
HAL Id: pastel-00645263
https://pastel.hal.science/pastel-00645263

Submitted on 27 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with P2P traffic in modern networks:
measurement, identification and control

Silvio Valenti

To cite this version:
Silvio Valenti. Dealing with P2P traffic in modern networks: measurement, identification and control.
Networking and Internet Architecture [cs.NI]. Télécom ParisTech, 2011. English. �NNT : �. �pastel-
00645263�

https://pastel.hal.science/pastel-00645263
https://hal.archives-ouvertes.fr

École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

Thèse
présentée pour obtenir le grade de docteur

de l’ École Nationale Supérieure des Télécommunications

Spécialité : Informatique et Réseaux

Silvio VALENTI

Dealing with P2P traffic in modern
networks: measurement, identification and

control

La gestion du trafic P2P dans les réseaux
modernes : mesure, identification et

contrôle

Soutenue le 21 septembre 2011 devant le jury composé de

Président - Rapporteur Ernst BIERSACK EURECOM
Rapporteur Luca SALGARELLI Università degli studi di Bresc ia

Examinateurs Olivier CAPPÉ Télécom ParisTech
Timur FRIEDMAN Université Pierre et Marie Curie
Sandrine VATON Télécom Bretagne

Invité Giovanna CAROFIGLIO Alcatel Bell Labs

Directeur de thèse Dario ROSSI Télécom ParisTech

ii

iii

Molte cose ci possono bastare, e devono bastare, nella vita:

l’amore, il lavoro, i soldi. Ma la voglia di conoscere non

basta mai, credo. Se uno ha voglia di conoscere, almeno.

Antonio Tabucchi – Viaggi e altri viaggi

iv

v

Acknowledgments, Remerciements,
Ringraziamenti

It is clear that without the support of many people my PhD thesis would not have been possible. In
this small page I will try to thank all the very important people that helped me achieve this result,
perhaps without even knowing.

Innanzitutto devo ringraziare Dario per avermi guidato e supportato in questa lunga avventura
del dottorato e per l’incommensurabile quantità di cose cheho imparato da lui in questi tre anni.
In particolare lo ringrazio per avermi trasmesso la sua passione per la ricerca, senza la quale non
avrei potuto ottenere questi risultati. Ma soprattutto lo voglio ringranziare da un punto di vista
umano, per il suo vulcanico entusiasmo, il suo ottimismo e umorismo che hanno allievato il peso
di questo lavoro.

Thanks to all the people I have worked with, that have invaluably enriched this experience.
I hope you have also enjoyed working with me as much: Luca, Giovanna, Alessandro, Marco,
Michela.

Let me thank as well the members of the jury and, the rapporteurs most of all, for their effort
in reviewing and attending this thesis.

Je dois remercier tous les personnes que j’ai rencontrés à Télécom ParisTech et qui ont partagé
avec moi les longues heures de travail (mais surtout les innombrables pauses café, les déjeuners
et les apéritifs). Merci pour tous les moments ensemble, vous avez été fondamentaux pour rendre
cette expérience spécial. Dans un ordre aléatoire: Paola, Federico, Stefano, Dorice, Salma, Amy,
Sameh, Mayssa, Maciej, Thomas, Xavier, Anand.

Ringrazio la banda di amici Italiani a Parigi, con i quali ho condiviso dei momenti indimen-
ticabili in questa bellissima città, di cui senza il dottorato non avrei potuto approfittare. In un
ordine altrettanto casuale: Paolo, Erika, Claudio, Gege, Max, Jessica, Marianna, Aruna, Stefano,
Antonio, Davide, Matteo, Giuseppe, Nicola, Mattia. D’ailleurs c’est trop difficile de lister tous les
autres personnes que j’ai rencontrées à Paris, mais un sincère remerciement va à eux aussi.

Ancora grazie agli amici di casa, perché, anche se mi sono allontanato fisicamente, sono sem-
pre stati vicini. Li ringrazio per essere sempre lì al mio ritorno e perché so che posso sempre
contare su di loro. Thanks also to who, despite my distance, lack of time or reticence, has suc-
ceeded in touching my heart.

Infine un ringraziamento alla mia famiglia che mi ha permessodi arrivare fin qui. Sebbene
distanti, sono stati sempre un punto di riferimento importantissimo, senza il quale non avrei potuto
affrontare gli ostacali di questo lavoro. Spero di avervi reso fieri di me tanto quanto lo sono io di
voi.

For all those I have undoubtedly miss, please let me assure you that, even though I have
forgotten you now, if you have been really important for me, Iwill remember you for the years to
come.

vi

vii

Résumé

Introduction

Les applications pair-à-pair (P2P) font certainement partie des services qui génèrent la majorité
du trafic sur les réseaux modernes, à cause de leur diffusion ainsi que du type des services qu’elles
fournissent (par exemple partage de fichiers ou la diffusionen direct de contenu vidéo). À la
fin de l’année 2007, certains études du trafic Internet, comme[92, 100], indiquaient une forte
contribution des services P2P à la totalité du trafic, qui, endifférentes régions du globe, était en
moyenne entre le 49 et 83 percent, dépassant aussi le trafic Web. La même année a marqué aussi
le début de la diffusion des applications P2P-TV, qui utilisent le paradigme P2P pour distribuer
contenu vidéo en direct et qui potentiellement avaient été montrées [86] capable de générer une
quantité de données très importante.

Pourtant, la situation a évolué dans une façon différente des prévisions. D’un côté des travaux
plus récents montrent une prédominance du trafic web, en particulier due au vidéo (ex. Youtube,
Megavideo) et au service de partage de fichiers (ex. Megaupload, Rapidshare) sur le trafic P2P; de
l’autre côté certains travaux de mesure [76, 169] ont observé que le volume absolu du trafic P2P
est toujours en train de croire (et va doubler en 2015 selon les prévisions) et dans quelque cas ils
ont aussi remarqué une inversion de tendance, où le P2P redevient populaire entre les usagers, par
exemple à cause des restrictions des certains services (Rapidshare). En outre, le P2P en Adobe
Flash Player (et donc dans le browser) ainsi que les nouveauxservices de diffusion de contenu
basés sur le P2P sont des ultérieurs indices que le trafic P2P va garder son rôle d’importance dans
les réseaux du futur.

En conséquence de leur diffusion et du volume de données généré, les applications P2P posent
constamment des nouvelles challenges pour les opérateurs de télécommunications: en fait, le
trafic P2P doit être bien contrôlé et managé dans le réseau, pour garantir qu’il n’endommage pas
les performances des autres applications avec qui il partage la bande passante. L’objectif de cette
thèse est de développer des outils et de protocoles pour supporter les opérateurs dans la gestion du
trafic P2P. En particulier, nous voulons fournir des solutions pour mieux (i)identifier, (ii) mesurer
et (iii) contrôlerce type de trafic. Dans les paragraphes suivants nous allons introduire chacune de
ces thématiques.

Quoi que soit la stratégie adopté par l’opérateur pour gérerle trafic P2P, il doit d’abord
l’identifier dans une façon efficace et fiable. Seulement avec une connaissance précise des paquets
qui appartiennent aux flux P2P, les opérateurs ont la possibilité d’implémenter des mécanismes de
qualité de service (QoS), pour donner une priorité inférieure au trafic P2P, puisqu’il ne dégrade
pas les performances des autres services. Cependant, malgré l’effort consacré par la communauté
au sujet de laclassification du trafic[32, 34, 63, 77, 80, 83, 101, 102, 105, 119, 124, 131, 132, 132,
140, 161, 165, 184], cet problème n’a pas encore été complètement résolu. Malheureusement, les
techniques classiques pour la classification du trafic, comme l’utilisation des numéros de porte de
la couche transport ou l’inspection des contenus de paquets(DPI), sont devenus beaucoup moins

viii

efficaces avec les trafic P2P. Pour cette raison, des nouvelles solutions ont étés proposés, comme
la classification comportementale[101, 102, 184], qui analyse la distribution du trafic générépar
une applications: l’idée est que, comme les activités des applications diffèrent entre eux, dans la
même façon le trafic généré va avoir des caractéristiques différents. Ce type de classificateurs ont
des caractéristiques particulièrement intéressantes, car, en basant la classification seulement sur
des données à niveau flux, comme ceux fournis par NetFlow, ilssont très légères en termes de
coût de calcul et donc adaptés au gros volume de trafic des réseaux modernes. Dans la première
partie de cette thèse nous allons développer un classificateur comportemental, Abacus, pensé pour
les applications P2P-TV, qui est le première capable d’attribuer le trafic à une spécifique applica-
tion, au lieu qu’à une famille de protocoles.

Une différente solution très utilisé par les opérateur pourgérer l’énorme quantité des données
et mesures des réseaux modernes est représenté parl’échantillonnageà différents niveaux: dans
cette façons ils réduisent le volume des données qu’ils doivent analyser et stocker. Cependant,
la qualité de l’information est aussi réduite, du coup on peut se demander si cette type de don-
nées permettent toujours une bonne caractérisation et éventuellement une correcte classification
du trafic. Dans la deuxième partie de cette thèse, nous cherchons de répondre à cette question,
en analysant différentes techniques pour réduire le volumedes données, à partir de diffèrent types
d’échantillonnage (à niveau paquet et à niveau flux) avec plusieurs politiques (ex. aléatoire, systé-
matique), jusqu’à l’use de dispositifs de mesure à niveau flux (ex. NetFlow): en particulier nous
allons évaluer leur impact sur la classification statistique du trafic Internet.

Finalement, un approche complémentaire à développer des outils que les opérateur puissent
utiliser pour mieux gérer le trafic P2P, est celui de modifier les protocoles eux mêmes, en les
rendant plus “gentils” avec le réseau. Cet stratégie a été récemment adoptée par les développeurs
de BitTorrent qui ont proposé au sein de l’IETF un nouveau protocole LEDBAT (pour Low Extra
Delay BAckground Transport protocole) et qui l’ont en suiteimplémenté dans le client officiel.
Ce protocole a l’objectif de fournir un service à basse priorité aux applications P2P, qui vont
réduire la vitesse de transmission en présence d’autres protocoles traditionnels (HTTP, Mail), tout
en utilisant la bande passante disponible. En particulier,le protocole cherche d’introduire un petit
délai sur le goulot d’étranglement du flux (qui on assume êtreà l’accès) si que en particulier les
performances des applications interactifs (ex. VoIP, jeu vidéo) ne soient pas impactés. Dans la
dernières partie de cette thèse, nous allons évaluer ce protocole, au moyen d’analyse formelle,
mesure et simulation, et nous allons aussi proposer des solutions à ses problèmes, notamment un
problème d’équité dans le partage de ressources.

Contributions

Cette thèse est divisée en trois parties, chacune consacréeà un différent aspect de la gestion et
contrôle du trafic P2P. Dans cette section nous allons listerles majeurs contributions de chaque
partie, qui seront après approfondies dans les sections suivantes.

La première partie est dédie à l’étude de laclassification du trafic P2P, en particulier au moyen
des algorithmes de classification comportementales, dont les avantages ont été présentés dans la
section précédente. Notre première résultat dans cette domaine est la définition d’un ensemble
de critère pour une exploration exhaustive de l’espace d’attributs qu’on peut définir à partir de
données à niveau flux fournis par dispositifs tels que NetFlow. Par attributs nous entendions tous
genres de propriétés et caractéristiques qui puissent êtreutilisés pour identifier l’application qui a
généré un certain flux de données sur le réseau. La définitionsde critères claires et précis nous
permet d’obtenir un grand nombre d’attributs, un ensemble le plus complet possible, au fin de
pouvoir découvrir quels sont les propriétés les plus utilespour un classificateur. En plus, notre

ix

système est facilement extensible, dans une façons telle qu’il contient aussi les propriétés utilisées
par les autres classificateurs, ce qui permet de les confronter facilement entre eux. Nous allons
utiliser deux métriques pour quantifier le contenue d’informations de chaque attribut, notamment
l’Information Gain et le ReliefF. Après avoir mesuré et comparé l’utilité de chaque attribut, nous
allons utiliser des algorithme de classification supervisée (Decision Trees comme C4.5) pour éval-
uer l’efficacité de nos attributs.

En suite, nous allons utiliser la connaissance des plus importants attributs ainsi que celle du
fonctionnement interne des application P2P-TV, pour définir un algorithme de classification Aba-
cus, très légère et adapte pour cette type d’applications. Ce classificateur utilise une signature très
simple pour identifier une application, qui est calculée à partir du compte du nombre des paquets
et octets échangés par un hôte avec les autres pairs dans des courtes fenêtres temporelles, sans
aucun accès aux données à l’intérieur des paquets. Cette simple signature est toutefois capable
de capturer les particularité des différentes applications, permettant donc de les reconnaitre dans
une façon efficace et fiable. La classification finale est baséesur Support Vector Machine, un
algorithme de classification supervisée qui a été démontré très performant pour la classification
du trafic réseau. Nous allons conduire une campagne d’expérimentation très vaste qui montre
comme notre classificateur n’est pas seulement capable d’identifier avec une grande précision
entre les applications, mais les signatures sont aussi portables entre diffèrent réseaux et temps.
Finalement nous comparons notre solution avec un autre classificateur, Kiss [77] basé, par con-
tre, sur l’inspection du contenu des paquets qui a été montrétrès efficace pour la même classe
d’applications. Abacus atteint la même précision que Kiss,mais il est beaucoup plus légère en
terme de coût de calcul.

Dans la deuxième partie, nous allons nous concentrer plutôtsur les techniques pour laréduc-
tion de données, et en particulier sur leur impact sur la qualité de la caractérisation et classification
du trafic. Nous commençons par étudier le comportement d’Abacus dans certains cas plus cri-
tiques. D’abord nous testons ses performances quand il utilise que de traces NetFlow: nos expéri-
ences montrent que Abacus fonctionne correctement avec cesdonnées, comme nous avions prévu
du début de son conception, bien que les records NetFlow aient un granularité temporelle plus
grande (les fenêtre temporelle de Abacus a du être élargie de5 s jusqu’à 2 minutes). En suite, nous
allons évaluer l’impact de déplacer un classificateur commeAbacus de la frontière du réseau, lieu
pour le quel il était conçu, à l’intérieur dans le core, où, à cause du routage, seulement une partie
des flux directs à un hôte est observé. Nos expériences montreque la classification avec Abacus
reste possible et précise à condition que l’échantillonnage de flux ne soit pas biaisé et qu’il ne
modifie pas la distribution des flux.

Notre évaluation continue en considérant aussi l’échantillonnage à niveau paquet, pratique
très diffuse entre les opérateur pour réduire la quantité dedonnées à traiter. Dans ce cas nous
conduisons un double étude au moyen de une version modifiée del’outil tstat qui nous permets
de traiter de traces en appliquant différents types d’échantillonnage avec plusieurs politiques et
d’extraire un grand nombre d’attributs à niveau flux. Le premier pas est de mesurer la distorsion
introduite par l’échantillonnage avec de métriques statistiques: nous allons bien voire que il y a
une forte distorsion même avec un faible échantillonnage, peu importe la politique adoptée. Par
contre, quand nous utilisons ces données échantillonnées pour la classification, dans la deuxième
partie de cet étude, nous découvrons que l’identification dutrafic reste possible, à condition que le
donnéee utilisées pour l’apprentissage du classificateur soient échantillonnés au même taux que le
données de test.

Dans la dernière partie de cette thèse nous allons nous occuper de contrôle de congestion pour
les applications P2P, en particulier de LEDBAT, le nouveau protocole du client BitTorrent officiel.
Dans un premier temps nous conduisons un étude de mesuré de l’implémentation officielle dans

x

des scénarios contrôlés: nous découvrons que le protocole,malgré quelque dysfonctionnement
dans les premières versions, à des bonne propriétés et se comporte correctement comme un proto-
cole à basse priorité.

Quoiqu’ils soient très utiles pour évaluer le performance d’un protocole, les études de mesure
ne sont pas suffisants: pour cette raison nous avons implémentés la spécification du protocole
présenté dans le IETF draft[166] dans le simulateur de réseaux à niveau paquetns2 et nous
avons simulé le protocole en différents scénarios. Nos simulations montrent que le protocole
souffre d’un problèmes pour ce qui concerne le partage de ressource entre deux flux LEDBAT
pas synchronisés: en fait, le deuxième flux a une mauvaise estimation du délai d’attente, qui le
porte à être plus agressive et à s’approprier de toute la bande passante. Nous présentons quelques
solutions pour ce dysfonctionnement et nous les testons toujours au moyens de simulation. Au
cours de notre recherche nous avons reconduit le problème d’équité, qui afflige les protocoles
basés sur le délai, à la spécification du contrôleur implémenté dans le protocole, en particulier
à la décroissance additive (ce qui avait déjà été montré par Jain dans les années ’80 [52]). Pour
cette raison, dans notre dernière solution nous réintroduisons la décroissance multiplicative et nous
allons prouver que cette modification est très efficace, au moyen d’un modelé mathématique ainsi
que des simulations en scénarios qui imitent le réel fonctionnement d’un réseau P2P.

Dans les sections restants de ce résumé, nous allons résumerchaque partie de la thèse avec
leur plus importants résultats.

Classification comportementale du trafic pair-à-pair

Cette section corresponds à la première partie de la thèse ets’occupe de l’application de techniques
de classification comportementale pour le trafic P2P.

Définition d’attributs pour la classification comportementale

Nous allons résumer dans cette section les résultats présentés dans le Chap. 3 de la thèse. Dans ce
chapitre, nous concevons un ensemble de critères pour la définition d’attributs pour la classifica-
tion comportemental du trafic P2P. Comme nous l’avons déjà dit précédemment, la classification
comportemental [80, 141, 180, 184, 184] se base sur de mesureà niveau flux du trafic généré par
un hôte pendant qu’il fait tourner une application: si des bonnes propriétés sont choisies qui car-
actérisent bien le trafic, alors des données très simple comme ceux fournies par NetFlow sont suff-
isants pour obtenir un bonne précision de classification. Cependant, la recherche a produit dans ce
domaine des travaux plutôt fragmentaire jusqu’à là: les solutions présentés [80, 97, 158, 173, 180]
sont très hétérogènes et en plus testés sur des datasets trèsspécifiques.

Par contre l’ensemble des critères définis dans le Chap. 3 a lemême objectif que le travail
présenté en [129] pour la classification statistique: fournir un cadre de référence le plus com-
plet possible de tous attributs pour la classification comportemental du trafic P2P qu’on puisse
définir à partir seulement de données à niveau flux style NetFlow [57]. Grâce à une définition
précise et complète, on peut définir un grand nombre d’attributs, qui comprennent aussi les pro-
priétés utilisées par autres classificateur, ce qui aide à les comparer entre eux. En suite on applique
deux métriques pour évaluer le contribue que chaque attribut peut donner à la classification, avec
l’objectif d’identifier les attributs les plus importants.Enfin on utilise un algorithme de classifica-
tion basé sur les arbres de décisions pour évaluer les performance de nos attributs.

xi

Critère pour la définition des attributs

Nous nous concentrons sur le trafic relatifs à un hôteX sur le quel turne une application P2P dans
une courte fenêtre temporelle∆T et nous définissons les critères suivants.

• Granularité temporelle, la durée de la fenêtre temporelle d’observation; nous utilisons
deux durées, 5 s et 120 s.

• Entité, que nous allons classifier qui peut être à niveau réseau (adresse IP), à niveau trans-
port (porte TCP/UDP) ou bien la combinaisons de deux

• Granularité spatial. Nous pouvons mesurer le nombre de hôtes contactés, ou des paquets
ou octets échangés.

• Direction. Nous pouvons considéré le trafic reçu ou envoyé par un hôte.

• Catégories. Nous pouvons partitionner l’ensemble des entités selon diffèrent critères: par
exemple hôtes avec qui on fait que de la signalisation ou bienaussi de transfert de données;
ou encore entre les hôtes découverts dans la dernier fenêtretemporelle et ceux qui avaient
déjà été contactes précédemment.

• Opérations. Finalement nous pouvons appliquer plusieurs opérations mathématique ou
statistique à ces données: pour simplicité nous utilisons que des simples rapport entre les
données, ou biens d’opérations statistique élémentaires comme la moyenne ou l’écart type.

Enfin nous avons un ensemble d’une centaine d’attributs (la liste se trouve dans le Chap. 3),
que nous allons évaluer au moyen de métriques expliqué dans la section suivante.

Métriques pour la sélection d’attributs

Pour mesurer le contribue que chaque attribut peut apporterà la classification nous utilisons deux
métriques: l’Information Gain, de la théorie de l’information, et leReliefF, avec un interprétation
plus géométrique.

L’Information Gain mesure la diminution d’incertitude quela connaissance de la valeur d’un
attribut X apporte sur la valeur de l’application label. Cette métrique se base sur le concept
d’entropie et est normalement mesuré en bits. Le ReliefF, par contre, mesure la capacité d’une pro-
priété de distinguer entre instances très proches entre euxdans l’espace des attributs. L’algorithme
pour la calculer donc regarde les valeurs assumées par un attributs entre de groupes de points
proches. Pour plus de détails nous invitons le lecteur à lireles descriptions présentées dans le
Chap. 3.

Results

Dans cette section, nous allons décrire les résultats les plus significatives obtenus pendant l’évaluation
des performance des attributs définis. Nous omettons les détails regardants le dataset utilisé pour
les expérimentes, qui peuvent être trouvés dans le Chap. 2; nous nous limitons à lister les applica-
tions dont le trafic a été analysé qui sont soit P2P-TV (PPlive, TVAnts, Sopcast, Joost), soit VoIP
(Skype) soit partage de fichiers (eDonkey, BitTorrent).

Tout d’abord, nous avons comparé les classements d’attributs fournies par les deux métriques.
Nous avons utilisé l’indexe de Jaccard [172] pour quantifierla similarité entre les sous-ensembles
identifiés par les deux métriques, qui est défini comme le rapport entre la cardinalité de l’intersection

xii

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

J
=

 |A
 ∩

 B
| /

 |A
 ∪

 B
|

Features

ReliefF k=10 vs k=100

Random

InfoGain vs ReliefF k=10

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

A
cc

ur
ac

y

Number of features

reliefF
infogain
random

(b)

Figure 1: (a) Comparaison de l’ordre des attributs et (b) précision de la classification en fonctionne
de nombre d’attributs considérés.

sur la cardinalité de l’union des deux ensembles. Fig. 1-(a)représente les valeurs assumés par
l’index en fonctionne du nombre d’attributs considérés. Nous voyons que (i) le nombre de points
k considérés par le ReliefF n’a pas d’impact sur l’ordre qui reste pareil et que (ii) les ordres du
ReliefF et Infogain sont très différents, vu que l’index a lamême valeur qu’il aurait pris dans le
cas où on prends des ensembles aléatoires d’attributs.

D’ailleurs, en Fig. 1 nous montrons la précision de classification obtenu en utilisant l’algorithme
C4.5 en fonction du nombre d’attributs considérés, prises selon les ordre des deux métriques.
Même si les ordres sont très différents entre eux, les performances de classifications convergent
très vite vers des très bonne résultats: nous voyons que déjàavec une dizaine d’attributs la pré-
cision atteinte est indépendante de l’ordre choisi. En considérant tous les attributs nous sommes
capables de garantir une précision du 98%.

Abacus: un classificateur comportementale pour les applications P2P-TV

Cette section contient les résultats présentés dans Chap. 4et Chap. 5. Après notre étude des
attributs pour la classification du trafic P2P, nous nous concentrons sur les application P2P-TV,
qui ont eu une large diffusions et qui génèrent déjà beaucoupde trafic, d’où l’attention reçu par
la communauté de recherche. Pour cette raison nous avons conçu un algorithme de classification
comportemental spécifique pour ce type d’applications, basé sur une simple mesure des données
échangées par les pairs pendant des petites fenêtres temporelles. Nous allons décrire en bref
l’algorithme et évaluer ses performances; finalement nous allons le comparer avec Kiss [77], un
classificateur basé sur l’inspection des paquets, qui a été conçu pour le même type d’applications.

L’algorithme de classification

Pendant les expériences présentés dans la section précédente nous avons découvert que les at-
tributs plus importants pour la classification étaient souvent ceux qui concernaient la distribution
de nombre de paquets et octets échangés avec les autres pairs. La raison de cette importance
peut être facilement expliqué si nous pensons au mode de fonctionnement des applications P2P-
TV. Elles font deux activités au même temps: la signalisation pour maintenir le réseau P2P et
l’échange de données avec les autres pairs. Les différentesimplémentations peuvent choisir leur
propre façon: par exemple elle peuvent préférer contacter beaucoup de pairs avec des messages
très courts, ou bien d’échanger les données les plus possible avec les même hôtes avec des longs
flux.

xiii

...

X

Y1

Figure 2: Procédure pour le calcul de la signature Abacus.

La signature utilisé par Abacus cherche exactement de capturer cette différence. Nous allons
expliquer la procedure pour la calculer avec l’aide de la Fig. 2. Le classificateur observe le trafic
reçu par un hôteX dans une courte fenêtre temporelle (par défaut c’est 5 s, mais présentons aussi
de résultats avec des fenêtres d’observation plus longue),pendant la quelle il conte le nombre
de paquets et d’octets reçus depuis chaque pairYi. En suite, les pairs sont divisés en bins selon
le numéro de paquets et d’octets envoyés: par exemple, concernant les paquets, le premier bin
contient le pairs qui ont envoyé 1 paquet (commeY2 dans la figure), le deuxième le pairs qui ont
envoyé 2 paquets, le troisième jusqu’à 4 paquets (commeY3 dans la figure) et si de suite avec
une croissance exponentielle de numéro de paquets. Finalement, on obtient une distribution de
pairs qui est exactement la signature Abacus. Dans le relatif chapitre les signatures moyennes des
différentes applications sont montres et on peut remarquerdes différence très évidentes entre eux.

Fig. 3 montre la procédure complète avec la quelle l’algorithme exécute la classification.
D’abord il calcule les signatures pour les diffèrent applications à partir d’un training set. Ces
données sont utilisés pour l’apprentissage d’un algorithme de classification supervisé très utilisé
dans la classification du trafic, c’est à dire les Support Vector Machines, qui produise un modelé.
Ce modelé sert pour classifier les traces de test et, en suite,les résultat sont comparés avec les label
réels des applications qui ont généré le trafic. Enfin, comme le modelé peut reconnaitre seulement
le trafic qui était dans le training set, l’algorithme utilise aussi un critère de rejet avec qui il peut
distinguer le trafic inconnu.

Résultats

Le relatif chapitre contient une campagne d’expérimentation très approfondie sur un dataset très
étendu (décrit en détail dans le même chapitre), où nous avons étudié l’impact des différents
paramètres de l’algorithme ainsi que la portabilité des signatures entre différentes conditions de
réseau et temps. Dans ce résumé nous allons présenter seulement les meilleurs résultat, que nous
avons obtenus avec la combinaison de la signature basé sur les paquets avec celle basé sur les
octets. La précision de classification est reporté en Tab. 4.7.

La table montre que Abacus atteint une précision de classification très haute, avec 95% de

xiv

Signature

nB

nB
nB

Trained

model

Training
set

Training traffic
protocol A

...

Training traffic
protocol X

Sampler SVM Learn

n

nB

Sampler

n

...

A

nB

nB

...

 Build signatures

Signature

Apply trained model

+ rejection criterion

Unknown

yes

<R

Live classification

A
B
C
DA

Signature

Signature

A
B
C
D

no

Classification

results

Build signatures Sampling Learning

Training traffic
protocol A

Training traffic
protocol X

Oracle

Ground truth

Class

Oracle

Ground truth

Validation

Classification

Training

Figure 3: Procès de classification: apprentissage du model dans la partie supérieur et validation
dans la partie inférieure.

Table 1: Extended Abacus Signatures: Confusion Matrix of P2P-TV Application
Signatures: Confusion Matrix

PPLive TVAnts SopCast Joost Unk
PPLive 95.42 0.22 1.86 0.36 2.14
TVAnts 0.06 99.84 0.10 0.00 0.00
SopCast 0.98 0.15 97.55 0.03 1.29
Joost 0.21 0.01 0.01 94.97 4.80

décisions correctes dans le pire des cas. Dans le relatif chapitre, nous montrons aussi l’efficacité
du critère de rejet, qui est capable de reconnaitre le 98% de trafic inconnu.

Comparaison avec l’algorithme Kiss

Nous avons vu que l’algorithme de classification comportementale Abacus est capable d’une préci-
sion de classification très haute, avec un coût de computation très contenu et aussi un taux de faux
positives très faible. Cependant il y un certain scepticisme dans la communauté opérationnelle
sur les algorithme comportemental, qui sont retenus pas aussi performants que les algorithmes
de classification basés sur l’inspection du contenu des paquets. D’ailleurs c’est reconnu que les
classificateurs de ce dernier type ont besoin de beaucoup plus de ressources de calcul.

Pour cette raison, nous avons décidé de comparer notre classificateur avec un autre basé sur
l’inspection des paquets et très performant pour les applications P2P-TV aussi. L’algorithme en
question s’appelle Kiss [77] et il est basé sur une inspection stochastique du contenu des paquets
d’un flux. Notre choix est tombé sur cet algorithme car nous avons accès à l’implémentation,
du coup nous avons pu faire tourner les deux algorithmes sur les même traces pour avoir un

xv

Table 2: Résultats de classification
(a) Flows

Abacus
pp tv sp jo un

pp 13.35 0.32 - 0.06 86.27
tv 0.86 95.67 0.15 - 3.32
sp 0.33 0.03 98.04 0.1 1.5
jo 0.06 2.21 - 81.53 16.2

op06 0.1 0.1 1.03 0.06 98.71
op07 0.21 0.03 0.87 0.05 98.84

Kiss
pp tv sp jo un nc

pp 98.8 - - - 0.2 1
tv - 97.3 - 0.01 0.69 2
sp - - 98.82 - 0.21 0.97
jo - - - 86.37 3.63 10

op06 - 0.44 0.08 0.55 92.68 6.25
op07 - 2.13 0.09 1.21 84.07 12.5

(b) Bytes
Abacus

pp tv sp jo un
pp 99.33 - - 0.11 0.56
tv 0.01 99.95 - - 0.04
sp 0.01 0.09 99.85 0.02 0.03
jo - - 99.98 0.02

op06 1.02 - 0.58 0.55 97.85
op07 3.03 - 0.71 0.25 96.01

Kiss
pp tv sp jo un nc

pp 99.97 - - - 0.01 0.02
tv - 99.96 - - 0.03 0.01
sp - - 99.98 - 0.01 0.01
jo - - - 99.98 0.01 0.01

op06 - 0.07 - 0.08 98.45 1.4
op07 - 0.08 0.74 0.05 96.26 2.87

pp=PPLive, tv=Tvants, sp=Sopcast, jo=Joost, un=Unknown,nc=not-classified

comparaison les plus fiable possible. Il faut remarquer qu’il y a pas beaucoup de travaux de
comparaison dans la littérature, en raison précisément de la difficulté des partager pas seulement
les traces, mais aussi les algorithme entre équipes de recherche différentes.

Dans ce qui suit nous allons d’abord présenter l’algorithmeKiss; en suite nous allons com-
parer la précision de classification des deux algorithmes; finalement nous allons comparé qualita-
tivement les algorithmes, pour comprendre pour quelles applications ils sont plus adaptés.

L’algorithme Kiss se base sur un test duχ2 appliqué sur le contenu des paquets, avec le but
de identifier la syntactique du protocole parlé par l’application. En bref, l’algorithme regarde les
premières 12 octets des premières 80 paquets d’un flux des données. Les octets sont divisés en
groupes de 4 bits et avec leχ2 test, l’algorithme évalue le niveau d’entropie de chaque groupe
de bits. Le classificateur est du coup capable d’identifier les groupes de bits qui prennent des
valeur constants (identificatif), cyclique (compteurs) oucomplètement aléatoires (crypté); cela
correspond à identifier la syntaxe du protocole. Les valeursde l’index statistique de chaque groupe
sont utilisés comme signature pour Support Vector Machine.

Bien qu’ils aient deux approches complètement orthogonaux, Abacus et Kiss ont été montrés
très efficaces pour classifier les applications P2P-TV. Pourcette raison nous les avons testé sur
un ensemble des traces qui contient quatre applications de ce type et aussi sur des traces qui ne
contient pas ce trafic, pour évaluer le taux de faux positives. Les détails sur le dataset sont présentés
dans le Chap. 5.

Les résultats de classification en terme de pourcentage des octets et signatures correctement
classifiés sont présentés en Tab. 2. Nous pouvons observer une une précisions très haute pour
les deux classificateurs, surtout pour ce qui concerne les octets: celle-ci est la métrique la plus
importante pour les opérateurs qui sont plutôt intéressés àl’identification des gros volumes de
trafic, alors qu’ils peuvent tolérer de mal classifier des petits flux. La faible précisions en terme
de signatures qu’on voit pour PPLive est due par contre à le fait que l’application utilise des
sockets différents pour les différentes activités: il est très facile identifier le socket qui transmet
les données, tandis qu’il est plus difficile identifier le socket pour la signalisation.

Dans la Tab. 3 nous avons reporté les plus importantes caractéristiques des deux algorithme,
qui nous permettent de les comparer depuis un point de vue plus qualitatif. Comme les deux algo-

xvi

Table 3: Caractéristique principaux de Abacus et Kiss

Characteristic Abacus Kiss
Technique Behavioral Stocastic Payload Inspection

Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace

Grain Fine grained Fine grained
Protocol Family P2P-TV Any

Rejection Criterion Threshold Train-based
Train set size Big (4000 smp.) Small(300 smp.)

Time ResponsivenessDeterministic(5sec) Stochastic(early 80pkts)
Network Deploy Edge Edge/Backbone

rithmes appartiennent à deux familles de classificateurs complètement différentes, leur propriétés
le sont autant. Nous voyons tout suite que Abacus a l’avantage de pouvoir marcher avec seule-
ment des données à niveau flux, alors que Kiss a forcement besoin des paquets, et en plus de leur
contenu. Même si les deux classificateurs sont capable d’uneclassification fine (ils reconnais-
sent l’application spécifique et non pas seulement la famille de protocole), Kiss peut marcher avec
n’importe quel type de protocole, tandis que Abacus dans la forme actuelle marche seulement avec
les applications P2P. Les algorithme se différencient aussi pour la méthode utilisée pour identifier
les protocoles inconnus, qui est basé sur une seuil dans Abacus, alors que dans Kiss on ajoute une
classe spécifique pour cela dans l’apprentissage. L’apprentissage est plus longue dans Abacus, qui
nécessite d’un training set plus gros, ce qui, toutefois, neconstituent pas un gros problème, vu
que cette opération est normalement fait pas en ligne. Finalement Abacus a été conçu pour être
déployé à la frontière du réseau, même si on verra dans les prochaines sections que cette condition
peut être dans quelques façons relâchée.

Dans ce résumé, nous omettons l’étude des ressources de calcul requis par les deux algo-
rithmes, que on peut trouver dans le Chap. 5. Nous mentionnons juste les résultats principaux,
qui voient Abacus être moins chère que Kiss d’un ordre de grandeur dans le pire de cas. Dans le
cas moyenne la différence peut atteindre facilement deux outrois ordres de grandeur, ce qui fait
d’Abacus le candidat parfait pour des conditions avec un gros charge de trafic.

Techniques pour la réduction de donnés

Dans cette partie nous allons traiter l’impact sur la classification et la caractérisation du trafic des
différentes techniques pour la réduction du volume de données. Nous commençons pas analyser
l’impact de NetFlow et de l’échantillonnage à niveau flux surla classification comportemental du
trafic. En suite, nous étudions plutôt l’effet d’échantillonnage à niveau paquet sur la caractérisation
et classification statistique du trafic.

Échantillonnage à niveau flux et NetFlow

Dans cette section nous utilisons le classificateur Abacus,défini dans la section précédente, comme
cas d’étude pour analyser le performance de la classification de trafic avec des données NetFlow,
ou dans de conditions de échantillonnage à niveau flux. Nous allons traiter les deux cas séparément
dans la suite.

xvii

Abacus et NetFlow

Parmi les avantages des algorithmes de classification comportementale, le plus important est que,
vu que ils n’ont pas besoin de regarder à l’intérieur des paquets, ils sont particulièrement adaptés
pour utiliser des données à niveau flux, comme celles produites par exemple par NetFlow. Abacus,
le classificateur comportemental qu’on a défini précédemment, serait particulièrement indiqué
pour ces données, vu qu’il base la classification que sur le nombre de paquets et d’octets reçus
par un hôte dans des courtes fenêtres temporelles. Nous allons verifier cette affirmation en testant
Abacus sur de vraies données de type NetFlow calculées à partir des nos traces à niveau paquet.

Tout d’abord nous allons décrire le mode de fonctionnement de NetFlow, à partir duquel nous
pourrons mieux comprendre les modifications qu’il faut apporter à Abacus pour qu’il puisse tra-
vailler avec ce type de données. NetFlow [56], défini originairement par Cisco et après standardisé
par l’IETF sous le nom de IPFIX [57], est sans doute le standard de facto pour le monitorage à
niveau flux des réseaux. Un dispositif NetFlow trace des flux de paquets, dont ils calcul certains
informations agrégés. Un flux est composé par une série de paquets qui ont certains attributs en
commun: normalement ils ont les même valeur pour la uplet adresses IP origine et destination,
portes à niveau transport origine et destination et type de protocole à niveau transport. Cette uplet
est utilisé comme index pour accéder à la table des flux, qui contient les informations pour chaque
flux: identificatifs à niveau réseau et transport, timestamps de début et fin du flux, compteurs des
nombre de paquets et octets, flags TCP et si de suite. Ces information sont exportées vers un
NetFlow collector lorsque le flux est considéré terminé, évènement déterminé par une parmi les
conditions suivantes:

• un paquet de terminaison explicite du flux est capturé (ex. TCP FIN paquet)

• le flux reste inactive pour un temps plus long que le paramètreinactive_timeout

• le flux reste active pour un temps plus long que le paramètreactive_timeout

• la table des flux est pleine et il faut libérer de l’espace pourles nouveaux flux

Les valeurs standard des deux timeouts sont respectivement15 s pour l’inactive_timeout
et 30 min pour l’active_timeout. Du coup, si les données NetFlow contiennent tout ce qui
sert pour calculer une signature Abacus (c’est à dire les numéros de paquets et octets reçus par un
hôte depuis ses pairs), la granularité temporelle de NetFlow est beaucoup plus large des 5 s que
nous avons utilisés jusqu’à là. De toutes façons, nous avonsaussi testé des plus longues fenêtres
temporelles dans le chapitre dédie à Abacus avec seulement une petite réduction de les perfor-
mances de l’algorithme. Pour cette raison nous étions confidents que Abacus peut marcher aussi
avec de véritable NetFlow records.

Pour nos expériences, nous avons quand même du modifier un petit peu la version originelle
d’Abacus. Première chose, nous avons pris commeinactive_timeout une valeur de 120 s
(le minimum possible est 60 s), que nous allons utiliser pourla durée de la fenêtre d’observation.
En suite, étant donné que l’exportation des flow-records n’est pas synchrone avec la terminaison
de la fenêtre temporelle, nous avons souvent des flow-records qui se terminent après la fenêtre.
Par conséquent, nous devons diviser ces records entre les deux fenêtres, en assignant les paquets
à chaque intervalle, proportionnellement à la durée temporelle de chaque segment. En fin, nous
allons abandonner le critère de rejet que nous avions défini,et nous allons adopter un approche
similaire à celui de Kiss: nous allons inclure dans le training set aussi des classe pour les autres
applications P2P (eDonkey, Skype, BitTorrent) ainsi que une classe pour le trafic ”inconnu“, où

xviii

Table 4: Matrice de confusion: précision de classification pour signatures (S) and octets (O)
PPLive TVAnts SopCast Joost eDonkey BitTorrent Skype DNS Other
S O S O S O S O S O S O S O S O S O

PPLive 63.6 96.0 1.0 3.2 0.7 0.3 0.1 - - - 0.1 0.4 2.9 - 9.4 - 22.3 -
TVAnts 3.1 6.8 54.4 92.9 1.0 0.3 0.2 - - - 0.2 - 7.4 - 9.5 - 24.3 -
SopCast 0.7 0.2 0.4 0.4 49.7 99.4 - - 0.1 - 0.3 - 4.8 - 15.9 - 28.1 -

Joost 0.2 - - - - - 53.2 99.9 0.3 - 0.2 - 4.5 - 19.1 - 22.5 -
eDonkey - - - - - - - - 94.4 98.9 - - - - 0.7 0.2 4.8 0.9

BitTorrent 0.6 - 0.5 0.1 0.8 0.8 0.3 1.9 - - 12.5 89.1 5.2 1.7 61.3 5.8 18.8 0.6
Skype - - - - 0.1 0.3 - - - - 0.2 0.4 86.1 90.5 5.8 2.5 7.8 6.4
DNS 0.1 - - - 0.1 0.3 - 0.2 0.3 0.9 - 0.5 6.5 3.9 63.9 91.2 29.1 2.9
Other 0.1 - - - - - - - 0.4 0.1 - 0.1 3.5 - 8.3 - 87.6 99.8

nous allons mettre tout le trafic auquel nous sommes pas intéressés mais que nous voulons pas
confondre avec les services P2P.

Dans la Tab. 4, nous présentons les résultats de nos expérimentes, en terme de précision de
classification pour les signatures et pour les octets. Nous observons que la précision reste très
haute en terme de octets, mais par contre il y a une diminutions si on considéré celle relative
aux signatures. Pourtant, les opérateurs sont plutôt intéressés à la classification des flux avec
plus d’octets, que d’après nos résultat sont tous correctement identifiés. Nous voyons que tous
types d’applications P2P sont reconnu, y compris P2P-TV, partage de fichiers et VoIP. Aussi les
DNS, qui, même étant client-server, présente des évidentescaractéristiques P2P, est correctement
identifié, comme d’ailleurs le trafic inconnu.

Abacus et l’échantillonnage à niveau flux

Dans cette section nous allons étudier par contre l’impact de déplacer un classificateur comporte-
mental depuis le réseau d’accès vers l’intérieur du réseau dans le core. En fait les classificateurs
comportementals ont été conçus pour être placés la où tout letrafic destiné ou généré par un hôte
puisse être observé, ce qui normalement signifie le réseau d’accès. Cela est nécessaire parce que le
classificateur puisse capturer le plus d’information possible pour mieux caractériser le comporte-
ment de l’application.

Au contraire, lorsque nous déplaçons le classificateur versl’intérieur du réseau, disons au
deuxième ou troisième saute router, nous voyons seulement une fraction du trafic, à cause du
routage qui transmet les paquets sur des parcours différents. Pour cette raison, le classificateur
va avoir une vision partielle du trafic d’un hôte, ce qui peut ne pas être suffisant pour identifier
correctement l’application que l’a généré.

Dans cette section nous allons utiliser Abacus comme cas d’étude pour évaluer l’impact de
ce phénomène, assimilable à un échantillonnage à niveau flux, sur la précision de la classification
de trafic. Dans le Chap. 6, nous présentons d’abord une étude sur la distribution du trafic P2P
sur l’espace d’adresses IP, avec le but d’identifier si le trafic est reçu d’avantage depuis certaines
intervalles d’adresses, que donc il est important que le classificateur puisse observer, ou si le trafic
est bien distribué sur cet espace. Nous omettons cet étude dans ce résumé, qui toutefois montre
que il y a en effet une concertation du trafic in certain grouped’adresse IP, qui apparaissent être
fondamentaux pour la classification.

Le deuxième aspect que nous avons étudié est la distorsion introduite par l’échantillonnage
des flux dans les signatures Abacus. Nous la pouvons observerdans la Fig. 4, où nous représen-
tons comme les signatures moyennes de différentes application P2P changent à l’augmenter de
l’échantillonnage à niveau flux. À partir de gauche nous montrons les signatures avec un taux
d’échantillonnage1/k aveck ∈ {1, 2, 4, 8}. Qualitativement, nous observons peu de changement

xix

 0
 0.2
 0.4
 0.6

eD
on

ke
y

B
in

 V
al

ue
 (

P
D

F
)

Abacus signatures

 0
 0.2
 0.4
 0.6

B
itT

or
re

nt

 0
 0.2
 0.4
 0.6

S
ky

pe

 0
 0.2
 0.4
 0.6

P
P

Li
ve

 0
 0.2
 0.4
 0.6

T
V

A
nt

s

 0
 0.2
 0.4
 0.6

S
op

C
as

tk=1/8k=1/4k=1/2All

Figure 4: Signatures moyennes de chaque application pour des valeurs croissantes
d’échantillonnage

dans les signatures, qui apparaissent plutôt robustes à l’échantillonnage. Cette remarque est par-
ticulièrement vrai pour de taux d’échantillonnage faibles, où les changement semblent assez peu
marqués. Nous pouvons expliquer ce phénomène en pensant à comme les signature Abacus sont
calculés: vu qu’elles sont normalisés sur le numéro des pairs observés, elles peuvent rester presque
inchangés, à condition qu’il y ait pas de biais dans la façonsou le pairs sont échantillonnés. En
fait, même avec peu de pairs, si on observe toujours soit de pairs de signalisation soit de pair de
données, alors la distribution et la signature restent pareil. Par contre quandk = 8, il y a des
applications dont la signature change visiblement (notamment PPlive et BitTorrent), ce qui pourra
effectivement poser de problèmes au classificateur.

En suite nous avançons avec les expérimentes de classification. Nous allons utiliser un classifi-
cateur entrainé avec du trafic en absence d’échantillonnagepour classifier des signatures obtenues
à partir du trafic échantillonné. Celle-ci est la seule solution possible, parce que l’opérateur ne
peut pas connaitre à priori quel sera le taux d’échantillonnage, vu que ça dépend du routage et
des conditions contingentes du réseau. Nous montrons les performances de classification dans la
Fig. 5. Nous voyons que la précision de classification dégrade assez doucement jusqu’àk = 8,
où nous avons une diminution de à peu près 30%; la précision enterme d’octets reste toujours
meilleure que celle à niveau de signatures.

Les deux points qu’on observe dans la figure sont relatifs à une expérience que nous avons
conduite en utilisant une table de routage réelle d’un router du backbone en Amsterdam, avec
une vingtaine de liens vers des autres routers. Nous avons téléchargé le contenu de sa base de
données de routage et nous avons déduit la table de routage. Avec cette information nous avons
pu simuler le vrai routage (les résultats sont présentés dans le chapitre) et voire quelle seraient le
performance d’Abacus si déployé sur un de router connecté à celui d’Amsterdam. Nous voyons

xx

 65

 70

 75

 80

 85

 90

 95

 100

1 1/2 1/4 1/8

O
ve

ra
ll

ac
cu

ra
cy

Flow sampling rate

bytes
signatures
routing - bytes
routing - signatures

Peer 0
Peer 3

Figure 5: Précision de classification en fonctionne du taux d’échantillonnage.

que si le classificateur avait été placé sur le pair 0, alors, vu que la majorité du trafic est transmis
sur ce lien, la précisions de classification serait aussi très haute. Pour le pair 3, le résultat sont
encore mieux que prévu, parce que la précision est plus hautede celle que nous avons obtenu avec
le même taux d’échantillonnage aléatoire.

Échantillonnage de paquet et classification du trafic

Dans cette section nous allons nous concentrer plutôt sur l’échantillonnage de paquets et sur son
impact sur la classification statistique du trafic. Cette pratique est très commune parmi les opéra-
teurs, parce que elle permet tout de suite de réduire la charge sur le dispositif de monitorage du
trafic déployé, vu que seulement une fraction des paquets estanalysée. Cependant, à cette réduc-
tion corresponde une aussi important réduction d’information, qui peut rendre certaines activités
de management du réseau difficiles, si non impossibles. Mais, comme l’échantillonnage devient de
plus en plus obligatoire, nous nous demandons si la classification de trafic reste toujours possible
même dans ces conditions.

L’importance de ce sujet est démontré par les nombreux travails de chercher, qui soit évaluent
les performances de politiques d’échantillonnage particuliers [28, 49, 55, 67, 69, 109, 133, 146],
soit mesurent l’impact sur certaines activités de management du réseau, comme monitorage, dé-
tection d’anomalies et classification du trafic [42, 43, 88, 97, 120, 137, 188]; pourtant, l’impact de
l’échantillonnage sur la classification du trafic est un sujet pas trop recherché malgré l’importance
de cette activité dans les réseaux modernes.

En raison de cette manque, nous avons conduit un double étudesur l’effet de l’échantillonnage
de paquets. Préliminairement nous avons modifié un logicielpour le monitorage des flux sur le
réseautstat [16], qui nous permet de calculer nombreuses quantités à niveau flux, auxquels nous
pouvons accéder soit singularisent soit dans une façons agrégé comme distributions des valeurs
sur l’ensemble des flux observés. Nous avons ajouté au logiciel la possibilité d’appliquer des
différentes politique d’échantillonnage avec des taux arbitraires: de cette manière nous pouvons
répéter les expérimentes sur le même ensemble de traces avecplusieurs type d’échantillonnage.

La première partie de notre étude est dédiés à analyser la dégradation introduit par l’échantillonnage
dans le mesure des attributs à niveau flux du trafic, dans une façons indépendante de l’application
possible de cette mesure. L’avantage de cet approche est quenous allons isoler l’effet de l’échantillonnage,
alors que souvent les autres travaux ont considéré plutôt les performances des activité de manage-
ment avec des données échantillonnées. Pour ce type d’analyse nous allons utiliser les distributions
des valeurs des attributs: en particulier nous allons mesurer la distance entre la distribution orig-
inelle et celle échantillonnée au moyen de la distance d’Hellinger qui est spécifique pour ce type

xxi

Systematic k=4

Random p=1/4

Stratified k=4

Systematic SYN k=4

S S S

S S S

S S S

S S S

Figure 6: Illustration des politiques d’échantillonnage utilisées dans nos expérimentes.

de comparaison (dans le Chap. 7 nous utilisons aussi le Fleissχ2 [55] pour nous confronter avec
les études précédents).

La deuxième partie, par contre, se concentre sur la classification du trafic avec des données
échantillonnées et, donc, utilise les valeurs des attributs pour chaque flux. D’abord nous étudions
le contenu d’information des attributs avec la métrique de l’Information Gain, que nous avons déjà
rencontré précédemment, avec laquelle nous allons mesurercomment la quantité d’information
dégrade à l’augmenter de l’échantillonnage. Finalement nous allons utiliser les données échantil-
lonnées pour la classification, avec un algorithme basé sur les arbres de décisions, et nous allons
tester deux politique d’apprentissage qui donnent des résultats complètement différentes.

Tout d’abord, nous allons décrire les politique d’échantillonnage que nous allons utiliser dans
nos expérimentes. Elles sont expliquées dans la suite et représentées dans la Fig. 6.

• Systematic sampling: les paquets sont échantillonnés dans une façon déterministe, un
chaquek paquets. Dans l’exemple, pour chaque fenêtre de 4 paquet, lepremier est tou-
jours choisi.

• Random sampling: les paquets sont choisis aléatoirement, en particulier chaque paquet est
échantillonné avec une probabilité indépendantep = 1/k. Dans l’exemple, nous voyons
que, le procès étant aléatoire, les paquets peuvent être choisis en séquence.

• Stratified sampling: k paquets consécutifs sont groupés dans une fenêtre, dans laquelle un
est échantillonné au hasard. Dans la figure, on peut voire que, à différence du systematic
sampling, le processus ne sélectionne pas toujours le premier paquet, mais aléatoirement un
parmi les 4.

• Systematic SYN sampling: est la superposition de deux processus indépendants: (i) un
processus de systematic sampling, qui sélectionne un paquet chaquek; (ii) un processus qui
sélectionne tous les paquets TCP avec le flag SYN actif. Dans la figure nous remarquons que
tous les paquets déjà pris par le systematic sampling sont pris, plus tous les SYN paquets.

xxii

Les premières trois politiques sont très simples et sont normalement implémentés dans les
dispositifs de monitorages déployés par les opérateurs, alors que la dernière est ce qu’on appelle
une politique “intelligente”, parce que elle est plus compliqué pour capturer les informations les
plus importants.

Après le politique d’échantillonnage, nous décrivons en bref les attributs à niveau flux mesurés
partstat. Comme déjà dit il exporté ces mesures dans deux façons, pourchaque flux ou comme
distribution des valeurs de tous les flux observés. Les propriétés observés appartiennent à dif-
férents niveaux de la pile protocolaire, du niveau réseau ettransport jusqu’à des propriétés de
niveaux applicatif. La liste complète se trouve dans l’Appendix B et un résumé est présenté dans
le Chap. 7. En total nous avons 172 attributs agrégés et 91 attributs pour flux.

Nous devons aussi dépenser quelque mots sur le dataset utilisé pour les expériences. Il est
composé par 4 traces, capturé dans des environnent très hétérogènes et espacé dans le temps,
depuis un opérateur téléphonique italien et trois campus universitaires, un desquels est un lien
wifi. Tous les détails des traces sont reporté dans le chapitre relatif, y compris la composition en
terme de protocoles que est importante pour nos expériencesde classification.

Dans le Chap. 7 nous présentons une analyse par couche protocolaire de la dégradation in-
troduite par l’échantillonnage dans les attributs agrégés, que nous omettons dans ce résumé. Le
résultat plus important était que les propriétés pour lesquelles il suffit de regarder un seul paquet du
flux sont le normalement moins dégradées par l’échantillonnage, tandis que celles qui dépendent
de l’inspection de plusieurs paquets sont plus touchés par l’échantillonnage, même si très faible.
D’ailleurs nous avons remarqué que les propriétés qui peuvent être mesurées seulement si un spé-
cifique paquet est échantillonné (par exemple les options TCP qui ont trouve dans le tout premier
paquet de la connexion), sont souvent impossible à estimer,vu que la probabilité de sélectionner
ce paquet est très faible avec l’échantillonnage.

Après cette analyse nous avons sélectionné un groupe d’attributs “robustes”, pour lesquels la
dégradation reste contenue au dessous d’une seuil, pour isoler l’effet du taux d’échantillonnage
et observer plutôt l’effet de la politique d’échantillonnage. Les résultats sont montrés dans la
Fig. 7, où chaque graphe correspond à une politique d’échantillonnage et chaque ligne à une trace
différente. Chaque point report la moyenne de la dégradation sur le groupe d’attributs robustes
pour le taux d’échantillonnage correspondant à l’abscisse. Nous remarquons une grande simi-
larité entre les graphes de toutes les politique simples (systematic, random, stratified), qui con-
tredit partialement des résultats de la littérature précédente qui montrait un avantage de politique
d’échantillonnage stratifié. Notre intuition est que, vu lemultiplexage statistique du trafic dans
les réseaux modernes, la politique d’échantillonnage a un impact plus modéré, surtout quand des
propriétés plutôt compliquées sont considérées. Au contraire, notre politique intelligente modifie
dans une façon pas négligeable les courbes, parce que l’effet de sélectionner tous les SYN paquets
change complément les distributions (par exemple déjà tousles flux sont pris, ce qui va être im-
portant pour la prochaine partie sur la classification du trafic). Cet effet est tant plus évident pour
les traces avec une grande quantité des petits flux.

Âpres cette analyse de l’effet de l’échantillonnage, qui, comme vous avez vu, ne se concen-
tre pas sur aucune application particulière des données, nous allons se concentrer plutôt sur la
classification du trafic réseau. Pour faire cela, nous allonschanger de prospective et nous allons
abandonner les distribution des attributs pour regarder singulièrement chaque flux avec ses pro-
pres valeurs. En suivant un approche similaire à celui que nous avons adopté pour l’étude des
les attributs pour la classification comportemental, tout d’abord nous allons mesurer le contenu
d’information sur l’application de chaque attribut. Nous utilisons la même métrique que avant,
c’est à dire l’Information Gain. En plus, nous allons utiliser toujours la politique Systematic SYN
sampling, car elle nous permet de capture beaucoup d’information exploitable pour la classifi-

xxiii

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Systematic

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Stratified

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Random

H
el

lin
ge

r
D

is
ta

nc
e

(H
D

)

Sampling step

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Systematic SYN

Sampling step

Auckland
UniBs

ISP
Campus

Figure 7: Moyenne et variance de la distance de Hellinger pour le groupe des attributs robustes en
fonctionne du pas d’échantillonnage pour les différentes politiques.

Table 5: Information gain des attributs pour de taux d’échantillonnage différents.
Features Unsampled Sampled k=2 Sampled k=10

Score Rank Score Rank Score Rank
Server-IP-address 1.68 1 1.68 1 1.68 1
cwin-min-c2s 1.49 2 1.20 6 0.60 14
min-seg-size-c2s 1.48 3 1.22 5 0.47 23
cwin-max-c2s 1.47 4 1.11 8 0.56 15
max-seg-size-c2s 1.43 5 1.17 7 0.46 24
initial-cwin-c2s 1.41 6 0.71 26 0.29 32
First-time 1.37 7 1.37 2 1.37 2
cwin-min-s2c 1.35 8 1.06 11 0.53 16
Server-TCP-port 1.34 9 1.34 3 1.34 3
initial-cwin-s2c 1.33 10 0.77 22 0.30 31
Client-IP-address 1.31 11 1.31 4 1.31 4
cwin-max-s2c 1.28 12 0.99 14 0.49 21
min-seg-size-s2c 1.22 13 0.96 16 0.51 19
max-seg-size-s2c 1.21 14 1.03 12 0.50 20
Last-time 1.14 15 1.09 9 1.02 5
win-max-s2c 1.08 16 1.07 10 0.98 6
Completion-time 1.03 17 0.97 15 0.42 25
win-min-s2c 1.02 18 1.01 13 0.94 7
unique-byte-s2c 1.02 19 0.74 23 0.42 27
data-byte-s2c 1.01 20 0.74 24 0.42 26

cation (les SYN paquets sont particulièrement important sous cet aspect, comme montré aussi
dans [146]).

Dans la Tab. 5, nous listons le premiers dix attributs en ordre d’Information Gain décroissant,
pour un échantillonnage SYN systematique aveck = 1, 2, 10. Cet ordonnancement nous permet

xxiv

 0

 0.2

 0.4

 0.6

 0.8

 1

InfoGain
k=2

Err%k=k2

InfoGain
k=10

Err%k=10

 0

 20

 40

 60

 80

 100

In
fo

G
ai

n

E
rr

%

(a)

 0

 0.6

 1.2

 1.8

 0 0.6 1.2 1.8

In
fo

G
ai

n
k=

10

InfoGain k=2

Least-relevant
Most-relevant

(b)

Figure 8: (a) Parallel coordinates graph pour les attributsplus rilevants et (b) scatter plot pour
l’information gain de tous les attrbitus aveck = 2, 10.

de partager les attributs en deux catégories avec un seuil: tous ceux qui ont un Information Gain
supérieur à un bit font partie des plus importants, les autres de le moins importants. Dans le
Chap. 7, nous présentons un étude complet de la précision de classification de diffèrent ensembles
des features: le plus important résultat est qu’il n’y a pas trop de différence entre les ensemble,
ni aucun effet d’overfitting, mais les attributs les plus relevant offrent quand même le meilleur
compromis entre la numérosité de l’ensemble et la précisionde la classification. Ce qu’on peut
observer dans la table, par contre, est que le contenu d’information dégrade assez doucement avec
l’échantillonnage, surtout pour les attributs qu’on a vu être plus robustes, c’est à dire ceux qu’on
peut estimer avec l’inspection d’un seul paquet. Notammentl’adresse du serveur apparait comme
un discriminâtes assez puissant, peu importe le taux d’échantillonnage: ce phénomène est dû aussi
aux caractéristique de la trace de l’Université de Brescia,utilisée pour cette évaluation, qui est en
partie artificielle.

Dans la Fig. 8 nous avons 2 représentations différentes pourvisualiser l’impact de l’échantillonnage
sur l’information Gain. Dans la figure de gauche nous utilisons un graphe à coordonnée parallèles
pour représenter l’effet d’échantillonnage sur les attributs plus relevant. Nous voyons qu’il y a
deux comportements essentiellement. Les propriétés dénotées par une ligne continue sont les
attributs mesuré au moyen d’un seul paquets: ils ont un petitdistorsion en terme de erreur re-
latif, en gardant toujours un contenu d’information élevé.Par contre, les attributs dénotés par une
ligne pointillée ont une dégradation plus marqué, vu l’augmenter de l’erreur relatif, mais ils font
partie des attributs plus relevants parce que le contenu d’information est pas trop réduit, malgré
l’échantillonnage. Dans le plot de droite, nous représentons le contenu d’information avec un
scatter plot, où on a les valeur pourk = 2 sur l’abscisse et pourk = 10 sur l’ordonne; nous
utilisons deux types de points différents pour les attributs plus et moins relevant respectivement.
La figure confirme que l’ordonnancement des attributs n’est pas du tout stable, vu que pour cer-
tains l’information gain est plus grand avec un pas d’échantillonnage plus grand. En fait, nous
voyons aussi un grand nombre des propriétés que nous avons classées comme moins importantes,
qui tombe sur la bissectrice et qui donc devraient plutôt être considérés comme des bonnes dis-
criminateurs. Pour cette raison, l’utilisation de l’ensemble d’attributs complet semble la stratégie
meilleure pour obtenir de bonnes prestations de classification, à conditions que le classificateur
soit capable de gérer tous cette information sans subir le phénomène de l’overfitting.

Finalement nous effectuons la classification du trafic avec les attributs des flux produits par
tstat. Nous comparons deux politiques possibles pour l’apprentissage de l’algorithme de classi-
fication: nous appelons apprentissage homogène le cas où nous utilisons des données échantillon-

xxv

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100

F
lo

w
 A

cc
ur

ac
y

%

Sampling period

Proportional

Uniform

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100

B
yt

e
A

cc
ur

ac
y

%

Sampling period

Proportional
Uniform

Heterogeneous unsampled
Heterogeneous k=2

Homogeneous

Figure 9: Impact de politique de apprentissage homogène et hétérogène en fonction du taux
d’échantillonnage en terme de flux et octets.

nées au même taux pour training et test, alors que l’apprentissage hétérogène correspond à tous les
autres cas. Dans la Fig. 9 nous observons la précisions de classification en terme de flux (gauche)
et octets (droite) pour les deux politiques d’apprentissage en fonctionne du taux d’échantillonnage
du test set. Le deux lignes labelles Uniform et Proportionalreprésentent la précision qu’on aurait
si on utilisé deux procès de classification naïves ou nous classifions les flux aléatoirement avec un
probabilité uniforme entre le label (Uniform) ou avec un probabilité proportionnelle au nombre de
flux dans le training set avec chaque label (Proportional). Nous voyons tout suite que la politique
homogène a les performance meilleure, avec une bonne précision de classification même pour
de taux d’échantillonnage importants, tandis que la politique hétérogène apprends seulement la
distribution de flux, vu que sa précision est en ligne avec le processus Proportionnel.

Control de congestion pour les application P2P

Dans la dernière partie de cette thèse nous changeons de point de vu: au lieu de développer des
nouveaux outils pour les opérateur, qui leur permettent de mieux gérer leur réseaux, nous nous
concentrons sur les applications P2P et sur leur protocolesen les modifiant pour les rendre plus
gentils vers le réseau ainsi que vers les autres applications. Avec le même esprit, les développeur
de BitTorrent ont récemment proposé, et implémentée dans laversion officielle du logiciel, un
nouveau protocole de niveau transport, LEDBAT pour Low Extra Delay BAckground Transport
protocole, en cours de standardisation aussi chez l’IETF [166], qui a exactement le même objectif.

Depuis sa naissance, LEDBAT a été le sujet de grandes discussions: surtout le fait qu’il se base
sur UDP et qu’il soit utilisé par les grands volumes de trafic générés par BitTorrent a fait penser
que sa diffusion pouvait causer une nouvelle congestion globale d’Internet. Mais nous verrons que
le protocole implémente en réalité un contrôle de congestion très efficace à niveau applicatif, qui
fait de lui un protocole à basse priorité, plus prudent que TCP même. Pour souligner l’importance
de ce protocole, nous montrons en Fig. 10 des mesures dans un réseau d’un opérateur réel, où
nous pouvons voire sa diffusion. À partir du mois de Mars 2010, quand LEDBAT devient le
défaut dans la version officielle du logiciel BitTorrent nous voyons que la pourcentage de trafic
BitTorrent UDP augmente énormément, jusqu’à représenter àpeu près le 50% de la totalité des
données échangés sur le réseau. Nous voyons aussi que la pourcentage de trafic BitTorrent sur le
réseau montre une légère inflexion, mais cette tendance est en train de changer comme montré par
des études plus récentes [76].

Dans le sections suivantes, nous allons présenter nos études concernant ce nouveau pro-

xxvi

 0

 10

 20

 30

 40

 50

 60

 70

Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c

sh
ar

e
[%

]

2.2
(β22538)2.0.3

2.0.2
2.0.1

(β18786)

2.0

1.8.5

2.0
(β17539)

BitTorrent UDP+TCP / All UDP+TCP
BitTorrent UDP / BitTorrent UDP+TCP

Figure 10: Proportion du trafic BitTorrent et BitTorrent Ledbat dans un réseau réel.

tocole. Tout d’abord nous avons conduit un étude de mesure duprotocole, en particulier de
l’implémentation dans le client BitTorrent officiel. Cet étude est antécédent la publication du
draft du protocole, du coup l’implémentation était inconnu. Après la divulgation du draft, en con-
naissant les spécifiques du protocole, nous avons pu l’implémenter dans un simulateur à niveau
paquet (ns2) et l’étudier au moyen de simulation. Notre analyse montre un problème de partage
des ressource quand deux flux LEDBAT pas synchronisés insistent sur le même lien: nous recher-
chons la cause de cette iniquité et proposons des solutions efficaces.

LEDBAT le nouveau protocole de BitTorrent

Comme déjà dit précédemment, notre premier étude du protocole LEDBAT est basé sur des
mesures, d’abord sur un testbed actif et en suite sur Internet. La raison de cette méthodologie
était que dans un premier temps la spécification du protocolen’était pas connue: les développeurs
de BitTorrent avait annoncé le nouveau protocole basé sur UDP avec l’objectif de fournir un ser-
vice à basse priorité. Cependant, ils n’avaient pas publié aucun description du protocole même,
seulement il l’avait implémente dans la version bêta du logiciel. A ce point là donc, le seul moyen
d’étudier le protocole était avec un approche black box, ce que nous avons adopté.

D’après les déclaration de BitTorrent, le protocole devrait utiliser une mesure du délai comme
signal de congestion, style TCP Vegas [41]. Le but était d’introduire seulement un petit délai
additionnel dans la file d’attente du goulot d’étranglement, qui les développeurs soutiennes être
à l’accès du réseau. L’avantage de cela est averti surtout par les applications interactives (VoIP,
jeu-video) qui souffre par des grandes délais. En plus, en monitorant le délai, le protocole peut
s’apercevoir vite d’une congestion imminent et réduire d’avantage son débit pour ne pas endom-
mager les autre protocole sur le même lien. Notre étude cherche donc de vérifier si l’implémentation
dans le logiciels se conforme à l’annonce de BitTorrent et aumême temps d’évaluer ses perfor-
mance qui sont plus intéressantes pour les usagers.

Vu que le protocole était toujours en cours de perfectionnement, surtout du cote implémen-
tation, nous avons cherché de suivre son évolution, en répétant les mêmes expériences pour dif-
férentes versions successives du logiciel, comme ça nous avons pu apprécier les modifications et
les améliorations introduites à chaque fois. Pour effectuer nos expériences, nous avons utilisé un
testbed actif: nous connectons le client qui turne sur diffèrent machines sur un router Linux sur
le quelle nous utilisonsnetem pour émuler des conditions de réseau (délai et débit) arbitraires.
Dans cette façons, nous pouvons facilement étudier le comportement du protocole dans différents
situations ainsi que observer comment il s’adapte à conditions difficiles qui changent beaucoup.

