod’s criterion, it follows that for each 0 <7 < n +1,
M — A5 is an H*" local martingale. Let

G = FuVo((Xer = Xy Mggpzayyi =0,...,n +1)
u>t
Since the times ¢} are fixed, H®™ is also the initial expansion of F with (ty, Xip—Xup Jo<k<i
and G" = G" using a Monotone Class argument and the fact that XZ% = Xyp, for all

0<k<n+1. So it follows from Theorem 19 that M — A is a G" local martingale. An
application of Theorem 25 yields the result. m

Remark 3 We refrain from stating Theorem 27 in a more general form for clarity but
provide two extensions in the remarks below.

(i) Going beyond the continuous case for the F local martingale M is straightforward.
We only need to use Theorem 19 in its general version rather than its application to
the continuous case. However the explicit form of A™) s much more complicated,
which makes it hard to check the integrability assumption of Theorem 27. To be more
concrete, one has to replace A" in the theorem above by A™ defined by

IALY, ) )
fﬂn zizj/ ‘Aun%_dJ?n)

1.e.
n i—1
"= Z Lgn<ectn, (Z/ (dAL™ + dJ5™) + /t:(dfli’" + dJé’n))
i=0 k=0 i

where A" is the compensator of M in H™ as given by Jacod’s theorem (see Theorems
VI.10 and VI.11in [117]) and J5™ is the dual predictable projection ofAMt?+1 1[t?+1700[

onto Hb™.
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(i) A careful study of the proof above shows that Assumption 2 is only used to ensure
that there exists an H"™ predictable process A®™ such that M — A*™ is an H*" local
martingale. Therefore, Theorem 27 will hold whenever this weaker assumption is
satisfied.

If the sequence of filtrations G™ converges weakly to G then (M — A(”),A(”)) converges
in probability under the Skorohod J; topology to (N, A). Many criteria for this to hold
are provided in the literature, see for instance[29, Propositions 3 and 4]. This holds for
example when every G martingale is continuous and the subdivision (7, ),>1 is refining. In
this case, for each 0 <t < T, (G}')n>1 is increasing and converges weakly to the o-field G;.
The following lemma allows us to conclude. See [29] for a proof.

Lemma 33 Assume that every G martingale is continuous and that for every 0 <t < T,
(GM)n>1 increases (or decreases) and converges weakly to Gi. Then G™ 5 G.

1.4.3 Examples: Time reversed diffusions and Kohatsu-Higa’s exam-
ple

1.4.3.1 Time reversed diffusions

Start with a Brownian filtration F = (F;)o<i<r, Ft = 0(Bs,s < t) and consider the
stochastic differential equation

dXt = O'(Xt)dBt + b(Xt)dt

Assume the existence of a unique strong solution (X¢)p<;<7. Indeed, assume the transition
density 7(t,z,y) exists and is twice continuously differentiable in z and continuous in ¢
and y. This is guaranteed for example if b and o are infinitely differentiable with bounded
derivatives and if the Hormander condition holds for any x (see [10]), and we assume that
this holds in the sequel. In this case, 7 is even infinitely differentiable.

We next show how we can expand a filtration dynamically as t increases, via another
stochastic process evolving backwards in time. To this end, define the time reversed process
Zy = Xp_¢,forall0 <t <T. Let G = (gt)0§t<§ be the smallest right-continuous filtration
containing (ft)0§t<§ and to which (Zt)0§t<% is adapted. We would like to prove that B
remains a special semimartingale in G and give its canonical decomposition. That B is
a G semimartingale can be obtained using the usual results from the filtration expansion
theory. However, our approach allows us to obtain the decomposition, too. We assume
(w.l.o.g) that T = 1. Introduce the reversed Brownian motion Bt = By1_; — By and the
filtration G = (Gt)0§t<% defined by

G = ﬂ U(BS,BS,O < s <u).

t<u<i

Theorem 28 Both B and B are G semimartingales.
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Proof. First, it is well known that B is a Brownian motion in its own natural filtration and
0(B1—s — B1,0 < s < 1) is independent from o(Bs,0 < s < ). Therefore (Bt),.1 and
— 2

(Bt)y<i<1 are independent Brownian motions in G. Now, given our strong assumptions
— 2

on the coefficients b and o, X, satisfies Jacod’s criterion with respect to G. Therefore B

and B remain semimartingales in H = (H;),<,.1 where H; = (1. ,,Gu V o(X1). It only
— 2 2

remains to prove that G = H. For this, use [117, Theorem V.23] to get that

dX1_; = o(X1_)dB; + (0 (X1—t)o(X1—¢) + b(X1_¢))dt

Since b+ oo’ and o are Lipschitz, ﬂ1>u>ta(X1_s,O <s<u) = ﬂ%>u>t0(3570 <s<
u) V o(X1) and the result follows. m

We apply now our results to obtain the G decomposition. This is the primary result of
this section.

Theorem 29 Assume there exists a nonnegative function ¢ such that fo s)ds < oo and
for each 0 < s < t,

(|2 00— 5, X, X)) < olt — 9

Then the process (Bt)y<,.1 is a G semimartingale and
Si<3

10nw
Bt_/ ﬂ'ax( —23,X5,X1_5)d8

is a G Brownian motion.
Proof. Since the process Z; is a cadlag process with no fixed times of discontinuity, we

can apply Theorem 27. First we prove that (Z) ., 1 and (F)<,.1 satisfy Assump-
Sts3 St<3

tion 2. Let (mp)n>1 = ({t]'})n>1 be a refining sequence of subdivisions of [0, %] whose
mesh tends to zero. We will do more and compute directly the conditional distributions
of (Ztgazt’f —Zipy ooy Zpn — thil) forany 1 < ¢ <n+ 1. Pick such 7 and let 0 < ¢ < %
and (20,...,2;) € RFL

P(Ztg < ZO,ZtIL - Ztg < 21,... ,Zt;n — Ztlril <z ‘ ft)
= P(X1 <20, X1 = Xioip > =21, X | = Xiap >~z | )

=F H Lix, X1 st P(Xicm — 21 < X1 < 20 | Fiom) |]:t)

I
&

o0

H Lix, X1 >z} Loy <ao -} X i (t7,v1 + X1—4n)dvy | ]:t)

k+1 -2z

oo
<H Lix, = Xiem szﬂ}/x . 1{“1S20}PX14’; (7, ur)dus |]:t>
1-tp =21

=F
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Repeating the same technique and conditioning successively w.r.t Fi_gm,..., Fip
gives
P(Ztn<ZO,Ztn—Ztn<Zl,.. Ztn—Ztn <Zz|ft = / /

—Z; —z1

n n
{Zk Lok<z0—X;_ tn} H X, t"+zj 1Y) (tk - tk17§/ul +X1—t?)dvl .. .dvi ’ .Ft)

/ /—z / {u+2k 1 Uk<zo}PXt( —t,u)

kl_[l PH+Z§=k+1 v (ty —ty_j,u+ ZZ; vp)dvy ... dvidu

Fubini’s Theorem implies then

(3] 20— p—1 Vk
P(Ziy < 20, Zep — Zag < 21,00y Zp — Zin | < 7 | F) :/ / /
-2 —z1
7

i
Px, (1 =t —t,u) Pu+2] er g (tp —tp_q,u+ Zvl)dudvl cdv;
k=1 1=k

Since the transition density 7 (¢, z,y) = P.(t,y) is twice continuously differentiable in x by
assumption, it is straightforward to check that

i k k—1 i
pi’”(zo,...,zi):HW(Z—tZ_l,sz, zj)m(1 =t} —tXt,Z 25)
k=1 j=0  j=0 =0
One then readily obtains
2,1 1om n : 2,1
d(p""(20,...,2i),B)s = %%(1 —ti — s, X, 2k)p" (20, -« -y 2i)ds
=0

Hence by taking the local martingale M in (1.7) to be B, we get

; 1
A;’n = / *81(1 - tn S,XS,Xl_t?)dS
0

T Oz

Now equation (1.8) becomes

k1 1 87T
Z Lgn<ecar, ) Z/ - 8:c —tp — 8, X5, X14p)ds

10m
NG . ,XS,X,nd)
+/tn7r8x( ° -1y ) ds
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In order to apply Theorem 27, it only remains to prove that E( fo |dA n)]) < K for some

constant K independent from n. The finite constant K = fo s)ds works since
10m
n) Yy n
(/ [dAM|) < § /tn E‘m‘)x (1 — 17 — 5, X, X1_g7)|ds

1-2t7

n Ic+1

Z/ 1—t”—sds_Z/ ds
=0 t_tk+1

n

S

=0 k+1

This proves again that B is a G semimartingale. Now A(™ converges in probability to the
process A given by

t
1
A, = / falu — 25, Xy, X1_s)ds
0

™ ox

Since all G martingales are continuous, the comment following Theorem 27 ensures that
B-A is a G martingale. Its quadratic variation is ¢, therefore it is a G Brownian motion.
|

In the Brownian case, the result in Theorem 29 can also be obtained using the usual theory
of initial expansion of filtration. Assumeb=0and o =1,ie. Z =By_. and X = B.

Theorem 30 The process B is a G semimartingale and

t

Bi_. — B, 1
B — | 2l sy 0<t<-=
t/o 1-2s % ='S35

is a G Brownian motion.

Proof. Introduce the filtration H' = (#;),«,.1 obtained by initially expanding F
— 2
with Bi.
2

tBl—BS 1
MtZ:Bt— 7(18, O§t<*
0 2

is an H! Brownian motion. Now expand initially H! with the independent o-field (B, —
B;,% < v < 1) to obtain H i.e.
2
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Obviously (My)y<,.1 remains an H Brownian motion. But G; C Hy, for all 0 <t < %,
— 2
hence the optional projection of M onto G, denoted °M in the sequel, is again a martingale

(see [50]), i.e.
t B; — Bs 1
OMt:Bt—E(/ iid5|gt), 0§t<*
0o =S 2
: : ¢ By —Bs t By Bs .
is a G martingale. Also, Ny := E(/, zis ds | Gi) — [, E( zis | Gs)ds is a G local
martingale, see for example [106] for a proof. So
t B:1 — Bg
B, = OMt+Nt+/ E(———1Gs)ds
0 75— 5

We prove now the theorem using properties of the Brownian bridge. Recall that for any
0< T() <Th < o0,

£((B)nyi<r, | Bos @110, 11[) = £((B)ny<i<r, | Bry. Br, ) (1.9)

and

t—Tp
T — Tp

£<(Bt)T0StST1 | By = @, By = y) = E(l‘ + (y—z)+ (KKV&%FTO)TOStST1>

where W is a generic standard Brownian motion and YW-71=70 is the standard Brownian

bridge on [0, 7} — Tp]. It follows that for all Ty < ¢ < T and all x and y,

hi-t =T
= T
T O P

E(B; | Br, =, Br, =y) (1.10)

For any 0 < s < t < 3, if follows from (1.9) and (1.10) that

1
E(B% — B | gs) = i(Blfs - BS)

Therefore

t

B, s—B

Bt—/ #ds == oMt+Nt
0 1-—2s

is a G local martingale. Since the quadratic variation of the G local martingale B — A is t,

Levy’s characterization of Brownian motion ends the proof. m

In the immediately previous proof, the properties of the Brownian bridge allow us to com-
pute explicitly the decomposition of B in G. Our method obtains both the semimartingale
property and the decomposition simultaneously and generalizes to diffusions, for which
the computations as in the proof of Theorem 30 are hard. We provide a shorter proof for
Theorem 30 based on Theorem 29. This illustrated that, given Theorem 29, even in the
Brownian case our method is shorter, simpler, and more intuitive.
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)2
Proof. [Second proof of Theorem 30] In the Brownian case, 7(t,z,y) = L e o

Therefore 292 (¢,

t,x,y) = 7. Hence

10n 1 2 1
il VR < _ N el
E< w@:n‘(t S’BS’Bt)) - t—sE(|Bt Bsl) \/;\/t—s

and ¢(x) = f is integrable in zero. From the closed formula for the transition density,

t B, .—B
Ay = 5. —ds. Therefore B is a G semimartingale, and B — A is a G Brownian motion

by Theorem 29. m

This property satisfied by Brownian motion is inherited by diffusions whose parameters b
and o satisfy some boundedness assumptions. We add the extra assumptions that b and
o are bounded and k < o(z) for some k£ > 0. The following holds.

Corollary 13 The process (B)y<,c1 is a G semimartingale and
— 2
10
B, —/ - a;r( — 25, Xy, X1_5)ds

is a G Brownian motion.

Proof. Introduce the following quantities

| b 1.
s(x) = ——dy g=s" =—-0g—-0o0g
@ /off(y) "o 2

The process Y; = s(X;) satisfies the SDE dY; = u(Y;)dt + dB;. The transition density is
known in semi-closed form (see [49]) and given by

1 1 (s(y)—s(x))?
e 2 Ui(s(x),s
e ((s(x).50))

m(t,z,y) =

where Uy (z,y) = Hy(x,y)e WA Hy(z,y) = E(e™! Jo hla+(y= x)+‘/WZ)dZ) W is a Brow-
nian bridge, A a primitive of g and h = %( 24 (1)?). Tt is then straightforward to compute

the ratio
10w B 1 S(y) — 5(;1;) 1 % "
ot = o (W e T s (0).5(0)
1 rs(y) —s(x) 1 o H,
. U@)( r T H @) o W) pls(2)) )

From the boundedness assumptions of b and ¢ and their derivatives, there exists a constant
M such that [L9Z (¢, z y)| < M(1+ M) Hence, for 0 <s <t

T Ox

10rm
0z

— s(Xs)

It s Xs,Xt)’<M 1+E’ t
— S

)
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But s(X;) — s(Xs) =Y, — Yy = f wu(Yy)du + Wy — W, But u is bounded, hence

2
E[s(¥5) = s(Y2)| el = o]+ EWi = Wl = [l = o] + /273

This proves the existence of a constant C' such that

10w 1
El= -5, X, X)) <01+ ——
( S, t) ( + m

w Oz
Since ¢(z) = C(1 + %) is integrable in zero, we can apply Theorem 29 and conclude.
]

)

1.4.3.2 Stochastic volatility models

Let (2, H, P,H) be a filtered probability space. Assume that we are given an H Brownian
motion W and a positive continuous H adapted process o. Consider the following stochastic
volatility model

ClSt = StO'tth

and o is such that (o, A) is Markov w.r.t its natural filtration with transition density
pe((u,a), (v,b)), where A; := fot o2ds. Define Z; = fg osdWs, so that S; = £(Z), and
let F be the filtration generated by S and o. Then F; = (1,5, 0(Zs, 05,5 < u). Since
(Z,Z)y = A, A is F adapted.

We want to expand (]:t)o<t<T progressively with the continuous process X; := fT . o2ds =

Ar — A, 0<t < % The process (X¢) r satisfies Assumption 2 with density

0<t<T
o oo k+1
/ / / l_Ipthr1 tn ((ur, As + E ai), (U1, Ar + E a;))
a1=0 Juy= O Un41= Ok‘ 1 =1

pg,t((am At)a ur, a1+ Ay))duny - .. durda

3]
. ’ 2 ’

that sup, |M,]| is integrable. Then A*"* and A(™ can be computed using the formulas in

(1.7) and (1.8) and the G semimartingale property of M will be guaranteed as soon as

T
E(J? 1dAM™|) < K for some K and all n.

along any refining subdivision {t}'} of [0 Let M be a continuous F martingale such

1.4.3.3 Time reversed diffusions : an extension

We studied above in detail the expansion of ' with a time reversed diffusion X; = Zp_4,

up to time % A first extension consists in making time move backward at a different

speed than it moves forward, that is, let A be an increasing process and expand F with
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Xt = Z (1) where Z is the solution to some SDE driven by W to get G. Assume Z is
the unique strong solution to

dZt = O'(Zt)th + b(Zt)dt

Assume the transition density 7(¢,z,y) exists and is twice continuously differentiable in
2 and continous in both ¢ and y. Assume A is an increasing positive continuous function
such that A(0) < T, so that there exists a unique 0 < to < T such that tg = A(T — to).
Then W remains a G semimartingale up to time tg. The following theorem makes this
more precise.

Theorem 31 Assume there exists a nonnegative function ¢ such that foA(T) o(s)ds < oo
and for s < t,

10
E(‘ﬂ_aﬂ-( _37287Zt|> S ¢(t—3)

Then the process (Wi)o<t<t, is a G semimartingale and

10nm
— AT —5s)—s,7Z:, X
W, /ﬂaxu $) — 5, 7o, X,)ds
is a G Brownian motion.

Proof. The proof follows the same lines as the proof of Theorem 29 and is therefore
sketched briefly. Let (mp)n>1 = ({t]'})n>1 be a refining sequence of subdivisions of [0, #o]
whose mesh tends to zero. The process A in (1.8) is given by

n k+1 1 871‘ n
A( ) _ Zl{tn<t<t ) Z/ ftk,)—s,Zs,th)ds

7T8:L‘

4 / LOm -y~ s, 2, Xip)ds)
t

n T OT
1

and E( go ]dAg <> ro ft’““ — 1) — s)ds. Changing variables and using that
Ais nondecreasmg, it follows that

E(/O |dA™ <Z/ T lqﬁ(u)dU—/OA(T) o(u)du

since A(T — to) = to. Therefore W is a G semimartingale. Since A™ converges in
probability to the process A; := g %g—g(A(T—s) —8,Zs, Xs)ds and since all G martingales

are continuous, the claim follows from Theorem 27. m

Exactly as in Corollary 13, the conditions of Theorem 31 can be proved to hold for Z = W
(case b =0 and o = 1) and then proved to be satisfied more generally if the coefficients b
and o of the SDE are bounded and such that k < o(x) for some k > 0. A second extension
of the filtration expansion with a time reversed diffusion idea would be to make the time
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change A stochastic. We refrain from introducing explicit examples because this extension
would be only computationally more involved.

To provide a concrete application for insider trading models, fix 0 < ¢ < T and define
Alt) = T — —e In this case, tgp = T — € and the trader acquires the information
(Ze)T—e<t<T progressively (and backward in time) when time runs from 0 to T'—e. That is,
the insider does not only hold the information Zr as in classical models, but his information
gets more precise as he discovers progressively the entire path of Z in a small interval close
to maturity.

1.4.3.4 Kohatsu-Higa’s example and extension

In 98], the author suggests an insider model, closer to reality than the classical insider
models, where the information the insider holds gets deformed through time. More pre-
cisely, Kohatsu-Higa expands progressively the natural filtration F of a Brownian motion W
with the process X; = Wr + Zp_y)0, where Z is a Brownian motion independent of W.
In this case the blurring of the information is done at a logarithmic scale. The decom-
position of W in the expanded filtration is provided and the proof relies on properties of
Gaussian random vectors. For the sake of clarity, we focus on the same class of examples
and show how the decomposition of W in the expanded filtration comes out clearly from
our approach. Let A be an increasing continuous function, X = Wr + Zp_;) and let G
be the progressive expansion of F with X. The following holds.

Theorem 32 (Kohatsu-Higa) Assume fo < 00. Then W is a G semimartingale

ﬁ

X - W
- d
W /OT5+A(TS) §

and

is a G Brownian motion.

Proof. Let (my)n>1 = ({t]'})n>1 be a refining sequence of subdivisions of [0,7] whose
mesh tends to zero. Let 1 < i <n+1,and 0 <t < T and (zo,...,7;) € R*L. The
Fi conditional density of (Xin, Xyn — Xyn, ..., Xyn — Xyn ) is given by

7 o)
iz, ... @) = Hg(—a:k,A(T—tZ)—A(T—tZ_l))/ g(v, A(T—t1)) Z —W;—v, T—t)dv
k=1

—00

where ¢ is the gaussian density. By completing the squares, we can compute the integral
above, since more generally

/ g(z+ a,8)g(x + b, t)dz = g(b— a,s + 1)

for all (a,b) € R? and s,t > 0. Therefore,

pi(wo, .. yxi) = [ [ g(—an, AT =) = AT = t7_1)g(We = > ap, T — t + A(T — 17))
= k=0
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Using Ito’s formula, one gets

d(p(zo,...,x;), W)y _ ch:o x, — W,

Equation (1.8) becomes

n i—1
k+1 th — WS t XtT" - Ws
! ; Bst<ti et T—s+ AT —t}) st T —s+ AT —t7) °

We prove now that the sequence (E( fOT |dA§")y))n>1 is uniformly bounded.
T L Xin — Wi
E([ |dAM]) < / E d
([ = | Bl

<Z/tz+1 E!WT—W\_I_ E|Z ) \/7/ ds
T—S+A( —tn \/ — S ,/ —3

which is finite by assumption. Therefore W is a semimartingale, and since all G martingales

are continuous, it follows that W — A is a martingale where A is the limit in probability
0 W()ds That W — A s a G Brownian
motion follows from the fact that its quadratic variation is t. m

of A™ and is therefore given by A; =

We recover the example in [98] with the choice A(t) = ¢, at least for < 2. However,
the result remains valid for more general processes X, of the form X; = Yr + Zy_y),
where Yr = f((Ws)o<s<r) is an Fr measurable random variable with an F conditional
density ¢, Z is a process independent from F and A is an increasing function. With X
having this structure, computations can usually be done explicitly and Assumption 2 and
the integrability conditions of Theorem 27 can be checked. This provides a class of non
trivial dynamic insider trading models which allow a general modeling of the deformation
of the information through time.

1.5 Toward dynamic models for insider trading

Many processes will be such that Assumption 2 is not satisfied. In this section, we focus
our attention on the case where the process X used to enlarge the base filtration F is
continuous. In this case, new criterions that are sometimes easier to check can be found
to ensure that a given F semimartingale M, satisfying some integrability assumptions,
remains a semimartingale in the expanded filtration. Now, instead of assuming that the
increments of X satisfy Assumption 2, we will instead work with the successive hitting
times of X of some given levels. In case these times are either honest or initial, we can
reach the same conclusions as in the previous section. We recover Jeulin’s example, where
the natural filtration of a Bessel 3 process is progressively expanded with its remaining



62 Chapter 1. Filtration expansions and semimartingales

infimum (see [89]) and we also extend this result to the case where we expand the natural
filtration of a transient diffusion R with its remaining infimum.

We will use the examples of this section to point out how riskless arbitrage opportunities
appear in this framework of filtration expansions. Take a continuous semimartingale X; =
Xo+ M; + A¢,0 <t <T on a filtered probability space (Q2, F,F, P) where F = (F)o<t<7-
Here M is the continuous local martingale part and A is a process with paths of finite
variation on compact time sets, almost surely. NFLVR can fail to hold mainly for two
reasons and this is made rigourous in the following theorem, which provides necessary and
sufficient conditions such that there exists an equivalent probability measure ) such that
X is a @ local martingale. The proof can be found in [118].

Theorem 33 (Protter and Shimbo) Let X; = X + My + A, t > 0 be a continuous
semimartingale on a filtered probability space (Q, F,F, P) and denote by C its quadratic
variation. There exists an equivalent probability measure QQ on Fr such that X is a @ local
martingale only if

(i) dA is absolutely continuous w.r.t dC
(ii) If J is such that A, = fg JsdCs for each 0 <t < T, then fOT J2dCs < ¢ a.s.

If in addition one has the condition E(E(— fOT JsdMs)) = 1, then we have sufficient condi-
tions for there to exist an equivalent probability measure Q@ on Fr such that X is a @ local
martingale.

There are many examples in the literature of insider models that introduce arbitrage oppor-
tunities in the sense of FLVR by violating Condition (ii) of Theorem 33. See for instance
[71] where a Brownian filtration is expanded with the supremum of the Brownian motion
over a finite time horizon. The Brownian motion remains a semimartingale in the ex-
panded filtration with a finite variation part that is absolutely continuous w.r.t Lebesgue
measure but lacks enough of nice integrability properties that the insider information does
introduce free lunches. In our example, we will notice that the finite variation part in the
progressively expanded filtration becomes singular w.r.t Lebesgue measure and this pro-
vides a dynamic insider trading model with extreme arbitrage opportunities, from which
the risk is removed and arising because Condition (i) of Theorem 33 is violated.

1.5.1 Filtration expansion results based on a Jacod’s criterion for hitting
times

Let I be the natural filtration of some cadlag process and let X be a continuous process
which is not adapted to F. Let G be the progressive expansion of F with X. We provide in
this subsection a Jacod’s type criterion (for successive hitting times by X of some levels)
that guarantees that a given F semimartingale M, satisfying some integrability assump-
tions, remains a G semimartingale. Some intermediate filtrations are needed. First, to take
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care of the initial value of the process X, we expand [F initially with Xy to obtain

FXo = () FuVo(Xo)

u>t

We need at least that M remains an FX0 semimartingale. A sufficient condition that
ensures this is that X satisfies Jacod’s criterion w.r.t F. Throughout this subsection, we
assume that the following holds.

Assumption 3 X satisfies Jacod’s criterion w.r.t F i.e. the reqular Fi-conditional prob-
abilities P(X¢ € dx | Ft) are absolutely continuous w.r.t the law of X, for all0 <t <T.

Now, since X is ]_—th measurable, for each 0 < ¢t < T, we just need to expand FX¢ with
X — X to obtain G. So as long as Assumption 3 is satisfied and up to replacing in the
sequel F with FX0, we can assume that the process X starts at 0 and we do so.

Now we approximate X with a counting process in the following way. Let (g,,)n>1 be
a sequence of positive real numbers decreasing to zero. Define 7§ = 0 and define 7,
recursively by

Ty =mf{t > 70, [Xi = Xon [ 2 e} for each p > 1

For each n > 1, (7))p>1 is a strictly increasing sequence of random times. Define now the
sequence of processes
(e o]
n o _
Xt - § XT;,ll{TI;LSt<T;L+1}
p=0

for each n > 1. We need some assumptions on the random times 7', mainly that they do

p b
not cluster.

Assumption 4 For each n > 1, the sequence (T;)pzl is strictly increasing to infinity.

y n n n 1 n —
That is, 7,0 > 7,1 on the set where 7, 1 < 00 and limy_,00 7, = 00.

Define the intermediate filtrations G™ = (G;*)o<t<7 where

g, = ﬂ]:u\/o(X?,sgu)

u>t
The following holds.

Lemma 34 If Assumption 4 is satisfied, X™ converges a.s. to X and for each 0 <t < T,
Gr = G.

Proof. Since lim;, ;oo 7 = o0, it follows that | X7 — X3 <372 |Xmm — Xt‘l{T;§t<T£‘+1}'
Since on {7y <t <7}, | Xy — Xop| < ep, it follows that supg<,<p [Xi' — Xi| < &, which
yields the first claim. Now, the second claim follows as in Lemma 16. =

We assume in the sequel that Assumption 4 is satisfied. Theorem 27 can be used together
with Lemma 34 above to prove that M remains a G special semimartingale as soon as one
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can guarantee that M remains, for each n, a G™ special semimartingale whose decompo-
sition M = M™ + A™ satisfies

T
E(/ dA") < K and  E( sup |M"[) <K
0 0<s<T

for all n > 1 and some K independent from n. We assume in the sequel that supy<,<p | Mj|
is integrable. Under this integrability assumption, we only need to find sufficient conditions
on X such that the following condition is satisfied.

Condition 3 The processes X and M are such that
(i) For eachn>1, M is a G™ special semimartingale.

(i) The finite variation term A™ in the G™ canonical decomposition of M satisfies
E(fOT |dA?|) < K for some K and all n > 1.

1.5.1.1 Condition 3 (i)
To deal with the G" semimartingale property of M, i.e. Condition 3 (i), we approximate

the processes X™ and introduce new intermediate filtrations. For each n > 1, consider the
sequence (X™F) k>1 of processes defined by

k
K
X];n = Z En,pl{T;St}
p=1
where €, , = €n(2 : 1{X7;}>XT;71} — 1), for each p > 1.

Lemma 35 For each n > 1, X™F converges a.s. to X™.

Proof.

o0 o0 [ee]
X' =) Xeplppsienny = 2 Xoplipany = D Xop Limpsy

e o)
= XO + Z(XTI;L - XT;?,l)]‘{’TZ?St} = Z(XTI’;L — XTI’;Lil)l{T;LSt}
p=1 p=1

since Xg = 0 by assumption. Now, since X is continuous,

Xrp = XT;A - 6"1{X7g>X7;;71} - 5”1{XT;,L§XT;71} = Enp
Therefore X[* = Z;ozl 8”71’1{7{;’9}' It is now clear that X™* converges a.s. to X™. m
Introduce the filtrations G™* = (GI"*)o<y<r where

gt"’k = ﬂ Fu \/G(Xg’k,s < u)

u>t

First, notice that G;" k can be represented in the following way.
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Lemma 36 For eachn >1 and k > 1,

Gt = mffo\/a(n”/\s,sgu,l§iSk)\/a(sml{nngs},sgu,l§i§k)
u>t

For each n > 1, the sequence of filtrations (G”’k)kzl 18 increasing.
Lemma 37 For eachn > 1 and each 0 <t < T, g,?”“ = Ggr.

Proof. This follows from Lemma 35 above using the same proof as in Lemma 16. Al-
ternatively one can notice that \/zoz1 QZL ok G and it follows from Lemma 36 that the
sequence of o-fields (G;' ,k)k21 is increasing. Let 0 < t < T and let Z be an integrable
G measurable random variable. Then My = E(Z | G;' k) is a closed martingale and the
convergence theorem for closed martingales ensures that Mj, converges to Z in L', which

implies that E(Z | G*) & Z. This means that ¢™* % . m

One then needs to guarantee that the following condition holds for each n > 1 to be able
to use Theorem 27.

Condition 4 The processes X and M are such that
(i) For each k > 1, M is a G™F special semimartingale.

(ii) The finite variation terms A™* in the G™* canonical decompositions of M satisfy
E(fOT |dA™ ) < K for all k > 1 and some K independent from k.

If Condition 4 is satisfied then Condition 3 (i) is satisfied by Theorem 27. However,
since the times (Tz?)pzl are strictly increasing to infinity, it is sufficient to guarantee that
Condition 4 (i) only is satisfied. That is, the following holds.

Theorem 34 Under Assumption 4, if Condition 4 (i) is satisfied for each n > 1, then
Condition 3 (i) is satisfied.

To prove this theorem, we need the following lemma which follows trivially from the results
in section 1.2.3.4. We summarize the proof for clarity reasons.

Lemma 38 The following holds.
(i) For each k, n and t,

n,k—1

{t<m¥ng n.k

={t<m}INng

(i) For j>1i>1, and for each t,

{t<Pyng" ' ={t<}ng"

(iii) As a consequence,
{t<mng™ ' ={t<Ing;
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(iv) Equivalently, let t > 0 and k > 1be fizred and let h be a G measurable random

n,k—1

variable. Then there exists a G~ measurable random variable f such that

hlirpsey = flimsey

Proof. Since in all assertions, the index n is fixed, we can drop it. That is, consider a
base filtration IF, a sequence of increasing times 75 and a sequence of random variables Xj.
Define a sequence of progressive expansions G* through

gf = gtkil’ﬁC v O-(Xkl{TkSs}v 5 < t)

where G*~17 is the progressive expansion of G¥~!with 73, and define G to be the filtration
generated by all G*. It well known that {Tk SNGEYE = {1 >t} NGFL Let Hy =

Yih(17,<3 Xx) with V; bounded and gt L7k measurable and h a bounded Borel function.
Then Hilgr, oy = Yih(0)14, ¢y which is measurable w.r.t {7p > t} N GFlme — (>
t}yNGF~1. The Monotone Class Theorem now proves that {7, > t}NGF C {r, > t}NGF 1.
The reverse inclusion is clear and (i) is proved. To prove (ii), we intersect both sides of (i)
written for the index 4, by {t < 7;} and use that 7; < 741 implies {t < 7} C {t < 741}
to get {t < 7} NGI = {t < 7} N F/T'. Hence if the statement is true for j, it is also true
for j + 1. It is true for j = i by (i), so the result follows by induction. Regarding (iii),
since G; is generated by all the G, the result follows from (iii) using the Monotone Class
Theorem. The last statement rewrites (iii) in terms of random variables. m

Proof. [Of Theorem 34| For a fixed N > 0, consider a sequence of G™ predictable
elementary processes of the form

Z hi* (W) Ly gm (),

null outside the fixed interval [0, N] and with A" GJ.-measurable and bounded, and 0 <
t < ... <t .1 < oo. Suppose that H™ converges to zero uniformly in (w,?). By the
Bichteler-Dellacherie’s Theorem, we need to prove that lim,, ;oo Jx (H™) = 0 in LY.

For each fixed p > 0, define

km
=>. hi" Lgrn, sty Ly gm -

By Lemma 38 (iv) there are G, ’-measurable random variables j;"* such that

_ ;mp
hTI{T;L+1>t£n} =Ji 1{7;+1>t;’-n} a.8.
The latter quantity is Gy P+ measurable, implying that the processes J™P are GmP+!
predictable. Moreover, since the A" tend to zero uniformly in ¢ and w, it follows that for
each fixed p, the processes J™P tend to zero uniformly in (w,t) except on a nullset.
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Now, it is clear that J™? = H™ on {r}},; > N}. For any fixed ¢ > 0 we thus have:

P([Jx(H™)| z ) < EQ g (m)e1mn, >ny) + P17 < N)

= B (gmr)zepLirm, >ny) + P(rp1 < N).

We begin with the first term. Since M is a G™PT! semimartingale by Condition 4 (i)
and since J™P is G™P+1 predictable and a.s. uniformly convergent to zero, it follows
that Jx(J"™P) tends to zero in probability by the Dominated Convergence Theorem for
stochastic integrals. Therefore, as m — oo,

E({sx@m»)zey Lz, >ny) = 0.

Hence, for each p,
lim P(|Jx(H™)| >¢) < P(1;1 < N).

m—r0o0

Let p — oo and use that lim, T;L = o0 a.s. to see that the left side above is indeed zero.
This proves the result. m

We focus now on Condition 4 (i). We use Theorem 27 to guarantee that this condition
is satisfied under suitable assumptions. Introduce the intermediate filtrations H™F =
(H?’k)ogtg'f where

’H?k = ﬂ FuVo(ri eni 1 <i<k)

As in Theorem 27, we assume that the following holds.

Assumption 5 For each n > 1 and each k > 1, there exists an H™* predictable finite
variation process B™* such that M — B™* is o H™* local martingale.

In particular, Assumption 5 holds when the following is satisfied.

Assumption 6 (Initial times Assumption) For eachn >1andk > 1, (17,1 <i <k)
satisfies Jacod’s criterion.

In this case one can enlarge initially with the random vector (77*,1 < i < k) to obtain
Hi = Nyse Ft Vo(r],1 < i < k), and then expand initially H with the random vector
(e?,1 <i < k) which always satisfies Jacod’s countable expansion criterion since (¢',1 <

i < k) takes values in the finite set {—1,1}*. The processes B™ are then given by

Bn,i _ /t d<M7 p‘n,i(e»s
' o pt(o)

9:(‘5”719’7_”1719)1§p§i

where p™* is the I conditional density of the random vector (ep, Tnp)1<p<i- Let Zy' "t =
P( >t | H;"") and p™* is the martingale part in its Doob-Meyer decomposition and J™*

the dual predictable projection of AMTinl[ [ onto H™?. Theorem 27 ensures that the

n
T,L- ,O0

following holds.
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Theorem 35 If Assumption 5 is satisfied then M is a G™* semimartingale with local
. n,k
martingale part My — A" where

-1 tATT ] N UM it djn:iJrl t
A;Lv’fzz(/ ! dB;L’“r/t M) s )+/t dBr* - (111)

n,i+1
AT ATH Zs— AT

=0

Condition 4 (i) is therefore satisfied. Moreover if either Assumption 4 or Condition 4 (ii)
holds, then M is a G™ semimartingale for each n.

Proof. The first claim follows directly from Theorem 27 in the special case where the
random times are ranked. Now, if Assumption 4 is satisfied, it follows from Theorem 34
that for each n > 1, M is a G" semimartingale. If Condition 4 (ii) holds, we combine
Lemma 37 and Theorem 22 to get the same conclusion. m

Before stating the main result of this section, we provide sufficient conditions on X that
guarantee that Assumptions 4 and 5 (and even Assumption 6) are satisfied.

Lemma 39 Assume that X is a continuous non explosive increasing process starting at
zero and such that lim; oo X; = 0o0. Assume also that the conditional probabilities

Pﬁ(ul,...,up):P(Xul S&n,...,Xup SpEn |J—"t)

are differentiable w.r.t (u1,...,up), for each n,p >1 and 0 <t <T. Then Assumptions 4
and 6 (and hence 5) are satisfied.

Proof. First, since X is continuous and increasing, XT; = pe, for all n,p > 1, there-
fore

7y =inf{t > 7 |, Xi > pe,} =inf{t >0, X; > pe,}

where the second equality follows from the fact that X < (p —1)ey, on {s < 7' }. Since
X does not explode in finite time and lim;_,o Xy = 00, it follows that lim, T, = 00.
This proves that Assumption 4 is satisfied.

Now notice that {7)' > u} = {supy<s<, Xs < pen}. Therefore, for each n,p > 1 and
up <<y,

P(Tf>u1,...,7'£>up|]-}):P( sup Xs <epy..., sup X5 <pe,|F)
0<s<uy 0<s<uyp

But since X is increasing, supp<g<,, Xs = Xu,, therefore
P(r{" > w1, ..., >up | Fi) = P(Xuy <éenyeons Xuy <pen | Ft) = P (ug, ... up)

is differentiable w.r.t (u1,...,up). This proves that (77',...,7,') has an F conditional
density and Assumption 6 is satisfied for each p > 1 (hence Assumption 5 too is satisfied).
Finally note that since X is increasing, €, , = €y, for all n, p > 1 are deterministic constants
and the filtration H and H are the same. m
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1.5.1.2 Condition 3 (ii)

In this subsection, Assumptions 4 and 5 remain in force. We need to obtain the explicit
canonical decomposition of M when viewed in G" to be able to check Condition 3 (ii). Note
that thanks to Assumption 4, limy_, A?’k is well defined, for eachn > 1 and 0 <¢ < T.
Let A™ be this a.s. limit

o0 t/\thn-&-l . t/\thn-&-l d M n,t+1 dJTL,’L-‘rl

n,t+1
ATR Zs*

n
i=0 AT;

Of course, for each n and t, the sum above contains a.s. a finite number of terms. For A™
to be the G™ predictable finite variation term in the canonical decomposition of M, some
conditions are needed.

