

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Juan Antonio Cordero

École Polytechnique, France Laboratoire d'Informatique (LIX) Équipe HIPERCOM

ARPANET, 1969

(from http://som.csudh.edu/cis/lpress/history/arpamaps/)

Internet connections in the US, 2009

(map by Z. Deretsky, NSF, adapted from maps by C. Harrison, Human-Computer Interaction Institute of CMU, <u>www.chrisharrison.net</u>)

□ Size : connections, hosts, users...

~ 850 Mhosts (Internet Domain Survey Count, July 2011)

□ Routing architecture : ARPANET → Internet

Complexity : types of interconnected networks

Autonomous Systems

- Routing autonomy
- Inside / outside

□ Wireless ad hoc networks

- Topology unknown a priori
- May change unpredictably during network operation

□ Applicability of wireless and ad hoc networks

Rescue and recovery scenarios

□ Applicability of wireless and ad hoc networks

Rescue and recovery scenarios

Vehicular networks (VANETs)

□ Applicability of wireless and ad hoc networks

Wireless sensor networks (WSNs)

Rescue and recovery scenarios

Vehicular networks (VANETs)

□ Applicability of wireless and ad hoc networks

Wireless sensor networks (WSNs)

Vehicular networks (VANETs)

Rescue and recovery scenarios

Spontaneous / community mesh networking

- □ Issues of wireless ad hoc networking
 - Wireless "links", partly shared medium

Unreliability in wireless communication

Topology dynamism and router mobility

Degradation of communication vs wireless links

□ Key questions

- Why addressing routing in compound Autonomous Systems ?
- One or several routing solutions for a compound AS ?

□ Key questions

- Why addressing routing in compound Autonomous Systems ?
 - Currently deployed IGPs do not work in wireless ad hoc networks

One or several routing solutions for a compound AS ?

□ Key questions

- Why addressing routing in compound Autonomous Systems ?
- One or several routing solutions for a compound AS ?

□ How ?

Extension of an already used IGP for wireless ad hoc operation

 Open Shortest Path First (OSPF) : one of the main link-state IGPs

Link-State Routing

Link-State Routing LSA Acquisition

□ Routers advertise all their neighbors in their own LSA

□ Routers retransmit every LSA they receive immediately

Link-State Routing LSA Acquisition

□ Routers advertise all their neighbors in their own LSA

□ Routers retransmit every LSA they receive immediately

□ Every pair of routers have the same information in their LSDBs

□ All routers receive LSAs from every other router in the network

Link-State Routing Link State Operations

□ Routers advertise *all* their neighbors in their own LSA

□ Routers retransmit *every* LSA they receive *immediately*

□ Every pair of routers have *the same* information in their LSDBs

LSDB Synchronization

□ All routers receive LSAs from *every other* router in the network

Link-State Routing Link State Routing over Wireless Ad hoc Networks

	<u>Objective</u>	<u>Open issues</u>	Reduction goals
 Topology view 	Routes towards destinations	Shortest paths	Adv. links, updates
Flooding	Dominating set of forwarders	Wireless collisions	Txs, latency
 Synchronization 	Synchronized paths	LSDB exchange	Synchronizations

 J. A. Cordero, E. Baccelli, P. Jacquet, T. Clausen: Wired/Wireless Compound Networking. In: Xin Wang (ed.): Mobile Ad-Hoc Networks – Applications, InTech Publisher, ISBN 978-953-307-416-0, Jan. 2011.
 J. A. Cordero, P. Jacquet, E. Baccelli: Impact of Jitter-based Techniques on Flooding over Wireless Ad hoc Networks: A Theoretical Approach. (under review for INFOCOM'31)

T. Clausen, E. Baccelli, P. Jacquet: **OSPF-style Database Exchange and Reliable Synchronization in OLSR**. Proc. IEEE Intl. Conf. on Sensor and Ad hoc Networks (SECON'04). Oct. 2004.