Dans notre première expérience nous verrons comment le protocole utilise la bande passante

xxvii

 0

 2

 4

 6

 8

 10

 0 60 120 180 240

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

TCP Windows
(17.5 KB)

α2

β1
α1α1

TCP Linux
(108 KB)

 0

 0.5

 1

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

C
ap

ac
ity

 P
ro

fil
e

[M
bp

s]TCP

α2

β1

 0

 0.5

 1

 0

 0.5

 1

 0 120 240 360 480 600

Figure 11: Débit pour différentes versions du protocole, (a) sans et (b) avec limitation de capacité.

disponible. En Fig. 11-(a) nous montrons le débit de différentes versions du protocole (α1, α2,
β1qui correspondent à deux alpha versions de LEDBAT et à la première stable beta) quand elles
sont toutes seules sur un lien à 10 Mbps (chaque courbe correspond à une expérience différente,
mais on surimpose les courbes pour un meilleur comparaison). Pour référence, nous montrons
aussi le débit atteint par TCP classique, dans deux implémentations: celle de Linux et celle de MS
Windows. Nous observons tout suite un dysfonctionnement dans la première version, qui n’est
pas capable d’avoir un débit constant; l’erreur a été correct dansα2, mais le protocole n’est pas
encore capable de profiter de toute la bande disponible, dû probablement à une mauvais valeur d’un
paramètre; heureusement cela a été fixé dansβ1 qui ne souffre plus de ce problème. Si on compare
avec les deux TCP, nous voyons que TCP Windows n’arrive pas non plus à bien utiliser la capacité
du lien, à cause d’une valeur maximale de la fenêtre de réception trop petite (nous précisons que
cette observation est valable pour Windows XP Home édition;dans les versions plus récentes une
valeur plus adaptée aux réseaux moderne permet de profiter detoute la capacité), alors que la
version Linux utilise correctement toute la capacité disponible.

Dans la Fig. 11, par contre, nous changeons la capacité du lien, en augmentant à des intervalles
réguliers la bande disponible depuis 0 jusqu’à 1 Mbps avec des pas successives de 250 Kbps.
Encore un fois, nous pouvons remarquer le travail des développeurs: si la premièreα1 n’arrive pas
à s’adapter aux conditions de capacité variable,β1 est tout à fait très efficient à égaler la capacité
disponible, comme la plus mature implémentation TCP. En plus, étant basé sur le délai, nous
pouvons remarquer aussi une meilleure stabilité, par rapport à les classiques oscillations de TCP
autour de le débit moyen. Nous pouvons remarquer le même phénomène dans la Fig. 12-(a), où
nous observons le débit atteint par un flux TCP et un flux LEDBATsur un lien ADSL sur Internet.
Le deux courbes correspondent de nouveau à deux expériencesdifférentes et sont surimposé pour
mieux les comparer. La plus importante observation est que le débit de LEDBAT et beaucoup plus
stable, alors que TCP présent des oscillations évidentes, qui sont dûs à le contrôle de congestion
basé sur les pertes.

Dans le Chap. 8, nous conduisons un étude similaire mais en changeant le délai sur le lien (qui
dans les précédents expériences était fixé sur 50 s). Notre résultat plus important est que le délai
sur le parcours de retour, qui ne devrait pas avoir aucune influence sur LEDBAT vu qu’il mesure
seulement le délai d’aller, à en fait un impact pas négligeable parce qu’il ajoute du retard dans la
boucle du contrôleur LEDBAT résultant dans un débit plus instable.

Finalement en Fig. 12-(b) nous étudions le comportement de LEDBAT quand il compète avec
un flux TCP sur le même goulot d’étranglement. L’expérience àété fait encore sur un lien ADSL
commercial sur Internet. Nous montrons le débit atteint parle flux LEDBAT, ligne rouge, et le RTT
mesuré au même temps avecping. Dans les deux périodes de temps démarqué par la zone grise,

xxviii

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s] TCP β1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s]

R
T

T
 [s

]

TCP FWD TCP BWD

β1 RTT

(b)

Figure 12: Expériences sur Internet: (a) versions différentes et (b) trafic d’interférence.

nous avons lancé un flux TCP concurrent, le première dans la même direction du flux LEDBAT
et le deuxième dans le sens inverse. LEDBAT profite correctement de toute la bande disponible
quand il est seule sur le lien et il réduit le débit correctement pour laisser la priorité au flux TCP
dans le même sens. Quand il y a le flux dans le sens inverse, pourtant, le comportement est divers
de ce qu’on attendait: LEDBAT est pas du tout insensible à cela, et l’effet d’un retard additionnel
ainsi que le trafic de ACK sur le parcours de retour impact fortement sur le débit.

Étude de simulation de LEDBAT

Dans cette section nous allons étudier le protocole LEDBAT au moyen de simulation, cela étant
possible à partir du moment où la spécification de l’algorithme de congestion contrôle à été publié
dans le draft chez IETF [166].

Tout d’abord nous allons décrire l’algorithme même, dans laforme où il à été spécifié dans le
document: nous avons repris le pseudocode dans la Fig. 13, dans sa forme la plus simple que nous
permet de mieux le comprendre. Les opérations de l’algorithme sont plutôt simples: la destination
se limite à calculer le délai des paquets reçus comme différence entre le timestamp du paquet
et son propre timestamp; le délai est en suite envoyé à la source, où se passe là plus parte de
l’algorithme. En fait l’expéditeur garde un historique desdélais mesures: le minimum observé
est lebase_delay qui veut être une estimation de la partie constante du délai,autrement dit
le délai de propagation, qu’on observe quand la file d’attente est vide. Du coup, la différence
entre le délai instantané et le délai de propagation correspond au délai dû à la file d’attente: le
but de l’algorithme est d’introduire un délai additionnel sur le parcours égale àTARGET, qui était
originalement à 25 ms et récemment à été choisi comme 100 ms. Du coup, la fenêtre de congestion
est modulé par un contrôleur linaire en fonction de la distance du délai mesuré depuis leTARGET.
Le dernier paramètre de l’algorithme est donc le coefficientmultiplicatif du contrôleur,GAIN qui
était pas spécifié dans la version originelle du draft. Nous allons choisir 1/TARGET comme valeur
deGAIN, selon les directives qui veulent que le contrôleur ne puisse pas grimper plus vite que un
TCP standard. Ce comportement contribue à le principal objectif du protocole qui était de fournit
un service à basse priorité. Pour atteindre cela, il y a aussile requis que le protocole détecte
la congestion avant de TCP et qu’il réagisse plus vite: commeLEDBAT commence à diminuer
le débit dès que il mesure un délai plus grand queTARGET, sa réaction précède celle de TCP
standard.

Nous avons implémenté cette algorithme dans le simulateur de réseau à niveau paquetns2.
L’algorithme à été implémenté comme un nouveau congestion contrôle pour TCP, en utilisant le
timestamp option disponible dans TCP pour calculer les délai. Vu que le simulateur utilise le même
système modulaire utilisé dans le noyau de Linux, notre code, disponible pour le téléchargement
ici [10] peut être utilisé aussi dans un système d’exploitation réel.

Avec cet outil, nous avons pu étudier le comportement du protocole dans des scénarios très

xxix

on data_packet @ RX:
remote_timestamp = data_packet.timestamp
acknowledgement.delay =

local_timestamp() - remote_timestamp

on acknowledgement @ TX:
current_delay = acknowledgement.delay
base_delay = min(base_delay, current_delay)
queuing_delay = current_delay - base_delay
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

Figure 13: Pseudocode de LEDBAT pour la source et la destination.

 0
 20
 40
 60
 80

S
en

de
r

w
in

do
w

[p
ac

ke
ts

]

TCP
LEDBAT

Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]
(a)

 0
 20
 40
 60
 80

S
en

de
r

w
in

do
w

[p
ac

ke
ts

] LEDBAT 1
LEDBAT 2
Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]
(b)

Figure 14: Évolution temporelle de la fenêtre de congestionde l’émetteur et de la dimension de la
file d’attente pour TCP-LEDBAT (a) et LEDBAT-LEDBATinteraction (b).

simples, pour déterminer d’abord s’il atteint ses objectif. La plus importante caractéristique de
LEDBAT veut être sa basse priorité: du coup nous allons étudier le comportement d’un flux LED-
BAT et un flux TCP qui partagent le même lien. L’évolution temporelle des fenêtres de congestion
et de la dimensionne de la file d’attente est représenté en Fig. 14-(a). Nous voyons que le flux TCP
n’est pas du tout influencé par la présence de LEDBAT sur le même lien: nous pouvons observer
en fait que à chaque fois que la file d’attente dépasse les 20 paquets, le flux à basse priorité diminue
son débit pour laisser l’espace au plus agressif flux TCP, quigarde son comportement habituel à
dent de scie. . Pourtant, LEDBAT est capable d’utiliser la bande laissée libre par le flux TCP, ce
qui augment l’utilisation total du lien.

Dans la Fig. 14-(b) nous observons le comportement de 2 flux LEDBAT qui partagent le même
lien. Nous voyons que, comme ils ont commencé au même temps, ils ont aussi mesuré le même
délai de propagation. Donc, il estiment correctement la dimension de la file d’attente et arrivent
facilement à partager dans une façon équitable la capacité.En outre, la taille de la file d’attente
reste très stable, sur 20 paquets, que corresponds à les 25 msdeTARGET délai spécifiés dans le
draft.

Malheureusement, la situation change radicalement si nousfaisons commencer les flux dans
deux instants différentes: dans ce cas là, le comportement observé dépende fortement de le délai
entre les deux flux, comme nous pouvons observer dans les trois plots de Fig. 15-(a). Dans celui
en haut, le deuxième flux commence quand le première n’a pas encore commencé à occuper

xxx

 0
 25
 50
 75

LE
D

B
A

T
 s

en
de

r
w

in
do

w
 [p

kt
s] ∆T=2 LEDBAT 1

LEDBAT 2

 0
 25
 50
 75

∆T=10

 0
 25
 50
 75

 0 5 10 15 20 25 30

Time [s]

∆T=10, B=100

(a)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
on

ge
st

io
n

w
in

do
w

 [p
kt

s]

Time [s]

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

(b)

Figure 15: LEDBAT vs LEDBAT évolution temporelle de la fenêtre de congestion pour différent
conditions initiales et latecomer advantage, même dans de scénarios multi-flux.

la file d’attente; du coup, bien que les deux flux aient bien mesuré le délai de propagation, les
premier ayant commencé d’abord, arrive à occuper une partiede la bande disponible bien plus
importante que le deuxième. Dans le plot de milieu, le deuxième flux commence quand le première
a déjà atteint leTARGET: pour cela, le deuxième surestime le délai de propagation deTARGETms
et commence à augmenter sa fenêtre de congestion. Vu que le premier flux diminue son débit
à la même vitesse à laquelle le deuxième augmente, celui-ci n’a pas la possibilité de corriger
sa mauvaise estimation: finalement le premier flux se tais complètement alors que le deuxième
continue à monter. Heureusement, à un certain moment le buffer est saturé et il y a une perte
qui cause une brusque réduction de la fenêtre de congestion et le vidange de la queue. Après
cette évènement, le deuxième flux corrige l’estimation du délai de propagation et l’équité est
récupéré. Toutefois, si le buffer avait été assez grand pourpouvoir contenir une longue queue,
alors nous nous seront retrouvés dans la situation du plot enbas, où nous voyons que une très
mauvais répartition de la bande passante peut persister longtemps. En Fig. 15-(b) nous voyons
que ce phénomène peut se présenter aussi quand plusieurs fluxinsistent sur le même liens, à
conditions que le buffer soit assez grand pour contenir la file d’attente crée.

Une objection à nos simulations, qui à été faites sur la listede diffusions du groupe de travail
IETF, était que ce phénomène ne peux pas se présenter dans un véritable réseau, parce que les
retards aléatoires introduits par le système d’exploitation, les routers et l’autre trafic ne laisseraient
pas synchroniser autant les deux flux. Si dans un certaine mesure il est vrai que il y a beaucoup
moins de synchronisation dans un réseau réel, pourtant ce phénomène de latecomer advantage peut
arriver quand même. Pour démontrer cela, nous avons profité de la publication du code officiel
de LEDBAT [85], pour tester la même situation dans un testbedréel. Les résultat que nous avons
mesuré est présenté en Fig. 16 et il est tout à fait pareil à nossimulations. Nous voyons que le
deuxième flux fait taire le premier, parque que il surestime le délai de propagation, comme nous
pouvons remarquer dans le plot à droite où le offset calculé du TARGET est toujours égale à zéro
pour le deuxième flux.

Après cette première évaluation nos conclusion sont que LEDBAT est un bonne protocole,
qui est capable de respecter ses objectif: fournir un service à basse priorité, qui ajoute seulement
un petit délai dans la file d’attente, mais qui est au même temps capable de profiter de la capacité
disponible sur le lien. Par contre, il a un problème dans son design originel qui porte à une situation
de partage pas équitable des ressource quand deux flux insistent sur le même lien. Nous allons
étudier ce problème dans le reste de ce section, en proposantaussi des solutions efficaces.

xxxi

 0

 10

 20

 30

 0 10 20 30 40 50 60

C
w

nd
 [k

B
]

Time [s]

Flow 1
Flow 2

-125
-100
-75
-50
-25

 0
 25
 50
 75

 100

 0 10 20 30 40 50 60

O
ffs

et
 [m

s]

Time [s]

Figure 16: Experimental LAN testbed: Congestion window evolution (top) and offset from the
target (bottom) for two competing backlogged libUTP flows.

Améliorer l’équité de LEDBAT

Dans le Chap. 9, nous proposons quatre solutions naïves à le problème d’iniquité que nous avons
remarqué dans le protocole LEDBAT. Nous omettons leur description dans ce résumé, parce
qu’elles ne sont pas parfaite mais elles font plutôt partie d’un parcours que nous a servi pour
trouver une vrai solution qui puisse garder la basse priorité et l’efficacité de LEDBAT, en ajoutant
aussi l’équité. En fait, cette qualité n’est pas négligeable, parce que, comme les applications P2P,
pour lesquelles LEDBAT a été conçu, ouvrent plusieurs flux enparallèle, le fait que le dernière
puisse arrêter tous les autres est assez gênant. En particulier cela impacte les performance de
l’application quand des critères comme le tit-for-tat de BitTorrentsont utilisés (un pair envoie de
préférence aux pairs qui l’ont plus servi dans les intervalles de temps précédents).

Au cours de notre étude, nous avons découvert que la raison principale pour l’iniquité de
LEDBAT doit être recherché dans la spécification du contrôleur de l’algorithme de congestion
contrôle, et, en particulier, dans la composante de décroissance additive. Déjà dans les dernières
années ’80, Jain [52] avait remarqué qu’un algorithme de congestion ayant cette composante était
instable et incapable de converger vers un équilibre: il indiquait la décroissance multiplicative
comme un élément essentiel pour l’équité de l’algorithme.

Nous avons défini dans le Chap. 10 un nouveau protocole, fair-LEDBAT ou fLEDBAT, qui
ne réintroduit pas seulement la décroissance multiplicative dans LEDBAT pour atteindre l’équité,
mais apporte aussi d’autres petites modifications pour améliorer l’efficience du protocole. Com-
mencions pour reprendre la spécification de LEDBAT dans une façon plus formelle: si on dénote
avecDmin le base_delay, avecτ le TARGET, avecq(t) le délai dû à la file d’attente au temps
t et aveccwnd(t) la fenêtre de congestion au tempst, nous pouvons exprimer le contrôleur de
LEDBAT comme:

∆(t) =(q(t)−Dmin)− τ

cwnd(t+ 1) =

{

cwnd(t) + α τ−∆(t)
τ

1
cwnd(t) sans pertes,

1
2cwnd(t) en cas de perte.

Par contre fLEDBATest spécifié ci de suite, oùα et ζ sont les paramètres de l’algorithme.

xxxii

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

R
at

e
[M

bp
s]

Simulation

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

Time [s]

Numerical solution

Firstcomer
Latecomer

Sum

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

Q
ue

ue
 le

ng
th

 [p
kt

s]

Simulation

Istantaneous
Mean

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

Time [s]

Numerical solution

(b)

Figure 17: Comparaison de (gauche) simulation et (droite) solution numerique pour (a) debits et
(b) dimension de la file d’attente.

cwnd(t+ 1) =

cwnd(t) + α 1
cwnd(t) sans pertes et∆ ≤ 0,

cwnd(t) + α 1
cwnd(t) −

ζ
τ∆ sans pertes et∆ > 0,

1
2cwnd(t) en cas de perte.

Nous voyons que nous avons apporté une double addition: (i) nous avons ajouté une terme ad-
ditive avecα qui a l’objectif d’améliorer l’efficience de l’algorithme et (ii) nous avons réintroduit
un terme multiplicatif avecζ quand le délai d’attente dépasse le target délaiτ . Dans le Chap. 10
nous démontrons avec un modelé fluide du trafic que l’iniquitéde LEDBAT est en effet dû à la
composante additive et, en suite, que fLEDBAT a des bonne propriétés pas seulement de équité
mais aussi d’efficience et convergence. Nous avons implémenté le nouveau protocole dans le sim-
ulateurns2 et nous avons aussi simulé notre modelé fluide numériquement: dans la Fig. 17 nous
montrons les résultat de la simulation et de la solution numérique, où nous voyons que l’équité est
rétablie et qu’il y a une parfaite correspondance entre la simulation et le modelé.

Dans le Chap. 10 nous conduisons une analyse très fine du nouveau protocole. Nous effec-
tuons d’abord un tarage des paramètreα et ζ dans des scénarios avec un et plusieurs flux, pour
comprendre l’intervalle des valeurs qui permet d’obtenir les meilleurs performances. En suite nos
simulations se concentrent sur le modelé de trafic (backlogged ou par chunk) et sur des scénarios
multiflux et multipairs, pour évaluer le protocole dans ses conditions d’utilisation typiques, vu que
LEDBAT a été conçu pour être le protocole de défaut de BitTorrent. Dans tout les cas fLEDBAT se
comporte mieux que LEDBAT et atteint une meilleur performance ainsi que une équité supérieure.

xxxiii

Abstract

P2P applications are certainly to be counted among the most bandwidth greedy users of the In-
ternet, due to their wide diffusion as well as the kind of service they provide (e.g. file-sharing,
live-streaming). Therefore, they pose continuously renewing challenges to network operators:
P2P traffic must be correctly monitored and managed in order for it to coexist peacefully with traf-
fic of other applications, i.e. without degrading their performance. Moreover, not only do these
services generate an enormous amount of traffic, they also impact the traditional assumption at the
base of the network architecture, in which the content was supposed to be located on a few server
machines and to be accessed from many remote clients. With P2P, instead, every host becomes
potentially a content provider, thus imposing new requirements especially to the access part of the
network.

In this thesis we investigate several strategies to help operators deal with the huge amount of
P2P traffic which has recently invaded their networks. In thefirst part we focus on the identifi-
cation of such traffic, a necessary preliminary step to all sorts of management activities operators
may want to apply: from monitoring of traffic trends, to differential treatment or queuing of pack-
ets (to ensure quality of service), to lawful interception of illegal data transfers. Yet, P2P traffic
classification is not an easy task, especially if addressed with traditional techniques such as port-
based classification or deep packet inspection (DPI). Therefore, this work investigates behavioral
traffic classification, which recognizes the pattern of traffic generated by an application (e.g., num-
ber of host contacted, with how many packets, with which periodicity and so on). First we propose
a framework able to explore the space of behavioral featureswhich can be defined over flow-level
measurement, ranking them according to their usefulness for traffic classification. Guided by this
analysis, we introduce Abacus, a behavioral classifier tailored for P2P live-streaming applications,
whose performance we evaluate by means of an extensive experimental campaign. We show that
the combination of a powerful machine learning algorithm with a careful choice of descriptive
features capturing the key properties of traffic results in an extremely accurate, robust, lightweight
and, furthermore, fine-grained classifier. To strengthen our claim, we present a comparison of
Abacus with a sophisticated payload-based classifier: Abacus can achieve the same accuracy, con-
suming, however, far less resources.

In the second part, we study how the accuracy of traffic classification is affected by data reduc-
tion techniques, more and more required to shrink the huge amount of data coming from network
measurement to a manageable size. First, we leverage the Abacus classifier as a test case and
study the impact on its accuracy of using data from flow-levelmonitors (i.e., NetFlow) instead
of packet-level measurement. Then, we experiment with Abacus and flow-sampling: this effect
may arise when the classifier is moved towards the network core, where not all traffic directed
to the target host is likely to be available due to routing. Onthe one hand, flow-level records
proved a well-suited input for such classification techniques, despite the coarser time granularity
and the reduced information. On the other hand, flow samplingmay cause a severe degradation of
accuracy only when it significantly changes the statisticalproperties of traffic used for the classifi-

xxxiv

cation – for instance, in Abacus, by altering the distribution of signaling and data flows. Finally, a
detailed analysis of the impact of packet-level sampling ontraffic monitoring and classification is
conducted. Even though we show that most traffic properties are heavily distorted already at low
sampling, regardless of the sampling policy adopted, we finda smart sampling technique which
reveals itself well suited for statistical traffic classification, provided that the classifier is trained
with data obtained at the same rate of the target data.

Finally we take an orthogonal approach: instead of adding more intelligence in the network
to handle P2P traffic, we propose to modify the applications themselves. In particular, the idea
is to change the transport protocols employed, to make them gentler towards both the network
and other traffic. We study a new lower-than-best-effort congestion control algorithm, which is
already implemented on top of UDP by BitTorrent and which is also on its way to standardization
at the IETF under the name of LEDBAT (Low Extra Delay BAckground Transport Protocol). The
goals of the protocol are to efficiently use all spare bandwidth, while adding only a small amount
of additional delay on the forward path; additionally, by implementing a delay-based control al-
gorithm, the protocol aims at yielding to other traffic (i.e., web or mail). In this work, after a
black-box evaluation of the BitTorrent implementation, which highlighted some good properties
of the protocol as well as some shortcomings, we developed anopen source implementation and
carried on a extensive simulation study of LEDBAT. We find that the current specification of the
protocol is affected by a latecomer advantage, and hence an unfairness issue, which might heavily
hit the performance. However, a careful study of the properties of the controller allowed us, first,
to identify the root cause of the unfairness in the additive decrease component and, second, to pro-
pose an effective modification to the algorithm, solving theissue as well as keeping all the good
properties of the original design.

1

Contents

1 Introduction 5
1.1 The rise and (apparent) fall of P2P applications 5
1.2 Motivation . 7
1.3 Contributions of this thesis 9
1.4 Thesis outline .. 11

I Traffic Classification 15

2 Introduction to traffic classification 17
2.1 Definitions and State of the art 17
2.2 Machine learning algorithms for classification 22

2.2.1 Support Vector Machine .23
2.2.2 Decision Trees . 24

2.3 Evaluating classification accuracy 24
2.4 Overview of dataset .. . 26

3 A general framework for behavioral P2P traffic classification 31
3.1 Defining behavioral features 32

3.1.1 Timescale . 32
3.1.2 Entities . 32
3.1.3 Granularity and Direction .. . 33
3.1.4 Categories . 33
3.1.5 Operations . 34

3.2 Methodology . 35
3.2.1 Dataset . 35
3.2.2 Metrics . 36
3.2.3 Preliminary Examples .38

3.3 Experimental Results 40
3.3.1 Comparing feature ranking .. . 40
3.3.2 Classification results .. . 41

3.4 Summary . 42

4 Abacus - Behavioral classification of P2P-TV Traffic 43
4.1 Introduction .. 43
4.2 Classification Framework 45

4.2.1 The Rationale . 45
4.2.2 Behavioral P2P-TV Signatures 46

2 CONTENTS

4.3 Methodology . 48
4.3.1 Workflow overview . 48
4.3.2 Rejection Criterion .. 49

4.4 Dataset . 51
4.4.1 Testbed Traces . 51
4.4.2 Real Traces . 51

4.5 Experimental Results 52
4.5.1 Baseline results .53
4.5.2 Signatures Portability 53

4.6 Sensitivity Analysis 57
4.6.1 Impact of the Rejection ThresholdR . 57
4.6.2 Impact of Time Interval∆T . 58
4.6.3 Impact of Training Set Size .. 59
4.6.4 Impact of Training Set Diversity 60
4.6.5 Impact of SVM Kernel and Binning Strategy 60

4.7 Improving the Accuracy: Extending the Signature 61
4.8 Summary . 63

5 Comparing behavioral and payload based classification algorithms 65
5.1 Classification algorithms 66

5.1.1 Abacus . 66
5.1.2 Kiss . 67

5.2 Experimental Results 68
5.2.1 Methodology and Datasets .. 68
5.2.2 Classification results .. . 68

5.3 Comparison . 69
5.3.1 Functional Comparison .. 69
5.3.2 Computational Cost . 71

5.4 Demo software . 73
5.5 Summary . 74

II Traffic Classification and data reduction 77

6 Behavioral classification with reduced data 79
6.1 Behavioral classification with NetFlow 79

6.1.1 Netflow data . 80
6.1.2 Using flow-records for classification 80
6.1.3 Dataset and Methodology .83
6.1.4 Classification results .. . 83

6.2 Behavioral classification in the core: the issue of flow sampling 84
6.2.1 Spatial distribution of application traffic 85
6.2.2 Real-life IP routing analysis 86
6.2.3 Impact of flow-sampling on Abacus signatures 87
6.2.4 Impact of flow-sampling on classification accuracy 88

6.3 Summary . 89

3

7 Impact of Sampling on traffic characterization and classification 91
7.1 Related work . 92
7.2 Dataset and Features .. . 93

7.2.1 Dataset . 93
7.2.2 Features . 94

7.3 Methodology . 96
7.3.1 Sampling Policies . 96
7.3.2 Metrics . 97

7.4 Aggregate Feature Distortion 100
7.4.1 Overview of Sampling Impact .. 100
7.4.2 Impact of Protocol Layer .. 102
7.4.3 Impact of Sampling Policy .. 103

7.5 Single-flow Feature Distortion 105
7.5.1 Overview of Sampling Impact .. 106
7.5.2 Ranking Features . 107

7.6 Traffic classification under sampling 109
7.6.1 Impact of Feature Set .109
7.6.2 Impact of Training Policy .. 111
7.6.3 Impact of Dataset . 112

7.7 Summary . 113
7.7.1 Impact on traffic characterization 114
7.7.2 Impact on traffic classification 114

III Congestion control for P2P 117

8 A measurement study of LEDBAT 119
8.1 Introduction .. 119
8.2 Methodology and Preliminary Insights 121
8.3 Single-flow scenarios 123
8.4 Multiple Flows .125
8.5 Related work . 126
8.6 Summary . 128

9 Simulation study of LEDBAT 129
9.1 LEDBAT Overview . 129

9.1.1 Queuing Delay Estimate .130
9.1.2 Controller Dynamics .131
9.1.3 TCP Friendliness Consideration 132

9.2 Simulation results 132
9.2.1 Implementation details .. . 132
9.2.2 Reference scenario .133
9.2.3 Homogeneous Initial Conditions 133
9.2.4 Heterogeneous Initial Conditions 135
9.2.5 Latecomer advantage in real networks 136

9.3 Addressing the latecomer advantage 137
9.3.1 Correcting the measurement error 137
9.3.2 Introducing multiplicative decrease 140

4 CONTENTS

9.4 Related work . 142
9.5 Summary . 144

10 Designing an efficient and fair LEDBAT 145
10.1 Current LEDBAT fairness issues 145

10.1.1 Impact of additive decrease 146
10.2 Proposed LEDBAT modification 147

10.2.1 Fluid model description .. . 148
10.2.2 Fluid system dynamics .. 149
10.2.3 System convergence .149

10.3 Simulation overview 152
10.4 Impact of traffic model 154

10.4.1 Chunk-by-chunk transfer 154
10.4.2 Backlogged transfer .. 154

10.5 Sensitivity analysis 155
10.5.1 Observations onα, τ and low-priority level 155
10.5.2 fLEDBAT vs TCP . 156
10.5.3 fLEDBAT vs LEDBAT . 156
10.5.4 fLEDBAT vs fLEDBAT . 156

10.6 P2P Scenarios .. 157
10.6.1 Single peer perspective 158
10.6.2 Entire swarm perspective 159

10.7 Summary . 161

11 Conclusion 163
11.1 Summary . 163
11.2 Future work .166

Appendices 168

A List of publications 169
A.1 Publications .. 169
A.2 Under review . 170

B List of traffic features output by tstat 171

Bibliography 184

5

Chapter 1

Introduction

1.1 The rise and (apparent) fall of P2P applications

By now it has been more than ten years since the birth of peer-to-peer applications, with the
release of Napster in 1999, and it looks like they are likely to stay much longer, further changing
the landscape of the network. In fact, there is no doubt that P2P applications have played a very
important role in the last decade, taking advantage of the spreading of faster network access links
(ADSL) and at the same time promoting their diffusion (for many users an always-on connection
was equal to an always-on P2P application). As they are the main subject of study of this thesis,
in the following we will briefly review the history of P2P services, from their initial growth and
fast diffusion, until theirapparentfall in favors of video traffic, especially web-based. However,
we will see that the future evolution of P2P traffic remains todate an open question, but, still, it is
sure that it will not be completely ruled out from the future Internet landscape.

Presently, P2P applications are still among the major contributors to the overall amount of data
exchanged over the Internet. There are several reasons at the base of their success, both technical
and commercial, which we will discuss below. But, first of all, we need to better define what
constitutes a P2P system.

Initially, distributed applications were built accordingto the traditional client-server paradigm:
thin clients running on many machines connected to a centralserver to exploit its, hopefully suffi-
cient, resources, be they computational power, storage or bandwidth. As powerful machines and
faster network access links became more and more available,the inefficiency of relying only on
the central server resources without exploiting the clients became more and more evident as well.
Building upon this observation, in P2P systems each host running the application shares a portion
of its resources with the others peers, directly exchangingdata with them: in this way the more
peers participate in the system, the more resources are available. For instance, in file-sharing ap-
plications, such as BitTorrent, the most important resource is clearly the bandwidth, for the goal
is to distribute files as fast as possible. Therefore, each peer, while downloading pieces (a.k.a.
chunks) of the file from other hosts, concurrently uploads data to other peers, thus devoting part
of its own upload bandwidth to the system.

From a technical point of view, the strong points of such an architecture are clearly its inherent
scalability and robustness. As for the former, it can be seen that the capacity of the system grows
naturally with the number of hosts involved, as each peer actively contributes a portion of its
own resources. Regarding the latter, the lack of a strong dependence from a centralized system1

1Actually some P2P systems use a centralized infrastructureto manage tasks such as user login or initial discovery
of peers, however they are usually not essential to the working of the application.

6 1. INTRODUCTION

guarantees that there is no single point of failure. Moreover, robustness comes from the fact that
P2P applications need to be designed since the very beginning to deal with an extremely changing
population of peers, which may fail or disappear without anyprevious notice because of network
problems or user behavior (i.e., churn).

Thanks to its advantages, the P2P paradigm has proved particularly effective as well as versa-
tile, given that it has been adopted by extremely different applications. In the beginning the first
widespread P2P systems were essentially file-sharing networks (e.g., Napster, Kazaa, Gnutella),
owing part of their success to the fact that they allowed users to exchange copyrighted content
(illegally but for free). Most of these applications have been superseded by the diffusion of Bit-
Torrent mainly because of its efficiency: as a matter of fact,BitTorrent has become a common
way of distributing large files on the Internet, e.g. Linux distribution or software updates. More
recently, the same distributed architecture has been successfully applied to very different services:
for instance to VoIP with Skype, which already counts millions of users worldwide, and lately
to video streaming, either live with P2P-TV applications such as PPLive, SopCast, TVAnts or
on-demand with software like Joost. Among the last appearedP2P applications, two deserve to
be cited: the live-streaming effort from BitTorrent 3.0, and Spotify, a music on-demand stream-
ing service which builds a P2P overlay among users to enhancethe performance of the company
central servers and content delivery network.

In consequence of such a pervasive diffusion, P2P applications have become responsible for a
large portion of global Internet traffic. At the end of 2007, Internet studies such as [92] indicated
that P2P traffic was estimated to be in different world regions in average between 49 and 83 per-
cent of total traffic, thus corresponding to the biggest consumer of bandwidth and exceeding even
Web traffic. In that very year P2P live-streaming applications started becoming popular, beginning
from China where they were originally developed. Concerns were raised by network operators,
who considered such services and the related traffic as real threats to their networks; moreover,
early measurement studies [86] on this technology confirmedsuch preoccupation, showing how
the upload bandwidth consumed by peers could grow extremelylarge (i.e., many times the stream
rate). The network community tried to address the problem with several projects such as Na-
pawine [115] (in whose context part of this thesis was developed) or P4P [183], whose goal was
basically to develop more ISP-friendly applications. At the same time, large operators indepen-
dently started to deal somehow with the huge amount of P2P traffic, sometimes even by means of
drastic measures like throttling it [21], thus violating network neutrality.

Nevertheless, while P2P was foretold to explode [92, 100], recent studies have somehow
scaled down such a forecast [112, 169], highlighting instead a predominance of web traffic in
nowadays Internet traffic breakdown, because of the diffusion of web-based video (e.g. YouTube,
Megavideo) and web-based file-sharing (e.g. Megaupload, Rapidshare). The annual report and
forecast of Cisco [169] further confirms the overtaking of video traffic – which has seen an as-
tonishing increase – over P2P traffic as percentage of total amount of data exchanged over the
Internet.

However, we should not rush our conclusions from this data. Although decreasing in percent-
age, P2P traffic is still increasing at high pace in absolute volume, which currently amounts to
4 thousand petabytes, and it is expected to double by the year2015; furthermore, Cisco’s report
considers P2P live-streaming traffic as video traffic and notas P2P, thus biasing such statistics.
Moreover, the decline of P2P traffic may reflect only short term effects, as pointed out by late
measurement works [76]. This study shows that such a trend ischanging in some regions: since
web-based file-sharing services like Rapidshare enforce limits on download size and speed and
operators start limiting traffic towards such websites, users are reverting to well trusted P2P appli-
cations. Besides, P2P in Adobe Flash player with RTMFP [24] and consequently in the browser,

7

as well as new services of content distribution (e.g. Spotify) might completely change the trend of
global P2P traffic in the near future. In summary, it seems like P2P traffic is not going to disappear
soon and will continue to represent a consistent portion of total traffic.

1.2 Motivation

In such a context, this thesis has the goal of developing tools and protocols to help manage P2P
traffic, which, given its volume and peculiar characteristics, continues to represent a challenge for
operators. In particular, this thesis wants to provide solutions to better (i)identify, (ii) measure
and (iii) control P2P traffic. In the following, we briefly introduce each of these topics, which,
actually, correspond to the different parts of this thesis.

Whatever the strategy ISPs want to adopt to deal with P2P traffic, the first step they need
to perform is to efficiently identify it.In fact, only by correctly telling which packets or flows
belong to P2P applications, operators can (i) implement differential queuing or treatment of such
traffic, (ii) comply to Quality of Service agreement and (iii) prevent P2P traffic from hurting the
performance of other applications.

However, despite the huge effort [32, 34, 63, 77, 80, 83, 101,102, 105, 119, 124, 131, 132, 132,
140, 161, 165, 184], devoted by the research community to thesubject oftraffic classification, i.e.,
associating an application label to packets transmitted over the network, the identification of P2P
traffic is still far from being an easy task, due to a few main reasons. On the one hand, traditional
techniques based on transport-layer identifiers (i.e., TCPor UDP port numbers) are fooled by
modern applications, which either use random ports or hide behind well-known ports belonging
to other protocols (e.g. port 80 for HTTP). On the other, moresophisticated techniques likedeep
packet inspection, which search packet payloads for evidences of the application protocol, usually
require several memory accesses and computationally expensive operations, thus falling short of
coping with increasing transmission speed.

For these reasons, the community has proposed novel methodsfor classifying network traf-
fic. For instance,statistical classifiers[34, 63, 124, 130, 161, 177] characterize traffic by means
of features calculated at flow-level (e.g. size and direction of first packets, total length and du-
ration of flows). Another recent and promising family of algorithms is behavioral classifica-
tion [101, 102, 184], which tries to capture the properties of thepattern of traffic generated by an
host running an application, leveraging the fact that beingthe applications different, so will be the
pattern of traffic generated by them (e.g. a P2P application contacting many peers versus a tra-
ditional client exchanging data with a single server). Suchan approach is extremely lightweight,
usually employing flow-level measurement as those providedfor example by flow-level monitors
like NetFlow, so being a perfect candidate for dealing with the volumes of traffic generated by
P2P applications. However, before this work, behavioral classifiers only achieved coarse-grained
classification of wide classes of applications (i.e., P2P vsweb) and had never been applied to the
emerging P2P live-streaming applications. We address the design of such a classification engine
in the first part of this thesis.

While the community is busy designing more lightweight techniques like behavioral classi-
fier, operators must already take action with respect to the large amount of traffic of nowadays
networks. Cisco’s report [169] estimates the total traffic transmitted over the Internet to be in the
order of 20 exabytes per month in 2010 and the prevision sees it growing upto nearly 1 zettabytes
in 2015: therefore, operators are obliged to adopt data reduction techniques to contain the quantity
of measurement data they get from their networks. This consideration holds in particular for P2P
applications, which, as mentioned above, represent a largeslice of the global Internet traffic. In the

8 1. INTRODUCTION

second part of this thesis we will investigatewhat is the impact of data reduction on the accuracy
of traffic classification.

For instance, last years have confirmed the trend inflow-level monitoringof operational net-
works: the growing use of NetFlow also standardized as IPFIXat the IETF [57], is motivated
by a larger scalability with respect to packet-level measurement along with a larger expressive-
ness compared to the coarse-grained counters of SNMP.Packet samplinghas become a common
practice for network operators as well, reducing the loading of monitoring equipment, as only a
fraction of all packets is selected to be processed, according to different criteria (e.g. systemati-
cally 1-out-of-N, at random). This kind of data is often the only one available, or at least the only
one which is possible to collect. Therefore, a modern classifier cannot be exempted from dealing
with sampled data. In the second part of this dissertation, we investigate this issue: whether be-
havioral and statistical classifiers can work with sampled or flow-level aggregated data andwhat
is the impact of this reduced information on classification accuracy.

Moreover, if classifiers are deployed in the core of the network, they are likely to observe
only a portion of the traffic directed to the host that is the target of the classification; yet, this
was a common assumption for behavioral classifiers, which need as much information as possible
to characterize the pattern of traffic of a host. Such a requirement, which is not always met,
has somehow hindered the adoption of behavioral classification engines. Thus we also evaluate
the performance of behavioral classification in the presence of flow-sampling, i.e., when only
some flows are inspected at the classification point and only an incomplete vision of traffic can be
gathered by the classifier. A chapter of this thesis is dedicated to understand whether behavioral
classifiers are also suited for classification at the core of the network.

Besides supporting network operators with better tools to manage P2P traffic,a complemen-
tary approach to prevent P2P traffic from badly impacting other application traffic is to provide
developers with protocols specifically designed for these distributed services. In particular such
protocols should be designed to implement alower-than-best effort service, which automatically
yields to higher priority traffic, while efficiently exploiting the available bandwidth at the same
time. This road has been recently taken by BitTorrent developers, which in late 2008 announced
that the forthcoming version of the client would drop TCP as transport layer protocol in favor of a
new congestion control algorithm implemented on top of UDP and named uTP. Despite the initial
buzz about such an announcement, with people wrongly foretelling a soon to come congestion
collapse of the Internet when all BitTorrent traffic would switch to unresponsive UDP, the inten-
tion of BitTorrent developers was sound. To prove their goodintentions, they started chairing an
IETF working group to openly design this new protocol under the name of LEDBAT, which stands
for Low Extra Delay BAckground Transport protocol.

As stated in the IETF draft [166] documenting the algorithm,the LEDBAT protocol has three
main goals: (i) to efficiently exploit the available bandwidth, (ii) to introduce a small extra-delay
in the network path, (iii) to quickly yield to other traffic sharing the same bottleneck (e.g. TCP).
The design of the protocol is based on the observation that, in nowadays networks, congestion
is mostly self-induced and happens exclusively at the access, while the over-provisioned network
core is almost congestion free. According to BitTorrent developers, the bottleneck link is found
at the home gateway, where also actual queuing happens. TCP detects congestion when a loss
occurs, i.e., when the buffer overflows: thus, given the large buffers usually found in home network
equipment, TCP may introduce large delays (up to a few seconds [156, 164]) and latencies, to
which interactive applications are particularly sensible. LEDBAT tries to prevent this situation
by detecting early that queuing is building up and by adjusting the rate in such a way that only a
small portion of the buffer is occupied (avoiding losses altogether). To achieve this goal, LEDBAT
implements a windowed delay-based congestion control algorithm, constantly monitoring the one-

9

way delay on the forward path and adjusting the congestion window by means of a linear controller
in order to add only a smalltarget delayin the bottleneck (set to 25ms by default in the draft).

Thanks to BitTorrent popularity, LEDBAT is surely going to play an important role in the
Internet and measurement studies [76] have highlighted that it has already changed the distribution
of traffic in large ISP networks. Therefore the evaluation ofits performance is clearly a topic
of large interest. Besides, given the already large literature on congestion control, both about
delay-based algorithms [40, 41, 84, 114, 117] and lower-than-best-effort protocols [103, 111, 118,
175], one may tend to question whether LEDBAT is a worth addition to the Internet architecture
or BitTorrent developers would have rather chosen an already well-known and tested solution.
Moreover, while on the one hand chairing a IETF group clearlywitnesses the good intentions
of BitTorrent, on the other the application has been deploying the protocol much earlier than the
draft. Actually, in the original design document [136], different parameter values are specified for
the official implementation (e.g. the target delay is set to 100,ms), so that a completely different
flavors of the protocol is actually implemented. Several issues have been also pointed out on
the working group mailing-list, so that a rigorous evaluation of the protocol design is more than
welcome by the community. In the last part of this thesis we will study LEDBAT behavior and its
performance, by employing different tools (i.e., analysis, simulation, measurement) and proposing
solutions where we find problems in the original specification.

1.3 Contributions of this thesis

This thesis is organized in three parts. In the first one we aregoing to explore thebehavioral
classification approach for the identification of P2P traffic. First we demonstrate that a wealth
of features can be defined over data found in NetFlow flow-records, which are able to capture
such distinct properties of P2P traffic that they even allow fine-grained classification of specific
applications. We first introduce a framework for the definition of behavioral features, so as to
systematically explore the whole feature space, combiningdifferent simple criteria to build richer
attributes. We thus obtain a very general characterizationof behavioral features, whereas all pre-
vious work focused on very specific techniques, which are difficult to compare between each other
because of the heterogeneity of approaches and testing methodologies. Our framework is instead
general enough to contain features used by previous classifiers, thus favoring their comparison.
Then we evaluate the information content of single featuresby means of information theoretic
and geometric metrics, in order to find out which are the most useful ones for our classification
purposes. We employ machine learning techniques (Support Vector Machines [62] and Decision
Trees [106]) to actually perform the classification, showing that our methodology achieves good
performance though using simple criteria and features.

Leveraging the aforementioned findings as well as our knowledge of the internals of P2P
live-streaming applications, we propose a specific signature for this kind of services, which are
increasingly popular as well as bandwidth consuming. We define a simple signature based on the
distribution of the rate of flows received by the target peer in small time-windows, which high-
lights specific properties of the P2P application implementations. Our classifiers, which is named
Abacus, is based on Support Vector Machines and on a rejection criterion to classify “unknown”
traffic, i.e. different from the one used for the training. Our extensive experimental campaign
demonstrates that not only does this classification engine achieve extremely high accuracy and
fine-grained classification, but it is also portable across different network settings and times. We
also compare our solution with a state-of-the-art payload based classifier [77], tailored for the same
kind of applications, in terms of classification performance and of computational complexity as

10 1. INTRODUCTION

well. Our analysis shows that Abacus is capable of achievingthe same accuracy together with a
much lighter classification process.

The second part of this thesis, instead, tackles the issue ofassessing theimpact of data re-
duction techniques(e.g. aggregation and sampling) on classification performance. First, we
verify the very first claim of this work, that behavioral classification is feasible by employing
solely flow-level data, like NetFlow flow-records. Using thepreviously introduced Abacus clas-
sifier as test-case, we see that classification accuracy remains high, notwithstanding the coarser
time-granularities of this data (Abacus was originally designed to use a monitoring window of 5 s,
whereas NetFlow timeouts are usually in the order of minutes).

Afterwards, we evaluate the performance of the Abacus classifier when it is deployed in the
core of the network, where the phenomenon offlow-samplingmight interfere with the classifica-
tion. In fact, because of routing, the engine is likely to observe only a fraction of all flows directed
to any given host, so gathering a limited picture of the pattern of traffic generated by the applica-
tion. We test Abacus in such a situation, using both a random sample of flows and real-life routing
tables. Our results show that classification is still possible and accurate even with missing data, as
long as the traffic observed allows the classifier to gather a statistically representative sample of
flows. Under this condition, in fact, Abacus signatures are robust because the distribution of flows
is not biased by the sampling due to IP routing.

We then move on to evaluating the impact ofpacket samplingon traffic measurement and
classification. We actually modified a network monitoring tool, i.e. tstat [16], which outputs
several metrics of packet flows both in aggregated and single-flow fashion, to apply different sam-
pling policies with arbitrary sampling rates. We run the tool on an extensive set of packet-level
traces and use the data for a twofold analysis. First, we evaluate the distortion due to sampling
by means of statistical metrics which measure the distance between the distribution of aggregated
features over sampled and unsampled traffic. We show that sampling causes a significant degrada-
tion of features, even for low sampling rate and no matter howsophisticated the sampling policy
employed. Second, we employ single-flow features to assess what is the impact of using sampled
data when performing traffic classification. First we use again tools from information theory to
evaluate the information content of features, showing thatthe degradation observed in the absolute
value of the features does not necessarily imply a reductionof information content. Since diversity
among classes is somehow preserved in spite of sampling, traffic classification is still possible and
accurate with sampled data, provided that the classifier is trained with traffic gathered at the same
sampling rate as the test traffic.

In the third part, we finally deal withcongestion control for P2P applications, in particu-
lar with the lower-than-best-effort LEDBAT protocol, proposed by BitTorrent developers. First
we conduct a measurement study of its reference implementation found in the official BitTorrent
client. These experiments date back to the time before the specification of the protocol was made
public: therefore, we used a black-box approach, to understand whether LEDBAT abide by its
goals. We build a testbed to control network conditions (e.g. available bandwidth, delay) and look
at the reaction of the protocol to such a varying scenarios. We show that LEDBAT is a promising
protocol, able to efficiently exploit the bandwidth while only adding a small delay to the network
path. At the same time, we argue that the definition of lower-priority service is not straightfor-
ward, as different TCP implementations, different parameter choices and different scenarios can
significantly affect the results.

Although extremely useful to understand the behavior of a protocol in real life scenarios,
measurement and testbed experiments are not enough to evaluate the goodness of the design of a
protocol. For this reason we develop an open source implementation of LEDBAT for the packet-
level network simulatorns2, which can also work in the Linux kernel as an optional congestion

11

control module. By simulating the protocol in simple scenarios we are able to better grasp the
dynamics of the congestion control, observing each single aspect on its own. Simulations confirm
the lower-priorities properties of LEDBAT, but they also expose alatecomer advantageaffecting
the protocol. Actually, when two LEDBAT flows beginning at different times traverse the same
link, the latecomer may gather an incorrect delay estimation provoking an aggressive behavior
which may lead to long time starvation, potentially impacting application performances as well.
Having found this unfairness issue, which was already knownto afflict delay-based protocols since
TCP Vegas time, we investigate the root cause of the problem and propose a few possible solutions
to help relieve it.

Our first observation is that the buffer queue needs to drain to correct the delay estimation
of concurrent LEDBAT flows; therefore we suggest adding a slow-start phase at the beginning of
LEDBAT flows, whose steep ramp-up is likely to cause, in order, buffer overflow, packet loss, flow
back-off and queue draining. Yet, this solution seems in contrast with the lower-priority nature of
LEDBAT, as also normal flows may experience losses and degraded performance. Moreover, dig-
ging further, we found that the main cause on the fairness is rooted in the controller design: actually
early studies from late eighties [52] already pointed out that with anadditive decreasecomponent
the system is not able to converge to a fair share of the available resources. We then propose three
increasingly better solutions, which overcome the fairness issue by restoring the multiplicative de-
crease component. The simpler two solutions we propose are effective, though slightly naive: the
first adds a random congestion window drop to the controller specification, while the second one
simply changes the algorithm replacing the addictive decrease with a multiplicative one. However,
only the very last solution we propose (called fLEDBAT for fair-LEDBAT) is capable of achieving
low-priority, fairness and efficiency at the same time. We provide a mathematical fluid-model of
this last solution, which analytically proves the properties of the protocol, as well as an extensive
simulation study considering also complex P2P-like cases to evaluate the impact of such a proto-
col in realistic application scenarios. We underline that this work on the LEDBAT protocol is also
discussed and cited in the IETF draft [166] itself.

1.4 Thesis outline

An overall view of the content of this thesis is provided in Tab. 1.1. As you can see, this dissertation
is divided in three parts, respectively dedicated (i) to traffic classification of P2P traffic, (ii) to
traffic classification and data reduction and (iii) to congestion control for P2P applications. For
each part, we listed the chapters along with the main methodologies used (for traffic classification
chapters we listed the machine learning algorithm employed), a few keywords and our related
publications. In the following we complete this information with a brief summary of each chapter,
to help the reader find this way along this thesis.

In Chap. 2 we introduce the problem of traffic classification,clearly stating its goals and pos-
sible applications. We review the related work in this widely investigated field, proposing a tax-
onomy of classification algorithms based on the data exploited for the classification, to better
orientate ourselves among the various solutions. Then we discuss the main challenges in de-
veloping new classifiers, which necessarily have to cope with modern applications and network
technologies. We also describe the machine learning tools we exploit later on when developing
our classifier, i.e. Support Vector Machines and Decisions trees. Finally we present methodologies
and metrics to evaluate classification performance.

Chap. 3 contains a preliminary study on the possible traffic features for P2P traffic that can
be defined over data found in NetFlow flow-records. A general framework is defined, which uses

12 1. INTRODUCTION

Table 1.1: Thesis synopsis
Methodology Keywords Publications

Part. I
Chap. 2 - DPI, statistical classification,

machine learning, dataset
-

Chap. 3 Decision Trees P2P behavioral classification,
Information Gain, ReliefF

[160]

Chap. 4 Support Vector Machines behavioral classification,
Abacus, P2P-TV

[32, 173]

Chap. 5 Support Vector Machines behavioral classification,
stochastic packet inspection,
computational analysis

[79]

Part. II
Chap. 6 Support Vector Machines NetFlow, flow-sampling,

Abacus
[158, 159]

Chap. 7 Decision Trees packet sampling, statistical
classification, Information
Gain

[142, 170]

Part. III
Chap. 8 Experimental Testbed black-box evaluation,

netem, ADSL, BitTorrent
[156]

Chap. 9 Simulation LEDBAT, ns2, latecomer ad-
vantage, slow-start, multi-
plicative decrease

[46, 155]

Chap. 10 Mathematical modeling,
simulation

fair-LEDBAT, fairness, P2P-
like simulation

[45]

simple criteria to build a rich set of possible features. Theinformation content of each features is
evaluated by means of information theoretical and geometrical metrics, so as to determine which
are the most useful for classification purposes. Finally we actually perform the classification using
such features with the C4.5 decision tree algorithm.

In Chap. 4, we take advantage of the results of the previous chapter and define a set of features
tailored for P2P live-streaming applications, which captures the specific characteristic of this kind
of services. The overall classifier, named Abacus, feeds these features to a Support Vector Machine
algorithm and also features a rejection criterion to enablethe identification of “unknown” traffic.
We extensively test the classifier with several experiments: we prove its portability across different
networks, different access technologies, different timesand different network conditions. Finally
we conduct a sensitivity analysis to find out the parameter settings which achieve the best accuracy.

In Chap. 5 we compare the Abacus classifier with Kiss [77], a payload-based classification
algorithm proved to be particularly accurate with P2P-TV traffic as well [144]. First we compare
the raw accuracy of the two classifiers on the same set of traces; then, we contrast their require-
ments in term of computational resources required, i.e., CPU consumption and memory footprint.
Finally we proceed with a more qualitative comparison, where we highlight pros and cons of both
approaches.

We then move on to the second part of the thesis, which deals with traffic classification and
data reduction. In Chap. 6, we test the Abacus classifier in more challenging conditions. First, we
apply it on NetFlow flow-records data: we begin by describinghow NetFlow works and how we
modified the original Abacus design to cope with aggregated flow-records. We then present the
accuracy achieved by the classifier in our experiments. In the same chapter, we also test Abacus
in the case of flow-sampling. Initially, we analyze the distribution of flows across the IP address
space, to understand whether peers are spread all over or whether they are concentrated in a few
networks. Then, we evaluate the classifier both in a simulated scenario, where flows are sampled

13

at random, and in a more realistic one, where we employ real-world routing tables from BGP core
routers.

Chap. 7 is dedicated to packet sampling. After a review of related work on this topic, we
introduce our methodology: sampling policies, dataset, statistical metrics, information theoretical
metrics and classification algorithm employed. The chapteris then divided in three sections. The
first one assesses the distortion of aggregated features, which allows us to gather a application-
independent picture of the impact of sampling on traffic characterization. The second one evaluates
the distortion of single-flow features, in particular the reduction of their information content. In
the last section we perform traffic classification with sampled data, gauging the impact of different
feature sets, datasets and training policies.

The third part of the thesis is about the LEDBAT lower-than-best-effort, delay-based proto-
col for P2P traffic. In Chap. 8 we present the result of our testbed experiments with the official
closed-source BitTorrent client implementing the novel protocol, considering different successive
versions. We observe LEDBAT behavior in different network conditions, enforcing different net-
work capacities and delays and highlighting its positive aspects and limits.

In Chap. 9, we discuss the LEDBAT IETF draft which describes the congestion control algo-
rithm. Then, by means of ourns2 implementation, we perform a simulation study of the protocol,
where we unveil the latecomer advantage. We then provide four possible solutions to the unfair-
ness issue: (i) the use of random pacing of packets within an RTT, (ii) the use of slow-start, (iii)
the introduction of a random window drop and (iv) the replacement of the additive decrease com-
ponent of the controller with a multiplicative decrease. Those solutions that actually solve the
problem are evaluated in term of fairness and network utilization.

Finally in Chap. 10 we present a more mature solution to the latecomer advantage. We in-
troduce fair-LEDBAT (fLEDBAT), which substantially modifies the original LEDBAT design to
achieve fairness and network efficiency, while still keeping the low-priority goal. The chapter
contains the mathematical model of the protocol as well as the proof of its properties in simple
scenarios. Finally we study more complex cases with heterogeneous RTTs and background traffic,
mocking an actual swarm of BitTorrent peers.

Finally in Chap. 11, we summarize and discuss the main results of this thesis, foreseeing future
research perspective and evolution of this work.

14 1. INTRODUCTION

15

Part I

Traffic Classification

17

Chapter 2

Introduction to traffic classification

In this chapter we will introduce the reader to traffic classification: we define the problem, we
explain the motivations behind it and we present possible applications of these techniques. This
chapter contains an overview of the various solutions foundin literature, from the earliest sim-
pler classifiers to the latest, more sophisticated algorithms better suited for modern applications
and network technologies. To better structure this overview, we divide the classifiers in a few
categories according to the data they base the classification on.

Finally, we also present methodologies, tools and metrics commonly used to evaluate the
performance of classification algorithms. We will employ such instruments in later chapters to
assess the accuracy of our own classifiers and to compare themagainst other solutions.

2.1 Definitions and State of the art

Traffic classification is the task of associating network traffic with the generating application.
Notice that the TCP/IP protocol stack, thanks to a clear repartition between layers, is completely
agnostic with respect to the application protocol or to the data carried inside packets. This layered
structure has been one of the main reasons for the success of the Internet; nevertheless, sometimes
network operators, though logically at layer-3, would be happy to know to which application
packets belong, in order to better manage their network and to provide additional services to their
customers.

As observed by authors of several works [105, 116, 135] the information provided by traffic
classification is extremely valuable, sometimes fundamental, for quite a few networking opera-
tions. For instance, it represents the first step for activities such asanomaly detection[140], i.e.
the identification of malicious use of network resources. Also, a detailed knowledge of the com-
position of traffic as well as the identification of trends in application diffusion is required by
operators for a betternetwork design and provisioning. Quality of service(QoS) solutions [161],
which prioritize and treat traffic differently according todifferent criteria, need first to divide the
traffic in different classes: the application to which packets belongs is a very important aspect
when assigning them to a class. In the same way, traffic classification enables differentiated class
charging or Service Level Agreements (SLA) verification. Finally, some national governments
expect ISPs to performLawful Interception[30] of illegal or critical traffic, thus requiring them to
know exactly the type of content transmitted over their networks.

If, on one side, the applications of traffic classification are plentiful, the challenges classifiers
have to face are not to be outdone. First, they must deal with an increasing amount of traffic as
well as an equally increasing transmission rates: to cope with such speed and volume, researchers

18 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

Table 2.1: Taxonomy of traffic classification techniques
Approach Properties

exploited
Granularity Timeliness Computational

Cost
Port-based Transport-

layer port
[131, 132,
140]

Fine grained First Packet Lightweight

Deep packet
inspection

Signatures
in payload
[119, 132,
165]

Fine grained First pay-
load packet

Moderate, ac-
cess to packet
payload

Stochastic
packet
inspection

Statistical
properties
of payload
[77, 83,
104]

Fine grained Online,
after a few
packets
(<100ms)

High, eventual
access to pay-
load of many
packets

Statistical
Flow-level
properties
[105, 124,
132, 161]

Coarse
grained

After flow
termination

Lightweight

Packet-level
properties
[34, 63]

Fine grained After few
packets (5)

Lightweight

Behavioral
Host-level
properties
[101, 102,
184]

Coarse
grained

After flow
termination

Lightweight

Endpoint
rate [32, 80]

Fine grained Online after
a few sec-
onds

Lightweight

are looking forlightweight algorithmswith as little computational requirements as possible. The
task is further exacerbated by developers of network applications doing whatever in their power to
hide traffic and to elude control by operators: traffic encryption and encapsulation of data in other
protocols are just the first two examples that come to mind. Therefore, researchers had to come
out with novel and unexpected way for identifying traffic.

The large body of literature about traffic classification [32, 34, 63, 77, 80, 83, 101, 102, 105,
119, 124, 131, 132, 132, 140, 161, 165, 184] is a further evidence of the great interest of the
research community towards this topic. In the following, wewill present an overview of the
different approaches and methodologies that have been proposed by researchers to solve this issue.
It is important to underline that this is far from being an attempt to provide a comprehensive list of
all papers in this field (which, given their number, would be particularly tedious). Such a detailed
reference can be found in a few survey [105, 135] or in relatedcommunity website (e.g., [3]).
Our aim is rather to identify the most important research directions so far, as well as the most
representative milestone works and findings, to better highlight our contribution to this already
deeply investigated subject. Still, despite this huge research effort, the community has not put the
last word yet on traffic classification, as a number of challenges and question still remain open.

To better structure this overview, we divide the classifiersin a few categories according to
the information on which they base the classification. This widely accepted categorization, which
reflects also the chronological evolution followed by research, is summarized in Tab. 2.1. The table

19

lists the most important works in each category along with their most relevant characteristics. The
most important traits of a classifier, which determine its applicability to different network tasks,
are:

Granularity We distinguish betweencoarse-grainedalgorithms, which recognize only large
family of protocols (e.g. P2P vs non P2P, HTTP vs Streaming) and fine-grainedclassifiers,
which, instead, try to identify the specific protocol (e.g. BitTorrent vs eDonkey file-sharing),
or even the specific application (e.g. PPlive vs SopCast livestreaming).

Timeliness Early classificationtechniques are able to quickly identify the traffic, after a few pack-
ets, thus being suited for tasks requiring a prompt reaction(e.g. security).Late classification
algorithms take longer to collect traffic properties, in some case they even have to wait for
flow termination: such techniques are indicated for monitoring tasks, such as charging.

Computational cost The processing power needed to inspect traffic and take the classification
decision is an important factor when choosing a classification algorithm. In the context of
packet processing, the most expensive operation is usuallypacket memory access, followed
by regular expression matching.

In the following we review each category in more detail.
In the first days of the Internet, identifying the application associated to some network packets

was not an issue whatsoever: protocols were assigned to well-known transport-layer ports by
IANA [5]. Therefore, Port-based classification[131, 132, 140] simply needed to extract such
value from the packet header and then look it up in the list with the association port-application1.
UnfortunatelyPort-basedclassification has become largely unreliable [100, 132]. Infact, in order
to circumvent control by ISPs, new applications, especially P2P ones, either use non-standard
ports, or pick a random port at startup. Even worse, they hidethemselves behind ports of other
protocols – this might enable bypassing firewalls as well.

To overcome this problem,Payload-based classifiers[77, 83, 119, 132, 165] were proposed.
They inspect the content of packets well beyond the transport layer headers, looking for distinctive
hints of an application protocol in packet payloads. We actually split this family of classification
algorithms in two subcategories,Deep packet inspection(DPI) techniques that try to match a
deterministic set of signatures or regular expressions against packet payload, andStochastic packet
inspection, rather looking at the statistical properties of packet content.

DPI has long provided extremely accurate results [132] and has been implemented in several
commercial software products as well as in open source projects [16] and in the Linux kernel
firewall implementation [8]. The payload of packets is searched for known patterns, keywords
or regular expressions which are characteristic of a given protocol: the website of [8] contains a
comprehensive lists of well known patterns. It is often usedin Intrusion detection system [140] as
a preliminary step to the identification of network anomalies. Besides being extremely accurate,
DPI has been proved to be effective from the very first payloadpackets of a session [147], thus
being particularly convenient for early classification.

Despite its numerous vantages, DPI has some important drawbacks. First the computational
cost is generally high, as several accesses to packet memoryare needed and memory speed is long
known to represent the bottleneck of modern architectures [181]. String and regular expression
matching represent an additional cost as well: although there exist several efficient algorithms and
data structures for both string matching and regular expression, hardware implementation (e.g.
FPGA) or ad hoc coprocessors (e.g. DFA) are often required tokeep up with current transmission

1The list is also available in all standard Unix machines in the file/etc/services.

20 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

speed [110]. Moreover, such algorithms usually add furthermemory lookups. Second the key-
words or patterns usually need to be derived manually by visual inspection of packets, implying a
very cumbersome and error prone trial and error process. Last but not least, DPI fails by design in
the case of encrypted or obfuscated traffic.

Stochastic packet inspection (SPI) tries to solve some of these issues, for instance by providing
methods to automatically compute distinctive patterns fora given protocol. As an example, authors
of [119] define Common Substring Graphs (CSG): an efficient data structure to identify a common
string pattern in packets. Other works instead directly apply statistical tools to packet payload:
authors of [83] directly use the values of the first payload bytes as features for machine learning
algorithms; in [77], instead, a Pearson Chi-square test is used to study the randomness of the first
payload bytes, to build a model of the syntax of the protocol spoken by the application (more
details on this algorithm are provided in Chap. 5). Additionally, this last algorithm is able to deal
with protocols with partially encrypted payload, such as Skype or P2P-TV applications.

Authors of [104], instead, propose a fast algorithm to calculate the entropy of the first payload
bytes, by means of which they are able to identify the type of content: low, medium and high values
of the entropy respectively correspond to text, binary and encrypted content. Authors argue that,
even if this is a very rough repartition of traffic and moreover some applications are very likely
to use all of these kinds of content, nonetheless such information might reveal useful to prioritize
some content over the others (e.g. in enterprise environments, binary transfers corresponding
to application updates to fix bugs deserve an high priority).Yet, SPI is still greedy in terms
of computational resources, requiring several accesses topacket payload, though with simpler
operations (i.e., no pattern matching).

Statistical classification[34, 63, 124, 130, 161, 177] is based on the rationale that, being the
nature of the services extremely diverse (e.g., Web vs VoIP), so will be the corresponding traffic
(e.g., short packets bursts of full-data packets vs long, steady throughput flows composed of small-
packets). Such classifiers exploit several flow-level measurements, a.k.a.features, to characterize
the traffic of the different applications [124, 130, 161]: a comprehensive list of a large number of
possible traffic discriminators can be found in the technical report [129]. Finally, to perform the
actual classification, statistical classifiers apply data mining techniques to these measurements, in
particular machine learning algorithms.

Unlike payload-based techniques, these algorithms are usually very lightweight, as they do not
access packet payload and can also leverage information from flow-level monitors such as [56].
Another important advantage is that they can be applied to encrypted traffic, as they simply do not
care what the content of packets is. Nevertheless, these benefits are counterbalanced by a decrease
in accuracy with respect to DPI techniques, which is why statistical-based algorithms have not
evolved to commercial products yet. Still, researchers claim that in the near future operators will
be willing to pay the cost of a few errors for a much lighter classification process.

We can further divide this class of algorithms in a few subclasses according to the data mining
techniques employed and to the protocol layer of the features used. Concerning the first crite-
rion, on one hand unsupervised clustering of traffic flows [124] (e.g. by means of the K-means
algorithm) does not require training and allows to group flows with similar features together, pos-
sibly identifying novel unexpected behaviors; on the otherhand, supervised machine learning
techniques [105, 177] (e.g. based on Naive Bayes, C4.5 or Support Vector Machines) need to be
trained with already classified flows, but are able to providea precise labeling of traffic. Regarding
the protocol layer, we have classifiers employing only flow-level features [130] (e.g., duration, to-
tal number of bytes transferred, average packet-size), as opposed to algorithms using packet-level
features [34, 63] (e.g. size and direction of the very first packets of a flow). The former ones are
usually capable of late (in some cases onlypost-mortem), coarse-grained classification, whereas

21

the latter ones can achieve early, fine-grained classification.
Finally, Behavioral classification[101, 102, 184] moves the point of observation further up-

wards in the network stack, and looks at the whole traffic received by a host in the network. By the
sole examination of the generated traffic patterns (e.g., how many hosts are contacted, with which
transport layer protocol, on how many different ports, etc.) behavioral classifiers try to identify
the application running on the target host. The idea is that different applications generate different
patterns: for instance, a P2P host will contact many different peers typically using a single port
for each host, whereas a Web server will be contacted by different clients with multiple parallel
connections.

Some works [101, 184] characterize the pattern of traffic at different levels of detail (e.g.
social, functional and application) and employ heuristics(such as the number of distinct ports
contacted, or transport-layer protocols used) to recognize the class of the application running on a
host (i.e. P2P vs HTTP). Works taking the behavioral approach to its extreme analyze the graph of
connections between endpoints [91, 98] showing that P2P andclient-server application generate
extremely different connection patterns and graphs. They prove also that such information can be
leveraged to classify the traffic of these classes of services even in the network core. A second
group of studies [32, 80], instead, propose some clever metrics tailored for a specific target traffic,
with the purpose of capturing the most relevant properties of network applications. Combin-
ing these metrics with the discriminative power of machine learning algorithms yields extremely
promising results. The Abacus classifier, a major contribution of this thesis, belongs to this last
family of algorithms, and it is the first algorithm able to provide a fine-grained classification of
P2P applications.

Behavioral classifiers have the same advantages of statistical-based classifiers, being lightweight
and avoiding access to packet payload, but are usually able to achieve the same accuracy with even
less information. Such properties make them the perfect candidate for the most constrained set-
tings. Moreover given the current tendency toward flow-level monitors such as NetFlow [56], the
possibility to operate on the sole basis of behavioral characteristics is a very desirable property for
classifiers.

We wrap up this overview with an overall consideration on theapplicability of classifiers.
With few exceptions such as [74], the wide majority of the classification algorithms proposed in
literature cannot be directly applied in the network core. Limitations can be either intrinsic to
themethodology(e.g., behavioral classification typically focuses on endpoint [184] or end-hosts
[102] activity), or be tied to thecomputational complexity(e.g., DPI [77, 119, 132, 165] cannot
cope with the tremendous amount of traffic in the network core), or tostate scalability(e.g., flow-
based classification [124, 130] requires to keep a prohibitive amount of per-flow state in the core),
or to path changes(path instabilities or load balancing techniques can make early classifications
techniques such as [34, 63] fail in the core). At the same time, we point out that classifying
traffic at the network ingress point is a reasonable choice for ISPs: indeed, traffic can be classified
and tagged at the access (e.g., DiffServ IP TOS field, MPLS, etc.), on which basis a differential
treatment can then be applied by a simple, stateless and scalable core (e.g., according to the class
of application.). We investigate deeper this issue in the second part of this dissertation.

