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Abstract

We aim at proving automatically the correctness of numerical behavior of

a program by inferring invariants on numerical variables. More precisely, we

over-approximate in a sound manner the set of reached values. We use Abstract

Interpretation-based Static Analysis as a generic framework to define and ap-

proximate the semantics of a program in a unified manner. The semantics that

describe the real behavior of the program (concrete semantics) is in general unde-

cidable. Abstract interpretation offers a way to abstract this concrete semantics

to obtain a decidable semantics involving machine-expressible objects. We in-

troduce a new affine forms-based abstract domain, called constrained affine sets,

which extends and generalizes an already existing abstract domain introduced

by Eric Goubault and Sylvie Putot. The expressiveness of such new domain is

enhanced thanks to its ability to encode and propagate linear constraints among

variables. We have implemented our new domain to experiment the precision and

the efficiency of our approach and compare our results to the already existing

abstract domains. The theoretical work as well as the implementation and the

experiments have been the subject of two publications [CAV 2009, CAV 2010].

Résumé

Nous nous plaçons dans le cadre de l’analyse statique de programmes, et nous

nous intéressons aux propriétés numériques, c’est à dire celles qui concernent les

valeurs numériques des variables de programmes. Nous essayons en particulier

de déterminer une sur-approximation garantie de l’ensemble de valeurs possibles

pour chaque variable numérique utilisée dans le programme à analyser. Cette

analyse statique est faite dans le cadre de la théorie de l’interprétation abstraite,

théorie présentant un compromis entre les limites théoriques d’indécidabilité et

de calculabilité et la précision des résultats obtenus. Nous sommes partis des

travaux d’Éric Goubault et Sylvie Putot, que nous avons étendus et généralisés.

Notre nouveau domaine abstrait, appelé ensembles affines contraints, combine à

la fois l’efficacité de calcul des domaines à base de formes affines et le pouvoir ex-

pressif des domaines relationnels classiques tels que les octogones ou les polyèdres.

Le nouveau domaine a été implémenté pour mettre en évidence l’intérêt de cette

combinaison, ses avantages, ses performances et ses limites par rapport aux autres

domaines numériques déjà existants. Le formalisme ainsi que les résultats pra-

tiques ont fait l’objet de plusieurs publications [CAV 2009, CAV 2010].
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CHAPTER 1
Introduction

Ce qui importe, ce n’est pas d’arriver, mais d’aller vers.
Antoine de Saint-Exupéry

A huge effort has been done during the last three decades in an attempt
to ensure the correctness of software behavior while adding a reasonable
overhead to the time-to-market of software dependant products. Nowadays,
more than ever, such a goal is still one of the biggest challenges facing
the computer science community. It is amazing to notice the importance
and the impact of software in our everyday life. Cellphones, cars, planes,
appliances, medias, networks, telecommunications, databases, power plants,
factories ... software are everywhere, include a variety of heterogeneous
services and monitor many critical and life dependant applications.

We focus on critical embedded control command software used for in-
stance in airplanes or spacecrafts. This work is in line with the use of formal
verification techniques to prove the correctness of a software with respect to
its specification. We use the static analysis by abstract interpretation as a
general theoretical framework. Static analysis means that we do not run the
software under analysis (in contrast with dynamic methods, as tests for in-
stance). Instead, the semantics of the program is extracted from the source
code, then approximated in a sound manner by a (decidable) abstract se-
mantics. The latter abstract semantics allows to synthesize invariants that
the variables always verify. The level of abstraction reflects the expres-
siveness of the analysis and hence, the precision of the inferred invariants.
Usually, a precise analysis is expensive in time, whereas cheap analysis gives
imprecise results. Therefore, the main effort in the field consists in looking
for a good precision-cost trade-offs.
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1. Introduction

Our main contributions are :

• The definition and formalization of a new precise and efficient abstract
domain, that is a way to represent and compute efficiently the set of
reached values of all numerical variables of the analyzed program.

• The improvement of the set-theoretic operations and mainly the join
operation of the geometrical objects we use. Our approach makes
our domain suitable for functional analysis, that is the study of the
input/output relations of the program.

• An efficient implementation of our abstract domain called Taylor1+.
This sophisticated prototype is freely available and distributed with
the APRON Library widely used by the abstract interpretation com-
munity.

These contributions will be integrated in Fluctuat, a static analyzer that
studies the discrepancy introduced by the use of finite-precision represen-
tation (such as floating-point numbers) instead of the use of real numbers.

Outline The first chapter motivates the need of the abstract domain we
develop later in this work. Starting from an ESA-funded industrial case
study, the formal verification of the source code of the ATV spacecraft
using existing fully-fledged analyzers, has indeed shown an unwanted loss
of precision. In chapter 3 we give a detailed overview of the numerical
properties we would like to prove as well as the already existing abstract
domains. We emphasize more particularly the numerical domains to which
we compare our approach, namely the weakly relational abstract domains
family (zones and octagons) and the linear template-based abstract domain.
Our abstract domain is introduced in chapter 4, where we define its abstract
objects and its lattice-like structure. The next two chapters formalizes the
abstraction of the transfer functions. Chapter 5 focuses on assignments and
tests, while chapter 6 is entirely dedicated to the join operation, one of the
most challenging issue we have got to solve. Right before the conclusion,
our experimental results are gathered in chapter 7, in which we detail the
features of Taylor1+, the implementation of our abstract domain.
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CHAPTER 2
Context and Motivations

2.1 Proving Numerical Properties

The need to estimate the computation errors due to the use of floating-
point numbers is crucial in order to interpret how significant the returned
results are. Rounding-off errors or overflows may cause a serious loss of
precision leading to an unexpected behavior of the software. Although
scientists and engineers are aware of these intrinsic issues [Gol91, Ste74]
and despite the fact that there exists a norm which clarifies and normalizes
the hardware implementation of floating-point arithmetic [IEE85, IEE08],
it is hard to tell, given an implementation of an algorithm, if the numerical
computations are safe, even for small programs.

Whenever, a loss of precision is detected, it is also interesting to point
out the sources of this loss as a helpful feedback for the developer. Indeed,
a minor local loss of precision may cause a wrong interpretation of a test,
and hence lead to a wrong decision.

To make things clear, we consider the case of solving an ordinary differ-
ential equation (ODE) using a computer. The solution could be approxi-
mated numerically using for instance the Euler method. The Euler method
gives a numerical approximation to the ideal solution of the ODE which
can not be computed explicitly. The method error is defined by the dif-
ference between the Euler approximation and the ideal solution. Now, the
Euler approximation is implemented as a computer program. This program
uses finite-precision numbers (typically floating-point numbers) for all in-
tern computations instead of real numbers, which introduces in turn what
is called the computation error, or round-off error.

3



2. Context and Motivations

Although, the method errors could be theoretically estimated (with re-
spect to the real numbers semantics), the computation errors are hard to
estimate in general. The use of finite-precision numbers makes the estima-
tion even harder. We give hereafter an overview of the known approaches
used to estimate the computation errors.

The CESTAC Method

The CESTAC 1 method is useful to self-validate the implementation of
the numerical approximations used in scientific computing to simulate a
mathematical model (as a physical law for instance, usually defined as a set
of ODE). It permits to measure the confidence one can have in the returned
results by the software with respect to the use of finite precision numbers
instead of real numbers. It was also successfully applied to find the best
discrete step, that is the optimal step that minimizes the global error of the
computation (the accumulation of the method error and the computation
error), for a wide class of algorithms, such as the Runge-Kutta integration
schemes or numerical derivation methods [Jea90].

The method was introduced by Vignes [Vig78] and uses the stochastic
arithmetic [Vig93]. The idea is to inject a random perturbation by adding
to the last bit of the mantissa of each resulting float-point number of each
arithmetic operation either 0 or 1 with a probability 1

2
for each 2. The

arithmetic operation is then performed according to all possible perturbed
values of the operands. The final (returned) result is the arithmetic mean
of all these possible partial results (samples). The method uses then the
Student’s t-test to estimate the number of significant digits of the final
returned result, that is the digits common to all samples.

The CESTAC method was later proved efficient by Chesnaux [JM88]
(actually only two or three executions are needed instead of all possible
cases which may blow up the computations), and extended to synchronous
CESTAC by Faye [JP89] and Flavigny [Fla88]. The synchronous CESTAC
tests the significance of the result of each operation which permits to detect
the origin of the loss of precision, and hence to emit an alert if the numerical
algorithm is unstable (that is, if the loss of precision due to the use of
floating-point numbers leads to a wrong interpretation of a test). The
CESTAC method is implemented in the CADNA (Control of Accuracy
and Debugging for Numerical Applications) library [JC08], it permits the

1French Acronym which stands for Contrôl et Estimation STochastique des Arrondis
de Calculs, Stochastic Control and Estimation of Calculus Round-offs.

2depending on the rounding mode, one might add −1 or 1 with a probability 1
4 and

0 with a probability 1
2 .
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2.1. Proving Numerical Properties

validation of the C, ADA, and FORTRAN programs. The CADNA Library
uses a dynamic approach, it compiles and executes the program in order
to estimate on-the-fly the round-off errors. The overhead of the method is
estimated to 3 to 6 times the needed time to execute the algorithm.

Formal Specification of Floating-point Arithmetic

Recently, a specification language for the floating-point arithmetic for C

programs was introduced in [BF07]. The program is annotated with formal
pre- and post-conditions. Then, verification conditions (first order logic
statements) are generated using Hoare logic [Hoa83]. Finally, these condi-
tions are discharged, interactively, using a proof assistant.

The considered model to estimate the approximations errors for each
number is a triplet : the floating point number, the idealized real number
found if the computations were actually done with respect to real numbers
semantics, and the real number that the algorithm is designed to compute.
Therefore, in addition to the discrepancy related to the use of the floating-
point numbers (computation error), the method error, that is the numeri-
cal error related to the used numerical algorithm, could be also estimated
thanks to the third component.

In [BF07], the authors use the Caduceus tool [FMH] for the static ver-
ification of C program and the Coq proof assistant [coq] to discharge the
generated proof obligations. The proof obligations could be also discharged
using Gappa tool [dDLM06, Gap]. Gappa relies on interval arithmetic and
formal specification of the floating-point number arithmetic to prove error
bounds or the absence of overflows.

Abstract Interpretation-based Approach

This approach is completely automated like the CESTAC method, while
giving sound estimation of both the computation and method errors like
the formal specification method. It considers all possible executions in a
sound manner and detects as well any possible loss of precision due to the
use of finite precision numbers.

The method, introduced by Goubault [Gou01a, GMP02] is completely
static. It relies on the semantics of the arithmetic operations and uses
the Abstract Interpretation framework to approximate the floating-point
computation semantics. It analyses the given source code with respect
to real number semantics in one hand and floating-point semantics in the
other hand. The loss of precision is then implied by the discrepancy ob-
served between the results of the two semantics. The technique permits

5



2. Context and Motivations

also to infer numerical invariants that the program respects as well as an
over-approximation (with respect to both used semantics) of all possibly
reached value for all numerical variables used. Fluctuat tool [Flu] imple-
ments such abstract interpreter, using both relational and non-relational
abstract domains.

Miné has also used a similar approach in [Min04a] using linear forms
with interval coefficients to propagate the computation errors. Although
this simple technique does not allow an estimation of the method errors,
nor the source of the loss of precision as it accumulates the errors using
interval arithmetic.

Goubault and Putot defined a rich model including the floating point
representative, the ideal real number and the global error of the computa-
tion decomposed with respect to its origin (line of the program, number of
iteration, etc.). As detailed in [GP11], the authors use a zonotopic rela-
tional domain to derive tight invariants for the real values of the variables,
as well as the global error of the computation related to each variable.

This thesis focuses on this zonotopic relational domain. The domain
uses the affine arithmetic (presented in the next section) to implicitly en-
code the relations between variables. The abstract domain is presented in
detail with respect to the real number semantics all along the remaining
chapters (abstract objects in Chapter 4, and abstract operations in Chap-
ters 5 and 6). The improvements presented in this work could be then
deployed to handle the abstract computation of the real values as well as
the global errors.

2.2 Abstract Interpretation

Abstract Interpretation-based Static Analysis is an efficient way to statically
and automatically prove the correctness of a program. It gives a generic
framework to define and approximate the semantics of a program in a uni-
fied manner. The semantics that describe the real behavior of the program
(concrete semantics) is in general undecidable. Abstract interpretation of-
fers a way to abstract this concrete semantics (or any other semantics) to
obtain a decidable semantics involving machine-expressible objects.

Throughout this thesis, new definitions are introduced by the symbol
def
= , or

def⇐⇒ . The set of real numbers is denoted by R. Each vector ei of
the canonical base of Rn, is defined by 1 in its ith position and 0 elsewhere.
The transpose of a vector v (or a matrix M) is denoted using an upper star
index, v∗ (or M∗).

An interval is the set of real numbers {x | a ≤ x ≤ b}, where a, b ∈

6



2.2. Abstract Interpretation

R ∪ {−∞,+∞}, such that a ≤ b. It is denoted by [a, b]. a and b are the
bounds of the interval.

The set of intervals is denoted by I. As a convention, we use bold face
fonts to denote the elements of I.

For i an element of I, we define:

• inf(i), or i: the infimum bound of i,

• sup(i), or i: the supremum bound of i,

• if i has a finite bounds, then mid(i)
def
= sup(i)+inf(i)

2
,

• if i has a finite bounds, then dev(i)
def
= sup(i)−inf(i)

2
.

We call a hypercube, or box, any subset of Rn of the form Πn
i=1[ai, bi].

The symbol ⊆ denotes the classical inclusion relation over Rn

S1 ⊆ S2
def⇐⇒ (x ∈ S1 =⇒ x ∈ S2) .

Let n be a positive integer, let λ be a real number, and let x and y be
two vectors of Rn. An application N : Rn → R+, is a norm, if and only if
the following properties hold

• N (x) = 0 ⇐⇒ x = 0,

• N (λx) = |λ|N (x) (positive homogeneity),

• N (x+ y) ≤ N (x) +N (y) (triangle inequality).

A seminorm (or equivalently a quasinorm) is a norm with the first require-
ment in the above list removed, that is N (x) = 0 does not imply necessarily
that x is the zero vector. The classical norms over Rn are:

• Euclidean norm: ‖x‖2
def
=
(∑n

i=1 x
2
i

) 1
2
.

• Infinity (or uniform) norm: ‖x‖∞
def
= max{|x1|, . . . , |xn|}.

• Taxicab (or L1, or Manhattan) norm: ‖x‖1
def
=
∑n

i=1|xi|.

The unit ball of Rn, with respect to the norm N is the set defined by

BN
def
= {x | N (x) ≤ 1} ⊆ Rn .

We denote by B, the unit ball with respect to the infinity norm, the di-
mension should be clear from the context, otherwise specified.

We define the sign function sign over R \ {0} as follows:

7



2. Context and Motivations

2.2.1 Definition (The Sign Function)

sign(x) =

{
−1, if x < 0,
1, if x > 0,

The sign of 0 is undefined.

Basic definitions and main concepts of abstract interpretation theory
are presented briefly hereafter, following [Min04b].

Partially ordered set A partially ordered set or poset (D,≤) is a set
of elements D together with a partial order relation ≤, that is a binary
relation which is reflexive (∀X ∈ D, X ≤ X), transitive (∀X, Y, Z ∈ D, X ≤
Y ∧ Y ≤ Z =⇒ X ≤ Z) and antisymmetric (∀X, Y ∈ D, X ≤ Y ∧ Y ≤
X =⇒ X = Y ). Similarly, a partially pre-ordered set is a pair (D,�),
where � is a pre-order, that is a binary relation which is reflexive and
transitive. Any partially pre-ordered set (D,�) defines a poset (D/ ∼,≤),
where the partial order ≤ is defined over the equivalence classes defined by

Y ∼ X
def⇐⇒ {Y ∈ D | X � Y ∧ Y � X}. An upper bound of a subset

D of a poset (D,≤) is an element of D which is greater than or equal to
all elements of D with respect to ≤. Similarly, a lower bound of a subset
of a poset is an element which is less than or equal to all elements of that
subset. A least upper bound, or lub, of a subset D ⊆ D, denoted by ∪D if
it exists, is an upper bound of D which is less than or equal to all upper
bounds of D. Dually, a greatest lower bound, or glb, of a subset D ⊆ D, if
it exists, is a lower bound of D which is greater than or equal to all upper
bounds of D. A poset is directed complete if every increasing chain, that is
{Xi}i∈I , i, j ∈ I, i ≤ j =⇒ Xi ≤ Xj, admits a least upper bound (the set
I ⊂ N, may be infinite). A complete poset is a direct complete poset which
admits a least element.

Lattice A lattice (D,≤,∪,∩) is a poset (D,≤), where every two elements
X and Y of D admit a least upper bound, denoted by X∪Y , and a greatest
lower bound, denoted by X∩Y . A lattice is complete, if every subset D ⊆ D
admits a lub. A complete lattice is a complete poset. A lub of D is denoted
by >, and a glb of D is denoted by ⊥.

Applications An application is a function from a poset (D1,≤1) to an-
other poset (D2,≤2). It is called operator if it is defined over the same poset.
An application J·K : D1 → D2 that satisfies ∀X, Y ∈ D1, X ≤1 Y =⇒

8



2.2. Abstract Interpretation

J·KX ≤2 J·KY is called a monotonic application. An application that pre-
serves the limits of increasing chains, that is J·K1(∪{Xi}i∈I) = ∪{J·K1Xi}i∈I ,
whenever these limits exist, is said to be continuous. We call the ith iter-
ate of an operator J·K, denoted by J·Ki the operator defined by induction

J·Ki def
= J·K(J·Ki−1), for i ∈ N, where, J·K0 is the identity over D. An

application J·K : D1 → D2 that preserves the lub (if it exists), that is
J·K∪1D = ∪2{J·KX | X ∈ D} for D ⊆ D1 is called a complete t-morphism.

Fixpoint A fixpoint of an operator J·K defined over a posetD is an element
X ∈ D such that X = J·KX. We denote by lfpXJ·K the least fixpoint, if
it exists, of the operator J·K, greater than or equal to X (with respect to
the partial order of D). Tarsky’s Fixed Point Theorem [Tar55] proves the
existence of the least fixpoint under some assumptions.

2.2.2 Theorem (Tarsky)
Let f : D → D be a monotonic operator on a complete lattice D; then,
f has at least one fixpoint. Furthermore the set of fixpoints of f is
a complete sub lattice of D, and as a consequence, it admits a least
fixpoint, lfp⊥ f .

Galois connection A Galois connection is a pair of monotonic applica-
tions α : D[ → D] and γ : D] → D[ between two posets D[, and D], such
that ∀X ∈ D[,∀Y ∈ D], α(X) ≤] Y ⇐⇒ X ≤[ γ(Y ). Thus, ∀X ∈ D[,
X ≤[ γ◦αX. The latter property is known as the soundness of abstraction.
The application α is called the abstraction, the application γ is called the
concretisation.

Operator abstraction Operator abstraction stands for the transfer of a
given operator J·K[ defined over the poset D[, through a Galois connection
(α, γ), to obtain an operator J·K] defined over D]. An abstract operator
J·K] is a sound operator if, for all Y ∈ D], α ◦ J·K[ ◦ γY ≤] J·K]Y . For

instance, J·K] def
= α ◦ J·K[ ◦ γ is a sound abstraction of the operator J·K[.

The soundness property is equivalent to J·K[ ◦ γ ≤[ γ ◦ J·K], by definition
of the Galois connection. The latter formulation is suitable to prove the
soundness property whenever we do not have an explicit α which is usually
the case in practice.

9



2. Context and Motivations

Fixpoint computation If two complete posets D[ and D] are linked by
a Galois connection, where γ is continuous, and if J·K] is a monotonic sound
abstraction of a monotonic operator J·K[; then, by [Cou02, Theorem 1],

∀X ∈ D], lfpγ(X)J·K[ ≤[ γ(lfpXJ·K]) .

That is, the least fixpoint greater than or equal to γ(X) in D[, for a given
X ∈ D], is over-approximated by the concretisation of the least fixpoint
greater than or equal to X in D]. If D] is a complete poset; then, Kleene’s
Theorem gives an algorithm to compute such fixpoint iteratively:

2.2.3 Theorem (Kleene)
Let F : D → D be a monotonic operator over a complete poset D. Then,

the increasing chain F i starting from ⊥ def
= ∪∅, admits a limit F ω, and

F ω = lfp⊥ F .

Starting from the bottom element, and applying successively the opera-
tor F , the computation converges towards the least fixpoint of F . However,
if the complete poset D has an infinite strictly increasing chain; then, the
procedure may take an infinite time. In general, we apply convergence
acceleration.

Convergence acceleration A convergence acceleration is an operator
used to reach in finite steps a post-fixpoint. A post-fixpoint of a monotonic
operator J·K] defined over the poset D], is an element X ∈ D] that satisfies
J·K]X ≤] X. Usually such operation is denoted by ∇] and called widen-
ing. We also find in the literature the dual operation to widening, called
narrowing which aims at bringing closer (to the fixpoint) the post-fixpoint
obtained after a widening.

In the sequel, we define then use a simple imperative language for the
sake of clarity. Semantics of real imperative languages, such as C, can be
extended easily. We suppose that the only possible type for numerical
variables is the real number type. In our language SimpleC, a statement s
has the following grammar:

10



2.2. Abstract Interpretation

2.2.4 Definition (SimpleC Grammar)

s ::= v ← expr (assignment)
| if bexpr then s (conditional)
| while bexpr do s (loop)

expr ::= v | [a, b] | expr � expr | √expr,
bexpr ::= expr ≤ 0 | expr = 0

¬bexpr | bexpr ∧ bexpr | bexpr ∨ bexpr,
where v ∈ V , a, b ∈ R ∪ {−∞,+∞}, � ∈ {+,−,×,÷}

The arithmetic operations are restricted to {+,−,×,÷}. The language
allows non-deterministic inputs, expressed by intervals. Arrays and aliases
are not supported.

The concrete semantics of our simple language describes the mathemat-
ical behavior of the values of variables during the execution of the program.
A program environment σ ∈ Σ maps each variable to a set of values, that

is Σ
def
= V → ℘R. The semantics JeK of an expression e ∈ expr maps an

environment to a set of values in ℘(R).

∀e ∈ expr,JeK : Σ→ ℘(R)

JvKσ def
= {σ(v)}

J[a, b]Kσ def
= {x ∈ R | a ≤ x ≤ b}

Je1 � e2Kσ
def
= {x1 � x2 | x1 ∈ Je1Kσ, x2 ∈ Je2Kσ}

where � ∈ {+,−,×}

Je1 ÷ e2Kσ
def
=

{
∅, if 0 ∈ Je2Kσ
{x1 � x2 | x1 ∈ Je1Kσ, x2 ∈ Je2Kσ}, otherwise.

J
√
eKσ def

=

{
∅, if ∀x ∈ JeKσ, x < 0
{
√
x | x ∈ JeKσ ∩ [0,+∞]}, otherwise.

We do not store the locations of any error (here the division per zero
and the square root of a negative real number are the only numerical er-
rors that may happen). In a real analyzer, the semantics of expressions is
context sensitive, (for instance the location of the operation is recorded);
thus, whenever an error occurs, its context is reported to the user without
necessarily halting the analysis.

We define the concrete semantics as the complete t-morphism on D[ def
=

11
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(℘(Σ),⊆,t,u, ∅,Σ) as follows:

JsK[ : D[ → D[

Jv ← eK[ς def
= ∪σ∈ς{σ[v 7→ x] | x ∈ JeKσ}

Jif b then sK[ς def
= {JsK[ ◦ JbK[}ς ∪ J¬bK[ς

Jwhile b do sK[ς def
= J¬bK[(lfpς λX.X ∪ (JsK[ ◦ JbK[)X)

where JbK[ς def
= ∪σ∈ς{σ | ∃x ∈ JeKσ, b is true} .

(2.2.1)

The environment σ[v 7→ x] denotes the environment derived from σ that
assigns the value of the variable v with the real number x and leaves all
other variables unchanged. We use the lambda-calculus functional notation
λX.F (X) to denote the application that maps X to F (X).

The semantics of the conditional statements JbK[, applied to a set of
concrete environments, filters out the concrete environments that do not
satisfy the condition.

The concrete semantics J·K[ is undecidable in general. The set of envi-
ronments may need infinite memory, and computation of the set of locations
infinite time. To address these issues, we abstract the concrete semantics to
obtain an abstract semantics which is i) decidable and ii) whose abstract
objects are machine-expressible, and iii) which is sound.

To define an abstract semantics, one needs to define an abstract lattice,
that is a partial order ⊆], an abstract join operator ∪] over abstract ele-
ments, and a monotone abstract operator for every concrete operator JsK[,
and every statement s that defines the initial language, and a continuous
concretisation function γ.

Figure 2.1 depicts the main idea of abstract interpretation, where Xi
denotes the sets of reached values at the control point i of the program.
The final invariants are over-approximations of the concrete sets of values.

2.3 Fluctuat

Fluctuat [Gou01b, GMP02, Mar02, GMP06, GP11] is a static analyzer by
abstract interpretation developed at the Laboratory for the Modelling and
Analysis of Interacting Systems (LMeASI) at CEA LIST. It is suited to
the analysis of numerical programs; in particular it gives a tight over-
approximation of the discrepancy introduced by the use of finite precision
(floating-point or fixed-point) numbers instead of real numbers. It keeps
track of the contribution of each statement to the global error. Division

12
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X1 ⊆ α ◦ γ(X ]
1) X ]

1γ

X2

Jv ← ...K[

⊆ γ(X ]
2) X ]

2γ

Jv ← ...K]

α

abstract domainconcrete domain

over approximation

Figure 2.1: Abstract Interpretation.

by zero, overflows, unstable tests are also reported by the analyzer. Fluc-
tuat was successfully applied in many case studies [GPBG07, DGP+09,
BCC+09].

2.4 The ATV Case Study

The case study was an ESA funded project which main goal was the assess-
ment of the abstract interpretation-based static analysis techniques on real
life, automatically generated, industrial code. The source code, provided
by Astrium Space Transportation, concerned the Monitoring and Safing
Unit (MSU), the heart part of the Automated Transfer Vehicle (ATV).
The spacecraft’s mission was to supply, completely automatically, the In-
ternational Space Station, ISS, with payloads (mainly fuel, and equipment
for reactors) and to correct the spatial station orbit. To achieve successfully
its mission, the ATV needs to dock into the ISS. In addition to the navi-
gation, the MSU was in charge of the critical “take-away” phase triggered
if any problem happens during the docking phase. Indeed, any failure of
the docking phase can seriously damage the ISS as the engine operates too
closely.

Two abstract interpretation-based static analyzers were involved: Fluc-
tuat (see Section 2.3) and ASTRÉE. I was in charge of evaluating Fluctuat
on this case study (during my master’s internship).

ASTRÉE [Ast], Analyses Statiques de Logiciels Temps RÉel Embarqués,
is a static analyzer by abstract interpretation developed at the Laboratoire

13
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d’Informatique de lÉcole Normale Suprieure. It aims at automatically prov-
ing the absence of run-time error (RTE): division by zero, out of bounds
array indexing, arithmetic overflow and user defined assertions given as in-
put to the tool. ASTRÉE is avionic software oriented and was successfully
applied in an industrial context [SD07, BCC+10].

The study has shown that the techniques in use are mature enough to be
deployed as integrated tools within any project development cycle using C
language 3 in that they substantially improve the reliability of the code with
a reasonable time overhead. The main results are summarized in [BCC+09].

However, the case study has also shown that the current state-of-the-
art of abstract domains are not fully suitable for space-like software because
of the use of normalized quaternions (vectors of four dimensions). These
quaternions are used to encode the space position of the spacecraft and
express its possible motions (translation, space rotations) as linear trans-
formations (matrix multiplications).

To have a good intuition about quaternions, the reader can think about
the use of the complex numbers to encode the position of a point in the
plan, together with the fact that all plan similitudes in the plan can be seen
as 2× 2 matrix multiplication.

Some (quaternion) operations implemented in the MSU determine only
three components (the position of the spacecraft in the space) of the quater-
nion, the fourth remaining component is computed in a way for the final
quaternion to have its Euclidean norm equal to 1. The other operations
that determine all components, normalize the result. So that any quater-
nion given as input to any routine is always normalized.

These normalization operations were hard to abstract precisely using
existing relational domain. Indeed, they involve four non-linear operations
combined together: the square, the square root, the inverse and the multi-
plication.

Suppose we have the non-null quaternion (x0, x1, x2, x3), where xi, are
known real numbers; then, the normalized quaternion (y0, y1, y2, y3) is de-
fined by

yi
def
=

xi√
x2

0 + x2
1 + x2

2 + x2
3

. (2.4.1)

In the abstract domains used, the evaluation of the expression of yi is
computed as a composition of basic arithmetic operations. Each operation
introduces an approximation error term which in turn is propagated to the
next operation. This makes it hard for instance to prove that the interval
concretisations of yi have to still within [−1, 1], which should happen for

3The current version of Fluctuat supports Ada language.

14



2.4. The ATV Case Study

a normalized quaternion. Since the normalization is repeated frequently,
the intervals concretisations grow quickly leading to imprecise results and
many false alarms.

One naive technique to address such problem is subdivision. However,
subdividing 4 intervals into 10 smaller intervals gives 104 possible instances
to analyze just for one normalization. The solution does not scale for the
whole code.

Another technique could be the linearization of the whole expression
once instead of the evaluation of the composition of basic operations. How-
ever, this method works only if the assignment is done once, as shown by
equation (2.4.1) for instance. However, very often, in critical embedded sys-
tems, some operations such as the square root or the division are wrapped
by safe guards, and thus the assignment is decomposed into more than one
assignment using intermediate variables.

One other solution could be the transformation of the normalization
function by an equivalent expression which computes the quotient of two
independent terms; for y0 for instance, the computation is done as follows:

y0 =
sign(x0)√

1 +
x21+x22+x23

x20

which proves that yi, 1 ≤ i ≤ 4 are within [−1, 1] using interval arithmetic,
since the numerator and denominator are no longer dependent.

However, in general, rewriting the code by the analyzer is not allowed,
so for the purpose of the case study, we have proved the correct behavior
of the normalization operation using an external prover [dDLM06]. We
have then asserted that the intervals of the components of a normalized
quaternion are always within [−1, 1].

Another idea was to add a (quadratic) constraint which ensures that the
vector y is normalized, that is y2

0 + y2
1 + y2

2 + y2
3 = 1 to an existing abstract

domain.
In the Affine forms-based abstract domain, implemented in Fluctuat,

such constraint could be expressed as a constraint on the noise symbols
and propagated as such for future computations. This novel idea motivates
our work as it also permits to precisely interpret tests, which were treated
by a reduced product with intervals so far. The rest of this thesis develops
and formalizes in detail this idea.
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CHAPTER 3
Numerical Abstract Domains

One of the main drawbacks of static analysis by abstract interpretation is
the number of false positives which are strongly related to the expressiveness
of the underlying abstract domain. Indeed, the sound over-approximation
usually adds unfeasible behaviors to the actual behavior of the program.
The non-relational abstract domain [CC77] detailed earlier is for instance
unsuitable to prove any dependency between variables. On the other hand,
the abstraction is needed to overcome the decidability and computability
limitations encountered when dealing with the concrete semantics of the
program.

As an attempt to fill this gap, many abstract domains have been de-
veloped in the last three decades. In 1978, Cousot and Halbwachs [CH78,
CMC08] presented a way to synthesize linear invariants using the double
description of a set of linear constraints, generalizing Karr’s special case of
linear equalities [Kar76] presented in 1976. The exponential complexity of
the analysis mainly due to the internal representation of a convex combi-
nation of a set of linear constraints (convex Polyhedron) motivated weakly
linear relational abstract domains. In [Min01] Miné introduced the octagon
abstract domain, which is restricted to invariants of the form ±X ± Y ≤ c.
The efficient internal representation gives a cubical complexity in the num-
ber of variables. Later, Simon et al. in [SKH03] extend the coefficients to
be any real number instead of being constrained to ±1. Sankaranarayanan
and Manna in [SSM05] combine the two previous approaches in their guided
polyhedra abstract domain: the linear constraints are restricted to a finite
set of linear templates generated from the program to analyze. In addi-
tion to all these explicit relations-based abstract domain, Goubault and
Putot [GP06] introduced an implicit relations-based on abstract domain,
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using affine arithmetic as an extension to interval arithmetic to overcome
its intrinsic dependency problem.

More recent and very promising abstract domains have targeted non-
linear invariants. Allamigeon, Gaubert and Goubault, have used tropical
algebra [SS04] to infer min-max invariants [AGG08], while in [AGG10] Adjé,
Gaubert and Goubault, have used Lyapunov functions as non-linear tem-
plates together with SemiDefinite Programming relaxations for the fixpoint
computation using policy iterations instead of value iteration (Kleene like
techniques). The latter is a rising technique to cope with the limitations
of Kleene iteration technique and was already formalized for other abstract
domains [CGG+05].

Many abstract domains could be combined (in a manner to define) in
order to increase the overall expressiveness of the analysis, and hence in-
crease the precision of the final results. Cousot and Cousot pointed out
in [CC77] a generic framework, called reduced product [CC79, Cou05], to
combine two abstract domains. For instance Laviron and Logozzo exploit
this combination in their sub-polyhedra abstract domain [LL09], which still
suffers from the complexity of the polyhedra domain. In 2006, Tiwari and
Gulwani have presented an elegant framework, called logical product, for
combining abstract domains under some hypothesis [GT06]. The logical
product allows a better and richer exchange of relations between the in-
volved abstract domains than the reduced product which exchanges only
the concretisations of the involved domains.

Contents In the remaining part of this chapter, we detail some abstract
domains relevant to our work. In section 3.1, we recall the basics of the
interval arithmetic first; then, we abstract the concrete semantics of our
SimpleC language using intervals. Section 3.2 focuses on two (explicit)
relational domains, namely the Polyhedra abstract domain 3.2, and the
Linear Templates abstract domain 3.2. The affine arithmetic as well as
most of its known extensions are covered by Section 3.3. The Perturbed
Affine Sets abstract domain is briefly introduced in Section 3.3. The last
section summarizes the main ideas behind the reduced product (Section 3.4)
and the logical product (Section 3.4) of abstract domains.
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3.1. Non Relational Abstract Domain

3.1 Non Relational Abstract Domain

Interval Arithmetic

Interval Arithmetic [MY59] stands for rules that govern the computations
using intervals instead of real numbers. The basic arithmetic operations
over intervals are reduced to simple operations on operands’ bounds. For
any operation ◦ ∈ {+,−,×,÷}, we have:

[u,u] ◦ [v,v]
def
=

[min{u ◦ v,u ◦ v,u ◦ v,u ◦ v},max{u ◦ v,u ◦ v,u ◦ v,u ◦ v}] . (3.1.1)

Computing all the combinations of bounds is not necessary for all operations
listed above. For instance,

[u,u] + [v,v]
def
= [u+ v,u+ v], (3.1.2)

[u,u]− [v,v]
def
= [u− v,u− v] . (3.1.3)

For the division operation, whenever the denominator interval contains
zero, the result is undefined, and the only possible result is the real line,
that is R.

Observe that, an interval does not have an additive inverse, and i − i
does not vanish to zero (e.g. [1, 2]− [1, 2] = [−1, 1]). Similarly, an interval
does not have a multiplicative inverse, and i ÷ i, assuming that 0 is not
within i, is not equal to 1 (e.g. [1, 2] ÷ [1, 2] = [0.5, 2]). Furthermore, the
multiplication operation (×) does not distribute over the addition operation
(+). We have instead a weaker notion of sub-distributivity (with respect to
the relation order of inclusion over intervals).

w × (u+ v) ⊆ w × u+w × v
For instance, [1, 2] × ([−3,−2] + [3, 4]) is equal to [0, 4] if the addition
operation is evaluated first, and [−3, 6] if we distribute the multiplication
operation. Both intervals contain all true values, but the former is tighter
(in the sense that [0, 4] ⊆ [−3, 6]). Also, the square of an interval, may
contain non-positive values, e.g. [−1, 2]× [−1, 2] = [−2, 4].

