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� Complexity : types of interconnected networks

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Towards a more flexible Internet

~ 850 Mhosts 
(Internet Domain Survey Count, July 2011)

� Size : connections, hosts, users…

� Routing architecture : 
ARPANET → Internet
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� Autonomous Systems

AS 1

AS 2

AS 3 AS 4

Towards a more flexible Internet

� Routing autonomy

� Inside / outside

Host

Router in an AS

Router between ASes
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� Wireless, mobile, ad hoc

1985 US FCC allows unlicensed use of wireless (ISM) spectrum

1990 IEEE launches 802.11 (Wi-Fi) standardization group

1997 IETF defines Mobile Ad hoc Networking (MANET)

Towards a more flexible Internet
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� Wireless ad hoc networks

� Topology unknown a priori

� May change unpredictably during network operation

Towards a more flexible Internet
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� Applicability of wireless and ad hoc networks

Rescue and recovery scenarios

Towards a more flexible Internet
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Vehicular networks (VANETs)
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� Applicability of wireless and ad hoc networks

Wireless sensor networks 
(WSNs)

Rescue and recovery scenarios

Towards a more flexible Internet

Vehicular networks (VANETs)
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� Applicability of wireless and ad hoc networks

Wireless sensor networks 
(WSNs)

Rescue and recovery scenarios

Spontaneous / community 
mesh networking

Towards a more flexible Internet

Vehicular networks (VANETs)
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� Issues of wireless ad hoc networking

Towards a more flexible Internet

� Wireless “links”, partly shared medium

� Unreliability in wireless communication

� Topology dynamism and router mobility Degradation of communication vs wireless links
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Routing in Compound Autonomous Systems

� Compound Autonomous System

Autonomous System 

Rest of the 
Internet

Fixed networks + Wireless ad hoc networks



13

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Routing in Compound Autonomous Systems

� Compound Autonomous System

Fixed networks + Wireless ad hoc networks

Compound Autonomous System 

Rest of the 
Internet
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� Key questions 

� Why addressing routing in compound Autonomous Systems ?

� One or several routing solutions for a compound AS ?

Routing in Compound Autonomous Systems
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� Key questions 

� Why addressing routing in compound Autonomous Systems ?

� Currently deployed IGPs do not work in wireless ad hoc networks

� One or several routing solutions for a compound AS ?

Routing in Compound Autonomous Systems

T. R. Henderson et al.: A Wireless Interface Type for OSPF . Proc. 22th Military Communications Conference 
(MILCOM’03). Oct. 2003.
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� Key questions 

� Why addressing routing in compound Autonomous Systems ?

� One or several routing solutions for a compound AS ?

Routing in Compound Autonomous Systems

G
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� Extension of an already used IGP for wireless ad hoc 
operation

� Open Shortest Path First (OSPF) : one of the main 
link-state IGPs

Routing in Compound Autonomous Systems

� How ? 
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Link-state Database
(LSDB)

Shortest Path Tree
(SPT)

Routing Table

( Dijkstra ) ( next-hop )

Link-State Routing
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Link-State Routing

Link-State Advertisements
(LSAs)

Link-state Database
(LSDB)

Shortest Path Tree
(SPT)

Routing Table

( Dijkstra ) ( next-hop )



20

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Link-State Routing

LSA Acquisition

� Routers advertise all their neighbors in their own LSA

� Routers retransmit every LSA they receive immediately
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Link-State Routing

LSA Acquisition

� Routers advertise all their neighbors in their own LSA

� Routers retransmit every LSA they receive immediately

� Every pair of routers have the same information in their 
LSDBs

� All routers receive LSAs from every other router in the 
network
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Link-State Routing

Link State Operations

� Routers advertise all their neighbors in their own LSA

� Routers retransmit every LSA they receive immediately

� Every pair of routers have the same information in their 
LSDBs

� All routers receive LSAs from every other router in the 
network

Topology 
Description

Flooding

LSDB 
Synchronization
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[1] J. A. Cordero, E. Baccelli, P. Jacquet, T. Clausen: Wired/Wireless Compound Networking . In: Xin Wang (ed.): 
Mobile Ad-Hoc Networks – Applications, InTech Publisher, ISBN 978-953-307-416-0, Jan. 2011.
[2] J. A. Cordero, P. Jacquet, E. Baccelli: Impact of Jitter-based Techniques on Flooding over Wireless Ad hoc 
Networks: A Theoretical Approach . (under review for INFOCOM’31)