Link-State Routing Link State Routing over Wireless Ad hoc Networks

	<u>Objective</u>	<u>Open issues</u>	Reduction goals		
 Topology view 	Routes towards destinations	Shortest paths	Adv. links, updates		
Flooding	Dominating set of forwarders	Wireless collisions	Txs, latency		
 Synchronization 	Synchronized paths	LSDB exchange	Synchronizations		

Separate optimization of each link-state operation over MANETs

 J. A. Cordero, E. Baccelli, P. Jacquet, T. Clausen: Wired/Wireless Compound Networking. In: Xin Wang (ed.): Mobile Ad-Hoc Networks – Applications, InTech Publisher, ISBN 978-953-307-416-0, Jan. 2011.
 J. A. Cordero, P. Jacquet, E. Baccelli: Impact of Jitter-based Techniques on Flooding over Wireless Ad hoc Networks: A Theoretical Approach. (under review for INFOCOM'31)

T. Clausen, E. Baccelli, P. Jacquet: **OSPF-style Database Exchange and Reliable Synchronization in OLSR**. Proc. IEEE Intl. Conf. on Sensor and Ad hoc Networks (SECON'04). Oct. 2004.

Contributions

Optimization techniques for link-state routing over MANETs

□ Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

D Experiments in a Compound Internetwork

Contributions

Optimization techniques for link-state routing over MANETs

Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

D Experiments in a Compound Internetwork

Optimization techniques Synchronized Link Overlay

□ Based on the Relative Neighborhood Graph (RNG)

Given a set of points $S \subset \mathbb{R}^n$, $x, y \in S$, $(x, y) \in RNG(S) \Leftrightarrow \forall z \in S, d(x, z), d(z, y) > d(x, y)$

G. Toussaint: **The Relative Neighborhood Graph of Finite Planar Set**. In: Pattern Recognition, Vol. 12, Number 4, 1980.

J. Cartigny, F. Ingelrest, D. Simplot, I. Stojmenovic: **RNG Relay Subset Flooding Protocols in Mobile Ad-Hoc Networks**. In: Intl. Journal of Foundations of Computer Science, Vol. 14, Number 2. April 2003.

Optimization techniques Synchronized Link Overlay

Two variants considered, depending on the metric in use:

SLOT-D (IRⁿ distance)

SLOT-U (hop count)

[3] E. Baccelli, J. A. Cordero, P. Jacquet: Using Relative Neighborhood Graphs for Reliable Database
 Synchronization in MANETs. Proc. 5th IEEE SECON Workshop on Wireless Mesh Networks (WiMesh 2010), Jun. 2010.
 [4] E. Baccelli, J. A. Cordero, P. Jacquet: Optimization of Critical Data Synchronization via Link Overlay RNG in
 Mobile Ad Hoc Networks, Proc. 7th IEEE Intl. Conf. of Mobile Ad-hoc and Sensor Systems (MASS), Nov. 2010.

29

Optimization techniques Synchronized Link Overlay

Average number of links per node

 $M_{SLOT-U}(v) \le 3.6039$ $M_{SLOT-D}(v) \le 2.5575$

- Connected overlays
- Bounded overlay size

3,60 2,56

Optimization techniques Synchronized Link Overlay

Average link creation rate for a node speed s

$$V_{SLOT-U}(s, v) \approx O(s)$$
$$V_{SLOT-D}(s, v) \approx O\left(s\sqrt{v}\right)$$

Improves overlay stability

Contributions

Optimization techniques for link-state routing over MANETs

□ Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

D Experiments in a Compound Internetwork

Optimization techniques Multi-Point Relays

Definition

- 2-hop neighborhood
- Designed for flooding
- Adaptation for topology selection

A. Qayyum, L. Viennot, A. Laouiti: **Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks**. Proc. 35th IEEE Hawaii Intl. Conf. on Social Sciences (HICSS'35), Jan. 2002.

[5] J. A. Cordero: **MPR-based Pruning Techniques for Shortest Path Tree Computation**. Proc. 18th IEEE Intl. Conf. on Software Telecommunications and Computer Networks (SoftCOM2010), Sept. 2010.

35

Optimization techniques Multi-Point Relays

Definition

- 2-hop neighborhood
- Designed for flooding
- Adaptation for topology selection

(Enhanced) Path MPR

A. Qayyum, L. Viennot, A. Laouiti: **Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks**. Proc. 35th IEEE Hawaii Intl. Conf. on Social Sciences (HICSS'35), Jan. 2002.