The main reason behind these subtleties in arithmetic operations over
intervals comes from the fact that substituting variables by their respective
intervals loses all relations between the involved variables. As a matter of
fact, if the variables x and y are within the same interval [−1, 2], then eval-
uating x2 or xy in interval arithmetic leads to the same interval operation,
namely [−1, 2]× [−1, 2] (= [−2, 4]). Whereas, all values in [−2, 4] are pos-
sible for xy, only the positive values, that is the interval [0, 4], may occur
for x2.
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Intervals Abstract Domain

We abstract our concrete semantics (see equation (2.2.1)) using the lattice
of intervals. If (D,≤,∪,∩,⊥,>) is a complete lattice (resp. complete poset,
poset), and V is a set, then (V → D, ≤̇, ∪̇, ∩̇, ⊥̇, >̇) is a complete lattice
(resp. complete poset, poset) called the structural lifting of D. The point-
wise lifting operations are defined as follows

X≤̇Y def⇐⇒ ∀v ∈ V,X(v) ≤ Y (v)

∪̇X (v)
def
= ∪{X(v) | X ∈ X}

∩̇X (v)
def
= ∩{X(v) | X ∈ X}

⊥̇(v)
def
= ⊥

>̇(v)
def
= >

The abstract program environment Σ] : V → I maps each variable to an

interval. The abstract domainD] def
= (Σ],⊆],∪],∩],⊥],>]) is the structural

lifting of the lattice of boxes (I,⊆ı,∪ı,∩ı, ∅, [−∞,+∞]), defined as follows:

i ⊆ı j
def⇐⇒ sup(i) ≤ sup(j) ∧ inf(j) ≤ inf(i)

i ∪ı j
def⇐⇒ [min{inf(i), inf(j)},max{sup(i), sup(j)}]

i ∩ı j
def⇐⇒ [max{inf(i), inf(j)},min{sup(i), sup(j)}]

The abstract evaluation of arithmetic expressions is then given by:

∀e ∈ expr,JeK] : Σ] → I

JvK]σ] def
= σ](v)

J[a, b]K]σ def
= [a, b]

Je1 � e2K]σ]
def
= Je1K]σ] �ı Je2K]σ]

where�ı ∈ {+ı,−ı,×ı}

Je1 ÷ e2K]σ
def
=

{
[−∞,+∞], if 0 ∈ Je2K]σ
Je1Kσ ÷ı Je2K]σ, otherwise.
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We now give a sound abstraction of the concrete operator [CC77]:

JsK] : D] → D]

Jv ← eK]σ] def
= σ][v 7→ JeKσ]]

Jif b then sK]σ] def
= JsK] ◦ JbK]σ] ∪] J¬bK]σ]

Jwhile b do sK]σ] def
= J¬bK](lfpσ] λX.X ∪] (JsK] ◦ JbK])X)

where JbK]σ] def
= ∪]{φ] | b is true} ∩] σ].

The abstract environment σ][v 7→ JeKσ]] maps each variable v to the interval
given by JeKσ], that is the evaluation of the expression e when the variables
are within σ](v1)× . . .×σ](vp). For instance, if e = v− c where v ∈ V , then

Je ≤ 0?K]σ] = σ][v 7→ σ](v) ∩ [−∞, c]]

Indeed, Jv − cK]φ] = φ](v) − [c, c], and the least upper bound of the set of
intervals {i | i− [c, c] ≤ 0} is equal to [−∞, c]. Similarly, we have

Jv − c ≥ 0?K]σ] = J−e ≤ 0?K]σ]

= σ][v 7→ σ](v) ∩ −[−∞,−c]]
= σ][v 7→ σ](v) ∩ [c,+∞]] .

3.1.1 Example (Abstraction using intervals)
We compute the least fixpoint of the classical loop program [CC77] given
below.

x← 0;
while (x ≤ 100) do
x← x+ 1;

return x;

We are interested in the final value of variable x for any execution of the
above simple loop. The behavior of the program can be then formalized by:

P [ def
= Jwhile x ≤ 100 do(x← x+ 1)K[ ◦ Jx← 0K[⊥[,

where ⊥[ denotes the environment that maps V def
= {x} to the empty set

(the bottom element of the partition set ℘(R)). We compute the fixpoint
with respect to the intervals abstract domain earlier defined. The concreti-
sation of the abstract fixpoint gives an over-approximation of the fixpoint
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we seek. We have:

⊥](x) = ∅
Jx← 0K]⊥] = ⊥][x 7→ [0, 0]]

Jx← x+ 1K]σ] = σ][x 7→ σ](x) + [1, 1]]

Jx− 100 ≤ 0?K]σ] = σ][x 7→ σ](x) ∩ [−∞, 100]]

Jx− 100 ≥ 0?K]σ] = σ][x 7→ σ](x) ∩ [100,+∞]]

The semantics of the program in the abstract domain is given by

P ] def
= Jwhile x ≤ 100 do(x← x+ 1)K]⊥][x 7→ [0, 0]] .

It involves a fixpoint computation:

lfp⊥][x 7→[0,0]] λσ
].F ](σ]),

where F ](σ])
def
= σ] ∪] (φ][x 7→ φ](x) + [1, 1]]), φ]

def
= σ][x 7→ σ](x) ∩

[−∞, 100]].
We use the Kleene iteration technique to compute such fixpoint. The

operator F ] is by construction monotonic.
We start the iteration with ⊥][x 7→ [0, 0]], at each iteration we evaluate

φ] then F ]:

φ] = ⊥][x 7→ [0, 0] ∩ [−∞, 100]]

= ⊥][x 7→ [0, 0]] .

The first iteration (F ])
1

gives:

(F ])
1⊥][x 7→ [0, 0]] = ⊥][x 7→ [0, 0]] ∪] φ][x 7→ φ](x) + [1, 1]]

= ⊥][x 7→ [0, 0]] ∪] ⊥][x 7→ [1, 1]]

= ⊥][x 7→ [0, 1]]

After 101 iterations, we obtain (F ])
101⊥][x 7→ [0, 0]] = ⊥][x 7→ [0, 101]],

and for the iteration 102,

φ] = ⊥][x 7→ [0, 101] ∩ [−∞, 100]]

= ⊥][x 7→ [0, 100]] .
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and

(F ])
102⊥][x 7→ [0, 0]] = F ](⊥][x 7→ [0, 101]])

= ⊥][x 7→ [0, 101]] ∪] φ][x 7→ φ](x) + [1, 1]]

= ⊥][x 7→ [0, 101]] ∪] ⊥][x 7→ [0, 100] + [1, 1]]

= ⊥][x 7→ [0, 101]] ∪] ⊥][x 7→ [0, 101]]

= ⊥][x 7→ [0, 101]]

= (F ])
101⊥][x 7→ [0, 0]] .

The increasing chain stabilizes at the iteration 102, its limit ⊥][x 7→ [0, 101]]
is the least fixpoint of the operator F ]. We finally obtain a sound superset
of the values of the variable x:

P [ ≤[ γ(⊥][x 7→ [100, 101]]) = [100, 101] .

3.2 Explicit Relational Abstract Domains

Polyhedra Abstract Domains

The polyhedra abstract domain [CH78] catches and propagates explicit lin-
ear relations between variables such that b1x1 + b2x2 ≤ β, where x and y
are two numerical variables and α, β, and δ are real numbers.

The internal abstract object has two dual representations: an external
representation and an internal representation.

external representation: a polyhedron is defined as the intersection of a
finite set of affine subspaces of Rp, where p is the number of numer-
ical variables abstracted. Each affine subspace is in fact represented
by 〈x, αi〉 ≤ βi. Equalities, 〈x, αi〉 = βi, are represented by two in-
equalities, 〈x, αi〉 ≤ βi and 〈x,−αi〉 ≤ −βi. A polyhedron is then by
definition a convex subset of Rp.

internal representation: a polyhedron is generated by a finite set of ver-
tices {vi, 1 ≤ i ≤ k}and a finite set of rays {ri, 1 ≤ j ≤ m}. The
polyhedron consists of all vectors of the form

{
k∑
i=1

λivi +
m∑
j=1

βjrj | λi ≥ 0, βj ≥ 0,
k∑
i=1

λi = 1} .

The duality of both representations is a classical result (see for in-
stance [Roc70, Theorem 19.1]).
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The intersection of two polyhedra is exactly represented by a polyhe-
dron, the join of two polyhedra is their convex hull which is also a poly-
hedron. Using the convex hull as a join and the geometrical inclusion as
a partial order, the set of polyhedra defines a lattice. The lattice is not
complete, as we can extract an infinitely increasing chain which converges
toward a circle (regular polygons inside a circle).

The set-theoretic operations (the meet and the join) are easier to de-
fine using the external representation: the intersection is for instance the
concatenation of both lists of inequalities of the given polyhedra. The as-
signment operations are more convenient to define using the internal repre-
sentation, for instance any linear expression can be immediately computed
(linear time) using the generators representation. Therefore, the transfor-
mation from one representation to the other is a central operation to define
an abstract domain using polyhedra.

The Chernikova’s algorithm enhanced by Le Verge [Le 92] permits such
transformation. The transformation minimizes the number of constraints
(or generators) in the resulting polyhedron. Its worst-time complexity is
exponential in time and in memory cost (function of number of variables p).
The minimal number of generators needed to represent a given polyhedra
in its minimal inequalities representation can be exponential.

The algorithm is implemented in two recent libraries, the Parma Poly-
hedra Library [Pro] and the Polka Library [Ja]. In practice the exponential
complexity can be observed even for simple programs with 5 variables but
which alternate set-theoretic operations and assignments. The polyhedra
abstract domains in APRON Library are based on these two implementa-
tions.

Linear Templates

Polyhedra Templates abstract domain [SSM05] overcomes the complexity
problem observed in classical polyhedra by fixing the directions of the poly-
hedra used during the analysis. The directions are fixed using a template
constraint matrix T and only inequalities of the form T (x1, . . . , xp) + c ≥ 0,
are allowed, where T is an m × p matrix, and c ∈ Rm. Such an approach
limits the expressiveness of the domain compared to the polyhedra domain;
however, it improves the worst-case complexity from exponential (in the
the classical polyhedra case) to polynomial with respect to the number of
program variables.

As the internal representation of Templates is fixed, there is no more
need to switch between the external and the internal representations of
the polyhedron. The abstraction of linear assignment involves m linear
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problems to solve: as any linear assignment can be expressed as Ax+b ≥ 0,
(where A is an n × p matrix and b ∈ Rn) and the templates matrix T is
fixed, it suffices to find the smallest ci, 1 ≤ i ≤ m, such that Tx + c ≥ 0
satisfies Ax+b ≥ 0. If we apply Farka’s Lemma [Roc70, Theorem 22.3], such
problem is transformed into m linear programs, involving each n variables
and p constraints.

The geometrical inclusion is no more a partial order because of the fixed
shape of the polyhedra, it is instead a pre-order, which is quotiented by an
equivalence class to define a partial order. The intersection and the join
operators are defined piecewisely using respectively the minimum and the
maximum operators over the vectors “c” of the operands.

The synthesis of matrix T which fixes the directions of the analysis
may benefit from the initial constraints, guards or properties one needs to
prove. Authors in [SSM05] introduce the notion of support vector which
gives additional constraints one can include in T . The support vector of a
coefficient vector a is defined with respect to a (linear) transition system
x ← Ax + b, by A∗a (where ∗ denotes the transpose operator). In fact, if
〈a, x〉 ≥ 0, and we substitute x by Ax+ b, then the new coefficient vector of
x is A∗a (using the classical duality of the scalar product). Of course, these
heuristics may not in general be optimal to catch exactly the invariants
(even linear) of a given problem.

Discussion Observe that linear templates generalize the octagons ab-
stract domain as one can easily define matrix T to catch exactly the in-
equalities of the form ±xi ± xj ≤ ci. Thus, the domain is at least as
expressive as octagons and strictly less expressive than classical polyhedra.
However, the native octagons abstract domain is more efficient than this
generic approach. The internal representation using Differential Bound Ma-
trices (DBM) is more efficient (cubical complexity). Moreover, for a sound
and efficient implementation of the templates abstract domain, one needs to
use a guaranteed LP solver, such as [Kei05] 1, in order to use safely floating-
point numbers, which is expensive as it solves many times the same problem
to come up with safe bounds.

1A recent and interesting survey of software packages for verified linear programming
can be found in [Kei08].

25



3. Numerical Abstract Domains

3.3 Implicit Relational Abstract Domains

Affine Arithmetic

Affine arithmetic has been successfully used in many fields from the self-
validation of numerical algorithms [CS93] where it was firstly introduced, to
reliable computing to come up with tight enclosing intervals [Kol01, Kol04,
Miy00, MK04a], and algebraic surface plotting [SLMW06].

In what follows, we motivate the use of affine forms by the dependency
problems observed in both interval arithmetic, and an extension of IA, called
generalized intervals.

Generalized Intervals

To overcome this dependency problem observed in interval arithmetic, El-
don R. Hansen proposed in 1975 an extension to intervals, called Gener-
alized Intervals [Han75]:

3.3.1 Definition (Generalized Intervals)
A generalized interval, also known as Hansen’s form, x̃ is defined by

x̃
def
= cx0 + cx1ζ1 + · · ·+ cxnζn = cx0 +

n∑
i=1

cxi ζi

where {cxi }0≤i≤n are intervals and {ζi}1≤i≤n are symbolic variables known
to be in centred intervals (of the form [−ri, ri]). The parameter n, number
of ζi is fixed for all generalized intervals.

The symbolic variables {ζi}1≤i≤n express the dependency between vari-
ables. Conversions to and from classical intervals are defined as follow:

3.3.2 Definition (Conversion from interval)
Let x be an element of I. If x has an infinite bound, then cx0

def
= x, and

cxi = [0, 0], for all i in 1 . . . n. Else,

x̃
def
= [mid(x),mid(x)] + [1, 1]ζ1,

where ζ1 is unknown but has its values within [− dev(x), dev(x)].

3.3.3 Definition (Conversion to interval)
The interval related to x̃ = cx0 +

∑n
i=1 c

x
i ζi is the result of the evaluation in

interval arithmetic of the following expression:

x
def
= cx0 +

n∑
i=1

cxi [−ri, ri] .
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Let x̃ and ỹ be two generalized intervals. We define the addition, sub-
traction and scalar multiplication by

x̃+ ỹ
def
= (cx0 + cy0) +

n∑
i=1

(cxi + cyi )ζi (3.3.1)

x̃− ỹ def
= (cx0 − c

y
0) +

n∑
i=1

(cxi − c
y
i )ζi (3.3.2)

λx̃
def
= (λcx0) +

n∑
i=1

(λcxi )ζi (3.3.3)

The operations on coefficients, cxi and cyi , are computed w.r.t. interval
arithmetic introduced above (Equation 3.1.1).

Using generalized intervals and their related arithmetic instead of in-
terval arithmetic is more expensive in time and memory since one has to
record n intervals instead of just one interval. Nevertheless, it is possible
to track relations between variables using the shared ζi between variables.
For example, suppose that we have to compute an enclosure of the direct
image of the function f : [0, 1] → R defined by f(x) = 2x − x. The ex-
act interval is [0, 1] for f(x) since f(x) = x. Using interval arithmetic,
we obtain f(x) ∈ [2, 2] × [0, 1] − [0, 1] = [0, 2] − [0, 1] = [−1, 2] 2. This
catastrophic result can be improved using generalized intervals: we first
convert [0, 1] into its related generalized interval, x̃ = [0.5, 0.5] + [1, 1]ζ1,
where ζ1 is within [−0.5, 0.5]. Then the generalized interval of f(x) is
2× x̃− x̃ = [0.5, 0.5] + [0.5, 0.5]ζ1. Converted to an interval, the generalized
interval of f(x) gives the exact result, that is [0, 1]. Moreover, we have
the relation f(x) = x, encoded implicitly, since x and f(x) have the same
generalized interval.

Coefficients of generalized intervals are intervals. The lack of precision
observed in interval arithmetic may also happen for these coefficients, which
prevents the needed cancellation to occur. The next section presents Affine
Forms, a special case of Hansen’s forms where the coefficients are real num-
bers instead of intervals.

Affine Forms

Affine Forms [CS93] were introduced in 1993 by João L. D. Comba and
Jorge Stolfi. They are defined as follows:

2For this simple example, one could use symbolic enhancement which addresses lo-
cally such problem; however, we could easily imagine that f(x) is computed using inter-
mediate variables. Therefore, the symbolic computation is no more immediate.
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3.3.4 Definition (Affine forms)
An affine form â is defined by

â
def
= αa0 + αa1ε1 + · · ·+ αanεn = αa0 +

n∑
i=1

αai εi,

where αa0, . . . , α
a
n are real coefficients, called partial deviations, and ε1, . . . , εn

are symbolic variables, called noise symbols, known to be within [−1, 1]. The
number of noise symbols is not a priori fixed.

The set of affine forms is denoted by A.
In Definition 3.3.4 coefficients, or partial deviations, {αai }0≤i≤n are real

numbers, and not intervals as seen in Hansen’s forms. Affine forms can be
seen as special generalized intervals where all coefficients are points inter-
vals, and each symbol ζi is reduced to dev(ζi)εi.

3.3.5 Definition (Conversion to intervals)
The range of an affine form â, denoted by the bold face notation â, is

â
def
= [αa0 −

n∑
i=1

|αai |, αa0 +
n∑
i=1

|αai |] .

3.3.6 Definition (Conversion from intervals)
If i is a bounded interval in I, then

î
def
= mid(i) + dev(i)εf .

The noise symbol εf is a fresh noise symbol not used elsewhere. Un-
bounded intervals and the empty set can not be converted to affine forms
with respect to Definition 3.3.4, since all the coefficients of affine forms
are finite real numbers. The convention uses intervals without any further
transformation to handle unbounded intervals.

The joint range of a set of affine forms A
def
= {â1, . . . , âp} for p ≥ 2,

is the set of all possible values taken by (â1, . . . , âp) whenever the vector
(ε1, . . . , εn) ranges over Bn. Formally, the joint range is the image of {1}×Bn
under the linear transformation defined by matrix CA ∈M(p, n+ 1)

â1
...
âp

 =

α
a1
0 · · · αa1n
...

...
α
ap
0 · · · α

ap
n


︸ ︷︷ ︸

CA

×


1
ε1
...
εn
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â1

â2

1 10 19

1

5

9

Figure 3.1: The joint range (the center symmetric polygon in dark gray) of
two affine forms. This zonotope is spanned by the generators drawn in its
center. The box â1 × â2 (light gray) encloses the zonotope.

γ(A)
def
= {CAε | ε ∈ {1} × Bn} ⊂ Rp .

The geometrical concretisation γ(A) is a center symmetric polytope
called zonotope. The center is the vector given by the first column of matrix
CA. The other vectors of CA, that is, (αa1i , . . . , α

ap
i )∗, for 1 ≤ i ≤ n, are the

generators of the zonotope (see Figure 3.1).

3.3.7 Example (Joint range of two affine forms)
Let A be the set of affine forms defined by

A =

(
â1

â2

)
=

(
10 −4ε1 +1ε3 +3ε4
5 −2ε1 +1ε2 −1ε4

)
.

The joint range (the zonotope), γ(A), together with the box â1× â2 are
shown in Figure 3.1. Shared noise symbols ε1 and ε4 give extra information
about the relative correlations between variables â1 and â2.

The linear operations over affine forms are straightforward:
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3.3.8 Definition (Linear operations)
Let â and b̂ be two affine forms, let λ, ζ be two finite real numbers, then

â± b̂ def
= (αa0 ± αb0) +

n∑
i=1

(αai ± αbi)εi (3.3.4)

λâ
def
= λαa0 +

n∑
i=1

(λαai )εi (3.3.5)

â+ ζ
def
= (αa0 + ζ) +

n∑
i=1

αai εi (3.3.6)

Non affine operations over affine forms have to be linearized. This is
achieved by over-approximating the error introduced by the linearization,
then adding a fresh noise symbol that is a noise symbol which is not used
elsewhere for any affine forms.

The multiplication operation motivates many extensions, detailed here-
after, of affine forms in order to reduce the range of the final result.

The multiplication operation Let â and b̂ be two affine forms, then

â× b̂ =
(
αa0 +

n∑
i=1

αai εi

)(
αb0 +

n∑
j=1

αbjεj

)
(3.3.7)

= αa0α
b
0 +

n∑
i=1

(αa0α
b
i + αb0α

a
i )εi +

n∑
i=1

n∑
j=1

αaiα
b
jεiεj (3.3.8)

The non-linear term (actually quadratic) term in Equation 3.3.7 is lin-
earized in several ways. All of them bound first the non-linear term, then
convert it to an affine form (using Definition 3.3.6).

• centered form [dFS97]: uses a generous range for αaiα
b
iεiεj, that is

|αaiαbi |, then

â× b̂ def
= αa0α

b
0 +

n∑
i=1

(αa0α
b
i + αb0α

a
i )εi +

1

2

n∑
i=1

n∑
j=1

|αaiαbj|εn+1 .

• decentered form [Miy00]: uses the fact that for i = j, the values of
εiεj are within [0, 1]; thus,

â× b̂ def
=
(
αa0α

b
0 +

1

2

n∑
i=1

αaiα
b
i

)
+

n∑
i=1

(αa0α
b
i + αb0α

a
i )εi

+
(1

2

n∑
i=1

|αaiαbi |+
∑

1≤i<j≤n

|αaiαbj + αajα
b
i |
)
εn+1 .

(3.3.9)
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• extended form [Mes02]: Messine introduces two extensions of affine
forms to increase the accuracy of even power of affine forms.

3.3.9 Definition (Extended Form)
A Messine affine form is defined by

ă
def
= αa0 +

n∑
i=1

αai εi + αan+1[−1, 1] + αan+2[0, 1] + αan+3[−1, 0]

where, αa0, . . . , α
a
n are real numbers, and αan+1, αan+2, αan+3 are positive

real numbers.

3.3.10 Definition (Quadratic Form)
A quadratic form adds n new non-negative noise symbols to represent
exactly square noise symbols, ε2i (= εi+n):

˘̆a
def
= αa0 +

n∑
i=1

αai εi+α
a
i+nεi+n+αa2n+1[−1, 1]+αa2n+2[0, 1]+αa2n+3[−1, 0]

where, αa0, . . . , α
a
2n are real numbers, and αa2n+1, αa2n+2, αa2n+3 are pos-

itive real numbers. The noise symbols {εi+n}1≤i≤n are constrained to
have their values within [0, 1].

The extra information recorded improves in general multiplication re-
sults but increases significantly the complexity of operations. The
multiplication of two extended forms is detailed below. The mul-
tiplication of two quadratic forms is similar, details can be found
in [Mes02].

ă× b̆ def
= αa0α

b
0 +

n∑
i=1

(αa0α
b
i +αb0α

a
i )εi+K1[−1, 1] +K2[0, 1] +K3[−1, 0],

where

K1 = |αa0|αbn+1 + |αb0|αan+1 + αan+1α
b
n+1 +

∑
1≤i,j≤n+3

i 6=j

|αaiαbj|,

K2 = K0
2 + αan+2α

b
n+2 + αan+3α

b
n+3 +

∑
1≤i≤n
αa
i α

b
i≥0

αaiα
b
i ,

K3 = K0
3 +

∑
1≤i≤n
αa
i α

b
i≤0

|αaiαbi |,
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where, in turn, K0
2 and K0

3 are defined as follows

K0
2 =


αa0α

b
n+2 + αb0α

a
n+2 if αa0 > 0 and αb0 > 0

αa0α
b
n+2 − αb0αan+3 if αa0 > 0 and αb0 < 0

−αa0αbn+3 + αb0α
a
n+2 if αa0 < 0 and αb0 > 0

−αa0αbn+3 − αb0αan+3 if αa0 < 0 and αb0 < 0

,

K0
3 =


αa0α

b
n+3 + αb0α

a
n+3 if αa0 > 0 and αb0 > 0

αa0α
b
n+3 − αb0αan+2 if αa0 > 0 and αb0 < 0

−αa0αbn+2 + αb0α
a
n+3 if αa0 < 0 and αb0 > 0

−αa0αbn+2 − αb0αan+2 if αa0 < 0 and αb0 < 0

.

In the sequel, we discuss three different techniques of linearization: the
minimax approximation, the min-range approximation and a Taylor-series
based technique, called Taylor1+.

Approximation Techniques

The standard affine arithmetic is non-closed under non-linear operations.
Therefore, we seek an optimal (in a sense to define) affine form which ap-
proximates the non-linear result. The issue here is different from the prob-
lem of finding the narrower interval that encloses a given non-linear explicit
real function defined over Rn. Although we can use the techniques from the
latter rich field and adapt them to our purpose as very often, linearizing
before computing an enclosing interval gives better results. Methods such
as the interval slope arithmetic [ZW90, Kol97], or interval derivative arith-
metic [Kag86] together with the classical Taylor expansion are known in the
literature of reliable computing to give tight enclosure. These methods have
been already applied to affine arithmetic to improve the range of a given
function [MK04a, MK04b]. We do not expand here these methods as our
purpose is different from finding an interval enclosing a real valued function.
We later give (Chapter 5) an example where the use of these techniques may
lead to unsound results in the abstract interpretation framework.

The linear approximation of a function f over an interval i is the function

f l(x)
def
= ζ+αx+e(x), where e(x) is the linearization error term. The error

term is a non-linear function of x. As we are targeting a linear approximant,
we consider in the sequel that it is independent of x and replace the function
e(x) by its image, which is an interval, denoted by e.

The linearization can be optimized such that the error interval e is mini-
mal or such that the width of the image of f is minimal. The former is called
the minimax approximation, also known as Chebyshev 3 approximation.

3or Tchebycheff or Tshebyshev.
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The latter is called the min-range approximation (as defined in [dFS97]).
In general, there is no unique linear optimum form that achieves at the
same time the minimax and min-range approximations (see the reciprocal
function example below). In general, minimizing the error or the range
of the linearized form is closely related to the underlying problem we are
addressing.

The Taylor approximation of first order is in general not optimal with
respect to both directions given above. However, by construction, it catches
the main linear component of the function, which makes it convenient for
the evaluation of the future transformations of the function. Moreover, its
computation is straightforward and can be easily automated. We exemplify
these techniques through the reciprocal function.

Let f denote the reciprocal function:

f : [a, b]→ R

x 7→ 1

x

where a and b are two real numbers such that a > 0. The linear approxi-
mation of f is f l where

f l(x) = ζ + αx+ [−β, β] = ζ + αx+ βεf ,

where the noise symbol εf is a fresh noise symbol used to encode the sym-
metric interval [−1, 1]. It suffices now to substitute x by its related affine
form to obtain an affine form that approximates the function f(x).

Min-range approximation To compute the min-range approximation,
we need to compute ζ, α and β such that the interval

ζ + α[a, b] + [−β, β]

is equal to [1
b
, 1
a
]. Since, a > 0, then f(x) is a decreasing function. Therefore

α ≤ 0. Thus

ζ + α[a, b] + [−β, β] = [ζ + αb− β, ζ + αa+ β] = [
1

b
,

1

a
] .

The case α = 0 is equivalent to IA: f(x) is over-approximated by the box
[1
b
, 1
a
]. Observe that here, we have infinitely many linear functions that

achieve the min-range approximation. All of them verify:

ζ + αb− β =
1

b

ζ + αa+ β =
1

a
,
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we pick up the one that tightly over-approximates f(x), that is such as α
is equal to the derivative of f(x) on b (see Figure 3.2), which gives

α =
−1

b2

ζ =
a

2b2
+

1

2a
+

1

b

β =
a

2b2
+

1

2a
− 1

b

Taylor approximation The Taylor approximation of first order of a non-
linear continuously differentiable function defined over a bounded interval
is defined by: (a) its first order Taylor series computed in a point of the
domain of the function (this gives the linear part), plus (b) an interval
that over-approximates the difference of the function itself and its Taylor
development (this gives the error part). That is, if f is defined over the
bounded interval [a, b], and c is an element of [a, b], then

f l(x) = f(c) + f ′(c)x+ e, where ∀x ∈ [a, b], f(x)− (f(c) + f ′(c)x) ∈ e .

The linear function obtained is a centered form (centered in c). It is
sound, that is f([a, b]) ⊆ f l([a, b]). Moreover, such centered form has a
quadratic order of approximation [Han69, CM72], that is

w(f([a, b]))− w(f l([a, b])) = O((b− a)2),

where the function w([a, b])
def
= b−a denotes the width of the interval [a, b].

In general, the centered form obtained if c is the midpoint of the interval
[a, b] does not lead to a minimal interval for f l. In fact, the center c that
leads to the optimum upper bound may be different from the one leading
to the optimum lower bound and both different from the midpoint [Bau88].
However, the choice of the midpoint eases the computations and gives a
good heuristic.

For the reciprocal function f , we obtain:

α =
−4

(a+ b)2

β = − 2b

(a+ b)2
+

1

2a
=

1

2a
− 1

a2

2b
+ b

2
+ a

ζ =
4

a+ b
+ β =

1

2a
+

2

a+ b
+

1
b2

2a
+ a

2
+ b
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This approach is more precise than just considering the first order Taylor
approximation of the reciprocal function, and then over-approximating the
error term using Cauchy’s estimate 4 We call it Taylor1+ approximation as
it is more precise than the first order approximation and less precise than
the second order approximation.

Minimax approximation The computation of the minimax approxima-
tion is ruled by the Chebyshev Alternation Theorem 5.

3.3.11 Theorem
Chebyshev Alternation Theorem [1854] A polynomial p of degree n is
the best approximant to f ∈ C[a, b] (the set of continuous functions
defined over the interval [a, b]) if and only if there exist (n + 2) points
a ≤ t1 ≤ . . . ≤ tn+2 ≤ b such that

f(ti)− p(ti) = (−1)iδ, |δ| = sup
x∈[a,b]|f(x)−p(x)|

,

i.e., if and only if the difference f(x)−p(x) takes consecutively its max-
imal value with alternating signs at least (n+ 2) times.

Theorem 3.3.11 is a sufficient condition for a given polynomial to be
optimum with respect to minimizing the maximum error introduced by the
linearization. There exists an iterative algorithm, called Remez (or Remes)
algorithm [Rem34] that computes an optimum polynomial starting from an

initial set of points (usually Chebyshev nodes, that is xi = cos( (2i−1)π
2n

), i =
1 . . . n+2 for a set of points in [−1, 1], linearly transformed if needed into any
interval [a, b]). For instance, we can use the efficient implementation [Boo]
of the Remez algorithm to find first degree polynomials (seen as functions
of the Chebyshev space) that approximate f . This approximation is the
best with respect to the uniform norm.

In our simple case, we can establish geometrically the polynomial of
degree 1 defined by ζ + αx, that interpolates the two points (a, 1

a
) and

4Here, the Cauchy’s estimate, or uniform estimate, is M1
(b−a)2

8 , where M1 dominates

the absolute value of the second derivative of the reciprocal function, that is | 1x
(2)|.

5detailed proof and further details on the use of Chebyshev approximation theory
can be found for instance in [E.W66, §6].
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(b, 1
b
), and which wraps closely the graph of the reciprocal function. Thus:

α =
1
a
− 1

b

a− b

ζ =
1

2
(
1

a
− αa− 2

√
−α)

We then compute the point x where the tangent has the same direction of
ζ+αx, we obtain

√
ab. We can verify that the hypothesis of Theorem 3.3.11

holds for x = a, x =
√
ab, and x = b, and that

β = |δ| = 2
√
−α + ζ

3.3.12 Example (Numerical example)
Let x ∈ [1, 4], and x̂ = 2.5 + 1.5ε0; then, for min-range approximation we
have α = −0.0625, β = 0.28125, ζ = 0.78125, and

f lmin range = 0.78125− 0.0625(2.5 + 1.5ε0) + 0.28125εf

= 0.625− 0.09375ε0 + 0.28125εf

∈ [0.25, 1]

For Taylor approximation, we have α = −0.16, ζ = 0.98, β = 0.18, and

f lTaylor = 0.98− 0.16(2.5 + 1.5ε0) + 0.18εf

= 0.58− 0.24ε0 + 0.18εf

∈ [0.16, 1]

For Chebyshev approximation, we have α = −0.25, ζ = 1.125, β = 0.125,
and

f lminimax = 1.125− 0.25(2.5 + 1.5ε0) + 0.125εf

= 0.5− 0.375ε0 + 0.125εf

∈ [0, 1]

Figure 3.2 depicts these approximations. Observe that the joint range of
(x̂, f lminimax) wraps closely the graph (x, f(x)). However, the interval of
f lminimax, that is [0, 1] is not optimal. The optimal interval, [0.25, 1], is given
by f lmin-range, but the joint range of (x̂, f lmin-range) wraps loosely the graph
(x, f(x)).
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x

f(x)

min-range
Taylor 1st order
Chebyshev

Figure 3.2: Affine form approximations of the reciprocal function.

Perturbed Affine Sets

The novelty of this domain introduced in [GP06], resides in the way it uses
to encode relations between variables. While all prior attempts such as
Polyhedra-like or Karr’s affine equalities abstract domains, keep and prop-
agate explicit relations between variables, the affine forms-based abstract
domain keeps implicit relations between variables encoded by the shared
noise symbols (see Section 3.3).

The geometrical concretisations of such domain are zonotopes, which are
central symmetric polytopes. Thus, the domain is strictly more expressive
than weakly relation domains such as octagons, it encodes perfectly linear
equalities between variables, but is strictly less expressive than Polyhedra
domain in general because of the symmetry of zonotopes. Thus, in term of
expressiveness, it fills the gap between weakly relational domains and fully
linear relational domain as the linear templates polyhedra do. However,
the affine sets domain is definitely more precise and more efficient than all
other domains whenever the program to analyze uses non-linear operations.

Zonotopes have an efficient memory representation (set of vectors). The
complexity of arithmetic computations is almost linear with respect to the
number of noise symbols used. Non linear operations can be precisely and
efficiently linearized as detailed in Section 3.3.

For the purpose of abstract interpretation, one needs to define two set
theoretic operations, the join and the meet, over affine forms. Since the
convex hull of two zonotopes is not a zonotope, and so is the intersection
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3. Numerical Abstract Domains

of two zonotopes, we have to compute a zonotope that encloses two given
zonotopes and the zonotope that encloses the intersection of two zonotopes.
For this purpose, Goubault and Putot [GP08, GP09] have extended affine
forms.

We briefly describe in the sequel the affine forms-based abstract object,
arithmetic operations over such abstract domain and finally set theoretic
operations.

A set of numerical variables V = {v1, . . . , vp} is abstract as follows:

3.3.13 Definition
A perturbed affine set X̂ is defined by

X̂
def
= (CX , PX),

where CX is matrix with p lines and n+1 columns and PX is a matrix with
p lines and m columns. Elements of CX and PX are real numbers.

Each variable vl in V is abstract by an affine form:

X̂l
def
=

n∑
i=0

CX
l,iεi︸ ︷︷ ︸

central part

+
m∑
j=1

PX
l,jη

X
j︸ ︷︷ ︸

deviation

,

All noise symbols are unknown but within [−1, 1] except ε0 which is
equal to 1. The coefficients of the affine form are the elements of the lth
line of CX and PX . The first element of the lth line of CX encodes the
constant of the affine form. Indeed the noise symbol ε0 is equal to 1. The
sub affine form composed by the coefficients of the lth line of CX is called
the central part of the abstraction of the variable vi. The sub affine form
composed by the coefficient of the lth line of PX is called the perturbation
part.

The concretisation function γ is defined as follows:

3.3.14 Definition
Given a perturbed affine set X̂, its geometrical concretisation is the set
defined by

γ(X̂)
def
= {CXε+ PXηX | (ε, ηX) ∈ {1} × [−1, 1]n+m},

The geometrical concretisation is exactly the joint range of all numerical
variables. It can be seen as the Minkowski sum of two zonotopes, namely
the one having as generators the columns of CX and the one having as
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generators the columns of PX . We recall that the Minkowski sum of two
sets A and B is the set defined by

A+B = {a+ b | a ∈ A, b ∈ B} .

