
HAL Id: pastel-00649586
https://pastel.hal.science/pastel-00649586

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Proof Tools and Finite Group Theory
François Garillot

To cite this version:
François Garillot. Generic Proof Tools and Finite Group Theory. Logic in Computer Science [cs.LO].
Ecole Polytechnique X, 2011. English. �NNT : �. �pastel-00649586�

https://pastel.hal.science/pastel-00649586
https://hal.archives-ouvertes.fr

F R A N Ç O I S G A R I L L O T

G E N E R I C P R O O F T O O L S

A N D

F I N I T E G R O U P T H E O R Y

É C O L E P O LY T E C H N I Q U E

. . . T H E D E S I G N E R O F A N E W S Y S T E M M U S T N O T O N LY B E T H E I M P L E -

M E N T O R A N D T H E F I R S T L A R G E - S C A L E U S E R ; T H E D E S I G N E R S H O U L D

A L S O W R I T E T H E F I R S T U S E R M A N U A L . . . I F I H A D N O T PA R T I C I PAT E D

F U L LY I N A L L T H E S E A C T I V I T I E S , L I T E R A L LY H U N D R E D S O F I M P R O V E -

M E N T S W O U L D N E V E R H AV E B E E N M A D E , B E C A U S E I W O U L D N E V E R

H AV E T H O U G H T O F T H E M O R P E R C E I V E D W H Y T H E Y W E R E I M P O R -

TA N T .

D O N A L D E . K N U T H

Copyright (c) 2011 François Garillot

PUBLISHED BY ÉCOLE POLY TECHNIQUE

ÉCOLE DOCTORALE DE L’ÉCOLE POLY TECHNIQUE

First printing, November 2011

Contents

1 Canonical Structures 17

2 Implementation 83

3 Subfunctors of the identity 117

Conclusion 139

Bibliography 143

5

Colophon

This thesis was prepared in LATEX and compiled with pdfTeX. It uses the
tufte-book class from the tufte-latex project, a class made to replicate
some of the designs of Pr. Edward R. Tufte. Crucially for a document of
this size, margin placement was corrected automatically thanks to Stephen
Hicks marginfix package.1 Many figures use the TikZ package for drawing,
while inference rules are typeset with Benjamin C. Pierce’s bcprule package.
The SSReflect code listings are prepared with Assia Mahboubi’s excellent
mode for the listings package, included in the SSReflect distribution

1 This is the Stephen Hicks also responsi-
ble for a contribution to the 2008 ICFP
contest in TeX.

7

https://www.tug.org/applications/pdftex/
https://code.google.com/p/tufte-latex/
http://shicks.github.com/marginfix/
http://sourceforge.net/projects/pgf/
http://www.cis.upenn.edu/~bcpierce/papers/bcprules.sty
http://www.ctan.org/tex-archive/macros/latex/contrib/listings/
http://www.msr-inria.inria.fr/Projects/math-components/index_html#download
http://www.haskell.org/wikiupload/8/85/TMR-Issue13.pdf
http://www.haskell.org/wikiupload/8/85/TMR-Issue13.pdf

Preamble

This thesis stems from the experience gained in dealing with a formaliza-
tion of finite group algebra not only in type theory, but as implemented
in the COQ type checker. This manuscript therefore carefully takes into
account the fact that both type theory and COQ have evolved simultane-
ously, but rarely synchronously — meaning that at repeated points in time,
the state of development of the prototype did not perfectly match that of
the literature. Nonetheless, the goal of reaching a certain level of clarity,
and the acknowledgement of considerable progress in the formulations of
intuitionistic type theory have made us chose to not describe the whole kit
and kaboodle found under the hood of COQ. Naturally, time and resources
also limited the precision of our understanding of said machinery. Hence,
in the following, we have in numerous occasions described only what COQ

currently aims at, rather than what it implements. We took great care in
mapping out precisely where we strayed, but to best label the engineering
corners where we have not managed to dwell as long as the most faithful
account would have required, and where we invite but the most stalwart of
readers to investigate, we use the icon found in the margin.2

This document is not completely self-contained with respect to SSReflect’s
improvements on the COQ theorem prover. While all theoretical construc-
tions — including small scale boolean reflection — are treated from scratch,
the tactic language, or some of the minor syntax extensions made upon
COQ’s language constructs (irrefutable patterns, if notation, etc) are not
explained here. We refer the reader to the SSReflect user manual (Gonthier
et al. 2008) and to the second section of the tutorial (Gonthier and Mah-
boubi 2010) Familiarity with at least a first, more “syntax-oriented” version
of that tutorial (Gonthier and Le Roux 2009) is assumed.

If you are reading this in dead tree form, you are missing working links
within this document (including internal references & back references, links
to the bibliography), a few links to resources on the web, and working
D.O.I. links in the bibliography.

2

9

Introduction

Why I certify

WHY MAKE A COMPUTER CHECK THE PROOF OF A THEOREM OF

FINITE GROUP ALGEBRA ?
The introduction is usually the place where the doctoral candidate waxes

poetic and dwells too long about the implications of his work. The poetry,
we will avoid.

Yet, the Question can not be avoided. The Mathematical Components
team has been working towards a COQ formalization of the Feit-Thompson
theorem since 2006. It is not finished at the time of this writing. In the
meantime, this thesis happened. There must be a reason for convincing a
young person to sit down and contribute for a few years of his life.

The first thing one learns of the Feit-Thompson theorem is that its proof
is long: the original paper by John Griggs Thompson and Walter Feit is 255
pages long, and is thought to have been the longest of its time (du Sautoy
2008) It also involves mathematics of an unparalleled level in formal reason-
ing attempts.3 Is it because its length proves to be a challenge for the social
peer review process ? Jean-Pierre Serre voiced that concern nearly a quarter
of a century after the proof:

A more serious problem is the one on the "big theorems" which are both
very useful and too long to check (unless you spend on them a sizable part of
your lifetime...). A typical example is the Feit-Thompson Theorem : groups
of odd order are solvable. (...) What should one do with such theorems, if
one has to use them? Accept them on faith? Probably. But it is not a very
comfortable situation. (Chong et al. 1986)

However, history shows mathematicians did spend on this theorem a
sizeable part of their lifetime. The Feit-Thompson proof4 contained the
seed of innovative techniques — what came to be known as “local analysis”
— and single-handedly provided enough impetus to greatly increase the num-
ber of mathematicians in the area (Scott et al. 2005) Unlike the proof of the
Four-colour theorem (Appel and Haken 1977),5 Feit and Thompson’s work
did not rely on computer code of debated reliability. Though the mathemat-
ical community can sometimes erroneously think results have been proven
for years (Lecat 1935), no lingering doubts as to the validity of that paper
proof have been voiced.

So, why certify a proof that no one doubts is valid ?

3 The proof was presented as a two-quarter
(24-week) graduate mathematics course at
the University of Chicago in 1975 (Bender
and Glauberman 1995, p. xi) which hints
at the required specialization.

4 W. Feit and J. G. Thompson. Solvability
of groups of odd order. Pacific Journal
of Mathematics, 13(3), 1963. URL
http://projecteuclid.org/euclid.pjm/

1103053941

5 A proof which led to another COQ

formalization effort (Gonthier 2008)

11

http://projecteuclid.org/euclid.pjm/1103053941
http://projecteuclid.org/euclid.pjm/1103053941

12

Does it have applications? Unlike the verification of a computational
tool (Klein et al. 2010; Leroy 2009) or that of COQ’s kernel (Barras 1999),
completing the check here will not give strong practical or foundational
assurances of reliability. Unlike the answers to the POPLMark challenge
(Aydemir et al. 2008), this proof will not provide a proof pattern applicable
to a recurrent problem of the domain. Also, since they are tailored for finite
group theory, proofs of the Mathematical Components team span a much
narrower field of mathematics than previous library endeavors (Cruz-Filipe
et al. 2004; Rudnicki 2001) — they are the proof of a theorem, first, and a
library of formalized algebra, second.

Is it that those proofs will inform mathematical knowledge, and create
a long-awaited6 new understanding of a long and complex proof? Perhaps,
but such an impact on finite group theory is not yet obvious, and, should
we be skeptical on this sort of outcome, we would be in good company. 7

If there is one thing that leaves no doubt, it is that, if completed, the COQ

proof of the Feit-Thompson theorem will be the largest, most complex
piece of formalized mathematics to date — to the point that it has been
presented with a mountain peak image on some occasions (Gonthier 2010,
for instance). It will, undoubtedly, set a record.

So, why climb such a peak?

To a degree, the question is irrelevant. The reason for the climb moves
the climber above anybody else, and often he proves to be an animal of a
peculiar breed: asked about his desire for the top in 1923, George Mallory
answered with three words that became the most famous in mountaineering
(“Because it’s there”), but without anything remotely like a justification.

A more pertinent approach — for an exterior party — is to notice that
nowadays, the leisure climber has a breathable membrane in his jacket,
vulcanized rubber on his soles, and chockstones on his rack — and that all
were field-developed in exceptional conditions. The pursuit of record-sized
proofs presents a challenge that validates scalable, efficient methods, and
enforces the improvement of the rest. Before the fame that may come with
the eventual completion of the proof, the Feit-Thompson formalization
effort is essentially a crucible.

To make this statement more precise, let us go back to what a COQ

formalization is: it consists in the expression of a mathematical proof in
a formal logic, equivalent, thanks to the Curry-Howard isomorphism, to
a computer program. Both sides of the isomorphism say exactly the same
thing on the purpose of this type of work:

Tout mathématicien sait d’ailleurs qu’une démonstration n’est
pas véritablement "comprise" tant qu’on s’est borné à vérifier
pas à pas la correction des déductions qui y figurent, sans essayer
de concevoir clairement les idées qui ont conduit à bâtir cette
chaîne de déductions de préférence à toute autre.

(Nicolas Bourbaki,
L’architecture des mathématiques, In F. Le Lionnais (ed.), Les

grands courants de la pensée mathématique, Cahiers du sud, 1948)

The purpose of computing is insight, not num-
bers.

(Richard W. Hamming, dedication of
Introduction to Applied Numerical Analysis, 1971)

6 The proof was revised in the late 90s, but
the revision is but one page shorter than
the original (Bender and Glauberman 1995;
Peterfalvi 2000).
7 “Although this work is purportedly about
using computer programming to help doing
mathematics, we expect that most of its
fallout will be in the reverse direction —
using mathematics to help programming
computers. [...] In fact, many of our proofs
look more like debugger or testing scripts
than mathematical arguments. [...]We
believe it is quite significant that such a
simple-minded strategy succeeded on a

“higher mathematics” problem of the scale of
the Four Colour Theorem. Clearly, this is the
most important conclusion one should draw
from this work.” (Gonthier 2005)

13

The most crucial value of the certification of the Feit-Thompson proof
therefore has to be found in the actual proof terms, rather than in their
type. In that sense, the quotes above remind us that just as when we are
writing programs, type-checking is simply an useful auxiliary. It structures
the search for proofs — to paraphrase Conor McBride, it makes it easier to
search for good proofs in the space of well-typed proofs, rather than in the
space of ASCII lumps.

Why certify? Because the Feit-Thompson type will ask for exceptional
programs. And because some could — and perhaps should — become less
of an exception.

This thesis

Generic programming is a programming method that is based in finding the
most abstract representations of efficient algorithms. That is, you start with
an algorithm and find the most general set of requirements that allows it to
perform and to perform efficiently. (A. Stepanov, in Lo Russo 2000)

GENERIC PROGRAMMING OFFERS A WAY TO STRUCTURE PRO-
GRAMMING BY POLYMORPHIC COMPONENTS. It has been purport-
edly (ibid.) developed as a way to emulate the work of mathematicians,
who, starting with proofs, end up with axioms characterizing their objects
of study. Likewise, the programmer starts with an algorithm, and ends
up finding the generic data structure inside. It is then hoped that at the
later stage, genericity saves the day by letting the programmer organize
algorithms in families of interfaces spanning multiple types.

This thesis deals with how far we can go in this direction. We have
mathematical developments to do. It happens that they will be algorithms.
How can we leverage COQ’s generic programming tools to make writing
them easy?

This question presents many challenges. Or, admitting that some re-
quirements of what we are talking about are clear,8 a single challenge: math-
ematicians have been blessed with way too good an audience — at least as
far as non-elementary mathematics are concerned.

The mathematical audience is expected to carry out part of the abstrac-
tion a posteriori, understanding while it meets a pattern during proofs, that
the reasoning applies in fact to an abstract specification matching several
distinct objects.9 It can also translate swiftly between such multi-sorted al-
gebras when the definition of the speaker is equivalent to — yet does not
exactly match — the one he knows.

This audience also has a memory of abstractions, so that it never forgets
if or why a particular mathematical object fits this or that specification.
More importantly, when it meets a new object, it can decide upon which
abstraction applies by applying the principle of compositionality — the idea
that the structure of a mathematical object is determined by the meanings
of its constituent sub-objects and the rules used to combine them.

Moreover, the mathematical audience has no issue with the extreme fond-
ness mathematicians show for repeatedly sticking a sliver of additional data
— and a new name — on a previously-defined abstraction, and merrily car-

8 Such as the need for ad-hoc polymor-
phism, which reflects that abstract math-
ematical statements are expressed on
multi-sorted objects (“spanning multiple
types”) that fit an algebra (“interfaces”).

9 “La mathématique est l’art de donner le
même nom à des choses différentes.”

(Henri Poincaré, Science et méthode, 1908)

14

rying on. For the astute mathematical audience that is able to hierarchize

specifications, this is not an all-new environment — just a slight twist on a
well-known context.

Having polymorphic interfaces built in the language is not, by itself,
enough to emulate all this — so that our first task is to understand how to
generically program COQ to be a better mathematical audience.

ANOTHER T YPE OF CONCERNS OF OURS is not so much a challenge
created by an unfair advantage of mathematicians, but rather an obstacle
inherent to our particular context: we are participating to a formalization
in type theory, in a programming language, and among a multipartite group

of two teams working in roughly three locations. In particular, the concurrent
setup, the time scale and the social context in which our formal proof is
developed is nothing like the flexibility that Feit and Thompson enjoyed
when developing their proof,10 so that our second endeavor is to make
sure the facilities for concurrently building large and deep hierarchies of
mathematical structures are reliable and efficient.

MOREOVER, A FREQUENT CRITICISM OF FORMAL PROOF is that
trusting such a beast hinges not so much on the belief in the type-theoretic
technology behind the prover, but rather on the ability to convince one-
self that the objects described in the program are truthful, complete rep-
resentants of the mathematical objects found in a textbook — and more
importantly, in the mathematician’s head. Said more concisely: program
specifications are often unreadable — we mean lemma statements here, not
the imperative proofs scripts (that are never read anyway). Hence, our third

objective is to test our generic constructions in a practical setting, paying
particular attention to notation facilities of COQ.

ANOTHER SOURCE OF TURMOIL IS T YPE THEORY ITSELF: not
only do the mathematics we deal with forgo providing their exact founda-
tions, but they often implicitly consider the concept of set as a centerpiece
of their discourse. It is well-known that translating such a discourse in type
theory tends to downgrade sets from keystone to brimstone, and we do
not expect to make exception with the representation of partial functions
— something the native total COQ functions are ill-equipped to represent
natively, and therefore our fourth ordeal.

ON A BRIGHTER NOTE, THOUGH, IT MAY BE POSSIBLE THAT

THE DISCIPLINE OF GENERIC PROGRAMMING LET US APPROACH

MATHEMATICAL DEFINITIONS WITH A NEW LOOK, one which would
let us select particular ways to exploit polymorphism in the specification of
mathematical objects. In particular, we are interested in elementary applica-
tions of the notion of relational parametricity, and if there is mathematical
sense in favoring functors to represent mathematical objects that are in some
sense generic. That fifth concern is thus something to be on the lookout
for.

FINALLY, OUR MENTIONED INTEREST IN REL ATIONAL PARA-

10 “But only Walter [Feit] and I knew just
how intertwined our thinking was over a
period of more than a year.”

(John Thompson, in Scott et al. 2005)

15

METRICIT Y MAKES US WONDER IF THEY CAN BE MADE AVAIL -
ABLE WITHIN THE CALCULUS OF COQ . The validity of the para-
metricity theorem for the calculus of COQ notwithstanding, such a theorem
can be formalized within COQ for deep embeddings of a smaller calculus.
It would be interesting to see, as a sixth and last path of investigation, if
some usable result for our functorial mathematical objects can be extracted
from such a proof.

Overview

THE FIRST CHAPTER is born of the meet between:
- on the one hand, the three tenets of advanced generic programming we

require: specifying generic interfaces, abstracting algorithms and proofs
over those specifications, instantiating those specifications with particular
realizations ;

- and on the other hand, the incarnation of mathematical structures in type
theory : telescopes.
We explain how in COQ, telescopes are represented using dependent

records of a particular sort (§ 1.1.1-§ 1.1.7), and how to assemble them to
form compound mathematical objects (§ 1.1.8-§ 1.1.12), with particular
interest on a concept pattern that lets us implement the three phases above,
and, crucially, lets us to do it a posteriori, after defining objects (§ 1.1.8).

We then go on explaining how far COQ can go elaborating user input
into a typed term (§ 1.2.1-§ 1.2.7), including an ill-known mechanism that
occurs at type inference, and tremendously helps the instantiation phase of
generic programming (§ 1.2.5): Canonical Structures.

We then reveal that this mechanism is in fact a flavor of the type classes
construct of a number of polymorphic programming languages. We ex-
plain how this incarnation can help with giving COQ abstraction memory

(§ 1.3.1), how — with previously-seen record composition paradigms — we
can make it hierarchize definitions (§ 1.3.2), how it renders a built-in notion
of compositionality (§ 1.3.3), and remark that it enjoys a nice interplay with
COQ’s built-in translation facilities (§ 1.3.4).

We move on to showing how we made Canonical Structures work mea-
surably better for building hierarchies, by changing the way we compose the
underlying records, giving rise to the paradigm of Packed Classes (§ 1.4.1).
We show that contrary to previous concerns mentioned in the literature,
the adoption of this paradigm does not imply a loss of expressivity, treating
specifically situations calling for multiple inheritance (§ 1.4.2) and manifest
records (§ 1.4.3).

We conclude on the expressivity of Canonical Structures compared to
other type class implementations in the wild. Fully leveraging our thorough
exposition, we explain how we can make Canonical Structures yield a
flavor of deterministic overlapping instances (§ 1.4.4) that has been recently
suggested as a desirable improvement of that of Haskell, and show how it can
be applied to improve the state-of-the art solution to the famous Expression
Problem. We finish with a comparison with the Class mechanism of COQ

(§ 1.4.5), a co-existing, recent implementation of type classes in COQ.

16

THE SECOND CHAPTER deals firstly with the application of our hierarchy-
building paradigm to practical examples, building up to a practical example
of how a SSReflect user can pick up a standard release of our library, and
certify RSA correct11 very concisely. We start with exposing the base struc-
tures on which the finite group hierarchy is built (§ 2.1.1-§ 2.1.5), porting
previous literature on the matter to our Packed Classes paradigm, and pro-
viding the guidelines of how, in our context,12 we understand and write
mathematical notions such as intensional sets (§ 2.1.2), functional exten-
sionality (§ 2.1.4), sets (§ 2.1.3), and groups (§ 2.1.5). We then expose
personal contributions towards providing the necessary notions (§ 2.2.1)
for a smooth, algebraic proof of RSA: the finite number field of prime or-
der (§ 2.2.2), the notion of automorphisms (§ 2.2.4), a number of simple
isomorphisms involving cyclic groups and properties of Euler’s totient func-
tion (§ 2.2.3-§ 2.2.5). We conclude with a small, modular proof of RSA’s
correctness (§ 2.2.6).

This example lets us put in evidence critical fault lines in a well-known
paradigm for implementing partial functions with total functions over a
type (§ 2.3.1). We explain how on that basis, we managed to improve the
general expressivity of our mathematical structure representants by direct-
ing type inference using phantom types (§ 2.3.2). We conclude on how that
let us redefine partial functions while maintaining strong requirements on
the ease of use of those objects (§ 2.3.3-§ 2.3.4).

THE THIRD CHAPTER starts with a personal application of the essence
of generic programming to mathematical modelling (§ 3.1): we wrangle
a functorial structure out of numerous but generic subgroup definitions
that occur throughout the proof of Feit-Thompson (§ 3.1.1), and apply it to
simplifying frequent proofs of an elementary property of such subgroups:
characteristicity (§ 3.1.2). Then we notice that the generic manipulation of
those functors13 allows us to create links with intensional classes of groups
— that is, classes of groups verifying a certain property (§ 3.2). The link,
however, does not prove particularly useful until we formalize a richer cor-
respondence with dual classes of groups invariant by isomorphism: torsion
theories (§ 3.3). This lets us emulate a proof by isomorphism (§ 3.3.1)
on a useful class of properties by studying their value when applied corre-
sponding functorials — despite some issues with force-fitting those highly-
polymorphic concepts in COQ (§ 3.3.2). We pursue by noticing the proper-
ties of the instances of subgroup-defining functions we defined above hinge
on an instance of a “free theorem”14, and look at how to get it in COQ

(§ 3.4.1-§ 3.4.6). After establishing of the link between functoriality and
the free theorem in our context (§ 3.4.1), we place what we are looking
for within the context of the various existing approaches to parametricity
(§ 3.4.2), and develop the key insights on relational parametricity (§ 3.4.3),
and suggest a way to get at automatically generated instances of a parametric-
ity theorem based on Canonical Structure-based reflection (§ 3.4.4-§ 3.4.6).

11 That is, replicate the results of the RSA
contribution of COQ.

12 Despite looking like classical reasoning,
the SSReflect libraries use no axiom.

13 Deprecated in group theory since the
height of the Soviet era, and only mathe-
matically rediscovered, independently, in
the last few years.

14 P. Wadler. Theorems for free! In
Proceedings of the fourth international
conference on Functional programming
languages and computer architecture - FPCA
’89, number June, pages 347–359, New
York, USA, 1989. ACM Press. ISBN
0897913280. doi:10.1145/99370.99404

http://dx.doi.org/10.1145/99370.99404

Canonical Structures

Tools of the Trade

Canonical Structure is the name of a command of the Gallina language1that
allows a COQ user to equip the unification procedure called by type infer-
ence with a specialized heuristic. When asked for a record fitting a given
record projection, this heuristic answers with one of some pre-registered
definitions.

Canonical Structures also are an instance of a general language construct
better known as type classes whose claim to fame originated with its imple-
mentation in HASKELL.

Canonical Structures also are an effective linguistic tool for structuring
and organizing proofs — particularly when it concerns hierarchies of objects
of some depth.

Finally, knowledge about the organization of such hierarchies can inform
Canonical Structure use, and influence it .

THIS CHAPTER AIMS AT EXPL AINING, LINKING, AND JUSTIFY-
ING THOSE FOUR CL AIMS. The COQ literature documents the first
claim if in a haphazard and fragmented way. The second claim supplies
the COQ user with the wide-ranging generic programming facilities of type
classes, but has been widely overlooked nonetheless. The third claim was
previously made,2 but only in the framework of the SSReflect libraries.
Finally, the fourth claim is entirely original, but its smooth explanation
depends on a comprehensive exposition to the three previous ones.

1.1 ModelandImplementation:Σ-typesandde-
pendent records inCoq

THE USER OF A PROOF ASSISTANT QUICKLY DEVELOPS SOPHIS-
TICATED ABSTRACTION NEEDS — usually faster than an alter ego who
just wants to compute with some data. Such a user usually means to prove
something, and the intuitiveness of abstraction for doing that means that
she will probably want to reproduce the generalizations that naturally come
to her on the blackboard.

Fortunately, COQ has a module system inherited from the tradition of
ML-style languages that purports to do just that: it gives constructs for

1
1 Gallina is the name of the specification
language of COQ, and the Vernacular is
the command language extending Gallina.
(Coq 2010, §1–2) lays out its exhaustive
documentation.

2 F. Garillot, G. Gonthier, A. Mahboubi,
and L. Rideau. Packaging Mathematical
Structures. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors,
Theorem Proving in Higher Order Logics,
volume 5674 of Lecture Notes in Computer
Science, pages 327–342. Springer Berlin /
Heidelberg, 2009. doi:10.1007/978-3-642-
03359-9_23

“The business of abstraction frequently
makes things simple.”

(Richard W. Hamming, You and your
research. Talk at Bellcore, 7 March 1986.)

17

http://dx.doi.org/10.1007/978-3-642-03359-9_23
http://dx.doi.org/10.1007/978-3-642-03359-9_23

18 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

specifying the functionality of program components

abstracting programs and proofs over that specification

instantiating programs with specific realizations of these specifications.

In the last couple of decades3 such a system has proven to be an effective
language tool for structuring programs.

But it turns out that one does not have to use modules. Anyone that has
constructor functions that look like nil and cons can build something that
looks like lists.
Record seq_type (A: Type): Type

:= mk_seq_type {

carrier : Type;

seq_nil : carrier;

seq_cons : A �

carrier � carrier;

}.

In COQ— since the user is here to prove something — one may want to
add an induction principle to that, turning seq_type into the definition in
Fig. 1.1. One can then define a generic map function as follows:
Definition map_seq_type (A: Type) (B: Type) (ltA: seq_type A)

(ltB: seq_type B) (f: A � B): carrier ltA � carrier ltB

:= seq_induction

ltA

(fun l : carrier ltA = > carrier ltB)

(seq_nil ltB)

(fun a : A = >

fun tailA : carrier ltA = >

fun tailB : carrier ltB = >

(seq_cons ltB) (f a) tailB).

The question of whether to use modules or records to organize a program
or development thus comes up frequently. In the world of programming
languages, it is a well-known observation that both mechanisms are similar,
though by no means interchangeable. Wehr and Chakravarty made this
precise in a detailed comparison between the two,4 and methods of imple-
menting one of the mechanisms using the other abound (Dreyer et al. 2007;
Oliveira 2009; Yallop 2007). For proof assistants, the situation is a tad less
clear.

The Canonical Structure mechanism is, historically, an improvement on
a development that took records as the main organization tool (Saibi and
Huet 2000). It stemmed from the remark that in the phases we distinguished
above (on the current page) abstraction and instantiation were places where
automation can help the user.

- The seq above was a simple specification with no dependencies but it is
nonetheless possible to define structures depending on other structures.
The type parameter A above is a simple variable in the definition above,
because we don’t need any more primitives to give the type of the list
constructors of seq_type A. By “dependencies” we mean what happens
when we need a record type in place of A, to express some of the operations
this type comes with. For example, we will see how to specify an order
relation as a parametric record in § 1.1.9 on p. 30: if we also want to check
this relation is antisymmetric, we will have to require the record parameter

to include a pointer to an equality relation in order to write that check.

3 D. MacQueen. Modules for standard
ML. ACM Press, New York, New
York, USA, 1984. ISBN 0897911423.
doi:10.1145/800055.802036

Record seq_type (A: Type) : Type
:= mk_seq_type {

carrier : Type;
seq_nil : carrier;
seq_cons : A � carrier �

carrier;
seq_induction :

∀(P : carrier � Type),
P seq_nil �

(∀a: A, ∀l: carrier,
P l � P (seq_cons a l)) �

∀l: carrier, P l
}.

Implicit Arguments carrier [A].
Implicit Arguments seq_induction [A].
Implicit Arguments seq_nil [A].
Implicit Arguments seq_cons [A].

Figure 1.1: A generic list type
defined using a record. Implicit
arguments enumerated for clarity.

4 S. Wehr and M. Chakravarty. ML
Modules and Haskell Type Classes: A
Constructive Comparison. In G. Rama-
lingam, editor, Programming Languages
and Systems, volume 5356 of Lecture
Notes in Computer Science, pages 188–
204. Springer Berlin /Heidelberg, 2008.
doi:10.1007/978-3-540-89330-1_14

http://dx.doi.org/10.1145/800055.802036
http://dx.doi.org/10.1007/978-3-540-89330-1_14

CANONICAL STRUCTURES 19

Thus, a structure comes along with its set of constraints. But at specifi-
cation time, a user generally wants to manipulate the minimal number
of abstractions needed to write his generic proof or program. He rarely
wants to mention their prerequisites: in our example, it seems harsh to
make him give the whole specification for an equality relation a second

time when he wants to specify the record type for an order relation. We
can therefore benefit from the inference of structure constraints.

- It is possible to compose instances of specifications to obtain a new in-
stance of that same structure, or of another. For instance, the (categorial)
product of two list types always yields a list type, or one can assemble two
singly-linked lists to form a double-linked list. The composition trend can
easily run wild enough in a large library that remembering how exactly
a complex compound term fits a specification becomes tedious. Here the
user benefits from automatic construction of instances.

Those two specific improvements upon “the record alternative” repre-
sent the essence of a type class system. As I will argue based on my experi-
ence with the Mathematical Components project,5 they are a necessity for
developing large-scale proof libraries.

On the other hand, we do not mean that “the module alternative” is
irrelevant to the world of theorem provers. It is simply less mature. For
instance, early developments — either at the dawn of the Mathematical
Components libraries, or at the time of Saibi and Huet’s development on
category theory — had strong but external reasons for leaving modules
aside.6Moreover, recent work makes the implementation of modules in
COQ an improving alternative (Soubiran 2010). But I intend to show that
advantages such as the automatic generation of instances, seen through the
lens of the developer of large libraries of mathematics, make a particularly
compelling argument for the use of Structures.

Amokrane Saibi implemented Canonical Structures in COQ version
6.1. A summary of the user-level syntax is present in the manual (Coq
2010, §2.7.15). In a technical description of the unification algorithm used
in type inference (Saibi 1999, §4.5,4.7), it is possible to remark facilities
for Canonical Structure inference, though there is no mention of their
operative name or indications on their practical use in that document.

This section aims at describing what this mechanism is, but also at giving
some perspective on where (on which terms) it operates, and when it takes
effect. The where depends on how COQ represents dependent records, and
on why they are an encoding of the more general abstraction known as a
telescope.7 The when requires a reminder on type inference, and how it gives
rise to higher-order unification problems. Finally, the section takes special
interest in exposing how the user can make a complementary use of the
coercion and notation mechanisms of COQ.

1.1.1 Σ-Types and telescopes

The first step to adopt records as an organizational basis is to see how general
a construction they are. We want to develop a clear idea of what a COQ

record is, and what type-theoretic notion they embody.

5 http://ssr.msr-inria.inria.fr

6 Notably, the absence of said module
system, introduced in COQ but in version
7.4. One can also remark that modules in
COQ are not first-class, meaning that one
cannot instantiate module parameters with
variables. And on the other hand, modules
have unique facilities for specifying
abstraction boundaries using importation
and name space, or ascription-based
inheritance.

7 N. G. de Bruijn. Telescopic mappings
in typed lambda calculus. Information
and Computation, 91(2):189–204, Apr.
1991. ISSN 08905401. doi:10.1016/0890-
5401(91)90066-B

http://ssr.msr-inria.inria.fr
http://dx.doi.org/10.1016/0890-5401(91)90066-B
http://dx.doi.org/10.1016/0890-5401(91)90066-B

20 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

In type theory, the construct one should aim for to represent mathemat-
ical abstractions is - fortunately - clear. Indeed, said abstractions (usually
set-theoretic) are in general composed of a domain, operations on that do-
main, and, if defined in a proof assistant able to represent them, properties
of said operations and domain.

Meanwhile, dependent type theory8systematically defines the dependent

product — a generalization of the usual function space. For instance, in
COQ, a term having the type ∀x:A, P(x) consists in a procedure yielding a
proof of P for all entries of type A. We call those typesΠ -types or dependent

function types. Type theories often strive to define a similar generalization
for the pair, for terms that consist of a term x, and the proof that it verifies
P(x). Such terms provide a witness of a given property, thus correspond
to an existential quantification, and carry a Σ -type or dependent product

type.9We will come back later on how COQ represents them exactly.
Those dependent pairs are nonetheless sufficient to specify, for example,

a type T and a binary operation of type (T � T � T) on that type: the key
of the representation is simply that the type of the second element of the pair
depends on the first element. But mathematical structures usually define
more than simply one operation. de Bruijn noted that the repetition of that
construction was the perfect way to represent mathematical structures, and
baptized such an iteration of Σ -types telescopes (de Bruijn 1991).

Since then, a number of authors besides de Bruijn have confirmed that
telescopes express mathematical structures ideally (Betarte and Tasistro
1998; Mu et al. 2008; Pollack 2000, 2002; Sacerdoti Coen and Tassi 2008),
and the claim is now well-established. I add that, in COQ, one can use

records to represent iterated Σ -types, without loss of generality. It is
a frequently encountered but often imprecisely justified claim, especially
since neither records nor Σ -types exist as primary constructs in the Cal-
culus of Inductive Constructions, and are instead encoded using inductive
types. I therefore support it by providing a formal portrait of COQ’s induc-
tives.

1.1.2 The calculus of constructions

In the following paragraphs, I develop just enough of a syntax reminder
on the core calculus behind COQ to be able to speak precisely about in-
ductive types, and how they encode both Σ -types and records. To signal
where I drop details that fall outside the scope of this document, I proceed
incrementally, starting with the now standard syntax of pure type systems
(PTS)10.

T ::= C constant
| V variable
| TT application
| λV :T . T abstraction
| Π V :T . T dependent function space

(a)

E ::= [] empty environment
| E,V :T variable binding

(b)

Table 1.1: Syntax of a PTS: (a)
describes the syntax for terms, (b)
the one for environments.

The syntax (Tab. 1.1) of a PTS is that of a λ-calculus parametrized by a
specification, i.e. sets of sorts, axioms and rules (respectively S,A,R), such

8 We assume a basic familiarity with
dependent types. Aspinall and Hofmann
(2005) provide a good introduction.

9 Because of the way they map to (re-
spectively) conjunctions or disjunctions
through the Curry-Howard correspon-
dence, some call types corresponding
to the scheme ∀x : A.P(x) “dependent
product types” and ∃x : A.P(x) “dependent
sum types”. We will try to remove any
ambiguity between flavors of labels.

10 H. Barendregt. Lambda calculi
with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors,
Handbook of logic in computer science,
volume 2, chapter 2, pages 117–309.
Oxford University Press, Inc., New York,
NY, USA, 1992. ISBN 0198537611

CANONICAL STRUCTURES 21

that:11

S⊆ C

A⊆ C× S

R⊆ S× S× S

c : s ∈A

Γ ⊢ c : s
(AXIOM)

Γ ⊢A: s s ∈ S

Γ , x :A ⊢ x :A
(START)

Γ ⊢A:B Γ ⊢C: s

Γ , x :C ⊢A:B
(WEAKENING)

Γ ⊢ F:(Πx :A . B) Γ ⊢ a :A

Γ ⊢ Fa :B[x 7→ a]
(APPLICATION)

Γ , x :A ⊢ b :B Γ ⊢ (Πx :A . B) : s

Γ ⊢ (λx :A . B) :(Πx :A . B)
(ABSTRACTION)

(s1, s2, s3) ∈R

Γ ⊢A: s1 Γ , x :A ⊢ B: s2

Γ ⊢ (Πx :A . B) : s3

(PRODUCT)

Γ ⊢A:B Γ ⊢ B′ : s B=β B′

Γ ⊢A:B′
(CONVERSION)

Figure 1.2: Typing of the PTS
(S,A,R)

We let x,a,A,B,C range over V, c range over C, s , s1, . . . , sn range over S,
and Γ range over E. Fig. 1.2 lays out the typing judgment associated to that
calculus.12 We assume standard definitions of the free variables of a term,
and that t[x 7→ u] where t , u are terms and x a variable, denotes the usual
notion of capture-avoiding syntactic substitution of x by u in t .

This generic syntax encompasses the description of well-known calculi:
all the systems of the Barendregt cube are retrievable from specifications
using S= {Set,Type}, A= {Set :Type} and rules of the form:

Rλ ={(Set,Set,Set)} which give the λ-calculus

RF =Rλ ∪ {(Type,Set,Set)} which give system F

RFω
=RF ∪ {(Type,Type,Type)} which give system Fω

RCC =RFω
∪ {(Set,Type,Type)} which give CC

RP =Rλ ∪ {(Set,Type,Type)} which give λLF

1.1.3 The calculus of constructionswith universes

Let us now view the transitive closure of the typing relation defined by A as
an inclusion: say that T contains U if U:T ∈A or if there is a V containing
U such that V :T ∈ A. This inclusion relation defines a universe hierarchy

with “smaller” sorts at the bottom.
For logicians, a classic line of enquiry consists in comparing set and type

theory proofs, and it has led to specific conditions under which a sort can
contain another. Of particular interest is the notion of predicativity:13 if
an application of the PRODUCT rule above quantifies universally over a
sort containing the type it is defining, we say that this quantification is
impredicative. This occurs for example with System F, and calculi of which
it is a subsystem.

The Calculus of Constructions with Universes (CCω) was first intro-
duced by Coquand (1986) to provide an extension of CC with tightly con-
trolled impredicativity. It has an infinite hierarchy of sorts Type0, Type1, . . . such

11 Naturally, the adopted set of constants is
technically a parameter of PTS. However,
the strength of the theory the user can
develop with a PTS varies little with the
exact contents of that constant set. Hence,
along with the literature on the subject,
we consider this fourth parameter implicit
in what follows.

12 As customary, in the non-dependent
cases, we will contract the type of the
product in the abstraction rule into the
more compact A→ B.

13 A treatment of this issue falls beyond
the scope of the document. We refer the
reader to Bertot and Castéran (2004, §4.3)
for a fair introductory discussion in the
framework of COQ.
The bottom of the universe hierarchy

in COQ is in fact more complex, for
historical reasons: before addressing
the question of predicativity, concerns
related to extraction led Christine Paulin
to split the lowest sort of the hierarchy
into Prop and Set - at the time both
impredicative. The first represented
proofs and was used in an opaque manner,
with COQ prohibited from unfolding the
computational content of such a term.
The extraction mechanism could forget
their definition in a computationally-safe
manner. The second corresponded to
more ordinary programs, preserved by
extraction. Both were included in the
higher sort Type.

Much of this layout remains: Set and
Prop are still the smallest sorts, both in
Type0. However, the behavior of Set
is now predicative, and its continued
existence is thus only justified by non-
meta-theoretic concerns — namely, the
extraction mechanism and backwards-
compatibility with an impredicative−set
switch allowing the type-checker to go
back to impredicative reasoning. With
theoretical concerns in mind, it is perfectly
safe to replace all instances of Set by Type,
so that I ignore the former for the rest of
this.

22 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

that:

S={Prop} ∪ {Typei | i ∈N}

A={Prop :Type0} ∪ {Typei :Typei+1 | i ∈N}

R=







(Prop,Typei ,Typei) i ∈N

(s ,Prop,Prop) s ∈ S

(Typei ,Type j ,Typemax(i,j)) i , j ∈N







And indeed, if one but syntactically renames our previous impredica-
tive sort, Set, into Prop, he remarks that CC is a sub-system of CCω.
However, the latter strictly limits impredicativity to a special sort: one
can form propositions by quantifying over all propositions, using rule
(Type i, Prop, Prop), but we now use the smallest sort on which quan-
tification is predicative, Type0, for all terms, ordinary or polymorphic.

1.1.4 Thecumulativecalculusofconstructionswithuniverses

A consequence of the product rule seen in CCω is that a well-typed proposi-
tion is always expressed at a given universe level rather than over all known
universes. Moreover, the COQ compiler forgoes the fixed universe labelling
of CCω, and instead implements a constraint-generation algorithm that
allows it to fix the lowest universe of the terms it encounters as late as possi-
ble.14

To move closer to the (relative) leniency of this implicit universe check-
ing, we extend the calculus with a cumulativity relation that better explains
the constraints of the algorithm, which we plug in the CONVERSION rule.

We henceforth denote the β-reduction by Âβ
15, and the conversion re-

lation ≃β as its reflexive, symmetric, transitive closure. The cumulativity

relation � is the transitive closure of the partial relation defined by:

- t1 � t2 if t1 ≃β t2

- Prop� Typen for all n ∈N

- Typen � Typem for all (n, m) ∈N×N with n ≤ m

- Πx : t1 . t ′1 �Πx : t2 . t ′2 for any t1, t2, t ′1, t ′2 such that t1 ≃β t2 and t ′1 � t ′2

The rule CONVERSION of Fig. 1.2 on the preceding page then becomes:

Γ ⊢ t1 : t3 Γ ⊢ t2 :σ t3 � t2

Γ ⊢ t1 : t2

(CUMULATIVE-CONVERSION) Figure 1.3: Conversion rule of a
PTS extended with cumulativity

Armed with this extension, we can reformulate the calculus once again.
The set of rules governing the product becomes:

R=









(Prop,Typei ,Typei) i ∈N

(s ,Prop,Prop) s ∈ S

(Typei ,Type j ,Typek) i , j ∈N,{i , j } ≤ k









The introduction of a cumulativity
relation is a classic extension of predicative
calculi with an infinite hierarchy of
universes. It is perhaps most prominently
featured in Luo’s ECC (Luo 1994), but
that calculus contains other extensions —
such as Σ -types — that we will approach
differently here. We instead refer the
reader to Courant (2002) – what we
present at this stage is ECC−, disguised as
“CC+

w
” –, which is without a doubt its most

incremental treatment, closely followed
by the work of Barras on Cumulative Type
Systems (CTS) (Barras 1999; Barras and
Grégoire 2005).
14

15 The definition will come in Tab. 1.4 on
p. 25. It holds no surprises

CANONICAL STRUCTURES 23

1.1.5 Thecumulativecalculusof inductiveconstructionswith

universes

The addition of inductive types provide a primitive construct for what was
previously defined using polymorphic type constructors and impredicative
encodings. Indeed, reasoning with those “encoded” inductives does not
allow to derive the validity of their induction principle as stated using de-
pendent types (Geuvers 2001) — which indicates that those encodings leave
the theory bereft of a crucial tool, and prompts the addition of native induc-
tives types. This comprises of the addition of constructors defining those
inductive types (their introduction rules), case elimination providing access
to their components, and a recursion operator.

We augment the syntax of the calculus with the constructs of table 1.2.
Some examples of terms generated by this syntax figure in table 1.3. We
start by noticing that we access names contained in an inductive declaration
by using object-style dot notation. We usually partition the definition of
inductive arguments into polymorphic parameters of the definition, which
are global to the definition and to which the constructor can refer, and
“real” arguments, whether of constructors or inductives. The parameters
occur both in the inductive type and constructor applications, while their
concrete arguments are distinct.16

Then for the case construct, we present an example of a term e of some
inductive type (Ipu), with p the polymorphic parameters of the construc-
tor for that type and u some additional arguments applied to the formed
inductive Ip. The reduction to branch h j of the pattern-match is naturally
- as in all lines of this table - expected to yield the stated term when term
application goes over well arity-wise, namely when |p| = |q|. We assume
that the n-ary extension of term substitution is parallel.

Finally, we look at a fixpoint fixn{ f :T := M}, whose reduction is subject
to a guard condition that ensures strong normalization of the calculus by
verifying that unfolding the fixpoint terminates. That condition is strongly
dependent on n, the index of the argument of f on which recursion is
structural. We use the GUARDED keyword without further explanation,
and invite the reader to find details in Giménez (1995).

T ::= . . . (see 1.1(a))

| Ind{V :T :=
−−→
V :T}.V inductive/constructor name

| 〈P〉 caseT of
−−−→
V⇒ T pattern-matching

| fixn{V :T := T} recursion

(a)

E ::= . . . (see 1.1(b))

| E, Ind{V :T :=
−−→
V :T} inductive declaration

(b)

Table 1.2: Additional terms of the
Calculus of Inductive
Constructions. We also extend
contexts with the traditional signature (b)
of inductive declarations, that parametrizes
the typing judgment.

We finally add the typing rules of Fig. 1.4 on p. 25 to those of 1.2 on p. 21.
Note that in the CONSTR and CASE rule, A is a product type admitting at
least u arguments. Moreover, constructors store a copy of the parametric
arguments of an inductive type, and in the elimination form, the parametric
arguments appear again.

The goal of this subsection is to make a
clear depiction of non-recursive inductives
with a single constructor, so that I make
the deliberate choice of referring to the
literature on topics that step even slightly
over this editorial bee-line.

16 The expressivity boon obtained by
distinguishing generic parameters from
indices of an inductive family is well
defended in (Dybjer 1991, §7).
As is often done in physics, we favor
emboldened characters for representing
vectors, and use arrows only when strictly
necessary: −→x thus stands for a two-
dimensional (non-necessarily square)
matrix whose i t h row vector is xi. The
j t h component of the latter is xi , j , and
its length is |xi|. We will assume operator
symbols used in that notation to mean the
distributed version of the unary equivalent,
e.g. x :A signifies x1 :A1, . . . , xn :An

24 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Grammar rule example COQ term example Reduces to Note

Ind{I :Π q :Q . s :=
−−−−−−−−−−−−−−−→
C:(Π q :Q .Π v :V . Iq)}

Inductive I (q :Q): s := {

. . . }i − 1 constructors

Ci :forall (q :Q),
forall (v :V), Iq;

. . .
}.

(in the future, we will often take Iq to be
a product type itself and Ci to return some
fuller application Iqu)

Ind{I:Π q :Q . s := C :T}.I I the family name
Ind{I:Π q :Q . s := C :T}.Ci Ci a constructor name

〈λu :U . λ y :Ipu . P0〉 case e of
−−−→
v⇒ h

match e as x in (I_u)

return P0

with

| . . . } j − 1 branches

| (C j pa= >h j a)

| . . .
end

h j [v 7→ a] when




e :(Ipu)

C j :Π q :Q .Π v :V . Iqu

fixn{ f :Πu :U . V := M}= F
fix f (u :U)
{struct u n}: V:=

M.

M[f 7→ F] when GUARDED(F,n)

Table 1.3: Rule examples, COQ

equivalents and intended
reductions for terms of the
grammar in Tab. 1.2 on p. 23.