Finally we must deal with a transversal aspect of traffic classification. The heterogeneity of
approaches, the lack of a common dataset and of a widely approved methodology, all contribute
to make the comparison of classification algorithms a daunting task [163]. In fact, to date, most of
the comparison effort has addressed the investigation of different machine learning techniques [34,
71, 177], using the same set of features and the same set of traces. Only recently, a few works have
specifically taken into account the comparison problem [47,105, 116, 135]. The authors of [135]
present a qualitative overview of several machine learningbased classification algorithms. On the

22 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

nB

Trained

model

Training
set

Training traffic
protocol A

...

Training traffic
protocol X

Sampler

n

nB

Sampler

n

...

A
Compute features Sampling Model building

Training traffic
protocol A

Training traffic
protocol X

Oracle

Ground truth

Oracle

Ground truth

Validation

Training

Learning

Analysis

Analysis

Apply trained

model

Classification

A
B
C
DA

Classification

results

Classification

Analysis

Analysis

Compute features

Proto

X

Proto

X

A B C

%

Evaluate accuracy

Figure 2.1: Common workflow of supervised classification.

other hand, in [105] the authors compare three different approaches (i.e., based on signatures, flow
statistics and host behavior) on the same set of traces, highlighting both advantages and limitations
of the examined methods. A similar study is carried also in [116], where authors evaluate spatial
and temporal portability of a port-based, a DPI and a flow-based classifier. In Chap. 5 we will
compare our behavioral solution, Abacus, with a packet-based classifier contrasting both their
accuracy and their requirements in terms of computational power.

2.2 Machine learning algorithms for classification

In this section we will briefly introduce the problem of classification in machine learning theory,
with a particular focus on the algorithms we actually employed in the remainder of this work, all
falling in the category ofsupervised classification.

There is a whole field of research on machine learning theory which is dedicated to super-
vised classification [107], hence it is not possible to include a complete reference in this thesis.
Moreover, instead of improving the classification algorithms themselves, we rather aim at taking
advantage of our knowledge of network applications to identify good properties for their charac-
terization. However, some basic concepts are required to correctly understand how we applied
machine learning to traffic classification.

A supervised classification algorithm produces a functionf , the classifier, able to associate
some input data, usually a vectorx of numerical attributesxi called features, to an output value
c, the class label, taken from a listC of possible ones. To build such a mapping function, which
can be arbitrary complex, the machine learning algorithm needs some examples of already labeled
data, thetraining set, i.e. a set of couples(x, c) from which it learnshow to classify new data. In
our case the featuresxi are distinctive properties of the traffic we want to classify, while the class
labelc is the application associated to such traffic.

From a high-level perspective, supervised classification consists of three consecutive phases
which are depicted in Fig. 2.1. During thetraining phasethe algorithm is fed with the training

23

set which contains our reference data, the already classified training points. The selection of
the training points is a fundamental one, with an important impact on the classifier performance.
Extra care must be taken to select enough representative points to allow the classifier to build
a meaningful model; however, including too many points is known to degenerate inoverfitting,
where a model is too finely tuned and becomes “picky”, unable to recognize samples which are
just slightly different from the training ones.

Notice that, preliminary to the training phase, anoracle is used to associate the protocol label
to the traffic signatures. Oracle labels are considered accurate, thus representing theground truth
of the classification. Finding a reliable ground truth for traffic classification is a research topic on
its own, with not trivial technical and privacy issues and was investigated by a few works [64, 82].
Sec. 2.4 is dedicated to the description of the different datasets with the related ground-truth used
throughout this thesis.

The second step is theclassification phase, where we apply the classifier to some new samples,
thetest set, which must be disjoint from the training set. Finally a third phase is needed tovalidate
the results, comparing the classifiers outcome against the reference ground truth. This last phase
allows to assess the expected performance when deploying the classifier in operational networks.
The next section in this chapter is dedicated to describe themetrics used to express the performance
of classification algorithms.

In this thesis we used mainly two supervised classification algorithms, namelySupport Vector
MachinesandClassification trees, that we briefly describe in the following.

2.2.1 Support Vector Machine

Support Vector Machine (SVM), first proposed by Vapnik [60],is a binary supervised classifica-
tion algorithm which transforms a non-linear classification problem in a linear one, by means of
what is called a “kernel trick”. In the following we intuitively explain how SVM works and refer
the reader to [62, 177] for a more formal and complete description of the algorithm.

SVM interprets the training samples as points in a multi-dimensional vector space, whose
coordinates are the components of the feature vectorx. Ideally we would like to find a set of
surfaces, partitioning this space and perfectly separating points belonging to different classes.
However, especially if the problem is non-linear, points might be spread out in the space thus
describing extremely complex surface difficult, when not impossible, to find in a reasonable time.
The key idea of SVM is then to map, by means of a kernel function, the training points in a
newly transformed space, usually with higher or even infinite dimensionality, where points can be
separated by the easiest surface possible, an hyperplane. In the target space, SVM must basically
solve the optimization problem of finding the hyperplane which (i) separates points belonging
to different classes and (ii) has the maximum distance from points of either class. The training
samples that fall on the margin and identify the hyperplane are calledSupport Vectors.

At the end of the training phase SVM produces a model, which ismade up of the parameters
of the kernel function and of a collection of the support vectors describing the partitioning of the
target space. During the classification phase, SVM simply classifies new points according to the
portion of space they fall into, hence classification is muchless computationally expensive than
training. Since natively SVM is a binary classifier, some workaround is needed to cope with multi-
class classification problems. The strategy adopted along this thesis is theone-versus-one, where a
model for each pair of classes is built and the classificationdecision is based on a majority voting
of all binary models.

Support Vector Machines have proved to be an effective algorithm yielding good performance
out-of-the-box without much tuning, especially in complexfeature spaces, and has showed partic-

24 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

Table 2.2: Example of confusion matrix.
Prediction outcome

P N
Actual P True

Positive
False
Negative

Value N False
Positive

True
Negative

ularly good performance in the field of traffic classification[105, 177]. Several kernel functions
are available in literature, aspect we partially explore inChap. 4. When not explicitly stated, we
employ the Gaussian kernel which usually exhibits the best accuracy. The only drawback of SVM
is that models in the multidimensional space cannot be interpreted by human beings and it is not
possible to really understand the reason why a model is good or bad. In our experiments, we make
use ofLibSVM implementation [50] of SVM.

2.2.2 Decision Trees

Decision Trees [106] represent a completely orthogonal approach to the classification problem,
using a tree structure to map the observation input to a classification outcome. Again, being
this a supervised classification algorithms, we have the same three phases: training, testing and
validation.

During the training phase the algorithm builds the tree structure from the sample points: each
intermediate node (a.k.a. split node) represents a branch based on the value of one feature, while
each leaf represents a classification outcome. The classification process, instead, consists basically
in traversing the tree from the root to the leaves with a new sample, choosing the path at each
intermediate node according to the criteria individuated by the training phase. Like SVM, the
classification process is way more lightweight than the learning phase. One big advantage of
this algorithm over Support Vector Machines is that the treecan be easily read and eventually
interpreted to understand how the algorithms leverages thefeatures for the classification.

Literature on this subject contains quite a few decision tree building algorithms, which differ
in the way they identify the feature and threshold value for the intermediate split nodes. In this
work we employ C4.5 algorithm [106], which bases such selection on the notion ofInformation
Gain. This is a metric from information theory which measures howmuch information about the
application label is carried by each features, or, in other words, how much the knowledge of a
feature tells you about the value of the label. We delay a formal definition of the information gain
metric to the next chapter, where we take advantage of it for feature selection purposes. After
calculating the information gain of each feature for the training set points, C4.5 picks as splitting
feature for each node the one which maximizes such a score: this strategy of using the most helpful
attributes at each step is particular efficient, yielding rapidly converging classification trees.

2.3 Evaluating classification accuracy

There are several ways of expressing the performance of classifiers, ranging from fine reporting of
the classification outcome, to coarse general indexes of performance.

A common tool to represent the results of a classifier validation is theconfusion matrix, like
the example of Tab. 2.2. We will heavily use such representation in this thesis, so it is worth
spending a few words to better understand it. Each row corresponds to the actual class of an test

25

instance, while each column corresponds to a classificationoutcome: it is then easy to see that
points falling on the diagonal represent right classification decisions, while points falling outside
are classification errors.

Technically speaking, we have a specific terminology to denote the possible results of the
validation process, reported in the table and explained below.

True Positive (TP) classifications, i.e., number of tests for which the classifier identifies the cor-
rect label of the sample point.

False Negative (FN)classifications, i.e., number of points of a class that are wrongly assigned to
another class.

False Positive (FP)classifications, i.e., number of sample points that are wrongly assigned to a
class, despite belonging to another one.

True Negative (TN) classifications, i.e., number of points correctly recognized as not belonging
to a given class.

As we already mentioned above, TPs ad TNs represent correct classification decisions while
FP and FN are classification errors. The goal of a good classifier is to maximize the first two and
minimize the last two values. It is a common practice to normalize such metrics and write them
in form of percentages, which are more intuitively interpreted and easily compared. In particular,
we define a few ratios:

True Positive Rate (TPR) or Recall, the ratio of the TPs over all classification for a class.
TPR = TP

TP+FN

True Negative Rate (TNR) or Specificity, similar to the previous metric, but related to TNs.
TPR = TN

TN+FP

Precision is the ratio of TPs over all samples classified as a class.
precision = TP

TP+FP

Accuracy is the ratio of correct classifications over all classification attempts.
accuracy = TP+TN

TP+FP+TN+FN

These ratios evaluate different aspects of a classificationengines. The first two indicate the
ability of the classifier of associating the correct label toa sample of a given class. The third is the
probability that the classification is correct provided that a given label has been selected. Finally
the last metric is an overall measure of correctness of the classifier.

While in most application of classifiers these metrics are enough to describe the performance
of the algorithms, in traffic classification we need to be aware of another aspect. Often classifiers,
especially statistical and behavioral ones, take decisions about a networkflow, i.e., a sequence
of packets sharing some common characteristics – usually the 5-tuple composed of the two IP
addresses, the two transport-layer ports and transport layer protocol type. However, since the
studies of authors of [143], it is well known that in the Internet a few elephant flows carry most of
the traffic, while a large number of mouse flows represent justa small portion of the overall volume
of traffic. From this observation, authors of [72] demonstrate that using only flow accuracy to
evaluate the performance of a traffic classification algorithm may yield to erroneous conclusions.
Whenever possible it is advisable to complement this metricwith byte accuracy, which measures
the amount of bytes correctly classified. Network operatorsare usually far more interested in such
an index, as they want to be sure that the bulk of traffic is correctly classified and, instead, do not
care that much if a few mouse flows are misclassified.

26 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

2.4 Overview of dataset

As mentioned in the previous sections, finding good datasetsfor the experimental evaluation of
the accuracy of traffic classifiers is quite a difficult task. Actually there is a trade-off between
two factors: the representativeness of traces and the accuracy of the ground-truth. On one hand,
we would like to test the algorithm on real-life traces, passively captured in operational networks,
in order to gather a realistic estimation of the accuracy of aclassifier when deployed in realistic
scenarios. Moreover, even when considering real traffic traces, performance of the classifiers can
be affected by the scenario (e.g, corporate and residentialnetworks have very different traffic
mixes), so the more variety is included in the dataset the more trustworthy results are. On the
other hand, for this kind of traces it is difficult to define theground-truth, i.e. the actual protocol
to which packets belongs: either we must rely on another classifiers output (e.g. DPI) and assume
it is correct, or special ad-hoc systems must be employed, for instance like thegt tool [82], which
uses information gathered from the operating system of the machine about the process running
on a given socket, in order to tag packets at the time of the capture. The opposite solution is to
use active methodologies and generate controlled traffic ina testbed: in this way there is no doubt
on the application generating the packets since you controlthe machine, yet this traffic is hardly
representative of real world traffic, unless particular cautions are taken.

Moreover, there are also non technical issues [27], which further complicate collection and
sharing across the community of datasets for traffic classification. The most prominent issue
is privacy: not only do IP addresses and host names already convey important information, but
above all packet payloads may contain sensible data (e.g. email content). While anonymizing
techniques can easily solve the problem of network identifiers, dealing with the payload is much
more difficult: on the one hand, removing it altogether is nota solution, as it will prevent payload
based techniques from working; on the other, scanning the content for all sensible data is a very
cumbersome task. The second issue impacts operators instead of users. In fact packet traces
may allow to deduce much information on the network infrastructure, which the provider may not
be so incline to share with others. Consequently researchers are required to sign non disclosure
agreement (NDA) to access traces from operators, and usually cannot share such traces with others.

In this thesis we use an extremely heterogeneous set of traces, gathered in different envi-
ronments and times, whose ground-truth has been determinedusing all of the aforementioned
methods. Actually our dataset has evolved during the thesis, as novel tools and traces were made
available to us (e.g thegt tool and a set of traces captured with this methodology from University
of Brescia [19] appeared in 2009, halfway through the periodof this work). As we proceeded
in this work and our methods evolved, so did our dataset, to which we tried to add data when-
ever possible to improve its representativeness. For this reason it was not possible to uniform the
dataset all over this thesis, considering also that the order in which our experiments are presented
along this dissertation does not necessarily coincide withthe order in which they were performed.

Therefore we decided to give an overview of the whole datasetin the following. For each trace
we will report the most important characteristics, in particular the way it was collected and how
the ground-truth was determined. However in each chapter wealso punctually precise the actual
composition of the dataset used for the experiments, along with the most important features for
the evaluation taking place (e.g. in Chap. 6 where we classify using NetFlow flow-records, we are
interested in the number of flow-records for each trace, while in all other chapters this information
is irrelevant).

P2P-TV testbed traces
To capture P2P live-streaming traffic, we resorted to a largetestbed involving multiple measure-

27

Table 2.3: Overview of the different traces used for the experiments presented in this thesis.

Name
Napawine
Testbed

Italian ISP Campus
University
of Brescia

Auckland

Year 2008 2006,2007 2008 2009 2001
Methodology Active Passive Passive Passive Passive
Public Yes No No Yes Yes
Ground-truth Testbed DPI DPI gt port-based

Applications

P2P-TV
(PPLive,
TVAnts,
SopCast,
Joost)

Web, Mail, P2P
(eDonkey,
Skype)

Web,
Mail,
Skype

Web, Mail, P2P
(Bittorrent,
eDonkey, Skype)

Web, Mail

ments points. The testbed was setup in May 2008 in the contextof NAPA-WINE, a 7th Framework
Programme project funded by the EU [115]. The testbed involved more than 30 controlled peers,
hosted at 7 different Institutions, scattered over 4 European countries Details concerning the ex-
periments are reported in Tab. 2.4. During the experiments,each PC ran the same application for
one hour, during which all involved peers were forced to watch the same channel at the same time.
SopCast, TVAnts, PPLive and Joost were run: in all (but Joost) cases, the nominal stream rate was
384 kbps (∼550 kbps) and Windows Media 9 Encoder was used. PCs were synchronized via NTP
and MS Windows scheduler was used to automatically start theapplication and tune to the selected
channel. Each PC captured the packet-level traces for the whole duration of the experiment (no
packet sampling or loss occurred, and broadcast/multicastpackets were filtered out).2 All details
about these traces are provided in [54].

Moreover, as different network setups (e.g., access technologies, security policies, private/public
addresses, etc.), different content (popular vs unpopularchannels) and peers configurations (hard-
ware, OS) were all part of the testbed, we are confident that the heterogeneity of the dataset is
representative of a wide range of scenarios.

Being composed by testbed traces with a very reliable ground-truth, this dataset will be used
throughout this work, especially in Chap. 4, where we present the Abacus classifier, specifically
targeting this kind of applications. In the other chapters we normally use a subset of this large
dataset, to avoid using an unbalanced mix of traffic (i.e., tomuch data for P2P live streaming
application with respect to other services).

In Chap. 4, we also use two other datasets containing P2P-TV traffic actively collected in an
ad hoc testbed by other researchers, and kindly made available to the community. Traces of [167]
were collected in July 2006 during the Fifa World Cup. Tracesof [26] were instead collected in
2008 in a testbed, where changing network conditions were artificially enforced. In particular, in
these experiments, a Linux router was used to emulate some network conditions: (i) bandwidth,
(ii) delay and (iii) packet losses were imposed on the downlink path to the PC running the P2P-TV
application. To avoid going out of topic, we refer the readerto [26] for a complete description of
the testbed: we only point out that impairments ranged from mild to very tough conditions (e.g.,
200 Kbps of available downlink bandwidth, delay up to 2 s and packet losses up to 40%).

Italian ISP traces
This set is composed by two 1-hour long traces collected in 2006 and 2007 from one of the

main broadband ISP in Italy (which we cannot cite due to NDA) which offers triple-play services

2Traces differ because during the experiment some application could not successfully run, e.g., due to peer failure,
or bad network condition.

28 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

Table 2.4: Summary of the hosts, sites, countries (CC) and access types (NAT=Network Address
Translation, FW=Firewall) of the peers involved in the testbed.

Host Site CC Access NAT FW
1-4 BME HU high-bw - -

5 DSL 6/0.512 - -
1-9 PoliTO IT high-bw - -
10 DSL 4/0.384 - -

11-12 DSL 8/0.384 Y -
1-4 MT HU high-bw - -
1-3 FT FR high-bw - -
1-4 ENST FR high-bw - Y

5 DSL 22/1.8 Y -
1-5 UniTN IT high-bw - -
6-7 high-bw Y -

8 DSL 2.5/0.384 Y Y
1-8 WUT PL high-bw - -

9 CATV 6/0.512 - -

over an all-IP architecture to more than 5 millions of users.The ISP network is representative of
a very heterogeneous and uncontrolled scenario, in which customers are free to use the network
without restriction. Traffic is sniffed at a PoP level, to which around 500 users are connected, using
more than 2000 different IP addresses considering VoIP phones, set-top-boxes and PCs. This set
is representative of a very heterogeneous scenario, in which no traffic restriction are applied to
customers. Ground-truth for these traces has been determined by means of an DPI tool [16].
Relevant protocols we extract from this trace are eDonkey for file-sharing, Skype for VoIP and
DNS for traditional client-server traffic. However, in the following chapters we mostly use this
trace for background traffic, i.e. to test whether a classifier is able to recognize traffic for which it
was not originally trained.

Campus traces
This is a 1-days long trace, collected during one working week at the edge router of Politecnico

di Torino LAN, which is representative of a typical data connection to the Internet. The LAN con-
tains about 7000 hosts, whose users can be administrative people, faculty members and students.
Most of the traffic is due to TCP data flows carrying web, email and bulk traffic, since a firewall
blocks all P2P file sharing applications. Again ground-truth for this scenario has been determined
by means of an DPI tool [16]. Similarly to the ISP trace, we usethis set to evaluate the ability of
the classifier to identify “unknown” traffic. All details about these traces are available in [125].

University of Brescia traces
This is a set of 3 traces captured during 3 working-days in 2009 by colleagues at University

of Brescia on the 100Mb/s link connecting their campus network to the Internet. This dataset, of
which we only use the largest trace, is publicly available inanonymized form [18]. The ground-
truth is extremely reliable for this set as it was collected using thegt tool [82], which uses infor-
mation gathered from the machine operating system to label packets during capture.

Auckland traces
This is a public available trace [2], collected during 4.5 days in 2001 at the University of Auck-

29

land, of which we extract the initial 8hr busy-day period only. This trace is used in Chap. 7, to
evaluate the performance of classification under packet-sampling. In this case we want to have as a
heterogeneous dataset as possible, to gather robust results. The ground-truth was determined using
a simple port-based classifier, given that in 2001 such a classification method was still reliable.

30 2. INTRODUCTION TO TRAFFIC CLASSIFICATION

31

Chapter 3

A general framework for behavioral
P2P traffic classification

In the previous chapter, we have seen that the research community has recently proposed behav-
ioral classifiers to face the new challenges of traffic classification, such as high traffic volumes,
encryption and obfuscation. Since they base the classification on the peculiar pattern of traffic
generated by a host, such classifiers are extremely lightweight and accurate even though using
only flow-level traffic properties, like the ones usually provided by NetFlow [57].

However, the research community has produced a rather fragmentary work so far: a few very
specific approaches [80, 97, 158, 173, 180] have been proposed, moreover evaluated on specific
datasets. Therefore, the community lacks a broad view of therelative importance, in the context
of traffic classification, of any feature that can be defined over IPFIX flow-level data. Similarly, as
considering a single dataset can bias the evaluation, a careful analysis should explicitly take into
account the relative stability of the feature expressiveness over multiple network scenarios.

This chapter, containing results in part published in [160], proposes a comprehensive frame-
work for the definition of behavioral features which can be defined over IPFIX-records. Our aim is
to provide the community with a reference as complete as possible of all behavioral features suited
for P2P traffic classification, similarly to what has been done in [129] with flow-level features, but
with the additional constraint that such features should befully compliant with IPFIX records. By
clearly stating the criteria that guide our definition, we are able to thoroughly explore the space of
features and define a long list of potentially expressive characteristics. The resulting framework is
general enough to include features of existing classifiers [80, 141, 180, 184, 184], enabling their
evaluation as well.

Moreover, we quantify the amount of information contained in the defined features and ex-
ploitable for the classification of P2P traffic. Our analysisis close to what has been done by the
authors of [75], which focused on the stability of the information carried by traffic flows at the
packet-level. However, we want rather to assess the stability of behavioral features computed at
theflow-level.

In our experiments we compute the behavioral features over packet-level traces containing
traffic from different kinds of P2P applications (P2P-TV, VoIP, file-sharing) and representative of
diverse network scenarios. Then we employ two different metrics to evaluate their usefulness for
classification purposes, i.e.Information Gain and ReliefF. After ranking the feature according to
their relevance for the classifier, we actually perform the classification employing C4.5 decision
trees.

The remainder of this chapter is organized as follows. Sec. 3.1 introduces the framework for

32 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

the definition of behavioral features and clearly defines thefeature we use in the experimental
part. Sec. 3.2 describes the methodology and metrics used toevaluate the information content of
features, while Sec. 3.3 presents the results of our experiments.

3.1 Defining behavioral features

In this section we will describe our framework for the definition of behavioral features for traffic
classification. In order to perform a systematic exploration of the feature space, we first introduce
a series of criteria, described in the following, to guide the feature definition. We find a good map-
ping between features used by existing classifiers and our framework, which proves the generality
of our approach. While we want to keep our framework as general as possible in its definition, in
the experimental part we actually restrict our attention ona smaller subset of the possible features,
which is listed in Tab. 3.1 and detailed at the end of this section.

Our classification target is a peer, identified as a socket (oran aggregate of sockets) running
on a host. As this peer contacts other peers and exchanges information with them, we suppose that
an IPFIX monitor at the edge of the network produces records for all the traffic related to the host.
Our framework takes this data as input and derives the features to be used for the classification.

3.1.1 Timescale

This criterion refers to the temporal duration of the periodical statistics collection, thus dividing
time in subsequent time-slots in which features are computed. Observation timescale is subject to
the following tradeoff. On the one hand, we would likeT to be as small as possible, to support
early classificationfor tasks like QoS verification, security and lawful interception. On the other
hand, we would likeT to be as large as possible for lightweight operation, which would however
limit possible applications of the classification topost-mortem analysis(e.g accounting, monitor-
ing). Coherently with this requirements, values used in literature range fromT = 5 s in [32] up to
T = 5 minutes in [180].

Current IPFIX implementations impose further constraintson the choice ofT , as they dump
statistics on active flows everyT = 30minutes, with a configurable minimum ofT = 1minute. To
have a finer timescale, however, one could use custom implementations on dedicated high-profile
device such as Endace [4] or AITIA [1] cards.

3.1.2 Entities

We can define the entities involved in a P2P system at different network layers, which in their turn
correspond to different levels of traffic aggregation. In fact, a peer can be identified either at L3 by
its IP address, at L4 by its port number, or at the endpoint-level by the combination of IP and port.

This is better explained with the help of a simple example. Consider an application run-
ning on a hostIPx, receiving all traffic on a single socket on portpx of L4-protocol typePT ∈
{TCP,UDP}. By focusing on different network layers, we can identify the following different
entitiesE

• At the endpoint-level,E(y) = IPy : py, by aggregating all IPFIX recordsPT : IPy : py :
IPx : px

• At the L3 host-level,E(y) = IPy, by aggregating all IPFIX recordsPT : IPy : ∗ : IPx : px

• At the L4 port-level,E(y) = py, by aggregating all IPFIX recordsPT : ∗ : py : IPx : px

33

Basicallyendpoint-levelentities correspond to single flows, and have been used in [32, 158,
184]. The other entities, instead, decouple L3 from L4.Host-levelaggregation, found for instance
in [180, 184], may be useful in cases where an application runs multiple sockets (e.g., aggregat-
ing several client TCP connections using ephemeral ports, or several UDP sockets with different
functions, such as data or signaling).Port-levelaggregation, instead, might help in evaluating how
an application uses the port space (e.g., by using several different random ports, or a single deter-
ministic port). This has been shown to be a good discriminator in [154, 184]. Notice also that, as
recently underlined in [105], the port number itself may still be a helpful feature.

3.1.3 Granularity and Direction

Since IPFIX records provide counters with different granularities, a trivial criterion regards the
level of coarseness of the statics: features can be computedentity-wiseE, packet-wiseP and
byte-wiseB.

Another intuitive criterion consists in discriminatingincomingversusoutgoingtraffic, or ag-
gregating both directions together. Notice that the adopted type of transport layer protocol can
cause significant difference in the pattern of traffic observed in the two directions. For example,
an application using a connectionless service (i.e. a UDP datagram socket) can easily multiplex
all incoming and outgoing traffic over the same endpointIPy : py. Conversely an application
employing a connection oriented service (i.e., a TCP streamsocket) is likely to receive traffic on a
single TCP port (py), but it surely spreads the outgoing traffic on different ephemeral ports, whose
allocation is controlled by the OS.

3.1.4 Categories

The entities involved in the communication with the target peer can be further categorized accord-
ing to different properties. In more detail, we define some rulesC to partition the set of entities
S = SC ∪ SC . Although in principle the subsets do not need to be disjoint, we believe that re-
quiring SC ∩ SC = ∅ induces more clarity and simplifies the collection of the statistics. We can
envisage a number of different properties, related to either thespatialor temporaldomain.

Let us focus on thespatial category first. P2P applications offer services built on topof an
overlay network which needs to be continuously maintained to handle peers churn. Thus, traffic
can roughly be divided in either data or signaling traffic. Weconsidercontributingor dataentities
Ed, peers sending or receiving a number of bytes larger than a given threshold. More formally,
indicating withBy the amount of bytes exchanged with entityE(y), we haveSd = {E(y) : By >
β}. Unfortunately, the choice of a proper threshold is not trivial, as it has been shown that good
values might be application dependent [154]. However, in our experiments, consistently with [86],
we use a valueβ = 12KB.

We now move to thetemporalproperties. Consider the setSi of entities observed at thei-th
slot, i.e.,t ∈ [iT, (i + 1)T)). By comparingSi with the previous slotSi−1, we can define the
set ofnewentities asSn = Si\Si−1, i.e. the set of peers discovered in the current timeslot. A
similar distinction can be found in many works on P2P traffic analysis [54, 154], or P2P traffic
classification [180].

Although for our evaluation we just consider the above two rules, it is worth mentioning a
few other partitions related to the temporal domain. For instance we can define the set ofk-
persistent neighbors as the set of peers that have been seen in (at least)k consecutive rounds
Sk−per = ∩i−k

j=iSj . Symmetrically we could define the set ofk-recurring peers, i.e., the peers that
are to be found in the current and in thek-th previous slot, asSk−rec = Si ∩ Si−k. Besides, many

34 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

Table 3.1: List of P2P traffic features used in the experiments, for a single direction and a single
timescale.

Categories
Operation All New Peers Data Peers
O(·) S Sn Sd

None E (entities) En Ed

O(x) = x P (packets) Pn Pd

B (bytes) Bn Bd

Difference ∆t(E) ∆t(En) ∆t(Ed)
O(x, t) = xt−1 − xt ∆t(P) ∆t(Pn) ∆t(Pd)

∆t(B) ∆t(Bn) ∆t(Bd)

Breakdown - En/E Ed/E
O(xcat, x) = xcat/x - Pn/P Pd/P

- Bn/B Bd/B

Ratio P/E Pn/En Pd/Ed

O(x, y) = x/y B/E Bn/En Bd/Ed

B/P Bn/Pn Bd/Pd

Average E[P] E[Pn] E[Pd]
O(x) = E[x] E[B] E[Bn] E[Bd]

E[B/P] E[Bn/Pn] E[Bd/Pd]

Standard Deviation Std[P] Std[Pn] Std[Pd]
O(x) = Std[x] Std[B] Std[Bn] Std[Bd]

Std[B/P] Std[Bn/Pn] Std[Bd/Pd]

more complex presence indicator such as those defined in [153] could be evaluated.

3.1.5 Operations

Finally, a variety of computations can be performed on the gathered counters, ranging from very
simple to rather complex operations. As examples of the latter, in [32] and in the next chapter
of this thesis, a probability mass function is built starting from the counts of packets and bytes
exchanged by the target peer with the other entities. In [80], instead, the Autocorrelation function
(ACT) and the discrete Fourier transform (DFT) is applied tothe time series of entity counts, of
data rates exchanged with a given entities, and of start and end time of flows.

However, in this preliminary analysis, we limit ourselves too the following few simple opera-
tionsf(·) : Nm → R, that produce a single scalar value.

• None, use the raw count as feature.

• Temporal differencewith respect to the previous slot (e.g., the rate at which thenumber of
packets received is changing∆t(P) = Pt − Pt−1)

• Category breakdownper-category breakdown (e.g., the percentage ofnewentitiesEnew/E).

• Ratioof different counters for a given entity (e.g.,By/Py the mean packets size of a given
entity y).

• Spatial mean and standard deviationof a counter over a set of entities (e.g., mean number
of packets per peerE[P])

35

Table 3.2: Summary of the dataset
Category Application Packets Bytes

P2P TV

PPlive 7,3 M 1,13 G
Sopcat 3,2 M 0,45 G
TVAnts 2,4 M 2,56 G
Joost 3,4 M 2,14 G

P2P File-sharing
eDonkey 22,4 M 6,93 G

BitTorrent 1,4 M 0,74 G
P2P VoIP Skype 6,1 M 2,91 G

Despite their simplicity, quite a few of these operations have already been successfully em-
ployed for traffic classification, for example in [101, 141, 184]. We point out that this list is clearly
not exhaustive (e.g., temporal means and other statistics can naturally be defined). However, we
believe that the merit of the framework is not weakened by considering, for the time being, a small
but well-defined list. Moreover we argue that the features wedefine explores a significant por-
tion of the space, providing valuable advice about which properties discriminate best among P2P
applications, thus deserving a deeper investigation, as wedo in the next chapter.

Let us clearly state here the set of features we are going to analyze in the experimental part.
First of all, we decided to consider two timescalesT ∈ {5, 120} s, outgoing and incoming traf-
fic separately, and endpoint-level entities. Finally, operations and categories are summarized in
Tab. 3.1. Features are organized in columns according to thecategory they pertain to (i.e. all, new
and data entities), and in rows according to operation performed to calculate them. Notice that we
use counters of all possible levels of granularity (entity,packets, bytes), along with all their mean-
ingful combinations in computing ratios and statistical indexes. Overall the final set is composed
of 102 features.

3.2 Methodology

3.2.1 Dataset

We validate our classification engine on a large set of tracesof heterogeneous P2P applications,
collected in different environments and whose main characteristics are reported in Tab. 3.2.

The traces containing P2P live-streaming traffic correspond to a subset of the traffic collected
in the context of the experiments of the NAPA-WINE project [115], which was introduced in
Sec. 2.4. BitTorrent traces were instead collected by running the official client connected to the
Internet through an ADSL access. Using traces from controlled active scenarios has the advantage
of providing a reliable ground truth, as there is no doubt on the application generating the traffic.

For the remaining applications, we resorted to the trace passively collected at the POP of
a large Italian Internet provider, whose details were presented as well in Sec. 2.4. By running a
traditional DPI classifier we were able to extract flows pertaining to eDonkey, Skype representative
of P2P file-sharing and P2P VoIP. We also used the labeled trace made public by University of
Brescia [19], which contains the traffic generated by faculty members and students captured at the
link between the campus and the Internet. This trace has a extremely reliable ground-truth as it
was capture by means of the automatic toolgt [82].

It can be seen that, in order to gather robust results, we tried to include in our dataset a rep-
resentative sample of the whole spectrum of P2P applications. In detail, the dataset is made up

36 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

of traffic from four P2P-TV applications (PPLive, TVAnts, SopCast, Joost1), two file-sharing
applications (Edonkey, BitTorrent) and aVoIP application (Skype).

3.2.2 Metrics

In this section we describe the procedure followed to evaluate the importance of each feature for
traffic classification. We started by extracting IPFIX-records from the packet traces. Then we
aggregated the records related to the relevant endpoints and compute the features. The result is
a list of couples(Y,X), whereY is the application label, andX is the vector of features listed
in Tab. 3.1, computed on both incoming and outgoing traffic. Afterwards, similarly to [75], we
extracted a random subset of all data, in such a way that it finally contains the same number of
samples for each application–corresponding to about 6 hours worth of traffic for each application.
Besides facilitating our analysis, this process removes any bias deriving from unbalanced traffic
mixture.

We proceeded with ranking our features according to their information content related to the
application label. Our aim is to understand which attributes are the most useful for our classifica-
tion purposes, and which ones we can neglect. Moreover when fewer features are fed to a machine
learning algorithms, the classification process becomes more lightweight and fast, whereas too
many features can confuse the classifier and cause theoverfittingphenomenon.

In the following we introduce the two metrics used to evaluate the usefulness of features for
our classification purposes. To calculate them we employed theweka [20] toolkit, which allows us
not only to apply different feature selection algorithms, but also to later perform the classification
and to evaluate the classifier performance.

3.2.2.1 Information Gain

Information Gain [61]I(X,Y) measures the reduction of the uncertainty of the classY (in our
case the application label) when the value of featureX is known; in other words, it evaluates how
much the knowledge ofX tells you about the value ofY . Information Gain is based on the concept
of entropyH(Y) of a random variableY , i.e., the amount of randomness of its distribution. In
case of a discrete random value with a distributionp(y), the entropy is given by the expression

H(Y) = −
∑

y∈Y

p(y) log2 p(y)

The uncertainty ofY , when the value ofX is known, is given by the conditional entropy

H(Y |X) = −
∑

x∈X

p(x)H(Y |X = x)

Finally the information Gain is the difference of the above quantities

I(X,Y) = H(Y)−H(Y |X)

This metric is commonly used for feature selection and it is also employed by the C4.5 algo-
rithm during the tree building phase to choose the attributes for the splits at intermediate nodes.
This quantity is always positive and usually measured in bit. If the two variablesX andY are
completely unrelated, their mutual information is zero. Conversely, a featureX is a perfect dis-
criminator if the conditionI(X,Y) = H(Y) is met, whereH(Y) is the entropy of the protocol
label (i.e. the number of bits needed to perfectly describeY). In our case of 7 applications repre-
sented by the same number of samples we haveH(Y) = log2(N) ∼ 2.8.

1Traces date back May 2008, when Joost was still exploiting P2P for video distribution

37

Input : data setD of randomly selected instances,|D| = m, attribute setX , class labelY
Output : vectorW of estimations of the quality of attributes

set all weightsWi := 0
for all instancesd ∈ D do

find k nearest hitsHj

for all classesY 6= class(d) do
from classY find k nearest missesMj(Y)

end for
for all attributesX ∈ X do

W [X] = W [X]−
k
∑

j=i
diff (X, d,Hj)/(m · k)+

∑

Y 6=class(d)
[P (Y)
1−P (class(d))

k
∑

j=1
diff (X, d,Mj(Y))]/(m · k)

end for
end for

where diff(X, a, b) =

{

0 if aX = bX

1 otherwise
for binary attributes

and diff(X, a, b) = |aX−bX |
max(X)−min(X) for numerical attributes.

Figure 3.1: Pseudo-code for the ReliefF metric.

3.2.2.2 ReliefF

The ReliefF [149] is another widely used metric for feature selection. It is a more robust
generalization of the Relief metric to handle multi-class classification problems. The key idea of
the algorithm is to evaluate how well an attribute can distinguish among instances close to each
other. The actual algorithm is reported in Fig. 3.1 and explained in the following.

Basically for each instanced in the dataset the algorithm searches thek nearest misses (Mj)
related to all other classes (i.e. the closest neighbor points with a different label), and thek nearest
hitsHj (i.e. the closest neighbors belonging to the same class). Then, it updates the estimation of
the weights of the attributes based on the values taken for the current instanced and the nearest
hits and misses. The rationale is the following. If an attribute assumes very different values for
two close points belonging to different classes, then it is agood one, so its weight is increased
proportionally to the difference between the attribute values. On the contrary, if an attribute takes
very different values for two close points belonging to the same class, then it is a bad discriminator
and its weight is decreased accordingly. You can see that theformula that updates the weights takes
care of averaging over all the possible classes. The function diff is used to measure how much the
values of a feature for two distinct instances differ between each other and it is normalized on
the whole range of variation of the feature. It comes in different flavors according to the type of
attribute (i.e., binary of numeric) and it is also used to evaluate the overall distance of two instances
(i.e., by taking the sum of distances over each attribute).

Actually, the weights of the attributes can be interpreted as the difference of the estimated

38 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

 0

 1

 0 1 2 3 4

|v| = 0
InfoGain = 0
ReliefF = 0

 0

 1

 0 1 2 3 4

|v| = 1
InfoGain = 1
ReliefF = 0.25

 0

 1

 0 1 2 3 4

|v| = 2
InfoGain = 1
ReliefF = 0.5

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

M
et

ric
 v

al
ue

Offset applied

Information Gain
ReliefF

(b)

Figure 3.2: Empirical comparison of Information Gain and ReliefF metrics.

probabilities

W (X) =P (different value ofX|nearest instance from different class)

−P (different value ofX|nearest instance from same class)

or, in other words, the probability thatX takes a different value when the closest point belongs
to a different class minus the probability thatX takes a different value when the closest point
belongs to the same class. As you can see, ReliefF uses a more geometric approach towards
feature selection, with respect to Information Gain which draws more from information theory:
we will see how this reflects in our results.

3.2.3 Preliminary Examples

Before presenting the results over all features, in this section we use two examples to better illus-
trate some properties of the features defined by our framework as well as of the metrics we used
to characterize their information content.

3.2.3.1 Metrics

First, we present a very simple experiment with the two metrics on a artificial dataset. We generate
two sets of points on a bi-dimensional plain, withx andy coordinates selected at random in the
interval [0, 1], i.e. we pick random points in a square with a side of length one; each set of points
is given a different label. Then we apply a rigid geometricaltransformation to one class of points,
adding an offset~v to their x-coordinate. We construct several dataset, increasing the offset or,
in other words, separating more and more the two classes on the x-axis: the more the points are
separated the more powerful becomes the abscissa as a discriminator. In Fig. 3.2 we visually show
three cases: in the bottom plot, no offset is applied and the two classes of points overlap; in the
middle plot, the two squares are adjacent but no longer overlap; in the top plot, instead, points are
distant and very well separated.

For each dataset we compute the Information Gain and the ReliefF for the x-coordinate, to
better understand the meaning of the metrics. In Fig. 3.2-(b) we plot their values in function of
the offset applied to the points. The Information Gain attains its maximum value of 1 (in this case
with two classes one bit is enough to distinguish between them), as soon as two squared regions do
not overlap: this makes sense as in this case the x-coordinate is enough to perfectly tell the class

39

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

PPLive

B
re

ak
do

w
n

E d
/E

Breakdown En/E

 0 0.2 0.4 0.6 0.8 1

SopCast

 0

 0.5

 1
BitTorrent Skype

(a) T = 5 s,R = (0.08, 0.07), I = (0.84, 0.82)

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

PPLive

B
re

ak
do

w
n

E d
/E

Breakdown En/E

 0 0.2 0.4 0.6 0.8 1

SopCast

 0

 0.5

 1
BitTorrent Skype

(b) T = 120 s,R = (0.14, 0.16), I = (0.70, 0.46)

Figure 3.3: Scatter plots of the breakdown of new entities versus the breakdown of data entities
for four applications and two timescales. Captions report the values of Information Gain (I) and
ReliefF (R).

a point belongs to. The ReliefF instead shows a different behavior with a slower increase towards
the value of 1, which is actually the asymptote of the curve. This comes from the geometric nature
of the metric: for instance, considering the case where the two regions are adjacent to each other,
it can be seen that there are still points which are very close(e.g., on the shared border of the
regions) and yet belong to different classes.

3.2.3.2 Features

In Fig. 3.3 we report the scatter plots of two features, namely the breakdown of new entities
(En/E) on the x-axis, and the breakdown of data entities (Ed/E) on the y-axis, considering four
applications and both timescalesT ∈ 5, 120 s. Although for clarity sake we do not represent all
the 7 applications, nevertheless pictures include at leastone example for each service (P2P-TV,
filesharing, VoIP).

At first glance, the impression is that each application generates a distinct pattern, as points
cluster in different regions of the plane. The larger time scale seems to yield better results as
clouds of points appear to be very well differentiated, withfew regions of intersection between
each other. Notably, a bimodal behaviors of PPLive is highlighted, with two distinct clouds of
points corresponding exactly to the two typical activitiesof a P2P application: discovering new
peers (i.e. low percentage of data peers, but high percentage of new peers), and transferring data
(i.e. high percentage of data peers, but low percentage of new peers). Notice, instead, that for
T = 5 s the region of space near the origin, i.e. low percentage of both new and data peers, is
more or less common to all applications.

We report in the captions the values of Information Gain and ReliefF for the two features.
As you can see in a complex space like the one defined by our 102 features, the two metrics
disagree between each other. While the ReliefF gets an higher score forT = 120, the Information
Gain identifyT = 5 as the best. This stems from the different nature of the two metrics, the
Information Gain coming from information theory as opposedto ReliefF with a more geometrical
interpretation. In three cases out of four, however, the metrics identify the feature on the x-axis (the
breakdown of new entities over all entities) as the most useful, which confirms the first impression
one may gather with naked eye, i.e. that points are better separated along the horizontal rather than
on the vertical axis.

40 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

J
=

 |A
 ∩

 B
| /

 |A
 ∪

 B
|

Features

ReliefF k=10 vs k=100

Random

InfoGain vs ReliefF k=10

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

A
cc

ur
ac

y

Number of features

reliefF
infogain
random

(b)

Figure 3.4: (a) Comparison of the rankings of the features and (b) accuracy of classification in
function of the number of features used

3.3 Experimental Results

3.3.1 Comparing feature ranking

Let us now extend our analysis to the complete set of features. Since results are very similar for
the two timescales, we report only those gathered forT = 5 s to avoid repeating ourselves. First
of all we are going to look at the ranking of features producedby the two metrics. As we have
seen in the preliminary example above, the two metrics can yield almost opposite results. We first
apply them separately to the whole set of features and then wecompare their ranking, in order to
see whether we just picked a specific feature or if the two metrics disagree in the general case.

We actually compare three rankings. First the one provided by the Information Gain metric;
then, the two provided by the ReliefF metric with two different choices of the parameterk (i.e.,
the number of neighbor hits and misses), in order to assess its eventual impact on the ordering.
We used the Jaccard Index [172]J as a simple metric to quantify the level of similarity of the two
rankings. LetA andB be the sets composed of the firstn features as ranked by two different met-
rics: we calculate the ratio of the cardinality of the intersection of the two sets over the cardinality
of their union

J =
|A ∩B|
|A ∪B|

Basically, in this way, we obtain the percentage of common features over the total number of
features included in the two sets. We start considering the sets containing only the first metric of
each ranking, and then proceed adding one feature at a time.

We report our results in Fig. 3.4-(a). First we compare the two ReliefF rankings between each
other: as the similarity score is always one, this means thatthey are exactly the same and that
this metrics, in our case, is insensitive to the number of neighbors considered. Then we compare
the Information Gain and ReliefF: the low score obtained especially for small cardinalities of
the sets means that the two rankings are very unlike one another. As a reference we report the
comparison of two random orderings of features (the line is actually the mean over 10 runs): in
this case the score is greater than zero even for low cardinalities. Naturally, as the number of
features considered increases, so does the similarity score as the probability of having features
in common increases as well. In the next section we observe how this dissimilarity between the
rankings influences the classification accuracy.

41

3.3.2 Classification results

In this section we finally perform the classification, focusing again on the shorter timescale of 5 s.
To evaluate the contribution of each feature we used a simplestrategy: as we did to compare the
ranking, we perform several runs of classification, including an increasing number of features in
descendant order of metric score. We repeat this procedure for each ranking separately, as well
as for a random selection of features. Results in terms of overall accuracy of the classification are
reported in Fig. 3.4-(b) in function of the number of features included in the set. Each point and its
vertical bar correspond respectively to the average and standard deviation of ten repetitions, each
time with a randomly sampled training set, which corresponds to approximately one tenth of the
overall dataset.

We used the C4.5 decision (see previous chapter) tree algorithm which gave us faster execution
times and, hence, the possibility of performing more experiments. Moreover, given the way the
training phase operates (i.e., creating the splits on the base of the Information Gain of features),
this algorithm is much more resilient to the phenomenon of overfitting, which allows us to safely
add features without loosing too much accuracy. On the otherhand we should pay attention when
evaluating the Information Gain ranking, because our results may be biased by the fact that the
same metric is used inside the classification algorithm itself.

At first glance, we see that after including ten features, whatever their original order, the
classifier accuracy saturates and adding more information has no beneficial effect. Our features
are particularly good despite their simplicity, given thatthey are able to guarantee a very good
accuracy, exceeding the 98% of true positives. As expect, wesee no overfitting whatsoever, for the
classification algorithm cleverly discards redundant, eventually misleading, information provided
by superfluous features. Yet, the most interesting behaviors can be observed for feature sets with
small cardinality. Information Gain seems a better metric for our case with respect to ReliefF,
since it provides better results. This is particularly evident for a single-feature set, in which case
the features picked by Information Gain already gives us an accuracy of 65%.

Interestingly, it seems that selecting a random set of features yields, in average, an higher ac-
curacy than using the sets of features provided by the two rankings. The higher standard deviation
of the random curve means, however, that there is an high variability of the accuracy in function
of the actual random set of chosen features. We provide our interpretation of this counterintuitive
phenomenon. First we recall that both the Information Gain and the ReliefF evaluate the goodness
of each feature on its own, without considering the correlation with other features. Therefore,
naively selecting the top scoring features may not be a good strategy, for they are likely to be
highly correlated between each other and thus redundant: hence, adding them to the training set
does not improve the information available to the classifier. On the contrary, in a random selection
of features it is likely to find uncorrelated features, that,though singularly carrying lower infor-
mation, when combined together might well become a good discriminator, overall providing more
information to the classifier.

After seeing their classification performance, let us have acloser look to the top ten features
selected by both rankings, which are listed in Tab. 3.3, witha star denoting features related to the
outgoing direction of traffic. Confirming our previous analysis the two rankings have no feature
in common; however, they do give us some interesting insight. First of all about directionality:
apparently features related to the incoming direction (i.e., traffic downloaded by the target end-
point) are more telling, as they represent the majority. Information Gain seems more interested in
the temporal dimensions as in its top features we can see quite a few ones related to the “new”
category, whereas ReliefF selects mostly features relatedto the “data” category, thus being more
sensitive to the spatial dimension of traffic. Most important, overall it seems like the distribution of

42 3. A GENERAL FRAMEWORK FOR BEHAVIORALP2PTRAFFIC CLASSIFICATION

Table 3.3: Top ten features according to Information Gain and ReliefF metrics.
Information Gain ReliefF

Score Feature Score Feature
1.13 E[P] 0.26 Bd/Pd

1.13 P/E 0.26 B/P
1.05 Std[B/P]⋆ 0.26 E[Bd]
1.03 Std[B/P] 0.25 Std[B/P]
1.03 P/E⋆ 0.25 Pd/P⋆
1.03 E[P]⋆ 0.24 Bd/B⋆
1.01 Pn/P 0.22 Pd/P
1.01 E[Pn] 0.21 Std[Bd/Pd]
0.95 E[Pn]⋆ 0.20 Bd/B
0.95 Pn/En 0.19 E[B]

packets and bytes across peers is a good discriminator, as both rankings includes either the ratios,
the breakdowns or the statistical indexes related to such quantities.

3.4 Summary

In this chapter we presented two main contributions. First we introduced a coherent and compre-
hensive framework for the definition of behavioral featuresfor the classification of P2P traffic, in
whose definition we assumed that only flow-level measurements are available. By clearly stating
the criteria at the base of feature definition, which take into account both the nature of input data
(IPFIX flow counters), and of the target traffic (meshed P2P systems), we obtained an extremely
general framework, which, in our opinion, could represent avaluable reference for the research
community.

In the second part, we performed an analysis of the amount of information carried by the
defined features, using two metrics: the Information Gain and ReliefF. We considered a large set
of about 100 features, with two different timescales for statistic collections, over a large dataset
of traces generated with active and passive methodologies and including 7 P2P applications. The
most important takeaway of this experiment is that the features we defined provide a rather good
amount of information about the application label. In fact by employing a set of ten features we
are able to obtain a very good accuracy exceeding the 90%, despite the simplicity of the attributes
we defined.

Moreover, our analysis actually highlights a few properties which appear to be valuable dis-
criminators. Even though the natural next step would have been to run some more sophisticated
algorithms taking into account the correlation among features (e.g. correlation based filter [97]),
nevertheless in this thesis we decided to take another approach. Instead of further combining these
features, in the next chapter, starting from the findings of this chapter, we develop some more
sophisticated features, which try to better capture the information that seems to be most useful for
P2P traffic classification.

43

Chapter 4

Abacus - Behavioral classification of
P2P-TV Traffic

In this chapter, whose results have been published in [32, 173], we present our behavioral clas-
sification solution, Abacus, which bases the classificationon the simple counts of packets and
bytes exchanged by peers in small-time windows. The resultsof the previous chapter have also
shown these features to be among the ones most correlated with the application label. This careful
choice of features makes the Abacus classifier accurate as well as extremely lightweight. More-
over, though originally designed for P2P-TV traffic, Abacusproved itself effective with P2P traffic
in general, as we will show in Chap. 6.

Let us begin by clearly stating the context and motivation ofthis work.

4.1 Introduction

The Internet has proved to have an awesome capability of adapting to new services, migrating
from the initial pure datagram paradigm to a real multi-service infrastructure. One of the most
recent step of this evolution is P2P-TV, i.e., large-scale real-time video-streaming services ex-
ploiting the peer-to-peer communication paradigm. There are several currently deployed P2P-TV
systems [7, 11, 13, 17], which feature low-quality and low-bitrate streaming, with high-quality
systems just beyond the corner. In P2P-TV systems, hosts running the application, calledpeers,
form anoverlay topologyby setting up virtual links over which information is transmitted and
received. A source peer injects the video stream, by chopping it into data units of a few kilobytes,
calledchunks, which are then sent to a few other peers, calledneighbors. Each peer contributes
to the video diffusion process by retransmitting chunks to its neighbors following a swarming-like
behavior, somehow inspired to file sharing P2P systems like BitTorrent.

P2P-TV systems are candidates for becoming the next Internet killer application as testified by
the growing success of commercial systems (such as PPLive, SopCast, TVAnts and many others)
which already attract millions of users every day [86]. Also, Cisco estimates that, globally, P2P-
TV traffic is now over 280 petabytes per month [169], and is projected to increase further over the
next year. As a consequence, P2P-TV systems gathered the attention of the research community,
interested in understanding their behavior and improve their performance, while the Internet Ser-
vice Providers (ISP) community have raised some concerns about them. Indeed, P2P-TV traffic
may potentially grow without control, causing a degradation of quality of service perceived by In-
ternet users or even the network collapse [115]. In fact while the downlink rate of peers is limited
by the video stream rate, the uplink rate may grow unbounded as observed in [86]. Unfortunately,

44 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

most successful P2P-TV systems follow a closed and proprietary design, so the algorithms and
protocols they adopt are unknown.

The vast amount of works on P2P live streaming systems is a further witness of the popularity
of such applications. We mention a few references on other relevant works on P2P-TV system,
limiting to works focusing on existing and popular system, which will be the target of our classi-
fication algorithm. Indeed, after the first pioneering works[185, 187] presenting this innovative
way of streaming content across thousands of hosts using swarm-like unstructured system (some-
how inspired by Bittorrent [58]), the main reason of the research community interest on P2P-TV is
clearly the success of commercial software as [11, 13]. Withthis regard, measurement of P2P-TV
applications are the focus of [26, 51, 54, 86, 167, 179]. Specifically, [86] focuses on PPLive,
[179] on UUSee, [51] on Zattoo, while [26, 54, 167] perform a comparison of several popular
applications (the first considers PPlive, SopCast and TVAnts, the second adds Joost and the latter
also adds TVUplayer).

Given their diffusion, the identification of P2P-TV applications is a topic of growing interest.
For instance, ISPs can be interested in blocking application A and at the same time explicitly
supporting applicationB, because the ISP itself provides a service relying onB. In a similar way,
an operator could be forced to block the traffic of an application for some infringements (e.g.,
copyright), while still protecting the traffic of the application used by other broadcasters. More
possible uses of P2P-TV application classification can be found in the field of networkmonitoring
(e.g., ranking applications according to their popularity), security (blocking a given application
which is exploited for DDoS attacks or worm diffusion) and charging. We think that, with the
growing diffusion of P2P-TV applications, ISP will soon be asking for tools enabling this kind of
activities.

However, we found that, despite the valuable effort devotedto traffic classification we re-
viewed in Chap. 2, the community was only partially addressing the identification of P2P-TV
traffic by means of payload-based mechanism [77]. Moreover the characteristics of P2P-TV ap-
plication made them a perfect target for behavioral classification [184], which, we recall, aims at
identifying the traffic by the sole examination of transport-layer traffic patterns, not requiring nei-
ther packet-payload inspection nor per-packet operation.However, behavioral classification has
usually achieved only coarse-grained classification of Internet applications, identifying broad ap-
plicationclasses(e.g., interactive, P2P, Web, etc.) rather than discriminating different applications
within the same class.

In this chapter, we tackle precisely this issue by designinga novel behavioral classification
framework, tailored for P2P-TV applications, which is ableto achieve fine-grained classification
(i.e., distinguish among applications). Our framework uses simple application signatures gathered
from the count of packets and bytes that peers exchange during small time windows. To validate
the proposed classification engine, we carry out a thorough experimental campaign using both
testbed traces and passive measurements collected from real networks. We consider four P2P-TV
applications, chosen for their popularity among the large number of available ones. Our results
show that the percentage of correctly classified traffic is above 95% of bytes. Moreover, the engine
correctly labels as “unknown” the traffic generated by non P2P-TV applications, keeping the false
positive rate (i.e., wrong classification of non P2P-TV traffic as such) below 0.1% in the worst
case.

The rest of this chapter is organized as follows. Sec. 4.2 defines the application signatures and
describes the classification framework, Sec. 4.3 thoroughly describes the workflow, methodology
and datasets used to validate the classification engine. Sec. 4.5 then illustrates baseline classifi-
cation results, providing an extensive study of the signature portability, to show that the proposed
technique works in rather different network environments.A careful sensitivity and robustness

45

analysis of the method to internal parameters is reported inSec. 4.6. Afterwards, we show in
Sec. 4.7 that an extended signature definition can further improve the classification accuracy. Fi-
nally Sec. 4.8 summarizes our main contributions.

4.2 Classification Framework

4.2.1 The Rationale

Our aim is to classify P2P-TVend-points, which can be identified by IP address and transport
layer port pair(IP, port). Typically, P2P-TV applications rely on UDP as the transport protocol.
During installation, a single UDP port is selected at random, over which all the signaling and video
traffic exchanged with other peers is multiplexed. Therefore, all the traffic going to/coming from
a given(IP,UDP-port) end-point is actually destined to/sourced from the same P2P-TV applica-
tion running on the host. This holds true for P2P-TV applications like PPLive[11], SopCast[13],
TVAnts[17] and Joost[7]1, which we take as examples. Because of the continuous development of
new applications, the choice of a representative set is definitely a difficult one. We decided to use
the most popular applications at the time of experiments.

As mentioned before, we design a P2P-TV classification methodology that relies only on the
evaluation of theamount of information, such as packets and bytes, exchanged by peers during
small time-windows. The rationale is that a raw count of exchanged data conveys useful informa-
tion concerning several aspects of P2P-TV applications.

A human analogy may help in clarifying the intuition. Suppose peers in the network are people
in a party room: people generally have different behavior, e.g., they will be more or less talkative.
As such, somebody may prefer lengthy talks with a few other people, whereas somebody else
may prefer very brief exchanges with a lot of people. This is similar to what happens with P2P
applications: some applications continuously perform peer discovery by sending few packets to
a previously not-contacted peer; others tend to keep exchanging most of packets with the same
peers.

Additionally, most P2P-TV applications have been designedaround the concept of “chunks”
of video, i.e., small units of information whose size is a typical parameter of each application.2

Download of video content is thus performed using several chunks, and the size of flows carry-
ing the video content is roughly a multiple of the chunk size.Moreover, P2P-TV video service
has an almost constant downlink throughput, due to the nature of the video stream. By tracking
thebreakdownbetween the different contributors it is possible to highlight different policies that
a particular application can adopt, namely, fetching chunks from many neighbors, or download-
ing from a restricted list of preferential peers. Yet, whileany P2P-TV peer downloads an equal
quantity of data, the amount of uploaded data can be significantly different from peer to peer, due
to different configuration, such as upload capacity. For example, in [86], it is shown that uplink
to downlink throughput ratio for PPLive varies in the[0, 10] Mbps range, for the same downlink
throughput of about 400 Kbps. In reason of the above observation, we assume that the classifier is
located at theedgeof the network (where all traffic exchanged by a given end-point transits), and
consider only thedownlinkdirection, i.e., traffic coming from the Internet and crossing the edge
of the network into the end-point direction. Notice that once an endpoint has been identified by
means of downlink traffic, the uplink traffic is classified as well. Also the evaluation of informa-

1Joost became a Web-based application in October 2008, but atthe time when the experiments were performed it
offered VoD and live-streaming by P2P.

2 Note that whileframesare the typical unit of data generated by video encoders, thesegmentation inchunksis
instead imposed by the P2P application and is typically independent from the codec.

46 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

tion content carried in the previous chapter showed that thedownlink direction is the most relevant
for our classification purposes.

In the following, we restrict our attention to UDP traffic, although endpoint identification can
be extended to applications relying on TCP at the transport layer as well. In case TCP is used,
the client TCP port is ephemeral, i.e., randomly selected bythe Operating System for each TCP
connection. The TCP case thus requires more complex algorithms in case of trafficgeneratedfrom
a specific peer, since ephemeral ports differ among flows generated by the same peer. However,
we point out that the ephemeral port problem vanishes if we focus on the downlink direction as we
do in this chapter (i.e., since we need in this case to aggregate all traffic received by a TCP server
port, that remains the same for all flows of any given peer).

4.2.2 Behavioral P2P-TV Signatures

Let us consider the traffic received by an arbitrary end-point P = (IP, port) during an interval
of duration∆T . We evaluate the amount of information received byP simply as the number of
received packets. In Sec. 4.7 we extend this concept to account also for the amount of bytes, which
we will show to further improve classification performance.

We partition the spaceN of the possible number of packets sent toP by another peer into
Bn + 1 bins of exponential-size with base 2:I0 = (0, 1], Ii = (2i−1, 2i] for i = 1, . . . , Bn−1

andIBn = (2Bn−1,∞]. For each∆T interval, we count the numberNi of peers that sent toP
a number of packetsn ∈ Ii; i.e.,N0 counts the number of peers that sent exactly 1 packet toP
during∆T ; N1 counts the number of peers that sent 2 packets;N2 the number of peers that sent 3
or 4 packets and, finally,NBn is equal to the number of peers that sent at least2Bn−1 + 1 packets
to P. Let K denote the total number of peers that contactedP in the interval. The behavioral
signature is then defined asn = (n0, . . . , nBn) ∈ R

Bn+1, where:

ni =
Ni

∑Bn

j=0Nj

=
Ni

K
(4.1)

The signaturen is the observed probability mass function (pmf) of the number of peers that sent
a given number of packets toP in a time interval of duration∆T ; this function is discretized
according to the exponential bins described above. The choice of exponential width bins reduces
the size of the signature, while keeping the most significantinformation that can be provided by
the pmf.

In fact, since low order bins are much finer, short flows are likely to end up in different bins,
even though the difference in their counts is small (e.g. flows composed by a single packet, two
packets and three packets are counted respectively in the componentsn0, n1 andn2). On the
contrary, longer flows are coarsely grouped together in the higher bins. Intuitively, having a finer
characterization of short flows can provide much information (e.g., distinguishing between single-
packet probes versus short signaling exchanges spanning several packets), while there is no gain
in having an extreme accuracy when considering long flows (e.g., distinguishing between 500 or
501 packet long flows). This intuition is discussed in Sec. 4.6, where we examine the impact of
different binning strategies.

Sincen has been derived from the pure count of exchanged packets, wename our classifier
“Abacus”, which is also a shorthand for “Automated Behavioral Application Classification Using
Signatures”. Before describing the whole classification process, let us show the expressiveness of
the Abacus signatures, by presenting a few examples.

In Fig. 4.1-(a) we show an example of temporal evolution of the signaturen for each of the four
applications we consider in this chapter (from left to right, Joost, SopCast, TVAnts and PPLive).

47

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ba

cu
s

si
gn

at
ur

e
co

m
po

ne
nt

 n

i(t
)

Experiment Time [∆T steps]

Joost

n6

SopCast

n4

TVants

n1

PPlive

n0

 0
 0.1
 0.2
 0.3

0 1 2 3 4 5 6 7 8

P
m

f o
f m

ea
n

ab
ac

us
 s

ig
na

tu
re

 E
[n

i]

Bin identifier

PPLive
 0

 0.1
 0.2
 0.3

TVAnts
 0

 0.1
 0.2
 0.3

SopCast
 0

 0.1
 0.2
 0.3

1 2 4 8 16 32 64 128 256

Maximum number of packets

Joost

Figure 4.1: Temporal evolution of P2P-TV applications signature with a mark for the widest bin
in (a), and mean value for each component of Abacus signatures in (b)

Each plot is built by running a single application on a controlled peer for an hour and capturing
the received packets. Then we process this traffic and compute a signaturen for each interval
∆T = 5 s. Each graph has the time on the x-axis, while on the y-axis it is reported the value of
each componentni. Each component is represented with a shaded area of a particular level of
gray (with darker colors corresponding to low-order components, and lighter ones to high-order
components). Moreover the components are staggered one above the others, so thatn0, the darkest
component, extends from 0 ton0, whilen1 extends fromn0 to n0 + n1 and so on. Clearly, as the
overall signature is itself a pmf, the sum of all components is equal to 1.

Each application has its own characteristic distribution,which is extremely different from
the others. The most probable bin (i.e. the one which exhibits the highest values for most of
the intervals∆T) is highlighted in the figure, showing that it is different for each application.
Interestingly, the most probable bin remains the same during most of the application lifetime,
despite its actual width varies over time. Notice that the breakdown is not stationary over time for
all applications: this is for instance the case of PPLive, asit emerges from the rightmost plot of
Fig. 4.1-(a), which hints to transient or possibly “multi modal” behaviors. The dark vertical line
towards the end of PPLive experiment corresponds to a suddenmassive increase ofn0, due to a
10-seconds long blackout period (i.e. two∆T intervals), where the end-point under observation
was essentially receiving single-packet probes, and likely no video chunks.

To better highlight how Abacus signatures capture the differences between applications, we
have computed theaverageof each single signature componentni over all the intervals represented
in Fig. 4.1-(a), and reported it in the histograms of Fig. 4.1-(b). Bin identifieri is reported on the
x-axis, with top x-axis showing the maximum number of packets within the bin.

Interesting behaviors stand out from the picture. For instance, Joost peers preferentially re-
ceive either a single or several(32, 64] packets from any given peer. SopCast instead prefers
middle-sized burst of(5, 16] packets, while TVAnts prefers lower order bins(2, 7] packets. Fi-
nally, PPLive highly prefers single packet exchanges. Thisconfirms that different P2P-TV appli-
cations have remarkably different behaviors, just like humans at a party: in the next sections, we
exploit this evidence for classification purpose. Obviously if two applications employ the same
signaling and diffusion algorithms, they are characterized by a similar behavior and, thus, hardly
recognizable. Under these assumptions, a fine-grained classification is no longer possible. Notice
that this is a common problem with all classification methodologies: as far as the features are the
same, the classifier is confused. For example, traditional Deep-Packet-Inspection (DPI) classifiers
cannot distinguish two VoIP applications relying on the same protocol at the session level, e.g.,
RTP. Similarly, behavioral classifier that use packet size and inter-packet-gap as features cannot

48 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

distinguish VoIP applications that use the same Codec.

4.3 Methodology

Classification of P2P-TV traffic can be performed by exploiting the Abacus signatures so far de-
scribed through any supervised learning machine. We resortto Support Vector Machines (SVM)
(see also Sec. 2.2.1), well known for their discriminative power [62]. In this section, we describe
the workflow we follow in the evaluation, as well as the dataset used for our experimental cam-
paign.

4.3.1 Workflow overview

Employing a supervised machine learning algorithm, we follow the same steps described in Sec. 2.2,
i.e., training, classification and validation. However, itis worth recalling the classical workflow
here because, first, we modified it it to suit our goal of classifying P2P-TV application, and, sec-
ond, it gives us the opportunity of discussing the applicability of such a methodology to different
scenarios.

The first step consist in generating the labeled signatures of known P2P-TV applications, using
the testbed traces described later in this section: specifically, for each trace, we build an Abacus
signaturen every interval of∆T seconds. SVM, like all supervised algorithms, needs to be trained
as illustrated in the top part of Fig. 4.2 with some sample Abacus signatures, with the associated
labels that specify the generating P2P-TV applications. Therefore, each signature in our dataset
is possibly chosen, at random, to be included in the trainingset: impact of training set size and
selection policy on the classification performance is discussed in details in Sec. 4.6.

The output of this phase is atrained model, which is basically a careful selection of samples
from the original training set, called Support Vectors. Such points define a partition of a vectorial
space obtained by applying a transformation (based on a Gaussian kernel unless otherwise stated)
to the original space defined by Abacus signatures. We examine the impact of other kernels later
on in Sec. 4.6.

During the classification phase, in the bottom part of Fig. 4.2, SVM, based on the trained
model, associates a label to a previously unseen signature,by identifying in which portion of
space it falls into. Normally, the process ends here, but we needed an additional phase to handle
unknown traffic: the classification is accepted provided it passes arejection criterion, to correctly
discard non P2P-TV traffic. In fact, as SVM partitions the space into regions, it willalwayslabel
any new sample as belonging to one region specified during thetraining phase. We thus devise a
rejection criterion, which is extensively explained in Sec. 4.3.2, based on a measure of distance
between signatures in the probability distribution space.We defer all details to the next section:
now, we just mention that the this threshold-based criterion is able to reject SVM classifications
and label sample non-P2P traffic as “Unknown”.

Finally, it is worth remarking that, apart from the trainingphase, the overall framework is well
suited for live classification, yielding a classification result every∆T s, (which is the parame-
ter that defines thereactivity of our classifier). Notice as well that all operations performed on
observed traffic are extremely lightweight so that our classifier can cope also with high rates of
traffic (a brief analysis of the scalability of our Python implementation is reported at the end of
Sec. 4.6 and a more formal analysis is also performed in the next chapter, which compares Abacus
with a payload based classifier). As a side note, we have also released an open-source demo of
our classifier, available online [174] and briefly describedin Sec. 5.4, that allows the user to run
Abacus in real-time, on live traffic captured on a real network interface. At the same time, we

49

Signature

nB

nB
nB

Trained

model

Training
set

Training traffic
protocol A

...

Training traffic
protocol X

Sampler SVM Learn

n

nB

Sampler

n

...

A

nB

nB

...