The noise symbols (ε1, . . . , εn) have a strict meaning, they encode the
non-deterministic input variables. They are strongly linked to these vari-
ables. If one substitutes these noise symbols by any other dummy symbol
between [−1, 1], the local joint range (zonotope) remains unchanged but
the relations to those input variables get lost. Moreover, the final invariant
(which is encoded as a function of these central noise symbols) gives the
input/output relations of the program (functional analysis).

On the other hand, the perturbation noise symbols (ηX1 , . . . , η
X
m) are

indexed by the X to enforce the fact that these noise symbols are not
shared between all abstract objects. They are used to define an order over
perturbed affine sets.

3.3.15 Definition (Order over Perturbed Affine Sets)
Given two Perturbed Affine Sets X̂ and Ŷ , we say that X̂ is lesser than or

equal to Ŷ , if and only if

∀t ∈ Rp, ‖(CX − CY )t‖1 ≤ ‖P Y t‖1 − ‖PXt‖1 .

The order defined above is stronger than the geometrical order. The
geometrical order, γ(X) ⊆ γ(Y ), does not respect the semantics of the
central noise symbols. Indeed, computing a zonotope that encloses the
zonotopes γ(X) and γ(Y ), without any other consideration, loses definitely
the relations to central noise symbols. These relations that we need precisely
to keep.

As established in [GP09], the order over Perturbed Affine Sets implies
the geometrical order.

3.3.16 Proposition
X̂ ≤ Ŷ =⇒ γ(X) ⊆ γ(Y ).

So far this affine forms based abstract domain ignore tests, our work is
an attempt to address this limitation.

Arithmetic operations over perturbed affine sets rely on affine arithmetic
(see Section 3.3). The definitions are exposed in detail in Chapter 5.
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3.4 Combining Abstract Domains

The direct product of two or more abstract domains is equivalent to per-
forming the analysis separately with each abstract domain. This approach
does not combine the expressiveness power of the abstract domains in use,
and hence does not improve the final result.

We briefly recall hereafter two different generic approaches designed to
improve the precision of the analysis by sharing the information found by
one domain in order to improve the result given by the other domain. The
exchange of information is done dynamically during the analysis. Theoreti-
cally, these interleaves are strictly more expressive than each domain taken
alone (as in direct product), nevertheless, in practice these approaches are
either limited theoretically or need an extra effort to handle the exchange
of information.

Reduced Product

If D[ is a concrete domain abstracted by two abstract domains D]
1 and

D]
2, then the concretisation function γ1×2 : (D]

1, D
]
2) → D[, of the reduced

product (D]
1, D

]
2) is defined by the meet in D[ of the concretisations of D]

1

and D]
2:

γ1×2(X]
1, X

]
2)

def
= γ1(X]

1) ∩[ γ2(X]
2) .

To propagate the conjunction of properties in the concrete domain given by
γ1×2, we need to abstract again the object γ1×2(X]

1, X
]
2), using the abstrac-

tion functions α1 and α2 of the abstract domains D]
1 and D]

2 respectively
:

α1×2(X[) = (α1(X[), α2(X[)) .

The way used to share the information between both abstract domains
relies on the concretisation of the abstract objects. It is formalized using
a so called reduction operator ρ : (D]

1, D
]
2) → (D]

1, D
]
2), defined by the

combination of γ1×2 and α1×2:

ρ = α1×2 ◦ γ1×2 .

The reduction operator relies then on the abstraction functions of the ab-
stract domains D]

1 and D]
2. These functions are in practice seldom available

which prevents the immediate use of the generic previous definition of ρ.
Instead, we may define local partial reduction specific to the transfer func-
tion: for instance, the evaluation of a non-linear expression relies very often
on the ranges of variables. We could use the intervals lattice to record
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such information, then use those ranges for a better linearization of the
expression.

Logical Product

The logical product of abstract domains [GT06] combines the abstract do-
mains in a way strictly more expressive than what we have seen in reduced
product. The approach is based on the classic Nelson-Oppen methodol-
ogy [NO79] for combining decision procedure.

Unlike the reduced product which requires in practice to define partial
reductions specific to the abstract domains and even to transfer functions,
the logical product can be build upon the native operators of the underlying
abstract domains. Nevertheless, for an efficient combination (in a polyno-
mial time), hard restrictions have to be verified by the theories upon which
we build the underlying abstract domains. Namely these theories have to
be convex, stably infinite and disjoint.

A theory consists of a signature, which is a set of symbols (predicates
and functions), and a set of axioms which defines the semantics of the
signature of that theory. An atomic fact of a theory is the simplest pos-
sible predicate over that theory, that is, one can no more decompose it
into a conjunction of predicates of the same theory. A logical lattice is
derived from a theory if and only if, its objects are all finite conjunctions
of atomic facts and its partial order is the logic implication relationship in
that theory. For instance, the signature of the theory of sign is defined by
{=, positive, negative,+,−, 0, 1}, where positive and negative are unary
predicates, + and − are binary functions, and 0 and 1 are constants; the
signature of the linear arithmetic theory is {=,≤,+,−, 0, 1}. The set of
axioms of the linear arithmetic theory includes all the known rules such as
x ≤ y ∧ y = z =⇒ x ≤ z.

Any abstract domain can be seen as a logical lattice. For instance, the
polyhedra abstract domain is the logical lattice based upon the theory of
linear arithmetic, whereas the affine sets abstract domain is the logical lat-
tice based on the theory of linear arithmetic with only the equality symbol.

A theory is said to be convex if any conjunction of equalities implies nec-
essarily that one equality holds. A theory is stably infinite if any quantified
free property satisfied in that theory is also satisfied in any infinite model
of that theory. Two theories are disjoint if and only if their signatures are
disjoint except for the equality symbol.

Combining two theories with respect to Nelson-Oppen method requires
the definition of three generic procedures over both theories. Using the
terminology of [GT06], these procedures are as follows:
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• a procedure that recognizes the terms that combine atomic facts from
both theories, often called alien terms as they are not pure terms of
one theory,

• a procedure that purifies a given alien terms: this is usually done by
adding new variables,

• and finally a saturation procedure that takes two conjunctions of pure
terms of both theories, then keeps exchanging all equalities between
these conjunctions until no more new equality can be derived.

The saturation procedure is actually the one that permits the exchange
of information between both theories. Since an expression can contain alien
terms, the two other procedures are used to extract and purify these alien
terms. Now that we have saturated pure terms, we can use the native
abstract transfer operators relative to the underlying abstract domain.

The restrictions on theories, that is the convexity, the stable infiniteness
and the disjointness, limit in practice the use of the generic approach. Nev-
ertheless, one can always define a logical product of two logical lattices, of
course without using the straightforward use of Nelson-Oppen methodology.

In this thesis, we introduce and formalize a logical product of the per-
turbed affine sets domain and any other (convex) abstract domain. We
keep the terminology ”logical product” even if the underlying theories are
not disjoint.
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CHAPTER 4
Constrained Affine Sets

We introduce a new affine sets-based abstract domain which extends and
generalizes an already existing affine sets-based abstract domain [GP06,
GP08, GP09], (A1,⊥1,>1,≤1,∪1). The expressiveness of such new domain
is enhanced thanks to its ability to encode and propagate relations among
the noise symbols. These relations, or constraints, over noise symbols en-
code the domain where the symbols range. The domain is abstracted using
an abstract domain (A2,⊥2,>2,≤2,∪2,∩2).

We define a special logical product-like combination of the abstract do-
mains A1 and A2, denoted by A1×2. The variables abstracted in A1 are the
numerical variables of the program to analyze, whereas the variables ab-
stracted in A2 are the noise symbols used to keep implicit linear relations
between the program variables. Thus, we do not use two different abstract
domains to abstract the same set of variables, as in reduced product of
abstract domains [CC79] or logical product of abstract domains [GT06].
Moreover, the information shared between A1 and A2 is as expressive as
the information shared in the logical product of abstract domains, for in-
stance the equality constraints are propagated between the two domains in
an intricate manner (this is not just a reduction operation).

4.1 Introduction

Despite their ability of keeping (linear and implicit) relations between vari-
ables, and their simple memory representation, the affine forms are not
closed under set theoretic operations: the intersection and the join. Affine
sets are not closed under set theoretic operations. Indeed, the join and the
intersection of two zonotopes is not a zonotope in general.
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4. Constrained Affine Sets

In this chapter, we introduce informally the way we interpret the meet
operations on zonotopes that arise from the if-then-else statements. Where
the previously defined Perturbation Affine Sets abstract domain proposes a
join operation, it ignores tests (which is sound). We come up with an elegant
way to express and propagate these tests, then extend the join operators
of [GP08, GP09] to our newly defined domain.

Consider the simple code below extracted from an implementation of
quadratic interpolation function.

begin

x = [-1,1]; Ê

if (x <= 0)Ë then

y = x*x + x; Ì

endif Ï

end

At control point Ê, we first convert the interval [−1, 1] into an affine
form, denoted â, by adding a new noise symbol εÊ known to be within
[−1, 1]:

x ∈ [−1, 1]
becomes−→ â = εÊ, εÊ ∈ [−1, 1],

If one ignores the test (x <= 0), at control point Ì we obtain for y the
affine form 0.5 + εÊ + 0.5εË, where εË is a new noise symbol introduced to
linearize the non-linear expression x2 + x (see Chapter 5 for the abstract
evaluation of expressions). Thus we conclude that, in the if branch, the
variable y is within the interval [−1, 2]. In this example, the reduced prod-
uct with boxes, to interpret the test x <= 0, improves slightly this result.
Indeed, the interval analysis gives for y, [−1, 0]× [−1, 0]+[−1, 0], and hence
the final interval is [−1, 1].

However, if we use the information εÊ ≤ 0, implied by the test, the
linearization of x2 using centered forms (discussed and formalized in Sec-
tion 5.1), gives −0.125 − εÊ + 0.125εË, and thus the affine form related to
y is −0.125 + 0.125εË. This gives the box [−0.25, 0], which is exactly the
image of the interval [−1, 0] through the non-linear function x2 + x.

Our main idea is to transfer the constraint from the variables’ world to
the noise symbols’ world by substituting each variable by its corresponding
affine form. Such a constraint is then kept and used in all incoming non-
linear computations including the join of two affine sets. For instance, in the
above example, the test x <= 0, where x is abstracted by â, is interpreted
by the constraint εÊ ≤ 0. Observe that the affine form â is left unchanged,
which permits the normal use of affine arithmetic.

The abstract object of interest in our domain is then a conjunction of
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constraints, either linear or non-linear, expressed in the abstract domain of
the noise symbols and a set of affine forms, one per variable. Typically, in
our example, the abstract value at control point Ì is

−1 ≤ εÊ ≤ 0 ∧ −1 ≤ εË ≤ 1
â = εÊ

b̂ = −0.125− εÊ + 0.125εË

where b̂ is the affine form that abstracts the variable y.
In the next section, we formalize these abstract objects.

4.2 Constrained Affine Sets

Let V def
= {v1, . . . , vp} denotes the finite set of numerical variables of the

program to analyze.

Representation

4.2.1 Definition
A constrained affine set X̂ is represented by a tuple

X̂
def
=
(
CX , PX ,ΦX

)
,

where CX is a real matrix with p lines and n + 1 columns, PX is a real
matrix with p lines and m columns, and ΦX is an abstract element of A2;
n and m are finite integers. The set of constrained affine sets is denoted by
A1×2.

The dimension p < +∞ is the cardinality of V , the set of numerical vari-
ables. The object X̂ represents the abstraction of these numerical variables
at a control point of the program. Each numerical variable, is abstracted by
the affine form given by the lth line (1 ≤ l ≤ p) of CX and PX , as follows:

x̂l
def
=

n∑
i=0

CX
l,iεi︸ ︷︷ ︸

central part

+
m∑
j=1

PX
l,jη

X
j︸ ︷︷ ︸

deviation

,

where CX
l,i , 1 ≤ l ≤ p, 0 ≤ i ≤ n, denotes the (l, i) coefficient of matrix CX .

Notice that we use zero for the first index of the columns of matrix CX .
Likewise, PX

l,i , 1 ≤ l ≤ p, 1 ≤ i ≤ m, denotes the (l, i) coefficient of matrix
PX .
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ε1

η1

ε0 = 1 ΦX
ε

ΦX
η (ω)

ω

1

1

Figure 4.1: The sets ΦX
ε and ΦX

η (ω), where the polygon represents the
concretisation of ΦX (n = 1,m = 1).

The symbol ε0, equal to one, encodes constants 1. The vector of central

noise symbols is denoted by ε
def
= (ε0, ε1, . . . , εn)∗, these symbols have a

strict semantics, they are related to the inputs of the program. One cannot
substitute them by other symbols because they are not free variables. They
encode the non-determinism of the inputs. The vector of deviation noise
symbols (ηX1 , . . . , η

X
m)∗ is denoted by ηX . We add explicitly the upper index

X on η to stress the fact that these noise symbols are local noise symbols
related to the abstract object X̂ and are not shared with other abstract
objects. They do not have any particular meaning as εi, 0 ≤ i ≤ n, do.
They are dummy symbols (free variables) used to encode the generators of
the deviation part.

The vector ε augmented by the vector ηX ranges over the concretisation
of ΦX , that is γ2(ΦX), subset of 1 × Rn+m, where γ2 denotes the concreti-
sation function of the abstract domain A2. We denote by ΦX

ε ⊆ 1×Rn the
projection of γ2(ΦX) over the n+ 1 first coordinates of 1× Rn+m.

For a fixed ω ∈ ΦX
ε , ΦX

η (ω) ⊆ Rm, denotes the section obtained by the
intersection of the hyperplane ε = ω and γ2(ΦX):

ΦX
η (ω)

def
= {ηX | (ω, ηX) ∈ γ2(ΦX)} .

Figure 4.1 depicts ΦX
ε and a section ΦX

η (ω) for an arbitrary ω ∈ ΦX
ε .

1equivalent to the variable v0 in the octagons abstract domain [Min06a]
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Concretisation Function
4.2.2 Definition
The concretisation function of the abstract domain A1×2 is defined by,

γ1×2(X̂)
def
= {CXε+ PXηX | (ε, ηX) ∈ γ2(ΦX)} .

In general, as in the example 4.2.3, the concretisation of a constrained
affine set is not a zonotope (which is the case of any perturbed affine set).

4.2.3 Example
Suppose that V = {v1, v2}. Let A2 be the polyhedra abstract domain, and

let p = n = m = 2. The figure 4.2 depicts the concretisation of X̂, where
X̂ is defined as follows

X̂
def
=
(( 1 1
−1 2

)
︸ ︷︷ ︸

CX

,

(
1 1
0 1

)
︸ ︷︷ ︸

PX

,ΦX
)
,

and ΦX is the conjunction of the following constraints

ε0 = 1 ∧ −1 +
4

3
ε1 +

4

3
ηX1 ≥ 0 ∧ 2ε1 − 1ηX1 ≥ 0 ∧ 3

2
− ε1 − ηX1 ≥ 0

∧ −ε1 + 2ηX1 ≥ 0 ∧ 1

2
+ ηX2 ≥ 0 ∧ 1

2
− ηX2 ≥ 0 .

The polytope given by the conjunction of the first four constraints is the
polytope depicted in Figure 4.1 (which has four facets), the conjunction of
the last two constraints involves only ηX2 and is simply the interval [−1

2
, 1

2
]

for ηX2 .

Intervals Conversions

From a constrained affine set to a box The interval concretisation of
the lth numerical variable of X̂, 1 ≤ l ≤ p, is the projection of γ1×2(X̂) on
its lth dimension. The final box is the product of all these projections.

From a box to a constrained affine set Usually, intervals are useful
at the beginning of the analysis, non-deterministic inputs of the program
(for instance environment related variables) are often unknown but within
intervals. The conversion given here is related to the input variables and
thus updates only the central part CX because of the particular semantics
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v1

v2

1

1

Figure 4.2: The concretisation of the constrained affine set given in Exam-
ple 4.2.3.

of noise symbols, the perturbation matrix PX is set to zero. After the
conversion we have as many noise symbols as non-deterministic numerical
variables.

Consider a bounded interval [d1, d2], d1 ≤ d2 < +∞, then its related
affine form is

mid([d1, d2]) + dev([d1, d2])εf ,

where εf is a fresh input noise symbol known to be within [−1, 1]. These
constraints on εf are added to the abstract object ΦX by computing the

image of ΦX through J−εl ≤ 1∧ εl ≤ 1K]2, that is the abstraction of the test
transfer function in the abstract domain A2.

The affine form related to an unbounded interval is simply εf , without
any constraint on εf . Indeed, we identify the variable to a fresh input
noise symbol εf initialized to >2, and keep track of the finite bound of the
interval as a constraint over the noise symbol freshly added. Therefore,
for a left-bounded interval [a,+∞], a < +∞, we compute the image of
ΦX through J−εf ≤ −aK]2. Similar transformation is done if the interval
is right-bounded. Obviously, for the interval [−∞,+∞], the freshly added
noise symbol is unconstrained and remains equal to its initial value, that is
>2.

We summarize the five possible cases in the following example.

4.2.4 Example
Let V = {v1, v2, v3, v4, v5} be the set of numerical variables known to be
respectively within

[−∞,+∞]× [a,+∞]× [−∞, b]× [d1, d2]× [c, c] .
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The constrained affine set related is then:

CX =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

mid([d1, d2]) 0 0 0 dev([d1, d2]) 0
c 0 0 0 0 0


PX = 0

ΦX = Jε0 = 1 ∧ −ε2 ≤ −a ∧ ε3 ≤ b ∧ −1 ≤ ε4 ≤ 1 ∧ −1 ≤ ε5 ≤ 1K]2>2 .

Order over Constrained Affine Sets

We provide the constrained affine sets with an order relation. Whenever it
is satisfied, the order relation should preserve all the information kept in
one constrained affine set, so that using the “bigger” one guarantees the
safety of all future computations.

4.2.5 Definition
Let X̂ = (CX , PX ,ΦX) and Ŷ = (CY , P Y ,ΦY ) be two constrained affine

sets. We say that X̂ is less than or equal to Ŷ , denoted by X̂ ≤1×2 Ŷ , if
and only if ΦX

ε ⊆ ΦY
ε , and

∀ω ∈ ΦX
ε ,∀ζX ∈ ΦX

η (ω),∃ζY ∈ ΦY
η (ω) CXω + PXζX = CY ω + P Y ζY .

What the definition says is that for every possible input, encoded by ω, we
are able to recover each reached value in X̂, that is CXω+PXζX , using the
same input ω and a different possible perturbation ζY . Observe that the
order requires only the inclusion of the input noise symbols ΦX

ε ⊆ ΦY
ε . This

restriction denotes the fact that the input noise symbols are shared between
abstract objects (which is not the case of perturbation noise symbols). The
order respects this semantics and ensures that the set of values taken by
these symbols in Ŷ , that is ΦY

ε , contains the one of X̂, that is ΦX
ε . The

binary relation order ≤1×2 is a pre-order over A1×2.

4.2.6 Proposition
The binary relation ≤1×2 in Definition 4.2.5 is a pre-order. The equivalence

relation ∼ (X̂ ∼ Ŷ if and only if X̂ ≤1×2 Ŷ and Ŷ ≤1×2 X̂) is characterized
by ΦX

ε = ΦY
ε and CXω+PXΦX

η (ω) = CY ω+P Y ΦY
η (ω) for all ω in ΦX

ε (sets
equality). For the sake of simplicity, we also denote by ≤1×2 the pre-order
≤1×2 quotiented by its equivalence relation ∼.
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Proof. Reflexivity. X̂ ≤1×2 X̂. Indeed ΦX
ε ⊆ ΦX

ε , and, for all ω ∈ ΦX
ε , for

all ζX ∈ ΦX
η (ω), we have CXω + PXζX = CXω + PXζX .

Transitivity. X̂ ≤1×2 Ŷ and Ŷ ≤1×2 Ẑ imply X̂ ≤1×2 Ẑ. Indeed, ΦX
ε ⊆

ΦY
ε and ΦY

ε ⊆ ΦZ
ε ample ΦX

ε ⊆ ΦZ
ε . Moreover, for all ω ∈ ΦX

ε , for all ζX ∈
ΦX
η (ω), there exists ζY ∈ ΦY

η (ω) such that CXω+PXζX = CY ω+P Y ζY . For
that ζY , there exists, ζZ ∈ ΦZ

η (ω), such that CY ω + P Y ζY = CZω + PZζZ,
which makes CXω + PXζX = CZω + PZζZ.

The partial order ≤1×2 is not equivalent to the geometrical order, since
our ε noise symbols have a strict semantics that should be respected by the
order. The geometrical order is however a necessary (but not sufficient)
condition of this order.

4.2.7 Proposition
The concretisation function γ1×2 is a monotonic operator: given two con-

strained affine sets X̂ = (CX , PX ,ΦX) and Ŷ = (CY , P Y ,ΦY ), we have

X̂ ≤1×2 Ŷ =⇒ γ1×2(X̂) ≤ γ1×2(Ŷ ) .

Proof. Let x be an element of γ1×2(X̂), we prove that x ∈ γ1×2(Ŷ ) under
the hypothesis X̂ ≤1×2 Ŷ . Since x ∈ γ1×2(X̂), then there exists ω ∈ ΦX

ε

and ζX ∈ ΦX
η [ε = ω], such that x = CXω + PXζX . Therefore, there exists

ζY ∈ ΦY
η [ε = ω], such that x = CXω + PXζX = CY ω + P Y ζY ∈ γ1×2(Ŷ ).

For instance, if A2 is the lattice of intervals, then X̂ ≤1×2 Ŷ if and only
if ΦX

ε ⊆ ΦY
ε and (CX − CY )ΦX

ε + PXΦX
η ⊆ P Y ΦY

η .
The geometrical order does not imply in general the order ≤1×2. Exam-

ple 4.2.8 gives a counter example, where X̂ �1×2 Ŷ and γ1×2(X̂) ≤ γ1×2(Ŷ ).

4.2.8 Example

X =
((1 0

1 0

)
,

(
−0.25 1
0.25 0

)
, 1× [−1, 1]3

)
Y =

((1 −0.25
1 0.25

)
,

(
0.5 0.5
−0.5 0.5

)
, 1× [−1, 1]3

)
Figure 4.3 depicts the zonotopes γ1×2(X̂) and γ1×2(Ŷ ), one can see that the
inclusion holds. Figure 4.4 depicts the zonotopes (CX − CY )ΦX

ε + PXΦX
η
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4.3. Special Case: Non Relational Constraints

v1

v2

Figure 4.3: γ1×2(X̂) ⊆ γ1×2(Ŷ ).

v1

v2

Figure 4.4: (CX−CY )ΦX
ε +PXΦX

η *
P Y ΦY

η (lozenge).

and P Y ΦY
η , the former is not included in the latter. That is, there exists

ω ∈ 1 × [−1, 1] and ζX ∈ [−1, 1]2, such that for all ζY ∈ [−1, 1]2, CXω +
PXζX 6= CY ω + P Y ζY . Indeed, every pair (ω, ζX) that leads to a point
outside the lozenge, for instance ω = (1, 1) and ζX = (−1, 1), violates the
needed equality. Hence according to definition 4.2.5, X̂ �1×2 Ŷ .

So far we have defined a poset (A1×2,≤1×2), elements of which are given
in Definition 4.2.1. The next section focuses on a special case: the abstrac-
tion of noise symbols with intervals. This particular case is useful for the
join operation over constrained affine sets.

4.3 Special Case: Non Relational

Constraints

All over this section, A2 is the lattice of intervals. In Section 4.3 we reformu-
late the partial order (Definition 4.2.5) using the support function (recalled
hereafter). Then, we give a special representative of the equivalence classes
defined by the ∼ relation, called symmetric representative (Section 4.3).
Section 4.3 discusses the decidability of ≤1×2. These definitions and re-
formulations are the basic ingredients needed to define and compute join
operators over constrained affine sets (CAS).

Partial Order and Support Function

We first reformulate the partial order ≤1×2 over CAS (Definition 4.2.5)
transforming the sets inclusion into a function comparison, namely compar-
ison of the support function of convex sets (see hereafter Definition 4.3.1).
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4. Constrained Affine Sets

This classical convex function, offers a suitable and powerful tool for the
upcoming computations.

4.3.1 Definition (The support function)
Let C be a non-empty convex set of Rn. Let t be an element of Rn then
δ : Rn → R is defined by:

δ(t | C)
def
= sup

{
〈t, x〉 | x ∈ C

}
,

where 〈·, ·〉 denotes the usual scalar product over Rn.

The inclusion of two convex sets is equivalent to the comparison of the
support functions related to these convex sets [Roc70, Corollary 13.1.1].

4.3.2 Proposition
For closed convex sets C1 and C2 in Rn, one has C1 ⊆ C2 if and only if
δ(· | C1) ≤ δ(· | C2).

In general, given two CAS, the cardinality of the perturbation symbols is
not necessarily the same. Nevertheless, we can suppose that it is always
the case, without loss of generality, by completing either PX or P Y by null
columns. Let m denote such cardinality.

For a given CAS, X̂, the sets ΦX
ε and ΦX

η are now two hypercubes.
Moreover, the set ΦX

η (ω), for a given ω in ΦX
ε , is independent from ω and

is equal to ΦX
η for all ω. Thus, the concretisation function γ1×2 (see Def-

inition 4.2.2) of a CAS X̂ can be seen as the Minkowski sum of two sets,
namely CXΦX

ε and PXΦX
η .

The order ≤1×2 can be stated with respect to the support function.

4.3.3 Lemma
Given two CAS X̂ and Ŷ , we have X̂ ≤1×2 Ŷ if and only if ΦX

ε ⊆ ΦY
ε and

∀t ∈ Rp, δ(t | (CX − CY )ΦX
ε ) ≤ δ(t | P Y ΦY

η )− δ(t | PXΦX
η ) .

Proof. All we need to prove is the fact that the inequality written using the
support function is equivalent to the sets inclusion

∀ω ∈ ΦX
ε , CXω + PXΦX

η ⊆ CY ω + P Y ΦY
η ,

given by the definition of the order (Definition 4.2.5). Using Proposi-
tion 4.3.2, for a fixed ω ∈ ΦX

ε , the sets inclusion is equivalent to

∀t ∈ Rp, δ(t | CXω + PXΦX
η ) ≤ δ(t | CY ω + P Y ΦY

η ) .
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4.3. Special Case: Non Relational Constraints

However, the support function of the Minkowski sum of two sets is equal
to the sum of the support functions over each set (see Remark 2 of the
Appendix), thus

δ(t | CXω+PXΦX
η ) = δ(t | CXω)+δ(t | PXΦX

η ) = 〈t, CXω〉+δ(t | PXΦX
η ) .

This makes

∀t ∈ Rp, 〈t, CXω〉+ δ(t | PXΦX
η ) ≤ 〈t, CY ω〉+ δ(t | P Y ΦY

η )

or equivalently

∀t ∈ Rp, 〈t, (CX − CY )ω〉 ≤ δ(t | P Y ΦY
η )− δ(t | PXΦX

η ) .

The above inequality is satisfied for all ω ∈ ΦX
ε , then by definition of the

support function

∀t ∈ Rp, δ(t | (CX − CY )ΦX
ε ) ≤ δ(t | P Y ΦY

η )− δ(t | PXΦX
η ) ,

which ends the proof.

Symmetric Representative

The formulation of the order using the support function allows a charac-
terization of a particular representation of the equivalence class of a given
constrained affine set.

We bind each perturbation noise symbol to a coordinate and consider,
as said earlier, that all CAS have the same number of perturbation noise
symbols m. Let X̂ = (CX , PX ,ΦX), and Ŷ = (CY , P Y ,ΦY ) be two CAS,
and let (AX , bX) (resp. (AY , bY )) be the affine map that transforms the unit
ball with respect to the uniform norm of dimension m, B, into ΦX

η (resp.
ΦY
η ). Such a map is in fact unique up to the permutation of the columns of

matrices AX and AY .

4.3.4 Definition (Symmetric Representative)
Let X̂ = (CX , PX ,ΦX) be a CAS. The symmetric representative of X̂ is
defined by

(C,P,Φ)
def
= (((bX + CX

(·,0))C
X
(·,1) . . . C

X
(·,n)), P

XAX ,ΦX
ε ×B) .

The first column of matrix C is the sum of vector bX and the first column
of matrix CX . The remaining columns of C are equal to the ones of CX .
Matrix P is the product of matrices PX and AX . The intervals of the
perturbation noise symbols are all set to [−1, 1].
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4. Constrained Affine Sets

The proposition below characterizes the equivalence classes related to
the binary relation ∼.

4.3.5 Proposition
Let X̂ = (CX , PX ,ΦX), and Ŷ = (CY , P Y ,ΦY ) be two CAS, and let
(AX , bX) (resp. (AY , bY )) be the affine map that transforms the unit ball
with respect to the uniform norm, B, into ΦX

η (resp. ΦY
η ). If:

ΦX
ε = ΦY

ε , (sets equality)

CX
i,j = CY

i,j, 1 ≤ i ≤ p, 1 ≤ j ≤ n

bX + LC
X

0 = bY + LC
Y

0 ,

PXAXB = P YAYB, (sets equality)

then X̂ ∼ Ŷ .

Proof. We prove that X̂ ≤1×2 Ŷ and Ŷ ≤1×2 X̂. Let t ∈ Rp. By definition
of CX and CY , matrix CX − CY is null everywhere except its first column
which is equal to P Y bY−PXbX . Therefore, (CX−CY )ΦX

ε = {P Y bY−PXbX}
(recall that ε0 = 1). We then have

δ(t | (CX − CY )ΦX
ε ) = 〈P Y bY − PXbX , t〉 .

On the other hand, by hypothesis, (AX , bX) transforms the unit ball B, into
ΦX
η , which gives ΦX

η = bX +AXB. Similarly, ΦY
η = bY +AYB. Therefore,

δ(t | PXΦX
η ) = 〈PXbX , t〉+ δ(t | PXAXB),

δ(t | P Y ΦY
η ) = 〈P Y bY , t〉+ δ(t | P YAYB), .

We have PXAXB = P YAYB, thus δ(t | PXAXB) = δ(t | P YAYB). Now,

δ(t | (CX − CY )Φε) = 〈P Y bY − PXbX , t〉
= 〈P Y bY , t〉 − 〈PXbX , t〉
= δ(t | P Y ΦY

η )− δ(t | PXΦX
η ) .

The equality

δ(t | (CX − CY )Φε) = δ(t | P Y ΦY
η )− δ(t | PXΦX

η ),

together with ΦX
ε = ΦY

ε , makes X̂ ≤1×2 Ŷ and Ŷ ≤1×2 X̂. Thus, X̂ ∼ Ŷ .
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4.3. Special Case: Non Relational Constraints

Using this equivalence, we prove the equivalence of a given constrained
affine set X̂ and its particular representative introduced in Definition 4.3.4.
This representative is convenient as its perturbation set is a symmetric
convex set (C = −C).

4.3.6 Corollary
Let X̂ = (CX , PX ,ΦX) be a CAS, let Ŷ denote its symmetric representative

as defined in Definition 4.3.4, then X̂ ∼ Ŷ .

Proof. We check that the CAS X̂ and its symmetric representative Ŷ sat-
isfy proposition 4.3.5. Indeed, ΦX

ε = ΦY
ε , and by definition of Ŷ ,

P Y = AXPX (4.3.1)

ΦY
η = B (4.3.2)

LC
Y

0 = bX + LC
X

0 (4.3.3)

CX
i,j = CY

i,j, 1 ≤ i ≤ p, 1 ≤ j ≤ n . (4.3.4)

It remains to check that ı) bY +LC
Y

0 = bX+LC
X

0 and ıı) PXAXB = P YAYB.
We start with ı). Equation 4.3.2 makes bY = 0 and AY equal to the identity
matrix. Since bY = 0, and using equation (4.3.3), we obtain

bY + LC
Y

0 = 0 + bX + LC
X

0 = bX + LC
X

0 .

We now check ıı). By equation 4.3.1, and using again the fact that bY = 0
and AY is the identity matrix, we obtain

PXAXB = P YB = P YAYB .

If not mentioned otherwise, any CAS is represented by its related sym-
metric representative. As the boxes of all perturbation noise symbols are
equal to [−1, 1], we use ΦX

ε instead of ΦX .
Notice that using the formulation of the order with symmetric represen-

tatives, both CX − CY or CY − CX can be used indifferently. Moreover,
the set ΦX

ε can be extended, without loss of generality, to the convex com-
bination of boxes ΦX

ε and −ΦX
ε , which is a symmetric convex set, namely

an origin-centered zonotope.
We introduce the primitive bound2 : A1 × A2 → I, which bounds the

expression (given in its first argument) with respect to the abstract object
Φ (given in its second argument). Such a primitive is usually provided in
numerical abstract domains, at least whenever the expression to be bounded
is linear.
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4. Constrained Affine Sets

4.3.7 Proposition
Let X̂ = (CX , PX ,ΦX

ε ) and Ŷ = (CY , P Y ,ΦY
ε ) be two CAS (in their sym-

metric representations). Let n denote the number of input noise symbols,
and εXj = bound2(εXi ,Φ

X
ε ), then X̂ ≤1×2 Ŷ if and only if ΦX

ε ⊆ ΦY
ε and,

∀t ∈ Rp, δ(t | (CX − CY )MX∗B) ≤ δ(t | P YB)− δ(t | PXB),

where the square matrix MX of dimension (n+ 1)× (n+ 1) is defined by

∀i, j ∈ {1, . . . , n+ 1},

MX
ij =


1 if i = j = 1,
mid(εXj ) if i = 1 and 1 < j ≤ n,
dev(εXj ) if 1 < i, j ≤ n and i = j and dev(εXj ) 6= 0,
0 otherwise.

In words, the upper left corner of MX is 1, the centers of the intervals εXj
are on the first line, and their deviations on the diagonal of MX .

Proof. Let X̂ = (CX , PX ,ΦX
ε ) and Ŷ = (CY , P Y ,ΦY

ε ) be two CAS such
that X̂ ≤1×2 Ŷ . According to the definition of the order, and the definition
of the symmetric representative, one has for all t ∈ Rp

δ(t | (CX − CY )ΦX
ε ) ≤ δ(t | P YB)− δ(t | PXB),

which gives for −t

δ(−t | (CX − CY )ΦX
ε ) ≤ δ(−t | P YB)− δ(−t | PXB),

or equivalently

δ(t | (CY − CX)ΦX
ε ) ≤ δ(t | −P YB)− δ(t | −PXB) .

The sets PXB and P YB are symmetric, thus −PXB = PXB and similarly
−P YB = P YB. Therefore,

δ(t | (CY − CX)ΦX
ε ) ≤ δ(t | P YB)− δ(t | PXB) .

Now, if (ε0, . . . , εn) ∈ ΦX
ε ⊂ 1× Rn, we want to prove that the inequality

δ(t | (CX − CY )ΦX
ε ) ≤ δ(t | P YB)− δ(t | PXB),

remains valid if ε0 lies within [−1, 1] instead of being constrained to be equal
to 1.
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4.3. Special Case: Non Relational Constraints

Suppose that the set obtained when we consider ε0 to be within [−1, 1]
is exactly the convex combination of (CX − CY )ΦX

ε and (CY − CX)ΦX
ε

(by definition, the convex combination of two sets C1 and C2 is the set
λC1 + (1− λ)C2, where λ ranges over [0, 1].), then the result is immediate
by summing up the two inequalities

δ(t | λ(CX − CY )ΦX
ε ) ≤ λ(δ(t | P YB)− δ(t | PXB))

δ(t | (1− λ)(CY − CX)ΦX
ε ) ≤ (1− λ)(δ(t | P YB)− δ(t | PXB))

Now let’s prove that the convex combination of (CX−CY )ΦX
ε and (CY −

CX)ΦX
ε is the set obtained when we consider ε0 to be within [−1, 1].