Link-State Routing

Link State Routing over Wireless Ad hoc Networks

� Topology view Routes towards destinations

� Flooding Dominating set of forwarders

� Synchronization Synchronized paths

Open issues

Shortest paths

Wireless collisions

LSDB exchange

Reduction goals

Adv. links, updates 

Txs, latency

Synchronizations

T. Clausen, E. Baccelli, P. Jacquet: OSPF-style Database Exchange and Reliable Synchroni zation in OLSR . Proc. 
IEEE Intl. Conf. on Sensor and Ad hoc Networks (SECON’04). Oct. 2004.

Objective
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Separate optimization of each link-state operation over MANETs

[1] J. A. Cordero, E. Baccelli, P. Jacquet, T. Clausen: Wired/Wireless Compound Networking . In: Xin Wang (ed.): 
Mobile Ad-Hoc Networks – Applications, InTech Publisher, ISBN 978-953-307-416-0, Jan. 2011.
[2] J. A. Cordero, P. Jacquet, E. Baccelli: Impact of Jitter-based Techniques on Flooding over Wireless Ad hoc 
Networks: A Theoretical Approach . (under review for INFOCOM’31)

Link-State Routing

Link State Routing over Wireless Ad hoc Networks

T. Clausen, E. Baccelli, P. Jacquet: OSPF-style Database Exchange and Reliable Synchroni zation in OLSR . Proc. 
IEEE Intl. Conf. on Sensor and Ad hoc Networks (SECON’04). Oct. 2004.

� Topology view Routes towards destinations

� Flooding Dominating set of forwarders

� Synchronization Synchronized paths

Open issues

Shortest paths

Wireless collisions

LSDB exchange

Reduction goals

Adv. links, updates 

Txs, latency

Synchronizations

Objective
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Contributions

Optimization techniques for link-state routing over MANETs

� Synchronized Link Overlay – Triangular (SLOT)

� Multi-Point Relays (MPR)

� Smart Peering (SP)

Application to OSPF

� Implementation/Simulation of Extensions for MANETs

� Experiments in a Compound Internetwork
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Optimization techniques

Synchronized Link Overlay

� Based on the Relative Neighborhood Graph (RNG)
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G. Toussaint: The Relative Neighborhood Graph of Finite Planar Se t. In: Pattern Recognition, Vol. 12, Number 4, 
1980.
J. Cartigny, F. Ingelrest, D. Simplot, I. Stojmenovic: RNG Relay Subset Flooding Protocols in Mobile Ad-Ho c 
Networks . In: Intl. Journal of Foundations of Computer Science, Vol. 14, Number 2. April 2003.
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Optimization techniques

Synchronized Link Overlay
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� Two variants considered, depending on the metric in use:

� SLOT-D (ℝn distance)

� SLOT-U (hop count)

[3] E. Baccelli, J. A. Cordero, P. Jacquet: Using Relative Neighborhood Graphs for Reliable Dat abase 
Synchronization in MANETs . Proc. 5th IEEE SECON Workshop on Wireless Mesh Networks (WiMesh 2010), Jun. 2010.
[4] E. Baccelli, J. A. Cordero, P. Jacquet: Optimization of Critical Data Synchronization via L ink Overlay RNG in 
Mobile Ad Hoc Networks , Proc. 7th IEEE Intl. Conf. of Mobile Ad-hoc and Sensor Systems (MASS), Nov. 2010.
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Optimization techniques

Synchronized Link Overlay Example

– Network graph
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Optimization techniques

Synchronized Link Overlay Example

– SLOT-U subgraph
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Optimization techniques

Synchronized Link Overlay Example

– SLOT-D subgraph
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Optimization techniques