[5] J. A. Cordero: **MPR-based Pruning Techniques for Shortest Path Tree Computation**. Proc. 18th IEEE Intl. Conf. on Software Telecommunications and Computer Networks (SoftCOM2010), Sept. 2010.

36

Optimization techniques Multi-Point Relays

(GTNetS simulations, mobile network)

 Not adapted for LSDB synchronization

• High link change rate

Optimization techniques Multi-Point Relays

⁽GTNetS simulations, mobile network)

 Not adapted for LSDB synchronization

• High link change rate

[6] J. A. Cordero: Adjacency Persistency in OSPF MANET. Proc. 4th IET China-Ireland Intl. Conf. on ICTs (CIICT'10). Oct. 2010.

Contributions

Optimization techniques for link-state routing over MANETs

□ Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

D Experiments in a Compound Internetwork

Optimization techniques
Smart Peering

Definition

 Depends on the network dynamics

 Priority to synchronization with routers maintaining stable links

A. Roy: Adjacency Reduction in OSPF Using SPT Reachability. IETF Internet Draft, draft-roy-ospf-smart-peering-01, Nov. 2005.

40

Optimization techniques

□ Summary

	SLOT	MPR	SP
Requirements	1-hop neighbors	2-hop neighbors	Global topology knowledge
Topology Selection		Enhanced Path MPR	
Flooding		Full coverage in 2 hops	
LSDB Synchronization	Density bounded Reduced change rate (not dependent on density for SLOT-U)	High link change rate (⇒ persistency)	Sensitive to mobility Priority to stable links

Contributions

Optimization techniques for link-state routing over MANETs

□ Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

□ Experiments in a Compound Internetwork

Application to OSPF
Open Shortest Path First

□ Two routing principles

- User data is forwarded over shortest paths
- User data & control traffic is sent over synchronized links

□ IETF OSPF MANET extensions

- Multipoint Relays (MPR-OSPF)
- MPRs, Smart Peering (OR / SP)

44

Additional extensions

- MPR + SP
- SLOT-OSPF
- Persistent Variants of MPR-OSPF

[7] E. Baccelli, J. A. Cordero, P. Jacquet: Multi-Hop Relaying Techniques with OSPF on Ad Hoc Networks. Proc. 4th IEEE Intl. Conf. on Sensor Networks and Communications (ICSNC'2010), Sept. 2009.
[8] J. A. Cordero, E. Baccelli, P. Jacquet: OSPF over Multi-Hop Ad Hoc Wireless Communications. In: Intl. Journal of Computer Networks and Communications (IJCNC), Vol. 2, Number 5, Sept. 2010.

□ Extensions Overview

	MPR-OSPF RFC5449	OR/SP RFC5820	MPR+SP	SLOT-OSPF
Topology Selection	Path MPR	SP	Path MPR (+ SP)	Path MPR
Flooding	Flooding MPR	MPR o SP	Flooding MPR	Flooding MPR
LSDB Synchr.	MPR	SP	SP	SLOT

□ It is beneficial to preserve shortest paths for user data in MANETs

□ Synchronizing (all) shortest paths is costly in MANETs...

47

[9] J. A. Cordero, T. Clausen, E. Baccelli: **MPR+SP – Towards a Unified MPR-based MANET Extension for OSPF**. Proc. 44th IEEE Hawaii Intl. Conf. on System Sciences (HICSS'44), Jan. 2011.

48

□ Advertise synchronized links ?