 Build signatures

Signature

Apply trained model

+ rejection criterion

Unknown

yes

<R

Live classification

A
B
C
DA

Signature

Signature

A
B
C
D

no

Classification

results

Build signatures Sampling Learning

Training traffic
protocol A

Training traffic
protocol X

Oracle

Ground truth

Class

Oracle

Ground truth

Validation

Classification

Training

Figure 4.2: Classification framework: Model training (top)and validation (bottom). Live classi-
fication is performed as in validation, except that no groundtruth is available as in the validation
case.

point out that in all our experiments we used Abacus as anofflineclassifier on pre-recorded traces
with associated ground-truth, in order to perform multipleexperiments on the same dataset, which
is needed to have a trustworthy validation of the classification performance. However, from the
above discussion it follows that results are representative of live classification as well.

The only offline operation is constituted by the training phase. Concerning this point, we
anticipate that the results of our portability analysis show that a well chosen training set can be
used to successfully classify traffic in a variety of networkconditions, so that offline retraining is
rarely required. Moreover, the collection of the training set is a very simple process, which can
be easily automated. This is not the case for many other classifiers, usually presenting a much
more complicated training phase, which can even involve manual inspection of the packet traces
(e.g. DPI requires analysis of the traffic to extract keywords or regular expressions that identify
the target protocol).

4.3.2 Rejection Criterion

SVM is a powerful classification algorithm, but for our purpose of network traffic classification
it presents one simple shortcoming. Recall that a SVM trained model is composed of two parts:
first a mapping from the original features space to a multidimensional space; second a set of
hyperplanes individuated by Support Vectors, which definesa partition of the target space into
regions, each corresponding to a possible classification outcome. The problem is that, in this
partitioned space, a new point is always deemed to fall into aregion, hence it will always be
associated to one of the label represented in the training set. Unfortunately in traffic classification,
we also need to deal with “other” traffic, generated by different applications. To overcome this
issue, we define a rejection criterion, whose aim is basically recognize to traffic belonging tonone

50 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

of the target training classes.
Given that Abacus signatures are probability mass functions, we use a measurement index

suitable to quantify distribution similarity. Given two pmfs, there exist several indexes to evaluate
their degree of similarity. The Bhattacharyya distance (BD) [36] is a measure ofdivergenceof
two probability density (or mass) functions. Given two pmfsp andq overn discrete values, the
Bhattacharyya distanceBD(p, q) is defined by:

BD(p, q) =
√
1−B where B =

n
∑

i=1

√
piqi (4.2)

Bhattacharyya distance, which is a particular case of the Chernoff distance, has several prop-
erties. First, it verifies the triangular inequality. Values of BD close to zero indicates strong
similarity (if pi = qi ∀i, B = 1 andBD = 0) whereas values close to one indicates weak sim-
ilarity. The Bhattacharyya coefficientB ∈ [0, 1] is the scalar product between the two vectors
p′ = (

√
p1, . . . ,

√
pn) and q′ = (

√
q1, . . . ,

√
qn), which leads to a geometric interpretation of

the coefficient B. In fact it can be seen as the cosine of the angle betweenp′ andq′. The Bhat-
tacharyya distance has been successfully applied in different contexts such as signal selection [99],
or classification [123].

In our context, we useBD to measure theseparabilityof two traffic classes. In particular,
we reject the SVM labelC of a signaturen whenever the distanceBD(n,E[n(C)]) exceeds a
given thresholdR, i.e., the sample will be labeled asunknown. E[n(C)] is the average signature
computed on the training samples of applicationC. Notice that the average signatureE[n(C)]
identifies the center of the cluster formed by all training set signatures of applicationC. In other
words, we accept SVM decision conditionally to the fact thatthe observed traffic signaturen lies
within a radiusR from the center of the SVM training set for that class. The selection of the
threshold value is simple but delicate, as it heavily influences the performance of the classification
in terms of both True Positive Rate and False Positive Rate, hence we will carefully provide a
sensitivity analysis on this value.

However, there exist some cases where no false alarm can be raised (i.e., non P2P-TV traffic
will be always classify as unknown), which makes Abacus robust by design. Let us consider
the case when traffic is received from one peer only. Then, theAbacus signaturen is a vector
containing a single 1 at the bini∗. In this case, the distance from the centerE[n(C)] (C for short)
of the cluster of an arbitrary application will beBD(n,C) =

√

1−√
Ci∗ . Suppose we choose a

thresholdR, then we reject the classification if:

BD(n,C) =

√

1−
√

Ci∗ < R

from which we can derive an acceptance condition on the valueof Ci∗ :

Ci∗ < (1−R2)2

In case we setR = 0.5, as we will do in Sec. 4.5, we have that a signature is rejectedwhenever
its most likely binCi∗ exceeds(1−0.52)2 = 0.5625: notice from Fig. 4.1 this is never the case for
any P2P-TV applications, whose most likely bins remain below 0.3. In other words, the criterion
is robust with respect to P2P-TV applications (whose signatures are not rejected) and with client-
server applications as well (since any signature containing a single bin has forciblyCi∗ = 1 and
is thus rejected). Similarly, consider the case when trafficis received by only two peers: any such
signature is a linear combination of two unit vectors and it can simply be proved that it will be
rejected too. Therefore, also in this case, the signature isalways rejected (classified as “unknown”)

51

Table 4.1: Details about the Testbed Traces
Application Hr UDP Signatures UDP Packets UDP Bytes UDP%
SopCast 36 26k 17.2M 7.5G 92.5
TVAnts 36 26k 14.2M 7.1G 33.0
PPLive 26 19k 11.7M 5.1G 70.7
Joost 30 22k 6.1M 6.4G 99.5
Total 128 93k 48.2M 26.1G 73.7

and therefore no false alarm is raised. To summarize, the criterion rejects any peer contacting two
or fewer other peers during a given time interval∆T – which basically means that client-server
traffic will never raise any false alarm, but will rather be correctly classified by the engine as
“Unknown”.

4.4 Dataset

Assessing classification performance represents a well-known problem, as we already mentioned
in Chap. 2, because of the difficulty of finding traces with reliable ground-truth.

To gather robust results we adopted a mixed approach: we use both (i) traces actively gathered
in a large scale testbed, and (ii) passive traces collected from different real operational networks.
Testbed traces contain P2P-TV traffic only and allow us to evaluate the engine capability to cor-
rectly discriminate P2P-TV applications and correctly label all P2P-TV traffic. Conversely, real
network traces do not contain any P2P-TV traffic and allow us to verify that the engine correctly
handles unknown applications as well (i.e., does not label other traffic as P2P-TV).

4.4.1 Testbed Traces

We extensively use the dataset captured during the testbed experiments in context of the NAPA-
WINE project, which was describe in Sec. 2.4. Overall, the testbed is representative of about
130 hours worth of video streaming,93k signatures samples,48M packets and 26 GBytes of data.
Since our classifier operates only on downlink traffic, that is the traffic directed to the target end-
point, we first extracted the relevant UDP packets from the traces. The overall duration, number
of signatures (i.e. snapshot of∆T = 5 s) as well as number of UDP packet and UDP bytes fi-
nally included in our dataset per application are reported in Tab. 4.1. Notice that the table also
reports the percentage of UDP traffic relatively to the overall amount of IP traffic in the captured
testbed traces. With the exception of TVAnts, we gather confirmation that UDP traffic is preva-
lent, accounting to about 3/4 of the total traffic volume, andmore than 90% in case of SopCast
and Joost. Notice that this changes with respect to previouswork [167] in which TCP was found
to be responsible for the bulk of the exchanges. As the version of the software that we used in
our experiments is more recent than that used in [167], the data confirms that P2P-TV sofware is
continuously evolving[90], and that in this evolution UDP is preferred over TCP. In the TVAnts
case, instead, the software version did not evolve from 2006, in which case UDP/TCP ratio is in
agreement with [167].

4.4.2 Real Traces

Real traffic traces are collected from two different networks in Italy: (i) CAMPUS (C) is the trace
from our university and (ii) ISP (I) is the trace of 2006 from alarge Italian ISP. For all the details

52 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

Table 4.2: Details about Real Traces. To perform a worst-case analysis, only end-points that
can lead to false positive classification are considered (28% of the CAMPUS and 15% of the ISP
overall traffic volume).

Network Traffic Signatures Packets Bytes
UDP 1.9M 73.6M 10.6G

CAMPUS Skype 0.5M 11.9M 2.2G
DNS 0.2M 5.0M 0.7G
UDP 0.7M 28.5M 24.9G

ISP eDonkey 0.3M 9.8M 1.4G
DNS 24.4k 0.6M 37.8M

about these trace please refer to Sec. 2.4.

In both cases, traces were collected during May 2006, when P2P-TV applications were not
popular in such networks. As such, they are instrumental to assess the amount of false positive
classification (i.e., non-P2P-TV traffic classified as P2P-TV).

As detailed in Sec. 4.3.2, the rejection criterion is very effective in avoiding false alarms, since
all signatures related to hosts contacting two or less peers(i.e., not running any P2P application)
is rejected by design. For this traces, the percentage of signature that cannot be classified amounts
to 62% and 82% in CAMPUS and ISP respectively, which corresponds to 72% and 85% of the
ISP traffic volume. However, our aim is to gather conservative performance bounds: therefore,
we build aworst-case scenariofor the comparison, so that the actual performance in operational
networks can be expected to be much more robust. To devise theworst-case scenario, we do
not consider unknown traffic that Abacus would reject by design (e.g., such as single-flow client-
server traffic) , but instead take into account only the subset of traffic that Abacus could actually
misclassify (i.e., accepting unknown traffic as P2P-TV and generating thus a false alarm), and that
constitutes merely the remaining 28% of the CAMPUS and 15% of the ISP traffic traces.

As reported in Tab. 4.2, we consider both the aggregated UDP traffic volume (that Abacus
can misclassify) produced by all applications in the CAMPUS and ISP traces, as well as relevant
UDP traffic subsets, representative of both P2P and client-server applications. The rationale of
this choice is that we want to test whether false-positive classification is more likely to arise when
considering P2P applications or traditional client-server services. Specifically, we consider Skype
and eDonkey traffic as examples of voice and file-sharing P2P applications, and DNS as an exam-
ple of traditional client-server service. To reliably identify eDonkey, we develop and implement a
DPI classifier, based on [6, 108], while we classify Skype with out previous work [39], and rely
on Tshark DPI protocol inspection capabilities to isolate DNS traffic.

4.5 Experimental Results

This section reports the results of our experimental campaign.

We start by considering signatures that are defined on the number of packets exchanged, pro-
viding first some baseline results in a general enough scenario. Then we investigate thesignature
portability, across different space, time and network conditions: thisis done to assess if a classifier
trained with signatures gathered under a given set of conditions, is able to correctly identify traf-
fic generated in completely different settings (e.g., different ISPs, access technologies, networks
conditions, different TV channels, different times, etc.).

53

Table 4.3: P2P-TV Classification Performance: Confusion Matrix of Testbed and Real Traces
(Signatures)

PPLive TVAnts SopCast Joost Unk
PPLive 81.66 0.58 9.55 2.32 5.90
TVAnts 0.49 98.51 0.18 0.77 0.04
SopCast 3.76 0.11 89.62 0.32 6.19
Joost 2.84 0.55 0.28 89.47 6.86

PPLive TVAnts SopCast Joost TNR
CAMPUS 2.42 2.23 0.01 0.02 95.3
ISP 0.66 0.13 0.43 0.10 98.7

4.5.1 Baseline results

In this first set of experiments, we report results considering the following parameters: for each
application, the training set includes samples extracted considering 2 peers at random from each
group ofN = 7 networks taking part to the experiment. From all signaturesthey generate, 4000
signatures are randomly extracted to define the training set, which corresponds to about 17% of
all signatures. Experiments are then repeated 10 times, randomly changing the training set and so
the validation set at each run. Finally, average classification results are computed. We consider
signatures generated using∆T = 5s intervals. Classification is performed using SVM with a
Gaussian kernel and exponential binsBn = 8, with a rejection thresholdR = 0.5. Parameters
sensitivity and optimization is later discussed in the remaining part of this section.

The top part of Tab. 4.3 reports the classification performance of on the testbed traces using
the traditional “confusion matrix”, already explained in Sec. 2.3. Performance are expressed for
the time being in terms of signatures (i.e., groups of packets received during a∆T interval) but we
will also consider classification performance in terms of packets, bytes and peers later on. It can be
seen that, in the worst case, about 81% of individual signatures are correctly classified. The most
difficult application to identify appears to be PPLive, which is confused with SopCast (9.55%) or
Joost (2.32%). Other applications show higher TPR, with TVAnts showing almost perfect match.
On average, about 4.5% of P2P-TV signatures are rejected, therefore being labeled as Unknown.

Bottom part of Tab. 4.3 reports results considering the realtraces dataset. Since no P2P-
TV traffic is present in this dataset, True Negative Ratio (TNR) is the main index to be considered
(boldface, rightmost table column). Results show that the rejection criterion adopted is very robust,
so that less than 5% (see Sec. 4.3.2 for further details) so that the overall TNR is actually much
higher: namely, considering all the UDP traffic traces of thereal networks, more than 99% of
the signatures do not raise any false alarm. Left part of the Table details the breakdown of False
Positives: PPLive and TVAnts are the cause of most misclassification, while Joost practically
causes no False Positives.

4.5.2 Signatures Portability

We now evaluatenetwork portabilityof Abacus signatures. The objective is to answer the question:
how generic is a training performed considering traces collected in a network? Our testbed dataset
is different enough to see what happens when, for example, the classifier is trained considering
a trace collected in a University Campus network, and then used in a totally different network,
like a ADSL scenario. Moreover, both the access type and the channel popularity could impact
the accuracy of the training set, which we deal with in the following. Besides, we are interested

54 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

in testing how often the signatures have to be redefined, considering P2P-TV traces gathered in
different years. Finally, we also test how robust the classifier is in presence of high packet loss or
limited bandwidth.

For the sake of simplicity, we consider only packet-wise Abacus signatures and testbed traces,
and no longer apply the rejection criterion. Results are summarized in Tab. 4.4: the first column
reports the experiment label, the second column (Train) states which training set was used, while
the third column (Test) reports the dataset using for the classification process. TPR for each
application are reported in the subsequent columns. To easethe comparison, the first row (labeled
Ref) reports the baseline results: notice that TPR is slightly higher with respect to Tab. 4.3, since
we do not apply the rejection criterion.

4.5.2.1 Portability across Network Sites (NS)

In the first scenario, we consider traffic captured from PCs running at different institutions, i.e., in
different Countries, networks, etc. (see Tab. 2.4). We start by considering peers that are all placed
in corporate or campus networks, with high-bandwidth connections to the Internet. There are 7 of
such sites. For each application, we select 4 sites, and usedtraffic collected there for the training.
Then, traces collected in the remaining 3 networks are classified to evaluate TPR. To gather robust
results, we consider every possible combination

(

7
4

)

= 35 of training and validation subsets. For
each combination, 3 tests are performed with different random training samples.

Results are reported in the raw labeled asNS in Tab. 4.4, which shows that signatures are
network-portable under homogeneous settings: indeed, thelargest performance drop is 4%, which
corresponds to the PPLive case.

4.5.2.2 Portability across Access Technologies (AT)

We now test to what extent signatures are portable across different access technologies, e.g., ADSL
versus High Bandwidth (HB) access. As noted in [86], nodes with high-bandwidth access can act
as “amplifiers”, providing content to possibly several peers; conversely, ADSL peers may only
act as “forwarder” due to the limited uplink capacity. Despite we consider only the downlink
traffic, such different behaviors can impact the Abacus signatures, e.g., due to a different fraction
of signaling packets a peer receives. For example, an amplifier peer can receive many small sized
acknowledgments, while a low-capacity peer mainly receives large packets containing video data.
We therefore split the testbed dataset into two parts: the first contains traces collected from all High
Bandwidth PCs, while the second contains ADSL PCs. Three tests are performed: (i) classifying
ADSL traces using ADSL training set, (ii) classifying ADSL traces using the HB training set and
(iii) classifying HB traces using ADSL training set. Each test has been repeated 10 times, and
average results are reported.

Results are reported in rows labeledAT in Tab. 4.4. Overall, Abacus signatures confirm their
portability even across different access networks: for TVAnts, SopCast and Joost, results are mod-
estly impacted by train/test combination (being 8% of reduced TPR the worst case). In case of
PPLive, the TPR drops to 58% when HB training is used to classify ADSL traffic. This is likely
due to the fact that PPLive is very aggressive in exploiting HB peers upload capacity, so that the
number of peers sending acknowledgments shifts the signature toward low bins, i.e., few acknowl-
edgment packets are received from a given peer. ADSL peers, on the contrary, contribute with little
upload bandwidth, so that the incoming traffic is mainly due to video chunks received as trains of
packets, i.e., groups of large data packets that are received from contributing peers.

55

Table 4.4: Signature portability: TPR evaluation
Train Test PP TV SO JO

Ref ALL ALL 84.84 98.51 92.63 91.50
NS 4/7 3/7 78.90 97.61 90.30 88.61

ADSL ADSL 83.48 97.86 95.61 91.36
AT ADSL HB 79.63 93.73 87.30 90.61

HB ADSL 58.28 98.15 93.70 81.55
POP POP 95.88 - - -

CP POP UNP 48.59 - - -
UNP POP 94.79 - - -

TI 2008 2006 18.81 98.44 51.06 -
HB Bw 91.14 76.80 75.76 -

EI HB Delay 88.19 84.62 77.80 -
HB Loss 75.22 91.77 84.31 -

4.5.2.3 Portability across Channel Popularity (CP)

We now consider what is the impact of channels with differentpopularity. Channel popularity
indeed may significantly influence the P2P-TV application behavior: for example, considering
popular channels, a large number of peers are available, while for unpopular channel few peers
can be used to exchange the video content. We performed a second experiment considering a very
popular (POP) channel using PPLive. We selected PPLive since it is the P2P-TV application for
which Abacus showed the worst performance so far. The total number of peers observed during
this experiment was larger than 200000, while in the previous dataset less than 56000 peers were
observed. We refer to this dataset as a unpopular channel (UNP). As before, we evaluate the
portability over all combination of train/test sets, repeating the experiments 10 times.

Results are reported in the rows labeledCP in Tab. 4.4. Few considerations hold: first, PPLive
classification performance improves when it comes to the classification of popular channels (i.e.,
TPR in POP/POP and UNP/POP cases is about 95% versus the about85% of the UNP/UNP case
used as reference). Nonetheless, we observe that the classification of UNP dataset when training
has been done considering the POP dataset leads to poor performance (TPR drops to less than
50%). This partly limits the portability across channels. Asimple solution consists in building
a training set containing a mixture of signatures from both traces, which raises the TPR again to
about 85%. This result suggests that channel popularity should be explicitly taken into account
when building the training set, by including samples that are representative of different channel
popularity.

4.5.2.4 Portability over Time (TI)

We now focus on the signatures portability over different periods of time. From a practical point of
view, this allows to know how often classifiers should be retrained. We resort to the traffic traces
used in [167], that authors kindly made available to the scientific community. Traces of [167]
were collected in July 2006 during the Fifa World Cup: the study focused on the same applica-
tions we examined in this chapter, with the exception of Joost which was not available at that
time. Overall, the time-portability measurements accountfor 14 hours of video,14M packets and
2.3 Gbytes of data. We classify this old dataset using the Abacus classifier trained with the dataset
collected in 2008. (same training set of Sec. 4.5.1). Noticethat the network environment was
also different, so that we arejointly evaluating time and network portability. Results are reported

56 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000
PPLive

TVAnts

SopCast

Joost

T
ru

e
P

os
iti

ve
 R

at
e

Time [s]

800kb
750kb

700kb
650kb

600kb
550kb

500kb
450kb

400kb
350kb

300kb
250kb

800kb

TPR

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500
PPLive

TVAnts

SopCast

Joost

T
ru

e
P

os
iti

ve
 R

at
e

Time [s]

0%
5%

10%
15%

20%
25%

30%
35%

40%

TPR

(b)

Figure 4.3: Portability over Emulated Impairment: exampleof temporal evolution of SopCast
classification for decreasing bottleneck bandwidth (a) andincreasing packet loss rate (b)

in the row labeledTI of Tab. 4.4, which shows that TVAnts is correctly classified,SopCast has a
TPR of 51%, while PPLive is almost completely misclassified.This suggests that some applica-
tions changed drastically their behavior from July 2006 to March 2008. Notice that TVAnts was
at version 1.0.58 in [167] and it is now at 1.0.59, which suggests that little changes have been
implemented. On the other hand, SopCast moved from version as explained in [89, 90]. Thus,
in case applications do not change their internal algorithms, the Abacus signatures are extremely
portable across time –even across years– as we see in the caseof TVAnts. On the other hand,
if an application implements new algorithms which result innew behavior, then Abacus should
undergo a new training phase. However, similar considerations are valid for any kind of classifier,
from port-based ones, to DPI or behavioral classifiers. In fact, whenever the features change, all
classifiers must be trained again (e.g. by changing the port number, updating the DPI signature or
re-training the behavioral/statistical features).

4.5.2.5 Portability over Emulated Impairments (EI)

As a final case, we consider whether Abacus signatures are portable across different network
conditions. We consider the traces gathered in an active testbed [26], where changing network
conditions were artificially enforced. In particular, in these experiments, a Linux router was used
to emulate some network conditions: (i) bandwidth, (ii) delay and (iii) packet losses were imposed
on the downlink path to the PC running the P2P-TV application. To avoid going out of topic, we
refer the reader to [26] for a complete description of the testbed: we only point out that impair-

57

ments range from mild to very tough conditions (e.g., 200 Kbps of available downlink bandwidth,
delay up to 2 s and packet losses up to 40%). Traces gathered inthis testbed are classified con-
sidering the HB training set, and results are reported in thelast lines of Tab. 4.4 labeledEI. Even
in these extreme conditions, Abacus still exhibits very high TPR, which can still exceed 90% for
some applications, with a worst case of about 75%. Reported results are averaged over all the time
varying conditions, including very distorted scenarios. Classification results are differently im-
paired by different network conditions. For example, PPLive is mostly affected by loss increase,
while TVAnts classification results are more sensitive to bandwidth change. SopCast results are
mostly affected by bandwidth and delay changes.

Interestingly, results ameliorate considering PPLive classification in the case of bandwidth
limitations. While this seems counter intuitive, it can be explained considering that most False
Negatives obtained from other applications are actually misclassified as PPLive. This suggests
that PPLive signatures are more variable and spread out, avoiding FN classification for PPLive
but possibly causing more FP classification for other applications.

As an example, Fig. 4.3 reports the time evolution of two different experiments of SopCast
classification, considering a scenario in which the available bandwidth is decreasing (top plot), or
the packet loss rate is increasing (bottom plot). Every 5 minutes network conditions are artificially
worsened by either reducing the available bandwidth by 50 Kbps, or by increasing the packet loss
rate by 5%. The resulting impairment profile is reported in the picture.

Fig. 4.3 plots individual classification decisions, taken each∆T = 5s: these are represented
with crosses, referring to the right y-axis, and allow to seewhen and how the application has
been eventually misclassified. The picture also reports theTrue Positive Rate, evaluated over 20
consecutive signatures (i.e., 100 seconds), represented as a continuous dotted line referring to the
left y-axis. Considering the top plot, which refers to bandwidth limited scenario, it can be seen that
as soon as the bottleneck bandwidth kicks in, SopCast is misclassified as PPLive during a brief
period, possibly hinting to a sudden reaction of the application to the anomalous conditions. Then,
SopCast is correctly classified until the available bandwidth drops too low: afterward, SopCast
TPR drops quickly, being most of the time misclassified as PPLive and seldom with TVAnts. At
the end of the experiment, when the bottleneck bandwidth is removed, SopCast is again correctly
classified. Similar considerations hold for the loss scenario depicted in the bottom plot of Fig. 4.3,
in which samples are misclassified only when loss rate exceeds 30%.

4.6 Sensitivity Analysis

After evaluating the effect of external conditions on the classifier performance, in this section
we rather focus on its internals. In fact we present the results of the experiment carried on to
investigate thesensitivityof the classification to parameter changes, so as to select the settings
which guarantee the best performance.

4.6.1 Impact of the Rejection ThresholdR

Irrespectively of the precise distance metric used in the rejection criterion, the selection of the
rejection thresholdR is guided by the following trade-off:R should be large to maximize the TPR
(i.e., avoid classifying P2P-TV as Unknown), whileR should be small to minimize the FPR (i.e.,
avoid classifying unknown traffic as P2P-TV).

We evaluate the TPR and FPR as a function ofR in Fig. 4.4, where a solid vertical line at
R = 0.5 represents the threshold used so far. It can be seen that TPR of P2P-TV applications
quickly saturates to an asymptotic value forR ≥ 0.5. Conversely, the FPR of non-P2P-TV traffic

58 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

f P
2P

-T
V

 T
es

tb
ed

 T
ra

ffi
c

F
P

R
 o

f n
on

-P
2P

-T
V

 R
ea

l T
ra

ffi
c

Packet Rejection Threshold R

PPlive
TVAnts
SopCast
Joost

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

f P
2P

-T
V

 T
es

tb
ed

 T
ra

ffi
c

F
P

R
 o

f n
on

-P
2P

-T
V

 R
ea

l T
ra

ffi
c

Packet Rejection Threshold R

TPR FPR
I:UDP
I:DNS
I:Edk
C:UDP
C:DNS
C:Skype

Figure 4.4: TPR and FPR as a function of the rejection threshold R evaluated on packet feature.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 30 60T
ru

e
P

os
iti

ve
 R

at
e

(T
es

tb
ed

 tr
ac

es
)

Time window length (sec)

PPLive
TVAnts
SopCast

Joost

*

*
**

Figure 4.5: P2P-TV TPR for different values of the time interval ∆T . Best-case for each applica-
tion is labeled with a star∗ sign.

increases only for large values ofR, and for low values ofR ≤ 0.5 almost no false alarm is raised.
Among the various traffic, only DNS traffic is sometimes misclassified as P2P-TV traffic. This
confirmsR = 0.5 to be a good choice of the threshold.

4.6.2 Impact of Time Interval ∆T

The choice of the value of the∆T parameter is driven by the following trade off. On the one
hand, timely detection of P2P-TV traffic needs∆T to be small. On the other hand, sufficiently
large time intervals must be considered to estimate the signature. Moreover, to limit computa-
tional complexity and the generated amount of information,network monitoring entities (such as
Netflow [56] probes) typically operate on larger timescales.

Results are reported in Fig. 4.5, where the best results for each application is labeled with a star.
As expected, medium-duration window (e.g.,∆T = 5 s) yields higher TPR for most applications,
while providing a more timely classification. Smaller values of ∆T limit the estimation of the
bin distribution, impairing classification accuracy. Interestingly, for large windows (e.g.,∆T =
60 s) the discriminative power of the Abacus signatures only mildly degrades for three out of four
applications. Only for PPLive we observe a decrease of 20% for the TPR, which is due manly to
the rejection criterion being too aggressive and discarding correct classifications, suggesting that
for longer∆T the rejection criterion should be more carefully tuned.

59

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 64 128 256 512 1024 2048

0.5 1 2 5 10 15

T
ru

e
P

os
iti

ve
 R

at
e

(T
es

tb
ed

 tr
ac

es
)

Number of signatures in the training set (per-application)

Percentage of testbed signatures in the training set

PPLive
TVAnts
SopCast

Joost

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 all

T
ru

e
P

os
iti

ve
 R

at
e

(T
es

tb
ed

 tr
ac

es
)

Number of peers per network

PPLive
TVAnts
SopCast

Joost

(b)

Figure 4.6: Impact of size (a) and diversity (b) of the training set

4.6.3 Impact of Training Set Size

We now assess the classification sensitivity to variations on the training setsize, i.e., the impact of
the number of samples that form the training set. Indeed, thetraining set should be large enough
to be representative of the application behavior under a large range of conditions. On the other
hand, the SVM training and classification computational costs benefit of a smaller set. Moreover,
too large a training set could result in the well-known phenomenon ofover-fitting, resulting in
poor classification performance. Fig. 4.6-(a) reports the TPR for each application, as a function
of the number of signatures used in the training phase per each application. For each value of the
training set size, we run 10 independent experiments over which results are averaged. The bottom
x-axis reports the number of signatures used for training ona logarithmic scale, while the upper
x-axis reports the percentage of training samples versus the total testbed dataset. Training set size
extends up to 4000 signatures per application, which corresponds to the 17% early used early used
in Sec. 4.5.

Results show that no over-fitting phenomenon is experienced, since the TPR increases with
the increase of the training set size. Best results are obtained considering 4000 signatures per
application, which validates the choice made in previous section. Notice that even by drastically
decreasing the training set size to about 300 signatures perapplication, the corresponding decrease
in TPR is only modest, e.g., 8% in the worst case of PPLive, while TVAnts shows excellent results
even with an extremely reduced training set. This interesting performance is the result of both the
discriminative power of SVM, and the descriptive expressiveness of Abacus signatures. Clearly,
a better characterization of each application behavior is achieved including more signatures, as

60 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

reflected by the improved performance.

4.6.4 Impact of Training Set Diversity

We now fix the training set size and focus on the training setdiversity, i.e., the number of different
peers from which signatures are selected. Our aim is to roughly assess whether it is sufficient
to observe a single peer in a given network to gather an adequate description of the application
behavior in that network, or whether the observation of several peers is necessary. To answer
this question, we fix the overall training set size to 4000 signatures per application and vary the
number of peers selected as reference in each network (see Tab. 2.4 for details on the number of
peers). Each experiment is repeated 10 times to collect average results. Fig. 4.6-(b) shows the
TPR obtained considering a reference set ofone, two or all peers for each network in the testbed.
Results show that the increase of the number of peers only provides a very limited gain on the
classification performance. From a practical perspective,this is a very desirable property: even a
single trace is sufficient to build expressive signatures.

4.6.5 Impact of SVM Kernel and Binning Strategy

Since the core of our classification framework exploits SVM,all parameters that are susceptible
of affecting its performance need to be investigated as well. Therefore, we focus on two main
choices concerning SVM: (i) thekernelfunction and (ii)binningstrategy.

The kernel function is used to map the training points to an hyper-space where they can be
separated by hyper-planes. The SVM literature is very rich of kernel functions, which are more
or less indicated for different kinds of data. In our study weevaluate three well-known kernels:
the general-purposegaussiankernel (KG), the linear kernel (KL) and the Bhattacharyya kernel
(KB). The linear kernel (4.4) is simply the dot product of two feature vectors, while the Bhat-
tacharyya kernel (4.5) can be obtained by substituting eachfeatures with its square root [96]. As
we used the Bhattacharyya distance [36] between probability mass functions as a core tool for
the rejection criterion to quantify the separability of twoclasses, a natural question is whether the
kernel function (4.5) can be helpful to better separate the different applications also from the SVM
standpoint.

KG(xi, xj) = e−γ||xi−xy||
2

(4.3)

KL(xi, xj) = xi · xj (4.4)

KB(xi, xj) =
√

xi · xj (4.5)

As far asbin distributionis concerned, we use eitherBexp = 9 exponential-width bins (base 2),
orBfix = 255 constant-width bins (1-packet steps), both spanning over the[0, 255] packets range.
Recall that the number of bins impacts both memory requirement and computational complexity,
so that exponential binning should be preferred in case of comparable classification performance.

Results are shown in Tab. 4.5, which reports classification results in terms of the TPR of P2P-
TV applications and the number of Support Vectors (SV) of thetrained model. The latter is a
measure of the classification computational cost, since thenumber of operations that has to be
performed to classify each signature grows linearly with the number of SVs. The cost of the
training phase is not considered, since it is an offline operation rarely performed. Notice also
that, due to the type of operations in (4.3), (4.4) and (4.5),the selected kernel has impact on the
computational cost – with the Linear kernel being light-weighted, the Gaussian kernel the most
expensive and the Bhattacharyya kernel in between the othertwo.

61

Table 4.5: Classification performance and cost for different binning strategies, SVM kernels. In
bold the best results.

Recall (TPR) Support Vectors (SV)
Bins Kernel PPLive TVAnts SopCast Joost PPLive TVAnts SopCast Joost Total

Gaussian 81.66 98.51 89.62 89.47 1015 106 845 415 2381
Exponential Bhattacharyya 77.73 98.52 88.58 87.99 1759 110 1185 798 3852

Linear 73.44 98.54 88.55 87.42 2062 219 1348 956 4585
Gaussian 67.12 97.86 89.76 69.66 853 81 654 635 2223

Constant Bhattacharyya 65.27 97.14 89.58 68.27 1215 113 902 755 2985
Linear 64.90 97.70 89.45 68.88 1382 316 911 1091 3700

Tab. 4.5 collects results highlighting the best choices using bold font. Irrespectively of the
binning strategy, the Gaussian kernel yields consistentlybetter results for both TPR and number of
SVs. An important decrease in the performance is observed when considering constant binning,
where the TPR for PPLive and Joost falls below the 70%. This ismostly due to the rejection
criterion, which wrongly identifies as unknown a conspicuous number of signatures: indeed, the
Bhattacharyya distance is less effective with this longer signature containing many zero values,
which result in bigger distances from the class center. Results obtained with the Bhattacharyya
kernel are almost equal to the linear kernel, with the advantage that the number of SV is smaller.
Finally it must be noted that TVAnts requires a very small number of SV to obtain very good
performance, irrespectively of the binning and kernel choice. In contrast PPLive, the most difficult
application to classify, requires a number of SV that is ten times the number of TVAnts for its best
choice of binning and kernel.

With respect to the bin distribution choice, the use of exponential binning reduces the memory
consumption and the number of operations to be performed byBfix/Bexp, i.e., almost a factor
of 30. For example, assuming1GBytes of RAM,Bexp = 9 exponential bins would allow to
compute about15M end-points considering 64bit floating point notation. Withthe same amount
of memory, usingBfix linearly spaced bins allows to track roughly0.5M end-points. Consid-
ering CPU time, a server equipped with an Intel Xeon E5345 clocked at 2.33GHz reaches 3000
classifications per second using exponentially distributed bins. Given that a signature is produced
every∆T = 5 s, about 15000 end-points could be classified in real-time even by our non opti-
mized Python code. Considering linearly distributed bins,only 126 classifications per second are
computed, allowing to classify no more than 630 end-points.

Results from this analysis reinforces the selection of an exponential binning strategy in com-
bination with the Gaussian kernel.

4.7 Improving the Accuracy: Extending the Signature

In this section we augment the Abacus signature to include not only the number of packets received
by each peer, but also the number of received bytes. Following the same procedure, we consider
a ∆T time interval in which the endpointP receivesb1, . . . , bK bytes fromK peers. Bb +
1 exponential-width classes are identified, according to thenumber of bytes received fromP,
and counting the occurrences of each class inBi. The byte-wise signatureb is then obtained by
normalizing the countBi over the total number of received bytes. The tupleb is a pmf, whose
componentbi can be interpreted as the probability that an arbitrary peersends between(2i−1, 2i]
bytes toP. For byte-wise signatures, we set the number of bins toBb = 14.

We define the application signature by concatenating the packet-wisen and byte-wiseb sig-
natures in a single vectora = (n, b). Since the extended signaturea = (n, b) is composed of

62 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

Table 4.6: Extended Abacus Signatures: Confusion Matrix ofP2P-TV Application
Signatures: Confusion Matrix

PPLive TVAnts SopCast Joost Unk
PPLive 95.42 0.22 1.86 0.36 2.14
TVAnts 0.06 99.84 0.10 0.00 0.00
SopCast 0.98 0.15 97.55 0.03 1.29
Joost 0.21 0.01 0.01 94.97 4.80

Table 4.7: Extended Abacus Signatures: Classification Results per Signature, Packets, Bytes and
End-Point

Signatures Packets Bytes Peer
TP Mis Unk TP Mis Unk TP Mis Unk TP Unk (n)

PPLive 95.42 2.44 2.14 98.11 1.60 0.29 98.32 1.54 0.14 100.0 0.0 (0)
TVAnts 99.84 0.16 0.00 99.77 0.23 0.00 99.82 0.17 0.01 100.0 0.0 (0)
SopCast 97.55 1.17 1.29 99.18 0.78 0.04 98.96 0.98 0.06 97.06 2.94 (1)
Joost 94.97 0.23 4.80 99.50 0.25 0.25 99.62 0.23 0.15 93.33 6.67 (2)

two parts, we can define two rejection thresholds, considering n or b only. We therefore report in
Fig. 4.7 the TPR and FPR as a function of the rejection threshold R applied to byte signatures.
Contrasting Fig. 4.7 with Fig. 4.4, we observe that the bytessignatures exhibit a better behavior
also with respect to the rejection criterion. In fact, on theone hand, TPR curves saturate much
faster, which means that points of the same application are better clustered; on the other hand, the
FPR curves start showing up for larger values of the threshold, which is even better because we
can safely adopt a larger value forR, obtaining at the same time lower FPR and higher TPR. Given
these considerations, we decided to apply the rejection criterion only to the byte-wise signaturesb
with a thresholdR = 0.6.

We perform the classification based on the extended signature a with a byte-wise rejection
criterion and a rejection thresholdR = 0.6. Results reported in Tab. 4.6 are gathered for∆T =
5s, with a training set of 4000 signatures extracted at random. Compared to previous results of
Tab. 4.3, the extended signature leads to significant performance improvement, so that TPR is now
about 95% in the worst case, and misclassification probability is reduced to few percentage points.

To better appreciate results, Tab. 4.7 reports performanceconsidering correctly classifiedpack-
ets, bytesandpeers. Packet-wise and byte-wise performance can be directly gathered by taking
into account the number of packets and bytes carried by each signature; the peer classification is
instead evaluated considering amajoritycriterion, so that a peer is classified as running application
X if the majority of time such peer samples have been classifiedasX. Tab. 4.7 reports the percent-
age of correct classification (TP), of misclassification (Mis, corresponding to the sum by rows of
non diagonal values in the confusion matrix) and rejection (Unk) for all the above metrics. Notice
that FN=Mis+Unk. Interestingly, performance improves when the number of correctly classified
packetsand bytesis considered, suggesting that misclassification occurs when signatures carry
few data, e.g., when the application is possibly malfunctioning. In case ofpeer classification,
reliability of end-points identification increases as well. Only 3 hosts are classified as not running
any P2P-TV application, and notably there is no misclassification. Investigating further, we found
that rejected cases correspond to peers that received a small amount of traffic, and, thus, possibly
were not playing any video.

We now assess the benefits of the extended signatures on the effectiveness of the rejection
criterion. We again consider real traffic collected from operational networks, considering only the

63

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

f P
2P

-T
V

 T
es

tb
ed

 T
ra

ffi
c

F
P

R
 o

f n
on

-P
2P

-T
V

 R
ea

l T
ra

ffi
c

Byte Rejection Threshold R

TPR

FPR

PPlive
TVAnts
SopCast
Joost

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

f P
2P

-T
V

 T
es

tb
ed

 T
ra

ffi
c

F
P

R
 o

f n
on

-P
2P

-T
V

 R
ea

l T
ra

ffi
c

Byte Rejection Threshold R

TPR

FPR

i:UDP
i:eDonkey
i:DNS
c:UDP
c:Skype
c:DNS

Figure 4.7: TPR and FPR as a function of the rejection threshold R evaluated on bytes feature.

Table 4.8: Non P2P-TV Traffic in Campus and ISP traces:
False Positive Ratio FPR and FP Confusion Matrix. To performa worst-case analysis, only
end-points that can lead to false positive classification are considered (28% of the CAMPUS and
15% of the ISP overall traffic volume)

FP Confusion Matrix
Traffic FPR PP TV SO JO
UDP 2.70 0.57 1.00 1.13 -

C Skype 0.04 - 0.03 0.01 -
DNS 0.17 0.02 0.10 0.05 -
UDP 0.90 0.61 0.14 0.15 -

I eDonkey 0.09 0.02 0.04 0.03 -
DNS 0.44 0.03 0.33 0.08 -

worst-case traffic portion for which possible false positives may be triggered. Tab. 4.8 reports re-
sults referring to the extended signatures, showing the false positive rate (FPR) and the breakdown
of false alarms between the different P2P-TV applications.First, notice that the number of false
alarms is very limited, being only 2.7% in the worst-case traffic subset: however, if all UDP traffic
is considered, FPR drops to less than 0.1%. This negligible number of false alarms confirms the
reliability of the classification engine. Moreover, false positive rate is low for individual appli-
cations too: indeed, it is very rare that eDonkey or Skype traffic is confused with any P2P-TV
application (0.09% and 0.04% of false positives).

4.8 Summary

In this chapter we have proposed Abacus, a novel behavioral approach for fine-grained classi-
fication of P2P-TV applications. Our methodology relies only on the simple count of packets
and bytes exchanged amongst peers during small time-windows. Our classification engine, which
makes use of Support Vector Machines during the decision process, correctly classifies about 95%
of packets, bytes and peers in the worst case. Moreover, the classification engine raises very few
false alarms, well below 0.1% in the worst case. Such astonishing performance is the result, on
the one hand, of the discriminative power of SVM, and, on the other hand, of the descriptive
expressiveness of Abacus signatures.

A large set of experiments has been carried over to assess Abacus performance, both con-

64 4. ABACUS - BEHAVIORAL CLASSIFICATION OF P2P-TV TRAFFIC

sidering parameter sensitivity, and signature portability: results prove that the proposed approach
is very robust to both. Training the Abacus classifier is simple, as signatures can be generated
automatically using a very small number of traces. In terms of both memory requirements and
computational complexity, Abacus is also very lightweight. Moreover, the fact that behavioral
data used by Abacus are directly available from commonly deployed NetFlow monitors makes it
apt to be deployed in real network environments.

These results, though extremely promising, also raise a number of interesting point which
we will evaluate in the following chapters .First of all, while we proved Abacus to be extremely
reliable on P2P-TV traffic, it would be interesting to investigate whether Abacus can classify appli-
cations of other P2P classes as well, as we will prove possible in Chap. 6. Second, the behavioral
statistics on which Abacus decisions are taken are extremely reliable when the classification is ap-
plied toall the traffic observed by an endpoint. In Chap. 6, we will also investigate what happens
when the classification engine is moved from the access deeper inside the aggregation network
(e.g., at the first or second IP router), where only asubsetof all flows can be observed. We will
show that since Abacus signature are normalized, if the subset of observed flows contains both
long and short flows, not biasing the overall distribution, then classification is still possible with
just a minor reduction in accuracy.

In the next chapter we will compare the performance of Abacuswith a packet-based algorithm,
also tailored for P2P live streaming applications.

65

Chapter 5

Comparing behavioral and payload
based classification algorithms

In this chapter, whose results have been published in [79], we compare the Abacus behavioral
classifier with a stochastic payload based classifier, namely Kiss [77]. This classifier bases the
classification on the examination of the first bytes of the application-layer payload. It has already
been compared with other classifiers in [47], proving to be the best one for this specific class of
traffic.

The motivation for this comparison lies in the skepticisms of the operational community to-
wards behavioral classifiers. Though recognizing their advantages – less computational require-
ments and the ability to deal with encrypted/closed protocols – the lack of trustworthy comparison
with traditional techniques discourages their adoption. In fact, since each behavioral classifier is
tested on a different set of traces, under different conditions and often using different metrics, it is
really difficult for a network operator to identify which methods could best fit its needs.

We test Abacus and Kiss on an common set of traces, evaluatingtheir accuracy in terms of
both true positives (i.e., correct classification of P2P-TVtraffic) and true negatives (i.e., correct
identification of traffic other than P2P-TV). We also providea detailed comparison of theirs fea-
tures, focusing mostly on the differences which stem from the undertaken approaches. Moreover,
we formally investigate the computational complexity by comparing the memory occupation and
the computational costs.

Results show that Abacus achieves practically the same performance of Kiss and both classi-
fiers exceed 99% of correctly classified bytes for P2P-TV traffic. Abacus exhibits some problems
in terms of flow accuracy for one specific application, for which it still has a high bytewise accu-
racy. The two algorithms are also very effective when dealing with non P2P-TV traffic, raising a
negligible number of false negatives. Finally we found thatAbacus outperforms Kiss in terms of
computation complexity, while Kiss is a much more general classifier, able to work with a wider
range of protocols and network conditions.

The remainder of this chapter is organized as follows. In Sec. 5.1 we briefly present the two
techniques under exam, then in Sec. 5.2 we test them on a common set of traces and compare their
performance. We proceed with a more qualitative comparisonof the classifiers in Sec. 5.3 as well
as an evaluation of their computational cost. In Sec. 5.4, webriefly describe the demo software we
developed, which implements the two classifiers and allows to compare their performance when
running on live traffic. Finally Sec. 5.5 summarizes the chapter.

66 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

5.1 Classification algorithms

In this section we introduce the two classifiers. Since Abacus was thoroughly presented in Chap. 4,
here we just recall a few relevant aspects for the comparison. Likewise, for Kiss, we provide only
those detail needed to fully understand the results of our experiments, while we refer the reader
to [77] for more information.

Both Kiss and Abacus employ supervised machine learning as their decision process, in par-
ticular Support Vector Machine - SVM [62], which has alreadybeen proved particularly suited
for traffic classification [105]. In the SVM context, entities to be classified are described by an
ordered set offeatures, which can be interpreted as coordinates of points in a multidimensional
space. Kiss and Abacus differ for the choice of the features.The SVM must be trained with a
set of previously labeled points, commonly referred to as the training set. During the training
phase, the SVM basically defines a mapping between the original feature space and a new space,
usually characterized by an higher dimensionality, where the training points could be separated by
hyperplanes. In this way, the target space is subdivided in areas, each associated to a specific class.
During the classification phase, a point can be classified simply looking for the region which best
fits it.

Before proceeding with the description of the classifiers, it is worth analyzing their common
assumption. First of all, they both classifyendpoints, i.e., couples (IP address, transport-layer port)
on which a given application is running. Second, they were originally designed for on UDP traffic,
since this is the transport-layer protocol generally chosen by P2P-TV applications. Finally, given
that they rely on a machine learning process, namely SupportVector machines, they follow the
usual workflow of such a family of algorithm, explained in Sec. 2.2.1. As a first step, the engines
derive a signature vector from the analysis of traffic relative to the target endpoint. Then, they feed
the vector to the trained SVM, which in turn gives the classification result. Once an endpoint has
been identified, all the flows which have that endpoint as source or destination are labeled as being
generated by the identified application.

5.1.1 Abacus

A full description of the Abacus classifier as well as its key idea are provided in Chap. 4. Here we
just recall the main procedure followed by the algorithm to build the signatures, which we reported
as pseudo-code in Tab. 5.4.

As you may remember, Abacus signatures are based on the number of contacted peers and the
amount of exchanged information among them, measured in number of packets and bytes. This
simple measure highlights the distinct behaviors of the different P2P-TV applications. Indeed, an
application which implements an aggressive peer-discovering strategy will receive many single-
packet probes, consequently showing large values for low order bins. Conversely, an application
which downloads the video stream using chunks of, say, 64 packets will exhibit a large value of
the 6-th bin.

Let us focus on the packet counters. We first define a partitionof N in B exponential-sized
bins Ii, i.e. I0 = [0, 1], Ii = [2i−1 + 1, 2i] andIB = [2B ,∞). Then, we order the observed
peers in bins according to the number of packets they have sent to the given endpoint. In the
pseudo-code we see that we can assign a peer to a bin by simply calculating the logarithm of the
associated number of packets. We proceed in the same way alsofor the byte counters (except that
we use a different set of bins), finally obtaining two vectorsof frequencies, namelyp andb. The
concatenation of the two vectors is the Abacus signature which is fed to the SVM for the actual
decision process.

67

Table 5.1: Datasets used for the comparison

Dataset Duration Flows Bytes Endpoints
Napa-WUT 180 min 73k 7Gb 25k

Operator 2006 (op06) 45 min 785k 4Gb 135k
Operator 2007 (op07) 30 min 319k 2Gb 114k

Finally, Abacus provides a simple mechanism (see Sec. 4.3.2) to identify applications which
are “unknown” to the SVM (i.e., not present in the training set), which in our case means non P2P-
TV applications. Basically, for each class we define a centroid based on the training points, and
we label a signature as unknown if its distance from the centroid of the associated class exceeds a
given threshold. To evaluate this distance we use the Bhattacharyya distance, which is specific for
probability mass functions.

5.1.2 Kiss

The Kiss classifier [77] is instead based on a statistical analysis of the packets payload. In partic-
ular, it exploits aChi-Squarelike test to extract statistical features from the first application-layer
payload bytes. Considering a window ofC segments sent (or received) by an endpoint, the first
k bytes of each packet payload are split intoG groups ofb bits. Then, the empirical distributions
Oi of values taken by theG groups over theC segments are compared to a uniform distribution
Ei = C/2b by means of the Chi-Square like test:

Xg =

2b
∑

i=1

(Og
i − E)

2

E
g ∈ [1, G] (5.1)

This allows to measure the randomness of each group of bits and to discriminate among con-
stant/random values, counters, etc. as the Chi-Square testassumes different values for each of
them. The array of theG Chi-Square values defines the application signature. In this chapter, we
use the firstk = 12 bytes of the payload divided into groups of 4 bits (i.e.,G = 24 features per
vector) andC = 80 segments to compute each Chi-Square.

The generated signatures are then fed to a multi-class SVM machine, similarly to Abacus.
As previously stated, a training set is used to characterizeeach target class, but for Kiss an addi-
tional class must be defined to represent the remaining traffic, i.e., theunknownclass. In fact, a
multi-class SVM machine always assigns a sample to one of theknown classes, in particular to the
best fitting class found during the decision process. Therefore, in this case a trace containing only
traffic other than P2P-TV is needed to characterize the unknown class. We already mentioned that
in Abacus this problem is solved by means of a threshold criterion using the distance of a sample
from the centroid of the class. We refer the reader to [77] fora detailed discussion about Kiss
parameter settings and about the selection of traffic to represent the unknown class in the training
set.

68 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

Table 5.2: Classification results
(a) Flows

Abacus
pp tv sp jo un

pp 13.35 0.32 - 0.06 86.27
tv 0.86 95.67 0.15 - 3.32
sp 0.33 0.03 98.04 0.1 1.5
jo 0.06 2.21 - 81.53 16.2

op06 0.1 0.1 1.03 0.06 98.71
op07 0.21 0.03 0.87 0.05 98.84

Kiss
pp tv sp jo un nc

pp 98.8 - - - 0.2 1
tv - 97.3 - 0.01 0.69 2
sp - - 98.82 - 0.21 0.97
jo - - - 86.37 3.63 10

op06 - 0.44 0.08 0.55 92.68 6.25
op07 - 2.13 0.09 1.21 84.07 12.5

(b) Bytes
Abacus

pp tv sp jo un
pp 99.33 - - 0.11 0.56
tv 0.01 99.95 - - 0.04
sp 0.01 0.09 99.85 0.02 0.03
jo - - 99.98 0.02

op06 1.02 - 0.58 0.55 97.85
op07 3.03 - 0.71 0.25 96.01

Kiss
pp tv sp jo un nc

pp 99.97 - - - 0.01 0.02
tv - 99.96 - - 0.03 0.01
sp - - 99.98 - 0.01 0.01
jo - - - 99.98 0.01 0.01

op06 - 0.07 - 0.08 98.45 1.4
op07 - 0.08 0.74 0.05 96.26 2.87

pp=PPLive, tv=Tvants, sp=Sopcast, jo=Joost, un=Unknown,nc=not-classified

5.2 Experimental Results

5.2.1 Methodology and Datasets

To evaluate the two classifier we used a subset of the traces already used to evaluate the Aba-
cus classifier in the previous chapter (cfr. Sec. 4.4). Againwe use two distinct sets of traces,
both described in Sec. 2.4, passively and actively collected, to asses two different aspects of our
classifiers.

First we used the traces coming from a single vantage point ofthe European testbed described
in Sec. 2.4, in particular those coming from the Warsaw University of Technology. We consider
the same four applications previously studied, namely PPLive, TVAnts, SopCast and Joost. This
set is used both to train the classifiers and to evaluate theirperformance in identifying the different
P2P-TV applications.

The second dataset consists of two real-traffic traces collected in 2006 and 2007 on the network
of a large Italian ISP. Given the extremely rich set of channels available through the ISP streaming
services, customers are not inclined to use P2P-TV applications and actually no such traffic is
present in the traces. We verified this by means of a classic DPI classifier as well as by manual
inspection of the traces. This set has the purpose of assessing the number of false alarms raised by
the classifiers when dealing with non P2P-TV traffic. We report in Tab. 5.1 the main characteristics
of the traces.

To compare the classification results, we employ thediffinder tool [148], as already done
in [47] . This simple software takes as input the logs from different classifiers with the list of flows
and the associated classification outcome. Then, it calculates as output several aggregate metrics,
such as the percentage of agreement of the classifiers in terms of both flows and bytes, as well as
a detailed list of the differently classified flows, so eventually enabling further analysis.

5.2.2 Classification results

Tab. 5.2 reports the accuracy achieved by the two classifierson the test traces, employing the usual
confusion matrix representation. For each table, the upperpart is related to the Napa-Wine traces

69

Table 5.3: Main characteristics of Abacus and Kiss

Characteristic Abacus Kiss
Technique Behavioral Stocastic Payload Inspection

Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace

Grain Fine grained Fine grained
Protocol Family P2P-TV Any

Rejection Criterion Threshold Train-based
Train set size Big (4000 smp.) Small(300 smp.)

Time ResponsivenessDeterministic(5sec) Stochastic(early 80pkts)
Network Deploy Edge Edge/Backbone

while the lower part is dedicated to the operator traces. Thevalues in bold on the main diagonal
of the tables express therecall (see also Sec. 2.3), defined as the ratio of true positives over the
sum of true positives and false negatives. The “unknown” column counts the percentage of traffic
which was recognized as not being P2P-TV traffic, while the column “not classified” accounts for
the percentage of traffic that Kiss cannot classify as it needs at least 80 packets for each endpoint.

At first glance, both classifiers are extremely accurate in terms of bytes. For the Napa-Wine
traces the percentage of true positives exceeds 99% for all the considered applications. For the op-
erator traces, again the percentage of true negatives exceeds 96% for all traces, with Kiss showing a
overall slightly better performance. These results demonstrate that even an extremely lightweight
behavioral classification mechanism, such as the one adopted in Abacus, can achieve the same
precision of an accurate payload based classifier.

If we consider flow accuracy, we see that for three out of four applications the performance of
the two classifiers is comparable. Yet Abacus presents a verylow percentage of 13.35% true pos-
itives for PPLive, with a rather large number of flows fallingin the unknown class. By examining
the classification logs, we found that PPLive actually uses more ports on the same host to perform
different functions (e.g. one for video transfer, one for overlay maintenance). In particular, from
one port it generates many single-packet flows all directed to different peers, apparently to perform
peer discovery. All these flows, which account for a negligible portion of the overall bytes, fall in
the first bin of the abacus signature, which is always classified as unknown. However, from the
byte-wise results we can conclude that the video endpoint isalways correctly classified.

Finally, we observe that Kiss has a lower flow accuracy for theoperator traces. In fact, the
great percentage of flows falling in the “not classified” class means that many flows are shorter
than 80 packets. Again, this is only a minor issue since Kiss byte accuracy is however very high.

5.3 Comparison

5.3.1 Functional Comparison

In the previous section we have shown that the classifiers have similar performance for the iden-
tification of the target applications as well as the “unknown” traffic. Nevertheless, they are based
on very different approaches, both presenting pros and cons, which need to be all carefully taken
into account.

Tab. 5.3 summarizes the main characteristics of the classifiers, which are reviewed in the fol-

70 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

lowing. The most important difference is the classificationtechnique used. Even if both classifiers
are statistical, they work at different levels and clearly belong to different families of classifica-
tion algorithms. Abacus is a behavioral classifier since it builds a statistical representation of the
pattern of traffic generated by an endpoint, starting from transport-level data. Conversely, Kiss
derives a statistical description of the application protocol by inspecting packet-level data, so it is
a payload-based classifier.

The first consequence of this different approach lies in the type and volume of information
needed for the classification. In particular, Abacus takes as input just a measurement of the traf-
fic rate of the flows directed to an endpoint, in terms of both bytes and packets. Not only this
represents an extremely small amount of information, but itcould also be gathered by a Netflow
monitor, so that no packet trace has to be inspected by the classification engine itself. On the
other hand, Kiss requires to access packet payload to compute its features. This constitutes a more
expensive operation, even if only the first 12 bytes are enough to achieve a high classification
accuracy.

Despite the different input data, both classifiers work at a fine-grained level, i.e., they can
identify the specific application related to each flow and notjust the class of applications (e.g.,
P2P-TV). This consideration may appear obvious for a payload-based classifier such as Kiss, but
it is one of the strength of Abacus over other behavioral classifiers which are usually capable only
of a coarse grained classification.

Clearly, Abacus pays the simplicity of its approach in termsof possible target traffic. In fact its
classification process relies on some specific properties ofP2P-TV traffic (i.e., the steady down-
load rate required by the application to provide a smooth video playback), which are really tied
to this particular service. For this reason Abacus currently cannot be applied to applications other
than P2P-TV applications. On the contrary, Kiss is more general, it makes no particular assump-
tions on its target traffic and can be applied to any protocol.Indeed, it successfully classifies other
kinds of P2P applications, from file-sharing (e.g., eDonkey) to P2P VoIP (e.g., Skype), as well as
traditional client-server applications (e.g., DNS).

Another important distinguishing element is the rejectioncriterion. Abacus defines an hyper-
sphere for each target class and measures the distance of each classified point from the center of the
associated hypersphere by means of the Bhattacharyya formula. Then, by employing a threshold-
based rejection criterion, a point is label as “unknown” when its distance from the center exceeds
a given value. Instead Kiss exploits a multi-class SVM modelwhere all the classes, included the
unknown, are represented in the training set. If this approach makes Kiss very flexible, the char-
acterization of the classes can be critical especially for the unknown since it is important that the
training set contains samples from all possible protocols other than the target ones.

We also notice that there is an order of magnitude of difference in the size of the training set
used by the classifiers. In fact, we trained Abacus with 4000 samples per class (although in some
tests we experimented the same performance even with smaller sets) while Kiss, thanks to the
combination of the discriminative power of both the ChiSquare signatures and the SVM decision
process, needs only 300 samples per class.

On the other hand, Kiss needs at least 80 packets generated from (or directed to) an endpoint in
order to classify it. This may seem a difficult requirement tomeet: yet results reported in Sec. 5.2
actually show that the percentage of not supported traffic isnegligible, at least in terms of bytes.
This is due to the adoption of the endpoint-to-flow label propagation scheme, i.e. the propagation
of the label of an “elephant” flow to all the “mice” flows of the same endpoint. With the exception
of particular traffic conditions, this labeling technique can effectively bypass the constraint on the
number of packets.

Finally, for what concerns the network deployment, Abacus needs all the traffic received by the

71

Table 5.4: Analytical comparison of the resource requirements of the classifiers
Abacus Kiss

Memory
allocation

2Fcounters 2bG counters

Packet
processing

EP_state = hash(IPd, portd)
FL_state = EP_state.hash(IPs,
ports)
FL_state.pkts ++
FL_state.bytes += pkt_size

EP_state = hash(IPd,
portd)
for g = 1 to G do

Pg = payload[g]
EP_state.O[g][Pg]++

end for

Tot. op. 2 lup + 2sim (2G+1)lup + Gsim

Feature
extraction

EP_state = hash(IPd, portd)
for all FL_state in
EP_state.hash do

p[log2(FL_state.pkts)]+=incr
b[log2(FL_state.bytes)]+=incr

end for
EP_state = hash(IPd, portd)
for all FL_state in
EP_state.hash do

p[log2(FL_state.pkts)] += 1
b[log2(FL_state.bytes)] += 1

end for
N = count(keys(EP_state.hash))
for all i = 0 to B do

p[i] /= N
b[i] /= N

end for

E = C/2b (precomputed)
for g = 1 to G do

Chi[g] = 0
for i = 0 to 2b do

Chi[g] +=
(EP_state.O[g][i]-E)2

end for
Chi[g] /= E

end for

Tot. op. (4F+2B+1)lup + 2(F+B)com + 3Fsim 2b+1G lup + Gcom + (3·2b+1)Gsim

lup=lookup, com=complex operation, sim=simple operation

endpoint to characterize its behavior. Therefore, it is only effective when placed at the edge of the
network, where all traffic directed to a host transits. Conversely, in the network core Abacus would
likely see only a portion of this traffic, so gathering an incomplete representation of an endpoint
behavior, which in turn could result in an inaccurate classification. Kiss, instead, is more robust
with respect to the deployment position. In fact, by inspecting packet payload, it can operate even
on a limited portion of the traffic generated by an endpoint, provided that the requirement on the
minimum number of packets is satisfied.

5.3.2 Computational Cost

To complete the classifiers comparison, we provide an analysis of the requirements in terms of
both memory occupation and computational cost. We follow a theoretical approach and calculate
these metrics from the formal algorithm specification. In this way, our evaluation is independent
from specific hardware platforms or code optimizations. Tab. 5.4 compares the costs from an
analytical point of view while in Tab. 5.5 there is a numerical comparison based on a case study.

Memory footprint is mainly related to the data structures used to compute the statistics. Kiss
requires a table ofG · 2b counters for each endpoint to collect the observed frequencies employed
in the chi-square computation. For the default parameters,i.e. G = 24 chunks ofb = 4 bits, each
endpoint requires 384 counters. Abacus, instead, requirestwo counters for each flow related to an

72 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

Table 5.5: Numerical case study of the resource requirements of the classifiers
Abacus Kiss

Memory allocation 320 bytes 384 bytes
Packet processing 2 lup + 2sim 49lup + 24sim
Feature extraction 177lup + 96com + 120sim 768lup + 24com + 1176sim

Params values B=8, F=40 G=24, b=4

endpoint, so the total amount of memory is not fixed but it depends on the number of flows per
endpoint. As an example, Fig. 5.1-(a) reports, for the two operator traces, the CDF of the number
of flows seen by each endpoint in consecutive windows of 5 seconds, the default duration of the
Abacus time-window. It can be observed that the 90th percentile in the worst case is nearly 40
flows. By using this value as a worst case estimate of the number of flows for a generic endpoint,
we can say that2 · #Flows = 80 counters are required for each endpoint. This value is very
small compared to Kiss requirements but for a complete comparison we also need to consider
the counters dimension. As Kiss uses windows of 80 packets, its counters assume values in the
interval [0, 80] so single byte counters are sufficient. Using the default parameters, this means 384
bytes for each endpoint. Instead, the counters of Abacus do not have a specific interval so, using
a worst case scenario of 4 bytes for each counter, we can say that 320 bytes are associated to each
endpoint. In conclusion, in the worst case, the two classifiers require a comparable amount of
memory but on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tasks:the operations performed on each
packet, the operations needed to compute the signatures andthe operations needed to classify
them. Tab. 5.4 reports the pseudo code of the first two tasks for both classifiers, specifying also
the total amount of operations needed for each task. The operations are divided in three categories
and considered separately as they have different costs:lup for memory lookup operations,com
for complex operations (i.e., floating point operations),sim for simple operations (i.e., integer
operations).

Let us first focus on the packet processing part, which presents many constraints from a practi-
cal point of view, as it should operate at line speed. In this phase, Abacus needs 2 memory lookup
operations, to access its internal structures, and 2 integer increments per packet. Kiss, instead,
needs2G + 1 = 49 lookup operations, half of which are accesses to packet payload. Then, Kiss
must computeG integer increments. Since memory read operations are the most time consuming,
from our estimation we can conclude that Abacus should be approximately 20 times faster than
Kiss in the packet processing phase.

The evaluation of the signature extraction process insteadis more complex. First of all, since
the number of flows associated to an endpoint is not fixed, the Abacus cost is not deterministic
but, like in the memory occupation case, we can consider 40 flows as a worst case scenario. For
the lookup operations, ConsideringB = 8, Abacus requires a total of 177 operations, while Kiss
needs 768 operations, i.e., nearly four times as many. For the arithmetic operations, Abacus needs
96 floating point and 120 integer operations, while Kiss needs 24 floating point and 1176 integer
operations.

Abacus produces one signature every 5 seconds, while Kiss signatures are processed every 80
packets. To estimate the frequency of the Kiss calculation,in Fig. 5.1(b) we show the CDF of the
amount of time needed to collect 80 packets for an endpoint. It can be observed that, on average, a
new signature is computed every 2 seconds. This means that Kiss performs the feature calculation
more frequently, i.e., it is more reactive and possibly moreaccurate than Abacus but obviously

73

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

Flows 5sec

C
D

F

op06
op07
joost

pplive
sopcast
tvants

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

time 80pkt

C
D

F

op06
op07
joost

pplive
sopcast
tvants

(b)

Figure 5.1: Cumulative distribution function of (a) numberof flows per endpoint and (b) duration
of a 80 packet snapshot for the operator traces

also more resource consuming.
Finally, the complexity of the classification task depends on the number of features per signa-

ture, since both classifiers are based on a SVM decision process. The Kiss signature is composed,
by default, ofG = 24 features, while the Abacus signature contains 16 features:also from this
point of view Abacus appears lighter than Kiss.

5.4 Demo software

We here describe the demo software [78] presented at IEEE Globecom 20101, which shows the
Abacus classifier and the Kiss classifier in action, allowingto perform live traffic classification
with either engine as well as to compare their performance onthe same traffic.

A full-fledged implementation of both classifiers is included in the demo software. Basically
the demo runs the two classification engines concurrently onthe same traffic, which is either read
from a recorded trace or directly captured live from a network interface. The data used internally
by the classification algorithms is exported at different points of execution, before being used for
the final classification. A user-friendly GUI (i) displays these data in a number of graphs updated
in real time and (ii) allows the user to interact with the classification processes.

At the beginning the user is presented with three windows, one for each classification algo-
rithm, which is run independently from the other one, and oneto show the resource consumption
of the two classification processes. The standard configuration of the demo is showed in Fig. 5.2-
(a): a host runs the P2P-TV applications targeted by our classifiers, the traffic is captured at the
access point to the Internet and is inspected by the classifiers. During the demo at the conference,
given that the busy wifi network did not allow to run the P2P live streaming smoothly, we rather
used a prerecorded trace; therefore we were able to report the transport-layer ports used by each
application, but such information is not used during the classification.

When running the demo, the user first selects the socket (i.e.IP address and UDP port) which
will be the target of the classification: traffic exchanged bythis socket is then processed and clas-
sified. As it can be seen in the screenshots in Fig. 5.2, the result of the classification is constantly
displayed and updated in the bottom part of the windows, as a percentage of correctly classified
signatures and bytes.

1The code of the demo is publicly available at
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.
ClassificationDemo

http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.ClassificationDemo
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.ClassificationDemo

74 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

Fig. 5.2 shows two examples of the kind of data displayed by the demo software. In particular
Fig. 5.2-(d) is related to the Kiss classifier, and displays the evolution over time of the Chi-Square
metric calculated for the first 24 groups of 4 bits in the packet payload. The top part plot is related
to traffic received by the target endpoint, while the bottom part is related to traffic sent by the
endpoint. Color is used to denote the level of randomness of the chunk: red chunks correspond to
constant fields, whereas purple, blue, sky blue and yellow represent increasing levels of random-
ness. In the picture you can clearly distinguish two different pattern in both the top and the bottom
plots: in fact we purposely capture the moment when the user has changed the socket to inspect,
so the two patterns are related to two different application(namely TVAnts and SopCast). The
difference between the two patterns is pretty evident even with naked eye and it is then exploited
by the Support Vector Machine to actually classify the traffic.

Fig. 5.2-(c) shows, instead, the temporal evolution of the Abacus signature, in particular the
packet-wise portion. We recall that the signature is actually a p.d.f., and, more specifically, the
distribution of peers according to the number of packets sent to the target socket. In our represen-
tation, each bin of the distribution is associated with a different color and bins are stacked one over
the other, building a well-defined and rather stable pattern. As in the Kiss picture, we captured
the moment after the user selected a new socket, to show the pattern of two different application
(again TVAnts and SopCast). Again, the pattern are extremely unlike one another, which means
that the distribution is characteristic of each single application and, hence, good discriminators as
well.