Beyond the previously mentioned GUARDED condition, we use two
clauses ELIM and INDUC. The latter checks that an inductive declaration
is well-formed, to ensure strong normalization and consistency, including
the famous strict positivity condition. We do not detail it here, and refer the
reader to Paulin-Mohring (1996, §III.3.3) for details.

The side condition ELIM occurs in rule CASE, which is the most com-
plicated. The rule CASE aims at typing a pattern matching case with the
predicate that labels it. This predicate is, incidentally, only necessary to deal
with cases of dependent elimination where type checking could turn out
to be undecidable - as readers familiar with the return keyword in COQ

will have noticed. Again, we refer to Paulin-Mohring (1996, §III.3.5) for
details. The intent is that once the type of this predicate instantiates with
the particular instance of a constructor found in the matched term, it will
yield a sort, that will be compared with the inductive to restrict the class of
object that can be built by pattern matching. We have already touched on
that subject — predicativity — on p. 21.

In the CIC, it is customary to distinguish the admissible reduction opera-
tions and to give them distinct greek letters. We therefore expose conversion
in table 1.4 on the facing page, where declarations are parametrized by the
context and the global environment E, witnessing global declarations. Read-
ers wishing for a more complete refresher will consult (Coq 2010, §4.3).

Naturally, the calculus we present here is still far from representing ei-
ther all features of the CIC, or all the nuances of the select few we mention.
Among the most outrageously blatant omissions is a more complete treat-

CANONICAL STRUCTURES 25

Rule name Definition Intended meaning

β-reduction E[Γ] ⊢ (λx :T . t)u Âβ t[x 7→ u] vanilla β-contraction
ι-reduction See pattern-matching in table 1.3 Inductive elimination
δ-reduction E[Γ] ⊢ x Âδ t if (x:= t :T) ∈ Γ meta-expansion of defini-

tions in context or
E[Γ] ⊢ c Âδ t if (c:= t :T) ∈ E environment

ζ -reduction let x := u in t Âζ t[x 7→ u] declaration-destroying
meta-expansion of local
definitions

Table 1.4: Conversion rules of the
Calculus of Inductive
Constructions.

WF(Γ) INDUC{(I:A),C :T} Γ ⊢A: s

∀ (Ci : Ti), Γ , (I:A) ⊢Ti : si

WF(Γ , Ind{I:A := C :T})
(IND-WF)

WF(Γ) Ind{I:A := C :T} ∈ Γ

Γ ⊢ Ind{I:A := C :T}.I:A
(IND)

|p|= |q|WF(Γ) Ind{I:Π q :Q . A := C :T} ∈ Γ

Γ ⊢ Ind{I:Π q :Q . A := C :T}.Ci (pa) :Ipu
(CONSTR)

Ind{I:Π q :Q . A := C :T} ∈ Γ |p|= |q|

Γ ⊢ P:B ELIM(Ip :A ; B) Γ ⊢ e :Ipu

∀(Ci :

=Ti
︷ ︸︸ ︷

Π q :Q .Π v :V . Iqw), Γ ⊢ hk :Π v :V . Pw (Ci pv)

Γ ⊢ 〈P〉 case e ofh :Pu e
(CASE)

Γ ; (f :T) ⊢M:T GUARDED(fixn{ f :T := M})

Γ ⊢ fixn{ f :T := M} :T
(FIX)

Figure 1.4: Additional typing
rules for inductives of the Calculus
of Inductive Constructions

ment of conversion, followed by elements such as let polymorphism, mod-
ules or coinductive types. In this alternative presentation, we have striven
to give a minimalistic description, and to stay as close as possible to the
calculus of Lee and Werner (2011) — specifically, we omitted a judgmental
equality which matters little here, let assignments, and syntax details for mu-

tual induction or recursion — which is lately considered to be closest to the
modern implementation of COQ (Herbelin 2009, compare Coq 2010, §4).
This implied steering away from COQ models based on strong elimination
(Miquel 2001; Werner 1994), and bypassing contravariant subtyping. We
refer the reader eager for a complete description to the (other) authoritative
landmarks of the COQ literature (Barras 1999; Cornes 1997; Letouzey 2004;
Paulin-Mohring 1996). Those references also contain extensive studies of
the meta-theory of such a calculus.

1.1.6 Inductive representations of telescopes

As we previously mentioned, type theories (Luo 1994; Martin-Löf 1984)
define Σ -types as primitive constructs. Luo, for example, introduces them
with the following rules:

Γ ⊢A:Typei Γ , x :A ⊢ B:Typei

Γ ⊢Σ x :A . B:Typei

(ΣT)

Γ ⊢M:A Γ ⊢N:B[x 7→M] Γ , x :A ⊢ B:Type j

Γ ⊢ 〈M,N〉Σ x:A . B :Σ x :A . B
(PAIR)

Figure 1.5: Introduction rules for
Σ -types in Luo’s ECC. The
annotation of the pair is necessary to
disambiguate type inference, but we do not
dwell on it since this problem is of little
concern here.

26 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Additionally, they come with projections π1,π2 that allow the user to
access right and left member of those dependent pairs. Naturally, those
rules relate to corresponding language constructs in the implementations
of those type theories, such as in LEGO.

Those rules pose no problem by themselves in ECC, since they come
with the limitation that Σ -types be non-propositional types. Trouble occurs
when one wants to extend a rule such as ΣT to produce proposition types,
because of the impredicative behavior of Prop in ECC. Indeed, since large
Σ -types and impredicativity are inconsistent,17 it is impossible to introduce
propositionalΣ -types for which the sort assigned to the quantified variable
(A in rule ΣT) is unconstrained.The best logically consistent addition one
can make to the calculus is called small Σ -types, a rule which adds the
constraint that the quantified type variable be of sort Prop:

Γ ⊢A:Prop Γ , x :A ⊢ B:Prop

Γ ⊢Σ x :A . B:Prop
(ΣP)

To reproduce native Σ -types at the type and proposition level in COQ,
we would have to introduce new rules, along with sort restrictions and
projectors that verify that the quantification in aΣ -type is predicative (akin
to the rule set R binding the product).

Fortunately, we already have introduced a general-purpose boxing con-
struct, along with projectors verifying strict destruction preconditions:18

inductive types. Using those recursive types with constructors as a represen-
tation for existential types just amounts to making a well-known correspon-
dence between the two explicit.19 In COQ a Σ -type is therefore introduced
as an instance of the following type:

Inductive ex (A:Type) (P:A � Prop) : Prop :=

ex_intro : ∀x:A, P x � ex (A:= A) P.

It simply consists in a non-recursive inductive with a universal quantifica-
tion on a variable (the witness) and a proof, both of which do not appear in
the final type. Notice that at the definition stage, the inductive is just a box-
ing construct: is in particular possible to construct an object of type (ex P),
with P of type (A � Prop) for an A of any sort, including Typei � Prop.
However, accessing the computational content of such an inductive is im-
possible, as shown in Fig. 1.6.

Naturally, in a context where we can stay impredicative, such as when
building a proof (instead of a Definition), case analysis succeeds without
incident. This suffices to avoid incoherences, since accessing the witness of
an existential is vital for the encoding of paradoxes entailed by largeΣ -types
(Paulin-Mohring 1996, §III.4.1.2).

If piggy-backing on inductive types is the right way to represent Σ -type,
we said nothing of iterating thatΣ -type construction to form telescopes yet.
The COQ standard library offers us a suggestion, however:

Inductive ex2 (A:Type) (P Q:A � Prop) : Prop :=

ex_intro2 : ∀x:A, P x � Q x � ex2 (A:= A) P Q.

What we require is a sequence of dependent products that allows, infor-
mally speaking, the representation of rich type contexts as ‘objects’: the

17 J. G. Hook and D. J. Howe. Impred-
icative Strong Existential Equivalent to
Type:Type. Technical report, Cornell
University, Ithaca, NY, USA, 1986. URL
http://www.ecommons.cornell.edu/

handle/1813/6600

18 Represented by ELIM in Fig. 1.4 on the
previous page.

19 J. C. Mitchell and G. D. Plotkin.
Abstract types have existential type. ACM
Transactions on Programming Languages
and Systems (TOPLAS), 10(3):470–502,
1988. doi:10.1145/44501.45065

Variable A : Type.
Variable P : A � Prop.
Definition f (A: ex P) : Prop.
case.
> Case analysis on sort Type is
> not allowed for inductive
> definition ex.

(a)

Definition f (z: ex P) : A :=
match z with

|ex_intro x P = > x
end.

> Incorrect elimination of "z" in the

> inductive type "ex": the return type

> has sort "Type" while it should be

> "Prop".
> Elimination of an inductive object

of
> sort Prop is not allowed on a

predicate
> in sort Type because proofs can be
> eliminated only to build proofs.

(b)

Figure 1.6: Invalid attempt to
destruct an existential type. Notice
the difference in clarity of the error
messages.

http://www.ecommons.cornell.edu/handle/1813/6600
http://www.ecommons.cornell.edu/handle/1813/6600
http://dx.doi.org/10.1145/44501.45065

CANONICAL STRUCTURES 27

first term limits the scope of the following ones, justifying the name tele-

scope. But there is no need to add unnecessary boxing levels to represent
iterated Σ -types. By curryfication, we can simply use the unlimited arity
of the dependent function type which constitutes the type of an inductive
constructor to provide a dependent product of unlimited size, thus storing
all the elements of a telescope.

This suggests that, in COQ, the best possible representation of tele-

scopes we can craft is as non-recursive inductive types with a single

constructor.

Let us consider a general telescope, i.e. a nested Σ -type (as reminded in
§ 1.1.1 on p. 19):

Σ x1 :A1 . (Σ x2 :A2 . (. . . (Σ xn :An . B) . . .)

To avoid “greek buffer overflow”, we will note this type with brackets,
as such:

[x1 :A1, . . . , xn :An]B

Using our emboldened vectorial notation this is more succinctly repre-
sented as [x :A]B.

It thus corresponds in COQ to the inductive:

Inductive myTele : Type :=

Build_myTele : (x_1:A_1) � (x_2:A_2) � ... � B � myTele.

Indeed, the limitation introduced by having only small Σ -types weighs
little in our setting: our intent is to define structures for programming, com-
puting, and proving theorems coming from the general mathematical litera-
ture. Most of the Σ -types we intend to use are therefore non-propositional,
and moreover, since they come from pages of mathematics grounded in
ZFC,20 they follow set-theoretic rules regarding the objects they can con-
tain.

Nevertheless, those dependent constructs jump Type levels at each box-
ing stage — which implies some limitations, particularly when using them
in mathematical contexts which involve large types. Since the inductive
resolves at declaration time as attaining a higher kind than that of its argu-
ments, it raises universe inconsistencies when applied to itself — even when
this application involves no recursion21 — owing to the not-quite-modular
universe checking algorithm of COQ (Herbelin 2005): Saibi comes up on it
in his study of category theory when he tries to define functor categories,
for example (Saibi 1999, §8.7). The same sort of problem has also come up
in recent developments using inductives in the same fashion (Krishnaswami
et al. 2008; Spitters and van der Weegen 2011; Verbruggen et al. 2008), and
prevents the adaptation of some nice techniques to COQ (Capretta 2004).

The procedure for universe checking in COQ is currently under improve-
ment, in part to address those concerns.

1.1.7 Dependent records as inductive types

We can now summarize the translation from a given abstract telescope down
to a COQ record. Suppose we want to represent a context in which we

The formal meaning of this bracket
notation is inductively that [x : A]B is
Σ x :A.B, and, for all n, [x1 :A1, . . . , xn+1 :
An+1]B is [x1 : A1, . . . , xn : An](Σ xn+1 :
An+1 . B).

It acknowledges that we have arbitrarily
presentedΣ -type iteration as right-
associating nesting. If this associativity
choice does have some consequence for
defining primitive records (Pollack 2000,
2002), inductive representations do not
carry such a slant.

Unfortunately this notation blurs
something that the successive right-
associative dots of its meta-expansion
hinted at: any expression A j may depend
on all xi , i ≤ j .
20 A. A. Fraenkel, Y. Bar-Hillel, and
A. Lévy. Foundations of set theory.
Studies in logic and the foundations of
mathematics. Noord-Hollandsche U.M.,
1973. ISBN 9780720422702

21

28 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

have an order relation, as given by a carrier type, and an antisymmetric,
transitive, binary comparison operator.

The corresponding telescope has the shape:

[carr :Type, leq :carr � carr � Prop, P1 :asym(leq)]P2 :trans(leq)

In COQ, we have already established this can best be represented as a
non-recursive singleton inductive type:

Inductive orderedType : Type :=

OrderedType :

∀(carr: Type)

(leq : carr � carr � Prop)

(P1: asym carr leq)

(P2: trans carr leq),

orderedType.

Since this restricted kind of inductive is particularly common it has its
own syntactic sugar, which embodies the equation “telescope = record”:

Record orderedType : Type := OrderedType {

carr : Type;

leq : carr � carr � Prop;

P1 : asym carr leq;

P2 : trans carr leq

}.

This macro also defines the projections carr, leq, P1 and P2, that give
access to members of such a record, in the same scope as the record definition,
just as it does with an inductive (Fig. 1.8): indeed, those projections are a
simple application of pattern-matching.

The (trivial) recursion and induction principle are also generated as usual.
The details are in Coq (2010, §2.1) and Saibi (1999, §3.4.3).

One detail that bears notice is that the automatic definition of projec-
tions is keyed to record member names. Indeed, record projections are
automatically defined in the current scope using names that are, in the corre-
sponding inductive, given to arguments of the constructor- hence, morally,
nothing more than bound variables used locally to resolve type dependence.
On occasion, this may pollute the namespace.22 Since there is plethora of
mathematical structures defined using “a carrier equipped with some opera-
tions and propositions”, it is clear that the developer of a library will have
to come up for a flurry of distinct names for a projection to that carrier.
But the overcrowding even starts with P1 and P2 above: propositions are
rarely reused dependently inside the constructor, rarely used for program-
ming generically, and what the projection’s corresponding “rightful” names
should be is unclear. It is true that they occur in proofs, but if needed,
they can be retrieved by a simple lemma unboxing the inductive with case
analysis, for example:

Lemma ordered_symmetric :

∀(T: orderedType), asym (carr T) (leq T).

Proof. case; trivial. Qed.

Fortunately, COQ will refuse to define a projection without an assigned
name, i.e. one whose member name is the symbol _. Hence, it is cus-
tomary to define only computationally meaningful projections (in Type),
and to limit their scope to a given module, leading to a definition such as
the one of Fig. 1.9 on the facing page. The corresponding members can

As expected:

Definition asym (T:Type)
(o: T � T � Prop) : Prop :=

∀(x y : T),
(o x y) � (o y x) � x = y.

Definition trans (T:Type)
(o: T � T � Prop) : Prop :=

∀(x y z : T),
(o x y) � (o y z) � (o x z).

Figure 1.7: Antisymmetry and
transitivity definitions for a
propositional order relation.

We use CamelCase for identifiers, and
conventionally capitalize the first letter of
constructors only. On the other hand, we
favor ML-style underscores for lemmas and
proofs.

carr : orderedType � Type

leq : ∀(x:orderedType),
carr x � carr x � Prop

P1 : ∀(x:orderedType),
asymm (carr x) (leq x)

P2 : ∀(x:orderedType),
trans (carr x) (leq x)

Figure 1.8: Example of the types
of record projections generated by
COQ
22 COQ also automatically confers those
projections special roles when they happen
to be canonical members of Structures.
We will come back to this later (§ 1.3.1 on
p. 51).

CANONICAL STRUCTURES 29

then be retrieved by, for example, aliasing qualified record names such as
OrderedType.rel to leq.

Another difference between having native Σ -type definitions and the
equivalent inductive definitions is that those records types cannot be de-
fined dynamically — quickly whipped up in a proof, for example23. This
is naturally a consequence of the encoding of records using inductive types,
whose declaration adds to a signature separate from that of common terms.

We conclude with an example of a simple instance of our record, whose
components come from the standard COQ library.

Require Import Arith.

Definition nat_ordered : OrderedType.class :=

OrderedType.Pack nat le le_antisym le_trans.

1.1.8 Dependent records, sharing, and inheritance

The statement we made in § 1.1.1 on p. 19 is now clear : COQ’s dependent

record types provide - at least in all non-propositional cases - the exact

equivalent of telescopes, i.e. of iterated Σ -types.
Now comes the question of how best to compose them to form mathe-

matical contexts.
As we have mentioned before (on p. 18), “generalizations” at large have

three well-known mechanisms: (a) the specification of a component contain-
ing the primary elements on which we will reason, (b) the abstraction of
programs and proofs in the terms defined by that component, (c) and in-

stantiations explaining how the concrete data on which we want to operate,
compute, or prove fits the specification.

When those reasoning phases express themselves through programming
language mechanisms that purport to implement a form of genericity (whether
based on modules, records, or objects), it has now become customary to use
a specific vocabulary24 to describe each operation. They altogether describe
a concept “pattern”. 25 How this translates to COQ’s records is perhaps best
shown through the classic apples to apples example of Garcia et al. (2006)
that I comment here with keywords italicized.

In Fig. 1.10, both ordType and apple are independent concepts, specified
through records. The definitions of a1 or a2 model the concept, declar-
ing how their type fits the required members. pick is an algorithm on
the ordType concept, whose definition is noticeably independent from any
apple-related notion, and finally, the call to Check on the last line returns
the type apple, and features an instantiation of the concept this function
requires as its second argument.

Record ordType (A:Type) : Type :=

OrdType { cmpare : A � A � bool }.

Record apple : Type := Apple { weight : nat }.

Definition ordApple :=

OrdType apple (fun x y = > weight x ≤ weight

y).

Implicit Type T:Type.

Definition pick T (measure : ordType T) :=

fun (x1 x2:T) = > if (cmpare _ measure x1 x2)

then x2 else x1.

Definition a1 := Apple 3.

Definition a2 := Apple 5.

Check (pick _ ordApple a1 a2).

Figure 1.10: Apples to apples with
records

Module OrderedType.

Record class : Type := Pack {
base : Type;
rel : base � base � Prop;
_ : asym base rel;
_ : trans base rel

}.

End OrderedType.

Figure 1.9: A record definition
with limited scope, and
parsimonious projection naming.
23 While inductives can be defined within
modules, on the other hand.

24 (Austern 1998; Stepanov and Lee 1995)
25 Though the name goes back to the
original C++ template library, the notion
gained enough popularity recently to
lead to a recent and much-publicized (but
ultimately unsuccessful) proposal for their
inclusion in the pending C++0X revision
of the language.

Oliveira et al. (2010) coined the cor-
responding “pattern” denomination —
meant in the object-oriented sense of the
term, as opposed to a specialized language
construct.

http://herbsutter.com/2009/07/21/trip-report/
http://herbsutter.com/2009/07/21/trip-report/

30 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

This simplest of examples amounts to the application of a function de-
fined on a record type, seen under a slightly colored perspective. It already
covers the day-to-day occurrences of generalizations we manipulate, and
its most remarkable characteristic is perhaps retroactive modeling : here,
we were able to fit apples into the ordType shoehorn necessary to apply
pick, an operation which included side-effects (the application of projec-
tion weight), but without ever having to plan for those steps during the
definition of apples.

Indeed, a common misconception is to think of the concept pattern as
akin to the interfaces of object-oriented languages. But those languages
would prevent us from defining a pick method on an ordType interface, in
isolation, and, next, using it on instances of class apple. We would have
needed to state, at the declaration of apple, that it implements the interface
ordType.

More occasionally, though, we encounter concepts which do not fit in
a model-to-concept relationship, in which any instance of one models the
other, but feature either:

(i) a concept-to-concept relationship, in which the definition of one of
the concepts has prerequisites (operations, properties) that include
those of the other. We then say the former refines the latter.26

(ii) or as distinct concepts, possibly with some shared parameters, both
occurring in the definition of a third.

In both cases, we expect the specification language to provide us with
a precise way to organize the sharing of the involved structures. In COQ,
however, there is more than one way to achieve this. In the next four sub-
sections we provide a description of the program hierarchization paradigms
encountered in COQ formalizations. We put the emphasis on their struc-
ture taken in isolation, postponing the assessment of their ease of use until
§ 1.3 on p. 51.

Indeed, those paradigms interact in non-trivial ways with at least four

programming facilities of COQ we will touch on later (implicit arguments
resolution, notations, implicit coercions, and type inference, see § 1.2 on
p. 37), and whose net effect is to make symbols disappear from user inter-
action, in distinct but related ways. We hope this fully-explicit description
will make the later critical discussion of those structural mechanisms less
confusing.

1.1.9 Pebble-style sharing inCoq

The most common way of expressing sharing or inheritance between con-
cepts is to expose the points of synchronization as (universally-quantified)
parameters of the structure. The target concept is then specified as a long
dependent product, with every pre-requisite concept strung along in its pa-
rameters. This method, introduced by Burstall in the language Pebble,27 is
widely known as pebble-style sharing, and demonstrated in Fig. 1.11 on the
next page.

This figure introduces a running example, in which the astute reader
will remark a customary use of the equality and order functions of type

26 Note that this is a relation between
specifications, akin to object inheritance.
Its consequence for models is that the
refining concept models the refined
concept through the application of a
“forgetful functor”. See also § 1.2.7 on
p. 45.

27 (Burstall 1984), though Pollack (2002)
points to a more complex attribution.

CANONICAL STRUCTURES 31

(A � A � bool) as if they were properties (A � A � Prop) (in the prop-
erty of the latticeType structure). The goal of the use of booleans is to
allow the simple implementation of an order for generic lists in § 1.1.12
on p. 34. It blends seamlessly with the use of those booleans as properties,
thanks to a coercion (is_true : bool � Prop), as explained in § 2.1.1 on
p. 84. The details of this technicality are inconsequential here, since what
we really want to focus on is architecture more than computation. We thus
invite the reader to focus on the fact that in this first snippet, latticeType
takes a parametric argument of type eqType, in characteristic Pebble-style
fashion.

Record eqType A : Type := EqType {

eq : A � A � bool

}.

Record latticeType A (eA:eqType A) :Type :=

LatticeType {

bottom : A;

top : A;

meet : A � A � A;

join : A � A � A;

lt : A � A � bool;

_ : ∀x y,

(lt x y) ↔ (eq A eA (join x y) y)

}.

Figure 1.11: A lattice Type,
defined using pebble-style. The early
work of Jones (1992) in the framework of
Haskell’s type classes inspired this example.
Contrarily to what I did on p. 27, I chose
to keep the programmative flavor of the
boolean equality predicate to stay close to
the original example (implying the
decidability of that relation, see § 2.1.1 on
p. 84) and to simplify the later definition of
a generic list order. We use the fact that
booleans coerce to properties as we will
explain in detail in § 2.1.1 on p. 84. The
only practical consequence of this choice
to the matter at hand is that the custom
equality allows us to see how second-order
inheritance works: the lattice depends on
order which depends on equality.

It is folklore that this style of sharing “does not scale” (Pollack 2002; Sac-
erdoti Coen and Tassi 2008), but while I agree, I would like to argue this
more precisely in the next few sections: this style of sharing allows for max-
imal flexibility because it avoids unnecessary levels of boxing, allowing the
user to decide at modelling time which elements to bundle to form a concept
instance. Gonthier leveraged this advantage to the extreme - that is, with
records in which all relevant data is in parameters - when he manipulated
paths of combinatorial graphs in a large-scale development (Gonthier 2005),
for example. However, paths describe a concept where there is no one-to-
one relationship between the bundled elements, namely case (ii) above (on
the facing page).28

In the far more common case of inheritance (i), however, this style in-
volves explicitly handling a string of parameters that quickly grows in size
with the development of a well-tiered library.

For instance, to model our lattice of Fig. 1.11, we would have to pass two
arguments: the carrier type, and an equality model on that type. But one
can easily imagine wanting to extract the decidable total order relation that
it contains (named lt), defining it separately in the style of an ordType such
as in Fig. 1.10 on p. 29, and specifying the lattice based on that concept.

Better yet, in COQ, we require stronger verification concerns than Gar-
cia et al. (2006), and expect an order relation to carry a more precise spec-
ification, similarly to the orderedType defined on on p. 27. We define this
refined notion of lattice in Fig. 1.12 on the following page.

This thinner slicing of our concept therefore involves passing three ar-
guments for every instance declaration of our lattice. Given our choice to
specify equality and order as independent records, it seems unavoidable to

28 See Garillot et al. (2009, §2.1) for details
of the aforementioned structure.

32 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Record eqType A : Type := EqType {

eq : A � A � bool

}.

Definition asymm (T:Type)

(eT:eqType T)

(o: T � T � bool) : Prop :=

∀(x y : T), (o x y) �

(o y x) � (eq T eT x y).

Definition transit (T:Type)

(o: T � T � bool) : Prop :=

∀(x y z : T),

(o x y) � (o y z) � (o x z).

Record orderedType A (eA: eqType A) : Type :=

OrderedType {

ord : A � A � bool;

anti : asymm A eA ord;

tran : transit A ord

}.

Record latticeType A (eA:eqType A)

(oA : orderedType A eA):Type :=

LatticeType {

bottom : A;

top : A;

meet : A � A � A;

join : A � A � A;

_ : ∀x y,

(ord A eA oA x y) ↔
(eq A eA (join x y) y)

}.

Figure 1.12: A well-tiered
pebble-style decidable lattice
concept-ualization.

provide them a lattice model at one point or another. However, pebble-
style sharing requires synchronizing the equality type argument passed to
the order relation oA, with the one used in the lattice specification itself (eA).
Given a sufficient level of concept nesting, this quickly becomes tedious.

Unfortunately, in mathematical developments, thin-slicing a concept hi-
erarchy is often the best way to maximize the usability of the library. It in-
deeds allows the user to express his properties and lemmas at the maximum
level of generality, roughly making him adhere to the “single responsibility”
principle. Those frequent refinements are therefore a natural evolution of a
development over time, while on the other hand, mathematical structures
often include half a dozen operations or more. We will come back on pro-
grammatic tools developed in COQ to mitigate the heaviness of this style
(§ 1.3.1 on p. 51), but for now, we turn to a more structural alternative.

1.1.10 Telescopic sharing inCoq

Nested COQ records are not telescopes in the proper sense. However, if
one chooses the discipline of embedding superclasses as record members, it
is easy to see why we might call that telescopic: if telescopes are the iteration
of nested dependent pairs, here, we simply try to manipulate concepts as
nested dependent tuples, i.e. nested dependent records. We provide an ex-
ample of the lattice defined in the last section, translated to telescopic style,
in Fig. 1.13 on the next page.

This method of nesting records has the advantage of limiting manipu-
lations of the ‘superclasses’ of a given type. To model how a lattice stems
from an order relation, you provide the order relation once, and access the
corresponding equality through record projections. The downside is that
the manipulation of iterated projections can be verbose, and proportional
to the depth of concept nesting. We will see later what programmatic tools
exist in COQ to handle the overhead of such manipulation (§ 1.2.7 on p. 45).

Nevertheless, the important point is that this solves, or at least moves, the
problem created by the proliferation of arguments in pebble-style sharing:
the heaviness has shifted from the modelling time to the specification time,
moving thus from the user to the developer of the library, and from the
frequent case to the less frequent.

A third option which is often mentioned
when dealing with records in type theory:
manifest types, which is an ascription
mechanism that involves exposing equa-
tional relations on members of a record
type. They are somewhat irrelevant
to my work, in which the encoding of
records as inductive types imposes certain
constraints, but their expressiveness and
computational performances deserve some
note (see Pollack (2000, 2002) and Tassi
(2008, §5.3) for a discussion and pointers
to the literature). We will however treat an
expressivity challenge to which manifest
records would by design provide a good
solution in § 1.4.3 on p. 70.

CANONICAL STRUCTURES 33

Record eqType : Type := EqType {

carr : Type;

eq : carr � carr � bool

}.

Definition asymm (eT:eqType)

(o: carr eT � carr eT � bool) : Prop :=

∀(x y : carr eT), (o x y) �

(o y x) � (eq eT x y).

Definition transit (T:Type)

(o: T � T � bool) : Prop :=

∀(x y z : T),

(o x y) � (o y z) � (o x z).

Record orderedType : Type :=

OrderedType {

sort : eqType;

ord : carr sort � carr sort � bool;

anti : asymm sort ord;

tran : transit (carr sort) ord

}.

Record latticeType : Type :=

LatticeType {

osort : orderedType;

bottom : (carr (sort osort));

top : (carr (sort osort));

meet : (carr (sort osort)) �

(carr (sort osort)) �

(carr (sort osort));

join : (carr (sort osort)) �

(carr (sort osort)) �

(carr (sort osort));

_ : ∀x y,

(ord osort x y) ↔
(eq (sort osort) (join x y) y)

}.

Figure 1.13: A well-tiered
telescopic-style decidable lattice
concept-ualization.

It is therefore unsurprising that this method has known some popularity
in formalizations of abstract algebra (Geuvers 2002; Jackson 1994, 1995;
Pollack 2000; Rudnicki 2001), where hierarchy depth quickly becomes an
issue.

A point of note, however, is that in this nesting discipline, one may
quantify on a given concept, but that dependent product can no longer
refer to superclasses of the concept. While this is manageable for the vertical
extension of a concept, quantifying on concepts that share some parameters
becomes more difficult, as noted by Sozeau and Oury (2008, §4.1). They
point to the example of a (categorical) adjunction,29 composed from two
“crossed” functors, whose source and end category must correspond. Only
by having those categories as parameters of the functor concept can the
type of an adjunction guarantee that condition by itself. With the strict
discipline of having superclasses as members imposed by telescopic-style,
there is no way to check the chiasmatic constraint on the source and target
categories of functors at a type level. We can only compare the values of
projections of our models.

The loss of expressiveness, though genuine, is however reversible. As we
have already noted on on p. 29, concepts make the translation between spec-
ifications easy enough to support switching as needed between telescopic
and pebble-style sharing, when more expressiveness becomes necessary.

1.1.11 Pebble ine�ciencies

Let us now look at a boolean lattice model declaration, assuming we have
specified the lattice concept using pebble-style sharing. I use notations for
boolean functions defined in the ssrbool library, and omit proofs, whose
content hardly matter here :

Definition bool_eqType :=

EqType bool (fun x y = > x = = y).

Variable ordbool : bool � bool � bool.

Definition bool_orderedType :=

OrderedType bool bool_eqType ordbool antiH tranH.

29 We will come back to the example of the
adjunction, suggesting a better solution, in
§ 1.4.3 on p. 70.

34 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Definition bool_latticeType :=

LatticeType bool bool_eqType bool_orderedType

false true orb andb coherentLatticeP.

Let us make the assumption that there is no underlying sharing in the
way COQ treats sub-terms.30There are at least31 two occurrences of eqb
(a.k.a. fun x y = > x = = y) in bool_latticeType:

- one occurs in the bool_eqType parameter,

- one occurs after δ-expansion in the bool_orderedType parameter,

In fact, if we continue specializing the latticeType concept, one can see
how the number of occurrences of eqb grows quickly. Indeed, at the k-th
level of subtyping, an instance of our k-times extended structure passes its
(k − 1) parent instances as arguments to the constructor. It thus contains
the sum of all occurrences of the first-level member eqb. If we call Mk

the number of members of a record at the k-th level, and if we bound the
number of members we add at each subtyping operation by a constant C:

Mk+1 =
k∑

i=0

Mi +C= 2Mk

Naturally, this entails that Pebble-style provokes an exponential size

increase in the size of the term relative to the subtyping depth.
Let us now look at the same declaration for a boolean lattice, written in

telescopic-style (bool_eqType, ordbool stay unchanged):
Definition bool_orderedType :=

OrderedType bool_eqType ordbool antiH transitH.

Definition bool_latticetype :=

LatticeType bool_orderedType false true

orb andb coherentLatticeP.

Telescopic style solves the problem in term growth with refinement by
collapsing the dependency of first and second (etc) order subtypes (order
& lattice respectively) into a single reference. But was all that necessary ?
Surely, since even the largest hierarchies have a subtyping depth of about 10
or so (Garillot et al. 2009, §3)32 modern provers can manipulate a limited
number of instances whose base size (moderate in practice) grew only by a
few orders of magnitude ?

We give a conflicted answer: since interactive tactics in COQ are already
frequently non-linear in the size of the term they manipulate, one might fear
a threshold at which the computational complexity of working on a term
will start to frustrate users. We will treat a specific and frequent example
where COQ needs to compute on head normal forms of records in § 1.4.4
on p. 74. But a distinct problem, discovered using the same basic insight —
namely that dependent parameters without sharing in term representations
are a burden — compounds this concern.

1.1.12 Telescopic ine�ciencies

Mathematicians like to manipulate uncomplicated nested objects, such as
polynomials of matrices, keeping the associated nesting of structural proper-
ties implicit: assuming those matrices have vanilla coefficients belonging to

30 This assumption is safe. The reliance
of COQ on a Hindley-Milner style type
inference engine means that parametric
arguments have to be accessible in full
inside a term’s external representation.
At the internal level, one can imagine
representing term ASTs as DAGs with
full sharing, but this is not the model
adopted by the implementation of COQ,
which performs eager ζ -reduction before
convertibility checks.

Finally, kernel-level procedures do at-
tempt to act on terms modulo congruence
closure using hash-consing, but are at the
moment subject to a (reported) bug that
makes them inefficient in that respect.
31 This minimal account assumes that eqb
is not used in the definition of any other
computational member of a subtype, such
as ordbool, or in any of their proof terms,
such as antiH or coherentLatticeP. This is
a risky bet, even in this limited example.

32 ... and since the average user needs much
less: the depth of the closest type-class-
based libraries we know (Geuvers 2002;
Odersky and Moors 2009) stays under the
half-dozen mark, and yet those are still
considered exceptionally large.

http://www.lix.polytechnique.fr/coq/bugs/show_bug.cgi?id=1830

CANONICAL STRUCTURES 35

an arbitrary ring, a three-level-deep nesting of rings. This occurs frequently
— in fact as soon as one introduces structures that are containers in the moral
sense of the term, i.e. objects like trees or vectors, which are commonly rep-
resented as a structured way to carry a generic payload of data. Experience
also shows this comes up in fundamental theorems (Bertot et al. 2008, §6).
Though I do not want to delve into the specifics of the SSReflect library
just yet, we can have a look at this nesting of concepts by emulating it with
lists.

Let us specify the lexicographic order on lists, and the corresponding
orderedType:33

Definition eql (eT: eqType) (l1 l2: list (carr eT)) :=

if length l1 = = length l2 then

reduce andb (zip_with (eq eT) l1 l2) true else false.

Definition list_eqType (eT:eqType) :=

EqType (list (carr eT)) (eql eT).

Definition ordl (oT:orderedType) (l1 l2:list (carr (sort oT))) :=

let m :=

(filter

(fun c = >

let: (x,y):= c in

∼∼ eq (sort oT) x y)

(zip_with (fun x y = > (x,y)) l1 l2)) in

if m is x :: xs then

let: (a,b) := x in

((ord oT) a b)

else

(length l1 ≤ length l2).

Definition list_orderedType (oT:orderedType):=

OrderedType (list_eqType (sort oT)) (ordl oT)

(ord_antiH oT) (ord_transitH oT).

If we now look at lexicographic order for lists of lists of booleans
(bool_list_list_orderedType, Fig. 1.14), we have a good idea of what the
three-level ring of the Cayley-Hamilton theorem looks like at the structural
level. A mathematician uses it to compute by wielding the addition of his
ring. The equivalent for us is the order’s comparison function, namely
(ord bool_list_list_orderedType):

it δ-expands to:
ord (OrderedType

(list_eqType (sort bool_list_orderedType))

(ordl bool_list_orderedType)

...

)

but each of the arguments of the constructor, say ordl bool_list_orderedType,
itself δ-expands to:
ordl (OrderedType

(list_eqType (sort bool_eqType))

(ordl ordbool)

...

)

In other terms, nested records definitions, in telescopic style, regroup
members, every one of which is a function application parametric in the

33 In order to show runnable code with
a minimal number of dependencies, we
switch back to list in our examples,
rather than its seq re-implementation
provided in the Mathematical Components
libraries. Please consider those two aliases
for the same notion, for the purpose of
those examples.
For brevity I use the (hopefully intuitive)
SSReflect pattern-matching syntax
(Gonthier et al. 2008, §3.), and assume the
well-known higher-order functions:

- zip_with (a.k.a. map2), a dyadic map,

- filter from Lists in the COQ standard
library,

- reduce (a.k.a. fold), the standard list
catamorphism,

Exceptionally, I omit implicit type
arguments of those three functions, and
use boolean equality and inequality similar
to those defined on integers in the ssrnat

library. As usual, I omit proofs of antiH,
transitH.

Definition bool_list_orderedType :=
list_orderedType (bool_orderedType).

Definition bool_list_list_orderedType
:=

list_orderedType
(bool_list_orderedType).

Figure 1.14: Nested lexicographic
order instances for nested lists of
booleans

36 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

most immediate “nestee”. Indeed, we have defined eql (resp. ordl) indepen-
dently and generically in term of some arbitrary eqType (resp. orderedType).
Those functions encapsulate each one full copy of the “nestee”, which, if
there are C such members, multiplies the size of the term by that many.

Since this occurs at every nesting level, we can conclude that, in

telescopic-style, term size grows in the order of Cn with the nesting

depth of any given subterm. In the case of the Cayley-Hamilton theorem
(Bertot et al. 2008), where n = 3 and C= 15 (a ring structure of 15 members
nested thrice), we quickly created objects on which we could no longer
compute diligently. In general, with a system that supports certain facilities
(implicit arguments and coercions), the user could (and did) go on specifying
for a while before realizing that concepts of her library led to unmanageable
terms.

The term bloat in fact occurs for wanting to give a monolithic specifica-
tion to each nesting construct. When we built a lexicographic order on lists
above, we defined generic functions that took as argument just the correct
level of structure they needed and no more: to define a decidable equality
on lists of elements with eql, you need a decidable equality predicate for
those elements, but you do not care whether you can order them yet.

And yet, at definition time, we pass eql a full copy of the nesting record,
immediately projecting it to its first member. Without early ι-reduction un-
der the inductive instance constructor, the duplication is painfully obvious.

We leave it to the reader to adapt the example of Fig. 1.14 on the pre-
vious page in pebble-style. He will notice that, generic nesting functions
(analogous to list_eqType and list_ordType above) take a nestee as argu-
ment according to a pattern exactly similar to the inheritance of pebble-style
records for superclasses. This means that the growth in term size, when nest-
ing pebble-style records, is also exponential. In this example, we measure
that once appropriately δ -expanded, bool_list_list_orderedType is about
twice as long a term in pebble-style as it is in telescopic style. We estimate
this accounts for a more parsimonious structuring of refinement when go-
ing from equality type to ordered type in the telescopic case. As we will
see later (§ 1.4.1 on p. 60), this difference becomes negligible as the nesting
depth augments.

In summary, the fact that record introduction and elimination forms
package a copy of their parameters — when they are already present in the
term anyway — incurs a term growth that kills pebble-style inheritance,
and nesting of both telescopic and pebble style. Brady et al. (2004) observed
that storing a copy of these arguments in introduction forms was unneces-
sary, and we think notice should be given to a recent development on their
necessity in elimination form (see note 83 on p. 80).

CANONICAL STRUCTURES 37

1.2 Fromuser input to typed term: a reappear-
ing act

FROM USER INPUT TO THE FINAL INTERPRETATION COQ MAKES

OF A TERM, A NUMBER OF DISTINCT STEPS OCCUR. All allow the
user to specify less information at user input, and there is thus to gain by a
precise understanding of what they entail.

The first three feature in an example in Fig. 1.15. Note ex_intro comes
from the definition of ex in § 1.1.6 on p. 26.

1.2.1 Pre-inference

The first transformation that occurs to user input in COQ is the expansion
of notations (Coq 2010, §12). An important detail to note is that this occurs
in an untyped fashion.

Coq then processes the meta-expanded term to provide the appropriate
number of arguments to each λ-abstraction. User definitions can indeed
feature an incomplete set of arguments in applications, on which the system
will have to elaborate. This resolution of implicit positions was originally a
mechanism featuring purely syntactic sugar, implemented by Saibi (1999,
§4.6) as a particular flavor of η-expansion: when inspecting the type of a
definition, COQ assumes variables occurring free under the context of the
previous (provided) arguments are in fact inferrable (missing) arguments
that it must synthesize.

The main goal of the mechanism is thus to provide placeholders (marked
with _) to indicate arguments that a simple unification algorithm can infer
from the declared type of a λ-expression, or from the type of other argu-
ments. Since then, the user has gained finer control over how and which
arguments the system should elaborate from a definition (Coq 2010, §2.7).
However, we note one constant, namely that implicit argument resolution
occurs before type inference, and operates entirely at the syntactic level.
This design choice owes to the approach of Pollack (1990) which consists
in having an implicit syntax, which allows conservative extension upon the
explicit syntax, to which implicit terms translate before type checking.34

This implicit argument mechanism has become the point of entry of
Class constraint propagation.35 We refer the reader to Sozeau (2008, §7.1.2)
for more details. We will come back on the equivalent mechanism for
Canonical Structures later (§ 1.3.2 on p. 52).

1.2.2 Type Inference

A unification problem COQ allows the user to avoid entering explicit type
annotations, and tries to guess the type information from the information
present in explicit terms. This type inference mechanism relies on unifica-
tion: the gist of the mechanism consists in assigning each untyped product
a variable type; then considering constraints between those variables using
the typing rules of the calculus.36 Those constraints elaborate to equali-
ties between the types of user-input terms (which, in our calculus, are of
course terms themselves). Hence, the unification problem consists in, given

Definition SS0gt0 :=

ex_intro _ _ (lt_0_Sn 1).

Definition SS0gt0 :=

ex_intro _ _

(lt_0_Sn (S 0)).

Definition SS0gt0 :=

ex_intro _ _ _

(lt_0_Sn (S 0))).

Definition SS0gt0 :=

ex_intro nat (lt 0)

(S (S 0))

(lt_0_Sn (S 0)))

: ex nat (lt 0).

Notations

Implicit arguments

Type inference

Figure 1.15: An example of term
elaboration, from notations to
type inference.

34 This approach will also influence Saibi’s
design as described in § 1.2.7 on p. 45.

35 The instantiation phase occurs in
a second phase, as the last bit of type
inference. Actually, the term is well typed
even if Classes are not resolved at all.

36 Reducing Hindley-Milner-like type
inference to unification is a process
embedded deep enough in the fabric
of the ML-inspired family of languages
that we are content with this informal
hint. Pottier and Rémy (2005) provides
a comprehensive reference on how
it happens in the first-order case. Its
principles carry over well for the higher-
order case. (Saibi 1999, §4.4) gives the gory
details of constraint generation for COQ.

38 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

two typed λ-terms e1 and e2, finding a substitution σ for the free variables
of those terms such that σ(e1) and σ(e2) are convertible. We call such a
substitution σ a unifier of e1, e2.

In practice, we will see that we quickly come to consider an extended
version that problem on e1, e2 to the case of a vector of pairs of terms e1,e2

to be solved for simultaneously, for which we will call a substitution σ an
unifier of the vector when it is an unifier of each pair e1,i , e2,i for 1≤ i ≤ n.
Those pairs are often called disagreement pairs.

The first element that deserves notice is that a unification problem posed
by type inference based on the input of a COQ user is the order of the
problem. This order is the functional level of the metavariables found in dis-
agreement pairs. When doing type inference for the simply-typed λ-calculus
(à la Church), we are only looking to assign type variables, so that first-order
unification suffices. Since COQ types have two flavors of binding structure,
namely polymorphic and dependent types, there are two occasions for type
inference to present higher-order unification problems. An example is given
in Fig. 1.15 on the preceding page, with inferring the second argument to
ex_intro, namely (lt 0: nat � Prop).

Another fundamental definition used in this approach to type inference
is that of a most general unifier. A unifier σ of a problem is the smallest,
or the most general, if for all unifiersω, there exists a substitution σ ′ such
that ω = σ ′ ◦ σ . Then we say that ω is an instance of σ . In practice that
means that σ is no more specific thanω, and that it suffices to rename some
variables of the output of σ to get that ofω.

For a language with only limited forms of polymorphism (such as ML,
for example), having a first-order unification algorithm returning the most
general unifier means that type inference returns a principal type: a type
which constricts the term as loosely as possible while still ensuring consis-
tency with the type system (and the sought-after progress and safety prop-
erties). When the unification algorithm does not know how to compute
a most general unifier — and in fact when the unicity of the smallest uni-
fier is not guaranteed — this means that the output of unification is at best
non-deterministic or incomplete.

Higher-order unification In fact, if we consider the following higher-order
unification problem, where f is a (e.g. first order) functional constant and
?M a meta-variable for which we want to solve:

λx . ?M (f x) ≙ λx . f (?M x) (1.1)

Then any substitution σk for k ≥ 0, such that:

σk = [M 7→ λx . f k x]

is a unifier for (1.1), and none of those unifiers is an instance of another. In
fact, the set {σk |k ≥ 0} is even a complete set of unifiers, in the sense that any
other unifier for (1.1) is an instance of an element of that set. It is however
remarkable to notice that the complete set of unifiers of that problem is
infinite.

The well-known consequence is that type systems with an unlimited
binding structure in types cannot hope for complete and terminating type

In COQ, the unification algorithm plays
a fundamental role for type inference, but
also during rewriting, for instance. Our
tightly-focused discussion will remain
silent on a number of its other applications.
The interested reader can consult landmark
survey articles for the first-order case
(Knight 1989), and for the higher-order
case (Dowek 2001; Huet 2002).

CANONICAL STRUCTURES 39

inference.37 In fact, higher-order (and even second-order) unification are
undecidable, though this is not the result we want to draw attention on
given our focus on inference.38 We focus instead on what can be achieved
in practice to obtain a reasonably complete but strongly reproducible process
to infer types in COQ.

