
Thèse présentée pour obtenir le titre de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE

Spécialité: Mathématiques Appliquées

par

Meisam Sharify

Scaling Algorithms and Tropical Methods in
Numerical Matrix Analysis:

Application to the Optimal Assignment Problem and to the
Accurate Computation of Eigenvalues

Jury

Marianne Akian Président du jury
Stéphane Gaubert Directeur
Laurence Grammont Examinateur
Laura Grigori Examinateur
Andrei Sobolevski Rapporteur
Françoise Tisseur Rapporteur
Paul Van Dooren Examinateur

September 2011

Abstract

Tropical algebra, which can be considered as a relatively new field in Mathemat-
ics, emerged in several branches of science such as optimization, synchronization
of production and transportation, discrete event systems, optimal control, oper-
ations research, etc. The first part of this manuscript is devoted to the study of
the numerical applications of tropical algebra.

We start by considering the classical problem of estimating the roots of a
univariate complex polynomial. We prove several new bounds for the modulus of
the roots of a polynomial exploiting tropical methods. These results are specially
useful when considering polynomials whose coefficients have different orders of
magnitude.

We next consider the problem of computing the eigenvalues of a matrix poly-
nomial. Here, we introduce a general scaling technique, based on tropical algebra,
which applies in particular to the companion form. This scaling is based on the
construction of an auxiliary tropical polynomial function, depending only on the
norms of the matrices. The roots (non-differentiability points) of this tropical
polynomial provide a priori estimates of the modulus of the eigenvalues. This is
justified in particular by a new location result, showing that under assumption in-
volving condition numbers, there is one group of “large” eigenvalues, which have
a maximal order of magnitude, given by the largest root of the auxiliary tropical
polynomial. A similar result holds for a group of small eigenvalues. We show
experimentally that this scaling improves the backward stability of the computa-
tions, particularly in situations when the data have various orders of magnitude.

We also study the problem of computing the tropical eigenvalues (non-diffe-
rentiability points of the characteristic polynomial) of a tropical matrix poly-
nomial. From the combinatorial perspective, this problem can be interpreted as
finding the maximum weighted matching function in a bipartite graph whose arcs
are valued by convex piecewise linear functions of a variable, λ. We developed
an algorithm which computes the tropical eigenvalues in polynomial time.

In the second part of this thesis, we consider the problem of solving very

i

large instances of the optimal assignment problems (so that standard sequential
algorithms cannot be used). We propose a new approach exploiting the con-
nection between the optimal assignment problem and the entropy maximization
problem. This approach leads to a preprocessing algorithm for the optimal assign-
ment problem which is based on an iterative method that eliminates the entries
not belonging to an optimal assignment. We consider two variants of the pre-
processing algorithm, one by using the Sinkhorn iteration and the other by using
Newton iteration. This preprocessing algorithm can reduce the initial problem
to a much smaller problem in terms of memory requirements.

We also introduce a new iterative method based on a modification of the
Sinkhorn scaling algorithm, in which a deformation parameter is slowly increased
We prove that this iterative method, referred to as the deformed-Sinkhorn iter-
ation, converges to a matrix whose nonzero entries are exactly those belonging
to the optimal permutations. An estimation of the rate of convergence is also
presented.

Abstract(French)

L’Algèbre tropicale peut être considérée comme un domaine relativement nouveau
en mathématiques. Elle apparait dans plusieurs domaines telles que l’optimisation,
la synchronisation de la production et du transport, les systèmes à événements
discrets, le contrôle optimal, la recherche opérationnelle, etc. La première partie
de ce manuscrit est consacrée a l’étude des applications de l’algèbre tropicale à
l’analyse numérique matricielle.

Nous considérons tout d’abord le problème classique de l’estimation des racines
d’un polynôme univarié. Nous prouvons plusieurs nouvelles bornes pour la valeur
absolue des racines d’un polynôme en exploitant les méthodes tropicales. Ces
résultats sont particulièrement utiles lorsque l’on considère des polynômes dont
les coefficients ont des ordres de grandeur différents.

Nous examinons ensuite le problème du calcul des valeurs propres d’une
matrice polynomiale. Ici, nous introduisons une technique de mise à l’échelle
générale, basée sur l’algèbre tropicale, qui s’applique en particulier à la forme
compagnon. Cette mise à l’échelle est basée sur la construction d’une fonction
polynomiale tropicale auxiliaire, ne dépendant que de la norme des matrices. Les
racines (les points de non-différentiabilité) de ce polynôme tropical fournissent
une pré-estimation de la valeur absolue des valeurs propres. Ceci se justifie en
particulier par un nouveau résultat montrant que sous certaines hypothèses faites
sur le conditionnement, il existe un groupe de valeurs propres bornées en norme.
L’ordre de grandeur de ces bornes est fourni par la plus grande racine du polynôme
tropical auxiliaire. Un résultat similaire est valable pour un groupe de petites
valeurs propres. Nous montrons expérimentalement que cette mise à l’échelle
améliore la stabilité numérique, en particulier dans des situations où les données
ont des ordres de grandeur différents.

Nous étudions également le problème du calcul des valeurs propres tropicales
(les points de non-différentiabilité du polynôme caractéristique) d’une matrice
polynômiale tropicale. Du point de vue combinatoire, ce problème est équivalent
à trouver une fonction de couplage: la valeur d’un couplage de poids maximum

iii

dans un graphe biparti dont les arcs sont valués par des fonctions convexes et
linéaires par morceaux. Nous avons développé un algorithme qui calcule ces
valeurs propres tropicales en temps polynomial.

Dans la deuxième partie de cette thèse, nous nous intéressons à la résolution
de problèmes d’affectation optimale de très grande taille, pour lesquels les al-
gorithmes séquentiels classiques ne sont pas efficaces. Nous proposons une nou-
velle approche qui exploite le lien entre le problème d’affectation optimale et
le problème de maximisation d’entropie. Cette approche conduit à un algo-
rithme de prétraitement pour le problème d’affectation optimale qui est basé
sur une méthode itérative qui élimine les entrées n’appartenant pas à une af-
fectation optimale. Nous considérons deux variantes itératives de l’algorithme
de prétraitement, l’une utilise la méthode Sinkhorn et l’autre utilise la méthode
de Newton. Cet algorithme de prétraitement ramène le problème initial à un
problème beaucoup plus petit en termes de besoins en mémoire.

Nous introduisons également une nouvelle méthode itérative basée sur une
modification de l’algorithme Sinkhorn, dans lequel un paramètre de déformation
est lentement augmenté. Nous prouvons que cette méthode itérative(itération de
Sinkhorn déformée) converge vers une matrice dont les entrées non nulles sont
exactement celles qui appartiennent aux permutations optimales. Une estimation
du taux de convergence est également présentée.

Acknowledgments

I would like to express my deep gratitude to my thesis advisor Stéphane Gaubert
for his constant guidance, support and encouragement in each and every step
of my PhD studies such as mathematical analysis, design of algorithms, numer-
ical analysis, writing articles and even preparing the presentations. Stéphane’s
profound knowledge and vision in mathematics helped me improve my under-
standing of the subject at hand. I have always appreciated his kindness and
modesty which made it enjoyable to work with him.

I am also indebted to Marianne Akian who also supported me throughout
the entire PhD period. It was a good opportunity for me to collaborate with her
during my PhD studies.

My gratefulness goes to Laura Grigori for offering me the opportunity to
work on the parallel optimal assignment problem and for her co-supervision on
the second part of this thesis.

I am grateful to the thesis reviewers, Françoise Tisseur and Andrei Sobolevski
for their helpful comments and for the time they devoted to carefully read the
dissertation. I would like to thank the other members of the thesis committee,
Laurence Grammont and Paul Van Dooren.

I would like to thank Wallis Filippi and Sandra Schnakenbourg, the secretaries
in CMAP for their constant help during my PhD studies.

I would also like to extend my thanks to my officemates, Jean-Baptiste Bellet
who helped me to integrate into the French system, and who made the work
easier by his sense of humor; Denis Villemonais, for his mathematical remarks
and Abdul Wahab for his suggestions on my thesis. I would like to acknowledge
the generous help of my friend, Majid for reviewing the English version of the
manuscript and his encouraging support.

And finally, my deepest gratitude goes to my family for all their love and
support over the years. I want to thank them for just being there when I needed
them, supporting and encouraging me during tough times.

v

Contents

Contents vii

1 Introduction 1
1.1 Numerical applications of tropical algebra 1
1.2 Optimal Assignment Problem . 3
1.3 Thesis Outline . 5

I Tropical Algebra and Numerical Methods 7

2 Tropical mathematics and linear algebra 9
2.1 Max-plus, Min-plus and Max-times semifields 9
2.2 Tropical polynomials . 10
2.3 Matrices and tropical algebra . 12
2.4 Eigenvalues and Eigenvectors . 13
2.5 Perturbation of eigenvalues of matrix pencils 16

3 Locations of the roots of a polynomial 17
3.1 Introduction . 18
3.2 Classical bounds on the polynomial roots by tropical roots 19
3.3 Location of the roots of a polynomial 20
3.4 Application . 29
3.5 Conclusion . 31

4 Tropical scaling of matrix polynomials 33
4.1 Introduction . 34
4.2 Matrix pencil and normwise backward error 35
4.3 Construction of the tropical scaling 36
4.4 Splitting of the eigenvalues in tropical groups 38
4.5 Experimental Results . 43

vii

viii CONTENTS

4.5.1 Quadratic polynomial matrices 43
4.5.2 Polynomial matrices of degree d 44

4.6 Conclusion . 45

5 Tropical eigenvalues of a matrix polynomial 47
5.1 Introduction . 48
5.2 Preliminaries . 50
5.3 Computing all the tropical eigenvalues 51

5.3.1 Computing the first and the last essential terms 51
5.3.2 Computing all the other essential terms 55

II Optimal Assignment Problem 65

6 Entropy maximization and max-product assignment 67
6.1 Optimal assignment problem . 68

6.1.1 Definition . 68
6.1.2 Linear optimal assignment problem 69
6.1.3 Applications and Solutions for the linear assignment problem 70

6.2 Entropy maximization problem . 71
6.3 Deformed Entropy maximization problem and matrix scaling . . . 72
6.4 The speed of convergence . 75
6.5 Conclusion . 78

7 Scaling algorithms for optimal assignment problem 79
7.1 Introduction . 79
7.2 Preprocessing algorithm . 82

7.2.1 Main idea . 82
7.2.2 Prescaling . 83

7.3 Sinkhorn iteration . 83
7.3.1 Logarithmic p-Sinkhorn iteration 85
7.3.2 Experimental results . 87

7.4 Newton Iteration . 89
7.5 Deformed Sinkhorn iteration . 93

7.5.1 Definition . 93
7.5.2 Convergence to optimal assignment 94
7.5.3 Convergence to bistochastic matrix for positive matrices . . 94

7.6 Conclusion . 97

Publications and communications to conferences concerning the
present work 99

Bibliography 101

CONTENTS ix

A Computing the tropical roots in linear time 113

B Tropical scaling for the matrix eigenvalue problem 117

C Computing the tropical eigenvalues of a max-plus matrix poly-
nomial 125

D Newton Algorithm for the diagonal scaling problem 129

List of Figures 133

List of Tables 134

CHAPTER 1

Introduction

1.1 Numerical applications of tropical algebra

Tropical algebra can be considered as a relatively new field in Mathematics. The
adjective tropical is given in the honor of the Brazilian mathematician, Imre Si-
mon, who was one of the pioneers of the field [Pin98]. Imre Simon introduced the
semiring (N ∪ {+∞},min,+) in the context of automata theory in theoretical
computer science [Sim78]. In the late 80’s in France, the term algèbres exotiques
was used (for example a seminar in 1987, which took place in Issy-les-Moulineaux,
France under the title: ”‘Algèbres Exotiques et Systèmes à Evénements Dis-
crets”’). Cuninghame-Green [CGM80] introduced the name ”max-algebra”. The
name ”max-plus” has been more recently used in particular in the control and dis-
crete event systems communities [BCOQ92, CpQ99, McE06, JvdWJ06]. Maslov
and its school [MS92, KM97, LMS01] introduced the name ”idempotent analy-
sis”. It is reported in [Gau09] that at the BRIMS HP-Labs workshop on Idem-
potency in Bristol(1994), which was organized by J. Gunawardena, a discussion
took place on how the field should be named. The names ”‘max-plus”’, ”‘ex-
otic”’, ”‘tropical”’, ”‘idempotent”’ were considered. At that time, strictly speak-
ing, tropical referred to the semiring (N∪ {+∞}; min; +), whereas the semirings
(N ∪ {−∞}; max; +) and (Z ∪ {−∞}; max; +) were sometimes called boreal and
equatorial. Also the terms, ”‘max-plus”’ and ”‘min-plus”’ semiring refers to
(R ∪ {−∞}; max; +) and (R ∪ {+∞}; min; +). Nowadays, tropical is used as a

1

2 CHAPTER 1. INTRODUCTION

general term, whereas max-plus, min-plus and max-times semirings are models
of tropical structures.

This field emerged in several branches of science such as optimization [Vor67,
Zim77, But10], synchronization of production and transportation [CG60], discrete
event systems [CMQV84, BCOQ92], optimal control [KM97, CGQ01, AGL08],
operations research [GM84], tropical geometry [Vir01, Mik05, FPT00, RGST05]
etc.

The scope of this work is Numerical analysis and Combinatorics. The first
part of this thesis is devoted to the study of the numerical applications of tropical
algebra. We start in Chapter 3 by considering the classical problem of estimating
the roots of a polynomial. Some of the known bounds for the modulus of the
roots of a polynomial, in particular, the generalizations and refinements of the
classical bound of Cauchy, Hadamard, Specht and Ostrowski [Mar66, Had93,
Spe38, Ost40a, Ost40b] turn out to be of tropical nature.

In problems of numerical analysis, it is of primary importance to have a
priori estimates of the order of magnitude of the quantities to be computed, like
the roots of a polynomial, or the eigenvalues of a matrix, in order to perform
appropriate scalings.

The roots of tropical polynomial can be defined as the set of nondifferentia-
bility points of a convex piecewise linear function, or equivalently, as the slopes
of a certain Newton polygon in which the log of the modulus of the coefficients of
the polynomial are thought of as a valuation. To any polynomial with complex
coefficients, one can associate a tropical polynomial, depending only on the mod-
ulus of the coefficients of the original polynomials. A theorem of Hadamard and
Ostrowski shows that the modulus of the complex roots can be bounded in terms
of the tropical roots. One interest of this result is that the tropical roots can be
computed in linear time, since it turns out to be a special instance of convex hull
computation in dimension 2 in which the points are already sorted. We describe
such an implementation. Then, we provide some new bounds for the modulus of
the roots exploiting tropical methods.

These results are specially useful when considering polynomials whose coeffi-
cients have a large difference in order of magnitude. These polynomials maybe
considered as difficult examples for the numerical algorithms; however, the modu-
lus of the roots of this family of polynomials can be well estimated by the tropical
method.

Another problem that we considered here, in Chapter 4, is the problem of
computing the eigenvalues of a matrix polynomial. A common way to solve this
problem is to convert P into a “linearized” matrix pencil with the same spectrum
as P and solve the eigenproblem of the later problem [MS73]. The problem
of finding the good linearizations and the good scalings, in the sense that the
relative error of an eigenvalue or the backward error of an eigenpair should be

1.2. OPTIMAL ASSIGNMENT PROBLEM 3

small and that certain properties of symmetry when they are present should be
preserved, has received a considerable attention, see [FLVD04, Tis00, HLT07,
HMT06, AA09, TDM10]. Here, we introduce a general scaling technique, based
on tropical algebra, which applies in particular to the companion form. This
scaling relies only on the norms of the matrices. We show experimentally that
this scaling improves the backward stability of the computations, particularly
in situations when the data have various orders of magnitude. We also proved
that in non-degenerate cases, when the maximal tropical root is well separated
from the other ones, then, there is a group of “large” eigenvalues, which have
a maximal order of magnitude, and we bound explicitly the modulus of these
eigenvalues in terms of the maximal tropical root. A similar result holds for a
group of small eigenvalues by taking the smallest tropical root.

We also study, in Chapter 5 the problem of computing the tropical eigenvalues
of a tropical matrix polynomial. From the combinatorial perspective, this prob-
lem can be interpreted as finding the maximum weighted matching function in a
bipartite graph whose arcs are convex Piecewise linear functions of a variable, λ.
Our motivation for this problem is to use these information in the computation
of the classical eigenvalues of a matrix polynomial. Indeed, in degenerate cases
(when certain matrices are ill conditioned), the scaling of Chapter 4 based only
on the norms of the matrices behaves poorly. However, the tropical eigenvalues
(which depend on the modulus of all the entries of the matrices, and not only on
their norms), provide more accurate a priori estimates of the classical eigenval-
ues. This is inspired by a work of Akian, Bapat and Gaubert [ABG05, ABG04]
where the tropical eigenvalues were shown to determine the order of magnitude
(valuation) of the eigenvalues of a perturbed matrix pencil. We developed an
algorithm, which computes the tropical eigenvalues in O(n4d) time where d is
the degree of the input matrix polynomial and n is the dimension of the matri-
ces. This algorithm is a generalization of the idea of the algorithm proposed by
Burkard and Butkovic [BB03].

1.2 Optimal Assignment Problem

In the second part of this thesis, we consider the optimal assignment problem,
which is among of the most classical ones in combinatorial optimization. Several
applications of this problem arise in different fields of applied science such as
bioinformatics for the protein structure alignment problem [Hol93, LCL04], VLSI
design [HCLH90], image processing and computer vision [CWC+96] and the
pivoting problem in the solution of large linear systems of equations[ON96, DK00,
LD03].

We propose a new approach exploiting the connection between the optimal
assignment problem and the entropy maximization problem. We consider a one-

4 CHAPTER 1. INTRODUCTION

parameter family of relative entropy maximization problem, in which the ex-
ponential of the weights of the optimal assignment problem play the role of a
reference measure. reward to be maximize is nothing but the reward of the
assignment problem, augmented by an entropy term, the importance of which
depends on the deformation parameter. We show that the solution of the relative
entropy maximization problem converges to an optimal solution of the optimal
assignment problem with an error term, which is exponentially small in the de-
formation parameter.

This approach leads to a preprocessing algorithm for the optimal assignment
problem, which is developed in Chapter 7. The latter algorithm is based on an
iterative method that eliminates the entries not belonging to an optimal assign-
ment. We consider two variants of the preprocessing algorithm, one by using the
Sinkhorn iteration [SK67] and the other by using Newton iteration [KR07]. The
advantage of Sinkhorn iteration is that it can be efficiently implemented in paral-
lel [ADRU08]. On the other hand, the advantage of Newton method is the speed
of it’s convergence. The implemented code and several experimental results for
both variants are presented.

An interesting application of this new approach is the solution of large scale
dense optimal assignment problems. Several efforts have been made to solve this
problem [BT09, LO94]. A well-known application arises from the approximation
algorithms and heuristics for solving the Asymmetric Traveling Salesman Problem
or the Vehicle Routing Problem. There are also some applications in object
recognition and computer vision. An application to cosmology (reconstruction of
the early universe) can be found in the work of Brenier et al. [BFH+03]. Models of
large dense random assignment problems are also considered in [MPV87, Ch. VII]
from the point of view of statistical physics.

By using the preprocessing method one can reduce the initial problem to a
much smaller problem in terms of memory requirements. Specially, for very large
dense optimal assignment problems, which can not be stored in one machine, the
parallel Sinkhorn iteration can be used to reduce the size of the problem so that
the reduced problem becomes executable on a sequential machine

We also introduce a new iterative method based on a modification of the
Sinkhorn scaling algorithm, in which the deformation parameter is slowly in-
creased (this procedure is reminiscent from simulated annealing, the parameter p
playing the role of the inverse of the temperature). We prove that, the iterative
method, referred to as deformed-Sinkhorn iteration, converges to a matrix whose
nonzero entries are exactly those belonging to the optimal permutations. An
estimation of the rate of convergence is also presented.

1.3. THESIS OUTLINE 5

1.3 Thesis Outline

This thesis is divided in two parts. Part I is devoted to the numerical applica-
tions of tropical geometry. Also, a combinatorial problem in this field has been
investigated. The sketch of this part is as follows:

• In Chapter 2, we provide some background on tropical linear algebra. We
show that the tropical roots can be computed in linear time, O(n), where
n is the degree of p(x). Also, we discuss the problem of perturbation of
eigenvalues of matrix polynomials.

• In Chapter 3, we study the connection between the roots of a polynomial
and the tropical roots of an associated max-times polynomial.

• In Chapter 4, We introduce a general scaling technique, based on tropical
algebra for the problem of computing the eigenvalues of a matrix polynomial
in order to increase the stability of the computation.

• In Chapter 5, we study the problem of computing the tropical eigenvalues
of a tropical matrix polynomial.

Part II is devoted to the optimal assignment problem:

• In Chapter 6 We provide a short background on the optimal assignment
problem and entropy maximization problem. The main theoretical results
showing that the solution of a deformed entropy maximization problem
asymptotically leads to the solution of optimal assignment problem, when
the deformed parameter tends to infinity, is presented in this chapter. The
theoretical results about the exponential convergence speed are also pre-
sented here.

• In Chapter 7 We present a preprocessing algorithm for the optimal as-
signment problem. Two variants of the algorithm, one based on Sinkhorn
iteration [SK67] and the other based on Newton method [KR07] have been
studied here. Also deformed-Sinkhorn iteration method is introduced and
studied.

In Appendix A, we present the Scilab implementation of an algorithm, which
computes the tropical roots in linear time. Appendix B includes Matlab and
Scilab implementations of tropical scaling for a matrix polynomial eigenvalue
problem. In Appendix C, we present the Scilab implementation of an algorithm,
which computes the tropical eigenvalues. In Appendix D, we provide a Matlab
implementation of the Newton method, which is appeared in the work of Knight
and Ruiz [KR07].

Part I

Tropical Algebra and

Numerical Methods

7

CHAPTER 2

Tropical mathematics and linear

algebra

In this chapter we will provide some preliminary definitions and terminologies
which will be used in the next chapters. Most of these definitions can be found
in [BCOQ92].

2.1 Max-plus, Min-plus and Max-times semifields

Definition 2.1.1. A semiring is a set S with two binary operations, addition,
denoted by +, and multiplication, denoted by · or by concatenation, such that:

• S is an abelian monoid under addition (with neutral element denoted by 0
and called zero);

• S is a semigroup under multiplication (with neutral element denoted by 1
and called unit);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

9

10 CHAPTER 2. TROPICAL MATHEMATICS AND LINEAR ALGEBRA

Example 2.1.1. Some basic examples of semirings consisting of the set N, or
the set Q+ of non-negative rational numbers, or of the set R+ of non-negative
real numbers occupied with the usual addition and multiplication.

Definition 2.1.2. A semifield K is a semiring in which all the nonzero elements
have a multiplicative inverse.

Definition 2.1.3. A semiring or an abelian monoid S is called idempotent if
a+ a = a for all a ∈ S.

Definition 2.1.4. A semiring S is called zero-sum free or antinegative if a+b = 0
implies a = b = 0 for all a, b ∈ S.

Remark 1. An idempotent semiring is zero-sum free.

Definition 2.1.5. A semiring S is called commutative if the multiplication is
commutative, i.e. a · b = b · a for all a, b ∈ S.

The max-plus semiring Rmax, is the set R∪ {−∞}, equipped with maximum
as addition, and the usual addition as multiplication. It is traditional to use the
notation ⊕ for max (so 2⊕ 3 = 3), and ⊗ for + (so 1⊗ 1 = 2). We denote by 0

the zero element of the semiring, which is such that 0⊕a = a, here 0 = −∞, and
by 1 the unit element of the semiring, which is such that 1⊗ a = a⊗ 1 = a, here
1 = 0. We refer the reader to [BCOQ92, KM97, ABG06] for more background.

The min-plus semiring, Rmin, is defined as the set R∪ {+∞}, equipped with
minimum as addition, and the usual addition as multiplication. This semiring is
isomorphic to Rmax by the map x 7→ −x. Thus, the zero element of this semiring
is +∞ and the unit element is 0.

A variant of the Rmax semiring is the max-times semiring Rmax,×, which is
the set of nonnegative real numbers R+, equipped with max as addition, and ×
as multiplication. This semiring is isomorphic to Rmax by the map x 7→ log x.
So, every notion defined over Rmax has an Rmax,× analogue that we shall not
redefine explicitly. In the sequel, the word “tropical” will refer indifferently to
any of these algebraic structures.

Proposition 2.1.1. The algebraic structures Rmax, Rmin and Rmax,× are idem-
potent commutative semifields.

Proof. The proof is straightforward.

2.2 Tropical polynomials

Consider a max-plus (formal) polynomial of degree n in one variable, i.e. a
formal expression P =

⊕
0≤k≤n PkX

k in which the coefficients Pk belong to
Rmax, and the associated numerical polynomial, which, with the notation of the

2.2. TROPICAL POLYNOMIALS 11

classical algebra, can be written as p(x) = max0≤k≤n Pk+kx. Cuninghame-Green
and Meijer showed [CGM80] that the analogue of the fundamental theorem of
algebra holds in the max-plus setting, i.e., that p(x) can be written uniquely
as p(x) = Pn +

∑
1≤k≤n max(x, ck), where c1, . . . , cn ∈ Rmax are the roots, i.e.,

the points at which the maximum attained at least twice. This is a special case
of more general notions which have arisen recently in tropical geometry [IMS07].
The multiplicity of the root c is the cardinality of the set {k ∈ {1, . . . , n} | ck = c}.
Define the Newton polygon ∆(P) of P to be the upper boundary of the convex
hull of the set of points (k, Pk), k = 0, . . . , n. This boundary consists of a number
of linear segments. An application of Legendre-Fenchel duality (see [ABG05,
Proposition 2.10]) shows that the opposite of the slopes of these segments are
precisely the tropical roots, and that the multiplicity of a root coincides with the
horizontal width of the corresponding segment. (actually, min-plus polynomials
are considered in [ABG05], but the max-plus case reduces to the min-plus case
by an obvious change of variable). Since the Graham scan algorithm [Gra72]
allows us to compute the convex hull of a finite set of points by making O(n)
arithmetical operations and comparisons, provided that the given set of points is
already sorted by abscissa, we get the following result.

Proposition 2.2.1. The roots of a max-plus polynomial in one variable can be
computed in linear time.

The case of a max-times polynomial will be reduced to the max-plus case by
replacing every coefficient by its logarithm. The exponentials of the roots of the
transformed polynomial are the roots of the original polynomial.

Example 2.2.1. Consider the max-times polynomial tp(x) = 1 ⊕ 15x2 ⊕ 8x3 ⊕
70x4⊕10−1x7. The Newton polygon corresponding to this polynomial is shown in
Figure 2.1. The vertices of the Newton polygon are [0, 0], [2, log(15)], [4, log(70)],
[7, log(10−1)] and the tropical roots are α1 = exp(− log(15)

2) = 1√
15
≈ 0.258 with

multiplicity 2, α2 = exp(− log(70)−log(15)
2) =

√
15
70 ≈ 0.463 with multiplicity 2 and

α3 = exp(− log(10−1)−log(70)
3) = 3

√
700 ≈ 8.879 with multiplicity 3.

In the sequel, we will refer to the roots of a max-plus or max-times polynomial
by tropical roots. The Scilab code to compute the tropical roots in linear time,
is presented in Appendix A. In chapter 3 we will consider the tropical roots of a
max-times polynomial corresponding to a formal polynomial. We will show that
the tropical roots can provide a priori estimation of the modulus of the formal
roots when the tropical roots are well separated.

12 CHAPTER 2. TROPICAL MATHEMATICS AND LINEAR ALGEBRA

Figure 2.1: Newton polygon corresponding to the max-times polynomial tp(x) =
1⊕ 15x2 ⊕ 8x3 ⊕ 70x4 ⊕ 10−1x7.

2.3 Matrices and tropical algebra

Definition 2.3.1. A semimodule M over an idempotent semifield K with op-
erations ⊕ and ⊗, zero element, 0, and identity element, 1, is a set endowed
with

• an internal operation also denoted by ⊕ with a zero element also denoted
by 0;

• an external operation defined on K×M with values inM indicated by the
simple juxtaposition of the scalar and vector symbols;

which satisfy the following properties:

• ⊕ is associative, commutative;

• α(x⊕ y) = αx⊕ αy;

• (α⊕ β)x = αx⊕ βx;

• α(βx) = (αβ)x;

• 1x = x;

2.4. EIGENVALUES AND EIGENVECTORS 13

• 0x = 0;

for all α, β ∈ S and all x, y ∈M.

Remark 2. A semimodule can be viewed as a vector space without additive in-
verse.

Example 2.3.1. The set of vectors, (Rmax)n, is a semimodule over Rmax for
which the zero element is (0,0, . . . ,0).

Definition 2.3.2. A semimodule with an additional internal operation also de-
noted by ⊗ is called an idempotent algebra if ⊗ is associative, if it has an identity
element also denoted by 1, and if it is distributive with respect to ⊕.

The set Rn×n
max denotes the set of n × n matrices with coefficients in Rmax

endowed with the following two internal operations:

• the componentwise addition denoted ⊕;

• the matrix multiplication, ⊗, defined as (A⊗B)ij = ⊕nk=1(A)ik ⊗ (B)kj

and the external operation:

• ∀α ∈ Rmax, ∀A ∈ Rn×n
max , αA = (α(A)ij).

It is an idempotent algebra with

• the zero matrix, again denoted 0, which has all its entries equal to 0;

• the identity matrix, denoted by I, which has the diagonal entries equal to
1 and the other entries equal to 0.

2.4 Eigenvalues and Eigenvectors in Rn×n
max

For a given matrix A ∈ Rn×n
max , let G(A) denotes the graph corresponding to the

matrix A with set of nodes 1, . . . , n in which (A)ij 6= 0 is the weight of arc from
node i to node j. The matrix A∗ is defined as

A∗ = I⊕A⊕A2 ⊕ · · · ⊕An ⊕

The meaning of (A∗)ij is the maximum weight of all paths of any weight from i

to j. A necessary and sufficient condition for the existence of the matrix A∗ as
an element of Rn×n

max is that the digraph, G(A) does not contain any circuit with
positive weight.

A path, p, of length k from i to j is a sequence of vertices i0, i1, . . . , ik where
i = i0, j = ik such that the arcs (i0, i1), . . . , (ik−1, ik) belonging to the graph. The
weight of the path is defined to be |p|w = (A)i0i1 + · · ·+ (A)ik−1ik We denote by
|p| the length of the path, p. A circuit is a path, (i0, . . . , ik), such that i0 = ik.
It is elementary if the vertices i0, . . . , ik are distinct.

14 CHAPTER 2. TROPICAL MATHEMATICS AND LINEAR ALGEBRA

Theorem 2.4.1 (Theorem 3.20 [BCOQ92]). For a given A ∈ Rn×n
max , if G(A) has

no circuit with positive weight, then

A∗ = I⊕A⊕ . . .⊕An−1 ,

We say that a nonzero λ ∈ Rmax is a (geometric) tropical eigenvalue of the
matrix A if there exists a vector x ∈ Rn

max \{0} (the associated eigenvector) such
that A⊗ x = λ⊗ x.

Theorem 2.4.2 (Theorem 3.23 [BCOQ92]). If A is irreducible, meaning that if
G(A) is strongly connected, there exists one and only one eigenvalue (but possibly
several eigenvectors). This eigenvalue is equal to the maximum circuit mean of
the graph, i.e.

λ = max
ζ

|ζ|w
|ζ| , (2.1)

where |ζ|w and |ζ| denote the weight and the length of a circuit ζ of G(A) respec-
tively and the maximum is taken over the set of elementary circuits of G(A).

When the matrix is reducible (not irreducible), there are at most n (geometric)
eigenvalues. Indeed, any of these eigenvalues is necessarily the maximal circuit
mean of a diagonal block of A corresponding to a strongly connected component of
G(A), but not every strongly connected component determine an eigenvalue. The
maximal circuit mean is always an eigenvalue (even if A is reducible), and it is the
maximal one. The eigenvalues and eigenvectors were characterized in [Gau92],
see also [BSvdD95, BCGG09]. An account in English of [Gau92] can be found
in [ABG06].

Several algorithms have been used to compute the eigenvalues such as Karp’s
algorithm [Kar78], which works in O(nm) time where n is the dimension and m

is number of non−0 entries of an input matrix. A good survey on the maximal
cycle mean problem can be found in [DG97]. An algorithm based on Howard’s
policy iteration have been developed by Cochet-terrasson et al. [CtCG+98]. This
algorithm, appears to be experimentally more efficient.

To define the eigenspace we need to use the notion of critical graph. An arc
(i, j) is critical if it belongs to a circuit (i1, . . . , ik) whose mean weight attains
the max in 2.1. Then, the nodes i, j are critical. Critical nodes and arcs form the
critical graph. A critical class is a strongly connected component of the critical
graph. Let Cc1, . . . , C

c
r denote the critical classes. Let (B)ij = (A)ij − λmax(A).

Using Theorem 2.4.1, B∗ = I ⊕ B ⊕ . . . ⊕ Bn−1. If j is in a critical class,
we call the column B∗.j of B∗ critical. The following result can be found e.g.
in [BCOQ92, CG94].

Theorem 2.4.3 (Eigenspace). Let A ∈ Rn×n
max denote an irreducible matrix. The

critical columns of B∗ span the eigenspace of A. If we select only one column,
arbitrarily, per critical class, we obtain a weak basis of the eigenspace.