Synchronized Link Overlay
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Average link creation rate for a node speed s
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SLOT-D
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� Improves overlay stability

Optimization techniques

Synchronized Link Overlay
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Contributions

Optimization techniques for link-state routing over MANETs

� Synchronized Link Overlay – Triangular (SLOT)

� Multi-Point Relays (MPR)

� Smart Peering (SP)

Application to OSPF

� Implementation/Simulation of Extensions for MANETs

� Experiments in a Compound Internetwork
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� 2-hop neighborhood

� Designed for flooding

� Adaptation for topology selection

Optimization techniques

Multi-Point Relays

[5] J. A. Cordero: MPR-based Pruning Techniques for Shortest Path Tree  Computation . Proc. 18th IEEE Intl. Conf. 
on Software Telecommunications and Computer Networks (SoftCOM2010), Sept. 2010.

� Definition

A. Qayyum, L. Viennot, A. Laouiti: Multipoint Relaying for Flooding Broadcast Messages  in Mobile Wireless 
Networks . Proc. 35th IEEE Hawaii Intl. Conf. on Social Sciences (HICSS’35), Jan. 2002.



36

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

� 2-hop neighborhood

� Designed for flooding

� Adaptation for topology selection

Optimization techniques

Multi-Point Relays

(Enhanced) Path MPR

[5] J. A. Cordero: MPR-based Pruning Techniques for Shortest Path Tree  Computation . Proc. 18th IEEE Intl. Conf. 
on Software Telecommunications and Computer Networks (SoftCOM2010), Sept. 2010.

� Definition

A. Qayyum, L. Viennot, A. Laouiti: Multipoint Relaying for Flooding Broadcast Messages  in Mobile Wireless 
Networks . Proc. 35th IEEE Hawaii Intl. Conf. on Social Sciences (HICSS’35), Jan. 2002.
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� Not adapted for LSDB 
synchronization

• High link change rate

Optimization techniques

Multi-Point Relays

(GTNetS simulations, mobile network)

[6] J. A. Cordero: Adjacency Persistency in OSPF MANET . Proc. 4th IET China-Ireland Intl. Conf. on ICTs (CIICT’10). 
Oct. 2010.
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� Not adapted for LSDB 
synchronization

• High link change rate

Optimization techniques

Multi-Point Relays

Persistency

(GTNetS simulations, mobile network)

[6] J. A. Cordero: Adjacency Persistency in OSPF MANET . Proc. 4th IET China-Ireland Intl. Conf. on ICTs (CIICT’10). 
Oct. 2010.
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Optimization techniques for link-state routing over MANETs

� Synchronized Link Overlay – Triangular (SLOT)

� Multi-Point Relays (MPR)

� Smart Peering (SP)

Application to OSPF

� Implementation/Simulation of Extensions for MANETs

� Experiments in a Compound Internetwork

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Contributions
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Path through
synchronized links?

LSDB
synchronization

Discard
synchronization

Bidirectional 
neighbor

Yes No

Optimization techniques

Smart Peering

� Depends on the network 
dynamics

� Priority to synchronization 
with routers maintaining 
stable links

� Definition

A. Roy: Adjacency Reduction in OSPF Using SPT Reachability . IETF Internet Draft, draft-roy-ospf-smart-peering-01, 
Nov. 2005.
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High link change rate 

(⇒ persistency)

Full coverage in 2 hops

Enhanced Path MPR

2-hop neighbors

MPR

Topology 
Selection

Flooding

Density bounded

Reduced change rate 
(not dependent on density 
for SLOT-U)

1-hop neighbors

SLOT

Sensitive to mobility

Priority to stable
links

LSDB 
Synchronization

Global topology 
knowledge

Requirements

SP

Optimization techniques

� Summary
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Optimization techniques for link-state routing over MANETs

� Synchronized Link Overlay – Triangular (SLOT)

� Multi-Point Relays (MPR)

� Smart Peering (SP)

Application to OSPF

� Implementation/Simulation of Extensions for MANETs

� Experiments in a Compound Internetwork

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Contributions
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Application to OSPF