Notice also that both windows contain some controls, just above the classification results. By
changing their setting the user can tweak the parameters of the classifiers (e.g. the rejection cri-
terion threshold for Abacus), or select the information showed by the demo (e.g., to toggle the
display of an additional window, which provides a view on thetraining set used by the classifica-
tion engines).

Finally, Fig. 5.2-(b) is the window where the demo shows the information about the compu-
tational requirements of the classifiers. We show both the memory occupied by the classifier to
keep track of the flows and compute the signatures (i.e., the chi-square values for Kiss, and the
packet and byte counters for Abacus) and the number of operations required, divided in integer,
floating point and memory access operations. As an example, in the picture we actually show the
number of memory accesses performed by the two classifiers over time: in this run you can see
that Abacus requires two orders of magnitude less accesses to classify the traffic.

5.5 Summary

In this chapter we compared two approaches to the classification of P2P-TV traffic. We provided
not only a quantitative evaluation of the algorithm performance by testing them on a common set
of traces, but also a more insightful discussion of the differences deriving from the two followed
paradigms.

The algorithms proved to be comparable in terms of accuracy in classifying P2P-TV applica-
tions, at least regarding the percentage of correctly classified bytes. Differences emerged, though,
when we compared the computational cost of the classifiers. With this respect, Abacus outper-
forms Kiss, because of the simplicity of the features employed to characterize the traffic. For this
reason Abacus is a perfect candidate for scenarios with hardconstraints in term of computational
resources. Conversely, Kiss, though more costly from a computational point of view, is much
more general, as it can classify other types of applicationsas well.

75

(a) Demo Setup (b) CPU consumption comparison

(c) Live Abacus signatures (d) Live Kiss signatures

Figure 5.2: Screenshots from the running demo software.

76 5. COMPARING BEHAVIORAL AND PAYLOAD BASED CLASSIFICATION ALGORITHMS

77

Part II

Traffic Classification and data reduction

79

Chapter 6

Behavioral classification with reduced
data: Netflow and flow-sampling

The second part of this thesis is dedicated to the impact of data aggregation and sampling to traffic
classification. In particular this first chapter, whose results have been published in [158] and [159]
tests our behavioral classifier in more challenging scenarios. First, since we claimed from the
beginning that NetFlow flow-records are enough for the Abacus classifier, we actually test it with
these aggregated data, facing a few difficulties with the coarser time-granularities. Second, we
address one point raised in Chap. 4 about the placement of theclassifier in the network: if we
move inside the network core, because of routing, only a subset of traffic flows directed to the
target host is observed by the classifier. We study then the performance of Abacus in presence of
flow-sampling.

This chapter is organized as follows. In Sec. 6.1, after introducing NetFlow flow-records and
the modification needed by the original Abacus classifier to be compliant with them, we perform
some experiments to test its accuracy with this aggregated data. Sec. 6.2 instead deals with the
issue of flow-sampling. Such phenomenon arises when the classification engine is moved from
the edge of the network towards the core, where, because of routing, only a portion of the traffic
directed to a host is observed by the classifier. By using botha simulated and real-life scenarios
based on routing tables from actual core routers, we tested our classifier in settings where only an
incomplete knowledge of the traffic directed to the target host is available.

6.1 Behavioral classification with NetFlow

For many network management tasks, the use of aggregated measurements has represented an
efficient way to cope with the huge amount of traffic. For instance, in recent years, we have
assisted to the confirmation of NetFlow as the main solution for flow-level measurements. Widely
implemented in routers and recently standardized in a IETF draft [57], NetFlow reports aggregated
information on network traffic in the form offlow-records. It is a common belief that the amount of
information carried by flow-records is not enough to supportan accurate identification of network
applications. Yet, given the widespread adoption and availability of NetFlow we argue that a
classification engine based on flow-records would be highly appreciated by ISPs.

Actually, the research community has also investigated thepossible utilizations of NetFlow
data for different network managing tasks. The most naturalapplications of NetFlow records are
clearly represented byaccounting[151, 168] and network trafficreporting and monitoring[66].
Other works [113, 150] presents effective techniques to perform anomaly detectionbased on Net-

80 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

Flow data. Only a few works [43, 97] closer to ours have recently proposedtraffic classification
techniques based on NetFlow records. Both these works belong to the family of statistical based
classifier, while in we rather explore the used of such data for behavioral traffic classification.
Moreover, as Abacus distinguished itself for being a fine-grained classifier, we would like to keep
this property even if using less informative, aggregated data.

In the following we will first describe the NetFlow architecture, to better understand what
changes are required for Abacus to deal with flow-records. Then we test our classifier against
such data.

6.1.1 Netflow data

NetFlow [56] represents the de facto standard for flow level measurements in the networking oper-
ational community. Originally designed by Cisco as a cache to improve IP flow lookups in routers,
it soon revealed a very useful tool network traffic monitoring and reporting. NetFlow main fea-
ture relies in the level of information it provides – more compact than packet level traces, but still
more expressive than coarse-grained counters of SNMP. After several subsequent versions, with
v5 being the most commonly used, the most recent NetFlow v9 has evolved in a IETF standards,
IPFIX [57], already implemented by most network equipment vendors.

A NetFlow probe tracksflows, i.e. unidirectional sequences of packets exchanged by twoend-
points. First, it extracts from each packet akeycomposed of specific header fields (for v5 it is
the classical 5-tuple: IP source and destination addresses, transport-layer source and destination
ports, IP protocol). This key identifies a record in memory, where the probe stores, besides the
key itself, a number ofattributes, like cumulative packets and bytes counters, flow starting and
finishing timestamps, IP type of service, TCP flags, MPLS label, physical input and output inter-
face indexes, only to cite the most important ones. Even if newer versions like NetFlow v9 and
IPFIX introduce the possibility to specify custom flow keys and fields templates we employ the
flow definition of v5.

Whenever a flow expires, the router transmits a UDP packet containing the related record to a
NetFlow collector, which elaborates and eventually storesthis information. Different reasons can
cause a flow expiration:

• A packets explicitly terminates the flow (e.g, a TCP FIN packet).

• The flow has beeninactivefor a time greater than theinactive_timeout.

• The flow has beenactivefor a time greater than theactive_timeout.

• The flow cache is full and some space needs to be freed for new flows.

Default values forinactive_timeout andactive_timeout are respectively 15 seconds
and 30 minutes. In Sec. 6.1.4 we will see that the values of these timeouts have an important
impact on classification performance,

6.1.2 Using flow-records for classification

To avoid repeating ourselves, we refer the reader to Chap. 4 for a complete description of the
Abacus classifier internal workings. We just recall that theAbacus signatures (i.e., the features
fed to the supervised classification engine) are basically the concatenation of two probability mass
functions: considering the peers contacted by the target classification hostX in a small time-
window, first we calculate the distribution of such peers according to the number of packets sent

81

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

P
D

F
P

D
F

P
D

F
P

D
F

Bin index Bin index

PPlive

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

TVAnts

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

SopCast

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

Joost

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

 Edonkey

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

BitTorrent

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

Skype

 0

 0.2

 0.4

 0.6

 0.8

 6 7 8 9 10 11 12 13 14

DNS

Figure 6.1: Mean byte-wise signature for the considered applications.

to X; then we calculate the distribution of peers according to the bytes sent toX. We use a
logarithmic binning with base 2 as support, which captures the most important information while
also reducing the size of the signatures.

It can be seen that standard NetFlow records contain all the information needed by Abacus,
which is simply the number of packets and bytes received by the target host from its peers. Nev-
ertheless, some modifications were needed to make the Abacusclassifier work smoothly with
NetFlow data. First, in our previous work we used a duration of 5 s for the endpoint observation
window, which is incompatible with the time granularities of NetFlow: hence, we now consider
values of∆T in the time-scale of minutes. A second difference derives from the fact that flow-
records exports are not synchronous. In other words we cannot ask NetFlow to terminate and emit
all flow-records at a give time (e.g. at the end of∆T). As a result, we may end with some records
spanning over two windows. In this case we simply divide the flow in two parts, by prorating the
number of packets and bytes (i.e., we split the flow-record incorrespondence to the end of the
current∆T and divide the packets and bytes between the two segments proportionally to their

82 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

Table 6.1: Summary of the dataset
Category Application Packets Bytes

P2P TV

PPlive 7,3 M 1,13 G
Sopcat 3,2 M 0,45 G
TVAnts 2,4 M 2,56 G
Joost 3,4 M 2,14 G

P2P File-sharing
eDonkey 22,4 M 6,93 G
BitTorrent 1,4 M 0,74 G

P2P VoIP Skype 6,1 M 2,91 G
Naming DNS 1,5 M 103 M

Remaining UDP Other 10 M 10.9 G

duration), as already done by [168].

Finally we actually extended the target applications to include also other kinds of P2P ap-
plications. We will see later when we describe the dataset, that we train the machine also with
signatures for VoIP and filesharing P2P applications, and even with signatures for DNS (which,
despite implementing a client-server applications, from ahigher perspective behaves much like a
P2P service). In this way we want to see whether Abacus signatures can also discriminate among
these services. As a consequence of such extension, we also drop the rejection criterion used to
recognize “unknown” traffic (i.e., traffic not pertaining tothe applications included in the training
set): inspired by the Kiss classifier, we introduce an additional class in the training set, containing
signatures derived from all traffic different from the target applications (see also Chap. 5).

Before presenting the classification results, in Fig. 6.1 a pictorial representation of the average
byte-wise signature of all the applications considered in the experiments, to give an intuitive exam-
ple of Abacus signature discriminative power. We representsignatures as histograms, where each
bar corresponds to the value of the component of the distribution identified by the index on the
x-axis. Notice that each application generates a differentand characteristic pattern. For instance,
DNS adopts short exchanges of data for the majority of communications, which contribute to
larger values of lower bins (e.g. most DNS queries fall into bin number 7, corresponding to single
packets having size in the 128–255 Bytes range). All P2P-TV applications (top row) together with
BitTorrent instead show a considerable percentage of peersfalling in the last bin (corresponding
to hosts which are contributing with most of the video or datastream), but still differentiate among
themselves thanks to lower bins.

This example confirms that, despite using simple counters, furthermore of a single direction,
Abacus signatures capture distinctive properties of the observed applications. Concerning P2P ap-
plications, a number of design choices directly reflect in the signature: for instance, different peer
discovery techniques (e.g., single-packet probe versus handshakes) clearly make peers fall into
different bins (e.g., the first or second respectively). In the same way, even though several appli-
cations may adopt similar content-diffusion techniques (e.g., mesh-pull diffusion for BitTorrent,
SopCast, PPLive) the use of specific chunk-sizes, or even packet sizes, still makes them easily rec-
ognizable (e.g., by making a specific bin more likely than others). Concerning client-server traffic,
we point out that it still makes sense to look at a single direction (namely, the incoming direction),
as we expect the length of requests to be tied to the protocol (e.g., very short DNS queries, versus
medium length HTTP request, versus rather long SMTP messagetransmissions).

83

Table 6.2: Confusion matrix: Classification accuracy of Signatures (S) and Bytes (B)
PPLive TVAnts SopCast Joost eDonkey BitTorrent Skype DNS Other
S B S B S B S B S B S B S B S B S B

PPLive 63.6 96.0 1.0 3.2 0.7 0.3 0.1 - - - 0.1 0.4 2.9 - 9.4 - 22.3 -
TVAnts 3.1 6.8 54.4 92.9 1.0 0.3 0.2 - - - 0.2 - 7.4 - 9.5 - 24.3 -
SopCast 0.7 0.2 0.4 0.4 49.7 99.4 - - 0.1 - 0.3 - 4.8 - 15.9 - 28.1 -

Joost 0.2 - - - - - 53.2 99.9 0.3 - 0.2 - 4.5 - 19.1 - 22.5 -
eDonkey - - - - - - - - 94.4 98.9 - - - - 0.7 0.2 4.8 0.9

BitTorrent 0.6 - 0.5 0.1 0.8 0.8 0.3 1.9 - - 12.5 89.1 5.2 1.7 61.3 5.8 18.8 0.6
Skype - - - - 0.1 0.3 - - - - 0.2 0.4 86.1 90.5 5.8 2.5 7.8 6.4
DNS 0.1 - - - 0.1 0.3 - 0.2 0.3 0.9 - 0.5 6.5 3.9 63.9 91.2 29.1 2.9
Other 0.1 - - - - - - - 0.4 0.1 - 0.1 3.5 - 8.3 - 87.6 99.8

6.1.3 Dataset and Methodology

As done in previous chapter we use a subset of our overall dataset, described in Sec. 2.4. For P2P-
TV application we use the traces from the European Testbed set up in the context of the NAPA-
WINE project, while for all other protocols we used a passively collected traces from an Italian
operator and later processed with a traditional DPI classifier to extract the packets pertaining to our
target protocols as well as the background traffic to assess the capacity of the classifier of dealing
with “unknown” traffic. In this case, as done in Chap. 4, We concentrate on UDP traffic, which is
not only the preferred transport-layer protocol of P2P live-streaming application and VoIP, but has
also recently become the choice of the most popular file-sharing application, namely BitTorrent.

We implemented a custom tool similar to [66], which convertstraffic traces into NetFlow-
records. Flow-records related to the target hosts are then combined together and eventually split to
calculate the Abacus signatures. We randomly sample 10% of the signatures of each protocol that
we use to train the SVM model. The trained model is then applied to the remaining signatures,
used as validation set. This process is repeated 10 times, varying the train and validation set each
time.

6.1.4 Classification results

In Tab. 6.2, we show the classification results obtained by setting theactive_timeout as well
as∆T to 120 s, while we leave theidle_timeout to its default value of 15 s (we will discuss
this parameter choice later). The table adopts the classical confusion matrix representation and, as
usual, classification performance is expressed both as percentage of signatures and as percentage
of bytes. Values in bold, i.e. the recall, on the diagonal represent the percentage of correctly
classified traffic.

For the sake of simplicity, let us consider different families of applications separately. We first
observe the performance related to P2P-TV services, which were the original target of the Abacus
classifier. Byte accuracy is extremely high for all four applications, always greater than 90%, with
Joost and SopCast exceeding the 99%. Instead, the percentage of correctly classified signatures
is lower (not even approaching the 65%), with a large fraction of classifications falling in either
the DNS or the “other” class. From this, we can conclude that heavy signatures (i.e., carrying
more bytes) are more robust to the classification, which is a positive finding as ISPs are interested
in classifying the bulk of the traffic. This is also somewhat expected, as signatures carrying less
traffic (e.g., few flows in the unit of time∆T) are also statistically less significant.

Byte accuracy remains high also for the two P2P file-sharing applications, with eDonkey show-
ing also very high values at a signature level. BitTorrent signatures are instead harder to classify
in general, except those carrying the greatest portion of traffic (bytes accuracy approaches 90%).

84 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

 60

 65

 70

 75

 80

 85

 90

 95

 100

5 60 120 300

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

Active Timeout [s]

PPLive
TVAnts
SopCast

Joost
Edonkey

BitTorrent
Skype
DNS

Others

Figure 6.2: Byte accuracy for different values of active timeout.

Again, it seems that the classifiers correctly identifies BitTorrent traffic when the application is ac-
tively downloading from other peers, while it has some problems under different conditions (e.g.,
when just discovering new peers or performing signaling). Moreover, we point out that due to the
recent evolution of its protocol, we have collected just a limited dataset, so the poor performance
may also be caused by the incomplete representation of the protocol in the training set. Interest-
ingly, notice also that BitTorrent, which adopts swarming algorithms similar to P2P-TV ones, is
sometimes misclassified as P2P-TV, whereas eDonkey is rather confused with DNS.

Similar considerations apply also to Skype and DNS, both performing better when considering
bytes instead of signatures. DNS, the only non-P2P applications considered in this work, is the
protocol which shows the greatest portion of signatures labeled as “other”. This is likely due to
the presence of other client-server applications in the background class, which, having a behavior
similar to DNS, cause the misclassification.

In the last row of the table we instead evaluate how the classifier deals with traffic other than
the target applications. Again, the signatures corresponding to the majority of bytes are correctly
assigned to the “other” class, showing the effectiveness ofthis strategy for handling any kind of
traffic (a limited percentage of signatures is still misclassified as DNS, which further confirms our
previous considerations on the similarities between theseclasses).

Besides the results reported in Tab. 6.2, we conducted a series of tests to investigate the effect
of different settings for the NetFlow timeouts on the classification performance, that we only
briefly report here for lack of space. Fig. 6.2 depicts the byte accuracy of the different applications
for increasing values of theactive_timeout. As a reference, the leftmost set reports the
performance from Chap. 4 gathered for∆T = 5 s (not applicable for real NetFlow). Coherently
with our previous work, this small interval provides the best performance for P2P applications,
but deals poorly with DNS and the “other” classes. From the picture, it can be gathered that
∆T = 120 s represents a good compromise between smaller intervals, which enhance P2P-TV
classification accuracy, and larger intervals, which perform better for the other applications.

6.2 Behavioral classification in the core: the issue of flow sampling

By flow sampling we mean that depending on the location of the vantage point where the classi-
fication decisions are taken, possibly not all the traffic generated by an endpoint can be observed.
For instance, when the classification engine is moved from the access (e.g., DSLAM) deeper into
the aggregation network (e.g., at the first or second IP router), only part of an endpoint traffic is
likely available in this new position, for, due to routing issues, some packets may follow a different

85

path and be handled by other routers. In such a case, even though observing only asubsetof the
whole endpoint traffic, classification might still be achievable and accurate, or, on the contrary, it
might also drastically fail.

We assume that an Abacus classifier, trained with unsampled traffic (i.e., to be used at the edge
of the network), is then employed to classify a subset of the total traffic received by an endpoint
(i.e., it is deployed in the network core). In other words there will be a mismatch between training
and validation. Notice, in fact, that an Abacus classifier inthe core has no way of knowing what
portion of the endpoint traffic is transiting on the path on which it is deployed, hence the mismatch
cannot be avoided when the vantage points moves from the edge.

In our tests, we apply two different policies to sample flows to be included in the subset: a
realistic one, that takes into account the real router forwarding tables, and an idealized one, where
flows are sampled at random depending on the originating subnet. This two-fold approach ensures
realism of the results on the one hand, while, on the other hand, it also allows to perform controlled
experiments to precisely gauge the impact of sampling.

While we defer a detailed overview of the related work on packet sampling and its applications
to the next chapter, we anticipate here that the effect of sampling on the performance of traffic
classification techniques has rarely been considered in theliterature [33, 43, 73, 77, 97, 138].
Moreover, while most previous works consider the impact ofpacket samplingon classification
accuracy, here we take an orthogonal perspective considering the issue offlow sampling, which,
to the best of our knowledge, has not been dealt with so far.

In the remainder of this section we present the results of ourexperimental campaign. We use
the same dataset earlier presented in , but we only focus on the six pure P2P applications, namely
PPLive, SopCast, TVAnts, eDonkey, BitTorrent and Skype. Asour purpose is to quantify the
classification accuracy when only a portion of traffic is observed, we first (i) study how application
traffic spreads over the IP address space, and (ii) by using RIB data from routing tables of a real
core Internet router, how the traffic might be split over different paths in the network. Afterwards,
we assess the change of the Abacus signatures due to traffic sub-sampling, and how these changes
affect the overall classification performance.

6.2.1 Spatial distribution of application traffic

As a preliminary step we analyze how application traffic is distributed in the IP address space, i.e.
whether it spreads over the whole range of IP addresses, so that no subnet is more important than
the other, or whether it is concentrated in a few subnets whose observation may be fundamental
for the classification.

To gather a quick representation of the traffic distributions, we partition the IP address space in
256 subnets with a netmask/8 (i.e., we consider just the firstbyte of the IP address) and accumulate
the traffic received by each subnet in terms of bytes. The resulting histograms for each application
are reported in Fig. 6.3, where on the x-axis we have the valueof the first byte of the IP address
(which obviously ranges from 0 to 255) and on the y-axis we have the number of bytes received
by such addresses. The gray-shaded areas refer to the logarithmic scale reported on the left axis,
so that we can see all networks from which even a small amount of (signaling) traffic is received,
while the solid bars are reported in linear scale, to highlight the subnets with which the bulk of
(data) traffic is exchanged.

Looking at the shaded areas, we see that applications known for their aggressive peer discovery
behavior, like PPLive or Skype, exchange traffic with large portions of the IP address space. Other
applications such as TVAnts or SopCast (top two plots) present instead large white gaps, meaning
that some address ranges are not part of the P2P overlay. On the other hand, the few dark bars

86 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

 0
 5

 10

 0 50 100 150 200

eD
o

n
k

ey

B
y

te
s

(L
o

g
)

Subnets

 0
 5

 10

B
it

T
o

rr
en

t

 0
 5

 10

S
k

y
p

e

 0
 5

 10

P
P

L
iv

e

 0

 5

 10

T
V

A
n

ts

 0
 5

 10

S
o

p
C

as
t

Figure 6.3: Distribution of bytes across the IP address space, linear (solid) and logarithmic (shaded
area) scales.

tell us that the bulk of traffic comes mostly from a small number of subnets, around a dozen for
P2P-TV applications (top three plots) or even less for the remaining graphs.

6.2.2 Real-life IP routing analysis

While the previous analysis yields a coarse-grain view of traffic distribution across the IP space,
it oversimplifies the picture with respect to real IP routing. In fact, routes found in routing tables
of IP core routers and announced in BGP updates are much more fine-grained. This means that
traffic can be split in far smaller subsets when it is actuallyforwarded to its destination.

For this reason we used public available real-life routing information [12] to precisely emulate
how our target application traffic is forwarded along different path by a router in the Internet core.
The RIS project [12] collects and makes public available to researcher periodic BGP RIB dumps
of several core routers, which basically contain all the prefix announced by other peer routers. We
downloaded the RIB of a core routers located in Amsterdam with 84 peering routers, for April 4th
2008, i.e., the very day in which the active traces of our dataset were captured.

In our analysis we assume that the IP router has to forward thedataset traffic from its internal
network to the outside peering routers. Although we do not know the internal BGP rules of the
router, we can however estimate the routing table by means ofthe standard criteria used by BGP
routers: if the same prefix is announced by two peer routers, we choose as next hop for such
destination the one announcing the shortest AS path, or, in case of paths of the same length, the
one with the lowest peer ID. Fig. 6.4 shows the percentage of the overall traffic which is received by
each peering router in terms of bytes and peers, omitting thepeers that receive negligible amount
of traffic. It can be seen that most of the traffic is carried by afew outgoing links: in particular, in
the plot we can see that the Amsterdam router would forward roughly 70% of traffic to peer 0.

It looks like even in real-life scenarios, when moving our vantage point for classification to-
wards the network core, it is still possible to observe significant portions of the total endpoint
traffic on specific paths. In turn, we expect this phenomenon to allow accurate classification, at

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 3 12 14 4 9

%

Peer ID

bytes
peers

Figure 6.4: Percentage of bytes seen by the different BGP peers.

least for some paths. Besides, an important observation is that we also expect therelevanceof the
classification to be directly proportional to the amount of traffic observed: in other words, on links
that carry only a negligible portion of the endpoint traffic,providers are unlikely to be interested in
classifying such data, while classification accuracy is required on links carrying the bulk of traffic.

6.2.3 Impact of flow-sampling on Abacus signatures

In this section we assess the distortion that flow-sampling induces in the Abacus signatures. Recall
that signatures basically represent the breakdown of peersaccording to the number of packets and
bytes sent to the target endpoint: we evaluate if, and how much, the shape of such distributions
changes when only a portion of the traffic is available to the classifier.

To have more control on the sampling parameters, we use an idealistic scenario rather then the
real routing table. We randomly sample the /8 subnets used tobuild Fig. 6.3 with a decreasing
probability k ∈ {1, 1/2, 1/4, 1/8}: only flows pertaining to the sampled subnets are considered
when building the Abacus signature. Fig. 6.5 shows the average Abacus signature (over all the
time-windows) for all the applications, with growing values of sampling rate which directly corre-
spond to fading colored bars. At first glance the shape of the distributions seems to be only slightly
affected by sampling, especially whenk < 1/8. Changes start to be more evident fork = 1/8
(in particular BitTorrent and Skype shapes are significantly altered by sampling) and signatures
appear more similaracrossapplications.

A more quantitative analysis of distortion is provided in Fig. 6.6-(a). Here we use the Bhat-
tacharyya distanceBD(p, q), which we already employed for the rejection criterion of Abacus
in Chap. 4. It is a measure of similarity between probabilitydistributionsp andq. The BD dis-
tance takes values in the range[0, 1], with larger values corresponding to bigger differences. The
graph relates to packet-wise signatures only, and report two different types of curves. First, for
each applicationX we show the intra-application distanceBD(X1,Xk), i.e. the distance be-
tween the unsampled and sampled signatures. The distance increases with the sampling rate, but
values keep lower than 0.3, consistently with the qualitative analysis of Fig. 6.5 showing only
small changes in the signatures. The top curve shows insteadthe mean inter-application distance
E[BC(Xk, Yk)],∀X,Y , i.e., how much the applications differ between each other,thus being an
index of the separability of the classes. The fact that the value keeps quite stable, and much larger
thanBD(X1,Xk), suggests that differences among the applications are wellpreserved even in
harsh sampling conditions.

88 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

 0
 0.2
 0.4
 0.6

eD
on

ke
y

B
in

 V
al

ue
 (

P
D

F
)

Abacus signatures

 0
 0.2
 0.4
 0.6

B
itT

or
re

nt

 0
 0.2
 0.4
 0.6

S
ky

pe

 0
 0.2
 0.4
 0.6

P
P

Li
ve

 0
 0.2
 0.4
 0.6

T
V

A
nt

s

 0
 0.2
 0.4
 0.6

S
op

C
as

tk=1/8k=1/4k=1/2All

Figure 6.5: Mean signatures of each application for increasing values of flow sampling.

6.2.4 Impact of flow-sampling on classification accuracy

We finally apply our classifier to the sampled traffic. First weconsider the idealistic case of
randomly sampled subnets that we have introduced in the former section. More in details, we first
train our classifier with 10% of theunsampledsignatures. The trained classifier is then applied to
the test set, which is made up of signatures derived fromsampledtraffic. To gather robust results,
for each flow-sampling rate we generate 5 different test-sets, randomly selecting different subnets
to be sampled, and 10 different training set from the unsampled traffic (experiments explore the
full cross product of the training and validation sets).

Fig. 6.6-(b) reports the average classification accuracy computed over all experiments (stan-
dard deviation is reported as error bars) as a function of thesampling rate. Accuracy is expressed
both in terms of signatures and bytes, which is usually the most significant metric from an network
operator perspective. Accuracy degrades gracefully with the increasing sampling rate: indeed, no-
tice that when as low ask = 1/4-th of the traffic is sampled, the accuracy is reduced of about
10% (20% atk = 1/8). As sampling rate increases, the standard deviation increases as well,
as different subnet sets may yield radically opposed results. In fact, in the lucky cases where an
important subnet (i.e., in which a large number of either peers or bytes fall) is selected, then the
classifier is able to correctly classify the traffic without difficulty; otherwise, classification fails.

Fig. 6.6-(b) also reports results for the real-world scenario with squared points for the first
two BGP peering routers, receiving respectively about the 70% and 10% of the traffic share (cfr.
Fig. 6.4). The points have as x-coordinate the value of sampling probability that would sample
approximately the same amount of traffic observed by the router. Interestingly, while the byte
accuracy is in line with our reference scenario, the signature accuracy behavior is odd (i.e., Peer 3
exceeding Peer 0), which is rooted in the different mixture of traffic observed by the two routers.
Namely, Peers 0 handles the bulk of the traffic and therefore the most of the data-transfer: hence,

89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 1/2 1/4 1/8

B
ha

tta
ch

ar
ya

 d
is

ta
nc

e

Flow sampling rate

Mean inter-application

PPLive
SopCast
eDonkey

BitTorrent
TVAnts

Skype

(a)

 65

 70

 75

 80

 85

 90

 95

 100

1 1/2 1/4 1/8

O
ve

ra
ll

ac
cu

ra
cy

Flow sampling rate

bytes
signatures
routing - bytes
routing - signatures

Peer 0
Peer 3

(b)

Figure 6.6: (a)Bhattacharyya distance: inter-application E[BD(Xk, Yk)] difference at sampling
k and intra-application distance due to samplingBD(X1,Xk). (b) Overall accuracy for different
training sets in function of the amount of traffic observed.

correctly classifying a few heavy signatures has a great impact on the byte-accuracy. Conversely,
Peer 3 handles 30% of the peers that however generate less than 10% of the traffic share (cfr.
Fig. 6.4): hence, correct signature classification do not necessarily translate into high byte-wise
accuracy.

6.3 Summary

In this chapter we have tested the behavioral classifier proposed in the previous chapters in more
challenging settings. First, motivated by the widespread of NetFlow as a monitoring tool, we
evaluated the performance achieved by Abacus when exploiting only this kind of aggregated data
and characterized by a coarser time-granularities with respect to our previous experiments. We
tested our methodology on a large set of traces, ranging fromP2P applications to traditional client-
server services. Results show that the proposed technique,albeit not infallible in term of individual
signatures, classifies all the target applications with high byte accuracy, and also correctly handles
“unknown” traffic.

Second, we studied the impact of flow-sampling on the accuracy of Abacus. This important
issue arises when the classifier is moved from the network edge toward the core, so that only a
portion of P2P endpoints traffic can be observed. Our study shows that the normalized Abacus
signatures degrade slowly under sampling: as a random selection of subnets (hence, of peers) is
unbiased with respect to the application behavior, this makes Abacus classification robust under
this scenario – even in case of real routers as considered in this work. More precisely, our results
show an accuracy drop of about 20% when only about the 10% of the subnets is sampled.

90 6. BEHAVIORAL CLASSIFICATION WITH REDUCED DATA

91

Chapter 7

Impact of Sampling on traffic
characterization and classification

As a side effect of the increasing transmission speed of nowadays networks, network operators
must deal with ever growing traffic and the consequent huge amount of measurements, extremely
challenging to collect, store and process. Therefore,packet samplinghas become mandatory
for effective passive network measurements, especially inthe core of the network, to reduce the
amount of data to a manageable size. Naturally such reduction comes at the cost of less accu-
rate data and several studies have focused on the impact of different sampling policies on traffic
measurement [28, 49, 55, 67, 69, 109, 133, 146] or on the performance of various networking
activities related to measurement, such as monitoring, SLAcompliance, anomaly detection and
traffic classification [42, 43, 88, 97, 120, 137, 188]. However, in spite of the importance of traffic
classification we have seen in previous chapters, the impactof sampling on traffic classification is
a rather little investigated subject.

In this chapter, whose results were in part published in [142], we deeply investigate this is-
sue. First, we measure the effect of different sampling policies and rates on a large set of traffic
properties, without being tied to any particular application. Second, we focus on traffic classifica-
tion under sampled data (hence, traffic properties become “features”, in machine learning terms,
upon which classification decisions are taken): in this context, we evaluate the extent of the degra-
dation of the information content conveyed by the features,besides investigating the achievable
classification accuracy.

In order to gather general results, we employed an extremelyheterogeneous dataset, com-
posed by four different traces, from both academic and commercial networks, representative of
different access technologies, network setting, user population and years. When possible we used
publicly available dataset to promote cross-comparison inthe scientific community. This dataset
was processed by a popular flow-level analyzer,tstat [16], which outputs not only detailed per-
flow features at network and transport layer, but also aggregated distributions of feature. For this
work, we enhanced the tool with the possibility of applying several sampling policies (namely,
systematic, uniform, stratifiedandbiased) with arbitrary sampling rates.

We characterize the distortion introduced by sampling as the distance between the distribution
of properties for sampled and unsampled traffic, by means of two commonly used statistical met-
rics, namely theHellinger Distanceand theFleiss Chi-Square. As for the impact of the sampling
on traffic classification, we rather use a biased sampling policy which tries to capture the most
important pieces of information. For this task, we first asses the usefulness of features using a
information theoretic metric, namely theInformation Gain, and afterwards we evaluate the classi-

92 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

fication accuracy through C4.5, a widely know supervised classification algorithm. We study the
impact of different sampling rates, feature groups, datasets and training policies.

The remainder of this chapter is organized as follows. Firstan overview of the related work
is found in Sec. 7.1. Then, Sec. 7.2 presents the data used forthe experimental part: first, the
packet level traces and, second, the features produced by our monitoring tool. We then describe
the methodology used to process this data in Sec. 7.3: in particular the sampling policies, the
statistical metrics and the classification algorithm. Results are split in three sections: Sec. 7.4
deals with distortion of theaggregate features, Sec. 7.5 with the distortion ofper-flow features, and
finally Sec. 7.6 presents thetraffic classificationresults. We summarize our findings in Sec. 7.7.

7.1 Related work

Packet sampling is not a novel technique [68]. Yet, given itsincreasing importance, it has recently
received a lot of attention from the research community. In the following we overview the most
important pieces of work on this topic, both on sampling itself and on its effect on traffic classifi-
cation, in order to better highlight our contribution. Yet,this is far from being a complete survey,
for which we rather refer the reader to [68].

First of all, researchers have categorized packet samplingmethods in a few classes, start-
ing from [28], until they have finally converged to a common framework standardized as an IETF
RFC [189]. Summarizing, a first distinction can be made according to the selection scheme, which
can bedeterministic, randomor content-based. Second, we can differentiate sampling techniques
according to the selection trigger, based on the amount oftimeor number ofpacketsbetween two
different sampling events. As far as the selection scheme isconcerned, researchers have demon-
strated that the statistic properties of random sampling, especially in its stratified declination, make
this technique particularly robust to evasion and attacks [55, 68, 139]. On the other hand, recent
studies showed that statistical multiplexing of traffic mayhave the same effect of a random selec-
tion [49], especially when considering estimation of traffic volumes. There is much more of an
agreement, instead, about the most effective selection trigger: [55] showed that time-based trig-
gers are less robust than packets-based ones, because they suffer from the bursty nature of network
traffic. A few works have proposed more sophisticated sampling techniques which help in estimat-
ing specific traffic features, for instance trajectory sampling for spatial properties [70] or sketches
for flow-size [109]. Other works have proposed to make the sampling rateadaptive[53, 67, 88]
for instance to the traffic load, to reduce the estimation error of some traffic metrics.

Besides investigating the properties of sampling itself and its impact on mostly traffic volumes
measurements [49, 69, 109, 133, 146], researchers have alsostudied the possible applications of
sampled data for various network administration tasks, such as network management [88], SLA
verification [188], anomaly detection [42, 120, 137] and, lately, on traffic classification [33, 43,
73, 77, 97, 138, 186]. It must be said that in this kind of evaluation is not easy to distinguish
between the actual impact of sampling from the intrinsic performance issues of the application
itself. In this sense, the first part of this chapter, which studies the effect of sampling on its own,
considering different policies, rates as well as a wide range of traffic features well beyond simple
volume measurements, is particularly helpful in shedding light on this issue.

As already mentioned, to date there are not many papers jointly considering both traffic clas-
sification and sampling [33, 43, 73, 77, 97, 138, 186], and, moreover, the majority among them
only treats sampling as a minor issue. For instance, [73] analyzes how sampling methodology
influences the selection of both elephant and mice flows in thetraining data set, aggravating the
traditional class imbalance problem; the same issue is mentioned as particular interesting, but only

93

Table 7.1: Summary of dataset used in this work.
Trace Auckland ISP Campus UniBS
Year 2001 2006 2008 2009
Packets 291M 44M 17M 26M
Flows 11M 219K 422K 34K
Packets/flow 26.2 202 40.8 764
IPs 410K 61K 81K 6.59K
Available at [2] – – [18]
Ground truth Port-based – DPI [121] gt [82]

as a future work in [186]. Other papers only try to predict what sampling might imply for the clas-
sifiers they propose: authors of [33], whose technique is based on the size and direction of the very
first packets of a flow, sustain that their classifier would badly suffer packet sampling, whereas be-
ing robust to flow-sampling; on the opposite side, authors of[77] argue that accuracy of stochastic
packet inspection should be not influenced by sampling altogether (provided that enough packets
are sampled to get statistically relevant signatures).

The impact of packet sampling is experimentally addressed in [43, 97, 138]. In more details,
[138] investigates the sampling effect on Reduced Error Pruning Tree (REPTree) classifiers, and
limitedly reports a single case study forp = 1/3 (asserting that classification accuracy lowers of
10-20%, depending on the client-to-server or server-to-client traffic direction). Instead [97] inves-
tigates the sampling effect on a lightweight traffic classification approach (using Naïve Bayes on
NetFlow records, and varying the sampling rate) finding thatpacket sampling does not worsen the
results (rather, accuracy may increase under heavy sampling) and suggesting this may be due to
an artifact of packet sampling (though a more detailed analysis is missing). Finally, the only work
that shares its main focus with ours is [43], which studies the accuracy of statistical traffic classi-
fication based on NetFlow sampled data. From extensive experiments and a formal probabilistic
analysis, authors of [43] draw a conclusion similar to ours,showing that the use of sampled data
both in the training and testing phase greatly improves the otherwise degraded accuracy obtained
with sampled NetFlow. Nevertheless they only consider the limited set of features available in
standard NetFlow v5.

7.2 Dataset and Features

Given the experimental nature of this analysis, it is extremely important to give as many details
as possible on the data employed. In this section we first describe the details of the packet-level
traces. Second, we present the tool used to analyze such traffic [16], which applies sampling to
the traces and extracts, as well, a wealth of features able tocharacterize several properties of the
traffic at different layers of the networking stack.

7.2.1 Dataset

In order to gather results that are representative of a wide range of network environments and
epochs, we use several traces, whose main characteristics are summarized in Tab. 7.1. We used
the whole dataset described in Sec. 2.4, composed by the traces from an Italian operator (ISP), our
university network (Campus), the University of brescia (UniBS) and the University of Auckland
(Auckland).

94 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

Table 7.2: Subset of the dataset used for classification, andapplication breakdown.
UniBS Campus Auckland

Flow Byte Flow Byte Flow Byte
Protocol % % % % % %
HTTP 49.3 5.6 41.8 62.7 34.8 25.3
HTTPS 1.5 1.2 41.8 30.6 34.8 23.4
FTP - - 4.8 0.03 - -
IMAPS 3.7 0.1 0.2 3.9 0.6 0.9
POP3 1 0.01 - - 5.6 2.8
SMTP - - - - 23.9 47.5
Skype 1 0.7 11.1 2.6 - -
eDonkey 40.1 87.2 - - - -
BitTorrent 3.3 5.0 - - - -

Extremely heterogeneous network scenarios are taken into account: we consider both com-
mercial and academic environments, as well as different access technologies and security settings.
Moreover traces are collected in a time which spans nearly a decade, the oldest dating 2001 (Auck-
land), whereas the newest being from 2009 (UniBS). Such a diverse dataset is fundamental to
gather statistically meaningful results. Diversity is even more important for our classification pur-
poses. It is known, in fact, that the accuracy of a classification algorithm is heavily impacted by
several factors like different traffic mixes, different network setups, different times of the day and
so on. For this reason, all these aspects must be taken into account and possibly included in the
dataset, so as to gather a reliable evaluation of the classifier performance. Furthermore, sampling
makes this issue more critical, as it possibly discards mostof the traffic volume when aggressive
rates are applied.

As usual, when testing classification accuracy, we put extracare in the definition of the ground-
truth. For this reason, we decided to extensively rely on theUniBS dataset, which is public and
has a very reliable ground-truth associated thanks to thegt tool [82] developed at University
of Brescia and Politecnico di Torino. For the remaining datasets, instead, we need to build our
own ground-truth: for Campus we used the DPI classifier described in [121]; for Auckland we
employed a simple port-based classification scheme, which was very reliable in 2001, when appli-
cations still abide by the standards IANA well-known port allocation; we neglect the ISP trace in
the classification part, to avoid using traffic with uncertain application labels.

Tab. 7.2 summarizes the composition of the traces accordingto our pre-labeling. As expected
most of the traffic is carried over HTTP, which together with IMAPS, is the only protocol common
to all traces. The mix of protocols also reflects the date of the traces: in Auckland we found
exclusively traditional client-server applications, whereas more recent traces include also P2P
applications, both file-sharing (eDonkey and BitTorrent) and VoIP (Skype).

7.2.2 Features

In our experiments, packet-level traces were processed withtstat [16], which logs several traffic
features as output of its analysis. We actually enhanced thetool, adding the possibility of prelim-
inary sampling the input traffic (with configurable policiesand rates, as it will be explained later
on), before experimentally evaluating the features.

More precisely,tstat outputs two different kinds of metrics: some areper-flow measure-

95

Table 7.3: Summary ofaggregated features, divided by protocol. We report the number of distinct
features and, in boldface, the number when considering different traffic directions (i.e., incoming,
outgoing, local).

Type Protocol Example
Features

Adirectional Directional

Single Packet
IP Packet Length 5 15
UDP Destination Port 6 14
TCP Destination Port 11 21

Multiple Packets
TCP Maximum RTT 16 20
RTCP Average bitrate 11 39
RTP Stream bitrate 21 63

Total 70 172

Table 7.4: Summary of TCPper-flow features, divided by category. Number of features in boldface
again includes multiple directions (i.e., client-to-server, server-to-client).

Category Example
Features

Adirectional Directional
Flow ID IP address 2 4
Flag counts Number of ACKs sent 5 10
Volumes Number of bytes sent 9 18
Packet size Max segment size 3 6
Window size Maximum congestion window size 9 18
Timings Mean RTT 7 14
Congestion control RTX timeout 8 16
Flow duration Completion time 5 5

Total 48 91

ments, i.e. the tools gives the value assumed by the feature for each observed flow; others are
aggregated measurements, in the form of distribution of the values assumed by the metrics over
all observed flows. Notice that these are just two different points of view of the same measure-
ments (in fact most features are available in either flavor),but they are naturally suited for radically
different types of analysis. In this work, we take advantageof either viewpoints, as each of them
is best instrumental for one of the two objectives of this work: namely aggregated measurements
better reflect monitoring applications, while per-flow measurement are more suited for the classi-
fication task.

We omit the complete list of features, which can be found in the tool website [16] as well as
in Appendix B. Tab. 7.3 is a condensed view of theaggregated features set, listing the number of
features related to different network protocols. As most features are evaluated on different traffic
directions we report both the number of distinct adirectional features and the number when consid-
ering traffic directions with respect to the measurement point (i.e., incoming to the measurement
point, outgoing from the measurement point, local but switched at the measurement point). For
what concernsper-flow features, we basically concentrate on TCP properties, as they are themost
interesting ones for the classification in reason of the protocol breakdown shown early in Tab. 7.2.
Tab. 7.4 lists flow-level features divided by type of property that are related to, e.g., traffic vol-
umes, congestion control, timings or TCP flags. Again, the table contains both the number of
distinct adirectional features and the number consideringtraffic directions with respect to the flow

96 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

initiator (i.e., client-to-server and server-to-client).
We underline that the features we consider are substantially in agreement with the feature set

listed in [129], which contains an exhaustive set of features for traffic classification. This agree-
ment follows from the fact thattstat started as evolution of Shawn Osterman’stcptrace[14],
which is also used by authors in [129]. At the same time, the match is not perfect, as e.g., [129]
misses some features oftstat (e.g. flag stating whether a TCP flow has been interrupted [152],
detailed counters about anomalous TCP behavior [126], etc.) andtstat does not implement all
features listed in [129] (such as the Fast Fourier Transformof the packet inter-arrival time, or the
count of valid RTT samples, etc.).

7.3 Methodology

First, we detail the differentsampling policieswe apply to packet level traces (Sec. 7.3.1). Second,
we present thestatistical metricswhich measure the distortion induced by sampling on feature
distributions (Sec. 7.3.2).

7.3.1 Sampling Policies

We implemented in thetstat tool different sampling policies as defined in [189], and that we
overview in the following, explaining their peculiaritieswith the help of Fig. 7.1. The picture
shows how different sampling policies with the same sampling stepk = 4 operate on the same
sequence of packets; in the picture, packets are represented with different levels of gray associated
to different flows, where an “S” denotes a SYN packet.

• Systematic sampling: packets are sampled in a deterministic fashion, with 1-out-of-k pack-
ets selected. In the example it can be seen that for each 4-packets window, the first packet
is always selected.

• Random sampling: packets are sampled at random, in particular each packet issampled
independently at a ratep = 1/k. As displayed in the example, since the process is com-
pletely random, packets might be sampled in sequence, or there may be several consecutive
unsampled packets (obviously with a geometrical decreasing probability).

• Stratified sampling: k consecutive packets are grouped in a window, in which a single
packet is randomly sampled. Looking at the picture, for each4-packets window, one and
only one packet is always selected, but, unlike systematic sampling, instead of selecting
always the first, the algorithm randomly chooses which packet to sample out of the four.

• Systematic SYN sampling: is the superposition of two independent processes: (i) a sys-
tematic sampling process, which selects everyk-th packet; (ii) a process which selects all
TCP packets with the SYN flag active. This is particular evident in the illustration, where
you can see that this policy selects all the SYN packets, in addition to all the packets that a
normal systematic sampling would pick.

The first three sampling strategies belong to the family ofunbiasedalgorithms, which are
the simplest one, being completely unaware of any traffic property. Since these algorithms are
extremely lightweight, they are commonly implemented in network equipment, reason why we are
particularly interested in their performance. The last one, instead, is what is usually called asmart
sampling algorithm, because some intelligence is introduced to sample the “right” packets, i.e. the

97

Systematic k=4

Random p=1/4

Stratified k=4

Systematic SYN k=4

S S S

S S S

S S S

S S S

Figure 7.1: Illustration of sampling policies.

ones conveying the most precious pieces of information. There is no intrinsic limit to the amount of
intelligence that one can put in such a sampling method and several smarter algorithms have been
proposed by researchers; still, it should be remembered that the purpose of sampling is to reduce
computational consumption, thus we want to keep the policy as simple as possible. We argue that
Systematic SYN sampling represents a good compromise between these two aspects, particularly
for traffic classification. On the one hand, as shown in [146],it improves the estimation of
aggregated traffic counters (e.g. total flow length) which are known to be particularly important
for traffic classification. Moreover, it ensures that at least one packet for each flows is sampled,
or, in other words, that all flows are seen: this solves the problem of results representativeness
faced in [43, 97] for traffic classification. On the other hand, computational complexity is very
low, since the algorithms needs just a counter and a simple check on packet header (furthermore
at a fixed offset) to choose whether to sample a packet.

7.3.2 Metrics

In order to quantify the distortion introduced by any sampling policy into the metrics features by
tstat, we consider different statistical indexes, suited for either aggregated or per-flow features.

7.3.2.1 Aggregated features

Denote byP an unsampled feature, which is described by the probabilitydensity functionp(x)
measured over the traffic aggregate. Denote byQ the same feature as measured under a sampling
process, which is then described by the probability densityfunctionq(x) measured over the sam-
pled traffic. To express the distance betweenp(x) andq(x) we consider the following standard
metrics:

• Fleiss Chi-Square (φ)

98 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500

C
D

F

IP packet size [bytes]

HD=0.024
φ=0.051

k=128
Unsampled

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10k 20k 30k 40k 50k 60k

C
D

F

Packet-wise TCP destination port

HD=0.219
φ=0.498

k=128
Unsampled

(b)

Figure 7.2: Example of distortion of aggregate features (Campus dataset): CDF of IP packet size
(a) and number of packets per destination TCP port (b). Plotsreport the CDF gathered from the
unsampled vs sampled traffic aggregate, along with the statistical indexes of distortion.

φ(p, q) =

√

∑

x∈X [q(x)− p(x)]2/p(x)
∑

x∈X [q(x) + p(x)]
(7.1)

• Hellinger Distance (HD)

HD(p, q) =

√

1−
∑

x∈X

√

p(x)q(x) (7.2)

To provide backward compatibility with [55], we consider the φ metric, which is a normal-
ized version of the standard Chi-Square metric: increasingvalues ofφ correspond to increasing
distortion. As the Chi-Square statistic is sensitive to thesize of the data set, this makes it difficult
to compare samples of varying sizes: thus, it cannot quantify significant trends when varying the
sampling fraction. Fleiss’ definition ofφ directly derives from Chi-Square but overcomes this
limitation, being independent from the sample size [55].

The Hellinger Distance (HD) is typically used as a score of similarity between metrics: HD
values are confined in the range[0, 1], with lower values corresponding to higher similarity be-
tween the distribution under comparison.

To have a first idea of the scale of the distortion scores defined so far we provide a preliminary
example of some relevant features. Fig. 7.2-(a) and Fig. 7.2-(b) report the CDF of two features,
respectively counting the IP packet size in bytes and the number of packets directed to a given
TCP port. CDFs for the Campus trace are reported for both original unsampled traffic, as well as
for uniformly sampled traffic withk = 128. Values of distortion metrics are also reported in the
picture. The CDF of the packet-wise destination port (Fig. 7.2-(b)) shows a moderate distortion,
with a corresponding degradation ofHD = 0.219 andφ = 0.498: in this case, differences in
the CDF, although of small dimension, can be seen with naked-eyes from the plot. Conversely, IP
packet size (Fig. 7.2-(a)) shows a degradation score of about one order of magnitude smaller for
both metricsHD = 0.024 andφ = 0.051: in this case, no remarkable difference appears from
the plot.

99

 0

 15000

 30000

 45000

 60000

 0 15000 30000 45000 60000

T
C

P
 s

ou
rc

e
po

rt
, k

=
12

8

TCP source port, unsampled

mean Err% = 0, ρ = 1

(a)

 0

 500

 1000

 1500

 0 500 1000 1500

A
ve

ra
ge

 p
ac

ke
t s

iz
e,

 k
=

12
8

Average packet size, unsampled

mean Err% = 53, ρ = 0.61

(b)

Figure 7.3: Example of distortion of per-flow features (Campus dataset): scatter plot of TCP
source port (a) and average packet size (b) for unsampled vs sampled traffic, along with statistical
indexes of correlation.

7.3.2.2 Per-flow features

Quantifying the distortion in the case of per-flow features is not only useful for monitoring pur-
poses, but also for the classification process. In this case,we compare the exact values measured
by our monitoring tool for the same flow with and without sampling. We used two classical metrics
to measure the distortion: (i) the mean percentage errorErr% and (ii) the correlation coefficient
ρ between the sampled and unsampled values. The mean percentage error tells us how much the
sampled values diverge from the unsampled ones: the smallerthe distortion the better; the corre-
lation, instead, tells us whether a linear dependence exists between the unsampled and sampled
values. Like the previous two statistical metrics, the scatter plots of Fig. 7.3 show two examples
of features and the corresponding value of the distortion scores. The right plot is again the average
packet size per flows, the same feature whose distribution has been shown in Fig. 7.2-(a), whereas
the left plot shows the source TCP port. Thex coordinate is the value of the feature for unsampled
traffic, while they coordinate is the same feature when a systematic sampling with k = 128 is
applied.

Two opposite behaviors stand out from the pictures. The feature displayed in the left plot
is correctly estimated simply by inspecting a single packetheader: for this reason no error is
observed and the correlation is maximized. As we will see later on, this kind of features will
prove the most valuable discriminators for traffic classification under sampling. On the contrary,
the feature in the right plot, being an average, depends on the observation of several packets:
therefore, we observe a substantial distortion introducedby sampling, testified both by the large
value of relative error, and the lower correlation coefficient as well. In fact, despite many points
still align on they = x bisector line, we can notice a large number of flows falling ona few
distinct horizontal lines (namelyy = 40, 576, 1500). We found that only a single packet was
sampled from these flows, which is not representative of the average packet size. In fact, with a
single observation, it is likely to get a typical-sized packet (e.g, a40−byte packet without data, or
1500−byte full payload packet, or a576−byte packet) which will lead to a bad estimation of the
actual average packet size of the flow.

Actually, in the second part of this work, we will be interested more in how sampling affects the
relevance of features for the classification, rather than intheir mere distortion. Therefore, we need
a metric able to capture how much information regarding the application label is conveyed by any

100 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

HD

k = 2

Auckland
UniBS

ISP
Campus

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

HD

k = 128

Auckland
UniBS

ISP
Campus

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

φ

k = 2

Auckland
UniBS

ISP
Campus

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000

C
C

D
F

φ

k = 128

Auckland
UniBS

ISP
Campus

Figure 7.4: Distribution of the Hellinger distance andφ coefficient over the whole features set for
systematic sampling andk ∈ {2, 128}.

given features. For this purpose we resort to theinformation gain[127] metric from information
theory, which has been already introduced in Chap. 3.

7.4 Aggregate Feature Distortion

In this section we concentrate on the pure distortion introduced by sampling in traffic measure-
ments, in particular observing the impact it has on aggregate traffic metrics. We first characterize
the overall feature set and the range of value scored by our statistical indexes, in order to have
a general picture (Sec. 7.4.1). We then focus on smaller setsof features defined by the protocol
layer they pertain to (e.g. network or transport layer), identifying which family of attributes is
more heavily affected by sampling (Sec. 7.4.2). We finally individuate a set of robust features,
whose distortion keeps bounded even under heavy sampling, on which we investigate the impact
of different sampling policies (Sec. 7.4.3).

7.4.1 Overview of Sampling Impact

In this first part we look at the complete set of features at once, in order to observe the general
trend of feature degradation under sampling and to better understand the range of variation of the
statistical metrics. For this purpose we use the distributions of the two distortion scores over the
whole set of features reported in Fig. 7.4 and represented inthe form of complementary cumulative
distribution function (CCDF). The graphs report the distributions for systematic sampling with
k = 2 andk = 128, respectively in the left and right column, while the top rowis related to

101

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2

H
D

, k
 =

 1
28

HD, k = 2

x
xtcp_unnrtx_FR_loc

tcp_cl_b_l_c2s

tcp_anomalies_loc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

φ,
 k

 =
 1

28

φ, k = 2

x
x

tcp_cl_p_s2c

tcp_rtt_stdev_in

tcp_cl_b_l_c2s

Figure 7.5: Scatter plot of Hellinger distance andφ coefficient over the whole features set for
systematic sampling withk ∈ {2, 128}.

the HD score and the bottom one to theφ coefficient. We keep a separate curve for each dataset
as they represent different network conditions and traffic mixture, thus we prefer to observe their
behavior individually.

At first glance, the two statistical metrics are quite coherent with each other, showing practi-
cally the same trends, even though HD is bounded in the interval [0, 1] whereasφ is not. Moreover,
it looks as Campus and ISP appear more robust than the other traces, as features degrade more gen-
tly: the heterogeneous traffic mixture found in this traces is likely the key reason why they are less
affected by sampling.

On the contrary, it is quite striking that for the other traces around 60% of features are com-
pletely distorted (i.e., the distance metric is maximized)already withk = 2: this means that they
are impossible to evaluate even with very light sampling. Onthe other hand, 10% of features
show no distortion at all, scoring a zero for both metrics, meaning that they are perfectly estimated
regardless of the sampling rate. As a matter of fact, all these features are not distorted as they can
be correctly measured simply by inspecting one single packet of any given flow.

To dig further, we look at the same data in a different way by means of the scatter plots of
Fig. 7.5, where each feature is represented with a point whosex andy coordinates are respectively
the distortion score fork = 2 andk = 128. We have zoomed to show the area close to the origin,
where we see a cluster of points showing no degradation.

However, the pictures show an interesting artifact: noticethat the estimation of a few features
seems to improve under heavy sampling, as shown by the pointsfalling in the gray-shaded part
of the graphs (some of which are labeled with the feature name). This weird effect is mostly
due the different way sampling impacts on long and short flows, since long ones have a larger
probabilities of being sampled while the short ones are likely to disappear after sampling. For
instance, this effect is particularly evident for thetcp_cl_b_l_c2s feature, i.e. the TCP flow
length, measured with a coarse granularity. In this case, for larger sampling steps, many short
flows are no longer sampled, with a corresponding decrease ofthe mass of flows falling into the
smallest bins. Thus the improvement of the feature estimation is a joint consequence of the traffic
nature (sampling tends to select packets from the same elephant flows, yielding a better estimation
of the length of such flows) and the specific binning adopted (as this behavior is not shown by the
corresponding feature calculated with finer granularitytcp_cl_b_s_c2s, since in this case it
is less likely for the sampled feature to fall into the same bin of the unsampled traffic).

Notice that this effect is instead less evident in theHD score plot, where only a single feature
falls in the gray region, than in theφ plot where we actually find more points in this area. Moreover

102 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

for theφ coefficient many features actually fall closer to the bisector as well, which means that only
a slight degradation is detected in spite of an increased sampling rate. In fact, it seems as though
different choices of binning have a greater impact on theφ metric, sometimes compromising its
accuracy. On the other hand, theHD distance appears able to better characterize the distortion,
because a greater score usually corresponds to a larger sampling step. This is due to the different
weighting of the errors inφ andHD: in the former, larger discrepancies will be amplified (i.e.,
squared difference) with respect to the latter score (i.e.,product): this entails that several small
errors, affecting several bins, may produce a larger distortion score inφ. The main outcome of
this behavior is that special care must be also taken in the selection of the distortion metric used,
as otherwise similar artifacts may yield to misleading conclusions.

7.4.2 Impact of Protocol Layer

We now group the features in different subsets according to the protocol layer: in particular we
consider IP features, UDP single-segment features, TCP single- and multiple- segment features as
in Tab. 7.3. By comparing the effect of sampling on these groups, we want to find out whether
there exists a family of features which is by definition more robust to sampling.

In the light of what observed in the previous section, without loss of generality nor of informa-
tion, we express the distortion scores using the Hellinger Distance alone. For the time being, we
still focus on a single sampling policy (namely, systematicsampling), delaying the consideration
of different sampling policies to the following section. However, we do take into account a large
range of sampling rates, from 1/2 to 1/1024. Results are reported in the four graphs of Fig. 7.6,
corresponding to the different datasets. In every single plot, each curve depicts the mean and the
variance of the HD metric over a given group of features as a function of the sampling stepk.

A general observation which holds for all of the datasets, isthat some features prove to be
intrinsically easier to measure under sampling. For instance the curves of distortion scores for
both IP and UDP single-segment features are considerably closer to the minimum value for the
HD across all datasets (apart from Auckland, as we will explain later). This confirms our previous
intuition that features relying only on the inspection of a single packet (e.g., IP packet size) are
more robust to sampling than features depending on the observation of multiple packets (e.g., RTT
time).

On the contrary, while ISP and Campus exhibit rather consistent and coherent trends, Auckland
and UniBS have some anomalies. For instance, in the Aucklandtrace, the single-segment TCP
features have an unusually low distortion score. Investigating this issue further, we found that in
this dataset TCP options (e.g. MSS negotiation, window scale) are obfuscated for privacy reasons
(actually set to 0) together with the rest of packet payload,which makeststat unable of correctly
estimating the related features (i.e., more precisely,tstat assumes a maximum value for MSS,
and by default considers timestamp, window scale and sack options as unused). Therefore, in this
case the low distortion score is an artifact, arising from the impossibility of correctly estimating
most of the features of that group from the trace under investigation, even in the unsampled case.
Instead, the higher degradation detected for TCP features in the UniBS trace derives from the
artificial nature of this trace, built with a few hosts automatically generating specific traffic. As
a result, the trace includes many elephant flows (notice the large mean flow size in Tab. 3.2) and
when sampling is applied this strongly biases the distributions, yielding larger distortions.

Campus and ISP instead, show a similar behavior when considering TCP features as well.
Interestingly, notice that, at lower sampling rates, TCP features depending on multi-segment suf-
fer a smaller distortion than features depending on single-segment observation. Also, the HD
value for TCP multi-segment features keeps increasing withthe sampling, whereas TCP single-

103

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1024

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

Aukland

IP
UDP
TCP (single)
TCP (multi)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1024

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

UniBS

IP
UDP
TCP (single)
TCP (multi)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1024

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

Sampling step k

ISP

IP
UDP
TCP (single)
TCP (multi)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64 128
256

512
1024

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

Sampling step k

Campus

IP
UDP
TCP (single)
TCP (multi)

Figure 7.6: Mean and variance of the HD distortion score, forfeatures grouped by protocol layer,
as a function of the sampling step under uniform sampling policy. The extremely low distortion
of “TCP single” features in the Auckland trace is an artifactdue to the lack of packet payload, in
particular of TCP options.

segment features, albeit already distorted for low levels of sampling, do not further degrade for
high sampling factors. This unexpected behavior is due to the fact that, in the TCP case, some
of the single-segment features requirespecific segmentsto be monitored: for instance, the seg-
ment corresponding to the negotiation of a specific option. If this segment is missed because of
sampling, which is often the case already at low sampling rates, the features estimation is compro-
mised. Conversely, some of the features requiring multiplesegments (e.g., average and maximum
value of the receiver window, etc.) can be safely estimated for low sampling steps, as all segments
anyway carry useful information that can improve the feature estimate.

7.4.3 Impact of Sampling Policy

In this section, we assess the impact of different sampling policies on the accuracy of traffic feature
estimation. However, first we need to define the subset of features to use for our analysis: this is
not an easy choice given the large number of features alreadydistorted for small sampling steps
on the one hand, and the extremely varied behavior of different feature groups across each trace.
Therefore, we adopt a simple but effective threshold-basedselection criterion: we consider as
robust, and focus on in this section, all features whoseHD distance is lower than a predefined
threshold. Hence, we no longer take into account the grouping by protocol layer when applying
the robustness criterion: rather, features are evaluated individually, so that the robust set actually
consists of properties belonging to different groups. As wealso consider each direction separately
(i.e., incoming versus outgoing versus local traffic), it may happen that a feature is robust for a

104 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Systematic

H
el

lin
ge

r
di

st
an

ce
 (

H
D

)

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Stratified

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Random

H
el

lin
ge

r
D

is
ta

nc
e

(H
D

)

Sampling step

 0

 0.1

 0.2

 0.3

2 4 8 16 32 64 128
256

512
1024

Systematic SYN

Sampling step

Auckland
UniBs

ISP
Campus

Figure 7.7: Mean and variance of the HD distortion score for the robust group of features as a
function of the sampling step for different sampling policies.

given direction, but not for the opposite one. Moreover, we conservatively require features to
be jointly robust across all datasets under consideration: in other words, the resulting set is the
intersectionof the sets of robust features on each single datasets.

Without loss of generality, results in this section refer tofeatures which have anHD < 0.3
with a sampling ofk = 128. Notice that we select this values of threshold in reason of the knee of
the distribution observed in Fig. 7.4. Notice also that different threshold values, as theHD < 0.1
we used in [142], yield to similar considerations: yet, as inthis work we consider a larger dataset,
and we require features to be robust in all datasets, we prefer to apply a less stringent threshold,
so to assess the impact of sampling policy on a larger number of features.

The final set contains 36 features, equally distributed overthe 3 protocols IP, TCP and UDP.
Thus, each protocol layer is represented in the robust set, except for the RTCP and RTP layers.
In fact, the relatively low amount of RTP/RTCP traffic present in the Auckland dataset makes it
difficult to evaluate the related features for this trace, especially when hard sampling conditions
further limit the number of valid samples.

Results of this analysis for the robust features set are reported in Fig. 7.7, composed of one
graph for each sampling policy. We employ an exponentially increasing sampling stepk = 2i, i ∈
[1 . . . 10] ⊂ N, reported on the x-axis of every plot. Each graph contains four curves, one for each
dataset, depicting the average distance score over the robust features set; variance of the distance
score is also reported by means of vertical error bars (notice that we employ variance instead of
standard deviation, as the latter is visually noisy, as the square root of HD values in[0, 1] ∈ R

explodes).

At first glance, we can observe that there is no clear advantage in the choice of random sam-

105

pling or systematic sampling: considering the corresponding three plots, one can gather a striking
similar behavior. This finding holds whenever several features are considered, and contrasts with
earlier results supporting stratified sampling techniques[55]. Our intuition is that, given the level
of statistical multiplexing of traffic flows, the sampling policy has a minor impact, especially when
complex traffic properties are considered. Also, notice that similar conclusions have been recently
reported by independent research[49], which however limitedly considers only traffic volume mea-
surements under sampling (i.e., flow length).

Conversely, our smart sampling policy has a noticeable impact on measurements accuracy,
yielding completely different trends in addition to high distortion scores for high sampling steps.
Intuitively, Systematic SYN sampling heavily biases the distribution: indeed, it samples at least
one packet for each flow by definition, which for high samplingsteps is also the only sampled
packet, which hence introduces a significant distortion in the aggregate features. While, as we
will see, traffic classification accuracy is not affected by this distortion, for the time being we
can conclude that biased techniques are not indicated in thecontext of traffic monitoring and
characterization.

If we focus on the difference between datasets, we see that they are ranked almost in the same
order by different sampling policies: apparently Aucklandand UniBS are the easiest one, which
seems to be in contrast with our previous analysis. Yet, recall that we have conditioned distortion
scores over the robust subset of features: in the case of Auckland, this means that we are averaging
with TCP features getting extremely low scores due to the measurement artifact early outlined; in
the case of UniBS we have removed exactly those features thatwe saw heavily distorted in Fig. 7.6.

It is also worth noticing that sampling error saturates, in the sense that distortion scores do
not increase as fast as the sampling step, which is exponential. The reason of such a behavior is
twofold: first, as most features are estimated from the observation of a single packet, they degrade
gently when increasing the sampling step; second, some of the artifacts showed in the previous
section may still arise (i.e., features whose distortion score decreases rather than increasing for
higher sampling rates).

7.5 Single-flow Feature Distortion

In this section we study the distortion of per-flow features and, with respect to the former section,
we change both the viewpoint and the metrics employed to measure the impact of sampling. We
also apply the information gain metric to assess the amount of information conveyed by each
feature: such analysis is instrumental for the evaluation of traffic classification accuracy, that we
will carry on in the next section. To avoid cluttering the pictures, this preliminary analysis will be
done considering only the UniBS dataset, whose ground-truth is the most reliable; however, we
will come back to the whole dataset for our last experiments to draw our general conclusions.

In the remainder of this section we always refer to Systematic SYN sampling, which was
introduced specifically for traffic classification, as it gives us two main advantages over the other
policies. First it overcomes the problem of dataset representativeness, for at least one packet per
flow is always sampled: in this way even protocols with short flows (corresponding to a small
probability of being sampled) are, nevertheless, includedin the dataset after sampling. Second,
the SYN packet carries very important information about therelated flow (e.g. initial sequence
number, initial timestamp, eventually some TCP options) which tstat can leverage to improve
the estimation of many flow properties.

106 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Err%

k=2
k=10
k=100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

ρ

k=2
k=10
k=100

Figure 7.8: CDF of (left) Err% and (right)ρ for UniBS trace and different sampling step.

7.5.1 Overview of Sampling Impact

Following the same approach of Sec. 7.4, we first consider thewhole set of per-flow features, to
gather an overall picture of the impact of sampling. Fig. 7.8shows the distributions of the relative
percentage error and the correlation coefficient between the sampled and unsampled values of all
features for the UniBS trace, comparing different samplingsteps represented with distinct curves.

Focusing on the percentage error plot on the left, a large number of measures appears not
affected by sampling, scoring a 0% error; we must not forget,however, that the distribution may be
biased towards zero by features that are estimated by a single packet inspection, or that score their
default value thattstat assigns to features it cannot evaluate. On the other hand, anincreasing
portion of the features, from 10% fork = 2, to 30% fork = 100, are completely distorted with
an error greater than 100%. Interestingly, the number of features falling between these extremes
is decreasing with the increasing sampling step. However, high distortion does not necessarily
imply that such features is useless for traffic classification: indeed, provided that distorted features
are still clearlyseparableacross applications, their information would still be extremely valuable
for classification purposes. For completeness sake, we reported also the correlation coefficient
distributions in the right plot, from which the same conclusion can be drawn the same percentage
of features that scored a 0 error gets the maximum value of correlation, and again higher sampling
steps cause a larger degradation highlighted by a larger portion of features with small correlation
with the unsampled case.

Let us now focus on specific features. We present two examplesin the scatter plots of Fig. 7.9:
the left plots are related to the maximum packet size observed in a flow, while the right ones show
the average RTT. On the x-axis we report the value of the feature in the absence of sampling,
while on y-axis the one when a sampling withk = 100 is applied. We represent flows belonging
to traditional client-server (CS) applications in the top plots and to peer-to-peer (P2P) applications
in the bottom plots, in order to see whether different classes of applications correspond to different
behaviors under sampling.