2.4. EIGENVALUES AND EIGENVECTORS 15

For a more complete survey see [Gau98].
An analogue of the notion of determinant, involving a formal “minus” sign,

has been studied by several authors [GM84, BCOQ92, AGG09] However, the
simplest approach is to consider the permanent instead of the determinant. The
permanent of a matrix A with entries in an arbitrary semiring can be defined as

perA :=
∑
σ∈Sn

n∏
i=1

(A)iσ(i) ,

where Sn denotes the set of all permutations. When the semiring is Rmax, so
that (A)ij ∈ R ∪ {−∞}. In this case, perA := maxσ∈Sn

∑n
i=1(A)iσ(i), which is

nothing but the value of an optimal assignment problem with weights (A)ij .
The formal tropical characteristic polynomial is defined to be the

pA(λ) = per(A⊕ λ⊗ I) ,

where the entries of the matrix A⊕λ⊗I are interpreted as formal polynomials with
coefficients in Rmax. The associated numerical tropical characteristic polynomial
is the function

λ 7→ pA(λ), Rmax → Rmax ,

which associates to a parameter λ ∈ R∪ {−∞}, the value of the optimal assign-
ment problem in which the weights are given by the matrix B := A⊕ λ⊗ I, i.e.,
(B)ij = (A)ij for i 6= j and (B)ii = max((A)ii, λ).

Following [ABG05, ABG04] the (algebraic) tropical eigenvalues are defined as
the tropical roots of the tropical characteristic polynomial pA, i.e., as the nondif-
ferentiability points of the function λ 7→ pA(λ). Every geometrical eigenvalue is
an algebraic eigenvalue, but the converse does not hold in general. The maximal
circuit mean (the maximal geometrical eigenvalue) is also the maximal algebraic
eigenvalue.

Example 2.4.1. Consider the following matrix

A =

2 7 9
0 4 1
0 0 3

 .

This graph is reducible with two geometric tropical eigenvalues, 2, 4. The char-
acteristic polynomial of A is

pA(λ) = (2⊕ λ)⊗
(
(4⊕ λ)⊗ (3⊕ λ)⊕ 1

)
= (2⊕ λ)⊗ (4⊕ λ)⊗ (3⊕ λ) .

Thus, the algebraic tropical eigenvalues of pA(λ) are 2, 3, 4.

In the sequel we refer to algebraic tropical eigenvalues by tropical eigenvalue.

16 CHAPTER 2. TROPICAL MATHEMATICS AND LINEAR ALGEBRA

2.5 Perturbation of eigenvalues of matrix pencils

Let A(t, λ) = (A(t, λ))ij be a square matrix defined as follows,

(A(t, λ))ij =
∑
s∈Z

∑
r∈Q

Aijrst
rλs ,

where (A)ij is a polynomial in t and λ and Aijrs are elements of a certain field
and the summations are assumed to involve a finite number of terms. K. Mo-
rota [Mur90] studied the computation of Puiseux series solutions λ = λ(t) to the
equation det(A(t, λ)) = 0. This problem arises in sensitivity analysis of eigenval-
ues of a matrix, A, when it is subject to a perturbation t [KK90]. Recall that
a Puiseux series is a formal series of the form,

∑∞
n=m ant

n/k where k ≥ 1 is an
integer and m is also an integer.

Another study of a similar problem with a focus on the valuation (leading ex-
ponents) of Puiseux series has been done by M. Akian et al. [ABG04]. They have
considered the problem of perturbation of eigenvalues for a perturbed polynomial
matrix defined as follows:

Aε = Aε,0 + λAε,1 + . . .+ λdAε,d ,

where for each 0 ≤ k ≤ d, Aε,k is an n × n matrix whose coefficients, (Aε,k)ij
are complex valued continuous functions of a nonnegative parameter ε, and λ is
indeterminate. Thus, the (finite) eigenvalues Lε of Aε are by definition the roots
of the polynomial det(Aε). They assumed that for every 0 ≤ k ≤ d, matrices
ak = ((ak)ij) ∈ Cn×n and Ak = ((Ak)ij) ∈ (R ∪ {+∞})n×n are given, so that

(Aε,k)ij = (ak)ijε(Ak)ij + o(ε(Ak)ij), for all 1 ≤ i, j ≤ n ,

when ε tends to 0. When (Ak)ij = +∞, this means by convention that (Aε,k)ij
is zero in a neighborhood of zero. They look for an asymptotic equivalent of the
form Lε ∼ ηεΓ, with η ∈ C \ {0} and Γ ∈ R, for every eigenvalue Lε of Aε. They
have shown that the first order asymptotics of the eigenvalues, γ of Aε can be
computed generically by methods of min-plus algebra and optimal assignment
algorithms. The scaling, which we present in Chapter 4, is inspired from this
analysis of asymptotic behavior of eigenvalues of a matrix polynomial.

CHAPTER 3

Locations of the roots of a

polynomial by means of tropical

algebra

Let ζ1 . . . ζn denote the roots of a polynomial, p(x) =
∑n

i=1 aix
i, ai ∈ C, ranked

by increasing modulus. We associate to p(x) the max-times polynomial

tp(x) =
⊕

0≤k≤n
|ak|xk = max

0≤k≤n
|ak|xk .

Let α1 < . . . < αp denote the tropical roots of tp(x) with multiplicities m1 . . .mp,
respectively, where

∑p
i=1mi = n. (See Chapter 2, §2.2 for the definition, recall in

particular that the tropical roots are the non-differentiability points of the func-
tion tp(x)). Also, for i = 2, . . . , p, let δi−1 = αi−1

αi
be the parameters measuring

the separation between the tropical roots. We prove that if δi−1, δi <
1
9 , then

p(x) has exactly mi roots for which

1
3
αi < |ζj | < 3αi, k < j ≤ k +mi ,

where k = 0 for i = 1 and k = m1 + · · ·+mi−1 for i > 2. We also show that under
a more restrictive condition, i.e. δi−1, δi <

1
2mi+2+2

, the previous bound can be

17

18 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

improved as follows

1
2
αi < |ζj | < 2αi k < j ≤ k +mi .

(the constant 2 cannot be improved in general due to a result of Cauchy). For
the smallest and largest tropical roots the conditions over δi can be improved to
δ1 <

1
2m1+1+2

and δp−1 <
1

2mp+1+2
for i = 1 and i = p respectively.

When the tropical roots corresponding to a formal polynomial have different
orders of magnitudes, or more precisely, when the values of δi are small enough,
the usual numerical methods such as the ones implemented in the roots function
in Matlab or Scilab, may fail to compute the roots correctly; however, the tropical
roots can provide an a priori estimation of the modulus of the roots in linear time.
This leads to an immediate application of these theoretical results to root finding
methods.

3.1 Introduction

Solving a polynomial equation, p(x) = a0 + a1x + · · · + anx
n = 0, perhaps is

the most classical problem in Mathematics. The study of this problem, focused
on small degrees and for specific coefficients, comes back to the Sumerian (third
millennium B.C.) and Babylonian (about 2000 B.C.) [Pan97]. This problem has
been studied during the centuries by Egyptians, in ancient Greece by Pythagore-
ans and later by Persian mathematicians such as Omar Khayyam who presented
a geometrical solution for the cubic polynomials [Pan97, AM62]. Later on, in the
16th century, the arithmetic solution to the degree three and four polynomials
have been achieved. However, all the attempts to find an arithmetic solution for
any polynomial with degree greater than 4 were failed till the time when Ruffini
in 1813 and Abel in 1827 proved the nonexistence of such a formula for the class
of polynomials of degree greater than 4 and later by Galois in 1832 [Pan97]. The
fundamental theorem of algebra, which was stated by several mathematicians
and finally proved in 19th century, states that p(x) = a0 + a1x+ · · ·+ anx

n = 0
always has a complex solution for any positive degree n. This result yields the
existence of a factorization p(x) = an

∏n
i=1(x − ζi), an 6= 0, where ζ1, . . . , ζn are

the roots of p(x).
Due to nonexistence of any exact method to find the roots, the main effort was

to design the numerical algorithms, which approximate the roots. These efforts
yields the development of several methods such as Weyl’s algorithm, Graeffe’s
iteration, Schönhage’s algorithm [Sch82], etc. For a survey we refer to [Pan97].

3.2. CLASSICAL BOUNDS ON THE POLYNOMIAL ROOTS BY TROPICAL ROOTS 19

3.2 Classical bounds on the modulus of the roots of a

polynomial by using tropical roots

Let p(x) =
∑n

k=0 akx
k, ai ∈ C be a polynomial of degree n in the complex

plane. Also let ζ1 . . . ζn, denote the roots of p(x) ordered by increasing modulus.
We define the max-times polynomial

tp(x) =
⊕

0≤k≤n
|ak|xk = max

0≤k≤n
|ak|xk ,

corresponding to p(x). Due to Proposition 2.2.1, the tropical roots of tp(x),
α1 ≤ α2 ≤ . . . ≤ αn, repeated with multiplicities, can be computed in linear
time, O(n). In the sequel, we refer to the complex roots of p(x) as the roots and
to α1, . . . , αn by the tropical roots of p(x).

J. S. Hadamard gave a bound on the modulus of the roots of a polynomial
using a systematic method in which the modulus of the coefficients of the polyno-
mial are bounded by a variant of the classical Newton polygon construction. The
Newton polygon used by Hadamard can be seen to be the Legendre-Fenchel trans-
form of the tropical polynomial used here. Hence, the bound given by Hadamard
in [Had93] (page 201, third inequality) can be restated as follows in tropical
terms:

|ζ1ζ2 . . . ζk| ≥
α1 · · ·αk
k + 1

. (3.1)

In particular, |ζ1| ≥ α1
2 is an equivalent form of the classical bound of Cauchy.

The result of Hadamard (proved in passing in a memoir devoted to the Rie-
mann zeta function) remained apparently not so well known. In particular, in
1938, W. Specht [Spe38] proved that

|ζ1ζ2 · · · ζk| ≥
α1

k

k + 1
, (3.2)

which is weaker since α1 ≤ α2, . . . , αk.
Alexander Ostrowski, in 1940, proved several bounds on the roots of a poly-

nomial in his comprehensive report entitled ”‘Recherches sur la méthode de Gra-
effe” [Ost40a, Ost40b], in which he used again the Newton polygon introduced
by Hadamard. He called the slopes of this polygon (corresponding to the trop-
ical roots) the inclinaisons numériques and he proved the following theorem to
estimate the modulus of the roots.

Theorem 3.2.1 (Ostrowski [Ost40a]). Let p(x) =
∑n

i=0 aix
i be a polynomial of

degree n where ζ1, . . . , ζn denote the roots of p(x) ordered by increasing modulus.
Also, let α1 ≤ α2 ≤ . . . ≤ αn (counted with multiplicities) denote the tropical
roots of the associated max-times polynomial tp(x). Then,

• for k = 1 1
2α1 < |ζ1| ≤ nα1,

20 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

• for k = n 1
nαn ≤ |ζn| < 2αn,

• for k = 2, . . . , n− 1,

(1− (
1
2

)
1
k)αk ≤ |ζk| ≤

αk

1− (1
2)

1
n−k+1

(3.3)

In this way, he recovered the inequality (3.1) of Hadamard. He also included
a private conversation with M. G. Pólya who showed the following inequality, in
which the coefficient is improved:

|ζ1ζ2 · · · ζk| ≥
√

kk

(k + 1)k+1
α1 · · ·αk .

According to his report, if αk
αk+1

is less than 1
9 , then |ζk| < |ζk+1| which is a

sufficient condition for ζk to be separated from ζk+1.
According to Ostrowski, another result about this bound has been proved by

G. Valiron [VAL14] that is, if αk
αk+1

< 1
9 then p(x) has exactly k roots in the circle

|z| < √αkαk+1.
In a recent work, B. Kirshtein shows that the classical algorithm of Graffe-

Lobachevski, which is used to find the roots of a univariate polynomial, calculates
a tropical polynomial whose tropical roots coincides with the logarithms of the
moduli of the roots of the input complex polynomial [Kir09].

Assume that αk−1 < αk = · · · = αk+m−1 < αk+m. Due to Theorem 3.2.1,
the modulus of the m corresponding roots of p(x) bounded from lower and upper
by αk where the left and right constants in Inequality 3.3 will be different for
αk, . . . , αk+m−1. Also it can be seen that Inequality 3.3 is not tight from left(right)
when k is increasing(decreasing). However, we will prove, in the next section, that
when the values αk−1

αk
and αk+m−1

αk+m
are small enough i.e when αk is well separated

from the other tropical roots, a tight inequality with the same constant will hold
for all m tropical roots.

3.3 Location of the roots of a polynomial in terms of the

tropical roots

In this section, we provide some new bounds on the modulus of the roots of a
polynomial by considering not only the tropical roots but also their multiplicities.
We will prove that when a tropical root, α, with multiplicity m, of a polynomial,
p(x), is well separated from the other tropical roots, then, p(x) has m roots with
the same order of magnitude as α.

In the sequel we assume that p(x) has no zero root. We shall use the following
classical theorem of Rouché,

3.3. LOCATION OF THE ROOTS OF A POLYNOMIAL 21

Theorem 3.3.1 (Rouché’s theorem). Let the functions f and g be analytic in the
simply connected region R, let Γ be a Jordan curve in R, and let |f(z)| > |g(z)|
for all z ∈ Γ. Then the functions f + g and f have the same number of zeros in
the interior of Γ.

Let p(x) =
∑n

k=0 aix
i, ai ∈ C be a polynomial with the corresponding tropical

roots α1 < α2 < . . . < αp. Let m1, . . .mp denote the multiplicity of these
tropical roots, respectively, where

∑p
i=1mi = n. Recall from Section 2.2 that

the Newton polygon, ∆(P), of P is defined to be the upper boundary of the
convex hull of the set of points (k, log |ak|), k = 0, . . . , n. Figure 3.1 shows
the Newton polygon of p(x). Here, k0 = 0, k1, . . . , kp denote the X-coordinates
(abscissa) of the vertices (extreme points of edges) of the Newton polygon. The
opposite of the slopes of the linear segments in the diagram are precisely the
logarithms of the tropical roots. The multiplicity of a root coincides with the
width of the corresponding segment measured on the horizontal (X) axis. So,
m1 = k1,m2 = k2 − k1, . . . ,mp = kp − kp−1. The next lemma provides some

k0 = 0 k1

− logα1

− logαi

− logαp

k2 ki−1 ki kp−1 kp = n

− logα2

log |aj |

degree (j)

Figure 3.1: Newton polygon corresponding to p(x).

bounds on the coefficients of p(x) based on tropical roots.

Lemma 3.3.2. Let α1 < . . . < αp denote the corresponding tropical roots of a
polynomial p(x) =

∑n
k=0 aix

i, Also let k0 = 0, k1, . . . kp be the X-coordinates of
the vertices of the Newton polygon of p(x) shown in Figure 3.1. The following
statements hold.

(i) αi = (
|aki−1

|
|aki |

)
1

ki−ki−1

(ii) |aki−1
|αiki−1 = |aki |αiki for all i = 1 . . . p

(iii) |aj | ≤ |aki |αiki−j for all 1 ≤ i ≤ p; ki−1 ≤ j ≤ ki;

(iv) |aj | ≤ |aki |αi+1
−(j−ki) for all 1 ≤ i ≤ p; ki ≤ j ≤ ki+1;

22 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

(v) |aj | ≤ |aki |αiki−j for all 1 ≤ i ≤ p; 0 ≤ j ≤ ki;

(vi) |aj | ≤ |aki |αi+1
−(j−ki) for all 1 ≤ i ≤ p; ki ≤ j ≤ n;

Proof. The proof of the statements i, ii, iii and iv are straightforward. For in-
equality v

|aj | ≤ |aku+1 |α
ku+1−j
u+1 for ku ≤ j ≤ ku+1 ≤ ki due to iii

≤ |aku+2 |α
ku+2−ku
u+2 α

ku+1−j
u+1 due to ii

≤ |aki |α
ki−ki−1

i . . . α
ku+2−ku
u+2 α

ku+1−j
u+1

≤ |aki |αki−ji

and for the last inequality

|aj | ≤ |aku |αku−ju+1 for ki ≤ ku ≤ j ≤ ku+1 due to iv
≤ |aku−1 |α

ku−1−ku
u αku−ju+1 due to ii

≤ |aki |α
ki−ki+1

i+1 . . . αku−ju+1

≤ |aki |αki−ji+1

Definition 3.3.1 (αi-normalized polynomial). Let αi be the ith tropical root of
a polynomial p(x) and let x = αiy be an scaling on the variable x. We call q(y),
an αi−normalized polynomial corresponding to p(x) which is defined as follows

q(y) = (|aki−1
|αki−1

i)−1(
n∑
j=0

aj(αiy)j) .

Remark 3. It follows from the definition that for the αi-normalized polynomial
q(y) =

∑n
i=1 bi due to Lemma 3.3.2 we have,

|bki−1
| = |bki | = |(|aki−1

|αki−1

i)−1aki−1
α
ki−1

i | = 1 ,

and
|bj | ≤ 1 for all ki−1 ≤ j ≤ ki .

The following theorem provides the main result of this chapter.

Theorem 3.3.3. Let ζ1, . . . , ζn be the roots of a polynomial, p(x) =
∑n

k=0 aix
i

ordered by increasing modulus. Also let α1 < α2 < . . . < αp denote the tropical
roots of p(x) with multiplicity m1,m2, . . . ,mp respectively where

∑p
i=1mi = n.

Let δ1 = α1
α2
, . . . , δp−1 = αp−1

αp
be the parameters, which measure the separation

between the tropical roots. Then,

(i) p(x) has exactly mi roots in the annulus 1
2αi ≤ |ζ| < 2αi if,

• δi, δi−1 <
1

2mi+2+2
for 1 < i < p

3.3. LOCATION OF THE ROOTS OF A POLYNOMIAL 23

• δ1 <
1

2m1+1+2
for i = 1

• δp−1 <
1

2mp+1+2
for i = p

(ii) p(x) has exactly mi roots in the annulus 1
3αi ≤ |ζ| < 3αi if,

• δi, δi−1 <
1
9 for 1 < i < p

• δ1 <
1
9 for i = 1

• δp−1 <
1
9 for i = p

Consider the ith tropical root of p(x) and let q(y) be the αi-normalized poly-
nomial corresponding to p(x). The idea of the proof is to decompose q(y) to three
polynomials as follows,

q−i (y) = (|aki−1
|αki−1

i)−1(
ki−1−1∑
j=0

ajαi
jyj) (3.4)

qi(y) = (|aki−1
|αki−1

i)−1(
ki∑

j=ki−1

ajαi
jyj) (3.5)

q+
i (y) = (|aki−1

|αki−1

i)−1(
n∑

j=ki+1

ajαi
jyj) (3.6)

so that qi(y) is the normalized polynomial corresponding to the ith edge of the
Newton polygon. Then we find the appropriate disks, such that |qi(y)| > |q+

i (y)+
q−i (y)| holds on their boundary under the conditions for δi, which are mentioned
in the theorem. In this way, by Rouché’s theorem, qi(y) and q(y) will have the
same number of roots inside the disk. The proof of the theorem relies on the
following lemmas.

Lemma 3.3.4. Let αi be the ith tropical root of a polynomial, p(x) with mul-
tiplicity mi. Also, let q(y) be the αi−normalized polynomial and qi(y) be the
polynomial defined in Equation 3.5 corresponding to the ith edge of the Newton
polygon of p(x). Then, qi(y) has mi nonzero roots, which lies in the annulus
1/2 < |z| < 2.

Proof. Define

s(y) = y−ki−1qi(y) = (|aki−1
|αki−1

i)−1(
ki∑

j=ki−1

ajαi
jyj−ki−1) ,

to be a polynomial with mi = ki − ki−1 nonzero roots. As it is mentioned in
Remark 3, the modulus of the coefficients of s(y) will not be greater than 1.
Also, due to Cauchy’s bound all the roots of s(y) lies in the disk of

|z| < 1 + max
ki−1≤j≤ki

|sj/ski | = 2 ,

24 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

where sj presents the jth coefficient of s(y). The lower bound can be achieved
by applying the Cauchy bound on the reciprocal polynomial of s(y), i.e. s∗(y) =
ymis(y−1) .

The next lemma provides some bounds on the absolute value of q−i (y), qi(y),
q+
i (y).

Lemma 3.3.5. Let αi be the ith tropical root of a polynomial, p(x) with multiplic-
ity mi. Assume that q(y) is the αi−normalized polynomial and q−i (y), qi(y) and
q+
i (y) be the polynomials defined in 3.4, 3.5 and 3.6. Also let 0, k1, . . . kp be the

X-coordinates of the vertices of the Newton polygon of p(x) shown in Figure 3.1.
The following inequalities hold.

(i) |q−i (y)| ≤ |y|ki−1

δ−1
i−1|y|−1

(ii) |q+
i (y)| ≤ δi|y|ki+1

1−δi|y|

(iii) |qi(y)| ≥ |y|ki−1(1−2|y|+|y|ki−ki−1+1

1−|y|) for |y| < 1

(iv) |qi(y)| ≥ |y|ki(|y|−2+|y|ki−1−ki

|y|−1) for |y| > 1

Before proving this lemma, we give its geometrical interpretation, in Fig-
ure 3.2. The αi-normalized polynomial q(y) is such that the edge of the Newton
polygon corresponding to αi lies on the horizontal axis. The polynomials q±i are
bounded by geometric series, corresponding to the half-lines with slopes − log δi−1

and log δi, as shown by Inequalities (i) and (ii). For small (resp. large) values of
|y|, the leading monomial of qi is the one with the smallest (resp. highest) degree,
corresponding to the left (resp. right) extreme point of the horizontal segment,
as shown by Inequalities (iii) and (iv).

q+
i

qi

log |coeffs|

q−i

degree0
log δi−1 log δi

kiki−1

Figure 3.2: Illustration of Lemma 3.3.5.

3.3. LOCATION OF THE ROOTS OF A POLYNOMIAL 25

Proof. We have

|q−i (y)| = (|aki−1
|αki−1

i)−1(|
ki−1−1∑
j=0

ajαi
jyj |)

≤ (|aki−1
|αki−1

i)−1(
ki−1−1∑
j=0

|aki−1
|αki−1−j
i−1 αi

j |y|j) due to 3.3.2

≤ δki−1

i−1 (
ki−1−1∑
j=0

δ−ji−1|y|j)

= δ
ki−1

i−1

(δ−1
i−1|y|)ki−1 − 1

δ−1
i−1|y| − 1

=
|y|ki−1 − δi−1

ki−1

δ−1
i−1|y| − 1

≤ |y|ki−1

δ−1
i−1|y| − 1

.

Similarly,

|q+
i (y)| = (|aki−1

|αki−1

i)−1(|
n∑

j=ki+1

ajαi
jyj |)

≤ (|aki |αkii)−1(
n∑

j=ki+1

|aki |αki−ji+1 αi
j |y|j) due to 3.3.2

≤ δ−kii (
n∑

j=ki+1

(δi|y|)j)

≤ δ−kii (δi|y|)ki+1 1− (δi|y|)n−ki
1− δi|y|

= δi|y|ki+1 1− (δi|y|)n−ki
1− δi|y|

≤ δi|y|ki+1

1− δi|y|
Finally,

|qi(y)| = (|aki−1
|αki−1

i)−1(|
ki∑

j=ki−1

ajαi
jyj |) for |y| < 1

≥ (|aki−1
|αki−1

i)−1(|aki−1
|αiki−1 |y|ki−1 − |

ki∑
j=ki−1+1

ajαi
jyj |)

≥ |y|ki−1 − (|aki−1
|αki−1

i)−1
ki∑

j=ki−1+1

|aki−1
|α−(j−ki−1)
i αi

j |y|j

≥ |y|ki−1 −
ki∑

j=ki−1+1

|y|j ≥ |y|ki−1 − |y|ki−1+1(
1− |y|ki−ki−1

1− |y|)

= (|y|)ki−1(
1− 2|y|+ |y|ki−ki−1+1

1− |y|) ;

26 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

|qi(y)| ≥ |y|ki−1(|y|ki−ki−1 −
ki−ki−1−1∑

j=1

|y|j) for |y| > 1

≥ |y|ki−1(|y|ki−ki−1 − |y|
ki−ki−1 − 1
|y| − 1

)

= |y|ki − |y|
ki − |y|ki−1

|y| − 1

= |y|ki(|y| − 2 + |y|ki−1−ki

|y| − 1
) .

In the next lemma we will consider the conditions on δi and δi−1 under which
|qi(y)| > |q+

i (y) + q−i (y)| holds.

Lemma 3.3.6. Let αi be the ith tropical root of a polynomial, p(x) with multiplic-
ity mi. Assume that q(y) is the αi−normalized polynomial and q−i (y), qi(y) and
q+
i (y) be the polynomials defined in 3.4, 3.5 and 3.6. Also let 0, k1, . . . kp be the

X-coordinates of the vertices of the Newton polygon of p(x) shown in Figure 3.1.
Then the inequality

|qi(y)| > |q+
i (y) + q−i (y)| , (3.7)

holds

(i) on the circle |y| = 1
2 , when δi−1 <

1
2mi+2+2

and δi < 2
3

(ii) on the circle |y| = 1
3 , for any δi < 1, whenever δi−1 <

1
9 . Moreover, among

all the radii r < 1
2 , the choice of the radius r = 1

3 has the property of
maximizing the value of δi−1 such that the strict inequality 3.7 holds on a
circle of radius r.

(iii) on the circle |y| = 2, for δi−1 <
2
3 , whenever δi < 1

2mi+2+2

(iv) on the circle |y| = 3, for any δi−1 < 1, whenever δi < 1
9 . Moreover, among

all the radii r > 2, the choice of the radius r = 3 has the property of
maximizing the value of δi such that the strict inequality 3.7 holds on a
circle of radius r.

Proof. Due to the inequalities i, ii and iii presented in Lemma 3.3.5, to satisfy
the inequality 3.7 for a disk r = |y| ≤ 1

2 , it is sufficient that

rki−1(
1− 2r + rki−ki−1+1

1− r) > δir
ki+1

1−δir + rki−1

δ−1
i−1r−1

⇔

1− 2r + rmi+1

1− r > δir
mi+1

1−δir + δi−1

r−δi−1
(3.8)

3.3. LOCATION OF THE ROOTS OF A POLYNOMIAL 27

Setting r = 1
2 in last inequality we have

(
1
2

)mi >
(1

2)miδi
2− δi

+
2δi−1

1− 2δi−1
,

which is valid when δi <
2
3 and δi−1 <

1
2mi+2+2

.
Consider again the inequality 3.8, which can be rewritten as follows:

1− 2r
1− r + rmi+1(

1
1− r −

δi
1− δir

) >
δi−1

r − δi−1
.

Since δi < 1, (1
1−r − δi

1−δir) > 0 holds. Also for r < 1, rmi+1 → 0 when mi →∞.
Indeed, the latter inequality is verified for all mi iff

1− 2r
1− r >

δi−1

r − δi−1
,

which yields δi−1 < r−2r2

2−3r . The maximum value of r−2r2

2−3r is 1
9 , which will be

achieved when r = 1
3 .

The same argument can be made when |y| ≥ 2. For the disk r = |y| ≥ 2. Due
to the inequalities i, ii and iv presented in Lemma 3.3.5, the sufficient condition
to satisfy the inequality 3.7 is that

rki(
r − 2 + rki−1−ki

r − 1
) > δir

ki+1

1−δir + rki−1

δ−1
i−1r−1

⇔

r − 2 + r−mi

r − 1
> δir

1−δir + r−miδi−1

r−δi−1
(3.9)

So, for r = |y| = 2,

2−mi >
2δi

1− 2δi
+

2−miδi−1

2− δi−1
,

which is satisfied when δi−1 <
2
3 and δi <

1
2mi+2+2

.
When |y| > 2, the inequality 3.9 can be rewritten as

r − 2
r − 1

+ r−mi(
1

r − 1
− δi−1

r − δi−1
) >

δir

1− δir
.

Since δi−1 < 1, (1
r−1−

δi−1

r−δi−1
) > 0 holds. Also for r > 1, r−mi → 0 when mi →∞.

Thus, the latter inequality is verified for all mi iff

r − 2
r − 1

>
δir

1− δir
,

which yields δi < r−2
2r2−3r

. The maximum value of r−2
2r2−3r

is 1
9 , which will be

achieved when r = 3.

28 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

For the smallest tropical root, α1, q−i (y) = 0, so, when r = |y| = 1
2 the

inequality 3.8 becomes (1
2)m1 >

(1
2

)m1δ1
2−δ1 which is valid for all δ1 < 1. When

r = |y| ≥ 2, the inequality 3.9 becomes r−2+r−m1

r−1 > δ1r
1−δ1r which yields

δ1 <
r − 2 + r−m1

2r2 − 3r + r−m1+1
. (3.10)

Thus, for r = 2, the latter inequality holds for all m1 iff δ1 is less than 1
2m1+1+2

.

For r > 2, since r−2+r−m1

2r2−3r+r−m1+1 → r−2
2r2−3r

when m1 → ∞, the inequality 3.10
holds for all m1 iff δ1 <

r−2
2r2−3r

. The maximum value of r−2
2r2−3r

, which is 1
9 , is

achieved when r = 3. This is also illustrated in Figure 3.3 for several values of
m1 when r varies in the interval (2, 4).

Figure 3.3: The illustration of the upper bound for δ1 in inequality 3.10 for several
values of m1 when r varies in (2, 4).

These results yield the following lemma:

Lemma 3.3.7. Let α1 be the smallest tropical root of a polynomial, p(x) with
multiplicity m1. Assume that q(y) is the α1−normalized polynomial. Then the
inequality 3.7 holds,

(i) on the circle |y| = 1
2 , for any δ1 < 1.

(ii) on the circle |y| = 2, iff δ1 <
1

2m1+1+2
.

(iii) on the circle |y| = 3, whenever δ1 <
1
9 . Moreover, among all the radii r > 2,

the choice of the radius 3 has the property of maximizing the value of δ1 such
that the strict inequality 3.7 holds on a circle of radius r.

3.4. APPLICATION 29

For the largest tropical root, αp, q+
i (y) = 0, so, when r = |y| = 2 the inequal-

ity 3.9 becomes 2−mp > 2−mpδp−1

2−δp−1
which is valid for all δp−1 < 1.

When r = |y| ≤ 1
2 , the inequality 3.8 becomes 1−2r+rmp+1

1−r >
δp−1

r−δp−1
which

implies

δp−1 <
r − 2r2 + rmp+2

2− 3r + rmp+1
. (3.11)

Thus, for r = 1
2 , the latter inequality holds for all mp iff δp−1 <

1
2mp+1+2

.

For r < 1
2 , since r−2r2+rmp+2

2−3r+rmp+1 → r−2r2

2−3r when mp → ∞, the inequality 3.11

holds for all mp iff δp−1 <
r−2r2

2−3r . The maximum value of r−2r2

2−3r , which is 1
9 , is

achieved when r = 1
3 . These results implies the following lemma:

Lemma 3.3.8. Let αp be the largest tropical root of a polynomial, p(x) with
multiplicity mp. Assume that q(y) is the αp−normalized polynomial. Then the
inequality 3.7 holds,

(i) on the circle |y| = 1
2 , iff δp−1 <

1
2mp+1+2

.

(ii) on the circle |y| = 1
3 , for any δp−1 < 1

9 . Moreover, among all the radii
r < 1

2 , the choice of the radius r = 1
3 has the property of maximizing the

value of δp−1 such that the strict inequality 3.7 holds on a circle of radius
r.

(iii) on the circle |y| = 2, for δp−1 < 1.

To conclude the proof of Theorem 3.3.3, let q(y) = (|a0|−1)(
∑n

i=0 aiα1
iyi)

be the αi-normalized polynomial decomposed into three polynomial q−i (y), qi(y)
and q+

i (y). Due to Lemma 3.3.6, for any 1 < i < p, the condition |qi(y)| >
|q−i (y) + q+

i (y)| holds over the disks |y| = 1 and |y| = 1
2 , when δi, δi−1 <

1
2mi+2+2

.
According to the Rouché theorem, the latter implies that qi(y) and q(y) have the
same number of roots inside the disks |y| = 1

2 and |y| = 2. Due to Lemma 3.3.4,
qi(y) has mi roots in the annulus 1

2 ≤ |y| ≤ 2 which implies that q(y) also has
the same number of roots in this annulus. The proof is achieved, since y = αix,
p(x) has mi roots in the annulus 1

2αi ≤ |x| ≤ 2αi. The same argument can be
made for the other cases.

3.4 Application

Consider the following polynomial,

p(x) = 0.1 + 0.1x+ (1.000D + 40)x7 + (1.000D − 10)x11 .

The associated Newton polygon is shown on Figure 3.4. There are two tropical
roots, α− := 10−41/7 ' 1.39D − 6 with multiplicity 7 and α+ := 1050/4 '

30 CHAPTER 3. LOCATIONS OF THE ROOTS OF A POLYNOMIAL

−10

log |coeffs|

degree

log10 α
+ = 50/4

−1

40

log10 α
− = −41/7

Figure 3.4: Newton polygon of p(x) = 0.1 + 0.1x+ (1.000D+ 40)x7 + (1.000D−
10)x11.

3.16D + 12, with multiplicity 4. Then, δ1 < 10−18 and due to Theorem 3.3.3,
p(x) has 7 roots with

1
2
× (1.39D − 6) < |z| < 2× (1.39D − 6) ,

and 4 roots with the order of magnitude

1
2
× 3.16D + 12 < |z| < 2× 3.16D + 12 .

However, the results of calling the root function in Matlab version 7.11.0 which is
shown in Figure 3.4 is different. In other words, Matlab fails to compute correctly
the group of small roots. These kind of examples can be easily made by setting

Figure 3.5: The result of calling root function on p = 0.1+0.1x+1.000D+40x7 +
1.000D − 10x11 in Matlab.

3.5. CONCLUSION 31

small enough values for δis. This observation shows that the theoretical results
of this chapter can be used in numerical methods, at least for the verification of
the results. Since the computation of tropical roots can be done in linear time,
the execution time of the verification test is negligible.