Assumption 7 The processes X and M are such that
(i) The processes A™* and A™ have integrable total variations.
(ii) limpﬁooE(l{TgStﬂA?’p — A7) =0, for each n > 1 and t.
where A™* are defined in (1.11) and A™ are defined in (1.12).

Note that Condition 4 (ii) implies Assumption 7 (i) by Theorem 22 (ii). The following
theorem is the main result of this section.

Theorem 36 Assume that X and M are such that Assumptions 4, 5 and 7 are satisfied.
Then

(i) M is a G" semimartingale with martingale part M — A™, where A™ is given in (1.12).

(i) If moreover Condition 3(ii) is satisfied, i.e. if E(fOT |dAZ|) < K for some K and
all n, then M is a G special semimartingale.

Proof. Since Assumptions 4 and 5 are satisfied, it follows from Theorem 35 that M is a
G™ semimartingale for each n. Under Assumption 7, it is clearly a G™ special semimartin-
gale and we can obtain explicitly its canonical decomposition. Let s <t and let U" be a
gy measurable and bounded random variable. Since lim;,—,o 7" = oo for each n, it follows
from the monotone convergence theorem that

E((M; — AUT) = lim B((M; — AU rp5.))

p—o0

»pfl

From Lemma 38 (iv), for each p > 1, there exists a G measurable and bounded random

variable U."? ~! such that

U§1{7;>s} = Ug7p_11{7';,1>5}
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Therefore,
B((M; — ADU) = lim B((M; = AU M)

= lim BE(UMP ™ s E(M, — A} | GIP))

p—o0

= lim B(UI ™ ey (B(M; = APY | G2F) = (A} — A}7 | G19)))

p—00
Since M — A™P is a G™P local martingale and supy<s<p |Ms| is integrable and A™P has

integrable total variation, it follows that M — A™P is a G™P martingale. Therefore

B((M; — AP)UD) = Tim B(UP g (M, — ATP) = B(A7 — AP7 | G10)) )

p—0o0

= lim E (U;”"”’ll{fps} (M, — AJP — A7 + A?’p)>

p—00
= ph_{go E(Ugl{rg>s} (M — A?))
+ lim (B(U o) (A7 = A7) + B(U Loy (A7 = A7)

It follows from the definition of A™P and A" that A;"" = A} on the set {7} > t}. There-
fore

B((M; = AD)UZ) = E((M, = ADUZ) + lim B(U L jgerpcy (477 — AD))

where we also used a monotone convergence theorem and the fact that lim, Tg = 0.
By Assumption 7, this converges to E((Ms — A?)U!), which proves that M — A" is a
G™ martingale. For (ii), just use that G} % G; together with Theorem 22 to conclude that

M is a G semimartingale. m

However, it turned out to be difficult to find practical examples where the times 7.’ are
initial. In the next subsection, we do the same analysis under the assumption that these

hitting times are honest.

1.5.2 Filtration expansion results based on a honest times assump-
tion

We assume that the continuous process X is increasing to infinity and we define as in

Lemma 39, the sequences of random times (7)'),>0 to be

P
7, = inf{t > 0, X; > pen}

Since X is increasing to infinity, (7,})p>0 satisfies Assumption 4 for each n > 1. Define the

sequence of processes

o0

o0
n __ —
Xy = E 1{T;§t<rg+1}Xrg =é&n E pl{rg§t<r;+1}
p=0 p=0
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and G" (resp. G) the progressive expansion of F with X™ (resp. X). Let G™" be the
smallest filtration containing F and that makes all (Tg)pzl stopping times. Clearly G" =
G™". We make now the following assumption.

Assumption 8 (Honest times assumption) For each n > 1, the sequence (7;)p>0 is
an increasing sequence of F honest times such that 7¢ = 0 and sup, 7, = oco.

Putting Theorem 10 and Theorem 22 together, we obtain the following result, which is the
main result of this section.

Theorem 37 Suppose Assumption 8 holds. Let M be an F martingale such that
supg<s<r | Ms| is integrable. If E(fOT|dA7;]) < K for some K and all n > 1, then M
is a G semimartingale. Here A™ is defined in equation (1.13).

Proof. By Theorem 10, under assumption 8, M is a G7" semimartingale and M — A" is
a G™" local martingale, where

o t
1
== ) +1 s
P = Z/O Lirp<osrgn) gt — g M MM — M™P), (1.13)
p=0 s~ s~

where Z™? is the F optional projection of 7' and M™? is the martingale part in its Doob-
Meyer decomposition. Therefore, M a G" semimartingale. Now, G;* converges weakly to
Gy, for each t and E( fOT |dA?|) < K for some K and all n > 1 by assumption. Theorem
22 allows to conclude. m

1.5.3 Insider models with arbitrage: Jeulin’s example and exten-
sions

There is generally no link between the absolute continuity of A™ and the absolute continuity
of A. We first suggest a toy convincing example, before constructing more elaborate
examples that satisfy the assumptions of the previous section. This is important from
a practical point of view, since a singular finite variation term would introduce extreme
arbitrage opportunities : there will be no equivalent local martingale measure under which
the price process is a local martingale. We check first that Jeulin’s example (expansion
of the natural filtration of a Bessel 3 process with its remaining infimum, see [89]) falls
within the class of examples that Theorem 37 allows to deal with and generalize this
result to the expansion of the natural filtration of a transient diffusion with its remaining
infimum. In these examples, the finition variation part in the extended filtration of a given
Brownian motion of the base filtration becomes singular w.r.t Lebesgue measure, which
can be interpreted in financial terms as riskless insider trading.

Let us start with the following easy example where the absolute continuity of A™ for each
n > 1 is not inherited by A. Let N be a Poisson process with intensity A and F its natural
filtration. Let T be the first jump time of V.
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Lemma 40 T does not satisfy Jacod’s criterion and its Fs conditional density is given by

ps(dx) = 1{x§s}6T(dx) + 1{x>s})\€_/\(x_8)

Proof. Since T is an [ stopping time, P(T' <t | Fs) = lyp<yy if t <s. Let t > s.
P(T <t|Fs)=P(Ne 2 1| Fs) = 1yn,>13 + Lvu=0y P(Ne > 1| Fy)
= Yr<sy + Loy P(Ni—s 2 1) = Lpegy + Lpsgg (1 — e 2079
Therefore ps(dr) = 1{,<sd7(dz) + 1{$>s}/\e*)‘(:’5*s). [
Let T,, = T + U, with U, — 0 a.s. and such that U, has a density g,. Then T, satisfies
Jacod’s criterion with p? (t)dt = E(gn(t —T) | Fs)dt. From Lemma 40,

Ps(t) = Lir<qgn(t = T) + Lips g / Ae N (t— w)du

Since Nt = N; — At is an F martingale, it follows that

i [ B
0

12

pr(u)

u=Ty,

is an H™ martingale. By Kunita Watanabe s inequality, dA™ is absolutely continuous w.r.t

. However N becomes an H semimartin-

Lebesgue measure, where A} = fo N.ptu)s (“)
ps* u u—T

gale with singular compensator A such that A has integrable total variation on compact

time intervals.

Lemma 41 M; := Ny — A\t — T)1i7<yy — {r<y is an H martingale.

Proof. Let s <, fs an Fs measurable bounded and h a Borel bounded function.
E((Ny — Ns) fsh(T

(
(

)) = E((Nt — Ns) fsh(T)1{r<s})
(Nt = No) fsh(T)(Lyr<sy + Liser<ey)
Fsh(T)A(t = s)lir<sy) + E(fsh(T)l{s<r<ty(1 + E(Ne — Nt | Fr)))

(fsh(T)()‘(t = 8)yr<sy + Lsar<ny (1 + A — T))))

E
E
E

A Monotone Class argument yields
E(Ni | Hs) = Ns + At — 8)lir<sy + (L + At = T)1ser<sy

Writing 1{s<T§t} = 1{T§t} — 1{T§s} finally yields E(M; | Hs) = M. =

Therefore Ay = A(t — T)l{Tgt} + ly7<s) and dA is singular. We turn now to elaborate
examples satisfying Assumption 8.
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1.5.3.1 Expansion of the natural filtration of a Bessel 3 process with its re-
maining infimum

Let Z be a Bessel 3 process, I its natural filtration, X; = inf;~; Zs; and G the progressive
expansion of F with X. This example has been studied in detail by both Jeulin and
Pitman using different techniques. Let By = Z; — g %—i. It is a classical result that B is an
F Brownian motion. Using Williams’ path decomposition for Brownian motion, Pitman
proves that By — (2X; — Ot %—i) is a G Brownian motion. Using filtration expansion results,
Jeulin proves in [89] the G semimartingale property of B and provides its decomposition
simultaneously. However, his technique is hard to generalize. Our approach allows to prove
the semimartingale property of B, without the explicit decomposition, however, it has the

merit that it can be used in much more general settings as described in Theorem 37.
Theorem 38 The process B is a G special semimartingale.

Proof. First X is continuous increasing to infinity since lim;_,+ Z; = oo (see Lemma 6.20
in Jeulin). Therefore 7' = inf{t, X; > pe,} is increasing to infinity, for each n. Now, with
Y: = 2X; — Z;, we have Xy = sup,, Y5, so that

7, = inf{t, Xy > pen} = inf{t,V; > pe,} = sup{t, Z; = pen}

Therefore (7,))p>1 satisfies Assumption 8. We compute now A" as of equation 1.13. It is
a classical result that e
ZpP =P >t | F)=1A—"
P =P >t F) =1

and Tanaka’s formula implies that

t
dB
Mtn,p =1 —pEnA 1{Zs>p€n}7228
s

Therefore, and since on {T;} < s}, Zs > pen,

0 t +1 n
d(B, M™P+L — NPy
n __ )
At = pzo/(; 1{T;<S§T£'+l} Z;L’p+1 _ Z;L’p

+1)5n

0o Pen _ (p
. Z ¢ 1 Z2 1{Zs>(p+1)5n} Z?2 ds
= ; {rp<s<tpi1} (pr1 DEn
p=0 Z

) pitencze) + Npinensza) — 5

_ — [ Pen — Yz, 51y (P + 1en
=2 | Lppessmy . ds
p=0"0 Zs((p+ Denlipi)en<zey — an) T 25N (pt1)en>2.)

Therefore

> t
Dén —1
=5 [ gt (e e )
t p;o/o {Tp <S§Tp+1} {(p+1)€nZZs} _Zspgn + Zg + {(p+1)5n<Zs} Zs S

= [ 1 1
= pzo /0 lpessrd(— 7+ Howrnenz) 57— )ds
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Fubini’s theorem implies finally that

Ajf = / Z/ Lim sy p+1)sn>Zs}Z e ds

n

where we also used 1{5§T" 1}1{Zs§(p+1)8n} = l{ZSS(p-i-l)En}' Now

Z / Lrp <t oz 7

t] & tds
—E E/ — Uz spen} H{Zo<(p+1)e })ds:E(/O 7 ) 1{pan<Zs<(P+1)5n}d3>:E(/(; *Z)
Sp:O S

where the second equality follows because the F optional projection of I{T;zg.} is (1— p;—j)*.
It remains to use Theorem 37 to conclude. m

ds) = ;;OE(/O 1{T;<s}1{(p+1)enzzs}m)d5

Using both our result and the explicit decomposition provided by Jeulin and Pitman, we
see that although each A™ is absolutely continuous w.r.t Lebesgue measure, the finite
variation term in the G decomposition of B is singular. In financial terms, this introduces
arbitrage opportunities in the market where an insider discovers the extra information X
progressively.

In this case of arbitrage opportunities, arising because Condition (i) of Theorem 33 is
violated, Jarrow and Protter showed how one can explicitly construct an arbitrage oppor-
tunity. Following the techniques in [80], we show how this can be achieved. In order to
do this, we recall the main result of their paper. They are able to explicitly construct
arbitrage opportunities in the setting of the theorem below.

Theorem 39 (Jarrow and Protter) Let S, = M;+ A; be a continuous semimartingale.
Then

(i) There exists h predictable, and L continuous and adapted, such that
t
A = / hsd(M,M)s + L,
0

where t — Ly and t — (M, M), are singular measures on Rt a.s. Moreover the
decomposition above is unique.

(i) Assume furthermore that L is non-trivial and that there exists a unique Q equivalent
to P such that Ny = M + fg hsd{M,M)s is a Q local martingale. Then there is an
arbitrage opportunity.

In our case, S is the F Brownian motion B. So, of course, there are no arbitrage opportu-
nities for S in IF. Now let us see what happens in the expanded filtration G. The process
My = By —(2X; — fg’ Z%ds) is a G Brownian motion, and its quadratic variation is therefore
(M,M); =t and A; = 2X; — fot Zisds. Therefore

1

t
1
hy = —— Ny=M,—- | —d d L;=2X
t Zt’ t t /()Z S an t t
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It is easy to see that there exists a unique equivalent martingale measure for N and the
construction in [80] holds. That is, choose the contingent claim H = Ly € Gr. Following
the lines of arguments of Jarrow and Protter, we show that the strategy as = 1{scsupp(dr)}
is an arbitrage opportunity for S is G. In fact, it follows from Theorem 3.2 in [80] that
there exists a self-financing strategy (j,b) (see [80] for a definition) such that

T
H=Lp=ELp) + / jsdB,
0

However we also have Ly = 0 + fOT asdLs. Moreover we have f(f asdNs = 0 for each
0 <t < T, by construction of the process a. Therefore

T
H:LT:O+/ anBS
0

which proves that the strategy a is an arbitrage opportunity.

1.5.3.2 The case of transient diffusions

Let R, be a transient diffusion with values in R, which has {0} as entrance boundary.
Let s be a scale function for R, which we can choose such that

lim s(x) = —o0 and lim s(z) =0

z—0 T—00
Let F be the natural filtration of R. Nikeghbali studied in [115] progressive filtration
expansions of F with last exit times of such diffusions. Define X to be the remaining
infimum of R, i.e. X; = infs,s: Ry and G the progressive expansion of F with X. We
provide a sufficient condition for some F martingales to remain G semimartingales. The
process M; = —s(Ry), which is well known to be an F local martingale will be of crucial
interest. The next theorem is the main result of this section.

fT [d(N, M) |

Theorem 40 Let N be an F martingale such that supg<s<r |Ns| and [, =5 are

integrable. Then N is a G semimartingale.

Proof. Define the F honest random times o, = sup{t | R; = y}. Let ¥; = 2X; — R;, then
Xt = supy<, Y¥s and the random times
7, = inf{t | Xy > pe,} = inf{t | YV; > pe,} = sup{t | Ry = pen} = 0pe,,

are I honest and (Tg)pzl satisfies Assumption 8. To use Theorem 37, we need to compute
A™ as defined in (1.13). It is proved in [115] that

S(Rt) 1 t 1 s(y)
ANl=1- /0 LRy >y} dMy + MLt v

Ploy>t1 70 =Sry )
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where L*®) is the local time of s(R) at s(y). Introduce Z;"P = P(t% > t | Fi) =

P
:(;]z;)) A1 and the martingale part in its Doob Meyer decomposition M;"? = 1 —

t
@fo LR, >pen}dM,. Therefore

o S L1
n__ s((p+D)en) “{Bs>(p+1)en} T Ss(pey,)
At - E / 1{T£<S§T£_~_1}1 1 s(Rs) s(Rs) d<N7 M)S
p=070 {Rs<(p+D)en} T HR> 04 Den} st )e0) — S0en)

where we used that R > pe,, on {7‘1? < s}, and the fact that —s is positive non increasing
by construction. Basic algebraic manipulations give

=t 1 1 1
AY = Tinooern y(——— 41 d(N, M),
t pz:[:)/o {7 <SSTP+1}<_S(RS) + {RsS(erl)En}(S(RS) + s(pen) — S(Rs))) (N, M)

CAN, M), & /t s(pen)  d(N, M),
= 7-'— 17-n 81 < En
/o M, pz_o o FEVHRSIHS s(pe,) —s(Ry) s(Ry)

where the last equality follows from 1{5371’71“}1{1%33(1;-&—1)5”} = l{R,<(p+1)en}- Now

o T d(N, M),
B[ taazh < m( [ 1SS

+§:E(/T1 1 | s(pen) |[d(N, M),])

oy SRS (R (s(pea) —s(R)) T
T d(N, M), = T 1

SE(/O ‘M’)—'_I;E(/o 1{p5n<RsS(p+1)5n}ﬁs|d<N7M>3D
T

<

<2E( i Msd<N,M>S)

where the second inequality uses that the F optional projection of 1{7-;z§.} is given by

(1 — %)—F and the monotonicity of s. Theorem 37 allows to conclude. ®
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Compensators of random times and
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2.1 Introduction

Recently, many researchers tried to reconcile the two main approaches in credit risk mod-
eling : structural and reduced form models. Using structural models with incomplete
information, many authors are able to obtain reduced form models in which the intensity
of default is not given exogenously. This intensity is determined as a function of the firm’s
characteristics and the level of information that investors possess. Usually, in structural
models, if the investor has complete information, he is able to predict the arrival of the de-
fault time. Reduced form models overcome this limitation specifying an exogenous default
intensity which makes the default an unpredictable event. The advantages of modeling de-
fault times as totally inaccessible stopping times given the market’s information set have
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long been recognized, see for instance [81], [45], [23], [56] and [57]. We summarize now
briefly how this is achieved within reduced form models where default intensities are mod-
eled directly. Given a market filtration G = (G;)¢>0, the starting point is the description
of a process (A¢)¢>0, the default intensity, such that

tAT
1{T§t} - /0 )\sds

is a G martingale, where the G stopping time 7 represents the time of default. This raises
the question of how to construct the stopping time 7 when )\; is already given. A widely
used method is the Cox construction: start with a filtration F = (F;)¢>0 and model (A\¢)>0
as any nonnegative process adapted to IF. Then define

¢
T = inf{t: / Asds > O},
0

where O is an exponentially distributed random variable independent of Fo,. Clearly 7 is
not an F stopping time; however, in the filtration G = (G;):>0 obtained as the progressive
expansion of F with 7,
Gy = ﬂ]:u\/O'(T/\u),
u>t

it turns out that 7 is a stopping time with intensity A\;. Note also that some recent
work (|88]) has been done to construct an explicit model of default time with a given
survival probability. However, the main problem with reduced form models is that the
arrival of default is not based on any characteristic of the firm’s underlying credit quality.
Using specifications of structural models where investors do not have complete information
about the dynamics of the processes which trigger the firm’s default (that is, relaxing the
complete information assumption), many authors (see for instance [38], [23], [56], [57],
[54],[55], and [59]) arrive to a framework which links both credit risk modeling approaches.
In this chapter we take these studies a step further and try to fill the gap between reduced
form and structural models from the perspective of credit contagion. For theoretical and
practical studies of multi-name structural models, we refer the reader to [104] and [105]
and the references therein. Information induced default contagion effect have been studied
recently by researchers (see for instance [121], [103] and [27]) who tried to analyse and
model credit contagion effects. The idea is quite simple: the default of one firm indirectly
and instantaneously updates the market’s knowledge of the state of the other firms, causing
their default intensities to jump. Within reduced form models, the credit contagion effect is
therefore taken into account by making the default intensity of a firm jump at the defaults
of other firms. We look into different structural models under different sets of partial
information and study the information induced credit contagion. Since many structural
models can fall within the large class of models where the default times admit a conditional
density (conditionally to the base filtration), we then focus our efforts on times satisfying
this assumption and we are able to provide partial results reconciling structural models
where the time admits a conditional density with reduced form models from the credit
contagion effect’s perspective.
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The aim of the present chapter is therefore twofold. Our first goal is to study the informa-
tion induced credit contagion effect within structural models, mainly through examples.
After deriving the base model for a single firm, we use it as a building block for several
multiple firms structural models and try to characterize the credit contagion effect within
each one of them, under different levels of information. For simplicity, we usually study
two firms models. We start with a non symmetric model, where the first firm value would
depend only on some economy state factor Y, but the second firm depends not only on the
economy but explicitly on the first firm value through its volatility. In the second model,
the two firms will be co-dependent and the dependence arises through the drift terms.
The base filtration F reveals the state factor Y (of course, it can be reduced to the trivial
filtration if wanted), the firm values are not observable and investors observe only F and
the times at which the two firms default. The default times are defined as the first hitting
times of deterministic levels by the firms values. This type of model has also been studied
in the work of Coculescu and al. [26], although not as intensively as in the present chapter.
In order to prove existence and compute the default intensities, we use techniques from the
filtering theory together with representation theorems in the progressively expanded filtra-
tions. Here the intensities are expressed in terms of conditional expectations of quantities
depending on the characteristics of the firm values, but are highly untractable. We then
investigate two models with a different level of information, now the firms can be either
unobservable or partially observable, but the default levels are essentially random. We
introduce the contagion effect through the dependence of the threshold L? on the default
time 7 of the first firm. The threshold L? is chosen of the form a+ b1 {ri<7}, where T' is the
fixed time horizon and a and b are two positive deterministic constants. This definition of
L? is motivated by the fact that, financially speaking, the bankruptcy might occur because
of the default event of firm 1 and although firm 2 is still in a relatively healthy economic
situation. Note that this construction is inspired from [62] and [63], although only one firm
is considered in that paper and no credit contagion issues are discussed. Even if this last
model has the merit to be very tractable, we can usually compute in the general cases the
intensities only in terms of conditional expectations. That these intensities jump at the
default times of the other firms seems very likely but almost all examples are non tractable
and use involved computations, and proving that these jumps occur in full generality is a
hard task (apart for conditional independence models, where it is usually straightforward
to prove that there is no credit contagion effect). Fortunately, many structural models
would in practice benefit from the property that the default times admit an F conditional
densities. Therefore, in the second section, we unify the approach under the standing as-
sumption of existence of Fi-conditional densities for the vector 7 of the random default
times, i.e. F adapted processes p;(u), indexed by u € R, such that

P(t € du | F;) = pi(u)du.

In practice, this translates the difficulty from expressing directly the default intensities in
terms of the parameters of the structural model to computing the conditional densities of
the default times only. As seen in the previous chapter (see Assumption 1), this kind of
assumption was first used by Jacod [72] in his paper on initial expansions of filtrations.
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It has also been used later in the credit risk context by Jeanblanc and Le Cam [86] and
more importantly, El Karoui, Jeanblanc and Jiao (see [40] and [41]) introduced this same
assumption to study the case of ranked times. We use the techniques in [40] and [41] to
extend the filtration expansion approach described briefly above to the case where there
is an arbitrary number of default times 7 = (71,...,7,) under the conditional density
assumption. Moreover, we wish to carry out the analysis without imposing any restrictions
on the ordering of the individual times. Concerning the passage from the ranked to the
non-ranked case, the difficulty is mainly notational since the methods have already been
developed by El Karoui, Jeanblanc and Jiao. The case with ranked defaults, that has
been treated in [40], [41] and [53], is sufficient for certain applications, such as the pricing
of defaultable bonds or other default sensitive securities. There are, however, situations
where this is inadequate. We will focus on a first example from risk management, where
the distribution of securities prices at some future time is of interest, for instance for value-
at-risk or expected shortfall computations. The use of ranked default times can then yield
highly misleading conclusions, as we will demonstrate. As in the case of one default time,
we start with a base filtration F and model the market filtration G as the progressive
expansion of F with the whole vector 7, i.e.

gtzﬂfu\/a(n/\u:izl,...,n).

u>t

In the first parts of section 2.3, we slightly extend the results in [40] and [41], to the multiple
non-ranked times case. Quantities such as G default intensities and pricing formulas will
be given in terms of p;(u) and are needed for a subsequent study on risk management
and credit contagion. It is desirable to model these densities directly, and we will discuss
how this can be done. Analogously to the one-default case described previously, there
is the issue of constructing the actual vector 7, given that a model for p;(u) has been
chosen. We will show that this can always be done. Moreover, we provide a general
scheme for simulating joint realizations of p;(u) and 7. We then point out again that the
information induced default contagion effect (see for instance [121], [103] and [27]), where
the default of one firm indirectly and instantaneously updates the market’s knowledge of
the state of the other firms, causing their default intensities to jump, naturally emerges in
the framework of this section and we study this phenomenon for some particular form of
conditional densities. Finally, we conclude this section by providing a toy example where
the reconciliation between structural and reduced form models from the perspective of
credit contagion is done explicitly.

2.2 Information induced credit contagion in structural mod-
els

In this section, we study the information induced credit contagion effect within structural
models, mainly through examples. After deriving the base model for a single firm, we use it
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as a building block for several multiple firms structural models and try to characterize the
credit contagion effect within each one of them, under different levels of information. As
we will see, almost all examples are non tractable and computationally very involved. The
aim here is to try to check @ la main if the default intensity of a given firm (we will prove
that they exist in the models we consider) jumps at the default times of the other firms.
We first define what we explicitly mean by information induced credit contagion.

Definition 9 (Information induced credit contagion effect) Given a filtration F
and its progressive expansion G with random times T1,...,T,, there is an information
induced credit contagion effect for firm i at the default time of firm j if and only if the
G default intensity ' jumps at the default time T; with positive probability. If this proba-
bility is one, we will say that there is an a.s. information induced credit contagion effect.

To clarify ideas, take for now the particular case of two firms. This effect is described as
information induced credit contagion as it arises due to the fact that the arrival of one
default helps localize the other default time in the support of its conditional law. The
interpretation is that the default of the first firm indirectly gives information about the
state of the second firm, and vice versa. See [121] for a discussion of this phenomenon.

We first study a simplified model for a single firm, that would be generalized in the next
sections.

2.2.1 The base model for a single time

We consider the following simplified model for a single firm:

dXt = XtO'(}/t)dBt
dY, = YidW;

with Xo =Yy = 1, 7 = inf{t : X; < a}, for some fixed a € (0,1) and o a continuous
funtion. Let H be the natural filtration of the two-dimensional Brownian motion (B, W),
F the natural filtration of W, and let G be the progressive enlargement of F with 7.

2.2.1.1 The F conditional survival probability
Our goal in this subsection is to compute P(7 > ¢ | F3). First define
Ft)= P (inf B, — 25 <1 (2.1)
= inf fs = 5s <Ina ), .

where 3 is a Brownian motion. We then have the following result.

Lemma 42 The conditional survival probability of T given Fy is given by

Zt:P(T>t|]-'t):1—F</Ota(Ys)2ds>.
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Proof. Define the functional i : L[0,t] x 2 — R by

h(F) = h(],9) = Lingo oy (7B)a(w) -1 2 fu)2dusIna)-

For each fixed ¢, path continuity gives

S 1 S
{r >t} = {ugf; Xs > a} = {inf/ o(Yy)dW, — / o(Yy)2%du > In a} .
< 0 0

s<t 2

Since Y is independent of B, we get

P(r>t]F) = EM(o(Y)) | F) = EL()]f=or),

To compute E[H (f)], note that by the Dubins-Schwarz theorem there is a Brownian motion
B, possibly on an extended probability space, such that fo w)dW,, = Bt Tt F(u)2du With F
defined in (2.1) we thus have

P(g/f dW—/f 2du>lna>
<

2
érg Brs fluy2du — /0 f(u)*du > In a)

1
inf ——s>nao
s<f0 u)2du 2

R /O £(w)2du),

where the last equality used that f is deterministic. This finishes the proof. m

2.2.1.2 The G compensator

The function F is increasing, as is the process (fot o (Ys)%ds)i>0. Hence (Z;)1>0 is decreasing.
Continuity and absolute continuity with respect to Lebesgue measure of Z; holds if and
only if F' has these properties. This is true since F' is known in explicit form and is given

by (See e.g. [85]) e 4 2lna
1—F(t>=<I><M) —ad <M>

where @ is the standard Normal cumulative distribution function. Given the supermartin-
gale Z is continuous and decreasing, its Doob-Meyer decomposition with respect to F is
Zy = 1— (1 — Z;). This implies that 1 — Z; is the dual predictable projection onto F
of the increasing process 1(,<;. Hence the Jeulin-Yor Theorem implies that the process
1<ty — fg/\T Z%d(l — Z)s is a G martingale. The integral is obviously equal to — In Z;a,,
and it follows that

1

li,cn—-In—=1,cpn—In
=0 Ze U T T R 6 (v,)2ds)
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is a G martingale. The compensator of 7, In ﬁ, is continuous. So 7 is a totally inacces-
sible G stopping time. Finally, it is clear that the existence of an intensity is equivalent to
the absolute continuity of Z;.

Remark 4 Since P(t = 00) = 0, continuity and monotonicity of Z implies that T is a
so-called pseudo-stopping time, see Nikeghbali and Yor [116, Theorem 1]. In this case we
have that for any F local martingale N, the process Nepr is a G local martingale.

2.2.1.3 The regular conditional distributions

We compute now the conditional probabilities Q¢ (w,dT) = P(r € dT | F;)(w) and provide
sufficient conditions under which they admit a density. For this it suffices to compute
P(r > T | F) for every t and T. This is given in the next lemma.

Lemma 43 For every T >0, t >0,

T
Pir>T|F)=1- E{F(/0 o(Yy)2ds) | Fi}.

Proof. If T' < t the proof of Lemma 42 gives the desired result, if we redefine the functional
h to be given by
h(F) = h(f,9) = Lnt,cr(£-B)a@)— L [ f(u)2dusIna)-

If T > t, note that P(r > T | ;) = E(P(r > T | Fr) | F/¢) and apply Lemma 42 to
conclude. m

Under certain growth conditions on ¢ it is possible to show, as it is done in Lemma 44, that
for each t, the conditional survival probability admits a density with respect to Lebesgue
measure, which implies the existence of a G intensity for the random time 7.

Lemma 44 Assume that o is at most of polynomial growth, i.e. there exist constants C
and M such that for ally >0, o(y) < C(1+y)M. Then Q4(w,dT) = af (w)dT a.s. where

T
of (W) = E{F'(/ o(Y;)?ds)o(Yr)? | Fi}(w).
0
It readily follows that 1(;<y — fO'AT Asds is a G martingale where

F'( [y o*(Ya)ds)
1— F([y 02(Ys)ds)

)\t = 0'2(}/,5)

Proof. For T' < t, the result follows directly by differentiating with respect to 7.

For T' > t, we need to interchange differentiation with respect to T and expectation. First,
the existence of F'( OT 02(Ys)ds)o?(Yr) is straightforward. Let e > 0 fixed and define
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I =[T—¢,T+c¢]. We use a local version of the theorem of inversion of differentation and

OT 02(Ys)ds)|Fi)(w) is differentiable at the fixed time T

with the derivative given in the formula above. To do so, it suffices to prove that

expectation to prove that F(F(

Bsup | F'( / o2(V,)ds)o*(Y)]) < oo

First, using the expression of 1 — F'(t) we obtain

1oy t+2In(a) ot —2In(a) t—2In(a) st +21In(a)

—F(t ® - P
) ats SV at2 i
where ®'(t) = \/%e_%tz and In(a) non zero. A straightforward study of this function
7 / _1/ln(a)
gives that lim; oo —F (t) = 0 and —F" () is equivalent in 0 to (to)infa) . 2V which

2V2mt2
converges to 0 when ¢ tends to 0. Since F' is continuous, it is bounded on [0, c0[ and

reaches its bounds. Therefore, there exists a constant ¢ such that
E(supyer |F'(fy 0*(Ys)ds)o?(3)]) cE(supc; 0*(Yy))

~ cE(supj<ry. o?(Yy))

C(1+ B(supy<pye YY)

VARVARVAN

where the last inequality follows from the assumption that ¢ has at most a polynomial
growth and C = C(C, M, ¢) is a constant.

It remains to prove that the expectation in the right side is finite. For this, we use Doob’s
maximal inequality to the positive submartingale Y;* and obtain

oo Y4M
E( sup VM) = P(sup VM > x)de < 1 +/ T;E =1+ By =0
t<T+e R+ t<T+e 17

Since Y is log normal, E(YSB) — e2808=Ds for all s > 0, hence Cf = 1 4 2M@M-1)(T+e)
This ends the proof. =

Remark 5 Note that the estimate ® (z) < (2r)~'/2 is not tight. By using a more precise
bound, weaker conditions on o may be achievable. Moreover, the argument relies heavily on
the fact that'Y is geometric Brownian motion rather than standard Brownian motion. Note
also that Lemma 44 shows that T is a so-called initial time, as defined by Jeanblanc and
Le Cam [85]. Moreover, since the process (ad )i>o is constant after T, [85, Corollary 1]
implies that Hypothesis (H) holds between F and G, i.e. every F martingale remains a
G martingale.

We can now introduce a simple multiple firms model which would be the building block of
our next credit contagion model.
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2.2.2 Multiple firms : A conditional independence model

We consider now the following multiple firms model.

dX} = X}o;(V})dBi, i=1,...,n
dYy = YedWr,
with {W, BY,..., B"} independent Brownian motions, H is their natural filtration and F

is the natural filtration of W. We assume that the default times are defined as the first
hitting times of given barriers o; € (0, X}), i.e.

7o =inf{t >0: X; < o}

Let G be the progressive expansion of F with {rq,...7,}. That is,

gt=m<}"u\/\n/a(n/\3:s§u)), for each ¢ > 0.
i=1

u>t

The goal of this section is to compute the G compensators of the different default times.
This can be done easily since the firm processes are independent conditionally to F;. The
following lemma makes this more precise.

Lemma 45 Conditionally on o(Ys : s < t), {X!:s > 0} and {XI : s < t,j # i} are
independent.

Proof. Fix 0 < t < oo and choose deterministic times 0 < tq,...
Ty,...,Ty < oo, as well as bounded real-valued Borel functions g;i,

1,...,m)and Gy (k=1,...,M). We also define

gj = H gjk(ng) and  G; = H Gr(X5,).
k=1,...m k=1,...,.M

I IA

< ¢t and ¢
L,

itm
Gj=1,...,nk

It suffices to prove that

G 1] @

7j=1,..,n

E

Ys:sgt] = I E[gj\}@:sgt]E[giéiH@:sgt}.
i#j=1,...,n

A conditioning argument and the Markov property of X’ with respect to the filtration H

imply that the left side is equal to

E|l ] ng[éi Y;,Xg:sgt,jzl,...n} Ys:sgt]
Jj=1,...,n
7j=1,....n
=E| [] #6&x) Yszsgt],
Jj=1,...,n
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where G is a bounded real-valued Borel function. Each §; (j # i) as well as 3G, is a
product measurable random function of the path of ¥ up to time ¢, independent accross
different j. That is, there are product measurable functionals h; :  x L[0,¢] — R such
that g; = h;j(Ys : s < t) (j # i) and §;:G; = hi(Ys : s < t), and such that the random
variables h;(-, f), j = 1,...,n, are mutually independent for every f € L[0,t]. Therefore,
the previous quantity equals

H E[gj|Y;:S§t]E[§iéi|stiS§t:|,
i#i=1,...n

as required. m

Now, for each 1 < i < n, define the filtration G~ as
t_izm<}"u\/0(7j/\s:s§u,j7éi)>, for each t > 0,
u>t

i.e. the filtration we get by adding progresssively all the random times except 7;. By the
Jeulin-Yor Theorem for filtration expansion with a single time, it is enough to know the
Doob-Meyer decomposition of the G~ supermartingale Z} = P(r; > t | G;*) in order to
find the G compensator of 1, <. First,

Zi=P(r>t|G ) =P(r >t|Ys,7j As:s<t,jF#i).

Due to Lemma 45, 7; and {7; A's : s < t,j # i} are conditionally independent given
{Y; : s <t} so continuing the above calculation we get

Zi=P(ri>t|Ys:s <t)=P(r; > t| F).

We know how to compute this quantity, as well as the finite variation part A? of its Doob-
Meyer decomposition: A* =1 — Z¢. The following lemma is then straigthforward.

1
1=F (3" 0i(Ys)2ds)

Lemma 46 Foralll<i<n, 1<y —In is a G martingale.

It follows from Lemma 46 that 7; will have an intensity if o; satisfies the assumption in
Lemma 44. These intensities do not jump at the arrival of the other defaults and there is
no information induced credit contagion effect in this model. However, by altering slightly
the volatility structure in the model above, one can introduce this credit contagion effect.
This is the aim of the next subsection.

2.2.3 A first structural model with credit contagion effect

We introduce a dependence structure between two firms that are assumed to be only
partially observed. Consider the following setup with two firms:

dX} = X}o1(V;)dB}

dX} = X7 f(X[)o2(Y,)dBY

dY; = YidWr,
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with {W, B!, B?} are independent Brownian motions, H is their natural filtration, F is
the natural filtration of W. Default times are again given by: 7; = inf{t > 0: X} < a;}
with «; € (0, X}), for i € {1,2}. Assume that the market information is modelled by

the filtration G, the progressive expansion of F with {71, 72}. That is, G; = (1,5 (.Fu Vv

\/?:1 o(tiNs:s < u)), for each t > 0. In this model, the two firms do not play the same
role. Firm 1, whose asset value process is denoted X!, can be thought of as a big supplier
for a small firm (whose value process is X?) and both firms depend on some exogenous
observed economy factor Y. We are interested on the default intensity of firm 2 at the
default time of its main supplier, firm 1. Therefore, we need to compute the G compensator
of T2.