MPR+SP vs. SLOT-OSPF

Contributions

Optimization techniques for link-state routing over MANETs

□ Synchronized Link Overlay – Triangular (SLOT)

□ Multi-Point Relays (MPR)

□ Smart Peering (SP)

Application to OSPF

□ Implementation/Simulation of Extensions for MANETs

Experiments in a Compound Internetwork

□ Testbed : compound internetwork, 6 computers

{3 with wired interfaces
3 with wireless interfaces
2 with wired and wless interfaces

- Routing based on OSPF
 - OSPF for IPv6 (RFC 5340)
 - MPR-OSPF (RFC 5449)

Distribution of computers at LIX

Logical topologies considered in the internetwork

Logical topologies considered in the internetwork

Packet Delivery Ratio (/1)

□ Quality of communication degrades linearly as packets traverse more

Synchronization traffic is present during the whole lifetime of a wireless link

wless1:wlan0

Main contributions

□ Enable the Internet to exploit wireless ad hoc networking capabilities

Framework for analysis of link-state routing in compound ASes

Optimization of link-state operations over MANETs

- Proposal of new techniques
- Theoretical analysis of existing techniques
- Improvement / generalization of techniques
- □ Implementation and evaluation in OSPF
 - Development and simulations of OSPF MANET extensions
 - Experiments over OSPF in compound internetworks

Perspectives

□ Towards a wireless, more mobile Internet

Optimizations in other link-state routing protocols

Metrics in ad hoc and compound networks

- Beyond hop count: link reliability, distance, available bandwidth, maximum throughput (ETX)...
- Fixed / ad hoc coexistence requires a clear distinction between wired and wireless links
- □ ... beyond the principle of deterministic shortest path ?

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Questions ?

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Backup slides

Autonomous Systems

 RFC 975 (1986): "...a set of gateways, each of which can reach any other gateway in the same system using paths via gateways only in that system. The gateways of a system cooperatively maintain a routing data base using an <u>interior gateway protocol</u>..."

• RFC 1930 (1996): "...a connected group of one or more IP prefixes [internetworks] (..) which has a SINGLE and CLEARLY DEFINED routing policy."

RFC 1812 (1995): "...routers [inside an AS] may use one or more interior routing protocols..."

Link Characterization

Definition (def. 1.5)

Let *a*, *b* be network interfaces.

There is a **link** *l* **between** *a* **and** *b*, denoted by $l: a \rightarrow b$, iff *a* is able to transmit data to *b* and *b* is able to receive such data, without the intervention of any other network interface.

Equivalence (def. A.1)

Let $l_1: s_1 \rightarrow d_1, l_2: s_2 \rightarrow d_2$ be links.

 l_1 and l_2 are **equivalent**, and denoted as $l_1 \equiv l_2$ iff any of the following conditions is satisfied:

- (i) $s_1 = s_2, d_1 = d_2$
- (ii) $s_1 = s_2$, $d_1 \neq d_2$ and any pkt sent from s_1 to d_1 (via l_1) is also received by d_2 (via l_2), and viceversa
- (iii) $s_1 \neq s_2$ and $\exists l_{12}^*: s_1 \rightarrow s_2, l_{21}^*: s_2 \rightarrow s_1 \mid \text{any pkt sent from } s_1 \text{ to } d_1 \text{ (via } l_1 \text{) is also received by } s_2 \text{ (via } l_{12}^*) \text{ and } d_2 \text{ (via } l_2 \text{).}$
- (Prop. A.1) Relation \equiv is an equivalence relation.

General Simulation Parameters

- · 20 samples/experiment
- . Data traffic pattern
 - Constant Bit Rate UDP flow
 - Packet size: 1472 bytes
 - Packet rate: 85 pkts/sec
- Scenario
 - . Square grid
 - Grid size: 400x400 m
- . Node configuration
 - Radio range: 150 m
 - Propagation: Two-ray
 - Wireless α: 0,5
 - MAC protocol: IEEE 802.11b
- . Node mobility
 - Random waypoint model
 - Pause: 0 sec
 - Speed: 0, 5 m/s (ct.)

Simulation Parameters

Performed Experiments

. Fixed size grid

OSPF Configuration

 Standard Parameters - HelloInterval: 2 sec DeadInterval: 6 sec • RxmtInterval: 5 sec • MinLSInterval: 5 sec MinLSArrival: 1 sec LSRefreshInterval: 20 sec RFC 5449-like AckInterval: 1.8 sec RFC 5820 AckInterval: 1.8 sec PushbackInterval: 2 sec

Testbed Configuration Parameters

Networking Interfaces

- Wired : Digital Equipment Corp. DECchip 21140
- Wireless : Broadcom BCM4306 WLAN