Huet (1975) published a semi-decidable algorithm to solve higher-order
unification in Church type theory. It is in fact a pre-unification algorithm
that works on β-normal forms of the calculus. One of its key insights is
to separate disagreement pairs in categories of equations, grouping separate
terms. Let us look at a β-normal term:

λx . ut (1.2)

u is the head of the term. A term in a disagreement pair is rigid when
the head of its normal form (u) is not a meta-variable, and flexible other-
wise. Huet noticed that disagreement pairs between flexible pairs were
always solvable. He concluded that it sufficed to provide substitutions that
solved the other disagreement pairs to leave the problem in a form that any
heuristic with a uniform behavior could finish off. This discipline of solv-
ing higher-order unification up to flexible-flexible pairs is since then called
pre-unification.

The pre-unification algorithm of Huet was extended to calculi with de-
pendent types (Elliott 1990; Pym 1990), and those extensions retain the
same approach of substituting up to flexible-flexible pairs. However, for a
calculus with dependent types, the assumption that flexible-flexible pairs al-
ways have solutions is no longer valid. For example, if ?X is a meta-variable
with type λx :Type . x, the following problem:

?X (A→ B)a = ?X B

has no solution (Dowek 2001). The semi-decidability of the algorithm for
higher-order unification obtained by Huet for simply typed theory does not
carry well to more complex calculi.

Hence, hoping to devise a general and complete algorithm to solve type
inference seems particularly intractable in the context of COQ’s meta-theory.
Contrarily to systems like λ-PROLOG or I SABELLE, for example, COQ

takes the practical approach to dealing with this inherent incompleteness
by not implementing Huet’s algorithm directly. We therefore detail the
parallel evolutions of the meta-theory with the practical approach of the
implementation.

1.2.3 Unification inCoq

Well-founded tricks In some of the next few sections, we are going to ex-
pose and demonstrate manipulations of the unification procedure in COQ.39

Those implementations are based on the interplay between Canonical Structure

instance resolution and specific properties of the unification procedure: the
syntactic head constant matching on weak-head normal terms, the late δ-
reduction, and the timing of coercion insertion.

The key point for us is that, if COQ’s history is any indication, the uni-
fication procedure is inherently volatile. Nonetheless, our manipulations

37 J. Wells. Typability and type checking in
System F are equivalent and undecidable.
Annals of Pure and Applied Logic, 98(1-3):
111–156, June 1999. ISSN 01680072.
doi:10.1016/S0168-0072(98)00047-5
38 The interested reader will find all refer-
ences on the decidability of higher-order
unification problems in the bibliography
of the survey articles mentioned on the
preceding page.

“The non-determinism, more so than the
undecidability, presents some problems with
full higher-order unification as the basis for
proof development environments and logic
programming languages.”

(Pfenning 1991)

39 To be crude about it, we are going to
explain how to obtain subtyping from
Canonical instances corresponding to
supertype injections (§ 1.4.1), how to pro-
gram deterministic overlapping instance
selection for Structures (§ 1.4.4), and
how to implement Structure projection
insertion through notational phantom
type setups (§ 2.3.2).

http://dx.doi.org/10.1016/S0168-0072(98)00047-5

40 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

are valuable because the crucial characteristics we rely on are defensible as
useful and sensible improvements of higher-order unification. Rather than
expose the unification procedure in detail, we thus strive to place those key
features on the more solid foundation of the literature on unification in
COQ.

COQ literature versus its implementation The implementation of COQ

(started in 1984) is, since the founding work of Coquand and Huet (1989),
a syntax-directed version of, roughly, a PTS extended as described in § 1.1.
Saying the calculus is syntax-directed means in particular that the engine
solves the problem of type-checking by type synthesis, through unambiguous
applications of the typing rules of the calculus. It inspects the shape of a
term of the calculus (in a suitably reduced form) knowing that if this term
can be well-typed, it will match the conclusion of exactly one of the rules
of the calculus. It suffices to repeat this work on the hypotheses of that
rule, recursively, to deduce a finite type derivation for that well-typed term.
Untypeable terms going through the same process eventually fail to match
the conclusion of any typing rule.40

The distinction matters since, in all standard presentations (Coq 2010,
§4) — as well as in ours — the calculus of COQ is declarative, meaning
in particular that one cannot use rule CONVERSION (Fig. 1.2 on p. 21)
unambiguously to produce such a type derivation. Thankfully, because the
calculus of constructions is semi-full, it is a standard result that the syntax-
directed presentation is equivalent to the declarative one (Pollack 1992).

Unfortunately, most of the literature about the meta-theory of the calcu-
lus of COQ operates on a declarative presentation of the calculus. Moreover,
beyond this discrepancy, the literature of the CIC does not include η-expan-
sion in the conversion relation,41 because of its difficult interaction with
the introduction of the universe hierarchy. Both gaps are active research
topics to this day (Siles 2010).

By and of itself, the absence of the η-conversion rule in COQ complicates
the unification algorithms. Huet (1975, §4.5), who took the precaution of
formulating his algorithm for a simply-typed λ-calculus with no η-conver-
sion, details the simplifications that can occur when this rule, equivalent to
functional extensionality, is added to the calculus.

Unification by Transformations The formal study of unification in litera-
ture (Dowek 1993; Elliott 1990; Saidi 1994) leading up to the description of
a higher-order unification algorithm for CIC (Cornes 1997) has historically
adopted a slightly different presentation from the one of Huet (1975). It
relies in fact on a presentation of unification by transformations. This ap-
proach was used and exposed in detail in the work of Snyder and Gallier
(1989), in an introductory paper that generalized Huet’s approach to higher-
order unification, while still dealing only with simply-typed λ-calculus. If
we consider a set of disagreement pairs as a disagreement set S = {(u,v)},
the method consists in applying simple transformations, including substitu-
tions akin to variable elimination, until the obtention of a solved system S

′

whose solution is clear.
In all cases where this method has been extended to richer and richer

40 A particular consequence of this
choice of semantics is that the type
inference algorithm can (and does) analyze
the applicative structure of terms and
compare them to the conclusions of
typing judgements by converting them to
weak head normal form, a form obtained
by applying β-reduction “only at the
head” of the term, in the sense of equation
(1.2). We will see how this bears some
consequence in the implementation of
unification for COQ.

41 With the notable exception of (Al-
tenkirch 1993) and Werner (1994) which
predate the removal of η-expansion. Until
late September 2010, even the develop-
ment version of COQ did not include this
reduction rule either. The η-expansion has
been re-introduced in COQ’s trunk, and
will be part of the next release (following
8.3).

COQ does not strictly use unification
by transformations, in the sense that the
order in which it treats disagreement pairs
is not prompted by reasoning on flexibility
(it treats pairs in a strict left-to-right,
depth-first order, see Gonthier et al. 2011,
appendix). But since various unification
heuristics fire on a pair in a manner similar
to the transformations — in a fashion we
are going to expand on in the next few
paragraphs — it seems that this is roughly
the model of COQ’s unification one should
have in mind.

CANONICAL STRUCTURES 41

calculi (mentioned above), this means closed flexible-flexible pairs. We have
already seen that this pre-unification solved form does not necessarily entail a
unification solution for the polymorphic, dependent calculus we care about,
but a more pertinent consequence is that this is a non-deterministic set of
abstract operations for unification, of which we can think of as a set of
inference rules. As spotted by Snyder and Gallier,

This removal of control and data structure specification allows us to examine
the fundamental properties of the problem more clearly.

Hence, when Saibi (1999, §4.3) uses that presentation based on transfor-
mations to depict his implementation42 of unification in COQ, he glosses
over of the interplay between the transformations he uses. This might
seem ill-advised since the description of Saibi is entirely practical and geared
towards an implementation (he does not reason on his algorithm, and ac-
knowledges it is incomplete). Moreover, this loosely-specified control flow
reflects the actual implementation in COQ to this day: the unification rou-
tines defer to each other by continuation in an order which evolves along
successive COQ versions. However, this approach gives a simple and suit-
able context for extending the algorithm with the application of specialized
transformations when encountering terms of a given distinguished form.
We will mention such an extension in the next subsection.

Practical heuristics The implementation of higher-order unification in COQ

does not try to achieve an enumeration of a complete set of unifiers. Indeed,
in a process such as type inference, a partial solution giving good practical
results seems sensible: it is always possible, at worst, to ask the user to fill
type annotations.

The basis for the treatment of a higher-order unification problem set by
type inference, in COQ, is thus a set of transformations devised by Saibi
(1999, §4.3) and Paulin-Mohring.43

It features the classic core insights of a higher-order unification algorithm
(simplify rigid-rigid equations, construct solutions to flexible-rigid solutions
using elementary substitutions) and of its adaptation to peculiarities of the
calculus of COQ— a scission heuristic, accounting equations: see Dowek
(2001). However, its elementary substitution is heavily skewed towards
the imitation rule of the classic algorithm (Huet 1975; Snyder and Gallier
1989, resp. §3.4.1.1 and §4.9), and the additional difficulty of uniformly
providing solutions to flexible-flexible pairs ensures it waives any claim to
completeness.

But before trying to apply those rules, COQ attempts to use other heuris-
tics, among which are, in this order, βιζ -weak-head reduction, first-order
unification, and Miller-Pfenning pattern unification. The latter is a proce-
dure for higher-order unification that applies on a special form of disagree-
ment pair,44 on which unification is not only decidable but linear (Miller
1991; Pfenning 1991), and whose implementation in COQ was introduced
by Hugo Herbelin in version 8.1 γ . This progressive application of heuris-
tics ensures the responsiveness of the proof assistant during the interactive
process of type inference.

42 The basis for the modern implementa-
tion of higher-order unification in COQ is
a re-implementation by Amokrane Saibi
and Christine Paulin. It used as a “first
draft” that of Chetan Murthy, for which
no documentation exists. The implemen-
tation went through numerous evolutions
since, on which we will comment in the
next paragraph.

43 “Nous adoptons pour notre part un
algorithme ad hoc, non complet mais avec
un bon comportement en pratique. [...]
Nous ne prouvons aucune propriété de
l’algorithme donné ; nous nous contentons
de spécifier la propriété de correction
souhaitée.” (Saibi 1999)

44 A term is a higher-order pattern if
each meta-variable has distinct bound
variables as arguments. For instance,
λx, y . ?F (x, y) is a higher-order pattern,
but λx . ?G (?H (x)) is not.

https://gforge.inria.fr/scm/viewvc.php?view=rev&root=coq&revision=9088

42 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

1.2.4 ImplementationHighlights

As we have argued, there are differences between the approaches to uni-
fication taken by COQ and the literature on the Interactive Calculus of
Constructions (and, to a degree, the literature on higher-order unification
in general):
- COQ has a practical approach leveraging heuristics, and does not aim to

be complete
- the calculus reflected by the implementation is syntax-directed, which

skews it towards working with weak head normal forms,
- and it has no η-conversion

By itself, the syntax-directed flavor of the implementation is not a strong
theoretical problem: the Church-Rosser and strong normalization proper-
ties of the calculus (Werner 1994, §4,5) allow us to replace convertibility by
reduction to a common normal form. This makes reasoning on declarative
presentations of the calculus valid with respect to conversion in our context,
up to minor rearrangements.

Moreover, some of the particularities of the implementation find echoes
and justification in the literature. For instance, approaching the implemen-
tation under the angle of transformations gives some weight to the work
of Elliott (1990, §4.2) on λΠ ,45 which also shares that trend. There, he
calls the simplification of term pairs by application of transformation rules
decomposition.

In particular, he goes on to show that it is not necessary, for λΠ calu-
lus, to reduce a pair of terms to the common full head-normal form before
decomposing it: while head-normal form requires doing β-reduction even
inside an abstraction, this is not needed to know which transformation rule
one should apply. Weak head normalization — in which reduction at any
inner level is omitted — suffices. The proof relies on the exact way convert-
ibility checks happen in λΠ : convertibility is tested by reducing expressions
to weak-head normal form and proceeding recursively on subexpressions of
these normal forms (Coquand 1996). Since this is also true for the calculus
of constructions (Huet 1989), the intuition is that it also suffices for COQ.
Hence, the optimization that consists in implementing unification as

transformations on weak head normal terms is well-justified: it is a sen-
sible reuse of existing primitives, and a computational simplification, for
all calculi that feature the same syntax-directed presentation obtained from
type-checking à la Pollack (Pollack 1992).

Another example of a design choice in implementation that finds echo
in the COQ-related literature is a heuristic adopted by Cornes (1997, §4.2).
Contrarily to previous publications (Paulin-Mohring 1993; Werner 1994),
the implementation of inductives in COQ never represented them as simple
λ-abstractions (i.e., their constructors). It was made in a more efficient
manner, by storing them in a context, creating a discrepancy with literature
that the habilitation thesis of Paulin-Mohring (1996) closed soon after. In
this concrete context, especially given that the unification algorithm does
not create new inductives, it is clear that it is advantageous to minimize
“inductive accesses”, i.e., the application of parameters to inductive types,
which unfolds their definition through reduction.

45 The specifics of that calculus appeared in
§ 1.1.3 on p. 21.

CANONICAL STRUCTURES 43

In the implementation, this is done by singling out the unfolding of in-
ductive types within a special form of reduction, δ-reduction, and prevent-
ing the δ -reduction of closed terms in disagreement pairs. The treatment of
Cornes (1997, §6) shows that, for a declarative CIC with βη-reduction, this
optimization preserves the completeness of the pre-unification algorithm.
This provides us with a strong indication that delaying δ-reduction

is a sensible optimization of unification in the presence of inductive

types46

We will later come back on the importance of those two particularities
of the unification process.

1.2.5 ExtendingType inferencewith record heuristics

Let us suppose we have a mathematical structure, such as a type equipped
with an equality function, defined in pebble-style, as in Fig. 1.13 on p. 33.
In effect, the projection carr is a “forgetful functor” on type eqType:47 it
takes any term which happens to be an instance of this record type, say
bR : bool_eqType (p. 34), and erases the equality function from its repre-
sentation, leaving only the first member, here an element of type bool.

In mathematical practice, we often ask readers to remember, rather than
to forget. How to compute the equality of two multisets, for example, is
considered obvious, even though the syntactic notation commonly adopted
for multisets — which often does not put multiplicities in any particular
evidence — does not give the details of the eventual definition. In another
instance, blackboard proofs in algebra often combine the groups they men-
tions using a number of set-theoretic operations with no additional justifi-
cation, since how the group properties carry over set-theoretic operations
was “treated in class”.

A specific heuristic in the unification process of COQ purports to do
exactly that: inverting record projections, by allowing the algorithm to fill
for a missing record which can fit the value of an explicit projection, using a
table of record instances — in effect, the COQ equivalent of the terms “seen
in class”. Since the record inserted in the unification problem using this
heuristic might itself contain missing records, this process can fire multiple
times.

In practice, going back to our example of Fig. 1.13 on p. 33, this can
be useful if we have a function defined generically on the eqType record
type. Let us look, for example, at a member function on lists of elements
equipped with an eqType (Fig. 1.16). When trying to apply it to a “real”,
concrete list of type list bool, we provide the following term to the system
member _ true (l:list bool). Given the type of member as present in the
context, the typing rule for the product, applied to the second argument
true generates the following unification problem:

carr ?R ≙ bool

The Canonical Structure implementation is exactly a mechanism that
allows COQ to solve for ?R by looking up in a table keyed on the projection
name carr, and the projection value bool. In this table, if the user has
entered the invocation:

46 We will reuse that fact in § 1.4.1 on p. 60
and § 1.4.4 on p. 74.

47 We would ask some leniency on the part
of the reader for this expression: except in
one obvious occasion, we are going to use
it to refer to erasure rather than an explicit
categorical structure.

Fixpoint member (R:eqType) (x : carr
R) (l : list (carr R)) :=

match l with
|h::t = > if (eq R) x h then true
else (member R x t)

|null = > false
end.

Figure 1.16: List membership on
an equality type
The Canonical Structure inference
mechanism willfully constrains the
generality of the unification procedure
answer for ?R above. That answer is
only the first registered answer out of a
potential infinity of valid substitutions by
some instance of a record type. Granted, a
vanilla higher-order unification procedure
is not able to invert record projections as
is. Moreover, unifiers returned by such
higher-order procedures are not always
the most general anyway, as explained
in § 1.2.2 on p. 38. But it is worthwhile
to notice that if the unification variable
?R is constrained before the occurrence
of the record projection equation, the
system will go with that first constraint,
while if it is constrained later, then the
constraint will have to match the result
of Canonical Structure inference for
unification to succeed.

44 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Canonical Structure bool_eqType.

as the first declaration corresponding to the appropriate value (bool) for the
appropriate record type (eqType), then COQ will substitute bool_eqType for
?R above. The Canonical Structure hint can collapse with the Definition

of bool_eqType itself, but as for coercions, this is just a compact notation
(Coq 2010, §2.7.15). There also exists a Structure keyword to replace

Record when defining a record that we intend to use in conjunction

with this heuristic, but this is again but a notational facility.

1.2.6 Modelling simple concepts into complex instances

In the previous process, when the Canonical Projections table contains a
product type, COQ inserts the corresponding application with new unifi-
cation variables. For example, let us define a product for the eqType record
(Fig. 1.17).

If we now apply member, as defined above (Fig. 1.16 on the previous page),
to a list of pairs of booleans, the unification equation becomes:

carr ?R ≙ bool * bool

With notations expanded, this transforms to:

carr ?R ≙ prod bool bool

In reality, COQ considers that since the only value in the projection
table that has a head constant matching48 that of the right hand side of
the equation, it attempts to use that instance as a solution. This syntactic
matching with a head constant is a quirk we will come back to in § 1.3.4 on
p. 56. The unification problem then becomes:

carr (prod_eqType ?A ?B) ≙ prod bool bool

Once the left member ι-reduces we get:

prod(carr ?A)(carr ?B) ≙ prod bool bool

This amounts to two instances of the same unification scheme:







carr ?A ≙ bool

carr ?B ≙ bool

Naturally, those resulting equations are then handed back to the unifi-
cation procedure, triggering new Canonical Structure searches. Had one
of the bool types in the right hand side of the equation been a product in-
stead (meaning that we would have tested membership in a list of boolean
triplets) the process could have gone one step further. Of particular note is
the absolutely necessary role of the initial record projection in the original
term.

The takeaway moral of a close examination of the unification code re-
mains therefore that, COQ attempts to use computation (βι-reduction),

first-order unification, Canonical Structure hints, and constant expan-

sion (δ reduction), in that order, and recursively, to resolve unification

problems.

Canonical Structure prod_eqType
(a b:eqType) :=
EqType (carr a * carr b)
(fun x y = >
let (a1,b1):= x in
let (a2,b2):= y in

eq a a1 a2 && eq b b1 b2).

Figure 1.17: A product instance

48 Modulo weak head βιζ -reduction of the
candidate projection value, to be precise.

CANONICAL STRUCTURES 45

1.2.7 Coercions

Implicit coercions are the way COQ implements subtyping with side effects:
(x:A) can “pass off” as a term of type B if there is a coercion, an unambiguous
function (f:A � B), that COQ has at hand to produce the required(f x):B.
More precisely, the type inference algorithm can recover from a failure to
match an argument of a computed type A to a required type B by searching
for a suitable pre-declared coercion function of type (A � B).

The way COQ deals with coercions (Coq 2010, §2.8) is slightly different
from most implementations of that subtyping mechanism in proof assis-
tants. The COQ implementation comes from the work of Saibi (1997) after
he helped Bailey (1998b) achieve his own in LEGO. The differences be-
tween the final implementations of Bailey (1998a) and Saibi (1999, §5) are
negligible up to idiosyncrasies of their provers. We peg mentions of work
resulting from their collaboration to the name of the latter, for brevity only.

Implicit Syntax Saibi builds upon work realized during a project of Peter
Aczel and Gilles Barthe aimed at formalizing enough Galois’ theory to
prove the unsolvability of the quintic (Aczel 1993). Its original question of
how to engineer an overloading mechanism using inheritance49 — rather
than centering on subtyping ex nihilo —, finds an echo in Saibi’s idea of
using coercions to define an implicit syntax which can be automatically
refined to explicit terms of the calculus. This has the benefit over in-calculus
coercions to make the mechanism an obviously conservative extension, and
thus theoretically lightweight. Other implementations of coercive subtyping
have followed suit on that regard (Bailey 1998a; Callaghan 2000; Sacerdoti
Coen and Tassi 2008).

The gist of the approach is that the syntactic input of a new coercion

definition:
f [x :T] = e (1.3)

can be interpreted incrementally as several function definitions, defined for
every chain of preexisting coercions c:

f[x :C] = e

Where:
- the definition of f1,C1,e1 comes from the original expression (1.3) (i.e.

f1 := f , C1 :=T, e1 := e),
- ∀ (2≤ i ≤ n), ∃ ci :Ci →Ci−1 s.t. f [x :Ci] = (ei := ei−1[x 7→ ci (x)])

Naturally, in the degenerate case where no preexisting coercion chain
maps to T, the meaning of (1.3) is self-contained. Note the holistic view
implied by inspecting preexisting coercions at method declaration (see note
51).

Coercion classes Aczel and Barthe also define a notion of class, named at
first glance in reference to object-oriented practice,50 but which aims, in
their examples, at modelling algebraic structures. The “class” designation
actually comes from the remark that coercions are frequently “forgetful
functors”, sending a child element to its parent type simply by erasing op-
erations or proofs, i.e. parts of the data representation (Aczel 1994b). The

“My motivations were relatively immediate
and short-term, and I consider coercions as
a means to an end: a literate formalisation.
A more theoretically motivated approach
would probably take a more pure but less
pragmatic stance towards some of the
decisions that working with coercions entails.
However, I started this project because I
wished to undertake the literate and large-
scale formalisation of some algebra over the
course of my three year degree. I thus wanted
to produce a working implementation that
was feasible to use in practice and that was
as well-suited as possible to the demands of
such a project. [...] The implementation
of coercions in the COQ proof-checker by
Amokrane Saibi shared many of the same
desires for practical checking and expressivity,
and I note he made many similar choices.”

(Bailey 1998a)

49 P. Aczel. Simple overloading
for type theories. In Types for
proofs and programs, 1994a. URL
http://www.cs.man.ac.uk/~petera/
overloading-for-type-theories-1994.pdf

50 “In order to conveniently formalise
mathematics in a type theory it would be
useful to have incorporated into the type
theory a good theory of classes in something
like the sense of class that there is in object
oriented programming.”

(Aczel and Barthe 1993)

http://www.cs.man.ac.uk/~petera/overloading-for-type-theories-1994.pdf
http://www.cs.man.ac.uk/~petera/overloading-for-type-theories-1994.pdf

46 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

term class is thus used for the source and target types of those coercions.
Despite the vocabulary borrowed to object-oriented programming, it is the
thinking that coercions function by erasure that is the keystone of the de-
sign.51

This inherently directed perspective also leads to view the whole current
set of coercions as a set of trees whose nodes are classes, whose edges are
coercions, and whose roots represent the local minimum “object” reached
by the composed application of all “forgetful” coercions.

A coherent coercion graph Saibi (1997, 1999) favors a graph, opening the
possibility for bidirectional coercions. At its most timid this can mean that
in the above definition, “classes” is merely the name of those types which

can be the source or target of a coercion.52 Moreover, the possible ambiguity
introduced by confluent paths in the coercion graph raises interest in an
invariant brought up by Barthe (1996) when extending the work done with
Aczel to support multiple inheritance: the coherence condition.

Definition 1. The coherence condition states that a set of coercions∆ is coher-
ent if it contains only convertible coercions between pairs of types equal modulo

convertibility, including identity at all types. That is, if for any two coercions

c :A→ B, c ′ :A′→ B′ between convertible types (A=β A′, B=β B′) and any

x a fresh variable, we have c(x) =β c ′(x), and for any d : D→ D, d (x) =β x.

This condition makes the behavior of coercion insertion more determin-
istic. Indeed, the risk with an incoherent coercion graph is that the user
may witness an unexpected coercion applied to his term, depending on a
subtle and stateful heuristic chosing between concurrent and distinct pos-
sible coercions. All further trends of work on the subject (Barthe 1996;
Callaghan and Luo 2000; Chen 2003; Luo 1997; Tassi 2008) share at least
some of that concern, with variations on the exact relation used to compare
two coercions.

To summarize, at the core of implementations of implicit coercions

is therefore a coercion graph used to somehow determine if two types

are coercible during type inference, and a concern for coherence when

adding new coercions to the graph.

Coercions in COQ The work of Saibi extended previous solutions by adapt-
ing the notion of classes to parametrized (polymorphic) types. It also made
a number of less common design decisions which give the implementation
its quirks (syntactic notion of coercion classes, rigid parametric classes, strict
verification of coercion graph coherence).53

Those choices are framed by two key decisions present in all implemen-
tations of coercions using implicit syntax.54

i When type inference fails to match the computed type of an ar-
gument with the declared type the receiving function accepts, the
coercion mechanism should say quickly if the first is coercible to
the second. Using a coercion graph that means precisely matching
that argument to a node of the graph, which raises the issue of the
precision of coercion classes.

ii Next, the issue becomes answering with a coercion function, in a

51 The design of Saibi has kept the
vocabulary, but, as we will see below, not
even the erasure semantics. The reference
to “object-oriented” vocabulary in the
following paragraphs is thus a spurious
artefact of history, and its meaning should
be seen with a “fresh” eye.

52 We will later give some thought on how
types should group under a coercion class:
suffice to say that by that appellation we
henceforth mean precisely a node of the
coercion graph.

53 Saibi also adds two distinguished coer-
cion classes, SORTCLASS and FUNCLASS,
which group under a same identifier the
sorts and the members - respectively - of
the function space of the calculus. We
merely refer the reader to Saibi (1999,
§5.4.1) and Coq (2010, §17.3).
54 R. Pollack. Implicit syntax. In
Informal Proceedings of First Workshop
on Logical Frameworks, Antibes, pages
421–434, Sept. 1990. URL http:
//www.lfcs.inf.ed.ac.uk/research/

types-bra/proc/proc90.ps.gz

http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc90.ps.gz
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc90.ps.gz
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc90.ps.gz

CANONICAL STRUCTURES 47

deterministic fashion. For all implementations of coercion systems
to wit, that happens using an incremental construction of a partial
transitive closure of the coercion graph, accountable to some notion
of coherence along the way. This raises the issue of how to compare

a coercion to preexisting ones.
Those two design choices are each weighed against three concurrent in-

terests:
1 The coercion mechanism aims to give a computationally fast answer,

since it fires during the already costly mechanism of type inference
(§ 1.2.2). Moreover, coercion insertion may occur repeatedly, or for
different subterms during the type inference process.

2 Coercions are functions inserted implicitly, i.e. general functions.
Since there is no particular restriction making sure they only erase
a part of the data representation of their argument —the original,
“intended” use — they can introduce meaningful side effects, some-
thing programmers have found useful on occasion. Since all this
conspires to perform computation behind the back of the client
user, it is important that the effect of coercions be deterministic - in
essence, those are the stakes that the coherence condition aims at
answering to.

3 Finally, the user will probably want expressive ways to describe and
interact with the coercion graph. Specifically, we examine in the
ability to specify multiple coercion paths with only slightly dif-
ferent domains, or to replace previous coercions by extensionally
equal, but computationally more efficient versions.
The summary of those choices, as made by implementations of coercions

in theorem provers, is in Fig. 1.18. Some details deserve notice: if one wants
to gain computational performance with coercions, it seems more advanta-
geous to speed up the determination of which coercion class a term belongs
to, rather than to skimp on the coherence check of the coercion graph. That
coercion check happens at declaration time, for which responsiveness is less
of a requirement than during type inference, and practice shows that coer-
cion graphs grow too slow in current usage to make its speed a significant
issue. In fact, MATITA, for example, takes the time to do a coherence
check modulo convertibility before issuing a warning when a new coercion
creates conflicting paths.

fast

expressive

coherence strictness

class precision (higher checks make smaller classes)

==β= iwarn

=
head

=
synt

unifiable

COQ
Lego

Matita

Plastic

Figure 1.18: Design choices of
implicit coercion systems.
Determinism of behavior is not

represented on that figure for technical

reasons: while determinism it augments

with the strictness of coherence checking,

for example, some unrelated engineering

choices can change that characteristic for

the best in numerous cases. For example,

MATITA has a Prefer Coercion

command that can make coercion

insertion more predictable using local

user-specified preferences (HEL 2010).

It is remarkable that all coercion comparisons occur in the same context

48 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

of the incremental computation of a partial transitive closure of the coer-
cion graph. Indeed, the exact verification of coherence has been shown in-
tractable (and undecidable) in the presence of parametrized coercions (Luo
1999). Hence, when seeing a new coercion declaration c , and provided its
insertion by itself does not break coherence of the graph, all systems insert
the following new graph paths to a coercion table∆:

{ci ◦ c ◦ c j |ci , c j ∈∆} ∪ {ci ◦ c |ci ∈∆} ∪ {c j ◦ c |c j ∈∆}

Saibi chose to stick to a syntactic notion of coercion class mainly for
performance reasons: it makes the assignation of a term to a coercion class
particularly easy and fast.55 Hence COQ coercions are keyed to some (T :
Π a : A . s), with s a sort, and the name T — thus representing e.g. an
inductive type or a constant — is part of the key. Moreover, the update of
the coercion graph enforces a strict view of coherence: a coercion can only
be added to the graph if and only if there exists no other between the two
syntactic nodes it links.

Uniform Inheritance condition As we have seen in the last paragraphs,
whereas it is in general hard to move up the graph in the direction of more
precise coercion classes, it seems comparatively easy to gain expressivity
by moving from right to left. The tradeoff is avoidable for determinism,
however: while relaxed coercion checks make the system less predictable,
this can be mitigated by a rich user interface.

Another complication steps in when extending the notion of coercion
classes to parametric types. As hinted at in the last paragraph, the approach
taken by COQ is to group parametric types mentioned above by the name
of their head constant. This reflects the “de-parametrized” Definition 1 on
p. 46, which tests for convertibility after replacing all the parameters of the
head abstraction of the coercion function by fresh variables.

As spotted by Saibi (1999, §5.5), with this coherence condition, depend-
ing on convertibility and syntactic parametric classes, the approach is not
consistent. Notably, p : (Π x :A . C x)→ (D true) and q : (Π x :A . C x)→

(D false) see their ranges merged so that they are checked for convertibil-
ity, while those coercions could in fact coexist unambiguously in the same
graph. In sum, he notices that term information provided at coercion

insertion should be dealt with comprehensively, or none at all: either

one checks convertibility, but taking all parameters into account, or

we drop parameters with convertibility checking.
Saibi chooses to solve this by keeping the “de-parametrized” definition,

but making the coherence check verify only whether there exists a previous

path (convertible or not) in the coercion graph. An unfortunate consequence is
that this does not allow defining convertible replacements for long chains of
coercions: sometimes the user may want to declare explicitly that aβ-reduct
of a composition of coercions c1 ◦ c2 ◦ . . .◦ cn is a coercion to reduce the size
of the inferred term.56 This also means that defining different coercions for
certain parametric instances of inductive types — for example to obtain a
particular behavior for instances of Ctrue rather than the one defined for
the general Cx — becomes harder.

55 In common practice, this strict disci-
pline of syntactic matching is bearable,
even though the availability of unification
procedures allows imagining more flexible
solutions: important notions to or from
which an user wants to coerce are usually
named.

56 We will see in § 1.3.4 on p. 56 practical
usage patterns where those long chains
appear.

CANONICAL STRUCTURES 49

To enforce the notion of class defined over such a syntactic coercion class
Saibi develops the uniform inheritance condition, which means that the user
should replace all parametric arguments of the domain type of a parametric
coercion declaration by fresh variables if he wants it taken into account by
the system. In formal terms, this means that a coercion should have the
type:

Π x :A . (Π y :Cx . N)

To mitigate the second of the two limitations we have mentioned above,
he nonetheless lets the user define “identity” coercions that allow the user
to define a syntactic alias for a specific parametric instance C′ := λ(x1 :
A1, . . . xk : Ak) . (Ca1 . . .an) with k ≤ n along with its translation to its
parent class (the identity coercion itself). The user wanting to use the co-
ercibility of certain terms from C′ to D has to write them as members of C′

explicitly — i.e., the user is left the task of syntactically disambiguating the
coercion classes.

Analysis and conclusions The coercion mechanism of COQ therefore has
taken the syntactic approach to its fullest extent, with a view to the simplic-
ity and efficiency of the whole mechanism. Since it occurs after a failed exe-
cution of a higher-order unification algorithm triggered by type inference,
coercion insertion happens at a point where responsiveness is paramount.

However it is unclear that responsiveness requires a syntactic implemen-
tation of class assignation, or a syntactic coherence check. In practice, coer-
cion graphs are small, and relaxing the checks of Saibi has experimentally
proved tractable: without even mentioning the class assignation modulo
unification of PL ASTIC, the implementation of MATITA has shown that
simply removing checks from that of COQ still leaves the user with an
usable system.

In MATITA, coercions are equally indexed on the head of the syntactic
type, but there is no uniform inheritance condition and coherence checks
are indicative. Concretely that means that the myriad (in fact, the potential
infinity) of distinct parameter instanciations of a given couple of (C a, D b)

source and target parametric types coexist on the same segment between
two nodes of the coercion graph.

It also means that once the coercion insertion algorithm has found a
suitable class it needs to use unification to check that the coercion candidate
can indeed be passed as an argument to a prospective coercion function.
Saibi explicitly mentions this as an alternative to the uniform inheritance
condition, but indicates being loathe to do so for reasons of incompleteness.
With the hindsight the COQ community has — encompassing more that
a dozen years — on the behavior of the “modern era” implementation of
unification in COQ (Saibi 1999, p.94), we doubt whether this should be a
serious concern any more.

Indeed, a system with such costly unification checks at coercion insertion
remains usable in practice. Moreover, with operations such as user-specified
coercion preference, MATITA gives greater control to the user as to the way
in which candidate coercions will be attempted. As a conclusion, changing

50 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

COQ to close the gap with the implementation of coercions found in

its cousin seems to us a desirable and yet feasible improvement.

CANONICAL STRUCTURES 51

1.3 Canonical Structures in proofs

WE HAVE DESCRIBED HOW CANONICAL STRUCTURES WORK AS

A SPECIFIC COQ FEATURE, but we now want to give a hint of how
they represent a type class mechanism, as an integrated language construct
of Gallina. Thus we isolate and describe the impact of the two essential
features of such a mechanism as underlined in the beginning of this chapter:
constraint propagation, and automatic instances. We give examples of their
use in COQ, and explain how coercions are a feature that helps integrate
them by allowing smooth — though sometimes confusing — definitions for
generic functions.

1.3.1 The other, older type class implementation ofCoq

As hinted at since the beginning of this chapter, the type classes of Haskell
(Wadler and Blott 1989), the traits with implicits of Scala (Oliveira et al.
2010), the concepts of C++ (Gregor et al. 2006) and BitC (Shapiro et al.
2008), the generalized interfaces for Java (Wehr et al. 2007), and a flurry of
other recent incarnations in theorem provers (Asperti et al. 2009; Haftmann
and Wenzel 2007; Sozeau and Oury 2008), are a way to group values under
an elaborate type, and write procedures on this index. We call them type
class mechanisms, or concepts.

With COQ, doing this sometimes looks slightly magical because it per-
mits to seemingly generate values “out of thin air”. We can write, say, a
generic function that takes a list and an index, and returns the following:
- the value of the element at the position given by the index
- or if the index is out of the lists’ bounds, another value of that same type.
All this happens in a type-safe manner but without apparent type-level ex-
ception handling. This sort of thing tends to make the axiom-detection-
sense of the reader tingle:

Definition nth_nat (n : nat) (l : list nat) := nth n l.

Definition nth_bool (n : nat) (l : list bool) := nth n l.

nth is polymorphic, but no axiom declarations are involved, of course.
The trick consists, when defining nth, in swapping the type variable we
would use if we were defining a polymorphic function - here, the type of list
elements - with a record type that provides the sorely needed default value
for computing nth.

When calling nth, the user only supplies part of the record. A mechanism
for recalling which values of that record type the compiler is aware of then
enters into play, and picks the right one. There are two such mechanisms in
COQ: if the user chooses Classes, those pre-registered values are Instances,
and the definition of nth looks like Fig.1.19(a). If he chooses Structures,
they are Canonical Structures, and nth is as in Fig. 1.19(b).

In both occurrences, a flavor of inheritance complements this instanci-

ation mechanism, so as to extend such record types by reference: Sozeau
(2008, §7.2) covers it for Classes, and Garillot et al. (2009) details best prac-
tices for Structures (we will come back to this subject in 1.4). This second
feature, inheritance, achieves making Classes and Structures proper first-

“Type classes are essentially implicitly passed
dictionaries, and dictionaries are essentially
objects. [...] Type classes are nice. A cottage
industry of Haskell programmers has sprung
up around them.”

(Martin
Odersky, talk to IFIP WGP ’06, Boston)

52 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Class defaultType (T : Type) :=

default : T.

Instance nat_defaultType

: defaultType nat := 0.

Instance bool_defaultType

: defaultType bool:= false.

Section Nth.

Variable T : Type.

Fixpoint nth ‘{dT : defaultType T}

(n : nat)

(l : list T) : T :=

match l with

h::t = > match n with

S n0 = > nth n0 t

| _ = > h

end

|_ = > default

end.

End Nth.

(a)

Record defaultType :=

{ sort : Type; default : sort }.

Canonical Structure natdefaultType :=

Build_defaultType 0.

Canonical Structure booldefaultType :=

Build_defaultType false.

Section Nth.

Variable dT : defaultType.

Fixpoint nth (n : nat)

(l : list (sort dT)) : (sort dT) :=

match l with

h::t = > match n with

S n0 = > nth n0 t

| _ = > h

end

|_ = > default dT

end.

End Nth.

(b)

Figure 1.19: Pure COQ generic
index selection: (a) describes the
syntax for Classes, (b) for
Structures.

class type class implementations. We will now put Classes aside (until a brief
comparison in § 1.4.5 on p. 79), and focus on Canonical Structures.

When nth is called (Fig. 1.20), it receives a returned type, (list int) for
the list argument. During type inference (or at the application of a tactic),
this type is reconciled with the expected type specified in he definition of nth,
using unification. Since this expected type involves a record projection (sort),
the compiler finds a solution for ?x in the following unification equation:

sort (?x:defaultType) = int

Notice that this problem has no solution using a vanilla higher-order
unification algorithm. The Structure mechanism consists in updating a
table of special solutions, keyed by projection’s names and return types,
at each Canonical Structure declaration the user makes, and in making
those solutions available to the unification procedure. Once a fitting record
is found for dT, the value for default dT is obtained by deferring to the
general unification procedure.

1.3.2 Constraint propagation

For a concept mechanism, constraint propagation means that when using
an algorithm that takes as argument a concept that is defined by refinement

of another, the algorithm should have access to the members and operations
specified by that other. Naturally, this reference to refined parents needs to
carry over to instantiation, where the user should not need to pass explicitly
a complete chain of objects — where the interpretation of each as concept
instance would be a posteriori seen as a refinement of the previous one —
simply to effectively use a generic function.

An object-like system If this last paragraph sounds like inheritance support
in an object-oriented language, it is not a coincidence: the similarities are
numerous, inherent and well-known (Cook 2009; Kiselyov and Lämmel
2005). In a nutshell, a concept mechanism offers a measure of procedural

abstraction, since its goal is to specify virtual operations, distinguished el-

Eval compute in
nth 2 (1::1::42::1::nil).

> = 42
Eval compute in

nth 5 (1::1::42::1::nil).
> = 0

Figure 1.20: Application of either
1.19(a) or 1.19(b).

CANONICAL STRUCTURES 53

ements — and occasionally, proofs — defined by reference to — at most
— a few common, abstract variables — and most often, types. In Haskell,
for example, this last element is the single type parameter of the class dec-
laration. In multi-parameter implementations of type class systems (such
as the eponymous Haskell extension, MATITA, or COQ), those abstract
type references can be many. In dependent type systems (COQ), they can
sometimes be values. Nonetheless they remain abstract variables: synchro-
nization points on which to implement a multisorted algebra of operations
sharing those references. This does hint to a similarity with object interfaces:
concepts allow an algorithm to operate on any value that has the necessary
operations.

This is not to say concepts are by any means equivalent to objects — even
up to implementation-specific idiosyncrasies. We refer the reader interested
in the comparison to the aforementioned references, but to get a sense of a
striking difference, it probably suffices to mention that type classes often
lack any kind of mechanism to prevent the programmer from accessing the
representation of a given instance (Cook 2009, §5.3).57 But it remains along
the lines of that similarity to expect concepts to have an instantiation that
takes refinement into account, and only require the user to provide a model
of the most refined concept for each inheritance chain to compute or reason
with a generic algorithm. In practice, for Canonical Structures, this seems
to mean — at first glance — specifying concepts using records in telescopic

style (§ 1.1.10 on p. 32).

Refinement and projections Notwithstanding the value classes mentioned
above, let us look at the more frequent case of concepts indexed by an
abstract type, for the sake of discerning usage patterns. There are at least
two natural points of entry to a Canonical Structure inference chain.58

The first, that we discussed extensively since § 1.2 on p. 37, is by applying
a generic function or lemma. The inference proceeds in this case exactly
as in the example of member, treated extensively in § 1.2.5 on p. 43: the
Canonical Structure is computed on the first projection of the record, that
which returns the carrier type. Sometimes, however, the user favors one of
the other projections to trigger inference. This use case works particularly
well with notations, and is just a more general case of the above: generic
functions usually require an instance of a record only because they make
use of one of the operations they contain.

Let us consider again the lattice of Fig. 1.12 on p. 32 and 1.13 on p. 33.
We can define a notation that will unfold to the direct use of one of the
computational members of the record as in Fig. 1.21. In telescopic style,
we see that the presence of a projection as applied to the parent record is
guaranteed.

In fact, the existence of those two entry points has consequences for the
rest of inference. Let us suppose we want to define a child concept, that
refines its parent: in a typical case, the parent would specify a carrier type,
a constant (such as an algebraic operation) and a property, that the child
would supplement by adding, say, an additional operation and an additional
property.
• A generic function defined on such a record instance accesses the effec-

57 Apart from type class systems developed
on top of an object-oriented type language
(e.g. Scala), where the programmer
can leverage the containment facilities
offered by the object system to achieve
representation independence. Advanced
instantiation mechanisms such as well-
scoped overlapping instances (Scala), or the
declarative model of Classes based on the
loose eauto tactic, can also mitigate the
autognosis problem. We will come back
briefly to overlapping instances in § 1.4.5
on p. 79.

58 What we mean by natural will be
more understandable after the use of
phantoms we will expose in § 2.3.2 on
p. 108, and even more afterwards. The
word “common” makes an acceptable
alternative in the meanwhile.

Notation "x = = y" :=
(eq_op x y)
(at level 70): bool_scope.

Lemma eqP : ∀T, ∀x y : T,
reflect (x = y) (x = = y).
Proof.
by rewrite /eq_op; case= > ? [].
Qed.

Lemma eq_refl :

∀(T : eqType) (x : T), x = = x.
Proof.
by move= > T x; apply/eqP.
Qed.

Figure 1.21: Canonical structure
inference through the use of an
arbitrary projection operator.

54 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

tive computational content (namely, the element having the carrier type
of the oldest ancestor) by a chain composed of the successive first pro-
jections (customarily assigned to the carrier) of each record. In our case,
that generic function f looks like:
Definition f (r: childType) (x : p_carrier (c_carrier r)) := ...

• The operations defined in the child are likewise defined by reference to
computational content extracted from first element of the record, as in
Fig. 1.13 on p. 33. The member to which the refined operations lead
likewise contains a projection chain similar to the above.
This ensures that in the process of unification, the record instance in-

ferred from the parent, once (eagerly) ι-reduced, always exposes the next
projections necessary to trigger the inference of the child(ren): COQ’s unifi-
cation proceeds depth-first.

For Canonical Structures, one cannot hope to get constraint propaga-
tion through parametric reference. Record parameters can be present

in instances, and retrieved by unification, but themselves they contain

no projection to allow the Canonical Structure inference mechanism to

support inheritance.
Eventually, the fact that we have to resort to telescopes can at first seem

worrying, for reasons mentioned in § 1.1.12 on p. 34. Fortunately, it turns
out that the inefficiencies of the telescope pattern can be addressed, through
a rather involved pattern called packed classes, which moreover allows us
to model more complex relations, such as multiple inheritance. We will
explain later (§ 1.4.1 on p. 58) how we used it to overcame the problems we
described.

1.3.3 Automatic Instances

I would now like to dispel a number of shortcuts made in explaining type
classes which undercut the crucial importance of what is permitted by au-
tomatic instance generation in general, and Canonical Structure inference
through unification in particular.

Stricto sensu, type classes are not just about the definition of type-indexed
generic operators, despite being sometimes presented as such. That notion
is older than even the earliest flavor of type classes (Kapur et al. 1981), and
there are numerous ways to achieve this objective without reference to
concepts, as the bounded polymorphism of generic flavors of Java, C++
templates, or polymorphic records have amply shown.

Another approach remarks that type classes indeed provide one solution
to the famous expression problem.59 The expression problem is a benchmark
of expressiveness and modularity for programming languages, that consists
in extending a data type (in the classical example, a type for arithmetic
expressions) with both a new case (multiplication, for example), and a new
operation (such as pretty-printing the expression). The extension should be
done without changing or recompiling the original code, and preserve static
type safety. It was found a challenge for both object-oriented and functional
paradigms.

But if the requirement for being a solution is the minimum of somehow

allowing for extensions in both typed data and methods, however crufty,

59 (Wadler 1998), also called extensibility
problem by Findler and Flatt (1998).