Open Shortest Path First

� Two routing principles

� User data is forwarded over shortest paths

� User data & control traffic is sent over synchronized links

… suitable over MANETs ?
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Application to OSPF

OSPF over MANET

� IETF OSPF MANET extensions

� Multipoint Relays (MPR-OSPF) RFC 5449

� MPRs, Smart Peering (OR / SP) RFC 5820

� MANET Designated Routers (OSPF-MDR) RFC 5614

� Additional extensions

� MPR + SP
� SLOT-OSPF
� Persistent Variants of MPR-OSPF

[7] E. Baccelli, J. A. Cordero, P. Jacquet: Multi-Hop Relaying Techniques with OSPF on Ad Hoc N etworks . Proc. 4th

IEEE Intl. Conf. on Sensor Networks and Communications (ICSNC’2010), Sept. 2009.
[8] J. A. Cordero, E. Baccelli, P. Jacquet: OSPF over Multi-Hop Ad Hoc Wireless Communications . In: Intl. Journal of 
Computer Networks and Communications (IJCNC), Vol. 2, Number 5, Sept. 2010.
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Application to OSPF

OSPF over MANET

SLOTSPSPMPRLSDB 
Synchr.

Flooding 
MPR

Flooding 
MPR

MPR ○ SPFlooding 
MPR

Flooding

Path MPRPath MPR
(+ SP)

SPPath MPRTopology 
Selection

SLOT-OSPFMPR+SPOR/SP
RFC5820

MPR-OSPF
RFC5449

� Extensions Overview
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Application to OSPF

OSPF over MANET

suboptimal 
paths

shortest
paths

� It is beneficial to preserve 
shortest paths for user data 
in MANETs
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Application to OSPF

OSPF over MANET

� Synchronizing (all) shortest 
paths is costly in MANETs…

All links included in the 
SPT are declared 
adjacent
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Application to OSPF

OSPF over MANET

� …and does not improve 
significantly the quality of routing

Only Smart Peering links are adjacent (MPR+SP)

All links included in the SPT are adjacent (MPR-OSPF)

[9] J. A. Cordero, T. Clausen, E. Baccelli: MPR+SP – Towards a Unified MPR-based MANET Extension  for OSPF . 
Proc. 44th IEEE Hawaii Intl. Conf. on System Sciences (HICSS’44), Jan. 2011.



49

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Application to OSPF

OSPF over MANET

� Advertise synchronized links ?

MPR+SP vs. SLOT-OSPF

MPR+SP

SLOT-OSPF
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Contributions

Optimization techniques for link-state routing over MANETs

� Synchronized Link Overlay – Triangular (SLOT)

� Multi-Point Relays (MPR)

� Smart Peering (SP)

Application to OSPF

� Implementation/Simulation of Extensions for MANETs

� Experiments in a Compound Internetwork
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Application to OSPF

OSPF in Wired/Wireless Internetworks

� Testbed : compound internetwork, 6 computers

� Routing based on OSPF

� OSPF for IPv6 (RFC 5340)
� MPR-OSPF (RFC 5449)

3 with wired interfaces
3 with wireless interfaces
2 with wired and wless interfaces

[10] J. A. Cordero, M. Philipp, E. Baccelli: INRIA Research Report 7642, Compound Wired/Wireless Internetworking 
with OSPF . Jun. 2011 (not yet published)
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Distribution of computers at LIX

Sh1

h2 w2

w1

w3

w3

PC with wired ifs.

PC with (only) wless ifs.