3.5 Conclusion

In this chapter we considered the relation between the tropical roots and the
classical (complex) roots of a given polynomial. We showed that the tropical
roots can provide a priori estimation of the modulus of the roots. This principle
is at the origin of the scaling of matrix polynomials which will be introduced in
the next chapter.

CHAPTER 4

Tropical scaling of polynomial

eigenvalue problem∗

The eigenvalues of a matrix polynomial can be determined classically by solving
a generalized eigenproblem for a linearized matrix pencil, for instance by writing
the matrix polynomial in companion form. We introduce a general scaling tech-
nique, based on tropical algebra, which applies in particular to this companion
form. This scaling relies on the computation of “tropical roots”. We give explicit
bounds, in a typical case, indicating that these roots provide estimates of the
order of magnitude of the different eigenvalues, and we show by experiments that
this scaling improves the backward stability of the computations, particularly in
situations in which the data have various orders of magnitude. In the case of
quadratic polynomial matrices, we recover in this way a scaling due to Fan, Lin,
and Van Dooren, which coincides with the tropical scaling when the two tropical
roots are equal. If not, the eigenvalues generally split in two groups, and the
tropical method leads to make one specific scaling for each of the groups.

∗The results of this chapter have been partly reported in [1, 7, 5, 6, 4].

33

34 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

4.1 Introduction

Consider the classical problem of computing the eigenvalues of a matrix polyno-
mial

P (λ) = A0 +A1λ+ · · ·+Adλ
d ,

where Al ∈ Cn×n, l = 0 . . . d are given. Recall that the eigenvalues are defined as
the solutions of det(P (λ)) = 0. If λ is an eigenvalue, the associated right and left
eigenvectors x and y ∈ Cn are the non-zero solutions of the systems P (λ)x = 0
and y∗P (λ) = 0, respectively. A common way to solve this problem, is to convert
P into a “linearized” matrix pencil

L(λ) = λX + Y, X, Y ∈ Cnd×nd ,

with the same spectrum as P and solve the eigenproblem for L, by standard
numerical algorithms like the QZ method [MS73]. If D and D′ are invertible
diagonal matrices, and if α is a non-zero scalar, we may consider equivalently the
scaled pencil DL(αλ)D′.

The problem of finding the good linearizations and the good scalings has re-
ceived a considerable attention. The backward error and conditioning of the ma-
trix pencil problem and of its linearizations have been investigated in particular
in works of Tisseur, Li, Higham, and Mackey, see [Tis00, HLT07, HMT06, AA09].

A scaling on the eigenvalue parameter to improve the normwise backward
error of a quadratic matrix polynomial was proposed by Fan, Lin, and Van
Dooren [FLVD04]. This scaling only relies on the norms γl := ‖Al‖, l = 0, 1, 2.
In this chapter, we introduce a new family of scalings, which also rely on these
norms. The degree d is now arbitrary.

As it is mentioned in chapter 2, these scalings originate from the work of
Akian, Bapat, and Gaubert [ABG05, ABG04], in which the entries of the matri-
ces Al are functions, for instance Puiseux series, of a (perturbation) parameter
t. The valuations (leading exponents) of the Puiseux series representing the
different eigenvalues were shown to coincide, under some genericity conditions,
with the points of non-differentiability of the value function of a parametric op-
timal assignment problem , a result, which can be interpreted in terms of amoe-
bas [PT05, IMS07].

The scaling that we propose in this chapter is based on the tropical roots
which relies only on the norms γl = ‖Al‖. A better scaling may be achieved by
considering the tropical eigenvalues, which will be introduced in the next chapter.
But computing these eigenvalues requires O(nd) calls to an optimal assignment
algorithm, whereas the tropical roots considered here can be computed in O(d)
time.

4.2. MATRIX PENCIL AND NORMWISE BACKWARD ERROR 35

As an illustration, consider the following quadratic matrix polynomial

P (λ) = λ210−18

(
1 2
3 4

)
+ λ

(
−3 10
16 45

)
+ 10−18

(
12 15
34 28

)
.

By applying the QZ algorithm on the first companion form of P (λ) we get the
eigenvalues -Inf,- 7.731e-19 , Inf, 3.588e-19, by using the scaling proposed in
[FLVD04] we get -Inf, -3.250e-19, Inf, 3.588e-19. However by using the tropical
scaling we can find the four eigenvalues properly: - 7.250e-18 ± 9.744e-18i, -
2.102e+17 ± 7.387e+17i. The result was shown to be correct (actually, up to a
14 digits precision) with PARI, in which an arbitrarily large precision can be set.
The above computations were performed in Matlab (version 7.3.0).

This chapter is organized as follows. Section 4.2 states preliminary results
concerning matrix pencils, linearization and normwise backward error. In Sec-
tion 4.3, we describe our scaling method. In Section 4.4, we give a theorem
locating the eigenvalues of a matrix polynomial, which provides some theoretical
justification of the method. Finally in Section 4.5, we present the experimental
results showing that the tropical scaling can highly reduce the normwise back-
ward error of an eigenpair. We consider the quadratic case in Section 4.5.1 and
the general case in Section 4.5.2. For the quadratic case, we compare our results
with the scaling proposed in [FLVD04].

4.2 Matrix pencil and normwise backward error

Let us come back to the eigenvalue problem for the matrix pencil P (λ) =
A0 + A1λ + · · · + Adλ

d. There are many ways to construct a “linearized” ma-
trix pencil L(λ) = λX + Y, X, Y ∈ Cnd×nd with the same spectrum as P (λ),
see [MMMM06] for a general discussion. In particular, the first companion form
λX1 + Y1 is defined by

X1 = diag(Ak, I(k−1)n), Y1 =

Ak−1 Ak−2 . . . A0

−In 0 . . . 0
...

...
...

. . .
0 . . . −In 0

 .

In the experimental part of this work, we are using this linearization.
we shall consider, as in [Tis00], normwise backward error To measure the

stability of a numerical algorithm computing an eigenpair. The latter arises
when considering a perturbation

∆P = ∆A0 + ∆A1λ+ · · ·+ ∆Adλd .

The backward error of an approximate eigenpair (x̃, λ̃) of P is defined by

η(x̃, λ̃) = min{ε : (P (λ̃) + ∆P (λ̃))x̃ = 0, ‖∆Al‖2 ≤ ε‖El‖2, l = 0, . . .m} .

36 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

The matrices El representing tolerances. The following computable expression
for η(x̃, λ̃) is given in the same reference,

η(x̃, λ̃) =
‖r‖2
α̃‖x̃‖2

,

where r = P (λ̃)x̃ and α̃ =
∑ |λ̃|l‖El‖2. In the sequel, we shall take El = Al.

Our aim is to reduce the normwise backward error, by a scaling of the eigen-
value λ = αµ, where α is the scaling parameter. This kind of scaling for quadratic
matrix polynomial was proposed by Fan, Lin and Van Dooren [FLVD04]. We next
introduce a new scaling, based on the tropical roots.

4.3 Construction of the tropical scaling

Consider the matrix pencil modified by the substitution λ = αµ

P̃ (µ) = Ã0 + Ã1µ+ · · ·+ Ãdµ
d ,

where Ãi = βαiAi. The tropical scaling, which we next introduce is characterized
by the property that α and β are such that P̃ (µ) has at least two matrices Ãi
with an (induced) Euclidean norm equal to one, whereas the Euclidean norm of
the other matrices are all bounded by one. The theorem on the location of the
eigenvalues, which is stated in the next section provides some justification for the
present scaling.

We associate to the original pencil the max-times polynomial

tp(x) = max(γ0, γ1λ, · · · , γdλd) ,

where
γi := ‖Ai‖ ,

(the symbol t stands for “tropical”). Let α1 ≤ α2 ≤ . . . ≤ αd be the tropical
roots of tp(x) counted with multiplicities. For each αi, the maximum is attained
by at least two mononomials. Subsequently, the transformed polynomial q(x) :=
βitp(αix), with βi := (tp(αi))−1 has two coefficients of modulus one, and all the
other coefficients have modulus less than or equal to one. Thus α = αi and β = βi
will satisfy the goal.

The idea is to apply this scaling for all the tropical roots of tp(x) and each
time, to compute n out of nd eigenvalues of the corresponding scaled matrix
pencil, because replacing P (λ) by P (αiµ) is expected to decrease the backward
error for the eigenvalues of order αi, while possibly increasing the backward error
for the other ones.

More precisely, let α1 ≤ α1 ≤ . . . ≤ αd denote the tropical roots of tp(x).
Also let

µ1, . . . , µn︸ ︷︷ ︸, µn+1, . . . , µ2n︸ ︷︷ ︸, . . . , µ(d−1)n+1, . . . , µnd︸ ︷︷ ︸ ,

4.3. CONSTRUCTION OF THE TROPICAL SCALING 37

be the eigenvalues of P̃ (µ) sorted by increasing modulus, computed by setting
α = αi and β = tp(αi)−1 and partitioned in d different groups. Now, we choose
the ith group of n eigenvalues, multiply by αi and put in the list of computed
eigenvalues. By applying this iteration for all i = 1 . . . d, we will get the list
of the eigenvalues of P (λ). Taking into account this description, we arrive at
Algorithm 1. It should be understood here that in the sequence µ1, . . . , µnd of
eigenvalues above, only the eigenvalues of order αi are hoped to be computed
properly. Indeed, in some extreme cases in which the tropical roots have very
different orders of magnitude (as in the example shown in the introduction), the
eigenvalues of order αi turn out to be accurate whereas the groups of higher
orders have some eigenvalues Inf or Nan.

Algorithm 4.1 Computing the eigenvalues using the tropical scaling
INPUT : Matrix pencil P (λ)
OUTPUT : List of eigenvalues of P (λ)
Compute the corresponding tropical polynomial tp(x)
Find the tropical roots of tp(x)
for all tropical root such as αi do

Compute the tropical scaling based on αi
Compute the eigenvalues using the QZ algorithm and sort them by increasing
modulus
Choose the ith group of the eigenvalues

end for

To illustrate the algorithm, let P (λ) = A0 + A1λ + A2λ
2 be a quadratic

matrix polynomial and let tp(λ) = max(γ0, γ1λ, γ2λ
2) be the tropical polynomial

corresponding to this quadratic matrix polynomial.
We refer to the tropical roots of tp(x) by α+ ≥ α−. If α+ = α−, which

happens when γ2
1 ≤ γ0γ2 then, α =

√
γ0
γ2

and β = tp(α)−1 = γ−1
0 . This case

coincides with the scaling of [FLVD04] in which α∗ =
√

γ0
γ2

.

When α+ 6= α−, we will have two different scalings based on α+ = γ1
γ2

, α− = γ0
γ1

and two different β corresponding to the two tropical roots:

β+ = tp(α+)−1 =
γ2

γ2
1

, β− = tp(α−)−1 =
1
γ0

.

To compute the eigenvalues of P (λ) by using the first companion form lineariza-
tion, we apply the scaling based on α+, which yields

λ

(
1
γ2
A2

I

)
+

(
1
γ1
A1

γ2
γ2
1
A0

−I 0

)
,

to compute the n largest eigenvalues. We apply the scaling based on α−, which

38 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

yields

λ

(
γ0
γ2
1
A2

I

)
+

(
1
γ1
A1

1
γ2
A0

−I 0

)
,

to compute the n smallest eigenvalues.
In general, let α1 ≤ α1 ≤ . . . ≤ αd be the tropical roots of tp(x) counted with

multiplicities. To compute the ith largest group of eigenvalues, we perform the
scaling for αi, which yields the following linearization:

λ

βαdiAd

I
. . .

I

I

+

βαd−1
i Ad−1 . . . βαiA1 βA0

−I 0 . . . 0

0 −I . . .
...

...
. . . 0

0 . . . −I 0

,

where β = tp(αi)−1. Doing the same for all the distinct tropical roots, we can
compute all the eigenvalues.

Remark 4. The interest of Algorithm 4.1 lies in the backward stability (since it
allows us to solve instances in which the data have various order of magnitudes).
However, its inconvenient is to call several times (once for each distinct tropical
eigenvalue, and so, at most d times) the QZ algorithm. To increase the speed,
we may partition the different tropical eigenvalues in groups consisting each of
eigenvalues of the same order of magnitude, and then, the speed factor we would
loose would be reduced to the number of different groups.

4.4 Splitting of the eigenvalues in tropical groups

In this section we provide theoretical results showing that the tropical roots can
provide an a priori estimation of the modulus of the eigenvalues of a matrix
polynomial problem.

We shall need to compare spectra, which may be thought of as unordered sets,
therefore, we define the following metric (eigenvalue variation), which appeared
in [GH08]. We shall use the notation spec for the spectrum of a matrix or a
pencil.

Definition 4.4.1. Let λ1, . . . λn and µ1 . . . µn denote two sequences of complex
numbers. The variation between λ and µ is defined by

v(λ, µ) := min
π∈Sn
{max

i
|µπ(i) − λi|} ,

where Sn is the set of permutations of {1, 2, . . . , n}. IfA,B ∈ Cn×n, the eigenvalue
variation of A and B is defined by v(A,B) := v(specA, specB).

4.4. SPLITTING OF THE EIGENVALUES IN TROPICAL GROUPS 39

Recall that the quantity v(λ, µ) can be computed in polynomial time as soon
as λ and µ are known, by solving a bottleneck assignment problem.

We shall need the following theorem of Bathia, Elsner, and Krause [BEK90].

Theorem 4.4.1 ([BEK90]). Let A,B ∈ Cn×n. Then v(A,B) ≤ 4×2−1/n(‖A‖2 +
‖B‖2)1−1/n‖A−B‖1/n2 .

A similar inequality holds, more generally, with a different constant for any
operator norm [BEK90]; However, in this section, we consider only the spectral
norm. We shall use the notation ”cond” to refer to the condition number of a
given matrix with respect to spectral norm.

We associate to a matrix polynomial, P (λ) = A0 + λA1 + . . . + λdAd, a
max-times polynomial, tp(x) = γ0 ⊕ γ1x ⊕ · · · ⊕ γdxd, where γi := ‖Ai‖2. The
Newton polygon of tp(x) is shown in Figure 4.1. Here, αmin = α1 < α2 < . . . <

αp = αmax denote the tropical roots of tp(x). Also, k0 = 0, k1, . . . , kp denote the
horizontal coordinates of the vertices belonging to the Newton polygon. We define
Pαmax(λ) = Akp−1λ

kp−1 + · · ·+Akpλ
kp to be the matrix polynomial corresponding

to the last edge of the Newton polygon. In the following theorem we compare
the spectrum of P (λ) with the spectrum of Pαmax(λ). We also show that every
nonzero eigenvalue of Pαmax(λ) can be bounded from upper and below by the
largest tropical root, αmax.

Theorem 4.4.2 (Tropical splitting of eigenvalues). Let P (λ) = A0 +λA1 + . . .+
λdAd be a matrix polynomial of degree d and tp(x) = γ0 ⊕ γ1x ⊕ · · · ⊕ γdxd be
the corresponding max-times polynomial where γi := ‖Ai‖2. Also, let αmin =
α1 < α2 < . . . < αp = αmax denote the tropical roots of tp(x) with multiplicities
m1, . . .mp, respectively, where

∑p
i=1mi = d. We assume that tp(x) has more than

one tropical root. Let k0 = 0, k1, . . . , kp denote the horizontal coordinates of the
vertices belonging to the Newton polygon of tp(x) which is shown in Figure 4.1.
so that, m1 = k1,m2 = k2−k1, . . . ,mp = kp−kp−1. Also, let δ1 = α1

α2
, . . . , δp−1 =

αp−1

αp
be the parameters, which measure the separation between the tropical roots.

Assume that Ad and Akp−1 are nonsingular. Then,

v(specP (λ), specPαmax(λ)) ≤ Cαmax(
δp−1

1− δp−1
)

1
nd (condAd)

1
nd , (4.1)

where C = 4×2−
1
nd (2 + condAd(2mp+ δp−1

1−δp−1
))1− 1

nd . Also, every nonzero eigen-
value, λ, of Pαmax(λ) satisfies

αmax(1 + d condAkp−1)−1 ≤ |λ| ≤ αmax(1 + d condAd) . (4.2)

Remark 5. When A0 and Ak1 are nonsingular, a similar argument can be made
for the matrix polynomial corresponding to the first edge of the Newton polygon,
Pαmin(λ) = A0 + · · ·+Ak1λ

k1 , by considering αmin and λdP (λ−1).

40 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

k0 = 0 k1

− log α1

− log αi

− log αp

k2 ki−1 ki kp−1

− log α2

log |aj|

degree (j)

kp = d

Figure 4.1: Newton polygon corresponding to tp(x).

The proof relies on the next lemmas.

Lemma 4.4.3. Let P̃ (µ) = (tp(αmax))−1P (αmaxλ) = Ã0 + Ã1µ+ · · ·+ Ãdµ
d be

the scaled matrix polynomial by using the largest tropical root, αmax. Then, the
following inequalities hold

‖Ãi‖2 ≤ δkp−1−i
p−1 for i = 1 . . . kp−1 − 1 , (4.3)

and
‖Ãi‖2 ≤ 1 for i = kp−1 . . . d . (4.4)

Proof. Due to Proposition 3.3.2, γi ≤ γkp−1α
kp−1−i
p−1 for all 0 ≤ i < kp−1. Thus,

(tp(αp))−1γiα
i
p ≤ (γkp−1α

kp−1
p)−1γkp−1α

kp−1−i
p−1 αip

= (
αp−1

αp
)kp−1−i = δ

kp−1−i
p−1

which proves the first statement. Since (tp(αp))−1γiα
i
p ≤ 1 for all kp−1 ≤ i ≤ d

the second statement is also established.

Lemma 4.4.4. Let P̃ (µ) be the scaled matrix polynomial defined in Lemma 4.4.3.
Also let P̃αmax(µ) = (tp(αmax))−1Pαmax(αmaxλ) be the scaled matrix polynomial
corresponding to the last edge of the Newton polygon shown in Figure 4.1. Assume
that Ad is nonsingular and let

LP̃ (µ) =

Ã−1
d Ãd−1 Ã−1

d Ãd−2 . . . Ã−1
d Ã0

−In 0 . . . 0
...

. . .
...

...
0 . . . −In 0

 ,

4.4. SPLITTING OF THE EIGENVALUES IN TROPICAL GROUPS 41

LP̃αmax (µ) =

Ã−1
d Ãd−1 . . . Ã−1

d Ãkp−1 . . . 0 0
−In 0 0 0

...
. . .

...
...

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 −In 0

,

denote the first companion forms of P̃ (µ) and P̃αmax(µ) respectively. Define ∆L =
LP̃ (µ) − LP̃αmax (µ). Then, the following statements hold:

• ‖∆L‖2 = ‖LP̃ (µ) − LP̃αmax (µ)‖2 ≤ cond Ãd
δp−1

1−δp−1

• ‖LP̃ (µ)‖2 ≤ 1 + condAd(mp + δp−1

1−δp−1
)

• ‖LP̃αmax (µ)‖2 ≤ 1 +mp condAd

Proof. It follows from the inequality 4.3 and trivial norm inequalities that:

‖∆L‖2 = ‖LP̃ (µ) − LP̃αmax (µ)‖2 ≤ cond Ãd

kp−1−1∑
i=0

‖Ãi‖2

≤ cond Ãd

kp−1−1∑
i=0

δ
kp−1−i
p−1 ≤ cond Ãd

δp−1

1− δp−1

To prove the second statement we have,

‖LP̃ (µ)‖2 ≤ 1 + ‖(Ãd)−1‖2
d−1∑
i=0

‖Ãi‖2

≤ 1 + (cond Ãd)(d− kp−1 +
kp−1∑
i=0

δ
kp−1−i
p−1) since cond Ãd = condAd

≤ 1 + condAd(mp +
δp−1

1− δp−1
) due to Eqs. 4.3 and 4.4

A similar argument can be made to prove the last statement.

Remark 6. When tp(x) has only two tropical roots and the multiplicity of the
smallest tropical root is one, kp−1 − 1 = 0. In this case, ‖∆L‖2 ≤ δ condAd,
where δ = αmin

αmax
And ‖LP̃ (µ)‖2 ≤ 1 + condAd(mp + δ).

The statement 4.1 of Theorem 4.4.2 can be achieved by applying theorem 4.4.1
and lemmas 4.4.3 and 4.4.4. Next lemma, will prove Equation 4.2.

Lemma 4.4.5 (Corollary of [HT03, Lemma 2.2]). Let P (λ) = A0 +A1λ+ . . .+
Adλ be a matrix polynomial of degree d and assume that ‖A0‖2, ‖Ad‖2 = 1 and
‖A1‖2 . . . ‖Ad−1‖2 ≤ 1. Also, assume that A1 and Ad are nonsingular. Then, the

42 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

modulus of the eigenvalues of P (λ) can be bounded by the condition numbers of
A0 and Ad as follows:

(1 + d condA0)−1 ≤ |λ| ≤ 1 + d condAd . (4.5)

Proof. The eigenvalues of P (λ) coincide with the eigenvalues of the first compan-
ion form of A−1

d P (λ), that is,

L =

A−1
d Ad−1 A−1

d Ad−2 . . . A−1
d A0

−In 0 . . . 0
...

...
...

. . .
0 . . . −In 0

 .

The following inequality can be easily verified by the properties of the norms

‖L‖2 ≤ 1 +
d−1∑
i=0

‖Ai‖2‖A−1
d ‖2 ≤ 1 + d condAd .

Since ρ(A) = maxλ∈σ(A) |λ| ≤ ‖A‖2 where σ(A) denotes the spectrum of A, we
have

|λ| ≤ 1 + d condAd .

The left inequality can be achieved by considering A−1
0 P (1

λ) and making the same
argument.

Corollary 4.4.6. When tp(x) has only one tropical root, α, then, due to the
scaling equation, µ = αλ the modulus of the eigenvalues of P (λ) are bounded by
the tropical root as the following

(1 + d condA0)−1α ≤ |λ| ≤ α(1 + d condAd) . (4.6)

Remark 7. Let P (λ) = A0 + A1λ be a matrix polynomial of degree one. Then,
the inequality 4.5 can be improved to

(condA0)−1 ≤ |λ| ≤ condA1 .

Remark 8. If A0 and Ad are well conditioned then the order of magnitude of the
eigenvalues of P (λ) are expected to be of order one.

Corollary 4.4.7 (Quadratic matrix polynomial). for a quadratic matrix polyno-
mial, P (λ) = λ2A2 + λA1 +A0, let αmin, αmax be two tropical roots of tp(x) and
δ = αmin

αmax
. So, Pαmax = A1λ+A2λ

2 and due to Remark 6,

v(specP, Pαmax) ≤ Cαmaxδ
1/2n ,

where

C := 4× 2−1/2n
(
2 + 2 condA2 + δ condA2

)1−1/2n(condA2

)1/2n
.

4.5. EXPERIMENTAL RESULTS 43

Also, due to Remark 7, the nonzero eigenvalues of Pαmax are bounded by

αmax(condA1)−1 ≤ |λ| ≤ αmax condA2 .

Thus, when the parameter δ measuring the separation between the two tropical
roots is sufficiently small, and when the matrices A2, A1 are well conditioned,
then, there are precisely n eigenvalues of the order of the maximal tropical. By
applying the same result to the reciprocal pencil, we deduce, under the same sep-
aration condition, that when A1, A0 are well conditioned, there are precisely n

eigenvalues of the order of the minimal tropical root.

Remark 9. In view of the asymptotic results of [ABG04], the exponentials of the
tropical eigenvalues , which will be introduced in the next chapter, are expected to
provide a better estimation of the moduli of the complex roots. This alternative
approach is the object of a further work, however, the comparative interest of the
tropical roots considered here lies in their simplicity: they only depend on the
norms of A0, . . . , Ad, and can be computed in linear time from these norms. They
can also be used as a measure of ill-posedness of the problem (when the tropical
roots have different orders of magnitude, the standard methods in general fail).

4.5 Experimental Results

4.5.1 Quadratic polynomial matrices

Consider first P (λ) = A0 +A1λ+A2λ
2 and its linearization L = λX + Y . Let z

be the eigenvector computed by applying the QZ algorithm to this linearization.
Both ζ1 = z(1 : n) and ζ2 = z(n + 1 : 2n) are eigenvectors of P (λ). We present
our results for both of these eigenvectors; ηs denotes the normwise backward error
for the scaling of [FLVD04], and ηt denotes the same quantity for the tropical
scaling.

Our first example coincides with Example 3 of [FLVD04] where ‖A2‖2 ≈
5.54× 10−5, ‖A1‖2 ≈ 4.73× 103, ‖A0‖2 ≈ 6.01× 10−3 and Ai ∈ C10×10. We used
100 randomly generated pencils normalized to get the mentioned norms and we
computed the average of the quantities mentioned in the following table for these
pencils. Here we present the results for the 5 smallest eigenvalues, however for all
the eigenvalues, the backward error computed by using the tropical scaling is of
order 10−16, which is the precision of the computation. The computations were
carried out in SCILAB 4.1.2. The code can be found in Appendix B.

|λ| η(ζ1, λ) η(ζ2, λ) ηs(ζ1, λ) ηs(ζ2, λ) ηt(ζ1, λ) ηt(ζ2, λ)

2.98E-07 1.01E-06 4.13E-08 5.66E-09 5.27E-10 6.99E-16 1.90E-16

5.18E-07 1.37E-07 3.84E-08 8.48E-10 4.59E-10 2.72E-16 1.83E-16

7.38E-07 5.81E-08 2.92E-08 4.59E-10 3.91E-10 2.31E-16 1.71E-16

9.53E-07 3.79E-08 2.31E-08 3.47E-10 3.36E-10 2.08E-16 1.63E-16

1.24E-06 3.26E-08 2.64E-08 3.00E-10 3.23E-10 1.98E-16 1.74E-16

44 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

In the second example, we consider a matrix pencil with ‖A2‖2 ≈ 10−6,
‖A1‖2 ≈ 103, ‖A0‖2 ≈ 105 and Ai ∈ C40×40. Again, we use 100 randomly
generated pencils with the mentioned norms and we compute the average of
all the quantities presented in the next table. We present the results for the
5 smallest eigenvalues. This time, the computations shown are from MATLAB
7.3.0, actually, the results are insensitive to this choice, since the versions of
MATLAB and SCILAB we used both rely on the QZ algorithm of Lapack library
(version 3.0). More details about the code can be found in Appendix B.

|λ| η(ζ1, λ) η(ζ2, λ) ηs(ζ1, λ) ηs(ζ2, λ) ηT (ζ1, λ) ηT (ζ2, λ)

1.08E+01 2.13E-13 4.97E-15 8.98E-12 4.19E-13 5.37E-15 3.99E-16

1.75E+01 5.20E-14 4.85E-15 7.71E-13 4.09E-13 6.76E-16 3.95E-16

2.35E+01 4.56E-14 5.25E-15 6.02E-13 4.01E-13 5.54E-16 3.66E-16

2.93E+01 4.18E-14 5.99E-15 5.03E-13 3.97E-13 4.80E-16 3.47E-16

3.33E+01 3.77E-14 5.28E-15 4.52E-13 3.84E-13 4.67E-16 3.53E-16

4.5.2 Polynomial matrices of degree d

Consider now the matrix polynomial P (λ) = A0 + A1λ + · · · + Adλ
d, and let

L = λX + Y be the first companion form linearization of this pencil. If z is an
eigenvector for L then ζ1 = z(1 : n) is an eigenvector for P (λ). In the following
computations, we use ζ1 to compute the normwise backward error of Matrix
pencil, however this is possible to use any z(kn+ 1 : n(k+ 1)) for k = 0 . . . d− 1.

To illustrate our results, we apply the algorithm for 20 different randomly
generated matrix pencils and then compute the backward error for a specific
eigenvalue of these matrix pencils. The 20 values x-axis, in Fig. 4.2 and 4.3,
identify the random instance while the y-axis shows the log10 of backward error
for a specific eigenvalue. Also we sort the eigenvalues in a decreasing order of
their absolute value, so λ1 is the maximum eigenvalue.

We firstly consider the randomly generated matrix pencils of degree 5 where
the order of magnitude of the Euclidean norm of Ai is as follows:

‖A0‖ ‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖A5‖
O(10−3) O(102) O(102) O(10−1) O(10−4) O(105)

Fig. 4.2 shows the results for this case where the dotted line shows the backward
error without scaling and the solid line shows the backward error using the trop-
ical scaling. We show the results for the minimum eigenvalue, the “central” 50th

eigenvalue and the maximum one from top to down. In particular, the picture
at the top shows a dramatic improvement in the stability of the computation
of the smallest eigenvalue, whereas for the largest eigenvalues, the scaling typ-
ically improves the backward error by a factor 10. For the central eigenvalue,
the improvement we get is intermediate. The second example concerns the ran-
domly generated matrix pencil with degree 10 while the order of the norm of the
coefficient matrices are as follows:

4.6. CONCLUSION 45

‖A0‖ ‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖A5‖
O(10−5) O(10−2) O(10−3) O(10−4) O(102) O(1)

‖A6‖ ‖A7‖ ‖A8‖ ‖A9‖ ‖A10‖
O(103) O(10−3) O(104) O(102) O(105)

In this example, the order of the norms differ from 10−5 to 105 and the space
dimension of Ai is 8. Figure 4.3 shows the results for this case where the
dotted line shows the backward error without scaling and the solid line shows the
backward error using tropical scaling. Again we show the results for the minimum
eigenvalue, the 40th eigenvalue and the maximum one from top to down.

Figure 4.2: Backward error for smallest, medium and largest eigenvalues from top
to bottom. The vertical axis shows the log10 of backward error and the horizontal
axis shows 20 different randomly generated matrices.

4.6 Conclusion

In this chapter we proposed a new family of scaling based on tropical methods
to increase the precision of the computation of the eigenvalues of matrix poly-
nomials. We show that, the presented scaling can be easily applied in numerical
solutions. We also provide theoretical justification for the quadratic case. In the
next chapter we will introduce the tropical eigenvalues for matrix polynomials.
These tropical eigenvalues can provide a better scaling specially when the ma-
trices, Ais, are not well conditioned. The time complexity of computing these

46 CHAPTER 4. TROPICAL SCALING OF MATRIX POLYNOMIALS

Figure 4.3: Backward error for smallest, medium and largest eigenvalues from top
to bottom. The vertical axis shows the log10 of backward error and the horizontal
axis shows 20 different randomly generated matrices.

tropical eigenvalues is O(n4d). Thus, studying the efficiency of the scaling based
on tropical eigenvalue can be the matter of future works from the numerical point
of view.

CHAPTER 5

Finding the tropical eigenvalues

of a max-plus matrix polynomial

We study the problem of computing the tropical eigenvalues of a tropical matrix
polynomial. From the combinatorial perspective, this problem can be interpreted
as finding the maximum weighted matching function in a bipartite graph whose
weights are convex piecewise linear functions of a variable, λ. Several algorithms
to compute the tropical eigenvalues of a matrix have been proposed in [BM00,
BB03, GK10]. The algorithm that we develop in this chapter computes the
tropical eigenvalues of a generalized problem, i.e. a matrix polynomial, tP (λ) =
A0⊕λ⊗A1⊕. . . λd⊗Ad where Ai ∈ Rn×n

max . This is analogous to the generalization
of the eigenvalue problem in the classical linear algebra. This algorithm extends
an idea of Burkard and Butkovic [BB03] who considered the special case tP (λ) =
A⊕λI where I is the tropical identity matrix. The present algorithm computes all
the tropical eigenvalues in O(n4d) time where d is the degree of the input matrix
polynomial and n is the dimension of the matrices. The Scilab implementation
of this algorithm can be found in Appendix C.

47

48 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

5.1 Introduction

The eigenvalues of a matrix A can be computed by finding the roots of its charac-
teristic polynomial, det(A−λI) where det denotes the determinant and I presents
the identity matrix. As it is mentioned in Chapter 2, in the max-plus algebra, an
analogue of the notion of determinant, involving a formal “minus” sign, has been
studied by several authors [GM84, BCOQ92, AGG09]. However, the simplest ap-
proach is to consider the permanent instead of the determinant. The permanent
of a matrix A is classically defined as

perA :=
∑
σ∈Sn

n∏
i=1

(A)iσ(i) ,

where Sn denotes the set of all permutations. When the semiring is Rmax, so
that (A)ij ∈ R ∪ {−∞}, the permanent, perA := maxσ∈Sn

∑n
i=1(A)iσ(i), is the

value of an optimal assignment problem with weights (A)ij . So, in the max-plus
algebra, the formal tropical characteristic polynomial is defined to be,

pA(λ) = per(A⊕ λ⊗ I) , (5.1)

where the entries of the matrix A⊕ λ⊗ I are interpreted as formal polynomials
with coefficients in Rmax [CG83]. Recall that I is a matrix of dimension n × n
where all the diagonal entries are 0 and all off-diagonal entries are −∞.

The numerical tropical characteristic polynomial is the function

pA : Rmax → Rmax λ 7→ pA(λ) ,

which associates to a parameter λ ∈ R ∪ {−∞}, the value of the optimal as-
signment problem in which the weights are given by the matrix B = A ⊕ λ ⊗ I,
i.e.

B =

(A)11 ⊕ λ (A)12 . . . (A)1n

(A)21 (A)22 ⊕ λ . . . (A)2n

.

(A)n1 (A)n2 . . . (A)nn ⊕ λ

 ,

so that (B)ij = (A)ij for i 6= j and (B)ii = max((A)ii, λ).
Following [ABG05, ABG04] the algebraic tropical eigenvalues(refer to Sec-

tion 2.4), which we refer to, in the sequel, as the tropical eigenvalues, are defined
as the tropical roots of the tropical characteristic polynomial pA(λ), i.e., as the
nondifferentiability points of the function λ 7→ pA(λ). To the author’s knowl-
edge, there is yet no polynomial method for finding all coefficients of the formal
tropical characteristic polynomial; however, the numerical tropical characteristic
polynomial and the tropical eigenvalues can be computed in polynomial time.