The plot allows us to gather some observations. For the packet size, while P2P applications
employ either very small (signalling) or full-size (data) packets, client-server applications often
use medium-sized packets as well. Yet, for CS applications the features are underestimated mostly
of the time, meaning that usually only a single small packet (e.g., SYN) of a short CS flow is
sampled due to biased-SYN sampling; on the other hand, this same feature is correctly evaluated
for P2P applications, whose longer exchanges increase the odds that the monitor tool samples
bigger packets as well. In the right plots, we can find again two clouds: the top one, concentrated
specially in the top left corner for P2P, and the bottom one, concentrated in the area close to the

107

 0

 500

 1000

 1500

 0 500 1000 1500

m
ax

 p
ac

ke
t s

iz
e

[b
yt

e]
, k

 =
 1

00

max packet size [byte], unsampled

CS

 0

 500

 1000

 1500

 0 500 1000 1500

m
ax

 p
ac

ke
t s

iz
e

[b
yt

e]
, k

 =
 1

00

max packet size [byte], unsampled

P2P

10-1

100

101

102

103

104

105

10-1 100 101 102 103

av
er

ag
e

R
T

T
 [s

],
k

=
 1

00

average RTT [s], unsampled

CS

10-1

100

101

102

103

104

105

10-1 100 101 102 103

av
er

ag
e

R
T

T
 [s

],
k

=
 1

00

average RTT [s], unsampled

P2P

Figure 7.9: Scatter plot of features values for unsampled and SYN Sampling k = 100 for UniBS
trace, contrasting peer-to-peer (P2P) and traditional client-server (CS) applications.

origin, which is equally composed by P2P and CS flows. A possible explanation of this behavior is
that many P2P flows have intermittent but long-lived flows (for instance because they speak with a
recurring peer after a while), which yields estimation of very large RTTs (due to pairing the ACK
with the wrong data message); on the contrary, CS applications have shorter flows, that reduce the
likelihood of pairing a very late ACK and allow an easier measure of the RTT. Again it looks like
traffic belonging to different applications is differentlyimpacted by sampling, which is good news
for our classification purposes.

7.5.2 Ranking Features

After this preliminary evaluation of feature distortion, we want to assess the degradation of the
amount of informationconveyed by features due to traffic sampling. This analysis is complemen-
tary to the one presented in [43], where authors analytically study the error introduced by sampling
in NetFlow features, but do not evaluate whether sampling also impacts theinformationcontent
of such features, which is a critical component of the classification process.

To measure this quantity we finally use the Information gain score introduced in Sec. 7.3.2.2.
We use this measure to partition the features set in two groups, using a simple threshold-based
criterion: (i) themost-relevantfeature group including features whose information gain isgreater
than 1 bit (i.e. that are able to discriminate between two labels); (ii) the least-relevant feature
group, containing all the remaining features. The performance of such subsets of features will be
evaluated in the next section; here we report the scores for the most-relevant features in Tab. 7.5
together with their rank, comparing the unsampled case withthe sampled case withk ∈ {2, 10}.

The information-gain metric partitions our feature set as expected. For instance, features like
the client ephemeral source port, which is chosen randomly upon connection setup, clearly ends

108 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

Table 7.5: Feature Information gain for UniBS trace at different sampling rates.
Features Unsampled Sampled k=2 Sampled k=10

Score Rank Score Rank Score Rank
Server-IP-address 1.68 1 1.68 1 1.68 1
cwin-min-c2s 1.49 2 1.20 6 0.60 14
min-seg-size-c2s 1.48 3 1.22 5 0.47 23
cwin-max-c2s 1.47 4 1.11 8 0.56 15
max-seg-size-c2s 1.43 5 1.17 7 0.46 24
initial-cwin-c2s 1.41 6 0.71 26 0.29 32
First-time 1.37 7 1.37 2 1.37 2
cwin-min-s2c 1.35 8 1.06 11 0.53 16
Server-TCP-port 1.34 9 1.34 3 1.34 3
initial-cwin-s2c 1.33 10 0.77 22 0.30 31
Client-IP-address 1.31 11 1.31 4 1.31 4
cwin-max-s2c 1.28 12 0.99 14 0.49 21
min-seg-size-s2c 1.22 13 0.96 16 0.51 19
max-seg-size-s2c 1.21 14 1.03 12 0.50 20
Last-time 1.14 15 1.09 9 1.02 5
win-max-s2c 1.08 16 1.07 10 0.98 6
Completion-time 1.03 17 0.97 15 0.42 25
win-min-s2c 1.02 18 1.01 13 0.94 7
unique-byte-s2c 1.02 19 0.74 23 0.42 27
data-byte-s2c 1.01 20 0.74 24 0.42 26

up in the least relevant feature set, being useless for the classification process. On the other hand,
the server IP address exhibits always a high score regardless of the sampling rate: both the fact
that this feature is correctly estimated by inspecting a single packet and the reduced number of
servers in the UniBS trace concur to make this value a strong discriminator.

Besides, notice that the larger the sampling period, the smaller the number of features showing
scores greater than 1 bit. Additionally, since the ranking changes from one sampling rate to the
other, this suggest that the most-relevant feature set gathered for unsampled traffic may no longer
be the same for higher sampling.

To visually represent the effect of sampling on the most-relevant feature set, we use the parallel
coordinate plot of Fig. 7.10-(a). Each line represent one feature and connects the Information gain
score and mean percentage error for that metric for the two sampling stepsk ∈ {2, 10}. Two
evident patterns emerge from the picture, which are highlighted by means of two different line
types. Full lines clearly represent those features evaluated from a single-packet inspection: they
have high information-gain, which means they are extremelycorrelated with the application label,
along with a low relative error distortion, which means theyare correctly measured regardless of
the sampling step. On the other hand, features denoted by dashed lines, though more degraded
by sampling (their percentage error increases with sampling), are included in the most-relevant set
because they still bring benefit to the classification, as testified by high information gain fork = 2,
moreover only moderately decreasing fork = 10. Hence, while these features are degraded under
sampling, they still allow to separate application labels as exemplified in Fig. 7.9

In Fig. 7.10-(b) we extend our considerations to the whole set of features: each feature is repre-
sented by the point whose coordinates are the information gain score fork ∈ {2, 10} respectively
on the x and y axis, using different point types for most relevant (empty squares) and least-relevant
(filled circles) features. First, the picture confirms that the ranking of features is not stable: no-
tice that the score of some least-relevant features exceedsthe one of a few most-relevant ones for
k = 2 (remember that the partition of the feature space has been performed using the ranking of
unsampled features). This behavior is more evident considering k = 10: some features in the
least-relevant group should be considered as good discriminators, not only because of the higher

109

 0

 0.2

 0.4

 0.6

 0.8

 1

InfoGain
k=2

Err%k=k2

InfoGain
k=10

Err%k=10

 0

 20

 40

 60

 80

 100

In
fo

G
ai

n

E
rr

%

(a)

 0

 0.6

 1.2

 1.8

 0 0.6 1.2 1.8

In
fo

G
ai

n
k=

10

InfoGain k=2

Least-relevant
Most-relevant

(b)

Figure 7.10: (a) Parallel coordinates plot for most-relevant features and (b) scatter plot of infor-
mation gain for all features withk = 2, 10.

scores, but rather because they fall on the bisector, showing no degradation of their information
content. Overall, it looks like it is extremely difficult to predict how the information content of a
feature might be degraded by sampling, as this may furthermore vary depending on the sampling
step. This suggests using the whole features set and lettingthe classification algorithm deal with
that. In the next section, which compares the classificationaccuracy of different features sets, we
will see whether this is a good strategy.

7.6 Traffic classification under sampling

After the analysis of the distortion due to sampling in both aggregate (Sec. 7.4) and single flows
features (Sec. 7.5), in this section we provide a detailed evaluation of the impact of the sampling
on traffic classification. More precisely, we first gather baseline performance for different fea-
tures sets for unsampled traffic (Sec. 7.6.1) and then we measure the impact of training policies
(Sec. 7.6.2) for sampled traffic, considering the UniBS trace. Finally, we extend our investiga-
tion to other datasets as well (Sec. 7.6.3). We report the overall accuracy of the classification and
omit the detailed per-application accuracy as such an analysis is already found [43] and we rather
concentrate on uncovered aspects of traffic classification under sampling.

7.6.1 Impact of Feature Set

We start by comparing the classification performance of different sets of features with unsampled
traffic, using only the UniBS trace. We consider the following sets:

S1 baseline-featuresis a simple set of features, that basically contains the information derived
by a flow-level monitor (e.g. NetFlow) defined as in [97].

S2 all-features is the whole set of features produced bytstat, coherent with [129].

S3 no-IPs, obtained removing from the whole set both source and destination IP addresses, i.e.
S3 = S2 \ {srcIP, dstIP}.

S4 no-IPs/Time/Flags, obtained removing from the whole set IP addresses, TCP timestamps
and flags, i.e.S4 = S2 \ {srcIP, dstIP, timestamp, f lag}.

S5 no-Ports, obtained removing from the whole set both source and destination transport layer
port, i.e.S5 = S2 \ {srcPort, dstPort}

110 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 80

 85

 90

 95

 100

S7 S1 S5 S2 S3 S4 S6 S8

A
cc

ur
ac

y
(%

)

Feature set

UniBS
Ref[14]

m
os

t-
re

le
va

nt

ba
se

lin
e-

fe
at

ur
es

no
-P

or
ts

al
l-f

ea
tu

re
s

no
-I

P
s

no
-I

P
s/

T
im

e/
T

cp
F

la
g

no
-I

D
s

le
as

t-
re

le
va

nt

Figure 7.11: Classification accuracy achieved by differentfeatures sets with unsampled traffic for
UniBS trace.

S6 no-IDs, obtained removing from the whole all flow identifierS6 = S2\{srcIP, dstIP, srcPort, dstPort}

S7 most-relevant, comprising the features listed in Tab. 7.5, formally defined asS7 = {x ∈
S2 : InfoGain(x) > 1}

S8 least-relevantcomplementary of the most-relevant features set, i.e.S8 = S2 \ S7

The first four groups are in common with [97], in order to have adirect comparison with
previous work. We notice that features included in the baseline-features setS1, such as destination
IP and port, start and end time and total transferred bytes, were already identified as the most
reliable ones, showing high information gain in our earlieranalysis (Sec. 7.5).

The accuracy achieved by these features sets in our experiments is depicted in Fig. 7.11, where
we also plotted the results reported by [97], where available, as a comparison. Yet we underline
that this is anindicativecomparison as results are not directly comparable for threereasons: first,
the dataset differs; second, the machine learning technique differs; third, there are slight differ-
ences in some feature sets as the overall setS2 produced bytstat is a super-set of the one
considered in [97] (see the discussion in Sec. 7.2.2).

Speaking about the comparison, we gather that for the features setsS1 andS2 the accuracy for
the UniBS dataset is higher than that reported in [97], whereas values scored by setsS3 andS4 are
coherent with previous results. To explain this behavior, we must go back to the information gain
score. We have noticed before the high correlation between the application label and the network-
layer identifiers for the UniBS trace (i.e., IP address of theserver), which causes the performance
drop from setsS1 andS2 to setsS3 andS4.

Considering all subsets, we gather that, as expected, the most-relevant feature set exhibits
the best accuracy, though being the smallest one. The complete setS2 instead turns out in a
slightly worse result: we see a little overfitting phenomenon (i.e. useless features disturbing the
classification process), but the difference is negligible in our case. Therefore, we estimate the
prominence of feature selection less relevant, and will consider other, less explored, issues in what
follows.

We make a few final remarks before changing subject. The performance of setsS3, S5, S6
further shows that IPs are much more relevant than ports, causing a larger decrease in performance

111

when removed from the feature set. Finally the last verticalbar, though referring to a quite numer-
ous set of 85 features, shows as expected the worst performance as it comprises features carrying
less information about the application label. Notice that accuracy however exceeds 85%, meaning
that the set of the least-relevant features still includes valid discriminators.

7.6.2 Impact of Training Policy

Clearly, the selection of flows to include in the training sethas a great influence on the final
classification accuracy (i.e., how to find representative samples, how to face the class imbalance
problem, etc.). Yet, here we are more concerned with a novel factor: i.e., whether training and
validation data should be gathered at the same sampling rate.

This is an important point as it means that ISP may need to use different classification models,
one per each sampling rate, or may use a single unique model for all rates. In the following, we use
kT to denote the sampling step used for the training data, andkV for the one used for validation
data.

• Homogeneous classification, in which training and validation sets contain data obtained
with the same sampling rate (i.e.,kT = kV). This corresponds to the case of ISPs using
different training sets, one for each sampling rate. Results shown in the previous sections
were gathered using this training policy.

• Heterogeneous classification, in which training and validation sets contain data obtained
with different sampling rates (i.e.,kT 6= kV). Intuitively one may think that richer data
with a lower sampling period might contain more informationthat could be successfully
exploited for the classification. At the same time, we may expect that under sampling,
the feature estimation error will grow large, with a corresponding information loss. In our
experiments we investigated the full space resulting from the cross product ofkV × kT , but
we report here only two examples: first the extreme case wherewe train the machine with
unsampled data (kT = 1) and then the results gathered withkT = 2, i.e., the minimum level
of sampling.

We test these policies on the UniBS trace, performing a cross-validation and using 10% of
this data as training set and the rest as validation set. The cross-validation procedure repeats
the train/validation process 10 times, randomizing each time the training set (and changing the
validation set as a consequence). As for the class imbalance, we took extra care in building the
training set so that the proportion of the different application are the same of the original data (i.e.,
as 49% of the original trace is constituted by HTTP flow, the training set is composed for 49% of
HTTP flow samples).

In Fig. 7.12 we report the flow (left plot) and byte (right plot) accuracy obtained by the C4.5
algorithm with the complete setS2 of features provided bytstat (whose performance was
only slightly affected by overfitting with respect to the most-relevant feature set), for both the
heterogeneous and homogeneous cases, for increasing sampling step. We report two cases of
heterogeneous policies: first the case where the classifier is trained with unsampled data, i.e.,
kT = 1; second the case where the classifier is trained with lightlysample data withkT = 2.
As a reference and lower bound, we also plot the results of twodummy classification processes:
(i) Uniform selects the classification label uniformly at random among the possible classes; (ii)
Proportional selects the label at random, but with a probability proportional to the number of
flows belonging to that class.

Looking at the flow accuracy, the homogeneous case exhibits the best results, achieving an
high accuracy which furthermore does not deteriorate undermore aggressive sampling. In the

112 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100

F
lo

w
 A

cc
ur

ac
y

%

Sampling period

Proportional

Uniform

 0

 20

 40

 60

 80

 100

1 2 5 10 20 50 100

B
yt

e
A

cc
ur

ac
y

%

Sampling period

Proportional
Uniform

Heterogeneous unsampled
Heterogeneous k=2

Homogeneous

Figure 7.12: Impact of Homogeneous vs Heterogeneous training set policies at varying sampling
rates in terms of flow and byte accuracy.

heterogeneous unsampled case, the accuracy drops considerably already with a sampling period
of kV = 2 and then decreases until atkV = 100 it achieves only slightly more than 50%, which
is close to the proportional random labeling process: in other words, the heterogeneous training
process was only able to correctly learn theflow proportion (due to our balanced training set
selection policy). The heterogeneous case withkT = 2 has a better performance, though far from
the homogeneous case: this means that, whatever the sampling stepkV , it is always better to train
the classifier with already sampled data (i.e.,kT > 1) when this is the kind of data to be classified.
Interestingly, there is a much smaller difference between the two training policies in term of byte
accuracy even in harsh sample conditions: this means that elephant flows are always correctly
classified, whereas classification errors are much more frequent for mice flows.

In agreement with [43], these results show that, even thoughfeatures are distorted, the amount
of information they convey on the application label is stillrelevant for the classification, as shown
by the analysis in the previous section as well. On the contrary, while unsampled data captures
the properties of real traffic pretty well, it is unsuitable to characterize, and therefore classify,
the sampled traffic. Hence, ISPs shall use a specific classification model for each sampling rate.
In case of variable sampling rates, this may not be feasible:however, as classification degrades
smoothly between the homogeneouskT = kV and heterogeneouskT = 1 cases (i.e.,kT=10
performs better thankT=1 for kV =100), a viable compromise would be to select the closestkT
from a set of models.

7.6.3 Impact of Dataset

Finally, we extend our analysis to the other traces. In principle we were extremely interested in
testing theportability of the method: i.e., to assess the performance of a model trained on a trace
and validated on the other traces. Unfortunately though, due to the heterogeneity of the dataset,
a thorough and coherent comparison is possible only with an extremely reduced set of protocols
(only HTTP, HTTPS and IMAPS are common to the three traces, and no more than 4 protocols
are common to any 2 traces), resulting in a statistically notsignificant comparison. Therefore,
we limitedly report results considering each dataset in isolation. We use a sampling period of
k = 100 (a common value used in operational networks), the C4.5 algorithm in the homogeneous
case, with data split again in 10% and 90% for training and validation sets respectively. The whole
classification process is performed separately for each dataset, using the sets of features defined
in Sec. 7.6.1, and results are reported in Fig. 7.13. Notice that, as the Auckland ground truth is

113

 80

 85

 90

 95

 100

S7 S2 S3 S5 S6 S8

A
cc

ur
ac

y
(%

)

UniBS Campus Auckland

m
os

t-
re

le
va

nt

al
l-f

ea
tu

re
s

no
-I

P
s

no
-P

or
ts

no
-I

D
s

le
as

t-
re

le
va

nt

Figure 7.13: Flow classification accuracy for different traces and features sets (homogeneous train-
ing, k = 100 sampling).

established based on well-known ports, we expect 100% accuracy when this feature is included in
the feature set (on which the ground truth for this dataset relies).

The set of most-relevant features is consistently the one yielding the best result, for all datasets.
Interestingly, also the set composed by all features achieves nearly the same performance, in con-
trast with the common belief that classifiers are misled by anexcess of information. As a matter
of fact, notice that the set of least-relevant features still contains a valuable amount of information
as it correctly identifies more than 80% of flows for any trace.

As previously done, we also investigate the importance of IPaddresses and transport-layer
ports features by evaluating the classification accuracy after their removal. We find that transport
layer identifiers are particularly important for classification purposes, hence removing them has a
great impact on the accuracy (especially for Auckland as expected). Conversely, IP addresses are
particularly relevant only for the UniBS trace, where, as previously observed, the same server IP
is very often associated with the same application, thus becoming a good discriminator; while in
more diverse traces removing IP addresses from the feature set does not affect the performance at
all. Removing both transport and network layer identifiers gives the worst results – for the UniBS
even worse than the least-relevant set of features. Moreover, the performance loss may be more
pronounced than in the unsampled case shown earlier, meaning that information contained in IP
address and ports is even more important under sampling. At the same time though, the removal
of IP and ports does not drastically compromise the accuracyin the Auckland case, where the
features of the different traffic classes are likely more separated.

7.7 Summary

In this chapter we empirically studied the impact of packet sampling on traffic measurement and
traffic classification. Sampling is already a very common practice in operational networks and
the increasing trend of network traffic is likely to spread its adoption even more among operators.
For this reason, we accurately assessed the amount of information lost when applying sampling
to traffic characterization, as well as the repercussion of such loss on the performance of different
applications of sampling data, in particular of traffic classification.

114 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

We processed an extremely heterogeneous dataset composed of four packet traces (represen-
tative of different access technologies and operational environments) with a traffic monitoring
tool able to extract several traffic features both in aggregated and per-flow fashion. The tool was
modified ad hoc to apply different sampling policies and arbitrary sampling rates to the traces.
Moreover, in an attempt to foster cross-comparison in the community, we made an effort with
respect to both previous literature (i.e., by considering the same features sets of [97]) and fu-
ture research (i.e., by using open datasets and describing our labeling ground truth). Such data
allowed us to conduct an extended experimental campaign with two main objectives: (i) assessing
the degradation introduced by different sampling policiesand rates in aggregated traffic features,
irrespectively of the possible applications (e.g. classification, intrusion detection) of such mea-
surements; (ii) evaluating whether flow-level features derived from sampled data are suitable for
statistical traffic classification. In the following, we separately summarize the main contributions.

7.7.1 Impact on traffic characterization

Our experiments, which considered four sampling-policies(namely systematic, random, stratified
and systematic SYN sampling), about 170 traffic features andtwo distortion metrics, yielded the
following findings.

• Unfortunately most of the features are already distorted atlow sampling, regardless of the
sampling policy.

• Generally a lower degradation affects features based on theinspection of a single packet
(such as those related to IP and UDP) with respect to those depending on the analysis of
more packets. An exception is represented by those featuresrelying on the inspection of
very specific segments (e.g., some TCP options).

• Regardless of the protocol layer, we isolated a small set of features robust to sampling across
all the datasets.

• A sensitivity analysis conducted on this reduced set shows no remarkable advantage of one
sampling policy over the others, thus partly contrasting previous studies in favor of random
sampling.

• We identify two reasons for the previous finding: the statistical multiplexing may partly
eliminate the bias induced by simple strategies (e.g., systematic sampling); second, this
evidence may have been hidden by previous work which typically focused on a few specific
features only (e.g., traffic volumes).

• We spotted a number of counter-intuitive behaviors and measurement artifacts, showing that
it may be challenging to correctly assess the impact of sampling even on simple measures.

7.7.2 Impact on traffic classification

Regarding traffic classification, we specifically focused ona biased, yet practical, sampling policy
(namely systematic SYN sampling) which overcomes the problem pointed out in [43, 97] con-
cerning the statistical significance of the results. Beforeapplying the classification based on C4.5
classification trees, we quantified the information conveyed by features about the application label
by means of the information gain metric. The main findings of our experiments follow.

115

• The cross-investigation of the pure feature distortion andits information-gain loss shows a
complex non proportional relation. In particular, there are few features whose information
gain remains unchanged under sampling – interestingly theyalmost coincide with those
features derived from a single packet and less distorted by sampling.

• Even more unexpected, some features, though heavily distorted, show an high information-
gain score, thus proving important discriminators.

• The information-gain ranking depends on the sampling rate applied, thus suggesting the use
of a larger features sets for training the classifier which appears only slightly affected by
overfitting.

• Coherently with [43], we show that even in our larger dataseta homogeneous training (i.e.,
where the same sampling rate has been applied to both training and validation traffic) yields
extremely good results, even for harsh sampling (e.g. 1 out of 100 sampling).

• If on the one hand the former observation implies that different training sets should be kept
for each sampling rates, on the other hand the classificationaccuracy degrades gracefully
for intermediate heterogeneous solutions (i.e., trainingon sampled data, but with a different
sampling rate). Therefore, good results might be achieved by employing a few training sets
obtained with carefully chosen, representative sampling rates.

116 7. IMPACT OF SAMPLING ON TRAFFIC CHARACTERIZATION AND CLASSIFICATION

117

Part III

Congestion control for P2P

119

Chapter 8

A measurement study of LEDBAT,
the new BitTorrent congestion control
algorithm

8.1 Introduction

In this part, we change perspective in perceiving our goal ofmaking life easier for ISPs by helping
them manage P2P traffic better. While in the previous part we focused on providing tools to enable
an effective as well as efficient identification of such traffic, first mandatory step to implement
special policy for P2P traffic in the network core, in the following chapter we rather propose to
change this traffic altogether. The subject of our study is LEDBAT , which stands for Low Extra
Delay BAckground Transport procols, a new lower-than-besteffort congestion control algorithm
proposed and implemented on top of UDP by the popular file-sharing application BitTorrent .

Though regarded with skepticism in the first place [31, 134] because implemented on top of
UDP which was associated right away with unresponsive source, LEDBAT has actually very sound
goals: (i) it aims at saturating the available bandwidth, (ii) while adding only a small delay on the
forward path (to avoid bothering interactive traffic), and (iii) quickly yield to other traffic (i.e., to
more than TCP friendly). To achieve this goals, LEDBAT implements a delay-based congestion
control algorithm, constantly monitoring the additional delay on the forward path, modulating
the congestion window (and the throughput) by means of linear PID controller using the delay
measure as input signal (see Chap. 9 for a detailed explanation of the algorithm). With such a
proposal BitTorrent wanted to make an effort to collaboratewith ISPs and make its traffic gentler
towards both the network and other applications, to put an end to the struggle with ISPs which had
brought one of the biggest American operators, Comcast, to throttle file-sharing traffic[21].

The adoption of this protocol by such a popular application and the successive standardization
process undergone by LEDBAT within the IETF [166] make it quite a relevant subject of research,
especially as it pursue the same goals of this thesis. Moreover, independent implementation and
evaluation of protocols and technologies deployed in the Internet are actually extremely impor-
tant and even required for a new protocol to become an integral part of the network architecture.
Having started our research on LEDBAT early from its announcement in December 2008 [134],
even before its specification were made public, we employed different methodologies to tackle this
study. In this first chapter, whose results have been published in [156], we employ a black-box ap-
proach and by means of testbed experiments using the actual BitTorrent implementation, we show
the evolution of the protocol across successive releases gathering a first picture of the protocol

120 8. A MEASUREMENT STUDY OFLEDBAT

 0

 10

 20

 30

 40

 50

 60

 70

Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c

sh
ar

e
[%

]

2.2
(β22538)2.0.3

2.0.2
2.0.1

(β18786)

2.0

1.8.5

2.0
(β17539)

BitTorrent UDP+TCP / All UDP+TCP
BitTorrent UDP / BitTorrent UDP+TCP

Figure 8.1: Proportion of BitTorrent traffic and of BitTorrent Ledbat in the wild.

merits and issues. In the following chapters instead, we take advantage of the LEDBAT draft, we
implement it in the packet-level simulatorns2 [15] and we carry on a simulative and analytical
study of the protocol, proposing a modification of the original design to correct its flaws.

Before delving into our experiments, we would like to reporton the actual diffusion of LED-
BAT in real networks, to highlight the importance of this work. Although recent research shows an
increasing importance of video over the share of Internet traffic [169], BitTorrent still represents
a significant portion of user generated data. Moreover, as BitTorrent 3.0 is pushing a new live
streaming feature, we may expect that it will still be present in the landscape of Internet popular
application even considering the increasing thirst for video streaming content [169]. In Fig. 8.1,
we depict the BitTorrent traffic share (UDP and TCP traffic, over all traffic) measured for about
one year at a PoP at a large European ISP network that we continuously monitor [115]. The pic-
ture also shows the relative percentage of BitTorrent traffic carried over UDP (hence, over the
LEDBAT transport protocol), normalized over the total amount of BitTorrent traffic. Labels report
a few BitTorrent application release over the considered period1. The picture clearly shows, soon
after the release of uTorrent 2.0-β17539, which first introduced data transport over LEDBATby
default, a steep increase of BitTorrent traffic volume, followed by an increase of the percentage of
BitTorrent traffic carried over UDP. The percentage of BitTorrent appears slightly eroded by other
traffic in the subsequent period, due to file-hosting (e.g., MegaUpload, RapidShare, etc.) and VoD
traffic (e.g., YouTube, Dailymotion), yet the percentage ofUDP BitTorrent traffic is instead slowly
increasing (which may reflect adoption of newer release of the protocol by the user population),
and finally exceeds 50% of the BitTorrent traffic volume. We also that recent work [76] has showed
that the decreasing trend of P2P traffic has reverted to increase in late 2010. Such a large diffusion
clearly motivates our study of the protocol, to verify it honors its goals and to check that no flaw
affects its design as this might possibly cause severe harm to the network.

The aim of this chapter is twofold. On the one hand, we target at understanding the perfor-
mance of LEDBAT in a number of simple single flow scenarios, considering multiple versions of
the official client so to better clutch its evolution. On the other hand, by means of multiple flows
scenarios, we aim at gathering a preliminary understandingof the implication that a widespread
adoption of LEDBAT could have on the current Internet landscape. We find active testbed ex-
perimentation extremely useful for several reasons. First, the BitTorrent implementation of the
LEDBAT protocol may differ from any draft-compliant implementation by some design choices
or parameter setting, that may have a deep impact on the protocol performance. Second, the most

1See “Announcement” thread from the uTorrent forumhttp://forum.utorrent.com/viewforum.
php?id=4

http://forum.utorrent.com/viewforum.php?id=4
http://forum.utorrent.com/viewforum.php?id=4

121

 0
 250
 500
 750

 1000
 1250
 1500

 0 10 20 30 40 50

Time [s]
(a)

TCP
v5.2.2 (Until Oct’08)

Open Source

P
ac

ke
t s

iz
e

[B
yt

e]

 0 10 20 30 40 50

Time [s]
(b)

α1
v1.9-13485 (Since Dec’08)

Closed Source

 0 10 20 30 40 50

Time [s]
(c)

α2
v1.9-15380 (Since Mar’08)

First LEDBAT draft

 0 10 20 30 40 50

Time [s]
(d)

β1
v1.9-16666 (Since Aug’09)
Draft accepted as WG item

Figure 8.2: The last few months of BitTorrent client evolution: Temporal plot of packet-level
traces for different BitTorrent flavors, reporting packet size during the first minute of the transfer

widespread LEDBAT implementation on the Internet will be the official BitTorrent version, rather
than a legacy implementation, which motivates a direct evaluation of this client. Third the anal-
ysis of proprietary applications by independent observershas the benefit of shedding light on the
protocol inner workings. Finally real-world dynamics introduced by network devices are often
much more complex than the synthetic ones that a simulation environment, although accurate, can
reproduce.

This chapter is organized as follows. We first describe the testbed and methodology used to
obtain our results in Sec. 8.2. In we present the results of our experiments in single flow-scenarios,
while multiple-flow settings are taken into account in Sec. 8.4.

8.2 Methodology and Preliminary Insights

For the investigation of the LEDBAT , we adopt an active-measurements black-box experimental
approach, consisting in the analysis of the traffic generated by the BitTorrent client on different
network scenarios. We run several versions of the new BitTorrent client on PCs equipped with
dual-core processors featuring (i) unless otherwise stated, native installations of Windows XP or
(ii) BitTorrent clients running on Linux using thewine Windows emulator. PCs are either (i)
connected to the Internet through ISPs offering ADSL access, or (ii) in a local LAN testbed via
Ethernet cards. In the first case we leave the default modem settings unchanged, while in the
second one we disable the interrupt coalescing feature and avoid using jumbo frames. Moreover
in the LAN testbed, the traffic is routed through a middlebox running a 2.6.28 Linux kernel,
which acts also as network emulator by means ofnetem, in order to enforce artificial network
conditions.

As formerly stated, in our experiments we consider both single flow and multiple flows sce-
narios. Single flow experiments are useful to understand theprotocol performance under a range
of different network conditions, while multiple flows experiments are needed to quantify the level
of inter-protocol priority (e.g., with respect to TCP flows)and intra-protocol fairness (e.g., with
respect to other LEDBAT flows) achieved by the distributed control algorithm. Under the classic
BitTorrent terminology, every LEDBAT sender-receiver pair is a seeder-leecher pair, so that data
transfer happens in a single direction. In case of multiple-flows experiments, every pair of actors
belongs to a different torrent, so that no data exchange happens between different leechers.

We start by providing some insights on the BitTorrent evolution with the help of Fig. 8.2.
Every picture refers to a different experiment, of which we report the first minute, corresponding

122 8. A MEASUREMENT STUDY OFLEDBAT

to a different BitTorrent flavor. The seeder connects to the middlebox with a 100 Mbps Ethernet
link, while between the middlebox and the leecher there is a 10 Mbps Ethernet bottleneck link.
No other traffic is present on the bottleneck, and the one-waydelay on the forward path is forced
to 50 ms, to loosely emulate a scenario where two faraway peers with high speed Internet access
(e.g., ADSL2+, FTTH or Ethernet) are connected together.

Pictures are arranged so that the macroscopic timescale of BitTorrent evolution also grows
from left to right: Fig. 8.2-(a) shows, as a reference, the old open-source TCP-based client, while
Fig. 8.2-(b) refers to the first closed-source versionα1, released December 2008. Then, Fig. 8.2-
(c) depicts theα2 version, released roughly at the same time of the first IETF draft [166] in March
2009. Finally, Fig. 8.2-(d) refers to theβ1 version, released after the draft was accepted as an
official IETF WG item in August 2009.

The comparison of different versions of the protocol yieldsseveral interesting observations.
First, notice that all versions analyzed correspond to important milestones in the development pro-
cess of the protocol: thus, they provide a valuable perspective which highlights the flaws as well
as the improvements of the subsequent steps of LEDBAT evolution. In particular, theα1 version
(which precedes the draft specification and motivates a black-box approach) was particularly insta-
ble and soon superseded. Moreover, from this study it emerges that the LEDBAT implementation
has beenconstantlyevolving, reason why we decided it would be more interestingto experiment
and contrast all of them rather than picking one single version.

For each flavor represented in Fig. 8.2, pictures depict the packet size on the y-axis, measured
at the sender side, with time of the experiment running on thex-axis. As it can be seen, the
application-layer segmentation policy is remarkably variable across different LEDBAT flavors. In
contrast with TCP, which always transmits segments of maximum size, LEDBAT instead uses
variable packet sizes. For instance, theα1 implementation of Fig. 8.2-(b) mostly used small seg-
ments of about 350 bytes, transmitted at very high rate. Although this allows a finer tuning of
the congestion window size, (e.g., likely to be more reactive to network condition), it definitively
results in an unnecessary overhead. This segmentation policy is a bad choice for large transfers,
and was indeed soon dropped in favor of larger segment sizes.As can be gathered from Fig. 8.2-
(c) and Fig. 8.2-(d), newer BitTorrent flavors start by segmenting data in small-size segments, and
then gradually increase the segment size over time, rarely changing it once the full-payload seg-
ment size is reached. In case ofα2 flavor, we observe subsequent phases, about 10-seconds long,
where only a single segment size is used: it takes about 40 seconds to the application-layer seg-
mentation policy to settle to full-payload segment size. Theβ1 flavor behaves similarly, although
a wider range of segment sizes is employed during the whole experiment, probably to obtain a
finer byte-wise control of the congestion window.

The corresponding time evolution of the achieved throughput, measured over 1 s time-windows
is depicted in Fig. 8.3-(a), using a longer timeframe of about 4 minutes. We merely superpose the
curves for the sake of comparison, but experiments have beenindependently performed. It can be
seen that, shortly after achieving a sustained throughput of about 9 Mbps during about 50 seconds,
the sending rate of theα1version suddenly drops, and about 2 minutes are necessary torecover
from this starvation (this unstable behavior was observed under a wide range of conditions). In
contrast,α2 andβ1 achieve a lower but steady throughput, slightly above 4 and 7Mbps respec-
tively.

As a reference, we also report the throughput of a BitTorrentclient using TCP running on the
native Windows and Linux networking stacks under their default settings. The networking stack
implementation and configuration dramatically impacts theprotocol performance also in the TCP
case. As reported in [48], in Windows XP, for transmission rates between 10-100 Mbps the default
receive window is set to 17520 Bytes, whereas the default value of the Linux receive window (set

123

 0

 2

 4

 6

 8

 10

 0 60 120 180 240

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

TCP Windows
(17.5 KB)

α2

β1
α1α1

TCP Linux
(108 KB)

 0

 0.5

 1

T
hr

ou
gh

pu
t [

M
bp

s]

Time [s]

C
ap

ac
ity

 P
ro

fil
e

[M
bp

s]TCP

α2

β1

 0

 0.5

 1

 0

 0.5

 1

 0 120 240 360 480 600

Figure 8.3: Throughput for different flavors (a) without and(b) with bottleneck capacity limita-
tions.

in net.ipv4.tcp_mem) is about 6 times larger. Notice that in the Windows XP case, due to the
50 ms delay, the default value of the maximum window is not large enough to allow full saturation
of the bottleneck pipe. This is an important, though not novel, observation on which we will come
back later on Sec. 8.4.

8.3 Single-flow scenarios

Let us start by testing how BitTorrent copes with changing bottleneck capacity. We use a setup
similar to the former experiment, but in this case the capacity of the link between the middlebox
and the leecher is limited by means of the Hierarchical TokenBucket (HTB), available innetem.
In more detail, we start at t=60 s to let LEDBAT throughput settle to a steady state, and then we
turn on the HTB shaper. We initially tune it to 250 Kbps, increasing then the available capacity in
steps of 250 Kbps every 2 minutes, as shown by the solid line capacity profile in Fig. 8.3-(b). A
decreasing capacity profile yields to similar results and isthus not shown in the figure.

Time evolution of the throughput is reported for the newα2, β1 flavors as well as for the
old TCP client. Flavorα2 proves to be unable to quickly adapt to the changing link rate: it
periodically enters a probing (or slow-start) phase, whereit likely tries to infer network conditions
by varying the segment size and sending rate. However, this phase is apparently unsuccessful and
α2 throughput starves (we did not observe such a starvation phenomenon for bottleneck larger
than 1000 Kbps). This bug has been fixed by later releases:β1 matches the available bandwidth,
and moreover LEDBAT shows a much smoother curve than TCP. In this case, we may say that
one of the LEDBAT design goals, namely, to efficiently exploit the available capacity, seems to be
perfectly achieved.

Then, consider that the LEDBAT congestion control is based on a linear adaptation (i.e.,
growth/shrink) of the sender window to variations in the queuing delay on the forward data path
(i.e., as inferred by the decrease/increase of the one-way delay, with respect to the minimum mea-
sured one as reference): it is thus critical to assess its reaction to the measured one-way (OWD)
delay. However, the sender response to queuing delay variations is nevertheless based on a closed-
loop reaction with the receiver: therefore, we argue that the time instants at which the sender
window growth/shrink decisions will be taken are also affected by the two-way delay, or Round
Trip Time (RTT).

Thus, we setup and experiment in which we add an incremental OWD on either the forward
(data) or backward (acknowledgement) paths. As before, after LEDBAT settles we increase the

124 8. A MEASUREMENT STUDY OFLEDBAT

 0

 5

 10

 0 120 240 360 480 600
 0

 40

 80

 120

T
hr

ou
gh

pu
t [

M
bp

s]

D
el

ay
 [m

s]

Time [s]

α2 β1

α2 β1

 0

 5

 10

 0

 40

 80

 120

(a)

 6

 7

 8

 9

 10

 0 120 240 360
 0

 40

 80

 120

T
hr

ou
gh

pu
t [

M
bp

s]

D
el

ay
 [m

s]

Time [s]

α2

β1

α2 β1

 6

 7

 8

 9

 10

 0

 40

 80

 120

(b)

Figure 8.4: Throughput evolution for different delay settings on the forward (top) and backward
(bottom) path: (a) average delay increases over time, delayis equal for all packets (b) average
delay is constant over time, delay variance increases over time.

additional delay in steps of 20 ms every 2 minutes, for an RTT spanning on the 20–100 ms range
as shown by the stepwise profile in Fig. 8.4-(a). The amount ofOWD delay is added either to the
forward path (top) or backward (bottom) path: in the former case, the delay incrementally adds to
the OWD estimation performed by the sender so that it may directly affect the congestion control
loop, while in the latter case it only delays the acknowledgement and may only indirectly affect
the control loop.

As it can be seen from the comparison of the top and bottom plots of Fig. 8.4-(a), the overall
effect on performance is the same: BitTorrent throughput decreases for increasing RTT, which is
due to an upper bound of the receiver window (analogously to what seen before for TCP). With
some back-of-the-envelope calculation based on the experimental results shown in Fig. 8.4-(a),
one can gather that the receiver window limit has been increased from 20 full-payload segments
of α2 to 30 full-payload segment ofβ1. While the picture shows that this limit may not be enough
to fully utilize the link capacity (e.g.,β1 achieves about 4 Mbps throughput on a 10 Mbps link with
RTT=100 ms), in practice it is not a severe constraint, as the capacity will likely be shared across
several flows established with multiple peers of a BitTorrent swarm (or the receiver window limit
could be increased).

In Fig. 8.4-(b) we instead investigate the effects of a variable OWD delay, that changes for
each packet uniformly at random, with average OWD equal to 20ms. In this case we keep the
average constant but increase the delayvarianceevery 2 minutes, so that the profile reports the
minimum and maximum delays of the uniform distribution. Thevariable delay also implies that
packet order is not guaranteed, because packets encountering a larger delay will be received later
and thus out-of-order. Again, delay variance is enforced oneither the forward (top) or backward
(bottom) path. As it can be expected, LEDBAT is rather robustto a variable jitter on the backward
path, where we observe only a minimal throughput reduction.Conversely, variance in the forward
path has a much more pronounced performance impact: interestingly, α2 throughput significantly
drops, whereasβ1 performance is practically unchanged. This probably hintsto the use of a more
sophisticated noise filtering algorithm (e.g., that discards delay samples of out-of-order packets),
although a more careful analysis is needed to support this assertion.

We finally perform an experiment using PCs connected throughADSL modems to the wild
Internet. Thus, in this case we no longer have complete control over the network environment, but

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s] TCP β1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

Time [s]

T
hr

ou
gh

pu
t [

M
bp

s]

R
T

T
 [s

]

TCP FWD TCP BWD

β1 RTT

(b)

Figure 8.5: Real Internet experiments: (a) different flavors and (b) interfering traffic.

we still can assume that no congestion happens in the networkand that the access link constitutes
the capacity bottleneck. It can be seen from Fig. 8.5-(a) that in a realistic scenario, when the end-
hosts only run LEDBAT ,β1 achieves a smooth throughput whose absolute value closely matches
the nominal ADSL uplink capacity (640 Kbps). In contrast, TCP throughput is more fluctuating
due to self-induced congestion, which causes fairly large queues before eventual losses occur. This
confirms that the goal of avoiding self-induced congestion at the access is also met.

8.4 Multiple Flows

We now explore scenarios with several concurrent flows, starting with the simple one where a
single LEDBAT flow interacts with a single TCP flow. Considering two PCs connected through
ADSL modems to the wild Internet, Fig. 8.5-(b) reports an experiment where, during a single
LEDBAT transfer, we alternate periods in which PCs generateno traffic other than LEDBAT , to
periods (i.e., the gray ones) in which we superpose TCP traffic on either the forward or backward
path.

The plot reports the time evolution of the LEDBAT throughputas well as the RTT delay
measured by ICMP (as a rough estimation of the queue size seenby LEDBAT). During the silence
periods (0–120 s and 240–360 s), as bottleneck is placed at the edge of the network, LEDBAT is
able to efficiently exploit the link rate. As soon as a backlogged TCP transfer is started on the
forward path (120–240 s), LEDBAT congestion control correctly puts the traffic in low priority.
Notice that in this case, ICMP reports that a fairly large queue of TCP data packets builds up in
the ADSL line (roughly 4 seconds, corresponding to about 300KB of buffer space for the nominal
ADSL rate). Conversely, whenever the backlogged TCP transfer is started on the backward path
(360–480 s), LEDBAT transfer on the forward direction should only be minimally affected by
the amount of acknowledgement TCP traffic flowing in the forward direction. However, as it
can be seen from Fig. 8.5-(b), the LEDBAT throughput drastically drops, further exhibiting very
wide fluctuations (notice also that the ADSL modem buffer space of the receiver appears to be
smaller, as the RTT is shorter). Notice that in this case, LEDBAT forward data path shares the link
capacity only with TCP acknowledgements, which account fora very low, but likely very bursty,
throughput: this may led LEDBAT into a messy queuing delay estimate, and as a result, the uplink
capacity of the device is heavily underutilized (about 74% of wasted resources).

We finally perform experiments to analyze the interaction ofseveral flows. In this case, we
setup several torrents, one for every different LEDBAT seeder-leecher pair, so that no data ex-
change happens between leechers of different pairs. Thus, flows are independent at the application
layer, though their are dependent at the transport layer, asthey share the same physical 10 Mbps
RTT=50 ms bottleneck.

126 8. A MEASUREMENT STUDY OFLEDBAT

Table 8.1: Efficiency and Fairness between multiple TCP and LEDBAT flows

TCPW , LEDBAT β1

TCP LEDBAT %1 %2 %3 %4 η Fairness RTX%
4 0 0.25 0.25 0.25 0.25 0.67 1.00 5e-4
3 1 0.14 0.14 0.14 0.57 0.94 0.64 -
2 2 0.10 0.10 0.40 0.40 0.93 0.74 -
1 3 0.08 0.31 0.31 0.31 0.92 0.87 -
0 4 0.25 0.27 0.24 0.24 0.96 1.00 -

TCPL, LEDBAT β1

TCP LEDBAT %1 %2 %3 %4 η Fairness RTX%
4 0 0.25 0.25 0.25 0.25 0.98 1.00 0.06
3 1 0.35 0.32 0.32 0.00 0.98 0.75 0.14
2 2 0.43 0.51 0.03 0.03 0.98 0.56 4e-3
1 3 0.87 0.04 0.04 0.05 0.98 0.33 -
0 4 0.25 0.27 0.24 0.24 0.96 1.00 -

We consider a fixed number of F=4 flows, and vary the number of TCP and LEDBAT -β1
connections to explore their mutual influence. All flows start at time t = 0, experiments last
10 minutes and results refer to the last 9 minutes of the experiment. We generate TCP traffic
using Linux (so that we can reliably gather retransmission statistics usingnetstat), setting
the congestion control flavor to NewReno. We perform two set of experiments, using either the
Windows or Linux defaults values for the maximum receiver windows as early stressed in Fig. 8.3-
(a): in our setup, the Windows-like TCP settings (TCPW) are thus less aggressive than Linux ones
(TCPL).

For each experiment, we evaluate user-centric performanceby means of the breakdown of the
resources acquired by each flow, while we express network-centric performance in terms of the
link utilization η. To further quantify the protocol mutual influence, we use the Jain’s fairness
index of the flows throughput and evaluate the percentage of TCP retransmissions (RTX). Results
are reported in Tab. 8.1, with Windows and Linux settings on the left and right respectively. Com-
paring the two table portions, we argue that the exact meaning of “low-priority” may be fuzzy in
the real-world. Indeed, while LEDBAT -β1 is lower priority than an “aggressive” TCP, it may be
competing more fairly against a more gentle set of parameters, thus being at least as high prior-
ity as TCP. In fact while LEDBAT is practically starved by TCPL, LEDBAT is able to achieve a
slightly higher priority than TCPW . Although we recognize that results may change using more
realistic and heterogeneous network scenarios, or using the real Windows stack instead of simply
emulating its settings, we believe that an important point remains open: i.e., the precise meaning
of “lower than best effort”, as the mutual influence of TCP andLEDBAT traffic may significantly
differ depending on the TCP flavor as well.

8.5 Related work

Related work to this study can be divided in two cathegories.First, given its widespread diffusion
as file-sharing application, BitTorrent has been studied widely studied [35, 37, 93, 145] by means
of theoretical analysis, simulations and measurement. Second, there is a large literature on Internet
congestion control: given the empirical nature of the results presented in this chapter, we review
here a few works which employs a similar measurement based methodology to approach this

127

subject [26, 38, 65], while we refer to the related work section of the next chapter for other works
on other lower-than best effort protocols. Third, we reporton the few measurement works on
LEDBAT appeared so far, because of the novelty of the subject.

Due to BitTorrent very recent evolution, previous work on BitTorrent [35, 37, 93, 145] focused
on complementary aspects to those analyzed in this work. In [145] authors develop a fluid model
to study the properties of a BitTorrent network: in particular they calculate the average download
time of a single file, proving that under some assumptions BitTorrent provides a scalable, stable
and efficient service for file-sharing. They also study the dynamics of peer-selection and optimistic
unchoking: on one hand, by means of game theory, they prove that the P2P swarm can reach an
equilibrium point where each peer contributes with all its bandwidth to the system; on the other
hand, they show that free-riding (i.e., peers that only download files without contributing anything
to the system) is still possible.

Authors of [93] analyzes the log related of a BitTorrent tracker related to a popular legal
torrent. This log covers an extended period of time of five months. BitTorrent proves to be a
very scalable system during flash-crowds even in practice, providing good download rates and
completion time to peers. However authors highlight again that the system definitely needs peers
to contribute their bandwidth as seeder after completing their transfer, otherwise performance
suffers.

Simulation has instead been used in [35] to study the utilization of upload capacity of peers
and the fairness of transfers. In agreement with the mathematical analysis of [145], authors of [35]
shows that the system performance greatly benefits from matching peers with the same bandwidth,
increasing fairness and preventing free-riding as well; therefore, they propose a bandwidth aware
tracker to improve the system. They also propose a few modifications to seeders to better use their
precious upload bandwidth in augmenting the diffusion of rare chunks through the swarm.

Another simulation study is carried in in [37] to assess the performance of a locality-aware
peer selection strategy. Authors of this work show that a significant reduction of inter-ISP traffic
(and the related cost for operators) can be obtained by biasing the peer-selection scheme towards
peers internal to the ISP. Such benefit comes almost at no costfor of system performance, provided
that initial seeders have an high upload bandwidth to sustain the initial spreading of content.

Congestion control work closer to our adopts a black-box experimental measurements ap-
proach to unveil proprietary algorithms of, e.g., Skype [38, 65] or P2P-TV applications [26]. More
precisely, [38] analyzes the reaction of Skype, which implements a VoIP service also based on a
P2P overlay, to changing network conditions: authors show that the protocol way of dealing with
losses differs from the way of reacting to congestion, at least when employing UDP as a transport
protocol. They also employ passive traces to study Skype signaling traffic and users behavior. Con-
versely in [65], authors study the way Skype, and especiallyits video traffic, deals with changing
network conditions. Especially they study multiple flows-scenarios, involving concurrent Skype
flows and TCP flows. Skype confirms its capability of working even in very bad settings, thanks
to several advanced mechanisms such as FEC, adaptive codecs, variable packet sizes; however
they discover an aggressive behavior towards TCP, given theunresponsiveness of Skype flows to
losses. In [26] an approach extremely similar to ours is employed to study of P2P-TV applications
adapt to harsh network conditions. Authors enforce networkimpairments in term of losses, delays,
available bandwidth and background traffic by means of a gateway running thenetem network
emulator. P2P-live streaming applications are able of dealing with extremely adverse network con-
ditions, yet they can become extremely aggressive and TCP-unfriendly in some cases, eventually
negatively impacting the performance of other applications and of the video-stream itself.

In [59], BitTorrent developers detail a specific aspect of their implementation: namely, an
algorithm to solve the problem of the clock drift in LEDBAT, to ameliorate the queuing delay esti-

128 8. A MEASUREMENT STUDY OFLEDBAT

mation at the sender side. Instead in [29] authors evaluate aPython, user-level implementation of
the new protocol in a large testbed: this independent study further confirms the non-intrusiveness
of LEDBAT and its lower-priority properties; on the contrary, authors detect a problem in exploit-
ing the available bandwidth, which, however, seems due moreto the overhead of their user-level
implementation. Finally the work which is the closest to ours is [164], where authors test their
own implementation of LEDBAT behind mainstream home gateways. From their analysis, au-
thors found that modern gateways often already implement advanced queue management to pre-
vent elastic traffic from interfering with interactive traffic. The evidence presented in the chapter
privileges such a solution to the one provided by LEDBAT as sophisticated queuing disciplines
may allow a finer tuning of traffic priorities. Moreover authors highlight that LEDBAT interacts
badly with such mechanisms in home gateways, resulting in very poor performance.

8.6 Summary

This chapter presented an experimental evaluation of LEDBAT , the novel BitTorrent congestion
control protocol. Single-flow experiments in a controlled environment show some of the fallacies
of earlier LEDBAT flavors (e.g., instability, small packetsoverkill, starvation at low through-
put, tuning of maximum receiver windows, wrong estimate of one-way delay in case of packet
reordering, etc.), that have been addressed by the latest release. Experiments in a real Internet
environment, instead, show that, although LEDBAT seems a promising protocol (e.g., achieving a
much smoother throughput and keeping thus the delay on the link low), some issues still need to be
worked out (e.g., performance in case of reverse path traffic). Finally, multiple-flows experiments
show that “low-priority” meaning significantly varies depending on the TCP settings as well.

In the next chapters we abandon the black-box approach followed in this one and we go back
to the formal specification of LEDBAT provided by the IETF draft [166]. We will carefully review
the design and implement the protocol to extensively study its behavior by means of packet level
simulation. With such an analysis we will complement the onepresented in this study.

129

Chapter 9

Simulation study of LEDBAT

In this chapter, whose results were published in [46, 155], we address the study of the LEDBAT
protocol by means of simulation. In Sec. 9.1, we first review the original LEDBAT design as
specified in the related IETF drat, better explaining the protocol objectives as well as the algorithm
used to achieve them. Then, by using our own implementation of the protocol for the packet-level
simulatorns2, in Sec. 9.2 we perform some experiments to assess protocol performance in simple
settings. First a few simple scenarios are studied, to understand the basic behavior of LEDBAT
when competing with another TCP flow and another low-priority flow. We actually find that
LEDBAT is an efficient protocol, correctly implementing a lower-than-best-effort service. Yet,
we discover an unfairness problem when two, non synchronized LEDBAT flows share the same
bottleneck: a latecomer advantage may arise, causing the first flow to starve, eventually for a long
time, thus potentially affecting the performance of the above application. We verify that such an
issue does exist also in real-life scenario, by conducting atestbed experiments with the recently
released official implementation of the protocol by BitTorrent .

For this reason in , we present four possible solutions to theproblem, some of them proposed
on the IEFT working group mailing-list. Two of them try to correct the measurement error which
seems the main cause of the unfairness. However, as found in earlier research on congestion con-
trol algorithms [52] and formally proved later in Chap. 10, the problem is rather due to the form
of the controller, and in particular in the addictive decrease component. Therefore in the last two
solution we try to reintroduce multiplicative decrease, actually obtaining the best result. Overall,
while some solutions are clearly uneffective, others partially relieve the problem: in these cases we
perform more complex simulations, with multiple flow-scenarios to tune their parameters. How-
ever, in the end, these four algorithms are not completely satisfactory, but were extremely helpful
in putting ourselves on the right direction towards a more complete solution, which is presented in
the next chapter together with a complete analytical and simulation study of its performance. At
the end of this chapter we review related work in Sec. 9.4.

9.1 LEDBAT Overview

This section provides a basic overview of the LEDBAT draft [166]. To better understand the
motivations behind LEDBAT, let us recall that the standard TCP congestion control needs losses
to back off: this means that, under a drop-tail FIFO queuing discipline, TCP necessarily fills the
buffer. As uplink devices of low-capacity home access networks can buffer up to hundreds of
milliseconds, this may translate into poor performance of interactive applications (e.g., slow Web
browsing and bad gaming/VoIP quality).

130 9. SIMULATION STUDY OF LEDBAT

on data_packet @ RX:
remote_timestamp = data_packet.timestamp
acknowledgement.delay =

local_timestamp() - remote_timestamp

on acknowledgement @ TX:
current_delay = acknowledgement.delay
base_delay = min(base_delay, current_delay)
queuing_delay = current_delay - base_delay
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

Figure 9.1: Pseudocode of the LEDBAT sender and receiver operations.

To avoid this drawback, LEDBAT implements a distributed congestion control mechanism,
tailored for the transport of non-interactive traffic with lower than Best Effort (i.e., lower than
TCP) priority, whose main design goals are:

• Saturate the bottleneck when no other traffic is present, butquickly yield to TCP and other
UDP real-time traffic sharing the same bottleneck queue.

• Keep delay low when no other traffic is present, and add littleto the queuing delays induced
by TCP traffic.

• Operate well in drop-tail FIFO networks, but use explicit congestion notification (e.g., ECN)
where available.

Intuitively, to saturate the bottleneck it is necessary that queue builds up: otherwise, when the
queue is empty, at least sometimes no data is being transmitted and the link is under-exploited. At
the same time, in order to operate friendly toward interactive applications, the queuing delay needs
to be as low as possible: LEDBAT is therefore designed to introduce a non-zerotarget queuing
delay.

In order to achieve this goal, LEDBAT follows a simple strategy. First of all, it exploits
the ongoing data transfer to measure the one-way delay, fromwhich it derives an estimate of
the queuing delayon the forward path. Using one-way delay instead of round-trip time has the
main advantage of preventing unrelated traffic on the backward path from interfering with data
transmission. Second, it employs alinear controller to modulate the congestion window, and
consequently the sending rate, according to the measured delay. LEDBAT operations can be
summarized in the pseudocode in Fig. 9.11.

In the following, we first consider the two main components ofthe LEDBAT algorithm sepa-
rately, and then we report some further considerations on the TCP-friendliness of the novel proto-
col.

9.1.1 Queuing Delay Estimate

Delay measurements are performed collaboratively by the sender and the receiver. The former
puts a timestamp from its local clock in each packet. The latter, instead, calculates the one-way

1We report the code from the first draft of the protocol. Later releases have improved a few aspects (for instance
to correctly manage intermittent flows) but the substance ofthe algorithm is practically unchanged for our research
purposes.

131

delay as the difference between its own local clock and the received timestamp, and communicates
it back to the sender in the acknowledgements. The sender, besides, maintains a minimum of all
observed delays, which represent thebase delayused in queuing delay estimate.

To explain the rationale behind such technique, let us consider the different components of one-
way delay: propagation, transmission, processing and queuing. Neglecting the processing delay,
propagation and transmission delays are constant components, while the only variable component
is the queuing delay. Intuitively, a packet which finds the queue empty (i.e., zero queuing delay)
will accurately estimate the constant portion of the one-way delay (i.e., the sum of propagation
and transmission delays). This measure yields a minimum of the delay, that will be stored as a
reference: then, the queuing delay can be estimated as the difference between the current and the
reference delays.

One-way delay measurements are notoriously difficult, especially for non-synchronized hosts.
Yet thevariation of delay with respect to the base delay, which is actually exploited by LEDBAT,
is a much more robust metric. In particular, it does not suffer from timestamp errors such as fixed
offsets and skews from the true time. For instance, the sender and receiver offsets could severely
affect the absolute one-way delay estimate, but they happily cancel in the arithmetic difference
queuing_delay=current_delay-base_delay (since both delays correspond in their
turn to the difference of the receiver minus the sender delay). Further considerations about clock
skew, noise filtering and route changes issues can be found in[166].

9.1.2 Controller Dynamics

A proportional-integral-derivative (PID)controller governs the dynamic of the congestion win-
dow in both the ramp-up and ramp-down phases. The controllercontinuously adapts the window
to the estimated delay, in order to match the target delay. Clearly, when the queuing delay estimate
is lower than the target (i.e.,off_target<0) the sending rate has to increase, so that queuing
delay reaches the target. Conversely, when the queuing delay estimate is higher than the target
(i.e.,off_target>0) the controller slows down the sending rate.

In Fig. 9.1 we observe that the controller itself is characterized by two parameters, theTARGET
delay and theGAIN coefficient. The draft states that“ TARGET parameter MUST be set to 25
milliseconds2 andGAIN MUST be set so that max ramp up rate is the same as for TCP.”. The
selection of a constant and moreover specific value forTARGET is quite controversial, as it is clear
that non-compliant implementation with a larger target delay are advantaged and could introduce
severe fairness issues (notice for instance that values in BEP29 [136] are larger than those speci-
fied in [166]). Concerning the second parameter, we set it toGAIN=1/TARGET, choice that we
motivate in the next section3.

We underline here a nice property of the PID controller: the window growth is directly pro-
portional to the difference between the queuing delay estimate and the targetoff_target. In
this way, when the queuing delay is close to the target, the controller response will be near zero,
thus avoiding undesirable oscillations. Conversely, whenthe estimation is far from the target, the
controller will increase the window faster and hopefully converge earlier.

2Recently, the last revisions of the draft have relaxed this condition and require TARGET to be “100 milliseconds
or less”.

3Since version 5 of the draft, the offset target is already normalized overTARGET and the draft imposesGAIN to
be lesser or equal to 1.

132 9. SIMULATION STUDY OF LEDBAT

9.1.3 TCP Friendliness Consideration

An important goal of LEDBAT concerns its ability to yield to TCP traffic when sharing the same
bottleneck resources. LEDBAT should be able both to detect the traffic already present on links,
and to yield quickly to newly incoming connections.

At the same time, LEDBAT must avoid starvation. In fact if LEDBAT always yielded to any
kind of traffic, even to the one generated by non interactive application (e.g., a long-lived FTP
transfer), the performance degradation perceived by usersmay convince them to simply revert to
TCP-based transfers, regardless of LEDBAT potential advantages.

A first necessary condition for TCP friendliness, is that LEDBAT should never ramp-up
faster than TCP. Since LEDBAT increases its congestion window of the largest amount when
the delay estimate is zero (notice also that estimated delaycan never be negative), by selecting
GAIN=1/TARGETwe guarantee that LEDBAT never ramps-up faster than TCP, as its maximum
ramp-up speed is limited to one packet per RTT (i.e. like TCP in congestion avoidance).

A second requirement is that the delay-based LEDBAT congestion controllershould react
earlier than loss-based TCP controller: intuitively, if the former can ramp-down faster than loss-
based connections ramp-up, it will yield to the latter. The draft states that LEDBAT should“yield
at precisely the same rate as TCP is ramping-up when the queuing delay is double the target”.
Again our choice ofGAIN=1/TARGET fulfills this requirement: in fact, when the queuing delay
is twice the target, LEDBAT will ramp-down at a rate equal to one packet per RTT, matching thus
TCP congestion avoidance ramp-up speed.

A third final condition is that,in case of loss, LEDBAT should behave like TCP does(i.e.,
halve its congestion window). From all these considerations, one can derive that LEDBAT design
follows a quite conservative approach, as in the worst case (when the queue estimation always
equals zero) its most aggressive behavior simply degenerates into TCP.

9.2 Simulation results

In this section, we report results gathered with our implementation of the LEDBAT controller
in the Network Simulatorns2: we start by illustrating some telling examples of the LEDBAT
dynamics in simple cases, incrementally adding complexityto refine the picture later on.

9.2.1 Implementation details

To avoid dealing with the complexity of retransmission in case of loss, we implement our LED-
BAT controller as a novel flavor of TCP, of which we change the congestion control mechanism.
More precisely, we turn off all TCP feature (e.g., FastRetransmit), leaving only the congestion
control algorithm early described in Sec. 9.1. For timestamping purposes, we exploit the TCP
timestamping option[95].

We implement all mandatory as well as optional features of LEDBAT[166]. More precisely,
we implement a cache of queuing delay minima, mandatory to cope with route changes on long
timescales. As far as the optional slow-start phase is concerned, since the LEDBAT draft lacks
its description [166], we adopt the standard TCP mechanism.However, unless otherwise stated,
slow-start mechanism is turned off. Also, though this issueis not treated in [166], our LEDBAT
implementation can work in batch-mode (i.e., all packets ofa window are possibly sent out in
bursts) or paced-mode (i.e., delaying the packet transmission so that packets are spaced equally
during the RTT). Unless otherwise stated, packet pacing is turned on.

133

Then, notice that reducing the sending window to 0 constitutes a problem, since the linear
controller will no longer be able to get one way delay estimates – thus, it will not be able to ever
increase its sending window again. Therefore, we set a congestion window minimum of 1 packet
per RTT, although this is not explicitly specified in [166].

Finally, we point out that we built LEDBAT using thetcp-linux module, which allows
to bridge real Linux code directly into the simulator. As a non-negligible side-advantage, the
implementation is then available as a kernel module offering a novel transport-layer protocol that
can be used by (unmodified) real applications.

9.2.2 Reference scenario

As reference scenario, we consider a bottleneck link of capacity C Mbps and buffer sizeB pack-
ets. For the sake of simplicity, we assume that all transceivers adoptP = 1500Bytes fixed-size
packets. Traffic flows in a single direction, and acks are not delayed, dropped nor affected by
cross-traffic on their return path. All flows have the same round trip timeRTT = 50ms, half of
which is due to the propagation and transmission delay components of the bottleneck link (i.e., a
one-way base delay of 25 ms).

In this chapter we restrict our attention to a simple high-speed access scenarios, with a link of
C = 10Mbps capacity for downlink/uplink (an extended set of simulations, including an ADSL-
like case is available in [157]), and different buffer sizesB ∈ [10, 100] ⊂ N packets. Notice that,
once fixed the link capacityC and the packet sizeP , we can express the queuing delayTARGET
in terms of either a time-lapse or bytes (and packets). Denoting for short theTARGET asτ , in the
following we will refer indifferently to the queuing delay in terms of time-lapseτT = 25ms or
packetsτP = τTC/8P (with capacity expressed in kbps and packet size in bytes). For instance
in our high-speed scenario,τT = 25ms corresponds toτP = 20.8 packets. Thus, a buffer size of
B = 40 packets, almost equal to the bandwidth-delay product, can accommodate twice as much
queuing delay than the LEDBAT targetτ .

As performance metrics, we consider thefairnessandefficiencyof the data transfer. For the
former, we use Jain’s fairness indexF , which is defined as:

F =
(
∑N

i=1 xi)
2

N ·∑N
i=1 x

2
i

(9.1)

where{xi}Ni=1 is the set of rates achieved byN flows sharing the same bottleneck resource. This
index ranges between as maximum value of1 (when the bandwidth is perfectly shared among the
N flows) and a minimum of1/N (in case one flow takes all the resource, leaving the others in
starvation). Being LEDBAT alower than best-effort protocol, we expectF < 1 when it competes
with TCP, butF ≃ 1 when LEDBAT flows share the same bottleneck. Regarding efficiency, we
consider thelink utilization η metric, defined as the ratio of the overall link throughput (including
headers) over the link capacityC.

9.2.3 Homogeneous Initial Conditions

Our investigation starts by considering a LEDBAT flow competing for the same bottleneck re-
sources with either (i) a TCP or (ii) another LEDBAT flow. For the time being, we disable slow-
start in both implementation as we are interested in the interaction of the LEDBAT PID the TCP
AIMD controllers. We let both flows start att = 0, when the queue is empty and no other traffic
is present on the link, so that LEDBAT is able to accurately measure the base delay.

134 9. SIMULATION STUDY OF LEDBAT

 0
 20
 40
 60
 80

S
en

de
r

w
in

do
w

[p
ac

ke
ts

]

TCP
LEDBAT

Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]
(a)

 0
 20
 40
 60
 80

S
en

de
r

w
in

do
w

[p
ac

ke
ts

] LEDBAT 1
LEDBAT 2
Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]
(b)

Figure 9.2: Temporal evolution of the sender window (top) and of the queue size (bottom) for
TCP-LEDBAT (a) and LEDBAT-LEDBAT interaction (b)

Fig. 9.2-(a) shows the temporal evolution of the LEDBAT and TCP windows (top) as well
as of the queue length (bottom), with a buffer size ofB = 40 packets. We recognize the usual
TCP sawtooth behavior, which defines a number of cycles. During the initial ramp-up (t < 2 s),
LEDBAT and TCP windows grownearly at the same speed of one packet per RTT. LEDBAT
grows at its maximum speed because the available link capacity keeps the queue empty. As soon
as queue builds up, the LEDBAT linear controller reacts accordingly by slowing down the increase
of its sending rate, while TCP behavior remains instead unaltered. Soon aftert = 2 s, LEDBAT
hits theτP = 20.8 packet target, and halts the window growth, so presenting a flat sender window
curve. TCP, instead, continues its additive increase, so that the queue keeps building up until the
queuing delay exceeds the target: the LEDBAT controller, unlike TCP, reacts by decreasing its
sending rate, finally reaching the minimum rate of one packetper RTT just beforet = 6 s.

Slightly afterwards, TCP causes a buffer overflow: consequently, TCP abruptly decreases its
sending rate by halving is congestion window. The capacity drains the queue empty, giving thus
start to a new cycle. In fact, LEDBAT detects the delay reduction and reacts by opening its window
again. However, in this cycle TCP has an initial window size of about 40 packets, which means
that it can create queuing sooner with respect to the previous cycle. Therefore, LEDBAT window
growth is slower, the TARGET delay is hit earlier (at aboutt = 7 s) and also the window shrink
phase appears much shorter. When TCP is again the sole senderon the link, it increases its sending
rate until a new loss happens, which in turn triggers the start of a new cycle.

Fig. 9.2-(a) confirms that, as LEDBAT reacts to congestionearlier than TCP by estimating the
queuing delay, it is able to yield to TCP, which canwork undisturbed. In fact, losses are due to the
normal AIMD dynamic of TCP rather than to the LEDBAT-TCP interaction. Fairness in this case
equalsF = 0.65, with TCP transferring 6 times as much data with respect to LEDBAT during
the same timeframe. Fig. 9.2-(a) also reports the sum of bothTCP and LEDBAT sender windows,
which represents an estimate of the instantaneous link utilization. When TCP and LEDBAT coex-
ist on the link, itsutilization increaseswith respect to the case where TCP is alone – in the figure
utilization increases by 16%, compared to the case where TCPis alone on the bottleneck.