Let F! be the progressive expansion of F with 7. Introduce Z' the optional projection
of 1¢7,~ 3 onto F and Z? the optional projection of 17>} onto F!'. Let 8 be a Brownian
motion and introduce the functions Fi(t) = P(inf{,<;y Bs — 3s < In(a)) for i € {1,2}.
Applying the result from the first section, we know that the optional projection of 14, 3
onto F is given by

t
Z = P(r>t|F)=1- Fl(/ 2(Y.)ds)
0

and that 1., <y — ln( L) is an F! martingale. Under mild regularity assumptions on o7y,

we proved that the compensator of 1¢- <} is absolutely continuous w.r.t Lebesgue measure
11 1 1_ (Jy o*(Ya)ds)

and 1(7 <y — fo Agds is an F' martingale where \; UI(Y)M We focus

now on the computation of the G compensator of 1;,,<y. We first state and prove the

following result.

Lemma 47 The optional projection of 17, ) onto F! is given by
¢

22 =1-B(B( | DAY | F)
0

Proof. We introduce the filtration Fl =o(W,,Bl, s <t). Since F} C F}, 7} = P(ry >
t| F)=E(P(r2 >t|F}) | F}). Let us compute P(me >t | F}).

P(ra>t|F}) = E(lysny | F}) = E(ing, ., x25In(a)y | F4)

:E< {infocy [ F(XD)oa(Ya)dB2—L [ f2(X1)02 (Yu)duzm(m)ﬂftl)

—1— By / JA(XD)o3(Va)ds)

where the last equality follows from the same techniques as in the proof of Lemma 42.
Therefore

ZZ2=P(n>t|FH)=1- E(F2(/Ot FAHXD)o3(Ye)ds) | ]:tl>
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We still need to compute the Doob-Meyer decomposition of the F! supermartingale Z2. In
order to do this, we need the following lemma, available in [106]. We provide a proof for
completeness.

Lemma 48 Let G and H be two filtrations such that G C H. Suppose a is an H-adapted
process such that E{fg las|ds} < oo for each t > 0. Then

t t
M; = E(/ asds | gt> —/ E(as | Gs)ds
0 0

is a G martingale. Here E(as | Gs) denotes the G optional projection of a.
Proof. Let 0 < s < t. Then

E(M, | G,) = E(E(/Ot audu | Gy) — /OtE(au | Gu)du | G
= E(/Ot aydu | Gg) — E(/Ot E(ay | Gu)du | Gs)
= E(/OS aydu | Gs) —I—E(/: aydu | Gg) — /08 E(ay | Gu)du — E(/:IE(au | Gu)du | Gs).

By Fubini’s theorem we obtain E(f;f E(ay | Gu)du | Gs) = fst E(ay, | Gs)du and E(f; aydu |
Gs) = f; E(ay | Gs)du. Hence

t s
E(M,; | Gs) = E(/ aydu | gu) —/ E(ay | Gu)du = Ms,
0 0
as required. m

Lemma 49 Assume f and o2 are bounded. Then 1;.,<y — fO'ATQ \2ds is a G martingale,

where
o5 (Y1)

2
7z

t
3= ZHE(PEDR( [ PEDAMS) | )
Proof. Let uy = Fo( [ f2(X1)o3(Ys)ds) and v, = f2(X})o3(Yy)Fy([fy f2(X1)o3(Ys)ds)
Then du; = vidt. Since F5(0) = 0, it follows that u; = f(f vsds and we can write Z7 =

1—Bu | F) =1- E(f(;5 vsds | F}). Under the boundedness assumptions of f and o,
we can use Lemma 48 and it follows that

t ¢
M, = E(/ vsds | .7-"t1) —/ E(vs | }"sl)ds
0 0

is an F! martingale. Hence Z? = 1—(]\21}—#]65 E(vs | F1)ds). Define the F! martingale M? =
1—M;. Since Fj is increasing, v; is a.s. nonnegative and A? := fg E(vs | F)ds is an adapted
increasing process. We obtained the Doob-Meyer decomposition of the supermartingale
Z? = M? — A?. An application of Jeulin-Yor theorem gives the compensator of 1 (r2<.}

and tAT dA2
s
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is a G martingale. The result in the lemma follows now from the absolute continuity of A2
and the definition of v. m

Note that 7 has an absolutely continuous G compensator and is a totally inaccessible G
stopping time. In order to prove the existence of a credit contagion effect, it remains to
check if the expectation

t
p(PEDE( [ PEDAWIE) | 7)

jumps at 71. The size of this jump would quantlfy the credit contagion effect. Let U; =

2XIFL( [F f2(X1o2(Y,)ds). Then A2 = "2<Yt E(U, | F}). Since t — 209 g left
f t/+2\Jo 5772 t t 7

continuous, A2 jumps at 7 if and only if (F U), := E(U; | F}') jumps at 7,. The quantity of
interest is then § := (°F' U),, —lim Sup;_, - Qq, where Qy := 1¢, oy E(U; | F}). First,

o 1
(V) = B(U | F4) = B(FOR( [ FXodvas) | 74)
and by a basic result from progressive filtrations expansion theory,
Q= S g0 Ry = St p(y NWE ([ f2 ds) | F,
t= (IrsnyUi | Fr) = 71 Loy f2 (X)) Fy( f Ys)ds) | Fi

It is not obvious to prove that § # 0 a.s. in the general setting, so we provide a simple
example where explicit computations can be done.

Example 5 Assume f(x) = c1 for all x € [0,01] and f(z) = ca, for all x > aq, where ¢;
and co are distinct positive constants. Then

(OFlU)n F2 / fAx (Y)ds) | F ) = 01F2(62 /071 a%(Ys)ds)

and

t
Lnon B(UL | Fl) = {gft}E(l{wt}fZ(Xb&( /0 FAXDo3(Ve)ds) | F)

RUED; a2 1o
= 1 E(1{7-1>t}62F2 (62/ 02 (}/S)ds) | ft)
Zt 0

| ) ¢
= D o | FIEF(E /O o3(Y,)ds)
t
= 1{T1>t}c§F2(c§/0 o3 (Ys)ds)

This quantity converges to c F2(62 fon

! Tl
5= (2~ A)Fy(S /0 o3(Y)ds)

03(Ys)ds) when t increases to 1. Hence
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is non zero. So, when ¢y > co, the intensity of default of firm 2 increases at the default
time of firm 1, but when ¢y < cy this intensity of default decreases at the default time of
firm 1. Financially speaking, in the first case, the default of firm 1 is bad for firm 2, this
would be the case for example when firm 1 is a big supplier for firm 2 or firm 1 is the main
client of firm 2. In the second case, the default of firm 1 is a blessing for firm 2, which
would be the case for instance if the two firms are competitors.

In the next subsection, instead of altering the volatility structure, we introduce the credit
contagion effect by modeling the firm values as two co-dependent diffusions, where the
dependence is through the drift terms. The computations in the model below require
the use of techniques from filtering theory and rely heavily on Kusuoka’s representation
theorem in the filtration expanded with the default times, after a change of measure.

2.2.4 A structural credit contagion model in finite time horizon

Fix a time horizon T > 0. Let (2, H,H, P) a complete filtered probability space where
H is the natural filtration of a three-dimensional standard Brownian motion (W, W, W?).
Consider the model

dYy =Y. dW;
dX} = XHAW} + (Y, X}, X2)dt)
dX? = X2(dW? + po(Ys, X}, X2)dt)

where 11 and uo are bounded measurable functions. FF is the natural filtration of Y and
G its progressive with 7 and 7. Writing the model under the historical probability P
makes sense from a credit contagion perspective, since we are interested in the physical
probability that a firm defaults and the influence of this default on the other firm. The
pricing-hedging issues are beyond the scope of this study. This model is a generalization of
the one studied in [113], in which the author is interested in only one time, and in particular
in which no credit contagion issues are discussed. The methods used there are however
useful to our own study and they turned out to be generalizable to the two times case at
the expense of much more involved computations. First, under an equivalent probability
measure, the processes Y, X! and X? are independent.

2.2.4.1 Measure change

Thanks to the boundedness assumptions of the functions p; and pa, we can define a new
probability measure ) equivalent to P with density

d .
o —e( [ - XL XD (v, XL X2)aw?)
0 T
By Girsanov’s Theorem, W} := W} + fgul(}@,Xg,Xf)ds, WZ = W? +

fg po(Ys, X1, X2)ds and W, are independent Brownian motions under @ and the model
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can be written as follows

dY; = Y dW;
dX} = X}dw}
dX? = X2dW}?

We obtain an independence model, easier than the one dealt with in section 2.2.2. It follows
from Lemma 46 that

1{7.1 St} —1In ( and 1{7-2§t} —In (

1
AL T=Birm)

are (G, Q) martingales. It now easy to see that 71 is F! initial and (a% ")¢>0 is constant
after u. Hence Hypothesis (H) holds between (F,Q) and (F!,Q). Also, 75 is F! initial
and that Hypothesis (H) holds between (F!, Q) and (G, Q). Finally, Hypothesis (H) holds
between (F, Q) and (G, Q). It is also straigthforward to see that the G compensators of
71 and 7o are absolutely continuous with respect to Lebesgue measure i.e. there exist G;
adapted (in fact determinist) processes A! and A? such that M} := 1¢, < — fg/\ﬁ Alds
and M? = 1< — fg/\m A2ds are (G,Q) martingales. Explicitly, for i € {1,2}, AL =
F!(s)

k3

1—F(s)

2.2.4.2 G compensators

We have now all the ingredients to apply Kusuoka’s representation theorem which we recall
below. For a proof, we refer the reader to [101].

Theorem 41 (Kusuoka) If F is generated by a Brownian motion W, if Hypothesis (H)
holds between F and G and if each random time 7; admits a G intensity \', i,e. M} :=
i<ty — fot/\n Mids is a G martingale, then any square integrable G martingale L admits
the martingale representation

t t t
Ly = Lo+ / asdWy + / ardM} + / a2dM?
0 0 0

where a, a1 and as are G predictable processes.

Define p := %. Then

p=&( [ (Ve XL X! 4 v XL XDWE)
0

Introduce the Radon-Nikodym density process by setting p; := E9(p | G¢). Introduce also
the H martingale

foi= B9p 1 40) = £( [ (Y XL X2 + i, XL X2)T2)
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Then p; = E9 (EQ(p | He) | gt) = E°(f, | G¢). But Ito’s formula implies

t
ft=1+/ fo- (Yo, X1, X2)dW! + / fopa(Ys, X3, X3)dW,
0
Hence
t B t B
pi= 1+ B[ o (Ve XEXDAWE G+ B[ S paY X1 X)W G)) (22)
0 0

Now, for any H predictable processes a' and a? such that EQ(fOt lal]? + |a?|?ds) < oo,
EQ( fot aldWl | G) and E9( fg a2dW?2 | G;) are square integrable G martingales. This
follows from the (H, Q) martingale property of fot aide, for i € {1,2}, and the equali-
ties

T

t . ~ . . ~ . T . ~ .
EQ(/ a;dwgygt)zEQ(EQ(/ a;dW§|Ht)|gt)=EQ(/ azdW; | Gy)
0 0 0

Hence p; is a square integrable G martingale. Thanks to Theorem 41, it admits the
martingale representation

t t t
pt—l—i—/ anWs—i—/ a;dMler/ oa2dM?
0 0 0

where «, a1 and as are G predictable processes. Since p; is a.s. strictly positive, the
following representation also holds

t t t
pr = 1+/ ps—ﬁdeer/ ps—ﬂidMs“r/ ps-BrdM?
0 0 0

In fact, it suffices to set fs := p‘“—i and i := 9 for i € {1,2}. We can now state the
following result which gives the (G P) intensity of the default times 7 and 7. The proof
of this theorem follows the same lines as that of the main result in [113].

Theorem 42 The processes 1- <y — ft/m A1+ B)ds and 1, <4y — ft/\TQ N (1+ B2)ds
are (G, P) martingales.

Proof. This is immediate and follows from Girsanov’s Theorem. Alternatively, we prove
a la main that M} := 17 <y — ngTl A1+ Bl)ds is a (G, P) martingale. First note that
pi and M} are (G, Q) martingales. Hence

t
ptMtl - [pv Ml]t = ptMtl - /0 1{T1>s})‘;ps— ﬁ;ds
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is a (G, Q) martingale. We can compute the conditional expectation E¥ (M} | G,).

EQ(p(Mtl - f(f 1{T1>u})\’l]lﬁ’l]j:du) | gs)
Ps

t
EP(M} | G,) = EP(M] — /O Lo ALBldu | Go) =

EQ ML 1 t s
- (’”pt‘g) ([ BB i | Gt o [ 11050

M u ’lll,]‘ T1>U d gs 5
- pt t f p P ﬁ {nzul U| )_/O 1{T1>u})\1116111du

= M} - / Lir sy AiBadu = M.
0

|

The information induced credit contagion effect will appear from the expression above
as soon as there is a jump of the intensity of default of a firm at the default time of
the other firm. So, the only remaining part is to determine explicitly 3, 8' and 52. In
order to do this, we need to find the martingale representations of the two G martingales
EQ fo 1dT/V1 | G;) and EQ f dW2 | G¢). Since the proofs are similar in both cases, we

prove the martingale representation for F%( f(f aldWl | G;) only.
Let a be an H predictable process such that E(fOT las|?ds) < co. Define

T t
N = / anWsl and N; = / adesl foreach 0<¢t<T
0 0

Finally, consider L; = E9( fg’ asdW? | G;). Recall that G is the progressive expansion of F
with {7, 7}. Clearly L; = EQ(N; | G;) = E9(N | Gy).

2.2.4.3 Explicit martingale representation of L in (G, Q)

For the rest of this subsection, all expectations are computed under the probability measure
@, so we omit it from now on. Recall that we have the G martingale representation

t t t
Ly = / s dW + / atd M} + / oa2dM?
0 0 0

from Theorem 41. Our goal is to give a closed form for the processes a, a! and o?.
Introduce the processes N} = li7 <y and NE = Lir<py- Let

t t t
Kt:/ cdes—i-/ c;dM;Jr/ AdM?
0 0 0

where ¢, ¢! and ¢? are bounded G predictable processes. The following result generalizes
in a straightforward way a result in [113] to two default times.



94 Chapter 2. Compensators of random times and credit contagion

Lemma 50 The following identities hold
t
E(LK,) = / E(ascs +aletAL(1 = NL)ds + a2c22(1 — N2 ))d
0

E(LiK;) = /Nc dM}) +E/ N.2dM?)

Proof. The first identity follows from the G martingale property of L, K; — [L, K];. First,
(W, M =0 for i € {1,2}. Also [M', M?] =0 a.s. since X' and X2 cannot jump simulta-
neously. Hence

t t t
E(LiK;) = E([L, K];) = E(/ ascsds) + E(/ alcldNl) + E(/ a2c2dN?)
0 0 0

t
= E(/ ascs +atel L1 — N )ds + a2c2X2(1 — N2 )ds)

§78°°s

§78°°s

t
= / E(ascs +atel\l(1— NL)ds + a2c202(1 — N2.))ds
0
For the second identity, write

t t
E(LiK;) = E(KtE(/ as dWl | G)) = E(Kt/ asdW})
0 0

t t t t
:E((/ cdes+/ c;dM;+/ cngf)(/ asdWl))
0 0 0 0
= E(M,Ny) + E(M; Ny)

where M, : =1 LeldM?! and M =1 "2dM2. The last equality follows from the indepen-
dence between W and W'. Also, for i € {1,2},

d(M,N;) = M,-dN; + N,dM, + d[M', N},

But [M', N is null a.s. Hence E(M,N;) = E(J! M.-dN,) + E(J{ N, dM %), and since
fgﬂ;dl\f fo M. _asdW} is an H martingale, it follows that E( fo M ~dNs) = 0.
Finally, E(MtNt = E( fo NycldM?) for i € {1,2}. This proves the second result. m
We focus now on the computation of the terms E(fg NyctdM?), i € {1,2}. We mainly
extend the approach in [113] to the two times case, the computations being then much
more involved. The two expectations can be handled in the same way, and to fix ideas,
we focus on the case i = 1. We compute E( fo NgctdM}). From the definition of M1, it
follows that

/ Nyctdm}) / NycldND / NseiAi(1 — NL)ds)

The following lemma deals with the second term of the right side. Recall that N =
fOT adesl and N; = fg adeSl, for each 0 <t < T. Let PN be the predictable projection
of N; onto G. The following holds.
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Lemma 51

t t
E(/ Nac'Al(1 — N1 )ds) = / E(C;A;(l ~NL) pN5>ds
0

t
/ Noc2A2(1 — N2 )ds) —/ E(ciAz(l ~ NZ) pN5>ds
0

Proof. This holds by definition of the predictable projection. m
Remark 6 The predictable projection can be replaced by the predictable process L.

We focus now on the term E := E(f(f NgcldNY). Define the F adapted processes K} =
E((I—NE,)NS | Fs,71 = 5),0 < s <Tand L'(s1,82) = E(Ns, | Fs,, 71 = 51,72 = 82),0 <
59 <51 <T.

Lemma 52

B[ Nk = [ B(0 - N = N s+ N L ) )ds

Proof. We use a Monotone Class Theorem to compute E. Take c! of the form ¢! =

f(s)h1(s A 11)ha(s A T2) where f is F measurable bounded, h; and hy are Borel bounded
functions. E becomes E = e1 + ey where

e1 =E(f(r1)h1(m1)ha(m1) N/ 1 <)y Noy)
ea =E(f(r1)h1(m1)ha(12) N/ 11y ry Noy)

Let us start with eq.
e1 = E(E(f(m1)h1(m1)h2(T1)N{ 1ir, <y Nry | Fi))

_E /f Yhi(s)ha(s)E ((1—N52_)N5]]—"t,rlzs)P(Tleds))

But since W,, — W is independent from 7 and 7o and from H,, and hence from Nj, it
follows that E((1 — N2 )N | Fy,71 =) = E((1 — N2)N, | Fs, 71 = s). Therefore

t
er = E( [ 1ol KLP(r € d) (2.3)
0
Note that K! = E((1- N2 )N, | Fs,71 =s),0 < s < T is F adapted but we can choose an

F predictable version of E((1— N2 )Ny | Fs, 71 = s) (namely, its F predictable projection)
in such a way that (2.3) still holds. Finally

_E / t f(s)hl(s)hz(s)K;P(ﬁ > s)A;ds>

/ P B0 - N - N2 )R s
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where the last equality follows from the independence of 7 and 7. We deal now
with es.

ea = E(E(f(r1)h1(m1)ha(72) N} Ly <y Ny | F2))

/ / f 81 hl 81 hQ(SQ) ( s1 ‘ ft,Tl = 81,72 = SQ)P(Tl c dSl,TQ c dSQ))

Therefore
t S1
ey = E</0 /0 f(sl)hl(sl)hg(SQ)Ll(Sl, SQ)P(Tl € dSl,TQ € dSQ)) (2.4)

using the same independence argument as for the study of e;. For each so, L1(317 s9) can
be chosen F predictable (namely, take instead its F predictable projection) and (2.4) still
holds. Finally, using the independence of m and 7o, it follows that

t S1
€9 = /0 f(sl)hl(sl)E</0 hQ(SQ)Ll(Sl,SQ)P(TQ S dSQ))P(Tl Z Sl)Aildsl
t
= /0 f(sl)hl(sl)E<h2(51 /\TQ)NSQ;LI(Sl,Tz))P(Tl > 81))\;1(181
t
_ /0 B(f(s)ha(s1 Am)(1 = N)E(ha(s A )N LY (s1,7) )AL dsy
= /t E(C;)\;(l - NSI_)NSQ_LI(S,TQ))CZS
0

Putting the expressions obtained for e; and es together and using a Monotone Class argu-
ment allows to conclude. m

Define similarly K2 = E((1 = NL)N, | Fs, 72 = 5),0 < s < T and L%(s1,s2) = E(Ny, |
Fopy Tl = 81,72 = 82),0 < 51 < s9 < T. We obtain a similar result for E( fo Nsc2dN?).

Lemma 53

! 2 2 ! 2412 2 1 }<2
E NycidNZ) = E 1-N)((1-N_)—2—
(/0 Csd 5) /0' (Cs)\s( s )(( s )P( >

1 72
> 9) + N, L (Tl,s)))ds

We obtain now our representation theorem.

Theorem 43 The martingale L, = E(f(f asdWD | G) admits the representation

t Kl
L= / A - N;,)((l - NZ)7 + N2 LY (s, ) — Ns)dMsl
0

(12 > 3)

R S ((R e

s L N2 Ns)dM2
0 (11 >5) * (m1,) = B
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Proof. Let @ be the integrand in the integral w.r.t M! and let &2 be the integrand in
the integral w.r.t M? as they appear in Theorem 43. Putting together Lemmas 51, 52 and
53, wo obtain that for every bounded G predictable processes ¢, ¢! and ¢?,

t t
E(/ Nsc;dM;):/ E(aleiAi(1—NL))ds

0 0

t t
E(/ Nscngs?):/ E(a2c2N2(1— N2))ds

0 0

Using Lemma 50, it follows that

§787°s §78°°s

t
/ E(ases + apeiAi(l — NL)ds + a2¢202(1 — N2))ds
0

¢

- / E(GLeIAN(1— NL)ds + G22A2(1 — N2.))ds
0

Since the equality above holds for every bounded G predictable processes ¢, ¢! and ¢?, the

theorem follows. m

Recall now from equation 2.2 that
¢ t
pr =14+ B9 £ (Ve XEXDAWE | G) + B[ ol X2 XDIVE | G
0 0

Therefore Theorem 43 can be used in theory to compute the processes ' and 32 that
appear in Theorem 42. However, this model seems to be not tractable in practice and
checking if the intensities A' and A? jump respectively at 7 and 71 or computing explicitly
the jumps sizes seem unrealistic. This is because the default intensities are expressed
in terms of conditional expectations that can hardly be computed. However the form
of the intensities makes it very likely that each one of them does jump at the default
time of the other firm. Also, these intensities have been expressed in terms of functionals
of the characteristics of the firm values. We will see that if the random times admit
a conditional density, one could avoid itself that much trouble and the default intensities
can be automatically expressed in terms of functional of these conditional densities. Before
doing this, we provide in the next subsection a last tractable example of a structural model
where not only the firm values are only partially observed, but the default barriers are
random (see [57]). The particular form we choose for the default barrier of the second firm
is the key assumption that makes the computations explicit and is inspired from [62].

2.2.5 Structural models with random default barriers

We present in this subsection two other models that feature a credit contagion effect. Let
(2, H, P) be a probability space where H is a o-algebra of € representing the total infor-
mation available on the market. We consider two firms whose asset values are continuous
time processes (X} )o<t<r and (X?)o<t<7 where T is a fixed time horizon. We model their
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default times as the first times they reach some thresholds L' and L? respectively. Let
7; = inf{t > 0, X} < L}, for i = 1,2 be these first hitting times, with the convention that
inf ) = co. We are interested in the credit contagion effect within this framework. In the
two previous subsections, our approach was to assume that X' and X? follow co-dependent
diffusions and the default barriers were constants. However, we are usually unable to do
explicit computations and prove that the default time of one firm has an intensity that
jumps at the default of the other firm. The approach we adopt here is slightly different:
we introduce the contagion effect through the dependence of the threshold L? on the de-
fault time 77 of firm 1. In these models, the firms can be either unobservable or partially
observable, the threshold L' either constant or a random variable independent from X!
and X2, and the threshold L? is chosen of the form a + blir <7}, where T' is the fixed
time horizon and a and b are two positive deterministic constants. Here the threshold that
triggers the default of firm 2 is high if firm 1 defaults before 7. This definition of L? is
motivated by the fact that, financially speaking, the bankruptcy might occur altough the
firm is still in a relatively healthy economic situation [62]. Here firm 1 would represent
a major firm of a given industry. Its default would increase the probability of default of
a smaller firm whose survival depends on the health of the major firm and might hence
default although its economic situation is not too bad.

2.2.5.1 Totally unobserved firm valued

Assume X! and X? are not observable. The investor has access to the defaults information
only. Let 7y = inf{t > 0, X} < L'}, where L! is a random variable in H, independent of
X! and X2. Denote by Hg the collection of P-null sets in H. Let F}! = o(1{r <}, 8 <
t) V Ho which represents the first firm’s default information. Let L? = a + blir <1}
and 75 = inf{t > 0,X? < L?} and introduce the filtration G obtained by progressively
enlarging 7' by the random default time 79, namely the right-continuous modification of
Flvo(raAt). For convenience we introduce, the running infimum processes m = infs<; X7,
for i = 1,2. Assume that L' has a prior density PLl(dl) and that m' and m? have
prior distribution functions H'(t,z) and H?(t,x) respectively. In this framework, we can
compute as in [57] the F! compensator of the increasing process 17, <y and prove that it
admits an intensity if H'(¢,2) is regular enough. Our contribution in this section is to
compute the G compensator of 1;,,< 1 and its intensity when H 2(t, z) is also regular enough
and prove that this model provides a concrete example of a credit contagion effect.

We denote by Z} = P(r; > t) the survival function of 74 and compute in Lemma 54
the compensator of 7, i.e. Al such that Lin<y — A%/\n is an ! martingale. Under mild
regularity and domination assumptions, 71 has an F! intensity. This is due to Giesecke [57],
however we include the result and its proof for completeness.

Lemma 54 (Giesecke) Assume that H' is continuous in t, for each fived x. Then the
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F! compensator of the increasing process lir <y 1s given by

Al =—In(1- /oo HY(t,1))PX' (dl))
0

If Hi (t,x) = 8H;§t,a:) exists and if there exists g such that for all x > 0, |H(t,7)| < g(x)

and g integrable with respect to PLl(dl), then T admits an intensity given by

_JoH ()P ()
C 11— [ H(, )P (dD)

A
Proof. Using the independence of X' and L!, it is easy to see that
Z} =P(r >t)=P(m; > L") = / P(m} > 1)PY (dl) =1 —/ H(t, )P (dl)
0 0
It follows from a classic theorem due to Dellacherie that the compensator of 17 <} is given
by Af,,, where
A== / Hdz,
o 7L

The continuity in ¢ of H' implies the continuity of Z' and that A} = —In(Z}) = —In(1 —
Jo2 HY(t, 1) PF (dl)).

The second point follows easily from Lebesgue’s theorem under our domination assumption
which proves the absolute continuity of the compensator ie. A} = fot Alds where

Jo© H} (¢,1)P* (dl)

A=
- [ HM(t, 1) PE(dl)

Since the compensator A,l/\T1 is continuous, 71 is a totally inaccessible F! stopping time. Let

us introduce now Z7 = P(ry >t | F}), the optional projection onto F* of 1., 1, A? the
t dA?
0 Z2_

dual predictable projection of 1.,< , onto F! and A? = . From Jeulin Yor theorem,

we know that 1., <4 — A}, is a G martingale. Note that A? is also the finite variation
part in the Doob-Meyer decomposition of Z2. In view of this remark, we just need to
compute Z2 and its Doob-Meyer decomposition in order to find explicitly AZ.

Lemma 55 The supermartingale Z? is given by

Zl
72 = (1— H(t,a+b)) + (H*(t,a +b) — H2(t,G))7€1{T1>t}
t

Proof. First write

Z{ = P(ry >t | F}) = P(mi > L* | F}) = P(m{ > a+bly, <1y | F})
=E(1 ,.2 | F)

mt —a

(=2l <1y}
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Conditionning with respect to F}. gives Z? = E(E(1 | F1)F}) hence

mZ2—a
{(=5—=21r <y}
9 m? —a m? —a 1
Zy = E(lgr <y P( > 1) + 17> P( — 2 0) | F)
=E(P(m{ > a+b)(1 = Lisry) + Linsry P(mi > a) | F)

E
= P(m? >a+b) +E(1{TI>T}(P(mf >a) — P(m? >a+b)) | ]:tl)
P(m?>a+b)+P(n>T|FHPa<m?<a+b)

But P(1y > T | F}) = 1{n>t}% = 1{n>t}% and P(m? > ¢) = H?(t,c) for all ¢ > 0,

hence 1
Z
Z} = (1— H*(t,a+b)) + (H*(t,a+b) — HQ(t,a))??1{Tl>t}
n

More explicitly, we proved that

Jo P(m}y > P (dl)
J5 P(m} > HPL (ar) 17>

Z} = P(m>a+0b)+ Pla<mi <a+b)

In Lemma 56, we compute the Doob-Meyer decomposition of Z2.

Lemma 56 Assume that the increasing process H?(t,c) = P(m? < c) is differentiable
2

with respect to t and define H?(s,c) = MTS{S’C) then

2 Sy Z} Zp o
A = / (Ht (s,a+ b)(l — 1{T1>s}ﬁ) + 1{T1>S}ﬁHt (s,a))ds
0 s s

Proof. Recall that M} = Lin<ty — fg I{Tl>5})\§ds is an F! martingale and define k; =
1

(H?(t,a + b) — H%t,a))% and f; = 1 — H%(t,a + b) + re(1 — fot 1{7,>s3Aids). Then
t

Zt2 == ft — K/tMtl.

By assumption & is a continuous process with finite variation, hence d(k;M;') = M tl_ dri+

mthtl. Hence 61th2 = df; — Mtl_ dri — ththl. We focus now on df; — Mtl_ drKy.

dfi— MY drky = —H}(t,a + b)dt

t t
+(1- / 1{T1>s}>\;d5)dlit — Htl{n>t})\%dt - (1- 1{7—1>t} — / 1{Tl>s})\;d5)d’€t
0 0

= —H}(t,a+b)dt + 11, -y (dre — reAfdt)

By definition

1 —dz}
dne = ZH((HH(ta-+5) = HE () rat -+ (b0 +6) = H2(0,0)) 20
t t
1 —dz}
= Zp((HE(t,a +b) — HE(t,a))—dt —t
P00 +0) = H(t,0) grdt) + s
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14 _ —d2}
and on {7 > t}, A\jdt = e hence
t

Zl
Linsi(diy — meNjdt) = Lo (P (fa +0) — Hi (t,a))
t
Hence

71
—df; + M} dry = _< — H(t,a+b) 4+ 15 (HE (f,a 4 b) — HE(t, a))ﬁ)dt
t

2 Zr 21 o
= (H(t,a+0)(1 = 1an 5) + Loy L HE(E a) ) dt
t t

Since H? is increasing in t, H2(s,c) is nonnegative for all s and ¢, and it is clear that
Zl = P(ry > t) > P(ry > T) = Z1, the process

2 2 Zy Z1 o

af = (H(ta+0)(1 = Lipon 25) + Loy L HE(Ea) ) dt

t t

is non negative and A? = fg a?ds is an increasing F! predictable process. Finally Z? =

fg —ksdM} — A2 is the Doob-Meyer decomposition of the supermartingale Z2.

2
Jeulin Yor theorem implies that 1(;,<;1 — (f 72 d‘gs is a G martingale. Since A? is absolutely

continuous with respect to Lebesgue measure, it is also the case for the compensator A2,

2
and the random time 75 has a G intensity given by \? = ZaTt It is clear from this formula
il
that this default intensity jumps at the default time 7 of the first firm. This can be
interpreted as information induced credit contagion, since the conditional default intensity

of firm 2 jumps in response to the information that firm 1 has defaulted.

2.2.5.2 Partially observed firm values

We consider now the following model where the original filtration is non trivial, and the
firm processes are partially observed. Consider three independent brownian motions W,
W' and W? in H and define the filtration F; = o(Ws, s < t) V Ho which represents the
non default information available to the investor. We assume that the value processes
satisfy

dY; = Y dW,

dX} = Xlo(Y;)dw}

dX? = X?o(Y;)dW}?
Consider again 7, = inf{t > 0, X} < L'}. We can assume either that L! is a random
variable in H independent from F., X! and X? with density PLl(dl) with support on

(0, X3) or that it is a deterministic constant smaller than X}. We can deal with both
cases in the same way. We already proved the following lemma, which we recall for clarity.
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Lemma 57 For eachl < X§, P(m} > 1| F) =1—F( fo Ys)ds) where, for each u > 0,

u— 21n(l)
2/

where ® is the standard cumulative distribution function.

u+ 21In(l)

) — 1%( )

As in [57], the following holds.

Lemma 58 The F! compensator of the random time 1 is given by A}/\Tl where

Al=—In (/OOO (1- Fl(/ot o2(Y;)ds)) P*' (dl))

This compensator is absolutely continuous with respect to Lebesque measure and the F' in-
tensity of T is given by

fo f )dS)PLl(dl)
Zl

A =Y,

Proof. It is easy to see that
Z}=P(r>t|F)=Pim} >L" | F) = / P(m}! > 1| 7)P" (dl)
0

Hence Z} = [;° (1 — F( fo Yy)ds)) PL (dl). Since t — Fy( fo Y,)ds) is increasing and
continuous, Z' is decreasing and continuous and it is a classic result due to Jeulin and Yor

that
1

1 —In
(n<ty —In(—7— 7 )
is an F! martingale, which proves the first point. The F' stopping time 7 admits an
F! intensity if Z! is absolutely continuous with respect to Lebesgue measure and that this
is the case follows from regularity and good domination properties of the functions F;. A
straightforward derivation proves that this intensity is given by

22 F (f 0*(Y,)ds) PL" (dl) (%) o2 FL(fS o2(Yy)ds)PL (dI)

L _ 2y, — 0
= (Y)fo (1—Fl I a2 Y,)ds)) PL* (dl) ( ZS

It is worth noticing that when the threshold L' is known, equal to a deterministic constant
F| (ffo2(Ys)ds F| (ffo?(Ys)ds

- 23( NTR og(ﬁl)d)s) =o*(Y) 8 Ozg( a
In both cases, A is continuous, which is equivalent to the fact that 71 is a totally inac-
cessible F! stopping time. We introduce as in the previous subsection the supermartingale
Z} = P(my > t | F}), where 75 = inf{t > 0,X? < L?} and L* = a 4 bl{,;, <7}. Lemma 59

gives an explicit formula for Z2.

lp, the previous intensity simplifies to A\} = 02(Y;)
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Lemma 59

t t t 1
28 =1~ Fusl | 200ds)+ (Fual | #*Vs) = Fu( a%mds))W:gtl'”l{m}

Proof. Z2 = P(ry > t | Fl) = P(m? > L* | F}) = P(™52 > 1gn<py | F). Let
Y: = fih(tA11), where f; is a bounded F; measurable random variable and h is a measurable
bounded function. Then

E(Y;1

E )lgernl
{ t >1{T1<T}}) (feh(®) {t<m}

= E(fih(DE(Leryl

—a

+E T1)1r>mn 1
(s gy PRI e

| 7)) + E(AE(R(T) 1> w2 | F2))

(== >1{7'1<T}} {—5—=>1}

Since 71 and m? are independent conditionnally on F;, it readily follows that the second

expectation is equal to Ey := E(f;E(h (7'1)1{t>71}1{mt_a>1} | Ft)) = E(filE(h(T1)1g>ry |
]:t)P(th >a+b ’ ./T“t)) = E(fth(t A Tl)l{tle}P(mt >a+b ’ ft))

We focus now on the first expectation Fy := E(fih(t)E(1{<rp1 . | Ft)).
{(HE=2>10, <y}

=E(fih(EQg<rylir<myl (e \ft))JrE(ft (HE (1{t<71}1{7'1§T} sy | F))
b -

Note that

Lyer lm<ry = Lpary (L= Yromy) = Lparny = Lpemt Ynsty = Ligeny — Lns1y

Hence
Ey = E(fth(t) (E(rerylimesay | Ft) +EL ey lim2satny = Lip<n) Lmesatsy | ft)))

= E(fth(t) (E(Lrenylazmi<atey | F1) +E(Lperylime>ain) |ft)))

Pn>T|F)Pla<m?<a+b|F
= E(fh(E ey | (DO TIPS M SOOIy i > 040 7))
t
Pr>T|F)Pla<m?2<a+b]|F
:E(E(fth(t)l{ﬁ>t}( (n>T|F) (Z1 ] [ F2) | pm? >a+b|F)) |}"t)>
t

E(ZL | F
= E(m{m}((g%(a <mi<a+b|F)+P(mi>a+b]| ft>))

Putting £ and FEs together, and using a Monotone Class Theorem, we obtain

E(Zg | Fi)

71 Pla<mi<a+b|F)
¢

Zzzp(m?2a+blft)+1{T1>t}

The statement of the lemma follows since P(m2 > ¢ | F) =1 — F.([! 0 02 (Yy)ds). m

We need now to compute the Doob Meyer decomposition of the supermartingale Z2. In-
troduce the family of increasing processes A, (t) = Fo JUQ(YS)CZS) and the F martingale

N} =E(Z}L| Fs). Then the following result holds.
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Lemma 60 The compensator of Z2 is given by

t N! N,
A? = /0 (1-— 1{7—1>S}ﬁ)d"4“+b(8) + 1{7—1>s}ﬁdAa(S)

Proof. First recall that M} = i<ty — f(f )\él{ﬁ%}ds is an F! martingale and that
= [{ Mds = —In(Z}). Introduce the following quantities

N} N}
ke = Pla <m? < a+b)== 71 = (Ags(t) — Aa(t))?

t t
fi=Pm?>atb|F)+(1— /0 ALy ogyds)ie = 1— Aggot) + (1 - /0 Mgy ds)m

Then Z} = f; — k¢M}' and since £ is continuous, dZf = —rkedM} — (ML dre — dfy).
Straightforward computations give

M dry—dfs = (1{7—1<t} / AL 1{Tl>5}d$)d/{t+dAa+b / AL 1{7_1>5}d8)df€t+)\ 1{T1>t}tht

Introduce now the continuous process with finite variation B; = w. Then k; =

t
ByN} and dk; = B;dN}+N}dB;. Since on {1; > t}, dZt = \ldt, it easy to see that

dAass(t) — dA(E)
Zt

dB; = + Byjdt

Hence dZ} = —kidM{ 417,51 Bid Ny — <_1{T1>t}Nt1(w—‘rBt)\tldt)—‘rdACkH}(t)—i_
t
)\tll{n>t}ntdt). It follows that dZ? = —ryd M, + 1{71>t}%d]\7t1 — dA? where
t

t Nl Nsl
A% = / (1 1{7'1>s} Zl )dAa-i-b( ) + 1{Tl>s}ﬁdAa(S)
0 s

Since Z! is a supermartingale, 0 < N! < Z! it is clear that 1 — 1{n>s}% > 0. Also for
each @ > 0, A, is an increasing continuous F predictable process absolutely continuous
with respect to Lebesgue measure hence A? is thus an increasing F! predictable process ab-
solutely continuous with respect to Lebesgue measure and 1— fot KsdMI+ fot L s ]’\‘“[31 dN}

2
is a F! local martingale. By an application of Jeulin-Yor theorem, Lim<ty — MTQ gés is

an G martingale. The absolute continuity of A? implies that 7 has an G 1nten51ty given
2

by A2 = ZaTt where
il

it = 0 (Fraal | (008) + 1 S [ 2000 = FLag [ o200)
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Again, we notice that the intensity A% jumps at the default time of firm 1, which can be
interpreted as an information induced credit contagion effect, since the default intensity of
firm 2 jumps in response to the information that firm 1 has defaulted. To summarize, we
provided in this section numerous examples of structural models that either clearly (or are
likely to) exhibit an information induced credit contagion effect. We hope the computations
involved convinced the reader that such models tend to be quickly non tractable. However,
many structural models will be such that the default times have a conditional density
w.r.t the base filtration F. In this case, the approach to compute the default intensities
can be unified, since these intensities can be expressed only in terms of the conditional
densities of the random times. In the next section, we reconcile the structural approach
and the reduced form approach for these types of models, and among other things (for
instance analyzing the impact of ordering the default times before expanding the filtration,
from a risk management perspective), we will quantify the credit contagion effect under
this conditional density assumption.