Software

- OS : Ubuntu v.10.04, kernel 2.6.32
- Routing implementation : ospf6d daemon of Quagga/Zebra suite, v.0.99.15
- OSPF interface types
 - Wired : Point-to-point
 - Wireless : MANET, RFC 5449

OSPF Configuration

- HelloInterval: 2 sec
- DeadInterval: 10 sec
- RxmtInterval: 5 sec
- AckInterval: 2 sec
- Jitter (max.): 100 msec
- MinLSInterval: 5 sec
- MinLSArrival: 1 sec
- . LSRefreshInterval: 60 sec

Measures

- Router starting:
- [0, 2] sec 60 samples
- PDR of UDP flows:
 Control traffic:
- 84 samples

- **UDP Flows**
 - Nom. sender bitrate: 100 pkt/s
 - Packet payload: 1024 B
 - CBR real traffic rate: 300 kbps
 - Flow duration: 5 min/flow

Wireless a

65

MPR Heuristics

- Input: x, N(x), $N_2(x)$
- MPR = {∅}
- MPR $\leftarrow \{n \in N(x) : \exists m \in N_2(x), m \text{ only covered by } n\}$
- while (∃ uncovered 2-hop neighbors)
 MPR ← n ∈ N(x) : covers max. # of uncovered 2-hop neighbors
- **Output:** MPR(x, N(x), N₂(x))

Enhanced Path MPR

$$N'(x) = \{n \in N(x) : m(x, n) = dist_{2}(x, n)\} \subseteq N(x)$$

$$N'_{2}(x) = \{n \in N(x) \cup N_{2}(x) \mid n \notin N'(x), \exists m \in N'(x) : m(n, m) + m(m, x) = dist_{2}(n, x)\}$$

$$\subseteq N(x) \cup N_{2}(x)$$

$$(E_x^2)' = \{\overline{nm} \in E(G) : n \in N'(x), m \in N'_2(x), m(x,n) + m(n,m) = dist_2(x,m)\} \\ \cup \{\overline{xn} \in E(G) : n \in N'(x)\}$$

Persistency in MPR-OSPF (1)

	Adjacencies	Flooding	Topology	
PPM	Persistent	Persistent	Path MPRs	
PMP	Persistent	MPR Selectors	Persistent	
PMM	Persistent	MPR Selectors	Path MPRs	(RFC 5449)
MMM	MPRs	MPR Selectors	Path MPRs	(Non-pers.)

Persistency in MPR-OSPF (2)

• The non-persistent configuration (*MMM*) performs **significantly worse** than the other (partially persistent) configurations

• The delivery achieved by current standard *RFC 5449* can be **improved** by implementing persistency also in flooding (*PPM*) or in topology selection (*PMP*)

Delivery ratio

Conf. PPM —+— Conf. PMP ----≯69 Conf. PMM (min. RFC 5449) ----*-Conf. MMM (non-persistent) -----

Persistency in MPR-OSPF (3)

• Persistent adjacencies are **far more stable**, but persistency **increases the size** of the adjacent links set.

Persistency in MPR-OSPF (4)

 Overall, the cost (in overhead) of implementing persistency in flooding (*PPM*) is more significant than implementing it for topology selection (*PMP*)

 The benefits of flooding persistency are roughly equivalent as those of topology selection persistency

 Non-persistent configuration (MMM) generates more overhead than other persistent confs. (PMM and PMP) due to adjacency unstability

Wireless collisions (1)

72

73

The Jitter mechanism

Wireless collisions (3)

□ Flooding with jitter : RFC 5148

The Jitter mechanism

Wireless collisions (4)

Objectives

 \checkmark Theoretical analysis of the impact of jitter in flooding

(from the perspective of a wireless interface)

✓ Focusing on:

✓ Delay introduced in forwarding

✓ Changes in (out-)packet transmission rate

Avg fwding delay per interface

Wireless collisions (5)

- Given a jitter value T, what is the average delay before retransmission ?
- □ Two (extreme) cases :
 - Retx of a packet only depends on further arrivals

Retx of a packet depends (also) on all possible previous arrivals

Introduced delay (in average)

Wireless collisions (6)