CANONICAL STRUCTURES 55

then, so are the visitor pattern, modules, and polymorphic variants, in
increasing levels of refinement.60 We believe with Lämmel and Ostermann
(2006, §2.4) (and Swierstra (2008)), that type classes (and respectively type
classes with overlapping instances) can solve that problem well, but other
improvements suggested in our own dependently-typed context (§ 1.4.4
on p. 74), make us contend that this angle does not capture a type class
mechanism in all generality.

Another common mention of type classes presents them in a manner
similar to how Phil Wadler does in the following:

In general, saying that a type variable extends an interface (which usually is
parameterized over the same type variable) in Java serves the same role as
saying that the type variable belongs to a type class in Haskell.

(Biancuzzi and Warden 2009)

But while this is close enough as a transitory analogy for of a type class
mechanism, it does not describe it exhaustively. As Chakravarty et al. (2005)
remarked when using OCAML modules to transpose type classes, the latter
also consists, inherently, in automatically passing a dictionary of values
when a generic method is called. They found having to do this passing
manually particularly tiresome:

Furthermore, we showed that Haskell type classes can be translated into
ML modules by using first-class structures as runtime evidence for type class
constraints. [...] It is not recommended writing programs in the style of the
translation by hand because too much syntactic overhead is introduced by
explicit dictionary abstraction and application.

Kiselyov (2007) came to the same conclusion when he emulated type
classes in OCAML using, this time, polymorphic records:

Although the OCaml implementation is a faithful translation of Haskell code,
the explicit use of dictionary passing is quite an annoyance.

One fact of note in proofs of algebra, as present in the SSReflect archive,
is that some instances can be impressively large, even though the terms they
are inferred from are themselves tractable. This should not be surprising:
since we are dealing with finite group algebra, it is frequent happenstance
to encounter algebraic expressions. A midsize instance would be the third
isomorphism theorem:

Theorem third_isom :

{f : {morphism (G / H) / (K / H) 7→ coset_of K}

| ’injm f

& ∀A : {set gT},

A ⊆ G � f @* (A / H / (K / H)) = A / K}.

The left member of the final equation is a group. This is ensured by
three applications of a construction (/) that is proven to send the group
structure of two groups to another group structure,61 and one application
of a function (@*) proven to send a group and a group morphism to the group
formed by the image of the former by the latter. Asking the user to remind
this regular decomposition to the prover, composing those proofs by hand,
each time he wants to apply a lemma depending on the group structure of
that left-hand side, is plainly untractable.

60 See (Odersky and Zenger 2005) for a
survey of some of the older solutions to
this problem.

61 Please ignore the normality of divisor
groups, here. The particular way the
library deals with this issue is explained in
(Gonthier et al. 2007, §3.3).

56 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

The answer of a true type class implementation to this problem is a

transparent representation of the principle of compositionality, namely
the principle that the meaning of a complex expression is determined by the
meanings of its constituent expressions and the rules used to combine them.
Using type class mechanisms, and in particular Canonical Structures, the
user is provided with an engine which takes meta-information (i.e. record
instances) registered on an algebra of atomic objects as well as on compo-
sitions rules for those kinds of objects, and propagates this information
automatically to any appropriate algebraic expression obtained from those
atoms and composition laws (see the example in 1.2.6 on p. 44).

1.3.4 Coercions and Structures

By themselves, coercions are a well-know feature that has no obvious in-
herent relation with a type class implementation. And indeed, the two
mechanisms can be understood and used in perfect isolation. However,
Saibi implemented them in COQ conjointly with Canonical Structures
(Saibi 1999, §5), leading to a tight integration which favors specific usage
patterns. For instance, the :> symbol inserted in a Record member declara-
tion declares the corresponding projection as a coercion. Since the presence
of a record projection in the arguments of a function is necessary to trigger
Structure inference, this greatly helps the legibility of generic lemmas and
functions which use Structures. We give an example in Fig. 1.2262.

One should note that as mentioned above, the assignation of a term to a
coercion class is purely syntactic, hence COQ registers all record projections
in a Canonical Projections table provided (i) the record member is named,
(ii) the projection value (nat in our example) has a head constant, and (iii) that
same head constant was not previously registered as a value for the same

projection.
An even more important point of this usage is that it furthers blurs the

distinction between functions operating on a record and functions operating
on the projections of that record.

Let us consider the definition of a vector-like type, as done in the SSReflect
library, represented in Fig. 1.23 on the next page.63 tuple_of is the declara-
tion of a finite list whose type exposes its size as a parameter. The instances
nil_tuple and cons_tuple build, given a list, a record instance exposing the
suitable parameter. The use of Canonical Structure instance search to do
this is the equivalent — greatly simplified by the availability of dependent
types — of the classic trick of exposing the structure of data at the type level
usually shown with Haskell type classes, and famously exposed by Hallgren
(2001) and McBride (2003, §3.1).

An interesting consequence of this approach is that rewriting using a
lemma such as ∀(x : n.-tuple T), size x = tsize x. on the sequence
[1;2;3] poses no problem: the cons_tuple record is found in the Canonical
Projections table as a substitute for ? by unification, in the equation tval ? = [1;2;3].
The application of size indeed hides the frequent shorthand of designing
the image of a record by one of its canonical projections (tval), using the
name of the record itself, as permitted by the coercion indication (:>) in
tuple_of. The coercion insertion that triggers the use of this projection

Record defaultType :=
{ sort :> Type;

default : sort }.

Section Nth.
Variable dT:defaultType.
Fixpoint nth (n : nat)

(l : list dT) : dT :=

if l is (h::t) then
if n is S n0 then
nth n0 t

else h
else default _.

End Nth.

Figure 1.22: nth in SSReflect,
using coercions. (compare to
1.19(b))
62 Until the packed classes design is de-
scribed in § 1.4.1 on p. 58, we will

highlight all points where coercions

are implicitly present in code snippets.

63 See also (Gonthier and Mahboubi
2010, Exercises 6.2.1-4). Note this is an
example of a value class: a Structure

indexed on a parameter, here the first
projection tval, which is not of kind
Type. The seq type is the SSReflect flavor
for (the usual, polymorphic) lists, and
size is the function which returns their
length in the expected manner, of type
∀ (T:Type) , seq T � nat.

CANONICAL STRUCTURES 57

Structure tuple_of (n : nat)

(T : Type)

: Type := Tuple {

tval :> seq T;
_ : size tval = = n

}.

Definition tsize (x: tuple_of T n) :=

n.

Notation "n .-tuple" :=

(tuple_of n) : type_scope.

Canonical Structure nil_tuple T :=

Tuple

(erefl _ : @size T [::] = = 0).

Canonical Structure cons_tuple n T x

(t : n.-tuple T) :=

Tuple

(valP t : size (x :: t) = = n.+ 1).

Figure 1.23: Finite tuples with
type-level sizecomes from type inference failing to reconcile seq T, the expected type of x

as deduced from the definition of size, and its computed type n.-tuple T.
The remainder of type inference, after coercion insertion, results in the
aforementioned equation.

This practice of defining functions on implicitly coerced arguments is
adopted with a matter-of-fact and pervasive approach when dealing with
Structures in the SSReflect library. It is in fact encountered often in the
more common case of type classes than in this example. When Structure in-
ference fires from the use a value obtained by a projection p whose range has
kind Type, i.e. when the (generally first) member of the record recordType

is a (T:Type),64 it is very frequent to see that generic functions use that
projection value implicitly, while looking like they compute on the whole
record instance, as in Fig. 1.22 on the facing page. In that case, a generic
function definition such as

Definition f (r: recordType) : rangeType := ...

with apparent type (recordType � rangeType) will in fact be interpreted
as a term of type (p recordType) � rangeType, i.e. (T � rangeType). f

looks like it operates on a record instance, but in fact, if we just give it
something that can be inferred as the first projection of a canonical instance,
it “works”.

On the other hand, the definition of tsize shows an example of a func-
tion that can not be passed a simple sequence. Its first argument is a member
of a value class, i.e. a record type not inherently coercible to Type. This
particularity is a sufficient (but not necessary) condition to ensure that the
type of the function we are defining will require a full record instance as an
argument, without using inference-triggering projections. Hence, using a
sequence s with a function operating on the output of tsize like above is
more complex: we would like to pass to tsize “the tuple_of instance for a
(s : seq)” implicitly — a non-obvious problem we will address in section
§ 2.3.2 on p. 108.

When we define a function whose argument effectively needs to be a
tuple_of record, it is difficult to use it on concrete tuple instances, namely
sequences, and deceptively so: it is well possible to realize that constructions
do not operate on projections of the structure well after the (systematic) stage
of formalizing what happens when they are passed instances of the struc-
ture. Hence, in general, it is useful to remember that generic functions

tailored to trigger Canonical Structure inference are best defined on

projections of the record type.

64 This also applies for compositions of
projections : in telescope-style, the first
projection of such a Structure would be a
parent Structure projecting to a Type (up
to composition of first projections).

58 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

1.4 Ecosystemand Improvements

IN THIS SECTION, WE AIM AT PRESENTING EXTENSIONS of the
fundamental model of concepts based on Canonical Structures that we have
explained until now. Firstly, we solve the expressivity and efficiency issues
of telescopic-style Canonical Structures by suggesting a new model called
Packed Classes. After a thorough analysis of the benefits of this model, we
demonstrate how it can express previously-thought intractable structural
relations : more specifically, we treat multiple inheritance on the basis of a
challenge by Spitters and van der Weegen (2011) and we show that we can
emulate the Pebble-style definition of a (categorical) adjunction as proposed
by Sozeau and Oury (2008). Then, we move on to further creative uses
of the Canonical Structure mechanism in COQ: we explain how to direct
inference along instance chains, a sort of a continuation-passing semantics
for automatic instantiation.65 To conclude this tour of the state-of-the-art
of packed classes in COQ, we provide a comparison with the type class
implementation of Haskell, and the Classes of (Sozeau and Oury 2008).

1.4.1 Inheritancemechanisms : packed records

Telescopic Issues The problems with telescopic-style programming with
records are in fact more numerous than the complexity problem described
in § 1.1.12 on p. 34 — even though it remains the most pressing issue for
dealing with concrete algebraic objects, which are often nested. Let us
look at those additional inconveniences. For starters, it is unclear how
to model multiple inheritance using telescopes: if both parent records are
mentioned in the child, that means that an instance of the child contains
two unsynchronized copies of the data it would want to refine. And since a
child instance can appear only once in a given proof context, it will have to
appear as only one of all projection chains sending it to a carrier type. This
single projection chain will dictate the only parent structure that will be
automatically inferrable on that object.

Secondly, when successively refining the Canonical Structure one can
bestow upon a given hinting term, the more refined we want to be, the
more we have to add projection applications to that term. As mentioned
in § 1.3.4 on p. 56, this is, in the most common cases, done implicitly for
the user using the coercion mechanism, but it is particularly inefficient for
technical reasons.66

In fact, as we have already remarked (§ 1.3.2), Canonical Structure search
is triggered by either by using a generic function which takes a structure
instance as argument, or by using a structure-specific operation. Both entry
points feature the projections necessary to request the appropriate inference
from the Canonical Projections table. Two key insights allow to improve
the behavior of the inference procedure from what the telescopic-style al-
lows:
(i) inheritance can be de-coupled from the use of a record projection to

infer a Structure.
(i) the result of a Canonical Structure inference using projections, i.e., the

65 We will suggest how to apply this
method to implement ad-hoc reflection of
a λ-calculus with terms of COQ in § 3.4.4
on p. 134.

66 Notably:
- Some functions over these projection

chains are exponential over their size,
notably term comparison (as mentioned
in note 30 on p. 34).

- The enforcement of a single coercion
for a given (source,range) couple of
coercion classes (§ 1.2.7 on p. 45) means
that we cannot simplify this projection
chain by allowing for a shorter, distinct
but convertible function to be inserted
in cases where it will not be used for
triggering Structure inference. In
the typical case where one just wants to
coerce to the carrier type of the instance,
this is inefficient.

CANONICAL STRUCTURES 59

non-ι-reduced application of the projection function to the record in-
stance, forms itself a new term, on which specific Canonical Structure

hints can be declared and used. In particular, having detected a child

structure provides a specific constant on which a Canonical Structure for

the parent can be declared.

T

parentMixin

p_op

p_axioms

childMixin

c_op

c_axioms

parentType

childType

Figure 1.24: Organization of a
parent-child refinement in
telescopic mode

To make these intuitions clearer, let us suppose we have a parent struc-
ture parentType, with a first projection p_sort to a carrier type of sort Type,
and a binary operation on that carrier that we will call p_op. Let us also
suppose that this Structure is refined by a childType, adding a specific op-
eration c_op. In telescopic-style, this means that the first projection c_sort

of childType will be of type (childType � parentType), as in Fig. 1.25
and 1.24.

Let us look at structure inference, assuming both child and parent have
instances over the natural numbers. Let us call these instances, respectively,
int_childType and int_parenType. We look at a first example, say 2△2

.
= 4,

where
.
= is a relation defined by the parentType structure, and △ is an

operation defined by the child. The rundown of inference is on Fig. 1.26
on the next page.

We can see that the order in which the Canonical Structure lookups
are made are suboptimal. The way we set up projections as inserted by
coercions forces COQ to look for structures from the outermost coercion
to the innermost one. Translated to telescopic style of inheritance, this
means that we are looking for an arbitrary level of structure refinement
by successively trying to see an object as an instance of all the less refined
structures we can bestow him, from the least refined to the most refined.

In the practical case of library development, this is ineffective for two
reasons:

The size of the search domain A lot of objects possess the simplest structures
of the hierarchy, hence the search space is larger for the projections tied
to the least refined structures. It seems wasteful to make this the most
common case.

The length of the projection chain When Canonical Structure inference looks
for an instance of a type refined n times, it will fail after having possibly
succeeded up to n− 1 times. We would like to see a paradigm in which
it fails after a single instance lookup.

Structure parentType : Type := {
p_sort : Type;

p_op : p_sort �

p_sort �

p_sort

}

Structure childType : Type := {
c_sort : parentType;

c_op : c_sort �

c_sort �

c_sort

}

Figure 1.25: An abstract
inheritance situation in telescopic
style

60 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Let us remind that the goal of inferring the type of the expres-
sion (2△2)

.
= 4 is to provide the right implementations for the

overloaded symbols △,
.
=. The first step towards type infer-

ence is to meta-expand notations and implicit arguments. The
explicit term we want to type is therefore:

p_op ?β (c_op ?α22)4

Taking into account the implicit coercions inserted at the dec-
laration of the childType Structure, the type of c_op is

p_sort(c_sort ?α)→ p_sort(c_sort ?α)→ p_sort(c_sort ?α)

This type provides the system with the following two equa-
tions, the second of which is flexible-flexible. Conveniently, it
is because COQ proceeds with unification meta-variables in a
left-to-right fashion that this second equation is solved last.

p_sort ?γ ≙ int (1.4)

c_sort ?α ≙ ?γ (1.5)

The typing of p_op, again involving coercions, gives the two
other equations:

p_sort ?β ≙ p_sort ?γ (1.6)

p_sort ?β ≙ int (1.7)

Of those two new equations, (1.6) is a flexible-flexible pair
(which again has no operational consequence), and (1.7) in-
volves the second argument to p_op. COQ treats disagreement
pairs in strict left-to-right argument order, and depth first, so
the first equation Canonical Structure inference will deal with
is:

p_sort ?γ ≙ int

COQ therefore looks up a parentType structure whose p_sort

projection matches int, and finds int_parentType. Since the
Canonical Structure table is keyed by projection, we represent
this by the notation:

lookup(p_sort,int) int_parentType

COQ then propagates this to the rest of the first argument to
solve the second equation:

lookup(c_sort,int_parentType) int_childType

Once this is performed, COQ just has to simplify the third
equation we mention to equalize ?γ and ?β , substituting them
both with int_parentType, and solving the unification problem
entirely.

Figure 1.26: Telescopic-style
structure inferencePacked Classes To solve this problem, we propose the following design,

based on a strict separation between mathematical and usability concerns,
and called packed classes.67

- Each new piece of structural information — representing a set of new
operations and properties we want to treat as an atom — is packaged in
a mixin, a record parametric in the target carrier type (and possibly in
other parent components, themselves parametric in that carrier type — as
needed in the definition).

- For each specific structure we want to define, we group all necessary com-
ponents (i.e. its mixins) in a single record, again parametric in the target
carrier type, called its class.68 Often this is just a reference to the parent
type (the parent’s class), plus a single mixin defining the additional proper-
ties specific to the child. Occasionally, when we define a base type which
needs no parent but defines all its properties from scratch, this is a mixin
by itself.

- Finally, the structure we work with is defined as a package, which has
the carrier type as first projection, and for which its class, bound to that
projection, is the other member of the record.
An example is given in Fig. 1.27 on the facing page and 1.28 on the next

page. In the first figure, we can see a base type, parentType, which does not
need to make reference to any other previously defined structure. Hence,
we merge its class and its the mixin of its “proper” members. Inheritance
comes in when childType is defined by reference to parentType, so that

67 Not to be confused with COQ’s class
mechanism

68 This is the construction that gives the
packed classes its name, by reference to
HASKELL’s type classes.

CANONICAL STRUCTURES 61

we see a childTypeClass defined by glueing its specific mixin with the class

regrouping the properties of its parent.
The roles of the three “packed classes” declarations are the following:

- The mixin provides an abstraction for a consistent bundle of members and
properties: a compositional atom that possibly exposes some parameters
it depends on.

- The class regroups abstractions that form an entity in an object hierarchy.
In particular, it helps defining structures by refinement.

- The type allows the inferrability of said class on a given object using the
Canonical Structure mechanism.
The design of these Structure declarations is systematic. Notably, we

can declare a Canonical Structure for the parent structure, generically, from
any instance of the child. Moreover, it is possible to define structure-specific
aliases for the projections to each interesting operation of such a packed
record, recovering an application programming interface (API) close to that
of the telescopic style. Since we already redefine specific lemmas for all
properties included in a Structure anyway (note 22 on p. 28), this is not
much of an additional hindrance.

In the SSReflect library, it is thus customary to define such inheritance
cases in Modules, formatted after a common syntax to present code which
differs minimally from one case to the other.

T

parentTypeClass

p_op

p_axioms

childTypeMixin

c_op

c_axioms

childTypeClass

childType

T parentTypeClass

child_parentType
child_parentType

parentType

Figure 1.28: Organization of a
parent-child refinement in packed
classes style

We can now look at how inference is performed in the case of packed
classes, taking again our example of 2△2

.
= 4. The rundown of type infer-

ence is presented in Fig. 1.29 on the next page. The trick consists in reusing
the form of the result of the first inference, triggered by the type of c_op,
seen as the target value during the second inference, triggered this time by
the type of p_op. Indeed, as we have mentioned already (§ 1.2.6 on p. 44),
Canonical Structure inference does only head constant comparison for a
given projection, and proceeds depth first. The relevant information of the
result of the first inference is thus c_sort, i.e. only the indication of what
type of structure this is a value of. But this is enough because when we look,
immediately after, for a parentType structure to match a value starting with
c_sort, there is an unambiguous answer to provide: the Canonical value

Structure parentTypeMixin (T) := {
p_op : T � T � T

}

Definition parentTypeClass (T) :=
parentTypeMixin (T).

Structure parentType := {
p_sort : Type;
class : parentTypeClass(p_sort)

}

Structure childTypeMixin (T) := {
c_op : T � T � T

}

Structure childTypeClass (T) := {
p_class : parentTypeClass(T);
c_mixin : childTypeMixin(T)

}

Structure childType := {
c_sort : Type;
class : childTypeClass(c_sort)

}

Canonical Structure child_parentType
(c:childType) :=

build_parentType (sort c) (p_class
(class c)).

Figure 1.27: An abstract
inheritance situation in packed
classes style

62 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

given by child_parentType.
For the determinism of inference, it is crucial to obtain an identical

structure for the variable ?β if the arguments of p_op are reversed, that is
if we are looking looked for a type for the expression 4

.
= 2△2. Because

child_parentType only recombines components that form part of all parent
instances (as guaranteed by our discipline), it returns a value that is convert-

ible to the structure obtained by inferring a parentType on integers : the
code of child_parentType is agnostic in the instance-specific contents of
childTypeMixin or parentTypeMixin.

As usual, the first step in inferring the type of that expression is
to unfold notations. We obtain the same typing goal, modulo
renaming of the relevant projections, as mentioned above.

p_op ?β (c_op ?α22)4

Adopting as notations:

p_op ?β = p_op(class ?β) (1.8)

c_op ?α = c_op(c_mixin(class ?α)) (1.9)

What is most remarkable, though is the type of those aliases,
each time involving a single projection, characteristic of the
structure specific to the operation:

p_op :p_sort ?β → p_sort ?β → p_sort ?β (1.10)

c_op :c_sort ?α → c_sort ?α → c_sort ?α (1.11)

This time, hence, the type of c_op enforces a rule involving a
single projection:

c_sort ?α ≙ int

With its two distinct arguments, the type of p_op generates the
constraints:

p_sort ?β ≙ c_sort ?α (1.12)

p_sort ?β ≙ int (1.13)

As previously, because of the left-to-right, depth-first resolu-
tion of argument unification, Canonical Structure inference
will proceed with the first equation:

lookup(c_sort,int) int_childType

It is the resolution of the resulting equation (1.12) that becomes
most interesting. Since version 8.3, COQ does not eagerly ι-
reduces the result of the first Canonical Structure lookup any
more. This gives us the opportunity to work with an unusual
redex, characteristic of the inference of a previous, more re-
fined Structure. Thankfully, that allows us to reuse exactly
the instance we had defined for that case during the Structure

declaration (Fig. 1.27):

lookup(p_sort,c_sort int_childType)

child_parentType int_childType

It is only at a further reduction step that COQ simplifies the
obtained Structure instance into int_parentType, obtaining
exactly what we expect. We will come back on the sensitivity
of the process to definitional variants in § 1.4.4 on p. 74, and
§ 2.3.2 on p. 108.

Figure 1.29: Packed Classes style
structure inference

Advantages We provide an example of the packed classes technique: the
reinterpretation of the previous Structure declarations leading up to our
lattice in Fig. 1.31 on p. 66. The considerable amount of boilerplate goes
by with users of the SSReflect library as a systematic way to ensure the
usability of their definitions, as it is tailored to be easily reproducible.69

To ensure a fair comparison with the telescopic style, and — even more
importantly — with the pebble style, we do not use implicit arguments in
that example, even tough it would be customary. However, this snippet
showcases other typical patterns of the SSReflect library:
- The parsimonious naming of projections, e.g. for the class_of member.
- The unassuming use of coercions (that we do henceforth do not highlight

any more). We prefer the explicit Coercion declaration to the hard-to-spot
:> abbreviation.

69 For now, we kindly ask our reader to
ignore the workings of the clone and pack

functions. Let us simply state that clone is
a general constructor used with notations
to return a copy of a canonical instance
of the structure defined in the current
module, given one of its projection. pack
is a customized constructor that works
conjointly. We will address their semantics
in detail in § 2.3.4 on p. 114.

CANONICAL STRUCTURES 63

- The use of the inferred instance of a child structure to deduce parent
instances (marked by the word “Inheritance” in comments).

- The use of Modules to structure name space and to reuse (ideally, copy-
paste) code patterns.

- Finally, because of the way COQ compares records, starting sometimes
with the last member, and sometimes with the first member, it is an easy
optimization to repeat the carrier type at both ends of this final, non-
parametric Structure — though this has no deep theoretical meaning.70

3 5 7 9

0.2

0.4

0.6

0.8

1

1.2

1.4
·106

nesting depth

te
rm

si
ze

(n
on

-w
hi

te
ch

ar
ac

te
rs

)

reduced pebbles
reduced telescopic

reduced packed classes

Figure 1.30: Size of the ordered
type structure term on lists (of
lists of ...) booleans, according to
each paradigm.

We have found that the packed classes discipline deals coherently with
the pitfalls of the telescopic-style design we mentioned:
- The key that triggers the inference of a given structure is the first pro-

jection of that structure. It directly projects to the object (type or value)
we might want to infer the structure on. In case of a Type structure,
this means the carrier type, for instance. This implies that the inference
of a structure arbitrarily high in a refinement chain is done in a single
Canonical Structure search.

- When refining a type with distinct, non-mutually-dependent mixins, noth-
ing forces us to encapsulate one inside the other any more. Said in another
way, for any structure, the set of its parents is usually mentioned in its
class, in positions that are roughly equivalent, and more importantly, in a
context independent from inference. In the case where this set of parents
is larger than a singleton, nothing prevents us from declaring Canonical

hints for all parents, re-composed from hand-crafted Structure projec-
tions. We can thus model multiple inheritance easily. We explain how in
detail, in § 1.4.2 on p. 67.

70 This document makes the choice of
showing runnable, practical tricks used by
the Mathematical Components team — see
also note 33 on p. 35, for example. That
includes the less elegant ones.

64 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Finally, the class_of record permits us to mention only once the mixins
of diverse refinement rank composing a refined Structure: the dependent
record lets us specify parametric members depending the ones on the others,
and thus internalizes references to other members of the inheritance graph.
This means concretely, that from the point of view of inheritance, if n is
the refinement depth, the size of the record the user has to specify is back
to Cn , with C= 1 — as with telescopes.

This is not the case for a nested record, however, at least in the frequent
case where a parametric nesting has a concrete dependency on a nested
operation defined at the n− 1 nesting level, as is the case with the order in
Fig. 1.31 on p. 66 : each member of the equality type on lists, as well as each
member of the ordered type on lists, has to carry a copy of the underlying
equality (resp. order) type on their underlying parameter. But the advantage
of packed classes is that the equality and order mixins are accessible in tight,
separated bundles defined as independent values for distinct inductive types.

To verify this effect, we have measured the size of records fully reduced
to head normal form71 using our example of an ordered type instance for
lists of booleans, at increasing levels of nesting. The crucial generic instance
declaration is as such:

Definition list_eqType (eT:eqType) :=

EqType (list eT) (EqMixin _ (@eql eT)).

Definition list_ordType (oT : orderedType):=

OrderedType (list oT)

(OrderedMixin _ _ (@ord_antiH oT) (@ord_transitH oT)).

The user definitions of the nested instances involved are identical to the
letter to those of the telescopic style featured in § 1.1.12 on p. 34 (a boon of
the strict naming and notation patterns). We used the COQ pretty-printer
to measure size, because it has two particular properties:
- it increases indentation considerably after each δ-expansion of a type

constructor,
- and it cuts printing (replacing the “deep” code fragment by “..”) after a

certain level of indentation
This allows us to measure cheaply the depth of folding of our term under

inductive constructors. As we have noticed in § 1.2.4 on p. 42, this is a per-
tinent measure because unification procedures delay this unfolding. Mean-
while, the storage of inductive instances in a partitioned environment (see
Tab. 1.2 on p. 23(b)) means every inductive definition in a term incidentally
allows term comparison procedures to access an explicit synchronization
construct.

Fig. 1.30 on the preceding page shows the size of records in number of
non-blank characters, as declared in the three paradigms, from the ordered
Structure of a list of lists of booleans, to that of a “list of lists of lists of
lists of lists of lists of lists of lists of booleans”. It is clear that the growth of
the record term in both parametric and telescopic paradigms is exponential,
and that packed classes, under the hypothesis of careful folding of inductive
instances, allow to keep it “linear”. However, with the use of implicit ar-
guments, and by avoiding full reduction when displaying terms to the user,
this is not apparent to the average COQ user.

Thus, more than anything else, the study of term size implied by

71 We will give more elements about the
specific importance of the size in fully
reduced head normal form in § 1.4.4 on
p. 74.

CANONICAL STRUCTURES 65

record paradigms as a function of refinement and nesting depths shows

that it requires complex libraries dealing with deeply-imbricated struc-

tures to detect the critical performance issues related to those models. term size as function of

paradigm inheritance
level

nesting level

Pebbles exponential exponential
Telescopic linear exponential
Packed linear δ-folded

exponential

Table 1.5: Growth of record size,
according to each paradigm

66 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Definition rel T :=

(T � T � bool) .

Module Equality.

Record mixin_of (T: Type) :=

Mixin { op : rel T }.
Notation class_of :=

mixin_of (only parsing).

Section ClassDef.
Structure type := Pack {
sort;
_ : class_of sort;
_ : Type

}.
Local Coercion sort :
type 7→ Sortclass.

Variables (T: Type) (cT: type) .
Definition class :=
let: Pack _ c _ as cT’ := cT
return class_of cT’ in c.

Definition pack c := @Pack T c T.
Definition clone :=

fun c & cT � T & phant_id (pack
c) cT

= > pack c.
End ClassDef.

Module Exports.
Coercion sort : type 7→ Sortclass.
Notation eqType := type.
Notation EqMixin := Mixin.
Notation EqType T m := (@pack T m) .
End Exports.

End Equality.
Export Equality.Exports.

Definition eq_op (T: eqType) :=

Equality.op T (Equality.class T) .

Definition asymm (eT: eqType)
(o: eT � eT � bool) : Prop :=

∀ (x y : eT) , (o x y) �

(o y x) � (eq_op _ x y) .

Definition transit (T: Type)
(o: T � T � bool) : Prop :=

∀ (x y z : T) ,
(o x y) � (o y z) � (o x z) .

Module Ordered.

(∗ asymm depends on eq_op ∗)
Record mixin_of (T: eqType) :=

Mixin {
ord : T � T � bool;
_ : asymm _ ord;
_ : transit _ ord

}.

Section ClassDef.
Record class_of T := Class {
base : Equality.class_of T;
mixin : mixin_of (EqType T base)
}.
Local Coercion base :
class_of 7→ Equality.class_of.

Structure type := Pack {
sort;
_ : class_of sort;
_ : Type

}.
Local Coercion sort :
type 7→ Sortclass.

Variables (T : Type) (cT : type) .
Definition class :=
let: Pack _ c _ as cT’ := cT
return class_of cT’ in c.

Definition clone c of phant_id
class c :=

@Pack T c T.
Definition pack b0 (m0: mixin_of

(@Equality.Pack T b0 T)) :=

fun bT b & phant_id

(Equality.class bT) b = >
fun m & phant_id m0 m = > Pack
_ (@Class T b m) T.

(∗ Inheritance ∗)
Definition eqType := Equality.Pack

_ class cT.
End ClassDef.

Module Exports.
Coercion base : class_of 7→

Equality.class_of.
Coercion sort : type 7→ Sortclass.
Coercion eqType : type 7→

Equality.type.
(∗ Inheritance ∗)
Canonical Structure eqType.
Notation orderedType := type.
Notation OrderedMixin := Mixin.
Notation OrderedType T m := (@pack

T _ m _ _ id _ id) .
End Exports.

End Ordered.
Export Ordered.Exports.

Definition ord T :=

Ordered.ord _ (Ordered.mixin _

(Ordered.class T)) .

Module Lattice.

(∗ The property depends on ord∗)
Record mixin_of (O: orderedType) :=

Mixin {
bottom : O;
top : O;
meet : O � O � O;
join : O � O � O;
_ : ∀x y, (ord _ x y) ↔
(eq_op _ (join x y) y)

}.

Section ClassDef.
Record class_of T := Class {
base : Ordered.class_of T;
mixin : mixin_of (Ordered.Pack _

base T)
}.
Local Coercion base : class_of 7→

Ordered.class_of.

Structure type := Pack {
sort;
_ : class_of sort;
_ : Type

}.
Local Coercion sort : type 7→

Sortclass.

Variables (T : Type) (cT : type) .
Definition class :=
let: Pack _ c _ as cT’ := cT
return class_of cT’ in c.

Definition clone c of phant_id
class c :=

@Pack T c T.
Definition pack b0 (m0: mixin_of

(@Ordered.Pack T b0 T)) :=

fun bT b & phant_id

(Ordered.class bT) b = >
fun m & phant_id m0 m = > Pack
_ (@Class T b m) T.

(∗ Inheritance ∗)
Definition eqType := Equality.Pack

_ class cT.
Definition orderedType :=

Ordered.Pack _ (base _ class)
cT.

End ClassDef.

Module Exports.
Coercion base : class_of 7→

Ordered.class_of.
Coercion mixin : class_of 7→

mixin_of.
Coercion sort : type 7→ Sortclass.
Coercion eqType : type 7→

Equality.type.
(∗ Inheritance ∗)
Canonical Structure eqType.
Coercion orderedType : type 7→

Ordered.type.
(∗ Inheritance ∗)
Canonical Structure orderedType.
Notation latticeType := type.
Notation LatticeType T m := (@pack

T _ m _ _ id _ id) .
Notation LatticeMixin := Mixin.
End Exports.

End Lattice.
Export Lattice.Exports.

Figure 1.31: A well-tiered
packed-classes-style decidable
lattice concept-ualization

CANONICAL STRUCTURES 67

1.4.2 Multiple Inheritancewith packed classes

Complex vertical sharing is easily expressed with the packed classes para-
digm: indeed, vertical sharing is about joining distinct refinements of com-
mon ancestors, and the flexibility with which we can express with para-
metric mixins, joined with the automatic handling permitted by a bundled
representation, provides an expressive result.

As a complex example of multiple inheritance — for which we want to
elicit a comparison with Spitters and van der Weegen (2011) — we consider
an equivalence relation. We would like to define such a refined relation
by inheritance from the reflexive, symmetric, and transitive relation types
definable in such a case.

The first issue of this construction is sharing: we want to ensure that
those three objects will refer to the same relation and the same carrier type.
It is natural that we will have to require three “reflexive”, “symmetric”,
and “transitive” mixins in the class of the final equivalence relation. In our
paradigm, those mixins will need to take the base type we want them to
share as a parameter. We therefore give the defining elements of a bundle
for that synchronization unit in Fig. 1.32: it is in itself but a type with an
additional operation, a textbook use case of our notion of mathematical
structure. We denote it outside of its module using our usual convention,
with the prefix rel/Rel:
- relType denotes a type with relation structure,
- RelMixin is the constructor of the relation mixin,
- RelType is the constructor of the type with relation structure, taking a

type and a relation mixin for that type as arguments.
As usual, we also define our usual auxiliary functions, notably class,

which, given a type with relation instance, returns the class_of record used
to form it, and pack, which given a relation mixin, forms the inferrable
record instance that can then be declared Canonical. All this is systematic
in our class definitions, and as has been hinted at in the last subsection, we
can be content with specifying a structure using its name and definitions in
the like of Fig. 1.32.72 We also provide a projector rel to access the relation
operator buried in the mixin of our type with relation structure more easily:

Definition rel (rT:relType) := Relation.rel (Relation.class rT).

We then extend that bundle with each of the reflexive, symmetric or tran-
sitive property. We consider only the reflexive relation rrelType in Fig. 1.33
on the following page: the other definitions srelType and trelType, respec-
tively for the symmetric and transitive relations are structurally identical.
It consists simply in defining a single-property refinement, for which the
SSReflect idiom would usually be to use telescopes, especially for hierar-
chies of moderate depth: the telescopic extension is, with one single mem-
ber added to its parent, of the same size as the mixin-based extension offered
by packed classes.

However, for this example, we are going to consider that we would nor-
mally plan to refine relations considerably beyond the equivalence relation

stage, and play the structural game fully. In that case, the definitions of
Fig. 1.33 on the next page are supplemented by the usual constructors (pack),
destructors (class) and type abbreviations (rrelType, ...). To those we add

72 The exact mechanism for pack and
class in the most complex cases will be
touched upon but in 2.3.2 on p. 111. We
hope the purpose of this construct — if not
the how — will remain clear nonetheless.

Module Relation.
Record mixin_of (T:Type) :=
Mixin { rel : relation T }.

Notation class_of :=
mixin_of (only parsing).

<...>
End Relation.

Figure 1.32: The relType relation
structure

68 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Module ReflexiveRelation.

Record mixin_of (rT:relType) := Mixin {
_ : reflexive _ (rel rT)

}.

Record class_of (T:Type) := Class {

base : Relation.class_of T;

mixin : mixin_of (Relation.pack base)

}.

<...>

End ReflexiveRelation.

Figure 1.33: rrelType, a reflexive
relation structure (denoted with
prefix rrel)

the inheritance-inducing Canonical Structure declaration, that we note
here as a further reminder of the inheritance paradigm exposed in § 1.4.1
on p. 60. Let us therefore look at another subset of the declaration of the
ReflexiveRelation module, elided (with “...”) in Fig. 1.33:
Module ReflexiveRelation.

<...>

Section ClassDef.

Structure type := Pack { ... }.

Definition class : ∀(cT:type), class_of (sort cT) := ...

<...>

Definition relType := Relation.pack class.

End Section ClassDef.

Module Import Exports.

Coercion relType : type 7→ Relation.type.

Canonical Structure relType.

<...>

End Exports.

End ReflexiveRelation.

Import ReflexiveRelation.Exports.

The multiple inheritance necessary to define an equivalence relation then
comes at a fairly cheap price: it suffices to unite three reflexivity, symmetry,
and transitivity mixins on a given, common relation type. We do that
directly in a class_of mixin: since there is no proper equivalence property
to add, the definition of Fig. 1.34 on the facing page is purely structural.

This definition provides the easy synchronization of the three mixins on
a common parent, while also providing the flexibility of having separate
reflexive, symmetric and transitive relation instances for each equivalence
relation instance : the packed classes design preserves the inferrability

of the telescopic design, while subsuming the modularity of the pebble-

style design. Concluding on the example proposed by Spitters and van der
Weegen (2011, §3), we can say that there is no inherent synchronization
issue with bundling. The real issue, duly noted by Spitters and van der
Weegen, is that in COQ, we can only define a single instance of equivalence
relation for a given inference-directing object (in our case the first projec-
tion to Type). While it would certainly be an improvement to have more
flexibility in that regard,73 this issue should be taken up as a limitation of
the particular Canonical Structure inference mechanism as implemented
in COQ, and not as an inherent failure of the structuring mechanism that
bundling represents. Thanks to the proofs already contained in the module
Equalities in the standard library, we can now provide an example of the
instances declaration for our structures, that of equality. It is represented
in Fig. 1.35 on the facing page. As an added bonus, we use in its last line a

73 We will also address ways to extend on
that limitation with Canonical Structures
in § 1.4.4 on p. 74.

CANONICAL STRUCTURES 69

Module EquivalenceRelation.

Section ClassDef.
Record class_of (T : Type) : Type := Class {
base : Relation.class_of T;
mixin1 : ReflexiveRelation.mixin_of (Relation.pack

base) ;
mixin2 : TransitiveRelation.mixin_of (Relation.pack

base) ;
mixin3 : SymmetricRelation.mixin_of (Relation.pack

base)
}.

Local Coercion base : class_of 7→ Relation.class_of.
Definition base1 R m := ReflexiveRelation.Class

(@mixin1 R m) .
Local Coercion base1 : class_of 7→

ReflexiveRelation.class_of.
(∗ similar definitions base2, base3 for

SymmetricRelation, TransitiveRelation ∗)

Structure type := Pack {sort; _ : class_of sort; _ :
Type}.

Local Coercion sort : type 7→ Sortclass.
Variables (T : Type) (cT : type) .
Definition class :=
let: Pack _ c _ as cT’ := cT return class_of cT’ in c.

Definition pack := ...

Definition relType := Relation.Pack class cT.
Definition rrelType := ReflexiveRelation.Pack class cT.
(∗ similar definitions srelType, trelType∗)
End ClassDef.

Module Import Exports.
Coercion base : class_of 7→ Relation.class_of.
Coercion mixin1 : class_of 7→

ReflexiveRelation.mixin_of.
Coercion base1 : class_of 7→

ReflexiveRelation.class_of.
(∗ similar Coercion declarations mixin2, base2,

mixin3, base3 ∗)

Coercion sort : type 7→ Sortclass.
Coercion relType : type 7→ Relation.type.
Canonical Structure relType.
Coercion rrelType : type 7→ ReflexiveRelation.type.
Canonical Structure rrelType.
(∗ similar Coercion and Canonical Structure declarations

srelType, trelType∗)
Notation eqrelType := type.
Notation EqRelType T := ...
End Exports.

End EquivalenceRelation.
Import EquivalenceRelation.Exports.

Figure 1.34: erelType, an
equivalence relation structure
(denoted with prefix erel)

Require Import Equalities.

Definition eq_relmixin T := (RelMixin (@eq T)) .
Canonical Structure erel T := Eval hnf in RelType _ (eq_relmixin T) .

Definition eq_rrelmixin T := (RRelMixin (@eq_refl T)) .
Canonical Structure errel T := Eval hnf in RRelType _ (eq_rrelmixin T) .

Definition eq_srelmixin T := (SRelMixin (@eq_sym T)) .
Canonical Structure esrel T := Eval hnf in SRelType _ (eq_srelmixin T) .

Definition eq_trelmixin T := (TRelMixin (@eq_trans T)) .
Canonical Structure etrel T := Eval hnf in TRelType _ (eq_trelmixin T) .

Canonical Structure eerel T := [eqRelType of T].

Figure 1.35: The reflexive,
symmetric, transitive and
equivalence relation instances for
equality.)

70 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

notational tool that we have devised to refer to inferred parent structures
implicitly, but that we will only expose in § 2.3.2 on p. 111. This makes the
instance declarations for our structures relatively lightweight, but the user
might want to consider this line replaced by an explicit reference to the pack
constructor followed by passing the instances eq_rrelmixin, eq_srelmixin
and eq_trelmixin in the meanwhile.

1.4.3 Manifest-like records andmultiple dispatch

Complex synchronization with multiple parameters Packed classes are more
expressive than telescopic-style records for the horizontal sharing of type
information between concepts, giving us enough flexibility to represent
equational identities between members of a Structure through the parame-
ters of said Structure.

As mentioned in § 1.1.10 on p. 32, modelling type-level constraints,
such as those involved in the definition of a categorical adjunction, can be
problematic without the boon of either type parameters or manifest records.
However, since we de-couple Structure inference from type parameters of
a record, it is possible to use those parameters in a indicative fashion, to
expose more information about the elements of this record. That remark
was already made in a more abstract manner at the end of § 1.3.2 on p. 53.
However, with packed classes, we can also integrate those indicative, rather

than structural parameters with a coherent inheritance mechanism. This
allows us to build adjunctions without problems — let us see how.

Since we only want this to serve for a toy example,74 the definition of
a category, inferrable from a type, is straightforward (Fig. 1.36) from the
mathematical definition : a category C is given by a type of objects Op(C)
and type of arrows, mappings between elements of Ob(C) equipped with
an identity and a composition. The prerequisite left_id, etc, property
definitions are in ssrfun in the SSReflect library for the curious reader to
consult.

The key part in our example is the definition of a functor: a functor is a
pair of mappings between a source and a target category:
- an object map from source to target objects,
- and an arrow map from source to target arrows.

The arrow map has to associate the identity element of the target to
that of the source, and be continuous with respect to source and target
compositions. The object map has to agree with the arrow map in one
of two possible ways depending on whether we deal with a covariant or
contravariant functor:
- the image of an arrow from object A to B is mapped to an arrow going

from the image of A to that of B for a covariant functor,
- or to an arrow going from the image of B to that of A for a contravariant

functor.
In this toy example, we will only deal with covariant functors. The

key obstacle with the definition of an adjunction — which, let us remind,
is formed using two functors linking the same categories, but in opposite
directions — is that if the type of a functor does not reflect its source and
target categories, it is very cumbersome to verify the adjunction constructor

Record mixin_of (oT: Type) :=

Mixin {
composition : (oT � oT) �

(oT � oT) � (oT � oT) ;
_ : associative composition;
identity : oT � oT;
_ : left_id identity

composition;
_ : right_id identity

composition

}.

Notation class_of :=

mixin_of (only parsing).

Figure 1.36: The mixin giving rise
to catType, a Category structure
pegged on a Type. We are simplifying
the definition of a category greatly, here —
but it doesn’t impact on the point we are
trying to make about sharing.
74 Note that since we have no overlapping
instances, this example is limited to a
single instance of category per COQ type,
which prevents Coq from inferring the
e.g. dual category C

op of an existing
instance, because it shares the same carrier
type. Should we have wanted to make this
example scale, and to keep such a low-level
(universe-wise) definition, we might have
turned to something like the indexation of
the structure on the arrow type found in
Haskell’s Data.Category

http://hackage.haskell.org/package/data-category

CANONICAL STRUCTURES 71

is being passed appropriate functors:
Definition adjunction (F : Functor) (G : Functor),

src F = dst G � dst F = src G � ...

As mentioned by Sozeau and Oury (2008):

This gets very awkward because the equalities will be needed to go from one
type to another in the definitions, obfuscating the term with coercions, and
the user will also have to pass these equalities explicitly.

Sozeau and Oury continue showing that, with the discipline of having
superclasses as parameters, it is possible to specify adjunctions because of
a parametric definition of functors : the functor type carries its source and
target. We notice that with packed classes, it is possible to replicate such an
exposition of superclass types as parameters, but on a voluntary basis.

The object and arrow mappings are straightforward (Fig. 1.37). As ex-
plained in § 1.3.4 on p. 56, even if a functor only makes sense between
categories, we define them on the carrier type of the category structure:
this lets COQ insert the inference-inducing record projections in our term
by coercion. We then define the appropriate mixin based on the categories
required on the source and target type (Fig 1.38) — indeed, without a cate-
gory structure on both source (sT) and target (tT) of the functor’s mapping
function, the correspondence between the image of the source’s identity and
the identity of the target (func_id) can’t be expressed, forcing the functor

mixin to depend on category types.
The functor is an object essentially defined by its mappings, so that it

seems natural to peg it on a COQ function, for which we arbitrarily choose
the object map, for simplicity. This means that we will want a functor in-
stance inferred at a time where we are involved in the concrete manipulation
of something corresponding to its object map, and leads to the map structure
defined in Fig. 1.38. The change of naming pattern reflects that we do not
have a simple type as a first argument. This choice of first projection can
be adapted to fit a use case, letting either or both mappings be canonical
projections of the functor structure.

Variables (cT dT: catType).