2.3 Credit contagion under the conditional density assump-
tion

In this section, the classical reduced-form and filtration expansion framework in credit
risk is extended to the case of multiple, non-ordered defaults, assuming that conditional
densities of the default times exist. The results in subsections 2.3.1 and 2.3.2 have been
established by El Karoui, Jeanblanc and Jiao in [40] and [41]. We use their methodology to
extend a bit their results, from the ranked to the non-ranked case. The extension follows
directly from the results in [40] and [41], but it involves slightly complicated combinatorial
techniques, hence we include proofs. Intensities and pricing formulas are derived, reveal-
ing how information-driven default contagion arises in these models. The reconciliation
between structural and reduced form models is achieved for structural models where the
default times admit a conditional density: in these models, the conditional densities will
be functionals of the characteristics of the firm values, therefore the intensities, which are
proven to exist, are also expressed in terms of the parameters of the firm values. We then
analyze the impact of ordering the default times before expanding the filtration. While not
important for pricing, the effect is significant in the context of risk management, and be-
comes even more pronounced for highly correlated and asymmetrically distributed defaults.
We provide a general scheme for constructing and simulating the default times, given that
a model for the conditional densities has been chosen. We then give few conditional density
models and study the information induced credit contagion effect within them. Finally, we
propose a toy example of a multiple firm structural model where the conditional densities
are computable, in order to give an explicit example of such reconciliation. Throughout, we
assume that a probability space (2, F, P) is given where all random variables, processes,
etc. are defined. We also take as given a filtration F, satisfying the usual conditions of
P completeness and right-continuity.
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2.3.1 The conditional density assumption : the case of two non ranked
random times

The notational complexity in the general case of arbitrarily many non-ordered default times
turns out to be quite significant. For this reason we will devote the present section to the
corresponding results for the special case of two times, still non-ordered. The goal is to
give a flavor of the main conclusions, and to facilitate discussion of contagion effects as
well as a comparison with the case of ranked times. The majority of the results stated here
are corollaries of lemmas and theorems in subsequent sections, in which cases we refrain
from giving separate proofs.

For the remainder of this section, we consider two default times 7 and 7, and assume the
existence of Fi-conditional densities py(u1, ug):

pt(ul,ug)dulduQ = P(Tl S dul, Ty € d’u,g ’ }—t)

The market filtration G = (G;);>0 is the progressive expansion of F with (7, 72),
namely

= ﬂfu\/a(ﬁAu, T2 A ).

u>t

We first write down the G intensities of 71 and 75. This is an immediate corollary of
Theorem 45 of Section 2.3.2.

Corollary 14 For k = 1,2 the processes

tATE
1{Tk§t} — / )\I;ds
0

are G martingales, where

A1 ftoopt(t,w)dw 1 pt(t T2)
P e I [ pe(un, ug)dugduy tt=m) [ pe(ur, m2)duy
and
21 I pe(ua, t)duy pe(T1,1)
! {t<ﬁ}ft I pe U1,U2)dU1dU2 {t>ﬁ}ft pe(71, ug)dug”

Alternatively, we may write this using conditional survival probabilities, rather than den-
sities. Define

oo o0
Pi(uy,u9) = P(11 > u1, 72 > ug | Ft) = / / pi(v1, v2)dvaduy.
up Jug

Then
8u1 Pt(t t) aulmpt(t, 7'2)

-1 — -1

el Rty TR0, Pt )
where 0,, denotes partial derivative with respect to the i:th argument and 0,, ., denotes
partial derivative with respect to both arguments.

A



2.3. Credit contagion under the conditional density assumption 107

The form of the G intensities makes it clear that they jump on the arrival of the other
default, unless the conditional densities have some special structure (one example is condi-
tional independence—see Section 2.3.2.) This is a partial result toward the reconciliation
of strutural and reduced form models, at least when the default times in the structural
model admit a conditional density. The reason is that the conditional densities of the
default times will be a functional of the parameters of the firm values, and therefore our
formulas above express the intensities in terms of these parameters of the firm values.
That a given intensity jumps at the default of the other firm is then very likely, unless
again the model has some very particular structure. As demonstrated through examples
in the previous section, it is however usually hard to prove & la main that such intensities
jump, see for instance subsection 2.2.4. However, in several models, the computations can
be worked out explicitly, see for instance Example 5 and the example of subsection 2.2.5
where the credit contagion effect can be quantified. We will propose another toy example
(see subsection 2.3.6), where we will directly apply the formulas of Corollary 14 to a two
firms structural model where the default times admit a conditional density.

Knowledge of the intensities allows also one to price defaultable bonds on each of the two
firms. To price more complicated products, more work is needed. As an example, and for
later use, we will give a pricing formula for a security that pays one unit of currency at
time T if at most one default happens before T'. That is, if we define

01 =T1\To and o2 =171V T2,

the time T' payoff is 1¢,,~7y. This forms a component of the cash flow to a simple synthetic
CDO, or a second-to-default swap, for example. In order to focus on the issue at hand,
which is the impact of the ordering of the defaults, we make the simplifying assumption of
zero (or deterministic) interest rates. Assuming that the probability measure P can be used
as pricing measure, the following corollary of Lemma 67 gives the price at time t.

Corollary 15 Given the notation and assumptions of this section, we have
Pt(Ta t) + Pt(taT) _ Pt(T7 T)

Py (t,t)

+1 a’LLQPt(TaTQ) +1 8U1Pt(T17T)
{Tl>t}ﬂ{‘l‘2§t} 8U2Pt( ) {TlSt}ﬁ{T2>t} aulpt('r]_, t)

P(oy > T | Gt) = 17,500 {m>1}

ta T2

The main observation here is that the price typically depends not only on the number
of observed defaults so far, but also on the identities of the defaulted firms. This is
reflected by the fact that the prices corresponding to the events {7 > t} N {m < ¢t} and
{m <t}n{m > t}, the second and third term above, are different in general. This should
be contrasted to the case of ranked times (see e.g. [40], [56], [86]), where these two events
cannot be distinguished. Compare Lemma 62, proved by El Karoui and al. in [40] with its
slight generalization in Corollary 15. For pricing purposes, the ability to take the ordering
of the default times into account does not provide any extra benefit, because only the
unconditional expectation P(oe > T') is needed. However, in risk management, a typical
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task is to compute or simulate the distribution of the price, i.e. of P(og > T | G;), at some
future time ¢ > 0. In this case the output is highly dependent on whether the random
times were ranked or not, and this is where our results, for instance Corollary 15, adds to
the existing literature.

We now proceed to make the comparison between the ranked and non-ranked case precise.
To this end, let us introduce the filtration G= (’g})tzo given as the progressive expansion
of F with the ranked times (o7,02). It should be clear that G C G. We are interested
in P(cg > T | G;) for 0 < t < T, which we will compare with P(o2 > T | G;) given in
Corollary 15. The first step is to compute the F;-conditional distributions of (o1, 02) given
those of (71, 72).

Lemma 61 Let ﬁt(ul,ug) = P(o1 > u1,09 > ug | Ft). Then for vo = uy V ug,

Py(u1,uz) = Pi(u1,va) + Pi(va, u1) — Pi(va, vo).

Proof. First note that for ue > uq,

P(oy > u1,09 <wug | F) = Plur <11 <ug,uy <71 <wugl|F)
= Pi(u1,u1) — Pi(ur,ug) — Pi(ug, u1) + Pr(ug, uz).

NOW7 since ﬁt(ul,uQ) = ]St(ul,vg) = P(Ul > Ul ‘ ft) — P(Jl > up, 02 < U2 ‘ ft) and
P(o1 > uy | Ft) = Py(u1,up), the result follows. m

Corollary 15 is a slight generalization of Lemma 62 below, and was obtained using the
same methodology as in [40].

Lemma 62 (El karoui, Jeanblanc and Jiao) Given the above notation and assump-
tions, we have

Pt(T, t) + Pt(t,T) — Pt(T, T)
Pt(t’t)
+1 aulpt(alvT)+8u2Pt(T701)
{o1st<o2} "5 P01, t) + Ou, Py (¢, 1)

P(O’Q >T | gt) = 1{01>t}

Proof. An application of Corollary 15 with (71, 72) replaced by (o1,09), and Py(u1, us2)
replaced by P;(u1,u2) immediately yields

ﬁt(Tat)—i_ﬁt(tﬂT) _E(T7T) au1ﬁt(o'17T)
= + 1o <tinfoosty =
Pt(t,t) 8u1Pt(0'1,t)

Ploy >T|G) = (oot

Using Lemma 61 to express ]Bt(ul, ug) in terms of P;(u1,ug) then yields the result. m

Comparing P(oy > T | G;) in Lemma 62 with the expression for P(oy > T | G) in
Corollary 15, we see that they coincide on the set {o1 > ¢t} = {m1 > t} N {m > t}, as
one would expect. However, as already mentioned, G; cannot distinguish between {r; >



2.3. Credit contagion under the conditional density assumption 109

t}N{m <t} and {m <t}N{m > t}, whose union is {01 <t < o2}. In fact, the value of
P(o2 > T | Gy) on this set is a conditional expectation of P(cg > T' | G;). More specifically,
one readily verifies that

P(O'2 >T ‘ gt)1{01§t<02} = O‘tP(O-2 >T | gt)l{Tl>t}m{T2§t}
+ (1 —ay)P(o2 > T | G)Lir <tyn{ra>t}s

where
aug Pt (tu 01 )

B 8U1-Pt(017t) + 8u2Pt(t701) )

o

In Section 2.3.4 we provide a simulation study to further illustrate the consequences of
using G as one’s information set, rather than G.

2.3.2 Extension to multiple non ranked random times

In this section we treat the general case of n default times, modeled as positive random vari-
ables 71, ..., Ty, not necessarily ordered extending thereby a bit the results in [40] and [41].
We derive intensities and pricing formulas under the assumption that joint F;-conditional
densities exist, using the methodology developed in [40]. The market information set G is
the progressive expansion of F with 7,..., 7.

The treatment requires some notation, which we now describe. For a vector & € R™ and
an index set I C {1,...,n}, let &y be the subvector whose entries are the components of x
with indices in I. In particular, we define 7 = (7q,...,7,) so that 77 = (7;);cs. Inequalities
like 7 > t for a vector @, an index set I C {1,...,n}, and a scalar ¢ should be interpreted
as x; >t for all ¢ € I. In particular,

Lz >ty = Lip>t, viery
As a convention, when I = (), 17,54 = 1and 1p7 <) = 1. We take ¢ A xy to denote the

vector (tAx;)ier, and let e = (1,...,1) be the vector consisting of only ones. Its dimension
should be clear from the context.

Several different filtrations will appear. For an index set I C {1,...,n}, let F/ denote
the progressive expansion of F with all the times 7;. The market filtration G, the full
filtration containing all the times 71, ..., 7y, is then given by G = F{l-+"} We also write
Gk = FiL-m\k} 4 filtration which will play an important role.

Throughout this section we assume that F;-conditional densities exist. More precisely, we
assume that there exist processes (p;(u));>0 indexed by w € R"} such that

P(t € du | ;) = pi(u)du.

It is not essential that these densities exist with respect to Lebesgue measure; any other
deterministic and diffuse measure would suffice. We use Lebesgue measure primarily in
order to lighten the already quite complicated notation. The key result is the following
theorem. In its statement, the measure u(dz) is some given deterministic measure.



110 Chapter 2. Compensators of random times and credit contagion

Theorem 44 Let X be an integrable random vartable, and let I and J be disjoint subsets
of {1,...,n}. Suppose that for every t >0, (X, T1,7s) has a joint F;-conditional density
fi(x,ur,wy) with respect to p(dz) x duy x duy. Then, on {T; >t} N{r; < t},

E(X | FlY) = /R ron(e | T, Dyulde),

where
ft f fi(x,up, 75)dus

fth f filz,ur, 75)durp(dz)’

ge(x | 1, J) =

Despite its cumbersome appearance, the function g¢(z | I, J) appearing in Theorem 44 has
a very natural interpretation. It is the conditional density of X with respect to p(dzx),
given Fy, {71 > t}, and 7. Formally, we may write

gz | I, J)pu(dx) = P(X €dx | Fyy, T1 >, TJ).

Notice also that the sets I or J (or both) could be empty. The statement is still valid, as
long as the correct notational conventions are adhered to. Namely, 17 -4 and 1. <y
are equal to one if I = () and J = (), respectively. Also, integrals with respect to du;
(respectively du ) are ignored in this case. We prove now Theorem 44. In order to prove
this theorem, it is convenient to start with the following weaker result.

Lemma 63 Let X be an integrable random variable, and let I and J be disjoint subsets
of {1,...,n}. Suppose that for everyt >0, (X, T1,77) has a joint Fi-conditional density
fi(x,ur,uwy) with respect to pu(dz) X duy X duy. Then, on {T; >t} N{T; < t},

1 ftoo : ~-ftoo fR zfi(x,ur, Ty)pu(dx)dus
P(rr>t|F/) fooo e fooo fR filz,ur, 7y )pu(dz)du;

B(X | F{Y) =
Proof. Let U = Yihi(t A T1)hy(t A T7), where Y} is a bounded F; measurable random
variable, and Ay : Rl = R and by : RIY| = R are bounded and measurable. We have
EUL7 5 1r,<pX) = E(Yihi(te) E(X 17, <iyhs (T 7)1z 50y | Ft)),
(where te = (t,--- ,t)) and
E(X1r,<phs(T1) 1,50 | Fi)

:/ / /$1{uJ§t}hJ(UJ)]-{uI>t}ft($7uI;uJ)H(dI)duIduJ
0 o Jr

=/ / Liw,<tyhs(uy) (/ / /xl{u1>t}ft(mvUIauJ)U(dx)duI) duy
0 0 0 0 R
=/ / ]—{uJ<t}hJ(uJ>G(uJ)/ / /ft($7U17UJ)M(dx)duldUJ

0 0 0 o Jr

= E(l{-,—Jgt}h<TJ)G(TJ) | Ft),
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where, for this proof only, we use the short-hand notation

ft ) .ftoo Jg xfi(z,ur, wy)p(de)duy
fo s fooo fR ft(xv ur, 'U'J)M(dx)du[
Hence E(Ulyr, > 1¢r, <y X) = E(Yihi(te)h;(7)1r,<G(7)), and continuing the cal-
culations we obtain
(}/th[ te h] TJ)].{.,.J<t}G(TJ))

1{7' >t} | ft )

E < Yihi( ! h 1 G
{ vhi(t Plrr = 1] 7 J(T) Lz ,<yG(T )

1
E S Yihi(te)h;( TJ)l{r1>t}1{rJ<t}WG(TJ)}
£

G(uy) =

1
=F {Ul{r1>t}1{n§t}WG(U)} :

The Monotone Class Theorem and a standard right-continuity argument now yields the
result. m

The fact that the statement and proof of Lemma 63 remain valid even if I and/or J is
empty allows us to improve its conclusion without any additional assumptions. The result
is Theorem 44, and we now give the proof.

Proof of Theorem 44. Applying Lemma 63 with I = () and an integrable random
variable X yields, with ft(:c uy) being the conditional joint density of (X, 7 ;) with respect
to fi(dx) X duy,

Jpxfi(w, 7 5)fidz)

o felz, Ty)fi(dz)

In this expression we would like to take X = 17,51, with I as in the statement of

1{TJ§t}E(X | ‘FtJ) = 1{TJ§t}

the theorem. Taking fi(dz) = d1011(dx), the conditional joint density fi(z,uy) can be
computed in terms of fi(z,us, uy). We get

F(0,u) = /0 L /0 t /R Fur, wr, ) () du,
Fu) = [ [T [ e uptdodu,

A straightforward calculation then gives

e dz)duy
1 T E 1 T -FJ - 1 ‘/;oo f;eoo fR ft(x7UI7TJ)M( .
{rs<t} ( {rr>t} | Fi) {rs<t} fO fO f]R fi(x,ur, 7y)u(dz)dur

It now suffices to apply Lemma 63 with I, J and X as in the theorem, and substitute for
1{TJ§t}E(1{-rI>t} | }'g’), to get

ftoo e ftoo fR zfi(z,wr, 77)p(dr)dus

IUJ —1{ >t}1{ <t}
o TSRS [ Jg felw w7 ) p(de)dur

1{T1>t}1{TJ<t}E(X ’
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which is the desired result. m

Using Theorem 44 we can compute, for every fixed k, the G™* supermartingale
ZF = P(m, > t| G,

together with its Doob-Meyer decomposition. (Recall that G=% = F{L-n\F} ig the pro-
gressive expansion of ' with all the times except 7;.) This will then allow us to find
the compensator and default intensity of 75. First we introduce the following notation,
analogous to the definition of g;(x | I, J) appearing in Theorem 44. Define

PYORD o R s A LT

2.5
fO ft ft Dt ulaTJ,Uk)dU[duk ( )

where of course p;(u) is the conditional joint density of 71,...,7,. In particular, when
J = () this reduces to

-];f 'ft pt ur,u )duI
fo ft ft Dt u[,uk)dulduk

Note that B¢(w | I,J) is the conditional density of 7, given F;, {7; >t} and 7;. We write
this formally as

Br(u | 1,0) =

Bi(u | I,J)du = P(1x € du | Fy, 71 > t, Tj).

The following two lemmas are the key ingredients for computing the G intensity of 7%.

Lemma 64 Fiz k€ {1,...,n} and let Bi(u | I,J) be defined as in (2.5). Then
P(r > T167%) = Yo Urmanirscy [ Aila | 1,0)du
1,J

where the sum is taken over all subsets I,J C {1,...,n} such that IUJ ={1,...,n}\{k}
and INJ = 0.

Proof. Let T'> 0. With X = 1¢. ~7, pu(dr) = dg9,13(dz) and

(L ur ) = / By | 1, J;wy)du,
T

where Si(u | I, J;wy) is given by the right side of (2.5) but with 7 replaced by w;, an
application of Theorem 44 yields

P, >T |G ") = Zl{T]>t}1{TJ§t}P(Tk >T|G ")
I®;

= 21{7'1>t}1{TJ<t}/ B(u ‘ I,J;75)du
1,J T

where the sums are taken over all I,J C {1,...,n} with JTUJ = {1,...,n}\{k} and
INnJ=0. Since Bi(u | I,J;75) = Be(u | I,J), the result follows. m
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Lemma 65 Fiz k € {1,...,n} and let ZF = M* — A* be the Doob-Meyer decomposition
in G™F of ZF. On {11 >t} n{r; <t} we then have

00 t
M= [ G| LDdu and Af = [ B L),
0 0

where I,J C {1,...,n} satisfy IUJ ={1,...,n}\{k} and INJ = 0.
Proof. Lemma 64 implies that P(, > T | G %) = Jr ai(u)du, where

() =Y 1r oLz, <y Bilu | 1,0).
I,J

Since P(7, > T | ;%) is a martingale, so is ay(u) for every u. We write

) ) t
Zf :/ a(u)du :/ au/\t(u)du—/ oy (u)du,
t 0 0

and notice that the first term on the right is a martingale and the second is of finite
variation and continuous, hence predictable. This gives the desired result. The above
computation mimics Proposition 2.1 in [86]. m

The proof of Theorem 45 below relies on the Jeulin-Yor Theorem, see Theorem 7. We may
finally give the intensities explicitly in terms of the F;-conditional densities p;(u), or, more
precisely, in terms of the S¢(u | I,J) defined in (2.5).

Theorem 45 (El Karoui, Jeanblanc and Jiao) For each fized k, the process

tATY
1{Tk§t} — /0 )\Isqu

is a G martingale, where

Ge(t|1,J)
ftooﬁt(u\I,J)du
Here Bi(u | I,J) is given by (2.5), and I,J C {1,...,n} satisfy I UJ = {1,...,n}\{k}
and INJ = 0.

AF = on {rr>t}n{r; <t}

This theorem is actually a slight generalization of the one proved by El Karoui, Jeanblanc
and Jiao in the case of ranked times (see [40]). We used their exact methodology and
our result is similar to theirs up to the cumbersome combinatorial effect. However the
formulas of Theorem 45 are needed both from a risk management perspective as this will
be illustrated in section 2.3.4 and to study credit contagion as illustrated in sections 2.3.5
and 2.3.6. Let (0;)1<i<n be the ordered statistics of the default times (7;)1<i<n and let
G be the progressive expansion of F with (0i)1<i<n. Finally, let p be the F;-conditional
density of (o1,...,0,) and /3 the corresponding quantities to those in equation (2.5) by
replacing p with p. Since the times are ordered now, Bt(u | I,J) does not vanish if and
only if the times indexed by J are smaller than u which is itself smaller than the times
indexed by I. This leaves only one term and gives the following.
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Theorem 46 (El Karoui, Jeanblanc and Jiao) For each fized k, the process

thog
1{0k§t} —/0 )\l;ds

is a G martingale, where

=1y, o Bt [{k+1,...,n} {1,... . k—1})
O B | k41, nd {1k — 1)) du

As expected, the conclusion of Theorem 45 may formally be written

)\fdt:P(TkEdﬂ]‘—t, T >t T >t Tg).

Proof. [Of Theorem 45] Lemma 64 gives us the form of Z*, and Lemma 65 provides
its Doob-Meyer decomposition Z* = M* — A¥ in G=*. An application of the Jeulin-Yor
Theorem (Theorem 7) with the filtrations G™* C G now gives the result. Notice that since
A from Lemma 65 is continuous, there is no need to take left limits of Z* when applying
the Jeulin-Yor Theorem. m

By substituting for 8;(u | I,.J), we may also write A¥ directly in terms of p;(u):

k j;goo "];Oopt(uI7TJ7t)dul
A=

N f; e f;oo pe(ur, 75, u)durdu

on {rr>tyn{r; <t} (2.6)

This form makes it clear that the intensity of 7 will jump upon the arrival of some other
default 7;, unless the conditional densities have some special structure. As described in
Section 2.3.1, the interpretation of this effect is that the default of firm ¢ gives indirect
information about the state of firm k, thereby causing its intensity to jump. As we will see
in section 2.3.5, one case where this type of contagion does not occur is when conditional
independence is present, i.e. when the conditional densities factor out.

We provide now pricing formulas with respect to the market filtration. The risk-neutral
pricing technology reduces the problem of pricing payoffs obtained at time T to the problem
of computing the expectation of the (discounted) payoff under a risk-neutral measure. The
price at time ¢t < T is given by the conditional expectation given the market information G,.
We show how this can be done in the present framework, first for general claims with a
fixed maturity, and then for the special case of k'"-to-default swaps. The next result is
standard for the case n = 1, and nothing essential changes in the proof when n > 1.
Nonetheless, we give the details for completeness.

Lemma 66 Let X be an integrable random variable. Fiz k € {1,...,n} and define ZF =
P(r, >t |G %). Then for T >t,

1 _
BE(X1i -1 | Ge) = 1{Tk>t}ﬁE(X1{‘rk>T} |G ").
t
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Moreover, if X 1s g;k measurable, then

1 _
E(Xl{Tk>T} | Gi) = 1{Tk>t}ﬁE(XZ§2 | G, k)
¢

Proof. Let U be G; measurable of the form U = Y;h_y(t A T_g)hi(t A 73), where Yy is Fy
measurable and A_j : R*™! — R and h; : R — R are bounded Borel functions. Then

E(X1{7k>T}U) = E(Yihg(t)h_r(t A Tfk)X1{7k>T})
= E(Yihi()h-i,(t ANT_1) E(X 11y | G F))

E(l =i | GF) _
ka E(Xl{rk>T} | gt k)

1 - nE(X1,, —k
:E{E<U{k>t} ( Zggk>T}’gt )|gtk>}
t

—k
— B {Ul{‘rk>t}E(X1{km>T} | gt )}
Zt

=E {Ythk(f)h—k(t AT k)

An application of the Monotone Class Theorem together with a standard right-continuity
argument proves the first claim of the lemma. If X is G, ¥ measurable, simply condition
on G3¥ to get E(X1( o7y |G ") =E(XZE |G F). m

Under suitable assumptions about existence of joint F;-conditional densities, Theorem 44
allows to compute the expectation E(X1,, sy | g;’“) that appears in Lemma 66. More-
over, ZF is given by Lemma 64.

As a more specific example, we give a formula for the price of a security that pays one unit
of currency if at most £ — 1 defaults happen before some fixed horizon T'. This quantity
appears if one wants to price k**-to-default swaps. We assume that P is a valid pricing
measure, and that interest rates are zero (this is without loss of generality using a change
of numeraire.) Let

o1 <0< - <oy

be the order statistics of the default times 7,...,7,. That is,
o1 =min{7,..., 7}, o9 = min{7y,...,m,}\{o1}, etc.

The time ¢ price of the security described above is then given by the following.

Lemma 67 For anyt <T,

Por>T[G) =Y > Lrestpnirge<t)
\[|>k KOI
f[]?ofjfo ftT-~-LTpt(UI7UIC\KCaTKC)duIC\KCduI

X
I [T p(uk, Tre)dug
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Proof. Note that 1, -7 = lelzk 1¢7, 5117, <7}, Where here and in the rest of this
proof, J = I¢. Now,

Plrr>T, 7;<T|G) = Z Vs stinfrre<y P(T1 >T, 75 <T | Gt)
KDI

= Z 1{TK>t}ﬂ{TKcSt}P(TI > Tv t S TJ\KC S T ‘ gt)
KDI

We claim that on {75 >t} N {7 < t},
T T
f;ofj(foft ft pt(uI,uJ\KchKc)duJ\KCduI
ftoo cee ﬁmpt(U[,UJ\Kc, TKC)dUJ\chUI

The cumbersome verification of this fact involves the same Monotone Class and right-

P(T]>T,t§TJ\KcST’gt):

continuity arguments used before. The result now follows by assembling the pieces. m

The expression for P(ox, > T | G;) is quite complicated, as it involves a potentially very
large number of terms, where each term consists of a high-dimensional integral. Such
quantities are not tractable in general.

2.3.3 Modeling of conditional densities

Until now we have taken the vector of default times and the Fj-conditional densities as
given. However, from a modeling perspective it is more convenient to start by specifying
the conditional densities, and then construct the random times to be consistent with this
specification. We now show how this can be done. We will then provide ways to model
the conditional densities. For the construction and simulation of the random time, we
will in fact treat a more general case, where 7 is a random variable with values in some
measurable space (E,£). Of course, when 7 is a vector of random times, E = R}

Let us assume that we are given a filtered probability space (€2, F,F, P) and a state space
E with o-field &, together with processes (w,t) — Pi(E;w) indexed by the sets F € &.
We assume that for all ¢ and P-a.e. w, P,(-) = P,(-;w) is a probability measure on £. We
also assume that the process (P:(E)):>0 is a uniformly integrable F martingale for every
E € &, and we define the random set function u(-) = u(-;w) by

w(E;w) = Py (F;w) = lim P(F;w).
t—o0
This is well-defined outside a P-nullset. Finally, we assume that pu(-;w) is indeed a prob-
ability measure a.s. This assumption is needed since countable additivity can fail if the
limits limy_, o P;(F;w) are not uniform across E € £. One situation where countable ad-
ditivity automatically holds is if all the P;(E) are constant after some fixed time 7". The
processes (P;(E))i>o0 should be thought of as candidates for a system of F;-conditional
probabilities associated with some E-valued random variable 7. The goal is to construct
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this random variable, possibly on some extension (Q, F, I~F, ]5) of the original space. This
can be done explicitly. Define

Q=QxE F=F®E& F=Fo{0E},

and let P be the unique measure on F that satisfies

P(AX E) = /A,u(E;w)dP(w)

for every A € F and F € £. In particular, this implies that the projection of P onto Q is
P. That is,

P(- xE) = P(-). (2.7)
Mappings w — X (w) on Q are naturally identified with mappings on Q by setting X (&) =
X(w) for © = (w,e). Measurability properties carry over: if X (w) is F measurable, then
X (@) is F measurable; if X(w) is an F adapted process, then X (@) is F adapted, etc.
Moreover, it follows from (2.7) that the law under P of X (considered as a mapping on )
is the same as its law under P (when considered as a mapping on Q) In particular, each
process (P;(E))t>0 remains probabilistically identical when considered on the extended
space.

Finally, we introduce the random variable 7 : Q — E as

T(0) = 7(w, ) = e.
We then have that P;(-) is indeed an F;-conditional distribution of 7, as the following result
shows.
Lemma 68 For any E € £, we have Pi(E) = P(t € E | Fy) a.s.

Proof. Let E(.) denote expectation under P. Since P;(E) = E(u(E) | Ft), it suffices to
show that u(E) = P(r € E | Fs). Furthermore, F, = Foo @ {0, E}, so we only need to
prove that

E(M(E)leg) = E(l{TeE}leB)
for A € F and B € {0,E}. If B = () the equality is trivial, so suppose B = E. We
get

B(u(E)1axs) = /A _ n(E:w)iP(w.c)

- /A [ n(Eswdn(ei)ape)

E

[t ([ antei)) arce)

- [ nBiwip)
=P(AxE).
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Since 7(w, €) = e by definition, we have E(l{TEE}lAXE) = P(Ax E). The proof is finished.
[

What we have shown so far is that given any system of conditional distributions P;(-),
we can construct a random variable 7 on some extended probability space such that the
conditional distributions of 7 are exactly P;(-). Moreover, this can be done in a way that
preserves the probabilistic structure of all random elements on the original space where
Py(-) was defined. In practice, one has to be able to simulate joint realizations of P;(-)
and T, or, more generally, joint realizations of 7 and any random element on . Given
the above construction, this amounts to simulating a realization of @ = (w,e) under the
measure P. The structure of P suggests the following recipe for doing this.

The following gives a realization of (w,e) from P.
1. Draw w from P, and define u(-) = u(-;w).
2. Draw e from pu, independently of w.

To the extent one finds it necessary, the correctness of the above simulation recipe can be
verified as follows. Let T': Q x [0, 1] — E be a mapping such that for any fixed w € , if U
is uniformly distributed on [0, 1], T'(w, U) is distributed according to p(-;w). The mapping
T corresponds to the simulation routine needed to carry out step 2 of the above algorithm,
so we may assume that it exists. The output from the algorithm is (w,e) = (w, T'(w,w")),
where w is drawn from P and w’ is drawn from Lebesgue measure A on [0, 1] independently
of w. We need to check that the distribution of (w,e) under P ® \ is precisely P. If T is
measurable we get, for A € F and B € £,

(PN (Ax{w:e€B})= /A/[Ol] L7 (ww)etdA (W) dP(w)
- /A u(B;w)dP(w) = P(A x B),

as desired. The assumed measurability of T" is of course a pure technicality, since in practice
the simulation routine operates with finite probability spaces.

It is important to emphasize that we have said nothing about how to actually carry out
the two steps of the simulation algorithm. Typically 2 would be taken to be path space, in
which case Step 1 consists in simulating a path from some stochastic process, for example
Brownian motion. Step 2 is potentially more challenging, since it requires a procedure
for simulating from any distribution in a possibly large class {u(;w) : w € Q}. Finding
suitable conditional distributions P;(-) and efficient methods for simulating from them is
an important problem for applications.

In the first part of this subsection it was shown how a consistent vector 7 can be constructed
and simulated after conditional densities p;(u), or, equivalently, conditional distributions
Pi(u), have been chosen. The modeling problem thus boils down to specifying such den-
sities. In this section we describe some possible approaches. Our aim here is merely to
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give a flavor of what can be done; the development of more specific and practical models,
including procedures for simulation, is outside the scope of this thesis.

2.3.3.1 Multiplicative one-factor models

Let R and U = (Uy,...,U,) be independent random variables, with R > 0 and U; > 0 for
all 7. The default times are given by products

7, = RU;, (i=1,...,n).
Then

o0 1
Pi(u) = P(m1 > uty...,Tn > up | Ft) :/0 PU > ;u | Ft)P(R € dr | F).

In particular, if U is independent of F, and R has an F;-conditional density fi(r) with
respect to Lebesgue measure, the right side reduces to [;° P(U > %u) fe(r)dr.

Example 6 Assume that U is independent of Fo, and that R has an Fi-conditional density
as above. If U is uniformly distributed on the simplex {x € R} : ||u|; = 1}, it is known
that P(U > wu) = (1 — ||lul1)", see Theorem 5.2(i) in [47]. We get

00 n—1
P> s> | ) = | (1 - ”“’”1> fu(r)dr.
0

/4

Under appropriate integrability conditions, one can compute

n—2 [oe]
0 +

ouy...0up—9
=(n— 1)!(—1)"_2 /OO (1 — ”u’l> r_"+2ft(7“)dr,
l

ullx

and with some more calculation one gets

O”P(Tl >U1,...,Tn>un|]:t) _(n
ouq . ..0uy N

= D=1 [T fl el ),

1.€.,
felug + - +up)
(Ul + -4 un)n—17

pt(ul,...,un):(n—l)! u > 0.

In Example 6, one could of course replace the uniform distribution on the simplex by any
other distribution taking values in R"!, as long as the existence of the resulting density
pt(w) can be ensured. This procedure reduces the task to that of modeling the conditional
density of the single random variable R.

This model can also be made amenable to simulation. Indeed, if a method for generating
paths of fi(r) is available, the general scheme described in Section 2.3.3 tells us that
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consistent samples from 7 can be obtained by setting 7; = RpU;, where Ry is a draw
from the density fr(r;w) and U; has been generated independently (here 7' is some fixed
time horizon.) Simulating from fr(r) is usually feasible, since it is a one-dimensional
density.

2.3.3.2 Measure change approach

We now give a different way of systematically constructing F;-conditional densities pi(u).
The starting point is to specify the dynamics of a family of non-normalized densities ¢;(u),
and then change the measure so that each p;(u) given by

) — qi(u)
pt( ) fooo . fooo qt(v)dv

becomes a martingale.

We assume that the filtration F is generated by a Brownian motion W. Let ¢(u) be the
solution to the SDE
dg(u) = qr(uw)or(u)dWy,

where for each u € R, o(u) is such that g(u) is a strictly positive F martingale. Assume
also that there exists an integrable process that does not depend on w that dominates
every ¢:(u)o(u). Define the process of normalizing constants

e [ [t
0 0

Cy

Then py(u) > 0 and [~ --- [;¥ pi(u)du = 1 for all £ > 0, P-a.s. The problem is that p;(u)
is not a martingale. We may remedy this problem by changing to an equivalent probability
Q. By the definition of ¢;(u) and Cy, and using the fact that ¢;(u)o(u) is dominated by
an integrable process, we get

o0 o0 t
C;=Cy —I—/ / / gs(u)os(u)dWsdu
0 o Jo
t [e%e] o0
=) —I—/ / . / gs(u)os(u)dudWy
0o Jo 0

t
= Cp +/ CsvedW,
0

and set

where we define

n=g [ [ atwatde= [T [T e @
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It6’s formula then implies that
dpi(u) = pr(w)(op(u) — vp) (dWy — idt).

Since (Ct)¢>0 is a positive martingale, we may define an equivalent probability measure
Q via d@Q = CpdP. Under @, the process thQ = dW}; — ndt is Brownian motion, and
thus

dpi(u) = py(w)(op(u) — vp)dWS (2.8)

is a @ martingale. The normalization condition [;°- - [;° pi(u)du = 1 and the nonnega-
tivity of p;(u) hold @Q-a.s., since P and @ are equivalent. Therefore, p;(u) defines a family
of Fi-conditional densities on the space (2, F,F, Q).

Notice that the quantities in (2.8) no longer depend on ¢;(u). Therefore, given the processes
(0¢(u))t>0, we could alternatively model pi(u) directly under the original measure P as
the solution of the infinite-dimensional stochastic differential equation

dpi(u) :pt(u){at(u) - /000 . /Ooopt(v)at(v)dv}th.