Fig. 9.2-(b) shows a similar experiment, in which two LEDBATsources start competing at
t = 0 for the bottleneck resources. In this case, both senders employ a linear controller and
are able to share resources fairly (F > 0.99) and efficiently (efficiency is only 0.7% less than
in the Fig. 9.2-(a) case). As expected, once the delay targetis reached, LEDBAT sources settle
(since the offset from the target is zero, and so the controller response). Notice also that, since

135

the two sources started together, they measured the same base delay att = 0. Therefore, each
sender independently settles when measuring a queuing delay equal to the target, thus it is actually
responsible only for half of buffer occupancy.

9.2.4 Heterogeneous Initial Conditions

In this section we consider different start times for different sources. This implies that each sender
will measure a different base delay at startup, gathering also a different estimate of the queuing
delay. Indeed, assume that the first flow starts at timet1 = 0, while the second starts at time
t2 = t1 + ∆T . In case the queuing delay att2 is not zero but equal totQ(t2), the second source
will over-estimate the base delaytB(t2) with respect to the one measured by the first source as
tB(t2) = tB(t1) + tQ(t2). So, the second source will set its target to a value higher than the first
one, increasing the chances of a buffer overflow.

In case of interaction between LEDBAT and TCP, heterogeneity of initial conditions has a
negligible impact. To convince of this, consider that, whenever LEDBAT starts first, it will be able
to correctly estimate the base delay, and then to yield to TCP. Conversely if the LEDBAT flow
starts later att2, it will over-estimate the base delay by the amount of TCP packets present in the
buffer. This will in turn make LEDBAT under-estimate the queuing delay, resulting in an increased
sending rate which willanticipatethe first loss cycle. The system later evolves in a way similarto
Fig. 9.2-(a), since after TCP halves its window, the capacity drains the queue empty and LEDBAT
corrects its wrong base delay estimate. In subsequent cycles, LEDBAT will then dutifully yield to
TCP.

By means of Fig. 9.3-(a), we show, instead, that the interaction among LEDBAT flows is
heavily influenced by the buffer sizeB and the start time gap∆T . Each graph reports the sender
window of two competing LEDBAT flows. In the top plot, obtained for (∆T,B) = (2, 40), the
second flows activates before the first one has started to create queuing. So, the two flows measure
the same base delay and set the same target, which they together reach soon. But the first flow,
having started before, attains a larger congestion windows, and actually owns the biggest share of
the queue.

Instead, extremely different dynamics can be observed for(∆T,B) = (10, 40) in the middle
plot. In this case the second flow starts later enough to allowthe first one to create some queuing
delay, in particular a delayτT equal to its target. For this reason, the second flow wrongly senses
a base delay equal toτT , and consequently sets its target to twice this value. Therefore, the
newcomer starts increasing its rate right away, while the first one senses a growing queuing delay
and begins to slowdown until, slightly aftert = 20 s, it finally reaches the minimum rate.

Afterwards, dynamics depend on the specific buffer size. Themiddle plot shows a case
where the buffer cannot accommodate the target queuing delay of the second flow (asB=40 <
2τP=41.6). In fact, aroundt = 25 s, the second flow causes a loss on the bottleneck link and
consequently drops its sending rate. Afterwards, similarly to the TCP case, the capacity drains the
queue empty, providing the second flows the chance to correctits wrong base delay estimation.
Subsequently, flows appear to share much more fairly the bottleneck capacity.

The bottom plot, depicts instead the effect of a largerB = 100 buffer, able to absorb the
extra delay of the second flow. Basically, since no loss occurs, the second flows reaches its target
and then settles, leaving the first flow in starvation. Unfortunately this unfair state persists for a
possibly long time (namely, due to route changes considerations, the draft [166] imposes a reset
of the base delay every 2-10 minutes).

Finally in Fig. 9.3-(b) it can be seen that, provided that thebuffer is large enough, the latecomer
advantage even in a multi-flow scenario. It can be seen in the picture that the last arrived flows

136 9. SIMULATION STUDY OF LEDBAT

 0
 25
 50
 75

LE
D

B
A

T
 s

en
de

r
w

in
do

w
 [p

kt
s] ∆T=2 LEDBAT 1

LEDBAT 2

 0
 25
 50
 75

∆T=10

 0
 25
 50
 75

 0 5 10 15 20 25 30

Time [s]

∆T=10, B=100

(a)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
on

ge
st

io
n

w
in

do
w

 [p
kt

s]

Time [s]

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

(b)

Figure 9.3: LEDBAT vs LEDBAT: Time evolution of congestion window for different initial con-
dition and latecomer advantage phenomenon, even in a multiflow scenario.

 0

 10

 20

 30

 0 10 20 30 40 50 60

C
w

nd
 [k

B
]

Time [s]

Flow 1
Flow 2

-125
-100
-75
-50
-25

 0
 25
 50
 75

 100

 0 10 20 30 40 50 60

O
ffs

et
 [m

s]

Time [s]

Figure 9.4: Experimental LAN testbed: Congestion window evolution (top) and offset from the
target (bottom) for two competing backlogged libUTP flows.

constantly overestimates the base delay with the respect tothe previous one, thus starving all the
flows arrived before it. For an application like BitTorrent that involves several concurrent flows
this might be a common situation.

9.2.5 Latecomer advantage in real networks

To further highlight the relevance of this unfairness issue, we point out that the latecomer un-
fairness unveiled by simulation, also holds in practice, possibly leading to severe flow starvation.
We show this by performing testbed experiments of the recently released BitTorrent open-source
LEDBAT library [85] (namedlibUTP). We recreate the same conditions as in the simulation
scenarios: we consider two PCs connected by aC = 10Mbps Ethernet bottleneck, where we
emulate by means ofnetem [87] aRTT = 50ms delay. The first flow starts at timet = 0 while
we let the latecomer starts att = 10 s. Backlogged transfers are started using the source code
provided in [85], instrumented to produce detailed application-level logs. Packet level traces are
also captured and post-processed as we did in Chap. 8 for cross-checking purposes: the results are
in agreement with the application logs.

Results of the experiment are shown in Fig. 9.4, whose top portion reports the time evolution of
the congestion window of the two flows. As soon as the first flow starts, it increases its congestion
window until the target is reached, and then settles. However, when the latecomer kicks in at

137

 0

 20

 40

 60

 80

 0 20 40 60 80 100 120

Time [s]

(a) Random pacing

C
o

n
g

es
ti

o
n

 w
in

d
o

w
 [

p
k

ts
]

 0 20 40 60 80 100 120

Time [s]

(b) Slow-Start

 0 20 40 60 80 100 120

Time [s]

(c) Probabilistic decrease

 0 20 40 60 80 100 120

Time [s]

(d) Multiplicative decrease

Figure 9.5: Effect of the solutions proposed in the two flows scenario.

t = 10 s, the congestion window of the first-comer drops until starvation. The situation persists
until t = 50 s, time at which we stop the latecomer transfer: right after,the first-comer opens its
congestion window again, saturating the link.

9.3 Addressing the latecomer advantage

In this section, we propose a few modifications to the LEDBAT protocol to overcome the un-
fairness issue, which we test by means of simulations. The first group of solutions only tries to
ameliorate the base delay measurement. First, as suggested in the LEDBAT WG [9], we imple-
mentrandom pacingof packets belonging to the same window: this should allow flows to gather
different delay samples and possibly converge to a similar view of the base delay. Second, we
propose to useTCP’s slow-startat the very beginning of LEDBAT flows: by filling the buffer,
slow-start likely induces losses on already present flows, which drain the queue empty and leave a
chance for newcomers to gather a correct measure of the base delay. The second group of solutions
insteadaddresses the window decrease decisions, which represent a more fundamental issue. As
third solution, we thus suggest introducing (infrequent)random dropsof LEDBAT sender window,
as a means to break unfair states and to de-correlate flow decisions. Fourth, we propose to replace
the LEDBAT additive decrease with amultiplicative decrease: we indeed expect the abrupt reduc-
tion of the throughput of flows to empty the buffer and again allow latecomers to measure the real
base-delay.

In the following, we consider each technique on its own, investigating deeper those who actu-
ally provide some kind of solution to the problem. However toallow an intuitive comparison we
report in Fig. 9.5 four picture which show own each solution behaves in our reference scenario of
two flows, where the latecomer advantage is known to show up. It can be seen that the first solu-
tion is uneffective, while the last three restore the fairness between the two flows. In the following
we evaluate each proposal by means of the same metric used before: the Jain’s fairness index and
the network efficiency.

9.3.1 Correcting the measurement error

9.3.1.1 Random pacing

The fairness issue was early identified during the definitionof the LEDBAT protocol [9] and was
later confirmed by our preliminary simulation studies [155]. Still, according to some of the partic-
ipants to the draft definition, the randomness present in real networks would somehow prevent the
latecomer advantage from showing up: they argue that randomdelays caused by OSes, routers and

138 9. SIMULATION STUDY OF LEDBAT

background traffic are enough to avoid the queue becoming so stable and the consequent flow syn-
chronization. However, relying on external network conditions to ensure that the protocol actually
works is not a good engineering practice. For this reasons, it seemed much more robust to incor-
porate some randomness in the protocol itself, more specifically to add a random jitter to packet
transmission time. In this way the queue is expected to show amuch more varying dynamic, thus
allowing flows to gather different estimates of the queuing delay, eventually converging to a fair
share of the resource.

Since this was officially discussed in the LEDBAT working group, we analyze it as a first
solution. We add to our implementation a random pacing module, which randomly spaces the
transmission time of packets belonging to a congestion window in the RTT. Each packet is delayed
by a random, uniformly chosen interval of time, taking care of avoiding packets reordering.

Fig. 9.5-(a) shows the case of two flows sharing the bottleneck of our reference scenario and
implementing random pacing. Unfortunately, only some minor modifications of flow behavior can
be observed with respect to the plain LEDBAT situation. First, the increase phase of the second
flow is slightly longer, as the perturbations of the queuing delay measurements slow down the
ramp-up. Second, the latecomer flow attains a slower value ofthe congestion window, because of
its smaller target derived by its different view of the base delay. Nevertheless, random pacing does
not constitute a solution, as we assist to the same unfair situation, and we thus disregard it in the
following.

9.3.1.2 Slow start

We have seen that in the LEDBAT -LEDBAT interaction, the linear controlleralonemay get stuck
in an unfair state during a relatively long time. Yet, comparing the middle and bottom plots of
Fig. 9.3, we gather a very important observation: whenever aloss event happens, the competing
flows may be able to re-establish fairness (at least to a certain degree).

In other words, a loss event resynchronizes the start of the flows, possibly draining the queue
empty and thus allowing each flow to gather correct measures of the base delay. Extending this
observation, it seems as though it isnecessaryfor each LEDBAT flow to force a loss event at
startup, so to gather a correct measure of the base delay: a simple, though intrusive, way to achieve
this is to enableslow-start. As [166] lacks a precise description of the LEDBAT slow-start (which
is only briefly mentioned as an optional feature for conservative LEDBAT implementations), we
resort to standard TCP slow-start mechanism. In TCP, slow start is performed by initially setting
ssthresh to ∞, performing an exponential window increase and then, in case of loss, setting
ssthresh = cwnd/2 andcwnd=0: this process iterates until the window exceedssthresh,
in which case the slow-start phase ends.

We gauge the impact of slow-start on the network and user performance in terms of effi-
ciencyη, fairnessF and loss rateL, which is a indirect evaluation of the impact of slow start on
VoIP/Gaming flows.

As before, only two flows share the bottleneck and we consideri) the ideal case where neither
TCP nor LEDBAT implement slow-start, ii) a more realistic case where both TCP and LEDBAT
implement the same slow-start behavior. To examine the latecomer situation, we neglect the case
∆T = 0, since no fairness issues were observed in this case, and instead consider the start time
of the second flow to be uniformly distributed in∆T = U(0, 10) s, reporting the average of 100
simulation runs. For reference, we also consider the two values of∆T ∈ {2, 10} s reported early
in Fig. 9.3, and perform 10 simulation runs per each value of∆T (jittering the start time of the
second flow by a time lapse uniformly distributed in[0, 0.1] s at each run). We now consider both
a low-capacityCADSL = 2 and an high-speedCHS = 10 cases, and set the buffer sizeB to

139

Table 9.1: Link utilizationη%, meanµ and standard deviationσ FairnessF and Loss rateL. TCP
versus LEDBAT and LEDBAT versus LEDBAT scenarios, with/without Slow-Start, for different
CapacitiesC, Buffer sizesB and time gap∆T .

Without Slow-Start
Scenario C B ∆T η F L

Mbps Pkts sec [%] µ σ µ σ
TCP 2 10 2 99 0.60 6.5·10−4 6.2·10−3 9.4·10−6

LEDBAT 10 97 0.60 4.2·10−3 6.2·10−3 2.1·10−5

U(0,10) 98 0.61 6.8·10−2 6.2·10−3 4.5·10−4

10 50 2 99 0.53 1.1·10−3 3.0·10−4 1.3·10−6

10 97 0.55 8.0·10−4 3.1·10−4 1.0·10−8

U(0,10) 98 0.54 4.6·10−3 3.0·10−4 2.4·10−6

LEDBAT 2 10 2 99 0.70 1.2·10−1 5.8·10−5 3.8·10−5

LEDBAT 10 96 0.80 1.8·10−1 4.8·10−5 4.2·10−5

U(0,10) 98 0.83 1.8·10−1 3.8·10−5 3.7·10−5

10 50 2 99 0.73 4.4·10−2 - -
10 97 0.53 4.7·10−4 - -

U(0,10) 98 0.64 1.8·10−1 - -

With Slow-Start
Scenario C B ∆T η F L

Mbps Pkts sec [%] µ σ µ σ
TCP 2 10 2 99 0.58 1.0·10−3 1.5·10−2 1.5·10−3

LEDBAT 10 94 0.58 2.6·10−3 1.3·10−2 9.7·10−4

U(0,10) 98 0.60 4.5·10−3 6.6·10−3 4.1·10−5

10 50 2 99 0.57 6.4·10−3 1.2·10−3 1.1·10−4

10 97 0.58 6.8·10−3 1.3·10−3 1.1·10−4

U(0,10) 98 0.55 1.8·10−3 6.8·10−4 3.8·10−6

LEDBAT 2 10 2 99 0.85 6.5·10−2 7.1·10−4 8.2·10−6

LEDBAT 10 96 0.83 5.8·10−2 6.4·10−4 5.7·10−5

U(0,10) 98 0.83 1.0·10−1 1.1·10−3 2.3·10−3

10 50 2 99 0.93 9.6·10−2 4.3·10−4 1.3·10−8

10 96 0.99 2.6·10−3 4.1·10−4 2.0·10−6

U(0,10) 98 0.96 8.3·10−2 4.4·10−4 5.9·10−5

values slightly above the bandwidth delay product and able to accommodate about twice as much
as the delay target of LEDBAT flows. Simulation lasts for 300 seconds, and results refer to the
time interval[∆T, 300] s where both flows are active at the same time.

Results are reported in Tab. 9.1. Top part of the table reports the TCP vs LEDBAT case, while
LEDBAT vs LEDBAT is reported at the bottom. Left portion of the table refers to the case when
no slow-start is used, while results obtained when slow-start is activated are reported on the right
portion.

Simulation results confirm our intuition: the slow-start phase reintroduces fairness on the
LEDBAT vs LEDBAT case, while leaving the TCP vs LEDBAT case almost unchanged. For in-
stance, notice that in the worst-case for the fairness metric (represented by(C,B,∆T)=(10, 50, 10)
where the behavior is similar to the one early reported in themiddle plot of Fig. 9.3), the use of
slow-start raises the LEDBAT vs LEDBAT fairness fromF = 0.53 to F = 0.99. Even in the
extreme case (not shown in the table) of a capacityC = 2Mbps and a bufferB = 100 packets,
i.e., and ADSL link with a very large buffer (about 500 ms), the fairness between two LEDBAT

140 9. SIMULATION STUDY OF LEDBAT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10-5 10-4 10-3 10-2 10-1 100
 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
ffi

ci
en

cy

F
ai

rn
es

s

Window decrease probability p

Efficiency
Fairness

(a)

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy
 η

p=1/750
p=1/1000
p=1/10000

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s

Number of bottleneck flows
(b)

Figure 9.6: (a) Efficiency and fairness as a function ofp and (b) Performance of random drop for
different number of flowsN .

flows increases fromF = 0.57 to F = 0.77 when slow-start is used (with a limited loss rate
L = 4 · 10−3).

Concerning the loss rate, we expect slow-start to generate loss events only at the start of each
connection: therefore, we expect the loss rateL to be limited. From the table, we gather indeed
that, despite the loss rate grows by about one order of magnitude when slow-start is enabled,
nevertheless the absolute amount of losses is always very limited. In case only LEDBAT flows,
with slow-start enabled, share the bottleneck, loss rate tops to aboutL = 1 · 10−3 in the worst
case.

Despite its beneficial effects, the introduction of such an aggressive mechanism in a low prior-
ity protocol seems contrary to LEDBAT original design goals. In fact slow-start also disturbs the
operation of other protocols sharing the bottleneck, as they will experience losses as well. Though
we have seen the real number of packet losses can be very limited, causing only minor troubles to
other services, in the following we try to devise some less intrusive solutions to the fairness issue,
which will be anyway inspired by the lesson taught by slow-start.

9.3.2 Introducing multiplicative decrease

From the study of the slow-start solution we can derive a simple intuition: the introduction of a
multiplicative decrease in the window dynamics, which causes a sudden drop of sending rate, can
relieve the fairness issue. In fact, multiplicative windowdrops clearly accelerate the buffer drain,
thus allowing flows to better estimate the base delay and potentially converge to a stable and fair
regime. In other words, we conjecture LEDBAT additive decrease component to be the principal
cause of unfairness.

We actually analytically demonstrate the intrinsic instability and unfairness due to the additive
decrease component (which was early observed by Jain in [52]) in the next chapter, where we
employ mathematical tools to support our claims. We exploretwo ways of explicitly introducing a
multiplicative decrease in the LEDBAT protocol: first, we superpose a probabilistic window drop
to the LEDBAT linear controller in Sec. 9.3.2.1; then, we directly replace the additive decrease
with a multiplicative one in Sec. 9.3.2.2.

141

9.3.2.1 Random window dropping

We have previously observed that when the buffer empties, for instance due to losses caused by
slow-start, then the two flows can correct their estimation of the base delay and converge to a fair
state. Should LEDBAT flows autonomously slowed down their rate at regular intervals, we could
avoid forcing losses in the buffer (i.e., slow-start) altogether. A simple way to induce this behavior
is to randomly drop the congestion window: upon reception ofan acknowledgment packet, in
addition the adjustments specified by the LEDBAT protocol, we also halve the congestion window
with a constant probabilityp. At flow level, this results in a dropping rate proportional to the
current transmission rate. The evolution of the congestionwindow in the simple case of two flows
with a drop probabilityp = 10−4 is reported in Fig. 9.5-(c), showing a fair share.

Now we want to identify an optimal range of values for the dropprobabilityp. We preliminary
consider the case of two flows arriving at the bottleneck witha gap of∆T = 10 s plus a random
jitter uniformly distributed in[−1, 1]ms. In Fig. 9.6-(a), one can observe the resulting resource
allocation in terms of efficiency (left axis) and fairness index (right axis) as a function of the
chosen drop probabilityp. For each value ofp we represent mean and variance (with vertical
bars) of the considered metric over25 simulations, each one lasting300 s. As expected, for small
values ofp we obtain a low fairness index (because the drop event is not frequent enough), but an
efficient utilization of the bottleneck. On the opposite side, whenp becomes high the efficiency
is extremely compromised, while the fairness is restored. Despite the natural tradeoff between
fairness and efficiency, values ofp in the grey-shaded range[10−4, 10−3] seem to allow a fair and
efficient share of resources.

Still, the selection of the random probabilityp strongly depends also on the number of flows
sharing the bottleneck: the larger the number of flows, the largerp should be in order to have all
flows simultaneously slow down to allow newcomer flows to measure the right base delay. To
confirm this intuition we report in Fig. 9.6-(b) the behaviorof η andF for three values ofp when
N ∈ [2, 10]. Mean and variance over 100 simulations of the considered metrics are plotted for the
case where each flow starts randomly in[0, 60] s. If the efficiency remains very high, with a good
utilization of link starting fromN = 4 for all p settings, the fairness index shows an improvement
over the plain LEDBAT case, but is however far from the optimum. In fact, when multiple flows
are involved, one should use a much higher probability to achieve a perfect share of resource,
which would in turn impose a more significant cost in term of link efficiency, especially for small
values ofN .

9.3.2.2 Multiplicative Decrease

The encouraging results of the previous section suggest taking a step further and replacing the
LEDBAT additive decrease with a multiplicative one altogether. Therefore, we modify the algo-
rithm so that, whenever an ack packet carries a delay sample exceeding the targetτ , the window
drops by a factorβ < 1, i.e., in the code this translate to adding the following check

if off_target < 0 then cwnd *= beta

Notice that the multiplicative decrease is rate-dependent, and thus penalizes flows proportion-
ally to their sending rate (window). Fig. 9.5-(d) shows the evolution of the congestion window for
two competing flows withβ = 0.6. We can observe rate convergence to a stable regime where
each flow gets a fair share of the capacity, once both flows havecorrectly estimated the base de-
lay. Moreover, at steady state flows decrease their windows simultaneously: this is a desirable
property, since newly arriving flows will have the occasion to correctly measure the propagation

142 9. SIMULATION STUDY OF LEDBAT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1
 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
ffi

ci
en

cy

F
ai

rn
es

s

1 - β

Efficiency
Fairness

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy
 η

1-β=0.1
1-β=0.06
1-β=0.02

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s

Number of bottleneck flows

Figure 9.7: (a) Efficiency and fairness for different valuesof β and (b) Performance of multiplica-
tive decrease for different number of flows

delay.
Like in the random drop solution of Sec. 9.3.2.1, a careful choice of the multiplicative factor

β has to be made. Following the same approach used before, we first study the case of two flows
and then consider the general case with a greater number of flows. In Fig. 9.7-(a) we plot mean
and variance over25 simulations of efficiency and fairness for increasing values ofβ (we actually
report the value1 − β on the x-axis). As before, flows starts with a gap of∆T = 10 s plus a
random jitter. As expected, values ofβ close to0 (i.e., 1 − β close to1) solve the fairness issue
but introduce an efficiency loss. On the contrary values ofβ close to 1 are not able to solve the
latecomer advantage, yielding low fairness values. Valuesbelonging to the gray-shaded part of the
graph (β ∈ [0.90, 0.99]) instead guarantee both fairness and efficiency.

Fig. 9.7-(b) shows the case ofN > 2 flows: on the one hand the efficiency of smaller values
of β improves when multiple flows are involved; on the other, the fairness decreases for larger
values ofβ. In fact, to prevent the delay estimation error, the multiplicative decrease factor has
to be smaller in the multiple flows scenarios, where a more significant drop in the sending rate is
needed. However with respect to the previous solution, the multiplicative decrease achieves better
performance both in terms of efficiency and fairness. In particular the valueβ = 0.94 has optimal
results for both metrics whenN > 4, which is a typical situation for P2P applications.

9.4 Related work

Congestion control studies on the Internet date back to [94]and it is out-of-scope to provide a full
review of the existing literature here, as it will likely take a complete thesis. Still, it is mandatory
to cite a couple of references sharing the same LEDBAT low-priority spirit [103, 111, 118, 175].
Authors of [103] implement a lower-priority protocol at theapplication layer, employing a receiver
window based algorithm. The 4CP [118] protocol changes instead the usual TCP congestion
control algorithm, introducing two phases, a good and bad phase (i.e., congestion), by means of
which their controller is able to guarantee a long-term stable throughput. This is possible if the
application can tolerate transient periods of time with lower sending rates, which actually allow
foreground protocols to operate undisturbed.

Although not a lower-than-best-effort protocol, we cannotexempt ourselves from citing TCP
Vegas [41], as it has been the first version of congestion control using delay measurements, in
particular the RTT estimation, as congestion signal. Furthermore, like LEDBAT Vegas aims at
introducing a small fixed amount of additional delay in the bottleneck, yet without yielding to nor-

143

mal TCP. While in an all TCP Vegas setting the protocol has good properties, being able to achieve
better throughput with respect to loss-based congestion algorithms (i.e., TCP Reno and later ver-
sions) and not being affected by RTT unfairness, nevertheless it suffers from a few drawbacks
which have hindered its diffusion.

Going back to lower-priority protocols, TCP-NICE [175] extends the delay-based behavior
typical of TCP Vegas with a multiplicative decrease reaction to early congestion, which is actually
detected when the number of packets experiencing a large delay in an RTT exceeds a given thresh-
old. On the other hand, TCP-LP enhances the loss-based behavior of TCP Reno with an early
congestion detection based on the distance of the instantaneous one-way delay from a weighted
moving average calculated on all observations. In case of congestion, the protocol halves the rate
and enters an inference phase, during which, if further congestion is detected, the congestion win-
dow is set to zero and normal TCP Reno behavior is restarted. These two solutions, TCP-LP [111]
and TCP-NICE [175], differ from LEDBAT in that the latter aims at introducing aboundedex-
tra delay: i.e., when queuing delay reaches a given target, the LEDBAT protocol slows down its
transmission rate to ensure the queuing delay target is not exceeded. Notice that this is especially
important for VoIP, gaming, and all other interactive applications that are sensitive to delay.

Related work has already tackled the intra-protocol fairness issue affecting delay-based con-
gestion control algorithms. In particular, regarding TCP Vegas [41] which is the first example of
such family of techniques, such a problem was early pointed out [128] in relation to (i) to route
changes and (ii) to persistent congestion when multiple concurrent Vegas flows insist on the same
bottleneck. The latter is the same malfunctioning we spotted in the original LEDBAT design:
latecomer flows overestimate the base delay because of the queuing delay old flows have already
put in the buffer. LEDBAT proposers clearly took advantage of this literature when designing the
protocol, for instance when they adopted the same solution of [128] to the rerouting problem (i.e.,
by using only the recent history of delay observations for the base delay estimation), but they ne-
glected the latecomer advantage. Nevertheless, authors of[23] have remarked some problems of
LEDBAT flows subjected to route changes, in particular againan unfairness issue, which authors
claim requires further adjustments to the protocol.

To solve the fairness issue, researchers have followed various approaches: on the one hand,
some works try to improve the estimation of the base RTT [59, 81, 182]; on the other hand, others
propose techniques to achieve fairness in spite of the base delay estimation error [40, 84, 114,
117]. The first type of work usually relies on additional support from the network to correct the
measurement: for instance, [182] uses an out-of-band priority packet which skips the queue and
provides a good estimation of the base delay; [81], instead,adapts its parameters according to the
number of congested routers on the path, thus relying on their feedback. Authors of [40, 84] follow
the opposite approach and prove that a particular choice of parameters allows flows to converge to
a fair share of available bandwidth. The delay based algorithm proposed in [117] was also shown
capable of dealing with noisy delay measurement, thanks to the careful choice of the function of
the controller. Finally, in [114], authors propose a new delay based AIMD algorithm and choose
a backoff factor which avoids measurement errors. Our work is the first to study this issue for a
lower-than-best-effort protocol and to achieve together efficiency, fairness and lower-priority by
reintroducing the multiplicative decrease component, forwe correctly identify the root cause of
unfairness in the addictive decrease component [52] ratherthan in the measurement error.

Other related work concerning the BitTorrent application has been already reviewed in Sec. 8.5.
Most of the work on LEDBAT , instead, adopts a simulative approach [22, 44], with a few excep-
tion employing a measurement approach [164]. In [44], authors focus on a comparison of low-
priority protocols, contrasting LEDBAT with TCP-LP [111] and TCP-NICE [175], showing that
LEDBAT has the lowest level of priority; however, they also shows that the protocol as is lacks any

144 9. SIMULATION STUDY OF LEDBAT

easy way of tuning the level of low-priority, which might be adesirable property. Along similar
lines, authors in [22] investigate the policies for dynamicparameter tuning, in particular as far as
theGAIN parameter is concerned. They propose to adopt an adaptive value of the multiplicative
coefficient of the congestion window, when the steady state is reached: in this way they prevent
fluctuation around the equilibrium and reduce the delay introduced in the bottleneck. Authors in
[164] instead study LEDBAT in a local testbed, employing different real ADSL modems, focus-
ing on the interaction of LEDBAT and active queue managementtechniques that are becoming
commonplace in modern home gateways (cfr. Sec. 8.5 for more details).

9.5 Summary

In this chapter, we evaluated the LEDBAT protocol by means ofsimulation. We carefully reviewed
the specification of the algorithm as found in the IETF draft [166] and studied simple scenarios
from which we gathered this main takeaways:

• LEDBAT is able to achieve inter-protocolfriendliness(i.e., yield to TCP) and at the same
time to efficiently exploit the extra available resources.

• Inter-protocolfairnessis maintained even in case of wrong parameter settings, in which case
LEDBAT simply degenerates into TCP.

• The PID controlleralone is not sufficient to guarantee intra-protocol fairness: in presence
of large buffers, a latecomer advantage arises among LEDBATflows.

Later we concentrated on possible solution to this later problem, i.e., the intra-protocol fairness
issues arising in LEDBAT. The first two solutions, based on random pacing and on an additional
slow start phase, were inspired by the discussions within the LEDBAT IETF working group [9].
Their objective is to de-correlate flow dynamics, so to allowflows to get a correct estimate of
the queuing delay. In both cases, unfairness appears to be only partially or ineffectively relieved:
the random jitter addition shows no real improvement in terms of fairness, whereas introducing a
slow-start phase goes against LEDBAT low-priority goals.

While investigating the reasons behind the unfairness, themain cause appears to be actually
the addictive decrease component preventing the system from converging to a stable regime, as
already observed by Jain in [52]. In the LEDBAT case, the error in the estimation of the queuing
delay further hinders the convergence to a fair state. Therefore, we devised two possible alterna-
tives to incorporate a multiplicative decrease term in the LEDBAT controller: first, by adding a
probabilistic drop to the additive increase/decrease dynamics, then by directly replacing the ad-
ditive decrease with a multiplicative one altogether. The results are promising as they display a
region of the parameters (drop probabilityp or decrease factorβ) where fairness can be achieved
at no or little expense of efficiency. Although both solutions have their merits, the multiplicative-
decrease one may be more appropriate, given: (i) better results in terms of efficiency and fairness
when multiple flows are competing on the same link, and (ii) the solid theoretical foundation of a
purely multiplicative window decrease, already proved in [52], for increase/increase factors equal
for all competing flows. In next chapter we actually propose and study in more complex scenar-
ios an additive increase/multiplicative decrease controller tailored to LEDBAT goals, which better
solves the problem achieving fairness and efficiency.

145

Chapter 10

Designing an efficient and fair LEDBAT

After unveiling the latecomer advantage which affect the LEDBAT protocol, in this chapter we
propose an effective modification to its design, in oder to achieve efficiency, fairness and low-
priority altogether. Results presented in this chapter arecurrently submitted for publication in [45].
To meet our goals, we adopt a systematic approach. First we analytically investigate the properties
of the original linear controller of LEDBAT in Sec. 10.1, proving that unfairness naturally derives
from the shape of the controller. Therefore, we modify the algorithm, especially, but not only,
by reintroducing a multiplicative decrease component. Thefairness and stability properties of the
new protocol, named fLEDBAT from fair-LEDBAT are demonstrated mathematically by means
of a fluid model in Sec. 10.2. We implement the fLEDBAT inns2 to study its properties in more
complex scenarios in Sec. 10.3 which can not be treated analytically: we study the impact of
the traffic model (e.g., backlogged vs chunk-based transfers) in Sec. 10.4, the sensitivity of the
protocol to parameter changes in Sec. 10.5. We finally evaluate the performance of the protocol in
P2P-like settings from a single-peer as well as a whole swarmperspective in Sec. 10.6.

10.1 Current LEDBAT fairness issues

According to the original draft proposal[166], LEDBAT maintains a minimum one-way delay es-
timationDmin, which is used as base delay to infer the amount of delay due toqueuing. LEDBAT
flows have a target queuing delayτ , i.e., they aim at introducing a small, fixed, amount of delayin
the queue of the bottleneck buffer. Flows monitor the variations of the queuing delayq(t)−Dmin

to evaluate the distance∆(t) from the target:

∆(t) = (q(t)−Dmin)− τ, (10.1)

whereq(t) is the queueing delay measured at timet. The value of the offset∆(t) is then used
to drive the congestion window evolution, which is updated packet-by-packet at each acknowl-
edgement reception as it follows:

cwnd(t+ 1) =

{

cwnd(t) + α τ−∆(t)
τ

1
cwnd(t) if no loss,

1
2cwnd(t) if loss.

(10.2)

wheret is a discrete time variable that increments by 1 at each ack arrival andcwnd(t) is the
congestion window at timet. The drawbacks of such a congestion window update mechanism
mainly consist in the intra-protocol unfairness coupled with a poor calibration of the LEDBAT
level of (low) priority with respect to TCP.

146 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

10.1.1 Impact of additive decrease

We demonstrate that the additive decrease, rather than the measurement errors, is the main cause
of unfairness in the LEDBAT protocol: in other words, the late-comer advantage is actually a
fundamental drawback of the additive decrease term, meaning that the original design is currently
misguided. Such conclusions have been already drawn by Jainfor a simpler scenario in [52].

Without loss of generality, let us consider the case ofN LEDBAT flows with the same round
trip time R(t), sharing the same link of capacityC and finite buffer sizeB. Each flowi ∈ N ,
with N = {1, 2, . . . , N}, starts atti ≥ 0, with t1 ≤ t2 ≤ · · · ≤ tN and with an initial congestion
window Wi. Given the packet-level congestion window dynamics in (10.2), we demonstrate the
following statement.

Proposition 1. If N < B
τC , anddmax(tN) , maxi,j∈N [W i(tN)−W j(tN)] > 0, then the system

is unfair, i.e.∃t∗ ≥ tN , such that∀t > t∗ dmax(t) > 0.

Proof. Given (10.2), a simple fluid representation of the window dynamics of flowi, Wi(t), in
continuous time, is:

dWi(t)

dt
=

1

R

τ −Q(t)

τ
, (10.3)

where we supposed for simplicityR(t) ≈ R, which is true for large propagation delay (the proof
can be easily extended to the case of variable round trip delays). Since the estimated queuing
delay can be different for each flow, depending on its stored base delay, we replaceQ(t) byQi(t),
i.e., the queue occupancy measured by each sender, and simply observe thatQi(t) varies in the
interval (Q(t) − (N − 1)τ,Q(t)). Indeed, the last flow makes the largest error in the estimation
of the queuing delay, because it measures as base delay the actual propagation delay increased by
(N − 1)τ , the sum of the target delay of all preceding flows. It followsthat,∀i, j ∈ N :

W i(t)−W j(t) =W i(tN)−W j(tN) +

∫ t

tN

Qj(u)−Qi(u)

Rτ
du

where |Qj(t) − Qi(t)| is bounded by(N − 1)τ . Hence, if we chooset∗ equal totN +
W i∗(tN)−W j∗(tN)

(N−1)/R , with (i∗, j∗) = argmaxi,j∈N W i(tN)−W j(tN), it results:

dmax(t) , max
i,j∈N

W i(t)−W j(t)

≥ max
i,j∈N

W i(tN)−W j(tN) +
(N − 1)

R
(t− tN)

=
(N − 1)

R

(

(t− tN) +
W i(tN)−W j(tN)

N − 1
R

)

=
(N − 1)

R
(t− t∗) > 0, ∀t > t∗.

Observation 2. The fact that the system evolves towards an unfair state is strictly related to the
fact that the dynamic equations, describing the state of thesystem are unstable. Besides equations

147

(10.3) for the sources, we have

dQ(t)

dt
=

N
∑

i=1

Wi

R
− C1Qt>0. (10.4)

Equations (10.3),(10.4) define a linear system of ODEs with characteristic polynomialλN−1
(

λ2 +NCτR
)

.

The corresponding eigenvalues areλ1 = 0, λ1,2 = ±i
√

N
Rτ , and the matrix associated with the

system of ODEs is easily shown to be diagonalizable by standard algebra. As the eigenvalues
have zero real part, the system cannot consequently be asymptotically stable. Being the matrix
diagonalizable, the solution is limited for everyt, however the dependence to the initial condition
never vanishes because of the zero real part of the eigenvalues. In addition, the associated matrix
cannot be inverted because of the zero eigenvalue which implies that the solution of the system has
an orbit around any(W1, . . . ,WN , Q) such that

∑

iWi = RC, Q = τ . In other words, the linear
response of LEDBAT is never able to make the stable point reachable from any initial condition:
this is the root cause of the observed latecomer advantage phenomenon that we aim at solving in
the following.

10.2 Proposed LEDBAT modification

To address this issue, we propose to modify the delay-based decrease term andto introduce a
multiplicative decreasecontinuously driven by the estimated distance from the target,∆(t). Intu-
itively, the multiplicative window reduction response to congestion allows to slow down enough
the source sending rate to make a stable (and fair) point always reachable. Clearly, to guarantee
at the same time fairness and protocol efficiency, a proper choice of the decrease factor has to be
made, so as to prevent significant (and unnecessary) drops inthe congestion window. In addition,
we observe that the additive increase term as in (10.2) leadsLEDBAT flows to slow down the
increase factor until the targetτ is reached, in which case the window increase completely stops.
This clearly implies a smaller convergence to the target andhence a minor efficiency if compared
to the case of a constant additive increase factor independent of ∆(t). Based on the above ob-
servation, we propose to modify the increase term as well, and to introduce an additive increase
according to a constant factorα as in TCP Reno. Notice that in this way, we expect to achieve
better efficiency performance without violating the low priority requirements as expressed in the
LEDBAT draft. Indeed, by selectingα ≤ 1 the additive increase component can be made at most
as aggressive as TCP.

Summarizing the observation from the previous section, we propose to modify the congestion
window evolution as follows:

cwnd(t+ 1) =

cwnd(t) + α 1
cwnd(t) if no loss and∆ ≤ 0,

cwnd(t) + α 1
cwnd(t) −

ζ
τ∆ if no loss and∆ > 0,

1
2cwnd(t) if loss.

(10.5)

In the following sections we quantify the overall improvement deriving by such a congestion
window update by means of both afluid model, which provides a closed-form characterization
of the stationary throughput andsimulations, which allow the study of more complex scenarios.
In the remainder of this chapter, we refer to the modified version of LEDBAT as fair-LEDBAT
(fLEDBAT).

148 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

Table 10.1: Notation
N Number of fLEDBAT flows
C Link capacity
{W i(t)}i=1,...,N Congestion windows at time t
{X i(t)}i=1,...,N Instantaneous rates at time t
Qt Queue occupancy at time t
α Additive Increase factor
ζ Multiplicative Decrease factor
Rt Round trip time at time t
τ Queuing delay target

10.2.1 Fluid model description

In this section we develop a fluid model of the congestion window and hence of the transmis-
sion rate of one or more fLEDBAT flows aimed at capturing first order system dynamics. The
congestion window is now a continuous variable both in time and in space,W (t) (the notation is
summarized in Tab.10.1). We consider the case ofN fLEDBAT flows sharing the same link of
capacityC and experiencing the same Round Trip TimeRt. The model generalizes to the case of
heterogeneous RTT, yet for the sake of simplicity we focus onthe homogeneous case. In addition,
we make the following assumptions:

• The round trip timeRt is defined by the sum of twice the propagation delay,R, transmis-
sion delay1/C and queueing delayq(t). We further assume that the propagation delay is
predominant, i.e.Rt ≈ R.

• The queueing delayq(t) is defined as ratio of the queue occupancyQt at timet divided by
the link capacityC, i.e., q(t) = Q(t)/C. Thus, we assume that the queuing delay infor-
mation instantaneouslypropagates to the sender, neglecting thus the delay in the feedback
loop.

• We further assume that flows can correctly estimate the queuing delay, which is equivalent
to takeDmin = 0.

• By Little’s law, we assume that congestion windows and link rates are linked byXi
t =

W i
t /Rt, ∀i = 1, ..., N .

Remark that the assumption that flows can correctly estimatethe queuing delay may not hold in
practice. As such, we expect that simulation results may show an offset with respect to the model
predictions, which is due to such simplifying assumption. There are however two main reasons for
which we believe these assumptions, which make the problem tractable, are reasonable as well.
On the one hand, additional mechanisms to enhance the delay estimation accuracy could be then
adopted in order to ameliorate the overall protocol performance: this has been done in previous
work [111], and is also part of the current BitTorrent effort[59] to reduce the measurement error
and hence reinforcing our assumptions. On the other hand, a more fundamental reason is that
the characterization of protocol dynamics in absence of such estimation error is a necessary step
in the fLEDBAT protocol design – as, even though on simplistic settings, important properties
of the protocol such as efficiency and fairness can beprovedto hold with the help of a rigorous
framework.

149

10.2.2 Fluid system dynamics

Let us consider the case of a N fLEDBAT connections, whose congestion window evolves accord-
ing to (10.5). The corresponding flow-level congestion window evolution is:

dWi(t)

dt
=

α

R
− ζ

τ

(

Q(t)

C
− τ

)

Wi(t)

R
1Wi(t)≥01Q(t)≥Cτ , (10.6)

where we denote byWi(t) the instantaneous congestion window at timet for connectioni in
the fluid system. Assuming an approximately constant round trip delay, we replaceRt by R in
(10.6). The instantaneous queue occupancy instead satisfies:

dQ(t)

dt
=

N
∑

i=1

Wi(t)

R
− C1Q(t)≥0. (10.7)

where, in other words, only the flow that exceeds the capacitycreates queuing in the buffer.
Thus, the instantaneous rate of connectioni, Xi(t), satisfies:

dXi(t)

dt
=

α

R2
− ζ

Rτ

(

Q(t)

C
− τ

)

Xi(t)1{X(t)≥0}1Q(t)≥Cτ (10.8)

and (10.7) can be re-written as

dQ(t)

dt
=

N
∑

i=1

Xi(t)− C1Q(t)≥0. (10.9)

10.2.3 System convergence

The main result we derive from the model is the existence of a unique and globally stable solution.
We also express, with closed form formulæ, the performance of the protocol at the equilibrium,
proving itsefficiencyand fairness– which was our initial goal. Let us start by proving that the
system admits a unique solution.

Proposition 3. The system of ODEs (10.8)-(10.9) admits the unique equilibriumP ∗ = (X∗
1 , . . . ,X

∗
N , Q∗)

X∗
i = C/N, i = 1, . . . , N Q∗ = Cτ +

Nατ

ζR
(10.10)

whereX∗
i andQ∗ denotes the stationary values ofXi andQ respectively.

Proof. We consider the stationary regime by the condition(Ẋi, . . . , ẊN , Q̇) = (0, . . . , 0)

Q̇ = 0 ⇔
N
∑

i

X∗
i = C,

Ẋi = 0 ⇔ 0 =
α

R2
− ζ

RCτ
(Q∗ − Cτ)X∗

i ,

⇔ 0 =
α

R2
− Nα

CR2
X∗

i ⇔ X∗
i = C/N, i = 1, . . . , N. (10.11)

150 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

Then, the following proposition states that this unique equilibrium is also globally stable (see
[176]).

Proposition 4. The system of ODEs (10.8)-(10.9) is globally stable inP ∗.

Proof. Let us writeX = (X1, . . . ,XN), we consider the trajectories of the point(X, Q) ∈ R
N+1
+

driven by the ODEs (10.8)-(10.9). In the regionA = {x, q : 0 < q < Cτ}, the state equations
simplify to

Ẋi = α
R2 ⇒ Xi = Xi(0) +

α
R2 t, ∀i

Q̇ =
∑N

i=1Xi − C ⇒
Q(t) = Q(0) + (

∑N
i=1 Xi(0)− C)t+ Nα

2R2 t
2

(10.12)

Clearly, for any(X(0), Q(0)) ∈ A, there exists a finitet ≥ 0 such that(Xt, Qt) /∈ A. This
means that all points(Xt, Qt) ∈ A are unstable. The unique equilibrium pointP ∗, calculated in
Prop.3, is outsideA. For(X, Q) /∈ A, the state equations become

{

Ẋi = α
R2 − ζ

CRτ (Q− Cτ)Xi

Q̇ =
∑N

i=1Xi − C

We now use the technique of the Lyapunov function to show thatP ∗ is a stable point, i.e. we
have to show that there exist a functionVt defined in a neighborhood ofP ∗, positively defined for
t ≥ 0, with orbital derivative negatively semidefinite (in whichcase, the solutionP ∗ is stable in
the sense of Lyapunov, see [176] Theorems 8.1-8.3). OutsideA, we define the Lyapunov function
by

V (X, Q) =

N
∑

i=1

(Xi −X∗
i)− log

(

Xi

X∗
i

)

+
ζ(Q−Q∗)2

2RCτ
(10.13)

Clearly,V (P ∗) = 0, V (X, Q) ≥ 0 ∀(X, Q) /∈ A, and

V̇ (X, Q) =

N
∑

i=1

(Ẋi − Ẋi
X∗

i

Xi
) + Q̇

ζ(Q−Q∗)

RCτ
(10.14)

=
N
∑

i=1

Ẋi

Xi
(Xi −X∗

i) + (Xi −X∗
i)

[

ζ(Q−Q∗)

RCτ

]

=

N
∑

i=1

(Xi −X∗
i)

[

α

XiR2
− ζ(Q− Cτ)

RCτ
+

ζ(Q−Q∗)

RCτ

]

=
N
∑

i=1

(Xi −X∗
i)

[

α

XiR2
− Nα

CR2

]

(10.15)

=
α

R2

N
∑

i=1

(Xi −X∗
i)

[

1

Xi
− 1

X∗
i

]

= − α

R2

N
∑

i=1

(Xi −X∗
i)

2

XiX∗
i

.

ThereforeV̇ (X, Q) is negatively semidefinite for any ball including the equilibrium pointP ∗.
This proves thatP ∗ is an equilibrium globally stable as per [176].

151

Once we know that the system has a unique globally stable equilibrium, we want to show the
convergence rateof the system in a neighborhood of the equilibrium. This can easily be evaluated
consideringlocal stabilityproperties of the system.

Proposition 5. The system of ODEs (10.8)-(10.9) is locally stable in the equilibrium P ∗ =
(X∗

1 , . . . ,X
∗
N , Q∗)

Proof. We write (Ẋ1, . . . , ẊN , Q̇) = (f1, . . . , fN , g), for Xi > 0, Q > 0 wherefi andg are
defined as follows:

{

fi(X,Q) = α
R2 − ζ

CτR (Q− Cτ)Xi1Q(t)≥Cτ i = 1, ..., N

g(X,Q) =
∑N

i=1Xi − C
(10.16)

Linearizing the system of ODEs inP ∗, and defining∆Xi = Xi−X∗
i ,∆Q = Q−Q∗, andY =

(∆X1, . . . ,∆XN ,∆Q) we obtain(f̃1, . . . , f̃N , g̃) = Ẏ = AY whereA is a(N + 1)× (N + 1)
square real matrix defined as follows:

A =

− α
CR2 0 · · · 0 − ζ

CτR

0 − α
CR2 · · · 0 − ζ

CτR
· · · · · · · · · · · · · · ·
1 1 · · · 1 0

The characteristic polynomial is then

(

λ+
α

CR2

)N−1
(

λ2 +
α

CR2
λ+N

ζ

CτR

)

whose roots have all real part negative.

Proposition 6. The solution of the system of ODEs (10.8)-(10.9) converges to the global stable
equilibriumP ∗ at a ratee−Θt with,

Θ =
α

CR2

(

1 + 1ζ≤ζ∗
√

1− ζ/ζ∗

2

)

andζ∗ = α2τ
4NCR3 .

Proof. We calculate the dominant eigenvalue of the matrixA, i.e. the eigenvalue with the real part
with the smallest absolute value.

To conclude, we summarize our main findings in the following observation, expressing the results
in terms of the expected performance of fLEDBAT.

Observation 7. Prop. 3,4,5,6 prove that the designed protocol is efficient (X∗ = C), and long
term fair (X∗

i = C/N). In addition the queuing delay attains the targetτ (Q∗/C = τ + Nατ
CζR) by

an error of Nατ
CζR .

Thus, our initial goals of anefficientand fair protocol is met. Clearly, a number of issues need
further investigation (i.e., how the protocol performs in practice where not all modeling assumption
holds, what is the impact of parameters and of packet-level dynamics, how does it performs against
TCP, etc.) that we dig in the next section by means of a thorough simulation campaign in a number
of different scenarios.

152 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

R
at

e
[M

bp
s]

Simulation

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

Time [s]

Numerical solution

Firstcomer
Latecomer

Sum

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

Q
ue

ue
 le

ng
th

 [p
kt

s]

Simulation

Istantaneous
Mean

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

Time [s]

Numerical solution

(b)

Figure 10.1: Comparison of (left) simulation and (right) numerical solution for (a) Rates and (b)
Queue length. The similar average values in left and right plots confirm a good fit between packet
level simulation results and flow level numerical results.

10.3 Simulation overview

So far, we have developed a mathematical model of our new proposed protocol in order to formally
prove its properties. However, the model is based on a numberof simplifying assumptions and it
furthermore neglects some aspects due to packet-level quantization (i.e., queue length and conges-
tion window in multiple of fixed-size packets as opposite to continuous rate in the fluid model).
To fill this gap, in the remainder of this chapter we carry out athorough packet-levelns2 [15]
simulation campaign, to cope with scenarios where such assumptions do not hold. We made our
implementation available as open source at [10].

Unless otherwise stated, we consider a reference scenario consisting of a bottleneck link of
capacityC = 10Mbps and buffer sizeB = 100 packets. For the sake of simplicity, we consider
fixed size packets equal toP = 1500Bytes. Data flows in a single direction, and acks are not
delayed, dropped nor affected by cross-traffic on their return path (except in the P2P scenarios
reported in Sec. 10.6.2). All flows have the same round trip timeRTT = 50ms, half of which is
due to the propagation and transmission delay components ofthe bottleneck link (i.e., a one-way
base delay of25ms), to which we add a jittering component uniformly distributed in [0,1] ms to
avoid synchronization issues. We defer the study of more realistic scenarios, including hetero-
geneous delays, different access technologies, background traffic and P2P-like traffic models to
Sec. 10.6. As far as TCP flows are concerned, we select the NewReno flavor, enabling the selec-
tive acknowledgement SACK option due to its growing widespread [126]. Notice that by selecting
the NewReno flavor, we gather conservative results since we expect more recent TCP variants im-
plemented by default in Linux and Windows (respectively Cubic [162] and Compound [171])
operating systems to be more aggressive than traditional NewReno flows. Each simulation point
reported in the following is the results of10 simulation runs, over which we gather the average
and standard deviation of the metrics of interest.

However, we still need to provide evidence of the fluid model accuracy: we do so by comparing
the numerical solution of the fluid model withns2 simulation results. We consider the simple
network scenario described above, and two fLEDBAT flows withthe same targetτ = 25ms.
Notice that delay targetτ was initially set to 25 ms in the IETF draft and to 100 ms in the BEP
specification. However, as shown in [44], provided that all flows have thesame target value,
which is furthermore set to a valuenot exceeding the buffer size, the actual value ofτ is not

153

 0
 10
 20
 30
 40
 50
 60

Cwnd 1st

Base delay 1st

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50 60

C
on

ge
st

io
n

w
in

do
w

 c
w

nd
 [p

kt
s]

 a

nd
 B

as
e

de
la

y
 [m

s]

Time [s]

Cwnd 2nd
Base delay 2ns

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50

Queue length [pkts]

PDF

(a)

 0
 10
 20
 30
 40
 50
 60

Cwnd 1st
Base delay 1st

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50 60

C
on

ge
st

io
n

w
in

do
w

 c
w

nd
 [p

kt
s]

 a

nd
 B

as
e

de
la

y
 [m

s]

Time [s]

Cwnd 2nd
Base delay 2nd

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50

Queue length [pkts]

PDF

(b)

Figure 10.2: Time evolution of fLEDBAT dynamics with (a) chunk-basedζ = 0.01 and (b)
backloggedζ = 5 traffic models.

critical. Hence, results shown in the following are valid for both target settings. For the time
being, we fix the decrease component by settingζ = 0.1 (and explore the impact ofζ later on).
To recreate the conditions for the latecomer unfairness phenomenon, the two flows do not start at
the same time, but their start time are separated by2 seconds. The time evolution of the system
state is depicted in Fig. 10.1, which reports both the evolution of the flow ratesX1,X2 (top) and
the buffer occupancyQt (bottom) gathered either by numerical solution (right) orns2 simulation
(left). As a general comment, the numerical solution shows agood agreement with the simulation
results (although as expected packet-level dynamic exhibits much wider fluctuations, while the
fluid model gives an average behavior). Indeed, notice that theaverageof queue occupancy and
flow rates yielded by the fluid system closely matches the simulation dynamics (for the sake of
readability, we plot themoving averageof the queue length gathered via simulation alongside
the instantaneous occupancy). As expected, both numericaland simulation results show that the
capacity is, after an initial transient phase, fairly shared among flows (i.e.,Xi ≈ C/2,∀i) and that
furthermore the queuing delay target is reached (i.e.,Qt ≈ Cτ).

In the following we study several aspects of the LEDBAT protocol family. Sec. 10.4 addresses
the impact of differenttraffic modelson protocol performance, considering backlogged vs chunk-
by-chunk transfers. Then, Sec. 10.5 addresses asensitivity analysisof the protocol toζ parameter
variation. Finally, Sec. 10.6 compares LEDBAT and fLEDBAT under more realistic, P2P-like,
networking scenarios.

154 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

10.4 Impact of traffic model

In this section we assess how the fLEDBAT protocol deals withdifferent kind of traffic. Besides
the classical backlogged transfer, we simulate a chunk-based transfer, which mimics the behavior
of a BitTorrent data exchange between two peers.

10.4.1 Chunk-by-chunk transfer

In this scenario, we consider sources that continuously transmit chunks of data, where each chunk
has the typical BitTorrent size of250 kB (nearly170 full payload packets). As soon as a chunk
transmission ends (i.e., when the last acknowledgment for that chunk has been received at the
sender side), a new chunk transmission is scheduled with thesame peer. Notice that this traffic
model, which emulates the dynamics of P2P traffic exchange, differs from backlogged transfers in
that, after the last data packet of a chunk has been sent, the source peer stops transmitting for about
RTT seconds until the matching acknowledgement is received, and a new chunk transmission can
start. Notice also that we keep the congestion window parameter across chunks (i.e., congestion
window isnot reset between subsequent chunks exchanged with the same peer).

Fig. 10.2-(a) reports the time evolution of the system dynamics whenζ = 0.01: in the left
portion, congestion window and base delay estimation of thefirstcomer (top) and latecomer (bot-
tom) flows are reported, while the right portion shows the distribution of the queue length. In this
case, it can be seen that, although the latecomer initially has an incorrect view of the base delay
(as in LEDBAT), the multiplicative decrease phase of the firstcomer allows the latter to correct its
estimate, after which the performance share converges to anequitable state. Due to (i) the contin-
uous adjustment of AI and MD dynamics and (ii) the fact that chunk transmission seldom pauses
the transmission, the queue is no longer stable as for the standard LEDBAT case (see previous
chapter), but fluctuates around the occupancy value predicted by the model (represented by a solid
vertical line).

10.4.2 Backlogged transfer

In the case of backlogged transmission, a latecomer phenomenon may still arise depending on the
value ofζ: indeed, whenζ is too small, the multiplicative decrease component of the first flow
is slower than the additive increase of the latecomer, whichis thus unable to correct its wrong
estimation. However, provided thatζ is large enough to let the queue flush, fLEDBAT can still
reintroduce fairness.

Results for the backlogged scenario are reported in Fig. 10.2-(b) for ζ = 5. Especially, the
queue now seldom flushes (as it can be seen by the increased probability to have a null queue
length shown by the PDF) which helps latecomers gain a correct view of the base delay. In this
case, though, the model slightly overestimate the queue size: indeed, due to largerζ values, the
congestion window fluctuations are now wider. Also, as the queue flushes, the protocol is less
efficient with respect to the previous cases too, because thecapacity is not fully utilized all the
time.

We point out that, since fLEDBAT is designed to be a low-priority protocol, slight inefficiency
should be tolerable. Conversely, in case efficiency, ratherthan low-priority, would have been a
more important goal, then an alternative approach is possible, which we already explored in the
previous chapter: indeed, a simple way of draining the queueempty (which allows each sender
to gather correct measures of the base delay) is to use TCP-like slow-start at flow startup. The
downside, in this case, is that as slow-start causes losses,which may have undesirable side effects

155

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102

E
ffi

ci
en

cy
, F

ai
rn

es
s,

 fL
E

D
B

A
T

%

ζ

fLEDBAT vs TCP

Efficiency
Fairness

fLEDBAT%

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102

E
ffi

ci
en

cy
, F

ai
rn

es
s,

 fL
E

D
B

A
T

%
ζ

fLEDBAT vs LEDBAT

Efficiency
Fairness
fLEDBAT%

(b)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

10-410-310-210-1 100 101 102

E
ffi

ci
en

cy
, F

ai
rn

es
s

ζ

fLEDBAT vs fLEDBAT

Efficiency
Fairness

(c)

Figure 10.3: Sensitivity analysis toζ: Efficiency, long-term fairness and protocol breakdown of
a fLEDBAT flow sharing the bottleneck with (a) a TCP flow, (b) a LEDBAT flow (c) another
fLEDBAT flow.

on interactive traffic (e.g., VoIP, gaming) and is thus less indicated, in our opinion, in this con-
text. Moreover, as shown in the previous chapter by simulation and in [164] by experiments, this
would not be enough to fully reinstate fairness, which in theLEDBAT case is rooted in the AIAD
dynamics more than the in errors of the base delay estimation.

10.5 Sensitivity analysis

In this section we carry out further simulations, to assess the impact of the choice of the parameter
ζ on the protocol performance. In order to gather a complete sensitivity analysis of fLEDBAT
parameters, we consider several scenarios: (i) a TCP Reno flow competing with a fLEDBAT flow,
(ii) a LEDBAT flow competing with a fLEDBAT flow, (iii) two fLEDBAT flows competing for the
same bottleneck. All flows operate in chunk-by-chunk transmission mode.

As performance metrics, we consider, as usual, Jain’sfairnessF , efficiencyη and, additionally,
protocol breakdownof the data transfer, defined as the percentage of traffic sentby fLEDBAT
sources over the total traffic, which immediately conveys the level of low priority of fLEDBAT
with respect to other protocols insisting on the same bottleneck.

10.5.1 Observations onα, τ and low-priority level

Since a careful sensitivity analysis focused on gainα and targetτ has already been carried out
in [44], in the following we briefly summarize the main lessons as far as these two parameters
are concerned, while we provide a thorough set of simulationresults for the newly introduced
parameter, i.e., the decrease factorζ.

Let us consider the target parameterτ first. Already in the homogeneous case of several flow
with equal settings, [44] shows that the performance of LEDBAT cannot be easily controlled by
tuning the targetτ . Indeed, the low priority level can be changed only when theCτ product
approaches the buffer size – however changes in the prioritylevel are too steep for very small
variations ofτ . Moreover, there is no single value ofτ that can adapt to both low-capacity and
high-capacity links at the same time. Finally, in the heterogeneous case of several flows with
different settings, even a small difference between valuesof τ yield to extremely unfair situations,
with flows having largerτ being more aggressive. For this reason, we adhere to the mandatory
value specified by the draftτ = 25ms and do not considerτ as a free parameter.

156 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

Let us now consider the gain parameterα: in this case, is worth noting that the increase com-
ponent of fLEDBAT differs from that of LEDBAT. Indeed, LEDBAT increase is proportional (with
α proportionality constant) to the offset from the target, meaning that as the estimated queueing
delay approaches the target, the congestion window growth slows down. In the case of fLEDBAT
instead, the congestion window growth is still proportional to α, but constant (i.e., no longer de-
pendent on the offset from the target). Therefore, the valueof α = 1 is constrained in reason of
the low-priority goal (so to match the1-packet-per-RTT TCP growth in congestion avoidance).
Finally, due to the bounded target, fLEDBAT inherits from LEDBAT the lowest possible level of
priority [44] compared to NICE and to TCP-LP.

10.5.2 fLEDBAT vs TCP

Fig. 10.3(a) shows the efficiency and fairness performance when a single TCP and a single fLED-
BAT flow share the bottleneck: first of all, we can see that low-priority goal is met, as TCP is
enjoying the largest portion of the capacity (fLEDBAT breakdown goes to 0% and fairness drops
to 1/N). As expected, efficiency is high: as we already observed in [155] for LEDBAT, fLEDBAT
is still able to push some bytes on the link, thereby increasing the overall link utilization with
respect to the case where a single TCP Reno flow insists on the bottleneck.

With the exception of extremely low values ofζ < 10−3 (which soften the effect of the mul-
tiplicative decrease, and sharpen the impact of the Reno-like additive increase), the low-priority
goal is therefore satisfied. Thus, selectingζ is not a concern as far as heterogeneous fLEDBAT vs
TCP scenarios are considered.

10.5.3 fLEDBAT vs LEDBAT

Fig. 10.3(b) shows the efficiency and fairness performance when a single fLEDBAT flow and a
LEDBAT one share the bottleneck. We randomize the start timeof both flows in the [0,10] sec
interval, so that the latecomer can be either of the two protocols. In this case, we gather fLEDBAT
is generally more aggressive (due to the AI dynamic, which ismore aggressive than LEDBAT
Proportional Integer Derivative (PID) dynamic) untilζ grows too large, in which case the reverse
happens (due to the MD dynamic being more drastic than the PIDdynamic). Specifically, less than
20% of the bottleneck is occupied by LEDBAT whenζ < 10−2. For larger values ofζ though,
LEDBAT becomes increasingly competitive with fLEDBAT: thecrossover happens at aboutζ = 5,
after which fLEDBAT becomes even lower priority than LEDBAT.

In no case, however, the share is fair and a latecomer phenomenon may still arise. Consider
that, when LEDBAT start first and saturates the bottleneck, it induces a very steady queue. There-
fore, when an fLEDBAT latecomer flow arrives on the bottleneck, it measures an incorrect base
delay. However, as LEDBAT reacts with alinear decrease to the increasing delay, the fLEDBAT
latecomer will not have the opportunity to correct is estimate – as it otherwise does whenever the
firstcomer flow reacts with amultiplicative decrease to the increasing delay. Hence, whenζ is
small, the fLEDBAT latecomer can starve the LEDBAT flow.

10.5.4 fLEDBAT vs fLEDBAT

We now consider the intra-protocol scenario in which two fLEDBAT flows share the bottleneck.
We set the start time of latecomer flow tot = 10 s, which was shown in [155] to represent a worst
case scenario for the fairness index. Fig. 10.3(c) reports results for varyingζ, where we omit this
time the fLEDBAT breakdown. From the picture, it is clear that fLEDBAT is able to operate fairly
and efficiently under a wide range of parameters. Overall, taking into account also the previous

157

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s

Number of fLEDBAT flows

ζ=0.01
ζ=0.1
ζ=0.2
ζ=0.5

Figure 10.4: Variation of the intra-fairness index of fLEDBAT, for different values ofζ and a
growing number of flows.

remark in the intra-protocol fLEDBAT vs TCP scenario, we have that any value ofζ in the gray
shaded zone yield to an efficient, fair and low-priority system.

Finally, we present results for a varying number of fLEDBAT flows insisting on the bottleneck,
with in N ∈ [2, 10]. Everyk-th flows arrive attk = k10 s, and we evaluate the performance only
after theN -th last flow has arrived in the bottleneck. Results are reported in Fig. 10.4, where we
select a few values ofζ ∈ {0.01, 0.1, 0.2, 0.5} from the shaded gray zone of Fig. 10.3(c). As it
can be seen, it is always possible to find a value ofζ that guarantees fairness for the whole set
of flows, with any values in the range providing good results for the number of flows that are
typically concurrently active in BitTorrent. Moreover, the very same values ofζ that provide fair
resource share, were already shown to provide efficient use of the resources forN = 2 flows in
Fig. 10.3(c), which still holds whenN > 2 (omitted to avoid cluttering the pictures).

10.6 P2P Scenarios

In order to compare fLEDBAT vs LEDBAT performance under morerealistic conditions, we fi-
nally consider a chunk-based scenario that (i) loosely mimics the behavior of BitTorrent peers, (ii)
employs Internet-like heterogeneous delays and access rates, (iii) considers background traffic and
coupled queues, (iv) addresses the impact of chunk sizes.

We consider two different scenarios: first a single BitTorrent peer and a single queue in iso-
lation, using a more sophisticated traffic model and observing the effect of delay heterogeneity
alone. Second, we study a BitTorrent swarm-like scenario, as close as possible to the actual target
application scenario of LEDBAT, with 100 peers continuously exchanging data among them. In
this case, the state of queues is no longer independent, as data traffic mixes with acknowledgement
traffic in the reverse direction, causing a coupling of the congestion controllers as well. To gather
even more realistic results, we finally add HTTP-like background traffic to the swarm scenario,
studying its impact on congestion controls dynamics.

Before presenting the results of our simulations, it is worth spending a couple of words on the
traffic model we use to simulate a BitTorrent peer. Like a realBitTorrent source [58], our simulated
peers open a number of connections to otherN peers, but they actively exchange chunks of data
with only a restricted numberM < N of the available peers at the same time (set toM = 5 and
N = 10). We employed different chunk sizes, ranging from 250 KB - 4096 KB [122], using 250
KB chunks unless otherwise stated. At the end of each chunk transmission, the sender chooses the
next destination peer as follows: with apersistence probabilityPP , the sender will send another

158 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

 (
η)

Peer persistence PP

Homogeneous RTT Heterogeneous RTT

LEDBAT
fLEDBAT

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ai

rn
es

s
(F

)

Peer persistence PP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

 (
η)

Peer persistence PP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ai

rn
es

s
(F

)

Peer persistence PP

Figure 10.5: Efficiency (top) and Fairness (bottom) of fLEDBAT in the homogeneous (left) and
heterogeneous (right) RTT scenarios.

chunk to the same peer, keeping the congestion window settings; with probability(1 − PP), the
sender will choose an inactive neighbor at random, resetting in this case the congestion window
to 1. A detailed discussion of the meaning of different values ofPP is found later on. We chose
not to implement all the application-level details of a BitTorrent source (e.g., tit-for-tat, optimistic
unchoking, signaling, etc.), yet we argue that this simplertraffic model is a good approximation
of the actual peers interaction.

As far as network conditions are concerned, we consider bothFTTH symmetricaccess capac-
ities (C = 10Mbps,B = 100 packets, default unless otherwise stated) andADSL asymmetric
capacities (C = 1Mbps uplink,C = 8Mbps downlinkB = 100 packets). To add further realism,
we simulate both ahomogeneousnetwork setup (i.e., in which all peers have the same propaga-
tion delayRTT = 50ms) as well as anheterogeneousscenario (default unless otherwise stated)
where the propagation delay of the access link of each peer isdistributed according to realistic
delay measurement [178], with mean equal to 37.9 ms.

10.6.1 Single peer perspective

Let us start by considering a single peer behind a FTTH connection, exchanging 250 KB chunks
with peers chosen according to the algorithm described above: when a chunk transfer is completed,
the source keeps the same destination peer with a probability PP , and changes it with probability
(1 − PP). fLEDBAT and LEDBAT are simulated separately, i.e. all peers either use the former
or the latter protocol, and we consider both an homogeneous and heterogeneous delay scenario.
For fLEDBAT we set the parameterζ = 0.1, which yielded good performance in the sensitivity
analysis.