Application to OSPF

OSPF in Wired/Wireless Internetworks
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Logical topologies considered in the internetwork

Application to OSPF

OSPF in Wired/Wireless Internetworks
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Logical topologies considered in the internetwork

Application to OSPF

OSPF in Wired/Wireless Internetworks
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h1
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1 wired hop + 1 wireless hop 1 + 2 1 + 3
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Application to OSPF

OSPF in Wired/Wireless Internetworks

� Quality of communication 
degrades linearly as 
packets traverse more 
wireless hops

Packet Delivery Ratio (/1)
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Application to OSPF

OSPF in Wired/Wireless Internetworks

wless1:wlan0

� Synchronization 
traffic is present during 
the whole lifetime of a 
wireless link
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Main contributions

� Enable the Internet to exploit wireless ad hoc networking capabilities

� Framework for analysis of link-state routing in compound ASes

� Optimization of link-state operations over MANETs

� Proposal of new techniques
� Theoretical analysis of existing techniques
� Improvement / generalization of techniques

� Implementation and evaluation in OSPF

� Development and simulations of OSPF MANET extensions
� Experiments over OSPF in compound internetworks
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Perspectives

� Towards a wireless, more mobile Internet

� Optimizations in other link-state routing protocols

� Metrics in ad hoc and compound networks

� Beyond hop count: link reliability, distance, available bandwidth, 
maximum throughput (ETX)…
� Fixed / ad hoc coexistence requires a clear distinction between wired 
and wireless links

� … beyond the principle of deterministic shortest path ?
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Questions ?
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Backup slides
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Autonomous Systems

� RFC 975 (1986): “…a set of gateways, each of which can reach any other 
gateway in the same system using paths via gateways only in that system. 
The gateways of a system cooperatively maintain a routing data base using 
an interior gateway protocol…”

� RFC 1930 (1996): “…a connected group of one or more IP prefixes 
[internetworks] (..) which has a SINGLE and CLEARLY DEFINED routing 
policy.”
� RFC 1812 (1995): “…routers [inside an AS] may use one or more interior 
routing protocols…”
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Link Characterization

Definition (def. 1.5)

Let a, b be network interfaces.

There is a link l between a and b, denoted by l: a → b, iff a is able to transmit data to b and b
is able to receive such data, without the intervention of any other network interface.

Equivalence (def. A.1)

Let l1: s1 → d1, l2: s2 → d2 be links.

l1 and l2 are equivalent , and denoted as l1 ≡ l2 iff any of the following conditions is satisfied:

(i) s1 = s2, d1 = d2

(ii) s1= s2, d1 ≠ d2 and any pkt sent from s1 to d1 (via l1) is also received by d2 (via l2), and 
viceversa

(iii) s1 ≠ s2 and ∃ l12
*: s1 → s2, l21

*: s2 → s1 | any pkt sent from s1 to d1 (via l1) is also received by 
s2 (via l12

*) and d2 (via l2).

� (Prop. A.1) Relation ≡ is an equivalence relation.



63

Link-State Routing Optimization for Compound Autonomous Systems in the Internet

Simulation Parameters

General Simulation Parameters

� 20 samples/experiment

� Data traffic pattern
� Constant Bit Rate UDP flow
� Packet size: 1472 bytes
� Packet rate: 85 pkts/sec 

� Scenario
� Square grid
� Grid size: 400x400 m

� Node configuration
� Radio range: 150 m
� Propagation: Two-ray
� Wireless α: 0,5
� MAC protocol: IEEE 802.11b

� Node mobility
� Random waypoint model
� Pause: 0 sec
� Speed: 0, 5 m/s (ct.)

Performed Experiments

� Fixed size grid

OSPF Configuration

� Standard Parameters
� HelloInterval: 2 sec
� DeadInterval: 6 sec
� RxmtInterval: 5 sec
� MinLSInterval: 5 sec
� MinLSArrival: 1 sec
� LSRefreshInterval: 20 sec

� RFC 5449-like
� AckInterval: 1,8 sec

� RFC 5820
� AckInterval: 1,8 sec
� PushbackInterval: 2 sec
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Testbed Configuration Parameters

Networking Interfaces
� Wired : Digital Equipment Corp. DECchip 21140
� Wireless : Broadcom BCM4306 WLAN

Software
� OS : Ubuntu v.10.04, kernel 2.6.32
� Routing implementation : 

ospf6d daemon of Quagga/Zebra suite, v.0.99.15
� OSPF interface types

� Wired : Point-to-point
� Wireless : MANET, RFC 5449

OSPF Configuration
� HelloInterval: 2 sec
� DeadInterval: 10 sec
� RxmtInterval: 5 sec
� AckInterval: 2 sec
� Jitter (max.): 100 msec
� MinLSInterval: 5 sec
� MinLSArrival: 1 sec
� LSRefreshInterval: 60 sec