This methodology has been used by Filipovié et al. [48] to model the dynamics of volatility
surfaces. In fact, they show that any system of Fi-conditional densities must have this
form. Extensions of these results have also been derived by El Karoui et al. [42]. The task
of finding tractable specifications and analyzing their performance on real-world data sets
is important but is beyond the scope of this research.

2.3.3.3 Stochastic double-exponential

Assume that M;(u), where u € R, is a continuous local F martingale for each u. Then
the processes

Yi(u) = E(=E(=M(u)));

are also local martingales for all w. More explicitly, we have

t
Vi) = exp {_e—Mt<u>—;<M<u>>t 1 / =2 (w) - (W) g M(u)>s}

2 0
— exp 4 —e—Xt(w) _ 1 ' o 2Xs(u) u
= { ;[ e},
where 1
Xi(u) = My(w) + 5 (M(u)).

This shows in particular that 0 < Y;(u) < 1 a.s. for all u and t. We would like to set
P(r <u|F)=Yi(u),

but for this to be a valid construction, the following properties are necessary:
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e u; — Yi(u) is nondecreasing a.s. for each ¢ and u_;
o lim,, .o Yi(u) =1 a.s. for each ¢ and u_;
o lim,, 0 Yi(u) =0 a.s. for each 7 and u_;.

The question is therefore how to choose the processes M (u) in order for these conditions
to be satisfied. Notice that Yy(u) = exp{—e MW} 5o that we can impose a given
unconditional distribution P(7 < u) by requiring

My(u) = —In{—In P(T < u)}.
Example 7 Let Mi(u) = Mo(u) + L, where (L¢)i>o is an arbitrary continuous local
F martingale with Ly = 0, and set Mo(u) = —In{—In P(T < w)}. Then

X,(w) = Mo(w) + Ly + %<L>t,

and u; — Xi(uw) is nondecreasing, limy, oo Xi(u) = +00 and lim,, o X¢(u) = —c0 a.s. for
each i and u_;. Since (X(u)) = (L) is independent of w, it follows that the necessary
conditions on Yi(u) are satisfied.

2.3.4 An application to risk management

The purpose of this section is to emphasize the impact of ranking the default times before
expanding the filtration, as opposed to using the non-ordered times. This will be done
through a simple simulation study in the case of two firms. We use the same notation as
in Section 2.3.1—in particular, o1 < o9 are the ranked times, and G is the progressive
expansion of F with (o1, 092). For simplicity, and in order to isolate the effects we aim to
highlight, we take the base filtration I to be the trivial filtration. In this case all conditional
densities coincide with the unconditional ones. Moreover, we let the default times (71, 72)
have exponential marginal distributions with parameters A\; and As respectively, connected
through a bivariate Gaussian copula with correlation parameter p. In other words,

P(uy,ug) = P11 < up, 72 < g | Fp) = Cpe MU e 22y,
where the Gauss copula C, is given by
Cp(JUla x2) = (bp(q)_l(‘r)v (I)_l(y))

Here ®(-) is the standard Normal distribution function, and ®,(-, -) is the bivariate Normal
distribution function with unit variances and correlation p. Notice that P(uy,us) does not
depend on ¢ since F is trivial. One readily computes

@—1(6—)\21@) o p(ﬁ_l(e_Alul)
1— p?
@—1(6—)\11“) o p@—l(e—)\gug)>

V1= p?

Ouy P(ur, ug) = —Aje M"1 @ (

Oup P(ur, uz) = —Aoe” "2 0 (
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Finally, the discussion in Section 2.3.3 shows that in the case where F is trivial, we may
obtain draws from 71 and 75 simply by simulating from the unconditional joint distribution.
This is straightforward: one first simulates from the copula, and then applies the inverse
of the marginal distributions. With this we have all ingredients needed to simulate the
quantities P(oy > T | G;) and P(0y > T | G;) using the formulas in Corollary 15 and
Lemma 62 in Section 2.3.1.

Figure 2.1 and Figure 2.2 contain normalized histograms based on simulations of the ran-
dom variables P(cy > T | G;) and P(oy > T | G;) for various values of the parameters Aj,
A2 and p. In all cases, T'=1 and ¢t = 0.5. In a risk management context, this corresponds
to simulating the distribution of the time ¢ price of a contract that pays 14,7} at time 7".
Each figure is based on 10,000 draws. Furthermore, the histograms are based exclusively
on outcomes corresponding to the event {01 < t}N{oe > t}, which is the only set on which
the two random variables differ.

p=0.2, ranked times p=0.5, ranked times p=0.8, ranked times
0.1 0.1
0.1
0.08 0.08
0.06 0.06
0.04 0.05 0.04
0.02 0.02
0 . 0 0
0 0.5 1 0 0.5 1 0 0.5 1
p=0.2, non-ranked times p=0.5, non-ranked times p=0.8, non-ranked times
0.1 0.1
0.1
0.08 0.08
0.06 0.06
0.04 0.05 0.04
0.02 0.02
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

Figure 2.1: Top row: P(o0y > T | Gy); Bottom row: P(oy > T | G;); All panels have
A1 = 0.1, A2 = 0.2. p is as indicated above each panel.

In Figure 2.1, all six panels were generated using Ay = 0.1 and Ay = 0.2. This corresponds
to unconditional marginal default probabilities equal to 0.1 for firm 1 and 0.2 for firm 2
up to the time horizon 7. The left column was generated using p = 0.2, the center
column using p = 0.5, and the right column p = 0.8. The top row shows P(oy > T | G;)
(ranked times), whereas the bottom row shows P(o2 > T' | G;) (non-ranked times). The
figures show clearly that by ignoring the distinction between {r; < t} N {m > t} and
{re < t} n{m > t}, i.e. by ranking the times, the left tail of the price distribution
is heavily distorted. As the correlation parameter p increases, the distributions of both
quantities are spread out, and, more importantly, the left peak appearing in the bottom
row moves to the left. This can be expected to have significant impact on tail measures,
such as value-at-risk or expected shortfall.

In Figure 2.2, the correlation parameter is fixed at p = 0.5. Also, A\; = 0.1, whereas \o
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increases from 0.1 (left column) via 0.2 (center column) to 0.5 (right column). The top
row again shows the case of ranked times, while the bottom row shows the case of non-
ranked times. First observe that the top and bottom panels of the left column look the
same. This is expected, since A\; = A2 = 0.1, implying that (71,72) and (72, 71) have the
same distribution due to the exchangeability of the bivariate Gauss copula. The center
column has the same parameter values as the center column of Figure 2.1, and again the
bottom panel has two separate peaks. In the bottom right panel, the smaller peak has
made a significant move to the left. By contrast, the top panels all display essentially the
same distribution. The main conclusion here is that an increasingly asymmetric default
distribution causes the error one commits by using ranked times to become increasingly

severe.
2,=0.1, ranked times 1,=0.2, ranked times 1,=0.5, ranked times

0.1 0.1 0.1
0.05 0.05 0.05
0 0 0

0 0.5 1 0 0.5 1 0 0.5 1

h2=0.1, non-ranked times k2=0.2, non-ranked times h2=0.5, non-ranked times

0.1 0.1 0.1
0.05 0.05 0.05
0 0 0

0 0.5 1 0 0.5 1 0 0.5 1

Figure 2.2: Top row: P(oy > T | G;); Bottom row: P(oy > T | G;); All panels have
p =0.5, A\ =0.1. \g is as indicated above each panel.

In the context of reduced-form models for multiple default times, there has been an em-
phasis on models where defaults are assumed to be ordered. While adequate for pricing
purposes, this assumption can be quite restrictive in other situations such as risk man-
agement, where the distribution of prices at future times is of interest. In this section we
have so far provided a general framework capable of handling arbitrarily many non-ordered
default times, under the basic assumption that conditional joint densities exist. In partic-
ular we derived default intensities and pricing formulas. The resulting expressions clearly
demonstrated the presence of information-driven contagion effects, where the default of
one firm instantaneously updates the market’s knowledge of the state of the other firms,
causing their intensities to jump. Moreover, by means of a simple simulation study we
emphasized the distinction between ordered and non-ordered defaults in the risk manage-
ment context. It is demonstrated that stronger dependence between defaults leads to a
more pronounced difference between the ordered and non-ordered case. It is also shown
that increasingly asymmetric default distributions have a similar effect. Now we focus in
the remaining sections of this chapter on the information induced credit contagion effect
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under the conditional density assumption and then solve using the methodology developed
in this section a toy example of a tractable two firms structural model.

2.3.5 The conditional density assumption and credit contagion

As mentioned earlier, the form in equation (2.6) makes it clear that the intensity of 7
might jump upon the arrival of some other default 7;, and hence there is an information
induced contagion effect by Definition 9, unless the conditional densities have some special
structure. As described in Section 2.3.1, the interpretation of this effect is that the default
of firm ¢ gives indirect information about the state of firm k, thereby causing its intensity
to jump. One case where the type of contagion as in Definition 9 does not occur is when
conditional independence is present, i.e. when the conditional densities factor.

2.3.5.1 Conditional independence models
Assume the default times are conditionally independent given JFi:
n .
pe(ur, ... up) = Hpi(uz)
i=1
for one-dimensional densities pi(u;). In this case, holding k fixed and letting I,J C
{1,...,n} satisfy TUJ ={1,...,n}\{k} and I N J =0, (2.5) reduces simply to

Bilu | I,) = pf(u).

This quantity is independent of I and J, meaning that it does not change depending on
which of the times 7; have already happened and which ones have not. Theorem 45 then
implies that the G intensity of 73 is given by

pE(t)
I pF (u)du’

which clearly does not jump as other times 7; arrive.

PUEs

We study now the case where the times are linked through an archimedian copula. We
prove that the only case where there is no credit contagion effect is if the copula is the
independent one.

2.3.5.2 Archimedian copulas and credit contagion

Assume we are given two random times 71 and 7y finite a.s. such that

P(7'1>0)=P(7’2>0):1
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Let P(ui,u2) = P(11 > u1, 70 > uz). Assume that (71, 72) has a density p with support on
R x R**. This condition is sufficient for 71 and 75 to have intensities A' and A?. They
are given by
—0y, P(t,1) -0 P(t, 1)
)\1 — 1 ul 9 + 1 ul,u2 9
A () 2719, P(t, 1)
—8 P(t t) —8 P(T1 t)
)\2 -1 u2 ’ +1 i u2,u1 b
P P 1) =9, P(r1, 1)
We assume in the sequel that the joint density function p is continuous. In this case, there
is no information induced credit contagion effect if and only if

Ouy P(t,1)0u, P(t, 1) = P(t,1)0u, uy P(t,t)  forall t >0 (2.9)
Skar’s theorem ensures that there exists a copula function (x,y) — C*x,y) such that
P(uy,uz) = C(Pi(u1), Pa(u2)) for all (u1,us2)
where P;(t) = P(m; > t), ¢ € {1,2}. Then equation (2.9) can be re-written

0, C(Pi(t), Pa(t))0yC(P1(t), Pa(t)) = C(Pi(t), Pa(t))0zyC(P1(t), Pa(t)) for all t > 0
(2.10)
We prove below that if C' is an archimedian copula then there is no credit contagion effect
if and only if C' is the product copula, i.e. there is no dependence structure between 7 and
T9.

Lemma 69 Assume C'is an archimedian copula, that is there exists a twice continuously
differentiable function v such that

Clz,y) =~ (Y(2) +9(y)  for all (z,y)

and (1) = 0, limy_,o = 400, ¥ (z) < 0 and ¢" () > 0. Then there is no information
induced credit contagion (i.e. (2.10) holds) if and only if ¢ (x) = —In(x), for all x > 0.

Proof. Basic computations give

Y (x) Y (y)

—'(2)¢ ()" (C (396 y))

0,C(x,
() (W (C(2,))

ayc(x»?/) ax,yc(xvy) =

~ Y (Clz.y)) ~ Y (Clx,y))

Therefore (2.10) can be written

V" (C(Pi(t), Pa(t)))
P (C(PL(t), Pa(t)))
This is equivalent to PZtlt) = ﬁ,((g((:’;))) for all ¢ > 0. Since f : ¢ — P(t,t) is continuous,
such that f(0) = 1 and lim,_, f(x) = 0, f takes any value between 0 and 1, so that there
is no contagion effect if and only if

~—~

1=-C(P(t), Pa(t)) forallt >0

forall0<ax <1
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Solving this ODE and using the boundary conditions for ¢, one obtains that ¢(x) = — In(x)
for all 0 < 2 < 1. This is the well-known product (or indenpendence) copula. m

We provide now an example where the times do not play a symmetric role. Here, the
conditional densities factor out on the half plane u; > uo. There will be no credit contagion
effect for firm 1 and an a.s. credit contagion effect for firm 2 as soon as the joint density
of the two times is not smooth enough.

2.3.5.3 Conditional densities with a half plane factor form

Let 71, 70 two random times and [F a given filtration. Assume the existence of Fi-conditional
densities pg(u, u2)

P(m € duy, o € dug | Fy) = pe(u1, ug)duidus

The market filtration G is again the progressive expansion of F with (71, 72) and we recall
that in this case 7 and 7 have intensities in G given by

)\1 — aulth(t7t> - < 8”1,U2Pt(ta 7—2)
! {T2>t} Pt (t7 t) {Tz_t} 8u2R‘,<t7 7—2>

and
Ouy 11, 1) Auzun P (11, 1)

2
— —1 _—
K e T R e WS TEoe)

We assume in this subsection that the survival probabilities do have a particular form :
they factor out on the quadrant {us < u;}. The following holds.

Lemma 70 Assume the survival probability P has the following form
Py(u1,u2) = P! (u1) PF (u2) for all us < uy.

for one-dimensional survival probabilities P} (u;) that are continuously differentiable. As-
sume that for each t > 0, the function uy — a%lPt(ul,t) 1s continuous wn t. Then

(i) A\' does not jump at the arrival of the default time To.

(ii) A\? does not jump at T a.s. if and only if i pe(71.0) s continuous in probability
t

pe(T1,v2)dv2
at 1.
(iii) Furthermore, if for each uy in the support of 11, the function t — %Pt(ul,t) 18
continuous in uy then A2 does not jump at 7 a.s. if and only if ps(1,t) is continuous
i probability at 1.

Proof. We start with (i). Using that P;(u,u2) = P (u1)P?(ug) for ug < ug, we get, on

{7—2 S t}v
a’u,l,’uzpt(ta 7—2) 8UPt1 (t)

8u2Pt(t, 7_2) B Ptl (t)
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Now for t < wy, a%lPt(ul,t) = P2() (ul) — Ptz(t)ﬁTIZEG) when uw; — t~. Since

u; — %Pt(ul, t) is continuous in ¢,

1 OP(t,t)  0.PMY)
Pi(t,t) our PN

and it is clear from the expressions of the intensities that A' does not jump at 7. We
prove now (ii). First notice that for ¢ > wy,

8 [ee]
aTLlPt(Uht) = —/t pt(u1, v2)dvs

so by continuity in t of this function,

- / " et v0)dvs <t>8;: (0 (2.11)

2
Using again the factorized structure of P, we obtain for ¢t < wuq, a“ﬁf;(lu;)’t) — 61;3123,5( t()t) when
’ t

up — tT. For us > uy, notice that

Pt(ul,UQ) = P(Tl > U, T > U2 ’Ft)
P(T1 > U, To > U9 ’Ft +P(U1 <11 < U2, T2 > U2 ’ }-t)

P (ug Pt ug) / / pt(v1, v2)dvaduvy

to deduce that for t > uq,

Ouy Py (uy,t 1 opr} opP? t o0
s, ) _ (PtQ(t) 812 (t)"‘Ptl(t)iaut (t)—/ pe(v1,t)duy +/ pt(UhUQ)dUQ)
u t

1

Pt(U1,t) Pt(U1,t)
This quantity converges to

OuP(t) | OuPP (D) | %
P(t) PA(t) + Ptl(t)Pt2(t)/t pe(t, v2)duva

2
when u; — t~. Using equation (2.11) we obtain that this limit is equal to &‘Pfit((;) and
t

¢
Oy Pr(ur,t) . . ) )
up — % is continuous in ¢. Finally

Ou, Pt t)  0uPE(t)

Py(t,1) PA(t)
Now, on {m < t},
8’LLQ,U,1 Pt(7-17 t) - _ pt(7_17 t)

Ouy Pr(71,1) [ pe(r1,v2)dvy
Using the expression for A2, there is no contagion effect at the default time 7; if and
only if

OuPA(t t

P( lim ut():— Pi{n, 1) ) =1

s PA(t) [ pe(71, v2)dvg P
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It follows from equation (2.11) that

PP P2 ()0, P}
i PR 0P
tor PA() s [ pe(t, va)duy
So A? does not jump at 7 if and only if
2 1
s Jp pe(tva)dve [ pe(Tr, ve)dva |—

Since t — 9, P}(up) is continuous in uj and since p;(u1,t) = 9, P?(t)0, P (up) for each
t < uq, this is equivalent to

P( lim pe(T1, 1) pe(T1,1)

0 = Too =1
tsr [ pe(tv2)dva [ py(T1, v2)dvs )

t=71

which yields (ii). Point (iii) follows from (ii) by noticing that [ py(r1,vo)dve =
%Pt(ul, t) is continuous in 77. =

We link now explicitly this section and the previous one on the information induced credit
contagion effect in structural models, and suggest a toy structural model, which satisfies
the assumptions of Lemma 70 and compute explicitly the jump size of the intensity of 1
at the default time 7. We pointed out many times now that the arrival of a default time
will usually help to localize the other default time in the support of its conditional density
which we already interpreted as the default of the first firm indirectly giving information
about the state of the second firm, and vice versa. This is exactly what happens for the
second firm in our example at the default time of the first firm. However, the structure of
the structural model below is such that there is no credit contagion effect for the first firm
at the default of the second one. This is due to the factor form that takes the joint density
when uq > uo.

2.3.6 A toy structural model and credit contagion

Let (2, F, P,F) be a given filtered probability space that supports two independent Brow-
nian motions B' and B2. Consider the model

dX} = dB}
4X} = dB} + [(X},.,)dt

where 7; = inf{t | X} < a;}, where aq < 0 and ap < 0 are given and f(z) = fil{zsa,} +
J2l{z<a,}, With f1 and fa two constants. Assume that X& = Xg = 0.

Introduce the running minimum processes mi = infs<; X?, and for a given generic Brownian
motion B and a constant pu, define mtB # — inf s<t Bs + ps. Finally, introduce the function
G(t,p, ) = P(mff’B > «), which does not depend on the Brownian motion B. The

following lemma is very classical.
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Lemma 71

G(f, M, a) = N(—% + Mﬁ) Q,uaN(

In particular, G(t,0,a) =1 — 2/\/(%)

\[4—#\/)

Proof. Let @ be the probability measure equivalent to P defined through its Radon-
1

Nykodim derivative % = e MBi—3#"t  Under Q, Wy := B, + ut is a Brownian motion

and

G(taM> ) EQ(G“Wt QH tl{lnfs<th>a})

_1 _ M
— EQ(e‘“Wt I t(l _e2 ¢ )1{Wt>a})

2a(a—=x)
by conditioning w.r.t W; and using P(mt >a|Wy=x)=1—e " ¢ . Continuying
the computation, we obtain
a(Wiy—a) 1 y?

G, p,a —/ M= 3R (] _ 255 e 2d
tma= ( o

1 o 1 2 o 1

_ —3(y—pVt) . 2ua —5(y—(pVt+25%))? )

= e 2 dy —e e Vil dy
V2 </ /a

Vi Vi
= N /1) = N o)

7

For any u; > 0 and ug > 0, define P(uq,u2) = P(11 > u1, 70 > u2). We compute P(u1, us2)
in the two cases us < uq and ug < uq.

Lemma 72 If us < wuq, then
P(uy,uz) = G(u1,0,a1)G(uz, f1,az)
Proof. On {r > wui}, for all t < wy, X} > oy as and f(X}!) = f1 as. Therefore
X? = B2+ fitforallt < wuj on {7y > u1}. Let dX; = dB?+ fidt. Then on {7 > u;},
{r2 > up} = {m2, > an} = {mZ 1 > )
Therefore, by the independence of B! and B?,

P(n >, > uz) = E(lpmy sony 1, o2 ) = P(mk, > a))P(mP 1 > ay)

f >O¢2}
We can conclude using Lemma 71 =
We focus now on the case us > uq.

Lemma 73 If us > uy, then
P(u1,u2) = G(uz,0,a1)G(uz, f1,a2)
u2 o0 1,92 2ag(ag—x) 1 2
+ / (/ e i1 —em 77 )Glug — t, fo, a0 — ) e_?dac>g1(t)dt
u s \/2

1 Tt
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]

a2
where g1(t) = me_% is the density of 1.

Proof. First notice that
P(11 > u1, 70 > ug) = P(11 > ug, 70 > u2) + P(u; <11 < ug, o > ug)
Using Lemma 72,
P(11 > u2, 72 > ug) = G(uz, 0, 01)G(uz, f1, a2)
so0 it only remains to compute P(u; < 71 < ug, 72 > ug2). On {1 < ua},

{2 > uz} = { inf Bz + fis > ag, inf Bg + fit1 + fa(s — 1) > as}
s<T1 71 <8<T9

Let mf’“’” = infy<s<y Bs + pus. Then
P < =P < B2, fi B2 uy, f2 _
(u1 <71 S U2, T2 >U2) = (u1 <7 S u2,my >062,’I71T1 >042+(f2 f1)7'1)

u2 2 2
:/ G OPME T > ag,mP 20 5 0y 1 (fo — f1)t)dt
u

1

v B2 ug, f2 2
= / gl(t)E<1{mf2’f1>a2}P(mt TS > g+ (fz — fl)t | ‘Ft ))dt

1

We compute the conditional probability

P(me’uz’f2 >z |F7)=P( inf B?— B+ fo(s—t) >z — fot — B} | F{)

t<s<ug

:P( inf Bu+f2u>x—f2t—b) :P<mi’f2t>x—(f2t+b))
usuz—t }b:B? }b:B?

= G(ug —t, fo,x — (fat + B}))

where B is a generic Brownian motion. Therefore

u2

P(u; <11 < ug,m > ug) :/

uy

DB (1, s, Glun =t focr — (it + BD)) )

u2 52 102 ~
= / gl(t)EQ (elet Qfltl{infsgt E§>QQ}G(U2 — t7 fQ,OéQ - Bt2)>dt
u

1

where () is a probability measure equivalent to P with % — ¢~ NBI=3fft and Bf = B2+ fit
is a Q Brownian motion. Finally, conditioning w.r.t B? and using

5 N 2a5(ag—2)
P(m52’0>a2|BtZ:x):1—e_ P

we obtain that

P(’Uq <1 < U, 7o > UQ) =

u2 o0 1.2
/ g1(t) / el 2N Gug — t, fo, 0 — ) (1 — e
u a9

1

2

e~ 5% dadt

_ 2ag(ag—m) 1
T

)

2nt
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a2
That ¢1(t) = \/%6_27% is a well known fact. Putting everything together yields the result.
|

We can now study the credit contagion effect. P(uq,us) is clearly differentiable and 71 and
7o admit a density. We know that 75 has an intensity A2, given by
— 0y, P(t,1) -0 P(1,t)
=1 2 04 B 112 Sl S
CT S TRy T, Pln )
and 71 has an intensity A! given by
—0y, P(t,t) —Oyy iy P, 72)
)\1 -1 Ul ’ 1 1,U2 ’
CT R T pa TR T, Pt )

as in equation (2.6). The term a“f,g(tt)’t) can be computed explicitly using Lemma 72 while

Oug,uq P(T1,t)
aul P(11,t)

the set {t > 71}. The quantities appearing in the expression for A! can also be computed

the term can be computed explicitly using Lemma 73 since we are working on

using these two lemmas. It only remains to check if

. 0w P(t,t) | Ouyuy P(11,71)
P lim —=—— 21 2 >0
(t%ﬁ P(t,t) 7 Ouy P(11,71) )

and /or

: aulp(tvt) 8u1,u2P(7-27T2)
P(tlir% Pt 7 By, Plrar) >>0

Lemma 74 There is no credit contagion effect for firm 1 at the default time of firm 2,
i.e. \b does not jump at the default time To.

22

Proof. Let g(x) = ~-e~ 2. On {r < t}, from Lemma 72

V2
Ouy s P(E,72) %G(t,O,al) - —alg(%)
We prove now that u; — %P(ul, t) is continuous in ¢, for all ¢ > 0 and compute — 61%5(5)@

It follows from Lemma 72 that
. aulp(ulyt) %G(t')o,al)
lim — =
w—tt  Plug,t) G(t,0,01)

Now from the formula in Lemma 73

2

1 _gag(ag—) a2
Ou, P(uy,t) gl(t)f;jeflw—szt@_e 260, fo, a0 — 1) —A—e T da

; B _ 27t
UIH)I;_ P(Ula t) G(t? 0, al)G(t’ hs Oég)
ag(ag—z) z2
oo S
390z G(t,0,a1)G(t, f1,a2)
_alg(%) . %G(tvoval)

t5(1—2N (%)) G(t,0,a1)
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since the numerator in the second line of the display above equals G(t, fi, az). This proves

that N
L P(tt)  —g(F)  Qupun Pt T)

P(tvt) B t%(l — 2/\/(%)) a 8U2P(t77-2)

Finally, there is no contagion effect with probability one. m

In the following lemma, we assume for simplicity of the computations that fo is zero
identically. We expect that there is a credit contagion effect if and only if f; # 0. This
turns out to be the case.

Lemma 75 There is a credit contagion effect for firm 2 at the default time of firm 1 if
and only if f1 # 0.

Proof. On {7 < t}, we can use Lemma 73 to compute Oy, y, P(71,t) and 0y, P(11,1).
First,

0 ool _gan(ag—0) 1 _a?
Ou, P(71,t) = —g1(11) e/ (1 —e o )G(t—711,0,a0 — ) e 2dx
[ T
2042(0‘2_36) Q) — T 1 _ 22

e ?idx

= —g1(m1) /°° eflm_%flzn(l —e o)1 - QN(M))\/%

Using the Monotone Convergence Theorem, this converges to

2”‘2(0‘2—1) 1 _ 12

oo
fia—3 fin - T 27 =
—g1 7'1/ efie=zfin(g _ ¢ i e dr = —g1(m1)G(r, f1, 02
(1) ” ( ) 21T (n)6& )

when t — 7;7. We turn now to lim, , + Oug,uy P(11,t). For ug > uy, differentiating

12 [0
8u1P(u1;U2) = _gl(ul)(G(uhfl?aQ) \/’ e 2 a (GCIZ B CQZ) 2'/\/‘(\/%) )

where ¢; = — f1/u1 + \7—% and cp = (flf—&— L2 ) we obtain

u

2 12 [0 2 —zy/ul 1 _1 22w
9 P(uy,ug) = —=g1(u 6_201/ €1 — e T e 2uz—uidy
o P, u2) = Zmn () ! ) 2ug — u1)3 V21

Denoting v =, /u;‘_?ul and using the identity

0 n '
/‘ ze_%ZQ’YZJ’_Cizdz — _% + %62"{72 \/%N(—ﬂ)
R 7

—0o0

we obtain

1
8U27U1P(u17u2) = Em(ul)e

3
u;
C%(“Q*ul) ciluo —u C%(“Q*“l) coluo —u
(01671@ otz zu), S N(_MD
U9 U2
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Therefore

—_
e
Do
)
—
—~
y
SN—
|
N[
—
Q
3K
|
~
=
3
=
—

hm 0 P(mn,t) = —=—"—=
t—)*r1 e ( ) vV 2T 7_1%

Finally
Ouguy P (71, 1) _ 1 e
tor Ou P(71,1) VZWTI% G(11, f1,2)

Using continuity arguments, it is easy to check as in the previous lemma that

lim —8u2p(t’ t) — th(TlaflaOQ)
t—7 P(t, t) G(Tl, f17a2)

Recalling that

oG 1 - F e 3GV _ o a N M GvD?
t = ( —|— e 2 \ﬁ fa \/E )
1) ==\ ™) Gt @

the default intensity A% jumps at the default time 7 with positive probability if and only

if fi # 0. In this case, the contagion effect can be quantified and the jump size at the
default time 7 is given by

1 L o —*( —f1v/71)? (9
—G(1, f1,
G(m1, f1, a2) \/ﬁﬁ% T o (11, f1,2))

Note that in this example, the density of (71, 72) is not continuous in points (t,t), in the
sense that for each u; > 0, the function uy — p(u1,uz) is discontinuous at u.

Lemma 76 For each t > 0, the function ug — p(t,us) is discontinuous at t if and only if

J1#0.

Proof. Recall that we are assuming that fs is zero. For any us < uq,

0419(\71%1)
p(u1,u2) = 0uG(u1,0,01)0uG (ug, f1,02) = ———5—0uG (ug, f1, 2)
1

alg(ajlg)
3

so that lim,, ,;+ p(t,u2) = — OuG(t, f1,a2). For any ug > w1, using the computa-

tions from the previous lemma,

loog 0419( 7
lim p(t,ug) = = a2gl(t)e é( AvD?

ug—tt V2T t% U1% \/27rt%

There is then a jump in the density given by
ag
—ane 2( fl\[)

vV 7Tt§

I (5,60, 1, 00)

u

—olw ﬁ‘
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unless fi =0. m

In this chapter, we first looked into different structural models under different sets of partial
information and studied the information induced credit contagion effect. We achieved first
this study through examples from different classes of structural models, that are usually
academically accepted as standard models. We computed as explicitly as we were able to do
the default intensities. They usually have very untractable forms, but seem to jump at the
defaults of the other firms, unless the models have some very particular structures, mainly
if they exhibit some kind of conditional independence property. Then, since in practice
many structural models can fall within the large class of models where the default times
admit a conditional density (conditionally to the base filtration), we focused our efforts in
the second section on times satisfying this assumption and we provided partial results that
allow to reconcile multiple firms structural models where the times admit a conditional
density with reduced form models from the credit contagion effect’s perspective. In order
to do this, we slightly extended the usual filtration expansion approach with random times
to the case where there is an arbitrary number of default times under the conditional
density assumption and carried out the analysis without imposing any restrictions on the
ordering of the individual times. We pointed out en passant how inadequate it can be to
use the ranked versions of the times and gave an example from risk management, where
the distribution of securities prices at some future time is of interest. Finally, we studied
the link between credit contagion and some explicit forms of the conditional densities of
the default times, and studied in detail the credit contagion effect within a toy structural
model using our methodology.
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Bubbles: martingale theory and real
time detection
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3.1 Introduction

We are interested in this chapter in the detection of financial bubbles. This question is
a timely one. Recently William Dudley, the President of the New York Federal Reserve,
in an interview with Planet Money [58] stated “...what I am proposing is that we try
to identify bubbles in real time, try to develop tools to address those bubbles, try to
use those tools when appropriate to limit the size of those bubbles and, therefore, try
to limit the damage when those bubbles burst.” It is also widely recognized that this is
not an easy task. Indeed, in 2009 the Federal Reserve Chairman Ben Bernanke said in
Congressional Testimony [12] “it is extraordinarily difficult in real time to know if an asset
price is appropriate or not.” Without a quantitative procedure, experts often have different
opinions about the existence of price bubbles. A famous example is the oil price bubble of
2007/2008. Nobel prize winning economist Paul Krugman wrote in the New York Times
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that it was not a bubble, and two days later Ben Stein wrote in the same paper that it
was.

Asset price bubbles have also been recently characterized in frictionless, competitive, and
continuous trading economies using the abitrage-free martingale pricing technology un-
derlying option pricing theory (see [107], [108], [31], [61], [83] and [84]). In this classical
setting, Jarrow, Protter and Shimbo [83] and [84] show there are three types of asset price
bubbles possible. Two of these price bubbles exist only in infinite horizon economies, the
third - called type 3 bubbles - exist in finite horizon settings. Consequently, type 3 bubbles
are those most relevant to actual market experiences. The martingale theory of bubbles
as developed by Jarrow, Protter and Shimbo will be briefly recalled in section 3.2. But
let us already point out that for type 3 bubbles, whether or not a bubble exists amounts
to determining if the price process under a risk neutral measure is a martingale or a strict
local martingale: if it is a strict local martingale, there is a bubble. The difference be-
tween a martingale and a strict local martingale has been recently investigated by several
authors ( [19], [112], [99] and [13] for instance). However, the distinction is subtle and in
the case of a diffusion it amounts to understanding the asymptotic behavior of the asset
price volatility. If the asset price volatility is large enough, then a bubble exists.

More formally, we model the asset price process by a standard stochastic differential equa-
tion driven by a Brownian motion W:

dSt = O'(St)th + M(St)dt (31)

for all t in [0,T7], in some filtered probability space (€2, F, P,F) where F = (F;);>0. We
make the standing assumption that the asset price S is nonnegative. The asset price
volatility o(S;) is stochastic since it depends on the level of the asset price. Assuming
no arbitrage in the sense of No Free Lunch Vanishing Risk (NFLVR), there exists a risk
neutral measure (see [34]) under which this SDE simplifies to

t
Sy = 5o +/ o(Ss)dWs. (3.2)
0
It is well known (see Theorem 49) that this process S is a strict local martingale if and

/a 2(2) dx < oo (3.3)

for all o > 0. This last condition forms the basis of our bubble testing methodology, i.e.

only if

type 3 bubbles exist if and only if this integral is finite. The intuition behind the distinction
between a martingale and a strict local martingale (in the case where the local martingale
S > 0) derived from the fact that S is always a supermartingale and is a martingale if and
only if it has constant expectation. So for a strict local martingale its expectation decreases
with time. Thus on average under the risk neutral measure the buy and hold strategy is
a losing one. A typical path of such a nonnegative continuous local martingale is to shoot
up to high values and then quickly decrease to small values and remain at them; and this
is also the typical behavior of prices of assets undergoing speculative bubbles.
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We can also replace the equation (3.6) for S with a more general one, for example

ds; = J(St)th—i-,U,(St,Y;g)dt (34)
aYi = s(Yi)dBy + g(Yi)dt

where B is a Brownian motion which is independent of W. This gives a model for S in
the context of an incomplete market. This is perhaps the simplest model that implies
an incomplete market. An alternative incomplete market model, and one that we do not
consider here, introduces a stochastic volatility function as well. In any event, for our
purposes, we are inevitably led in both situations (complete or incomplete models) to
equation (3.7), under any risk neutral measure. If the models are complete, we appeal to
the NFLVR framework of Cox and Hobson [31], and if the models are incomplete we can
use the No Dominance framework of [83],[84], which we consider a better framework for
models of bubbles.

Many authors have proposed estimators for the volatility function o(x). D. Florens-
Zmirou [49] proposed a non parametric estimator based on the local time of the diffusion
process. V. Genon Catalot and J. Jacod [52] propose an estimation procedure for param-
eterized volatility functions. M. Hoffmann [66] constructs a wavelets based estimator. In
the second part of this chapter, we recall Florens-Zmirou’s results. Since the constraint
on the grid step, noted h,, in the sequel, required by Florens-Zmirou’s theorem cannot be
satisfied due to the limited data available, we propose another local time based estimator,
using a smooth kernel, where the condition on h,, is easier to satisfy.

The main difficulty in using non parametric estimators is that one can estimate o(x) only at
points visited by the process. We, therefore, cannot know the tails of the volatility function
and determine if the integral in (3.3) is finite or infinite. In the third part of this chapter
we propose two methods to deal with this extrapolation problem. The first method is based
on a comparison theorem. We compare the behavior of parametric and non-parametric
estimators of o(x). When the two estimators are statistically similar within the observation
interval, we extrapolate into the tails using the parametric form’s asymptotic behavior. The
second method is based on Reproducing Kernel Hilbert Spaces (RKHS) theory. In fact,
a roughly analogous problem arises in physical chemistry for potentials whose asymptotic
behavior is known (see [67]). In our case, we do not know the asymptotic behavior of the
volatility (that is what we are looking for!). To overcome this problem, we introduce a
parameterized family (H,,) of RKHS’s. Different m’s allow us to construct interpolating
functions with different asymptotic behaviors. We optimize over m in a sense that will
be explained below and identify the reproducing kernel Hilbert space which allows us to
construct an interpolating function that extends the non-parametric estimator from the
observation interval to the entire real line.

We devote the last section to illustrating these various estimation methodologies. We focus
on stocks from the alleged internet dotcom bubble of 1998 - 2001 (see for instance [125] and
[110]) for which we could find relevant tick data. We selected four stocks: Lastminute.com,
FEtoys, Infospace and Geocities. The data was obtained from WRDS [126]. We use our
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methodology to see whether these stocks exhibited price bubbles. The evidence supports
the existence of price bubbles. In addition, these four stocks allow us to illustrate the
strengths and weaknesses of our testing methodology. During May 2011, there was specu-
lation in the financial press concerning the existence of a price bubble in the aftermath of
the recent IPO of LinkedIn. We analyzed stock price tick data from the short lifetime of
this stock through May 24, 2011, and we found that LinkedIn has a price bubble.

An outline for this chapter is as follows. Section 3.2 presents the martingale theory of
bubbles as developed by Jarrow, Protter and Shimbo. Section 3.3 is the first step in
the bubbles detection methodology within a diffusion framework and presents the Florens-
Zmirou’s and smooth kernel volatility estimators on a compact domain. Section 3.4 extends
these estimators to the nonnegative real line and presents our methodology for bubbles
detection. Section 3.4.4 illustrates our testing methodology for asset price bubbles during
the dotcom bubbles and 3.5.1 used our methodology to test in real time whether LinkedIn’s
stock price was exhibiting a bubble during May 2011. In Subsection 3.5.2, we attached
two articles from the financial press that referenced during May and June 2011 our work
on the real time detection of LinkedIn’s bubble.