Record mixin_of (oM : object_map cT dT) := Mixin

{

aM : arrow_map cT dT;
_ : covariant_map oM aM;
_ : func_id aM;
_ : func_comp aM

}.

Notation class_of := mixin_of.

Structure map (phcd: phant (cT � dT)) := Pack {

apply : cT � dT;
_ : class_of apply;
_ : cT � dT

}.

Local Coercion apply :

map 7→ Funclass.

Variables (phCD : phant (cT� dT))

(f g : cT � dT) (cF : map phCD).

Definition class :=

let: Pack _ c _ as cF’ := cF

return class_of cF’ in c.

Definition clone fA of phant_id g (apply cF)

& phant_id fA class := @Pack phCD f fA f.

Definition pack (fZ : mixin_of f) :=

@Pack (Phant (cT � dT)) f fZ f.

End ClassDef.

Module Exports.

Coercion apply : map 7→ Funclass.

Notation Functor fCD := (@pack _ _ _ fCD).

Notation "{ ’functor’ fCD }" := (map (Phant fCD))

(at level 0, format "{ ’functor’ fCD }").

Notation "[’functor’ ’of’ f ’as’ g]" :=

(@clone _ _ _ f g _ _ idfun id)

(at level 0, format "[’functor’ ’of’ f ’

as’ g]") : form_scope.

Figure 1.38: The mixin & base
structure of a functor, based on
catType instances for source &
target. (customarily included in a
Module Functor).

The key definition is in the notations that follow the functor definition

Implicit Types (sT tT : Type) .

Definition object_map sT tT :=
sT � tT.

Definition arrow_map sT tT :=

(sT � sT) � (tT � tT) .

Definition covariant_map sT dT

(Fo: object_map sT dT)
(Fa: arrow_map sT dT) :=

∀ (f : sT � sT) (x: sT) ,
Fo (f (x)) = Fa(f) (Fo(x)) .

Implicit Types (cT dT : catType).

Definition func_id cT dT (Fa :
arrow_map cT dT) :=

Fa(@identity cT) = (@identity
dT) .

Definition func_comp cT dT

(Fa: arrow_map cT dT) :=

∀ (f g : cT � cT) ,
Fa (composition g f) =

(composition (Fa g) (Fa f)) .

Figure 1.37: The base mappings
and property definitions forming
the foundation for a functor

72 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

and allow us to require explicit naming of the usually-implicit category pa-
rameters of the functor structure. The SSReflect approach to structure
parameters is to systematically use such a notation to develop functor the-
ory — giving this type to abstract variables — as well as to define other
structures depending on a functor. The definition of apply (which, if coer-
cions are made explicit, unfolds to Functor.sort cT � Functor.sort dT)
ensures that the functor is inferrable simply from the occurrence of its ob-
ject mapping in any expression.

The definition of a functor would have been equally workable with a
definition such as the following:

Structure map := Pack { apply : cT � dT;
_ : class_of apply; _ : cT � dT }.

<...>

Notation "{ ’functor’ fC ∼> fD }" := (@map fC fD)

(at level 0, format "{ ’functor’ fC ∼> fD }").

But, while we wanted to treat the example suggested by Sozeau and
Oury (2008), we wanted to show the technology that allows us to reflect
complex types in notations, possibly allowing a library architect to choose
as indicative structure parameters identifiers that for some reason come late

in the prenex order of the large dependent product that is our structure.
Indeed, we noticed that in telescopic style, the element that needs to be a
projection of the inferrable record is the COQ function (cT � dT), and
not necessarily the source and target category types. Since the difficulty
with reconciling adjunctions and Canonical Structures is the perception

that this first projection can’t be used as a parameter to assess the exact nature
of functors from their type, using a type parameter based on anything else
that this exact mapping (cT � dT) would have felt like a cop-out.

To that aim, reusing the native COQ arrow type (_ � _) in our notation,
we use a phantom definition, in effect a singleton type decoration — or
equivalently, a unit type with a mandatory type parameter

We will come back to phantoms in 2.3.2 on p. 108, and for now, we
ask the user to consider that this simply allows us to give a compact single-
argument specification for our arrow type in the{functor ...} notation.

From that point, the definition of base instances such as identity functor
(1

C
: C→ C, Fig. 1.39) or the functor rising from the composition of two

functors, and the definition of natural transformations75 present no partic-
ular difficulties. They allow us to get to the definition of an adjunction.

An adjunction between categories C and D is defined — among other
equivalent definitions — as a tuple (F,G,η,ε), where:

F : C→D is a functor η : 1
C
→GF is a natural transformation

G : D→ C is a functor ε : FG→ 1
D

is a natural transformation






(Gε) ◦ (ηG) = 1G

(εF) ◦ (Fη) = 1F

The use of two functors in that definition forces us to consider which
object should be the canonical projection of an adjunction. Since the defi-
nition is symmetrical, we choose one of the functors. The second functor

75 A natural transformation η from functor
F to functor G, both sharing the same
source and target categories C and D,
associates to each object X of C a mapping
ηX relating F(X) to G(X) called the
component of η in X, so that ∀ f : X 7→
Y arrow of C,ηY ◦ F(f) = G(f) ◦ ηx .
The full code for the definition of a
natural transformation, as well as the full
development of this category-theoretic
subsection, are available as developed
from a stock SSReflect release 1.3pl1, on
Github: https://github.com/huitseeker/
thesis-spikes/tree/Adjunctions

Definition idmap T := @id T.
Section IdentityFunctor.

Variable cT : catType.

Notation idmap := (@idmap cT).

Lemma id_covariance :
@covariant_map _ cT (idmap) id.

Proof. by []. Qed.

Lemma id_fidentity :
@func_id cT cT id.

Proof. by []. Qed.

Lemma id_fcomposition :
@func_comp cT cT id.

Proof. by []. Qed.

Canonical identityFunctor := Functor
(Functor.Mixin

id_covariance
id_fidentity
id_fcomposition).

End IdentityFunctor.

Figure 1.39: The definition of the
identity functor.

https://github.com/huitseeker/thesis-spikes/tree/Adjunctions
https://github.com/huitseeker/thesis-spikes/tree/Adjunctions

CANONICAL STRUCTURES 73

(the adjunct) will occur as a simple parameter of the structure, to be passed
as an argument during canonical instance registration: in particular, the
adjunction will not coerce to it so as not to create an incoherent path.

In packed classes style, this will require us to have a parent mixin (here,
a Functor.mixin_of) as the first member of a class, while a proper child
mixin_of will define the specific properties required of an adjunction. The

final definition for an adjunction parametrized by two functors with

chiasmatic source and target constraints is featured in Fig. 1.40. Our
structure is inferrable, despite the fact that the first projection of our func-
tor is a mapping between category types — the concrete COQ object the
user will enjoy manipulating and inferring an{adjunction cT � dT} on
—, not a functor. We nonetheless managed to make the “child” adjunction
mixin correspond exactly to what would have been specified in pebble-style.
Though the parametricity of the adjunction structure in the adjunct functor
isn’t strictly necessary, we hope it shows off the flexibility of the packed
classes idiom.

We leave the definition of a category structure which supports duality
(see note 74 on p. 70), and the subsequent definition of the dual adjunction
structure as an exercise to the reader.

Variables (cT dT:catType).

Record mixin_of (F : {functor cT � dT})

(G: {functor dT � cT}) :=

Mixin {

unit : {nattrans (@idmap cT) ∼> (G\o F)};

counit : {nattrans (F\o G) ∼> (@idmap dT)};

_ : ∀Y : dT,

((armap G \o counit) Y) \o

((unit \o G) Y) = (@idmap cT);

_ : ∀X : cT,

((counit \o F) X) \o

((armap F \o unit) X) = (@idmap

dT)

}.

Record class_of f (G: {functor dT � cT}) :=

Class {

base : Functor.mixin_of f;

mixin : mixin_of (Functor base) G

}.

Structure map (phCD : phant (cT � dT)) := Pack {

apply : cT � dT;

unapply : {functor dT � cT};
_ : class_of apply unapply;
_ : cT � dT

}.

Local Coercion apply :

map 7→ Funclass.

Variables (phCD : phant (cT � dT))

(f : cT � dT) (G : {functor dT � cT}).

Variables (cF : map phCD).

Definition pack F G (m : mixin_of F G) :=

fun b & phant_id (Functor.class F) b = >

fun m0 & phant_id m0 m = >

Pack phCD (@Class f G b m0) f.

Notation Adjunction m :=

(@pack _ _ _ _ _ _ m _ id _ id).

Notation "{ ’adjunction’ fCD }" :=

(@map _ _ (Phant fCD))

(at level 0, format "{ ’adjunction’ fCD }").

Figure 1.40: The definition of an
adjunction — i.e. the contents of
the Adjunction module — with
type-level functor compatibility
verification. (armap is the arrow map
of a functor)

Multiple Dispatch Type class systems found their origin in the desire for a
type semantics providing an equivalent to the notion of method overloading.
As such, the question of how to extend them in directions parallel to those
followed by the concept of objects method selection makes sense. Multiple
dispatch, the selection of a method depending on several objects at once, is
one of those extensions.

How do we select an implementation based on multiple values ? If we
know all the possible data variants for each of the values, it’s a relatively easy
problem: we make each variant an alternative of a data type, and pattern-
match on both alternatives. We show in Fig. 1.41 on the next page how that
looks like in COQ.76

76 As usual in SSReflect parlance, the
CoInductive keyword is just here
to avoid the generation of recursors
(Gonthier et al. 2008, §11.1).

74 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

CoInductive Shape :=

| Rectangle : ∀ (x y z t: nat) , Shape

| Circle : ∀ (x y r: nat) , Shape.

Definition intersection : Shape � Shape � bool.
refine (fun s1 s2 = > match s1 with

| Rectangle x1 y1 z1 t1 = > match s2 with

| Rectangle x2 y2 z2 t2 = > _

| Circle x2 y2 r2 = > _

end

| Circle x1 y1 r1 = > match s2 with

| Rectangle x2 y2 z2 t2 = > _

| Circle x2 y2 r2 = > _

end

end) ; admit.
Defined.

Figure 1.41: Datatype-based
multiple dispatch for closed types

In systems with a native implementation of multiple parameter classes,
the goal is to leave some room for the further extension of that solution : the
programmer generally wants to define more and more specialized instances
(in our examples, cases for each shape), so we aim at leaving room for a
more efficient implementation than the previous alternatives. The gist of
this extensible idiom is to declare each data variant (Rectangle, Circle) as
an instance of a Shape Structure, and to have another Structure specific to
each multi-method that has to be implemented over said Shape(s).

In our example, that means having an Intersection Structure that in-
herits from two Shapes, and implements the intersection method (of a
specified type) accordingly.

How do we obtain distinct instances of Intersection for the four possi-
ble Shape instances passed as an arguments ?

As a first approach, and as far as the Canonical Structures mechanism
is concerned, we do not. The extension of unification we rely on fixes a
particular form to the disagreement pair we can work on (§ 1.2.2 on p. 37),
and this one features but a single meta-variable for a projection value. How-
ever, there are common approaches to encoding multiple dispatch while
using only single dispatch, made famous by the long-standing restriction of
popular languages like Java or C# to the latter.

Using Canonical Structures, we have seen that we can resort to some
of them using Packed Classes (§ 1.4.2 on p. 67) : our pattern for multiple
inheritance implements exactly the emulation of multiple dispatch using
several single-dispatch messages.

1.4.4 Overlappinginstances, instancechains,andDatatypes

à la carte

Overlapping instances The expression problem77 has a well-known type-
class based solution (Lämmel and Ostermann 2006, §2.4). The standard ex-
ample for this benchmark of extensibility in both the dimensions of data and
operations is an arithmetic evaluator. We present the Canonical Structure

syntax of the classic solution in Fig. 1.42 on the next page, in telescopic style
to maximize brevity. It models each data variant of the Expr data type as an
instance of an overruling class (Structure), and registers a specific type as an
instance for each data variant. Expr refers to the extensible, nominal union

77 That we introduced in § 1.3.3 on p. 54.

CANONICAL STRUCTURES 75

of all data variants, and is deferred to when recursing over each subterm
of our expressions (the equivalent of a trampoline in tail call elimination).
Each extensible operation in the Expr “datatype” is modelled as a refinement,
that adds implementations of said operation for each variant as instances.
We recognize in this example a single-inheritance version of the type-class
based multiple dispatch implementation of the previous section.

The complete analysis of that solution is found in the literature (ibid.),
but the gist of it is that, while ensuring type safety across extensions in
both dimensions, this solution forces the user to adhere to a specific pre-
existing style. That this style occurs particularly often in the SSReflect
libraries is intriguing, but anecdotal: the expression problem is posed in the
more general framework of generic programming. And it is to solve that
general problem that a solution based on Haskell’s overlapping instances was
proposed (Swierstra 2008).

Two Canonical Structure (or type class) instances overlap if they could
apply to the same value. For example, consider the following Structure:

Structure c := C {

fst :> Type;

snd : Type

}.

Canonical Structure ins1 := C nat nat.

Canonical Structure ins2 (A:Type) := C nat A.

Both instances could match a given natural. However, the compiler has
no guarantee that the members of the corresponding records are imple-
mented equivalently for both, so that a proof using both instances would
have several interpretations. To eliminate the non-determinism, Haskell 98
forbids overlapping instances.

Under some conditions, there are less restrictive alternatives: Scala, for
example, leverages its object model to disambiguate between implicits us-
ing subclassing (Oliveira et al. 2010, §6.5). The GHC implementation of
Haskell, given-fallow-overlapping-instances , will allow overlapping in-
stances, choosing the most specific in a precise sense (Peyton-Jones et al.
1997): an instance a is more specific than b if a is a substitution instance of b,
but the converse isn’t true. In our example above, the first instance would
have been chosen according to that rule.

Swierstra solves the expression problem by defining expressions using
ground types and a (categorical) coproduct constructor t :+: u:

data (f :+ : g) e = Inl (f e) | Inr (g e)

To state that there exists an injection from (f e) to (g e), he defines a
subtyping relation f :≺: g

class f :≺: g where inj :: f e � g e

Then he fills this class with the following three overlapping instance
declarations:

instance f :≺: f

instance f :≺: (f :+ : g)

instance f :≺: h = > f :≺: (g :+ : h)

The substitution rule for instance selection constrains the use of those
expressions: because the second instance is a substitution instance of the last,

Structure exprType := Expr {
sort :> Type

}.
CoInductive Lit :=

| in_lit (proj_lit : nat) : Lit.
Definition proj_lit (x: Lit) :=
let: in_lit k := x in k.

CoInductive Addit

(x y : exprType): Type :=

| in_addit (a: x) (b: y) : Addit x y.
Canonical Structure lit_expr :=
Expr Lit.

Canonical Structure addit_expr

(x y: exprType) :=

Expr (Addit x y) .

Structure evalType := Evaluator {
evaluatee :> exprType;
eval : evaluatee � nat

}.
Canonical Structure lit_eval :=
Evaluator proj_lit.

Definition eval_addition

(x y: evalType) := fun z = >
let: in_addit a b := z in

(@eval x a) + (@eval y b) .
Canonical Structure addit_eval

(x y: evalType) :=

Evaluator (@eval_addition x y) .

(∗ Extension in data ∗)
CoInductive Pred (x: exprType) :=

| in_pred (a: x) : Pred x.
Canonical Structure pred_expr

(x: exprType) := Expr (Pred x) .
Definition eval_pred (x: evalType) :=
fun z = > let: in_pred a:= z in

(@eval x a) .−1.

(∗ Extension in operation ∗)
Require Import Ascii String.

Structure printType := Printer {
printee:> exprType;
print: printee � string

}.
(∗ Left as an exercise to the reader ∗)
Definition string_of_nat : nat �

string.
admit. Defined.

Definition print_lit :=

fun x = > string_of_nat (proj_lit x) .
Canonical Structure printer_lit :=
Printer print_lit.

Definition print_add

(x y : printType) := fun z = >
let: in_addit a b := z in

(append (append (@print x a) "+ ")
(@print x b)) .

Definition print_pred (x: printType) :=
fun z = > let: in_pred a := z in

(append (@print x a) "−1").

Canonical Structure printer_addit

(x y : printType) :=

Printer (@print_add x y) .

Canonical Structure printer_pred

(x: printType) :=

Printer (@print_pred x) .

Figure 1.42: The classical
type-class-based solution to the
expression problem

76 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

predicates will only be checked against the last rule if they fail to match the
second — making the coproduct constructor behave like a list constructor,
rather than like a tree constructor.

We use coproducts in a list-like fashion: the third instance only searches
through the right-hand side of coproduct. Although this simplifies the search—we
never perform any backtracking—it may fail to find an injection, even if one
does exist. For example, the following constraint will not be satisfied:

f :≺: ((f :+ : g) :+ : h)

Yet clearly Inl ;◦; Inl would be a suitable candidate injection. Users
should never encounter these limitations, provided their coproducts are not
explicitly nested. By declaring the type constructor (:+:) to be right-associative,
types such as f :+: g :+: h are parsed in a suitable fashion.

(Swierstra 2008)

The expression problem is a such a classical benchmark of expressivity be-
cause it showcases the omnipresent use case of the programmer who wants
to make his interface evolve in both the data it treats and the operations it
wants to perform on it.

As we have seen with the ability to define an apple-picking order a poste-

riori in § 1.1.8 on p. 29, a type class system already help the programmer
lacking perfect foresight. With it, he can use the methods of a given class
hierarchy (such as pick) on objects belonging to another. The situation in
which this is not possible — as with vanilla object hierarchies — is often
called the tyranny of the dominant decomposition (Lämmel and Ostermann
2006). But while this was simply interface conformance, what overlapping
instances would provide us is the ability to define an interface (here, our
coproducts) which admits new data variants, without having to conform to
a particular, pre-existing style. Thus, a type class system that relaxes this

limitation while maintaining complete determinism seems to bring a

valuable expressivity bonus to the user.

Swierstra’s exact solution to the expression problem remarks that given
a recursive (constructor) function (f: A � B), one can define a second
order function called functional F : (A � B) � A � B such that F is it-
self non-recursive and f = F f. This allows Swierstra to separate concerns
in defining his expression type, but, crucially, uses an unbounded recur-
sion operator to thread instance resolution through expressions of arbitrary
length — hence the adaptation if this solution in COQ requires manage-
able, but particularly heavy transformations that fall beyond the scope of
this document.78 But this is an orthogonal concern: however the recursion
mechanism is implemented, it is clear that the crux of the expressivity prob-
lem of the “à la carte” approach is in the type class instance selection. And
this aspect of the solution has indeed garnered enough interest to prompt a
call for that exact extension to GHC’s overlapping instance selection mech-
anism — aiming, ultimately, at an inclusion of that advanced feature in the
main language. Morris and Jones (2010) indeed aims at defining instance

chains, a way to define overlapping instances in a precise, continuation-
passing style that covers the possible alternatives in a deterministic fashion,
using an “if-then-else” syntax.

78 The curious reader will refer to (Bove
et al. 2011, §5), which surveys the state of
the art of solving that particular issue.

CANONICAL STRUCTURES 77

On paper, COQ also prohibits overlapping instances, and will always
select the first declared Canonical instance for a given (value, projection)
pair.79 However, thanks to key properties of unification mentioned in
§ 1.2.4 on p. 42 it turns out that those instance chains are already acces-
sible with Canonical Structures. Let us see why.

Instance Chains The objective of Morris and Jones (2010) is to upgrade the
overlapping instance mechanism to allow the following form of syntax for
instance chains in HASKELL:

instance f :<: f

else f :<: (g :+ : h) if f :<: g

else f :<: (g :+ : h) if f :<: h

else f :<: g fails

We want to emulate the same kind of behavior in COQ. We start with
reproducing the coproduct type, so as to have a precise idea of the actors in
play (Fig. 1.43).

CoInductive Val (T:Type) : Type :=

Build_Val (n : nat).

Record Add (T : Type) := {

e1 : T;

e2 : T

}.

CoInductive Coprd (f g : Type � Type) (T:Type):=

| Inl: ∀(e0:f T), Coprd f g T

| Inr : ∀(e1: g T), Coprd f g T.

Check (@Inl Val Add nat (Build_Val _ 1)).

Structure subtype (sup: Type � Type)

(supP: phantom (Type � Type) sup) := {

sub :> Type � Type;

inj : ∀(T:Type), sub T � sup T

}.

Notation "{ ’subtype’ fplusg }" :=

(subtype (Phantom _ fplusg))

(at level 0, format "{ ’subtype’ fplusg }")

: form_scope.

Definition sup (f:Type � Type)

(k:{subtype f}) : Type � Type := f.

Definition subtype_pack

(sub : Type � Type) (sup : Type � Type)

(i: ∀T : Type, sub T � sup T) :=

Build_subtype (Phantom _ sup) i.

Figure 1.43: The definition of a
coproduct with a first attempt at a
subtype definition.

As in the previous paragraph on adjunctions (§ 1.4.3), we use a phantom
type to expose a required type of the subtype structure : the right member of
the subtyping relation. It allows us to require explicitly terms of a specific
coproduct type, using the{subtype (Coprd f g)} notation. The object of
the subtype structure, or the key — i.e. the first projection of the struc-
ture, which will trigger inference in lemmas and other constructs — is the
(smaller) subtype, an expression instance we want to inject in (or see as a
member of) a larger coproduct type.

We emulate the two most basic instances declared by Swierstra (2008),
including a Val decorated with a phantom argument.

The key insight towards making instance chains work in COQ was
hinted at in note 48 on p. 44. Let us go over what we said in § 1.2.5 on
p. 43: the Canonical Structure mechanism, triggered at type inference,
searches for a record value fitting a given head constant and a projection. It
fires when it encounters an equation that looks like :

sub ? f ≙ Val

Then, it looks in the Canonical Projections table, and does head con-
stant matching with the (projection, head value) pair (sub, Val), hoping to
encounter a suitable record declaration. A crucial behavior is that if and

79 Since the inclusion of a patch by the
author in version 8.3, COQ signals it
will not use redundant projections for
Structure inference, should the user
declare some.
This technique originates in work by
Gonthier and Cohen on implementing
decision procedures by reflection in COQ

(Cohen 2010, Annexe C). The key insight
was ported to a new flavor based on default
instances in the reflection of expressions
of direct sums of matrices in (Gonthier
2011, §4.3), then developed as a way
to systematize lemma application and
provide deterministic automation facilities
in (Gonthier et al. 2011).

Definition idconstr (f:Type � Type)
:=

fun T (x: f T) = > x.
Canonical Structure reflex_subtype

(f:Type � Type) :=
subtype_pack (@idconstr f).

Canonical Structure left_subtype (f
g:Type � Type) :=

subtype_pack (@Inl f g).
Definition in_subtype_right (g h:Type

� Type)
(sfg: {subtype g}) :=
fun T = > comp (@Inr h g T) (@inj _

_ sfg T).
Canonical Structure right_subtype (g

h: Type � Type)
(sfg: {subtype g}):=
subtype_pack (@in_subtype_right g h

sfg).

Figure 1.44: An erroneous
definition of coproduct instances.

78 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

only if the head-constant matching fails, it δ-reduces the right mem-

ber of the equation, and tries again. This single step of δ-reduction is
due to the “δ-delaying politic” we have investigated in § 1.2.4 on p. 42.

There can unfortunately be only one record instance (the “value” in the
sense of the key-value association of a Map) per (projection, head constant)
pair (the “key”). We would like COQ to try several. But the declaration
of some instances may mask others. In particular, let us see what happens
when we try to define the instances of Swierstra (2008) naively. We obtain
what figures in Fig. 1.44 on the preceding page. When we try to declare the
left_subtype instance, COQ answers with:

Warning: Ignoring canonical projection to _ by sub in

left_subtype:

redundant with reflex_subtype

Indeed, reflex_subtype is a peculiar instance, meaning an instance for
which the inference-triggering value (here the first projection) is a variable.
This has two consequences, the first of which shows it is treated in a special
fashion, and another for which reflex_subtype is just as any other instance:

(i) the value for sub of reflex_subtype has no head constant, but it is still
considered as a valid instance : this is the exception to the rule for
inferrable record projection values of always having a head constant,
called default instances. Those records where the inference-triggering
member is a variable guarantee unification with any value always suc-
ceed — but they shadow any further value.

(ii) the sub projection value for reflex_subtype will always make the sub

projection values of subtype Canonical Structures declared after it

redundant.

Even if our default instance had been declared last, we would have faced
the reverse overlap problem, and would have gotten the message above, but
with left_subtype and reflex_subtype inverted.80

The central idea to addressing that problem is to make sure the reduc-
tion on the right — the one which occurs at the failure of unification of a
type class instance — triggers a new, distinct Canonical Structure search
problem. For that, we use δ-reduction. Our goal is then to craft δ-redexes
inside the canonical instances we try to define. Unfolding those redexes, we
provide a sort of continuation-passing style semantics to switch between
instance alternatives.

To achieve that, we use an ad-hoc boxing structure for constructors:

Structure tagged_constr := Tag {untag :> (Type � Type)}.

This structure is a pure boxing structure. It begs for a default instance
taking a (h : Type � Type) as a variable argument — an instance we can
bestow on any term of type Type � Type. Now, what happens if this
instance contains layers of δ--redexes instead ?

Definition right_sub (h:Type�Type) := Tag h.

Definition left_sub h := right_coprod h.

Canonical Structure refl_sub h := left_coprod h.

We then see the means of implementing our continuation-passing seman-
tics:

80 In our case, what is even worse is that
all instances are default instances: though
the returned types are distinct, the sub
projection of all three instances returns a
variable.

CANONICAL STRUCTURES 79

Structure subtype (sup: Type � Type) (supP:

phantom (Type � Type) sup) := {

sub :> tagged_constr;

inj : ∀T, (untag sub) T � sup T

}.

Definition subtype_pack

(sub : tagged_constr) (sup : Type � Type)

(i: ∀T : Type, (untag sub) T � sup T) :=

Build_subtype (Phantom _ sup) i.

Definition right_sub (h:Type�Type) := Tag h.

Definition left_sub h := right_sub h.

Canonical Structure refl_sub h := left_sub h.

Definition idconstr (f:Type � Type) := fun T

(x: f T) = > x.

Canonical Structure reflex_subtype (f:Type �

Type) :=

@subtype_pack (refl_sub f) _ (@idconstr f).

Definition in_subtype_left (f h: Type � Type)

(sfg : {subtype f}) :=

fun T = > comp (@Inl f h T) (@inj _ _ sfg T).

Canonical Structure left_subtype (g h: Type �

Type)

(sfg: {subtype g}) :=

@subtype_pack (left_sub (untag sfg)) _

(@in_subtype_left g h sfg).

Definition in_subtype_right (g h:Type � Type)

(sfg: {subtype g}) :=

fun T = > comp (@Inr h g T) (@inj _ _ sfg T).

Canonical Structure right_subtype (g h: Type �

Type)

(sfg: {subtype g}):=

@subtype_pack (right_sub (untag sfg)) _

(@in_subtype_right g h sfg).

Figure 1.45: The definition of a
subtype type, with instances
directed by δ-contraction.

- providing we can infer a tagged_constr structure on our object,
- and provided subtype can take a tagged_constr as a first projection
- we can declare instances of subtype that are tried on the mostδ --contracted

redex above, then on its δ-expansion, etc ...
This is what we implement in Fig. 1.45. We can now see that we have

three (projection, head constant) pairs registered as keys in the Canonical

Projections table:

right_sub � sub (right_subtp)

left_sub � sub (left_subtp)

refl_sub � sub (reflex_subtp)

In sum, δ-aliasing provides us with a way to script the Canonical

Structure inference process, guided by failure.

Definition clone (f: tagged_constr) (g: Type �

Type) (cT:{subtype g}) :=

fun c & phant_id (@sub g _ cT) f & phant_id

(@inj g _ cT) c = >

@subtype_pack f g c.

Notation "[’subtype’ g ’of’ f]" := (@clone

(refl_sub f) g _ _ id id)

(at level 0, format "[’subtype’ g ’of’ f]")

: form_scope.

Check ([subtype Val of Val]).

Check ([subtype Add of Add]).

Check ([subtype (Coprd Add Add) of Add]).

Check ([subtype (Coprd Add Val) of Val]).

Check ([subtype (Coprd Add (Coprd Val Add)) of

Val]).

Figure 1.46: Testing the subtype

structure.
All that is left is to test that our Structure behaves as intended, in Fig. 1.46.

For that we define a constructor notation (that we will explain in § 2.3.2 on
p. 108). This emulates the presence of a structure projection in a lemma, for
instance. On the last line, we see we finally have a subtype structure for (f
:+: g) :+: h

1.4.5 Classes and other type classmechanisms

The type class mechanism81provided by Canonical Structures, as well as
the one of Classes cover from the start some of the extensions tradition-
ally implemented on top of the original type class implementation (Peyton-
Jones 2003; Wadler and Blott 1989).

81 We invite the reader unfamiliar with
HASKELL’s type class system beyond the
Haskell 98 standard to consult the helpful
survey

S. Peyton-Jones, M. P. Jones, and
E. Meijer. Type classes: an exploration
of the design space. In Haskell Workshop,
1997. URL http://research.microsoft.
com/en-us/um/people/simonpj/

Papers/type-class-design-space/

http://research.microsoft.com/en-us/um/people/simonpj/Papers/type-class-design-space/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/type-class-design-space/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/type-class-design-space/

80 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

As we have mentioned in the previous subsection (§ 1.4.3 on p. 70), we
support multiple parameters, though only Classes have the multiple dis-
patch necessary to ensure an instantiation that uses either key. Meanwhile,
the dependently typed calculus offered by Coq ensures we can easily em-
ulate the extensions of the HASKELL type class mechanism that want to
bring the system closer to functions between type instances, simply using
dependent records : we can refer to previous members of the record to
emulate functional dependencies (Jones 2000) and add type parameters to
emulate associated types (Chakravarty et al. 2005).

The registration of class instances as a hint declaration over a named
first-class record in either paradigm (an example is featured in Fig. 1.19 on
p. 52) ensures we support features equivalent to the named instances (Kahl
and Scheffczyk 2001) of HASKELL. The higher-kinded polymorphism of
COQ, along with the possibility to define Structures or Classes dependent
on a parameter, lets us define constructor classes natively (Jones 1993).

Now, as previously mentioned in § 1.3.1 on p. 51, COQ has another type-
class implementation (Sozeau and Oury 2008). Let us provide some brief
remarks as to how they compare to the Canonical Structure mechanism.
As we have been emphasizing in the whole of this chapter, a type class
system is at its heart two mechanisms built on top a generic programming
construct:
- a constraint propagation mechanism,
- and an instance selection mechanism.

For both Classes and Canonical Structures, this generic programming
construct is the same: dependent records. We have shown extensively that
for Canonical Structures, the instance selection mechanism is an instru-
mentation of the type inference procedure dealing with record projections
(§ 1.2.5 on p. 43), and the constraint propagation mechanism is either :
- telescopic-style record nesting (§ 1.1.10 on p. 32), facilitated by coercions

(§ 1.3.4 on p. 56), for small examples that don’t need to be scalable,
- or the more efficient (but more verbose) packed classes (§ 1.4.1 on p. 60).

For Classes, the constraint propagation mechanism is Pebble-style shar-
ing (§ 1.1.9 on p. 30),82 and the instance propagation mechanism is the use
of the tactic base eauto during implicit argument resolution (Sozeau and
Oury 2008, §6.4), aided with interactive proof obligation discharge. Note
that since eauto’s matching is also based on higher-order unification, both
instantiation mechanisms share some of the core traits of the distinct unifi-
cation implementations in the COQ.

As we have shown in § 1.4.2 on p. 67 and 1.4.3 on p. 70, thanks in part
to the packed classes idiom, there is no real issue of expressivity on the

front of constraint propagation. However, as mentioned in § 1.4.1 on
p. 60, there is a real issue of efficiency: because Classes rely more signif-
icantly on record parametrization, they can be expected to lead to large
terms which do not play well with current COQ procedures and tactics.83

The instantiation mechanism of Classes, on the other hand, bears two im-
portant remarks:
- since eauto is a tactic that will pick possible instances based on the current

context and a hint database, instance selection is inherently nondeter-

82 See also “Superclasses as Parameters,
Substructures as Instances” (Sozeau and
Oury 2008, §4).

83 The reliance on record parametricity
has been found to be a considerable
performance burden in other type theory-
based provers: the compilation of the
standard library of Agda 2 (Norell 2007)
was recently shrunk by 30% in both time
and space once the internal representation
of record projections was made to ignore
its parametric arguments (Norell 2011):
the local type inference approach suggests
that projection is easy to tidy, even in a
type synthesis setting. We strongly hope
for further investigation of this technique
in COQ.

CANONICAL STRUCTURES 81

ministic and backtracking. The second characteristic means that multi-

ple dispatch and overlapping instances are available natively: the user
can, taking the system as-is, ambiguously associate several categories to
a type which would represent their objects, a characteristic used to great
benefit by Spitters and van der Weegen (2011). However, controlling
which exact instance is applied when the context is not enough to make
the type unification of the inappropriate cases fail is more problematic.
In particular, since the instance chain technique mentioned in 1.4.4 on
p. 74 is based on the late application of δ -reduction in COQ’s unification
algorithm, it can be (and was) adapted to Classes (Spiwack 2011). How-
ever, as further developments of that technique have shown (Gonthier
et al. 2011, §7), it becomes very difficult to control the behavior of unifi-
cation in advanced cases, restricting this technique to anecdotal examples
in the context of Classes.

- since eauto deals in a backtracking fashion with such an unlimited search
space, instance search can become very slow in the context of multiple,
functional, ambiguous instances.
An additional (and final) difference is that Classes resolution is primed at

the implicit argument resolution phase, and concluded after type inference.
Since it has no ability to dialogue with inference, it makes the instantiation
of structures such as the tuples presented in § 1.3.4 on p. 56 much harder,
especially in cases where COQ would have to invert conversion to find a
suitable instance (e.g. finding an instance for tuple (4 + 4)). As a more
anecdotal use, the user can define Canonical Structures based on a sort in
COQ (an elegant way to provide ad-hoc type reifications84), which requires
an awkward translation using Classes since implicit argument resolution
occurs before type inference, and as such has no access to, e.g., coercions.
While overcoming that last hurdle may seem a complex endeavor with as
yet no clear payoff, the eager resolution of value classes has on the contrary
been of considerable use in theory development (see the vector types of
Gonthier 2011), and we hope this limitation will could be addressed in
further developments of Classes (potentially by marking arguments for
which eager unification by a provided value should be triggered on the
spot).

84 The curious reader will consult
AdvancedCanonicalStructure.v

and AdvancedTypeClasses.v in the
test-suite/success/ directory of
COQ’s source distribution.

Implementation

THE FUNDAMENTAL S OF THE STRUCTURES developed in SSReflect
come up in several publications in the literature. The sixth section of
(Gonthier and Mahboubi 2010) presents — after a tutorial on small scale
reflection and some indications on the use of Canonical Structures — the
way to use finite types in SSReflect. Those indications update the first half
of (Gonthier et al. 2007), which dealt with preliminary versions of more
of the finite structures of the SSReflect library. The next most recent de-
scription of those structures appears in (Ould Biha 2010), which covers,
along the path towards a treatment of representation theory, a description
of indexed operations already touched upon in (Bertot et al. 2008). A more
generally-scoped update of the abstract algebra developed while defining the
basic concepts needed for character theory figures in (Garillot et al. 2009).
The updates to the SSReflect manual for the 1.3 release also feature a map
of interfaces defined in the libraries (Gonthier et al. 2008, §10).

Along this ante-chronological walktrough of SSReflect-related literature,
however, we need to mention that the second half of (Gonthier et al. 2007)
has known other significant updates. Those updates go beyond the re-
structuration brought by the packed classes discipline we touched upon in
the previous chapter1 and yet, even the packed classes improvement was
not shown brought to bear on simple group structures. In this chapter, we
intend to fill these gaps. Namely,
- We intend to give some insight into trademark design choices for the

SSReflect definitions and library of Structures. For this, we will pick
examples among the modern forms of some of the finite structures de-
scribed in (Gonthier and Mahboubi 2010; Gonthier et al. 2007) but will
not aim at exhaustivity.

- To give a better sense of the development process, we expand to applica-
tions I developed in the SSReflect library: cyclic groups.

- This will allow us to introduce how the collision between a prior notion
of morphism, and the newly developed automorphisms made us improve
the treatment of Structures with a parameter. We delve on the conse-
quences for the formalization of partial functions in the wild.

- Incidentally, this bedrock of use cases will allow us to show how the user
can, in COQ, direct the Canonical Structure inference process to allow
for richer and more succint context-dependent functions and proofs.

2

1 Garillot et al. (2009) chose to feature a
set of examples distinct from the one used
by Gonthier et al. (2007) to present the
upheaval.

83

84 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

2.1 Groups, sets and structures

THE SSREFLECT LIBRARY IS A L ARGE FORMALIZATION (more than
100 000 lines of source code at the time of this writing), and therefore relies
on a few, simple, consistent design choices in the approach of basic mathe-
matical objects such as sets, functions and finiteness. These choices occur
at the heart of a formalization: we are talking here of the computational
definitions, in the programmatic sense, that we will consider as the repre-
sentants of the simplest — and therefore most pervasive — definitions of our
system.

Those choices matter since we work on the assumption that proofs have,
like programs, their primitive types, user-defined but yet akin to the nat-
urals supported by any programming language: below a certain level of
refinement, it is the computational behavior of a term that gives a convinc-
ing representation of a mathematical object whose mathematical textbook
definition is itself, after close examination, computational. A simple exam-
ple: denumerable sets are defined by an effective indexation to the naturals
(Bourbaki 2006, §7.9), a notion that involves an embedding, which has to be
accessed at some point in a formalization. Not only is it important for us
that those first definitions be practical, but we also wish those simple objects
to give an intuitively convincing image of the foundations of our hierarchy:
the relation to the original mathematical object should be trusted as being

“so simple that there are obviously no deficiencies”.2

Finally, those choices are naturally equally important from a software
engineering point of view: programmatic tools such as modules or type
class mechanisms can help the user define translations between represen-
tations, but using them constantly across a large development means that
an unreasonable fraction of the proving and typechecking time could be
wasted on the computational side effects of applying that translation.

2.1.1 Boolean reflection

Proof by reflection in COQ3 is a method for studying properties (i.e., types)
using a term of the language. The study of that reflect gives a simplified
representation of the property, since the reflect captures only the parts of
the property’s objects necessary for building a proof. In particular, when
such a property is decidable, a decision procedure can be given such a reflect
as an argument. It is then enough to prove that the result of that procedure
can systematically be used to build a proof of the property — or of its logical
negation.

More specifically, boolean terms provide perfect reflects for decidable
properties, for which the excluded middle holds. Moreover, helper lemmas
applicable on boolean formulas, especially rewriting lemmas, are easy to
define and use. Hence, to use the boolean reflection method in a systematic
fashion for decidable properties, we use the following inductive:

Inductive reflect (P : Prop) : bool � Set :=

| ReflectT : P � reflect P true

| ReflectF : ∼ P � reflect P false.

2 C. A. R. Hoare. The emperor’s old
clothes. Communications of the ACM, 24
(2):75–83, Feb. 1981. ISSN 00010782.
doi:10.1145/358549.358561

3 We invite the reader longing for a
refresher on this technique to consult the
extensive primers found in the literature
(Bertot et al. 2008; Chlipala 2009, resp.
§16, §13).

http://dx.doi.org/10.1145/358549.358561

IMPLEMENTATION 85

Though this predicate caters to boolean reflection, i.e. towards dealing
with properties for which booleans provides good reflects, it is easy to imag-
ine how to adapt it to the case where another type of terms describes the set
of reflects we want to study.

Having an instance of this inductive provides a guarantee of the equiv-
alence of a term b : bool and a proof p : P. Destructing this inductive
therefore provides the user with a fast way to commute between proposi-
tion P and b = true4, in a systematic and fast fashion. In SSReflect, we call
this mechanism a view, and it has led to the common practice of small scale

reflection throughout the SSReflect libraries, described in Fig. 2.1.
Let us consider a highly complex boolean combination of decidable prop-

erties. Simplifying the easily eliminable subterms of this formula using the
usual COQ tactics leads to an untractable proliferation of cases, that only a
complex database of Ltac tactics can handle. The SSReflect user will rather
transform this formula into a complex boolean formula, for which the elim-
ination of cases consists in rewriting with a set of well-chosen lemmas. This
does not, however, mean that the user has to do full-scale reflection and
reduce the whole formula to true or false in one go. The user will of-
ten decide to treat relevant terms, after simplification, through the regular
COQ machinery of tactics. Using a view again, he can finish the proof of
his property, expressed now as a simplified logical formula. This is different
from the general usage of proof by reflection, where one expects a custom
decision procedure to be the end-all of the processing of a reflect towards
the proof. The second view application in our figure is what makes us call
this reflection pattern small-scale.

In summary, boolean reflection with views is a fast tool to simplify

complex decidable properties using rewriting lemmas.

C[x] b[x] =true

b ′
[x]
=trueC′

[x]

QED

Logical
property

Boolean equation

simple

complex
View

rewrite step

View
short applica-
tion sequence

long application
sequence

Figure 2.1: SSReflect encapsulates
boolean reflection in its compact
view mechanism

4 The SSReflect library uses the systematic
syntactic sugar of displaying this equality
as if it was the boolean itself using a coer-
cion: Coercion is_true b := b = true.

86 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Thus, in the SSReflect library, if the user wants to study a property
which is inherently decidable, it is strongly favored to define it directly as
a boolean predicate related to the actual desired proposition type with a
reflection lemma, rather than as a property. An example follows.

2.1.2 Typeswith a decidable equality

It is well-known that in constructive type theory, and in particular in COQ,
we do not enjoy proof-irrelevance for the Type hierarchy. For example,
a Σ -type { x:A | P x } (those of the standard COQ library, as featured
in § 1.1.6 on p. 25) can have two inhabitants with the same witness and
equipped with distinct proofs of the same property.

This holds even for equality proofs, for which adding proof irrelevance is
equivalent to adding Altenkirch & Streicher’s K axiom,5 which is indepen-
dent from the Calculus of Constructions. But there is an important subcase
of proof irrelevance that always holds. Streicher’s axiom K always holds on
decidable domains, i.e. equality proofs on sets where equality is decidable are
unique. The general proof is in the Eqdep_dec module in the COQ standard
library.

This means that, provided we are on a type with decidable equality, we
can recover some of the proof irrelevance that is so intuitive when doing
classical mathematics, without adding anything to the calculus. However,
proving decidable equality for a new, custom type involves threading the
preservation of the decidability property along applications of its construc-
tors: a trivial, but tedious task. For this, we let the compositionality of
type classes help us. We define a generic structure for types with a decidable

Definition pred T := T � bool.

Definition rel T := T � pred T.

Module Equality.

Definition axiom T (e : rel T) := ∀x y, reflect (x = y) (e x y).

Structure mixin_of T := Mixin {op : rel T; _ : axiom op}.

Notation class_of := mixin_of (only parsing).

<...>

Module Exports.

Notation eqType := type.

Notation EqMixin := Mixin.

Notation EqType T m := (@pack T m).

End Exports.

End Equality.

Export Equality.Exports.

Figure 2.2: eqType : a type
equipped with a decidable equality.
We note the boolean equality operator of
this structure with the infix symbol = = .

equality6 in Fig. 2.2. The axiom of this concept shows that the boolean

equality function defined therein is a reflect of the Leibniz equality. It is
an instance of the reflect predicate seen in the previous paragraph, and
as such, allows us to convert quickly (using view), between the predicate
(Equality.axiom _ x y) = true and x = y. This is particularly useful
since the latter is the only relation with which the user can natively rewrite
in COQ: we have promoted an arbitrary equality procedure to a rewritable
relation.

This class also allows us to make use of a generic proof-irrelevance result,
akin to that featured in Eqdep_dec, but which uses reflect to build the

5 T. Streicher. Semantical Investigations
into Intensional Type Theory. Habil-
itation thesis, Ludwig-Maximilians-
Universität München, 1993. URL
http://www.mathematik.tu-darmstadt.

de/~streicher/HabilStreicher.pdf

6 We use the packed classes idiom de-
scribed in § 1.4.1 on p. 58. Therefore
we do not give the full source of the
definition of eqType, as for the remain-
ing types of this document. We rather
limit ourselves to the mixin part, and,
when appropriate, to the class record
relevant to those types. The rest can
is unambiguously inferrable from our
discipline, and the full source is readable in
the SSReflect libraries.

http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf

IMPLEMENTATION 87

canonical proof of equality one needs to provide in such an irrelevance
theorem.

Theorem eq_irrelevance :

∀(T : eqType) (x y : T) (e1 e2 : x = y), e1 = e2.

Given that result, we can look, specifically, at the instance of it for
booleans in Fig. 2.3.

Finally, boolean proof irrelevance lets us build a class of subtypes, anal-
ogous to COQ’s Σ -types, but paired with a decidable, boolean predicate
instead of a general one.

Variables (T : Type) (P : pred T).

Structure subType : Type := SubType {

sub_sort :> Type;

val : sub_sort � T;

Sub : ∀x, P x � sub_sort;

_ : ∀K (_ : ∀x Px, K (@Sub x Px)) u, K u;

_ : ∀x Px, val (@Sub x Px) = x

}.

Implicit Arguments Sub [s].

Lemma vrefl : ∀x, P x � x = x. Proof. by []. Qed.

Figure 2.4: A decidable subType,
coercible injectively to its parent.

The subType definition7 is in Fig. 2.4. It defines a structure giving a
generic name val for the projection to the parent type, given defining ele-
ments of a decidable subtype that it is isomorphic to : a constructor Sub, an
eliminator, and an injectivity proof for the val projection 8{ x | P(x)} for
a boolean predicate P. subType instances are intended to be built most of
the time using the notation:

Notation "[’subType’ ’for’ v ’by’ rec]" := (SubType _ v _

rec vrefl)

(at level 0, format "[’subType’ ’for’ v ’by’ rec]") :

form_scope.