Butkovič and Murfitt [BM00] developed an O(n5) method to compute all the
tropical eigenvalues of an n × n matrix with entries from Q ∪ {−∞}. Later on,

5.1. INTRODUCTION 49

Burkard and Butkovic [BB03] proposed an algorithm, which computes all the
tropical eigenvalues of a max-plus matrix in O(n2(m+ n log n)) time where m is
the number of finite entries of A ∈ Rn×n

max . Recently, Gassner and Klinz [GK10],
studied the problem of solving the parametric minimum assignment for a matrix
B where (B)ij = (A0)ij−λ(A1)ij , (A0)ij ∈ R and (A1)ij ∈ {0, 1}. They developed
an algorithm, which works in O(n(m + n log n)) time. They also adopted their
algorithm, to run in the same time complexity, to compute the tropical eigenvalues
of a min-plus matrix. This new algorithm is n times faster than the one proposed
in [BB03].

An obvious generalization of the mentioned problem, is the problem of com-
puting the tropical eigenvalues of a max-plus matrix polynomial. This is analo-
gous to the classical generalization of the eigenvalue problem in classical linear
algebra. A max-plus matrix polynomial can be defined as,

tP (λ) = A0 ⊕ λ⊗A1 ⊕ · · · ⊕ λd ⊗Ad Ai ∈ Rn×n
max for i = 1 . . . d .

The formal tropical characteristic polynomial of tP (λ) is defined as

f(λ) = per(A0 ⊕ λ⊗A1 ⊕ · · · ⊕ λd ⊗Ad) ,

which is a generalization of the one in Equation 5.1. The associated numerical
tropical characteristic polynomial, f(λ), is defined as

f : Rmax → Rmax f(λ) = per(tP (λ)) , (5.2)

which associates to a parameter λ ∈ R ∪ {−∞}, the value of the optimal as-
signment problem in which the weights are given by the matrix tP (λ) where
(tP (λ))ij = (A0)ij ⊕ λ(A1)ij ⊕ · · · ⊕ λd(Ad)ij . The tropical eigenvalues of tP (λ)
are defined as the tropical roots of f(λ), i.e. the points at which the maximum
attained at least twice.

In this chapter we develop an algorithm, which computes the tropical eigen-
values of a max-plus matrix polynomial in O(n4d) time where d is the degree of
a given matrix polynomial and n is the dimension of Ais. This algorithm is a
generalization of the idea of the algorithm, which is proposed by Burkard and
Butkovic [BB03]. Comparing with [BB03], a difficulty is that the leading mono-
mial, which is λn, when considering per(A⊕λI) is not known anymore. However
we shall see in Proposition 5.5 that the leading monomial has a unique algebraic
characteristic, which will allow us to compute it in polynomial time. We shall
also show that the right and left derivatives of the function f(λ) at any point can
be calculated by solving an auxiliary optimal assignment problem.

Our motivation for this problem is to use the tropical eigenvalues in the com-
putation of the classical eigenvalues of a matrix polynomial. Indeed, in degenerate
cases (when certain matrices are ill conditioned), the scaling of Chapter 4 based

50 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

only on the norms of the matrices behaves poorly. However, the tropical eigen-
values (which depend on the modulus of all the entries of the matrices, and not
only on their norms), provide better a priori estimates of the classical eigenval-
ues. This is inspired by a work of Akian, Bapat and Gaubert [ABG05, ABG04]
where the tropical eigenvalues were shown to determine the order of magnitude
(valuation) of the eigenvalues of a perturbed matrix pencil.

In the next section, we provide some preliminaries, Then, in section 5.3, we
present the algorithm to compute all the tropical eigenvalues.

5.2 Preliminaries

Let

tP (λ) = A0 ⊕ λ⊗A1 ⊕ . . . λd ⊗Ad Ai ∈ Rn×n
max for i = 1 . . . d ,

be a max-plus matrix polynomial. Also, let, f(λ) denote the characteristic
polynomial of tP (λ). Therefore, f(λ) is a convex piecewise linear function. If
f(λ) ≡ −∞, which happens when there is no permutation with finite value for
tP (λ), then tP (λ) does not have any tropical eigenvalue, because per(tP (λ)) is
the tropically zero polynomial. In the sequel, we shall assume that tP (λ) has at
least one permutation with finite value. This restriction is analogous to consid-
ering the regular case in the theory of matrix pencils. For a matrix A, we denote
by ”maxper(A)” the value

maxper(A) = max
σ∈Sn

n∑
i=1

(A)iσ(i) ,

and by ”minper(A)”,

minper(A) = min
σ∈Sn

n∑
i=1

(A)iσ(i) .

The Computation of ”maxper” or ”minper” can be done by solving the optimal
assignment problem, which is among the most classical problems in combina-
torics. Several algorithms such as Hungarian method have been developed to
solve it. We will discuss these algorithms later in Chapter 6.

A principal submatrix of a matrix A ∈ Rn×n
max is defined as,

(A)i1i1 (A)i1i2 . . . (A)i1ik
(A)i2i1 (A)i2i2 . . . (A)i2ik

...
...

...
(A)iki1 (A)iki2 . . . (A)ikik

 ,

where 1 ≤ i1 < . . . < ik ≤ n. Let

pA(λ) = δ0 ⊕ (δ1 ⊗ λ)⊕ . . .⊕ (δn−1 ⊗ λn−1)⊕ λn ,

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 51

be the tropical characteristic polynomial of matrixA. It is proved by Cuninghame-
Green [CG83], that for k = 0, . . . , n− 1,

δk =
⊕

B∈pk(A)

maxper(B) , (5.3)

where pk(A) is the set of all (n−k)×(n−k) principal submatrices of A. In this way,
δ0 = maxper(A) and δn−1 = max((A)11, . . . , (A)nn). However other coefficients
cannot be computed efficiently from the Equation 5.3 since the number of matrices
in Pk(A) is

(n
k

)
. Burkard and Butkovic [BB03] called a monomial, δk ⊗ λk, of

pA(λ) inessential if
δk ⊗ λk ≤ ⊕i 6=kδi ⊗ λi ,

for every real λ, otherwise it is essential. Thus, the inessential terms of pA(λ)
can be ignored in computing the function pA(λ). They proposed an algorithm,
which computes all the essential terms in O(n2(m + n log n)) where m is the
number of finite entries of A. It is evident that the tropical eigenvalues, i.e. the
nondifferentiability points of pA(λ), are the intersections of the essential terms.
The rest of this chapter, provides a generalization of the algorithm, developed
in [BB03], which computes all the essential terms of f(λ).and subsequently the
tropical eigenvalues of tP (λ).

5.3 Computing all the tropical eigenvalues

Consider the following max-plus matrix polynomial

tP (λ) = A0 ⊕ λ⊗A1 ⊕ . . . λd ⊗Ad Ai ∈ Rn×n
max for i = 1 . . . d .

Let,
f(λ) = δ0 ⊗ λv0 ⊕ . . .⊕ δt ⊗ λvt , (5.4)

be the tropical characteristic polynomial of tP (λ) by considering only the essential
terms where 0 ≤ v0 < . . . < vt ≤ nd. We refer to v0 and vt as the valuation,
denoted by ”val”, and the degree, denoted by ”deg”, of f(λ) respectively. Due to
the max-plus ”fundamental theorem of algebra”, f(λ) has vt−v0 nonzero tropical
roots and v0 zero tropical roots.

5.3.1 Computing the first and the last essential terms

We first explain the computation of the first and the last essential terms that is
δ0 ⊗ λv0 and δt ⊗ λvt . Let M be the matrix defined as follows,

(M)ij =

{
max(Ak)ij 6=0 k if ∃(Ak)ij 6= 0

0 otherwise
(5.5)

52 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

Proposition 5.3.1. We have deg(f(λ)) = maxper(M).

Proof. Due to the definition, (M)ij denotes the degree of the tropical polynomial

(tP (λ))ij = (Al0)ij ⊕ (λ⊗ (Al1)ij)⊕ . . .⊕ (λlk ⊗ (Alk)ij) , (5.6)

where 0 ≤ l0 < . . . < lk ≤ d and (Al0)ij , . . . , (Alk)ij 6= 0. So, for any permutation,
σ,
∑n

i=1(M)iσ(i) computes the degree of a tropical polynomial,
⊗n

i=1(tP (λ))iσ(i),
and subsequently, maxper(M) computes the degree of f(λ).

The same idea can be used to compute the valuation of f(λ). More precisely,
let M ′ be the matrix defined as follows,

(M ′)ij =

{
min(Ak)ij 6=0 k if ∃(Ak)ij 6= 0

+∞ otherwise
(5.7)

so that, (M ′)ij denotes the valuation of the max-plus polynomial in Equation 5.6.

Proposition 5.3.2. We have val(f(λ)) = minper(M ′).

Proof. The proof is the same as that of proposition 5.3.1.

To compute the coefficient of the monomial with maximum degree, i.e. δt in
Equation 5.4, we define a saturated graph by taking all the arcs belonging to the
optimal permutation of M as follows:

GM = {(i, j)|(i, j) belongs to a maximum permutation in M} . (5.8)

Let ÂM be the matrix defined as follows,

(ÂM)ij =

(Ak)ij if (i, j) belongs to a maximum permutation in M

& (M)ij = k

−∞ otherwise
(5.9)

Although there is in general an exponential number of optimal permutations, we
shall see that we can compute GM in polynomial time.

Proposition 5.3.3. The coefficient of the monomial with maximum degree, i.e.
δt in Equation 5.4, can be computed as follows,

δt = maxper(ÂM) .

Proof. For any permutation σ and any tropical monomial,

n⊗
k=1

((Aik)kσ(k) ⊗ λik) , (5.10)

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 53

with degree deg(f(λ)), since all the arcs (k, σ(k)) ∈ GM , we have, (ÂM)kσ(k) =
(Aik)kσ(k). So, this tropical monomial represents the weight of a non-0 permuta-
tion in the matrix ÂM . Conversely, any non-0 permutation, σ, of ÂM , presents
a tropical monomial with degree deg(f(λ)), such as the one indicated in (5.10)
where (Aik)kσ(k) = (ÂM)kσ(k) and (M)kσ(k) = ik. Since δt is the maximal coeffi-
cient of all monomials with degree deg(f(λ)), the statement is achieved.

The same method can be used to compute the coefficient of the monomial
with the smallest degree by defining

GM ′ = {(i, j)|(i, j) belongs to a minimum permutation in M ′} , (5.11)

and

(ÂM ′)ij =

(Ak)ij if (i, j) belongs to a minimum permutation in M ′

& (M ′)ij = k

−∞ otherwise
(5.12)

Proposition 5.3.4. The coefficient of the monomial with minimum degree, i.e.
δ0 in Equation 5.4, can be computed as follows,

δ0 = maxper(ÂM ′) .

Proof. The proof is the same as that of Proposition 5.3.3

We now show that we can compute the digraph GM consisting of all the
arcs belonging to the optimal permutations of the matrix M by a linear time
post-processing, after calling an optimal assignment solver.

Consider the primal linear programming formulation of the optimal assign-
ment for the matrix M ;

max
∑n

i=1

∑n
j=1 (M)ij(X)ij

s.t.
∑n

j=1(X)ij = 1 (i = 1, . . . , n)∑n
i=1(X)ij = 1 (j = 1, . . . , n)

(X)ij ≥ 0 (i, j = 1, . . . , n)

Then the dual problem can be written as

min
∑n

i=1(U)i +
∑n

j=1(V)j
s.t. (U)i + (V)j ≥ (M)ij

If X is a feasible solution of the primal problem, and if (U, V) is a feasible solution
of the dual problem, then, the complementary slackness condition shows that X
and (U, V) are both optimal if and only if

(X)ij((M)ij − (U)i − (V)j) = 0 (i, j = 1, 2, . . . , n) .

54 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

Fix now an arbitrary optimal dual solution (U∗, V ∗), and, following [ABG05,
ABG04] define the saturation digraph Sat(M,U∗, V ∗) to be the graph with set of
nodes 1, . . . , n and an arc from i → j whenever the (M)ij − (U∗)i − (V ∗)j = 0.
It follows that the set of optimal solutions of the primal problem is precisely
the set of bistochastic matrices X such that the digraph of X is included in the
saturation digraph. In particular, a permutation matrix is optimal if and only if
its digraph is included in the same saturation digraph.

Assume now, without loss of generality (we may always permute the rows or
columns of M), that the identity is an optimal permutation. Then, one readily
checks that an arc (i, j) belongs to an optimal permutation if and only if either i =
j or (i, j) belongs to a circuit in Sat(M,U∗, V ∗). Indeed, by the complementary
slackness condition, any arc of an optimal permutation belongs to a circuit of
Sat(M,U∗, V ∗), and conversely, if we find a circuit in the latter digraph, we can
always complete it by loops to make a permutation, which is optimal.

The previous discussion can be summarized as follows.

Proposition 5.3.5. Assume that the optimal assignment for the matrix M is
feasible (meaning that there is at least one permutation of finite weight), and let
(U∗, V ∗) denote any optimal solution of the dual problem. Then, the graph GM
(the arcs of which belong to optimal permutations) is included in Sat(M,U∗, V ∗).
Moreover, if the identity permutation is optimal, GM consists of those arcs of the
digraph Sat(M,U∗, V ∗), which belong to circuits of this digraph.

Most optimal assignment algorithms, and in particular the Hungarian algo-
rithm, yield as an output both an optimal permutation and a pair of optimal
dual variables (U∗, V ∗). The digraph Sat(M,U∗, V ∗) can be computed in linear
time from this output. Then, GM can be computed in an additional linear time
by computing the strongly connected components of Sat(M,U∗, V ∗). Therefore,
computing GM only requires a linear time post-processing.

Remark 10. In all the applications of the present chapter, the digraph GM could
be replaced by the digraph Sat(M,U∗, V ∗) without changing the final results. For
instance, if we replace the condition that (i, j) belongs to an optimal permutation
in the definition of ÂM above by the condition that (i, j) ∈ Sat(M,U∗, V ∗),
then, we modify only those entries of the matrix ÂM , which do not belong to
any permutation in the digraph of this matrix. These entries do not play any
role in the computations (which only involve the weights of permutations of the
matrix ÂM). Hence, whereas the introduction of the “intrinsic” digraph GM is
useful for theoretical purposes, for algorithmic purposes, one may be content with
Sat(M,U∗, V ∗).

Example 5.3.1. As a simple illustration, consider the matrix

M =

(
0 −1
−1 0

)
.

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 55

The identity is the only optimal permutation, so GM consists of the two loops
1 → 1 and 2 → 2. Observe that U∗ = (0, 0) and V ∗ = (0, 0) are optimal
dual variables, and that the corresponding saturation digraph, the arcs of which
correspond to the zero entries of M , is precisely GM . However, the dual variables
U∗ = (0, 1) and V ∗ = (0,−1) yield the following scaled matrix with entries
(M)ij − (U)i − (V)j (

0 0
−2 0

)
.

Then, the arc 1→ 2, corresponding to the top-right zero entry of this matrix, is
added to the saturation digraph. Similarly, the choice U∗ = (0,−1) and V ∗ =
(0, 1) replaces the arc 1 → 2 by the arc 2 → 1. This illustrates the fact that
for any choice of the optimal dual variable (U∗, V ∗), the digraph Sat(M,U∗, V ∗)
contains the optimal permutations, plus artificial (dummy) arcs which do depend
on (U∗, V ∗) but do not belong to any optimal permutation.

Example 5.3.2. Consider the following quadratic max-plus matrix polynomial

tP (λ) =

(
0 0

8 15

)
⊕ λ⊗

(
5 10
3 0

)
⊕ λ2 ⊗

(
7 9
1 4

)
,

then

M =

(
2 2
2 2

)
, M ′ =

(
1 1
0 0

)
,

so, deg(f(λ)) = maxper(M) = 4 and val(f(λ)) = minper(M ′) = 1. Also,

GM = {(1, 1), (1, 2), (2, 1), (2, 2)} ,
GM ′ = {(1, 1), (1, 2), (2, 1), (2, 2)} ,

ÂM =

(
7 9
1 4

)
, ÂM ′ =

(
5 10
8 15

)
,

and subsequently δ4 = maxper(ÂM) = 11 and δ0 = maxper(ÂM ′) = 20.

5.3.2 Computing all the other essential terms

Let fvr(λ) = δr ⊗ λvr and fvs(λ) = δs ⊗ λvs be two terms of the function f(λ)
where vr < vs. The next proposition provides a sufficient condition to check
whether the intersection of these two linear segments is a tropical root.

Proposition 5.3.6 (Proposition 3.2 in [BB03]). Let tP (λ) be a matrix polyno-
mial and fvr(λ) = δr ⊗ λvr and fvs(λ) = δs ⊗ λvs be two terms of its tropical
characteristic polynomial, f(λ) where v0 ≤ vr < vs ≤ vt. Also, let λ̄ be the
intersection of these two linear segments such that fvr(λ̄) = fvs(λ̄). Assume
that f(λ̄) = fvr(λ̄), then, there is not any essential term such as δk ⊗ λvk where
vr < vk < vs which follows that λ̄ is a tropical eigenvalue of tP (λ).

56 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

Proof. Since fvr(λ̄) = f(λ̄), we have δr + vrλ̄ ≥ δk + vkλ̄ for every 0 < k < t. It
follows that f(λ) ≥ fvr(λ) = δr + vrλ ≥ δk + vkλ = fvk(λ) for every λ < λ̄ and
vk > vr. Similarly, f(λ) ≥ fvs(λ) ≥ fvk(λ) for every λ > λ̄ and vk < vs; thus
f(λ) ≥ fvk(λ) for all λ and vr < vk < vs.

Remark 11. For any value λ̄ ∈ R, the matrix, tP (λ̄) can be computed in O(md)
time where m is the number of finite entries and d is the degree of tP (λ). Then
by applying an optimal assignment algorithm on tP (λ̄), the value of f(λ̄) can be
computed.

Let f ′+(λ̄) and f ′−(λ̄) denote right and left directional derivatives of the func-
tion, f , at point λ̄ ∈ R. Thus, if λ̄ is a tropical eigenvalue, i.e. a non-differentiability
point, then f ′+ 6= f ′− otherwise f ′+ = f ′− and f(λ̄) = fk(λ̄) = kλ̄ + δk in a neigh-
borhood of λ̄ for some k between v0 and vt.

Theorem 5.3.7 (Computing f ′+(λ̄), f ′−(λ̄)). Let λ̄, be a point in R. Also let Gλ̄
be a graph defined as follows,

Gλ̄ = {(i, j)|(i, j) belongs to a maximum permutation in tP (λ̄)} , (5.13)

and M λ̄
max,M

λ̄
min be the matrices defined as follows,

(M λ̄
max)ij =

{
max(Ak)ij 6=0 k if (i, j) ∈ Gλ̄ & (Aλ̄)ij = (Ak)ij + kλ̄

0 otherwise
(5.14)

(M λ̄
min)ij =

{
min(Ak)ij 6=0 k if (i, j) ∈ Gλ̄ & (Aλ̄)ij = (Ak)ij + kλ̄

+∞ otherwise
(5.15)

then,

f ′+(λ̄) = maxper(M λ̄
max) , (5.16)

f ′−(λ̄) = minper(M λ̄
min) . (5.17)

In particular, if λ̄ is a tropical eigenvalue then f ′+(λ̄) and f ′−(λ̄) represents the
slopes of the right and left segments of the graph of f at point (λ̄, f(λ̄)) respec-
tively. If λ̄ is not a tropical eigenvalue, then, the slope of the segment passing
from λ̄, coincides with f ′+(λ̄) = f ′−(λ̄).

Proof. Due to the definition, (M λ̄
max)ij coincides with the right-derivative at point

λ̄ of the tropical polynomial,

(tP (λ))ij = (λl1 ⊗ (Al1)ij)⊕ . . .⊕ (λlk ⊗ (Alk)ij)

= max(λl1 + (Al1)ij , . . . , λlk + (Alk)ij) .

Indeed, the rule of “differentiation of a supremum” (see Exercise 8.31 of [RW98])
shows that the right-derivative at a given point of a finite supremum of functions

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 57

coincides with the supremum of the right-derivatives of those functions, which
attain the former supremum at that point. This gives precisely(

(tP (λ̄))ij
)′

+
= (M λ̄

max)ij .

Consider now the weight of the permutation σ,

f (σ)(λ) =
n⊗
i=1

(tP (λ))iσ(i) =
n∑
i=1

(tP (λ))iσ(i) . (5.18)

Since taking the right-derivative commutes with the addition, it follows from the
preceding discussion that (f (σ))′+(λ̄), i.e. the right-derivative of the map f (σ) at
point λ̄, satisfies

(f (σ))′+(λ̄) =
n∑
i=1

(M λ̄
max)iσ(i) .

Also,

f(λ) = sup
σ
f (σ)(λ) , (5.19)

where the sum is taken over all permutations σ having a finite weight in the sense
of (5.18). Applying again the rule of “differentiation of a supremum”, we get that
the right-derivative of f is given by

f ′+(λ̄) = sup
σ

(f (σ))′+(λ̄) ,

where the supremum is now restricted to those permutations σ that attain the
maximum in (5.19) at point λ̄. This shows that

f ′+(λ̄) = maxper(M λ̄
max) .

The characterization of the left-derivative relies on a dual argument.
The final assertion of the theorem follows readily since f is a piecewise affine

map the nondifferentiability points of which are precisely the tropical eigenvalues.

Thus, f(λ) = λf ′±(λ) + cλ̄±, holds for all λ > λ̄ (in the ”+” case) and λ < λ̄

(in the ”−” case) close enough to λ̄, where cλ̄± is a constant, which simply can be
computed by

cλ̄± = f(λ̄)− f ′±(λ̄)λ̄ .

Remark 12. If for all (i, j) ∈ Gλ̄, there is only one slope k such that (Aλ̄)ij =
(Ak)ij + kλ̄, then, f is differentiable at point λ̄: f ′−(λ̄) = f ′+(λ̄).

A sketch of the algorithm, which computes all the tropical roots is given as
follows.

1: function trop eigenvalues(ml, cl,mr, cr)

58 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

2: assume: The graph of f contains two segments of the lines λ 7→ mlλ + cl
and λ 7→ mrλ+ cr, where ml < mr.

3: output: The tropical eigenvalues λ of f such that f ′+(λ) ≤ mr and f ′−(λ) ≥
ml.

4: Find the point (λ̄, ȳ) of intersection of the lines:

{
y = mlλ+ cl
y = mrλ+ cr

5: if f(λ̄) = ȳ then
6: return (λ̄ is a tropical eigenvalue with multiplicity mr −ml)
7: else
8: Compute the right and left derivatives f ′±(λ̄), and the constant coefficients

cλ̄± such that f ′±(λ̄)λ̄+ cλ̄± = ȳ

9: if f ′−(λ̄) < f ′+(λ̄) then
10: output: (λ̄ is a tropical eigenvalue with multiplicity f ′+(λ̄)− f ′−(λ̄))
11: end if
12: call trop eigenvalues(ml, cl, f

′
−(λ̄), cλ̄−)

13: call trop eigenvalues(f ′+(λ̄), cλ̄+,mr, cr)
14: end if
15: end function

We will present a detailed non recursive instantiation of the Algorithm (Algo-
rithm 5.1). Also a Scilab implementation of the algorithm can be found in Ap-
pendix C.

We start the algorithm by calling trop eigenvalues(v0, δ0, vt, δt) which com-
putes the intersection of the following two lines:

λ̄ =

{
δ0 + v0λ

δt + vtλ

If f(λ̄) = fv0(λ̄), then, due to the Proposition ??, we are done and tP (λ) has one
nonzero tropical eigenvalue, λ̄, with multiplicity vt − v0. Otherwise, we compute
f ′±(λ̄) to decide whether λ̄ is a tropical eigenvalue. Then, we compute the left and
right tangent lines at point λ̄, λ 7→ f ′±(λ̄)λ̄+ cλ̄±, and call recursively the function
to compute the tropical roots λ such that f ′+(λ) ≤ f ′−(λ̄) and f ′−(λ) ≥ f ′+(λ̄). By
repeating this iteration, we compute all the tropical eigenvalues.

To summarize, for every point such as λ̄, we find a tropical eigenvalue or we
compute two new points. Since all the slopes are the integers in the interval
[v0, vt], where 0 ≤ v0, vt ≤ nd, the total number of points will be at most O(nd).
Also for every point, we make three calls to an optimal assignment algorithm.
Since, optimal assignment can be computed in O(n3) for a dense matrix and in
O(n(m+ n log n) for a sparse matrix, we arrive at the following theorem

Theorem 5.3.8. Let,

tP (λ) = A0 ⊕ λ⊗A1 ⊕ . . .⊕ λd ⊗Ad Ai ∈ Rn×n
max for i = 1 . . . d ,

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 59

be a max-plus matrix polynomial of degree d. Then, all the tropical eigenvalues
of tP (λ) can be computed in O(n4d). If the matrix M , which is defined by equa-
tion 5.5, is sparse with m nonzero entries then, all the tropical eigenvalues can
be computed in O(n2d(m+ n log n)) time.

Remark 13. Of course, a dual result holds for min-plus matrix polynomial.

Example 5.3.3. Consider the following quadratic max-plus matrix polynomial

tP (λ) =

1 6 0

4 3 2
8 0 5

⊕ λ⊗
2 8 10

5 6 7
0 0 0

⊕ λ2 ⊗

 6 0 0

3 4 8
12 9 0

 .

The matrices M and M ′ and, the graphs GM , GM ′ can be computed as follows

M =

2 1 1
2 2 2
2 2 0

 , M ′ =

0 0 +∞
0 0 0
0 0 0

 ,

GM = {(1, 1), (3, 2), (2, 3)} ,
GM ′ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (3, 3), (2, 3), (3, 1)} .

Also,

ÂM =

6 0 0

0 0 8
0 9 0

 , ÂM ′ =

1 6 0

4 3 2
8 0 5

 ,

which results: v0 = 0, δ0 = 16 and vt = 6, δt = 23. The intersection of the lines
y = 16 and y = 6λ+ 23 is λ1 = 16−23

6 = −7
6 . So,

tP (−7
6

) =

 22
6

41
6

53
6

4 29
6

35
6

58
6

40
6 5

 ,

where the bold entries belong to the optimal permutation. f(λ1) = 70
3 6= 16,

yields that λ1 is not a tropical eigenvalue. So we continue by computing the
graph G− 7

6
= {(1, 3), (2, 2), (3, 1)} and the following matrices:

M
− 7

6
max =

0 0 1
0 1 0

2 0 0

 , M
− 7

6
min =

+∞ +∞ 1
+∞ 1 +∞

2 +∞ +∞

 .

Therefor, f ′+(−7
6) = f ′−(−7

6) = 4, c
− 7

6
+ = c

− 7
6
− = 28. By computing the intersec-

tions, two new points will be added to the list which yields

L = {(−3, 0, 16, 4, 28), (
5
2
, 4, 28, 6, 23)}

60 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

Next, we choose (−3, 0, 16, 4, 28) from L. Then,

tP (−3) =

1 6 7
4 3 4
8 3 5

 ,

and f(−3) = 18 6= 16. Again −3 is not a tropical eigenvalue. So we continue by
computing G−3 = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 1)} and

M−3
max =

0 0 1
0 0 1
0 0 0

 , M−3
min =

+∞ 0 1
+∞ 0 1

0 +∞ +∞

 .

Therefore, f ′+(−3) = f ′−(−3) = 1, c−3
+ = c−3

− = 21. By computing the intersec-
tions, two new points are added to L, which yields,

L = {(5
2
, 4, 28, 6, 23), (−5, 0, 16, 1, 21), (−7

3
, 1, 21, 4, 28)} .

Next, we choose (−5, 0, 16, 1, 21). Since vr−5 − vl−5 = 1 then −5 is a tropical
eigenvalue with multiplicity 1.

Since L is not empty we continue by selecting (5
2 , 4, 28, 6, 23) from L and

computing

tP (
5
2

) =

11 21
2

25
2

8 9 13
17 14 5

 ,

which results f(5
2) = 81

2 . Again 5
2 is not a tropical eigenvalue and we compute

G 5
2

= {(1, 2), (2, 3), (3, 2)} and

M
5
2

max =

0 1 0

0 0 2
2 0 0

 , M
5
2

min =

+∞ 1 +∞
+∞ +∞ 2

2 +∞ +∞

 ,

which yields f ′+(5
2) = f ′−(5

2) = 5, c
5
2
+ = c−3

− = 28. Thus, two new intersection
points will be added to L which results

L = {(−7
3
, 1, 21, 4, 28), (5, 4, 28, 5, 23)(0, 5, 23, 6, 23)} .

Next, we choose (−7
3 , 1, 21, 4, 28). So,

tP (−7
3

) =

4
3 6 23

3

4 11
3

14
3

8 13
3 5

 ,

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 61

and subsequently f(−7
3) = 58

3 . Since −7
3 is not a tropical eigenvalue we compute

G− 7
3

= {(1, 3), (2, 2), (3, 1)} and

M
− 7

3
max =

0 0 1
0 1 0

0 0 0

 , M
− 7

3
min =

+∞ +∞ 1
+∞ 1 +∞

0 +∞ +∞

 ,

which results f ′+(−7
3) = f ′−(−7

3) = 2, c
5
2
+ = c−3

− = 24. Therefore, two new points
are added to L,

L = {(−2, 2, 24, 4, 28), (−3, 1, 21, 2, 24), (5, 4, 28, 5, 23)(0, 5, 23, 6, 23)} .

This time we choose (−2, 2, 24, 4, 28), which yields

tP (−2) =

2 6 8
4 4 5
8 5 5

 .

Since f(−2) = 20 = 24 + 2 × (−2), −2 is a tropical eigenvalue with multiplicity
4− 2 = 2. The algorithm continues by fetching the remaining entries of the list

L = {(−3, 1, 21, 2, 24), (5, 4, 28, 5, 23)(0, 5, 23, 6, 23)} ,

which yields to recognize three tropical eigenvalues, since vr−3−vl−3 = 1 , vr5−vl5 =
1 and vr0 − vl0 = 1. Overall, the tropical eigenvalues are −5 with multiplicity 1,
−3 with multiplicity 1, −2 with multiplicity 2, 0 with multiplicity 1 and 5 with
multiplicity 1 and f(λ) is

f(λ) =

16 λ ≤ −5
λ+ 21 −5 < λ ≤ −3
2λ+ 24 −3 < λ ≤ −2
4λ+ 28 −2 < λ ≤ 0
5λ+ 28 0 < λ ≤ 5
6λ+ 23 λ > 5

Figure 5.1 demonstrates the diagram of f(λ).

62 CHAPTER 5. TROPICAL EIGENVALUES OF A MATRIX POLYNOMIAL

Algorithm 5.1 Compute the tropical eigenvalues of tP (λ).
Input: tP (λ) = A0 ⊕ λ⊗A1 ⊕ . . . λd ⊗Ad Ai ∈ Rn×n

max for i = 1 . . . d
Output: tropical eigenvalues of tP (λ)

• Compute the matrices M,M ′ defined in Equations 5.5 and 5.7, the graphs
GM , GM ′ , which are defined in the equations 5.8 and 5.11 and the matrices
ÂM , ÂM ′ defined in the equations 5.9 and 5.12 and subsequently compute the
valuation, v0 = minper(M ′), the degree, vt = maxper(M) of f(λ) and the
constants δ0 = maxper ÂM ′ , δt = maxper ÂM .

• Compute the intersection of the two lines δ0 + v0λ and δt + vtλ as λ1 = δ0−δt
vt−v0

and set L = {(λ1, v0, δ0, vt, δt,)}
while L is not empty do
• Choose any arbitrary element (λi, vli, c

l
i, v

r
i , c

r
i) from L and remove it from

the list.
if vri = vli + 1 then
• Output: λi as a tropical eigenvalues with multiplicity one

else
Compute f(λi)
if f(λi) = cli + vliλi then
• Output: λi as a tropical eigenvalue with multiplicity vri − vli

else
• Compute the graph Gλi defined in Equation 5.13, the matrix Mλi

max

defined in Equation 5.14 and Mλi
min defined in Equation 5.15. Then,

compute f ′+(λi) = maxper(Mλi
max), f ′−(λi) = minper(Mλi

min), cλi± =
f(λi)− f ′±(λi) ∗ λi
if f ′−(λi) < f ′+(λi) then
• Output: λi as a tropical eigenvalue with multiplicity f ′+(λi)−f ′−(λi)

end if
• Add two points to the list, L as follows

(
cli−c

λi
−

f ′−(λi)−vli
, vli, c

l
i, f
′
−(λi), cλi−),

(
cri−c

λi
+

f ′+(λi)−vri
, f ′+(λi), cλi+ , v

r
i , c

r
i)

end if
end if

end while

5.3. COMPUTING ALL THE TROPICAL EIGENVALUES 63

Figure 5.1: The diagram of f(λ).

Part II

Optimal Assignment Problem

65

CHAPTER 6

Entropy maximization problem

and max-product assignment

problem∗

In this chapter we consider the connection between the optimal assignment prob-
lem and the Entropy maximization problem. Due to the wide variety of applica-
tions of these problems, both ones have received a considerable attention in the
fields of computer science and convex optimization and several algorithms have
been developed to solve them.