3.2 The martingale theory of asset bubbles

Due to the 2007 credit crisis, asset price bubbles have recently received considerable at-
tention in the financial press, especially with respect to residential housing, commercial
real estate, oil and gold prices. Concurrently, but initially independently, a new theory
for understanding asset price bubbles has been growing in the academic literature. This
approach, which was labeled the martingale theory for bubbles, defines a price bubble to
exist when the asset price process is a strict local martingale (see Cox and Hobson [31],
Jarrow, Protter and Shimbo [83],[84], Loewenstein and Willard [108]). We consider a con-
tinuous trading finite horizon economy [0, 7] with frictionless (no transaction costs) and
competitive (all traders act as price takers believing that their trades do not impact the
market price) markets. We focus on a finite time horizon where only type 3 bubbles can
arise.

Let (2, F,F, P) be a filtered complete probability space and assume that F = (F;)o<i<r
satisfies the usual hypothesis. We assume that a risky asset and a money market account
are traded in our economy, and we assume for simplicity that the risk free interest rate is
zero. See [82] for a complete exposition of the theory in the general case. Let 7 < T be a
stopping time which represents the maturity of the risky asset, and let D = (D;)o<¢<r be a
nonnegative cadlag semimartingale process adapted to F which represents the cumulative
cash flow process from holding the risky asset. Let X, € F,; > 0 be the time 7 liquidation
value of the asset. Assume that X, and D, A7 are integrable. Let the market price of the
risky asset be given by the nonnegative cadlag semimartingale S = (S¢)o<t<,. Finally,
let W be the wealth process associated with the market price of the risky asset plus its
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accumulated cash flows, that is
Wi = 15051 + Diar + Xrlz<py

We assume in the following that there are no arbitrage opportunities in the sense of No
Free Lunch with Vanishing Risk (NFLVR). By the first fundamental theorem of asset
pricing (See [33| and [34]), we have the existence of an equivalent probability measure such
that W is a @ local martingale. We will call any such @ an equivalent local martingale
measure and we write ELLM. We assume that the market is incomplete and by the second
fundamental theorem of asset pricing, such @ is not unique. To define the fundamental
price of the asset, we need to choose a unique ELMM from the continuum of such possible
measures. That this is possible is due to Jacod and Protter (see [75]) at least when enough
call options are traded in the market. Now, given the market selected ELMM @, we define
the fundamental price of the risky asset as

AT
57 = 19( / dDy + X pery | Fi)
t

This fundamental price represents the present value of the asset’s future cash flows if held
until liquidation. Under @, S} + f(f dD,, is a uniformly integrable martingale. We can now
define the asset price bubble.

Definition 10 (Price Bubble) The asset price bubble is the difference between the mar-
ket price and the fundamental price: Sy — Sf. We write By = Sy — S for the time t price
bubble of S.

The following holds. See [83] for a proof.

Theorem 47 Any non-zero asset price bubble 8 is a Q strict local martingale such that
(i) B=0,
(ii) By =0,

(iii) If By =0, then B, = 0 for each u > t, and

(iv) If there are no cash flows, then

Sy = EQ(Sr | Fi) + Bt — EQ(Br | Fr)

In the sequel, we assume for simplicity that there are no cash flows and that 7 = 7. In
this case, for each 0 <t < T,
Bi = E°(Sr | Fi) = S,

In order to value derivatives, one needs to introduce the No Dominance assumption, which
was initially introduced by Merton. However, the theory for bubbles in contingent claims
as developed in Jarrow, Protter and Shimbo, [83] uses implicitly that the market prices are
local martingales under the probability measure (). This is however not explicitly pointed
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out in any of the papers we referenced above. It is this assumption together with No
Dominance that allowed the authors to prove that bounded payoffs have no bubbles and
to derive consequently the call-put parity for the market prices. However, the assumption
that all market prices are local martingales under the same measure () appears to be
very restrictive and constructing examples satisfying such assumption is very hard. So,
contrarly to the work of Jarrow, Protter and Shimbo, we focus on the martingale theory
for bubbles only for asset price bubbles and do not consider bubbles in derivatives, neither
in theory nor in the practical bubbles detection.

Before focusing on the real time detection of asset bubble, we introduce in the next section
some mathematical preliminaries. Will be mainly needed criteria to check the martingale
property of a nonnegative local martingale, at least in a Brownian paradigm. The focus
will be on stochastic and local volatility models. For local volatility models, a deterministic
test to check the martingale property of the asset price is available and involves only the
asymptotics of the volatility function. Therefore, in order to check in real time if type 3
asset bubbles within a local volatility framework exist, one needs to be at least able to
estimate the volatility function. This is the aim of the second part of section 3.3, where
non parametric volatility estimators are derived.

3.3 Mathematical preliminaries

3.3.1 Strict local martingales

The difference between a martingale and a strict local martingale has been recently in-
vestigated by several authors. We give now a general result that provides necessary and
sufficient conditions for a nonnegative local martingale in a Brownian paradigm to be a
true martingale. A partial list of relevant references is Sin [122], Kotani [99], Carr et al. [19]
and Urusov and Mijatovic [112]|. Usually, these results are based on explosions of solutions
of SDEs and the martingale property of .S is often equivalent to the non-explosion of some
auxiliary process. For the rest of this subsection we assume that the filtration F is gen-
erated by a d-dimensional Brownian motion W = (W' ... , W9). We will need first the
following very classical result. For completeness we provide a proof.

Lemma 77 Let S be a strictly positive continuous local martingale. Then there is a Brow-
nian motion B and a nonnegative predictable process & such that \/€ is B-integrable and

t
Sy = E(X),, where Xt:/ VE€dB,. (3.5)
0

Proof. Since S is a strictly positive continuous local martingale, there exists a continuous
local martingale X such that S; = £(X);. Using the assumption that F is a Brownian
filtration, the representation theorem for continuous local martingales ensures the existence
of a d-dimensional process n € L°°(W) such that X; = fg nsdWs. Hence d(X); = &dt,
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where & = ||n:]|> > 0. Now define B; = f(f \/7%1{£s>0}dX5 + f(f l{¢,—o3dW.. This process
is well defined due to the finiteness of ‘

!
E </ §1£S>0d<X,X>S) = E(1§S>0d8) <t <oo,
0 Gs

and is a continuous local martingale. Since it satisfies

t 1 t t
<B,B>t:/ §51§S>0d3+/ 1gs:0ds:/ ds =t,
0 fs 0 0

Lévy’s theorem implies that B is in fact Brownian motion. One readily verifies that
dX; = \/€dB;, which proves the lemma. m

We give now a characterization in the Brownian framework of the price processes S that
are true martingales, under the assumption that £ is non explosive under P. We know S
is a supermartingale, hence for every t € [0,T], E(S;) < Syp. Moreover, S is a martingale
if and only if E(S;) = Sy for every t. Let n be an integer, define 7, = inf {¢ | & > n}, and
let 7 = lim,_.o 7, be the explosion time of £&. By assumption, £ does not explode under
P, hence 7 = +00 P-a.s. Clearly (Siar, )i>0 is a strictly positive true martingale, and we
can define measures Q" by the Radon-Nikodym derivatives

aQ"_ Sran,
dP ‘FT/\Tn SO .

This defines a consistent family of probability measures on (2, . ar). To see this, let
n>m and let B € Fray,,. Then Q"(B) = E?"(1p) = BF (%= 1p) = BP(BP (P |
Fram,)) = E (STS%l B) = Q™(B), where the forth equality follows from the Frar, mea-
surability of 1p, the martingale property of (Siar,):>0 and the fact that the sequence of
stopping times (7,,)p>1 is increasing. Therefore we can apply the Kolmogorov extension
theorem (see for instance [69]), which ensures the existence and uniqueness of a measure
Q% on (Q, Frar) = (Q, Fr) such that Q%(B) = Q*(B), ¥ B € Fra,,. The measure Q°
will be called the measure associated with the numeraire S. The following theorem is now
classical, but we provide a proof for completeness.

Theorem 48 Assume that £ is non explosive under P. Then S is a P martingale if and
only if & does not explode under Q°, the measure associated with the numeraire S.

Proof. Let A € Fr and write

s s
Q%(A) = E? (La(lgr<ry + Lrsry)) = QAN {7 < T}) + E?” (1al(rory)
By the monotone convergence theorem,

S S . . S
E9 (1algapy) = B9 (1a lim 1 o7y) :7}1_{1010]569 (1algz,>7})-
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Successive applications of the monotone convergence theorem and changes of measure
give

_ . _ Srar,
EQS(1A1{7>T}) = lim EQ (1A1{Tn>T}) = lim EP(%lAl{Tn>T})

n—oo n—oo 0
S S
: pPOT pRT
B (g Mlinom) = B g aliony)

We conclude that Q9(A) = Q¥(AN{r < T})+ EF(514), and applying this with A = Q
we obtain that 1 = Q°(7 < T)—i—EP(g—g). Thus E¥(St) = Sy if and only if Q¥(7 > T) = 0,
and the criterion is proved. =

This result is useful for stochastic volatility models, where the process £ is specified through
an SDE, and the explosion condition can be easily checked.

3.3.1.1 Stochastic volatility models

We consider the state space J = (0,00) and a J-valued diffusion v on some filtered prob-
ability space (2, F,F, P) governed by the SDE

dyy = U(l/t)dBt + M(Vt)dt
Define S to be the solution to the SDE
dSt = Stb(Vt)th

where W and Z are two correlated Brownian motions. We assume that the Engelbert-
Schmidt conditions are satisfied (o(z) > 0 for all z € J and 5, & € L}, (J)), so that
the SDE satisfied by v has a unique in law (possibly explosive) weak solution. Let £ be
the explosion time of v. Finally assume that 3—22 € L} .(J) so that fg b?(vs)ds < oo P a.s
on {t < &} so that the stochastic integral fg b(vs)dWs is well defined for ¢ < €. (See
Mijatovic and Urusov, [112]). The following lemma holds as a consequence of the previous

theorem.

Lemma 78 Ifv is not explosive, there exists an auziliary J-valued process defined on some
filtered probability space (2,G,G, Q) by the SDE

dZt = O'(Zt)dBt + (I/(Zt) + pO'(Zt)b(Zt))dt

such that E¥(St) = SoQ(7 > T) where T is the explosion time of Z.

Remark 7 The SDE that appears in the lemma above has a unique in law (possibly ex-
plosive) weak solution because the Engelbert-Schmidt conditions are again satisfied thanks
to our assumption on b, u and o.
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Note that in [112], the authors provide a more general result, since they do not need that
v is not explosive. Their proofs are based on separating times techniques. We do present
our weaker result only, since its proof is simple and in any case, this is not relevant for our
asset bubbles detection problem, which is the primary aim of this chapter.

Define v(z) = [ P (y) Y %d% where p is the scale function of Z. Using Feller’s
test of explosion, we obtain the following result from Lemma 78.

Lemma 79 Assume v is not explosive. Then S is a martingale if and only if v(co) =
v(0) = co. In this case E(S;) = Sy and [ E(S;)dt = oo.

Based on the values of v and p at zero and infinity, not only do we know if S is a martingale
or a strict local martingale, but these same values give properties of the limit of F(S;) as t
grows to infinity and can also give an idea about how fast E(S;) decays when S is a strict
local martingale.

Lemma 80 Assume that v is not explosive and that v(oco) < oo or v(0) < oco. Then
(i) S is a strict local martingale
(ii) t — E(S;) is a non-increasing function
(13) limy_soo E(S¢) = 0 if and only if P(T < 00) = 1.
So that if none of the following is satisfied (see [93, Proposition 5.32])
(a) v(o0) < 00 and v(0) < oo
(b) v(x) < o0 and p(0) = —oo
(c) v(0) < oo and p(co) = oo
then limy_, E(Sy) > 0 (this is actually and equivalence) and [ E(Sy)dt = oo.
Finally,

- If (a) holds, then lim; oo E(S;) = 0 and E(t) < oo so that [j° E(S;)dt =
SoE(T) < o0.

- If (b) or (c) holds then lim;_,oo E(St) = 0 but nothing can be concluded about
Jo~ E(Sy)dt.

We turn now to local volatility models, for which similar results are available (see e.g. [19,
99, 122, 112].)

3.3.1.2 Local volatility models

The following theorem has been proved using different techniques. A proof based on
explosion time techniques is provided in [19]. Kotani gives a PDE based proof in [99].
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D. Kramkov has also recently pointed out how this follows simply from Feller’s test for
explosions [100].

Theorem 49 If S solves the SDE

dSt = O'(St)th

Then S is a true martingale (i.e. S has no price bubbles) if and only if f;o U;Ex) ds = 00,
for all e > 0.

The main step of the proof is to show that the martingale property of S is equivalent to
the non-explosion to infinity of the solution to the auxiliary SDE

o(Z;)?

t

dZ; =

dt+U(Zt)dBt, Z() = S[).

One then applies Feller’s criterion for non-explosion to obtain the explicit condition that

appears in Theorem 49. Note that the auxiliary process obtained above is of the same
_ o(x)
-~ Tz

Example 8 Consider the Constant Elasticity of Volatility (CEV) model

form as the one in the previous subsection, with © = 0, b(x) and p = 1.

ds; = Sy dWw,
where W is a standard Brownian motion. It follows from Theorem 49 that S is martingale
if and only if a < 1.
The next example is due to Sin, [122].

Example 9 Let (Z, W) be a two-dimensional standard Brownian motion. Let (S,v) satisfy

dS; = StV?(Ulet + UQth)
dvy = 1y (p(b — v)dt + a1dZ + agth)

under the ELMM Q. Ifa > 0, p > 0, b > 0 and a1, as, o1 and o9 are constants that
satisfy a101 + agoy > 0, then S is a strict local martingale.

The condition in Theorem 49 forms the basis of our bubble testing methodology, i.e. type 3
bubbles exist if and only if this integral is finite. In order to check in real time if type 3 asset
bubbles exist within a local volatility framework, we need to estimate first the volatility
function. This is the aim of the next subsection where we propose non parametric volatility
estimators.

3.3.2 Estimation of the volatility function in diffusion models

We model the asset price process by a standard stochastic differential equation driven by
a Brownian motion W:

dS; = U(St)th + M(St)dt (36)
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for all t in [0,77], in some filtered probability space (2, F, P,F) where F = (F;);>0. We
make the standing assumption that the asset price S is nonnegative. The asset price
volatility o(S;) is stochastic since it depends on the level of the asset price. Assuming
no arbitrage in the sense of No Free Lunch Vanishing Risk (NFLVR), there exists a risk
neutral measure (see [34]) under which this SDE simplifies to

t
S, = so+/ (S)dW,s. (3.7)
0

where W is a Brownian motion under this risk neutral measure. We already pointed out
that many authors have proposed estimators for the volatility function o(x). In the first
part of this subsection, we recall Florens-Zmirou’s results. Since the constraint on the grid
step, noted h,, in the sequel, required by Florens-Zmirou’s theorem cannot be satisfied due
to the limited data available, we propose then another local time based estimator, using a
smooth kernel, where the condition on h,, is easier to satisfy.

Note that the estimation is performed in the real (and not the risk neutral) world. However,
the estimators we use do not involve the drift, hence without loss of generality, we assume
throughout the remainder of the section that p is identically null. Therefore, we consider
the stochastic differential equation in (3.7) where the function o(x) is unknown. We define
our non parametric estimator of o(z) based on discrete time observations S, ..., S, , on
the finite time interval [0,7]. We assume a regular sampling, that is t; = %'T.

3.3.2.1 Florens-Zmirou’s Estimators

This section reviews Florens-Zmirou’s estimators for our subsequent usage. Her estimator
is based on the local time of a diffusion and is explained heuristically as follows. The local
time is given by

1

T
tr(z) :g%%/o 115, sl ey (S, S)s

where d(S, S)s = 0?(Ss)ds so that ¢7(x) = o?(x)Ly(z), and

17
Ly(z) = ;11)1(1]26/0 1{\Ss—m\<e}d8'

iTT((?) = 0?(x) yields the volatility at . These limits and integrals can be

approximated by the following sums :

Hence, the ratio

n T .
Lp(x) = i > 1151, —zl<hn}
i=1

T

%(x) - 2Tbhn z_; 1{|Sti_x|<hn}n(sti+1 o Sti)Q
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where h, is a sequence of positive real numbers converging to 0 and satisfying some con-
straints. This allows us to construct an estimator of o(x) given by:

> i1 118y, —al<hny(Stipy — St,)?

Sn xTr) = n
(@) D ic1 1{\St,-—w|<hn}

(3.8)

Indeed, Florens-Zmirou [49] proves the following theorems.

Theorem 50 If o is bounded above and below from zero, has three continuous and bounded
deriatives, and if (hy)n>1 satisfies nhy, — oo and nh} — 0 then S,(x) is a consistent
estimator of o?(x).

The proof of this theorem is based on the expansion of the transition density. The choice
of a sequence h, converging to 0 and satisfying nh, — oo and nh: — 0 allows one to
show that L%(z) and ¢ (x) converge in L*(dQ) to Ly(z) and o*(x)Ly(x), respectively.
Hence S, (x) is a consistent estimator of o2(x), for any x that has been visited by the
diffusion.

We also have the following limit theorem, useful to obtain confidence intervals for the
estimator S, (x) of o(z).

Theorem 51 If moreover nhy — 0 then \/NQ(S”(J“") —1) converges in distribution to /27

o?(z)

where Z is a standard normal random variable and N = > | L8, —a|<hn}-

The aim of the next subsection is to construct another estimator based on the local time of
the diffusion but using a smooth kernel. Theorem 50 will remain true under the constraint
nh2 — oco. This is important for the purpose of this chapter: requiring that h,, satisfies the
conditions of Theorem 50 would provide useless estimators (not smooth enough to work
with in practice) due to the limited data available to us. When testing our procedure, we
will always provide these two estimators although theoretically we cannot be sure that the
estimator of Florens-Zmirou converges due to the requirement that h,, = n_i, which needs
more data than we have.

3.3.2.2 A Smooth Kernel Estimator

We introduce a smooth kernel estimator to relax the condition on h, to nh? — oco. In
practice we often do not have enough data and the convergence condition nhit — 0 is too
restrictive. The key theorem of this section proves the convergence in probability of our
sequence of smooth kernel estimators S, (z) to o2(x).

For this section and without loss of generality, we assume that T'=1 and t; = % We con-
sider again the discrete observation S = (S0,S51,...,.51) defined through the stochastic
differential equation (3.7). We assume that U(x)nis bounded above and away from zero,
C3, and with bounded derivatives. These assumptions guarantee the existence of a unique
strong solution which does not explode. We denote by @ the law on the space of continuous
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functions equipped with the canonical filtration (F)icp,1) and under which the canonical
process (S¢, 0 <t < 1) is a solution to the previous SDE.

Note that from a statistical point of view, it is more natural to work with weak solutions.
The smoothness assumption and the boundedness of o(x) and its derivatives are required
to obtain some estimates. We also consider a compact interval D, which represents the
observation interval, i.e. the domain on which the estimation is performed. We emphasize
the fact that we are able to estimate o(x) only for those points that have been visited by
the diffusion.

The idea underlying the smooth kernel estimator is to replace the kernel K (z) = %1{|z|§1}
by a smooth kernel ¢, which is a C positive function with compact support and such that
fR+ ¢ = 1. We are interested in some LP (p is stated later) convergence of the following
quantities:

xr 1 % 7 . \2
Vi = o ;:O A )G = 80 (3.9)
- LS (3.10)
" nhy, P hn '

to o?(x)L* and L* respectively, where h,, satisfies nh2 — oo.

Our convergence theorem requires the use of various lemmas. The first lemma involves the
convergence of LT and it follows from Proposition 3 of Hoffmann [66, p. 468].

Lemma 81 Assume ¢ given in (3.10) is taken to be C3. For each vy > 2, there erists a
constant C' such that

X
E(|LE — L") < C(h + (==)).
sup B(|L, = L717) < C(h +(nh%))

Hence the L? convergence of L} to L” is guaranteed, for all p > 2 and all x € D, and the
LP convergence for all p > 0 follows by Cauchy Schwarz. Our next lemma involves the L'
convergence of V7.

Lemma 82 For each x € D, V¥ converges in L' to o?(x)L*.

In order to prove this lemma, we write V¥ — 02(x)L® = A, (x) + B,(z) where:

1 —x
Aﬂ(x)::;njﬁ ¢(Af%1)o2¢xgds-02@»Lm

1 J—
&m:w—;é¢§h%£aws

We study each of those two terms separately. Let x be fixed in D, where D is the domain
over which the estimation is performed. Since x is fixed, we omit it from now on and prove
that A,, and B,, converge in L! to 0.
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X
Lemma 83 (Study of A,,) For each v > 2, there exists ¢ > 0 such that E|A,|" < chj.

Proof. Let I = (If) be the local time of the diffusion at time ¢t = 1. First, we use the
occupation time formula,

02(X,)ds — o?(z)L*

1 Yy —x 1 Yy —x
_ Wdy — dy = — Y —1%)dy.
- R+¢< n) i oy = o [ o=t~y

Applying Jensen’s lemma to the integral, a straightforward change of variables and taking
expectations give:

1
Bl < o B[ 1 — e ()b dz),
o

n

The following inequalities follow from an application of Fubini’s theorem and the Hdélder
property of the local time paths of a continuous local martingale. (This is a well known
and classic result, given for example by Revuz and Yor [119], p. 227.)

E|A, w</ ¢ (2) E(JI7mte — zm)dzghé/ 2|2 ¢ (2)dz
R+

X
Since ¢ has compact support, we can take ¢ = [ |2|2¢7(2)dz. Then E|A,|" < ch? and
the lemma is proved. m

We now focus on the study of B,,, which we write —B,, = C}, + D,, where:

1 i, o — T\ 2 S S% 7 2 S
. hz/ )08, — G =)t (S,)ds
1 -1 Z+1 SL' — T
Dy = S(— )(0*(S1) —n(Siss — S1))ds
TLZ =0 n

We need the following lemma borrowed from Genon-Catalot and Jacod, which we recall in
the one dimensional setting. We refer to [52] for a proof. We define X" = \/no (S )(Wis1 —

i+l
Wi)and " = /n [," o(Ss)dWs.
Lemma 84 (Genon-Catalot and Jacod) Let g € C?. Assume there exists v > 0 such

that for all z, |g(z)| + |g' (@) + |g" (x)] < ~(1 + |z|"). Then there exists a constant C such
that

B((g(X7) = g(v")*|F: ) < %

(9(XP) — g(Y7)| )| <

If g is an even function,

We can now study the convergence of D,,.
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Lemma 85 (Study of D,) There exists C > 0, such that E|D,| <
Si—x
QE( 1 Z?:_ol (% )) and D,, converges to 0 in L.

n nhpn

Si—x  0%(S;) i+l

n— o 2 .
Proof. Recall that D, = ﬁZi:ol (—m (—= — ([i" o(Ss)dWy)").  Write
g(z) = 22. The following inequalities are straightforward.

2(51‘) itl
: |fi)_E((/i o (S,)dW,)*| F )

n

n

1
E|D,| < 5= 3" B(9(

I
n

i — X
n

b,

B

n

1
)

3

Si 7 n n 1
)| Blo(x}) - gV F ) ) -

n n

<

hln B (s

I
o

i
Since ¢ is an even function, Lemma 84 ensures the existence of a constant C such
that: o

[B(o(x7) — gIF:)| <

<

€T
Hence, E|D,| < %E(L S o i )) Using Lemma 81, the sum converges to the

nhny
local time of the diffusion in = and E|D,| — 0. m

In order to study C,, we introduce the function f(y) = ¢(%)02(y) which is C? by

assumption. We use a third order Taylor expansion and get: for all s in [%, %[, there

exists Z_ i such that
‘n

/ (85_51)2 " (83_51)3 3
F(8) = F(S0)+(Ss =SS (Se) + ——5 == (8) + ——— TP (E, 1),
We plug this into C,, and obtain C,, = C} + C2 4+ C3 + C? where

n—1 % S i
C}L:hlniz;/jl ((SS—S:-L)d)( ”hn )(o?) (51)+§(Ss—51)2<h*¢( nhn )

o h 2 ho .
s 2T ), ) e e0E, 1) )ds
hy, hy, T hy, TS
and

2 1 St 2 o

cn—h72¢( - Jo?(S:) [ (85— Si)ds

" =0 n n

, 1, Si-e HL (S, —S:)?



152 Chapter 3. Bubbles: martingale theory and real time detection

We prove in the following lemma that C! converges in L! to 0 when nh? tends to infinity.
The idea is to bound C! by first bounding o, ¢ and their three first derivatives and then
using the Burkholder-Davis-Gundy inequalities (hereafter referred to simply as BDG) to
obtain estimates of powers of Sz — S .

Lemma 86 (Study of C') Assume that nh? — oo. Then C} converges in L' to 0.

Proof. Since ¢ and o and their derivatives are bounded, there exist nonnegative constants
(ci)1<i<e such that

n—1 i+l i+l

E]C$§E<Z}cll/in 5, = S lds + (72 +;§)/" 1S~ 5. ['ds
i=0 " Vn o
+(;i+;75%+;é)/i" ]SS—S%-|3ds>
It follows clearly that
n— it it
E|C}| gzlfll/ D E( swp 1S, S; |)ds+(h +Z§) " B( swp (S-S, P)ds
im0 nJ self, 4] self, 4]

it1

= " E T
+(h +h2+h3)/ (SG[SEIZ;]!S S;| Yds

We apply now BDG inequalities for continuous local martingales. For each 1 < p < 3,
there exist nonnegative constants C), such that

i+l
E( sup |Ss—51]p) §E((/ ! 02(55)618)%) < Cg
n i n

1 2
s€[L, ] w

Integrating, summing, and taking the expectation, we finally obtain

1 2& Co 673 02 Cs Ce 03
ElCa = \F+(h +h2) +(h h2+h3)n\/ﬁ
0101 CQ C3 C4h Cs C6
< —2 (eohn =3 =
< nh2+ h2(c2 +c3) + h2(f+\/ﬁ+ nh%)

Since nh? — oo and h,, — 0, it follows clearly that C! converges in L' to 0. m
We turn now to the study of C2.
Lemma 87 (Study of C2) If nh2 — oo, then C2 converges in L' to 0.

Proof. First, E|C2| < hZHJQHOOE(Z o' |(

( ISy — S4 yds}ﬁ)D. It

follows from an application of a BDG inequality that there exists a constant M; such
that

E|C?| <

oo



3.3. Mathematical preliminaries 153

/ ’ _ ’ i
Now using the kernel 1|¢’|, where a = [|¢'|(z)dz, the quantity iz:?:ol 9 1(——)
converges in L! to aL®. Hence E|C2?| converges to zero as soon as nh2 — oo, which proves
the lemma. =

We can provide another proof of this result following the proof in [66], page 477. We obtain
that for each v > 2 there exists a constant C' such that

_3
2

1
E|C2|" < C—h,
nYy

It follows that E|C2| < \/E(]|C2|?) h“ which converges to zero. The remaining terms

to estimate are C and C2. Note that in the expansion of C,, C3 is the most important
term.

Lemma 88 (Study of C2 and C2) If nh? — oo, then C3 and C2 converge to zero in
L.
Proof. It is straigthforward to obtain the estimate

141

PICS| < 75 F (Zw =) [ 3B -5 1 7))

Now a BDG inequality implies the existence of a constant C' such that E((Ss; — Si)? |
Fi)<C(s—1L). Hence

7,

PICE| < g P er =)

which converges to zero when nh? — co. The same techniques as in this lemma and the
previous one can be applied to prove the convergence of Cﬁ inL'to0. m

We have a stronger result that the one stated in the lemma above. Under the assumption
that nh2 — oo, both C2 and C# converge to zero in L7, for all v > 2. Define

o Si—w (S, 80)
Chm o S0 (i )[ 2

n

Hoffman’s result in [66] guarantees that C3 converges in L7 to 0 as soon as nh2 — oo, for
all v > 2. Since o and its derivatives are assumed to be bounded, it is not hard to see that
we have the same result for C}.

Proof. We follow again the steps in [66]. Define

i+1

. 1n—1 Sl—x fs—s
03:7 / ds
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Hoffman’s result guarantees that C? converges in L7 to 0 as soon as nh2 — oo, for all
v > 2. Since ¢ and its derivatives are assumed to be bounded, it is not hard to see that
we have the same result for C2. Using Itd’s formula, we have:

(Sy—Si)? = / (Su — S1)o(Su)dW, + / o2(S,)du

We can then write : C3 = 1 T D i 01 (Ti,1 + T;,2) where

1, Si— s
CE"l:f(ﬁ(” / ds/S—S o (S,)dW,

Si —
Tio = L¢'(Cn x)o(si)Q/i ! (”1 — 5)02(Sy,)du

n

n, Si—z 1
(- )|z and for y > 2,

The second term is actually easy to bound : |T;,

l

(I ral) < e 1 G ) < o

Si —x i+1

To deal with the first term, we define: T;1 = 1¢"( 2—) [i" ds [1(Su = Si)o(Su)dW,,.
Using the Burkholder-Rosenthal inequality (see, e.g., [64]), !

3
3

n—1

B(| nf Tal) < C((E(Z E(TA|F)) S mm, W) .
1=0 1=0 1=0

Next by the boundedness of o and its derivatives, we get:

p(Snar) < v((eE paim)t SRt
i=0 i=0 =0
1

The right side quantity can be bounded by C’h'y - (see [66] for a proof). Hence, putting
all this together, we obtain that E|C3|7 < @ h2) The same techniques as in this lemma

X
2

and the previous one can be adapted to prove the convergence of Cffb in L7 to 0 for all
y>2. m

Putting all these lemmas together proves that C,, converges in L' to 0, and thus B,
converges in L' to 0. We have then proved that LZ converges to L% in LP, for all p > 0 and
that V¥ —o?(z)L® converges in L' to 0, which ends the proof of Lemma 82. The following
theorem is now straightforward.

Theorem 52 If nh2 — oo then ST = % converges in probability to o*(x) and provides a

consistent estimator of o%(z).
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Remark 8 After finding and proving this theorem, we learned to our chagrin, from Jean
Jacod, that he had not only already considered this exact problem more than 10 years
ago, but that he has also established similar results which are both more general and more
effective. See [73] and [7]]. In particular he is able to take h,, = ﬁ and he also obtains a
rate of convergence and an associated Central Limit Theorem. We have decided nevertheless
to retain our estimator and its proof presented here, since it is the one we used to process
the data and it seems to works well for our purposes. But we wish to signal for future
related work that there are more powerful (if perhaps slightly more complicated) similar
estimators available. These remarks also apply for parts of Section 3.3.2.3.

3.3.2.3 Unbounded Volatility Function Estimators

The previous two estimators for the volatility function o(x) are over a compact domain
representing the observation interval. In this section, for the SDE (3.7), we relax this
boundedness assumption on the volatility function o(x). Herein, we now assume that

o >0 on I =]0,00], it is identically null elsewhere and satisfies 25 € L] .(I).

This is the Engelbert Schmidt condition (see, e.g., [46] or [93]) under which the SDE has
a unique weak solution S that does not explode to co. We let P be the law of the solution
on the canonical space 2 = C([0,T],R) equipped with the canonical filtration (F¢).c(o,7)
and the canonical process S = (St).ejo,r)- We also assume that o is C3, and therefore it
is bounded and with bounded derivatives on every compact set. We add in passing that
these hypotheses imply the existence of a strong solution, as well. Let 79(S) be the first
time S hits zero. The following theorem provides straightforward but useful extensions of
Theorem 50 and Theorem 52.

Theorem 53 Suppose o(x) has three continuous derivatives. Assume that nhi — 0 and
nhy, — 0o. Then conditional on {1o(S) > T}, Sp(x) given in (3.8) converges in probability
to o2(x). The same holds for our smooth kernel estimator under the constraint nh? — oc.

Proof. Let T, = inf {¢,.S; > ¢} and 7, = inf {t, S; < %} Then lim, o0 7p = 70(5) and
limg_,oo T, = 00 since S does not explode to co. We can take oy, 4 to be a function bounded
above and below away from zero with three bounded derivatives such that o, 4(x) = o(x)
for all % <z < gq. Let (Sf’q)te[QT} be the unique strong solution to the SDE dS}'? =
p,q(S?)dW;. Introduce now Sp(z), the estimator computed on the basis of (S7%)sc(o 1]
as in (3.8) or using our smooth kernel estimator. Then under the suitable constraints on the
sequence (hy)n>1, Sk¥(x) converges in probability to Uqu(x). Moreover Sh(z) = Sy, (z) if
T < Ty A Tp. Then obviously S,(z) converges in probability to o2(z), in restriction to the
set {T' < 1(S)}. m

We can extend Theorem 51 by working in the filtration G; = 0(Ss,s < t) V o(7,) where
Tp =inf {t, Sy G]%,p[} and more interestingly in G; = (Ss, s < t) VU where U = Lz, >}

and T is the time horizon. Consider for instance the initial enlargement G, = F; V o(7p)
where F; = 0(Ss,s < t) and 7, is the first exit time of S from ]%,p[. 7, is an F stopping
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time. Consider the filtered probability space (£2,G, @, G) where G = (G;)t>0. Under some
technical assumptions, and if the sequence h,, satisfies h,, — 0, nh,, — oo and nhi — 0
then we can prove that 1g. 5p/Nz( i’;((z)) — 1) converges in distribution to v/2Z where Z
is a standard normal random variable and N’ = > 71" | 1y S, —a|l<hn}-

Remark 9 (In practice) Note that this limit theorem can be applied if during the time
interval [0,T] the process does not hit 0. The limit theorem also provides us with a confi-
dence interval for the volatility estimator.

3.4 How to detect an asset bubble in real time

We illustrate our methodology using data from the alleged internet dotcom bubble of 1998-
2001. Not surprisingly, we find that all three eventualities occur: in one case we are able
to confirm the presence of a bubble; in a second case we confirm the lack of a bubble, and
in a third case we find that the test is inconclusive. It is our hope that our methodology
opens some new avenues for the testing of stock price bubbles in real time.

3.4.1 The methodology

Theorem 49 forms the basis for our bubbles testing methodology. Unfortunately, we are
immediately faced with an extrapolation problem. To see this problem, we note that the
volatility function estimators presented in the previous sections provide estimates for o(x)
only on a finite interval - those x that have been visited by the process. Given the available
stock price data, we can not observe the tails of the volatility function necessary to check for
the divergence of the integral in Theorem 49. To check for divergence, we must extrapolate
from the observed domain of o(z) to the entire nonnegative real line.

We propose two extrapolation methods to overcome this problem. The first method is to
use a parametric estimator as in [52], and a comparison theorem to conclude when the
parametric and non parametric volatility estimators are similar. If similar, we extrapolate
into the tail using the parametric form’s asymptotic behavior. The second method is to
use Reproducing Kernel Hilbert Spaces theory to extrapolate the volatility function in the
best possible way. We will quantify what we mean by 'best’ below.

3.4.2 Method 1: Parametric Estimation

The appeal of using a parametric form for the volatility function o(x) is that we know
the tails once the parameters have been estimated. For this estimation we choose a class
of volatility functions large enough to include many of the forms used in practice (for
example : power functions o(z) = ox®, where o and « are the unknown parameters that
we estimate). For this example of o(z) = z% we have the process S is a strict local
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martingale that is always strictly positive if @ > 1, and is a martingale if % < a < 1 which
however can assume the value 0. If & = 1 we are in the case of geometric Brownian motion.
We then also use our non-parametric estimators. If these estimators are comparable, we
have a conclusive test for divergence of the volatility integral. If they are not comparable,
then the test is inconclusive.

3.4.2.1 The Comparison Theorem

This section states and proves the comparison theorem.

Theorem 54 (Comparison Theorem) Assume that dS; = o(t,S;)dW; and that there
exist two functions ¥ and @ such that : for all t and x, o(x) < o(t,x) < 3(z) and such
that o, X and & are continuous, locally Holder continuous with exponent %, then:

(i) if for all ¢ > 0, fcoo ﬁdw = oo then S is a martingale.

(it) if there exists ¢ > 0 such that [

,2( dr < oo then S is a strict local martingale.

In order to prove this theorem, we need the following lemma (see [43]):

Lemma 89 Let g be a concave function, o;, © = 1,2 be two continuous functions, locally
Hélder continuous with exponent 5 such that for all (z,t), o (z,t) < as(z,t). Let T > 0
be fized. We consider dXy"? = ayo(t, X;"*)dWy and uya(x,t) = By (9(X35?)). Then
for allx € RT and t € [0,T)], ui(z,t) > ua(z,t).

Proof. [of Theorem 54] (i) Since g( )=x is concave, we can apply the previous lemma
and get that for all (z,t), u(z,t) > u”(z,t). If [ 22( dxr = oo, then by Theorem 49,

u*(z,t) = z, for all (x,t). Thus for all (z,t), u(z,t) > z. But, we know that S is
positive local martingale and hence a super martingale by Jensen’s lemma, thus for all
(z,t), u(x,t) < x. This proves that : E(S7|S; = x) =z and S is a martingale.

(ii) Let T > 0 be fixed, and u(z,t) = E(S7|S7 = x). Let ¢ > 0 such that [° )

We know that S7 is strict local martingale by Theorem 49 and u(x,t) < x and it exists ¢
such that u(z,t) < x. Again since g(x) = z is concave, x > u(x,t) > u(z,t), for all (¢, x),
and there exists ¢ such that u(x,t) < u(x,t) < x. Hence, S is a strict local martingale.
[

3.4.2.2 Illustrative Examples

To illustrate this procedure, we use market price data from the alleged internet dotcom
bubble (and beyond), from 1999 to 2005. As explained above, we can use the previous
theorem as follows: first we choose a parametric form for the diffusion coefficient and we
estimate the parameters as explained in [52] by Genon-Catalot and Jacod after choosing
a contrast function to minimize. That is, we choose a parametric form o (v, z) where v is
the multidimensional parameter that need to be estimated and a contrast f(G,z). Their
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estimator is defined as 7, = argmin = > | f(02(v, Sy,_, ), SI") where S}, = \/n(S;, — S, _, ).
Usual choices for the contrast function f in our one dimensional setting are fi(G,x) =
In(G) + %f or fo(G,x) = (22 — G)?. We do not provide further details and refer the
interested reader to [52] for a detailed description of the estimation procedure.