By definition the convex combination of (CX−CY )ΦX
ε and (CY−CX)ΦX

ε

is equal to λ(CX − CY )ΦX
ε + (1− λ)((CY − CX)ΦX

ε ), where λ ranges over
[0, 1]. Let g0 and (g1, . . . , gn) be respectively the center and the generators’
list of the zonotope (CX − CY )ΦX

ε :

(CX − CY )ΦX
ε = {g0 +

n∑
i=1

giβi | ∀i, βi ∈ [−1, 1]}

Therefore, −g0 and (g1, . . . , gn) are respectively the center and the genera-
tors’ list of the zonotope (CY − CX)ΦX

ε .
We then deduce that 0 and (g0, g1, . . . , gn) are respectively the center and

the generators’ list of the convex combination of (CX −CY )ΦX
ε and (CY −

CX)ΦX
ε . Indeed, any element of such convex combination can be written as

λu+(1−λ)v, where λ ∈ [0, 1], u = g0 +
∑n

i=1 giβ
u
i and v = −g0 +

∑n
i=1 giβ

v
i ,

βui , βvi ∈ [−1, 1]. Thus, λu+ (1− λ)v = (−1 + 2λ)g0 +
∑n

i=1 gi(λβ
u
i + (1−

λ)βvi ), where (−1 + 2λ) ∈ [−1, 1] and for all i, (λβui + (1− λ)βvi ) ∈ [−1, 1].
The zonotope spanned by (g0, g1, . . . , gn) (which is a symmetric convex

set) is the one obtained by MX∗B. Indeed, the first generator g0 is defined
by (1, dev(εX1 ), . . . , dev(εXn ))∗, and the other generators gi, 1 ≤ i ≤ n, are
defined by (0, . . . , dev(εXi ), . . . )∗, 1 ≤ i ≤ n. Therefore,

δ(t | (CX − CY )MX∗B) ≤ δ(t | P YB)− δ(t | PXB),

The final step, that is moving matrix MX from “right to left” in the
support function by applying the transpose operator (one has MX∗∗ = MX)
is a direct consequence of Proposition A.0.5.

4.3.8 Example
If ΦX

ε = 1× [−1, 0]× [0, 0.5] (n = 2), then

MX =

1 −0.5 0.25
0 0.5 0
0 0 0.25
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The convex combination of ΦX
ε and −ΦX

ε is indeed equal to MX∗B (of
dimension 3).

Decidability

To decide whether X̂ is less than or equal to Ŷ , using Lemma 4.3.3, it is
necessary and sufficient to check the inclusion of ΦX

ε and ΦY
ε , as well as, the

set inclusion of two sets, namely (CX − CY )ΦX
ε + PXΦX

η and P Y ΦY
η . The

former inclusion is straightforward, it consists in checking the inclusion of
n intervals, where n denotes the number of input noise symbols in use.

The latter involves the inclusion of two zonotopes since the Minkowski
sum of two zonotopes is a zonotope. The generators of the resulting zono-
tope are simply the union of the generators of its two operands.

4.3.9 Theorem
The partial order ≤1×2 is decidable, with a complexity bounded by
O(2n+2mC), where C denotes the complexity of solving a linear pro-
gram of p variables and (n+ 2m) constraints (each LP can be solved in
O(p3.5L) using interior point methods [Kar84], where L denotes the bit
length of the input data 2).

Proof. We would like to decide the inclusion of two zonotopes, namely
(CX −CY )ΦX

ε +PXΦX
η , and P Y ΦY

η . Let us denote by Z1 the former zono-
tope, and by Z2 the latter one. The zonotopes Z1 and Z2 are spanned by
n1 = n+m and n2 = m generators respectively. The problem of the inclu-
sion Z1 ⊆ Z2 can be stated using the support function as follows

Z1 ⊆ Z2 ⇐⇒ ∀t ∈ Rp, δ(t | Z1) ≤ δ(t | Z2) .

Let (A1, b1) (resp. (A2, b2)) be the affine map that transforms the unit ball
B into Z1 (resp. Z2). We have then to decide, for all t, whether

〈b1, t〉+ δ(A∗1t | B) ≤ 〈b2, t〉+ δ(A∗2t | B),

or equivalently
〈b1 − b2, t〉+ ‖A∗1t‖1 − ‖A∗2t‖1 ≤ 0 .

Each line of A∗1 (resp. A∗2), which is a generator of Z1 (resp. Z2), defines
a hyperplane that contains the origin. We then have a partition of the
space Rp with n1 + n2 = n + 2m hyperplanes containing the origin. (The
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4.3. Special Case: Non Relational Constraints

generators of the two zonotopes Z1 and Z2 are exactly the normal vectors
to these hyperplanes.) The worst number of cells in such arrangement is
2n1+n2. Each cell is a polyhedron Pi, 1 ≤ i ≤ 2n1+n2, where the function
〈b1− b2, t〉+ ‖A∗1t‖1−‖A∗2t‖1 is perfectly linear. We solve the following LP
:

max 〈b1 − b2, t〉+ ‖A∗1t‖1 − ‖A∗2t‖1

s.t. t ∈ Pi

If for each LP the objective value is less than or equal to zero, then the inclu-
sion holds. Else, the procedure terminates immediately returning “false”.

The best-case complexity is the one of solving exactly one LP. The worst-
case complexity is the one given in Theorem 4.3.9, this bound is reached
whenever the inclusion holds.

In static analysis by abstract interpretation, whenever we have a loop,
for each iteration in the abstract domain, we have to compare two abstract
objects. Hopefully, the worst case complexity holds only once, that is when
a fixpoint is reached (which ends the analysis of the loop.).
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CHAPTER 5
Assignment and Interpretation

of Tests

We define the arithmetic over constrained affine forms and explain how we
retrieve the available information encoded by the noise symbols abstract
object in order to improve the evaluation of the expressions, both linear
and non-linear. On the other hand we formalize the interpretation of tests,
a key feature of our abstract domain : tests are projected on the noise
symbols world as constraints, then interpreted using the abstract transfer
functions of the noise symbols domain.

Contents Section 5.1 focuses on abstract assignment over constrained
affine sets. Section 5.2 handles the abstraction of the tests statements:
equality tests, section 5.2, and inequality tests, section 5.2.

5.1 Abstract Assignment

We extend the set of variables V with the special variable v0 = 1 to encode
constants. The abstract set of environment Σ] : ℘(V) → A1×2 maps a
subset of variables to X̂ ∈ A1×2. For the sake of simplicity, we always
abstract the set of all variables. Thus, any σ] ∈ Σ] maps V to an object
of A1×2. So, one can simply consider A1×2 instead of its lifted abstract
domain Σ] : V → A1×2.

We denote by LMi the ith line of matrix M . The semantics of the
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5. Assignment and Interpretation of Tests

assignment function is defined by:

Jvk ← eK](C,P,Φ)
def
= (C ′, P ′,Φ′),

where ∀i 6= k, LC
′

i = LCi , L
P ′

i = LPi ,

∀i, 0 ≤ i ≤ n,C ′k,i = αei ,∀j, 1 ≤ j ≤ m,P ′k,j = βej ,

(
n∑
i=0

αei εi +
m∑
j=1

βejηj,Φ
′)

def
= JeK](C,P,Φ).

Only the kth line of matrices C and P is updated after the assignment
of the expression e to the variable vk. The new coefficients of the kth line,
that is αei , 0 ≤ i ≤ n, and βej , 1 ≤ j ≤ m, come from the evaluation of the
expression e with respect to the abstract object (C,P,Φ). The semantics
of the evaluation of an expression e ∈ expr is given by:

∀e ∈ expr,JeK] : A1×2 → A1 ×A2

JvkK](C,P,Φ)
def
= (

n∑
i=0

Ck,iεi +
m∑
j=1

Pk,jηj,Φ)

J[a, b]K](C,P,Φ)
def
=


(a+b

2
+ b−a

2
εf , J−1 ≤ εf ≤ 1K]2Jadd εfK]2Φ),

if −∞ < a ≤ b < +∞,
(εf , Jεf ≤ bK]2Jadd εfK]2Φ), if −∞ = a

(εf , Ja ≤ εfK]2Jadd εfK]2Φ), if +∞ = b

Je1 � e2K](C,P,Φ)
def
= Je1K](C,P,Φ) � Je2K](C,P,Φ)

where � ∈ {+1×2,−1×2,×1×2,÷1×2}

J
√
eK](C,P,Φ)

def
=
√

1×2JeK
](C,P,Φ)

Notice that the evaluation of an expression is by definition with respect to
the same abstract object (C,P,Φ). Therefore, all noise symbols (input and
perturbation) are shared between the involved operands.

The abstract operator Jadd εfK]2 : A2 → A2 formalizes the add of a fresh
noise symbol εf to the abstract object Φ. Here we add a new input noise
symbol εf , however, the operator could be used to add a fresh perturbation
noise symbol ηf as well. (From a point of view of A2, all noise symbols are
variables and there is no more difference between them.)

Let x̂ =
∑n

i=0 α
x
i εi +

∑m
j=1 β

x
j ηj, and ŷ =

∑n
i=0 α

y
i εi +

∑m
j=1 β

y
j ηj be two

elements ofA1, and Φ an element ofA2. The linear operations {+1×2,−1×2}
are defined by their related operations in affine arithmetic. The abstract
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element Φ is unused and remains unchanged:

(x̂,Φ) +1×2 (ŷ,Φ)
def
= (

n∑
i=0

(αxi + αyi )εi +
m∑
j=1

(βxj + βyj )ηj,Φ),

(x̂,Φ)−1×2 (ŷ,Φ)
def
= (

n∑
i=0

(αxi − α
y
i )εi +

m∑
j=1

(βxj − β
y
j )ηj,Φ) .

The scalar multiplication operation is defined by

λ.1×2(x̂,Φ)
def
= (

n∑
i=0

(λαxi )εi +
m∑
j=1

(λβxj )ηj,Φ) .

5.1.1 Proposition
The assignment of linear expression is monotonic.

Proof. Given two constrained affine sets X̂ and Ŷ such that X̂ ≤1×2 Ŷ .
We prove that Jvk ← vi + vjK]X̂ ≤1×2 Jvk ← vi + vjK]Ŷ . Let Â = Jvk ←
vi + vjK]X̂ and B̂ = Jvk ← vi + vjK]Ŷ . The abstract objects ΦX and ΦY

are unchanged, thus ΦA = ΦX and ΦB = ΦY , and the condition ΦA
ε ⊆ ΦB

ε

holds. Let ω ∈ ΦX
ε and let ηXω ∈ ΦX

η (ω). Since X̂ ≤1×2 Ŷ , there exists
ηYω ∈ ΦY

η (ω) such that

CXω + PXηXω = CY ω + P Y ηYω ,

thus

〈LCX

i , ω〉+ 〈LPX

i , ηXω 〉 = 〈LCY

i , ω〉+ 〈LPY

i , ηYω 〉,
〈LCX

j , ω〉+ 〈LPX

j , ηXω 〉 = 〈LCY

j , ω〉+ 〈LPY

j , ηYω 〉 .

We prove that CAω+PAηXω = CBω+PBηYω . Matrix CA (resp. PA) is equal
to matrix CX (resp. PX) except for the kth line. Likewise the matrices CB

and PB are equal everywhere to CY and P Y respectively except for the kth
line. For the kth line we have

LC
A

k = LC
X

i + LC
X

j , LP
A

k = LP
X

i + LP
X

j ,

LC
B

k = LC
Y

i + LC
Y

j , LP
A

k = LP
Y

i + LP
Y

j .
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Therefore,

〈LCA

k , ω〉+ 〈LPA

k , ηXω 〉 = 〈LCB

k , ω〉+ 〈LPB

k , ηYω 〉 .

The operations −1×2 and .1×2 can be proved monotonic in a similar manner.
Any linear expression can be seen as a composition of these basic operations
and the composition of monotonic operations is monotonic.

Non linear binary operations {×1×2,÷1×2} and the unary operation
{
√

1×2} benefit from both abstract domains A1 and A2 for a better pre-
cision.

Multiplication

The multiplication operation benefits from the interval concretisation of
every noise symbol. We detail the idea through a small example, then give
the formal definition.

Let x̂
def
= ε1 and ŷ = ε2, and Φ = 1 × [0.5, 1]2. Since ε1 and ε2 are

independent variables, the exact range of the expression ε1 × ε2 is given by
interval arithmetic, that is [0.5, 1]×[0.5, 1] = [0.25, 1]. The expression ε1×ε2
is non-linear. The naive solution which transforms the interval [0.25, 1]
into the affine form mid([0.25, 1]) + dev([0.25, 1])ηf , ηf ∈ [−1, 1] definitely
loses all relations with ε1 and ε2 while giving a perturbation deviation of
1−0.25

2
= 0.375. A better solution “extracts” first the linear component of

ε1 × ε2:

ε1 × ε2 = (ε1 − 0.75 + 0.75)× (ε2 − 0.75 + 0.75)

= 0.752 + 0.75(ε1 − 0.75) + 0.75(ε2 − 0.75) + (ε1 − 0.75)(ε2 − 0.75)

∈ −0.752 + 0.75ε1 + 0.75ε2 + [−0.25, 0.25]× [−0.25, 0.25]

∈ −0.5625 + 0.75ε1 + 0.75ε2 + [−0.0625, 0.0625]

The non-linear term considered now, (ε1−0.75)× (ε2−0.75) has a concreti-
sation equal to [−0.0625, 0.0625], which is 6 times less than [−0.375, 0.375],
obtained by the naive solution.
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5.1. Abstract Assignment

The multiplication operation is defined by:

(x̂,Φ)× (ŷ,Φ)
def
= (

n+1∑
i=0

αiεi +
m∑
j=1

βjηj + βfηf , J−1 ≤ ηf ≤ 1K]2 ◦ Jadd ηfK]2Φ)

where

α0 = −mid([x̂]) mid([ŷ]) + mid(∆)

αi = mid([x̂])αyi + mid([ŷ])αxi , 1 ≤ i ≤ n

βj = mid([x̂])βyi + mid([ŷ])βxi , 1 ≤ j ≤ m

βf = dev(∆)

∆ = bound2(
n∑
i=1

αxi (εi −mid(εi))
n∑
i=1

αyi (εi −mid(εi))

+
n∑
i=1

αxi (εi −mid(εi))
m∑
j=1

βyi (ηj −mid(ηj))

+
m∑
j=1

βxi (ηj −mid(ηj))
n∑
i=1

αyi (εi −mid(εi))

+
m∑
j=1

βxi (ηj −mid(ηj))
m∑
j=1

βyi (ηj −mid(ηj)),Φ)

[x̂] = bound2(x̂,Φ),

[ŷ] = bound2(ŷ,Φ) .

Recall that primitive bound2 : A1×A2 → I bounds the expression given in
its first argument with respect to the abstract object Φ given in its second
argument. Computing ∆ is not immediate. If A2 is a polyhedra-like ab-
stract domain, then the computation needs to over-approximate a quadratic
term over a polyhedron. We give hereafter two methods specifically tuned
for the quadratic expressions.

Method 1 is based on interval arithmetic together with symbolic en-
hancement computations. The method distributes the multiplication, sim-
plifies equal terms, then over-approximates each remaining term with an
interval, and finally sums up these intervals. Simplification holds if αxi α

y
j =

−αxjα
y
i for some pair (i, j). The over-approximation step is smart enough

to detect squares of intervals: (εi − mid(εi))(εi − mid(εi)) ∈ [0, dev(εi)
2]

instead of [− dev(εi)
2, dev(εi)

2] given by interval arithmetic. The final in-
terval found is an over-approximation of the actual bounds reached by the
expression.
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5. Assignment and Interpretation of Tests

Method 2 is more sophisticated and takes into account the dependency
between noise symbols. It operates globally on the expression and uses
SemiDefinite Programming (SDP) to compute tight bounds for ∆. The
expression can be seen simply as

∑n+m
i=1

∑n+m
j=1 ζxi ζ

y
j δiδj when all δi are within

[−1, 1] where:

ζxi = αxi dev(εi), ζ
y
i = αyi dev(εi) 1 ≤ i ≤ n,

ζxi = βxi dev(ηi), ζ
y
i = βyi dev(ηi) n+ 1 ≤ i ≤ n+m,

δi = εi −mid(εi), 1 ≤ i ≤ n,

δi = ηi −mid(ηi), n+ 1 ≤ i ≤ n+m,

and similarly for ζyi and δyi , 1 ≤ i ≤ n + m by substituting x by y. The
following proposition bounds sup(∆) by a typical SDP program.

5.1.2 Proposition
The upper bound of ∆ is bounded by:

max
|δi|≤1

n+m∑
i=1

n+m∑
j=1

ζxi ζ
y
j δiδj = max

|δi|≤1
δ∗.Ψ.δ ≤ inf

µ∈Rn+m
+

{trace(µIn+m)|Ψ−µIn+m � 0}

(S)
where (Ψi,j)1≤i,j≤n+m = 1

2
(ζxi ζ

y
j + ζxj ζ

y
i ) and Ψ−µIn+m � 0 denotes the fact

that Ψ − µIn+m is negative SemiDefinite. The equality holds when matrix
Ψ is negative SemiDefinite.

The infimum bound of ∆ is computed similarly using the inequality

min
|δi|≤1

n+m∑
i=1

n+m∑
j=1

ζxi ζ
y
j δiδj ≤ −max

|δi|≤1

n+m∑
i=1

n+m∑
j=1

(−ζxi )ζyj δiδj .

The first method is cost effective but gives coarse results for the non-linear
term as it does not consider all dependencies between noise symbols. The
second method gives tighter results but needs to solve two SDP programs
with a polynomial complexity. Notice that the second method relies on
the box that contains γ2(Φ), and not γ2(Φ) itself. It’s hence an over-
approximation of the actual bounds reached by the expression when the
noise symbols lie within γ2(Φ) unless A2 is the intervals abstract domain
and Ψ is negative semidefinite.

5.1.3 Proposition
The abstract assignment operator Jvk ← vi × vjK] is monotonic.

Proof. The proof of the unconstrained case may be found [GP09].
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Division

The division operation ÷1×2 is defined in two steps: we first compute the
inverse then operate a multiplication:

(x̂,Φ)÷1×2 (ŷ,Φ)
def
= (1/·1×2(ŷ,Φ))×1×2 (x̂,Φ) .

The inverse operation 1/·1×2 is defined by:

1/·1×2(x̂,Φ)
def
= (ζ + δx̂+ κηf , J−1 ≤ ηf ≤ 1K]Jadd ηfK]2Φ),

where [a, b] = bound2(x̂,Φ) in

δ =
−4

(a+ b)2

κ = − 2b

(a+ b)2
+

1

2a

ζ =
4

a+ b
+− 2b

(a+ b)2
+

1

2a
.

The definition above supposes that [a, b] does not contain zero and has finite
bounds. The non-generic other cases are as follows:

1/·1×2(x̂,Φ)
def
=


(>1×2,Φ), if 0 ∈ [a, b],

( 1
2a

+ 1
2a
ηf , J−1 ≤ ηf ≤ 1K]Jadd ηfK]2Φ),

if b = +∞
( 1

2b
+ −1

2b
ηf , J−1 ≤ ηf ≤ 1K]Jadd ηfK]2Φ),

if a = −∞

Square Root

The square root is defined as follows:

√
1×2(x̂,Φ)

def
= (ζ + δx̂+ κηf , J−1 ≤ ηf ≤ 1K]2Jadd ηfK]2Φ),

where [a, b] = [0,+∞] ∩ bound2(x̂,Φ) in

ζ =

√
a+ b

4
√

2
− 1

2
√

2
√
a+ b

+

√
a

2

δ =
1√

2(a+ b)

κ =

√
a+ b

4
√

2
+

a

2
√

2
√
a+ b

−
√
a

2
.

Here, bound2 gives the bounds of the affine expression x̂ with respect to
the abstract object Φ. Such a primitive is usually available in all numerical
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5. Assignment and Interpretation of Tests

abstract domains. If the underlying abstract domain does not implement
such primitive, a relaxed version can be easily defined by taking the interval
concretization of each variable in Φ, then use interval arithmetic. The real
numbers ζ, δ and κ are computed using a special Taylor series development
of the square root function, as detailed in Section 3.3. The definition above
assumes that [a, b] is not empty nor reduced to zero and its bounds are
finite. All other cases are as follows:

√
1×2(x̂,Φ)

def
=


(⊥1×2,Φ), if [a, b] = ∅,
(0,Φ), if a = b = 0,

(ηf , J
√
a ≤ ηfK]Jadd ηfK]2Φ), if b = +∞

A typical flow-sensitive analyzer would emit a caveat and store the location
if the interval [a, b] admits negative values.

Soundness

Linearization of non-linear unary operations adds a new noise symbol ηf .
For unary operations f(x) ∈ { 1

x
,
√
x}, where x is abstracted by (x̂,Φ), we

compute respectively the linear approximants {
√

1×2(x̂,Φ), 1/·1×2(x̂,Φ)}.
The joint range of x̂ and �x̂, for � ∈ {

√
1×2, 1/·1×2}, has to enclose the graph

of (x, f(x)), where the noise symbols range over γ2(Φ). This condition is
enforced by the soundness property that abstraction should respect: X ≤[
γ ◦α(X). In our case, X is given by the graph of the function (x, f(x)), its
abstraction, α(X) = X̂, is the constrained affine set formed by the affine
forms x̂, �x̂ and the abstract element Φ:

{(x1, x2) | x2 = f(x1)} = X ⊆ γ1×2(X̂) .

If this condition is unsatisfied, then one might find a feasible configuration
of noise symbols not represented by the linear approximant computed. Even
if the interval range of the linear approximant contains the interval range
of the approximated function, one can always come up with an “unsafe”
future computation that exploits this unsound configuration.

We give hereafter an example of linearization which is unsound, but
gives locally correct result if we consider only the interval range of the affine
forms after the linearization. The example is picked up from the literature
of reliable computing, it is given in [Kol07] to illustrate the so-called Kolev
formula of multiplication over affine forms which yields no overestimation
(under certain simple monotonicity conditions satisfied by the example).

5.1.4 Example
Consider x̂ = 10 + 5ε1 + 3ε2 and ŷ = 10 − 2ε1 + ε3. All noise symbols are
within [−1, 1]. The range of x̂ is [2, 18], and the range of ŷ is [7, 13]. Kolev
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x

z

(ε1 = 0, ε2 = 1, ε3 = 1)

2 18

22

162

Figure 5.1: unsound multiplication: the concretisation of the abstraction
does not over-approximate the concrete graph.

multiplication gives ẑ = 92 + 31ε1 + 21ε2 + 2ε3 + 16ε4. The concretisation
of ẑ is [22, 162] which is the exact range of xy. Consider now the (future)
computation t = −4x + 0.8z − 79. Using the above ẑ, we find t̂ = −45.4 +
4.8ε1 + 4.8ε2 + 1.6ε3 + 12.8ε4 and conclude that t ∈ [−69.4,−21.4]. This
is wrong: for ε1 = 0 and ε2 = 1 and ε3 = 1, we have x = 13 and y = 11
and z = 143, then t = −16.6 which is outside the concretisation of t̂ found
using this affine form for z.

Figure 5.1 depicts the projection onto the (x, z) space of a cloud of vectors
of the actual 3-dim graph (x, y, z = xy) taken sparsely for ε1, ε2, ε3 ∈ [−1 :
0.2 : 1], and the joint range (the gray zonotope) of the affine forms x̂
and ẑ. Observe that some points are outside the zonotope even if their
projection onto the z axes is within [22, 162]. For instance, the red point
(x, z) = (13, 143) obtained for (ε1, ε2, ε3) = (0, 1, 1) is outside the zonotope
and leads to the wrong over-approximation of t detailed above.
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5. Assignment and Interpretation of Tests

5.2 Interpretation of Tests

The scope of this section covers the novel idea behind interpretation of tests,
informally discussed in the introduction (Section 4.1).

We study first (Section 5.2) the interpretation of the equality test Je =
0K] for an expression e ∈ expr. Then we formalize Je ≤ 0K] as well as the
interpretation of conjunction and disjunction of constraints (Section 5.2).

Equality Test

We start with a motivating example to help understanding the formal def-
inition of the interpretation of an equality test over CAS.

5.2.1 Example
Let X̂ = (CX , PX ,ΦX) be a CAS abstracting three variables {v1, v2, v3},
where A2 is the intervals lattice. Each variable vi is abstracted by the affine
form given by the ith line of matrices CX and PX .

ΦX := {1} × [−1, 1]× [−1, 1]× [−1, 1]

X̂1 := 4 + ε1 + ε2 + η1, bound2(X̂1,Φ
X) = [1, 7]

X̂2 := −ε1 + 3ε2, bound2(X̂2,Φ
X) = [−4, 4]

X̂3 := −ε1 + 2ε2 + η1, bound2(X̂3,Φ
X) = [−4, 4]

The evaluation of expression v1 − v2 in our abstract domain gives

Jv1 − v2K](CX , PX ,ΦX) = (4 + 2ε1 − 2ε2 + η1,Φ),

Constraint v1 − v2 = 0, interpreted with affine forms, gives then

4 + 2ε1 − 2ε2 + η1 = 0 . (5.2.1)

This constraint, established using the noise symbols, is first used to
enhance the interval concretisation of the noise symbols (in this example,

domain A2 is the intervals lattice). This gives ΦY def
= {1} × [−1,−0.5] ×

[0.5, 1]× [−1, 0]. Moreover, for each variable vi we inject equation (5.2.1) to
seek the best trade-off one can have by substituting one of its noise symbols;
”best” in the sense of minimizing the interval concretisation of the variable
vi. For instance for X̂1 = 4 + ε1 + ε2 + η1, we have 3 choices

Ŷ1 = 2 + 2ε2 + 0.5η1, bound2(Ŷ1,Φ
Y ) = [2.5, 4] (by substituting ε1)

Ŷ1 = 6 + 2ε1 + 1.5η1, bound2(Ŷ1,Φ
Y ) = [2.5, 5] (by substituting ε2)

Ŷ1 = −ε1 + 3ε2, bound2(Ŷ1,Φ
Y ) = [2, 4] (by substituting η1)
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The best substitution, which minimizes the range of the variable is the
one which substitutes ε1 by its corresponding expression given by the equa-
tion (5.2.1).

Since variable v2 is involved in constraint v1 = v2, its best affine form is
the same one found for v1. So there is no more computation needed here.

For the last variable v3, we also choose the best possible substitution as
we did with v1, we have

Ŷ3 = 2 + ε2 + 1.5η1, bound2(Ŷ3,Φ
Y ) = [1, 3] (by substituting ε1)

Ŷ3 = 4 + ε1 + 2η1, bound2(Ŷ3,Φ
Y ) = [1, 3.5] (by substituting ε2)

Ŷ3 = −4− 3ε1 + 4ε2, bound2(Ŷ3,Φ
Y ) = [−0.5, 3] (by substituting η1)

and it turns out that substituting ε1 gives also the best affine form. The
interval concretisation of this best form is tighter than [0.5, 3], the one
obtained with the original affine form of v3, −ε1 + 2ε2 + η1 with the new
intervals of noise symbols ΦY . Of course, the choice of which noise symbol
substitute depends on the original affine form of the variable as well as the
constraint. For instance, if X̂3 was equal to −ε1 +0.5ε2 +η1, with respect to
the same constraint given in (5.2.1), then ε2 would be the best substitution.

Finally, the CAS Ŷ obtained after the interpretation of the equality test
is

ΦY := {1} × [−1,−0.5]× [0.5, 1]× [−1, 0]

Ŷ1 := 2 + 2ε2 + 0.5η1, bound2(Ŷ1,Φ
Y ) = [2.5, 4]

Ŷ2 := 2 + 2ε2 + 0.5η1, bound2(Ŷ2,Φ
Y ) = [2.5, 4]

Ŷ3 := 2 + ε2 + 1.5η1, bound2(Ŷ3,Φ
Y ) = [1, 3]

The so obtained interval concretizations are better than the ones ob-
tained by the reduced product of affine sets and intervals, which gives,
after the test, [1, 7] ∩ [−4, 4] = [1, 4] for Ŷ1 and Ŷ2, and [−4, 4] for Ŷ3. The
substitution is injects in fact the exact constraint into the affine forms. Ob-
serve also that in the CAS Ŷ , the equality is algebraically satisfied as the
affine forms Ŷ1 and Ŷ2 are equal.

The complexity of the straightforward method to compute the best sub-
stitution used in the example below (testing each noise symbol then com-
paring the concretisations) is O((n + m)2) for each numerical variable vi,
for n + m noise symbols. We can reduce such complexity by transforming
the problem to the following optimization problem:

min
λ∈R

f(λ), f(λ)
def
=

n+m∑
i=1

|ai − biλ| (*)
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where ai, bi are known real numbers for all i, 1 ≤ i ≤ n + m. We can
suppose without loss of generality, that bi > 0. Indeed if bk is null for some
k, then the term |ak| is not involved in the minimization problem as it is
independent from λ. If bk < 0, then we just multiply by −1.

5.2.2 Proposition
The best average complexity of solving the problem (*) is O(n log(n)).

Proof. The function f in (*) is convex: it is defined as a finite sum of
convex functions, |ai − biλ|. Let us denote by R = {r1, . . . , rn+m}, the

sorted set of roots of the functions ai− biλ, ri
def
= ai

bi
, in the increasing order

(i.e. ri ≤ ri+1) : Note that, the function f is a piecewise linear function
with n+m−1 line segments, each defined over [ri, ri+1], 1 ≤ i < n+m, and
two half-lines (rays) for λ ≤ r1 and rn+m ≤ λ. By convexity of f , when λ
varies over the real number line, the slopes of each line segment are ordered
and vary from −

∑n+m
i=1 bi (the slope of the ray λ ≤ r1) to

∑n+m
i=1 bi (the slope

of the ray rn+m ≤ λ). By hypothesis, bi > 0, then there exists necessarily
at least one point rp, such that the slope of the line segment [rp−1, rp] is
non-positive (negative or null) and the slope of the line segment [rp, rp+1] is
positive. Then, a minimum of f is reached at rp since f is decreasing before
rp and increasing after rp. Such a local minimum is global by the convexity
of f . Moreover, if the sign of the slopes in [rp−1, rp] is null, then the global
minimum is reached for all λ ∈ [rp−1, rp].

The best average complexity of sorting a list of n+m elements is O((n+
m)log(n+m)), using a divide and conquer strategy (Quicksort algorithm by
Hoare, Merge algorithm by Von Neuman, etc.). We have then, in the worst
case, to run through n + m elements seeking the change of the sign of the
slopes of the line segments.

Our original problem of seeking the best substitution, can be easily
translated to the form of (*). We exemplify this translation for variable
X̂1, then formalize the general case.

X̂1 = X̂1 + λ× 0

= 4 + ε1 + ε2 + η1 + λ(4 + 2ε1 − 2ε2 + η1)

= 4 + 4λ+ (1 + 2λ)ε1 + (1− 2λ)ε2 + (1 + λ)η1

In the second equality, the zero was replaced by the constraint (5.2.1) de-
duced from the test. The deviation of the interval concretisation γ(X̂1) is
then:

0.25|(1 + 2λ)|+ 0.25|1− 2λ|+ 0.5|1 + λ| .
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Minimizing this deviation ensures the minimal interval concretisation for
the variable v1.

Now, for any affine form â = α0 +
∑n

i=1 αiεi+
∑m

i=j βjηj and a constraint
ĉ = c0 +

∑n
i=1 ciεi +

∑m
j=1 pjηj = 0, the optimization problem to solve is

min
λ∈R

n∑
i=1

dev(εi)|αi + λci|+
m∑
j=1

dev(ηj)|βj + λpj|, (**)

where εi and ηj denote respectively the interval concretisations of the input
noise symbols εi, 1 ≤ i ≤ n, and the perturbation noise symbols ηj, 1 ≤
j ≤ m, that is

εi
def
= bound2(εi,Φ

Y ),

ηj
def
= bound2(ηj,Φ

Y ) .

The new affine form is derived from the objective solution of (**), λ̄, and
the current affine form.

The abstract operator Jvk = 0K] is formalized as follows:

5.2.3 Definition
Let X̂ be a CAS abstracting p numerical variables. Then Ŷ = Jvk = 0K]X̂
is defined by

ΦY def
= JX̂k = 0K]2ΦX

Ŷi
def
= X̂i + λ̄i(X̂k), 1 ≤ i ≤ p, i 6= k

Ŷk
def
= 0

where λ̄i is the optimal solution of the problem (**) solved for

â = X̂i, ĉ = X̂k

εi = bound2(εi,Φ
Y ), ηj = bound2(ηj,Φ

Y ).

The matrices CY and P Y are computed (together) line by line: the central
part of the affine form Ŷi gives the coefficient of the ith line of CY and
its perturbation part completes the ith line of matrix P Y . The operator
Je = 0K]2 denotes the abstract conditional operator of the noise symbol
abstract domain A2. We recall that the primitive bound2 : A1 × A2 → I
returns the range of an affine form with respect to an abstract object in A2.

73



5. Assignment and Interpretation of Tests

5.2.4 Proposition
The average complexity of the abstract function Jvk = 0K] is O((p− 1)(n+
m)log(n+m)) for p numerical variable, n input noise symbols and m per-
turbation noise symbols.

Proof. We solve p− 1 times the problem (**) which has an average com-
plexity of O((n+m)log(n+m)) by Proposition 5.2.2. We subtract 1 from
p since the affine form of vk is set to 0.

Interpretation of expressions equality If the test involves an expres-
sion rather than a variable, then the definition of the operator Je = 0K] has
the same definition of Jvk = 0K] up to the evaluation of the expression e.

5.2.5 Definition
The abstraction of the test e = 0 is defined by:

Je = 0K]X̂ def
= Jv′ = 0K]X̂,

where v′ is a temporary numerical variable abstracted by JeK]X̂.

5.2.6 Example
Consider Ŷ = Jx1 + x2 − x3 = 0K]X̂ where

ΦX := {1} × [−1, 1]× [−1, 1]× [−1, 1]

X̂1 := 2 + ε1, bound2(X̂1,Φ
X) = [1, 3]

X̂2 := 2 + ε2 + η1, bound2(X̂2,Φ
X) = [0, 4]

X̂3 := −ε1 + 3ε2, bound2(X̂3,Φ
X) = [−4, 4]

The evaluation of the expression x1 + x2 − x3 gives the same constraint of
the example 5.2.1, that is

4 + 2ε1 − 2ε2 + η1 = 0,

thus, ΦY = 1 × [−1,−0.5] × [0.5, 1] × [−1, 0]. The computation of the best
substitutions replaces ε1 by −2 + ε2 − 0.5η1 in all affine forms:

Ŷ1 := ε2 − 0.5η1, bound2(Ŷ1,Φ
Y ) = [0.5, 1.5]

Ŷ2 := 2 + ε2 + η1, bound2(Ŷ2) = [1.5, 3]

Ŷ3 := 2 + 2ε2 + 0.5η1, bound2(Ŷ3) = [2.5, 4] .

Observe that, after the test, Ŷ1 + Ŷ2 = Ŷ3.
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ε1

ε2

x̂

ŷ

Figure 5.2: The constraints over variables are interpreted as constraints
over the noise symbols

Inequality Tests

The inequality test supported by our language is e ≤ 0. The test is propa-
gated to the noise symbols abstract domain.

5.2.7 Definition
Let X̂ be a CAS abstracting p numerical variables. Then Ŷ = Jxk ≤ 0K]X̂
is defined by

ΦY def
= Je ≤ 0K]2ΦX

CY def
= CX

P Y def
= PX .

Only the abstract domain of the noise symbols is updated in the in-
equality test. The affine set (CX , PX) remains unchanged. For instance,
consider the affine set

x̂ = ε1 − ε2
ŷ = 2ε1 .

In figure 5.2, we depict the final object which we propagate after the test
x̂ ≥ 0. On one hand, the initial affine set given above is untouched, and
so is its geometrical concretisation, that is the gray zonotope (right hand
side). On the other hand, the values of noise symbols are constrained to
the gray area (left hand side), instead of being independent within [−1, 1]
each.