The first part of this chapter is a short survey about the optimal assignment
problem which includes the definition, several types of this problem and algo-
rithms which have been developed to solve it. Next, we provide a short survey of
entropy maximization problem and the related applications. In Section 6.3, we
consider an entropy maximization problem with a deformation parameter. We
show that the matrix maximizing the entropy converges, as the deformation pa-
rameter goes to infinity, to a matrix whose nonzero entries are precisely the ones
belonging to optimal assignments. We also show that the solution of this entropy
problem can be found by applying the scaling algorithms to the original matrix.
These theorems let us use the scaling algorithms as the solutions of optimal as-

∗The results of this chapter have been partly reported in [2, 3, 8].

67

68 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

signment problem. We also show, In Section 6.4, that the speed of convergence to
the final solution, when the deformation parameter increases, is exponential. The
theoretical results of this chapter lead to the development of new iterative meth-
ods to solve optimal assignment problem and related combinatorial optimization
problems, which will be presented in the next chapter.

6.1 Optimal assignment problem

6.1.1 Definition

The assignment problem can be classically described as assigning n jobs to n

machines without assigning more than one job to a machine and ensuring that
all jobs are completed. A feasible solution of this problem is a bijective mapping,
σ, between two sets U and V of n elements. In this way, σ is a permutation of
set 1, . . . , n, which assign entry i ∈ U to entry σ(i) ∈ V . Each permutation can
be presented by a permutation matrix X = (xij), which is defined as xij = 1 if
j = σ(i) and other entries are zero.

Figure 6.1: An assignment between two sets.

From the graph point of view, this problem can be explained as finding a
perfect matching in a bipartite graph G =< U, V ;E > when the number of
vertices of U and V are equal. A classical description of this problem has been
given by Hermann Weyl in 1949. Consider n young ladies as the set U and n

young men as the set V . Lady i is a friend of man j if there is an arc (i, j) ∈ E.
A perfect matching is a collection of marriages in which all ladies and all men
are married, and only friends are married.

Hall’s theorem [Hal35], also known as marriage theorem, provides a necessary
and sufficient condition for existence of perfect matching in a graph. For a set of
vertices, X, let N(X) be the set of all vertices adjacent to some element of X.
Hall’s theorem indicates that a bipartite graph, G =< U, V ;E >, has a perfect
matching if and only if |X| ≤ N(X) for every subset X of U .

This problem can also be modeled as a Network flow problem. For a bipartite

6.1. OPTIMAL ASSIGNMENT PROBLEM 69

graph, G =< U, V ;E >, the network N =< W,A > can be defined as W =
{s, t} ∪ U ∪ V , A = E ∪ {(s, i)|i ∈ U} ∪ {(i, t)|t ∈ V } with the capacity function
C defined as csi = 1 for all i ∈ U , cit = 1 for all i ∈ U and for (ui, vj) ∈ E,
cuivj = 1. In this way, s is the source node and t can be considered as a sink.
Any maximum flow in this network corresponds to a matching in the graph G

and if the value of maximum flow is n then, it corresponds to a perfect matching
in G.

6.1.2 Linear optimal assignment problem

In general, the optimal assignment problem can be defined as finding the best
assignment over all the possible ones due to an objective function. Let C be an
n × n cost matrix, which determines the cost of assigning i to j. The objective
function can be defined as

min
σ∈Sn

n∑
i=1

ciσ(i) ,

where Sn denotes the symmetric group of n elements. An assignment problem
due to this objective function called linear assignment problem.

The formulation of this problem by using a permutation matrix, X, can be
given as the following:

min
∑n

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = 1 (i = 1, . . . , n)∑n
i=1 xij = 1 (j = 1, . . . , n)

xij ∈ {0, 1} (i, j = 1, . . . , n)

.

This problem is also known as Minimum Weighted Bipartite Matching or shortly
Minimum Weighted Matching. Without loss of generality, the weight matrix is
assumed to be nonnegative. Since, the cases with negative weight, can be reduced
to the nonnegative cases by adding −minij cij to all the elements of C.

For a nonnegative weight matrix, any solution to the previous problem can
be used to find the optimal solution of the following objective function,

max
σ∈Sn

n∏
i=1

ciσ(i) .

Since finding the minimum weighted matching for a cost matrix, B, which is
defined as bij = − log cij , yields to finding a solution for the later problem, which
is also known as Max-Product Maximum Weight Matching.

Remark 14. Besides linear optimal assignment problem, the quadratic optimal
assignment problem, QAP, and the multi-index assignment problem have also
been well studied in the literature. QAP is a generalization of the linear one
for which, in addition to the weight matrix, the distance matrix is also involved.

70 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

This problem firstly introduced by Koopmans and Beckmann [KB57] to model
a facility location problem. A short description of this problem can be given as
follows: for a set of n facilities, let fij denotes the flow between facility i and
facility j. Also let dij denotes the distance between location i and j. Assume
that the total cost depends on the flow between the facilities multiplied by their
distance. Then the goal is to solve:

min
σ∈Sn

n∑
i=1

n∑
j=1

fijdσ(i)σ(j) .

The QAP is proved to be NP-complete [SG76], thus, several heuristic algorithms
have been proposed to find a sub-optimal solution [BDM09, § 7].

The multi-index assignment problem is also another generalization of the lin-
ear optimal assignment problem. In the three dimension case, it can be discussed
as a timetabling problem in which the assignment of n courses to n rooms and
to n time slots is required. More precisely, for a three dimensional cost matrix
cijk, which denotes the cost of assigning course i to room j at time slot k, we
are interested in finding the assignment σ of the courses to the rooms and an
assignment φ of the courses to the time slots. In this way the objective function
can be described as the following:

min
σ,φ∈sn

n∑
i=1

ciσ(i)φ(i) .

It is proved, by Karp in 1972, that, this problem, which is known as axial 3-index
assignment problem is NP-complete [Kar72]. For a better survey, we refer an
interested reader to chapter 7 and chapter 10 of the recent book of Burkard et.
al. [BDM09].

6.1.3 Applications and Solutions for the linear assignment problem

The optimal assignment problem has been applied to a number of concrete prob-
lems. A well known application has emerged in bioinformatic for protein structure
alignment problem. The latter consists in aligning two proteins based on their
3-D structures [Hol93, LCL04]. Other important applications can be found in
shape matching and object recognition [BMP02], image processing and computer
vision [CWC+96] and VLSI design [HCLH90].

We shall be specifically interested in large scale dense optimal assignment
problems. The latter arise in several applications. A well-known application
arises from the approximation algorithms and heuristics for solving the Asym-
metric Traveling Salesman Problem [CJMZ01]. An application to cosmology
(reconstruction of the early universe) can be found in the work of Brenier et
al. [BFH+03]. Models of large dense random assignment problems are also con-
sidered in [MPV87, Ch. VII] from the point of view of statistical physics.

6.2. ENTROPY MAXIMIZATION PROBLEM 71

Another important application of this problem appears in the solution of very
large sparse linear systems of equations. In the context of sparse LU factorization,
the purpose of the large-diagonal permutation is to decrease the probability of
encountering small pivots during factorization, and hence avoid pivoting during
the factorization [ON96, DK00, LD03].

Due to the variety of its applications, the optimal assignment problem has
received a considerable attention and several algorithms have been proposed to
solve it. The first polynomial time algorithm was proposed by H. W. Kuhn
in 1955 [Kuh55]. For a linear optimization problem stated in Section 6.1.2 the
corresponding dual problem can be defined as finding the vectors U and V (also
called Hungarian pairs) as the following

max
∑n

i=1 ui +
∑n

j=1 vj
s.t. ui + vj ≤ cij

.

According to the complementary slackness condition, a pair of feasible solution
x of the primal problem and of feasible solutions (U, V) of the dual problem are
both optimal if and only if

xij(cij − ui − vj) = 0 (i, j = 1, 2, . . . , n) .

(We already encountered this condition in Chapter 5, §5.3). This algorithm
computes Hungarian pairs while at the same time, finds the optimal permutation.
The original algorithm works in O(n4); However it was improved later on to run
in O(n3) time [DK69, EK70], which is still optimal for the dense matrices. For
the sparse case, the algorithm of Edmonds and Karp [EK70] which runs in O(n3)
later improved by Fredman and Tarjan [FT87]. This new algorithm, which is
developed based on Fibonacci Heaps for the shortest paths computations, runs in
O(n(m+ nlogn)). A good survey on the algorithms, which have been developed
for this problem can be found in [BDM09].

6.2 Entropy maximization problem

The term Entropy firstly appeared in thermodynamics to measure the amount
of energy in a thermodynamic system as a function of the temperature of the
system and the heat that enters the system. However, later the same term used
by Shannon to measure the uncertainty associated with a random variable. This
problem can be better described by how to find a probability distribution of a
random variable when only the knowledge of certain moments such as expected
values of the distribution is known. According to Laplace’s principle of insuffi-
cient reasoning [KK92a] when there is no knowledge about the certain moments,
then the uniform distribution should be chosen since this distribution maximize

72 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

the uncertainty. but when there are some information, then the definition of un-
certainty becomes important. Shannon, provides some axioms, which he believes
that should be satisfied by any function, which measures the uncertainty.

For a random variable with n possible outcomes, X ≡ (x1, . . . , xn), and
p ≡ (p1, . . . , pn)T as the probability distribution associated to theses outcomes,
the function Sn(p) = −k∑n

j=1 pj ln pj , k > 0 will satisfy all the axioms; How-
ever, Shannon used Sn(p) = −∑n

j=1 pj ln pj as the entropy function [SW49]. In
this way, for g1(X), . . . , gm(X) as m functions of random variable X with known
expected values E[g1(X)] = a1, . . . E[gm(X)] = am, the problem of finding a
distribution due to the knowledge of expected values can be mathematically for-
mulated as follows:

max −∑n
j=1 pj ln pj

s.t.
∑n

j=1 pjgi(xj) = ai, i = 1, . . . ,m,∑n
j=1 pj = 1,

pj ≥ 0, j = 1, . . . , n

.

Several versions of this problem have been appeared in a wide variety of applica-
tions in different fields such as thermodynamics and statistical mechanics [Jay57],
Finance [BK96] and linear programming [Erl81]. For a good survey on this prob-
lem we refer an interested reader to the book of Fang [FRT97]

6.3 Deformed Entropy maximization problem and matrix

scaling

The diagonal scaling problem can be generally defined as finding diagonal matri-
ces Dr and Dc with positive diagonal entries such that the scaled matrix DrADc

has prescribed row and column sums. Due to the variety of its applications, this
problem has been well studied [MS69, Bru74, SK67]. A comparison of the pro-
posed algorithms to solve this problem, can be found in [SZ90]. A remarkable
special case arises when the row and column sums of the matrix X = DrADc

are required to be identically one, so that X is bistochastic. Then, the following
theorem provides a sufficient condition for the existence of a diagonal scaling.

Theorem 6.3.1 (Sinkhorn [SK67]). Let A be an n× n nonnegative matrix with
total support (every positive entry belongs to a diagonal). Then there exist diago-
nal matrices Dr and Dc such that DrADc is bistochastic. Moreover, if A is fully
indecomposable, then Dr and Dc are unique up to a constant factor.

Now, consider the following optimization problem, which consists in finding
an n×n bistochastic matrix X = (xij) maximizing the following relative entropy

max
X∈Bn

Jp(X), Jp(X) :=
∑
ij

xijbij + p−1S(X); bij = log aij , (6.1)

6.3. DEFORMED ENTROPY MAXIMIZATION PROBLEM AND MATRIX SCALING 73

where
S(X) := −

∑
ij

xij log xij ,

is the entropy function, p > 0 is a parameter and Bn denotes the set of n ×
n bistochastic matrices. The convention 0 × (−∞) = 0 is understood when
interpreting the product xijbij .

We shall assume that the matrix A := (aij) has total support, so that the
diagonal matrices Dr and Dc are known to exist. We denote by G(A) := {(i, j) |
aij > 0} the pattern (set of non-zero entries) of the matrix A.

The general relation between the entropy maximization and scaling problems
is well known, see e.g. [Sch89] for an overview. We shall need in particular the
following result.

Proposition 6.3.2 (Corollary of [BLN94, Th. 3.1]). Let A be a matrix with total
support. Then, the solution X(p) of the entropy maximization problem indicated
in Equation 6.1 is unique and it is characterized by the existence of two positive
vectors, U and V , such that xij = apijuivj for all i, j.

Thus, the characterization of the proposition shows that X is obtained from
the pth Hadamard power A(p) := (apij) by a diagonal scaling.

The previous proposition is a special case of Theorem 3.1 of [BLN94], which
is established in a more general infinite dimensional setting (for p = 1; but the
result for an arbitrary p follows trivially from it). We shall need in the sequel a
few elements of the proof, which we next include.

First, the function Jp is upper semi-continuous, and Bn is compact, hence,
the maximum of Jp over Bn is attained. If there is at least one permutation σ

such that
∑

i biσ(i) > −∞, the associated permutation matrix X = (xij), with
xij = 1 if j = σ(i), and xij = 0 otherwise, is such that Jp(X) > −∞. Then
since the maximum of Jp is attained, its value must be finite. Moreover, since
the objective function is strictly concave and the feasible set is convex, the point
of maximum X(p) is unique.

We claim that X(p) has the same pattern (set of positions of non-zeros entries)
as the matrix A.

To see this, let Y be a bistochastic matrix with the same pattern as A, i.e.
yij > 0 iff aij > 0. Assume by contradiction that X(p) does not have the same
pattern as A, so that xij(p) = 0 and yij(p) > 0 for some (i, j). Then because
the right derivative of the function t 7→ −t log t at t = 0+ is infinite, the right
derivative of t 7→ Jp(X(p) + t(Y −X(p))) at t = 0+ is easily seen to be infinite,
and so, Jp(X(p)+ t(Y −X(p))) > 0 and X(p)+ t(Y −X(p)) ∈ Bn hold for t small
enough, contradicting the optimality of X(p). Hence, the claim is established.

Consider now the Lagrange function

L(X,U, V) = Jp(X) +
∑
i

ui(
∑
j

xij − 1) +
∑
j

vj(
∑
i

xij − 1) ,

74 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

where U = (ui) and V = (vj) are vectors of Lagrange multipliers. The stationar-
ity condition implies that if X is an optimal solution of the entropy maximization
problem indicated in Equation 6.1, then there must exist two vectors of multipli-
ers U and V such that, for all (i, j) ∈ G(A),

∂L

∂xij
= bij − p−1(1 + log xij) + ui + vj = 0 .

It follows that

xij(p) = exp(p(bij + ui + vj)− 1) , ∀(i, j) ∈ G(A) ,

showing that X is obtained from the pth Hadamard power A(p) := (apij) by a
diagonal scaling.

Using the latter characterization of X(p), we observe that:

Jp(X(p)) = −
∑
i

log ui −
∑
j

log vj .

We now study the convergence of X(p) as p tends to infinity. We shall con-
sider the face F of the polytope of bistochastic matrices consisting of the optimal
solutions of the linear programming formulation of the optimal assignment prob-
lem

max
x∈Bn

∑
ij

xijbij = max
σ∈Sn

∑
i

biσ(i) .

Theorem 6.3.3. As p tends to infinity, the matrix X(p) converges to the unique
matrix X∗ maximizing the entropy among the ones that belong to the face F

consisting of the convex hull of optimal permutation matrices. In particular, if
the solution of the optimal assignment problem is unique, then X(p) converges to
the associated bistochastic matrix.

Proof. Since X(p) is the point of maximum of Jp,

Jp(X(p)) =
∑
ij

xij(p)bij + p−1S(X(p))

≥ Jp(X∗) =
∑
ij

x∗ijbij + p−1S(X∗)

= max
σ∈Sn

∑
i

biσ(i) + p−1S(X∗) .

Consider a sequence (pk)k≥1 converging to infinity, and assume that X(pk) con-
verges to some matrix Z, which must belong to Bn. Setting p = pk in the
previous inequality and taking the limit as k tends to infinity, we get

∑
ij zijbij ≥

maxσ∈Sn

∑
i biσ(i), which shows that Z belongs to the face F . Observe that

p−1
k (S(X(pk))−S(X∗)) = (Jpk(X(pk))− Jpk(X∗))+

∑
ij

x∗ijbij −
∑
ij

xij(pk)bij

 ,

6.4. THE SPEED OF CONVERGENCE 75

is the sum of two nonnegative terms, because X(pk) is a point of maximum of
Jpk , and X∗ ∈ F is a convex hull of matrices representing optimal permutations.
It follows that S(X(pk))− S(X∗) ≥ 0, and so, if Z is any accumulation point of
X(pk) as k tends to infinity, S(Z) − S(X∗) ≥ 0, showing that Z is of maximal
entropy among the matrices in F . Since the entropy function is strictly convex,
X∗ is is the only point with the latter property, and so every accumulation point
of X(pk) is equal to X∗, showing that X(p) converges to X∗ as p→∞.

Corollary 6.3.4. If there is only one optimal permutation, then X(p) converges
to the corresponding permutation matrix.

6.4 The speed of convergence

We have already shown in Theorem 6.3.3 that the maximal entropy solution
X(p) converges as p tends to infinity, to a matrix X(∞), which is a convex hull
of optimal permutation matrices. In particular, X(p) converges to an optimal
permutation matrix if the optimal permutation is unique. The following theorem
shows the exponential speed of convergence when p tends to infinity.

Theorem 6.4.1. Assume that the matrix A has total support and that log aij ∈ Q,
for all (i, j) such that aij > 0. Then, there exists a positive constant c such that,
for all i, j ∈ [n],

|xij(p)− xij(∞)| = O(exp(−cp)) .

To establish Theorem 6.4.1, recall that a real Puiseux series in the variable t
is an expression of the form

f =
∑
k≥k̄

ckt
k/r , (6.2)

where r ∈ N is positive, k̄ ∈ Z, ck ∈ R for all k, and the sum is taken over all
k ∈ Z such that k ≥ k̄. We denote by Rcvg{{t}} the set of real Puiseux series
that are absolutely convergent for all t of small enough positive modulus.

Lemma 6.4.2. For all i, j ∈ [n], there exists a Puiseux series of the form (6.2),
such that

xij(p) = f(exp(−p)) =
∑
k≥k̄

ck exp(−pk/r) ,

the latter series being absolutely convergent for all large enough p.

In order to establish this result, we shall use some tools from the theory of
real ordered fields, for which we refer the reader to [BPR06, chapter 2].

Let us consider the following statement: If a nonnegative matrix A has total
support, then there exists a nonnegative matrix X with row and column sums 1,

76 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

and there exist diagonal matrices D and D′ with positive diagonal entries such
that

A = DXD′ .

According to Sinkhorn’s theorem [SK67] and to Proposition 6.3.2, this state-
ment is true when the entries of A,X,D,D′ belong to the field of real numbers.
Moreover, this statement belongs to the first order theory of the real closed field
(R,+,×, 0, 1, >). By Tarski’s theorem [Tar51], any first order statement that is
valid in a special real closed field must also be valid in any real closed field. In
particular, the above statement holds over the field of convergent real Puiseux
series, which is known to be a real closed field. Indeed, the fact that formal
Puiseux series constitute a real closed field is standard, the proof that the same
is true in the case of convergent Puiseux series can be found in [BK76, § 10].

Thus for a matrix A(t) ∈ Rcvg{{t}}n×n with total support, there exists di-
agonal matrices D(t), D′(t),∈ Rcvg{{t}}n×n together with a unique bistochastic
matrix X(t) ∈ Rcvg{{t}}n×n such that A(t) = D(t)X(t)D′(t).

We choose now the matrix A(t) = (aij(t)) such that aij(t) = tlog aij where
log aij ∈ Q. Then, the entries of the corresponding matrix X(t) have the form

x̂ij(p) =
+∞∑
k=k̄ij

cijkt
k/rij ,

and this series is convergent for a suitably small positive t. Make now the sub-
stitution t = exp(−p). We deduce that for all suitably large p,

xij(p) =
+∞∑
k=k̄ij

cijk exp(−pk/rij) . (6.3)

Since x(p)ij has a finite limit as p → ∞, understanding that k̄ij is the first
index k for which the coefficient cijk is non-zero, we necessarily have k̄ij ≥ 0, so
that xij(∞) can be identified to the constant term in the latter series. Setting
c = mini,j (k̄ij + 1)/rij we get

|xij(p)− xij(∞)| = O(exp(−cp)) ,

which proves Theorem 6.4.1.

Remark 15. The assumption that log aij ∈ Q in Theorem 6.4.1 is inconvenient.
It could be avoided by replacing the field of converging Puiseux series by a field
of converging generalized Dirichlet series, along the lines of [Mar]. However,
this would require working out the convergence issues, which are not treated in
[Mar].

Remark 16. The formulation (6.1) is somehow reminiscent of interior point meth-
ods, in which the entropy S(X) = −∑ij xij log xij is replaced by a log-barrier

6.4. THE SPEED OF CONVERGENCE 77

function (the latter would be
∑

ij log xij in the present setting). The present
X(p) thought of as a function of p → ∞ is analogous to the central path, and
as does the central path, X(p) converges to a face containing optimal solutions.
However, the entropy S(X) does not satisfies the axioms of the theory of self-
concordant barriers on which the analysis of interior point methods is based.
Indeed, the speed of convergence in O(exp(−cp)) appears to be of a totally dif-
ferent nature by comparison with the speed of O(1/p) observed in interior point
methods [NN94].

Example 6.4.1. The constant c appearing in Theorem 6.4.1 can be small if
there are several nearly optimal permutations, and then a large value of p may
be needed to approximate X(∞). However, in such cases, a much smaller value
of p turns out to be enough for the method described in the next sections, the
aim of which is to eliminate a priori entries not belonging to (nearly) optimal
permutations. This is illustrated by the following matrix, in which the identity
permutation is optimal, and the transposition (1, 2) is nearly optimal:

A =

 1 0.99 0.99
0.99 1 1/3
0.25 0.5 1

 .

For p = 10, we have the following matrix, the significant entries of which indicate
precisely the optimal and nearly optimal permutations:0.5195148 0.4595136 0.0210196

0.4804643 0.5195864 0.0000004
0.0000209 0.0209000 0.9789800

 .

The convergence of X(p) to X(∞) is illustrated in Figures 6.2. Observe that
the graph of log xij(p) as a function of p is approximately piecewise affine. In
fact, each piece corresponds to a monomial in the Puiseux series expansion (6.3)
(see [Vir01] for an explanation of this fact). The path p 7→ X(p) converges
quickly to the face containing the two nearly optimal permutations and slowly to
the unique optimal permutation.

Remark 17. Finding the speed of convergence c is an open question. We conjec-
ture that when the optimal permutation is unique, c is given as follows:

A′ := DPA, where D is a diagonal matrix and P is a permutation, such that
the identity permutation is optimal and has unit weights in A′.Then

exp(−c) = γ(A) := max
i1...ik

(A′i1i2 · · ·A′iki1)1/k ,

where the max is taken over all elementary circuits, which are not loops. We
remark that γ(A) < 1 iff the optimal permutation is unique.

78 CHAPTER 6. ENTROPY MAXIMIZATION AND MAX-PRODUCT ASSIGNMENT

Figure 6.2: The variation of log10 x12(p) as a function of p.

6.5 Conclusion

The main idea, which has been developed in this chapter was to think of the
optimal assignment problem as the limit of a deformation of an entropy maxi-
mization problem. For an n×n bistochastic matrix X = (xij) and a deformation
parameter p, in the following relative entropy problem

Jp(X) := −
∑

1≤i,j≤n
xij(log(xij/a

p
ij)− 1) ,

we proved that when p goes to infinity, the solution of the entropy maximization
problem converges to a point in the convex hull of the matrices representing
optimal permutations. We also proved that for X(p) as the solution of the latter
problem for some value of p and for X(∞) as the solution when p→∞

|xij(p)− xij(∞)| = O(exp(−cp)) ,

for c > 0. This shows an exponential convergence to the optimal solution when
p increases. Finding the exact speed of convergence, c, is still an open problem;
However, we formulate a conjecture about it.

CHAPTER 7

Scaling algorithms for optimal

assignment problem∗

In this chapter, we present a preprocessing method, which is suitable for parallel
computation, to solve large optimal assignment problems. We think of the opti-
mal assignment problem as a limit of a deformation of an entropy maximization
problem. For every value of the deformation parameter, the matrix of maximal
entropy can be computed by Sinkhorn iteration. This leads to a parallel pre-
processing for the optimal assignment problem, which allows to delete entries
that do not belong to optimal assignments, so that the reduced problem becomes
executable on a sequential machine.

7.1 Introduction

We showed in the previous chapter that the solution of optimal assignment prob-
lem can be computed as a solution of the following deformed entropy maximiza-
tion problem when p goes to infinity.

max
X∈Bn

Jp(X), Jp(X) :=
∑
ij

xijbij + p−1S(X); bij = log aij (7.1)

∗The results of this chapter have been partly reported in [2, 3, 8].

79

80 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

Here

S(X) := −
∑
ij

xij log xij ,

is the entropy function and Bn denotes the set of n×n bistochastic matrices. We
also showed that the speed of convergence is exponential as p increases.

In this chapter, we investigate a preprocessing algorithm, which can be used
to solve large scale optimal assignment problems. The preprocessing is based
on an iterative method that eliminates the entries not belonging to an optimal
assignment. This reduces the initial problem to a much smaller problem in terms
of memory requirements. This is illustrated in Figures 7.1 and 7.2. Here, the
original matrix is an Euclidean random matrix, that is, a matrix whose entries
are the Euclidean distance between two sets of n random points in the Euclidean
space. Figures 7.1 illustrates the graph corresponding to a 50 × 50 Euclidean
random matrix and Figure 7.2 illustrates the graph corresponding to a matrix
after applying the preprocessing algorithm. It can be seen that most of the
unnecessary arcs have been removed and subsequently the size of problem is
reduced.

Figure 7.1: The graph corresponding to
an Euclidean random matrix where the
dimension is 50.

Figure 7.2: The graph corresponding to
the reduced matrix by applying the pre-
processing algorithm.

The idea of this algorithm is to take p large enough, then apply a diagonal
scaling algorithm to A(p) until convergence to a bistochastic matrix X, and finally
delete the small entries of X. Here, the exponential of A(p) leads to numerical
overflow for large values of p. However, we shall show that it is possible to
implement this iteration in a numerically stable way. The present algorithm
assumes the existence of at least one matching, since otherwise, the Sinkhorn
iteration [SK67] may not converge. However, we note that matrix balancing

7.1. INTRODUCTION 81

(Sinkhorn iteration) can also be used to detect the existence of a perfect matching,
as shown by Linial, Samorodnitsky and Wigderson [LSW00].

We consider two variants of the algorithm, one by using the Sinkhorn iteration
as the diagonal scaling algorithm and the other one by using Newton iteration.
The advantage of Sinkhorn iteration is that, it can be efficiently implemented
in parallel [ADRU08]. Thus we show that for very large dense optimal assign-
ment problems the data of which can not be stored in one machine, the parallel
Sinkhorn iteration can be used to reduce the size of the problem and then, the
reduced problem can be solved by any classical method. On the other hand,
the advantage of Newton method is the speed of the convergence to bistochastic
matrix.

For both variants, we present several numerical results of various full and
sparse matrices from gallery of Matlab and The University of Florida Sparse
Matrix Collection. We show that the Sinkhorn iteration can be efficiently used to
decrease the size of the dense matrices, up to 99% in a small number of iterations.
For Newton iteration, we show that it is not only efficient for dense matrices but
also efficient for sparse symmetric matrices.

Note also that the present approach yields approximate dual variables, which
provide an approximate optimality certificate for the assignment, which is found
(Section 7.3.1).

An interesting application of this new approach, is the solution of large scale
dense optimal assignment problems. Several efforts have been made to solve this
problem [BT09, LO94]. A well-known application arises from the approximation
algorithms and heuristics for solving the Asymmetric Traveling Salesman Problem
or the Vehicle Routing Problem. There are also some applications in object
recognition and computer vision. An application to cosmology (reconstruction
of the early universe) can be found in the work of Brenier et al. [BFH+03]. For
a survey on the applications of large dense linear assignment problems, we refer
the reader to [BT09]. Models of large dense random assignment problems are
also considered in [MPV87, Ch. VII] from the point of view of statistical physics.

In the last section, we introduce a new iterative method, which is based on a
modification of the Sinkhorn scaling algorithm, in which the deformation param-
eter is slowly increased (this procedure is reminiscent from simulated annealing,
the parameter p playing the role of the inverse of the temperature). We prove
that this iteration, which we refer to as deformed-Sinkhorn iteration, converges
to a matrix whose entries that belong to the optimal permutations are nonzero,
while all the other entries are zero. An estimation of the rate of convergence
is also presented, but this appears to be mostly of theoretical interest since in
practice, the convergence of this variant appears to be slow.

82 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

7.2 Preprocessing algorithm

7.2.1 Main idea

For a fixed p > 0, the solution for the entropy maximization problem displayed
in equation (7.1) can be computed by any scaling algorithm such as Sinkhorn
iteration [SK67] or Newton method [KR07]. Using Theorem 6.4.1, it can be
seen that if the original matrix has only one optimal permutation, the order
of magnitude of all the entries, which belong to the optimal permutation will be
1±O(exp(−cp)) while the order of magnitude of all other entries are O(exp(−cp)).
As an example, consider the following 5 by 5 random matrix with the bold entries
belonging to optimal permutation.

A =

0.292 0.502 0.918 0.281 0.686
0.566 0.437 0.044 0.128 0.153
0.483 0.269 0.482 0.778 0.697
0.332 0.633 0.264 0.212 0.842
0.594 0.405 0.415 0.112 0.406

By applying the Sinkhorn iteration on A(50) The following matrix can be com-
puted.

X(50) =

3.4E − 27 1.5E − 08 1.0E+00 7.4E − 26 4.7E − 06
4.8E − 02 9.4E-01 4.6E − 56 4.0E − 32 7.9E − 28
2.5E − 13 4.6E − 19 9.3E − 12 1.0E+00 1.0E − 02
1.5E − 23 1.2E − 02 6.2E − 27 4.3E − 31 9.8E-01
9.5E-01 4.1E − 02 6.2E − 07 1.0E − 34 2.3E − 06

Thus, for sufficiently large values of p, when X(p) is an ε−bistochastic matrix,
meaning that, some distance between X(p) and a bistochastic matrix is less than
ε, one may delete all the small entries, which are less than a threshold t, chosen
consistent with ε, while keeping all others. In this way the size of the original
problem in terms of memory requirements will be reduced to a much smaller one.

For a column(row) stochastic matrix, that is a matrix for which the sum of
all columns(rows) are one, the distance to the set of bistochastic matrices will be
measured by maxi |ri − 1| where ri indicates the ith row(column) sum.

Determining the coarsest accuracy ε and the maximal threshold t which are
needed to find an optimal permutation would require to know the maximal en-
tropy solution X(∞) characterized in Theorem 6.3.3. This information is in gen-
eral not available. However, the worst case can be considered to be the one where
X(∞) is uniform, with all entries equal 1/n (and n! optimal permutations). Since
we need to preserve the optimal permutations, this leads to a conservative choice
ε = t = 1/n, which we adopted in the present experimental results. The choice
of the value of p will be discussed in Section 7.3.2. This leads to Algorithm 7.1.

7.3. SINKHORN ITERATION 83

Algorithm 7.1 An optimal assignment preprocessing for fixed p

input: A, p
n← size(A, 1)
ε, t← 1/n
comment: Prescaling
if max(A)

min(A) > e then

m← 1
log(max(A)/min(A)) , c← e

log(min(A))
log(max(A)/min(A))

A← 1
cA

(m)

else
A← 1

min(A)A
end if
B ← A(p)

comment: Main loop
repeat

Apply one iteration of any diagonal scaling algorithm to B so B ← DB′D,
where D,D′ are diagonal matrices

until B is ε−bistochastic
Delete all the entries of B, which are less than a threshold t

7.2.2 Prescaling

The naive computation of A(p) is numerically unstable for large values of p. This
can be avoided by the prescaling step in the Algorithm 7.1. We set max(A) =
maxij aij ,min(A) = minaij>0 aij . By applying this prescaling, all the nonzero
scaled entries will be placed in the [1, e] interval. In the case when max(A)

min(A) > e, the
prescaling has another interesting property, that is, the scaled matrix is invariant
of entrywise powers of input matrix. In other words, if we apply the prescaling
to the matrix A(q), for all q ≥ 1, the matrix obtained after the prescaling step
turns out to be independent of the choice of q. When max(A)

min(A) < e the entries of
A have already been located in the interval min(A)[1, e], then we do not need to
perform the previous prescaling since the denominator in the formula defining m
will be small if max(A) is close to min(A). We shall also see in Section 7.3.1 that
the iterations can be implemented robustly for large values of p by working with
log-coordinates. Next, we provide more details on the proposed algorithm.

7.3 Sinkhorn iteration

A simple way to compute the diagonal matricesD,D′ is Sinkhorn iteration [SK67].
This algorithm starts from a given matrix A, divides every row by its sum, then
every column of the new matrix by its sum, and so on, until the matrix obtained
in this way converges to a bistochastic matrix. The advantage of this algorithm is
that, it can be efficiently implemented in parallel [ADRU08] and it can be applied

84 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

to any non-negative matrix, which has at least one nonzero permutation. The
disadvantage is that, it is generally slower than other methods.

Recall first that the open cone C = {x ∈ Rn : xi > 0,∀i} consisting of positive
vectors of Rn is equipped with Hilbert’s projective metric, defined by

d(x, x′) = log max
i,j

xix
′
j

x′ixj
.

Note that d(x, x′) is zero if and only if the vectors x and x′ are proportional. We
refer to [BR97, § 6] for more background. In particular, if A is a positive matrix,
a theorem of Birkhoff shows that the map x 7→ Ax is a contraction in Hilbert’s
projective metric, with a contraction rate

κ(A) := sup{d(Ay,Ay′)
d(y, y′)

: y, y′ ∈ C, y, y′ non proportional} =
θ(A)1/2 − 1
θ(A)1/2 + 1

,

where
θ(A) = exp sup{d(Ay,Ay′) : y, y′ ∈ C} = max

i,j,p,l

airajl
ajrail

.