Then we estimate the volatility function using our non-parametric estimators. If the two
volatility function estimates are similar, then by applying the criteria of Theorem 49 to the
parametric estimator, we can test for the existence of a price bubble using the comparison
theorem as in Theorem 54.

A Conclusive Test: When applied to the stock Lastminute.com, the methodology is
conclusive.
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Figure 3.1: Lastminute.com Stock Prices during the alleged Dotcom Bubble.

Intuitively, given the stock price time series as given in Figure 3.1, one suspects the exis-
tence of a price bubble. Our test confirms this belief.
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Figure 3.2: Lastminute.com. Estimates of o(x).
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This can be seen from Figure 2 above that displays the estimators of Florens-Zmirou
(F-Z), the smoothed kernel (J-K-P), and the parametric estimator of Genon-Catalot and
Jacod (GC-J), using the power parametric form o(og,a,z) = ogz® (here v = (09, )
is a two-dimensional parameter) and the loglikelihood like contrast fi(G,z). Using this
estimation technique, we find an estimate 6(x) = o(60,&, x) whose tail behavior leads
to the convergence of the integral fsoo ﬁdm. Also our estimator (J-K-P) lies above the
estimated function (GC-J) hence Theorem 54 guarantess that the price process is a strict

local martingale and we have bubble pricing.

An Inconclusive Test: A weakness of this procedure is that the comparison test using
parametric estimators might be inconclusive, even when intuitively one suspects a bubble.
An example of this phenomenon is that of Etoys.
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Figure 3.3: eToys Stock Prices during the alleged Dotcom Bubble.

This stock price graph suggests the existence of a price bubble. Our methodology is
illustrated in Figure 4.
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Figure 3.4: eToys. Estimates of o(z).

The three curves included in this figure and labelled GC-J1, GC-J2 and GC-J3 represent the
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estimators of Genon-Catalot and Jacod, with different parametric forms and contrasts to
minimize. GC-J1 and GC-J3 are obtained from the parametric form o(og, a, z) = ooz and
the contrasts f; and fo respectively. GC-J2 is obtained from o (oo, a, B, z) = ooz In” |z|
and the contrast fi. In theory, we have a bubble if & > 1 or if « = 1 and 8 > 1, however
the estimated parameters lie in these boundaries values and we see that the curves are so
close to linear that we cannot conclude either convergence nor divergence of the integral
in Theorem 4. Using this methodology, our test is inconclusive as to whether or not there
was a bubble in the stock price of eToys during the 1999-2001 period.

3.4.3 Method 2: RKHS theory

This section presents our second method for extrapolation. This method is different, in that
it is based on RKHS theory. Previously in the chapter we have considered parameterized
families of functions, so that once the parameter is chosen the tail behavior is determined.
We can observe the volatility coefficient o only on a bounded interval, of course, so it is a
leap of faith to assume that (a) it is of the form of the parameterized family of functions
considered, and (b) its behavior continues unchanged into the tail. Nevertheless, this is
more or less the standard technique in situations such as this.

Our second method is a bit more subtle. Our procedure here consists of two steps:

e We first interpolate an estimate of o within the bounded interval where we have
observations, and in this way we lose the irregularities of non parametric estimators;

e We next extrapolate our function ¢ by choosing a RKHS from a family of Hilbert
spaces in such a way as to remain as close as possible (on the bounded interval of
observations) to the interpolated function provided in the previous step.

This represents a new methodology which allows us to choose a good extrapolation method.
We do this via the choice of a certain extrapolating RKHS, which — once chosen — again
determines the tail behavior of our volatility o. If we let (H,,)men denote our family
of RKHS, then any given choice of m, call it mg, allows us to interpolate perfectly the
original estimated points, and thus provides a valid RKHS H,, with which we extrapolate
o. But this represents a choice of m( and not an estimation. So if we stop at this point the
method would be as arbitrary as parametric estimation. That is, choosing my is analogous
to choosing the parameterized family of functions which fits o best. The difference is that
we do not arbitrarily choose mg. Instead we choose the index m given the data available.
In this sense we are using the data twice. To do this we evaluate different RKHSs in order
to find the most appropriate one given the arrangement of the finite number of grid points
from our observations.

The RKHS method (see [67]) is intimately related to the reconstruction of functions from
scattered data in certain linear functional spaces. The reproducing kernel Q(z, x’) that is
associated with an RKHS H (D) in the spatial domain D, over the coordinate x, is unique
and positive and thus constitutes a natural basis for generic interpolation problems.
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3.4.3.1 Reproducing Kernel Hilbert Spaces

Let H(D) be a Hilbert space of continuous real valued functions f(z) defined on a spatial
domain D. A reproducing kernel () possesses many useful properties for data interpolation
and function approximation problems.

Theorem 55 There exists a kernel function Q(x,x'), the reproducing kernel, in H(D)
such that the following properties hold:

(i) Reproducing property. For all x and y,

fl@) = (f@) Q)"
Qlz,y) = (Qz,2),Qy,z)) .

The prime indicates that the inner product (-, '>/ is performed over z.
(ii) Uniqueness. The RKHS H(D) has one and only one reproducing kernel Q(z,z').

(iii) Symmetry and Positivity. The reproducing kernel Q(z, ') is symmetric, i.e.
Q(ac/,a:) = Q(m,a:/), and positive definite, i.e.:

DD Qi wk)er >0

i=1 k=1
for any set of real numbers c; and for any countable set of points (2)ie[1 n)-

In this framework, interpolation is seen as an inverse problem. The inverse prob-
lem is the following. Given a set of real valued data (f;)jep,a at M distinct points
Sy = x;,1 € [1, M] in a domain D, and a RKHS H (D), find a suitable function f(x) that
interpolates these data points. Using the reproducing property, this interpolation problem
is reduced to solving the following linear inverse problem :

/ / ’

Vi € [1, M], f(zi) = (f(z ), Qzi, x)) (3.11)

where we need to invert this relation and exhibit the function f(x) in H (D). We refer the
reader to [67] for a detailed discussion.

We first present the normal solution that allows an exact interpolation, and second the
regularized solution that yields quasi interpolative results, accompanied by an error bound

analysis. Then in the next section, we will construct a family of RKHS’s that enable us
1
o(x)?

family of RKHS’s. Note that for every choice of an RKHS, on can construct an interpo-
lating function using the input data. For this reason, we define a family of Reproducing
Kernel Hilbert Spaces that encapsulate different assumptions on the asymptotic forms and
smoothness constraints. From this set, we choose that RKHS which best fits the input
data in the sense explained below.

to interpolate not o(z) but This transformation makes natural the choice of the
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Normal Solutions: The most straightforward interpolation approach is to find the nor-

mal solution that has the minimal squared norm ||f]|> = (f(z), f(z')) subject to the
interpolation condition (3.11).

That is, given a set of real valued data {f;},1 <i < K specified at K distinct points in a
domain D, we wish to find a function f that is the normal solution:

M
@) =3 Qi)
=1

where the coefficients ¢; satisfy the linear relation :

M

Vk € [I,M], ZCZQ(.%Z,{L‘]{) = fk (3.12)

=1

If the matrix Qp; whose entries are the Q(x;,z)) is “well conditioned,” then the linear
algebraic system above can be efficiently solved numerically. Otherwise, we use regularized
solutions.

Regularized Solutions: When the matrix Qs is "ill conditioned," regularization pro-
cedures may be invoked for approximately solving the linear inverse problem. In partic-
ular, the Tikhonov regularization procedure produces an approximate solution f,, which
belongs to H(D) and that can be obtained via the minimization of the regularization
functional

1Qf = FIP + ol fI1”

with respect to f(z). Note that here F' is the data vector (f;) and the residual norm
l|Qf — F||? is defined as:

M

1Qf = FIP =) ((f(a

=1

’

), Q(zi,2)) — fi)2.

The regularization parameter « is chosen to impose a proper balance between the residual
constraint ||@Qf — F|| and the magnitude constraint ||f||. The regularized solution has the

form
M
fal) =Y ' Q(xi,2) (3.13)
i=1
where the coefficients c{' satisfy the linear relation:
M
Vk € [1, M], ZC?(Q(%,J%) +adik) = fr (3.14)
i=1

where 0; 3, is the Kronecker delta function. Note that for o > 0, Q%; whose entries are
[Q(z, zx) + ad; k] is symmetric and positive definite and the problem can now be solved
efficiently. Also, the RKHS interpolation method leads to an automatic error estimate of
the regularized solution (see [67] for more details).
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3.4.3.2 Construction of the Reproducing Kernels

We consider reciprocal power reproducing kernels that asymptotically behave as some
reciprocal power of x, over the interval [0,00[. We are interested in this type of RKHS
because this is a reasonable assumption for f(z) = U%(m) The CEV model dS; = SfrdW;
where a > 0 is an important local volatility model proposed in the literature and satisfies
this assumption, with fee,(z) = w% We also assume that the function f(x) possesses the
asymptotic property

lim 2 f®) (z) = 0,Vk € [1,n —1].

T—r00

for some n > 1 that controls the minimal required regularity. This property is often
[1i2) (~20-1)

2o

converges to 0 as x tends to infinity, for all k. This is also satisfied by many volatility
functions that explode faster than any power of x, for example o(z) = z®e5®, with a > 0
and 8 > 0. The condition appears restrictive only when ¢ and its derivatives explode too

satisfied by the volatility functions used in practice. For instance, xk fc(fg (z) =

slowly or when ¢ is bounded, however in these cases, it is likely that there is no bubble and
no extrapolation using this RKHS theory will be required. We would like to emphasize
that the asymptotic property satisfied by f is the key point for the whole method to work
as this may be seen from Lemma 91 below.

Concerning the degree of smoothness, we usually take in practice n to be 1, 2 or 3. We
can define now our Hilbert space

H, = Hy ([0, 00]) = {f € C"([0,00]) | lim o* f¥) () = 0,Vk € [1,n — 1]} .

We now need to define an inner product. A smooth reproducing kernel ¢®¥ (z, ZL‘/) can be
constructed via the choice:

<f,g>nm:/ y" ")y g™ (y) dy
’ 0 n! n! w(y)

where w(y) = y% is the asymptotic weighting function. From now on we consider the RKHS

Hym = (Hp, <,>nm). The next lemma can be shown following the steps in [67].
Lemma 90 The reproducing kernel is given by

_ x
qﬁﬁ(w,y) = n2x>(m+1)B(m +1,n)Fi(—n+1,m+1,n+m+1, —<)

>
where x> and T~ are respectively the larger and smaller of x and y, B(a,b) is the beta
function and F»1(a,b,c,z) is Gauss’s hypergeometric function.

Proof. From the reproducing property and the explicit use of the inner product defined
above, we have

2 — re o (Y W) Y O gim(y) dy
@) = ) ahien) = [ )
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Then, in the second step, by comparing the equation above with Taylor’s formula

n—1 (k) r— k
f(:z)zzf (y)]i! vt 1

k=0

] /Z(x - Z)”flf(”) (z)dz
y

(n—1)!

with a choice of the reference point y = oo and the use of the asymptotic property
limg o0 2 f(F) (r) =0 for all 1 <k <n—1, we obtain

y" 0 g (2,y)

o~ - 7))y ()

Therefore the corresponding reproducing kernel has the integral representation
RP RP RP
G (2, Y) = (G (€5 2); G (Y, 2))

=n? - 2 o)D) (2 = )P @nEm g,
JACEE DR y

We need now to carry out the integral above which is equal to

/ (Z _ x>)n—1(z _ $<)n—lz—(2n+m)dz

>

1
= [ ey ()
0
1
/(1_751.)71 1 2n 2(1 t)n—1$;(2n+m)%dt

— m+1>/ Q-

tx<1n

Recall now the closed form of the hypergeometric function

B F(c) 1 tb_l(l _ t)c_b_l
Foala,b,e 2) = T()T(c—b) /0 1tz 4*

By takinga=-n+1,b=m+1,c=n+m+1and z = i—i, and using the definition of
the Beta function, we obtain finally

_ z
qﬁi(m,y) = n2m>(m+1)B(m +1,n)Fi(—n+1,m+1,n+m+1, x—<)
>

as in the statement of the lemma. m

Remark 10 The integers n — 1 and m + 1 are respectively the order of smoothness and
the asymptotic reciprocal power behavior of the reproducing kernel ¢®*F (x,y). This kernel
is a rational polynomial in the variables x and y and has only a finite number of terms, so
it is computationally efficient.

As pointed out above, any choice of n and m creates an RKHS H, ,, and allows one
to construct an interpolating function fy ,,(x) with a specific asymptotic behavior. The
following result gives the exact asymptotic behavior.
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Lemma 91 For every z, ¢°F (x,y) is equivalent to y,ﬁ%B(m—i—l, n) at infinity as a function

of y and
M
: m+1 2 [t
xli)rgiox fa(x) =n“B(m + 1, n)z;cZ
1=

where fq is defined as in (3.13) and the constants ¢ are obtained as in (3.14). Hence, if
ZZ L F£ 0, then fo(x) is equivalent to %Zi\; .

3.4.3.3 Choosing the Best m

The choice of m allows one to decide if the integral in Theorem 49 converges or diverges.
If m > 1, there is a bubble. This section explains how to choose m. Let us first summarize
the idea. We choose the RKHS by optimizing over the asymptotic weight m that allows
us to construct a function that interpolates the input data points and remains as close as
possible to the interpolated function on the finite interval D. This optimization provides
an T which allows us to construct om(x). We employ a four step procedure:

(i) Non-parametric estimation over D: Estimate o(x) using our non-parametric esti-
mator on a fixed grid xi, ...,zps of the bounded interval D = [min S, max S] where min S

and max S are the minimum and the maximum reached by the stock price over the estima-

1
tion time interval [0,7]. In our illustrative examples, we use the kernel ¢(z) = Le®2=1 for
lx| < %, where c is the appropriate normalization constant. The number of data available n
and the restriction on the sequence (hy)n,>1 makes the number of grid points M relatively

small in practice. In our numerical experiments, 7 < M < 25.

(ii) Interpolate o(z) over D using RKHS theory: Use any interpolation method on
the finite interval D to interpolate the data points (o(z;))ie[1,a- Call the interpolated
function o®(z). For completeness, we provide a methodology to achieve this using the
RKHS theory. However, any alternative interpolation procedure for a finite interval could
be used.

Define the Sobolev space: H™(D) = {u € L*(D) | Vk € [1,n],u®) € L*(D)} where u(k) is

the weak derivative of u. The norm that is usually chosen is |[u[|? = Y}_, [ (u®)2(2)dz.
Due to Sobolev inequalities an equivalent and more appropriate norm is HuH =
Jp v (z)dz + 7-2n fD x)dx. We denote by Kg:? the kernel function of H"(]a,b|),

where in this case D ]a, b[. This reproducing kernel is provided for n = 1 and n = 2 in
the following lemma.

Lemma 92
Ki’f(x, y) = m cosh(7(b — x=)) cosh(7(z< — a))

b
K;’T(«Ta y) = L:E> (IE<)

and L (t) is of the form S5 STi_; Lirbi(Tt)by (7).
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We refer to [124, Equation (22) and Corollary 3 on page 28| for explicit analytic expressions
for I;; and by, which while simple, are nevertheless tedious to write. In both equalities, z~
and x. respectively stand for the larger and smaller of z and y. In practice, one should
check the quality of this interpolation and carefully study the outputs by choosing different

7’s before using the interpolated function ¢® = ﬁ in the algorithm detailed above, where

fo(z) = Zf\il chgT(xi,x), for all z € D and for all k € [1,M], "M, @KP (z;,23) =
1

=1 " n,T
Ji= oest(zy)

(iii) Deciding if an extrapolation is required: If the extended form of the estimated
o(x) implies that the volatility does not diverge to oo as & — oo and remains bounded on
R*, no extrapolation is required. In such a case f;o U%(x) is infinite and the process is a
true martingale. If one decides, however, that o(x) diverges to oo as  — oo, then the next
step is required to obtain a ‘natural’ candidate for its asymptotic behavior as a reciprocal

power.

(iv) Extrapolate o°(x) to R* using RKHS: Fix n = 2 and define

m = arg min / |om — o®|2ds (3.15)
m20 [a,00[ND

where f,, = —5 is in the RKHS Ha gy = (Ham([0,00[), (;)rp). By definition, all oy, will
interpolate the input data points and oz has the asymptotic behavior that best matches

our function on the estimation interval. a is the threshold determining closeness to the
interpolated function. Choosing a too small is misleading since then it would account more
(and unnecessarily) for the interpolation errors over the finite interval D than desirable.
We should choose a large a since we are only interested in the asymptotic behavior of the
volatility function. In the illustrative examples below, the threshold a in (3.15) is chosen
to be @ = max S — %(max S — min S).

3.4.4 The dotcom bubble

We illustrate our testing methodology for price bubbles using the stocks that are often
alleged ([125] and [110]) as experiencing internet dotcom bubbles. We consider those
stocks for which we have tick data. The data was obtained from WRDS [126]. We apply
this methodology to four stocks: Lastminute.com, eToys, Infospace, and Geocities. The
methodology performs well. The weakness of the method is the possibility of inconclusive
tests as illustrated by eToys. For Lastminute.com and Infospace our methodology supports
the existence of a price bubble. For Infospace, we reproduce the methodology step-by-step.
Finally, the study of Geocities provides a stock commonly believed to have exhibited a
bubble (see for instance [125] and [110]), but for which our method says it did not.

Lastminute.com: Our methodology confirms the existence of a bubble. The stock prices
are given in Figure 3.5.
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Figure 3.5: Lastminute.com Stock Prices during the alleged Dotcom Bubble.

The optimization performs as expected with the asymptotic behavior given by m = 8.26,
which means that o(z) is equivalent at infinity to a function proportional to z% with a =
4.63. We plot in Figure 3.6 the different extrapolations obtained using different reproducing
kernel Hilbert spaces Ha ,, and their respective reproducing kernels qfﬁz.
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Figure 3.6: Lastminute.com. RKHS estimates of o(z).

Figure 3.6 shows that m is between 7 and 9 as obtained by the optimization procedure.
The orange curve labelled (sigma) is the interpolation on the finite interval D obtained
from the non-parametric estimation procedure where the interpolation is achieved using
the RKHS theory as described in step (ii) with the choice of the repoducing kernel Hilbert
space H'(D) and the reproducing kernel K L én SmaxS - Then m is optimized as in step
(iv) so that the interpolating function o7 () is as close as possible to the orange curve

in the last third of the domain D, i.e. the threshold a in (3.15) is chosen to be a =



168 Chapter 3. Bubbles: martingale theory and real time detection

max S — #(max S — min S).

eToys: While the graph of the stock price of eToys as given in Figure 3.7 makes the
existence of a bubble plausible, the test nevertheless is inconclusive. Different choices of m
giving different asymptotic behaviors are all close to linear (see Figure 3.8).

-
=]

0 T T T
2/9/1999 8/28/1999 3/15/2000 10/1/2000

Figure 3.7: Etoys.com Stock Prices during the alleged Dotcom Bubble.

Because they are so close to being linear, we cannot tell with any level of assurance that
the integral in question diverges, or converges. We simply cannot decide which is the case.
If it were to diverge we would have a martingale (and hence no bubble), and were it to
converge we would have a strict local martingale (and hence bubble pricing).
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Figure 3.8: eToys. RKHS estimates of o(z).

The estimated T is close to one. In Figure 3.8, the powers a are given by %(m +1)

where m is the weight of the reciprocal power used to define the Hilbert space and its
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inner product. We plot the extrapolated functions obtained using different Hilbert spaces
Hs ,, together with their reproducing kernels qiﬁ. Figure 3.9 shows that the extrapolated
functions obtained using these different RKHS Hs ,, produce the same quality of fit on the

domain D.
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Figure 3.9: eToys. RKHS estimates of o(z), Quality of Fit.

Infospace: Our methodology shows that Infospace exhibited a price bubble. We detail
the methodology step by step in this example. The graph of the stock prices in Figure 3.10
suggests the existence of a bubble.
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Figure 3.10: Infospace Stock Prices during the alleged Dotcom Bubble.

(i) We compute the Florens-Zmirou’s estimator and our smooth kernel local time based

estimator, using a sequence h,, = —. The result is not smooth enough as seen in

- 1
n3
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Figure 3.11.

90000 ;

- FZ
B0OODD -

w— |-K-P
70000
60000
50000 -
40000
30000 -
20000
10000

o
Q 100 200 300 400 200 G600

Figure 3.11: Infospace. Non-parametric Estimation using h, =

3
P o

(ii) We use the sequence h,, = -1 to compute our estimators (the number of points where
na

the estimation is performed is smaller, M=11). Theoretically, we no longer have the
convergence of the Florens-Zmirou’s estimator. However, as seen in Figure 3.12,
this estimator is robust with respect to the constraint on the sequence h,. F-Z,
LowerBound and UpperBound are Florens-Zmirou’s estimator together with the 95%
confidence bounds her estimation procedure provides. J-K-P is our estimator.
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Figure 3.12: Infospace. Non-parametric Estimation using h,, = —r.
n4

(iii) We obtained in (ii) estimations on a fixed grid containing M = 11 points, and we
now construct a function ¢®(z) on the finite domain (see Figure 3.13) which perfectly
interpolates those points. Here the RKHS used is H'(D) where D = [min S, max 5]
together with the reproducing kernels K ET, where 7 takes the values 1, 3, 6 and 9.
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The functions obtained using these different reproducing kernels provide the same

quality of fit within D and we can use any of the four outputs as the interpolated

b

function, ¢°, over the finite interval D.
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Figure 3.13: Infospace. Interpolation ab(az) on the compact domain.

(iv) Finally we optimize over m and find the RKHS Hj ,, that allows the best interpo-
lation of the M = 11 estimated points and such that the extrapolated function & (z)
remains as close as possible to ¢®(x) on the third right side of D. Of course, the
reproducing kernels used in order to construct the functions o,, and minimize the
target error as in (3.15) are qfﬁ;. We obtain m = 6.17 (i.e. a = T = 3.58) and we
can conclude that there is a bubble.
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Figure 3.14: Infospace. Final estimator and RKHS Extrapolation.

Remark 11 One might expect o =~ 1.8 as suggested by the green curve in Figure 3.14. But
this is different from what the RKHS extrapolation has selected. Why? In Figure 3.1/, we
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plot the RKHS extrapolation obtained when o = 1.8. We have proved that

m—+1 M
=4B(m+1,2)> ¢
=1

8

mlinolo 52 (x)

. . ) _ 3.58 . o
The numerical computations give: 0(r) = {5=559 when using optimization over m and

o(z) ~ % when firing o = 1.8. Independent of the power chosen, the ¢;’s and hence
the constant of proportionality are automatically adjusted to interpolate the input points.
But, as can be seen in Figure 3.15, the power 3.58 is more consistent in terms of extending
‘naturally’ the behavior of o®(x) to RT.
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Figure 3.15: Infospace

Geocities: Our methodology shows that this stock did not have a price bubble. The stock
prices are graphed in Figure 3.16.
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Figure 3.16: Geocities Stock Prices during the alleged Dotcom Bubble.
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This is an example where we can stop at step (iii) : we do not need to use RKHS theory
to extrapolate our estimator in order to determine its asymptotic behavior. As seen from
Figure 3.17, the volatility is a nice bounded function, and any natural extension of this
behavior implies the divergence of the integral faoo J%(x)dm. Hence the price process is a

true martingale.
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Figure 3.17: Geocities. Estimates of o.

3.5 Is there a bubble in LinkedIn’s stock price? A real case
study

Inspired by a New York Times article dated May 23, 2011 [32] discussing whether or not in
the aftermath of the LinkedIn IPO the stock price had a bubble, we obtained stock price
tick data from Bloomberg (we would like to thank Peter Carr and Arun Verma for help
in obtaining quickly the tick data for the stock LinkedIn). And, we used our methodology
to test whether LinkedIn’s stock price is exhibiting a bubble. We have found, definitively,
that there is a price bubble! The volatility function is well inside the bubble region. There
1s no doubt about its existence.

3.5.1 Real time detection : LinkedIn’s case

Our results can be summarized in the following graph showing an extrapolation of an
estimated volatility function for LinkedIn’s stock price.

In Figure 3.25, we have a graph of the volatility coefficient of LinkedIn together with its
extrapolation, and because the estimated function increases faster than a straight line, the
reader can clearly see that the graph indicates the stock has a price bubble. The blue
part of the graph is the estimated function, and the red part is its extrapolation using the
technique of Reproducing Kernel Hilbert Spaces (RKHS). These LinkedIn results illustrate
the usefulness of our new methodology for detecting bubbles in real time. Our methodology
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Figure 3.18: Estimation and Extrapolation of the Volatility Function

provides a solution to the problems stated by both Chairman Bernanke and President
Dudley, and it is our hope that they will prove useful to regulators, policy makers, and
industry participants alike. We apply step by step the methodology derived in the sections
above to LinkedIn minute by minute stock price tick data obtained from Bloomberg. We
conclude that LinkedIn’s stock is indeed experiencing a price bubble.

To perform this validation, we start by assuming that the stock price follows a stochas-
tic differential equation of a form that makes it a diffusion in an incomplete market,
namely

dY: = s(Yi)dB, +g(Y;)dt (3.17)

where W and B are independent Brownian motions. This model permits that under the
physical probability measure, the stock price can have a drift that depends on additional
randomness, making the market incomplete. Nevertheless for this family of models, S
satisfies the following equation for every neutral measure:

ClSt = O'(St)th

Under this evolution, the stock price exhibits a bubble if and only if

*
/a UQ(x)dx < oo forall a>0. (3.18)

We test to see if this integral is finite or not. To perform this test, we obtained minute
by minute stock price tick data for the 4 business days 5/19/2011 to 5/24/2011 from
Bloomberg. There are exactly 1535 price observations in this data set. The time series
plot of LinkedIn’s stock price is contained in Figure 3.19. The prices used are the open
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Figure 3.19: LinkedIn Stock Prices from 5/19/2011 to 5/24/2011.(The observation interval
is one minute.)

prices of each minute but the results are not sensitive to using open, high or lowest minute
prices instead.

The maximum stock price attained by LinkedIn during this period is $120.74 and the
minimum price was $81.24. As evidenced in this diagram, LinkedIn experienced a dramatic
price rise in its early trading. This suggests an unusually large stock price volatility over
this short time period and perhaps a price bubble.

3.5.1.1 Estimating the volatility function

Our bubble testing methodology first requires us to estimate the volatility function o
using local time based non-parametric estimators. We compare the estimation results
obtained using both Zmirou’s estimator and the estimator developed in Theorem 52. The
implementation of these estimators requires a grid step h,, tending to zero. We choose the
step size h, = - which implies a grid of 7 points. The statistics for these estimators are

3
displayed in Figure 3.20.

For both tables, the first column contains the stock price grid points. The second column
gives the estimated volatility at each grid point. When using Zmirou’s estimator, the 95
percent confidence intervals are provided. The graph in Figure 3.20 plots the estimated
volatilities for the first 5 grid points together with the confidence intervals.

As computed, the confidence intervals are quite wide. For example, for the first stock
price of $84.665, the volatility estimate using Zmirou’s estimator is 19.0354 and the JKP
estimator is 13.4404. The Zmirou’s 95 percent confidence interval is [$17.8579, $20.4816].
This confidence interval does not contain the JKP estimator. In addition, since the neigh-
borhoods of the grid points $118.915 and $125.764 are either not visited or visited only
once (the last column of the first table), we do not have reliable estimates at these points.
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Zmirgu’s estimator
X sigma_Zmirou [lowerBound [upperBound [LocalTime |NbreF'0ints
84 665 19.0354 17.8579 204816/ 00393737 414
91.5149 240447 22 6762 256951  0.0472675 497
983648 22 4606 20.9575 24 3417 0.0330968 348
105.215 37.8995 34.9693 41.7162| 0.0239666 252
112.065 86.192 68.0373 137.119 0.00199722 21
118.915 221.362 113.979 1e+006 9 51056e-005 1
125764 0 01e+006 0 0
JKP Estimator
% sigma_JKP  [LocalTime
84 665 13.4404  0.0619793
91.5149 19.1038 __0.0259636]
98.3648 2?".?’4?’4' 0.0223716]
105.215 38.781 0.0229719
112.065 69481 0000708326
118.915|3.95e+014 0
125.764|3.95e+014 0

Figure 3.20: Non-parametric Volatility Estimates.
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Figure 3.21: Non-parametric Volatility Estimation Results.

Therefore, we restrict ourselves to the grid containing only the first five points. We note
that the last point in the new grid $112.065 still has only been visited very few times (21
times to be exact). Given these observations, we apply our methodology twice. In the
first test, we use a 5 point grid. In the second test, we remove the fifth point where the
estimation is uncertain and we use only a 4 point grid instead.

3.5.1.2 Interpolating the volatility function

The next step in our procedure is to interpolate the shape of the volatility function between
these grid points. We use the estimations from our non parametric estimator with the 5
point grid case. For the volatility time scale, we let the 4 day time interval correspond to one
unit of time. This scaling does not affect the conclusions we make here. When interpolating
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one can use any reasonable method. We use both cubic splines and reproducing kernel
Hilbert spaces as in item (ii) of our methodology (see 3.4.3.3). The interpolated functions
are graphed in Figure 3.22.
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Figure 3.22: Interpolated Volatility using Cubic Splines and the RKHS Theory

Comparing Figures 4 and 5, at least visually, the interpolation appears to provide a rea-
sonable fit for either the cublic spline or the RKHS procedure.

3.5.1.3 Extrapolating the Volatility Function

The next step is to extrapolate the interpolated function ¢® using the RKHS theory to the
left and right stock price tails. We construct our extrapolation o = oy, as in item (iv) of
3.4.3.3, by choosing the asymptotic weighting function parameter m such that f,, = é is
well-behaved, o, exactly matches the points obtained from the non parametric estimation,
and o, is as close (in norm 2) to ¢” on the last third of the bounded interval where o

defined. We obtain m = 9.42. The result is shown in Figure 3.23.
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Figure 3.23: RKHS Based Extrapolation of o®



178 Chapter 3. Bubbles: martingale theory and real time detection

Note that the extrapolation contained in Figure 3.23 appears to be a natural extension of
that contained in Figure 5. This implies that ¢ is asymptotically equivalent to a function
proportional to z® with a = HT’”, that is @ = 5.21. This completes the first approach we
used to extrapolate the volatility function’s shape to the stock prices outside the fixed grid.
We plot below the functions with different asymptotic weighting parameters m obtained
using the RKHS extrapolation method, but without optimization. All the functions exactly
match the non-parametrically estimated points.
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Figure 3.24: Extrapolated Volatility Functions using Different Reproducing Kernels

When we optimized over the weighting functions, we obtained the parameter m = 9.42.
Visually, this parameter appears in Figure 3.24 to be that estimate most consistent (within
all well-behaved volatility functions that exactly match the input data) with a "natural”
extension of the behavior of ¢® to R*. The power o = 5.21 implies then that LinkedIn
stock price is currently exhibiting a bubble. Since there is a large standard error for the
volatility estimate at the end point $112.065, we remove this point from the grid and repeat
our procedure. Also, the rate of increase of the function between the last two last points
appears quite large, and we do not want the volatility’s extrapolated behavior to follow
solely from this fact. Hence, we check to see if we can conclude there is a price bubble
based only on the first 4 reliable observation points. We plot in Figure 3.25 the function
o (in blue) and its extrapolation to R, o (in red).

With this new grid, we obtain, after optimization, m = 7.8543. This leads to the power
a = 4.42715 for the asymptotic behavior of the volatility. Again, although this power
appears to be high, the extrapolated function obtained is the most consistent (within
all the well-behaved volatility functions that exactly match the input data) in terms of
extending 'naturally’ the behavior of o to RT. Again, we can conclude that there is a
stock price bubble. This completes the real time testing and validation of LinkedIn’s stock
price bubble.
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Figure 3.25: RKHS based Extrapolation of o®

3.5.2 "Is there a bubble in LinkedIn’s stock price?" in the news

The financial press showed a vivid interest to these results during May and June 2011. In
this subsection, we attach two articles from financial journals that referenced during the
alleged LinkedIn’s bubble our work on its real time detection. The hope is that our tools
will be of some help to regulators to address those bubbles by recognizing them as they
are happening and be perhaps able then to limit their sizes and the damages they usuallly
cause when they burst.

3.5.2.1 Reuter’s article

Reuter released the article LinkedIn shares were a bubble: academic model on June 2,
2011 [9].

“NEW YORK (Reuters) - Three academics say there was a bubble in LinkedIn Corp’s
shares during the first four days of its trading, which they have determined definitively
using a model they designed. The three have devised a model they say can establish
in real time whether prices in a market are doomed to collapse. If investors can spot
speculative excess in short order, they can avoid overheated markets and better allocate
their capital, said Cornell University finance professor Robert Jarrow, who wrote the paper
along with Ecole Polytechnique’s Younes Kchia and Columbia University’s Philip Protter,
both mathematicians. "If enough people think there is a bubble and not enough people
want to hold it, maybe the bubbles will disappear before they get too large," Jarrow told
Reuters. The model, described in a paper currently being peer-reviewed for publication,
compares the size of price fluctuations, known as "volatility," with the volatility of a normal
stock, which is a stock whose price is what you would pay if you held it forever. If the
volatility in the stock you are testing is higher than that of a normal stock, there is a bubble.
Take social networking company LinkedIn Corp, for example.The company’s shares more
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than doubled on their first day of trade on the New York Stock Exchange and closed on
May 24 — the fourth and final day of trade run through the model — at still more than
double their IPO price. The shares have since given up some of their gains, but closed on
Wednesday, after just 9 days of trading, at more than 70 percent above their IPO price.
Some people would intuitively argue that the speedy share gains indicate a bubble. But the
model can prove it: it shows that as LinkedIn’s stock price increased, the rate of increase
of volatility was abnormally large. The model has been successfully tested against some
of the stocks believed to have been bubbles in the 2000 to 2002 dot-com era, according to
the paper.

HELP FOR THE FED Investors aren’t the only ones who stand to benefit from knowing
when bubbles are arising. The Federal Reserve could use its regulatory power to tighten
rules for lending in markets that seem to be overheating. Federal Reserve Chairman Ben
Bernanke noted in Congressional testimony in 2009 that it is extraordinarily difficult to tell
in real time when a bubble is arising, echoing statements from former Fed Chairman Alan
Greenspan. The issue even came up, recently, in relation to LinkedIn. When LinkedIn
shares jumped 109.4 percent on their first day of trade, Chicago Fed President Charles
Evans said he was withholding judgment over whether a new dot-com bubble was under
way. "I have no way of knowing that those aren’t just exactly the right valuations," Evans
told reporters after a speech in Chicago.

7

As a conclusion, if we all agree now that bubbles do exist, and that they can be detected as
they happen, the question of interest is what can be done about it? From this perspective,
the following article is interesting.

3.5.2.2 Harvard Business Review’s article

The Harvard Business Review, released the following article Can Your Company Survive
a Bubble? on June 9, 2011 [51].

“If you've been wondering whether LinkedIn’s stock - selling as I write this for about 72 a
share, down from a high of 122.70 during its first day of trading May 19 - is (or at least was)
in a bubble, Robert Jarrow, Younes Kchia, and Philip Protter have an answer for you. The
trio (respectively, a finance professor at Cornell, an appliedmath Ph.D student at the Ecole
Polytechnique, and a statistics professor at Columbia) developed a statistical technique for
detecting bubbles that they tested on data from the dot-com heyday. Jarrow, Kchia, and
Protter then plugged in LinkedIn’s minute-by-minute stock price movements during its
first week of trading. The result: "In the case of LinkedIn, the volatility function is well
inside the bubble region. There is no doubt about its existence." This is the kind of thing
that can drive people outside of quantitative finance a little crazy; there’s no reference to
company fundamentals, just "sophisticated volatility estimation techniques combined with
the method of reproducing kernel Hilbert spaces." Still, it’s encouraging to see finance
wonks paying serious attention to bubbles, which for decades got almost no attention in
academic finance because they weren’t supposed to exist. It’s also encouraging to see smart
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people enlisting the methods of other disciplines in the service of bubble detection. Now
that we're almost all agreed that bubbles do exist, and that they can to some extent be
detected as they happen, the interesting question is what to do about it. There’s been
lots of debate over how central banks should react to bubbles. But what about at the
level of the corporation? What should executives do when their company is caught up
in a bubble? As best I can tell, there are three levels of bubble danger (they correlate
somewhat with Hyman Minsky’s three stages of economic danger: Ponzi, speculative, and
hedge finance).

The Ponzi bubble. It’s not just an asset-price bubble; it’s an asset bubble supported by
borrowing that uses those very assets as collateral. And that’s not all: Those who've
done the borrowing don’t have enough income to make the interest payments on their
loans; asset prices have to keep rising to keep everything from falling apart. A lot of U.S.
mortgage borrowers got into this situation from about 2004 through early 2007. As you
may have heard, it ended badly. My sense is that any company that finances itself this
way is a fraud, so the best advice for executives is probably turn yourselves in.