In our experiments we explore the full range ofPP in [0.1]. As PP → 0, we expect the

159

performance of the two protocols to be close: indeed, when connections are reset every 170-th
packet (which corresponds to 250 KB chunks), the protocols are basically always in transient
state and the target is likely not even reached during a chunktransfer. Conversely, differences
are expected to arise in the more stable scenariosPP → 1, where congestion parameters are kept
across chunks. Actually, we expect real BitTorrent source to have a behavior similar to a sender
with PP ≥ 0.8: in fact, one source normally tries to keep 4 out of the 5 “best” (i.e., higher
capacity) peers while at the same time continuously discovering new, potentially “better”, peers
(i.e., by means of optimistic unchoking).

Results of the comparison are reported, in term of efficiencyand fairness, in Fig. 10.5. Since
flows are no longer backlogged, from now on we considershort-term fairness, measured at 1 Hz
rate (i.e., corresponding to a good tradeoff between a minimum number of RTTs to have statis-
tically meaningful results, and a maximum time lag, as flows may die out after a single chunk
transfer). Notice that we expect short-term fairness to be harder to achieve than the long-term
fairness considered in the previous sections (hence we expect lowerF values).

At first glance, we remark that under all scenarios andPP values, fLEDBAT is more efficient
(due to AI) and fair (due to MD) with respect to LEDBAT, and thegain is more evident exactly in
the operational range of BitTorrent (i.e.,PP ≥ 0.8). In the homogeneous case depicted in the two
plots on the left, as expected, the fairness gap exacerbatesasPP → 1: in this case, fLEDBAT abil-
ity to correctly measure the base delay leads to an increase of the fairness metric. On the contrary,
LEDBAT fairness decreases asPP grows, due to the latecomer issue: the effect is stronger when
PP = 1, as in this case the unfair situation persists through the whole duration of the experiment
and leads to a consistent drop ofF . Similar considerations hold for the heterogeneous case (see
plots on the right), although in this case the heterogeneousdelays introduceRTT unfairness in
both fLEDBAT and LEDBAT, reducing the absolute value ofF (i.e., we do not attempt to account
for theRTT bias in the fairness definition). However,RTT unfairness does not translate into
serious issues (such as long time starvation), and however fLEDBAT always guarantees a fairness
higher than LEDBAT (as latecomer advantage disappears).

As far as efficiencyη is concerned, when the congestion window parameters are reset every
chunk (PP = 0), the link capacity is not fully utilized even in the homogeneous case. The het-
erogeneous case further adds inefficiency, as flows with higher RTT increase more slowly their
congestion window, hence further wasting link capacity. However, it is worth pointing out that
the additive increase component of fLEDBAT makes it more efficient than LEDBAT under any
circumstance, while the multiplicative decrease component guarantees at the same time its lower-
priority with respect to TCP.

10.6.2 Entire swarm perspective

We now consider an entire swarm, where 100 peers continuously exchange data among them using
5 parallel upload slots, as in BitTorrent: hence, the uplinkqueue of each peer contains a mix of
(i) data packets being uploaded to the swarm and (ii) acknowledgement packets related to data
being downloaded from the swarm. As this happens for each queue, P2P traffic interacts both in
the forward and backward directions. Notice also that the end-to-end congestion controls of data
transfers are tightly coupled in a non-trivial way, as in ourmodel each peer maintains multiple
connections to a set of other peers, which moreover dynamically evolve over time. However,
this model does not try to model all BitTorrent dynamics (e.g., chunk trading logic), but rather
assumes that peers are always able to find content where they seek it (i.e., a large file where there
is enough chunk diversity in the system). Therefore, we do not attempt at measuring application-
level statistics, such as the torrent download time, but rather focus on the transport-layer fairness

160 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 256 512 1024 2048 4096

F
ai

rn
es

s
(F

)

Chunk Size (KB)

Swarm only

 256 512 1024 2048 4096

Chunk Size (KB)

Swarm + background HTTP

fLEDBAT/FTTH
LEDBAT/FTTH

fLEDBAT/ADSL
LEDBAT/ADSL

Figure 10.6: Fairness in FTTH and ADSL swarm-like scenarios, with and without background
HTTP traffic

statistics.

Unlike what done for the previous scenario, here we fix the persistence probability toPP =
0.8. As shown in the former experiment, each interruption in data transmission favors LEDBAT
for the consequent draining of the queue lets the protocol correct the base delay estimation. Under
this consideration, since BitTorrent optimistic unchoking happens on 1 slot out of 5 at low rate
(each 30 seconds),P = 0.8 corresponds to a lower bound (since the chunk transfer can bemuch
shorter than 30 seconds) and gives an optimistic (thus, conservative) estimate for LEDBAT fair-
ness. Moreover, our simulation model also introduces anidle RTT(i.e., time elapsed between the
transmission of the last data packet of a chunk and the reception of the related acknowledgment)
before a new chunk is sent to a persistent peer: another pausethat further simplifies LEDBAT task
and that actual BitTorrent systems avoid by means of requestpipelining. However, we can partly
compensate for these effects by employing larger chunks.

Since homogeneous and heterogeneous RTT scenarios yieldedqualitatively similar results, in
the following we only consider heterogeneous delay settings for more realism, with either FTTH or
ADSL access. Finally, we also simulate a scenario where peers browse the Web while participating
to the swarm: in particular we add an HTTP source from which peers downloads Web-pages (files
with a size uniformly distributed in the range[0−512] KB) using traditional TCP. There are always
25 peers, selected at random, with active HTTP downloads, sothat a quarter of the total swarm is
always involved in the short interactive background Web transfers.

Short-term fairness results are shown in Fig. 10.6: first, notice that the coupling of queues is
more beneficial for the fairness index (for both LEDBAT and fLEDBAT) with respect to the single
queue scenario shown in Fig. 10.5. At the same time, under allcases fLEDBAT consistently
achieves higher fairness than LEDBAT. Larger chunk sizes, as expected, badly affect LEDBAT
because they reduce the number of transmission interruptions in the (which helped in emptying
the queues). Conversely, fLEDBAT appears almost insensitive to chunk size.

Comparing ADSL vs FTTH scenarios, we see that in the latter case a further cause of unfair-
ness may arise: indeed, as capacities are symmetric and one peer may have several downloads
ongoing (only upload slots are limited in number), downlinkcan become a bottleneck as well
(e.g., in real systems this may happen in case of popular torrents with many seeds). The impact of
background HTTP traffic is instead beneficial to the fairnessof both fLEDBAT and (especially)
LEDBAT: this is due to the fact that peers downloading HTTP data will send out burst of ac-
knowledgement packets, that possibly cause buffer overflows in the uplink queues (which assist in
raising fairness in LEDBAT, as shown in [155]). Background traffic has instead a smaller impact

161

on fLEDBAT, as the protocol achieves higher fairness without external help.

10.7 Summary

In this chapter, we presented modifications to LEDBAT congestion control algorithm, that not only
are able to achievelow-priority inter-protocol (i.e., against TCP) andefficiency intra-protocol
(e.g., with other fLEDBAT flows), but also reintroduceintra-protocol fairness, solving thus the
late-comer issues of the original LEDBAT proposal.

We modeled the fLEDBAT dynamics via a fluid-model approach, which allows, on the one
hand, to detect the main issue at the base of the unfairness (i.e. the additive decrease component)
and to prove the correctness of its design. From such model, we derived closed-form expressions
for the average rate and queue length even in the general casewith N sources. Furthermore, by
means of packet-level simulations, we further assess that fLEDBAT can safely operate under a
number of scenarios (such as chunk-by-chunk and backloggedtransmission) as it is not sensitive
to the parameter selection, but operate reasonably well under a wide range of parameters.

Finally, we tested the protocol in multiple flows scenarios,comparing its performance with
other lower-than best effort protocols, in realistic scenarios with heterogeneous RTTs and transfer
emulating the operations of a BitTorrent peer, the originaltarget application for LEDBAT. fLED-
BAT not only solves the fairness issue, but also keeps the same good properties of LEDBAT: that
is, it yields to TCP while being able to exploit the spare bandwidth. Overall, we see that our pro-
posed modifications lead to provable performance and constitute an improvement with respect to
LEDBAT in terms of both fairness and efficiency. Our simulations confirm fLEDBAT robustness
even under realistic heterogeneous network conditions, onwhich BitTorrent can be expected to
operate.

162 10. DESIGNING AN EFFICIENT AND FAIR LEDBAT

163

Chapter 11

Conclusion

11.1 Summary

In this thesis we investigated several issues regarding themanagement of P2P traffic in modern
networks. In fact, P2P applications still account for an important portion of nowadays Internet traf-
fic and their traffic, given its characteristics, can be particularly difficult for operators to deal with.
Besides, even if recent measurement studies indicate that web, and especially video streaming, has
become the biggest bandwidth consumer, yet P2P traffic keepsgrowing in absolute amount and
the P2P paradigm still powers new killer applications (e.g.live-streaming and music on demand).
Therefore, as P2P traffic seems to be here to stay, in this thesis we developed tools and method-
ologies to help operators better manage it and have it coexist peacefully with other applications.

The solutions proposed in this thesis addressed specifically the identification, measurement
and controlof P2P traffic in modern networks. In the following we will briefly summarize our
main results.

As for P2Ptraffic classification, our studies focused on behavioral classifiers, which base the
classification on the characterization of the pattern of traffic generated by a host running the appli-
cation. These algorithms can outperform traditional techniques (e.g. DPI) because they are more
lightweight and capable of dealing with encrypted traffic, avoiding access to packet payload alto-
gether. In this work we applied such techniques to the classification of P2P traffic, whose protocols
are usually proprietary or unknown and whose large volumes require a lightweight classification
process.

First of all, we explored the space of features that could be used for behavioral classification
of P2P traffic. We designed a general framework that allows tocombine several criteria (e.g.,
timeliness, granularity, directionality of traffic, etc.)and to generate a wealth of features based
only on flow-level data (e.g. NetFlow records). We intentionally kept the definition as general as
possible, so that features of other classifiers can be included in the framework, facilitating the task
of comparing different classification engines. We then restricted our attention to a subset of all
possible features and quantified their information contentuseful for the classification by means of
two metrics, Information Gain and ReliefF. Using the best attributes selected by these metrics and
a Decision Tree classification algorithm, we showed that a very accurate (i.e, > 98% on average for
the seven considered applications) and, furthermore, fine-grained (i.e. identification of the specific
application) classification can be achieved by means of these simple features.

Leveraging the knowledge of the most useful attributes for P2P classification gathered in
the above experiments, we restricted our attention to a specific class of applications, P2P live-
streaming, of which we also know the internal workings. Thereby, we designed a specific be-
havioral classifier for these applications, named Abacus, which is based on a simple count of

164 11. CONCLUSION

the number of packets and bytes exchanged by the target host with its peers during small time-
windows. Such simple counters, which however capture distinctive properties of the applications,
are used to build the Abacus signatures that, fed to a SupportVector Machine classification algo-
rithm, provide a very accurate and fine-grained classification. Besides, an equally simple rejection
criterion based on the Bhattacharyya distance is also effective in detecting “unknown” traffic, for
which the classifier was not originally trained. Overall, using the complete abacus signature (in-
cluding both the packets and bytes information) and the bestparameter values, obtained from a
thorough sensitivity analysis, the classifier accuracy exceeded 99% of correct classification for
all our target applications. Additionally, our experimental evaluation over an extended dataset of
passive and active traces also proved the portability of Abacus signatures over different times and
network settings, accesses and conditions.

To strengthen our proposal, we also performed a comparison of Abacus with a sophisticated
stochastic payload based classifier, Kiss, which was provedvery accurate for the same class of
applications as well. We tested the classifiers on a common set of traces, observing practically the
same performance in terms of byte accuracy for both of them. Our analysis of their computational
requirements, instead, clearly identified Abacus as a more lightweight process of at least one order
of magnitude (in the worst case) for CPU consumption. However, this is obtained at the cost of a
less general classifier: in fact, Abacus is effective only with P2P applications, while Kiss can be
applied to other classes of applications as well.

In the second part of this thesis, we instead focused ondata reductiontechniques, used by op-
erators to shrink the quantity ofmeasurement datagathered from their networks, which has grown
together with the amount of traffic. Our aim was to investigate whether traffic classification of P2P
traffic was still possible with such data, notwithstanding the smaller information content. First of
all, we tested our Abacus classifier with NetFlow flow-records, which contain all data needed to
calculate the signature (i.e. packet and byte counters), but have a coarser time granularities – de-
fault NetFlow timeouts are in order of minutes, while Abacuswas designed with time-windows
of seconds. We demonstrated that Abacus can safely cope withsuch data, with only a slightly
reduced classification accuracy.

We then investigated the issue of moving a behavioral classifier in the core of the network,
where, due to routing, only a portion of flows directed to a host are observed and, hence, only a
partial characterization of the traffic pattern is gathered. In our experiments, we tested the Abacus
classifier, with simulated flow-sampling at increasing rates, and with realistic routing tables from
core routers. Given the way Abacus signatures are calculated (normalized over the total number
of peers seen), they can withstand flow-sampling, provided that a statistically significant sample
of flows is observed; in fact, if both signaling and data flows are present in the sample, without
any particular bias, then the Abacus signatures keep their discriminative power intact.

Another technique commonly used in the core to cope with the increasing transmission speeds
is packet sampling, where only a fraction of packets are processed. We performed a minute anal-
ysis of the impact of packet sampling on network measurement, by modifying a flow-level traffic
monitor to apply sampling on prerecorded traces, and by running it on a large, heterogeneous
set. We used two statistical metrics to evaluate the distortion introduced by four distinct sampling
policies in aggregated traffic measurement: our results showed an important degradation, already
for low sampling and irrespectively of the sampling policy used. However, when we evaluated the
information content of single-flow features calculated on sampling data, we observed that they can
still be used for traffic classification, conserving a good correlation with the application label. In
fact, we performed traffic classification using such features as attributes for a Decision Tree algo-
rithm, and showed that they are good discriminators, achieving an accuracy above 98%, provided
that the classifier is trained with data gathered at the same sampling rate of the test data.

165

Finally, we changed perspective and focused on P2P application themselves, and in particu-
lar on congestion controlfor such traffic. We would like elastic P2P traffic (e.g. file-sharing) to
automatically detect when other applications are using thenetwork and to automatically yield to
higher priority traffic. Along this line of thoughts, BitTorrent developers have recently proposed
(and already implemented in the official client) a new congestion control protocol which is under-
going a standardization process at the IETF with the name of LEDBAT. Their goal is to develop a
lower-than-best-effortprotocol able to detect congestion early and then to reduce its sending rate
to give priority to other more sensitive traffic (e.g., interactive traffic). We studied the performance
of this protocol by means of measurement, simulation and formal analysis.

First, we used a black-box approach to study the performanceof the closed-source official
implementation of the protocol found in the BitTorrent client. We setup a small testbed where we
artificially enforced specific network conditions (i.e., capacity and delay) and analyzed the way
the protocol reacted to such changing settings. We also tested the protocol in the wild on a home
ADSL connections, competing with real-world traffic. Overall we observed a good behavior of
LEDBAT, which abides by its goals: it uses the spare bandwidth efficiently, it introduces only a
small delay in the bottleneck, it yields to other traffic, in particular to TCP. However, we showed
also a few bugs affecting the first releases of the protocol, as well as a few cases where LEDBAT
does not behave as a lower-than-best-effort protocol, due to different TCP implementation and
parameter settings.

Second, following the official IETF draft, we implemented the LEDBAT protocol in the packet
level simulatorns2. Essentially, it is a delay-based congestion control algorithm, which con-
stantly monitors the queuing delay on the forward path and adjusts its sending rate by means of a
linear controller, in order to introduce a small fixed targetdelay in the bottleneck. Our simulations
showed that this design is effective in achieving low priority, correctly yielding to concurrent TCP
connections, but they highlighted also anunfairness issuewhen two, or more, LEDBAT flows
share the same link. Due to a wrong estimation of the queuing delay, the latecomer flow is able
to steal all the bandwidth from the first flow: unfortunately such a situation can persist for a long
time, thus possibly impacting application performance as well.

To remedy this issue, we proposed, implemented and evaluated a few possible modifications
to the LEDBAT protocol to restore the fairness. While randompacing of packets of a congestion
window (suggested on the mailing list) did not improve the situation, we showed that using slow-
start at the beginning of a LEDBAT flow, along with the consequent buffer overflows, has the
benefit of draining the queue and, afterwards, of allowing all flows to correctly measure the base
delay. Still, this aggressive behavior seems in contradiction with the lower-priority spirit of the
protocol.

Investigating further, we were able to find the root cause in the linear controller, and in particu-
lar in the additive decrease component, which early literature on this topic [52] has already shown
to prevent the system from converging to a fair state. For this reason we decided to reintroduce a
multiplicative decrease component, in a random and deterministic fashion. Both solution reintro-
duce fairness for some parameter settings, though with a slight loss in terms of efficiency. For this
reason we proposed a more radical modification of the protocol with fair-LEDBAT (fLEDBAT):
we modeled this protocol analytically and showed its good properties of efficiency, fairness and
low priority, which were confirmed by our simulation as well.Moreover we also simulated a com-
plex setting with multiple sources operating in a P2P-like scenarios, showing that our proposal is
convenient also for the target application of the protocol.The relevance of our work to improve
the LEDBAT protocol has been acknowledge as well by the fact that it is cited and discussed in
the protocol draft [166] itself.

166 11. CONCLUSION

11.2 Future work

As usual in scientific research, one work, however complete it might be, not only brings answers
and solutions, but it always comes with new questions and issues as well. In this section, we
sketch a few possible directions which could be followed to extend the contribution presented in
this thesis and to respond to the interrogatives it arises.

Regarding our research on behavioral classification of P2P traffic, first of all the framework
presented is Chap. 3 should be extended to consider more complex operations and categories. This
would not require any modification to its main structure, as it naturally allows such an extension,
but it would greatly simplify the comparison of different classifiers. In fact, algorithms such as
[32, 80, 184] could be mapped onto our framework without mucheffort. In such a way, not only
would it be easier to run all classifiers on the same set of traces, but their features would also be
directly comparable by evaluating their information content with the metrics we already used for
this purpose. In this context, it would also be interesting to evaluate more sophisticate feature
selection algorithms, taking into account also the correlation of features among themselves (e.g.
correlation based filter), so to extract the best set of features. Finally, a more rigorous study of
features portability across different networks and times,similar to the one presented in Chap. 4,
would be required.

Concerning the Abacus classifier, presented in Chap. 4, we have actually conducted a very
thorough evaluation of this algorithm, as we have considered its portability, we have compared it
to a state of the art payload based classifier and we have also tested it with NetFlow records and
under flow-sampling. Yet, there are still a few questions that come to mind. For instance, an open
issue is what is the effect ofpacket samplingon Abacus signatures. In theory, we expect such a
technique to heavily bias the distribution of packets and bytes, as most of small flows will not be
sampled and most of the information about signaling will be lost. However, smarting sampling
techniques, such as the SYN sampling we introduced in Chap. 7, might somehow alleviate this
phenomenon, thus likely permitting the classification.

Another aspect that deserves further investigation is the applicability of Abacus: in this thesis
we concentrated on UDP traffic, (initially) on P2P-TV application and (later) on generic P2P
services. Nevertheless, with appropriate changes, the same approach might be applied to other
kinds of traffic. For instance, to deal with TCP on the client side, where each connection opens
a new ephemeral port allocated by the operating system, one could aggregate all ports together
and obtain an Abacus signature, which, though slightly altered by other application running on
the same host, might contain enough information for the classifier to work. On the server side,
instead, the server socket already multiplexes all incoming connections and the Abacus classifier
can probably derive a meaningful signature from the analysis of the received traffic; however, if
such signatures are too similar to P2P ones, then they may confuse the classifiers and decrease the
overall accuracy.

Our work on the impact of packet sampling on traffic classification could also be extend in a
few ways. First, it would be interesting to investigate the impact of sampling on other classifi-
cation techniques, like DPI and behavioral classifiers (e.g. on Abacus, as we already mentioned
before). In such a case, it would be worth extending the evaluation to the whole set of sampling
policies, also the simple ones (i.e. systematic, random, stratified sampling), since in this thesis
for the classification part we considered only the smart SYN sampling, for it provided consider-
able advantages to the statistical classifier used. On the contrary, we could consider also more
sophisticated policies, for instance systematically sampling FIN packets as well (thus improving
estimation of flow size and duration), to provide the statistical classifier with additional informa-
tion. Finally, while we demonstrated the necessity of usingthe same sampling rate both on the

167

training and validation data, it is important to evaluate space and time portability as well, despite
the issues we have discussed in Chap. 7.

As for our research on congestion control for P2P traffic and on the LEDBAT protocol, we
foresee a number of possible directions of work as well. For instance, apart from the intra-
protocol unfairness, which was solved in Chap. 10, in our opinion there is still a critical point
in the LEDBAT algorithm definition that remains an open issue. This issue, described in [44, 164]
and debated in the LEDBAT IETF working group mailing list, concerns the use of afixedqueuing
delay target. Such fixed settings (which are referred to as “magic numbers” in the mailing list)
are indeed not a good practice, as they may lead to undesired behavior: as a matter of fact, not
compliant implementation may set an higher target with respect to the mandatory standard values,
hence easily obtaining an unfair advantage over compliant clients. However, while fixed settings
are not robust against malicious or misconfigured implementations, at the same time there is no
obvious way of defining anadaptivetarget without loosing guarantees on the additional delay –
that interactive applications would like to be as small as possible. Even worse, fixed settings do
not take into account the evolution of network capacity and speed: for instance, a target queuing
delay of 100 ms at 1 Gbps already equals to a large buffer (∼12MB), while in this case a smaller
value would be advisable.

Finally, it must be said that we heavily relied on simulationin our evaluation of LEDBAT and
especially of fLEDBAT. While simulation represents a first imperative step to study congestion
control issues, we recognize that it may not represent a goodfit to study other aspects of the
protocol – as, for instance, the impact of LEDBAT on the P2P application layer performance.
Indeed, real systems often include delicate dynamics that are not necessarily captured or described
by simulation models. Therefore, we believe that another necessary research direction involves
experiments on the real system – i.e., running a LEDBAT enabled BitTorrent swarm, either on
controlled testbed or on the wild (e.g., PlanetLab), to refine our understanding of LEDBAT from
another, complementary, perspective. In fact, it should beremarked that, despite the overall good
properties demonstrated by LEDBAT its success will be determined by user adoption: if the
protocol reveals itself inefficient in real scenarios (e.g., by enlarging download completion time in
BitTorrent), in particular at the early stages of its diffusion, then users might go back to good old
TCP and leave LEDBAT simply as an interesting experiment.

Finally, as BitTorrent has recently gone into video, one might wonder what would be the role
of the LEDBAT protocol in such a scenario. In fact, although it was not designed with such
an application in mind (but rather for elastic transfers), developers will surely take advantage of
the knowledge acquired while implementing LEDBAT for developing the new one for stream-
ing. As demonstrated by recent studies [25], which showed some issues of YouTube streaming
over HTTP+TCP, the interaction between application layer and transport layer can be very tricky:
therefore, an independent evaluation of the new protocol, from a research perspective rather than
from an engineering one, might be useful not only for the developers, but for the users as well.

168 11. CONCLUSION

169

Appendix A

List of publications

We report here the list of publications and papers under submission related to this thesis.

A.1 Publications

• S. Valenti, D. Rossi, Fine-grained behavioral classification in the core: the issue of flow sam-
pling, In TRaffic Analysis and Classification (TRAC) Workshop at IWCMC2011, Istambul,
Turkey, July 2011

• P. Bermolen, M. Mellia, M. Meo, D. Rossi, S. Valenti, Abacus:Accurate behavioral classi-
fication of P2P-TV traffic,Elsevier Computer Networks, 55(6):1394-1411, April 2011

• S.Valenti, D. Rossi, Identifying key features for P2P traffic classification, inIEEE ICC’11,
Kyoto, Japon, June 2011

• G. Carofiglio, L. Muscariello, D. Rossi and S. Valenti, The quest for LEDBAT fairness, In
IEEE Globecom’10, Miami, FL, USA, December 6-10 2010.

• A. Finamore, M. Mellia, M. Meo, D. Rossi and S. Valenti, Peer-to-peer traffic classification:
exploiting human communication dynamics, InIEEE Globecom’10, Demo Session, Miami,
FL, USA, December 6-10 2010.

• A. Pescape, D. Rossi, D. Tammaro and S. Valenti, On the impactof sampling on traffic mon-
itoring and analysis, InProceedings of the 22nd International Teletraffic Congress(ITC22),
Amsterdam, The Netherlands, September 7 - 9 2010.

• D. Rossi, C. Testa, S. Valenti and L. Muscariello, LEDBAT: the new BitTorrent conges-
tion control protocol, InInternational Conference on Computer Communication Networks
(ICCCN’10), Zurich, Switzerland, August 2-5 2010.

• D.Rossi, S. Valenti, Fine-grained traffic classification with Netflow data, InTRaffic Analysis
and Classification (TRAC) Workshop at IWCMC 2010, Caen, France, June 2010

• A.Finamore, M. Meo, D. Rossi, S. Valenti, Kiss to Abacus: a comparison of P2P-TV traf-
fic classifiers , InTraffic Measurement and Analysis (TMA) Workshop at PAM’10, Zurich,
Switzerland, April 2010

170 A. L IST OF PUBLICATIONS

• D. Rossi, C. Testa, S. Valenti, Yes, we LEDBAT: Playing with the new BitTorrent congestion
control algorithm, InPassive and Active Measurement (PAM) 2010, Zurich, Switzerland,
April 2010

• D. Rossi, E. Sottile, S. Valenti and P. Veglia, Gauging the network friendliness of P2P
applications, InSIGCOMM Demo Session, Barcelona, Spain, August 2009.

• S. Valenti, D. Rossi, M. Meo, M.Mellia and P. Bermolen, Accurate and Fine-Grained Clas-
sification of P2P-TV Applications by Simply Counting Packets, InTraffic Measurement and
Analysis (TMA) Workshop at IFIP Networking’09, Aachen, Germany, May 2009

• S. Valenti, D. Rossi, M. Meo, M. Mellia and P. Bermolen, An Abacus for P2P-TV traffic
classification, InIEEE INFOCOM 2009, Demo Session, Rio de Janeiro, Brazil, April 2009

A.2 Under review

• D. Rossi, D. Tammaro, S. Valenti, A. Pescapé. Exploiting packet sampling measurements
for traffic characterization and classification,submitted to Internation Journal of Network
Monitoring.

• G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, S. Valenti. Rethinking the Low Extra De-
lay Background Transport (LEDBAT) protocol.2nd revision submitted to IEEE Transaction
on Networking.

171

Appendix B

List of traffic features output by tstat

Here we report the complete list of traffic features calculated bytstat . These features have
been used in Chap. 7 to analyze the impact of sampling on traffic measurement and classification.
We report single-flow features in Tab. B.1 as well as aggregated features in Tab. B.2.

Table B.1: TCP flow-level features.

Type Feature Directions

Flow ID
IP address

√
TCP port

√

Volumes

packets
√

unique-bytes
√

data-packets
√

data-bytes
√

rexmit-packets
√

rexmit-bytes
√

out-seq-packets
√

SACK-req
√

SACK-sent
√

Packet Size
MSS

√
max-seg-size

√
min-seg-size

√

Window Size

RFC1323-ws
√

RFC1323-ts
√

window-scale
√

win-max
√

win-min
√

win-zero
√

cwin-max
√

cwin-min
√

initial-cwin
√

Type Feature Directions

Flag counts

ACK-sent
√

PURE-ACK-sent
√

SYN-sent
√

FIN-sent
√

RST-sent
√

Time

Average-rtt
√

rtt-min
√

rtt-max
√

Stdev-rtt
√

rtt-count
√

ttl-min
√

ttl-max
√

rtx-RTO
√

rtx-FR
√

reordering
√

Congestion duplicates
√

Control other anomalies
√

flow-control
√

unnece-rtx-RTO
√

unnece-rtx-FR
√

Flow duration

Completion-time
First-time
Last-time
first-payload
last-payload

172 B. LIST OF TRAFFIC FEATURES OUTPUT BYtstat

Table B.2: Aggregated features.⋆ features are available for incoming, outgoing and local traffic.

ip_tos⋆ TOS field
IP ip_ttl⋆ TTL field

(single ip_len⋆ Packet length [byte]
datagram) ip_bitrate⋆ Bitrate [kbit/s]

ip_protocol⋆ Protocol type

udp_port_flow_dst Destination port per
flow

UDP udp_port_dst⋆ Destination port per
segment

(single udp_tot_time Flow lifetime [ms]
segment) udp_cl_b_l⋆ Flow length [byte],

coarse granularity
udp_cl_b_s⋆ Flow length [byte],

fine granularity
udp_cl_p⋆ Flow length

[packet]

tcp_mss_used Negotiated MSS
tcp_mss_b MSS declared by

Server
tcp_mss_a MSS declared by

Client
TCP tcp_opts_TS Timestamp option

(single tcp_opts_WS WindowScale
option

segment) tcp_opts_SACK SACK option
tcp_bitrate⋆ Application bitrate
tcp_port_syndst⋆ Destination port

(SYN segments
only)

tcp_port_synsrc⋆ Source port (SYN
segments only)

tcp_port_dst⋆ Destination port (all
segments)

tcp_port_src⋆ Source port (all seg-
ments)

tcp_interrupted Early interrupted
flows[152]

tcp_thru⋆ Application
throughput [Kbps]

tcp_tot_time Flow lifetime
tcp_rtt_cnt RTT: number of

samples
tcp_rtt_stdev RTT: standard devi-

ation [ms]
tcp_rtt_max RTT: maximum

RTT [ms]
TCP tcp_rtt_avg RTT: average RTT

[ms]
(mutliple tcp_rtt_min RTT: minimum

RTT [ms]
segments) tcp_cl_b_l Flow length, coarse

granularity [byte]
tcp_cl_b_s Flow length, fine

granularity [byte]
tcp_cl_p Flow length

[packet]
tcp_cwnd TCP in-flight-size

[byte]
tcp_win_max TCP max RWND

[byte]
tcp_win_avg TCP average

RWND [byte]
tcp_win_ini TCP initial RWND

[byte]
tcp_anomalies⋆ TCP anomalies as

defined in [126]

rtcp_bt⋆ Average bitrate
[bit/s]

rtcp_mm_bt⋆ Associated MM
flow bitrate[kbit/s]

rtcp_mm_cl_b⋆ Associated MM
flow length [bytes]

rtcp_mm_cl_p⋆ Associated MM
flow length [pack-
ets]

rtcp_t_lost⋆ Lost packets per
flow

RTCP rtcp_f_lost⋆ Prob. of lost pack-
ets

(mutliple rtcp_dup⋆ Duplicated packets
segments) rtcp_lost⋆ Lost packets

rtcp_avg_inter⋆ Average inter-
packet gap (IPG)

rtcp_jitter⋆ Average jitter
rtcp_rtt⋆ RTCP Round trip

time [ms]
rtcp_cl_b⋆ RTCP flow length

[bytes]
rtcp_cl_p⋆ RTCP flow length

[packets]

mm_burst_loss⋆ Burst length of lost
packets [packet]

mm_p_late⋆ Prob. of late pack-
ets

mm_p_lost⋆ Prob. of lost pack-
ets

mm_p_dup⋆ Prob. of duplicate
packets

mm_p_oos⋆ Prob. of out-of-
sequence packets

mm_n_oos⋆ Length of out-of-
sequence burst

mm_oos_p⋆ Total out-of-
sequence packets

mm_reord_p_n⋆ Total reordered
packets

RTP mm_reord_delay⋆ Delay of reordered
packets

multimedia mm_avg_jitter⋆ Average jitter [ms]
(mutliple mm_avg_ipg⋆ Average IPG [ms]
segments) mm_avg_bitrate⋆ Stream bitrate

[kbit/s]
mm_cl_b⋆ Long stream flow

length [bytes]
mm_cl_p⋆ Long stream flow

length [packet]
mm_cl_b_s⋆ Short stream flow

length [bytes]
mm_cl_p_s⋆ Short stream flow

length [packet]
mm_tot_time_s⋆ Short stream flow

lifetime [ms]
mm_tot_time⋆ Stream flow life-

time [s]
mm_rtp_pt⋆ RTP payload type
mm_uni_multi⋆ Unicast/multicast

flows
mm_type⋆ Stream type

173

Bibliography

[1] Aitia. http://www.aitia.hu.

[2] Auckland-vi. http://www.wand.net.nz/wits/auck/6/auckland_vi.php.

[3] CAIDA, The Cooperative Association for Internet Data Analysis. http://www.caida.
org/research/traffic-analysis/classification-overview/.

[4] Endace.http://www.endace.com.

[5] IANA, List of assigned port numbers. http://www.iana.org/assignments/

port-numbers,.

[6] IPP2P home page.http://www.ipp2p.org/.

[7] Joost.http://www.joost.com.

[8] l7filter, Application layer packet classifier for Linux. http://l7-filter.

clearfoundation.com/,.

[9] LEDBAT Mailing List Archives. http://www.ietf.org/mail-archive/web/

ledbat,.

[10] LEDBAT ns2 code. http://perso.telecom-paristech.fr/~valenti/pmwiki/
pmwiki.php?n=Main.LEDBAT.

[11] PPLive.http://www.pplive.com.

[12] RIPE’s Routing Information Service Raw Data.http://data.ris.ripe.net/.

[13] SOPCast.http://www.sopcast.com.

[14] tcptrace - Official Homepage.http://jarok.cs.ohiou.edu/software/tcptrace/
manual.html.

[15] The Network Simulatorns2. http://www.isi.edu/nsnam/ns/.

[16] Tstat,http://tstat.tlc.polito.it.

[17] TVAnts. http://www.tvants.com.

[18] Unibs traces.http://www.ing.unibs.it/ntw/tools/traces/.

[19] Univ. Brescia traces.http://www.ing.unibs.it/ntw/tools/traces/.

[20] Weka,http://www.cs.waikato.ac.nz/ml/weka/.

http://www.aitia.hu
http://www.wand.net.nz/wits/auck/6/auckland_vi.php
http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.endace.com
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.ipp2p.org/
http://www.joost.com
http://l7-filter.clearfoundation.com/
http://l7-filter.clearfoundation.com/
http://www.ietf.org/mail-archive/web/ledbat
http://www.ietf.org/mail-archive/web/ledbat
http://perso.telecom-paristech.fr/ ~valenti/pmwiki/pmwiki.php?n=Main.LEDBAT
http://perso.telecom-paristech.fr/ ~valenti/pmwiki/pmwiki.php?n=Main.LEDBAT
http://www.pplive.com
http://data.ris.ripe.net/
http://www.sopcast.com
http://jarok.cs.ohiou.edu/software/tcptrace/manual.html
http://jarok.cs.ohiou.edu/software/tcptrace/manual.html
http://www.isi.edu/nsnam/ns/
http://tstat.tlc.polito.it
http://www.tvants.com
http://www.ing.unibs.it/ntw/tools/traces/
http://www.ing.unibs.it/ntw/tools/traces/
http://www.cs.waikato.ac.nz/ml/weka/

174 BIBLIOGRAPHY

[21] Comcast throttles bittorrent, seeding impossible.http://torrentfreak.com/
comcast-throttles-bittorrent-traffic-seeding-impossible/, Aug 2007.

[22] A. Abu and S. Gordon. A Dynamic Algorithm for Stabilising LEDBAT Congestion Win-
dow. In2nd IEEE International Conference on Computer and Network Technology (ICCNT
2010), Bangkok, Thailand, Apr 2010.

[23] A. J. Abu and S. Gordon. Impact of Delay Variability on LEDBAT Performance.Advanced
Information Networking and Applications, International Conference on, pages 708–715,
2011.

[24] Adobe. Real-time media flow protocol. http://www.adobe.com/products/

flashmediaserver/rtmfp_faq/,.

[25] S. Alcock and R. Nelson. Application flow control in youtube video streams.SIGCOMM
Comput. Commun. Rev., 41:24–30, April 2011.

[26] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M.Meo. P2P-TV Systems under
Adverse Network Conditions: A Measurement Study. InINFOCOM 2009, IEEE, 2009.

[27] M. Alllman and V. Paxson. Issues and etiquette concerning use of shared measurement data.
In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC ’07,
pages 135–140, New York, NY, USA, 2007. ACM.

[28] P. Amer and L. Cassel. Management of sampled real-time network measurements. InProc.
of IEEE LCN ’89, Oct 1989.

[29] M. I. Andreica, N. Tapus, and J. Pouwelse. Performance evaluation of a Python imple-
mentation of the new LEDBAT congestion control algorithm.International Conference on
Automation, Quality and Testing, Robotics, 2:1–6, 2010.

[30] F. Bakerand, B. Fosterand, and C. Sharp. Cisco Architecture for Lawful Intercept in IP
Networks. IETF RFC 3924(Informational), Oct 2004.

[31] R. Bennett. The next Internet meltdown.http://www.theregister.co.uk/2008/
12/01/richard_bennett_utorrent_udp, Dec 2008.

[32] P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti.Abacus: Accurate behavioral
classification of P2P-TV traffic.Elsevier Computer Networks, 55(6):1394 – 1411, 2011.

[33] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. Traffic classification
on the fly.SIGCOMM CCR, 36(2):23–26, 2006.

[34] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identification. InProc. of
ACM CoNEXT 2006, Lisboa, PT, December 2006.

[35] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and Improving a BitTorrent
Networks Performance Mechanisms. InIEEE INFOCOM’06, Barcelona, Spain, Apr 2006.

[36] A. Bhattacharyya. On a Measure of Divergence Between Two Statistical Populations De-
fined by Probability Distributions.Bull. Calcutta Math. Soc., 35:99–109, 1943.

[37] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A. Zhang. Improving
Traffic Locality in BitTorrent via Biased Neighbor Selection. In IEEE ICDCS ’06, Lisboa,
Portugal, Jul 2006.

http://torrentfreak.com/comcast-throttles-bittorrent-traffic-seeding-impossible/
http://torrentfreak.com/comcast-throttles-bittorrent-traffic-seeding-impossible/
http://www.adobe.com/products/flashmediaserver/rtmfp_faq/
http://www.adobe.com/products/flashmediaserver/rtmfp_faq/
http://www.theregister.co.uk/2008/12/01/richard_bennett_utorrent_udp
http://www.theregister.co.uk/2008/12/01/richard_bennett_utorrent_udp

175

[38] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi. Detailed Analysis of Skype Traffic.IEEE
Transaction on Multimedia, 11(1), Jan 2009.

[39] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli. Revealing skype traffic: when
randomness plays with you. InACM SIGCOMM’07, Kyoto, Japan, August 2007.

[40] C. Boutremans, C. Boutremans, and J.-Y. L. Boudec. A note on the Fairness of TCP Vegas.
In In Proceedings of International Zurich Seminar on Broadband Communications, pages
163–170, 2000.

[41] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: new techniques for congestion
detection and avoidance.ACM SIGCOMM Comp. Comm. Rev., 24(4):24–35, 1994.

[42] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of packet
sampling on anomaly detection metrics. InProc. of ACM SIGCOMM IMC ’06, Rio de
Janeriro, Brazil, Oct 2006.

[43] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta. Analysis of the
impact of sampling on netflow traffic classification.Computer Networks, 55:1083–1099,
April 2011.

[44] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa. A hands-on Assessment of Transport
Protocols with Lower than Best Effort Priority. InIEEE LCN’10, Denver, CO, USA, Oct
2010.

[45] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, and S.Valenti. Rethinking the Low Extra
Delay Background Transport (LEDBAT) Protocol. submitted to ACM/IEEE Transactions
on Networking.

[46] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti.The quest for LEDBAT fairness. In
IEEE Global Communication (GLOBECOM 2010), Miami, FL, Dec 2010.

[47] N. Cascarano, F. Risso, A. Este, F. Gringoli, L. Salgarelli, A. Finamore, and M. Mellia.
Comparing P2PTV Traffic Classifiers. InCommunications (ICC), 2010 IEEE International
Conference on, pages 1 –6, may 2010.

[48] M. W. D. Center. TCP Receive Window Size and Window Scaling. http://msdn.

microsoft.com/en-us/library/ms819736.aspx.

[49] Y. Chabchoub, C. Fricker, F. Guillemin, and P. Robert. Deterministic versus probabilis-
tic packet sampling in the Internet. InManaging Traffic Performance in Converged Net-
works(LNCS), Ottawa, Canada, Sep. 07.

[50] C. Chang and C. Lin. LIBSVM: A Library for Support VectorMachines.http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

[51] H. Chang, S. Jamin, and W. Wang. Live streaming performance of the Zattoo network. In
Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference,
IMC ’09, pages 417–429, Chicago, Illinois, USA, 2009.

[52] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion avoid-
ance in computer networks.Computer Networks and ISDN systems, 17(1):1–14, 1989.

http://msdn.microsoft.com/en-us/library/ms819736.aspx
http://msdn.microsoft.com/en-us/library/ms819736.aspx
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

176 BIBLIOGRAPHY

[53] B. Choi, J. Park, and Z. Zhang. Adaptive random samplingfor load change detection. In
Proc. of ACM SIGMETRICS ’02, Marina Del Rey, CA, US, Jun 2002.

[54] D. Ciullo, M. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi, M. Telek, and P. Veglia.
Network awareness of p2p live streaming applications: A measurement study.Multimedia,
IEEE Transactions on, 12(1):54 –63, Jan 2010.

[55] K. C. Claffy, G. C. Polyzos, and H. Braun. Application ofsampling methodologies to
network traffic characterization. InProc. of ACM SIGCOMM ’93, San Francisco, CA,
USA, Sep 1993.

[56] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational),
Oct 2004.

[57] B. Claise. Specification of the IP Flow Information Export Protocol for the Exchange of IP
Traffic Flow Information. RFC 5101, Jan 2008.

[58] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-
to-Peer systems, Cambridge, MA, Jun 2003.

[59] B. Cohen and A. Norberg. Correcting for clock drift in uTP and LEDBAT. InInvited talk
at 9th USENIX International Workshop on Peer-to-Peer Systems (IPTPS 2010), San Jose,
CA, Apr 2010.

[60] C. Cortes and V. Vapnik. Support-vector networks.Machine Learning, 20:273–297, 1995.

[61] T. M. Cover and J. A. Thomas.Elements of information theory. Wiley, New York, 1991.

[62] N. Cristianini and J. Shawe-Taylor.An introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, New York, NY, 1999.

[63] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic classification through simple
statistical fingerprinting.ACM SIGCOMM Computer Communication Review, 37(1):5–16,
January 2007.

[64] A. Dainotti, W. de Donato, and A. Pescapé. Tie: A community-oriented traffic classification
platform. InTraffic Monitoring and Analysis, volume 5537 ofLecture Notes in Computer
Science, pages 64–74. 2009.

[65] L. De Cicco, S. Mascolo, and V. Palmisano. Skype video responsiveness to bandwidth
variations. InACM NOSSDAV ’08, Braunschweig, Germany, May 2008.

[66] L. Deri. nProbe: an Open Source NetFlow Probe for Gigabit Networks. InIn Proc. of
Terena TNC 2003, Zagreb, Croatia, 2003.

[67] J. Drobisz and K. J. Christensen. Adaptive sampling methods to determine network traffic
statistics including the hurst parameter. InProc. IEEE LCN ’08, Boston, USA, Oct 1998.

[68] N. Duffield. Sampling for passive internet measurement: A review. Statistical Science,
19:472–498, 2004.

[69] N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics from
sampled packet streams. InProc. of ACM SIGCOMM IMW ’02, Marseille, France, Nov
2002.

177

[70] N. G. Duffield and M. Grossglauser. Trajectory samplingfor direct traffic observation.
SIGCOMM CCR, 30(4):271–282, 2000.

[71] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using clustering algorithms. In
MineNet ’06: Mining network data (MineNet) Workshop at ACM SIGCOMM ’06, Pisa,
Italy, 2006.

[72] J. Erman, A. Mahanti, and M. Arlitt. Byte me: The case forbyte accuracy in traffic classi-
fication. InIn SIGMETRICS ’07 MineNet Workshop, 2007.

[73] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson. Offline/realtime traffic
classification using semi-supervised learning.Perform. Eval., 64(9-12):1194–1213, 2007.

[74] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson. Identifying and discriminating between
web and peer-to-peer traffic in the network core. InProceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 883–892, Banff, Alberta, Canada, 2007.

[75] A. Este, F. Gringoli, and L. Salgarelli. On the stability of the information carried by traffic
flow features at the packet level.ACM SIGCOMM Comput. Commun. Rev., 39(3):13–18,
2009.

[76] A. Finamore, M. Mellia, M. Meo, M. Munafo, and D. Rossi. Experiences of internet traffic
monitoring with tstat.IEEE Network Magazine, Special Issue on Network Traffic Monitor-
ing and Analysis, May 2011.

[77] A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: Stochastic packet inspection classifier
for udp traffic. IEEE/ACM Trans. Netw., 18(5):1505–1515, 2010.

[78] A. Finamore, M. Mellia, M. Meo, D. Rossi, and S. Valenti.Peer-to-peer traffic classifica-
tion: exploiting human communication dynamics. InIEEE Globecom’10, Demo Session,,
Miami, FL, USA, 2010.

[79] A. Finamore, M. Meo, D. Rossi, and S. Valenti. Kiss to Abacus: A Comparison of P2P-TV
Traffic Classifiers. InTraffic Monitoring and Analysis, Springer Lecture Notes in Computer
Science, volume 6003, pages 115–126. 2010.

[80] T. Z. J. Fu, Y. Hu, X. Shi, D.-M. Chiu, and J. C. S. Lui. PBS:Periodic Behavioral Spectrum
of P2P Applications. InProc. of PAM ’09, Seoul, South Korea, Apr 2009.

[81] Q. Gao and Q. Yin. Adaptive Vegas: A Solution of Unfairness Problem for TCP Vegas.
In Information Networking. Convergence in Broadband and Mobile Networking, Springer
Lecture Notes in Computer Science, volume 3391, pages 132–141. 2005.

[82] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and k. c. claffy. GT: picking
up the truth from the ground for internet traffic.ACM SIGCOMM Comput. Commun. Rev.,
39(5):12–18, 2009.

[83] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: automated construction of appli-
cation signatures. InACM SIGCOMM Workshop on Mining Network Data (Minenet’05),
Philadelphia, PA, August 2005.

[84] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and stability of congestion control
mechanisms of TCP.Telecommunication Systems, 15:167–184, 2000.

178 BIBLIOGRAPHY

[85] G. Hazel. uTorrent Transport Protocol library.http://github.com/bittorrent/
libutp, May 2010.

[86] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A Measurement Study of a Large-Scale
P2P IPTV System.IEEE Transactions on Multimedia, Dec. 2007.

[87] S. Hemminger et al. Network emulation with NetEm. InLinux Conf Australia (LCA 2005),
Canberra, Australia, Apr 2005.

[88] E. A. Hernandez, M. C. Chidester, and A. D. George. Adaptive sampling for network
management.J. Netw. Syst. Manage., 9(4):409–434, 2001.

[89] G. Huang. Experiences with pplive, 2007. Keynote speech at ACM SIGCOMM’07 Work-
shop on P2P-TV.

[90] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, and C. Huang.Challenges, design and
analysis of a large-scale p2p-vod system. InProc. of SIGCOMM ’08, Seattle, WA, USA,
2008.

[91] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,S. Singh, and G. Varghese. Net-
work monitoring using traffic dispersion graphs (tdgs). InProc. of IMC ’07, San Diego,
California, USA, 2007.

[92] Ipoque. Internet Study 2007. http://www.ipoque.com/resources/

internet-studies/internet-study-2007.

[93] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garces-Erice. Dis-
secting bittorrent: Five months in a torrent’s lifetime. InPassive and Active Measurement
(PAM 2004), Antibes, France, Apr 2004.

[94] V. Jacobson. Congestion avoidance and control. InACM SIGCOMM Comp. Comm. Rev.,
Stanford, CA, Aug 1988.

[95] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. IETF
RFC 1323, May 1992.

[96] T. Jebara and R. Kondor. Bhattacharyya and Expected Likelihood Kernels. InProc. of
Conference on Learning Theory (COLT’03), Washington D.C., US, August 2003.

[97] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang. Lightweight application classification
for network management. InProceedings of the 2007 SIGCOMM workshop on Internet
network management, Kyoto, Japan, Aug 2007.

[98] Y. Jin, N. Duffield, P. Haffner, S. Sen, and Z.-L. Zhang. Inferring applications at the network
layer using collective traffic statistics.SIGMETRICS Perform. Eval. Rev., 38, June 2010.

[99] T. Kailath. The Divergence and Bhattacharyya DistanceMeasures in Signal Selection.IEEE
Transactions on Communication Technology, 15(1):52 –60, 1967.

[100] T. Karagiannis, A. Broido, N. Brownlee, k. klaffy, andM. Faloutsos. Is P2P dying or just
hiding? InIEEE GLOBECOM ’04., Dallas, Texas, US, 2004.

[101] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy. Transport layer identification of P2P
traffic. In 4th ACM SIGCOMM Internet Measurement Conference (IMC’04), Taormina, IT,
October 2004.

http://github.com/bittorrent/libutp
http://github.com/bittorrent/libutp
http://www.ipoque.com/resources/internet-studies/internet-study-2007
http://www.ipoque.com/resources/internet-studies/internet-study-2007

179

[102] T. Karagiannis, K. Papagiannaki, N. Taft, and M. Faloutsos. Profiling the end host. InPro-
ceedings of the 8th international conference on Passive andactive network measurement,
PAM’07, Louvain-la-Neuve, Belgium, 2007.

[103] P. Key, L. Massoulié, and B. Wang. Emulating low-priority transport at the application
layer: a background transfer service. InACM SIGMETRICS, New York City, NY, Jun
2004.

[104] A. R. Khakpour and A. X. Liu. High-speed flow nature identification. In Proceedings of
the 2009 29th IEEE International Conference on DistributedComputing Systems, ICDCS
’09, 2009.

[105] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee. Internet traffic
classification demystified: myths, caveats, and the best practices. InProc. of ACM CoNEXT
2008, Madrid, Spain, 2008.

[106] R. Kohavi and R. Quinlan. Decision tree discovery. InIN HANDBOOK OF DATA MINING
AND KNOWLEDGE DISCOVERY, pages 267–276. University Press, 1999.

[107] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. In
Proceeding of the 2007 conference on Emerging Artificial Intelligence Applications in Com-
puter Engineering: Real Word AI Systems with Applications in eHealth, HCI, Informa-
tion Retrieval and Pervasive Technologies, pages 3–24, Amsterdam, The Netherlands, The
Netherlands, 2007. IOS Press.

[108] Y. Kulbak and D. Bickson. The eMule protocol specification. Technical Report TR-2005-
03, Leibniz Center, 2005.

[109] A. Kumar and J. Xu. Sketch guided sampling - using on-line estimates of flow size for
adaptive data collection. InIEEE INFOCOM ’06, Barcelona, Spain, April 2006.

[110] S. Kumar and P. Crowley. Algorithms to accelerate multiple regular expressions matching
for deep packet inspection. InIn Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM’06), pages 339–350, 2006.

[111] A. Kuzmanovic and E. Knightly. TCP-LP: low-priority service via end-point congestion
control. IEEE/ACM Transactions on Networking (TON), 14(4):752, 2006.

[112] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian. Internet inter-
domain traffic.SIGCOMM Comput. Commun. Rev., 40:75–86, August 2010.

[113] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. InACM
SIGCOMM ’04, Portland, OR, USA, 2004.

[114] D. Leith, R. Shorten, G. McCullagh, L. Dunn, and F. Baker. Making Available Base-RTT
for Use in Congestion Control Applications.IEEE Communications Letters, 12:429–431,
Jun 2008.

[115] E. Leonardi, M. Mellia, A. Horvath, L. Muscariello, S.Niccolini, and D. Rossi. Building
a cooperative P2P-TV application over a wise network: the approach of the European FP-7
strep NAPA-WINE.Communications Magazine, IEEE, 46(4):20–22, 2008.

180 BIBLIOGRAPHY

[116] W. Li, M. Canini, A. W. Moore, and R. Bolla. Efficient application identification and the
temporal and spatial stability of classification schema.Computer Networks, 53(6):790–809,
2009.

[117] S. Liu, T. Basar, and R. Srikant. TCP-Illinois: A loss-and delay-based congestion control
algorithm for high-speed networks.ACM Performance Evaluation, 65(6-7):417–440, 2008.

[118] S. Liu, M. Vojnovic, and D. Gunawardena. 4cp: Competitive and considerate congestion
control protocol. InACM SIGCOMM, Pisa, Italy, Sep 2006.

[119] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker. Unexpected means of
protocol inference. In6th ACM SIGCOMM Internet Measurement Conference (IMC’06),
Rio de Janeiro, BR, October 2006.

[120] J. Mai, C. Chuah, A. Sridharan, T. Ye, and H. Zang. Is sampled data sufficient for anomaly
detection? InProc. ACM SIGCOMM IMC ’06, Rio de Janeriro, Brazil, Oct 2006.

[121] G. L. Mantia, D. Rossi, A. Finamore, M. Mellia, and M. Meo. Stochastic Packet Inspection
for TCP Traffic. In IEEE International Conference on Communications (ICC’10), Cape
Town, South Africa, May 2010.

[122] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler. Small Is Not Always Beautiful. In
IPTPS’2008, Tampa Bay, Florida United States, 2008.

[123] K. Matusita. A Distance and Related Statistics in Multivariate Analysis. InProc. of Inter-
national Symposium on Multivariate Analysis, Academic Press P.R. Krishnaiah (ed.), pages
187–200, 1966.

[124] A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill. Flowclustering using machine learning
techniques. InPAM’04, Antibes Juan-les-Pins, Fr., April 2004.

[125] M. Mellia, R. Lo Cigno, and F. Neri. Measuring IP and TCPbehavior on edge nodes with
Tstat.Computer Networks, 47(1):1–21, January 2005.

[126] M. Mellia, M. Meo, L. Muscariello, and D. Rossi. Passive analysis of TCP anomalies.
Elsevier Computer Networks, 52(14), October 2008.

[127] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[128] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysisand Comparison of TCP Reno
and Vegas. InIn Proceedings of IEEE Infocom, New York, NY, USA, Mar 1999.

[129] A. Moore, D. Zuev, and M. Crogan. Discriminators for use in flow-based classification.
Technical report, University of Cambridge, 2005.

[130] A. W. Moore and D. Zuev. Internet traffic classificationusing bayesian analysis techniques.
In ACM SIGMETRICS ’05, Banff, Alberta, Canada, 2005.

[131] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy.The coralreef software suite as a
tool for system and network administrators. InProceedings of the 15th USENIX conference
on System administration, San Diego, California, 2001.

[132] Moore, Andrew. W. and Papagiannaki, Konstantina. Toward the Accurate Identification of
Network Applications. InPassive and Active Measurement (PAM’05), Boston, MA, US,
March 2005.

181

[133] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto. Identifying elephant flows through
periodically sampled packets. InProc. of ACM SIGCOMM IMC ’04, Taormina, Italy, 2004.

[134] S. Morris. µTorrent release 1.9 alpha 13485.http://forum.utorrent.com/
viewtopic.php?pid=379206#p379206, Dec 2008.

[135] T. T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic classification
using machine learning.IEEE Communications Surveys & Tutorials, 10(4):56–76, 2008.

[136] A. Norberg. BitTorrent Enhancement Proposals on uTorrent transport protocol.http://
www.bittorrent.org/beps/bep_0029.html, 2009.

[137] I. Paredes-Oliva, P. Barlet-Ros, and J. Solé-Pareta.Portscan detection with sampled netflow.
In Traffic Measurement and Analysis (TMA), Springer-Verlag LNCS 5537, May 2009.

[138] J. Park, H.-R. Tyan, and C.-C. Kuo. Internet Traffic Classification for Scalable QoS Provi-
sion. pages 1221 –1224, jul. 2006.

[139] V. Paxson. End-to-end routing behavior in the internet. SIGCOMM CCR, 26(4):25–38,
1996.

[140] V. Paxson. Bro: a system for detecting network intruders in real-time. Elsevier Comput.
Netw., 31:2435–2463, December 1999.

[141] M. Perényi, T. D. Dang, A. Gefferth, and S. Molnár. Identification and analysis of peer-to-
peer traffic.Journal of Communications, 1(7):36–46, 2006.

[142] A. Pescapé, D. Rossi, D. Tammaro, and S. Valenti. On theimpact of sampling on traffic
monitoring and analysis. InInternational Teletraffic Congress ITC22, Sep. 2010.

[143] L. Peterson. Inter-AS traffic patterns and their implications. Inin Proc. IEEE GLOBECOM,
1999.

[144] M. Pietrzyk, J.-L. Costeux, G. Urvoy-Keller, and T. En-Najjary. Challenging statistical
classification for operational usage: the ADSL case. InProc. of IMC ’09, pages 122–135,
Chicago, Illinois, USA, 2009.

[145] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer
networks. InACM SIGCOMM’04, Portland, Oregon, USA, Aug 2004.

[146] B. Ribeiro, D. Towsley, T. Ye, and J. C. Bolot. Fisher information of sampled packets: an
application to flow size estimation. InProceedings of the 6th ACM SIGCOMM conference
on Internet measurement, Rio de Janeriro, Brazil, 2006.

[147] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus. Lightweight, payload-based
traffic classification: An experimental evaluation. InProc. of IEEE ICC ’08, May 2008.

[148] F. Risso and N. Cascarano. Diffinder available athttp://netgroup.polito.it/

research-projects/l7-traffic-classification.

[149] M. Robnik-Šikonja and I. Kononenko. Theoretical and Empirical Analysis of ReliefF and
RReliefF.Mach. Learn., 53:23–69, October 2003.

http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://forum.utorrent.com/viewtopic.php?pid=379206#p379206
http://www.bittorrent.org/beps/bep_0029.html
http://www.bittorrent.org/beps/bep_0029.html
http://netgroup.polito.it/research-projects/l7-traffic-classification
http://netgroup.polito.it/research-projects/l7-traffic-classification

182 BIBLIOGRAPHY

[150] V. P. Roche and U. Arronategui. Behavioural characterization for network anomaly detec-
tion. Transactions on Computational Science IV: Special Issue onSecurity in Computing,
pages 23–40, 2009.

[151] S. Romig, M. Fullmer, and L. Luman. The OSU Flow-tools Package and CISCO NetFlow
Logs. InUSENIX LISA’00, New Orleans, LA, US, Dec 2000.

[152] D. Rossi, C. Casetti, and M. Mellia. User patience and the web: a hands-on investigation.
In IEEE Globecom’03, San Francisco, CA, USA, December 2003.

[153] D. Rossi, M. Mellia, and M. Meo. Understanding Skype signaling. Elsevier Computer
Networks, 53(2):130–140, 2009.

[154] D. Rossi and E. Sottile. Sherlock: A framework for P2P traffic analysis. InIEEE P2P’09,
Seattle, WA, USA, Sep 2009.

[155] D. Rossi, C. Testa, S. Valenti, , and L. Muscariello. LEDBAT: the new BitTorrent congestion
control protocol. InProc. of ICCCN ’10, Zurich, Switzerland, Aug 2010.

[156] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing with the new BitTorrent
congestion control algorithm. InPassive and Active Measurement (PAM 2010), Zurich,
Switzerland, Apr 2010.

[157] D. Rossi, C. Testa, S. Valenti, P. Veglia, and L. Muscariello. News from the internet con-
gestion control world. Technical Report, Aug 2009.

[158] D. Rossi and S. Valenti. Fine-grained traffic classification with Netflow data. InTRaffic
Analysis and Classification (TRAC) Workshop at IWCMC ’10, Caen, France, Jun 2010.

[159] D. Rossi and S. Valenti. Fine-grained behavioral classification in the core: the issue of
flow sampling. InTRaffic Analysis and Classification (TRAC) Workshop at IWCMC’11,
Istambul,Turkey, Jul 2011.

[160] D. Rossi and S. Valenti. Identifying key features for P2P traffic classification. InIEEE
International Conference on Communications (ICC’11), Kyoto, Japan, Jun 2011.

[161] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service mapping for QoS: a
statistical signature-based approach to IP traffic classification. InACM SIGCOMM Internet
Measurement Conference (IMC’04), Taormina, IT, October 2004.

[162] I. S. Ha, Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant. InACM
SIGOPS Operating System Review, New York, NY, Jul 2008.

[163] L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing traffic classifiers. ACM SIG-
COMM Comp. Comm. Rev., 37(3):65–68, 2007.

[164] J. Schneider, J. Wagner, R. Winter, and H. Kolbe. Out ofmy way - evaluating Low Extra
Delay Background Transport in an ADSL access network. InTeletraffic Congress (ITC),
2010 22nd International, pages 1 –8, sept. 2010.

[165] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalablein-network identification of p2p
traffic using application signatures. In13th international conference on World Wide Web
(WWW’04), New York, NY, US, May 2004.

183

[166] S. Shalunov. Low Extra Delay Background Transport (LEDBAT). IETF Draft, Mar 2010.

[167] T. Silverston and O. Fourmaux. Measuring P2P IPTV Systems. InProceedings of ACM
NOSSDAV, June 2007.

[168] R. Sommer and A. Feldmann. NetFlow: Information loss or win? In ACM SIGCOMM
Internet Measurment Workshop (IMW ’02), marseille, france, Nov 2002.

[169] C. System. Cisco visual networking index: Forecast and methodology, 2010-2015.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_

White_Paper.html.

[170] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapé. Exploiting packet sampling measure-
ments for traffic characterization and classification. submitted to International Journal of
Network Monitoring.

[171] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound TCP approach for high-speed
and long distance networks. In25th IEEE Conference on Computer Communications (IN-
FOCOM 2006), Barcelona, Spain, Apr 2006.

[172] P.-N. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining, (First Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[173] S. Valenti, D. Rossi, M. Meo, M. Mellia, and P. Bermolen. Accurate, Fine-Grained Clas-
sification of P2P-TV Applications by Simply Counting Packets. In Proc. of International
Workshop on Traffic Monitoring and Analysis (TMA ’09), Springer Lecture Notes on Com-
puter Science, volume 5537, pages 84–92, Aachen, Germany, 2009.

[174] S. Valenti, D. Rossi, M. Meo, M. Mellia, and P. Bermolen. An Abacus for P2P-TV traffic
classification. InIEEE INFOCOM 2009, Demo Session, April 2009.

[175] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism for background
transfers. In8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, Dec 2002.

[176] F. Verhulst.Nonlinear differential equations and dynamical systems. Springer-Verlag, New
York, NY, USA, 1990.

[177] N. Williams, S. Zander, and G. Armitage. A preliminaryperformance comparison of five
machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM
CCR, 36(5):5–16, 2006.

[178] B. Wong, A. Slivkins, and E. Sirer. Meridian: A lightweight network location service
without virtual coordinates.ACM SIGCOMM Comp. Comm. Rev., 35(4):96, 2005.

[179] C. Wu, B. Li, and S. Zhao. Exploring large-scale peer-to-peer live streaming topologies.
ACM Trans. Multimedia Comput. Commun. Appl., 4:19:1–19:23, September 2008.

[180] C.-C. Wu, K.-T. Chen, Y.-C. Chang, and C.-L. Lei. Peer-to-peer application recognition
based on signaling activity. InProc. of IEEE ICC ’09, Dresden, Germany, May 2009.

[181] W. A. Wulf and S. A. Mckee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23:20–24, 1995.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html

184 BIBLIOGRAPHY

[182] Y. Xia, D. Harrison, S. Kalyanaraman, K. Ramachandran, and A. Venkatesan.
Accumulation-based congestion control.IEEE/ACM Trans. Netw., 13:69–80, February
2005.

[183] H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. R. Yang. P4P: Explicit Communications
for Cooperative Control Between P2P and Network Providers.

[184] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling internet backbone traffic: behavior
models and applications.ACM SIGCOMM Comput. Commun. Rev., 35(4):169–180, 2005.

[185] S. Yang, H. Jin, B. Li, and X. Liao. A modeling frameworkof content pollution in peer-to-
peer video streaming systems.Comput. Netw., 53:2703–2715, October 2009.

[186] S. Zander, T. Nguyen, and G. Armitage. Automated traffic classification and application
identification using machine learning. InProc. of IEEE LCN ’05, nov. 2005.

[187] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. Coolstreaming/donet: a data-driven overlay network
for peer-to-peer live media streaming. InINFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings IEEE, 2005.

[188] T. Zseby. Deployment of Sampling Methods for SLA. Validation with Non-Intrusive Mea-
surements. InProc. of PAM ’02, Fort Collins, Colorado, USA, Mar 2002.

[189] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall. Sampling and Filtering
Techniques for IP Packet Selection. RFC 5475 (Proposed Standard), Mar 2009.

	Introduction
	The rise and (apparent) fall of P2P applications
	Motivation
	Contributions of this thesis
	Thesis outline

	I Traffic Classification
	Introduction to traffic classification
	Definitions and State of the art
	Machine learning algorithms for classification
	Support Vector Machine
	Decision Trees

	Evaluating classification accuracy
	Overview of dataset

	A general framework for behavioral P2P traffic classification
	Defining behavioral features
	Timescale
	Entities
	Granularity and Direction
	Categories
	Operations

	Methodology
	Dataset
	Metrics
	Preliminary Examples

	Experimental Results
	Comparing feature ranking
	Classification results

	Summary

	Abacus - Behavioral classification of P2P-TV Traffic
	Introduction
	Classification Framework
	The Rationale
	Behavioral P2P-TV Signatures

	Methodology
	Workflow overview
	Rejection Criterion

	Dataset
	Testbed Traces
	Real Traces

	Experimental Results
	Baseline results
	Signatures Portability

	Sensitivity Analysis
	Impact of the Rejection Threshold R
	Impact of Time Interval T
	Impact of Training Set Size
	Impact of Training Set Diversity
	Impact of SVM Kernel and Binning Strategy

	Improving the Accuracy: Extending the Signature
	Summary

	Comparing behavioral and payload based classification algorithms
	Classification algorithms
	Abacus
	Kiss

	Experimental Results
	Methodology and Datasets
	Classification results

	Comparison
	Functional Comparison
	Computational Cost

	Demo software
	Summary

	II Traffic Classification and data reduction
	Behavioral classification with reduced data
	Behavioral classification with NetFlow
	Netflow data
	Using flow-records for classification
	Dataset and Methodology
	Classification results

	Behavioral classification in the core: the issue of flow sampling
	Spatial distribution of application traffic
	Real-life IP routing analysis
	Impact of flow-sampling on Abacus signatures
	Impact of flow-sampling on classification accuracy

	Summary

	Impact of Sampling on traffic characterization and classification
	Related work
	Dataset and Features
	Dataset
	Features

	Methodology
	Sampling Policies
	Metrics

	Aggregate Feature Distortion
	Overview of Sampling Impact
	Impact of Protocol Layer
	Impact of Sampling Policy

	Single-flow Feature Distortion
	Overview of Sampling Impact
	Ranking Features

	Traffic classification under sampling
	Impact of Feature Set
	Impact of Training Policy
	Impact of Dataset

	Summary
	Impact on traffic characterization
	Impact on traffic classification

	III Congestion control for P2P
	A measurement study of LEDBAT
	Introduction
	Methodology and Preliminary Insights
	Single-flow scenarios
	Multiple Flows
	Related work
	Summary

	Simulation study of LEDBAT
	LEDBAT Overview
	Queuing Delay Estimate
	Controller Dynamics
	TCP Friendliness Consideration

	Simulation results
	Implementation details
	Reference scenario
	Homogeneous Initial Conditions
	Heterogeneous Initial Conditions
	Latecomer advantage in real networks

	Addressing the latecomer advantage
	Correcting the measurement error
	Introducing multiplicative decrease

	Related work
	Summary

	Designing an efficient and fair LEDBAT
	Current LEDBAT fairness issues
	Impact of additive decrease

	Proposed LEDBAT modification
	Fluid model description
	Fluid system dynamics
	System convergence

	Simulation overview
	Impact of traffic model
	Chunk-by-chunk transfer
	Backlogged transfer

	Sensitivity analysis
	Observations on , and low-priority level
	fLEDBAT vs TCP
	fLEDBAT vs LEDBAT
	fLEDBAT vs fLEDBAT

	P2P Scenarios
	Single peer perspective
	Entire swarm perspective

	Summary

	Conclusion
	Summary
	Future work

	Appendices
	List of publications
	Publications
	Under review

	List of traffic features output by tstat

	Bibliography