The following result is a consequence of this theorem.

Proposition 7.3.1 (Franklin and Lorenz [FL89]). For a positive matrix A, the
global rate of convergence of Sinkhorn iteration is bounded above by κ(A)2.

This general bound is applicable only for positive matrices and it can be coarse
in practice. Recently, Knight [Kni08] provided a local rate of convergence. Due
to his work, for classical Sinkhorn iteration the local rate of convergence of a fully
indecomposable matrix, is bounded by σ2

2 where σ2 is the second singular value
of the bistochastic matrix to which the iteration converges. Hence, the following
result allows us to estimate the local convergence rate of Sinkhorn iteration, as
p→∞.

Proposition 7.3.2. Assume that there is only one optimal permutation. Then,
there is a constant c > 0 such that

1−O(exp(−cp)) ≤ σ2(X(p)) ≤ 1 as p→∞ .

Assume now that the matrix X(∞) is fully indecomposable (which implies that
there are several optimal permutations). Then,

σ2(X(p))→ σ2(X(∞)) < 1 as p→∞ .

Proof. Due to the perturbation theorem of Mirsky [Mir60], for any unitarily
invariant norm ‖.‖ and n× n matrices, X and X̃ with singular values σ1 ≥ σ2 ≥
. . . ≥ σp and σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃p respectively, we have,

‖ diag(σ̃i − σi)‖ ≤ ‖X̃ −X‖ .

7.3. SINKHORN ITERATION 85

So, for X(p) and X(∞),

|σ2(X(p))− σ2(X(∞))| ≤ ‖X(p)−X(∞)‖2 ≤ O(exp(−cp)) ,

for which the constant c depends on the coefficients of the Puiseux series and
possibly on the dimension of X(p). Thus, if the original matrix has only one
optimal permutation, σ2(X(∞)) = 1, which implies that

1−O(exp(−cp)) ≤ σ2(X(p)) .

Moreover according to the Birkhoff-von Neumann theorem [Bir46], for any norm
‖.‖ on Rn, which is invariant under permutation of the coordinates and for any
bistochastic matrix X, ‖X‖ = 1 and subsequently

1−O(exp(−cp)) ≤ σ2(X(p)) ≤ 1 .

When X(∞) is fully indecomposable, since the multiplication of two fully
indecomposable matrices is also fully indecomposable, M = X(∞)XT (∞) is fully
indecomposable. Note also that for all 1 ≤ i ≤ n, mii =

∑n
j=1 x

2
ij > 0, which

implies that M is primitive. Then, according to the Perron-Frobenius theorem,
all the eigenvalues of M distinct from ρ(M) have a modulus strictly smaller than
ρ(M) = 1, which yields σ2(X(∞)) < 1.

7.3.1 Logarithmic p-Sinkhorn iteration

As it was discussed before, computing the pth Hadamard power of A may cause
some numerical difficulties. To avoid this problem a prescaling has been proposed,
after which all the matrix entries are in [1, e] interval. A theoretical disadvantage
of this prescaling is that the increase of p is limited since ep < l, where l is the
largest number, in the numerical range. However, we next give a log-coordinate
implementation of Sinkhorn iteration which avoids this limitation. This will pro-
vide as a by product a certificate allowing one to check the approximate optimality
of a permutation.

Let A ∈ Rn×n be a real non-negative matrix, which has total support. For a
given p, consider the following iteration for a sequence of vectors Uk, Vk ∈ Rn

V0 = 1 (7.2)

Uk+1 = I(A(p)Vk) (7.3)

Vk+1 = I(A(p)TUk+1) (7.4)

where 1 is a vector [1, 1, . . . , 1]T of dimension n and I is an operator, which
inverses the entries of a vector.

Proposition 7.3.3. For a nonnegative matrix, A, which has total support, the
iteration defined by equations 7.2, 7.3 and 7.4 coincides with Sinkhorn iteration.

86 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

Proof. Let Wk and Zk respectively, be column scaled and row scaled matrices
defined as the following:

Wk = diag(Uk)A(p) diag(Vk) ,

Zk = diag(Uk+1)A(p) diag(Vk) .

Also, let C denote the column scaling operator in which all the columns of a
matrix are divided by it’s sums and R be the similar operator for rows. It is easy
to verify that, R(DB) = R(B) and C(BD) = C(B) for any diagonal matrix D.
According to the definition

Zk = R(A(p) diag(Vk)) = R(diag(Uk)A(p) diag(Vk)) = R(Wk) .

A similar statement can be proved for Wk, that is, WK = C(ZK), which completes
the proof.

Assume that Ūk = (uki) = p−1 logUk and V̄k = (vki) = p−1 log Vk, then, the
logarithmic form of this iteration can be written as:

ūk+1
i = −1

p
log
∑
j

exp p(log aij + v̄kj) ,

v̄k+1
i = −1

p
log
∑
j

exp p(log aji + ūk+1
j) .

Let

x̂ij = log aij + v̄kj −max
j

(log aij + v̄kj) ,

ŷji = log aji + ūk+1
j −max

j
(log aji + ūk+1

j) ,

for which x̂ij , ŷji ≤ 0. The logarithmic iteration can be reformulated by using x̂ij
and ŷji as the following:

ūk+1
i = −max

j
(log aij + v̄kj)− 1

p
log
∑
j

exp px̂ij (7.5)

v̄k+1
i = −max

j
(log aji + ūk+1

j)− 1
p

log
∑
j

exp pŷji (7.6)

The last iteration can be computed for a sufficiently large p, without having
numerical difficulties. We note that a related trick was used by Malajovich and
Zubelli [MZ01] in a different context.

Proposition 7.3.4 (Approximate optimality certificate). Let Ū , V̄ and X̂ be
produced by the p-Sinkhorn iteration. Also, let ζi := 1

p log
∑

j exp px̂ij and let
Val(OAP) denote the logarithmic of the value of an optimal permutation. Then,

Val(OAP) ≤ −
n∑
i=1

ūi −
n∑
j=1

v̄j −
n∑
i=1

ζi . (7.7)

7.3. SINKHORN ITERATION 87

Proof. Observe that at each step of the Sinkhorn iteration:

log aij + v̄kj ≤ −ūk+1
i − ζi , 1 ≤ i ≤ n .

Let σ denote an optimal permutation. Choosing j = σ(i) in the previous inequal-
ity, and summing over 1 ≤ i ≤ n, we get (7.7).

In practice, this proposition will be used to check the validity of the prepro-
cessing, by comparing the logarithm of the value of the permutation which is
eventually found with the upper bound (7.7).

7.3.2 Experimental results

The experiments, which are presented here have been obtained by using Sinkhorn
iteration in Algorithm 7.1 as a diagonal scaling method. We used Matlab version
7.10.0. The detailed Matlab implementation of the algorithm is presented below.

Finding the best value for p seems to be tricky since increasing p yields a slow
convergence and at the same time, it yields the lower percentage of remaining
entries. This fact also can be seen in Figures 7.3, 7.4 which illustrate the per-
centage of the remaining entries and the required number of Sinkhorn iterations,
for several values of p for the “lotkin” 1000 by 1000 matrix from the gallery of
Matlab. In the following experiments, we set the parameter p to 100 which leads

Figure 7.3: The number of iterations as
a function of p.

Figure 7.4: The percentage of remain-
ing entries as a function of p.

to a reasonable decrease in the size of the problem and generally does not yield
to a slow convergence, however it could be any reasonably large value. Recall
that the convergence is measured by maxi |ri − 1|, where ri denotes the ith row
(column) sum for a column (row) stochastic matrix.

Table 7.1 displays the results for dense matrices from the gallery of test ma-
trices of Matlab. For these experiments the dimension is 5000. The columns

88 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

Matlab code for p-Sinkhorn iteration

function [it,A]=psinkhorn(A)
n=size(A,1);
t=1/n;
p=100;
Min=min(A(A>0));
Max=max(A(A>0));
if (Max/Min)>exp(1) %prescaling

m=1/(log(Max)-log(Min));
c=exp(log(Min)/(log(Max)-log(Min)));
A=(1/c)*(A.^m);

else
m=1/log(Max);
A=A.^m;

end
A=A.^(p);
d=(1/n)+1;
it=0;
while (d> 1/n) %main loop

A=diag(sparse((A*ones(n,1)).^(-1)))*A;
A=A*diag(sparse((A’*ones(n,1)).^(-1)));
d=max(abs(sum(A’)-1));
it=it+1;

end;
[indx,indy]=find(A>t);
A=sparse(indx,indy,1,n,n).*A;

end

from left to right are: gallery name, number of nonzeros, number of iterations,
the logarithmic value of optimal assignment and the percentage of remaining
entries after deleting small entries. The same results are also presented for a
random matrix, referred to as ”‘rand”’(the random function of Matlab) and an
Euclidean random matrix referred to as ”‘Euclidean”’. The latter, which is of
interest in statistical physics, is a matrix whose entries are functions of random
points in an Euclidean space [Par02]. More precisely, we draw at random 2n
points x1, . . . , xn; y1, . . . , yn uniformly in the unit cube of R3. Then, we consider
the matrix A = (aij) where aij = exp(−d(xi, yj)) and d is the Euclidean distance.
In this way, a permutation σ, which maximizes

∏n
i=1 aij is the same permutation

which minimizes the distance between these two sets of points.

7.4. NEWTON ITERATION 89

Table 7.1: Sinkhorn iteration for dense matrices from the gallery of test matrices
of Matlab and for random and random Euclidean distance matrices.

Gallery nnz No. it. Val(OAP) Rem. En.(%)
cauchy 25000000 79 4.54725E + 00 47.95
minij 25000000 473 1.25025E + 07 26.57
moler 25000000 304 4.99950E + 07 28.43
orthog 25000000 304 4.99950E + 07 28.43
pei 25000000 1 5.50000E + 04 00.02
prolate 25000000 42 2.00000E + 03 00.66
randcorr 25000000 1 5.00000E + 03 00.02
toeppd 25000000 1 1.24767E + 07 00.02
chebvand 24997500 2 5.00000E + 03 38.67
circul 25000000 1 2.50000E + 07 19.48
cycol 25000000 3 1.73422E + 04 13.23
lotkin 25000000 73 5.54715E + 00 48.59
rand 25000000 2 4.99837E + 03 28.38
Euclidean 25000000 417 4.77693E + 03 01.49
chebspec 25000000 1084 5.33411E + 07 01.98
lehmer 25000000 3537 5.00000E + 03 18.58
gcdmat 25000000 11174 1.25025E + 07 00.06

As Table 7.1 shows, For more than 58% of the cases, the algorithm converges
very fast (in less than 80 iterations) and for 82% of the cases the algorithm
converges in less than 500 iterations(which is less than 0.1 of the dimension of
the input matrix). Also for more than 41% of the cases the original problem
reduced to a new problem, which has less than 2% of the original entries and
in 82% it reduces to a new problem with less than 30% of the input entries.
Since, the Sinkhorn iteration can be implemented in parallel, this method can
be efficiently applied to large dense optimal assignment problems as a parallel
preprocessing to reduce the size of the original problem.

We also tested several sparse matrices from The University of Florida Sparse
Matrix Collection. The results, which are presented in Table 7.2, show that using
Sinkhorn iteration as a diagonal scaling method in Algorithm 7.1 generally makes
a slow convergence for sparse matrices.

7.4 Newton Iteration

Solving the diagonal matrix scaling problem by using Newton iteration has been
considered first in the work of Khachian and Kahalantari [KK92b] for positive
semidefinite symmetric matrices. They have considered the more general problem
of finding a positive zero of the mapping

f(x) = b+Ax− x−1 ,

where A is a given matrix of dimension n and b is a fixed n−dimensional vector.
They proposed a path-following Newton algorithm of complexity O(

√
nL) where

L is the binary length of the input.
Recently, Knight and Ruiz have considered a Newton algorithm for the non-

negative matrices [KR07]. For a symmetric matrix A, they considered the diag-

90 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

Table 7.2: Sinkhorn iteration for sparse matrices from The University of Florida
Sparse Matrix Collection.

Gallery n nnz No. it. Val(OAP) Rem. En.(%)
af23560 23560 460598 22195 9.74612E + 05 70.32
bayer04 20545 85537 655255 6.42574E + 10 80.57
bbmat 38744 1771722 15421 1.35879E + 06 32.83
ecl32 51993 380415 120688 1.63238E + 06 81.95
g7jac200sc 59310 717620 164538 8.11767E + 05 86.40
gemat11 4929 33108 6373 1.54838E + 04 84.70
graham1 9035 335472 17795 2.64107E + 06 51.59
hcircuit 105676 513072 444744 4.89275E + 04 88.59
hydr1 5308 22680 92812 9.23658E + 06 79.38
jpwh 991 991 6027 1 5.18100E + 03 16.44
mahindas 1258 7682 8390 2.64476E + 03 32.27
onetone1 36057 335552 72335 1.50614E + 07 88.03
onetone2 36057 222596 73250 1.50614E + 07 85.70
orani678 2529 90158 8482 2.43343E + 03 05.22
sherman3 5005 20033 6007 7.31238E + 07 85.66
sherman5 3312 20793 3313 2.00876E + 05 29.57
2cubes sphere 101492 1647264 57403 5.10796E + 13 95.91
Andrews 60000 760154 1 7.00154E + 05 07.89
apache2 715176 4817870 248887 1.36293E + 10 26.18
boneS01 127224 5516602 1 1.13217E + 09 02.31
cfd1 70656 1825580 836 7.06560E + 04 26.15
denormal 89400 1156224 59627 3.55688E + 03 07.73
Dubcova3 146689 3636643 1405 1.78266E + 05 46.57
ecology1 1000000 4996000 1 3.86818E + 07 20.02
filter3D 106437 2707179 26814 2.17778E + 02 79.95
finan512 74752 596992 73701 3.27922E + 05 19.73
G2 circuit 150102 726674 245564 1.00644E + 08 42.42
GaAsH6 61349 3381809 1096 2.70486E + 06 28.82
gas sensor 66917 1703365 18454 4.38605E + 03 90.36
H2O 67024 2216736 10570 6.66094E + 06 03.03
helm2d03 392257 2741935 1 1.40807E + 06 14.31
Lin 256000 1766400 1 1.35416E + 08 14.49
nasasrb 54870 2677324 8863 1.17425E + 12 62.37
offshore 259789 4242673 37024 2.74591E + 18 99.87
parabolic fem 525825 3674625 155111 2.09716E + 05 71.46
qa8fm 66127 1660579 1 1.66971E + 01 03.98
rail 79841 79841 553921 57795 1.79469E + 00 15.14
s3dkq4m2 90449 4427725 5793 6.34128E + 07 73.77
shallow water2 81920 327680 1 2.07196E + 15 25.00

onal matrix scaling problem as finding vector x such that

f(x) = D(x)Ax− 1 = 0 ,

where D(x) = diag(x). If A is nonsymmetric, then the following matrix will be
considered as the input of the algorithm.

S =

(
0 A

AT 0

)
They showed that the Newton iteration can be written as

Akxk+1 = Axk +D(xk)−11 ,

where Ak = A + D(xk)−1D(Axk). Thus in each iteration a linear system of
equations should be solved for which they used the Conjugate Gradient method.

7.4. NEWTON ITERATION 91

In the nonsymmetric case, the latter linear system is singular, however it is proved
that the system is consistent whenever A has support (A ≥ 0 has support if it
has a positive diagonal). Our experiments, which will be presented later shows
that, the method works fast for dense nonsymmetric matrices. However with the
default tuning parameters, it does not work fast in sparse nonsymmetric cases.
More details about this method can be found in [KR07]; However, We present
the exact Matlab implementation of the algorithm in Appendix D Here, we used
the later method in Algorithm 7.1 to find the scaling matrices. We also set the
parameter p to 100, which is the same as Sinkhorn iteration.

In the following tables, No. it. denotes the total number of operations, each of
them takes O(n2) time to be done. This includes all the iterations of Conjugate
Gradient method for each Newton step. Tables 7.3 and 7.4 show the results for
dense symmetric and nonsymmetric matrices with dimension 5000. For both cases
the algorithm converges rapidly in a small number of iterations. The percentage
of the remaining entries is reasonably less than the original problem. In fact,
in more than 38% of the cases, the original problem reduced to a much smaller
problem, which has less than 2% of the original entries and in 72% of the cases
the problem reduces to a problem with less than 30% of the original entries.

Table 7.3: Newton iteration for dense symmetric matrices.

Gallery nnz No. it. Val(OAP) Rem. En.(%)
cauchy 25000000 156 −4.10569E + 04 47.95
fiedler 24995000 175 3.91202E + 04 35.73
gcdmat 25000000 152 3.75911E + 04 00.06
lehmer 25000000 166 0.00000E + 00 18.58
minij 25000000 167 3.75911E + 04 26.57
moler 25000000 167 4.45149E + 04 28.43
orthog 25000000 164 −1.9561E + 04 48.10
pei 25000000 151 1.19895E + 04 00.02
prolate 25000000 155 −4.58145E + 03 00.66
randcorr 25000000 151 0.00000E + 00 00.02
toeppd 25000000 151 3.91132E + 04 00.02

Table 7.4: Newton iteration for dense nonsymmetric matrices.

Gallery nnz No. it. Val(OAP) Rem. En.(%)
chebspec 25000000 251 4.03274E + 04 01.98
chebvand 24997500 166 −1.19254E − 03 38.67
circul 25000000 161 4.25860E + 04 19.48
cycol 25000000 162 6.19386E + 03 11.81
lotkin 25000000 257 −4.10477E + 04 48.59
rand 25000000 164 −1.63137E + 00 28.39
Euclidean 25000000 314 −2.30779E + 02 01.49

Tables 7.5 and 7.6 show the result of this algorithm on several sparse sym-
metric and nonsymmetric matrices from The University of Florida Sparse Matrix
Collection. These results show that the algorithm generally works very well for
sparse symmetric matrices while the convergence for sparse nonsymmetric ma-
trices is not fast.

92 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

Table 7.5: Newton iteration for sparse symmetric matrices.

Gallery n nnz No. it. Val(OAP) Rem. En.(%)
2cubes sphere 101492 1647264 155 1.29645E + 06 95.91
Andrews 60000 760154 151 1.45202E + 05 07.89
apache2 715176 4817870 155 6.65166E + 06 26.18
boneS01 127224 5516602 153 1.13622E + 06 02.31
denormal 89400 1156224 153 −2.88379E + 05 07.73
Dubcova3 146689 3636643 159 −8.55189E + 03 46.57
ecology1 1000000 4996000 153 3.61494E + 06 20.02
filter3D 106437 2707179 161 −7.01011E + 05 79.95
finan512 74752 596992 151 1.03471E + 05 19.67
G2 circuit 150102 726674 153 6.58486E + 05 41.77
GaAsH6 61349 3381809 162 2.32268E + 05 28.82
gas sensor 66917 1703365 160 −4.89303E + 05 90.37
H2O 67024 2216736 153 3.08149E + 05 03.02
helm2d03 392257 2741935 153 5.01026E + 05 14.31
Lin 256000 1766400 153 1.60526E + 06 14.49
nasasrb 54870 2677324 161 8.56473E + 05 62.37
offshore 259789 4242673 161 4.84144E + 06 99.87
parabolic fem 525825 3674625 153 −4.83938E + 05 71.46
qa8fm 66127 1660579 153 −5.51168E + 05 03.98
rail 79841 79841 553921 151 −8.54968E + 05 15.09
s3dkq4m2 90449 4427725 161 5.21115E + 04 73.77
shallow water2 81920 327680 151 1.95771E + 06 25.00
ship 003 121728 3777036 161 3.05969E + 06 85.85
shipsec8 114919 3303553 164 1.94819E + 06 82.96
t3dh e 79171 4352105 156 −1.28870E + 06 27.32
thermomech TK 102158 711558 151 4.85968E + 05 15.49
tmt sym 726713 5080961 158 1.00529E + 06 71.46
filter3D 106437 2707179 161 −7.01011E + 05 79.95
G3 circuit 1585478 7660826 153 6.72048E + 06 72.19
H2O 67024 2216736 153 3.08149E + 05 03.02
SiO2 155331 11283503 153 7.14208E + 05 17.34
thermal2 1228045 8580313 154 1.63908E + 06 80.32

Table 7.6: Newton iteration for sparse nonsymmetric matrices.

Gallery n nnz No. it. Val(OAP) Rem. En.(%)
af23560 23560 460598 2248 8.74776E + 04 70.32
bayer04 20545 85537 183275 −5.45190E + 04 80.21
bbmat 38744 1771722 2234 4.73786E + 04 32.83
ecl32 51993 380415 23389 −2.73185E + 05 81.66
g7jac200sc 59310 717620 47245 3.93891E + 04 86.40
gemat11 4929 33108 2780 4.07095E + 03 84.70
graham1 9035 335472 4014 −1.84675E + 04 51.59
hcircuit 105676 513072 34980 −3.83585E + 05 88.59
hydr1 5308 22680 73772 5.25311E + 03 78.65
jpwh 991 991 6027 151 1.47688E + 03 16.44
lhr71c 70304 1528092 2227871 −7.63013E + 04 83.56
mahindas 1258 7682 3485 −6.49190E + 01 31.71
onetone1 36057 335552 23601 1.13220E + 05 87.97
onetone2 36057 222596 24122 1.13220E + 05 85.64
orani678 2529 90158 5073 −1.57076E + 02 05.20
sherman3 5005 20033 168 −2.62102E + 04 85.63
sherman5 3312 20793 1696 6.67064E + 03 29.55

7.5. DEFORMED SINKHORN ITERATION 93

7.5 Deformed Sinkhorn iteration

In the previous section, we computed X(p) for a fixed value of p. However,
it is natural to develop a “path following method” in which the value of p is
gradually increased in the course of Sinkhorn balancing iterations. In this section
we propose such an algorithm. We prove that if the matrix A has support (A has
support if it has a positive diagonal), and if the growth of p is moderate enough,
then the sequence of matrices produced by the algorithm converges to a point,
which belongs to the face generated by optimal permutations.

7.5.1 Definition

Let A ∈ Rn×n be a real non-negative matrix. Consider the following iteration,
which is a standard Sinkhorn iteration with a deformation of using a sequence
pm, which goes to infinity.

Um+1 = I(A(pm+1)Vm)

Vm+1 = I(A(pm+1)TUm+1)

Let Wm+1 and Zm respectively, be column scaled and row scaled matrices defined
as the following:

Wm+1 = diag(Um+1)A(pm+1) diag(Vm+1) ,

Zm = diag(Um+1)A(pm+1) diag(Vm) . (7.8)

Proposition 7.5.1. For a diagonal matrix D, real matrices B,C and the matri-
ces Wm, Zm in the iteration, the following properties hold.

1. R(C ◦ (DB)) = R(C ◦B) where ◦ indicates the Hadamard product

2. Wm = C(Zm−1)

3. Zm = R(Wm ◦A(pm+1−pm))

Proof. We only prove the last one since others are straightforward.

Zm = R(A(pm+1) diag(Vm))

= R(A(pm) diag(Vm) ◦A(pm+1−pm))

= R((diag(Um)A(pm) diag(Vm)) ◦A(pm+1−pm))

= R(Wm ◦A(pm+1−pm))

94 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

According to the previous proposition, we define the following iteration, which
we refer to as deformed Sinkhorn iteration.

W0 = C(A(p0));

Wm = C(Zm−1), cm = (Zm−1
T)1 (7.9)

Zm = R(Wm ◦A(pm+1−pm)), rm = (Wm ◦A(pm+1−pm))1 (7.10)

Here, rm, cm respectively are the vectors of row sums and column sums.

7.5.2 Convergence to optimal assignment

For an input matrix, A = (aij), assume that the deformed Sinkhorn iteration
converges to a bistochastic matrix. Define the weight of a permutation, σ, with
respect to A, to be ωσ(A) =

∏
i aiσ(i). If A has a support, it should have at

least one optimal permutation as σopt with nonzero weight. It is evident that
σopt is the optimal permutation for all the matrices Wm and Zm produced by
each deformed Sinkhorn iteration. Observe that for all permutations σ and π,
the ratio ωσ(A)

ωπ(A) is invariant if we multiply the matrix A by diagonal matrices. So
it follows from the Equation 7.8 that

γm =
ωσ(Zm)
ωπ(Zm)

= γm−1(
ωσ(A)
ωπ(A)

)pm+1−pm = (
ωσ(A)
ωπ(A)

)pm+1 .

Thus, for all non optimal permutations such as σ, ωσ(Zm)
ωσopt (Z

m) will converge to
zero when pm → ∞. Since in each iteration the weight of optimal permutation,
ωσopt(Zm), is bounded above by 1, the weight of all non optimal permutations
will converge to zero, which yields the following lemma.

Lemma 7.5.2. Assume that the deformed Sinkhorn iteration converges to a ma-
trix, Z, produced by the deformed Sinkhorn iteration when pm → ∞. If the
original matrix A has a support, then all the permutations of Z have zero weight,
except the optimal permutations of the original matrix A.

Due to the theorem of Birkhoff-von Neumann, a square bistochastic matrix
in R is a convex combination of permutation matrices. Hence, all the nonzero
entries of a bistochastic matrix belong to a permutation with nonzero weight.
This statement together with the previous lemma yield the following theorem.

Theorem 7.5.3. For a non-negative matrix A, which has a support, as pm →∞,
if the deformed Sinkhorn iteration converges to a matrix X, then all the nonzero
entries of X belong to an optimal permutation of the original matrix.

7.5.3 Convergence to bistochastic matrix for positive matrices

Recall that the rate of convergence of classical Sinkhorn iteration is bounded
above by κ(A)2 where κ(A) = θ(A)1/2−1

θ(A)1/2+1
. The following theorem presents the

main result of this section:

7.5. DEFORMED SINKHORN ITERATION 95

Theorem 7.5.4. Let A be a positive matrix. If pm = a log(m + 1) where 0 <

a log θ < 2, then the deformed Sinkhorn iteration will converge to a bistochastic
matrix and subsequently to a solution of optimal assignment of the original matrix
A.

The proof relies on the next lemmas. For a matrix A, θ(A) = θ(AT) and for
two diagonally equivalent matrices such as A and B, θ(A) = θ(B).

Lemma 7.5.5. For positive matrices A and B and diagonal matrix D and d(x, x′)
as the Hilbert projective metric, the following properties hold.

1. d(Ax,Ax′) ≤ k(A)d(x, x′)

2. d((A ◦B)x, x′) ≤ log max(B)
min(B) + d(Ax, x′)

3. κ(AD ◦B) = κ(A ◦BD) = κ((A ◦B)D) = κ(D(A ◦B)) = κ(A ◦B)

Proof. The proof is straightforward.

Corollary 7.5.6. κ(A) is invariant under R or C operators.

Lemma 7.5.7. Let Wm and Zm be the matrices in equations (7.9,7.10) at iter-
ation m. The following properties hold.

1. κ(Zm) = κ(A(pm+1))

2. κ(Wm) = κ(A(pm))

Proof. The proof is straight forward by using the induction on m.

The next lemma is similar to Lemma 2 in [FL89], where the classical Sinkhorn
iteration is considered.

Lemma 7.5.8. Let rm, cm be the vectors defined in equation (7.9,7.10) at itera-
tion m and M = max(A)

min(A) then

d(rm, 1) ≤ (pm+1 − pm) logM + (pm − pm−1)κ(A(pm)) logM

+κ(A(pm))κ(A(pm−1))d(rm−1,1)

d(cm, 1) ≤ (pm − pm−1) logM + (pm − pm−1)κ(A(pm−1)) logM

+κ2(A(pm−1))d(cm−1,1)

Proof. Let 1/V indicates the entrywise inverse of a given vector, V . We have,

rm = (Wm ◦A(pm+1−pm))1 = (Zm−1 diag(1/cm) ◦A(pm+1−pm))1

= (Zm−1 ◦A(pm+1−pm)) diag(1/cm)1 = (Zm−1 ◦A(pm+1−pm))(1/cm),

96 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

so

d(rm,1) = d((Zm−1 ◦A(pm+1−pm))(1/cm), Zm−11)

≤ (pm+1 − pm) logM + κ(Zm−1)d(cm,1)

= (pm+1 − pm) logM + κ(A(pm))d(cm,1).

Also

d(cm,1) = d((Wm−1
T ◦A(pm−pm−1)T)(1/rm−1),Wm−1

T1)

≤ (pm − pm−1) logM + κ(Wm−1
T)d(1/rm−1, 1)

= (pm − pm−1) logM + κ(Wm−1)d(rm−1,1)

= (pm − pm−1) logM + κ(A(pm−1))d(rm−1,1),

then

d(rm,1) ≤ (pm+1 − pm) logM + (pm − pm−1)κ(A(pm)) logM

+κ(A(pm))κ(A(pm−1))d(rm−1, 1) .

The second statement is established in a similar way.

Lemma 7.5.9. Assume that pm = a log(m+ 1), where 0 < a log θ(A) < 2. Then
we have limm→∞ d(cm, 1) = 0.

Proof. Since

d(cm,1) = a log
m+ 1
m

logM + a log
m+ 1
m

κ(A(pm−1)) logM

+κ2(A(pm−1))d(cm−1, 1)

<
2a logM

m
+ κ2(A(pm−1))d(cm−1,1) .

Let β1 := d(c1, 1), and define the sequence βm by βm := fm−1(βm−1), where

fm−1(x) =
2a logM

m
+ κ2(A(pm−1))x .

Since every function fm is nondecreasing, an immediate induction shows that
d(cm,1) ≤ βm, for all m ≥ 1, and so, it suffices to show that limm βm = 0.

Let lm be the fixed point of fm−1. Setting

α :=
a log θ(A)

2
,

and observing that

1− κ2(A(pm−1)) =
4m−α

(1 +m−α)2
,

7.6. CONCLUSION 97

we get

lm =
2a logM

m(1− κ2(A(pm−1)))
=
a logM

2

(
1 +m−α

)2
m1−α .

Since 0 < α < 1, one readily checks that the sequence lm decreases with m and
converges to zero. If βm+1 ≤ lm for every m, then limm→∞ βm ≤ limm→∞ lm = 0,
and the result is established. Assume now that βm+1 > lm for some m. Define
δk := βk+1 − lk for all k ≥ m. Observe that

δk+1 = fk(βk)− fk(lk) = κ2(A(pk))(βk − lk) = κ2(A(pk))δk + κ2(A(pk))(lk−1 − lk) .

Using the fact that κ2(A(pr)) ≤ 1 holds for all r, an immediate induction yields

δk ≤
(k−1∏
r=m

κ2(A(pr))
)
δm + lm − lk, ∀k ≥ m+ 1 . (7.11)

Since 1− κ2(A(pr)) ∼ 4r−α, we have

∞∏
r=m

κ(A(pr)) = 0 .

Letting k →∞ in (7.11), we get lim supk→∞ δk ≤ lm. Since this holds for all m, it
follows that lim supk→∞ δk ≤ 0, and so lim supk→∞ βk+1 = lim supk→∞ δk + lk ≤
lim supk→∞ δk + limk→∞ lk = 0. Hence, βk converges to zero.

The proof of the Theorem 7.5.4 is achieved since limm→∞ d(cm, 1) = 0 yields
limm→∞ d(rm, 1) = 0

7.6 Conclusion

We proposed an algorithm, which can be used as a preprocessing in the solution
of large scale optimal assignment problems to reduce the size of the input problem
in terms of memory requirements.

Two variants of the algorithm have been implemented. The first variant,
which is based on Sinkhorn iteration, shows generally reasonable convergence for
dense matrices with the reduction up to 99% of the input problem. However the
algorithm works slowly for sparse matrices. This version of the algorithm can be
efficiently used as a parallel preprocessing to reduce the size of the input problem
in very large dense optimal assignment problems.

Another variant of the algorithm implemented by using the Newton itera-
tion which shows fast convergence for all dense matrices and sparse symmetric
matrices. However the convergence speed for sparse nonsymmetric matrices is
slow.

98 CHAPTER 7. SCALING ALGORITHMS FOR OPTIMAL ASSIGNMENT PROBLEM

The last section of this chapter concerns a new iterative method that we refer
to as deformed-Sinkhorn iteration. It is proved that the iteration converges to
the solution of optimal assignment problem, if the input matrix is positive and
if it has only one optimal permutation. For positive matrices with more than
one optimal permutation, the iteration converges to a matrix for which all the
nonzero entries belong to at least one optimal permutation.