The conjunction and disjunction of constraints are interpreted similarly,
that is as constraints over the noise symbols. If the underlying domain of
noise symbols does not handle disjunctions, the convex hull is considered
instead, as it is done in classical convex abstract domain.
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5.3 Related Work

On the Use of Zonotopes

The efficient encoding of affine forms (as lists of generators) and the ac-
curacy of computations (for both linear and non-linear operations) have
motivated other applications of these special polytopes or zonotopes. For
instance, Girard in [Gir05] and Combastel [Com05] have used zonotopes
for the computation of reachable sets of uncertain linear systems. Com-
bastel [Com05] has also proposed rigorous bounds for uncertain non-linear
continuous-time systems using zonotopes.

Years before, Kühn [Küh98] has used zonotopes for the purpose of nu-
merical quality control: he used zonotopes to enclose the orbits of discrete
dynamical systems; the higher order zonotopes permit to reduce the wrap-
ping effect and hence lead to more accurate results. Zonotopes were also
used as bounding volumes for collision detection [GNZ03].

Zonotope/Hyperplane Intersection

The use of zonotopes in reachability analysis of hybrid systems needs to first
detect the collision of a zonotope with guards that govern the discrete tran-
sitions of the system, and second to be able to wrap the intersection with
the active guard by a zonotope. Indeed, the intersection of a hyperplane
(for linear guards) and zonotope is in general not a zonotope.

As seen in the previous section, the interpretation of tests while using
zonotopes (or equivalently affine sets) as abstract objects rose a similar
problem as one needs to compute a zonotopic approximation of the inter-
section which is in general a polytope.

The geometrical approaches proposed in [GLG08, LG09] and [ASB08] do
not embed the noise symbols with a particular semantics. The zonotopes are
encoded with unordered list of generators. In our case, the noise symbols
are related to the inputs of the program, these symbols have a precise
meaning and can not be substituted. Indeed, the order we define over our
abstract objects is strictly stronger than the geometrical order. Therefore,
a zonotope that over-approximates geometrically the intersection may not
be sound in our context.
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CHAPTER 6
Join over Constrained Affine

Sets

This chapter is dedicated to the computation of the union of two constrained
affine sets, as an optimal (in a sense to define) upper bound of two given
constrained affine sets, with respect to the partial order ≤1×2.

Contents Firstly, we define, in section 6.1 the general procedure we use
to build a sound upper bound of two given CAS. The procedure is generic
and not related to the noise symbols abstract domain A2. Section 6.2
characterizes the set of minimal upper bounds of two constrained affine
forms (and not sets); Section 6.2 presents an algorithm to pick up one
of these minimal upper bounds earlier characterized. This algorithm is
extended in Section 16 to handle reduced intervals case, that is when the
noise symbols are constants, or equivalently, within intervals of the form
[c, c], where c is a real number. Sections 16 and 16 are special cases of our
algorithm: firstly, we consider the case of perturbed affine forms; secondly,
we apply the efficient join operator defined for perturbed affine forms to
the constrained affine forms using our characterization of minimal upper
bounds, and hence our algorithm, to compute the minimal perturbation.
Finally, the last part (Section 6.3) defines, piecewisely, an upper bound
over constrained affine sets.
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6.1 General Procedure

As we are seeking a good precision-time cost trade-off, our general procedure
starts by relaxing the given abstract objects by forgetting all noise symbols
relations, then computes an upper bound of the relaxed constrained affine
sets. Here, relaxing means taking the smallest box containing the concreti-
sation of Φ instead of Φ itself. Our approach is sound, since relaxing a CAS
(C,P,Φ) gives an over-approximation of (C,P,Φ).

6.1.1 Proposition
Let X̂ = (C,P,Φ) be a CAS, then

(C,P,Φ) = X̂ ≤1×2 �X̂
def
= (C,P,�Φ)

where �Φ denotes the interval concretisation of Φ, that is, Πn
i=0εi×Πm

j=1ηj,
where εi = bound2(εi,Φ) and ηj = bound2(ηj,Φ).

Proof. Obviously the condition Φε ⊆ �Φε holds as Φε denotes the con-
cretisation of the projection of Φ over the subspace defined by the input
noise symbols, and �Φε is the smallest box containing this concretisation
by construction. Similarly, we have Φη ⊆ �Φη. Moreover, for all ω ∈ Φε,

(C − C)ω + PΦη(ω) = PΦη(ω) ⊆ P�Φη(ω),

which ends the proof.

The general procedure used to compute the join of two CAS X̂ and
Ŷ starts by computing an upper bound of �X̂ and �Ŷ , which is also an
upper bound of X̂ and Ŷ thanks to Proposition 6.1.1. Therefore, computing
the join of two CAS is A2-independent, since the problem is always brought
back to the computation of an upper bound of CAS where the noise symbols
range over intervals.

In the remaining sections, A2 is the intervals lattice. We characterize
and compute upper bounds of two CAS with respect to the partial order
≤1×2. Our computation is defined componentwisely over the variables’ set.
The result is constructed, line by line, by computing the minimal upper
bound (mub) of two Constrained Affine Forms (CAF), which are exactly
the CAF. The computation of such mub extends and generalizes the one
of [GP08] which computes the mub of two perturbed (but unconstrained)
affine forms.
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6.2. Join over Constrained Affine Forms

It is important to notice that such approach does not consider the CAS
globally while computing the join, it rather focuses on a fixed set of di-
rections, namely those of the canonical base of Rp. This means that the
perturbation for each variable, taken alone, is optimized. However, the
perturbation along any other random direction is not minimal in general.

This chapter is organized as follows. Section 6.2 details the way we
compute the minimal upper bound of two constrained affine forms. In
Section 6.3 we define our join operators.

6.2 Join over Constrained Affine Forms

In this section, the number of variables p is equal to one. Thus, matrices
CX and PX for a CAS X̂ are simply two lines; X̂ is simply a constrained
affine form, or CAF.

A least upper bound (lub) does not exist in general, this fact was estab-
lished for perturbed affine forms in [GP08], which are a special CAF (the
noise symbols are unconstrained). Instead, two given CAF may have in-
finitely many minimal upper bounds (mub). We first remind the definition
of a mub. Then, we focus on a particular subset of mubs (the ones which
minimize the perturbation) that we can characterize as the set of saddle-
points of a function L(α, λ) defined over Rn+1× [0, 1]. Finally, we solve the
saddle-point problem using standard tools from the subdifferential theory
of convex functions.

As we have seen in Section 4.3, when using intervals to abstract noise
symbols, the partial order≤1×2 is not sensitive to the domain of each pertur-
bation symbol ηi, only the (symmetric) perturbation set considered globally
is of interest. We use the symmetric representative (see Definition 4.3.4)
of CAF. Therefore, only the box ΦX

ε should be considered. One can then
represent, without loss of generality, a CAF X̂ by (αX , τX ,ΦX

ε ), where
αX ∈ Rn+1, τX is a non-negative real number, deviation of the perturba-
tion interval, and ΦX

ε , which is an hypercube of dimension n, domain of the
input noise symbols.

6.2.1 Definition
Let X̂ = (αX , τX ,ΦX

ε ) and Ŷ = (αY , τY ,ΦY
ε ) be two CAF. We say that

Ẑ = (αZ , τZ ,ΦZ
ε ) is a minimal upper bound (mub) of X̂ and Ŷ if and only

if

• Ẑ is an upper bound of X̂ and Ŷ , that is X̂ ≤1×2 Ẑ and Ŷ ≤1×2 Ẑ,
and

• for all Ŵ upper bound of X̂ and Ŷ , Ŵ ≤1×2 Ẑ implies Ŵ = Ẑ.
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6. Join over Constrained Affine Sets

The proposition below establishes that if the deviation of the perturba-
tion set of any upper bound is minimal, then this upper bound is a mub.

6.2.2 Proposition
If Ẑ = (ᾱ, τ̄ ,ΦX

ε ∪2ΦY
ε ) is an upper bound of two given CAF, X̂ and Ŷ , such

that τ̄ (the deviation of its perturbation set) is minimal over all deviations
τ of any upper bound of X̂ and Ŷ , then Ẑ is a mub of X̂ and Ŷ .

Proof. Suppose that T̂ = (α, τ,Φε) is an upper bound of X̂ and Ŷ such
that T̂ ≤1×2 Ẑ, then by definition of the order, (ı) Φε ⊆ ΦX

ε ∪ΦY
ε , and (ıı):

δ(M(α− ᾱ) | B) ≤ τ̄ − τ .

where M is the matrix related to Φε. Since T̂ is an upper bound of X̂ and
Ŷ , we have ΦX

ε ⊆ Φε, and ΦY
ε ⊆ Φε, thus ΦX

ε ∪ ΦY
ε ⊆ Φε. By (ı) we obtain

Φε = ΦX ∪ΦY . By hypothesis, τ̄ is minimal, therefore, τ̄−τ ≤ 0. However,
by definition of the support function and (ıı), we have δ(M(α − ᾱ) | B) =
‖M(α − ᾱ)‖1 ≥ 0. Therefore, ‖M(α − ᾱ)‖1 = 0, and α = ᾱ. Finally
0 ≤ τ̄ − τ , and τ̄ = τ .

Notice that the mubs that minimize the perturbation are not the only
possible mubs. Indeed, Proposition 6.2.2 is only sufficient but not necessary.
Example 6.2.3 gives a counter example of a minimal upper bound which
does not have the minimal perturbation.

6.2.3 Example
Let X̂ = ((1,−1, 2), 0, 1 × [−1, 0] × [0, 0.5]), and Ŷ = ((2, 1, 1), 0, 1 ×
[−0.5, 0.5] × [0, 1]), then T̂ = ((1.75, 0, 0.75), 0.75, 1 × [−1, 0.5] × [0, 1]) is
a mub that minimizes the interval concretisation, indeed [T̂ ] = [1, 3.5] =
[1, 3] ∪ [1.5, 3.5] = [X̂] ∪ [Ŷ ]. However, in Section 6.2, we have seen
that Ẑ = X̂ t Ŷ = ((1.7, 0.2, 1.6), 0.7, 1 × [−1, 0.5] × [0, 1]). Observe that
[Ẑ] = [0.8, 4.1] ⊇ [1, 3.5] = [T̂ ]. Of course, T̂ and Ẑ are not comparable.

What Example 6.2.3 suggests is that enforcing the minimality of the
concretization, then seeking the minimal perturbation among these upper
bound with minimal concretization, may lead to a different subset of mubs.

We focus in the sequel on the computation of the subset of mubs (ᾱ, τ̄ ,Φ)
such that the perturbation τ̄ is minimal.
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By Proposition 4.3.7, for T̂ = (α, τ,Φε) to be an upper bound of X̂ and
Ŷ , it is necessary and sufficient that ΦX

ε ∪2 ΦY
ε ≤2 Φε and that α and τ

satisfy:

δ(MX(αX − α) | B) + τX ≤ τ,

δ(MY (αY − α) | B) + τY ≤ τ,

or said differently:

max{δ(MX(αX − α) | B) + τX , δ(MY (αY − α) | B) + τY } ≤ τ .

We look for the set of α ∈ Rn+1 that minimizes the maximum above. If
such set is not empty, by Proposition 6.2.2, it should contain all mubs of
X̂ and Ŷ . Formally, we define ᾱ and τ̄ as being respectively the objective
vector and the objective value of the following minimax problem

τ̄ = min
α∈Rn+1

max{δ(MX(αX − α) | B) + τX , δ(MY (αY − α) | B) + τY } .

We can rewrite the maximum of two real numbers as a maximum of a linear
real-valued function, using the lemma below:

6.2.4 Lemma
Let a and b be two real numbers. Then

max{a, b} = max
λ∈[0,1]

λa+ (1− λ)b .

Proof. If a ≤ b, then max{a, b} = b. On the other hand f(λ)
def
= λa+ (1−

λ)b = λ(a− b) + b is an affine function with a negative slope (a− b), thus
it reaches its maximum for λ = 0, that is, maxλ∈[0,1] λa+ (1−λ)b = b. The
case b ≤ a is similar (just interchange a and b).

6.2.5 Definition (Minimal perturbation of two CAF)
The minimal perturbation τ̄ is the objective value of the following problem

τ̄ = inf
α∈Rn+1

sup
λ∈[0,1]

L(α, λ) .

where L : Rn+1 × [0, 1]→ R maps (α, λ) to

λ(δ(MX(αX −α) | B) + τX) + (1−λ)(δ(MY (αY −α) | B) + τY ) . (6.2.1)
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6. Join over Constrained Affine Sets

Matrix MX is a square matrix of dimension (n+ 1)2, its determinant is
equal to

Πn
i=1 dev(εXj ) .

If all the intervals εXj are non-reduced to a point, the matrix is non-singular.
For the sake of readability, the special case where these matrices are sin-
gular, that is where some noise symbols’ intervals are reduced to points, is
left to a separate section (see Section 16). From now on we suppose that
matrices MX and MY are non-singular.

The rest of this section details our approach to solve efficiently the min-
imax problem of Definition 6.2.5. We characterize the set of solutions (Sec-
tion 6.2), then solve the system of equations found (Section 6.2). Through
these different sections, each step is exemplified using the same following
example:

6.2.6 Example
We would like to compute (ᾱ, τ̄) such that Ẑ = (ᾱ, τ̄ , 1 × [−1, 0.5] × [0, 1])

is a mub of X̂ and Ŷ , defined by

X̂ = ((1,−1, 2), 0, 1× [−1, 0]× [0, 0.5])

Ŷ = ((2, 1, 1), 0, 1× [−0.5, 0.5]× [0, 1]) .

The matrices MX and MY , related to ΦX
ε and ΦY

ε respectively are

MX def
=

1 −0.5 0.25
0 0.5 0
0 0 0.25

 , MY def
=

1 0 0.5
0 0.5 0
0 0 0.5

 .

Characterization of the Set of Mubs with Minimal
Perturbation

The set of points (ᾱ, λ̄), solution of the minimax problem of Definition 6.2.5
are known as the saddle-points of the function L defined over Rn+1× [0, 1].

6.2.7 Definition (Saddle-point)
Let L be a convex-concave function from C×D to [−∞,+∞]. A point (ū, v̄)
is a saddle-point of L with respect to minimizing over C and maximizing
over D if (ū, v̄) ∈ C ×D and

∀u ∈ C, ∀v ∈ D, L(ū, v) ≤ L(ū, v̄) ≤ L(u, v̄) .

When we fix v to v̄, the convex function L, seen as a function of u, achieves
its minimum at u = ū . Likewise, when we fix u to ū, the concave function L,
seen as function of v, achieves its maximum at v = v̄ (see Figure 6.1 [wik]).
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6.2. Join over Constrained Affine Forms

Figure 6.1: Function f(x, y) = x2− y2, and its saddle-point (0, 0), depicted
in red.

The lemma below shows that, whenever a saddle-point exists, one has

sup v∈D inf u∈C L(u, v) = inf u∈C sup v∈D L(u, v) = L(ū, v̄) .

The value L(ū, v̄) is called the saddle-value of L.

6.2.8 Lemma
Let L be any convex-concave function from a non-empty product set C×D to
[−∞,+∞]. A point (ū, v̄) is a saddle-point of L with respect to minimizing
over C and maximizing over D if and only if the supremum of the expression

inf
u∈C

L(u, v),

is reached at v̄, the infimum in the expression

sup
v∈D

L(u, v),

is reached at ū, and these two extremes are equal. If (ū, v̄) is a saddle-point,
the saddle-value of L is by definition L(ū, v̄).

One can start by fixing v, then computing the infimum of L (as function
of u), and finally maximizing this infimum by varying v; or fixing u, then
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6. Join over Constrained Affine Sets

computing the supremum of L (as function of v), and finally minimizing
this supremum. Both cases need a characterization of the set of points that
optimize (minimize or maximize) the function L, either with respect to u
or v.

The differential theory offers a suitable toolset for characterizing such
set of optimum points, whenever the objective function is a differentiable
function (a function whose derivative exists at each point in its domain).
In our case, the function L of equation (6.2.1) is not differentiable in the
usual sense with respect to α. Indeed the function can be seen as a sum of
absolute value functions, which are not differentiable in 0.

Instead, we use a weaker notion of differentiability, called subdifferential
theory, which requires only the convexity of the function. We first remind
the definition of a subgradient, then the subdifferential of a convex function
from Rn to R at a point x of its domain.

6.2.9 Definition (Subgradient)
A vector t is said to be a subgradient of a convex function f at a point x if

∀z, f(z) ≥ f(x) + 〈t, z − x〉 .

If the function f is differentiable at x, then its subgradient is exactly its
gradient, that is the vector whose components are the partial derivatives of
the function f , usually denoted by ∇f :

∇f def
= (

∂f

∂x1

, . . . ,
∂f

∂xn
)

evaluated at x.
The intuitive geometrical meaning of the subgradient inequality of Def-

inition 6.2.9 for a convex function f : Rn → R at x, is the fact that the
graph of the affine function h(z) = f(x) + 〈t, z − x〉 is a non-vertical sup-
porting hyperplane to the epigraph (reminded hereafter) epi f at the point
(x, f(x)).

6.2.10 Definition (Epigraph)
Let f be a function whose values are real or ±∞ and whose domain is a
subset S of Rp. The set

{(x, µ) | x ∈ S, µ ∈ R, µ ≥ f(x)}

is called the epigraph of f and is denoted by epi f .

In Figure 6.2, we depict the epigraph of the function f : R→ R, where
f(x) = x2, which is a convex set of dimension 2 (the gray area). Since the
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1−1
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t = 2

Figure 6.2: epigraph of f(x) = x2

and the unique subgradient at x = 1.

x

f(x)

1

2

1−1

t = 2
3

t = −1
2

Figure 6.3: subgradients of f(x) =
|x| at x = 0.

function is differentiable, the hyperplane h(z) is the tangent (hyperplanes
of dimension 2 are lines) to the graph of the function at a point x; ∇f at
x gives the slope of that tangent at x. Here, this slope is the subgradient t
mentioned in Definition 6.2.9.

In Figure 6.3, the absolute value function is not differentiable at 0,
however it has infinitely many subgradients at x = 0 (for instance t = 2

3

and t = −1
2

). The gray area shows the epigraph of the absolute value
function. Observe that if t is outside [−1, 1], the hyperplane does no more
support the epigraph.

Since many subgradients may exist at a given point x, the set of these
subgradients is called the subdifferential of f at x.

6.2.11 Definition (Subdifferential)
The set of all subgradients of f at x is called the subdifferential of f at x
and is denoted by ∂f(x). If the set ∂f(x) is not empty, the function f is
said to be subdifferentiable at x.

For instance, for the absolute value function, the subdifferential of f at 0
is the interval [−1, 1]; whereas, the subdifferential elsewhere is the singleton
{1} if x is non-negative and {−1} if x is non-positive.

With respect to Definition 6.2.9 of a subgradient, given a convex function
f : Rn → R, if 0 ∈ ∂f(x), the subdifferential of f at x, then

∀z ∈ Rn, f(z) ≥ f(x),

thus, x is a global minimum of the function f . Reciprocally, if x is a global
minimum of the function, by definition, the inequality above holds, which
makes 0 ∈ ∂f(x).
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Dually, if f is a concave function, then −f : x 7→ −f(x), is convex.
Therefore, if 0 ∈ ∂(−f)(x), then

∀z ∈ Rn, −f(z) ≥ −f(x),

which makes x a global maximum of the function.
For our function L defined in equation (6.2.1), we first prove the exis-

tence of saddle-points.

6.2.12 Proposition
The convex-concave function L defined in equation (6.2.1) has a saddle-
point.

Proof. The proof is a direct application of [Roc70, Chapter 37, Theorem
37.6], which states that if ı)the functions −Lα(λ) : λ ∈ Rn 7→ −L(α, λ), de-
fined over ]0, 1[ have no common direction of recession, and ıı) the functions
Lλ(α) : α ∈ Rn 7→ L(α, λ), defined over Rn have also no common direc-
tion of recession, then L(α, λ) has a saddle-point. The set of directions of
recession of a convex function f , is defined by

{y | y 6= 0,∀λ ≥ 0,∀x such that f+(x) ≤ 0, f+(x+ λy) ≤ 0},

where f+ denotes the recession function of f and can be defined by f+ def
=

limθ→0 θf(θ−1x) 1. Since for all α ∈ Rn, the domain of −Lα(λ) is bounded
(]0, 1[), then condition (ı) is fulfilled. We have

lim
θ→0

θL+
λ (θ−1α) = λδ(MX(αX − α) | B) + (1− λ)δ(MY (αY − α)),

then, for all λ ∈]0, 1[, the set of α such that L+
λ (α) ≤ 0 is {0}, and (ıı) is

also satisfied.

Let (ᾱ, λ̄) denote a saddle-point of L. Then, by definition of saddle-
points,

∀α ∈ Rn+1, ∀λ ∈ [0, 1], L(ᾱ, λ) ≤ L(ᾱ, λ̄) ≤ L(α, λ̄),

which makes λ̄ a global maximum of the (linear) function

Lᾱ(λ) : λ 7→ L(ᾱ, λ), (Lᾱ)

1This formula holds for our case because the hypothesis 0 ∈ dom f is satisfied for
both functions −Lα(λ) and L(α, λ).
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and ᾱ a global minimum of the non-linear convex function

Lλ̄(α) : α 7→ L(α, λ̄) . (Lλ̄)

Therefore, we can use the subdifferential characterization, namely

0 ∈ ∂ − Lᾱ(λ̄) and 0 ∈ ∂Lλ̄(ᾱ) .

In the sequel, we seek for ᾱ ∈ Rn+1 and λ̄ ∈ [0, 1] that satisfy these
conditions. We start with the easier one, that is ∂Lᾱ(λ), and then focus on
∂Lλ̄(α).

Computing the set ∂Lᾱ(λ), for λ ∈ [0, 1] is immediate. Since the func-
tion Lᾱ(λ) is linear, it is differentiable, and its derivative is straightforward:

Lᾱ(λ) = λ(δ(MX(αX − ᾱ) | B) + τX) + (1− λ)(δ(MY (αY − ᾱ) | B) + τY )

= aᾱλ+ bᾱ,

where

aᾱ = δ(MX(αX − ᾱ) | B) + τX − δ(MY (αY − ᾱ) | B)− τY

bᾱ = δ(MY (αY − ᾱ) | B) + τY .

We have to be cautious with the subdifferential of the linear function
at its borders, that is λ = 0 and λ = 1. Inbetween these borders, the
subdifferential matches the differential of the function, that is its slope
{aᾱ}.

Figure 6.4 depicts the epigraph of −Lᾱ(λ) (that is −aᾱλ−bᾱ), and some
of its subgradients at λ = 0 and λ = 1. Observe that the subgradient 0,
drawn in horizontal red line, is an element of ∂ − Lᾱ(1). Indeed, when
the slope is non-positive (−aᾱ < 0), the global minimum of the function is
reached at λ = 1. Dually, the maximum (which interests us) of Lᾱ(λ), that
is aᾱλ+ bᾱ, when −aᾱ < 0 (or aᾱ > 0) is also reached at λ = 1.

Thus, we conclude with

∂ − Lᾱ(λ) =


{−aᾱ} if λ ∈]0, 1[
(−∞,−aᾱ] if λ = 0
[− aᾱ,+∞) if λ = 1

(∂)

The proposition below summarizes the characterization of λ̄. For the
sake of clarity, we remind the expression of aᾱ defined earlier to emphasize
the linearity of Lᾱ(λ).
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Lᾱ(λ)

1
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1

Figure 6.4: Subgradients of Lᾱ(λ) at λ = 0 and λ = 1.

6.2.13 Proposition
Let aᾱ = δ(MX(αX − ᾱ) | B) + τX − δ(MY (αY − ᾱ) | B)− τY , where ᾱ is
unknown vector of Rn+1, then

• If aᾱ = 0, then λ̄ may be any real number within [0, 1].

• However, if aᾱ < 0, then necessarily λ̄ = 0.

• Finally, if aᾱ > 0, then necessarily λ̄ = 1.

Proof. The proposition is immediate from the computation of ∂ − Lᾱ(λ̄)
given in equation (∂).

The first case indicates that if the slope of the linear function is null,
then every point of the domain of the function is a global maximum (or
minimum). The two last cases formalize the intuition behind the fact that
if aᾱ < 0 (resp. > 0), then the linear function aᾱλ + bᾱ is decreasing (res.
increasing), then its global maximum is reached for λ = 0 (resp. λ = 1).

The proposition 6.2.13 gives the first relation between λ̄ and ᾱ, the
two components of the saddle-point we seek. The second and non-trivial
relation is derived from 0 ∈ ∂Lλ̄(ᾱ). We detail hereafter, step by step, the
way we derive it.

The remaining difficult part is the computation of ∂Lλ̄(α), or more
precisely, the characterization of ᾱ, such that the subdifferential ∂Lλ̄(ᾱ)
contains 0. To this aim, we use a central theorem which links the subgradi-
ents to the Fenchel conjugate (see Definition 6.2.14) of a convex function.
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We define first the Fenchel conjugate of a given convex function, and then
state, without proof 2, the theorem to be used.

6.2.14 Definition (Conjugate of a Convex Function)
Let f be a convex function on Rn. We define the function f ∗ on Rn, called
the conjugate of f , by

f ∗(t)
def
= sup{〈x, t〉 − f(x) | x ∈ Rp} .

For instance, the support function δ we use for the order (see Defini-
tion 4.3.1 is the conjugate of the indicator function:

6.2.15 Definition (Indicator Function)
Let C be a set of Rn, then

δ∗(x | C)
def
=

{
0 if x ∈ C,
+∞ if x /∈ C.

Clearly, C is a convex set if and only if δ(x | C) is a convex function on
Rp.

Notice that we use the ∗ notation to denote the conjugate of a given
function; There is no operator meaning to the star notation when used
with functions.

Theorem below shows that the conjugate f ∗ of a convex function f is
at the heart of the characterization of the subdifferential of f .

6.2.16 Theorem (Duality and Subgradients)
For any proper convex function f and any vector x, the following four
conditions on a vector t are equivalent to each other:

(a) t ∈ ∂f(x);

(b) 〈z, t〉 − f(z) achieves its supremum in z at z = x;

(c) f(x) + f ∗(t) ≤ 〈x, t〉;

(d) f(x) + f ∗(t) = 〈x, t〉.

2To be concise and focus on our computations, we made the choice to state some well-
known theorem without proofs. Please, refer to Chapter 23, Theorem 23.5, in [Roc70]
for instance, for detailed proofs.
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A proper convex function means that the epigraph of that function does
not contain a vertical line, that is a convex function f , where epi f is not
empty, has at least one x such that f(x) < +∞, and for every x, f(x) >
−∞. Simple improper convex functions are the functions x 7→ +∞ and
x 7→ −∞.

The characterization of the set ᾱ such that 0 ∈ ∂Lλ̄(ᾱ) is then a corollary
of Theorem 6.2.16.

6.2.17 Corollary
We have 0 ∈ ∂Lλ̄(ᾱ) if and only if

Lλ̄(ᾱ) + Lλ̄
∗(0) = 0 .

Proof. Once we prove that the function Lλ̄ is a proper convex function, the
corollary is immediate from Theorem 6.2.16 using the equivalence between
(a) and (d) for t = 0. The epigraph of Lλ̄ is a non-empty subset of Rn+1,
the function is finite for at least one α, and by definition Lλ̄ > −∞ for
every α ∈ Rn.

6.2.18 Lemma
The conjugate of the function Lλ̄ evaluated at 0, that is Lλ̄

∗(0), is equal to

−δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B)− λ̄τX − (1− λ̄)τY .

Proof. The proof is mainly an application of properties and operations of
the Fenchel conjugate of convex functions. The detailed proof is given in
appendix B.1.

Corollary 6.2.17, together with Lemma 6.2.18, give the second relation
that puts together ᾱ and λ̄.

6.2.19 Proposition
Vector ᾱ such that ∂Lλ̄(ᾱ) contains 0 satisfies:

λ̄δ(MX(ᾱ− αX) | B) + (1− λ̄)δ(MY (ᾱ− αY ) | B) =

δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

The following Theorem summarizes the two main propositions, that is
Proposition 6.2.13 and Proposition 6.2.19, that establish the relations that
ᾱ and λ̄ have to satisfy for (ᾱ, λ̄) to be a saddle-point of L(α, λ).
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6.2.20 Theorem
• If δ(MY (αY − αX) | B) < τY − τX , then (αY , 0) is the unique

saddle-point of L. Its saddle-value is τY .

• If δ(MY (αY −αX) | B) = τY − τX , and αY 6= αX , then L admits
infinitely many saddle-points such that ᾱ = αY . Its saddle-value
is τY .

• If δ(MX(αY − αX) | B) < τX − τY , then (αX , 1) is the unique
saddle-point of L. Its saddle-value is τX .

• If δ(MX(αY −αX) | B) = τX − τY , and αY 6= αX , then L admits
infinitely many saddle-points such that ᾱ = αX . Its saddle-value
is τX .

• Otherwise, δ(MY (αY−αX) | B) > |τY−τX | and δ(MX(αY−αX) |
B) > |τX − τY |, and (ᾱ, λ̄) satisfies:

λ̄ ∈]0, 1[,

δ(MX(ᾱ− αX) | B) + τX = δ(MY (ᾱ− αY ) | B) + τY ,

λ̄δ(MX(ᾱ− αX) | B) + (1− λ̄)δ(MY (ᾱ− αY ) | B) =

δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

Proof. The proof is mainly a discussion about the combination of Propo-
sitions 6.2.19 and 6.2.13. The lengthy detailed proof can be found in ap-
pendix B.2.

Theorem 6.2.20 is not sufficient to compute automatically the saddle-
points of L whenever δ(MY (αY−αX) | B) > |τY−τX | and δ(MX(αY−αX) |
B) > |τX − τY |. It gives instead a system of equations that have to be sat-
isfied by the saddle-points. Observe that in the last case of Theorem 6.2.20,
λ̄ /∈ {0, 1}, as this violates the hypothesis of that case. The next section
focuses on solving these equations while presenting an algorithm which re-
turns a saddle-point of L.
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Computation of the Set of Mubs that Minimize the
Perturbation

Let λ̄ be a fixed element of ]0, 1[, and uλ̄ be a vector of λ̄MX∗B ∩ (1 −
λ̄)MY ∗B such that

〈αX − αY , uλ̄〉 = δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

The vector uλ̄ exists as the convex λ̄MX∗B ∩ (1 − λ̄)MY ∗B is not empty
(contains at least {0}). We know, by definition of the saddle-point, that
λ̄ maximizes Lᾱ defined in equation Lᾱ. So our approach is twofold: we
first seek the pair (λ̄, uλ̄) that maximizes Lᾱ; we then deduce ᾱ. Since
the expression of Lᾱ depends on ᾱ, we need to overcome such dependency.
This can be done by using the definition of uλ̄, as introduced above. Indeed
Lᾱ(λ̄) = L(ᾱ, λ̄), which gives

Lᾱ(λ̄) = 〈αX − αY , uλ̄〉+ λ̄τX + (1− λ̄)τY .

Therefore, λ̄ is the optimal solution of the following non-linear optimization
problem:

max 〈αX − αY , uλ〉+ λτX + (1− λ)τY

s.t. 0 < λ < 1

uλ ∈ λMX∗B ∩ (1− λ)MY ∗B

(P)

Solving (P)

The dimension of (P) is n+ 2 since the unknown vector uλ is an element of
Rn+1. To solve (P), we first reduce the dimension of the problem from n+2
to 2. We hence obtain a much simpler non-linear optimization problem
defined then solved at the end of this section.

We start with our running example 6.2.6 to bring closer the idea we
apply later to the general case. Let uλ = (u0, u1, u2)∗, the constraint uλ ∈
λMX∗B ∩ (1− λ)MY ∗B is equivalent to

λ−1MX∗−1
uλ ∈ B and (1− λ)−1MY ∗−1

uλ ∈ B .

The inverses of λ and (1−λ) are finite since λ is within ]0, 1[. The matrices
MX and MY are non-singular as we are restricted to the case where all
deviations of the interval concretisations of noise symbols are not null. We
recall the matrices MX and MY :

MX =

1 −0.5 0.25
0 0.5 0
0 0 0.25

 , MY =

1 0 0.5
0 0.5 0
0 0 0.5

 .
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which gives

MX∗−1
=

 1 0 0
1 2 0
−1 0 4

 , MY ∗−1
=

 1 0 0
0 2 0
−1 0 2

 ,

and one has:

λ−1MX∗−1
uλ ∈ B ⇐⇒


−λ ≤ u0 ≤ λ
−λ ≤ u0 + 2u1 ≤ λ
−λ ≤ −u0 + 4u2 ≤ λ

and

(1− λ)−1MY ∗−1
uλ ∈ B ⇐⇒


−(1− λ) ≤ u0 ≤ (1− λ)
−(1− λ) ≤ 2u1 ≤ (1− λ)
−(1− λ) ≤ −u0 + 2u2 ≤ (1− λ)

Combined together these constraints lead to

max{−λ,−(1− λ)} ≤ u0 ≤ min{λ, (1− λ)}
max{−λ−u0

2
, −(1−λ)

2
} ≤ u1 ≤ min{λ−u0

2
, 1−λ

2
}

max{−λ+u0
4

, −(1−λ)+u0
2

} ≤ u2 ≤ min{λ+u0
4
, (1−λ)+u0

2
}

or equivalently, using only the min operator (max{a, b} = −min{−a,−b}):

−min{λ, (1− λ)} ≤ u0 ≤ min{λ, (1− λ)}
−min{λ+u0

2
, (1−λ)

2
} ≤ u1 ≤ min{λ−u0

2
, 1−λ

2
}

−min{λ−u0
4
, (1−λ)−u0

2
} ≤ u2 ≤ min{λ+u0

4
, (1−λ)+u0

2
} .

We also know that αX0 − αY0 = 1− 2 = −1, αX1 − αY1 = −1− 1 = −2, and
αX2 −αY2 = 2− 1 = 1 and that τX = τY = 0. We can now explicit an upper
bound of 〈αX − αY , uλ〉 + λτX + (1 − λ)τY by substituting u1 and u2 by
their respective upper bounds:

〈αX − αY , uλ〉+ λτX + (1− λ)τY

=− u0 − 2u1 + u2 + 0 + 0

≤− u0 + 2 min{λ+ u0

2
,
(1− λ)

2
}+ min{λ+ u0

4
,
(1− λ) + u0

2
} .

This upper bound is reached whenever

u1 = −min{λ+ u0

2
,
(1− λ)

2
} , u2 = min{λ+ u0

4
,
(1− λ) + u0

2
} .
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Thus, instead of maximizing 〈αX −αY , uλ〉+λτX + (1−λ)τY , which is our
original objective function, we maximize its (attained) upper bound. This
ends the dimension reduction step: the original problem has a dimension
of n+ 2 = 2 + 2 = 4, the variables involved are (u0, u1, u2) and λ. Now the
problem we obtain has only 2 unknowns, namely u0 and λ, and the feasible
region is defined by

0 < λ < 1 , −min{λ, (1− λ)} ≤ u0 ≤ min{λ, (1− λ)} .

We formalize the general case of the dimension reduction step exempli-
fied above. Then, we continue solving our running example before formal-
izing the general case of the newly reduced optimization problem.

6.2.21 Proposition (Dimension Reduction)
Let the pair (λ̄, uλ̄) be a solution to the optimization problem (P). Let ūi
denote the ith component of the vector uλ̄. Then ūi, 1 ≤ i ≤ n, satisfies

ūi =



min{λ̄ dev(εXi ) + mid(εXi )ū0, (1− λ̄) dev(εYi ) + mid(εYi )ū0},
if sign(αXi − αYi ) = 1,
−min{λ̄ dev(εXi )−mid(εXi )ū0, (1− λ̄) dev(εYi )−mid(εYi )ū0},

if sign(αXi − αYi ) = −1,
any real number ,

if αXi = αYi .

where the pair (λ̄, ū0) is a solution of the following optimization problem

max τY + (αX0 − αY0 )u0 + (τX − τY )λ+
n∑
i=1

|αxi − α
y
i |ui

s.t. 0 < λ < 1

−min{λ, (1− λ)} ≤ u0 ≤ min{λ, (1− λ)}

(Pr)

The coordinates ui, 1 ≤ i ≤ n, are defined as ūi by substituting λ̄ with λ
and ū0 by u0.