The speculative bubble. This is where you keep selling assets (or borrowing against them)
to pay your bills, but are working toward a situation where you don’t have it anymore.
It’s okay for you if asset prices stop rising, but if they fall dramatically - or if the market
for them simply stops functioning - you’re in big trouble. This was to a certain extent
what hit Lehman Brothers and Bear Stearns in 2008. They counted on being able to roll
over their debt every day, and then suddenly couldn’t. But the better example is that
of the dot-coms. Dozens of them were able to finance rapid, cash-burning growth in the
late 1990s by selling highly priced stock. Then, on March 20, 2000, Barron’s published an
article listing 51 dot-coms that would run out of cash within 12 months if they weren’t able
to raise more money or dramatically cut their losses. Market sentiment shifted (possibly
because of the Barron’s article), the prices of Internet stocks tanked, and within a year
or two most of the 51 were no longer with us. This is clearly a risky way to do business.
But sometimes it works out: Amazon.com was on that Barron’s list of 51 (and its stock
price finally climbed back to and surpassed its dot-com era peak in 2009). Markets gave
Amazon, an early mover, enough time to build a formidable business, and its management
had clearly thought about the possibility of a stock-price drop, and was able to quickly
ratchet back spending and turn a profit when it had to. From the evidence of the IPO
prospectus it filed last week, Groupon is playing this speculative finance game (it lost 456
million last year, and has 118 million cash in the bank). Does it have a plan for when the
flow of cash from investors dries up? The signs aren’t all encouraging.

The plain old bubble. LinkedIn is a profitable company. It can stay in business even if
its stock price plummets. But dealing with a big stock-price decline, and with the expec-
tations built into an unrealistically high stock price, can be extremely painful. Finance
scholar Michael Jensen has argued that overvalued equity was the ruination of Enron and
Worldcom, among other companies. But what’s a CEO to do about it? I invited Jensen to
a Fortune conference a few years back and watched him argue to a roomful of executives
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that if their companies’ stock was was overvalued they should do what they could to bring
the price down - by announcing to investors that they thought it was too high, for example.
It’s fair to say that they all thought Jensen was crazy. A less drastic approach is simply to
insulate your company somewhat from financial markets: Don’t let stock options account
for a very big share of executive pay, focus the company on real performance metrics and
not on stock price, build your business around the "real market" of customers rather than
the "expectations market" of investors (I stole that terminology from Roger Martin’s new
Fixing the Game). None of which is going to seem very enticing when your company is
caught up in a stock price bubble. ”
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4.1 Intoduction

Although variance swaps only started trading in the mid-1900s, they have since become a
standard financial instrument useful for managing volatility risk (see Carr and Lee [20] for
the history of volatility derivative markets). In the pricing and hedging of variance and
volatility swaps, a distinction is made between payoffs that are discretely or continuously
sampled. Discretely sampled variance swaps trade in the over-the counter (OTC) markets.
In contrast, continuously sampled variance swaps are only an abstract construct, often used
to approximate the values of their discretely sampled counterparts (see Broadie and Jain
[15],]16], Chan and Platen [24|, and Carr and Lee [21]). These approximations are based
on the convergence in probability of the discrete payoff as the discrete sampling period goes
to zero toward the continuous payoff. But this convergene in probability is weak enough
so that the convergence of the expectations might not hold. This approximation can be
thought of as an exchange of the expectation operator with the limit in probability operator.
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This operator exchange is often invoked without adequate justification. The purpose of this
chapter is to characterize the conditions under which this operator exchange is valid.

For our investigation we utilize the martingale pricing methodology where we take as given
the asset’s price process assuming markets are arbitrage free (in the sense of No Free Lunch
with Vanishing Risk (NFLVR)). This evolution is taken to be very general. We only assume
that the price process is a strictly positive semimartingale with possibly discontinuous
sample paths. We also assume, as a standing hypothesis, that the continuously sampled
variance swaps have finite values. Otherwise, before the analysis begins, the approximation
would not make sense.

The first two theorems of this chapter (Theorems 56 and 57) characterize the additional
conditions needed on the price process such that the discretely sampled variance and
volatility swaps have finite values. Of course, when the discretely sampled variance swap
values do not exist, the approximation is again nonsensical. Surprisingly, we provide ex-
amples of otherwise reasonable price processes, with stochastic volatility of the volatility,
where these discretely sampled variance swap values do not exist. Next, assuming both
the continuous and discretely sampled variance swap values are finite, we study conditions
justifying an exchange of the limit and expectation operators. In this regard, under no
additional hypotheses, Theorem 60 provides an upper bound for the maximum difference
between these two values. Theorem 61 proves, under some additional moment conditions,
that the exchange of the two operators is valid. Furthermore, this theorem also provides
infomation on the rate of convergence (1/n where n is the number of discretely sampled
prices). Lastly, given the recent interest in the 3/2 stochastic volatility model for pricing
volatility derivatives (see Carr and Sun [22|, Chan and Platen [24]), we explore its con-
sistency with valuing discretely sampled variance swaps with their continuously sampled
counterparts. Here we show that both the discrete and continuously sampled variance
swaps have finite values. Unfortunately, we can only prove convergence of the discrete to
the continuously sampled variance swap values for some parameter ranges, but not all.
A complete characterization of this convergence for the 3/2 stochastic volatility model
remains an open question. An outline for this chapter is as follows. Section 4.2 gives
the framework underlying the model. Section 4.3 studies the finiteness and convergence
of the discretely sampled variance swap values. Finally, Section 4.4 provides examples to
illustrate the theorems proved.

4.2 Framework and mathematical preliminaries

Let a filtered probability space (2, F,F, P) be given, where the filtration F = (F¢)scp0,1)
satisfies the usual conditions and T is a fixed time horizon. We suppose that there is
a liquidly traded asset paying no dividends, whose market price process is modeled by a
semimartingale S = (S¢);¢[o,) such that S > 0 and S— > 0. The value of the money market
account is chosen as numeraire, or, viewed differently, the interest rate is zero. The price
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process is assumed to be arbitrage free in the sense of No Free Lunch with Vanishing Risk
(NFLVR), see Delbaen and Schachermayer [33] and [34], which guarantees the existence of
at least one equivalent probability measure under which S is a local martingale. We assume
P is such a measure, and that the modeler prices future payoffs by taking expectations
with respect to P.

4.2.1 Variance swaps

Definition 11 A wvariance swap (with strike zero) and maturity T is a contract which pays
the "realized variance,” i.e. the square of the logarithm returns up to time T, namely

252 ( St, )2
— In ,
n Sti—l

i=1

where 0 =ty < ... < t, = T is a reqular sampling of the time interval [0, T, i.e. t;—t;—1 = %

fori=1,...,n. Finally, 252 is the number of trading days per year. The maturity T is
approximately g5 .

Rather than considering the quantity

n S 2
P T) =" <ln Stti ) ,
i—1

i=1

practitioners often use its limit
P(T) = [InS,InS]p

in the pricing of variance swaps (see Carr and Lee [20]). That is, one approximates the
quantity E(P™(T)) by E(P(T)). The continuous approximation P(T") to the variance
swap’s true payoff P™(T) is justified by the fact that

[0S, n S}y = lim 2; (1“ st> ’

where the limit is in probability and taken over a sequence of subdivisions whose mesh size
tends to zero.

Analogous to a variance swap, we define the volatility swap.

Definition 12 A wvolatility swap is a security written on the square root of the variance
swap’s payoff. We will use the notation

n—1 2
V() = Z (ln Sf.ti ) and V(T) = \/m

=0
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Again, V™(T) is the volatility swap payoff up to multiplicative and additive con-
stants.

Our aim is to investigate the validity of these approximations, motivated by the fact that
the convergence of P"(T") to P(T), respectively V"(T') to V(T'), is only in probability, which
a priori does not guarantee convergence of their expectations. It is the latter convergence
one needs in order to justify the use of this approximation in the context of pricing.

To simplify the notation later on, we introduce the following convention.
Notation. For a process X = (X;)co,r] we define
51X:th —th.71 ('l: 1,...,n).

In particular, P*(T) = Y"1 (6;In 9)>.

4.2.2 Mathematical preliminaries

Since S > 0 and S_ > 0 there is a semimartingale M such that
S = 50E(M),

where £(+) denotes stochastic exponential; see 76|, Theorem I1.8.3. In fact, since S is a
local martingale and hence a special semimartingale, it follows that from Theorem I1.8.21
in [76] that M is a stochastic integral with respect to the local martingale part of S.
Furthermore, since S > 0, the jumps of M satisfy AM > —1, so by the Ansel-Stricker
Theorem (see [6]), M is a local martingale.

The following notation is standard. We direct the reader to |76] for details. The random
measure M associated with the jumps of M is given by

pM(dt, dz) =) 1ian, 2018 (s,am) (At dx),
and its predictable compensator is v(dt,dx). We may then write
S = Soexp {M—;(MC,MC)—(x—In(l—i—m))*uM}, (4.1)
and furthermore decompose M as

M =M+ M= M+ (uM —v), (4.2)

where M€ is the continuous local martingale part of M and M? = z % (™ —v) is the jump
part. Both these processes are local martingales. The following elementary result will be
useful later, so we state it as a lemma.

Lemma 93 The quadratic variation of M and In S are given by
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(i) [M, M) = (M°, M€) + 22 »
(i3) [In S,In S] = (M€, M®) + (In(1 + x))? * pM
Proof. Part (i) is a standard fact. For part (ii), write X = (z —In(1+2))* ™ and notice
that InS —In Sy = M — X — $(M¢, M¢). Hence
nS,InS] = [M— X, M — X]
= [M>M] + [X7X] - Q[MvX]
= (M, M) + 22 % ™M + (. — In(1 + 2))2 M — 22(z — In(1 + z)) * x™.

By the Cauchy-Schwartz inequality,

w(z —In(1+ )|+ p™ = " |AM(AM, — In(1+ AM,))|

s<-

< D (AM)? > (AM, —In(1 + AM,))? < o,

so z(x —In(1+2)) * u™ also converges absolutely, a.s. Termwise manipulation is therefore
allowed, so since 22 + (z — In(1 + x))? — 22(x — In(1 + z)) = (In(1 + x))?, we get

s ™M 4 (2 —In(1 + 2))2 % g™ — 22(x — In(1 + ) * ™ = (In(1 + 2))? % pM.

The result follows. =

We also have the following lemma, which gives the semimartingale decomposition
of InS.

Lemma 94 Assume that In .S is locally integrable. Then

InS—InSy=M+In(l+z)* (M —-v) (M, M) — (x —In(1 +x)) *v.

1
2
Proof. From (4.1) and (4.2) we have

e 1

InS—InSy=M 5

(M€, M) +xx (pM —v) — (2 —In(1 + 2)) * M.

Our assumption together with the fact that M¢ and = * (4™ — v) are local martingales,
hence locally integrable, implies that (M€, M) and (z—In(1+x))*u™ are locally integrable
(notice that both are nonnegative). Hence (z —In(1+ z)) * v is locally integrable (see [76],
Proposition 11.1.8), so we may add and subtract this quantity to the right side of the
previous display to obtain

InS—InSy=M°— %(MC,MC> +In(1+z)* (™M —v) — (z —In(1 +z)) *v.

This is the desired expression. m
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4.3 Approximation using the quadratic variation

4.3.1 Finiteness of expectations

In order for there to be any hope that E(P(T)) accurately approximates E(P"(T)), a
minimal requirement is that both these quantities be finite. Perhaps somewhat surpris-
ingly, they need not be finite or infinite simultaneously. This is of course a potentially
serious issue, since the value of E(P(T')), when finite, is nonsensical as an approximation
of E(P™(T)) if this is infinite. The following result gives necessary and sufficient condi-
tions for E(P"(T")) to be finite, given that the approximation P(7') is known to have finite
expectation.

Theorem 56 Assume that P(T) € L. The following statements are equivalent.
(i) P*(T) € L' for at least one n > 1
(M¢, M€y € L?
(i)
(x —In(1+2))*vp € L?
Proof. First of all, note that since P*(T) = > I ;(6;InS)?, we have P*(T) € L' if and
only if §;In S € L? for each i, which is equivalent to having In Sy, —InSy € L? for each i.

We thus need to show that this is equivalent to condition (i) in the statement of the
theorem.

By Lemma 93, our basic assumption P(T) = [InS,In S]y € L! implies that (M¢ M) €
L' and (In(1 + x))? * ¥ € L'. Hence both Mf and In(1 + x) x (u* — v); are in L? for
every t < T. Therefore, using the representation from Lemma 94, namely

S —1InSpy = M — %(MC,MC> Fin(l 4+ 2) (1 = 0) — (2 — In(1 + 2)) + 2,

we deduce that InS;; —In Sy € L? for each i holds if and only if
1
§<MC, M)y, 4 (z —In(1 + 2)) * vy, € L*
for each 7. Since both (M€, M¢) and (z —In(1+x)) * v are nonnegative and nondecreasing,
this is equivalent to condition (ii). The proof is finished. m

We note that the above theorem implies that if P*(T) € L! for some n then P*(T) € L!
for all n > 1. An analogous result holds for volatility swaps.

Theorem 57 Assume that V(T) € L'. The following statements are equivalent.
(i) V(T) € L* for some n > 1

(M€, M) € L
(i)
(x —In(1+2z))*xvp € L}
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Proof. Using for instance the fact that all norms on R" are equivalent, there are constants
0 < ¢ < (C < oo such that

VM(T) < 68| < CVHT) as.
=1

Thus V*(T) € L' is equivalent to §;InS € L' for each i, which is equivalent to In S;, —
In Sy € L' for each i.

Now the proof is similar to that of Theorem 56. By Lemma 93, V(T) = y/[In S,In S]y € L*
implies that \/(M¢, M) and \/(ln(l +2))2 % ud! are in L', which via the Burkholder-

Davis-Gundy inequalities implies that Mf and In(1 4 x) * (u™ — v); are in L' for each
t <T. By Lemma 94, therefore, In Sy, —In Sy € L! for each i if and only if

1
§<MC,MC>ti +(z—In(l+2))* v, € L

for each ¢. This is equivalent to condition (i7) of the theorem. m

Again, we note that Theorem 57 implies that if V™*(T) € L! for some n then V*(T) € L*
for all n > 1.

When S is continuous we have the following variation of Theorem 56, which indicates that
in many cases, E(P"(T')) < oo is a stronger requirement than F(P(T')) < oo. This will be
used in Section 4.4, where we discuss specific examples. Notice that when S is continuous,
P(T)=[InS,In S| = (M, M¢) = (M, M).

Theorem 58 Assume that S is continuous. Then the following are equivalent.
(i) My € L* and P™"(T) € L*
(ii) P(T) € L?

Proof. In the continuous case, InS —In Sy = M — (M, M). First assume (ii), i.e. that
P(T) = (M, M)y € L% Then certainly M; € L? for every t < T, hence InS; € L? for
every t < T. Therefore 6;In S € L? for every i, and as in the beginning of the proof of
Theorem 56, this implies that P*(T) € L'. Hence (i) holds. Conversely, if () is satisfied,
then 6;InS € L? for every i, so InSp € L?. We also have My € L' by assumption, so
(M, M) = 2(Mr —1In Sy +1nSp) is in L', implying that My is in fact in L2. This lets us
strengthen the previous conclusion to (M, M)y € L?, which is (i7). =

Notice that the implication (ii) = (i) also follows from Theorem 56. We can prove an
analogous result for volatility swaps.

Theorem 59 Assume that S is continuous. Then the following are equivalent.
(i) My € L' and V(T) € L*
(ii) V(T) € L?, i.e. (M, M)y € L'.
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Proof. As in the proof of Theorem 57, V*(T) € L! is equivalent to &; In .S € L for each i.
The rest of the proof is similar to that of Theorem 58. m

In the case of continuous price processes, Theorem 58 makes it clear how one can proceed
to construct examples where the approximation P(T") has finite expectation, but the true
payoff P™*(T) does not. Indeed, any process S of the form S = Sp&(M) will do, where M

is a continuous local martingale that satisfies

(M, M)y € L
(4.3)
(M, M) ¢ L?.

It is clear that such processes exist; what is less clear is to what extent examples can
be found among models that appear in applications. In Section 4.4 we provide examples
demonstrating that the condition (4.3) can appear in models that may appear innocuous
at first sight.

4.3.2 Bounds on the approximation error

In this section we assume that both E(P(7T')) and E(P"(T')) are finite, and study conditions
under which they are close for large n; as already mentioned, although P"(T) — P(T) in
probability, the expectations need not converge. We start by showing that under general
conditions, the two expectations at least cannot be too far apart. We then impose addi-
tional structure on the model and give conditions that guarantee convergence. The focus
of this section is on variance swaps.

Theorem 60 Assume that P"(T) and P(T) both are in L'. Then there is a constant
C > 0, independent of n, such that

|E(P(T)) — E(P™(T))| <C  for alln.
The proof of Theorem 60 is straightforward once the following lemma has been estab-
lished.
Lemma 95 Assume that P*(T) and P(T) both are in L' and define
N =In(1+z)* (M —v)

A= %(MC,MC> +(z—In(l+2z)) *v.

Then (M¢, M€ and [N, Nt are in L*. Moreover,

n

|E(P(T)) — BE(P™(T))| < E(Z(&A)?) v 2E(§n: |<5Z-Mc\6iA) + 2E(§n: ]5iN\5iA>,

=1
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and we have
n

(3 50e15i4) < \/B(0e, Meyr)

=1
and
B( 32 10N15:4) < \/E(IN. Mr)
=1

Proof. Observe that N is a purely discontinuous local martingale with [N, N] = (In(1 +
x))2%p™ and A is a nondecreasing process. Since by assumption P(T) = [In S,In S|y € L*,
Lemma 93 implies that both M¢ and N are L? martingales, which is the first assertion.
Since also P*(T) € L', Theorem 56 shows that A7 € L?. Again by Lemma 93,

E([ln S, In S]T) - iE(éi(MC,MC>> + iE(éi[N, N])

-y B((6:M) + (iV)?).
=1

Lemma 94 shows that with N and A as above, we have In S —1In Sy = M¢+ N — A. Hence
0;InS = 6; M+ §; N — 9; A, and therefore

E(P™(T)) — E(P(T)) = En: E((&A)z +2(6;MC)(6;N) — 2(8;M°)(6;A) — 2(6iN)(6,;A))
=1

n
=S E((éiA)Q —2(8: M) (5;A) — 2(6Z-N)(5iA)),
i=1
where the second equality holds because M¢ and N are orthogonal L? martingales. The
triangle inequality and Jensen’s inequality yield

|E(P(T)) — B(PM(T))| < E(Zn:(éiA)Q) + 2E( zn: |5iMC]5,~A> + 2E<Zn: |<5iN]5,~A>
=1 =1

i=1
= (I) + (II) + (III).

This settles the first inequality in the statement of the lemma. For (II), applying the
Cauchy-Schwartz inequality twice, first for the sum and then the expectation, yields

(II) < 2E (J i(&Mﬂ)?J i(&AP) < 2J E(i(&Mﬂz)J B( fj(@A)?).

i=1 i=1 i= i=

It only remains to notice that E(Z?:l(éiMc)Q) = >, E(5i<Mc, MC>> =
E((M¢,M¢)r). An analogous calculation yields

(1) < 24/ E(IN, N]T)J E(Z(@A)Q),
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thus proving the lemma. =

Proof of Theorem 60. By Lemma 95 it suffices to bound E(> 7 (6;4)?). Since
0; A > 0 for each i, we get

E(i(éiA)Q) < E({ i&iA}Q) = B(A2) < .
i=1 i=1
The proof is complete. =

Notice that constant C' can be taken to be

€ = B(AR) + 20/ B((M*.27)\/B(43) + 2/ E(IN. N]r) / B(43),

where N and A are as in Lemma 95. It is worth pointing out that since C' is independent
of n, it is in particular valid for n = 1. It can therefore not be expected to provide a tight
bound for large n. Such results can be obtained under additional structure on the model,

which we now introduce.

For the remainder of this section we assume that our probability space supports an m-
dimensional Brownian motion W = (W1 ... W") and a Poisson random measure p =
p(dt,dz) on Ry x R with intensity measure dt ® F(dz), where [(z2 A 1)F(dz) < oo.
Moreover, we assume that M¢ is a stochastic integral with respect to W, and that M? is
a stochastic integral with respect to u — dt ® F'(dz). That is, we assume that there are
predictable processes a',...,a™ and a predictable function ¢ > —1 such that

moog
Mf = Z/o akdwk and M =% (u— dt @ F(dz));.
k=1

In this case the compensator v of ™ satisfies

/OT /(_1,00) G(s, z)v(ds, dr) = /0 ' /R G(s,9(s, 2))F(dz)ds

for every nonnegative predictable function G. Moreover, it is a classical result that there
exists a one-dimensional Brownian motion B and a nonnegative predictable process o such
that

t
Mf_/ o4dBs.
0

Under this structure we can formulate conditions on ¢ and ¥ under which the expectation
of P"(T) converges to the expectation of P(T') as n — oc.

Theorem 61 With the notation and assumptions just described above, assume that the
following conditions hold:

E{ fOTaglds} < 00

B JE o1V ) 05,20 + (a1 + 00, )P F(de)ds ) < o
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for some p >0 such that [o(1 A |z|P)F(dz) < oo. Then

lim |E(P(T)) ~ E(P"(T))| = 0.

n—0o0

More specifically, there are constants C' and D such that

|E(P(T)) — E(P™(T))| < Cn~' + Dn~Y/2.

Notice that p < 2 always works, in the sense that [,(1 A 2?)F(dz) < co. However,
depending on F'(dz), smaller values of p may also work, imposing less stringent restrictions
on . In particular, if the Poisson random measure only has finitely many jumps, so that
Jg F(dx) < oo, we may take p = 0, and the condition on v reduces to

/ / {4(s,2) (14+1(s,2 )Q}F(dz)ds} < 0.

We remark that Theorem 61 generalizes results in [15], where the authors study the Black-
Scholes model, the Heston stochastic volatility model, the Merton jump-diffusion model,
and the stochastic volatility with jumps model by Bates and Scott.

The proof of Theorem 61 requires two lemmas.

Lemma 96 For0<s <t <T we have, a.s.,

{/:/(_LOO (2~ In(1 4 2))(du, )}
t—sc//lv\z|p{¢sz (In(1 4 ¥(s,2)))* } F(dz)ds

for any p > 0 such that [(1 A |2|P)F(dz) < oo, and a finite constant C' that does not
depend on s, t or p.

Proof. Jensen’s inequality yields

{/: /(_1700)(30—ln(l—i-x))l/(du,dx)}Q

! 2
/ /W(Sa z) —In(1 + TZJ(S,z)))F(dz)ds}

t—s/ /Gsz dz}ds

where we have defined G(s, z) = ¥(s,z) —In(1 + ¢(s, z)). Splitting up the integral over R
as the sum of the integrals over {|z| < 1} and {|z| > 1}, and applying the inequality
(a+b)? < 2a” + 2b%, we obtain

2 2 2
{/RG(s,z)F(dz)} gz{ /ﬂzgl} G(s,z)F(dz)} +2{ /{|Z|>1} G(s,z)F(dz)} .
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Since C1 = F({]z| > 1}) < oo, Jensen’s inequality applied to the second term yields

{/{|z>1} G(SaZ)F(dz)}z <Oy /{z|>1} G(s,z)2F(dz).

For the first term, let F(dz) = |z[PF(dz). Then Cy = F({|z] < 1}) < 0o by assumption,
and using once again Jensen’s inequality we get

{/{|z|§1} G(S’Z)F(dz)}Q - {/{z|§1} ’z|_pG(S,z)ﬁ(dz)}2

<Co [ G )
{lzI<1}
e / 12|72 G (s, 2)2F(d2).
{lzI<1}
Assembling the different terms and noting that

G(s,2)? < 2{ (5,2 + (In(1 + (s,2)))? |

yields the result with C' =4(Cy vV Cs). m

Lemma 97 Under the assumptions of Theorem 61, we have P(T) € L', (M¢, M€y € L?,
and (x —In(1 + x)) * vp € L.

Proof. By Jensen’s inequality, E{( fOT o2ds)?} < TE{ fOT otds}, which is finite by hy-

pothesis. So (M€, M¢)y € L% To prove that P(T) € L' it therefore suffices to note
that

E{(n(1 +2)) 4" b = B{(n(1 + )5 pr } = B{(In(1 + 1)) = (ds & F(d2)) }

which is finite by assumption, since 1V |z|7P > 1. Finally, an application of Lemma 96 with
s=0and t =T gives a bound on E{((x —In(1 + x)) * vr)?} that is finite by assumption.
The lemma is proved. =

Proof of Theorem 61. By Lemma 97, the hypotheses of Lemma 95 are satisfied, so we
have the bound
n n n

(51,4)2) + 2E< 3 \@Mcy(siA) + 2E(Z |5iN]6iA>
=1

i=1 i=1

)

|[B(P(T)) - BE(P(T))| < B(

(I) + (II) + (1I1),

where N = In(1 4+ 2) * (u™ — v) and A = 3(M® M) + (z — In(1 4 2)) x v. We first deal
with (I). Using the inequality (x 4 y)? < 222 4 23 we obtain

i E((éiA)2> < f: {;E<(5i<MC, MC>)2) + 2E((5i(x —1In(1 + 2)) * y)2) } .
=1

1=
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Now, Jensen’s inequality yields

t;

E{ (87, M%)} = E{(/ os) y< el

Furthermore, Lemma 96 with s = ¢;_; and t = t; yields

Uﬁds}.

—1

E{(di(x— In(1+ z)) * V)z}
/ /1\/\z|p{1/13z (In(1 + (s, 2)))* } F(dz)ds

for some constant C7 independent of 7. Summing over ¢ shows that

(1) < %E{ /OT J;lds}
201 / /1\/|z|p{2/)sz (1+(s,2))) }Fdzds}

which is equal to n~! times a constant C that is finite by assumption.

Concerning the two remaining terms (II) and (III), Lemma 95 gives

and

so that (IT) 4 (IIT) < Cy+/(I) < Cov/Cn~/? for some constant Cy. The claim now follows
with C as above and D = 02\/5. []

4.4 Examples

4.4.1 Strict local martingales

As it has been extensively emphasized in the previous chapter, the literature on asset
price bubbles centers around the phenomenon that S can be a strict local martingale
under the risk neutral measure P, see [31] [83], [84]. Moreover, in [43] this issue has
been noted to cause complications for pricing using PDE techniques. On the other hand,
alternative criteria of no arbitrage type have been proposed by various authors to guarantee
the existence of a true martingale measure, for instance [122], [19], [65], see for instance
Theorems 48 and 49. It is therefore natural to ask about the relationship between our
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previous results and the true martingale (or strict local martingale) property of S. We
give two examples, in the continuous case, showing that the two are not connected in
general. More specifically, the examples show that the martingale property of .S has little
to do with the integrability of (M, M)r.

Our first example uses the criterion of Theorem 49. As in Section 4.3.2, B is standard
Brownian motion.

Example 10 (S a strict local martingale and (M, M)y € L?) Consider the Con-
stant Elasticity of Variance (CEV) models dS; = S§*dBy. By Theorem 49, S is a strict local
martingale if and only if « > 1. We would like to choose o > 1 such that M; = fg Se-1dB,

is a martingale with an integrable quadratic variation, i.e. E{(fot Sf(""”)2} < oo. This
can be achieved with € € (0,1) and o =1+ § > 1. Indeed,

T 2 T T T
E (/ Sf(o‘_l)ds) <TE / Sie-Ngs) =TE / Ssds =T/ E(55)ds.
0 0 0 0

Since € € (0,1), x — a° is concave. Jensen’s inequality thus implies that the right side
above is dominated by TfOT E(Ss)?ds < T%S5 < oo, where E(Ss) < So because S is a
positive local martingale, hence a supermartingale. This shows that S can be a strict local
martingale, even if the quadratic variation (M, M) = (In S,In S) is in L2.

For completeness, we also give a simple example showing that the reverse situation is also
possible: that S can be well-behaved (a bounded martingale), while M is not.

Example 11 (S a bounded martingale and M a strict local martingale) Let X
be the reciprocal of a Bessel(3) process. It is well-known that X is a strict local martingale,
see e.g. [25, p. 20-21]. Set My = — Xy, so that M is a strict local martingale with My € L*
and My < 0 a.s. for allt > 0. Now, P(T) = (M, M)t is not in L* (otherwise M would be
a true martingale), and also P*(T) fails to be in L' by Theorem 58.

However, since Sy = E(M); = exp{—X; — 1(X, X);} <1, it is a bounded local martingale,
hence a true martingale. In this example, the “bad” behavior of M is caused by its ability
to take on very large negative values. This does mot carry over to S, since it is obtained
through exponentiation.

4.4.2 Stochastic volatility of volatility

We now proceed to give an example of a class of continuous stock price models that look
innocuous, but where the conditions (4.3) at the end of Section 4.3.1 are satisfied for
certain parameter values. In those cases, Theorem 58 implies that E(P(T")) < oo but
E(P™(T)) = 0.

We use stochastic volatility models with stochastic volatility of volatility. Let B, W
and Z be three Brownian motions, and let p denote the correlation between W and Z,
ie. d(W,Z); = pdt. No restrictions will be imposed on the correlation structure of
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(B,W, Z), other than through the parameter p. We consider the following model for
the stock price S, its volatility v and the volatility of volatility w:

dS; = Si\/vydB; (4.4)
dvt = UthWt (45)

dw; = k(0 — wy)dt + ny/wedZy,

where K, 6, n are positive constants. Maintaining our previous notation, where M is the

stochastic logarithm of S, we have that M; = fg \/UsdBs, so (M, M), = fg veds. Recall
condition (4.3) from Section 4.3.1:

(M,M)r € L'

(M, M)r ¢ L2

Note that v is a nonnegative local martingale and hence a supermartingale. Together with
Fubini’s theorem, this yields

E({(M,M)r) = E{ /OT vsds} = /OT E(vs)ds < Ty,

so (M, M)y € L*. Now we wish to find conditions such that (M, M)y = fOT vsds ¢ L?. To
this end, define
T* = sup{t : E(v?) < oo},

and let x = 2pn — k and A = x? — 2p?. It is proven in [3| that

(1 1. (x+tVA .
\/Zln(x—\/ﬁ) it A>0and x >0,
T" = —%(arctan(%) - 7T1{X<0}> if A <0,
+o0 otherwise.

The next step is to establish that v is in fact a martingale.
Lemma 98 The process v defined above is a true martingale.

Proof. Using Feller’s test of explosion (see e.g. [120]), a straightforward calculation shows
that w does not explode under P. Therefore, using the same techniques as in [3| or in
Section 3.3, it suffices to establish that the auxiliary process w, defined as the solution
to

dw; = (/43(9 - ’lf)t) + pmbt)dt + N/ wydZy, Wy = wo,

is non-explosive. This can again be verified using Feller’s criterion. m
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We may now conclude our construction by choosing the parameters p, n and s such that
T* < 00, and then choose T' > T*. In this case, Fubini’s theorem implies that

E{(/OTvsds)Q} :E{ /OT/OTvsvtdsdt} :/OT/OTE(vSvt)dsdt.

Moreover, E(vsv) = E(vsE(vt | Fs)) = E(v?), so we get

s

E{(/OTvsds)z} :/OT/OTE(vf)dsdtz /T TfE(vf)dsdt:oo.

We conclude that (M, M)r ¢ L?, and can summarize our findings as follows.

Example 12 Suppose in the stock price model with stochastic volatility of volatility de-
scribed above, the parameters are such that T > T*. Then the preceding discussion shows
that

E(P(T)) < but E(P™"(T)) = oc.

That is, the approximation to the variance swap payoff has finite expectation, whereas the
true payoff does not.

It is interesting to note that it is sometimes possible to change to an equivalent measure
@ ~ P, under which the price process is still a local martingale, and such that both P(T)
and P"(T) become integrable. We would like to thank Kerry Back [8] for posing the
question of whether or not this can happen. To carry out the construction, let us continue
to consider the stochastic volatility of volatility model described above.

Theorem 62 Assume that we are in the framework of a doubly stochastic volatility model
as described in (4.4), (4.5), and (4.6). Suppose that A > 0 and x > 0, so that T* < oo,
and assume also that B is independent of (W, Z). Then there is an equivalent measure Q
such that S is a local martingale under Q, and T* = sup{t : Eg(v}) < oo} = co. As a
consequence,

EQ(P(T)) < 00 and EQ(P”(T)) < 00,
and we have lim,_,~, P"(T) = P(T).

Proof. We can find a Brownian motion W', independent of W and B, such that

Zy = pWy + /1 — p?W].

Let @ be the measure whose density process Y; = Ep(% | .7-}) is given by dY;, =
—YiyJwedW/, where v > 0 is a constant to be determined. To show that Y is indeed a
martingale on [0, 7], it suffices to verify, as in Lemma 98, that the auxiliary process

diy = (K(0 — W) — ypniy)dt + n\/WedZy, by = wo,

is non-explosive. This can again be done using Feller’s criteria. Next, it follows from
Girsanov’s theorem that the dynamics of w under @ is given by

dwt = fi(é — wt)dt + nMdZta
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where

~ K0
F=r+ynV/1-p? 0= ,
K+ ny/1—p?

and dZt = dZ; +v+/1 — p%/wdt is Brownian motion under Q. Hence, if we define

x=2m—& and A=x2-27
we have that T* = co if ¥y <0 and A > 0. But
X=x—-1V1-p?

and

A=A+ ymy/1-p2 (/1= p? —2x),

so it suffices to choose y > —2X

ny/1-p2
The verification of the last assertion is straightforward: Eq(P(T")) < oo is proved in the
same way as under the measure P. To show that Eq(P"(T)) < oo and lim,_,. P™(T') =

P(T), note that f(;f Eq(v})dt < oo due to the continuity and finiteness of Fg(v?) on the
compact interval [0,T]. An application of Theorem 61 concludes the proof. m

4.4.3 Time changed geometric Brownian motion

We now consider models obtained as a time change of a geometric Brownian motion. These
types of models have appeared frequently in the literature. Let B be standard Brownian
motion, and let (At)te[o,T] be increasing and adapted. We define

Sy = SoE(M)y, where M, = Ba,.

In this case we have (M, M), = Ay, so condition (4.3) in Section 4.3.1 amounts to having
Ar € L' but Ay ¢ L?. One such example is of course

¢
At:/ Vsds,
0

with v as in subsection 4.4.2.

4.4.4 The 3/2-stochastic volatility model

A model that has received considerable attention both in the theoretical and empirical
literature is the 3/2-stochastic volatility process. See for example [22] and the references
therein. Let B and W be two correlated Brownian motions. The model prescribes the
following dynamics for the stock price and its volatility

dS; = Sy/vidB,

3
dve = vi(p + que)dt + ev? dWy
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where p, ¢ and € are constants such that ¢ < % and £ > 0. The reason for the upper bound
on ¢ is to avoid explosion of v in finite time. To see this, consider the process R; = v—lt, the
reciprocal of v, which satisfies the SDE

dR; = (e — ¢ — pRy)dt — e/ Ry dW.

The process R is a square-root process, and it is well-known that this process avoids zero
when €2 — ¢ > %, which is exactly the condition ¢ < % Let again M be the stochastic

logarithm of S, i.e. My = fg VVsdBs, so that (M, M), = fg vsds. Carr and Sun [22] provide

the Laplace transform of the integrated variance fOT veds in closed form.

Lemma 99 In the 3/2-model, the Laplace transform of the realized variance fOT vsds 18
given by
-2

F'y—a), 2
TN 77’27
€Yo

P =T (o

)" M(a )

where yo = voepr_l, a=—(1 —E%)—l—\/(% - 42+ 25%, v =2(a+1-2%), T is the Gamma
function, and M is the confluent hypergeometric function

n

=502

n=0
with the notation (), = [} (x 4 1).
Proof. We refer the reader to Carr and Sun [22|. =

Since the Laplace transform of the realized variance exists in a neighborhood of zero,
all moments of fOT vsds are finite. This implies in particular that E((M,M)r) € L2
From Theorem 58, both the true variance swap payoff and its approximation have finite
expectation.

Recall now the following result proved by Dufresne [39] on the finiteness of moments of the
square-root process.

Lemma 100 Let v = 2(8522_(1)' Then

and for all p > —7v,

ITw+p _
E(RY) = pje At(r(v) ) M@+ p,p M)
where py = gl_z_pt, At = 82(625’+1), I' is the Gamma function, and M is the congruent

hypergeometric function defined in Lemma 99.
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If ¢ <0, define k = —¢ > 0 and 0 = % Then the SDE satisfied by v can be re-written
as 5
dvt = I’iUt(e — ’Ut)dt + EUEth

So under the condition ¢ < 0, the process v is mean-reverting with a rate of mean-reversion
proportional to v. Also ¥ > 2 when ¢ < 0, so using Lemma 100, it can be seen that
E(v}) = E(R;?) is finite and integrable on [0, 7] as a continous function on this compact
time interval. Hence the condition of Theorem 61 is satisfied and the expectation of P™(T')
converges to the expectation of P(T') as n — oo.

Under the condition 0 < ¢ < %, it follows that 1 < ¥ < 2 and Lemma 100 implies that

E(v?) = co. By Fubini’s theorem, E(fOT v2ds) = oo so that the condition of Theorem 61
fails and the convergence of the E(P"(T)) to E(P(T)) is not guaranteed anymore.

We now summarize the above findings.

Example 13 Suppose the stock price follows the 3/2-stochastic volatility model. The above
discussion shows that

(i) Both the true payoff P"(T) and the approzimation P(T') have finite expectation.

(ii) If ¢ < 0, i.e. when the squared volatility process is mean reverting, P"(T') converges
to P(T) as n — oo.

(iii) If ¢ > 0, our sufficient condition fails and we can no longer guarantee that P™(T)
converges to P(T). It is an open problem to establish whether or not this convergence
actually takes place.
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