Publications and communications

to conferences concerning the

present work

[1] M. Akian, S. Gaubert, and M. Sharify. Tropical approximation of matrix eigenvalues.
In 16th Conference of the International Linear Algebra Society (ILAS), Pisa, Italy,
2010. [cited at p. 33]

[2] S. Gaubert, L. Grigori, and M. Sharify. A parallel optimal assignment algorithm
based on diagonal scaling, SIAM workshop on combinatorial scientific computing
(CSC09). Monterey Bay - Seaside, California, USA, 2009. Extended abstract, http:
//www.boman.us/CSC09/abstracts/csc09_submission_25.pdf. [cited at p. 67, 79]

[3] S. Gaubert, L. Grigori, and M. Sharify. A parallel preprocessing for the optimal
assignment problem based on diagonal scaling, 6th international workshop on parallel
matrix algorithms and applications (PMAA10). Basel, Switzerland, 2010. http:

//www.pmaa10.unibas.ch/programme.php. [cited at p. 67, 79]

[4] S. Gaubert and M. Sharify. Tropical scaling of polynomial eigenvalue problem. In
Congrès SMAI, La Colle sur Loup, Alpes Maritimes, France, 2009. Poster represen-
tation, http://smai.emath.fr/smai2009/resumesPDF/meisamsharify/Abstract.
pdf. [cited at p. 33]

[5] S. Gaubert and M. Sharify. Tropical scaling of polynomial eigenvalue problems, 1st
Montreal workshop on idempotent and tropical mathematics. Montreal, Canada,
2009. [cited at p. 33]

[6] S. Gaubert and M. Sharify. Tropical scaling of polynomial eigenvalue problems,
SIAM conference on applied linear algebra (LA09). Monterey Bay - Seaside, Cal-
ifornia, USA, 2009. http://www.siam.org/meetings/la09/LA09abstracts.pdf.
[cited at p. 33]

[7] S. Gaubert and M. Sharify. Tropical scaling of polynomial matrices. In Rafael Bru and
Sergio Romero-Vivó, editors, Proceedings of the third Multidisciplinary International
Symposium on Positive Systems: Theory and Applications (POSTA 09), volume 389

99

http://www.boman.us/CSC09/abstracts/csc09_submission_25.pdf
http://www.boman.us/CSC09/abstracts/csc09_submission_25.pdf
http://www.pmaa10.unibas.ch/programme.php
http://www.pmaa10.unibas.ch/programme.php
http://smai.emath.fr/smai2009/resumesPDF/meisamsharify/Abstract.pdf
http://smai.emath.fr/smai2009/resumesPDF/meisamsharify/Abstract.pdf
http://www.siam.org/meetings/la09/LA09abstracts.pdf

100
PUBLICATIONS AND COMMUNICATIONS TO CONFERENCES CONCERNING THE

PRESENT WORK

of LNCIS, pages 291–303, Valencia, Spain, 2009. Springer. Eprint doi:10.1007/978-
3-642-02894-6 28, arXiv:arXiv:0905.0121. [cited at p. 33]

[8] Meisam Sharify, Stéphane Gaubert, and Laura Grigori. A parallel preprocessing
for the optimal assignment problem based on diagonal scaling. submitted. Also:
arXiv:arXiv:1104.3830, 2011. [cited at p. 67, 79]

http://dx.doi.org/10.1007/978-3-642-02894-6_28
http://dx.doi.org/10.1007/978-3-642-02894-6_28
http://www.arXiv.org/abs/arXiv:0905.0121
http://www.arXiv.org/abs/arXiv:1104.3830

Bibliography

[AA09] Sk. Safique Ahmad and Rafikul Alam. Pseudospectra, critical points and
multiple eigenvalues of matrix polynomials. Linear Algebra and its Appli-
cations, 430(4):1171 – 1195, 2009. [cited at p. 3, 34]

[ABG04] Marianne Akian, Ravindra Bapat, and Stéphane Gaubert. Perturbation of
eigenvalues of matrix pencils and the optimal assignment problem. C. R.
Math. Acad. Sci. Paris, 339(2):103–108, 2004. [cited at p. 3, 15, 16, 34, 43, 48,

50, 54]

[ABG05] M. Akian, R. Bapat, and S. Gaubert. Min-plus methods in eigenvalue
perturbation theory and generalised Lidskii-Vishik-Ljusternik theorem.
arXiv:math.SP/0402090, 2005. [cited at p. 3, 11, 15, 34, 48, 50, 54]

[ABG06] M. Akian, R. Bapat, and S. Gaubert. Max-plus algebras. In L. Hogben,
editor, Handbook of Linear Algebra (Discrete Mathematics and Its Applica-
tions), volume 39. Chapman & Hall/CRC, 2006. Chapter 25. [cited at p. 10,

14]

[ADRU08] P. Amestoy, I. S. Duff, D. Ruiz, and B. Uçar. A parallel matrix scaling
algorithm. In High Performance Computing for Computational Science -
VECPAR 2008, volume 5336 of Lecture Notes in Computer Science, pages
301–313. Springer Berlin / Heidelberg, 2008. [cited at p. 4, 81, 83]

[AGG09] M. Akian, S. Gaubert, and A. Guterman. Linear independence over tropical
semirings and beyond. In G.L. Litvinov and S.N. Sergeev, editors, Proceed-
ings of the International Conference on Tropical and Idempotent Mathe-
matics, volume 495 of Contemporary Mathematics, pages 1–38. American
Mathematical Society, 2009. arXiv:0812.3496. [cited at p. 15, 48]

[AGL08] Marianne Akian, Stéphane Gaubert, and Asma Lakhoua. The max-
plus finite element method for solving deterministic optimal control prob-
lems: basic properties and convergence analysis. SIAM J. Control Optim.,
47(2):817–848, 2008. [cited at p. 2]

[AM62] A. R. Amir-Moez. Khayyam’s solution of cubic equations. Mathematics
Magazine, 35:269–271, Nov. 1962. [cited at p. 18]

101

http://www.arXiv.org/abs/math.SP/0402090
http://www.arXiv.org/abs/0812.3496

102 BIBLIOGRAPHY

[BB03] R. E. Burkard and P. Butkovič. Finding all essential terms of a characteristic
maxpolynomial. Discrete Appl. Math., 130(3):367–380, 2003. [cited at p. 3,

47, 49, 51, 55]

[BCGG09] P. Butkovič, R. A. Cuninghame-Green, and S. Gaubert. Reducible
spectral theory with applications to the robustness of matrices in max-
algebra. SIAM J. Matrix Anal. Appl., 31(3):1412–1431, 2009. Eprint
doi:10.1137/080731232. [cited at p. 14]

[BCOQ92] François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. Synchronization and linearity. Wiley Series in Probability and
Mathematical Statistics: Probability and Mathematical Statistics. John
Wiley & Sons Ltd., Chichester, 1992. An algebra for discrete event sys-
tems. [cited at p. 1, 2, 9, 10, 14, 15, 48]

[BDM09] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment
problems. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2009. [cited at p. 70, 71]

[BEK90] R. Bhatia, L. Elsner, and G. Krause. Bounds for the variation of the roots
of a polynomial and the eigenvalues of a matrix. Linear Algebra Appl.,
142:195–209, 1990. [cited at p. 39]

[BFH+03] Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mohayaee, and
A. Sobolevskii. Reconstruction of the early universe as a convex optimiza-
tion problem. Mon.Not.Roy.Astron.Soc., 346:501–524, 2003. [cited at p. 4,

70, 81]

[Bir46] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tu-
cumán. Revista A., 5:147–151, 1946. [cited at p. 85]

[BK76] Truman Bewley and Elon Kohlberg. The asymptotic theory of stochastic
games. Math. Oper. Res., 1(3):197–208, 1976. [cited at p. 76]

[BK96] Peter W. Buchen and Michael Kelly. The maximum entropy distribution of
an asset inferred from option prices. Journal of Financial and Quantitative
Analysis, 31(01):143–159, March 1996. [cited at p. 72]

[BLN94] J. M. Borwein, A. S. Lewis, and R. D. Nussbaum. Entropy minimization,
DAD problems, and doubly stochastic kernels. J. Funct. Anal., 123(2):264–
307, 1994. [cited at p. 73]

[BM00] Peter Butkovic and Louise Murfitt. Calculating essential terms of a char-
acteristic maxpolynomial. CEJOR Cent. Eur. J. Oper. Res., 8(3):237–246,
2000. [cited at p. 47, 48]

[BMP02] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-
nition using shape contexts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):509–522, April 2002. [cited at p. 70]

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real
algebraic geometry, volume 10 of Algorithms and Computation in Mathe-
matics. Springer-Verlag, Berlin, second edition, 2006. [cited at p. 75]

http://dx.doi.org/10.1137/080731232

BIBLIOGRAPHY 103

[BR97] R. B. Bapat and T. E. S. Raghavan. Nonnegative matrices and applications,
volume 64 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1997. [cited at p. 84]

[Bru74] Richard A. Brualdi. The DAD theorem for arbitrary row sums. Proc. Amer.
Math. Soc., 45:189–194, 1974. [cited at p. 72]

[BSvdD95] R. B. Bapat, David P. Stanford, and P. van den Driessche. Pattern proper-
ties and spectral inequalities in max algebra. SIAM J. Matrix Anal. Appl.,
16(3):964–976, 1995. [cited at p. 14]

[BT09] L. Buš and P. Tvrd́ık. Towards auction algorithms for large dense assign-
ment problems. Comput. Optim. Appl., 43(3):411–436, 2009. [cited at p. 4,

81]

[But10] Peter Butkovič. Max-linear Systems: Theory and Algorithms. Springer
Monographs in Mathematics, 2010. [cited at p. 2]

[CG60] R.A. Cuninghame-Green. Process synchronization in a steelworks-a prob-
lem of feasibility. In Proceedings of the Second International Conference
on Operational Research, pages 323–328, London, 1960. English University
Press. [cited at p. 2]

[CG83] R. A. Cuninghame-Green. The characteristic maxpolynomial of a matrix.
J. Math. Anal. Appl., 95(1):110–116, 1983. [cited at p. 48, 51]

[CG94] R.A. Cuninghame-Green. Minimax algebra and applications. volume 90 of
Advances in Imaging and Electron Physics, pages 1 – 121. Elsevier, 1994.
[cited at p. 14]

[CGM80] R. A. Cuninghame-Green and P. F. J. Meijer. An algebra for piecewise-
linear minimax problems. Discrete Appl. Math., 2(4):267–294, 1980.
[cited at p. 1, 11]

[CGQ01] G. Cohen, S. Gaubert, and J.P. Quadrat. Hahn-Banach separation theorem
for max-plus semimodules. In J.L. Menaldi, E. Rofman, and A. Sulem,
editors, Optimal Control and Partial Differential Equations, pages 325–334.
IOS Press, 2001. [cited at p. 2]

[CJMZ01] Jill Cirasella, David S. Johnson, Lyle A. McGeoch, and Weixiong Zhang.
The asymmetric traveling salesman problem: Algorithms, instance gen-
erators, and tests. In Adam L. Buchsbaum and Jack Snoeyink, editors,
ALENEX, volume 2153 of Lecture Notes in Computer Science, pages 32–
59. Springer, 2001. [cited at p. 70]

[CMQV84] G. Cohen, P. Moller, J. P. Quadrat, and M. Viot. Linear system theory
for discrete event systems. In Decision and Control, 1984. The 23rd IEEE
Conference on, volume 23, pages 539 –544, 1984. [cited at p. 2]

[CpQ99] Guy Cohen and Stphane Gaubert Jean pierre Quadrat. Max-plus algebra
and system theory: Where we are and where to go now. Annu. Rev. Control,
pages 207–219, 1999. [cited at p. 1]

104 BIBLIOGRAPHY

[CtCG+98] Jean Cochet-terrasson, Guy Cohen, Stephane Gaubert, Michael Mc Get-
trick, and Jean pierre Quadrat. Numerical computation of spectral elements
in max-plus algebra, 1998. [cited at p. 14]

[CWC+96] Yong-Qing Cheng, Victor Wu, Robert T. Collins, Allen R. Hanson, and
Edward M. Riseman. Maximum-weight bipartite matching technique and
its application in image feature matching. In In Proc. SPIE Visual Comm.
and Image Processing, 1996. [cited at p. 3, 70]

[DG97] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean
cycle algorithms for system performance analysis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17:889–899,
1997. [cited at p. 14]

[DK69] E. A. Dinic and M. A. Kronrod. An algorithm for solving the assignment
problem. Dokl. Akad. Nauk SSSR, 189:23–25, 1969. [cited at p. 71]

[DK00] I. S. Duff and J. Koster. On algorithms for permuting large entries to the
diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl., 22(4):973–996,
2000. [cited at p. 3, 71]

[EK70] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. In Combinatorial Structures and
their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969),
pages 93–96. Gordon and Breach, New York, 1970. [cited at p. 71]

[Erl81] Sven Erlander. Entropy in linear programs. Math. Programming, 21(2):137–
151, 1981. [cited at p. 72]

[FL89] Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices.
Linear Algebra Appl., 114/115:717–735, 1989. [cited at p. 84, 95]

[FLVD04] Hung-Yuan Fan, Wen-Wei Lin, and Paul Van Dooren. Normwise scaling of
second order polynomial matrices. SIAM J. Matrix Anal. Appl., 26(1):252–
256, 2004. [cited at p. 3, 34, 35, 36, 37, 43]

[FPT00] M. Forsberg, M. Passare, and A. Tsikh. Laurent determinants and arrange-
ments of hyperplane amoebas. Adv. Math., 151(1):45–70, 2000. [cited at p. 2]

[FRT97] S.-C. Fang, J. R. Rajasekera, and H.-S. J. Tsao. Entropy optimization and
mathematical programming. International Series in Operations Research &
Management Science, 8. Kluwer Academic Publishers, Boston, MA, 1997.
[cited at p. 72]

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. Assoc. Comput.
Mach., 34(3):596–615, 1987. [cited at p. 71]

[Gau92] S. Gaubert. Théorie des systèmes linéaires dans les diöıdes. Thèse, École
des Mines de Paris, July 1992. [cited at p. 14]

[Gau98] Stéphane Gaubert. Two lectures on max-plus algebra. In In Proceedings
of the 26th Spring School on Theoretical Computer Science and Automatic
Control, Noirmoutier, 1998. [cited at p. 15]

BIBLIOGRAPHY 105

[Gau09] Stephane Gaubert. Max-plus and tropical convexity unified: Some unex-
pected results. Seminar on Applications of Tropical Algebra, UC Berkeley,
2009. [cited at p. 1]

[GH08] A. Galántai and C. J. Hegedűs. Perturbation bounds for polynomials. Nu-
mer. Math., 109(1):77–100, 2008. [cited at p. 38]

[GK10] Elisabeth Gassner and Bettina Klinz. A fast parametric assignment al-
gorithm with applications in max-algebra. Networks, 55(2):61–77, 2010.
[cited at p. 47, 49]

[GM84] M. Gondran and M. Minoux. Linear algebra in dioids: a survey of recent
results. In Algebraic and combinatorial methods in operations research,
volume 95 of North-Holland Math. Stud., pages 147–163. North-Holland,
Amsterdam, 1984. [cited at p. 2, 15, 48]

[Gol97] Andrew V. Goldberg. An efficient implementation of a scaling minimum-
cost flow algorithm. J. Algorithms, 22(1):1–29, 1997. [cited at p. 125]

[Gra72] R. L. Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Inf. Proc. Lett., 1(4):132–133, 1972. [cited at p. 11]

[Had93] Jacques Hadamard. Étude sur les propriétés des fonctions entières et en par-
ticulier d’une fonction considéré par Riemann. Journal de Mathématiques
Pures et Appliquées, 58:171215, 1893. [cited at p. 2, 19]

[Hal35] P. Hall. On representatives of subsets. J. London Math. Soc., 10(37):26–30,
1935. [cited at p. 68]

[HCLH90] Chu-Yi Huang, Yen-Shen Chen, Yan-Long Lin, and Yu-Chin Hsu. Data
path allocation based on bipartite weighted matching. Design Automation
Conference, pages 499–504, 1990. [cited at p. 3, 70]

[HLT07] Nicholas J. Higham, Ren-Cang Li, and Françoise Tisseur. Backward error
of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal.
Appl., 29(4):1218–1241, 2007. [cited at p. 3, 34]

[HMT06] Nicholas J. Higham, D. Steven Mackey, and Françoise Tisseur. The con-
ditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal.
Appl., 28(4):1005–1028, 2006. [cited at p. 3, 34]

[Hol93] L. Holm. Protein Structure Comparison by Alignment of Distance Matrices.
Journal of Molecular Biology, 233(1):123–138, September 1993. [cited at p. 3,

70]

[HT03] Nicholas J. Higham and Françoise Tisseur. Bounds for eigenvalues of matrix
polynomials. Linear Algebra Appl., 358:5–22, 2003. Special issue on accurate
solution of eigenvalue problems (Hagen, 2000). [cited at p. 41]

[IMS07] I. Itenberg, G. Mikhalkin, and E. Shustin. Tropical algebraic geometry.
Oberwolfach seminars. Birkhäuser, 2007. [cited at p. 11, 34]

[Jay57] E. T. Jaynes. Information theory and statistical mechanics. II. Phys. Rev.
(2), 108:171–190, 1957. [cited at p. 72]

106 BIBLIOGRAPHY

[JvdWJ06] Olsder G. J. and van der Woude J. Max Plus at Work - Modeling and
Analysis of Synchronized Systems. Princeton Series in Applied Mathemat-
ics. Princeton University Press, 2006. [cited at p. 1]

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations (Proc. Sympos., IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New
York, 1972. [cited at p. 70]

[Kar78] Richard M. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Math., 23(3):309–311, 1978. [cited at p. 14]

[KB57] Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the
location of economic activities. Econometrica, 25:53–76, 1957. [cited at p. 70]

[Kir09] B. Kh. Kirshtein. Complex roots of systems of tropical equations and stabil-
ity of electrical power networks. In Tropical and idempotent mathematics,
volume 495 of Contemp. Math., pages 213–238. Amer. Math. Soc., Provi-
dence, RI, 2009. [cited at p. 20]

[KK90] Ikeda Kiyohiro and Murota Kazuo. Critical initial imperfection of struc-
tures. International Journal of Solids and Structures, 26(8):865 – 886, 1990.
[cited at p. 16]

[KK92a] J. N. Kapur and H. K. Kesavan. Entropy optimization principles with ap-
plications. Academic Press Inc., Boston, MA, 1992. [cited at p. 71]

[KK92b] L. Khachiyan and B. Kalantari. Diagonal matrix scaling and linear pro-
gramming. SIAM J. Optim., 2(4):668–672, 1992. [cited at p. 89]

[KM97] V. N. Kolokoltsov and V. P. Maslov. Idempotent analysis and its applica-
tions, volume 401 of Mathematics and its Applications. Kluwer Academic
Publishers Group, Dordrecht, 1997. [cited at p. 1, 2, 10]

[Kni08] Philip A. Knight. The Sinkhorn-Knopp algorithm: convergence and appli-
cations. SIAM J. Matrix Anal. Appl., 30(1):261–275, 2008. [cited at p. 84]

[KR07] P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. In
Andreas Frommer, Michael W. Mahoney, and Daniel B. Szyld, editors,
Web Information Retrieval and Linear Algebra Algorithms, number 07071
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany. [cited at p. 4, 5, 82, 89, 91, 129]

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Res. Logist. Quart., 2:83–97, 1955. [cited at p. 71]

[LCL04] Ying-Hung Lin, Hsun-Chang Chang, and Yaw-Ling Lin. A study on tools
and algorithms for 3-d protein structures alignment and comparison. In
International Computer Symposium, 2004. [cited at p. 3, 70]

[LD03] X. S. Li and J. W. Demmel. SuperLU DIST: A Scalable Distributed-
memory Sparse Direct Solver for Unsymmetric linear systems. ACM Trans-
actions on Mathematical Software, 29(2), 2003. [cited at p. 3, 71]

BIBLIOGRAPHY 107

[LMS01] G. L. Litvinov, V. P. Maslov, and G. B. Shpiz. Idempotent functional anal-
ysis: an algebraic approach. Math. Notes, 69(5):696–729, 2001. [cited at p. 1]

[LO94] Y. Lee and J. B. Orlin. On very large scale assignment problems. In Large
scale optimization (Gainesville, FL, 1993), pages 206–244. Kluwer Acad.
Publ., Dordrecht, 1994. [cited at p. 4, 81]

[LSW00] N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly
polynomial algorithm for matrix scaling and approximate permanents.
Combinatorica, 20(4):545–568, 2000. [cited at p. 81]

[Mar] Thomas Markwig. A field of generalised puiseux series for tropical geometry.
to appear in Rend. Semin. Mat. Torino (2009), see also arXiv:0709.3784.
[cited at p. 76]

[Mar66] Morris Marden. Geometry of polynomials. Second edition. Mathematical
Surveys, No. 3. American Mathematical Society, Providence, R.I., 1966.
[cited at p. 2]

[McE06] William M. McEneaney. Max-plus methods for nonlinear control and es-
timation. Systems & Control: Foundations & Applications. Birkhäuser
Boston Inc., Boston, MA, 2006. [cited at p. 1]

[Mik05] G. Mikhalkin. Enumerative tropical algebraic geometry in R
2. J. Amer.

Math. Soc., 18(2):313–377 (electronic), 2005. [cited at p. 2]

[Mir60] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart.
J. Math. Oxford Ser. (2), 11:50–59, 1960. [cited at p. 84]

[MMMM06] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann.
Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix
Anal. Appl., 28(4):971–1004, 2006. [cited at p. 35]

[MPV87] M. Mezard, G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond
(World Scientific Lecture Notes in Physics, Vol 9). World Scientific Pub-
lishing Company, 1987. [cited at p. 4, 70, 81]

[MS69] M. V. Menon and Hans Schneider. The spectrum of a nonlinear opera-
tor associated with a matrix. Linear Algebra and Appl., 2:321–334, 1969.
[cited at p. 72]

[MS73] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigen-
value problems. SIAM J. Numer. Anal., 10:241–256, 1973. [cited at p. 2,

34]

[MS92] V. P. Maslov and S. N. Samborskĭı, editors. Idempotent analysis, volume 13
of Advances in Soviet Mathematics. Amer. Math. Soc., Providence, RI,
1992. [cited at p. 1]

[Mur90] Kazuo Murota. Computing puiseux-series solutions to determinantal equa-
tions via combinatorial relaxation. SIAM J. Comput., 19(6):1132–1161,
1990. [cited at p. 16]

108 BIBLIOGRAPHY

[MZ01] G. Malajovich and J. P. Zubelli. Tangent Graeffe iteration. Numer. Math.,
89(4):749–782, 2001. [cited at p. 86]

[NN94] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13 of SIAM Studies in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1994. [cited at p. 77]

[ON96] Markus Olschowka and Arnold Neumaier. A new pivoting strategy for
Gaussian elimination. Linear Algebra Appl., 240:131–151, 1996. [cited at p. 3,

71]

[Ost40a] Alexandre Ostrowski. Recherches sur la méthode de Graeffe et les zéros
des polynomes et des séries de Laurent. Acta Math., 72:99–155, 1940.
[cited at p. 2, 19]

[Ost40b] Alexandre Ostrowski. Recherches sur la méthode de Graeffe et les zéros
des polynomes et des séries de Laurent. Chapitres III et IV. Acta Math.,
72:157–257, 1940. [cited at p. 2, 19]

[Pan97] Victor Y. Pan. Solving a polynomial equation: Some history and recent
progress. SIAM Rev., 39:187–220, June 1997. [cited at p. 18]

[Par02] G. Parisi. Euclidean random matrices, the glass transition and the boson
peak. The European Physical Journal E: Soft Matter and Biological Physics,
9(3):213–218, November 2002. [cited at p. 88]

[Pin98] Jean-Éric Pin. Tropical semirings. In Jeremy Gunawardena, editor, Idem-
potency, pages 50–69. Cambridge University Press, 1998. [cited at p. 1]

[PT05] Mikael Passare and August Tsikh. Amoebas: their spines and their con-
tours. In Idempotent mathematics and mathematical physics, volume 377 of
Contemp. Math., pages 275–288. Amer. Math. Soc., Providence, RI, 2005.
[cited at p. 34]

[RGST05] Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First
steps in tropical geometry. In Idempotent mathematics and mathematical
physics, volume 377 of Contemp. Math., pages 289–317. Amer. Math. Soc.,
Providence, RI, 2005. [cited at p. 2]

[RW98] R.T. Rockafellar and R.J.B. Wets. Variational analysis. Number v.
317 in Grundlehren der mathematischen Wissenschaften. Springer, 1998.
[cited at p. 56]

[Sch82] A. Schönhage. The fundamental theorem of algebra in terms of compu-
tational complexity. Technical report, Univ. Tübingen, 1982. 73 pages.
[cited at p. 18]

[Sch89] Michael H. Schneider. Matrix scaling, entropy minimization, and conjugate
duality. I. Existence conditions. Linear Algebra Appl., 114/115:785–813,
1989. [cited at p. 73]

BIBLIOGRAPHY 109

[SG76] Sartaj Sahni and Teofilo Gonzalez. P -complete approximation problems.
J. Assoc. Comput. Mach., 23(3):555–565, 1976. [cited at p. 70]

[Sim78] Imre Simon. Limited subsets of a free monoid. In Proceedings of the 19th
Annual Symposium on Foundations of Computer Science, pages 143–150,
Washington, DC, USA, 1978. IEEE Computer Society. [cited at p. 1]

[SK67] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and
doubly stochastic matrices. Pacific J. Math., 21:343–348, 1967. [cited at p. 4,

5, 72, 76, 80, 82, 83]

[Spe38] W. Specht. Zur theorie der algebraischen gleichungen. Jahr. DMV, 48:142–
145, 1938. [cited at p. 2, 19]

[SW49] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Com-
munication. The University of Illinois Press, Urbana, Ill., 1949. [cited at p. 72]

[SZ90] Michael H. Schneider and Stavros A. Zenios. A comparative study of
algorithms for matrix balancing. Oper. Res., 38:439–455, May 1990.
[cited at p. 72]

[Tar51] Alfred Tarski. A decision method for elementary algebra and geometry.
University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd
ed. [cited at p. 76]

[TDM10] Fernando De Teran, Froilan M. Dopico, and D. Steven Mackey. Fiedler
companion linearizations and the recovery of minimal indices. Siam Journal
on Matrix Analysis and Applications, 31, 2010. [cited at p. 3]

[Tis00] Françoise Tisseur. Backward error and condition of polynomial eigenvalue
problems. Linear Algebra Appl., 309(1-3):339–361, 2000. Proceedings of
the International Workshop on Accurate Solution of Eigenvalue Problems
(University Park,PA, 1998). [cited at p. 3, 34, 35]

[VAL14] G. VALIRON. Sur les fonctions entières d’ordre nul et d’ordre fini et en par-
ticulier les fonctions à correspondance régulière. PhD thesis, Thèse de Paris,
1914. Réimprimé dans les annales de la faculté des sciences de Toulous.
[cited at p. 20]

[Vir01] O. Viro. Dequantization of real algebraic geometry on logarithmic paper.
In European Congress of Mathematics, Vol. I (Barcelona, 2000), volume
201 of Progr. Math., pages 135–146. Birkhäuser, Basel, 2001. [cited at p. 2,

77]

[Vor67] N.N. Vorobyev. Extremal algebra of positive matrices. Elektron. Informa-
tionsverarbeitung und Kybernetik, 3:39–71, 1967. in Russian. [cited at p. 2]

[Zim77] K. Zimmermann. A general separation theorem in extremal algebras.
Ekonom.-Mat. Obzor, 13(2):179–201, 1977. [cited at p. 2]

Appendices

111

APPENDIX A

Computing the tropical roots in

linear time

The following code is a Scilab implementation of an algorithm, which computes
the tropical roots of a given polynomial, p(x) =

∑n
i=0 aix

i, in O(n).
The tropical root function gets a polynomial p as an input and call new-

ton polygon function to compute the Newton polygon of the input. The latter
function, calls calcpoints function to provide a list of points for which the convex
hull should be computed. Next, this list will be sent to graham scan function,
which computes the convex polygon of the polynomial. Since the input set of
points are sorted, the computation will be done in O(n) instead of O(n log(n)).
There is as well the newton polygon demo function in the code, which can be
used to plot the Newton polygon for a given polynomial.

function y=t r o p i c a l r o o t s (p)

//This f unc t i on computes the t r o p i c a l r oo t s in l i n e a r time .

p o i n t s l i s t=newton polygon (p , 1) ;

i f s ize (p o i n t s l i s t , :) <2 then

error (’The number o f monomials i s l e s s than two ! ’) ;

end ,

c o e f l=abs (coeff (p)) ;

for i= 1 : (s ize (p o i n t s l i s t , :) −1) do

t r=(c o e f l (p o i n t s l i s t (i , 1) +1)/ c o e f l (p o i n t s l i s t ((i +1) ,1)+1))

ˆ(−1/(p o i n t s l i s t (i , 1)−p o i n t s l i s t (i +1 ,1))) ;

113

114 APPENDIX A. COMPUTING THE TROPICAL ROOTS IN LINEAR TIME

t emp l i s t 1 (i , :) =[p o i n t s l i s t (i +1 ,1)−p o i n t s l i s t (i , 1) , t r] ;

end ,

y=temp l i s t 1 ;

endfunction

function y=newton polygon (p , upper lower)

p o i n t l i s t=ca l c p o i n t s (p) ;

i f upper lower==0 | upper lower==1 then

y=graham scan (p o i n t l i s t , upper lower) ;

else

error (’ I nva l i d Input Data ’) ;

end ,

endfunction

function y=ca l c p o i n t s (p)

j =1;

t emp l i s t 1=coeff (p) ;

i f length (t emp l i s t 1) < 2 then

error (’The number o f monomials i s l e s s than two ! ’) ;

end ,

for i= 1 : length (t emp l i s t 1) do

i f t emp l i s t 1 (i) <> 0 then

templog= log (abs (t emp l i s t 1 (i))) ;

t emp l i s t 2 (j , :) =[i −1, templog] ;

j=j +1;

end ,

end ,

y=temp l i s t 2 ;

endfunction

function y=graham scan (l i s t o f p o i n t s , upper lower)

// i f upper lower=1 then the upper boundary o f the convex h u l l w i l l

be computed ,

// i f i t i s zero then the the lower boundary o f the convex h u l l w i l l

be computed

n=s ize (l i s t o f p o i n t s , :) ;

i f n<2 then

error (’ This Polynomial has l e s s than two monomials ’) ;

e l s e i f n==2 then

y=l i s t o f p o i n t s ;

return ;

else

i f upper lower==0 | upper lower==1 then

i f upper lower==1 then

d i r e c t i o n =−1;

else

d i r e c t i o n =1;

end ,

p t l i s t=upper l ower l i n e (l i s t o f p o i n t s , upper lower) ;

i f s ize (p t l i s t , :) == 2 then

115

y=p t l i s t ;

return ;

end ,

s t a ckpo in t e r =1;

po i n t s s t a c k (s tackpo in te r , :)=p t l i s t (1 , :) ;

f i r s t p=p t l i s t (2 , :) ;

secondp=p t l i s t (1 , :) ;

for i= 3 : s ize (p t l i s t , :) do

turnp=((p t l i s t (i , 1)−secondp (1)) ∗(f i r s t p (2)−secondp (2)))

−((f i r s t p (1)−secondp (1)) ∗(p t l i s t (i , 2)−secondp (2))) ;

while (turnp∗ d i r e c t i o n)>0 & stackpo in te r >1 do

po i n t s s t a c k (s tackpo in te r , :) =[−1 ,−1];

s t a ckpo in t e r=stackpo in te r −1;

f i r s t p=secondp ;

secondp=po i n t s s t a c k (s tackpo in te r , :) ;

turnp=(p t l i s t (i , 1)−secondp (1)) ∗(f i r s t p (2)−secondp (2))

−(f i r s t p (1)−secondp (1)) ∗(p t l i s t (i , 2)−secondp (2)) ;

end ,

i f (turnp∗ d i r e c t i o n)>0 & s ta ckpo in t e r==1 then

f i r s t p=p t l i s t (i , :) ;

else

s t a ckpo in t e r=s ta ckpo in t e r +1;

po i n t s s t a c k (s tackpo in te r , :)=f i r s t p ;

secondp=f i r s t p ;

f i r s t p=p t l i s t (i , :) ;

end ,

end ,

s t a ckpo in t e r=s ta ckpo in t e r +1;

po i n t s s t a c k (s tackpo in te r , :)=f i r s t p ;

j=s t a ckpo in t e r ;

while s tackpo in te r <>0 do

t l i s t 1 (j , :)=po i n t s s t a c k (s tackpo in te r , :) ;

j=j −1;

p o i n t s s t a c k (s tackpo in te r , :) =[−1 ,−1];

s t a ckpo in t e r=stackpo in te r −1;

end ,

f i n a l l i s t 2 (1 , :)=t l i s t 1 (1 , :) ;

j =2;

k=s ize (t l i s t 1 , :) ;

for i= 2 : (k−1) do

i f ((t l i s t 1 (i , 2)− t l i s t 1 ((i −1) ,2)) ∗(t l i s t 1 ((i +1) ,1)− t l i s t 1

(i , 1)))<>((t l i s t 1 ((i +1) ,2)− t l i s t 1 (i , 2)) ∗(t l i s t 1 (i , 1)−
t l i s t 1 ((i −1) ,1))) then

f i n a l l i s t 2 (j , :)=t l i s t 1 (i , :) ;

j=j +1;

end ,

end ,

f i n a l l i s t 2 (j , :)=t l i s t 1 (k , :) ;

y=f i n a l l i s t 2 ;

else

error (’ I nva l i d Input Data ’) ;

116 APPENDIX A. COMPUTING THE TROPICAL ROOTS IN LINEAR TIME

end ,

end ,

endfunction

function y=upper l ower l i n e (p o i n t s l i s t , upperlower)

i =2;

n=s ize (p o i n t s l i s t , :) ;

a=p o i n t s l i s t (1 , :) ;

b=p o i n t s l i s t (n , :) ;

t emp l i s t (1 , :)=a ;

m=(b (2)−a (2)) /(b (1)−a (1)) ;

for j= 2 : (n−1) do

yc=a (2)+ (m∗(p o i n t s l i s t (j , 1)−a (1))) ;

i f yc <= p o i n t s l i s t (j , 2) & upperlower==1 then

t emp l i s t (i , :)=p o i n t s l i s t (j , :) ;

i=i +1;

e l s e i f yc >= p o i n t s l i s t (j , 2) & upperlower == 0 then

t emp l i s t (i , :)=p o i n t s l i s t (j , :) ;

i=i +1;

end ,

end ,

t emp l i s t (i , :)=b ;

y=temp l i s t ;

endfunction ;

function newton polygon demo (p , upper lower)

p o i n t l i s t=newton polygon (p , upper lower) ;

a l l p o i n t s=ca l c p o i n t s (p) ;

plot (a l l p o i n t s (: , 1) , a l l p o i n t s (: , 2) , ’ r . ’) ;

plot (p o i n t l i s t (: , 1) , p o i n t l i s t (: , 2) , ’ b ’) ;

return ;

endfunction

APPENDIX B

The implementation of the

tropical scaling for the matrix

eigenvalue problem

Here we present a Matlab implementation of the tropical scaling for a quadratic
matrix eigenvalue problem and a Scilab implementation of the tropical scaling in
the general case i.e. a matrix polynomial with an arbitrary degree. Table B.1
demonstrates the list of all Matlab functions. In the Matlab code, a0, a1, a2
respectively denote A0, A1 and A2 and for a quadratic matrix polynomial, p(λ) =
A0 +A1λ+A2λ