Proof. The proof is a generalization of the computations previously done.
The inverse of matrix M∗ is

M∗−1
(i,j) =


1 if i = 1 and j = 1,
−M(i,1)

M(i,i)
if i 6= 1 and j = 1,

1
M(i,i)

if i 6= 1 and j = i,

0 otherwise
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Let ui, 0 ≤ i ≤ n, denote the ith component of the vector uλ. From the

constraints λ−1MX∗−1
uλ ∈ B, and (1 − λ)−1MY ∗−1

uλ ∈ B we deduce
an (attained) upper bound for each component ui, i ≥ 1, function of u0

(the first component) and λ, and an additional condition on u0 and λ :
|u0| ≤ min{λ, (1 − λ)}. Using these upper bounds, we over-approximate
the objective function of (P), which involves in turn only two unknowns u0

and λ. Therefore, the total dimension of the problem is reduced from n+ 2
initially to 2 in (Pr).

The objective function of the optimization problem (Pr), denoted by
f(u0, λ), has the form:

f(u0, λ)
def
= τY +α0u0 +(τX−τY )λ+

n∑
i=1

αi min{aiλ+biu0, a
′
i(1−λ)+b′iu0}

where α0
def
= αX0 −αY0 ∈ R, (αi)1≤i≤n are positive real numbers, 0 < ai, a

′
i ≤

1, and −1 < bi, b
′
i ≤ 1. The feasible region is draw in Figure 6.5.

The function f(u0, λ) is concave: it is defined as a sum of concave func-
tions, fi,

fi : (u0, λ) 7→ αi min{aiλ+ biu0, a
′
i(1− λ) + b′iu0}

and a linear function, f0,

f0 : (u0, λ) 7→ τY + (αX0 − αY0 )u0 + (τX − τY )λ .

Each concave function fi, 1 ≤ i ≤ n reaches its maximum necessarily on
the line Li

Li
def
= {(λ, u0) | aiλ+ biu0 = a′i(1− λ) + b′iu0}, (Li)

that is, when the operands of the min operator are equal. Now, each
line (Li) that intersects the feasible region divides that feasible region into
two regions. In each region, the function fi is a linear function since the
min operator is evaluated to one of each both operands. Therefore, the
lines (Li) that intersect the feasible region define a tiling of polygons; in
each polygon the objective function f is an affine function. It is well-known
that an affine function defined over a bounded polytope achieves its maxi-
mum at at least one vertex of that polytope. The function f reaches then
its maximum at least at one of the vertices defined by the polygons’ tiling
itself defined by the set of (Li) lines.
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For our running example, using Proposition 6.2.21, the problem (Pr) is

max − u0 + 2 min{λ+ u0

2
,
1− λ

2
}+ min{λ+ u0

4
,
1− λ+ u0

2
}

s.t. 0 < λ < 1

|u0| ≤ min{λ, (1− λ)}

Figure 6.6 depicts the feasible region (gray diamond), as well as the
polygons’ tiling defined by the lines L1 and L2 (see equation Li):

L1
def
= {(λ, u0) | λ+ u0 = (1− λ}

L2
def
= {(λ, u0) | λ+ u0 = 2(1− λ+ u0)}

We obtain 6 feasible vertices, and denote between parentheses, for each
vertex, the evaluation of the objective function of (Pr). In this example,
the optimal value 0.7 is reached by a unique vertex, which is the optimal
solution, (λ̄ = 0.6, ū0 = −0.2), defined by the intersection of lines L1 and
L2. Since sign(αX1 − αY1 ) = −1 and sign(αX2 − αY2 ) = 1, we deduce ū1 and
ū2 from Proposition 6.2.21

ū1 = −min{ λ̄+ ū0

2
,
1− λ̄

2
} = −min{0.4, 0.2} = −0.2

ū2 = min{ λ̄+ ū0

4
,
1− λ̄+ ū0

2
} = min{0.1, 0.1} = 0.1 .

Algorithm 1 solves problem (Pr) then gives an optimal solution to the
problem (P), in the general case. The set {Bk}1≤k≤4 denotes the equations
of the four borders of the feasible region:

B1
def
= {(λ, u0) | u0 + λ = 0} B2

def
= {(λ, u0) | u0 − (1− λ) = 0}

B3
def
= {(λ, u0) | u0 + (1− λ) = 0} B4

def
= {(λ, u0) | u0 − λ = 0} .

The set V denotes the set of vertices of the polygons’ tiling. It is initially set
to {(1

2
, 1

2
), (1

2
, −1

2
)}, the two unique feasible vertices of the feasible region.

The first for loop (line 3) goes through the given list of all Li lines. If the
intersection of Li and the borders {Bk}1≤k≤4 (line 4) of the feasible region
is feasible, we store the vertex in V . We then compute all the intersections
of the line Li with the other lines Lj such that i 6= j (line 8). For each
vertex v = (v0, v1) in V (line 14), we evaluated the objective function f
using an external routine evalf (lines 13 and 16). The algorithm updates
the variable objval with the greatest value of f (line 18) and the temp
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λ

u0

10

1
2

−1
2

Figure 6.5: The feasible region of
the optimization problem (Pr). The
points (0, 0) and (1, 0) are not feasi-
ble.

λ

u0

L1

L2

(0.5)

(0.25)

(0.25)
(0.5)

(0.66)
(0.7)

Figure 6.6: The evaluation of the ob-
jective function of (Pr) at each ver-
tex.

variable t with the last vertex for which this objective value is reached
(line 19). The final for loop (line 21) assigns the value of ūi, 1 ≤ i ≤ n
using Proposition 6.2.21. We finally return the objective value objval, as
well as (λ̄, uλ̄) an optimal solution to the problem (P).

6.2.22 Proposition
Algorithm 1 has a complexity of O(n3) in the worst case, where n denotes
the number of the Li lines (or equivalently the number of noise symbols).

Proof. The cardinal of the set of intersections of an arrangement of n lines
is equal to n(n−1)

2
in the worst case. Thus, we have to evaluate the objective

function at (2n+2+ n(n−1)
2

) = n2+3n+4
2

vertices in the worst case: 2n for the
intersections of the n lines with the borders of the feasible region, 2 for the
vertices (1

2
, 1

2
) and (1

2
, −1

2
), and n(n−1)

2
for the intersections of the Li lines

themselves. The evaluation of the objective function on each point needs in
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Algorithm 1: Solving (P)

input : A set of lines {Li}1≤i≤n, {Bk}1≤k≤4, {αXi − αYi }0≤i≤n, τX

and τY .
output: optval, the optimal value of (P), and (λ̄, uλ̄) an optimal

solution of (P).

1 l←− 0;
2 V ←− {(1

2
, 1

2
), (1

2
, −1

2
)};

3 for i← 1 to n do
4 for k ← 1 to 4 do
5 if (Li ∩Bk) is feasible then
6 V ←− V ∪ (Li ∩Bk);
7 l←− l + 1;

8 for j ← i+ 1 to n do
9 if Li 6= Lj and (Li ∩ Lj) is feasible then

10 V ←− V ∪ (Li ∩ Lj);
11 l←− l + 1;

12 v ←− V [0];
13 objval←− evalf({αXi − αYi }0≤i≤n,τX ,τY ,v0,v1);
14 for i← 1to l − 1 do
15 v ←− V [i];
16 f ←− evalf({αXi − αYi }0≤i≤n,τX ,τY ,v0,v1);
17 if f ≥ objval then
18 objval←− f ;
19 (t0, t1)←− V [i];

20 λ̄←− t0;
21 for i←− 1to n do
22 if αXi − αYi ≥ 0 then
23 ūi ←

min{λ̄ dev(εXi ) + mid(εXi )ū0, (1− λ̄) dev(εYi ) + mid(εYi )ū0};
24 else
25 ūi ←

−min{λ̄ dev(εXi )−mid(εXi )ū0, (1− λ̄) dev(εYi )−mid(εYi )ū0};

26 uλ̄ ←− (t1, ū1, . . . , ūn);
27 return objval,λ̄,uλ̄;
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the worst case n operations. The total number of operations, in the worst
case, is then n3+3n2+4n

2
.

Deducing ᾱ

This section details the second step towards computing automatically a
saddle-point of the function (6.2.1) whenever the conditions δ(MY (αY −
αX) | B) > |τY − τX | and δ(MX(αY − αX) | B) > |τX − τY | hold.
Theorem 6.2.20 characterizes the set of saddle-points as the set of solutions
to the equations:

ı) δ(MX(ᾱ− αX) | B) + τX = δ(MY (ᾱ− αY ) | B) + τY ,

ıı) λ̄δ(MX(ᾱ− αX) | B) + (1− λ̄)δ(MY (ᾱ− αY ) | B) =

δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

The previous section was dedicated to the computation of λ̄ as well as uλ̄
such that uλ̄ ∈ λ̄MX∗B ∩ (1− λ̄)MY ∗B and

〈αX − αY | uλ̄〉 = δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

In the sequel we deduce ᾱ from λ̄ and uλ̄.

6.2.23 Proposition
The vector ᾱ satisfies

δ(ᾱ− αX | λ̄MX∗B) = 〈αX − ᾱ, uλ̄〉
δ(ᾱ− αY | (1− λ̄)MY ∗B) = 〈ᾱ− αY , uλ̄〉 .

Proof. Since, uλ̄ ∈ λ̄Mx∗BX∞, and by definition of the support function, we
have

〈αX − ᾱ, uλ̄〉 ≤ δ(αX − ᾱ | λ̄MX∗B), (6.2.2)

Similarly, we have uλ̄ ∈ (1− λ̄)MY ∗B, which gives

〈ᾱ− αY , uλ̄〉 ≤ δ(ᾱ− αY | (1− λ̄)MY ∗B) . (6.2.3)

The strict inequality in the equation 6.2.2 or the equation 6.2.3 leads, by
summing the two inequalities, to the strict inequality

〈αX−ᾱ, uλ̄〉+〈ᾱ−αY , uλ̄〉 < δ(αX−ᾱ | λ̄Mx∗B)+δ(ᾱ−αY | (1−λ̄)MY ∗B)
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By the linearity of the scalar product, the right hand side of the inequality
above is equal to 〈αX − αY , uλ̄〉. By definition of uλ̄,

〈αX − αY | uλ̄〉 = δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

and by 6.2.20, ıı, we have

λ̄δ(MX(ᾱ− αX) | B) + (1− λ̄)δ(MY (ᾱ− αY ) | B) =

δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B) .

thus, the right hand side of the inequality above is also equal to 〈αX−αY , uλ̄〉,
which is impossible. Therefore, the equalities

δ(ᾱ− αX | λ̄MX∗B) = 〈αX − ᾱ, uλ̄〉
δ(ᾱ− αY | (1− λ̄)MY ∗B) = 〈ᾱ− αY , uλ̄〉

hold necessarily.

These equalities together with the equality (ı) of Theorem 6.2.20 restrict
the vector ᾱ to the following hyperplane.

6.2.24 Proposition
The vector ᾱ lies in the hyperplane defined by

〈ᾱ, uλ̄〉 = 〈(1− λ̄)αX + λ̄αY , uλ̄〉 − λ̄(1− λ̄)τY + λ̄(1− λ̄)τX .

Proof.

(by equality (ı) of Theorem 6.2.20.)

δ(MX(ᾱ− αX) | B) + τX = δ(MY (ᾱ− αY ) | B) + τY

(using Proposition 6.2.23.)

⇐⇒ λ̄−1〈αX − ᾱ, uλ̄〉+ τX = (1− λ̄)−1〈ᾱ− αY , uλ̄〉+ τY

(multiply by λ̄(1− λ̄).)

⇐⇒ 〈(1− λ̄)(αX − ᾱ), uλ̄〉+ λ̄(1− λ̄)τX = 〈λ̄(ᾱ− αY ), uλ̄〉+ λ̄(1− λ̄)τY .

The result is then deduced by linear properties of the inner product.
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Moreover, the equalities of Proposition 6.2.23 imply interesting con-
straints on the components of the vector ᾱ, namely they determine the sign
vector of the vectors MX(αX − ᾱ) and MY (ᾱ − αY ). A sign vector of a
vector v ∈ Rn is a vector of Rn defined by (sign(v1), . . . , sign(vn)), the sign
of 0 is undefined and can be any real number (which means that we may
have more than one sign vector for a given vector v).

6.2.25 Proposition
The vector λ̄−1MX∗−1

uλ̄ is a sign vector of MX(αX − ᾱ). That is:

(λ̄−1MX∗−1
uλ̄)i = 1 =⇒ (λ̄MX(αX − ᾱ))i ≥ 0

(λ̄−1MX∗−1
uλ̄)i = −1 =⇒ (λ̄MX(αX − ᾱ))i ≤ 0

(λ̄−1MX∗−1
uλ̄)i 6= {−1, 1} =⇒ (λ̄MX(αX − ᾱ))i = 0

Similarly, the vector ((1− λ̄)
−1
MY ∗−1

uλ̄)i is a sign vector of MY (ᾱ−αY ),
and

((1− λ̄)
−1
MY ∗−1

uλ̄)i = 1 =⇒ ((1− λ̄)MY (ᾱ− αY ))i ≥ 0

((1− λ̄)
−1
MY ∗−1

uλ̄)i = −1 =⇒ ((1− λ̄)MY (ᾱ− αY ))i ≤ 0

((1− λ̄)
−1
MY ∗−1

uλ̄)i 6= {−1, 1} =⇒ ((1− λ̄)MY (ᾱ− αY ))i = 0 .

Proof. We only detail the case of MX(αX− ᾱ), the second one, concerning
MY (ᾱ− αY ), is similar by substituting X by Y and λ̄ by 1− λ̄.

We know that the support function of a vector v over the ball B is equal
to the taxicab norm of the vector v, and that the latter, by definition, is
equal to the sum of the terms vi sign(vi):

δ(v | B) = ‖v‖1 =
n∑
i=1

vi sign(vi) = 〈v, sign(v)〉 .

The vector sign(v) is unique up to the null component vi of v, that is,
if w is another sign vector of v, whenever the sign of vi is well defined
(vi 6= 0), wi = sign(vi). We use this property in what follows while taking
λ̄MX(αX − ᾱ) as our vector “v”. We have

〈λ̄MX(αX − ᾱ), λ̄−1MX∗−1
uλ̄〉 = 〈αX − ᾱ, uλ̄〉 (inner product properties)

= δ(αX − ᾱ | λ̄MX∗B) (Proposition 6.2.23)

= δ(λ̄MX(αX − ᾱ) | B)(Proposition A.0.5)

Thus, λ̄−1MX∗−1
uλ̄ is a sign vector of λ̄MX(αX − ᾱ).
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6. Join over Constrained Affine Sets

Proposition 6.2.25 deduces from the equalities of Proposition 6.2.23 a
set of constraints that the components of the vector ᾱ have to satisfy. These
constraints may be simplified using the fact that λ̄ and (1− λ̄) are positive
real numbers and the sparse form of the matrices MX and MY . Indeed,
entries of these matrices are all zero except for the first line and the main
diagonal. Moreover, all entries of the latter are positive real numbers (the
deviations of the interval concretisations of noise symbols).

6.2.26 Proposition
If ./ denotes an element of {≤,=,≥}, then (λ̄MX(αX − ᾱ))i ./ 0 if and
only if {

(αX0 − ᾱ0) +
∑n

i=1 mid(εXi )ᾱi ./ 0, if i = 0,
αXi − ᾱi ./ 0, if 1 ≤ i ≤ n

.

Similarly, ((1− λ̄)MY (ᾱ− αY ))i ./ 0 if and only if{
−(αY0 − ᾱ0)−

∑n
i=1 mid(εYi )ᾱi ./ 0, if i = 0,

ᾱi − αYi ./ 0, if 1 ≤ i ≤ n
.

We apply Propositions 6.2.24 and 6.2.25 to our running example. We re-
call, from the previous section, that λ̄ = 0.6 and uλ̄ = (−0.2,−0.2, 0.1).
Proposition 6.2.24 gives the following hyperplane

−0.2ᾱ0 − 0.2ᾱ1 + 0.1ᾱ2 + 0.22 = 0 .

Proposition 6.2.25 and the equivalences of Proposition 6.2.26 give
−1 < ᾱ1 < 1
1 < ᾱ2 < 2
−ᾱ0 + 0.5ᾱ1 − 0.25ᾱ2 + 2 = 0
ᾱ0 + 0.5ᾱ2 − 2.5 = 0

The unique vector ᾱ that satisfies the above constraints is (1.7, 0.2, 1.6),
which in consequence gives τZ = L(ᾱ, λ̄) = 0.7 (the objective value of the
optimization problem P). Thus

Ẑ = ((1.7, 0.2, 1.6), 0.7, 1× [−1, 0.5]× [0, 1])

is a mub of X̂ and Ŷ ; the perturbation 0.7 is the least perturbation possible
for any upper bounds of X̂ and Ŷ .
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So far, we have characterized ᾱ by a system of liner equations, given
by Propositions 6.2.26 and 6.2.24, that the components of ᾱ have to sat-
isfy. We can use any linear solver to pick up a solution (which exists,
because a saddle-point exists). The pseudo-algorithm 2 summarizes the
steps needed to compute a minimal upper bound of two given CAF. The
routine matrixOf used in lines 1 and 2 computes the matrices MX and
MY related to ΦX

ε and ΦY
ε respectively. Routines init and solve (lines 13

and 14 respectively) are used to initialize then solve the problem (P).

Algorithm 2: Computing a mub

input : Two CAF X̂ = (αX , τX ,ΦX
ε ) and Ŷ = (αY , τY ,ΦY

ε ).
output: A CAF Ẑ mub of X̂ and Ŷ .

1 MX ←− matrixOf(ΦX
ε );

2 MY ←− matrixOf(ΦY
ε );

3 if ‖MX(αX − αY )‖1 ≤ τY − τX then
4 ΦZ

ε ←− ΦY
ε ;

5 ᾱ←− αY ;
6 objval←− τY ;

7 else if ‖MY (αX − αY )‖1 ≤ τX − τY then
8 ΦZ

ε ←− ΦX
ε ;

9 ᾱ←− αX ;
10 objval←− τX ;

11 else
12 ΦZ

ε ←− ΦX
ε ∪ ΦY

ε ;
13 init( (P), αX , αY , τX , τY ,MX ,MY );
14 (objval, λ̄, uλ̄)←− solve (P); /* defined in algorithm 1 */

15 ᾱ←− LP ((6.2.24), (6.2.26)); /* use a LP Solver */

16 return (ᾱ, objval,ΦZ
ε );

Handling Reduced Intervals

If the interval concretisation of one noise symbol is reduced to a point,
then the deviation of that interval is zero and matrix MX is no longer non-
singular. Thus we can not apply immediately our previously detailed mub
computation. On the other hand, we may lose some relations if we replace
the noise symbol by its unique value. We detail the latter remark in the
following example, explain how we would like to handle these particular
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6. Join over Constrained Affine Sets

cases, and finally clarify how our mub computation can be extended to
these cases with almost no extra effort.

6.2.27 Example
Suppose we have two CAF, X̂ = ((1,−1), 0, 1×[1, 1]), and Ŷ = ((2, 1), 0, 1×
[−1,−1]). We would like to compute a minimal upper bound of X̂ and Ŷ .

Since ε1 has a unique value in both affine forms, they can be sim-
plified by considering the actual value of the noise symbol. This gives
X̂ ′ = ((0, 0), 0, 1 × [1, 1]), and Ŷ ′ = ((1, 0), 0, 1 × [−1,−1]). In fact, with
respect to the order ≤1×2, X̂ ∼ X̂ ′, and Ŷ ∼ Ŷ ′. The order is insensitive
to such subtleties, it does not make difference between X̂ and X̂ ′, or Ŷ and
Ŷ ′, or any similar case involving reduced intervals. However, considering
these fixed noise symbols rather than replacing them by their respective
values increases the accuracy of computations. The unique mub obtained
using algorithm 2 for X̂ ′ and Ŷ ′ is Ẑ ′ = (0.5, 0.5, 1× [−1, 1]). The minimal
perturbation for these affine forms is 0.5. Moreover, the relation with ε1 is
lost: the central part has only a center equal to 0.5 without any dependency
to ε1.

However, we could hope for a better result, which keeps the relation
and at the same time reduces the perturbation. For instance, consider
Ẑ = ((0.5,−0.5), 0, 1× [−1, 1]):

• Ẑ is an upper bound. Indeed, with respect to ≤1×2, X̂ ≤ Ẑ: 1 ∈
[−1, 1], and

δ((1,−1)− (0.5,−0.5) | [−1, 1]× [1, 1]) = δ(

(
1 1
0 0

)
(0.5,−0.5) | B)

= δ(0|B) = 0 ≤ 0 = τZ − τX .

Similarly, Ŷ ≤ Ẑ.

• Ẑ is a minimal upper bound. Indeed if T̂ is an upper bound such that
T̂ ≤1×2 Ẑ, than necessarily, τZ = τT = 0 and |0.5−αT0 |+|−0.5−αT1 | =
0, thus T̂ = Ẑ.

• There is no new perturbation noise symbol, the perturbation of Ẑ
remains null.

• The affine form of Ẑ, that is 0.5− 0.5ε1, is exactly equal to the affine
form of X̂, 1 − ε1, when ε1 = 1 (both are equal to 0). Likewise, the
affine form of Ẑ, is equal to the affine form of Ŷ , 1, when ε1 = −1
(both are equal to 1).
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Observe also that Ẑ ≤1×2 Ẑ
′. In fact, Ẑ ′ is a mub of X̂ ′ and Ŷ ′, but is

only an upper bound (it is not minimal) of X̂ and Ŷ . Whereas Ẑ is a mub
of X̂ and Ŷ . The affine set X̂ ′ can be considered as an over-approximation
of X̂ (even if both are equivalent with respect to ≤1×2) as the symbol ε1
gets lost.

We present in the sequel how to handle these reduced intervals, without
losing their respective noise symbols while keeping our specification and
algorithm detailed in the previous section.

Matrix M related to a box Φε, is defined as previously except that now,
the deviation of a reduced interval εi is set by convention to −1. Observe
that this convention leaves matrix M non-singular. To absorb the effect of
this “−1” during the computation, the ith component of the unit ball B
is set to 0 instead of [−1, 1]. Thus, to a CAS X̂, we associate BX . Given
two CAS X̂ and Ŷ , the set of indices such that the coordinates of BX are
null and BY are not null is denoted by IX . The set of indices such that
the coordinates of BY are null and BX are not is denoted by IY . The set
of indices of coordinates such that both BX and BY are null is denoted by
IXY . Finally, the set of indices of coordinates such that both BX and BY

are not null is denoted by J . For instance, in example 6.2.27, matrix MX

related to 1× [1, 1], is
(

1 1
0 −1

)
, whereas BX = [−1, 1]× 0.

Saddle-points Theorem 6.2.20 remains unchanged as the matrices MX

and MY are non-singular. One just needs to replace B by BX when X̂ is
involved and do the same thing for Ŷ . For instance, instead of λMX∗B ∩
(1− λ)MY ∗B, we obtain λMX∗BX ∩ (1− λ)MY ∗BY .

Problem (P) needs to consider whether or not the coordinate of BX and
BY are null. So in Proposition 6.2.21: if the i ∈ IX , then ūi = ū0 mid(εXi ),
similarly ūi is enforced to ū0 mid(εYi ) if i ∈ IY . If i ∈ IXY , then both
conditions hold, which makes ū0 null if mid(εXi ) 6= mid(εYi ).

Problem (Pr) is in consequence also affected. It keeps the same generic
formulation but with more constraints for u0 and λ: |u0| ≤ βλ and |u0| ≤
θ(1− λ), where,

β
def
= min{1,

( dev(εYi )

|mid(εXi )−mid(εYi )|

)
i∈Ix
}(1− λ),

θ
def
= min{1,

( dev(εXi )

|mid(εXi )−mid(εYi )|

)
i∈IY
}λ .
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λ

u0

βλ
θ(1− λ)

10

1
2

−1
2

Figure 6.7: The feasible region of the extended optimization problem (Pr).
The points (0, 0) and (1, 0) are not feasible.

Since for i ∈ IX ∪IY ∪IXY , ūi is well known (function of ū0), the coefficient
of u0 in the objective function of (Pr) becomes

(αX0 − αY0 ) +
∑
i∈IX

(αXi − αYi ) mid(εXi )

+
∑
i∈IY

(αXi − αYi ) mid(εYi ) +
∑
i∈IXY

(αXi − αYi ) mid(εXi ) .

The solving algorithm 1 remains unchanged. The feasible region is no longer
a perfect diamond minus (0, 0) and (1, 0), but a diamond like shape (Fig-
ure 6.7). The slopes of the borders are β and θ.

Deducing ᾱ Proposition 6.2.25 is valid for all coordinates i /∈ IX for
MX(αX− ᾱ), and for all i /∈ IY for MY (ᾱ−αY ). For i ∈ IX (resp. IY ), the
fact that the ith coordinate of BX (resp. BY ) is null adds no constraint
for ᾱ to respect. Proposition 6.2.24 remains unchanged.

We apply the pseudo-algorithm 2 to our motivating example 6.2.27,
with respect to the adds detailed above. We have BX = BY = [−1, 1]× 0.
By Theorem 6.2.20 we have to solve (P). We have IX = IY = J = ∅,
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IXY = {1}. Since, mid(εX1 ) = 1 6= −1 = mid(εY1 ), then ū0 = ū1 = 0, the
objective function of (Pr) is zero (so the perturbation of the mub is also

null), and λ̄ ∈]0, 1[. By Propositions 6.2.25, λ̄−1MX∗−1
uλ̄ is a sign vector of

MX(αX − ᾱ), since uλ̄ is null, the sign vector is null, for all i /∈ IX the ith

component of MX(αX − ᾱ) is null. Similarly for (1− λ̄)−1MY ∗−1
uλ̄ which

is also null. This gives the system:{
1− αZ0 + (−1− αZ1 ) = 0
αZ0 − 2− (αZ1 − 1) = 0

Proposition 6.2.24 adds no more constraints for ᾱ to respect. The system
above gives αZ0 = 0.5 and αZ1 = −0.5, and Ẑ = ((0.5,−0.5), 0, 1 × [−1, 1]),
which is the mub announced earlier.

Application: Join over Perturbed Affine Forms

The Perturbed Affine Sets introduced by Goubault and Putot [GP08, GP09]
are a particular case of Constrained Affine Sets, where noise symbols are ab-
stracted by the unit box B, that is all noise symbols lie always within the in-
terval [−1, 1]. The join operator defined over Perturbed Affine Forms [GP08]
and Perturbed Affine Sets are revisited here as an application of our results
established for CAS.

6.2.28 Definition
A Perturbed Affine Set, or PAS, is a CAS X̂ = (CX , PX ,ΦX), where ΦX =
B.

Since ΦX is always equal to B and is independent from the abstract object
X̂, we denote a PAS by the pair of matrices (CX , PX). Moreover, matrix
MX related to ΦX = B is the identity matrix In+1.

By Lemma 4.3.3, the order relation ≤1×2 gives:

6.2.29 Proposition (Partial Order over PAS)
Given two PAS, X̂ = (CX , PX) and Ŷ = (CY , P Y ), we have X̂ ≤1×2 Ŷ if
and only if

∀t ∈ Rp, δ(t | (CX − CY )B) ≤ δ(t | P YB)− δ(t | PXB) .

Proof. Immediate application of Lemma 4.3.3 for ΦX = ΦY = B.
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As already mentioned, δ(x | B) = ‖x‖1. The reformulation of Proposi-
tion 6.2.29 using this identity gives

∀t ∈ Rp, ‖(CX − CY )∗t‖1 ≤ ‖P Y ∗t‖1 − ‖PX∗t‖1 .

which is exactly the order defined in [GP09, Definition 2], up to the trans-
pose operation of matrices (CX−CY ), PX and P Y . The set of saddle-points
in this particular case is deduced from Theorem 6.2.20.

6.2.30 Corollary
• If δ(αY − αX | B) < τY − τX , then (αY , 0) is the unique saddle-point

of L. Its saddle-value is τY .

• If δ(αY −αX | B) = τY − τX , and αY 6= αX , then L admits infinitely
many saddle-points such that ᾱ = αy. Its saddle-value is τY .

• If δ(αY −αX | B) < τX − τY , then (αX , 1) is the unique saddle-point
of L. Its saddle-value is τX .

• If δ(αY −αX | B) = τX − τY , and αY 6= αX , then L admits infinitely
many saddle-points such that ᾱ = αX . Its saddle-value is τX .

• Otherwise, δ(αY −αX | B) > |τY − τX |, and (ᾱ, λ̄) satisfies λ̄ ∈]0, 1[,
and

ı) δ(ᾱ− αX | B) + τX = δ(ᾱ− αY | B) + τY ,

ıı) λ̄δ(ᾱ− αX | B) + (1− λ̄)δ(ᾱ− αY | B)

= δ(αX − αY | λ̄B ∩ (1− λ̄)B) .

Proof. Apply Theorem 6.2.20 for MX = MY = In+1.

When δ(αY − αX | B) > |τY − τX |, we establish that the value of λ̄ is
necessarily equal to 1

2
, which permits to compute the saddle-value.

6.2.31 Proposition
If δ(αY − αX | B) > |τY − τX |, then λ̄ = 1

2
, and ᾱ satisfies:

ı) δ(ᾱ− αX | B) + τX = δ(ᾱ− αY | B) + τY ,

ıı) δ(ᾱ− αX | B) + δ(ᾱ− αY | B) = δ(αX − αY | B) .

The saddle-value of L is equal to

1

2
(δ(αX − αY | B) + τX + τY )

.
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Proof. Suppose that λ̄ = 1
2
, the system of equations satisfied by ᾱ is the

same of Corollary 6.2.30 for λ̄ = 1
2
. The saddle-value, L(ᾱ, λ̄), is equal to

(by Equation 6.2.1)):

L(ᾱ, λ̄) =
1

2
(δ(ᾱ− αX | B) + τX) +

1

2
(δ(ᾱ− αY | B) + τY )

=
1

2
(δ(ᾱ− αX | B) + δ(ᾱ− αY | B) + τY + τX) (Corol. 6.2.30, ı)

=
1

2
(δ(αX − αY | B) + τY + τX)) (Corol. 6.2.30, ıı)

It remains to prove that λ̄ = 1
2
. The set λ̄B∩(1−λ̄)B is equal to min{λ̄, (1−

λ̄)}B. The constant min{λ̄, (1− λ̄)} is positive, using the fact that if λ ≥ 0,
δ(x | λC) = λδ(x | C) (see for instance [Roc70, Theorem 16.1.1]), we then
have

δ(αX − αY | λ̄B ∩ (1− λ̄)B) = min{λ̄, (1− λ̄)}δ(αX − αY | B),

we next use the triangle inequality of the support function:

min{λ̄, (1− λ̄)}δ(αX − αY | B)

≤ min{λ̄, (1− λ̄)}δ(αX − ᾱ | B) + min{λ̄, (1− λ̄)}δ(ᾱ− αY | B) .

By Corollary 6.2.30, equation ıı), δ(αX − αY | λ̄B ∩ (1− λ̄)B) is equal to
λ̄(δ(αX − ᾱ | B)) + (1− λ̄)(δ(αY − ᾱ | B)), thus the inequality becomes:

(λ̄−min{λ̄, (1− λ̄)})δ(αX − ᾱ | B)

+ ((1− λ̄)−min{λ̄, (1− λ̄)})δ(ᾱ− αY | B) ≤ 0, (6.2.4)

which makes the sum of two positive terms non-positive, therefore each term
is necessarily equal to zero:

(λ̄−min{λ̄, (1− λ̄)})δ(αX − ᾱ | B) = 0 (6.2.5)

((1− λ̄)−min{λ̄, (1− λ̄)})δ(ᾱ− αY | B1+n) = 0 (6.2.6)

The equation (6.2.5) gives λ̄ = min{λ̄, (1− λ̄)} (that is λ̄ ≤ 1
2
) or ᾱ = αX .

If ᾱ = αX , then Corollary 6.2.30, equation ı), contradicts the hypothesis
δ(αY − αX | B) > |τX − τY |, as it makes δ(αY − αX | B) = τX − τY .

Likewise, the equation (6.2.6) gives (1 − λ̄) = min{λ̄, (1 − λ̄)} (that is
λ̄ ≥ 1

2
) or ᾱ = αY . The latter also contradicts the hypothesis.

Finally, λ̄ ≥ 1
2

and λ̄ ≤ 1
2
, that is λ̄ = 1

2
.
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Instead of proving the result directly, we could also use Algorithm 1,
which gives the values of λ̄ in the general case. We show that it gives also
this unique value for ᾱ. Here, all noise symbols are within [−1, 1], so we
have a unique line Li (see Definition Li):

Li = {(λ̄, u0) | λ̄ = 1− λ̄} .

The set of points V is equal to {(1
2
, 1

2
), (1

2
, −1

2
)}. The algorithm ends with

λ̄ = 1
2
, ūi =

sign(αX
i −αY

i )

2
, 0 ≤ i ≤ n, and 1

2
(δ(αX −αY | B) + τX + τY ) as ob-

jective value, which is equal to the saddle-value found in Proposition 6.2.31.
We can now deduce ᾱ using Propositions 6.2.24 and 6.2.25.

6.2.32 Proposition
The vector ᾱ satisfies,

〈ᾱ, ūλ̄〉 = 〈α
Y + αX

2
, ūλ̄〉+

τX − τY

4
,

where ūλ̄ = 1
2

sign(αX − αY ) (the sign vector of αX − αY ).
Its coordinates respect

∀i, 0 ≤ i ≤ n,min{αXi , αYi } ≤ ᾱi ≤ max{αXi , αYi } .

Proof. Proposition 6.2.24, with λ̄ = 1
2
, determines immediately the first

equation. Moreover, since MX = MY = In, and ūi =
sign(αX

i −αY
i )

2
, Proposi-

tion 6.2.25 gives:

sign(αXi − αYi ) = 1 =⇒ αXi − ᾱi ≥ 0 ∧ ᾱi − αYi ≥ 0

sign(αXi − αYi ) = −1 =⇒ αXi − ᾱi ≤ 0 ∧ ᾱi − αYi ≤ 0 .

Moreover, there is always an ᾱ which respects these constraints, as we have
proved that a saddle-point exists.

Propositions 6.2.31 and 6.2.32 are equivalent to [GP08, Proposition 20].
Among all possible solutions, Goubault and Putot in [GP08], picked up

the one which minimizes the interval concretisation of the perturbed affine
form. The minimal interval concretisation of any upper bound is the join
of the interval concretisations of the involved operands. This gives two
additional constraints that ᾱ needs to respect:

αZ0 = mid([X̂] ∪ [Ŷ ]),
n∑
i=1

|ᾱi|+ L(ᾱ, λ̄) = dev([X̂] ∪ [Ŷ ]) .
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Recall that [X̂] (resp. [Ŷ ]) denotes the interval concretisation of X̂ (resp.
Ŷ ), and that the interval concretisation of (α, τ) is given by

[α0 −
n∑
i=1

|αi| − τ, α0 +
n∑
i=1

|αi|+ τ ] .

The authors prove in [GP08] that such solution exists and is unique when-
ever the intervals [X̂] and [Ŷ ] are in generic position. Two intervals i and j
are said to be in generic position if (i ⊆ j or j ⊆ i) imply (sup(i) = sup(j)
or inf(i) = inf(j)).