Herein, v plays the role of a record field projection, with rec the induc-
tion principle generated by COQ during Inductive or Record declarations.
Note vrefl (Fig. 2.4) provides the canonical reflexivity witness (through
the trivial tactic), ensuring the projection really is the inverse of the first
argument of the constructor found in the elimination scheme. The in-
stances of this type enjoy proof-irrelevance on the second parameter (of
type P = true), and the injectivity of their first projections. Thanks to that
last feature, subType instances inherit exactly the eqType comparison of
their parents after forgetting the proof witness, which reduces to naught the
difficulty inherent in dealing with general dependent Σ -types.

2.1.3 Sets as collections

Another design paradigm in the SSReflect libraries is to approach the notion
of sets as a selection of elements over a type. This choice is a necessary one:
while mathematicians rarely make their choice of foundations explicit, we
do not have the option to be that lenient. Meanwhile, this is a non-obvious
choice, because type theory does not in itself provide a single equivalent to
the notion of set found at the heart of Zermelo-Fraenkel-based mathematics.

Lemma eqbP : Equality.axiom eqb.
Proof. by do 2 case; constructor. Qed.

Canonical Structure bool_eqMixin :=
EqMixin eqbP.

Canonical Structure bool_eqType :=
Eval hnf in EqType bool

bool_eqMixin.

Figure 2.3: The declaration of an
eqType for booleans

7 (Garillot et al. 2009; Gonthier and
Mahboubi 2010, resp. §3.1,§6.2) treat
the API and usage of that construction
extensively.
8 Remember the official COQ existential
construction of § 1.1.6 on p. 25 is a
specialized instance of a more general
construction (dependent pairing through
inductive boxing) that we want to support
in all its generality. We then require a
projection and an elimination scheme, as
defined using the generic constructor inverse
to that projection. See the generic subType

instance for sig in the library for more
details.

88 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

One alternative is to consider that in type theory, types themselves are a
somewhat appropriate notion to formalize the notion of set. The definition
of a new set therefore corresponds to the definition of a new type. For
instance, this new type can be a co-product of two types, to model the
union of heterogeneous sets, or a Σ -type, to model a subset.

We have seen in the previous paragraph that it can be somewhat clumsy
to deal with subsets through the inductive construction of Σ -types sug-
gested in the COQ library. And indeed, in the modern calculus of COQ,
equipped with little proof irrelevance, this is an option that is rarely adopted.
Ubiquitous Σ -types would indeed make transferring the properties of a set
to one of its subsets a complex boxing operation, not to mention the heavi-
ness involved in dealing with highly dependent types.

Still close to that flavor of taking types as the primary construct stands
the approach of Bishop’s set theory.9 Diverging voluntarily from the usual
notions of set theory, it uses types equipped with a relation defining the
equality of their elements to describe what the mathematician thinks of as
sets, calling them setoids. The concept was translated to type theory and
COQ,10 and it figures pervasively in the real analysis developed in the C-
CoRN library (Cruz-Filipe et al. 2004). It was also used to formalize some
abstract algebra (Yu et al. 2003) in a more axiom-free context than C-CoRN.

However, the SSReflect library went with an explicit representation of
sets, meaning that the sets are instances of a container type (in the informal
sense) defined itself parametrically on a type of elements — that is, its carrier.
This is because the proof of the Feit-Thompson theorem sits at a particu-
lar location in the realm of formalized mathematics.11 Indeed, the choice
between representing sets as explicit enumerations of elements, or as types
with a relation (setoids) really hinges on whether sets themselves — rather
than their elements — are the objects of the mathematical discourse. Talk-
ing about Bishop sets in proofs — hence if using setoids, types themselves —
can become clumsy, because it once again brings us back to dealing with de-
pendent pairings such as the ones involved in Σ -types. Finite group theory,
meanwhile, quickly turns the spotlight on groups and subgroups, rather
than on their elements. This trend is even apparent in the earliest stages of
the proof: the isomorphism theorems feature only set-lifted constructions
and operations, for instance.12 Forcing sets to stay concrete thus ensured
those common objects of our proofs stayed at the lowest type universe, and
were easy to manipulate.

Finally, the Mathematical Components team also decided against alter-
natives giving the primacy to types since it places itself in a finite setting.
In this framework, the inhabitants of types can be extensively enumerated,
and we wanted to take as much advantage of that property as possible. We
will present the benefits we recovered from this in the next section.

Independently of the Feit-Thompson formalization in COQ, the “sets
as collections of elements” paradigm has known some popularity, not only
in the formalization of mathematics (Arthan 2006a; Bailey 1998a; Gunter
1989), but also as the hallmark of some of the more traditional proofs of
program verification or of meta-theoretic properties of programming lan-
guages. In fact, it crops up as soon as developments manage their own sets
“by hand” — examples include all solutions surveyed by Aydemir et al. (2008)

9 E. Bishop. Foundations of constructive
analysis. McGraw-Hill Book Co., New
York, 1967

10 (Barthe et al. 2003) includes a survey of
approaches to adapting this notion to type
theory. The COQ implementation of the
machinery behind the use of setoids was
recently reimplemented. Sozeau (2009)
includes comparisons with the previous
iterations along with a detailed treatment.

11 External considerations should also
be acknowledged here: the choices for
set-theoretic development in the SSReflect
library happened in 2006, at which time
setoid_rewrite had a previous (Sacerdoti
Coen 2006), less complete (Sozeau 2009,
§4.3) implementation.

12 One of them appears in § 1.3.3 on p. 54.

IMPLEMENTATION 89

— thus making the representation of sets with structure a challenge universal
enough to warrant careful study.

Hence, before looking at the definition of sets, as defined by an instance
of some generic container type, we look at how to define the parameter of
that container, i.e. the carrier type.

2.1.4 Finite Types

Module Finite.

Section RawMixin.

Variable T : eqType.

Definition axiom (e : seq T) :=

∀x, count (@pred1 T x) e = 1.

Record mixin_of := Mixin {

mixin_base : Countable.mixin_of T;

mixin_enum : seq T;
_ : axiom mixin_enum

}.

End RawMixin.

Section ClassDef.

Record class_of T := Class {

base : Choice.class_of T;

mixin : mixin_of (Equality.Pack base T)

}.

End ClassDef.

<...>

Module Import Exports.

Coercion base : class_of 7→ Choice.class_of.

Coercion mixin : class_of 7→ mixin_of.

Notation finType := type.

Notation FinType T m := (@pack T _ m _ _ id _

id).

End Exports.

End Finite.

Export Finite.Exports.

Figure 2.5: Finite types, with
explicit enumeration

The definition of our notion of finite type appears in Fig. 2.5. As usual,
we do not give the actual type, or pack occurring in the notations exported
by the module Finite, since they can be deduced from our packaging disci-
pline.13 The finite type mixin requests a sequence of elements e:
- (pred1 T x) : T � bool, where T is an eqType, is the predicate that re-

turns true if and only if its argument is equal to x

- (count a s) : nat counts the number of elements of (s : seq T) that
verify (a : pred T)14

Therefore, the axiom requested in our finite type structure is that e exactly
enumerates the elements of our finite type.

Since we have that enumeration, we can give a cardinal to our finite
type. The definition presents no particular difficulty, so that we just present
the notation we will use henceforth (Fig. 2.6). Having this cardinal means
that functions defined on a finite type have a bounded domain: they can
therefore be tabulated. It is easy to write a type for such tabulations: it
amounts to a sequence of elements of the range type, of length the cardinal
of the domain, and which definition features on Fig. 2.7 on the following
page.15 To actually apply the implied function on an element (x : fT),
with fT a finite type, it is enough to find the rank of x in the enumeration
of fT, and return the element of the tabulation sequence having the same
rank. This operation is made by the function FunFinFun.fun_of_fin in
Fig.2.7. To close the gap with the usual COQ functions (and use them in
functional position in COQ expressions), we simply make this function a
coercion to Funclass. Incidentally, this formalization allows us to prove ex-
tensionality on those finite functions, another feature that brings us closer
to the classical framework, without adding any axions. We can now de-
fine a set of elements as a selection of elements of the carrier type. We
do this by way of the explicit tabulation of an indicator function, on the

13 We ask for the patience of the reader
as to the exact definition of pack. It will
find its explanation in § 2.3.2 on p. 111.
As previously noted, seq is a richer re-
implementation of the standard library on
lists.
14 The definition of pred appears in
Fig. 2.2 on p. 86.

Notation "#| A |" := (card (mem A))
(at level 0, A at level 99,

format "#| A |") : nat_scope.

Figure 2.6: Cardinal notation for
finite types

15 We reuse the tuple type whose defini-
tion is in Fig. 1.23 on p. 57, and discussed
in 1.3.4. More details about this construc-
tion are in (Gonthier and Mahboubi 2010,
§6.3)

We again implore the patience of
the reader as to the phant/Phant use in
finfun_of, it will be touched upon in 2.3.2.
For now, it is sufficient to consider that it
is a construction that permits the extrac-
tion the first and second arguments aT, rT
of the constructor Finfun, from an arrow
type aT � rT:hence{ffun (aT � rT) }
means exactly Finfun aT rT.

90 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Variables (aT : finType) (rT : Type).

Inductive finfun_type := Finfun of #|aT|.-tuple rT.

Definition finfun_of of phant (aT � rT) := finfun_type.

Identity Coercion type_of_finfun : finfun_of 7→ finfun_type.

Notation "{ ’ffun’ fT }" := (finfun_of (Phant fT))

(at level 0, format "{ ’ffun’ ’[hv’ fT ’]’ }") : type_scope.

Notation fun_of_fin := FunFinfun.fun_of_fin.

Coercion fun_of_fin : finfun_type 7→ Funclass.

Figure 2.7: SSReflect’s finite
function type.

whole finite type. This indicator function returns a boolean for each el-
ement of the carrier, and therefore has a type{ffun (T � bool)} , as de-
fined in Fig. 2.8. The user of the SSReflect library will verify that this

Variable T : finType.

Inductive set_type := FinSet of {ffun pred T}.

Definition set_of of phant T := set_type.

Identity Coercion type_of_set_of : set_of 7→ set_type.

Notation "{ ’set’ T }" := (set_of (Phant T))

(at level 0, format "{ ’set’ T }") : type_scope.

Figure 2.8: SSReflect’s finite set
definition.

definition of a set as an indicator function gives us particularly smooth
definitions for the usual set-theoretic operations. Indeed, we can define a
function finset : ∀T : finType, pred T � {set T} that returns the set
associated to a predicate on a finite type, simply by assuming this predicate
is the membership of that set. Moreover, unboxing the indicator function
included (via ffun) in a set allows us to see this set as a (membership) pred-
icate. In fact, the SSReflect library allows this through coercions, using a
special class designed to write predicates in a “collective” form (Gonthier
and Mahboubi 2010, §5.3), so that we can write (x ∈ A), for the boolean
saying whether (x : T) belongs to (A : {set T}).

Given this, the definition for the union comes easily (the necessary no-
tations are in Fig. 2.9), and looks precisely like what one might find on a
blackboard:

Variable T : finType.

Implicit Types A B : {set T}.

Implicit Type x : T.

Definition setU A B := [set x | (x ∈ A) || (x ∈ B)].

Sets are therefore explicit selections of elements of a type, given through
an indicator function, which is often itself the composition of other set-
defining predicates. Let us now move on to the run-of-the-mill objects of an
algebraic hierarchy: set-theoretic constructs with abstract operations and
properties.

2.1.5 Finite Groups

When the notion of group comes up outside of mathematically-inclined
circles, it is as the mathematical tool of choice to study the symmetries of
concrete objects. This is an implicit reference to the representation theory
of groups, which consists, instead of looking at the multiplication structure

Notation "[’set’ x : T | P]" :=
(finset (fun x : T = > P))
(at level 0, x at level 69,

only parsing) : set_scope.
Notation "[’set’ x | P]" :=
[set x : _ | P]
(at level 0, x at level 69,

format "[’set’ x | P]") :
set_scope.

Figure 2.9: Set-from-predicate
notations.

IMPLEMENTATION 91

within the group, in looking at how a group can act on another object. In
particular, the group of nonsingular n × n matrices with real coefficients
acts by matrix multiplication on n-dimensional vectors. By mapping the
law of a group to the general linear group on n-dimensional vector space V,
the group actions provide invertible linear transformations on V.

For the reader interested in how the SSReflect libraries tackle modular
representation theory, we suggest better references than this document.16

But it remains clear that the key requirement for the group law to capture
a “symmetry” is to feature transformations which leave invariant the object
acted upon, or, equivalently, to feature invertible transformations. Thus, the
way that we —along with classes and textbooks on the subject — introduce
the notion of group is the following:

Definition 2 (Group – Mac Lane and Birkhoff 1988).
A group G is a set G together with a binary operation G×G→G, written

(a, b) 7→ ab , such that:

(1) This operation is associative.

(2) There is an element u ∈G with ua = a = au for all a ∈G.

(3) For this element u, there is to each element a ∈G an element a′ ∈G
with aa’ = u = ’aa.

In other words, a group is a monoid in which every element is invert-

ible.

The group is, of course, finite when the underlying set is. The operation

is also called the law of the group, and u its identity element. Note the
explicit overloading of the letter G above.

To figure out how to map this definition to a Definition in COQ, we
can notice that the “sets as collections” paradigm goes further than dictating
how we specify the basic set-theoretic concepts. Indeed we notice that
when mathematical properties speak of group-theoretic relations (such as
the subgroup relation) they usually relate groups which elements have at
least a common type. Those groups, without explicit mention, obviously
share the same notion of group operation and identity element. When this
is not the case, and when the studied relations are therefore heterogeneous,
the mathematical statement always features an explicit mapping of some
sort (recall the isomorphism theorem example of § 1.3.3 on p. 54).

Hence it is helpful in the definition above to separate the set G from the
companion law and identity element. We thus let the carrier type carry as
much of the algebraic structure as we can. The declaration for the finite
group type mixins is in Fig. 2.10 on the next page. It is an evolution of the
definition of finite group domain provided in (Gonthier et al. 2007), with
an added, textbook case of thin-slicing (§ 1.1.9 on p. 30). Indeed, the group
domain type structure now factors through another structure referred to
in the mathematical literature as a semigroup with involution or ∗-semi-
group: a "pregroup" (noted as base_type), i.e., a monoid with an involutive
antimorphism.17

When the two parts of this formalization are joined, as in type, which
joins a finiteness condition and group operations through base_type and an
inverse property, it is equivalent to the traditional characterization of the
properties of the finite group type (Gonthier et al. 2007, §3.2). However,

16 S. Ould Biha. Composants mathématiques
pour la théorie des groupes. Thèse de
doctorat, Université de Nice - Sophia
Antipolis, 2010. URL http://tel.

archives-ouvertes.fr/tel-00493524/en

17 An antimorphism g is an operation
defined on monoids that reverses the order
of multiplication: ∀x, y, f (x ∗ y) = f (y) ∗′

f (x). The Mathematical Components
library customarily adopts a specific, but
rather involved notation for morphism
properties.

The usual property saying morphism f
is compatible with multiplications of its
domain and range — that we will detail in
§ 2.2.3 — says: ∀x, y, f (x∗y) = f (x)∗′ f (y).
We note this by stating the opera-
tions f has to be compatible with :
{morph f : x y / x ∗ y 7→ x ∗ ′y}.
When we work in an endomorphic set-
ting where ∗ = ∗′, we elide the second
mention: {morph f : x y / x ∗ y} .
As a consequence, the property
of anti-endomorphisms is stated:
{morph f : x y / x ∗ y 7→ y ∗ x} .

http://tel.archives-ouvertes.fr/tel-00493524/en
http://tel.archives-ouvertes.fr/tel-00493524/en

92 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Record mixin_of (T : Type) : Type := BaseMixin {

mul : T � T � T;

one : T;

inv : T � T;
_ : associative mul;
_ : left_id one mul;
_ : involutive inv;
_ : {morph inv : x y / mul x y 7→ mul y x}

}.

Structure base_type : Type := PackBase {

sort : Type;
_ : mixin_of sort;
_ : Finite.class_of sort

}.

Definition mixin T :=

let: PackBase _ m _ := T return mixin_of (sort T) in m.

Definition finClass T :=

let: PackBase _ _ m := T return Finite.class_of (sort T) in m.

Structure type : Type := Pack {

base : base_type;
_ : left_inverse (one (mixin base)) (inv (mixin base)) (mul

(mixin base))

}.

Figure 2.10: The definition of a
finite group domain, or
finGroupType, through a
pre-group inherited by group

subsets.

the base_type also provides some properties still valid on group subsets.
With this structure, we can easily reason with subsets of group elements,

for example:
- set product can be denoted A * B, and the unit set is denoted by 1.
- left and right cosets are just notation for product with singletons.
- the set monoid uses the same lemmas (mulgA, gsimp, etc) as the group

elements.
As in (Gonthier et al. 2007), we then define groups as sets solely required
to contain the unit and closed by the application of an associative operator,
those two last notions being carried by the type of the elements. Along
with intermediate definitions controlling coercion classes necessary to state
equalities arising from groups in a set context, this is what is represented in
Fig. 2.11. This pattern was discovered independently by Arthan (2006a,b),
and is so effective that we have since scaled this approach to a much bigger
algebraic hierarchy (Garillot et al. 2009).

Module GroupSet.
Definition sort (gT :

baseFinGroupType) :=
{set gT}.

End GroupSet.

Definition group_set A :=

(1 ∈ A) && (A * A ⊆ A).

Lemma group_setP A :

reflect (1 ∈ A ∧
{in A & A, ∀x y, x * y ∈ A})

(group_set A).
Proof.
<...>
Qed.

Structure group_type := Group {
gval :> GroupSet.sort gT;
_ : group_set gval

}.

Figure 2.11: The definition of a
finite group grouptype: a or set
containing the identity and closed
by multiplication.

IMPLEMENTATION 93

2.2 Cyclic groups

REASONING ON THE CORRECTNESS OF THE RSA CRYPTOSYS-
TEM IS MUCH EASIER WITH A LITTLE BIT OF GROUP THEORY.
This statement is true when thinking of the mathematics of the system, as
we will see in the next few paragraphs with a view on the history of proofs
of the main theorems and lemmas this correctness property is built upon.
But we would also like to make it a claim about the impact of abstraction
in the formalization of mathematics: this is a perfect example of a case
where the “practical” applications of proof assistants — here, reasoning on
cryptographic protocols — can be greatly helped with libraries dealing with
abstract algebra, including SSReflect. This thus presents one of the first
developments made by the author along this thesis.

Let us look at the encryption and decryption primitives of RSA: given a
message, M, represented as a number, the cypher text C is given by C≡Me

(mod n). Likewise the decryption is defined as M = Cd (mod n). The
public key is the pair (e , n) and the private key is the pair (d , n), with the
message M chunked and padded appropriately so that M≤ n.

The correctness property verifies that the cypher text allows us to recover
the original message, i.e.:

Cd ≡Med ≡M (mod n) (2.1)

For that, it suffices to choose e , d so that :

ed ≡ 1 (mod Φ(n)) (2.2)

where Φ designates Euler’s totient function.18 This is an easy process: for
security reasons,19 n is chosen to be the product of two randomly chosen
large prime numbers p,q . Since for all n1, n2 coprime,

Φ(n1n2) = Φ(n1)Φ(n2) (2.3)

the totient of n is the easily computed to be Φ(pq) = (p − 1)(q − 1) =
n− (p + q) + 1. Hence, to pick e , d verifying (2.2) above, all that remains
to do is to pick a random e coprime to Φ(n), such that we can use Euclid’s
algorithm to compute d , its multiplicative inverse modulo Φ(n).

And finally, (2.2) leads to (2.1) thanks to Euler’s theorem:

Theorem 1 (Euler). For all n and a coprime to n, aΦ(n) ≡ 1 (mod n)

Hence, if (2.2) is true, ∃k such that ed = k Φ(n)+ 1, so that

Med =MkΦ(n)+1 =MkΦ(n)M≡M (mod n)

is a consequence of Euler’s theorem is M and n are coprime. If they are
not (and if M 6= x, in which case this is trivially true), we can assume,
without loss of generality that p|M and that q and M are coprime. In
that case MkΦ(n)M ≡M (mod q) is a consequence of Euler’s theorem, and
MkΦ(n)M≡M (mod p) is trivially true, which allows us to conclude using
a Chinese lemma (see below).

We want to show that a little bit of abstract algebra is key to easily un-
derstanding and proving (2.3) and Euler’s theorem.

18

Definition 3 (Euler’s totient function).
For all n ∈N, Φ(n) is the number of integers
1 ≤ m < n such that m and n are coprime
(i.e. m ∧ n = 1).

For p prime, we notice that Φ(p) = p−1.
19 R. L. Rivest, A. Shamir, and L. Adle-
man. A method for obtaining digital
signatures and public-key cryptosys-
tems. Communications of the ACM, 21
(2):120–126, Feb. 1978. ISSN 00010782.
doi:10.1145/359340.359342

http://dx.doi.org/10.1145/359340.359342

94 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

2.2.1 Proving Euler’s theoremand properties ofΦ(n).

Elementary proofs The original, elementary proof Euler’s theorem20 only
depended in the notion of multiplicative inverse:

Proof: Theorem 1. Since a is coprime to n it has a multiplicative inverse
modulo n. If we multiply by said inverse an element of the class of amk

modulo n — with mk one of the m1, . . . , mΦ(n) integers less than and co-
prime to n — we get an element of the nonzero class of mk . Hence, mod-
ulo a permutation, the Φ(n) distinct congruence classes modulo n of the
(mk)1≤k≤Φ(n), are the same as those of the (a mk)1≤k≤Φ(n). This means that

∏

1≤k≤Φ(n)

amk ≡
∏

1≤k≤Φ(n)

mk (mod n)

Cancellation of the invertible m1, . . . , mk , . . . , mΦ(n) from both sides then
yields the theorem:

aΦ(n) ≡ 1 (mod n)

�

Relation (2.3) was also proved by Euler in 1761 (ibid.), in a proof which
elementary flavor is best rendered by Kronecker.21 It uses the preliminary
result that:

∑

d |n

Φ(d) = n (2.4)

This equality is elementarily justified by considering subsets of the n-element
set {1, . . . , n}, containing those elements that share the same greatest com-
mon divisor g with n. Those Qg = {k|1 ≤ k ≤ n, n ∧ k = g} form a
partition:

{1, . . . , n}= ⊎g |nQg

For any k ∈Qg there is a k/g coprime with n/g , and conversely, for any
m coprime to n/g , m g ∈Qg , so that |Qg | = Φ(n/g) and that the egality
follows.

Proof : (2.3). We prove Φ(mn) = Φ(m)Φ(n) by strong induction on (d e <

mn) with m, n coprime.
Thanks to (2.4), we have:

mn =Φ(m)Φ(n)+Φ(m)
∑

d |n,d<n

Φ(d)+

Φ(n)
∑

e |m,e<n

Φ(e)+
∑

d |n,d<n,e |m,e<m

Φ(e)Φ(d)
(2.5)

Moreover since m, n are coprime:

mn =
∑

f |mn

Φ(f) =
∑

d |n,e |m

Φ(d e)

Applying the induction hypothesis to the lesser terms of the sum, this fac-
tors to:

mn =Φ(mn)+Φ(m)Φ(m)
∑

d |n,d<n

Φ(d)+

Φ(n)
∑

e |m,e<n

Φ(e)+
∑

d |n,d<n,e |m,e<m

Φ(e)Φ(d)

20 Featured in Euler’s Elements of Algebra
(1761).

21 Vorlesungen über Zahlentheorie, (1901),
p.245

http://books.google.com/books?id=X8yv0sj4_1YC
http://www.archive.org/details/vorlesungenberz00krongoog

IMPLEMENTATION 95

And we conclude cancelling with (2.5). �

A more modern approach Both previous proofs, though elementary, do not
have the simplicity of the modern, algebraic approach to the theorem and
equality (2.3). The first approach towards simplifying those proofs came
with noticing the relationship between Φ(n) and the Chinese remainder

theorem, stated as an algorithm to solve linear congruence equations .

Theorem 2 (Chinese remainder theorem). For any two coprime numbers m

and n, picking any two a (mod m), b (mod n) there is a unique c (mod mn)

such that c ≡ a (mod m) and c ≡ b (mod n).

The idea is that the Chinese remainder theorem puts in one-to-one cor-
respondence the two congruence classes modulo m and n, on the one hand,
and a congruence class modulo mn, on the other hand. However, its proof
is a constructive statement dealing with integers : it exhibits the necessary
(c (mod mn)), and the reader is left to deduce the set-lifted link with con-
gruence classes.

Afterwards, it suffices to remark that Φ(k) is, by definition, the number
of congruence classes modulo k, and the equality (2.3) follows. This remark
was first made by Gauss,22 and was reflected in a preliminary proof of equal-
ity (2.3) in SSReflect, made by Laurent Théry before our own work on the
subject. This last proof even has an ancestor in the proof of correctness of
the RSA algorithm included in the contributions to COQ , also based on the
Chinese remainder theorem. It is interesting to note that this range of tools
(“manually” counting congruence classes, and elementary properties of di-
visibility) was also the state of the art previously employed for formalized
reasoning on Euler’s totient function (Fujisawa et al. 1998).

Our goal was to equip the SSReflect library with enough abstract tools
to reach the modern (and much simpler) statement of the proof:

Proof : Theorem 1 on p. 93. Interpret as equality in the multiplicative group
(Z/nZ)×, and apply Lagrange’s theorem23 saying that the order of a finite
group “kills” all its elements. �

Meanwhile, the modern proof of equation (2.3) still considers the Chi-
nese remainder theorem, but set-lifted, and stated this time as a group iso-
morphism, something that did not occur in mathematical literature before
the 1920s (Stillwell 1994, p.107). It is then stated as such:

Theorem 4 (Chinese remainder theorem). If m and n are coprime, then the

map ρ : r 7→ (r (mod m), r (mod n)) is a group isomorphism of (Z/mnZ)×

onto (Z/mZ)×× (Z/nZ)×.

The key benefit of the group isomorphism formulation here, is that start-
ing from a value for the inverse of the morphism ρ provided by Theorem 2,
and without considering the explicit extensional definition of congruence
classes, we can get Equation 2.3 on p. 93 using a simple cardinality lemma.

Hence, with the hindsight on the historical progression of this proof,
and given approaches to the formalization, it seems clear that the notion of

multiplicative group modulo n is the key to the simplification of the

proofs of Euler’s totient function properties.24

22 Disquisitiones Arithmeticae (1801), art.
38.

23 Lagrange’s theorem per se relates the
order (number of elements) of subgroups
with their parent:

Theorem 3 (Lagrange). The order of any
subgroup H of G divides the order of G.

However, a simple consequence of the
theorem is that the order p of any element
a of a finite group G (p is the smallest k
with ak = 1) divides the order |G| of the
group, since p is also, by definition, the
order of the cyclic subgroup generated by
a. Therefore a|G| = 1.
We use × (in regular script) to denote the
exterior direct product, i.e. the canonical
group structure defined on the cartesian
product of two groups.

24 The underlying set bears the group
structure traditionally associated to group
of units F∗

p
, the (p − 1)multiplicatively

invertible elements (units) of the field
Fp of characteristic p. We will skew our
notations and use of variables closer to that
ring-theoretic vocabulary.

http://coq.inria.fr/V8.2pl1/contribs/RSA.html
http://coq.inria.fr/V8.2pl1/contribs/RSA.html
http://resolver.sub.uni-goettingen.de/purl?PPN235993352

96 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

2.2.2 Themultiplicative group (Z/pZ)×

The first step towards defining (Z/pZ)× its group domain type. For this,
we may look at the already defined additive modular group. Its carrier type
has elements in ordinal n, noted ’I_n:

Inductive ordinal (n : nat) := Ordinal m of m < n.

Canonical ordinal_subType :=

[subType for nat_of_ord by ordinal_rect].

The symbol< here stands for the boolean strict order on natural numbers.
It seems that all that is left is to define a similar subtype for the multiplica-
tively invertible elements of ordinal n.

At reading this, the reader may have the impression that we are violating
our own paradigm of sets as a selection: should not the integers up to our
modulo be members of a more general type ?

The answer is negative, because having the modular addition defined
on the set of all integers would require us to declare a potential infinity of
finGroupType instances on nat (of which only one would be inferrable), not
to mention the added complexity for defining the modular operations. It
is secondly that from the subtyping point of view, those modular integers
are in a larger type already : the property attached to an ordinal such as
declared above is boolean, and proof-irrelevant, so that we can use our
subType (§ 2.1.2 on p. 86) structure to ensure that the decidable Σ -type this
ordinal n forms coerces injectively to nat.

This ease in defining types by decidable specialization hints at an easy
definition for the group of units modulo p. Given a the boolean predicate
coprime, we simply define:

Inductive Zp_unit := ZpUnit x of coprime p x.

Implicit Types u v : Zp_unit.

Coercion Zp_unit_val u := let: ZpUnit x _ := u in x.

Canonical Structure Zp_unit_subType := SubType Zp_unit_val

Zp_unit_rect vrefl.

The group we are interested in will indeed be a selection of elements. It
will just have the uncommon property of containing all the elements of its
underlying fingroupType carrier. Thanks to subtypes, we have the ability
to quickly see those elements as modular integers, or simply integers, so
that the definition remains tractable nonetheless.

The key objects for consideration in our newly defined group type then
come from passing around coprimality proofs, as witnesses of membership
in the subtype:

Lemma Zp_unit_1_proof : coprime p Zp1.

Lemma Zp_unit_mul_proof : ∀u v, coprime p (Zp_mul u v).

Lemma Zp_unit_inv_proof : ∀u, coprime p (Zp_inv u).

Definition Zp_unit_1 := ZpUnit Zp_unit_1_proof.

Definition Zp_unit_inv u := ZpUnit (Zp_unit_inv_proof u).

Definition Zp_unit_mul u v := ZpUnit (Zp_unit_mul_proof u v).

Once this is done, we can define the base group type structure as in
Fig. 2.12. The group itself is defined as usual from the axioms above, so that
here and in general, strict prefixing by ZpUnit should be enough to help the
reader see what we are exactly referring to in subsequent lemmas.

Lemma Zp_unit_mul1g :
left_unit Zp_unit_1 Zp_unit_mul.

Lemma Zp_unit_mulVg :
left_inverse Zp_unit_1 Zp_unit_inv

Zp_unit_mul.
Lemma Zp_unit_mulA :
associative Zp_unit_mul.

Definition
Zp_unit_baseFinGroupType_def :=

Eval hnf in [baseFinGroupType of
Zp_unit by

Zp_unit_mulA, Zp_unit_mul1g &
Zp_unit_mulVg].

Figure 2.12: A basefinGroupType

for the multiplicative group
modulo p

IMPLEMENTATION 97

In sum, the multiplicative group is defined on the unambiguous set ob-
tained by the intersection of two decidable subtypes:
- the ordinal set of integers smaller that a limit p,
- and the set of integers coprime to that limit.

Since the subtype structure gives them different types for each limit, this
provides us with the opportunity to bestow different group instances for
each of those sets.

2.2.3 Isomorphisms andmorphisms

The next step towards a simple formalization of the correctness of RSA is a
description of the set-lifted Chinese lemma mentioned in § 2.2.1 on p. 95.
We recall that it states that the the map ρ : r 7→ (r (mod m), r (mod n))

is a group isomorphism of (Z/mnZ)× onto (Z/mZ)× × (Z/nZ)×. We
therefore need to define group morphisms. Since we are in a finite context,
all we will need from there to isomorphisms is an injectivity property.

We start with the mathematical definition of an homomorphism:25

Definition 4 (Dummit and Foote 2004). Let (G,☆) and (H,◇) be groups. A

map ϕ : G→H such that:

ϕ(x☆ y) = ϕ(x)◇ϕ(y) for all x, y ∈G

is called a homomorphism.

Translating that definition in COQ will put our definition of sets as a

selection of elements of a given type under the spotlight. The mathematical
mapping naturally comes with a proper domain. This is equally implicit
when the COQ equivalent of that mapping is a (necessarily total) COQ

function whose carefully-crafted type represents its domain.
Schematically, we can envision our definition of sets (Fig. 2.8 on p. 90)

as a list l of elements of type T — modulo a helpful structure package. Yet
we still want to avail ourselves of the function-based terms of COQ, and
therefore want a function to be involved in the representation of a mathe-
matical “mapping with domain”, even if the underlying object we choose
to represent it is not.26 Therefore, the question is: to represent a mapping
of domain l1 : list T1 and of range l2 : list T2, which function of —
necessary — type (T1 � T2) should we choose?27

Whichever function (f : T1 � T2) we adopt to represent a mapping
ϕ : G 7→ H, it seems clear that it will have to be mimic the behavior of ϕ
within its domain. The difficult issue is to deal with the values of f outside
the finset that will represent G or, equivalently, that there is an infinity of
COQ functions that behave like ϕ within said representant. In most part
to ease dealings with morphism composition, we adopted a definition that
selects one particular representant of this set of candidate functions.

We explain it without further discussion, since we will come back to an
analysis of this definition under a different light in § 2.3.1 on p. 106: the

gist of it is that the existence of a unit for groups permits a “dummy

return” approach. Though the fundamental difficulty here is in represent-
ing a mapping-with domain, not necessarily a morphism, the addition of the
single, localized morphism property exemplifies techniques we explained

In this subsection, the word function will
always stand for a COQ term, never for
the mathematical notion. Conversely, the
word mapping will always designate the
mathematical notion of function, with
specific domain and range.

25 An homomorphism must preserve
structure, here that of a group. The
unit’s uG image is uH by applying the
definition’s property to uG☆ x, x ☆ uG
and recalling group units are unique.
The image of the inverse is computed
by applying the definition’s property to
x☆ x−1.

26 As with the finite mappings of § 2.1.4
on p. 89, internally represented with lists
of elements of the range indexed by the
enumeration of the domain — but still
coercing to COQ functions.
27 We mean list in the abstract sense, here,
see note 33 on p. 35.
There is a reason we want to use COQ’s
functions to represent morphisms rather
ad-hoc tuples inspired from those we have
used to define finite functions in § 2.1.4
on p. 89, but defined — without serious
difficulty — in a partial manner: functions
have native identity and associativity
laws we can benefit from. Those laws
correspond to the functoriality of the
lookup tables of those partial-finite
“functions”, but this is not accessible
directly in-calculus, something we will
come back to in § 3.4.4 on p. 134.

98 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

in the previous chapter without clouding the issue too much. We go back
henceforth to defining morphisms.

Suppose we want to build the concrete representation in COQ of a mor-
phism ϕ defined on a domain G. The method we describe here was ex-
plained in (Gonthier et al. 2007).

The representation of G itself is built as a structured set G of elements of a
type gT, the latter being equipped with the appropriate Canonical Structure
— that is, an instance of the finGroupType record type. A similar instance
hT of finGroupType will represent the type of elements in the range of the
function. The user wanting to define ϕ will then have to define a function
f as follows:

f :(x : gT) 7→

¨

1
hT

if x /∈G
(ϕ(x) : hT) otherwise

This defines a morphism with the following parameters: we can compute
a kernel K,28

ker f := {x : gT | {∀y : gT, f (x * y) = f y}}.

and a domain D,

mdom f := ker f ∪ {x : gT, f x 6= 1}.

Then, by just providing a proof thatD is a group on which∀x, y ∈D, f(xy) =

f(x) · f(y) 29, the user can declare a new instance of morphism. Indeed, pro-
vided that ϕ is not the trivial morphism:30

Lemma 1. ∃w,ϕ(w) 6= 1⇒G=D

Proof. G ⊆ D is clear, since for all x in G, y ∈ G⇔ xy ∈ G. For the
converse, the difficult case is when x ∈ K. Then f(x x−1w) = f(w) 6= 1,
while if x /∈G, f(x x−1w) = f(x−1w) = 1. �

f is a representative of the class of functions of type gT � hT whose re-
striction to D is ϕ — the example of a frequent pattern in our library: 31

rather than working with all objects that behave well under a local hypothe-
sis, we prefer building a normalized representative that enjoys that property
in an unequivocal fashion.

In conclusion, our definition for morphisms is:

Variables (elt1 elt2 : finGroupType).

Structure morphism : Type := Morphism {

mfun :> elt1 � elt2;

group_set_dom : group_set (dom mfun);

morphM : ∀x y, dom mfun x � dom mfun y �

mfun (x * y) = mfun x * mfun y

}.

Then, the definition of injectivity is but a simple notation:

Notation "’’injm’ f" := (pred_of_set (’ker f) ⊆ pred_of_set 1)

(at level 10, f at level 8, format "’’injm’ f") : group_scope.

2.2.4 Automorphisms

We start with some example morphisms, with the intent of working up to
the isomorphism ρ mentioned in § 2.2.1 on p. 95.

The first field-test for the use of isomorphisms is cyclic groups:32 they
are the simplest non-trivial groups, their structure is well-known, so is that

28 Compare this COQ encoding to the
usual mathematical definition:

Definition 5 (Dummit and Foote 2004).
Let G and H be groups and ϕ : G 7→H be a
homomorphism. [We] define the kernel to
be {g ∈G|ϕ(g) = 1H}.

29 Something we will call being morphic on
D
30 Given a group G, we call the surjec-
tive morphism f : G → 1 trivial, or
trivialising.

31 Look e.g., at the definition of quotients
in (Gonthier et al. 2007, §3.3).

32

Definition 6 (Dummit and Foote 2004,p.
68). A finite group H is cyclic if H can
be generated by a single element, that is
if there is some element x ∈ H, such that
H= {xk |k ∈ [0; n], n ∈N} (where as usual
the operation is multiplication).

33 The automorphism group of G is the
group formed by the bijective endo-
morphisms G → G, with function
composition as the law and the identity
function as trivial element.

IMPLEMENTATION 99

of their automorphism group,33 and both are made clearer by mapping to
a finite group corresponding to some initial segment of N.

Any cyclic group of order n is isomorphic to the additive group of inte-
gers less than n and this isomorphism is defined in the following way:34

Definition 7. Definition Zpm n a (i : ’I_n) := a ^+ i.

The declaration of the morphism canonical structure is deduced from the
proof of the characteristics properties — since we note the exponentiation
induced by the multiplicative group law with the infix ^+:

Lemma ZpmM : ∀(n : pos_nat) a, a ^+ n = 1 �

{in Zp n &, {morph Zpm a : x y / x * y}}.

The integer parameter n in this definition constrains the ordinal type,
but is never re-used in the actual term (Zp n): it is itself no other than
[set x :′I_n|true] — also known as the full underlying domain.

Then all that remains is an injectivity proof which is obtained without
difficulty from a cardinality argument:

Lemma Zpm_inj : ∀a, injective (@Zpm #[a] a).

Likewise, note this injectivity property depends on the order #[a] de-
fined literally as the smallest integer such that a^n = 1+:

Notation "#[x]" := (order x) (at level 0, format "#[x]") :

group_scope.

As we have seen in note 23 on p. 95 there are two definitions for the word
“order” in group theory: the one just above, and the cardinal of a group.

Cyclic groups is where those definitions meet : a cyclic group is defined
as the set generated by a single element x — and the generated set is obtained
by integrated intersections with a method depicted by Bertot et al. (2008).

Definition generated A := \bigcap_(G : groupT | A ⊆ G) G.

Definition cycle x := generated [set x].

Then the definition of order of an element becomes, as expected (see
Fig. 2.6 on p. 89 for notations) :

Definition order x := #|cycle x|.

This is the simplest isomorphism one can define, and usually the first
encountered in an undergraduate course. The second one can expect is
the correspondence between the automorphism group of a cyclic group of
order n, and our now familiar multiplicative group modulo n.

Automorphisms, however, have yet to be defined. And our policy of
defining sets as a selection of elements means that this definition might be
slightly more complex than usual.

Automorphisms are bijective endomorphisms. Hence, they have to
relate somehow to functions of type gT�gT, for gT a finGroupType. But
gT � gT is not a finGroupType itself: only some of its elements are invertible.

We have to define a group type for invertible functions (that is, in a finite
context, injective functions) of a group type unto itself: In sum, a type of
permutations. Thankfully, they are the selection of those functions of type
gT � gT for which a decidable injectivity property is true: hence, they can
be defined with a subtype, much in the way we dealt with the multiplicative
group in § 2.2.2 on p. 96.

34 We have introduced the notation for
ordinals at the beginning of 2.2.2 on p. 96.

100 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Inductive perm_type : predArgType :=

Perm (pval : {ffun T � T}) & injectiveb pval.

Definition pval p := let: Perm f _ := p in f.

Definition perm_of of phant T := perm_type.

Identity Coercion type_of_perm : perm_of 7→ perm_type.

Notation pT := (perm_of (Phant T)).

Canonical perm_subType :=

Eval hnf in [subType for pval by perm_type_rect].

Figure 2.13: Definition of a type
of permutations

The definition for permutations is given in Fig. 2.13. Note the use of
our finite functions, ensuring that our type of permutations coerces to the
underlying COQ functions type. It also features a phantom type argument
for the benefit of notations, as explained in § 1.4.3 on p. 70.

From this type of permutations, automorphisms are nothing but the
selection of those injective endomorphisms that are also surjective and enjoy
the characteristic property of morphisms on a group subset of their domain
type:
Variable gT : finGroupType.

Implicit Type A : {set gT}.

Implicit Types f g : {perm gT}.

Definition Aut A := [set f | perm_on A f && morphic A f].

Since, however, the fact that A is a group in the definition above is only
an auxiliary expectation that is not necessary for the definition of automor-
phisms, we do not require it at this stage (A is a set above). It will be easy
to add to the context of lemmas that might make use of it along the library
we develop for automorphisms and more importantly, the presence of the
simplest possible type as an argument of the automorphism constructor
ensures projections from group types will be inserted as coercions at the ap-
propriate positions : the application of our automorphism lemmas will
trigger group inference if necessary.

One remarkable consequence of that definition is that automorphisms
are not morphisms in the sense defined above : the permutation type re-
quires they return distinct values for any pair of elements in their domain
type and not only on the subset of which they are an isomorphism. Nonethe-
less, it was still possible to define a notion of automorphism whose domain
was determined by its values, using the same trick as in the previous section:
we made automorphisms behave as the identity outside of their domain.

We will come back on how we fared with that definition. For now, we
go back to isomorphisms.

2.2.5 Cycles and integersmodulo n

The first isomorphism we have seen above (Def. 7 on the previous page) also
defines the additive action of the generator a on its “own” cyclic group.35

The idea of the isomorphism between the group of automorphism of
a cyclic group and Z/nZ× is that any other generator of the cyclic group
<[a]> would give rise to an action that would also generate the whole group.

If we define the action obtained from any element of the group, we write:
Variable a : gT.

35

Definition 8 (Dummit and Foote 2004,
p.41). A group action of a group G on a
set A is a map from GxA to A (written as
g − a, for all g ∈G and ai nA) satisfying the
following properties:
1. g1.(g2.a) = (g1 g2).a, for all

g1, g2 ∈G,a ∈A, and
2. 1.a = a, for all a ∈A.

IMPLEMENTATION 101

Variable n : nat.

Definition cyclem of gT := fun x : gT = > x ^+ n.

However, it is not yet clear that this function returns an automorphism,
in the sense of our definition above. To ensure that, we have to prove that
if its first argument is a member of Z/nZ×, we get an injective function.
The proof is straightforward and is followed by the demonstration that we,
indeed, generate the whole group:
Variable u : Zp_unit #[a].

Lemma injm_cyclem : ’injm (cyclem u a).

Proof.

apply/subsetP= > x; case/setIdP= > ax; rewrite !inE -order_dvdn.

rewrite -order_eq1 -dvdn1; move/eqnP: (valP u) = > /= �.

by rewrite dvdn_gcd order_dvdG.

Qed.

Lemma cyclem_dom : cyclem u a @@* <[a]> = <[a]>.

Proof.

apply/morphim_fixP= > //; first exact: injm_cyclem.

by rewrite morphim_cycle ?cycle_id ?cycleX.

Qed.

From those proofs, we have defined a construction that builds the auto-
morphism which corresponds to our original COQ function (and coerces
to it).
Definition Zp_unitm := aut injm_cyclem cyclem_dom.

It is that final function that we show to be an isomorphism in a manner
similar to what was done above for the additive case.
Lemma Zp_unitmM : {in Zp_units #[a] &, {morph Zp_unitm : u v / u

* v}}.

<...>

Lemma injm_Zp_unitm : ’injm Zp_unitm.

<...>

This isomorphism made it elementary to prove that the automorphism
group of a cyclic group is abelian, for instance:
Lemma Aut_cycle_abelian : abelian (Aut <[a]>).

Proof. by rewrite -morphim_Zp_unitm morphim_abelian

?Zp_units_abelian. Qed.

And moreover, it is establishing a link between Φ and the generators of
a cyclic group: knowing that ak is another generator of the cyclic group
generated by a if and only if k is coprime to the order n of a, it should now
be clear that:
Lemma phi_gen : phi #[a] = #|[set x | generator <[a]> x]|.

Proof.

<...>

Qed.

To continue on Φ, it was finally easy to provide a definition for the
isomorphism ρ (see definition in Thm. 4 on p. 95) of type

Zp_units (m * n) � (Zp_units m) * (Zp_units n)

through injections within the subtype of the multiplicative group defined
in § 2.2.2 on p. 96. The technique is similar to the autm function above.

The injectivity proof was carried out by providing an inverse to ρ, using
this time a number theoretic Chinese lemma. It led us, finally, to the proof
of equation 2.3 on p. 93 above:

102 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Lemma phi_mul: ∀m n,

coprime m n � phi (m * n) = phi m * phi n.