UDP Flows

� Nom. sender bitrate:100 pkt/s
� Packet payload: 1024 B
� CBR real traffic rate:300 kbps
� Flow duration: 5 min/flow

Measures
� Router starting: [0, 2] sec
� PDR of UDP flows: 60 samples
� Control traffic: 84 samples
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Wireless α
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MPR Heuristics

• Input: x, N(x), N2(x)

• MPR = {∅}

• MPR  ← {n ∈ N(x) : ∃ m ∈ N2(x), m only covered by n}

• while (∃ uncovered 2-hop neighbors)
MPR  ← n ∈ N(x) : covers max. # of uncovered 2-hop neighbors

• Output: MPR(x, N(x), N2(x))
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Enhanced Path MPR

Path MPR Selection

MPR Selection
Cost-Coverage 

Translation
PathMPR(x)
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Persistency in MPR-OSPF (1)

Adjacencies Flooding Topology

PPM Persistent Persistent Path MPRs

PMP Persistent MPR Selectors Persistent

PMM Persistent MPR Selectors Path MPRs

MMM MPRs MPR Selectors Path MPRs

(RFC 5449)

(Non-pers.)
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Persistency in MPR-OSPF (2)
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� The non-persistent configuration 
(MMM) performs significantly worse
than the other (partially persistent) 
configurations

� The delivery achieved by current 
standard RFC 5449 can be improved
by implementing persistency also in 
flooding (PPM) or in topology selection 
(PMP)
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Persistency in MPR-OSPF (3)
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� Persistent adjacencies are far more stable , but persistency increases the size of the 
adjacent links set.
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Persistency in MPR-OSPF (4)
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� Overall, the cost (in overhead) of 
implementing persistency in flooding 
(PPM) is more significant than 
implementing it for topology selection 
(PMP)

� The benefits of flooding persistency 
are roughly equivalent as those of 
topology selection persistency

� Non-persistent configuration (MMM) 
generates more overhead than other 
persistent confs. (PMM and PMP) due 
to adjacency unstability
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A tx

Shared channel

A

B
B rx

processing

B tx

C
C rx

processing

C tx

systematic collision

� Flooding : Stating the problem
A

B

C

Wireless collisions (1)
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The Jitter mechanism

� Flooding with jitter | Intuition

A tx

Shared channel

A

B
B rx

processing

B tx

C
C rx

processing

C tx

random delay 
for C tx

random delay 
for B tx

A

B

C

Wireless collisions (2)
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The Jitter mechanism

� Flooding with jitter : RFC 5148

Self-generated 
msg at t=t1

Received 
pkt at t=t0

Assigns a jitter value j
to all msgs of the pkt 

N=1

Extracts N-th
msg from the pkt

N-th msg needs 
to be forwarded?

Schedule tx
at t=t0+j

Scheduled tx 
at t=t2

∃ Next N?

Send all msgs scheduled 
and not sent at t=t2

Schedule tx
at t=t1

t2=t1

Yes

Yes

No

No

Wireless collisions (3)
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The Jitter mechanism

� Objectives

� Theoretical analysis of the impact of jitter in flooding

(from the perspective of a wireless interface)

� Focusing on: 

� Delay introduced in forwarding

� Changes in (out-)packet transmission rate

R

in

self-generated

out

Wireless collisions (4)
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Avg fwding delay per interface

� Given a jitter value T, what is the average delay before retransmission ?

� Two (extreme) cases :

� Retx of a packet only depends on further arrivals

� Retx of a packet depends (also) on all possible previous arrivals

0 tTt1 Tt2
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Tj2

T-2T

Tj(-2)

Tt(-2)

Tj(-1)

Tt(-1)

Tj(-3)

Tt(-3)

0

T

tTt1 Tt2

Tj1
Tj2

Upper bound

Lower bound

Wireless collisions (5)
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Introduced delay (in average) Wireless collisions (6)