When the intervals [X̂] and [Ŷ ] are in generic position, the solution is
obtained by minimizing each term of the sum

∑n
i=1|ᾱi|:

∀i, 1 ≤ i ≤ n, ᾱi = argmin(αXi , α
Y
i ),

where the argmin operator is defined as follows:

argmin(α1, α2) := {α ∈ [min(α1, α2),max(α1, α2)], |α| is minimal },

that is, if α1α2 ≤ 0, then argmin(α1, α2) = 0, else if both are positives then
argmin(α1, α2) = min{α1, α2}, else (both are negatives) argmin(α1, α2) =
max{α1, α2}.

If, however, the interval concretisations are not in generic position, the
uniqueness is no more guaranteed, as shown in the following example. More-
over, the argmin solution may be not admissible.

6.2.33 Example
Let X̂ = ((1, 1, 2, 1), 0), and Ŷ = ((−2,−6, 1, 2), 0). We have [X̂] = [−3, 5],

and [Ŷ ] = [−11, 7], thus the interval concretisations are not in generic
position. The condition δ(αX − αY | B) ≥ |τY − τX | is satisfied, since
|τY − τX | = 0, and δ(αX − αY | B) = 12. By Proposition 6.2.31, τ̄ =
L(ᾱ, λ̄) = 12

2
= 6, and by Proposition 6.2.32, ᾱ0 + ᾱ1 + ᾱ2 − ᾱ3 = −3, and

ᾱ ∈ [−2, 1]× [−6, 1]× [1, 2]× [1, 2] .

The argmin solution gives then ᾱ1 = 0, ᾱ2 = 1, and ᾱ3 = 1, which makes
ᾱ0 = −3 /∈ [−2, 1]. So here, the argmin operator is too strong to respect
the constraints of Proposition 6.2.32. Still, any vector (−2, ᾱ1, ᾱ2, ᾱ3) such
that |ᾱ1|+ ᾱ2 + ᾱ3 = 3, ᾱ1 + ᾱ2 − ᾱ3 = −1, −6 ≤ ᾱ1 ≤ 1, 1 ≤ ᾱ2 ≤ 2, and
1 ≤ ᾱ3 ≤ 2 is a mub of X̂ and Ŷ with a minimal interval concretisation.

We define the operator ∨ over two perturbed affine forms (PAF), as
follows:
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6.2.34 Definition
Let X̂ = (αX , τX) and Ŷ = (αY , τY ) be two PAF.

Ẑ = X̂ ∨ Ŷ def⇐⇒


αZ0 = mid([X̂] ∪ [Ŷ ])
∀i ≥ 1, αZi = argmin(αXi , α

Y
i ),

τZ = dev([X̂] ∪ [Ŷ ])−
∑n

i=1|αZi |

The operator ∨ has many advantages: in general it gives an upper bound
of X̂ and Ŷ ; if [X̂] and [Ŷ ] are in generic position, then it returns exactly
the unique mub of X̂ and Ŷ ; the interval concretisation of X̂∨Ŷ is minimal,
it is indeed equal to [X̂] ∪ [Ŷ ]; the computation is a linear function of n,
the number of noise symbols involved.

We would like to define a similar operator over CAF. We stress first a
major difference between the unconstrained and the constrained cases.

For CAF, we have seen that, among all upper bounds, it is sufficient to
have minimal perturbation to be a mub. This sufficient condition is also
necessary in the unconstrained case [GP08, Lemma 18].

6.2.35 Proposition
Given two PAF, X̂ and Ŷ , then Ẑ is a mub of X̂ and Ŷ if and only if it is
an upper bound and τZ is minimal among all τT , perturbation of any upper
bound T̂ .

Thus, in the unconstrained case, we can always find a mub which mini-
mizes the perturbation and has a minimal concretisation, that is its inter-
val concretisation is the join of the interval concretisations of its operands.
Whereas in the constrained case, being a mub is not equivalent to minimiz-
ing the perturbation. The mub that minimizes the perturbation does not
have in general the minimal interval concretisation, and dually, the mub
that has the minimal interval concretisation does not have the minimal
perturbation. (See for instance Example 6.2.3.)

Thus, in general, in the constrained case, computing the set of mubs that
minimize the perturbation, then enforcing the minimality of the interval
concretisation may give an empty set of solutions.

Efficient Upper Bound Computation

As we have detailed earlier, the ∨ operator (Definition 6.2.34) which uses
the argmin solution, in the unconstrained case, has several advantages. We
define a similar upper bound operator over CAF.
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6.2.36 Proposition
Let X̂ = (αX , τX ,ΦX

ε ) and Ŷ = (αY , τY ,ΦY
ε ) be two CAF. Let Ẑ = X̂ ∨ Ŷ ,

be defined by X̂ (resp. Ŷ ) if Ŷ ≤1×2 X̂ (resp. X̂ ≤1×2 Ŷ ), and else :

• ∀i ≥ 1, αZi = argmin(αXi , α
Y
i ),

• if |cX − cY | ≤ dY − dX , then αZ0 = cX and τZ = dX ,

• if |cX − cY | ≤ dX − dY , then αZ0 = cY and τZ = dY ,

• if |cX − cY | > dY − dX , then

αZ0 =
cX + cY

2
+
dX − dY

2
sign(cX − cY )

τZ =
1

2
(|cX − cY |+ dX + dY )

where,

cX
def
= αX0 −

n∑
i=1

(αZi − αXi ) mid(εXi ), cY
def
= αY0 −

n∑
i=1

(αZi − αYi ) mid(εYi ),

dX
def
=

n∑
i=1

|αZi − αXi | dev(εXi ) + τX , dY
def
=

n∑
i=1

|αZi − αYi | dev(εYi ) + τY ,

εXi = bound2(εi,Φ
X
ε ),

εYi = bound2(εi,Φ
Y
ε ) .

Then, Ẑ is an upper bound of X̂ and Ŷ .

Proof. By construction, X̂ ∨ Ŷ is an upper bound of X̂ and Ŷ . This is
obvious when X̂ and Ŷ are comparable. Otherwise, we set αZi , 1 ≤ i ≤ n to
argmin(αXi , α

Y
i ), then compute αZ0 and τZ such as Ẑ is an upper bound of

X̂ and Ŷ and τZ is minimal. For Ẑ to be an upper bound, (αZ , τZ) needs
to satisfy (MX and MY are the matrices related to ΦX and ΦY ):

‖MX(αZ − αX)‖1 ≤ τZ − τX

‖MY (αZ − αY )‖1 ≤ τZ − τY ,

or equivalently,

|αZ0 − cX | ≤ τZ − dX

|αZ0 − cY | ≤ τZ − dY .
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Now, we compute τZ and αZ0 such that τZ is minimal, which is a special
case (n = 0) of Corollary 6.2.30. Therefore, the definitions of τZ and αZ0
are immediate from Propositions 6.2.31 and 6.2.32 respectively.

Notice that in general the operator ∨ over CAF, does not give a mub,
the interval concretisation of X̂∨ Ŷ is not minimal in general. Nevertheless,
the procedure gives, in linear complexity, an upper bound.

6.3 Join over Constrained Affine Sets

We build a join operator componentwise using the minimal upper bound
of each dimension. The domain A2 is the intervals lattice. We use the
canonical representation of CAS.

6.3.1 Proposition
Let X̂ = (CX , PX ,ΦX

ε ) and Ŷ = (CY , P Y ,ΦY
ε ) be the canonical representa-

tives of two CAS, then Ẑ defined by

• ΦZ = ΦX
ε ∪2 ΦY

ε ,

• (LC
Z

i , PZ
i,i) is a mub of (LC

X

i , δ(PXei | B)) and (LC
Y

i , δ(P Y ei | B)),
where LMi denotes the ith line of matrix M and Mi,i is the (i, i) com-
ponent of matrix M ; the vector ei is the ith vector of the canonical
base of Rm.

• All other components of PZ are null.

is an upper bound of X̂ and Ŷ . We denote Ẑ by X̂ t Ŷ .

Proof. We prove that X̂ ≤1×2 Ẑ using the equivalence of Proposition 4.3.7.
Firstly, we have ΦX

ε ⊆ ΦX
ε ∪ ΦY

ε = ΦZ
ε . Secondly, for all t ∈ Rp, we prove

that the inequality

δ(t | (CX − CZ)MX∗B) ≤ δ(t | PZB)− δ(t | PXB),

holds. Equivalently, using that δ(t | B) = ‖t‖1, we write

‖MX(CX − CY )∗t‖1 ≤ ‖PZt‖1 − ‖PX∗t‖1 .

An element PZ
(i,i), 1 ≤ i ≤ p, by definition satisfies:

δ(MX(LC
Z

i − LC
X

i ) | B) ≤ PZ
(i,i) − δ(PXei | B) .
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Observing that (LC
Z

i − LC
X

i ) = (CZ − CX)∗ei, P
Z
(i,i) = ‖PZ∗ei‖1 and using

the norm notation, we obtain

‖MX(CZ − CX)∗ei‖1 ≤ ‖PZ∗ei‖1 − ‖PX∗ei‖1 .

Let ti, 1 ≤ i ≤ p, denote the coordinates of t. We have:

‖MX(CX − CZ)∗t‖1 + ‖PX∗t‖1 ≤
p∑
i=1

|ti|(‖MX(CX − CZ)∗ei‖1 + ‖PX∗ei‖1)

≤
p∑
i=1

|ti|‖PZ∗ei‖1

= ‖PZ∗t‖1

The first inequality uses the triangle inequality. The last equality is due to
the fact that PZ is a diagonal matrix. We prove similarly that Ŷ ≤1×2 Ẑ,
by substituting X and Y . Therefore, Ẑ is an upper bound of X̂ and Ŷ .

The previous upper bound considers the enclosing boxes of the pertur-
bation zonotopes, rather than the zonotopes themselves, then computes a
minimal upper bound of the so obtained CAS. Indeed, the join operator
defined in Proposition 6.3.1 gives a minimal upper bound of its operands
whenever the perturbation zonotopes of X̂ and Ŷ are simple boxes.

6.3.2 Proposition
Let X̂ = (CX , PX ,ΦX

ε ) and Ŷ = (CY , P Y ,ΦY
ε ) be the canonical represen-

tatives of two CAS such that the perturbation zonotopes PXB and P YB,
are simple boxes (PX and P Y are diagonal matrices). Then X̂ t Ŷ is the
minimal upper bound of X̂ and Ŷ .

Proof. By Proposition 6.3.1, Ẑ is an upper bound of X̂ and Ŷ . Let T̂ be
an upper bound such that T̂ ≤1×2 Ẑ, we prove that T̂ is necessarily equal
to Ẑ. Firstly, ΦT

ε ⊆ ΦZ
ε = ΦX

ε ∪ ΦY
ε , and since T̂ is an upper bound,

ΦX
ε ∪ΦY

ε ⊆ ΦT
ε , then necessarily ΦT

ε = ΦZ
ε . We next prove that the matrices

P T and PZ are equal. For t = ei, the ith vector of the canonical base of Rp,
we have ‖PZ∗ei‖1 is minimal by construction, and

‖MX(CZ − CT )∗ei‖1 ≤ ‖PZ∗ei‖1 − ‖P T ∗ei‖1,

thus ‖PZ∗ei‖1 = ‖P T ∗ei‖1 for all i, which makes PZ = P T . In turn this
gives (CZ − CT )∗ei = 0 (MX is non-singular), for all i. Thus Rp ⊆

115



6. Join over Constrained Affine Sets

ker((CZ − CT )∗). Rank-nullity Theorem states that the sum of the rank
of a matrix and the dimension of its kernel is equal to the number of its
columns, that is rank((CZ − CT )∗) + ker((CZ − CT )∗) = p. This makes
rank((CZ − CT )∗) = 0, and CZ = CT .

This approximation loses all relations kept by the perturbed noise sym-
bols in each CAS before evaluating the upper bound. The total number of
the perturbation noise symbols after t operation is p.

We propose a slightly different componentwise upper bound which im-
proves the accuracy of the previous upper bound in that it keeps track to
the relations between perturbation noise symbols.

6.3.3 Proposition
Let X̂ = (CX , PX ,ΦX) and Ŷ = (CY , P Y ,ΦY ) be the canonical representa-

tion of two CAS, then Ẑ defined by

• ΦZ = ΦX ∪2 ΦY ,

• ((LC
Z

i , LP
Z

i ), PZ
i,m+i) is the mub of ((LC

X

i , LP
X

i ), 0) and ((LC
Y

i , LP
Y

i ), 0),

1 ≤ i ≤ p, where (LMi , L
Q
i ) denotes the vector formed by concatenating

the ith line of both matrices M and Q.

• The components PZ
i,m+j, 1 ≤ i, j ≤ p, i 6= j are null.

is an upper bound of X̂ and Ŷ . We denote Ẑ by X̂ t+ Ŷ .

Proof. We prove that X̂ ≤1×2 Ẑ using the equivalence of Proposition 4.3.7.
Firstly, we have ΦX

ε ⊆ ΦX
ε ∪ ΦY

ε = ΦZ
ε . Secondly, for all t ∈ Rp, we prove

that the inequality

δ(t | (CX − CZ)MX∗B) ≤ δ(t | PZB)− δ(t | PXB),

holds. Equivalently, using that δ(t | B) = ‖t‖1, we write

‖MX(CX − CY )∗t‖1 ≤ ‖PZ∗t‖1 − ‖PX∗t‖1 .

We decompose matrix PZ in two blocs (RZ |DZ). Matrix DZ is a diagonal
matrix, DZ

(i,i) = PZ
(i,m+i), 1 ≤ i ≤ p. We denote by M the matrix defined by

4 blocs (
MX 0

0 Im

)
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6.3. Join over Constrained Affine Sets

Since the perturbation noise symbols are within [−1, 1], M(1,i), i > n + 1,
are null (the center of [−1, 1]), where M(i,i), i > n + 1, is equal to 1 (the
deviation of [−1, 1]). By definition of PZ

(i,m+i), 1 ≤ i ≤ p, we have:

δ(M((LC
Z

i , LR
Z

i )− (LC
X

i , LP
X

i )) | B) ≤ PZ
(i,m+i),

or equivalently,

‖M((LC
Z

i , LR
Z

i )− (LC
X

i , LP
X

i ))‖1 ≤ PZ
(i,m+i) .

Given a vector w = (u, v), defined as a concatenation of two vectors u ∈
Rn+1 and v ∈ Rm, we have

‖w‖1 =
n+m∑
i=0

|wi| =
n∑
i=0

|ui|+
n+1+m∑
i=n+1

|vi| = ‖u‖1 + ‖v‖1 .

Since Mw = (MXu, Imv), then ‖Mw‖1 = ‖MXu‖1 + ‖v‖1. We use this
property for ‖M((LC

Z

i , LR
Z

i )− (LC
X

i , LP
X

i ))‖1, we obtain

‖M((LC
Z

i , LR
Z

i )− (LC
X

i , LP
X

i ))‖1 = ‖M((LC
Z

i − LC
X

i , LR
Z

i − LP
X

i ))‖1

= ‖MX(LC
Z

i − LC
X

i )‖1 + ‖LRZ

i − LP
X

i ‖1

Using the identities (LC
Z

i − LC
X

i ) = (CZ − CX)∗ei and LR
Z

i − LP
X

i =
RZ∗ei − PX∗ei, we obtain:

‖(CZ − CX)∗ei‖1 + ‖RZ∗ei − PX∗ei‖1 ≤ PZ
(i,m+i) .

Thus, for all 1 ≤ i ≤ p:

‖(CZ − CX)∗ei‖1 + ‖RZ∗ei − PX∗ei‖1 ≤ PZ
(i,m+i) .

Let ti, 1 ≤ i ≤ p, denote the coordinates of t. We have:

‖MX(CX − CZ)∗t‖1 + ‖PX∗t−RZ∗t‖1

≤
p∑
i=1

|ti|(‖MX(CX − CZ)∗ei‖1 + ‖RX∗ei − PX∗ei‖1)

≤
p∑
i=1

|ti|PZ
(i,m+i)

= ‖DZ∗t‖1
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The first inequality uses the triangle inequality. The last equality is due to
the fact that DZ is a diagonal matrix. Now, again the triangle inequality
gives

‖MX(CX − CZ)∗t‖1 + ‖PX∗t‖1 − ‖RZ∗t‖1

≤ ‖MX(CX − CZ)∗t‖1 + ‖PX∗t−RZ∗t‖1,

which makes,

‖MX(CX − CZ)∗t‖1 + ‖PX∗t‖1 ≤ ‖RZ∗t‖1 + ‖DZ∗t‖1

= ‖PZ∗t‖1 .

The last equality uses Proposition 2:

‖PZ∗t‖1 = δ(t | PZB)

= δ(t | RZB +DZB)

= δ(t | RZB) + δ(t | DZB)

= ‖RZ∗t‖1 + ‖DZ∗t‖1

We prove similarly that Ŷ ≤1×2 Ẑ, by substituting X and Y . Therefore, Ẑ
is an upper bound of X̂ and Ŷ .

The computation of t+ considers, only for the purpose of computation
of the join, that the perturbation noise symbols ηi, 1 ≤ i ≤ m are shared
between the operands. Observe that the operation t+ adds p new pertur-
bation noise symbols, whereas the number of noise symbols after t is at
most p.

The operators t and t+ are based on the computation of the minimal
upper bound of the two perturbed affine forms related to each variable.
Instead of computing the mub line by line, we could also compute the upper
bound using the efficient (linear) operator ∨ (see Proposition 6.2.36). For
instance, the use of t+ together with ∨ over perturbed affine forms (see
Definition 6.2.34) gives exactly [GP09, Lemma 10].
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CHAPTER 7
Implementation and

Experiments

We detail in this section our implementation of the Constrained Affine Sets
abstract domain. Our domain is called Taylor1+ [GGP09]. Taylor1+ is
fully compliant with the APRON library [apr07]. The APRON project
presents a set of numerical abstract domains, namely Boxes, Octagons and
Polyhedra, with a common interface, allowing to switch from one domain
to another without an extra effort. One can then easily compare results
of different numerical domains, or combine them for a better precision.
Taylor1+ takes as a parameter any other APRON abstract domain (the
default choice is Boxes) to handle constraints on variables.

We use our domain to experiment the precision and the efficiency of our
approach and compare our results to the already existing abstract domains.

We use floating-point numbers arithmetic (precisely double-precision)
for the abstract computations. Our choice is motivated by the flexibility
and the efficiency of computations of this binary representation. Dealing
with floating-points needs a particular attention, firstly to avoid classical
pitfalls, and secondly to ensure the soundness of the analysis.

7.1 Abstract Computations Using

Floating-point Numbers

So far, all results and operations over affine sets, either constrained or not,
are defined over real numbers semantics. The coefficients of the matrices C
and P were considered as perfect real numbers, and operations assume that
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operands are within the unbounded real numbers line. In practice, however,
computers are unable to represent these real numbers, the set of expressible
numbers is even finite. Two finite-precision representations of real numbers
exist: the fixed-point representation and the floating-point representation.

Fixed-point representation Numbers are divided into an integer part
and a fractional part. The number of bits used for each part determines
the fixed-point type. Any base can be used to represent these parts. For
instance, if we consider the human readable base 10, the decimal number
3.14 can be represented by 0314 multiplies the fraction 1

100
, if we consider

4 bits for the integer part and 3 bits for the fractional part. If the number
does not fit into the representation, it is rounded or truncated. For in-
stance we can not store more than 3 decimals of π using our previous type,
as 3.1415 is truncated . Many directions could be considered when round-
ing. A possible fixed point representatives of 3.1415, could be either 3.14
or 3.15. The first fixed-point number is the nearest representative, whereas
the second is the first bigger representative. In both cases, there is a loss of
precision due to the restriction to fit the internal representation of numbers.
The computation is always performed with respect to the same type. Thus,
the type is chosen to improve the accuracy of computations and to avoid
the overflows. The latter occurs when we would like to represent a number
which is strictly greater than the biggest number that the internal represen-
tation allows. For instance, with respect to our convention, the number 100
overflows, as the biggest number we could represent is 99.99, represented
by the integer part 9999 and the fraction 1

100
. Implementations usually

rely on 2 instead of base 10 for efficiency reasons. There is non-built-in
support in common processors for fixed-point computations. Classical high
level languages such as C or C++ do not offer neither a type nor a library
for fixed-point computations. Nevertheless, this representation is used for
special computations such as decoding the audio signal [tre] (for embedded
lower consumption circuit), or financial accounting softwares [gnu] as the
rounding error is more predictable than the floating-point representation.

Floating-point representation This finite-precision representation is
by far the most commonly used during the last quarter century. Partly
because of the existence of a standard (IEEE-754) since 1985 [IEE85] for
floating-point arithmetic (with one major revision in 2008 [IEE08]), which
was adopted by software editors as well as major semiconductor chip makers
(Intel, AMD, IBM). Since early 1980, many manufactured CPU come with
a special co-processor dedicated to the floating point computations, such as

120



7.1. Abstract Computations Using Floating-point Numbers

the famous Motorola 68000 family. Intel x86 family comes even with a built-
in floating-point unit. Floating-point representation is flexible, intuitive,
and supported by both high-level languages. Moreover, the native hardware
support allows a great performance of computations. We briefly introduce
in the next section the standard IEEE 754 floating-point numbers.

Floating-point Numbers

We focus on the binary floating-point representation of real numbers. The
base used is then the base 2.

Representation The floating-point representation is divided into three
parts: one bit for the sign, m bits to encode the fraction part, called the
mantissa and e bits to encode the exponent. The total number of used
bits, that is 1 + e+m, defines the precision of a representation, we denote
it by p. The standard IEEE-754 defines 4 representations: single-precision
(p = 1 + 8 + 23), double-precision (p = 1 + 11 + 52), single-extended-
precision, and(p ≥ 43), and the double-extended-precision (p ≥ 79). The
single and double precision floating-point numbers are the most common
precisions used, the last one is used for instance in Intel registers which
store floating-point numbers with p = 80. The single-extended precision is
seldom used. A typical (big-endian 1) single-precision floating-point number
(32 bits) is decomposed from most (left) to less (right) significant bits into
three parts: the sign bit, 1 bit, has the position 31 counting from right to
left (and starting from 0), the biased exponent (8 bits, from position 23 to
30), and the mantissa, 23 bits, for the rest. The sign bit determines the
sign of the binary number: 1 means positive, and 0 means negative. The
exponent is stored in biased format bexp without a sign bit: a constant is
added to the bexp to find the actual exponent. This bias to add is defined
by 2e−1− 1, where e denotes the number of bits allocated for the exponent.
For instance, for single-precision representation, the e = 8, thus the bias is
equal to 27 − 1 = 128 − 1 = 127: to encode the exponent 1, bexp should
contain 1+127 = 128. The mantissa encodes the fraction part of the binary
number, that is the sequence of bits on the right hand side of the binary
point. The most significant bit of the mantissa is hidden. It is in fact
encoded in the exponent as follows:

1Endianness refers to the bit order used to represent a sequence of bits. Big-endian
starts from the most significant bit, whereas little-endian starts with the less significant
bit.
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• if bexp is zero and the fraction is non-zero (at least one bit is set to
one), then the hidden bit is equal to 0. These numbers are called
denormalized floating-point numbers.

• if the bexp lies within [1, 2e−2], then the hidden bit is considered equal
to one. These numbers are called normalized floating-point numbers.

The remaining possible value of the exponent, that is 2e − 1, encodes the
infinities and NaN s. NaNs stands for “Not a number”, and is used to store
undefined results such as the inverse of zero. The value of the mantissa is
used to distinguish between infinities and NaNs. If it is equal to zero, then
the number is either −∞ or +∞, depending on the sign. If at least one
bit of the mantissa is equal to one, then we have NaNs (sign is useless).
Observe that the floating-point representation makes a difference between
−0 and +0, as the bit sign is independent from the value. The final form
of a normalized number is

(−1)s1.mantissa× 2bexp−bias .

For instance, our above example gives the (normalized) binary number
(−1)01.1001001000011111101 × 2128−127 (equal to 3.1415901 in base 10).
Given a precision, the number of floating-point numbers is finite and their
values bounded. For instance, the double-precision numbers range from
−1.1111 . . . × 22046−1023 to 1.1111 . . . × 22046−1023, which gives in base ten:

±(1 +
1

2
+ . . .+

1

252
)× 21023 = ±(1− 1

253
)× 21024 ' ±1.7977× 10308 .

It is worth noting that the floating-point numbers are not uniformly dis-
tributed. The population is dense around zero (because of the denormalized
representation), whereas the gap between two successive floating-point num-
bers increases as we recede from zero toward the bounds. In fact, the gap
is scaled by the factor 2exp, where exp denotes the exponent. For instance,
in double-precision representation:

exp bexp range gap

0 1023 [1, 2− 1
252

] 1
252
' 2.22× 10−16

2 1025 [4, 8− 1
248

] 22

252
' 8.88× 10−16

53 1076 [25, 254 − 2] 253

252
= 2

This behavior makes floating-point numbers unsuitable for computa-
tions that involve large real numbers, such as accounting softwares. As said
earlier, the fixed-point computation offers in that case a more convenient
way as the distribution is more regular than floating-point numbers.
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Rounding directions Arithmetic over the floating-point numbers is not
complete as the result may be non-floating-point number. A round off is
then needed to cast the result into the needed precision. The IEEE-745
standard defines four possible rounding directions:

• Round to Nearest rounds the result to its nearest floating-point repre-
sentative, if it falls midway, the representative with its least significant
bit equal to zero is preferred. This is the default rounding mode. It
is called Round to nearest, ties to even in the new revision which also
precises other modes.

• Round toward 0 rounds the result to the first representative between
the result and zero.

• Round toward +∞ rounds the result to the closest bigger representa-
tive.

• Round toward −∞ rounds the result to the closest smaller represen-
tative.

Given a real number r, we denote by floatp,r(r) the floating-point represen-
tative of r with respect to the precision p, and the rounding direction r,
where r ∈ {n, 0,−∞,+∞}, and n denotes the rounding to the nearest with
ties to even mode. We define floatp,r(+∞) = +∞, floatp,r(−∞) = −∞,
and floatp,r(0) = +0, for all rounding directions and all precisions.

Invalid operations The undefined operations in real numbers arithmetic
are also invalid in floating-point numbers arithmetic. For instance, (−∞)+
(+∞), 0×∞, 0

0
, ∞∞ , the square root of non-positive floating-point number,

returns a NaN. Any operation involving a NaN returns also a NaN.
Some pitfalls need to be aware of when using floating-point numbers.

An excellent survey should be the Goldberg article [Gol91]. Floating-point
numbers are not real numbers and should not be considered as such when
reasoning. Classical arithmetic operations {+,−,×,÷} are not commuta-
tive, neither associative. Thus, depending on the order of evaluation, the
result may be different. Two given floating-point numbers are comparable
with respect to the order over the extended real numbers line. The order
considers −0 = +0, −∞ = −∞, +∞ = +∞, and x 6= NaN , for any given
floating-point number x including NaNs themselves. The decimal fractions
in base ten, such as 0.1, 0.01, etc. do not have exact representatives in-
dependently from the precision in use. In fact, the binary representatives
of these fractions come with infinite binary chain; for instance the “pure”
binary representative of 0.1 is 1.100110011001100 . . . .

123



7. Implementation and Experiments

Intervals domain

Many numerical abstract domains use floating-point numbers for their in-
ternal computations. The loss of precision due to such approximation is
usually compensated by a tremendous gain of efficiency. However, their use
for the purpose of abstract interpretation needs a particular attention to
ensure the soundness of computations.

As mentioned in [Min04b] and implemented in [apr07], intervals arith-
metic can be implemented in a sound manner using rounding toward ±∞.
We denote by IF the set of intervals with floating-point bounds. A real
interval [r1, r2] is abstracted as follows:

αF : I→ IF
[r1, r2] 7→ [floatp,−∞(r1), floatp,+∞(r2)] .

The concretisation, from IF to I is the restriction to IF of the identity over
I since IF ⊆ I. The definition of αF respects the soundness property, that is
[r1, r2] ⊆ αF([r1, r2]). Operations over intervals of IF are defined as follows:

[f1, f2] +F [f ′1, f
′
2]

def
= [floatp,−∞(f1 + f ′1), floatp,+∞(f2 + f ′2)]

[f1, f2]−F [f ′1, f
′
2]

def
= [floatp,−∞(f1 − f ′2), floatp,+∞(f2 − f ′1)]

[f1, f2]×F [f ′1, f
′
2]

def
= [min{floatp,−∞(f1 × f ′1), floatp,−∞(f2 × f ′1),

floatp,−∞(f1 × f ′2), floatp,−∞(f2 × f ′2)},

max{floatp,+∞(f1 × f ′1), floatp,+∞(f2 × f ′1),

floatp,+∞(f1 × f ′2), floatp,+∞(f2 × f ′2)}]

[f1, f2]÷F [f ′1, f
′
2]

def
= [min{floatp,−∞(f1 ÷ f ′1), floatp,−∞(f2 ÷ f ′1),

floatp,−∞(f1 ÷ f ′2), floatp,−∞(f2 ÷ f ′2)},

max{floatp,+∞(f1 ÷ f ′1), floatp,+∞(f2 ÷ f ′1),

floatp,+∞(f1 ÷ f ′2), floatp,+∞(f2 ÷ f ′2)}]
F
√

[f1, f2]
def
= [floatp,−∞(

√
f1), floatp,+∞(

√
f2)]

Affine Forms Domain

We denote by A1(F), the set of affine forms with floating-point numbers
coefficients.

The definition of the affine arithmetic over A1(F) is not immediate, as
the computations need to be safe. As mentioned by Figueiredo and Stolfi
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7.1. Abstract Computations Using Floating-point Numbers

in [dFS97], there is no safe rounding direction that we could use to obtain a
sound affine form 2. The rounding alters the correlations between variables
which may lead to unsafe affine representation. Consider for instance the
CAS X̂, defined over A1:

X̂ =
((0 0.5

0 0.1

)
, 0, 1× [−1, 1]

)
,

The four CAS defined over A1(F) obtained by rounding 0.1 are not safe:

X̂p,r =
((0 floatp,r(0.5)

0 floatp,r(0.1)

)
, 0, 1× [−1, 1]

)
,

where the rounding mode r is within {n, 0,−∞,+∞}. Figure 7.1 illustrates
the (degenerated) zonotope γ1×2(X̂) (gray segment), and the two zonotopes
γ1×2(X̂p,+∞) and γ1×2(X̂p,−∞) (red segments). In this case, we have

γ1×2(X̂p,0) = γ1×2(X̂p,−∞) and γ1×2(X̂p,n) = γ1×2(X̂p,+∞),

since floatp,r(0.5) = 0.1 for all rounding directions (0.5 is exactly repre-
sentable), and

floatp,+∞(0.1) = floatp,n(0.1) and floatp,−∞(0.1) = floatp,0(0.1),

for p ∈ {32, 64}. None of these zonotopes contains the zonotope γ1×2(X̂),
which makes γ1×2(X̂) * γ1×2(castp,r(X̂)), for all r ∈ {n, 0,−∞,+∞}.
Figueiredo and Stolfi proposed in [dFS97] to add a fresh noise symbol to
compensate the rounding error. The coefficient of this newly added symbol
is an over-approximation of the rounding error. For instance in our simple
example, the affine form related to v2 becomes

floatp,n(0.1)ε1 + floatp,+∞(|0.1− floatp,n(0.1)|)ηf .

The choice of round-offs is meant to minimize the coefficient of ηf : |0.1 −
floatp,r(0.1)| is minimal when r = n, and rounding the absolute value toward
+∞ gives a floating-point greater than (or equal to) the actual real number
given by this absolute value. Figure 7.2 depicts the zonotope

X̂F
def
=
((0 floatp,n(0.5)

0 floatp,n(0.1)

)
,

(
0

floatp,+∞(|0.1− floatp,n(0.1)|)

)
, 1×[−1, 1]2

)
.

Observe that it wraps closely the degenerated zonotope γ1×2(X̂) but leads
to a loss of precision, in addition to a new perturbation noise symbol.

2In intervals domain for instance, it is sufficient to round toward +∞ the upper
bound computations and toward −∞ the lower bound computations to obtain a safe
interval that contains all possible real numbers.
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v1

v2

r ∈ {n,+∞}

r ∈ {0,−∞}

floatp,+∞(0.1)

1.1001100 . . .
floatp,−∞(0.1)

0.12 = 0.510

Figure 7.1: Unsafe approximation of
affine sets: the correlation is falsified
by the use of floating-point numbers.

v1

v2

floatp,n(0.1)

1.1001100 . . .

0.12 = 0.510

Figure 7.2: Safe approximation: X̂F
wraps X̂.

Constrained Affine Sets Domain

The coefficients of the matrices C and P are now floating-point numbers.
The domain A1 is substituted by its related domain which respects the
floating-point semantics (see Section 7.1).

Related work Ideas we present here to overcome the use of floating-point
numbers while remaining sound are well known in the literature. Figueiredo
and Stolfi have presented in [dFS97] similar approaches to implement a li-
brary of affine forms. Moreover, the use of Taylor models, with floating-
point numbers, as an approximation technique for linearization has been
widely studied and proved guaranteed (see for instance [RMB05] for a proof
of the respect of Taylor models, with floating-point coefficients, of the “con-
tainment property”– which is equivalent to the soundness in our context –).
The only main difference with our implementation is the use of intervals,
instead of simple floating-point numbers, to encode the coefficients of noise
symbols.

The semantics of the evaluation of an expression e ∈ expr, in the ab-
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7.1. Abstract Computations Using Floating-point Numbers

stract domain A(F)1×2 is given by:

∀e ∈ expr,JeK]F : A(F)1×2 → A(F)1 ×A2(F)

JvkK]F(C,P,Φ)
def
= (

n∑
i=0

C(k,i)εi +
m∑
j=1

P(k,j)ηj,Φ)

The evaluation of an interval [a, b] depends whether the interval is bounded
or unbounded. If −∞ < a ≤ b < +∞, then J[a, b]K]F(C,P,Φ) is defined by(

midF(αF([a, b])) + devF(αF([a, b]))εf , J−1 ≤ εf ≤ 1K]2(F)Jadd εfK]2(F)Φ
)
,

Otherwise, the affine form is just a new noise symbol :

J[a, b]K]F(C,P,Φ)
def
=

{
(εf , Jεf ≤ bK]2(F)Jadd εfK]2(F)Φ), if −∞ = a

(εf , Ja ≤ εfK]2(F)Jadd εfK]2(F)Φ), if +∞ = b

For arithmetic unary and binary operations, the semantics is given by:

Je1 � e2K]F(C,P,Φ)
def
= Je1K]F(C,P,Φ) �F1×2 Je2K]F(C,P,Φ)

where �F1×2 ∈ {+F
1×2,−F1×2,×F1×2,÷F1×2}

J
√
eK]F(C,P,Φ)

def
=
√F

1×2JeK
]
F(C,P,Φ)

The operators J·K]2(F) denote the abstract operators of the abstract do-

main A2(F). The operations midF return the nearest floating-point number
to the exact mid point of an interval:

midF : IF → F

[f1, f2] 7→ floatp,n(
f1 + f2

2
) .

The function devF, defined below, ensures an over-approximation to the
exact radius of the interval, that is dev(i) ≤ devF (i), for all i ∈ IF:

devF : IF → F
[f1, f2] 7→ max{floatp,+∞(f2 −midF([f1, f2])), floatp,+∞(midF([f1, f2])− f1)}

Notice that, the definitions of midF and devF are such that the conversion
from intervals to affine forms, then back to intervals encloses the original
interval.
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Let x̂F =
∑n

i=0 α
x
i εi +

∑m
j=1 β

x
j ηj, and ŷF =

∑n
i=0 α

y
i εi +

∑m
j=1 β

y
j ηj be

two elements of A1(F), and Φ an element of A2(F). The abstract element Φ
is unused and remains unchanged. The addition +F

1×2 of two CAS (x̂F,Φ)
and (ŷF,Φ) gives an affine form ẑF and a noise symbols’ abstract element
Φz, defined as follows:

ẑF
def
=

n∑
i=0

floatp,n(α
x
i + αyi )εi +

m∑
j=1

floatp,n(β
x
j + βyj )ηj + �ηm+1

Φz def
= J−1 ≤ ηm+1 ≤ 1K]2(F)Jadd ηm+1K]2(F)Φ .