Proof.

move= > m n Hcop.

case: (posnP m) = > [� | mpos]; first by rewrite mul0n phi0

mul0n.

case: (posnP n) = > [� | npos]; first by rewrite muln0 phi0

muln0.

have:= @rho_isom (PosNat mpos) (PosNat npos) Hcop.

by move/isom_card; rewrite !cardsT card_prod !cardphi.

Qed.

Since we have a cardinality library on injective morphisms, this proof of
phi_mul was but four lines, down from the original 52.

Euler’s theorem (Thm. 1 on p. 93) is then obtained as a simple corollary
of the second isomorphism presented above.36 Its proof, Fig. 2.14 consists
in using Legendre’s theorem order_dvdn followed by a cardinality lemma.

Theorem Euler: ∀a n: pos_nat, coprime a n � a ^ phi n = 1

%[mod n].

Proof.

move= > a n Cop.

have Ha’: coprime n (inZp (valP n) a) by rewrite coprime_sym

coprime_modl.

have Hp1: (ZpUnit Ha’) ^+ (phi n) = 1.

apply/eqP; rewrite -order_dvdn -card_Zp_units.

by apply: cardSg; rewrite cycle_subG inE.

move/val_eqP: (@Zp_units_expgn n (ZpUnit Ha’) (phi n)).

by rewrite /= modn_exp Hp1; move/eqP�.

Qed.

Figure 2.14: Proof of Euler’s
theorem

We now have all the prerequisites of a swift proof of the correctness of
RSA.

2.2.6 RSA’s correctness

Naturally, having equation 2.3 on p. 93 as a library lemma (phi_coprime)
helps tremendously. Hence, to pick e , d verifying the equation 2.2 on
p. 93 above, all that remains to do is to pick a random e coprime to Φ(n)
such that we can use Euclid’s algorithm to compute d , its multiplicative
inverse modulo Φ(n). The details of those first definitions are represented
on Fig. 2.15.

Variable p q : nat.

Variable prime_p : prime p.

Variable prime_q : prime q.

Variable neq_pq: p 6= q.

Local Notation n := (p * q).

Hypothesis big_p: 2 < p.

Hypothesis big_q: 2 < q.

(* We compute the totient of that product. *)

Lemma pq_coprime: coprime p q.

Proof. by rewrite prime_coprime // dvdn_prime2

//. Qed.

Lemma phi_prime : ∀x, prime x � phi x = x.-1.

Proof.

move= > x; move/phi_pfactor; move/(_ _ (ltn0Sn

0)).

by rewrite expn1 expn0 muln1.

Qed.

Lemma pq_phi: phi(n) = p.-1 * q.-1.

Proof.

rewrite phi_coprime; last by rewrite pq_coprime.

by rewrite !phi_prime //.

Qed.

Figure 2.15: First definitions for
RSA correctness

The bane of working with a proof assistant is that we can’t ignore an often-

overlooked detail: if M and n are not coprime (and if M 6= n, otherwise this

36 That ultimate step is the work of Laurent
Théry.

In this introduction of basic lemmas, we
noticed that the value of Φ for a prime
wasn’t included in the library. However,
the Search tool of SSReflect (Gonthier
et al. 2008, §9) allowed us to quickly find
a more general lemma on the value of Φ
based on the prime decomposition of a
number (phi_pfactor above).

http://www-sop.inria.fr/marelle/Laurent.Thery/me.html
http://www-sop.inria.fr/marelle/Laurent.Thery/me.html

IMPLEMENTATION 103

is trivially true), we can assume, without loss of generality that p|M and q

and M are coprime. This case is treated in Fig. 2.16

Lemma notcoprime: ∀x, 0 < x < n � ∼∼ (coprime x n) �

((p %| x) && coprime x q) || ((q %| x) && coprime x p).

Proof.

move= > x; case/andP= >[x_gt0 x_lt_n]; rewrite coprime_mulr;

move/nandP.

move/orP; rewrite coprime_sym [coprime _ q]coprime_sym

2?prime_coprime //.

case Hdvdn: (p %| x) = >/= ; rewrite ?¬K ?andbF ?andbT //

orbF= >_.

have xdpp_x: (x %/p) * p = x by move: (Hdvdn); rewrite dvdn_eq;

move/eqP.

rewrite -xdpp_x; apply/negP= > H; move:H; rewrite (euclid _ _

prime_q).

rewrite [_ %| p]dvdn_prime2 // eq_sym; move/¬TE: neq_pq= 7→.

rewrite orbF= >H; move: (dvdn_mul (dvdnn p) H).

rewrite [_ * (_ %/ _)]mulnC xdpp_x; move/(dvdn_leq x_gt0).

by rewrite leqNgt x_lt_n.

Qed.

Figure 2.16: RSA:the non-coprime
case

In that case MkΦ(n)M≡M (mod q) is a consequence of Euler’s theorem,
and MkΦ(n)M ≡ M (mod p) is trivially true, which allows us to conclude
using a Chinese lemma. Most presentations of RSA cop out of treating
this case, but it makes the encoding no less correct. We can now prove the
theorem:

Theorem rsa_correct1 :

∀w : nat, w ≤ n � (decrypt (encrypt w)) = w %[mod n].

Proof.

move= > w w_leq_n; rewrite modn_mod modn_exp -expn_mulr.

This simplifies the goal to w ^ (e * d) = w %[mod n]. Then we are
going to want to treat the case where w = 0 first. Since this is a decidable
property, we proceed by making a case on 0 < w. We simplify the left part:

case w_gt0: (0 < w); last first.

move/¬T: w_gt0; rewrite lt0n; move/negPn; move/eqP= 7→.

We are brought to 0 ^ (e * d) = 0 %[mod n]. The left part forces us
to check that 0 < e*d:

have ed_gt0: 0 < e * d.

have:= (divn_eq (e*d) (phi n)); rewrite ed_1_mod_phin = > �.

We are left with 0 < (e * d) %/ phi n * phi n 1 %% phi n+. We would
like to simplify 1 (mod Φ(n)), which requires 1<Φ(n):

have phi_gt1 : 1 < (phi n); first rewrite pq_phi -(muln1 1).

by apply: ltn_mul; rewrite -ltnS prednK ?big_p ?big_q

?prime_gt0.

We can then conclude on both 0 < e * d and the original case where
w = 0:

by rewrite [_ * phi n]mulnC (modn_small phi_gt1) addnS lt0n.

by rewrite exp0n ?ltn_addl // ?modn_small.

Back to w > 0 ! Simplifying our goal a little further:

have:= (divn_eq (e*d) (phi n)); rewrite ed_1_mod_phin modn_small

// = 7→.

104 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

We get : w ^ ((e * d) %/ phi n * phi n 1) = w %[mod n]+, and we
are ready to conclude for the case where message and modulus are coprime!
This is the core of the proof : a simple use of Euler’s theorem and a few
helper lemma on moduli.
case cp_w_n : (coprime w n).

rewrite expn_add [_ * phi n]mulnC expn_mulr -modn_mul2m; move:

cp_w_n.

by move/Euler= >E; rewrite -modn_exp E modn_exp exp1n

modn_mul2m mul1n.

Now, in the case where modulus and message are not coprime, we are
going to want to use the notcoprime lemma above, for which we also require
them not to be equal, so we quickly eliminate that case.
case w_eq_n: (w = = n).

by move/eqP: w_eq_n = 7→; rewrite -modn_exp modnn exp0n ?mod0n

?addn1.

Finally, we apply the Chinese lemma, to separate our requirements on
w (mod Φ(n)) into requirements on w (mod Φ(p)) and w (mod Φ(q)):
move: w_leq_n; rewrite leq_eqVlt {}w_eq_n orFb; move= > w_lt_n.

apply/eqP; rewrite chinese_remainder; last first.

by rewrite prime_coprime // dvdn_prime2.

The goal at this stage is
(w ^ ((e * d) %/ phi n * phi n + 1) = = w %[mod p]) &&

(w ^ ((e * d) %/ phi n * phi n + 1) = = w %[mod q])

We want to rewrite this a little further to make the prime w is not divisi-
ble by more prominent.
rewrite mulnC {1 3}pq_phi {2}[_ * q.-1]mulnC -2!mulnA 2!expn_add

expn_mulr.

rewrite [w ^ (q.-1 * _)]expn_mulr expn1 -modn_mul2m

-(modn_mul2m _ _ q).

rewrite -modn_exp -(modn_exp _ q); move/andP: (conj (idP w_gt0)

w_lt_n).

This gives us the goal:
((w ^ p.-1 %% p) ^ (q.-1 * ((e * d) %/ phi n)) %% p * (w %%

p) = = w %[mod p]) &&

((w ^ q.-1 %% q) ^ (p.-1 * ((e * d) %/ phi n)) %% q * (w

%% q) = = w %[mod q])

We can now use notcoprime above, apply Euler’s theorem in each case,
and conclude:

move/andP: (conj (idP w_gt0) w_lt_n).

move/notcoprime; move/(_ (¬T cp_w_n)); case/orP;

move/andP= > [Hdvdn Hncp].

move: Hdvdn; rewrite /dvdn; move/eqP= 7→; rewrite muln0

mod0n /= .

move/Euler:Hncp; rewrite (phi_prime prime_q)= 7→.

by rewrite modn_exp exp1n modn_mul2m mul1n.

move: Hdvdn; rewrite /dvdn; move/eqP= 7→; rewrite muln0 mod0n

/= andbT.

move/Euler:Hncp; rewrite (phi_prime prime_p)= 7→.

by rewrite modn_exp exp1n modn_mul2m mul1n.

Qed.

This concludes our certification of RSA’s correctness, in itself 30 lines

of proof script. Note we have never used any automated tactic database
such as auto, which confers our proof script a particularly deterministic
nature (but it’s not a requirement, of course). Here’s a run of coqwc, the
COQ line-count utility, on our final file:

The code for our development on Φ,
cyclic groups and automorphisms has
seen several evolutions since then, most
notably the re-working of the definitions
of morphism and automorphism from a
global to a local version. We are about to
treat it in detail. This made the set-lifted
Chinese lemma disappear — initially only
in a transitory fashion, so as not to depend
on soon-to-be-improved definitions,
then in a more permanent manner when
phi_mul was re-worked into a number-
theoretic proof, before the re-insertion of
the new definition of morphisms.

However, the definition and library for
automorphisms, any place where cyclic
groups use the notion of generated group,
and the isomorphisms with the additive
and multiplicative groups modulo n are
directly issued from the work of the author
as presented above.

Moreover, our re-work of the RSA
contribution has been independently
developed on top of SSReflect release
1.3pl1, and is available on Github: https:
//github.com/huitseeker/thesis-spikes/

tree/RSA

https://github.com/huitseeker/thesis-spikes/tree/RSA
https://github.com/huitseeker/thesis-spikes/tree/RSA
https://github.com/huitseeker/thesis-spikes/tree/RSA

IMPLEMENTATION 105

spec proof comments

28 53 17 RSA.v

The final file is 126 lines.

106 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

2.3 Morphisms and partial functions

2.3.1 Discussion

The model of morphisms presented in § 2.2.3 on p. 97 allowed the Math-
ematical Components team to formalize a consequent body of algebraic
results (Gonthier et al. 2007). It had, by then, been also adopted in other
formal developments of algebra (Santen 1999), and featured as a major alter-
native in surveys of ways to deal with partiality in proof assistants equipped
with a logic of partial functions (Müller and Slind 1997). However, further
experience with this encoding made us reconsider. We now expose some of
its consequences in the hope to inform future designs

A computational domain One objective of this representation was to mim-
ick common practice in mathematics, and have an implicit notion of domain
that did not need to be passed along with the function — a tedious task faced
by previous formalizations dealing with typed sets (Bailey 1998a; Gunter
1989).

Notice that the kernel K and domain D (§ 2.2.3 on p. 97) were defined
for all functions f, whether representing a morphism or not — K even bore
a group structure in all cases. In that regard, those constructions fitted
well with our custom of defining objects strictly computationally, and only
adding hypotheses on their structure when required by a specific proof.
We could always assign a “domain” group to a COQ function f (in fact, the
largest group on which it could be proven to be a morphism), and the kernel
was a group in all cases.

Trouble with the trivial morphism Gonthier et al. (2007) mentioned other
advantages to this representation, notably the fact that the composition of
two (COQ) functions that were instances of morphism was one also. Math-
ematically speaking, if ψ and ϕ are group morphisms, ψ ◦ ϕ is indeed a
morphism whose domain is ϕ−1(dom(ψ)): not having to explicitly mention
this domain construction in theorems where compositions occur frequently
(such as the isomorphism theorems) was quite convenient.

However, the domain we defined on a compound function only made
sense when it corresponded to non-trivial components. We made this
clearer by proving the following in COQ:

Lemma 2. g ◦ f non-trivial ⇒D(g ◦ f) = f−1(D(g))∩D(f)

The form of this helper lemma was in fact characteristic of most results
on morphisms in our library. Since, as shown in lemma 1 on p. 98, the
connection with the usual notions of domain and kernel (and of preimage,
etc) was imperfect, we provided the classic results about those notions under
a non-triviality hypothesis: our careful design just exchanged the hinderance
of one local context (making sure the argument of the morphism was in the
domain) for another (making sure the morphism was non-trivial) — albeit
lighter.

More importantly, though, co-developers of our library knew simple
textbook results on morphisms intimately, so they were drawn to prove

IMPLEMENTATION 107

theorems about them in two parts: they provided a disjunction that allowed
them to expedite the trivial case, then they went on with the proof in a
context where all the usual results held as expected. Since this happened
more than necessary, the “psychological conditioning” was a disadvantage,
even though the overhead involved was often not crippling in terms of script
lines.

Morphism restrictions and automorphisms If we follow our idea by which
an instance of the morphism structure is a morphism that encodes its domain
in its values, then we should produce one new COQ function for each restric-
tion we make of the domain of said morphism. And we did — around the
release of SSReflect 1.1 — but surprisingly, this did not need to be explicit
in our library until we started to reason about automorphisms.

Indeed, most properties we wanted to express on morphisms were set-
theoretic results about the (pre-)image of an element or a set, so it was often
as easy — though less elegant — to inherit them on a restriction by proving
carefully stated lemmas on the subsets and elements of those (pre-)images.

The definition of automorphisms (§ 2.2.4 on p. 98) of a group G:{group gT},
on the other hand, imposed its own representation requirements:

• they were endo-morphisms, and as such had to correspond somehow to
functions of type (gT � gT),

• they were members of the automorphism and permutation groups of
G, hence group elements, so their type had to be of an instance of some
finGroupType that coerced to gT � gT. In particular, they all had to have
have an inverse by its group law. Since we needed the law for automor-
phisms to be function composition, it meant this finGroupType would
only contain invertible, i.e., totally injective functions of type gT � gT.

To sum up, so as to keep types as the carriers of group laws, we had to give
automorphisms a different semantics from the one we gave to morphisms.

Note that even though perm gT was a subtype of gT � gT, and elements
of the first coerced injectively to the second, coerced automorphisms were
of no avail to us: they only coincided with the morphisms we hoped for in
case their domain was the set containing the whole of gT.

In sum, we could prove (f in Aut G) if f coerced to a function behaving
like the identity outside of G. On the other hand we could put a morphism

instance on a function f (i.e. define a record instance of which f would be
the first projection) only if f behaved like the trivial morphism outside of G.
Both could not happen simultaneously.

Since the semantics of this construction went unnoticed by the type
system, we initially had to solve this problem by developing a theory of
morphism restrictions (Garillot 2008). It connected a free-form function
and the proof that it was morphic37 on a group H with the corresponding
(but usually distinct) normalized morphism — formalizing, in effect, the mod-
elization process explained in § 2.2.3 on p. 97. This was enough to inherit
some local properties of morphisms for automorphisms. Thanks to a care-
ful, separate formulation of the properties brought on by the characteristic
property of morphisms (morphic) on the one hand, and injectivity on the

37 The definition was mentioned in the
definition of automorphisms, in § 2.2.4 on
p. 98.

108 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

other hand, this normalization operator on morphisms themselves, gave
a meaning to morphism restrictions as an added benefit: naturally, the re-
striction of f to a subdomain C was the same as “normalizing” f seen as a
morphism of C. The complexity of use of the operator, however, made the
process unwieldy.

2.3.2 Directing inference

The key insight that led us to defining partial functions was to notice that
the domain of a morphism did not have to be inferred unambiguously
from the underlying function. In all previous applications of computa-
tional Canonical Structure inference, we had the advantage of having a
sufficient compositional definition preexist that of the composition of struc-
tures: when we are talking about the intersection of two groups A∩B, for
instance, the set representing the intersection of the sets A and B is defined
before we prove anything on its having a group structure. It is this expres-
sion at the set level that forces the coercion of groups A and B (which is also
their first projection) to sets to appear within the composed expression.38 In
a second phase, we explain the Canonical Structure mechanism how to pick
up the presence of projections in the set-level expression to form a group

instance. With the notion of domain of a morphism, for example, the situa-
tion is different: there is not enough computational content in a function
to give a clear reference to a set that would later turn out to be a morphism
domain. In fact, for a given morphism, unless we use the complex value-
encoding explained above, many equally valid domains could be defined (for
any morphism domain, all its subgroups are also valid candidates).

Since there is no reference to a meaningful computational definition
that would deal only with the “supertype” of the structure we are dealing
with — functions of COQ, in a way similar to the “set” of groups — the
naive definition of a domain function would not involve coercions, and
thus would not insert projections: we are, as explained in (§ 1.3.4 on p. 56),
defining a theory for morphism domains naively will not be effectively
usable on practical COQ functions, because we do not know how to make
COQ see them as (partial) morphisms.

We therefore need a way to define domains computationally by impera-
tively telling COQ to query the Canonical Structure mechanism, retrieve
the precise morphism instance we registered, and use if to compute the do-
main. Therefore, we now focus on how to manipulate Structure inference
imperatively, before going back, in a second phase, to how we use this to
treat morphisms.

Generic Phantom insertion As seen in § 2.3.1 on p. 106, we want to use
Canonical Structure inference to remember the name and characteristics
of morphisms. However, the inference will only work based on a projec-

tion present in the term on which basis we want to prompt the memory of
some structure. In this section, we suggest ways to present COQ with a
unification problem that forces it to place the structure projection among
the arguments of a function such as the domain, by adding phantom types.

A phantom type — an appellation coined by Leijen and Meijer (1999)

38 Consider for example the definition of
set union at the end of § 2.1.4 on p. 89

IMPLEMENTATION 109

— is a parameter of a type definition that has no occurence on its right
hand side. Phantom types are well-known in functional programming, and
are frequently used to refine operations on runtime values of a type by
distinguishing subsets of them with a superfluous (i.e. phantom) static type.

However, in our dependently typed framework, the value reflection ma-
chinery usually developed in most applications of phantom type techniques
is unnecessary, and we hope this exposition will serve as an enticing example
of how simple our method is.

As we have mentioned (§ 1.3.1 on p. 51), the key to having COQ do
the Canonical Structure lookup for us is to insert a canonical projection
in the arguments of the function. If we are designing an auxiliary function
— say, the domain of a morphism — for one specific Structure alone, we
can do this within the definition of the auxiliary. If our helper function
then turns out to effectively use other members of the instance’s Record, no
matter: the projection that has been inserted in its arguments will just fit
the definition of a phantom type.

It turns out we can adopt a generic pattern for all Structures, in effect
the simple phantom definition we mentioned more covertly in § 1.4.3 on
p. 70:39

CoInductive phantom (basicT : Type) (casper : basicT) :Type:=

Phantom.

This is, in effect, the simplest exposition of a value at the type level we
can possibly craft in COQ. Assume now that we have a helper function
that takes an argument mf : morphism.40 We can make it take an additional
argument Phantom (aT � rT) mf, since as planned, COQ will type that
last argument as phantom (aT � rT) (mfun mf). This simple manual inser-
tion of the coercion is enough to provide an explicit Canonical Structure

constraint.
Since mf can be found by unification during the typing of Phantom(aT � rT)

mf, we make it an Implicit Argument of the helper function. As a last com-
ponent of the mechanism, we mask the passing of Phantom (aT � rT) f

behind a Notation, to the effect that the function does not require the user
to specify a full morphism instance anymore, but rather makes do with just a
projection: the insertion of the phantom term is entirely structural, provided
we know which type of structure (and hence, which projection) our helper
function requires.

Naturally, this idiom can still be used to recall a complex record parame-
ter to notations. In effect, we are just using the phantom definition to push
a value at the type level. This can be used to insert it in an expression that
contains a record projection in order to set up the unification process at type
inference, as we do here for Canonical Structures, to expose a record param-
eter to notations, or so as to implement Pebble-style parameter sharing, as
exposed in § 1.4.3 on p. 70. We now investigate another unification-related
use of this multipurpose tool.

Cloning structures Beyond defining functions dependent on Structure el-
ements, this pattern evolved to bypass a quirk of Canonical Structure in-
ference:41 since inference is directed by the head constant of a term, and
since COQ loathes unfolding definitions, named aliases do not inherit the

39 As usual in SSReflect parlance, the
CoInductive keyword is just here to avoid
the generation of recursors that occurs
with Inductives. (Gonthier et al. 2008,
§11.1).

40 We refer here to the definition in § 2.2.3
on p. 97.

As we have mentioned often in this
document, our concepts correspond
more frequently to type classes than to
value classes. We have developed an
instance of the “type injector” above that
acknowledges that (the instance for basicT
= Type):
CoInductive phant (p : Type) :=

Phant.

41 The cloning idiom is an invention of
Georges Gonthier, that phantom types
later came to simplify, as exposed in the
end of this paragraph.

110 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Structures of the object they are a copy of. For example, in the following
declaration, the_identity is given a morphism instance id_morphism, but
this instance can not serve for id_alias:

Canonical Structure id_morphism := @Morphism the_identity ...

Definition id_alias := the_identity.

This would only be a caveat to the programmer if it were easy to do
“manual” inheritance: re-declaring the instance on the spot. But as is, this
(unjustly) requires remembering all the arguments to be passed to the con-
structor Morphism of the structure: they should be unifiable to those within
the id_morphism definition.

To solve this issue, we use custom instance declarations using construc-
tors that trigger the inference of parents.

We slice the constructor in two parts: the cloner, and the actual, notation-
based application of the structure constructor. We start with a helper func-
tion for dependent matches. It returns the type of a constructor, given the
constructor’s name and one of its applications:

Definition argumentType T P & ∀x : T, P x := T.

Definition dependentReturnType T P & ∀x : T, P x := P.

Notation "{ ’type’ ’of’ c ’for’ s }" := (dependentReturnType c s)

(at level 0, format "{ ’type’ ’of’ c ’for’ s }") :

type_scope.

Then the idiom consists in declaring, for each new structure str of con-
structor Str, a clone function that takes a structure, unpacks it by pattern-
matching, and retains the last (n-1) arguments of the n-argument construc-
tor Str. It returns a functional that given a new constructor, applies it to
those last arguments.

Definition clone_str s u

let: Str _ x y ... z := s return {type of Str for s} � str in

fun k = > k _ x y ... z.

A notation then sets up the application of an η-expanded constructor
which has already been applied the alias in the position of first projection:

Notation "[’str’ ’of’ T]" := (clone (fun x = > @Str T x))

(at level 0, format "[’str’ ’of’ T]") : form_scope.

This solves the δ-reduction problem, but this idiom is however not
enough to explain the clone functions written in the first chapter of this the-
sis, say for example in Fig. 1.31 on p. 66. This is because those constructors
use the same idea with a distinct implementation based on the presentation
of unification problems through phantom types.

The idea is that the use of the identity function can trigger static unifica-
tion. For example, when we need a structure sT over a type T, we can take
as arguments T, sT, and a “dummy” function T � sort sT,

Definition foo T sT & T � sort sT := ...

We can then force the phantom term to be the identity by calling @foo T sT idfun,
where idfun is a constant whose definition is the identity function. The
phant_id type lets us extend this trick to allow value classes.

Definition idfun T := @id T.

Prenex Implicits idfun.

Definition phant_id T1 T2 v1 v2 := phantom T1 v1 � phantom T2

v2.

IMPLEMENTATION 111

Thanks to this definition, we can sidestep dependent type constraints
when building explicit records, e.g., given Record r := R x; y : T(x). if
we need to build an r from a given y0 while inferring some x0, such that
y0 : T(x0), we pose

Definition mk_r .. y .. (x := ...) y’ & phant_id y y’ := R x y’.

Calling @mkr .. y0 .. id will cause Coq to use y′:= y0, while check-
ing the dependent type constraint y0 : T(x0) We make that final call in
notations, which now explains the clone functions we have explained in
previous sections.

Looking up a structure We now know, for any Structure s, how to manu-
ally get a handle on some s-instance, given a term we know it to canonically
project to.

Going back to our question of § 2.3.1 on p. 106, given a function f : aT � rT

on which we know we have declared a morphism structure, how do we make
COQ return ‘the morphism instance for f ? Or more precisely ‘the term of
type morphism whose canonical projection will be f?

We do it by decomposing the two requirements: on the type of the
Structure, first, and on what its projection should be, second. Let us con-
sider the following definition, fraught with phantom types:42

CoInductive put (basicT structT : Type)

(somebasic1 somebasic2:basicT) (someinst:structT) :Type := Put.

The key element to remember is the coercion we mentioned in § 2.3.1
on p. 106: if f is a function with a type suitable for morphisms, COQ types
(fun (g:morphism) = > Put f g g) as fun (g : morphism) = > Put f (mfun g) g,
where mfun is the member of the morphism record that projects it to a func-
tion. This fits our first requirement. We now have to equate such a structure
with f, and of course, return said structure at some point. Hence we define:

Definition get basicT structT

(mybasic: basicT) (myinstance:structT)

(x: @put basicT structT mybasic mybasic myinstance) :=

myinstance.

Notation "[’the’ structT ’of’ basic0]" :=

(get ((fun myinstance : structT = > Put basic0 myinstance

myinstance) _)).

Thanks to the long-winded type put, only the last argument of get is non-
implicit. get allows us to meet our second requirement, by forcing the hole
where we wish to place the coercion of myinstance to contain something
equal to its first argument — where we will place the projection f —, before
finally returning the structure we are interested in. The notation ties the
knot by building that last argument in a way that makes COQ coerce the
next to last occurence of mystruct, as discussed above.

We gloss over technicalities of our implementation, here: get, for in-
stance, includes an artificial redex so that [the morphism of f] is simplified
down to the inferred instance as early as possible43. In fact, it turns out that
this way of doing an explicit lookup in the Canonical Projections table of
COQ is very useful within proof scripts : it allows to test the Canonical

Structure mechanism, and to check inferrability of a given structure on

42 As usual in SSReflect parlance, the
CoInductive keyword is just here to avoid
the generation of recursors (Gonthier et al.
2008, §11.1).

43 We invite the reader to go through
morphism.v in the SSREFLECT library
for other details, including Notation
levels and pretty-printing we omitted here.

112 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

any given term. That may however be too complex for our morphism
representation needs.

2.3.3 Morphismswith friendly ghosts

Definitions The latest definition for morphisms in the Feit-Thompson
Theorem library is the following:
Variables aT rT : finGroupType.

Structure morphism (A : {set aT}) : Type := Morphism {

mfun :> aT � FinGroup.sort rT;
_ : {in A &, {morph mfun: x y / x * y}}

}.

The domain is now a parameter of the structure. Unfortunately, COQ

does not allow several instances of the same Canonical Structure to be reg-
istered in the Canonical Projections table if they project to the same head
constant — though those instances can be defined. In concrete terms, that
means that while a given function of type (aT � rT) can correspond to sev-
eral instances of morphism, only one44 of them can be inferred automatically.
We will come back on how we manage this restriction.

We now can define the domain operation as such:
Variables (aT rT : finGroupType) (A : {set aT}).

Implicit Type (f : {morphism A 7→ rT}).

Definition dom f (phantom (aT � rT) f) := A.

Notation "’’dom’ f" := (dom (Phantom (aT � rT) f)).

The final type of dom is:

∀(aT rT : finGroupType) (D : {set aT}) (f : {morphism D 7→
rT}),

phantom (aT � rT) f � {set aT}

The right hand side of the definition of dom uses nothing more than the
type of f. But the last argument of dom inserts a record projection by forcing
coercions to match through phantom, the type of the morphism with that
of its projection. If we require COQ to print the type of that last argument
fully, we see the morphism projection mfun appear:

phantom (FinGroup.arg_sort (FinGroup.base aT) �

FinGroup.arg_sort

(FinGroup.base rT)) (@mfun aT rT D f)

Hence, when a user types ′dom (conjg x), with conjg x : y 7→ yx the
conjugation morphism:45

• Expanding notation in ′dom (conjg x) yields:
dom (_:morphism _) (Phantom (aT � rT) (conjg x))

• Given the type of phantom, COQ then has to solve
mfun (?:morphism _) ≡ (conjg _)

for ? by unification.

• Structure inference provides conjgm G (for some group G) as a solution
for ?,

44 The first the user has declared.

45 The conjugation morphism con jx : y 7→
y x = x−1y x is represented with the higher-
order function conjg : gT � gT � gT,
for gT a finGroupType. Here, conjg x is the
morphism.

IMPLEMENTATION 113

• and dom can then return the domain G from the definition of conjgm G

The first clear advantage of this definition is that, this time, the mor-
phism fits the mathematical notion: if the user has a morphism ϕ of domain
G in mind, any total function on the type of the elements of G, agreeing with
ϕ on G, can be declared as a morphism G.

Morphism application, with normalizing definitions Contrarily to our first
definition, however, many usual notions based on the image of a morphism
can not enjoy a group structure anymore — at least not if we choose the
(set-lifted) image by a morphism to be the (set-lifted) application of the
underlying function. Indeed, the morphism structure only provides us
with a localised proof that a function is morphic for elements in its domain
(the meaning of the notation{in A &, {morph ... }}): f@:H, the set-lifted
image of H by f, only makes sense when H⊆ G.

We have solved this problem in a typical fashion for our library: we now
reason on a new operator, the morphic (pre-)image, that takes the intersection
of the functional (pre-)image with the domain of the morphism.

Definition morphim of (Phantom (aT � rT) f) :=

fun B = > f @: (A :&: B).

Definition morphpre of (Phantom (aT � rT) f) :=

fun C : {set rT} = > A :&: f @−1: C.

Definition ker mph := morphpre mph 1.

Notation "’’ker’ f" := (ker (Phantom (aT � rT) f))

Notation "f @* H" := (morphim (Phantom (aT � rT) f) H).

Notation "f @*
−1 L" := (morphpre (Phantom (aT � rT) f) L)

Note the systematic use of phantoms and Notations to allow us to use
those operators by just passing a function rather than its pre-declared mor-
phism. Those definitions allow us to recover all the usual properties of
those objects, as we will show in the next few paragraphs.

Morphism restrictions, with yet another phantom As we have seen in previ-
ous examples, when looking for some instance of a given Structure type,
COQ tries to match a projection of that Structure with the head constant
of a term. Unfortunately, only one instance can be registered per head
constant, which means that if we want a function to be understood as the
canonical projection of several possible morphisms, we have to change the
head constant of that term somehow.

We do this using a constructions that adorns the function with a phan-
tom type:

Variables aT rT : finGroupType.

Variables A B : {set aT}.

Definition restrm of A ⊆ B := @id (aT � FinGroup.sort rT).

This allows us to build a specific instance of morphism on any function
for which we can already derive a morphism instance:

Hypothesis sAB : A ⊆ B.

Variable f : {morphism B 7→ rT}.

Canonical Structure restrm_morphism :=

@Morphism aT rT A (restrm sAB (mfun f))

(sub_in2 (subsetP sAB) (morphM f)).

114 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

id is just the polymorphic identity function, being passed the function
type expected of any morphism projection. The transparent ‘mask’ of restrm
can be ‘put on’ a function by rewriting, since it replaces convertible terms.
Then, when COQ tries to find the morphism Structure on restrm sAB f, it
will substitute the restricted morphism instance on A for the term, passing
the constraint on f to be a{morphism B 7→ rT} to the rest of the unification
process.

Usability example : the composition morphism As previously in (Gonthier
et al. 2007), function composition has a canonical morphism structure,
whose domain we never have to pass as an explicit argument to enjoy mor-
phism properties. More interestingly, though, the first lemmas about that
definition of our library show we have managed to define a simpler notion
of the image of a morphism, that behaves the way the mathematical notion
does.

Variables (f : {morphism G 7→ hT}) (g : {morphism H 7→ rT}).

Lemma comp_morphM :

{in f @*
−1 H &, {morph (mfun g \o mfun f): x y / x * y}}.

Canonical Structure comp_morphism := Morphism comp_morphM.

Lemma morphim_comp : ∀A : {set gT},

(mfun g \o mfun f) @* A = g @* (f @* A).

Lemma morphpre_comp : ∀C : {set rT},

(mfun g \o mfun f) @*
−1 C = f @*

−1 (g @*
−1 C).

As in (Gonthier et al. 2007) — though that detail went unsaid — the
notation ‘\o’ hides but a trivial composition function needed to make
Structures inferrable on such a term46, and compliant with our finite func-
tion library. It does simplifies to nothing more than the functional composi-
tion the user expects.

Automorphisms Finally, the structure we adopted to describe automor-
phism remained pretty much the same throughout the change in morphism
representation we made through our whole archive. In that sense, with the
exception of the annotation marked (*), the architecture described in § 2.2.4
on p. 98 remains the same.

Indeed, the main difficulty in developing a theory for automorphism was
inheriting properties from morphism theory, and it is easy to see having
a set of localised properties for functions representing morphisms achived
just that. Contrarily to our previous definition, the function automorphism
objects coerced to did enjoy a morphism Structure.

The fact that automorphisms kept a constraint on their values outside
their domain while morphisms did not, on the other hand was not problem-
atic: automorphisms are studied mostly as members of an automorphism
group, or on their own right, and rarely is it needed to study them as mor-
phism objects.

2.3.4 Other applications of phantom types

In a way, the last part of what we propose is in essence the dual of the so-
lution to the configuration problem exposed by (Kiselyov and Shan 2004),

46 As in the last paragraph, we need
to present Canonical Structure
inference with a suitable head constant.

IMPLEMENTATION 115

and solved by directing the creation of functions with phantom parame-
ters, using type class constraints : we, on the other hand, build “type class”
constraints using phantom types, through coercion-based record projection
insertions.

Phantom types have known some fame in programming languages (Ch-
eney and Hinze 2003; Fluet and Pucella 2005, 2006; Hinze 2003; Kiselyov
and Shan 2004), being mostly used to add some type-safe behavior at the
boundaries of the type-checker, furnishing a way of dealing with untyped
input in an algebraic way. We hope to have shown that this ability to spur
the type checker can also be put to use in allowing some notations to be
more expressive to the user.

Subfunctors of the identity

THE ORIGINAL AIM OF THIS THESIS WAS TO DETERMINE A WAY

TO DO PROOFS BY ISOMORPHISM. The remainder of this document
explores a way we have found to do that — involving a necessary meandering
between distant but nonetheless useful concepts.

A proof by isomorphism tries to express that the validity of a proof does
not change if one of its objects is replaced by another in the same equiv-
alence class for the isomorphism relation. However, the central problem
with expressing this notion as a “shallow” embedding in COQ lies with the
fact that two such objects, when talking about an isomorphism of groups,
can have distinct types. Indeed, rewriting a property according to a prede-
fined equivalence relation, in COQ, is not new: it is the job of the Setoid

mechanism — but this machinery only works when substituting terms of
the same type.

Instead of having an out-of-language, meta-theoretic tool to treat iso-
morphism proofs, we decided to concentrate on the mathematical study of
some properties which are invariant by isomorphism and to translate this
process to the study of a distinct, more amenable construct on the groups
they qualify. Those properties are studied in § 3, as is their equivalence
with the computation of some group-theoretic constructions. The latter are
subgroup-defining functions, whose value on the groups they are passed as
an argument isolates a class of groups bestowed with a property. We have
exchanged, for a large class of useful group-theoretic properties, the study of
a property on a group with that of a subgroup defined in a particular way. In
effect, to prove said property on any group amounts to studying an equality

involving a specific subgroup as defined by a functor.
The equality of that functorial subgroup with a specific, desired value is

a statement that is more amenable to transformation than a non-specific
property on groups. In particular, the specific shape of that equality allows
us to apply a single lemma to transform it into an equivalent modulo iso-
morphism — provided the class of groups characterized by the value of that
functorial subgroup is indeed isomorphism-invariant. Thankfully, for all
those functorially-characterized properties, they are.

Armed with this useful — but little-used — piece of mathematics, we can
effect a method of proof by isomorphism for a comfortable subset of the
properties we need to study in the Feit-Thompson proof. Moreover, those
subgroup-defining functions are themselves interesting objects of study —
in many cases they are already commonly studied objects in the theory

3

Another approach consists in twisting
the definition of group to make it fit the
previous model : defining “groups” — or
at least what will figure in the statement
of a property at the position where a
group can be expected — as an equivalence
class of groups. This is what we would
call the “deep” embedding of proof by
isomorphism. The difficulty with this
technique consists in identifying proper-
ties which are conserved by isomorphism
and modifying their statement without
making them too alien compared to those
that do not enjoy this invariance. More-
over, it implies maintaining a complex
distinction between those polymorphic
classes of groups and the sets they contain,
all transparently to the user — who is
potentially a mathematician and should
not see any apparent difference between
the two. Nonetheless this approach has
been attempted, once, by Santen (1999),
albeit in a library much smaller than ours.

The SSR library prides itself on offering
a user interface that is as close as possible
to common mathematical language.
Moreover, the apparition of —- potentially
infinite — classes of groups within our
properties would destroy any hope as to
their decidability. Not wishing to abandon
the keystone of small scale reflection,
we decided to come back to an explicit
(shallow) rendering of invariance by
isomorphism. However, the problem of
being able to re-write a property with a
polymorphic equivalence remains difficult
to deal with within the confines of the
type-checker. We have therefore chosen to
adopt a slightly different tack to deal with
the matter.

117

118 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

of finite groups. They are functorial — that is, they give rise to a unique
functor of which they provide the object mapping. Their values on any class
of groups also, conversely, provide hints as to a group theoretic property.
In addition to studying properties using functors, we can therefore study
functorial constructions using properties.

Finally, identifying those subgroup-defining functions can be done by
simply examining their type. They correspond to polymorphic subfunctors
of the identity on the category of groups and their functoriality condition
(that correspondence) is precisely expressed as a “free theorem” of parametric-
ity. Thus, provided we can have a parametricity result strong enough to
obtain this “free theorem” within COQ, we can solve a problem that lin-
gered in all methods representing proofs by isomorphism : how to identify,
simply by their statement, those proofs that are invariant by isomorphism.
Our solution consists simply in defining them as a compound of group classes

— that is, properties that can be reflected to functors. Indeed, those functors
have, thanks to canonical structures, composition properties that can let us
scale their “equivalence with properties” up to complex statements.

In conclusion, the next few sections gradually build the elements of that
solution. In § 3 on the previous page, we start defining subgroup-defining
functions, their functoriality and their elementary properties. We obtain a
method of proving characteristicity on complex subgroups as a side-effect.
We move on to define a torsion theory for groups, yielding the desired equiv-
alence between properties characterizing a torsion (or torsion-free) class of
groups, and the value of such a functorial on elements of the class. In § 3.4
on p. 131, we attach ourselves to obtaining functoriality properties on our
subgroup-defining functions by examining their type. That is, we suggest a
method towards obtaining a “free theorem”, given a suitable polymorphic
constructor. In effect, this amount to the automatic generation of proofs
of instances of a relational parametricity theorem. In effect, we describe a
method for reifying those COQ terms that correspond to terms of a poly-
morphic λ-calculus. Then, we use a deep embedding of such a calculus — on
which a relational parametricity theorem is proven — to obtain the proof
of the free theorem. The combination of those approaches should yield a
pleasant way of dealing with some “free theorems” — and, by extension,
with a large class of proofs invariant by isomorphism — to the user.

SUBFUNCTORS OF THE IDENTIT Y 119

3.1 Subgroup-definingfunctions,generalizations,
propositions

3.1.1 Characteristicsubgroupsandsubgroup-definingfunc-

tions

NORMAL SUBGROUPS1 are a fundamental notion in group theory: a
normal subgroup exactly captures the kernel of a congruence relation com-
patible with the group law it shares with its parent (Lidl and Pilz 1998, p.
103), and thus naturally forms a quotient by this relation.

Proofs of normality abound in the SSReflect libraries, but their con-
struction is somewhat inconvenienced by the fact that the ‘normal’ relation,
noted with the infix symbol Ã, is not transitive. That is, if H and N are
subgroups of G such that: HÃNÃG, it is not always the case that HÃG.
When a user encounters this problem, he can however use a stronger prop-
erty to retrieve the normality result, by showing that the smaller subgroup
is characteristic.2 Indeed:

if K char H and HÃG,then KÃG

IT IS THUS INTERESTING to make characteristicity proofs as easy as
possible in the SSReflect libraries, and there is a common case of subgroups
where a significant improvement is possible. The SSReflect libraries contain
frequent references to subgroups defined for each group G. Apart from the
Puig subgroup and the Thompson J subgroup — which are tightly linked
to the proof of the Feit-Thompson theorem — those subgroups in fact ap-
pear in most group algebra textbooks. Browsing the literature, we noticed
that the proof that those subgroups are characteristic is in fact treated two
possible ways:

- Either the lemma is systematically left for the reader to prove at the be-
ginning of a bundle of exercises, signaling a simple but somewhat tedious
proof. This is the systematic habit of Gorenstein (2007), for example.

- Or, more rarely, the proofs are explicitly carried, but require a moderate
amount of justification (around 6 lines) even for the simplest cases (Dixon
1973; Kurzweil and Stellmacher 2004; Rotman 1995, resp. pp. 78, 17, 104).
For the COQ user, this naturally means that however how simple the
reasoning involved is, he will have to reproduce a proof of approximately
the same length.

Our objective for the group library is to make those mathematically
simple but tedious developments quasi-instantaneous, requiring minimal
effort on the part of the user. Table 3.1 on the next page lists all sixteen of
the subgroups we deal with.

While some of those subgroups are specifically tailored for the proof of
the Feit-Thompson theorem, most are of common use in group theory. It
happens that they are all characteristic subgroups, but common literature
does not use any shortcut to justify that: characteristicity proofs are either
custom-made or, more often, left as exercises.

1

Definition 9. A subgroup N of G is
normal if for all m ∈ N and g ∈ G,
g m g−1 ∈N. That is, a subgroup is normal
if it is invariant by conjugation by an
element of the parent group.

2

Definition 10. A subgroup H of G is
characteristic if for every automorphism ϕ
of G, ϕ(H) =H. We note this as H char G.

120 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Symbol Name Definition SSReflect name

G identity G itself id

1 trivial subgroup the trivial subgroup {1} triv

Z(G) center {z ∈G|∀g ∈G, z g = g z} center

Zn(G) the upper central series (Gorenstein 2007, p. 21) ucn

G′ derived subgroup < [g , h]g ,h∈G > der

G(n) the lower central series l (l (. . . l (
︸ ︷︷ ︸

n times

G) . . .)), where l (H) =H′ lcn

LG(G) Puig subgroup (Bender and Glauberman 1995, p.
139)

Puig

L(G) L(G) =
⋂

n≥0

L2n+1(G), where

Ln(G) = LG(Ln−1(G))

L_

L∗(G) L∗(G) =
⋃

n≥0

L2n(G), where

Ln(G) = LG(Ln−1(G))

L_*

Φ(G) Frattini subgroup the intersection of all maximal sub-
groups of G

F(G) Fitting subgroups subgroup generated by all nilpo-
tent normal subgroups

Fitting

Oπ(G) π-core the largest normal π-subgroup of
G

pcore

Oπ′ (G) π′-core the largest normal π′ subgroup of
G

pcore

Oπ,π′...(G) The upper π-series of G (Gorenstein 2007, p. 226) pseries

Oπ′,π,...(G) The lower π-series of G (Gorenstein 2007, p. 226)
Ωi (G) Omega subgroup the subgroup of the p-group G gen-

erated by its elements of order di-
viding p i

Ohm

℧i (G) the subgroup of the p-group G gen-
erated by the elements (x p)i with
x in G.

Mho

Table 3.1: The sixteen subgroups
defined in the SSReflect library.
Contrary to the literature, we chose to
note the commutator (derived) subgroup
with a lower case l, to ensure compatibility
with the Puig functor. We remind that the
π-subgroups (or Hall π-subgroups)
involved e.g. in the pcore definition are
those whose orders involve only primes in
π and whose indices involve no primes in
π. We include succint definitions when
size permits.

The definitions of those subgroups have notable particularities:
- they include no assumption on the parent group G. In that sense, they

are really subgroup-defining functions , defined on the class of all groups.
- they often stem from compositions of other subgroups: the definition

of the lower central series uses that of the commutator subgroup, the
definition of the π-series uses the π-core, etc
The first characteristic has repercussions on the type of the definition

of those subgroup-defining functions in COQ, a matter we will study in
chapter 3.4. The second quality, on the other hand, suggests to study how
the characteristicity property (definition 10 on the preceding page) trans-
lates across the composition of some such subgroups: for example, given the
high complexity of the definition of the upper central series, we can expect
its characteristicity proof to be of the less enjoyable variety, unless we can
provide good compositionality properties for its component subgroups.

Let us remember then the objects of our interest:

SUBFUNCTORS OF THE IDENTIT Y 121

Definition 11 (subgroup-defining function). A subgroup-defining function
is a mapping which to any group G associates a subgroup H of G. We will note

subgroup-defining functions with capital letters.