2. Also, gama0, gama1, gama2 respectively denote the Euclidean
norm of A0, A1, A2.

Table B.2 presents the name of functions, input and output variables and a
short description of each function, which is used in the Scilab implementation.
The data format that we use to store a matrix polynomial, p(λ) = A0+. . .+Adλd,
is an n × n(d + 1) matrix, a = [A0, A1, A2, ..., Ad], where n is the dimension of
any matrix, Ai. The format of other variables are explained in Table B.2

Listing B.1: Matlab code for the tropical scaling of a quadratic matrix polynomial

function [e l i s t p , v l i s t 1p , v l i s t 2p , backerr1p , backerr2p]= alphap lus (a2 , a1

, a0 , gama2 , gama1 , gama0)

117

118 APPENDIX B. TROPICAL SCALING FOR THE MATRIX EIGENVALUE PROBLEM

i f gama1ˆ2>gama0∗gama2

alpha1=max(gama1/gama2 , (gama0/gama2) ˆ(1/2)) ;

d2=gama2/(gama1ˆ2) ;

ahatp0=d2∗a0 ;

ahatp1=d2∗ alpha1 ∗a1 ;

ahatp2=d2 ∗(alpha1 ˆ2) ∗a2 ;

[A,E]=constpen (ahatp2 , ahatp1 , ahatp0) ;

[e l i s t p , v l i s t 1p , v l i s t 2 p]= e i g en s (A,E) ;

e l i s t p=alpha1 ∗ e l i s t p ;

backerr1p=backwarderr (a2 , a1 , a0 , e l i s t p , v l i s t 1p , gama2 , gama1 , gama0) ;

backerr2p=backwarderr (a2 , a1 , a0 , e l i s t p , v l i s t 2p , gama2 , gama1 , gama0) ;

else

e l i s t p =0;

v l i s t 1 p =0;

v l i s t 2 p =0;

backerr1p =0;

backerr2p =0;

end ;

end

function [e l i s tm , vl i st1m , vl i st2m , backerr1m , backerr2m]=alphaminus (a2 ,

a1 , a0 , gama2 , gama1 , gama0)

i f gama1ˆ2>gama0∗gama2

alpha2=min(gama0/gama1 , (gama0/gama2) ˆ(1/2)) ;

d2=1/gama0 ;

ahatm0=d2∗a0 ;

ahatm1=d2∗ alpha2 ∗a1 ;

ahatm2=d2 ∗(alpha2 ˆ2) ∗a2 ;

[A,E]=constpen (ahatm2 , ahatm1 , ahatm0) ;

[e l i s tm , vl i st1m , v l i s t2m]= e i g en s (A,E) ;

e l i s tm=alpha2 ∗ e l i s tm ;

backerr1m=backwarderr (a2 , a1 , a0 , e l i s tm , vl i st1m , gama2 , gama1 , gama0) ;

backerr2m=backwarderr (a2 , a1 , a0 , e l i s tm , vl i st2m , gama2 , gama1 , gama0) ;

else

e l i s tm =0;

v l i s t1m =0;

v l i s t2m =0;

backerr1m=0;

backerr2m=0;

end ;

end

function [A,E]=constpen (a2 , a1 , a0)

tmpdima=s ize (a2) ;

dima=tmpdima (1) ;

A=[zeros (dima , dima) ,eye (dima , dima) ;−a0 ,−a1] ;

E=[eye (dima , dima) , zeros (dima , dima) ; zeros (dima , dima) , a2] ;

end

function [e ign1 , vect1 , vect2]= e i g en s (A,E)

119

n=s ize (A, 2) /2 ;

[v , d]=eig (A,E) ;

e ign1=eig (A,E) ;

vect1=v (1 : s ize (v , 1) /2 , 1 : s ize (v , 2)) ;

vect2=v(s ize (v , 1) /2+1: s ize (v , 1) , 1 : s ize (v , 2)) ;

end

function y=backwarderr (a2 , a1 , a0 , e , v , gama2 , gama1 , gama0)

for i =1: length (e)

p=(e (i) ˆ2) ∗a2+e (i) ∗a1+a0 ;

egvet=p∗v (: , i) ;

egva l=abs (e (i)) ;

backerr1 (i , 1)=norm(egvet , 2) / (((egva l ˆ2) ∗gama2+egva l ∗gama1+gama0) ∗
norm(v (: , i) , 2)) ;

end

y=backerr1 ;

end

Listing B.2: Scilab code of the tropical scaling for a given matrix polynomial
with an arbitrary degree

function [e i gn1 so r t ed , se ign1 , backwi thout s ca l so r t ed , backsca l]=gexamp

(a)

d=(s ize (a , 2) / s ize (a , 1))−1;

[se ign1 , se igenv , i n f i n]= t r op s c a l (a) ;

[A,E]=gconstpen (a) ;

[e ign1 , vect]= ge i g en s (A,E, d) ;

[e , e i gn1 so r t ed index]=gsort (abs (e ign1) , ’ r ’ , ’ d ’) ;

backwithoutsca l=gpenc i l ba ck e r r o r (a , e ign1 , vect) ;

for i =1: s ize (eign1 , 1)

backw i thout s ca l s o r t ed (i)=backwithoutsca l (e i gn1 so r t ed index (i)) ;

e i g n1 s o r t ed (i)=e ign1 (e i gn1 so r t ed index (i)) ;

end ;

backsca l=gpenc i l ba ck e r r o r (a , se ign1 , s e i g env) ;

endfunction

function [e ign1 , e igenv]= t r op s c a l (a)

i n f i n=%F;

ind=0;

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

a j=zeros (n , (pdegree+1)∗n) ;

y=zeros (n∗pdegree , 1) ;

t r o p l i s t=t r opp en c i l r o o t s (a) ;

numtroproots=s ize (t r o p l i s t , 1) ;

for i =1: numtroproots

t r o p i c a l r o o t=t r o p l i s t (numtroproots−i +1 ,2) ;

mu l t i p l t r o o t=t r o p l i s t (numtroproots−i +1 ,1) ;

s c a l i n g a l p h a i=1/ t r o p l i s t (numtroproots−i +1 ,3) ;

for j =0: pdegree

120 APPENDIX B. TROPICAL SCALING FOR THE MATRIX EIGENVALUE PROBLEM

a j (: , j ∗n+1:(j +1)∗n)=s c a l i n g a l p h a i ∗(t r o p i c a l r o o t ˆ j) ∗a (: , j ∗n+1:(j

+1)∗n) ;

end ;

[As , Es]=gconstpen (a j) ;

[se igenv , s e i g enve c t]= ge i g en s (As , Es , pdegree) ;

s e i g env=se i genv ∗ t r o p i c a l r o o t ;

i f isnan (mean(abs (s e i g env))) then

c l e a n l i s t v=c l eannan in f (s e i g env) ;

[e sorted , index1]=gsort (abs (c l e a n l i s t v (: , 1)) , ’ r ’ , ’ d ’) ;

f l i s t=eye (s ize (se igenv , 1)−s ize (c l e a n l i s t v , 1) , 1) ∗%nan ;

e v e c t o r l i s t=zeros (s ize (se igenv , 1) , s ize (se igenv , 1)−s ize (

c l e a n l i s t v , 1)) ;

for tmr=1: s ize (c l e a n l i s t v , 1)

indindex=abs (c l e a n l i s t v (index1 (tmr) ,2)) ;

f l i s t (s ize (se igenv , 1)−s ize (c l e a n l i s t v , 1)+tmr)= se igenv (

indindex) ;

e v e c t o r l i s t (: , s ize (se igenv , 1)−s ize (c l e a n l i s t v , 1)+tmr)=

s e i g enve c t (: , ind index) ;

end ;

e ign1 (ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n)=f l i s t (ind ∗n+1:(ind+

mu l t i p l t r o o t) ∗n) ;

e igenv (1 : n∗pdegree , ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n)=s e i g enve c t (: ,

ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n) ;

i n f i n=%T;

else

[s e i genv abs , s o r t l]=gsort (abs (s e i g env) , ’ r ’ , ’ d ’) ;

e ign1 (ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n)=se igenv (s o r t l (ind ∗n+1:(ind

+mu l t i p l t r o o t) ∗n)) ;

e igenv (1 : n∗pdegree , ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n)=s e i g enve c t (: ,

s o r t l (ind ∗n+1:(ind+mu l t i p l t r o o t) ∗n)) ;

end ;

ind=ind+mu l t i p l t r o o t ;

end ;

endfunction ;

function [A,E]=gconstpen (a)

t=s ize (a , 2) ;

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

a2=zeros (a) ;

for i =0: pdegree

a2 (: , i ∗n+1: i ∗n+n)=a (: , (pdegree−i) ∗n+1:(pdegree−i +1)∗n) ;

end ;

A=diag (ones ((pdegree−1)∗n , 1) ,−n) ;

A(1 : n , :)=−a2 (: , n+1:(pdegree+1)∗n) ;

E=eye (n∗pdegree , n∗pdegree) ;

E(1 : n , 1 : n)=a (: , pdegree ∗n+1:(pdegree+1)∗n) ;

endfunction

function [e ign1 , vect]= ge i g en s (A,E, d)

121

n=s ize (A, 2) /d ;

[temp1 , temp2 , temp3 , temp4]=spec (A,E) ;

i f min(abs (temp2))==0 then

e ign1=spec (A,E) ;

else

for i =1: s ize (temp1 , 1)

e ign1 (i)=temp1 (i) /temp2 (i) ;

end ;

end ;

vect=temp4 ;

endfunction

function y=valp (a , l)

n=s ize (a , 1) ;

y=zeros (n , n) ;

pdegree=(s ize (a , 2) /n)−1;

for i =1: pdegree+1

mtemp=a (1 : n ,1+(i −1)∗n : (i ∗n)) ;

y=y+l ˆ(i −1)∗mtemp ;

end ;

endfunction ;

function y=gpenc i l ba ck e r r o r (a , e , v)

dim=s ize (e , 1) ;

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

for i =1: pdegree+1

mtemp=a (1 : n ,1+(i −1)∗n : (i ∗n)) ;

vectornorms (i)=norm(mtemp , 2) ;

end ;

for i =1: s ize (e , 1)

p e n c i l v a l=valp (a , e (i)) ;

e i g enve c t o r=v (1 : n , i) ;

r=norm(p e n c i l v a l ∗ e i genvec to r , 2) ;

e i g enva l ab s=abs (e (i)) ;

a l =0;

for j =1: pdegree+1

a l=a l+vectornorms (j) ∗ e i g enva l ab s ˆ(j−1) ;

end ;

i f a l==0 then

error (’ a l i s ze ro ’) ;

e l s e i f norm(e i genvec to r , 2)==0 then

warning (’ e i g enve c t o r i s ze ro ’) ;

y (i)=%inf ;

else

y (i)=r /(a l ∗norm(e i genvec to r , 2)) ;

end ;

end ;

endfunction ;

function y=t r opp en c i l r o o t s (a)

122 APPENDIX B. TROPICAL SCALING FOR THE MATRIX EIGENVALUE PROBLEM

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

for i =1: pdegree+1

mtemp=a (1 : n ,1+(i −1)∗n : (i ∗n)) ;

c o e f l (i)=norm(mtemp , 2) ;

end ;

p=poly (c o e f l , ”x” , ” c o e f f ”) ;

y=t r o p i c a l r o o t s 2 (p) ;

endfunction ;

function y=t r o p i c a l r o o t s 2 (p)

p o i n t s l i s t=newton polygon (p , 1) ;

i f s ize (p o i n t s l i s t , :) <2 then

error (’Numebr o f monomials i s l e s s than two ! ’) ;

end ,

c o e f l=abs (coeff (p)) ;

for i= 1 : (s ize (p o i n t s l i s t , :) −1) do

t r=(c o e f l (p o i n t s l i s t (i , 1) +1)/ c o e f l (p o i n t s l i s t ((i +1) ,1)+1))

ˆ(−1/(p o i n t s l i s t (i , 1)−p o i n t s l i s t (i +1 ,1))) ;

p a lpha i=c o e f l (p o i n t s l i s t (i , 1) +1)∗ t r ˆ p o i n t s l i s t (i , 1) ;

t emp l i s t 1 (i , :) =[p o i n t s l i s t (i +1 ,1)−p o i n t s l i s t (i , 1) , tr , p a lpha i

] ;

end ,

y=temp l i s t 1 ;

endfunction

function y=c l eannan in f (v)

n=s ize (v , 1) ;

j =1;

for i =1:n

i f ˜ isnan (v (i)) & ˜ i s i n f (v (i)) then

y (j , :) =[v (i) , i] ;

j=j +1;

end ;

end ;

endfunction ;

123

Table B.1: The List of Matlab functions for the tropical scaling of a quadratic
matrix eigenvalue problem.

Function name Description Input para. Output para.
alphaplus Computes the

eigenvalues,
eigenvectors and
backward error by
using the largest
tropical root

a2,a1,a0: The
input quadratic
matrix polynomial
gama2, gama1,
gama0:
Corresponding
norm 2 of a0,a1,a2

elistp: List of the eigenvalues
vlist1p: Matrix of the
eigenvectors
vlist2p: Matrix of the
eigenvectors
backerr1p: List of the
backward errors corresponding
to the eigenvalues and vlist1p
backerr2p: List of the
backward errors corresponding
to the eigenvalues and vlist2p

alphaminus Computes the
eigenvalues,
eigenvectors and
backward error by
using the smallest
tropical root

a2,a1,a0: The
input quadratic
matrix polynomial
gama2, gama1,
gama0:
Corresponding
norm 2 of a0,a1,a2

elistm: List of the eigenvalues
vlist1m: Matrix of the
eigenvectors
vlist2m: Matrix of the
eigenvectors
backerr1m: List of the
backward errors corresponding
to eigenvalues and vlist1m
backerr2m: List of the
backward errors corresponding
to eigenvalues and vlistm

constpen Converts a
quadratic matrix
polynomial to a
pencil

a2,a1,a0: The
input quadratic
matrix polynomial

A,E: The pencil matrices

eigens Returns the list of
the eigenvalues, and
two matrices of
eigenvectors

A,E: The pencil
input matrices

eign1: List of the eigenvalues
vect1: Matrix of the
eigenvectors
vect2: Matrix of the
eigenvectors

backwarderr Computes the
backward error for a
given quadratic
matrix polynomial

a2,a1,a0: The
input quadratic
matrix polynomial
gama2, gama1,
gama0:
Corresponding
norm 2 of a0,a1,a2

y: List of the backward errors
corresponding to the all
eigenvalues

124 APPENDIX B. TROPICAL SCALING FOR THE MATRIX EIGENVALUE PROBLEM

Table B.2: The List of Scilab functions for the tropical scaling of a matrix eigen-
value problem.

Function name Description Input para. Output para.
gexamp For a matrix

polynomial,
computes the list of
the eigenvalues and
backward errors by
using the scaling
and without using
the scaling

a: polynomial
matrix

eign1 sorted: list of the
eigenvalues without using the
scaling
seign1: list of the eigenvalues
by using the scaling
backwithoutscal sorted:
list of the backward errors for
the eigenvalues without using
the scaling
backscal: list of the
backward errors by using the
scaling

tropscal Computes the
eigenvalues and
eigenvectors of a
given polynomial
matrix by using the
tropical scaling

a: polynomial
matrix

eign1: list of the eigenvalues
by using the tropical scaling
eigenv: the matrix of the
eigenvectors for the
corresponding eigenvalues

gconstpen Converts the
polynomial
eigenvalue to a
pencil

a: matrix
polynomial

A,E: matrices of dimension
nd where n is dimension of Ai

and d is the degree of
polynomial

geigens Returns the
eigenvalues and
eigenvectors of a
given pencil

A,E: the pencil
matrices
d:degree of
polynomial matrix

eign1: list of the eigenvalues
vect: right eigenvector of the
pencil

valp Computes the value
of a pencil for a
given λ

a: matrix
polynomial

y: a matrix of dimension n

gpencilbackerror Computes the
eigenvalues, the
eigenvectors and the
backward errors for
a given matrix
polynomial

a: matrix
polynomial
e: the list of
eigenvalues
v: matrix of the
eigenvectors

y: list of the backward errors
computed for each eigenvalue

troppencilroots Computes the
corresponding
tropical roots of a
matrix polynomial

a: matrix
polynomial

y: a matrix of three columns
for which the first column
presents the multiplicity of
tropical roots, the second
column present the value of
these roots and the third
column presents the value of
max-times polynomial for the
corresponding tropical root

tropical roots2 Computes the
tropical roots of a
given polynomial by
calling
Newton polygon
function presented
in A

p: a given
polynomial

y: list of the tropical roots,
multiplicities and values of p
for each tropical root

cleannaninf Delete all non or inf
values for a given
vector

v: input vector y: output vector

APPENDIX C

Computing the tropical

eigenvalues of a max-plus matrix

polynomial

The following is a Scilab implementation to compute the tropical eigenvalues of
a max-plus matrix polynomial. Here, the main function is tropical eigenvalues
which takes a max-plus matrix polynomial , tp(λ) = A0 ⊕ λA1 ⊕ . . . ⊕ λdAd in
the form of a = [A0, A1, . . . , Ad] as an input, and returns the tropical eigenval-
ues. Recall that the tropical eigenvalues are the tropical roots of the function
maxper(tp(λ)) defined in Equations 5.2 and 5.2. We use the max-plus tool-
box of Scilab which is developed by M. McGettrick, G. Cohen, S. Gaubert, and
J.-P. Quadrat∗. We also use an external function, perm5, to solve an optimal
assignment problem. This function, takes a max-plus matrix and returns the
Hungarian-pairs, the value of the optimal assignment, and the optimal permuta-
tion. perm5 is a Scilab interface of a C function, CS2, which is developed by A.
Goldberg and B. Cherkassky [Gol97] to solve Minimum-Cost Flow problem.

In the code, there are three other subfunctions which are called by the function
tropical eigenvalues. The following is a short description of these functions.

∗ This toolbox is downloadable from http://amadeus.inria.fr/gaubert/MaxplusToolbox.html

125

http://amadeus.inria.fr/gaubert/MaxplusToolbox.html

126
APPENDIX C. COMPUTING THE TROPICAL EIGENVALUES OF A MAX-PLUS

MATRIX POLYNOMIAL

• value matpol(): Takes a max-plus matrix polynomial, a, and a scalar value
l and computes the value of a at the point, l.

• pencil val degree(): For a max-plus matrix polynomial tp(λ) = A0 ⊕ . . . ⊕
λdAd, it computes the degree, vt and the valuation, v0, of the function
f(λ) = maxper(tp(λ)) = δ0 ⊗ λv0 ⊕ . . .⊕ δt ⊗ λvt which is defined in Equa-
tions 5.2 and 5.2. It also computes δ0 and δt, the coefficients of the terms
with minimum and maximum degree, respectively.

• compute right left driv(): Takes a max-plus polynomial matrix a, and a
scalar, l, and computes the right and the left derivatives for the given point,
l. For more details see Section 5.3.

function pl=value matpol (a , l)

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

l=#(l) ;

for i =1: pdegree+1

t=a (1 : n ,1+(i −1)∗n : (i ∗n)) ;

i f i==1

pl=t ;

else

t=((l) ˆ(i −1)) ∗ t ;

p l=pl+t ;

end

end

endfunction

function [pen deg , pen val , dco f f , v c o f f]= p en c i l v a l d e g r e e (a)

n=s ize (a , 1) ;

pdegree=(s ize (a , 2) /n)−1;

for i =1: pdegree+1

t=a (1 : n ,1+(i −1)∗n : (i ∗n)) ;

i f i >1

t (t>%0)=#(i −1) ;

pt deg=pt deg+t ;

p t va l=pt va l+(−t) ;

else

t (t>%0)=%1;

pt deg=t ;

p t va l=t ;

end

end ;

clear t ;

[pen deg , perm , u , v]=perm5 (pt deg) ;

t=(pt deg==#(diag (u) ∗ones (n , n)+ones (n , n) ∗diag (v))) ;

for i =1:n

for j =1:n

i f t (i , j)

127

co e f d eg (i , j)=a (i , p lu s t imes (pt deg (i , j)) ∗n+j) ;

else

co e f d eg (i , j)=%0;

end

end

end

[pen val , perm , u , v]=perm5 (p t va l) ;

t=(p t va l==#(diag (u) ∗ones (n , n)+ones (n , n) ∗diag (v))) ;

for i =1:n

for j =1:n

i f t (i , j)

c o e f v a l (i , j)=#(a (i ,−p lus t imes (p t va l (i , j)) ∗n+j)) ;

else

c o e f v a l (i , j)=%0;

end

end

end

dco f f=perm5 (coe f d eg) ; v c o f f=perm5 (c o e f v a l) ;

pen deg=round(pen deg) ; pen va l=−round(pen va l) ;

endfunction ;

function [rdr iv , l d r i v]= c ompu t e r i g h t l e f t d r i v (a , l)

p r e c i s i o n =10ˆ(−12)

l=#(l) ;

n=s ize (a , 1) ;

d=(s ize (a , 2) /n)−1;

p l=value matpol (a , l) ;

[val , perm , u , v]=perm5 (p l) ;

t=abs (p lus t imes (p l)−(diag (u) ∗ones (n , n)+ones (n , n) ∗diag (v)))<

p r e c i s i o n

for i =1:n

for j =1:n

i f t (i , j)

maxk=d ;

while ((a (i ,maxk∗n+j)==%0) | (a (i ,maxk∗n+j) ∗(l) ˆmaxk˜=pl (i , j)

))

maxk=maxk−1;

end

mink=0;

while ((a (i , mink∗n+j)==%0) | (a (i , mink∗n+j) ∗(l) ˆmink˜=pl (i , j

)))

mink=mink+1;

end

maxm(i , j)=maxk ;

minm(i , j)=mink ;

else

maxm(i , j)=%0;

minm(i , j)=%0;

end

end

end

128
APPENDIX C. COMPUTING THE TROPICAL EIGENVALUES OF A MAX-PLUS

MATRIX POLYNOMIAL

r d r i v=round(perm5(#(maxm))) ;

l d r i v=round(−perm5(#(−minm))) ;

endfunction

function [pval , pdeg , t r o p l i s t]= t r o p i c a l e i g e n v a l u e s (a)

p r e c i s i o n =10ˆ(−8) ;

k=1;

[pdeg , pval , dco f f , v c o f f]= p en c i l v a l d e g r e e (a) ;

l =(vco f f−dco f f) /(pdeg−pval) ;

l i s t 1 (1 , :) =[l , pval , vco f f , pdeg , d c o f f] ;

while size (l i s t 1 , 1)>0

l=l i s t 1 (1 , 1) ;

v l=l i s t 1 (1 , 2) ;

c l=l i s t 1 (1 , 3) ;

vr=l i s t 1 (1 , 4) ;

c r=l i s t 1 (1 , 5) ;

l i s t 1 (1 , :) = [] ;

l s i z e=s ize (l i s t 1 , 1) ;

i f vr==vl+1

i f abs (l−round(l))<p r e c i s i o n

l=round(l) ;

end ;

t r o p l i s t (k , :) =[l , 1] ;

k=k+1;

else

pl=value matpol (a , l) ;

f l=perm5 (p l) ;

i f abs (f l −(c l+v l ∗ l))<p r e c i s i o n

i f abs (l−round(l))<p r e c i s i o n

l=round(l) ;

end ;

t r o p l i s t (k , :) =[l , vr−v l] ;

k=k+1;

else

[rdr iv , l d r i v]= c ompu t e r i g h t l e f t d r i v (a , l) ;

i f l d r i v <r d r i v

t r o p l i s t (k , :) =[l , rdr iv−l d r i v] ;

k=k+1;

end

c l 2=f l−l d r i v ∗ l ;

c r2=f l−r d r i v ∗ l ;

l i s t 1 (l s i z e +1 , :) =[(c l−c l 2) /(l d r i v−v l) , vl , c l , l d r i v , c l 2] ;

l i s t 1 (l s i z e +2 , :) =[(cr−cr2) /(rdr iv−vr) , rdr iv , cr2 , vr , c r] ;

end

end

end

endfunction

APPENDIX D

Newton Algorithm to compute

the diagonal scaling matrices

The following code is the Matlab implementation of the Newton method, which
is appeared in the work of Knight and Ruiz [KR07]. The input matrix is a non-
negative symmetric matrix and in each Newton step a linear system of equations
should be solved for which the Conjugate Gradient method is used. If the original
matrix, A, is nonsymmetric then the input matrix can be computed as

S =

(
0 A

AT 0

)
.

In this case, the linear system, which should be solved in each Newton step
is singular, however it is proved that the system is consistent whenever A has
support (A ≥ 0 has support if it has a positive diagonal).

function [x , r e s] = bnewt (A, to l , x0 , de l ta , f l)

% BNEWT A ba lanc ing a l gor i thm fo r symmetric matr ices

%

% X = BNEWT(A) at tempts to f i nd a vec t o r X such t ha t

% diag (X)∗A∗ d iag (X) i s c l o s e to doub ly s t o c h a s t i c . A must

% be symmetric and nonnegat ive .

%

% X0: i n i t i a l guess . TOL: error t o l e r anc e .

129

130APPENDIX D. NEWTON ALGORITHM FOR THE DIAGONAL SCALING PROBLEM

% DEL: how c l o s e ba l anc ing v e c t o r s can ge t to the edge o f the

% p o s i t i v e cone . We use a r e l a t i v e measure on the s i z e o f e lements .

% FL: in t e rmed ia t e convergence s t a t i s t i c s on/ o f f .

% RES: r e s i d u a l error , measured by norm(diag (x)∗A∗x − e) .

% I n i t i a l i s e

[n , n]= s ize (A) ; e = ones (n , 1) ; r e s = [] ;

i f nargin < 5 , f l = 0 ; end

i f nargin < 4 , d e l t a = 0 . 1 ; end

i f nargin < 3 , x0 = e ; end

i f nargin < 2 , t o l = 1e−6; end

g=0.9; etamax = 0 . 1 ; % Parameters used in inner s topp ing c r i t e r i o n .

eta = etamax ;

x = x0 ; r t = t o l ˆ2 ; v = x . ∗ (A∗x) ; rk = 1 − v ;

rho km1 = r k ∗ rk ; rout = rho km1 ; ro ld = rout ;

MVP = 0 ; % We l l count matrix v e c t o r produc t s .

i = 0 ; % Outer i t e r a t i o n count .

i f f l == 1 , fpr intf (i t in . i t r e s \ n) , end

while rout > r t % Outer i t e r a t i o n

i = i + 1 ; k = 0 ; y = e ;

i n n e r t o l = max([e ta ˆ2∗ rout , r t]) ;

while rho km1 > i n n e r t o l %Inner i t e r a t i o n by CG

k = k + 1 ;

i f k == 1

Z = rk . / v ; p=Z ; rho km1 = r k ∗Z ;

else

beta=rho km1/rho km2 ;

p=Z + beta∗p ;

end

% Update search d i r e c t i o n e f f i c i e n t l y .

w = x . ∗ (A∗(x .∗p)) + v .∗p ;

alpha = rho km1 /(p ∗w) ;

ap = alpha ∗p ;

% Test d i s t ance to boundary o f cone .

ynew = y + ap ;

i f min(ynew) <= de l t a

i f de l t a == 0 , break , end

ind = find (ap < 0) ;

gamma = min((d e l t a − y (ind)) . / ap (ind)) ;

y = y + gamma∗ap ;

break

end

y = ynew ;

rk = rk − alpha ∗w; rho km2 = rho km1 ;

Z = rk . / v ; rho km1 = r k ∗Z ;

end

x = x .∗ y ; v = x . ∗ (A∗x) ;

rk = 1 − v ; rho km1 = r k ∗ rk ; rout = rho km1 ;

131

MVP = MVP + k + 1 ;

% Update inner i t e r a t i o n s topp ing c r i t e r i o n .

rat = rout / ro ld ; r o ld = rout ; r norm = sqrt (rout) ;

e t a o = eta ; eta = g∗rat ;

i f g∗ e ta o ˆ2 > 0 .1

eta = max([eta , g∗ e ta o ˆ2]) ;

end

eta = max([min ([eta , etamax]) , 0 . 5∗ t o l / r norm]) ;

i f f l == 1

fpr intf (%3d %6d %.3e %.3e %.3e \ n , i , k , r norm ,min(y) ,min(x)) ;

r e s =[r e s ; r norm] ;

end

end

fprintf (Mat r i x−vec to r products = %6d\ n , MVP)

List of Figures

2.1 Newton polygon corresponding to the max-times polynomial tp(x) =
1⊕ 15x2 ⊕ 8x3 ⊕ 70x4 ⊕ 10−1x7. 12

3.1 Newton polygon corresponding to p(x). 21
3.2 Illustration of Lemma 3.3.5. 24
3.3 The illustration of the upper bound for δ1 in inequality 3.10 for several

values of m1 when r varies in (2, 4). 28
3.4 Newton polygon of p(x) = 0.1+0.1x+(1.000D+40)x7+(1.000D−10)x11. 30
3.5 The result of calling root function on p = 0.1+0.1x+1.000D+40x7 +

1.000D − 10x11 in Matlab. 30

4.1 Newton polygon corresponding to tp(x). 40
4.2 Backward error for smallest, medium and largest eigenvalues from top

to bottom. The vertical axis shows the log10 of backward error and
the horizontal axis shows 20 different randomly generated matrices. . 45

4.3 Backward error for smallest, medium and largest eigenvalues from top
to bottom. The vertical axis shows the log10 of backward error and
the horizontal axis shows 20 different randomly generated matrices. . 46

5.1 The diagram of f(λ). 63

6.1 An assignment between two sets. 68
6.2 The variation of log10 x12(p) as a function of p. 78

7.1 The graph corresponding to an Euclidean random matrix where the
dimension is 50. 80

7.2 The graph corresponding to the reduced matrix by applying the pre-
processing algorithm. 80

7.3 The number of iterations as a function of p. 87
7.4 The percentage of remaining entries as a function of p. 87

133

List of Tables

7.1 Sinkhorn iteration for dense matrices from the gallery of test matrices
of Matlab and for random and random Euclidean distance matrices. . 89

7.2 Sinkhorn iteration for sparse matrices from The University of Florida
Sparse Matrix Collection. 90

7.3 Newton iteration for dense symmetric matrices. 91
7.4 Newton iteration for dense nonsymmetric matrices. 91
7.5 Newton iteration for sparse symmetric matrices. 92
7.6 Newton iteration for sparse nonsymmetric matrices. 92

B.1 The List of Matlab functions for the tropical scaling of a quadratic
matrix eigenvalue problem. 123

B.2 The List of Scilab functions for the tropical scaling of a matrix eigen-
value problem. 124

134

	Contents
	1 Introduction
	1.1 Numerical applications of tropical algebra
	1.2 Optimal Assignment Problem
	1.3 Thesis Outline

	I Tropical Algebra and Numerical Methods
	2 Tropical mathematics and linear algebra
	2.1 Max-plus, Min-plus and Max-times semifields
	2.2 Tropical polynomials
	2.3 Matrices and tropical algebra
	2.4 Eigenvalues and Eigenvectors
	2.5 Perturbation of eigenvalues of matrix pencils

	3 Locations of the roots of a polynomial
	3.1 Introduction
	3.2 Classical bounds on the polynomial roots by tropical roots
	3.3 Location of the roots of a polynomial
	3.4 Application
	3.5 Conclusion

	4 Tropical scaling of matrix polynomials
	4.1 Introduction
	4.2 Matrix pencil and normwise backward error
	4.3 Construction of the tropical scaling
	4.4 Splitting of the eigenvalues in tropical groups
	4.5 Experimental Results
	4.5.1 Quadratic polynomial matrices
	4.5.2 Polynomial matrices of degree d

	4.6 Conclusion

	5 Tropical eigenvalues of a matrix polynomial
	5.1 Introduction
	5.2 Preliminaries
	5.3 Computing all the tropical eigenvalues
	5.3.1 Computing the first and the last essential terms
	5.3.2 Computing all the other essential terms

	II Optimal Assignment Problem
	6 Entropy maximization and max-product assignment
	6.1 Optimal assignment problem
	6.1.1 Definition
	6.1.2 Linear optimal assignment problem
	6.1.3 Applications and Solutions for the linear assignment problem

	6.2 Entropy maximization problem
	6.3 Deformed Entropy maximization problem and matrix scaling
	6.4 The speed of convergence
	6.5 Conclusion

	7 Scaling algorithms for optimal assignment problem
	7.1 Introduction
	7.2 Preprocessing algorithm
	7.2.1 Main idea
	7.2.2 Prescaling

	7.3 Sinkhorn iteration
	7.3.1 Logarithmic p-Sinkhorn iteration
	7.3.2 Experimental results

	7.4 Newton Iteration
	7.5 Deformed Sinkhorn iteration
	7.5.1 Definition
	7.5.2 Convergence to optimal assignment
	7.5.3 Convergence to bistochastic matrix for positive matrices

	7.6 Conclusion

	Publications and communications to conferences concerning the present work
	Bibliography
	A Computing the tropical roots in linear time
	B Tropical scaling for the matrix eigenvalue problem
	C Computing the tropical eigenvalues of a max-plus matrix polynomial
	D Newton Algorithm for the diagonal scaling problem
	List of Figures
	List of Tables