The floating-point number � accumulates all rounding errors:

�
def
= floatp,+∞(

ulpp
2

(
n∑
i=0

2log2(floatp,+∞(αx
i +αy

i )) +
m∑
j=1

2log2(floatp,+∞(βx
j +βy

j )))),

where ulpp denotes the floating-point number which corresponds to the unit
in the last place, that is the floating-point number obtained when only the
least significant bit is set to 1. The function log2 extracts the exponent of
the floating-point number of its operand, that is the biased exponent minus
the bias. For instance, log2(10.01) = 1. Such a function is provided in
the API of high languages, in C language for instance, the primitive logb

defined in the header file math.h extracts the exponent of a floating-point
number. As we round to the nearest,

ulpp
2

2log2(floatp,+∞(x)),

which is usually denoted by ulp(x)
2

, gives a tight over-approximation of
|x − floatp,n(x)|. Notice that the computation of � requires to change the
rounding mode, which is a relatively expensive operation (costs 6 floating-
point additions, that is around a dozen of cycles on a typical FPU [SS98]).
To avoid the repeated changes of the rounding direction, we may com-
pute the log2 of the next representable neighbor of floatp,n(x), instead of
floatp,+∞(x), which is less precise but safe.

In our implementation the coefficients operations are handled by in-
tervals. For instance, to compute the addition of two floating-point num-

bers αxi + αyi , we actually compute αx
i +F α

y
i , where αx

i
def
= [αxi , α

x
i ], and

αy
i

def
= [αyi , α

y
i ]. The obtained interval contains the exact value of the ad-

dition. The operation +F over intervals is sound as detailed in section 7.1.
The new coefficient is assigned midF(α

x
i +F α

y
i ), while devF(α

x
i +F α

y
i ) is

added to �. The method is less precise than the two previous methods. It
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is also more expensive as it involves the addition of two intervals. We now
have for the addition +F

1×2:

ẑF =
n∑
i=0

midF(α
x
i +F α

y
i )εi +

m∑
j=1

midF(β
x
j +F β

y
j )ηj + �ηm+1,

Φz = J−1 ≤ ηm+1 ≤ 1K]2(F)Jadd ηm+1K]2(F)Φ),

� = floatp,+∞

( n∑
i=0

devF(α
x
i +F α

y
i ) +

m∑
j=1

devF(β
x
j +F β

y
j )
)
.

The operation may be seen as a composition of two operations. The first
computes the sum of two affine forms as if the coefficients were intervals.
The second applies a reduction to get back to a classical affine form by
replacing intervals by their midpoint with respect to the operation |F, and
by accumulating the rounding errors into �. We denote by A1(IF) the set
of affine forms with interval coefficients. We use the bold face notation to
denote an element of A1(IF). The reduction operator is defined as follows:

7.1.1 Definition (Reduction)

reduction : A1(IF)×A2(F)→ A1(F)×A2(F)

reduction(x̂F,Φ
X)

def
= (ŷF, J−1 ≤ ηf ≤ 1K]2(F)Jadd ηfK]2(F)Φ

X),where

αy0 = mid(ı)

1 ≤ i ≤ n, αyi = mid(αx
i )

1 ≤ j ≤ m, βyj = mid(βx
j )

βyf = dev(ı) .

The interval ı given by

ı
def
= αx

0 + dev(αx
0)[−1, 1] +

n∑
i=1

dev(αx
i )[−1, 1]εxi +

m∑
i=1

dev(βx
i )[−1, 1]ηx

i ,

needs the interval concretisation of the noise symbols, εxi = bound2(εxi ,Φ
X),

and ηx
j = bound2(ηxj ,Φ

X).

The abstract object of noise symbols is augmented with a new perturbation
noise symbol ηf . The so obtained affine form is sound.

1 Remark
It is important to understand that we use intervals as a safe “receptacle”
for local intermediate computations of floating-point numbers. The final
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result of the operations is always an affine form with floating-point numbers
coefficients. The use of intervals as coefficients is interesting in its own and
is not covered in this work.

We authorize to scale an affine form x̂F by an interval ı, which gives an
element of A1(IF):

ıx̂F
def
=

n∑
i=0

(αxi ı)εi +
m∑
j=1

(βxj ı)ηj

Non linear binary operations {×F1×2,÷F1×2} and the unary operation

{
√F

1×2} benefit from both abstract domains A1(F) and A2(F) for a bet-
ter precision.

For the multiplication and division operations, we first compute with
respect to interval arithmetic, then reduce using the reduction operation.
For the multiplication, the SDP method needs a guaranteed solver such as
in [JCK07]. However, its use is expensive as it solves the problem more
than once to obtain rigorous bounds for the optimal solution.

The definition of
√F

1×2 adds one new perturbation noise symbol: it is
firstly created to encode the imprecision due to the linearization, and then
used (implicitly in the reduction operation) to store the inaccuracy of com-
putations using floating-point numbers. The special cases where [a, b] is
empty, or is equal to zero or has an infinity bound are defined as

√
1×2 (the

real number coefficients case, see Section 5.1).
The compositional evaluation of an expression may add many new noise

symbols (1 per each atomic operation). To avoid this behavior, which can
lead to too long affine forms, we can choose to reduce once at each assign-
ment, that is all computations are performed as with interval arithmetic for
the coefficients, then the final affine form is reduced, which adds at most
one perturbation noise symbol per assignment. The main drawback of this
approach is the local loss of precision during the evaluation of the expression
due to interval arithmetic.

The join operator The join operator is defined componentwise as dis-
cussed in Chapter 6. As coefficients are intervals instead of real numbers,
we can not use immediately the already established results that characterize
and compute a mub of two affine forms. To overcome this issue, we first
reduce the involved affine forms then compute the join. The newly added
perturbation noise symbols due to the reduction operation will not survive
after the join: if t is used then all perturbation noise symbols are lost; if
t+ is used instead we accumulate the fresh perturbations due to reduction
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into τX and τY . Thus, the total number of perturbation noise symbols after
the join operation (either t/t+, or ∨) after reduction is exactly the same
than the number of perturbation noise symbols when the join is computed
over CAS with real number coefficients.

Algorithm 3, is an extended version of algorithm 2. The values of τX and
τY are updated respectively lines 3 and 4. By definition of the reduction,
the intervals βXm+1 and βYm+2 are positive real numbers (deviation of an
interval), so τX and τY remain non-negative.

Algorithm 3: Computing a mub of two Extended Constrained Affine
Forms

input : Two extended CAF X̂ = (αX , τX ,ΦX
ε ) and

Ŷ = (αY , τY ,ΦY
ε ).

output: A CAF Ẑ mub of X̂ and Ŷ .

1 (αX
′
,ΦX ′)←− reduction(αX ,ΦX);

2 (αY
′
,ΦY ′)←− reduction(αY ,ΦY );

3 τX ←− τX + βXm+1;
4 τY ←− τY + βYm+2;

5 mubCAF((αX
′
, τX ,ΦX), (αY

′
, τY ,ΦY )); /* algorithm 2 */

7.2 Implementation

Taylor1+ is a C library. Its API (Application Programming Interface) is
APRON compliant, which means that any analyzer linked to the APRON
Library can use Taylor1+ without any extra effort. In addition to its C
interface, the library offers an Ocaml interface. This interface is convenient
since usually static analysis tools are written in Ocaml language.

The Library is under Lesser General Public Licence (LGPL) and is dis-
tributed for free together with the APRON Library.

Data structure Taylor1+ represents a CAS by an array of pointers of size
p (the number of the numerical variables) and a generic abstract object for
the noise symbols. Each pointer points to a special structure which encodes
the affine form. The data structure of an affine form is a coefficient plus a
simple chained list of terms. Each term contains a non-null coefficient and
a pointer to a noise symbol. (terms with null coefficients are not stored.)
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Context-sensitive noise symbols In Taylor1+, noise symbols are not
context aware, that is we do not keep track of the control point context
(input uncertainty, line, iteration, condition branch, etc.) that creates the
noise symbol. We simply make a difference between input noise symbols
and perturbation noise symbols. All these symbols are indexed by a global
integer variable.

7.3 Experiments

In this section, we compare Taylor1+ with some other relational abstract
domains in their APRON implementation, namely octagons and polyhe-
dra. In Section 7.3 we show the accuracy of computations whether these
computations are linear or non-linear. Indeed, the affine forms-based do-
main handles the non-linear operations in an efficient and precise manner.
The improvements of expressiveness due to the interpretation of tests using
constraints over noise symbols rather than a simple reduced product with
intervals is clearly demonstrated in Section 7.3. We focus finally, in sec-
tion 7.3, on the two join operators, ∨ and t, formally defined in Chapter 6.
We compare the time cost of each operator as well as the “quality” of the
final affine forms.

We used a laptop equipped with Intel(R) Core(TM)2 CPU (1.06GHz)
and 2GB of RAM. All results are rounded to two significant digits for the
sake of readability.

Efficiency of Computations

We present in this section two benchmarks. We show the efficiency and
precision of Taylor1+ computations compared to box, octagons and poly-
hedra. To this aim, we unroll two recursive schemes, one linear and one
non-linear. The first is a (linear) 2nd order filter, the second involves a
3rd order Householder scheme to compute the square root of a given value
(usually used when the square root routine is not provided).

We unroll two simple iterative schemes and compare results with the
other domains interfaced with APRON, namely boxes, octagons and poly-
hedra abstract domains. All numerical values are rounded to two significant
decimal digits for the sake of readability.
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Linear Iterative Schemes

Consider the following 2nd order filter :

Sn = 0.7En − 1.3En−1 + 1.1En−2 + 1.4Sn−1 − 0.7Sn−2

where En are independent inputs with unknown values in range [0, 1], and
Sn is the output of the filter at iteration n. Pôles are inside the unit circle
(norm close to 0.84), so the output in real numbers is provably bounded,
and can be tightly estimated by manual methods to [−1.09, 2.75].

We fully unroll this 2nd order filter scheme to compute the abstract value
at each iteration. Figure 7.3 compares accuracy and performance of Tay-
lor1+ with three domains, provided in APRON: Boxes (Interval Analysis),
Octagons, Polyhedra (both PK [Ja] and PPL [Pro] implementations were
tested). The current version of the octogons domain does not integrate any
of the symbolic enhancement methods of [Min06b], which leads to inaccu-
rate results. The Polyhedra domain with exact arithmetic (using GMP)
gives the exact bounds for the filter output (the scheme is linear). One can
see that Taylor1+ wraps very closely the exact range given by polyhedra
(left figure) with great performance (right figure).

Non-linear Iterative Scheme

The non-linear scheme we are considering is based on a Householder method
of order 3 that converges towards the inverse of the square root of an input
A. It originates from an industrial code, used as a test case in [GPBG07];
The current estimate of the inverse of the square root is updated as follows:

xn+1 = xn + xn

(
1

2
hn +

3

8
h2
n

)
where hn = 1− Ax2

n, A ∈ [16, 20] and x0 = 2−4.
We study the fully unrolled scheme for 5 iterations, and compare differ-

ent implementations of the multiplication; results are shown in Table 7.3.
We can see that the results are tight even for non-linear computations. The
SDP solver is costly in time and does not seem to buy much more preci-
sion. However, for a larger range for input A, SDP gives tighter results
than the standard multiplication. Moreover, the real advantage of SDP
over subdividing is that the process of subdividing inputs might become
intractable when several inputs would need subdividing. We tested here
a non-guaranteed SDP solver [Bor99], but we plan in the future to use
guaranteed SDP solver such as the one described in [JCK07].
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Figure 7.3: Unrolled scheme for the 2nd order filter

Unrolling (5 It.)
√
A = Axn t(s)

Boxes [0.51 , 8.44] 1×10−4

Octagons [0.51 , 7.91] 0.01
Polyhedra [2.22 , 6.56] 310
T.1+ : [3.97 , 4.51] 1×10−3

• 10 subdivisions [4.00 , 4.47] 0.02
• SDP [3.97 , 4.51] 0.16

Table 7.1: Comparison of domains on Householder (o3) example
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Exact Octagons Polyhedra Uncons. Taylor1+ Taylor1+ (∨)
InterQ1 [0, 1875] [−3750, 6093] [−2578, 4687] [0, 2500] [0, 1875]
Cosine [−1, 1] [−1.50, 1.0] [−1.50, 1.0] [−1.073, 1] [−1, 1]
SinCos {1} [0.84, 1.15] [0.91, 1.07] [0.86, 1.15] [0.99, 1.00]
InterL2 {0.1} [−1, 1] [0.1, 0.4] [−1, 1] [0.1, 1]
InterQ2 {0.36} [−1, 1] [−0.8, 1] [−1, 1] [−0.4, 1]
InterQ2b [−0.1, 3] [−3, 27] [−3, 27] [−0.1, 27] [−0.1, 3.77]

Table 7.2: Comparison of Constrained T1+ with APRON’s abstract do-
mains

Interpretation of tests

In this section, we compare the results3 obtained with the implementation
of our domain, with the octagons and polyhedra APRON domains and the
unconstrained Taylor1+ [GGP10].

Table 7.2 shows the numerical range of a variable of interest of each test
case and for each domain, after giving the exact range we hope to find. It
can be noted that on these examples, Taylor1+ is always more accurate than
octagons, and is also more accurate than polyhedra on non-affine problems.

In Table 7.2, InterQ1 combines linear tests with quadratic expressions,
only constrained T1+ finds the right upper bound of the invariant. Cosine
is a piecewise 3rd order polynomial interpolation of the cosine function:
once again, only constrained T1+ finds the exact invariant. The program
SinCos computes the sum of the squares of the sine and cosine functions
(real result is 1). InterL2 (resp. InterQ2) computes a piecewise affine
(resp. quadratic) function of the input, then focuses on the inverse image of
1 by this function. In InterQ2b, which is the running example of [GGP10],
we do not evaluate the inverse.

We now consider the computation of g(g(x)) on the range x = [−2, 2],
where

g(x) =

√
x2 − x+ 0.5√
x2 + 0.5

.

We parametrize the program that computes g(g(x)) by a number of tests
that subdivide the domain of the input variable (see Figure 7.4 left for a
parametrization by n subdivisions), in order to compare the relative costs
and precisions of the different domains when the size of the program grows.

It can be noted (Figure 7.6 left) that our domain scales up well while
giving here more accurate results (Figure 7.6 right) than the other do-
mains. As a matter of fact, with an interval domain for the noise symbols,

3sources of the examples are available on line http://www.lix.polytechnique.fr/

Labo/Khalil.Ghorbal/CAV2010
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g ( x ) = s q r t ( x∗x−x+0.5)/ s q r t ( x∗x +0.5) ;
x = [ −2 ,2 ] ;
/∗ f o r n s u b d i v i s i o n s ∗/
h = 4/n ;
i f (−x<=h−2)

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e i f (−x<=i ∗h−2) /∗ 2 <= i <= n−1 ∗/

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e

y = g ( x ) ; z = g ( y ) ;

Figure 7.4: Implementation of g(g(x)) for x in [-2,2]

x

g(g(x))

20−2

0.54

0.58

0.62

Figure 7.5: plot of g(g(x))
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Figure 7.6: Comparing analysis time and results of the different APRON
domains.

all abstract transfer functions are linear or at worst quadratic in the num-
ber of noise symbols appearing in the affine forms. Notice also that our
implementation detects the squares of variables, which allows constrained
T1+ to give [0, 4.72] without subdivisions while all other domains end with
[−∞,+∞] (noted by the dotted lines on Figure 7.6 right). The fact that
the results observed for 3 and 5 subdivisions (Figure 7.6 right) are less ac-
curate respectively than those observed for 2 and 4 subdivisions, is related
to the behavior of g(g(x)) on [−2, 2] (see Figure 7.4 right): for example
when a change of monotony appears near the center of a subdivision, the
approximations will be less accurate than when it appears at the border.

Join operators Performance

We compare the join operator ∨ and t defined over CAF. The perturbation
computed by the first is optimal, while its complexity is cubical function
of the number of noise symbols. The latter is much more efficient, its
complexity is linear, but is less precise.

The test is performed over randomly generated affine forms of length
n + m, with coefficients within [−1, 1]. The computation of the perturba-
tion with respect to ∨ is linear, in our experiments, the needed time never
exceeds 0.01s (gray line in the bottom of figure 7.7 left). On the other
hand, the computation with respect to t needs much more time, in fact
it is cubical as expected theoretically. In the right hand side of figure 7.7,
we observe that the optimal perturbation given by t gives a more accurate
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Figure 7.8: Comparison of the join operators : remaining noise symbols

perturbation even though the perturbation given by the operator ∨ stays
close to the optimal one, for instance for n + m = 400, the perturbation
given by ∨ is 60.4, whereas the one given by t is 48.4. In addition, we
observe in Figure 7.8, that the operator t leaves in general all the noise
symbols alive, when ∨ cancels many of them (actually more than a half) by
reducing their coefficient to zero (because of the argmin operator), which
leads to a less precise but “lighter” affine forms.

Table 7.3 reconsiders the same examples seen before (see Section 7.3),
but now with respect to t. Observe the clear improvement of the invariants
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Exact Uncons. Taylor1+ Taylor1+ (∨) Taylor1+ (t)
InterQ1 [0, 1875] [0, 2500] [0, 1875] [0, 1875]
Cosine [−1, 1] [−1.073, 1] [−1, 1] [−1, 1]
SinCos {1} [0.86, 1.15] [0.99, 1.00] [0.99, 1.00]
InterL2 {0.1} [−1, 1] [0.1, 1] [0.066, 0.4]
InterQ2 {0.36} [−1, 1] [−0.4, 1] [−0.29, 0.52]
InterQ2b [−0.1, 3] [−0.1, 27] [−0.1, 3.77] [−0.1, 3.77]

Table 7.3: ∨ vs t

of examples InterL2 and InterQ2 due to a more accurate affine form after
the join using the t operator. For instance, in InterQ2, we have to compute
the join of −1.25 + 10ε0 + 1.25ε2 (the if branch) and 2.5 + 20ε0 + 2.5ε1 (the
else branch). The affine form obtained for after the join is as follows:

∨ : −2.5 + 10ε0 + 7.5η3

t : −0.625 + 13.75ε0 + 5.625η3 .

Indeed, t makes a better repartition of the partial deviations in order to
minimize the perturbation, and hence optimize the correlation between the
input variables (encoded by the input noise symbols εi) and the final result.
Therefore, when we compute the inverse of 1, the input noise symbol ε0 is
fixed, and the t yields to a better result as it maximizes the contribution
of that input to the final result.

Figure 7.9 depicts the two zonotopes found in the if and else branches
of example InterQ2as well as the upper bound of these zonotopes given by
the operator ∨. The projection on the variable y is [−20, 15]. It is slightly
larger than the union of the projections on that variable, that is the union
of [−20, 5] and [−2.5, 10], which gives [−20, 10]. In our implementation
we use a reduced product with intervals to cancel such unnecessary over-
approximation. In figure 7.10, we depict the final invariant of such reduced
product, observe that the upper right corner of the original zonotope is
truncated. The black shape of the same figure is the invariant given by the
polyhedra abstract domain.

139



7. Implementation and Experiments

x̂

ŷ

Figure 7.9: The if and else branches
zonotopes and their join (∨)

x̂

ŷ

Figure 7.10: The final invariant of
InterQ2: Reduced Product of T1+
and boxes (gray), Polyhedra (black)
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CHAPTER 8
Conclusion

We have studied in this thesis the interesting combination of two different
classes of abstract domains : the affine forms based abstract domain on one
hand, and the polyhedra-like abstract domains on the other hand.

The affine sets abstract domain keeps and propagates implicitly (us-
ing noise symbols) the linear relations among variables. It shows a great
efficiency of computation as well as accurate results for both linear and non-
linear operations. The polyhedra-like family of abstract domains, includes
polyhedra, zones, octagons and linear templates, is suitable to handle ex-
actly the linear constraints among variables. We use this latter feature to
address the interpretation of tests over affine sets, such as the intersection
of a zonotope (the geometrical concretisation of affine sets) and a hyper-
plane. The exchange of information between the two abstract domains in
use is formalized as a special logical product of these abstract domains.
This particular combination, as shown in the experiments part, leads to
finer invariants than the simple use of reduced product of affine sets and
intervals.

Moreover, we have extended and generalized the componentwise join
operators defined in the classical affine sets domains to the newly defined
domain. We have characterized a particular set of minimal upper bounds
which minimize the perturbation, and have presented an algorithm, with
a cubical complexity in time, to compute these upper bounds. Another
algorithm, with a linear complexity, was also defined following ideas from
the classical perturbed affine sets domain. The latter algorithm trades the
minimality of the perturbation with the cost of computations and therefore
could be useful either as a first trial analysis or as a convergence accelerator.

The global approach for the join operators (instead of the component-

141
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wise approach detailed in this work) is an important direction we would like
to explore as a future work. First for the perturbed affine sets, following
the work already done by Goubault and Putot, then for their constrained
variant.

Another non-less interesting avenue for the future work could be the ab-
straction of the coefficients (the partial deviations) of affine sets, as already
done for the noise symbols. Such an approach could be relevant to infer
non-convex invariants. In fact, the generalized intervals (see definition 3.3.1
of Section 3.3) use intervals as coefficients. As mentioned by Stolfi, this con-
stitutes a fundamental difference between generalized intervals and affine
forms, not only because the latter uses real numbers as coefficients, but also
because the joint-range of generalized intervals is not convex, whereas the
joint-range of affine form is a special polyhedron (zonotope). This convexity
property is crucial in affine forms as defined and used in our work. Never-
theless, the non-convexity property may also be attractive and desired as
it permits to catch some non-convex invariants. This characteristic was for
instance exploited in the recent work of interval polyhedra abstract domain
of Chen and al. [CMWC09].
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A

The Support Function

We gather in this appendix some properties (without proofs) of the support
function and its dual (or conjugate), the indicator function. An introduction
to these particular functions, as well as detailed proofs may be found for
instance in [Roc70].

Recall the definition of the support function.

A.0.1 Definition
Let C be a non-empty convex set of Rn, then

δ(t | C)
def
= sup

{
〈t, x〉 | x ∈ C

}
,

where 〈·, ·〉 denotes the usual scalar product over Rn.

The belonging of a vector to a closed convex set may be characterized
using the support function.

A.0.2 Proposition
Let C be a closed convex set. Then x ∈ C if and only if

〈t, x〉 ≤ δ(t | C),

for every vector t ∈ Rn.

The support function over a symmetric convex set is symmetric itself.
A convex set is said to be symmetric if and only if x ∈ C =⇒ −x ∈ C. If

−C def
= {x | −x ∈ C}, then C is symmetric if and only if C = −C.

A.0.3 Proposition
Let C ⊂ Rn be a convex set, then

δ(t | −C) = δ(−t | C) .

Moreover, the support function of a symmetric convex set is symmetric,
that is, if −C = C, we have δ(t | C) = δ(−t | C) for all t ∈ Rn.
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A. The Support Function

Proof. By definition, −x ∈ C if and only if x ∈ −C. The result is then
immediate from Proposition A.0.2.

Proposition A.0.3 makes it possible to “move” the minus sign from the
variable to the convex set and vice versa; moreover, if the convex set is
symmetric, the minus sign can be absorbed by the symmetric convex set.

2 Remark
The support function of the sum of two convex sets can be expanded to the
sum of the support functions of each operand of the sum. Indeed, for two
non-empty convex sets C1, C2 ⊂ Rn, one has δ(t | C1+C2) = δ(t | C1)+δ(t |
C2) for all t ∈ Rn. The proof is straightforward by the linearity of the scalar
product:

δ(t | C1 + C2) = sup
{
〈t, x〉 | x ∈ C1 + C2

}
= sup

{
〈t, x1 + x2〉 | x1 ∈ C1, x2 ∈ C2

}
= sup

{
〈t, x1〉 | x1 ∈ C1

}
+ sup

{
〈t, x2〉 | x2 ∈ C2

}
= δ(t | C1) + δ(t | C2)

The support function verifies the triangle inequality.

A.0.4 Proposition
The support function δ(t | C) verifies

δ(t1 + t2 | C) ≤ δ(t1 | C) + δ(t2 | C), ∀t1, ∀t2

The last proposition evaluates the composition of the support function
and a linear transformation A from Rm to Rn.

A.0.5 Proposition
Let A be a linear transformation from Rm to Rn. For any convex set C ⊂
Rn, one has

δ(At | C) = δ(t | A∗C), ∀t ∈ Rm,

where A∗ denotes the transpose matrix of the matrix A.

The support function respects the positive homogeneity property.

A.0.6 Proposition
For any non-empty convex set C, one has δ(x | λC) = λδ(x | C), 0 ≤ λ <
+∞.

The remaining properties concern the dual operations.
The first property gives the conjugate of partial affine functions.
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A.0.7 Proposition
Let h be a convex function on Rn, and let

f(x) = h(A(x− a)) + 〈x, b〉+ α,

where A is a one-to-one linear transformation from Rn onto Rn, a and b
are vectors in Rn, and α ∈ R. Then

f ∗(t) = h∗(A∗−1(t− b)) + 〈t, a〉+ α∗,

where A∗ is the adjoint of A and α∗ = −α− 〈a, b〉.

The conjugate function of a sum is defined using the infimal convolution.

A.0.8 Proposition
Let f1, . . . , fm be proper convex functions on Rp. Then

(f1♦ · · ·♦fm)∗ = f ∗1 + · · ·+ f ∗m,

(cl f1 + · · ·+ cl fm)∗ = cl(f ∗1♦ · · ·♦f ∗m).

If the sets ri(dom fi), i = 1, . . . ,m have a point in common, the closure
operation can be omitted from the second formula, and

(f1 + · · ·+ fm)∗ = inf{f ∗1 (x∗1) + · · ·+ f ∗m(x∗m) | x∗1 + · · ·+ x∗m = x∗},

where for each x∗ the infimum is attained.

The dual of a positive scalar multiplication multiply the epigraph of the
function (called, and denoted as, right multiplication).

A.0.9 Proposition
For any proper convex function f , one has (λf)∗ = f ∗λ, and (fλ)∗ = λf ∗,
0 ≤ λ ≤ +∞.
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B

Lengthy Proofs

B.1 Lemma 6.2.18: Fenchel Conjugate of Lλ̄

Proof. of Lemma 6.2.18. We compute the conjugate of Lλ̄ at 0, as the
conjugate of the sum of

L1λ̄(α)
def
= λ̄(δ(MX(α− αX) | B) + τX)

L2λ̄(α)
def
= (1− λ̄)(δ(MY (α− αY ) | B) + τY )

The conjugate of a sum of convex functions is ruled by Proposition A.0.8.
Functions L1λ̄ and L2λ̄ are proper convex functions, indeed, they are fi-
nite for a subset of Rn, and L1λ̄(α) > −∞, L2λ̄(α) > −∞ for every α.
Moreover, ri(domL1λ̄) = ri(domL2λ̄) = Rn. Therefore, for all α ∈ Rn:

L1λ̄ + L2λ̄
∗(α) = inf{L1∗λ̄(α1) + L2∗λ̄(α2) | α1 + α2 = α} .

To evaluate L∗
λ̄
(0), we need to compute the conjugates of L1λ̄ and L2λ̄.

Then apply the previous formula for α = 0. We detail the computation of
the conjugate of the convex function L1λ̄, the computation of L2λ̄ is similar.
The function L1λ̄ is defined as a scalar multiplication of a composition of
the support function and a linear transformation, the multiplication by MX

and a translation by −αX . By Proposition A.0.9:

L1∗λ̄(α) = (λ̄(δ(MX(α− αX) | B) + τX))
∗
(α) (B.1.1)

= (((δ(MX(α− αX) | B) + τX))
∗
λ̄)(α) (B.1.2)

Matrix MX is non-singular by construction, so by Proposition A.0.7, with
h↔ δ, A↔MX , a↔ αX , b↔ 0, θ ↔ τX :

(δ(MX(α− αX) | B) + τX)
∗
(α) = δ∗(MX∗−1

(α) | B) + 〈α, αX〉 − τX .
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The function δ∗ is the indicator function, conjugate of the support function
δ (see Definition 6.2.15). The right multiplication by λ̄ in (B.1.2) can now
be evaluated:

((δ(MX(α− αX) | B) + τX)
∗
λ̄)(α)

= λ̄(δ∗(MX∗−1
(λ̄−1α) | B) + 〈λ̄−1α, αX〉 − τX) .

We compute L2∗λ̄ in a similar manner by substituting X with Y and λ̄ by
(1− λ̄).

L1∗λ̄(α) = λ̄(δ∗(MX∗−1
(λ̄−1α) | B) + 〈λ̄−1α, αX〉 − τX)

L2∗
λ̄
(α) = (1− λ̄)(δ∗(MY ∗−1

((1− λ̄)−1α) | B) + 〈(1− λ̄)−1α, αY 〉 − τY )

We proceed by evaluating L∗
λ̄
(0).

L∗λ̄(0) = inf
α∈Rn
{L1∗λ̄(α) + L2∗λ̄(−α)}

= inf
α∈Rn
{λ̄(δ∗(MX∗−1

(λ̄−1α) | B) + 〈λ̄−1α, αX〉 − τX)+

+ (1− λ̄)(δ∗(MY ∗−1
(−(1− λ̄)−1α) | B) + 〈−(1− λ̄)−1α, αY 〉 − τY )}

= inf
α∈Rn
{λ̄(δ∗(α | λ̄MX∗B) + 〈α, αX〉 − λ̄τX+

+ (1− λ̄)(δ∗(α | (1− λ̄)MY ∗B)− 〈α, αY 〉 − (1− λ̄)τY }
= inf

α∈λ̄MX∗B∩(1−λ̄)MY ∗B
{〈α, αX − αY 〉 − λ̄τX − (1− λ̄)τY }

= −δ(αX − αY | λ̄MX∗B ∩ (1− λ̄)MY ∗B)− λ̄τX − (1− λ̄)τY .

B.2 Theorem 6.2.20: Saddle-Point

Characterization

Proof. of Theorem 6.2.20. We remind that L(α, λ) is a linear function
with respect to λ denoted by aαλ+ bα where:

aα = δ(MX(αX − α) | B) + τX − δ(MY (αY − α) | B)− τY

bα = δ(MY (αY − α) | B) + τY .

We detail the first cases, that is when δ(MX(αY −αX) | B) < τY − τX ,
and δ(MX(αY − αX) | B) = τY − τX . The third and fourth cases are
similar. The last case is a combination of Propositions 6.2.13 and 6.2.19.
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First case: δ(MX(αY − αX) | B) < τY − τX . We prove that (αY , 0) is
a saddle-point of L. Then, we prove that it is the unique saddle-point. We
know that, for all α ∈ Rn+1, δ(MY (α− αY ) | B) is non-negative, thus

∀α ∈ Rn+1, τY ≤ δ(MY (α− αY ) | B) + τY . (B.2.1)

On the other hand, by hypothesis,

δ(MX(αY − αX) | B) + τX < τY ,

we multiply this inequality by λ, then add (1 − λ)τY in both sides of the
inequality, we obtain

∀λ ∈ [0, 1], λ(δ(MX(αY − αX) | B) + τX) + (1− λ)τY < τY . (B.2.2)

We combine equations (B.2.1) and (B.2.2):

∀α ∈ Rn+1,∀λ ∈ [0, 1],

λ(δ(MX(αY −αX) | B)+τX)+(1−λ)τY < τY ≤ δ(MY (α−αY ) | B)+τY ,

which is equivalent to

∀α ∈ Rn+1,∀λ ∈ [0, 1], L(αY , λ) ≤ L(αY , 0) ≤ L(α, 0),

thus, (αY , 0) is a saddle-point of L. We next prove, by contradiction, that
it is the unique saddle-point of L when the considered hypothesis is verified.
Suppose that (ᾱ, λ̄) 6= (αY , 0) is saddle-point of L, then L(ᾱ, λ̄) ≤ L(αY , λ̄).
If aᾱ > 0, then by Proposition 6.2.13, λ̄ = 1. Therefore, L(ᾱ, λ̄) =
δ(MX(αX − ᾱ) | B) + τX , and L(αY , λ̄) = δ(MX(αX − αY ) | B) + τX .
Thus

δ(MX(αX − ᾱ) | B) + τX ≤ δ(MX(αX − αY ) | B) + τX ,

However, aᾱ > 0 implies:

δ(MX(αX − ᾱ) | B) + τX > δ(MY (αY − ᾱ) | B) + τY

Thus,

δ(MX(αX − αY ) | B) + τX > δ(MY (αY − ᾱ) | B) + τY

which leads to the contradiction

δ(MY (αY − ᾱ) | B) < 0 .
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Indeed, for all x, δ(x | B) = ‖x‖1 ≥ 0. Now, if aᾱ = 0, then L(ᾱ, λ̄) ≤
L(αY , λ̄) gives

δ(MY (αY − ᾱ) | B) + τY ≤ τY ,

which makes ᾱ = αY , and aᾱ = 0 contradicts the hypothesis, as it makes

δ(MX(αX − αY ) | B) + τX = τY .

The last case, aᾱ < 0, makes λ̄ = 0 by Proposition 6.2.13. Using Propo-
sition 6.2.19, we obtain ᾱ = αY , which also contradicts the hypothesis
(ᾱ, λ̄) 6= (αY , 0). Thus, the unique saddle-point is indeed (αY , 0). The
saddle-value of L is then L(αY , 0) = τY .

Second case: δ(MX(αY − αX) | B) = τY − τX . If αY = αX and τY =

τX , then it is obvious that ᾱ = αX = αY and λ̄ can be any real number
within [0, 1]. The saddle-value is then equal to τX (or τY ). If however,
αY = αX and τY 6= τX , the hypothesis is not satisfied. Similarly, if αY 6=
αX and τY = τX . Now, if αY 6= αX and τY 6= τX , we prove that L admits
infinitely many saddle-points, such that ᾱ = αY , and that its saddle-value is
equal to τY . Seen as a linear function, observe that, by hypothesis, aαY = 0.
Thus

∀λ ∈ [0, 1],∀λ̄ ∈ [0, 1], L(αY , λ) = L(αY , λ̄) = bαY .

On the other hand,
L(αY , λ̄) = τY ≤ L(α, λ̄),

indeed L(α, λ̄) can be written as τY plus a positive term:

L(α, λ̄) = λ̄δ(MX(αX−α) | B)+(1−λ̄)δ(MY (αY−α) | B)+λ̄(τX−τY )+τY ,

where the positiveness of (τX − τY ) is due to the equality δ(MX(αY −αX) |
B) = τY − τX and the positiveness of δ(MX(αY − αX) | B). Thus,

∀α ∈ Rn+1,∀λ ∈ [0, 1],∀λ̄ ∈ [0, 1], L(αY , λ) ≤ L(αY , λ̄) ≤ L(α, λ̄),

which makes all the points (αY , λ̄), λ̄ ∈ [0, 1], saddle-points of L. The
saddle-value related to all these saddle-points is τY .

Third and forth cases. The proof is very similar to the first and second

cases respectively by exchanging X by Y , and λ̄ by (1− λ̄).
Last case:

δ(MX(αY − αX) | B) ≥ |τY − τX |
δ(MY (αY − αX) | B) ≥ |τY − τX | .

We just combine Propositions 6.2.13 and 6.2.19. We prove in addition
that λ̄ ∈]0, 1[, that is the values 0 and 1 are excluded when this hypothesis
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is satisfied. If λ̄ = 1, then by Proposition 6.2.19, ᾱ = αX , which makes
aᾱ = τX − τY − δ(MY (αY − αX) | B) negative by hypothesis. By Propo-
sition 6.2.13, aλ̄ < 0 implies the contradiction λ̄ = 0, thus aλ̄ = 0, and
necessarily τX − τY = δ(MY (αY − αX) | B), which also contradicts the
strict inequality of the hypothesis. Therefore, λ̄ = 1 is impossible. Simi-
larly, we prove that λ̄ = 0 is also impossible.
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