3.1.2 Subgroup-definingfunctions, invariance,andcompo-

sition

Invariance properties The invariance properties we can expect from our
sixteen subgroups can be stated in a more uniform manner. To begin with,
since ϕ is injective and H is a finite subgroup of G, we can reformulate the
characteristicity property in the following manner:

H char G⇔∀ϕ ∈ Aut(G), Hϕ ⊆H (3.1)

Let F be a subgroup-defining function, that is a mapping from groups to
groups, such that F(G)≤G for all G (here ≤ denotes the subgroup relation,
whereas ⊆ stands for set inclusion). Since for an automorphism Gϕ =G,
equation 3.1 becomes:

F(G) char G⇔∀ϕ ∈ Aut(G),F(G)ϕ ⊆ F(Gϕ) (3.2)

In fact, we have found it sufficient, and more compositional to study this
property for a restriction of subgroup-defining functions to nearly-invariant
subgroups.3 Indeed, it allows us to study properties of objects which give
rise in an unambiguous sense to a functor, in a sense we will explain and use
but in § 3.4 on p. 131. For this reason, we call these particular subgroup-
defining functions functorials:

Definition 12. Let F be a subgroup-defining function, then F is a group func-
torial if and only if:

For any isomorphism ϕ of domain G,F(G)ϕ ⊆ F(Gϕ).

When this introduces no ambiguity, we will omit the “group” denomination.

As it turns out, most of the sixteen subgroup-defining functions men-
tioned above turn out to verify this equation for much more than automor-
phisms of their parent group. This prompts us to give the following two
definitions:

Definition 13. Let F be a subgroup-defining function, then F is a strong group
functorial if and only if:

For any morphism ϕ of domain G,F(G)ϕ ⊆ F(Gϕ)

Definition 14. Let F be a subgroup-defining function, then F is a hereditary
functorial if and only if:

For any morphism ϕ of domain D, (F(G)∩D)ϕ ⊆ F((G∩D)ϕ)

In an equivalent, but less category-theoretic vocabulary, we say that a
subgroup-defining function F verifying for all morphisms ϕ of domain G,

F(G)ϕ ⊆ F(Gϕ)

Until § 3.4 on p. 131, we will denote the
application of a set-lifted group morphism
with prefix superscript (exponential)
notation, in order to avoid any confusion
with that of a subgroup-defining function.

3 We remind that a subgroup H of G is
fully invariant if for all ϕ isomorphism of
G, Hϕ =H. Note automorphisms are, by
definition, bijective endomorphisms.

4 Notice here that our definition does
not involve the codomain or range of
ϕ. An alternative possibility would
have been to consider continuous those
subgroup-defining functions such that
∀morphisms ϕ : G→ H,F(G)ϕ ⊆ F(H).
In that case, the center subgroup, for
example, would not define a strong
functorial. However, since our main
concern was characteristicity proofs
for groups, and since our definition of
morphisms in COQ is range-free — which
amounts to restricting morphism ranges
to obtain their canonical surjection — this
formulation seemed sufficient (see § 2.3 on
p. 106).

122 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

is continuous,4 and a subgroup-defining function F verifying for all mor-
phisms ϕ of domain D,

(F(G)∩D)ϕ ⊆ F((G∩D)ϕ)

is hereditary. It is clear that hereditary implies continuous. The term hered-
itary will seem more natural once remarked that:

Lemma 3. Let F be a strong functorial (a.k.a continuous subgroup-defining

function). Then F is a hereditary functorial (hereditary subgroup-defining func-

tion) if and only if ∀H≤G, F(G)∩H⊆ F(H).

Composition operators Let us now come back to the way some of the sub-
groups mentioned in table 3.1 on p. 120 come up as composition of other
such functorials. The lower central series, L(G) and L∗(•) are defined in
terms of iterations of the following product:

Definition 15. Let F1 and F2 be two functorials.. Then we define F1ÏF2 as

the functorial that associates to any group G its image F2(F1(G)), and we call

it the lower product of F1 and F2.

On the other hand, the upper central series and the upper and lower
π-series are iterations of the following product:

Definition 16. Let F1 and F2 be two functorials. Then we define F1△F2 as

the functorial that associates to any group G the inverse image of F2(G/F1(G)) by

the quotient morphism induced by F1(G), and we call it the upper product of

F1 and F2.

Of our sixteen subgroup-defining functions, six are obtained by com-
posing groups that are already the image of some functorial. Hence, their

characteristicity proofs become trivial once equipped with the appro-

priate composition properties.

∀n > 1 Ln(G) = LÏLn−1

∀n > 1 Zn(G) = Z△Zn−1

Oπ,π′,... = fixpoint(G 7→Oπ△Oπ′ (G))
Oπ′,π,... = fixpoint(G 7→Oπ′△Oπ(G))

L(G) =
⋂

n≥0

L2n+1(G) Ln(G) = LGÏLn−1

L∗(G) =
⋃

n≥0

L2n(G) Ln(G) = LGÏLn−1

We have proved the following:

Theorem 5. If F is a strong functorial, and hF is a hereditary functorial, then

hF△F is a strong functorial. Moreover, if F is hereditary , then hF△F is

hereditary too.

The equivalent theorem for the lower product introduces the notion of
monotonic subgroup-defining function:

Definition 17. Let F be a subgroup-defining function. It is monotonic if and

only if for all G1, G2 groups such that G1 ⊆G2, F(G1)⊆ F(G2).

Zn (G) =







1 if n = 0
Z(G) if n = 1

(• 7→ •/Zn−1(G))
−1(Z(G/Zn−1(G))) otherwise

For which we notice:

∀n > 1,Zn = Z△Zn−1

Figure 3.1: Example : the upper
central series

SUBFUNCTORS OF THE IDENTIT Y 123

In that case:

Theorem 6. If F is a functorial, and cF is a monotonic functorial, then so does

cFÏF. Additionally:

- if F and cF are strong functorials, then so is cFÏF.

- if F is monotonic, then so is cFÏF.

These two theorems are enough to let us build the characteristicity proofs
of the appropriate subgroup-defining functions.

Table 3.2 lists the building blocks of our composition properties, that
is the continuous subgroup-defining functions that we have proved to be
monotonic or hereditary. Notice two exceptions:
- the Puig subgroup is a monotonous subgroup-defining function that veri-

fies equation 3.1 on p. 121, but is not continuous.
- the Frattini subgroup is neither monotonic nor hereditary, but it is normal-

monotonic.5

WE CAN NOW CONCLUDE on our compound subgroup-defining func-
tions. We have formalized the following results by composition:
- The upper and lower π-series, obtained from upper products involving

the π-core, are hereditary subgroup-defining functions.
- The upper central series, obtained from upper products involving the

center, is an hereditary subgroup-defining function.
- The lower central series, obtained from lower products involving the

derived subgroup, is a monotonic subgroup-defining function.
- • 7→ L(•) and • 7→ L∗(G), obtained from lower products involving the

Puig subgroup, are monotonic subgroup-defining functions.

Monotonic Hereditary

1, G, l (G), Ωi (G),
℧i (G)

1, G, Z(G), F(G),
Oπ(G)

Table 3.2: Basic subgroup-defining
functions (not obtained through
composition), arranged by
composition class
5 We have proven
Lemma 4. For all N, G such that N ÃG,
Φ(N)⊆ Φ(G).

124 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

3.2 Radicals: fromsubgroup-definingfunctions
to torsion theories

To the best of our knowledge, functorials as such were first noticed by Eilen-
berg and MacLane (1945),6 in the context of foundational work on category
theory. The authors noticed that some generic definitions of subgroups ben-
efited from invariance properties with respect to specific classes of group
morphisms, and they showed Grp was an example where looking at def-
inition of mappings between objects was to be an integral part of their
definition. The history of this attempt of classifying group-theoretic con-
cepts in terms of invariance, and that of its impact, find a detailed treatment
in Marquis (2006). However, the invariance thread quickly bifurcates away
from groups, since the authors quickly found in a topos a more suitable
construction, less dependent on the notion of subsets.

However, subgroup-defining functions have come up in other, related
branches of mathematics. Indeed, when investigating group-theoretical
properties (like commutativity, or the property of being noetherian), one
soon makes the following observations: (i) firstly it is possible to derive
from these properties certain characteristic subgroups, and (ii) secondly
these characteristic subgroups are a central part of the study of these prop-
erties.

For instance, the property of being abelian (i.e. a commutative group)
“gives rise” to the commutator subgroup [G,G] of a group G7 (in a sense we
are about to make precise):
- The commutator is the intersection of all co-abelian subgroups, that is,

the subgroups HÃG such that G/H is an abelian group.
- A group G is abelian if and only if [G,G] = 1.

We would then like to single out the class under consideration in such a
way that the derived characteristic subgroups are in some sense amenable to
treatment.

To make this general statement more precise, we will first consider that
a group-theoretic property defines a class of groups, and talk of a class as of
the associated group-theoretic property, henceforth. We let upper-case Zapf
script letters (, . . . ,) range over classes.

We start with a way to obtain functorials from a class of groups:

Definition 18. Let E be a class of groups, and G any group.

- E
′(G) is the join8 of all normal E-subgroups of G.

- E
∗(G) is the intersection of all normal co-E-subgroups, that is, the intersec-

tion of all NÃG with G/N an E-group (equivalently, the smallest normal

subgroup of G such that the group factored by it is in E).

We have similar definitions for functorials:

Definition 19. Let us consider a functorial F.

- We say that F is lower idempotent, if for any group G, F(F(G)) = F(G), or

otherwise said FÏF= F.

- We say that F is upper idempotent if for any group G, F(G/F(G)) = 1 or

otherwise said, F△F= F.

- If a functorial F is lower idempotent and upper idempotent, we say it is

fully idempotent.

We do not introduce categorical vocabu-
lary properly yet, since we will come back
in a more detailed fashion to the specific
literature piece alluded to here, in § 3.4.1
on p. 131.
6 With (Eilenberg and MacLane 1942) as an
early interest.

We have been relatively conservative in
our description of the literature on radicals
and their application in non-abelian
environments. For more details on this
section, we point the reader to the valuable
surveys of Márki (2009) and Gardner
(2010). When they exist, we have always
tried to give bibliographic references in
English. Naturally, the initial publication
date should not be confused with that of
the translation.

7 Also commonly noted G′ (notably in
the above), this subgroup is the subgroup
generated by the commutators, the images
of the map:

x, y 7→ xy x−1y−1

for all x, y ∈G.

8 Henceforth by join of groups A and
B, we mean the group generated by their
union < A ∪ B >. Since this operation
can be easily seen to be associative, its
set-lifting is clear.

“Symmetry is a complexity-reducing concept ;
seek it everywhere.” (Perlis 1982)

SUBFUNCTORS OF THE IDENTIT Y 125

For example, the abelianization of a group, i.e. the subgroup G/[G,G]
is an abelian group. Since we remember the commutator of abelian groups
is trivial, the commutator is upper idempotent.

Similarly to Definition 18, we define:

Definition 20. Let F be a functorial, then:

- F′ is the class of groups G such that F(G) =G
- F∗ is the class of all groups such that F(G) = 1

Then we can try to define, for properties, an analogous
of strong functoriality for functorials:
Theorem 7 (Residual property). Let be a group-
theoretic class (that is, implicitly closed by isomorphism)

inherited by surjective images. In our “range-free” context,

this means ∀G ∈ E,Gϕ ∈ E for ϕ any morphism (in the

following, we will just say “images” for those surjective im-

ages). The following properties are equivalent:

(i) a. Intersections of normal co-E-subgroup are co-

E-subgroups.

b. Images of E-groups are E-groups.

(ii) a. E
∗(G) is for every G a co-E-subgroup of G.

b. Images of E-groups are E-groups.

(iii) The normal subgroup N of G is a co-E-subgroup if and

only if E∗(G)⊆N

(iv) a. G is an E-group if and only if E∗(G) = 1
b. E

∗ is a strong functorial.

Any property verifying one of (i)-(iv) is called residual.

The same sort of construction also works to give, for
properties, an analogous of the heredity property for
functorials.
Theorem 8 (Co-residual property). Let be a group-
theoretic class (again, implicitly closed by isomorphism) in-

herited by normal subgroups. The following properties are

equivalent:

(i) a. Products of normal E-subgroups are E-groups.

b. Normal subgroups of E-groups are E-groups.

(ii) a. E
′(G) is for every G an E-subgroup of G.

b. Normal subgroups of E-groups are E-groups.

(iii) The normal subgroup N of G is a co-E-subgroup if and

only if N⊆ E
′(G)

(iv) a. G is an E-group if and only if E′(G) =G
b. E

′ is an hereditary functorial.

Any property verifying one of (i)-(iv) is called co-residual.

Proof : Theorem 7. (ii)⇒ (i) is clear.
If (ii) is true, and NÃG such that E∗(G)⊆

N, G/N is the image of G/E∗(G) by a canonical
surjection and thus an E− s u b g r ou p, mak-
ing N a co-E-subgroup. Since E∗(G) is by def-
inition the intersection of all co-E-subgroups,
provided N is one such co-E-subgroup, it is
clear that E∗(G)⊆N. Hence (ii)⇒ (iii).

Assume (iii). If J is an intersection of co-
E-subgroups, then E

∗(G) ⊆ J, and J is a co-E-
subgroup. Moreover, if G is a -group, then 1
is a co-E-subgroup, so that E∗(G) = 1, which
implies that E∗(G)⊆N for any NÃG. By the
first isomorphism theorem, every image of G
is an E-group, hence (iii)⇒ (i), and (i)-(ii)-(iii)
are equivalent.

Assume (i)-(iii). As explained above, we
have E

∗(G) = 1 if G is an E-group, and (ii.a)
proves that G is an E-group if E∗(G) = 1. We
have (iv.a). Moreover, if ϕ is an morphism
of domain G, then it induces a morphism
from G/E∗(G) upon Gϕ/E∗(G)ϕ , which is then an

-group by (ii.b). Hence E(Gϕ)⊆ E(G)ϕ by (iii).
The inverse image of the latter gives rise to an
isomorphism G/E∗(Gϕ)ϕ−1 ∼= Gϕ/E∗(Gϕ). The
latter is an E− g r ou p by (ii.a), so that it is
also the case of the former and (iii) gives us:

E
∗(G)ϕ ⊆ [E∗(Gϕ)ϕ

−1
]ϕ = E

∗(Gϕ)⊆ E
∗(G)ϕ

We have (iv.b).
Assume (iv). Note ϕ the canonical surjec-

tion onto G/E∗(G), then (iv.b) gives us that

E
∗(G/E∗(G)) = E

∗(Gϕ) = E
∗(G)ϕ = E

∗(G)/E∗(G)= 1

Hence, G/E∗(G) is an E-group, and (ii.a) is
true. If moreover σ is a morphism, and since
E
∗(G) = 1 from (iv.a), we have E∗(Gσ) = 1 by

(iv.b). We can then conclude using (iv.a) that
Gσ is an E-group, proving (ii.b) and the equiv-
alence of (i)-(iv). �

Proof: Theorem 8. (ii)⇒ (i) is clear.
Assume (ii), then if NÃG, NÃ E

′(G) by
definition of the latter, and (ii.a), (ii.b) prove
the equivalence (iii).

Assume (iii). Applying it to E
′(G) itself

tells us that it is an E-group, and, knowing
that E′(G) ⊆G, it implies (iv.a). Moreover, if
NÃG then E

′(N) is a characteristic subgroup
of N, and, as mentioned in § 3.1.1 on p. 119, a
normal subgroup of G. Hence E′(N)⊆ E

′(G),
so that E′(N)⊆N∩E′(G). Finally, N∩E′(G)
is a normal subgroup of E′(G) and as such (iii)
proves it is an E-group. We can use this to ap-
ply (iii) again considering N∩ E′(G) Ã N, so
that N∩E′(G)⊆ E

′(N). Thus (iv.b) is valid.
Assume (iv). If G is a product of normal

E− s u b g r ou p s , then G = E
′(G) by defini-

tion of E′, so that (iv.a) lets us conclude to (i.a).
Moreover, if NÃG and G is an E-group, then
(iv.b) implies

E
′(N) =N∩E′(G) =N∩G=N

, and that we can conclude that N is also an
E-group from (iv.a). This lets us conclude the
proof of (i) and therefore (i)-(iv) are equivalent.
�

126 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Then we have the following theorem:

Theorem 9.

(i) The functorial F is hereditary, if and only if F′ is a co-residual class and

F′′ = F,

(ii) The functorial F is strong, if and only if F∗ is a residual class and

F∗∗ = F ,

(iii) The class E is co-residual, if and only if E′ is hereditary and E
′′ = E,

(iv) The class E is residual, if and only if E∗ is strong and E
∗∗ = E.

In sum, those lemmas create a link between, on the one hand, the proper-
ties of the join (or intersection in the case of co-radicality) of a selective class
of groups that singles out a given property, and, on the other hand, the value
of some subgroup-defining functions (equipped with some properties).

For instance, the functorial F is of the form F = E
′ for a co-residual

property E such that normal subgroups are E-groups if and only if:

F(N) =N∩F(G) for every NÃG

Note that we approach those notions with a special focus aimed at lever-
aging properties of subgroup-defining functions- hence, we do and will insist
on the right side of that link. It is contrary to the most common approach :
in most of the literature, it is that join of elements of a class of groups that
is mostly studied, and from which “a radical” is defined.9

Nonetheless, the study of those objects was founded during the 1950s
by Amitsur and Kuroš (Amitsur 1952, 1954a,b; Kuroš 1973a), as a gener-
alization of the concept of largest nilpotent ideal of a finite dimensional
associative algebra.

The generalization endeavour quickly turned towards an abelian setting,
in which the normality of subgroups (such as the one encountered in the
pre-radicality condition above) is obtained without further ado. This also
offers the advantage of being in a framework where it is always possible to
consider the direct sum above instead of the join. In that context, radical

theory is thus simply the study of the direct sum of all subgroups in a class
of groups.

Radical theory is by now a part of ring theory, giving its name to the
famous instance that is Jacobson’s radical.10 Nonetheless, we can notice
that of our 16 subgroup-defining functions, a good number are defined by
intersection of subgroups, or join of quotient groups, hinting at some rel-
evance of radical objects in our case. What is more, the parenthood with
group theory, and the subgroup-defining functions of particular interest in
this thesis can be traced precisely in radical theory: it is of note that Amit-
sur explicitly makes a reference to MacLane’s foundational work (MacLane
1950) stemming from group theory, and based on the exact study of those
subgroup-defining functions to define bicategories11 Finally, radical theory
for groups was developed explicitly (Gardner 1989; Kuroš 1973b), if spo-
radically, and some decades after the analogous theory for rings. General
radical theory for groups is therefore somewhat relevant to our interests. It
has known a recent relative renewal (Gardner 2010) which, however, does
not focus on subgroup-defining functions.

We are less ambitious than wanting to develop an exact correspondence

Proof: Theorem 9. We only prove the
difficult case, i.e. Showing that we have
co-residuality (resp residuality) in (i),(ii),
assuming the heredity of F (resp. that F is
strong).

Assume F is strong. We will prove case
(iii) of theorem 7. If G is an F∗-group and
ϕ a morphism, then F(Gϕ) = F(G)ϕ = 1
since F is strong and by definition of F∗

applied to G. Gϕ is then an F∗-group, and
images of F∗-groups are F∗-groups.

Let now σ denote the canonical
isomorphism upon G/F(G). Then
F(G/F(G)) = F(G)σ = 1 so that G/F(G)

is an F∗-group. Then if N Ã G G/N is
the image of F∗-group G/F(G), and thus an
F∗-group. Thus by strength of F and the
definition of F∗:

1= F(G/N) =N.F(G)/N

which implies F(G) ⊆ N. N is therefore
a co-F∗-subgroup of G if and only if
F(G)⊆N, i.e. (iii) is valid.

Assume now that F is hereditary. We
will prove case (i) of theorem 8. If N ÃG
with N a F′-subgroup of G, then

N= F(N) =N∩F(G)⊆ F(G)

In particular, if G is the product of normal
F′-subgroups, G = F(G) so that products
of normal F′-subgroups are F′-subgroups.
If now N Ã G is a subgroup of the
F′-group G, then

F(N) =N∩F(G) =N∩G=N

Hence, normal subgroups of F′-groups are
F′-groups. Hence F′ is co-residual. �

9 A radical in this sense is a class of rings S
such that:

(1) the homomorphic image of a ring
in S is also in S.

(2) every ring R contains an ideal S(R)
in S which contains every other
ideal in S

(3) S(R/S(R)) = 0. The ideal S(R)
is called the radical, or S-radical,
of R. For instance, the Jacobson
radical is the intersection of all
primitive ideals of a ring, called
the upper radical generated by the
class of all primitive rings.

10 If I is an ideal of the commutative ring
R, Jac(I) is the intersection of all maximal
ideals containing I.

SUBFUNCTORS OF THE IDENTIT Y 127

between the most common expressions for a radical, and our subgroup-
defining functions, and prefer to focus on the few publications close to our
concern (Baer 1966; Plotkin 1969, 1983):

Of course, abstract group-theoretical funtions in implicit form have been
studied for a long time, but only in the recent paper by Baer (1966) have they
been named explicitly and regarded as an object in their own right.

(Plotkin 1983)

In general, the lemmas we developed are picked out of conflicting sets
of definitions, in which we have taken the most general solution, and that
we essentially adapted to cover the slightly different setting of our surjective
representation of morphisms.

Indeed, where we define continuity as such:

∀ f ,F(G) f ⊆ F(G f)

because our morphisms have no pre-defined range, a more mathematical
approach would state

∀ f : G→H,F(G) f ⊆ F(H)

This second definition has composition properties that are more regular.
For example, the preservation of the continuity across the composition of
two functorials is automatic in the “mathematical” case.

Beyond this translation of properties of subgroup-defining functions, a
small part of theories developed from radicals still interests us, namely tor-
sion theories. Torsion theories develops relations between dual classes of
groups, and attaches itself to closure of those classes of groups by opera-
tions such as taking a subgroup, a quotient group, a group extension, or an
isomorphic image.

11 “The whole theory can be developed in
a far wider class of mathematical objects.
The larger field in which this can be done
is that of the Lattice-ordered bicategories
of MacLane defined in 1950, which satisfy
some additional properties so that the two
main isomorphisms hold, and some minor
properties of ideals in rings. (...) It is worth
noting that the whole theory of radicals is just
a relation between injections and projections
of a bicategory. We just use ’objects’, ’normal
subobjects’, ’supermaps’ instead of ’rings’,
’ideals’, and ’homomorphisms’.”

(Amitsur 1954b)

128 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

3.3 Torsion theories for groups

If some radical theory was already enough to make some link between group
functorials and group-theoretic properties expressed as classes of groups, it
was not enough to capture meaningful classes we wanted to work with.

3.3.1 Definitions and Properties

We start with a few preliminary notations:

Definition 21 (Null morphism). If f : X → Y is a morphism such that

f (x) = 1Y for all x ∈X, then we call f null and note it by 0→.

Given a class of groups, we can define class constructors:

Definition 22 (Torsion theory). Let T and F be two classes of groups. We

define:

T
r = {H ∈Grp | ∀G ∈ T, Hom(G, H) = 0→} (3.3)

F
l = {G ∈Grp | ∀H ∈ F, Hom(G, H) = 0→} (3.4)

T,F is called a torsion pair if the following holds:

T = F
l ∧F = T

r

Remark. For any two classes T,F:

F ⊂ T
r⇔ T ⊂ F

l

We have proven:

Lemma 5. Let F be a functorial, we define:

T = {G ∈Grp | F(G) =G} (3.5)

F = {G ∈Grp | F(G) = 1} (3.6)

then we have:








T ⊂ F
l ∧F ⊂ T

r if F is monotonous

F
l ⊂ T if F is upper idempotent

T
r ⊂ F if F is lower idempotent

Lemma 6. Let T,F be two group classes. Then, if T = F
l , T is closed by:

• group isomorphism

• quotient group

• group extension

• group join (see note 8 on p. 124)

• direct sum

Lemma 7. Let T,F be two group classes. Then, if F = T
r , F is closed by:

• group isomorphism

• subgroup

• group extension

• (external) direct product

SUBFUNCTORS OF THE IDENTIT Y 129

Lemma 8. Let T be a group class, and pose F = T
r . Then if T is closed by

group isomorphism, quotient group, group extension, and join, F′ is a fully

idempotent radical. Moreover,

T = {G ∈Grp | F′(G) =G}

F = {G ∈Grp | F′(G) = 1}

Lemma 9. Let F be a group class, and pose T = F
l . Then if F is closed by

group isomorphism, subgroup, group extension, and direct product, F′ is a fully

idempotent radical. Moreover,

T = {G ∈Grp | F′(G) =G}

F = {G ∈Grp | F′(G) = 1}

3.3.2 Coq Formalization

The formalization of those results was relatively straightforward, and al-
lowed us, for example, to connect the derived subgroup with the class of
solvable groups, a torsion-free class of groups. Here is our definition of
group class:

Definition trivlsed gT (B : {group gT}) hT (C : {group hT}) :=

∀f : {morphism B 7→ hT},

f \ensuremath{\itbox{* B ⊆ C � f }}* B := : 1%G.

Definition GClass := ∀gT (B: {group gT}), Prop.

Identity Coercion fun_of_obsel : GClass 7→ Funclass.

Implicit Types P Pa Pb : GClass.

We note the necessary polymorphism of classes of groups, caused by the
fact that some of them must be invariant by taking the quotient (and since
our quotient types are distinct from the original, unquotiented one). The
inclusion relations between classes are the following:

Definition lP Pa Pb := ∀gT B, Pa gT B � Pb _ B.

Definition eP Pa Pb := ∀gT B, Pa gT B ↔ Pb _ B.

With this definition, they allow a group with a given finGroupType and
its quotient to be in the same class. This genericity has a downside: in the
final results on the creation of a functorial from an intersection of groups
we were required, however, to fix the finGroupType of the group we would
work with. We had to make sure that the monomorphic intersection of
groups we created was meaningful, something we chose to represent with a
reflection of the membership predicate to booleans:

Variables Bbool Cbool : ∀gT, pred {group gT}.

Hypothesis reflectB : ∀gT (G:{group gT}), reflect (Bs G) (Bbool

G).

This implies our interpretation of class Bs in terms of a functor will only
be valid when Bs is not empty. We will have to carry around non-emptyness
hypothesis, but this is actually better than the alternative, which is to have
a T that does not always carry a group structure (being sometimes empty) -
hence one that wouldn’t even fit our functor structure.

130 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

3.3.3 RelatedWork

Torsion theory was developed for rings by Dickson (1966), but to our knowl-
edge, there is no clear port of this theory to groups. Some precursors exist
in unpublished form. (Ohtake 2008) defines a torsion theory for groups,
but without concern for operations other than subgroups and group exten-
sions, and with an exclusive focus on torsion-free theories. In a different
take that aims at exploring the consequences of closure operators for groups,
López Gerena (2009) develops some torsion theory for group classes, but
his equivalence between the torsion-free theory of a functorial and a class of
groups with suitable invariance requires much more invariance hypotheses
than ours. None make the link with residuality.

SUBFUNCTORS OF THE IDENTIT Y 131

3.4 Relational Parametricity

ALONG THIS EQUIVALENCE BET WEEN GROUP FUNCTORIAL S

AND CL ASSES OF GROUP EQUIPPED WITH INVARIANCE PROPER-
TIES, we have developed an insightful way to look at group properties. We
now want to aim at an even more insightful way to look at group functori-
als.

Until now, we have only looked at mathematical properties of those
functorials. We now want to look at characteristics of their type-theoretic
representation. We firstly make a link between the notion of functorial-
ity and the continuity property we isolated in § 3.2 on p. 124. We then
recognize that this continuity property happens to be a “free theorem” :
a corollary of a relational parametricity theorem. Provided we can make
that intuition precise in COQ, this would provide us with a way of obtain-
ing group-theoretical properties from a subgroup-defining function, simply
by looking at its type. After having made the connection with relevant
portions of the literature on parametricity, we turn toward obtaining a para-
metricity result within COQ. Indeed, the key difficulty on which we focus
is not the notion of parametricity itself, but the fact that it is a meta-theorem
of any calculus for which it is valid. Nonetheless, we work within COQ and,
faithful to the SSReflect approach, we do not want to add any parametricity
axioms to the calculus. Our dilemma is thus to obtain a result that we could
exploit, which is why we focus on reflection. We explain the insight that
led us on the track towards making parametricity exploitable within the
calculus, and provide a proof-of-concept example realizing that suggestion.

3.4.1 From subgroup-defining functions to Functors

The definition of continuity presented in section 3.1.2 on p. 121 has a more
general justification, first noticed by Eilenberg and MacLane:12 the defini-
tions of those subgroups, defined for any arbitrary parent group, can be
seen as object mappings of subfunctors13 of the identity functor on (at least)
the core14category of Grp.

They prove:

Lemma 10. (Eilenberg and MacLane 1945, §14.1) Let T be a covariant functor

with values in the category Grp, while T′ is a functions that assigns to each

object G a subgroup G′ of T(G). Then T′ is the object mapping of a subfunctor

of T if and only if for each f : G→H,

T′(G))T(f) ⊆T′(H) (3.7)

If T′ satisfies this condition, the corresponding mapping function T′(f) is

uniquely determined as the restriction of T(f) to the domain T′(G).

The characteristicity condition then becomes a direct corollary obtained
by substituting an automorphism ϕ, the identity functor, and the image
of G by the subgroup-defining function, for respectively f , T and T′(G) in
previous equation 3.7.

The categorial vocabulary introduced here may seem unnecessarily com-
plicated just to prove that some subgroups are characteristic. However, the

12 S. Eilenberg and S. MacLane. General
theory of natural equivalences. Transac-
tions of the American Mathematical Society,
58(2):231–231, 1945. ISSN 0002-9947.
doi:10.1090/S0002-9947-1945-0013131-6
13

Definition 23. Let T1,T2 : C→D be two
functors of same variance. The functor T1 is
said to be a subfunctor of T2 if for all objects
G ∈ C, T1(G)⊂ T2(G) and T1(f)⊂ T2(f)
for all f : G→H in C.

14 The core of a category C is the subcate-
gory consisting of all objects, but which
takes only the bijective homomorphisms
as morphisms.

http://dx.doi.org/10.1090/S0002-9947-1945-0013131-6

132 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

category on which a subgroup-defining function can be seen as giving rise to
a subfunctor is usually not limited to the core category of Grp. For instance,
for any group morphism f of domain including the group G,

f (G′)⊆ (f (G))′

where the quotation mark denotes the commutator subgroup. Hence, the
commutator subgroup is a subfunctor of the identity on Grp as a whole:
in fact, we even have f (G′) = (f (G))′. On the other hand, the image of
the center subgroup is not always included in the center of the image of
its parent,15 but this property becomes true once we restrict ourselves to
images by surjective morphisms.

Hence, Eilenberg and MacLane(Eilenberg and MacLane 1945) go on to
remark that :

various types of subgroups of G may be classified in terms of the degree of
invariance of the "subfunctors" of the identity which they generate.

3.4.2 ManyNotions of Parametricity

The notion of parametricity (coined informally by Strachey (2000) in 1967),
in a nutshell, it states that a term of polymorphic type preserves relations
between types: if a term u of the second-order polymorphic λ-calculus has
type ∀α :Type . σ and R⊂ τ×τ′ is a relation, then

u(τ)(σ[R])u(τ′)

where σ[R] is a relational interpretation of the type σ defined inductively
over the structure of σ . Equivalently, parametricity could be defined as the
identity extension property: for all terms of type u, v of type σ(α),

u(σ[−→eq α])v⇔ u = v

It finds its formal origin in the isomorphism between the second-order
polymorphic λ-calculus F2 and the second order intuitionistic predicate
logicΠ2. The fact that any function provably total inΠ2 can be represented
by an F2 term is Girard’s representation theorem. The fact that for a suitable
notion of logical relation, every term in F2 takes related arguments into
related results provides a reverse embedding of F2 intoΠ2.16 It is Reynold’s
abstraction theorem (Reynolds 1983).

From this theorem and its original correspondence, an impressive body
of literature has emerged during the last few decades. The first type of liter-
ature concerns the justification and reformulation of the original relational
model presented by Reynolds, whose proof of the abstraction theorem was
originally based on a Kripke semantics. Many authors aimed to give it a
more pure logical foundation, or a categorical semantics. Notably, Plotkin
and Abadi (1993) developed a logic for parametric polymorphism — that is,
a second order logic over system F terms extended with an axiom schema
expressing relational parametricity. Of note in this strand of work is the
work of Abadi et al. (1993) who manages to provide a syntaxical proof over
system F extended with a delimited axiom rule inspired from the identity
extension property above. It is the only proof which does not —- to our
knowledge — base itself upon a denotational semantics.17

15 Let us consider the direct product A×C
of an abelian group A with C a centerless
group (a group with trivial center) such that
C contains a subgroup B isomorphic to A
(B ∼= A). Let us call σ the isomorphism
that sends A to B. It is clear that A is
the center of A×C. Now, consider the
endomorphism

f (A×C) 7→C

x 7→ σ ◦π1(x)

where π1 is the projection from A×C to
A. Then the image by f of the center A of
A×C is B, but the center of the image of
f , C, is 1 by construction.

To make this construction work,
consider that a dihedral group Dn of order
2n is centerless if n is odd. Moreover, a
dihedral group is made, by construction,
of the product of a cyclic group by an
involution, so that this cyclic group
furnishes a suitable abelian group with an
isomorphic image in the dihedral. Hence,
in the above, we can take C = D3 and
A=Z/2Z.

16 P. Wadler. The Girard-Reynolds
isomorphism (second edition). The-
oretical Computer Science, 375(1-3):
201–226, May 2007. ISSN 03043975.
doi:10.1016/j.tcs.2006.12.042

17 The categorical approach to parametric-
ity sadly hits the tender spot of a subject
where there is too much to say (because the
link between functoriality has been made
early, starting at least with the work of
Freyd on PER models in 1990), and where
the subject is slightly too distant to inform
our hands-on approach (though we will
mention a late offspring of Joyal’s work in
§ 3.4.5 on p. 136)

http://dx.doi.org/10.1016/j.tcs.2006.12.042

SUBFUNCTORS OF THE IDENTIT Y 133

The second large trend of work born from the abstraction theorem con-
sists in extending these results to calculi richer than System F. Indeed, it is
unclear which form of the correspondence exposed above holds for calculi
augmented with features such as higher-kinded types, not to mention coin-
ductive types or existentials — in particular, the equivalence of the identity
extension (or what its analogous should be) and some relational interpreta-
tion of parametricity is no longer clear. Working in the context of practical
programming and in COQ, we are, of course, interested in but a limited
number of those extensions. The curious reader will gain much from the
survey of Birkedal and Mø gelberg (2004),18 after which he will forgive
us for concentrating exclusively on the strand of work which seems more
promising for our interest : Vytiniotis and Weirich (2010) developed a proof
of relational parametricity for system Fω which led to a recent extension
to dependent polymorphic PTS (under some conditions) by Bernardy et al.
(2010). We are hopeful for a future extension of their results to type theory.

Most of those proofs focus decidedly on relational parametricity and are
not shy of a denotational approach, if only because all practical approaches
to parametricity theorem have been corralled and motivated by Wadler’s
exposition of the notion of parametricity.19

In this paper, Wadler reformulates Reynolds’ results and shows that they
can be used to reason with parametric functions on the simple basis of
their type. In particular, he makes the link between the notions of data
abstraction and polymorphic types effective, by showing that polymorphic
functions cannot inspect the data of their arguments and that from this
insight, equations between terms can be rigorously derived. For instance,
he shows that for “container” types, such as lists:

If (f : ∀A. list A � list A) and g : T � U, then

map g ◦ f
T
= f

U
◦ map g

The practical approach to deriving those equations from polymorphic
types and using them in polymorphic languages (mostly Haskell) form the
third notable strand of work on parametricity. Since we are interested in the
study of concrete subgroup defining functions, our investigation is naturally
of that persuasion.

To make this interest clearer we now give an exposition of the core rea-
soning expressed in (Wadler 1989).

3.4.3 Parametricity and relations

Let us consider a typed relation α on λ-terms, which, for the sake of argu-
ment, we’ll consider binary. Say that relation α relates λ-terms of types A
and A′, for its first and second components.

Let us define functions on relations.
Φ = (ϕ,ϕ′) is a function from relations to relations if for all (x, y) ∈ α,

(ϕ(x),ϕ′(y)) ∈ Φ(α). If ϕ :A → B and ϕ′ : A′ → B′, then Φ(α) relates B to
B′.

To avoid any confusion, we will call those functions relation transformers.
Now, since our relations are typed, a definition of polymorphic relation
transformers emerges naturally:

18 If he is interested in type theory, he
might also want to glimpse at the early un-
published paper of Takeuti (2001), which
is the last scion of the aforementioned
“logical” approach to launch a tendril in
the direction of dependent types.

19 P. Wadler. Theorems for free! In
Proceedings of the fourth international
conference on Functional programming
languages and computer architecture - FPCA
’89, number June, pages 347–359, New
York, USA, 1989. ACM Press. ISBN
0897913280. doi:10.1145/99370.99404

http://dx.doi.org/10.1145/99370.99404

134 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

Ψ is a polymorphic relation transformer of type ∀α,Φ(α) if and only if
for any relation β relating types B,B′, then Φ : B → Φ(β) is a relation
transformer.

What relational parametricity tells us is that polymorphic functions give
rise to polymorphic relation transformers of the same type. More precisely:

If f is a polymorphic λ-function of polymorphic type, say

∀A,[A] → [A]

then (f , f) is a polymorphic relation transformer of type

∀α,[α] → [α]

i.e. (f B, f C) is a monomorphic relation transformer of type [B] → [C]
for all α relating B to C.

The list, here represented by brackets, is just here to make things not-
too-trivial, and to show that we extend relations to constructors. Let us see
an example with rev, the polymorphic function that mirrors lists.

What Theorems for free tells us is that it might be useful to look at func-
tions seen as relations. The typed binary relation θ(f) on λ-terms induced
by a monomorphic λ-function f :B → C is evidently the set of pairs:

θ(f) = {(x :B, y :C) | y = f (x)}

Now, we can easily build an extension of that relation to lists, as given
by the map function:

[θ(f)] = {(l1 :[B], l2 :[C]) | l2 = (map f) l1}

Since (rev,rev) is a polymorphic relation transformer, (revB,revC) is a
relation transformer. This just means that the transformation on relations
given rise to by rev is just as closed as what the type of the original poly-
morphic function — returning lists of the same type as its argument — was.
More precisely, for all (l1 : [B], l2 : [C]) ∈ [θ(f)] for some f , we have that
(revB l1,revC l2) ∈ [θ(f)].

We now unfold the definition of [θ(f)] to notice that:

revC l2 = (map f)(revB l1)

Recalling the definition of [θ(f)] for the original l1, l2 yields:

l2 = (map f) l1

Which replaced in the above allows us to conclude:

revC (map f) l1 = (map f) (revB l1)

We have proven that rev and map f commute, as was our goal all along.

3.4.4 Functorialitypropertiesandsubgroup-definingfunc-

tions

PROOF BY REFLECTION is by now a well-known staple of proof au-
tomation in COQ. The ring tactic (Grégoire and Mahboubi 2005) is the

SUBFUNCTORS OF THE IDENTIT Y 135

posterchild for the efficiency of such an approach, and we have already men-
tioned it when explaining our own favor of reflection in § 2.1.1 on p. 84.
However, the key difference between ring and small scale reflection is that
the first approach occurs outside of the calculus, and can potentially reflect
all the terms of COQ. On the other hand, small scale reflection is based on
an inductive reflection predicate which limits its scope: it can only reflect
terms using user-provided proofs of that predicate. Moreover, it is only so
easy to use because it has had a little help from a top level tool: SSReflect.
As such, its ambition is not to provide a way to reflect all the terms of COQ

’s calculus. Thankfully, neither is ours.
At the time of this writing, no relational parametricity results have been

proven for the whole calculus of COQ, and the theorem most of us are used
to thinking of is still the one of System F. It is unclear that the cumulative
calculus of inductive constructions with universes (§ 1.1.5 on p. 23) would
support such a theorem. The situation gets even murkier if the calculus is
extended with the whole set of features of COQ (including e.g. coinductive
types).

However, reflection can be implemented within calculus as a decompila-
tion function which recovers the syntax of a program, provided it belongs
to a reasonable, well-chosen fragment of the extended PTS of COQ. Such a
method has been implemented for the simply-typed λ--calculus in COQ,20

but the definition of this reflection function involved a mutually-recursive,
type-directed, dependently-typed decompilation function, and extending it
to support a stronger calculus is still an open problem.

Even though, our idea consists in working along those lines, in the sense
that we are not ambitious for more than a relational parametricity theorem
for the vanilla system F —- yet. However, we are ambitiously going for a way
to connect live COQ terms with such a relational parametricity theorem,
proven on a deep embedding of system F in COQ: we want to reify just
those terms of COQ that correspond to valid system F terms. Once this is
done, we hope that a relational parametricity result on the reified terms will
be enough to obtain a free theorem on relevant COQ terms.21

The method we have chosen to implement reflection is an application
of the original insight that led us to develop a semantics for deterministic
overlapping instances in § 1.4.4 on p. 74. Let us start by going back to what
reflection is: On the one hand, we have a deep embedding of the calculus we
want to reflect — that is an inductive type giving the BNF grammar of the
syntax of said calculus. On the other hand, we have a shallow embedding
of the calculus: select terms of COQ that can be seen as members of the
calculus and that we want to reify. Interestingly, those COQ terms come
with their type — that is they are a representation à la Church.

A full reflection procedure consists in giving a bijection between the two.
That bijection can link equal terms in a certain sense: it can link one term
of the deep embedding with the term that would be syntactically equal if
written by a meta-theoretic observer. Another approach consists in linking
terms that are equivalent modulo a given relation: for example, we can relate
the normal form of a lambda-term of the deep embedding with the corre-
sponding normal form of a COQ term of the shallow embedding, where
“corresponding” designates the equality above — this was the approach of

20 F. Garillot and B. Werner. Simple
Types in Type Theory: Deep and Shallow
Encodings. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order
Logics, volume 4732 of Lecture Notes in
Computer Science, pages 368–382. Springer
Berlin /Heidelberg, 2007. ISBN 978-3-540-
74590-7. doi:10.1007/978-3-540-74591-4_27

21 Granted, this may not suffice to prove
the continuity property that we have
encountered in § 3.2 on p. 124, since it
involves no less than nested inductives, but
we still hope it will turn out to be a step in
the right direction

http://dx.doi.org/10.1007/978-3-540-74591-4_27

136 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

(Garillot and Werner 2007). In any case, this consists in examining the
structure of a term in any of the two embeddings and replicating it in the
other one. In general, the difficult part of that correspondence is in writing
the function that goes from the shallow embedding to the deep embedding:
writing its inverse is easy for calculi that are sub-part of the one of COQ—
it consists in writing an interpreter. In all cases, the procedures of that bijec-
tion are defined recursively: this of course, reflects that the structure of the
calculus itself is inductive, as witnessed by the representation of its grammar
using an inductive, in the deep embedding.

The key insight of reification using canonical structures is that, very of-
ten, observing the weak head normal form of a term is enough to select
which case we are dealing with, to replicate the corresponding shallow con-
struction, and to defer to a recursive call. Compositionality is the principle
that allow us to implement said recursive call using Canonical Structures:
in effect, the head constant of a normal term gives us enough information
to recognize which kind of terms we are facing and we can then subvert
the unification procedure to realize the recursive call for us — and build the
sub-structures that will compose the rest of our term.

However it is difficult, simply using this machinery, to pass context to
the recursive calls. The solution we need to implement is to pass a single, un-
changing environment to the recursive calls — hence, we had to implement
a search function for variables of the environment based on type declara-
tions and unification. This is achieved by (Cohen 2010, annex C) using a
CPS-style semantics based on the techniques we exposed in 1.4.4 on p. 74,
and what we simply aim to extend to a bigger calculus.

3.4.5 Relatedwork

Of the few concrete applicable tools for using parametricity while program-
ming “in the wild”, we must mention two outliers which inch closer than
average towards our approach. Voigtländer has developed, along with a
thorough analysis of what parametricity means in the context of Haskell
(e.g. Voigtländer 2009), a tool to derive parametricity equations (Johann
and Voigtländer 2004; Seidel and Voigtländer 2010).

Moreover, of the numerous category-theoretic approaches to parametric-
ity, one can be developed — to a point — within a deep embedding in type
theory, and more precisely in COQ. It therefore permits a unique approach
to having some free theorems available as-is in the prover: the notion of
containers has been developed by Abbott (Abbott 2003; Abbott et al. 2003)
to give a functorial rendering of parametricity : containers are defined as
types which access data through a containing layer which represents a uni-
form indexation of data through integers. The use of this layer makes some
free theorems provable from a generic construction. The development in
COQ of a part of this theory has been carried out by Prince et al. (2008).
While stimulating, the construction is developed on the example of first-
order polymorphic lists and will -– to the best of our understanding- require
a significant improvement of proof-irrelevance in the calculus of COQ to be
generalizable to arbitrary constructors. This innovative approach therefore
clashes with the non-axiomatic stance of the Mathematical Components

http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi

SUBFUNCTORS OF THE IDENTIT Y 137

team in SSReflect.

3.4.6 Futurework

A developement of the extension of the reflection technology of (Cohen
2010, annex C) is ongoing. It will reify those terms of Coq that correspond
to System F terms.

Conclusion

OUR WORK HAS THREE MAJOR CONTRIBUTIONS. IN THE FIRST,
we advanced the state-of-the-art in building libraries of polymorphic struc-
tures for generic programming in COQ.

Previous models used dependent records to structure programming and
emulate the notion of telescope — the clear type-theoretic incarnation of
mathematical structures. They composed them to form hierarchies of struc-
tures, just as mathematical structures themselves are naturally organized
along hierarchies: groups are defined starting from monoids, rings from
groups, etc ... Their organization paradigm depended on the various prod-
ucts inherent in the calculus of COQ: they used parametric arguments
(Pebble-style records) or dependent arguments (telescopic records). Those
products facilitated the proliferation of copies of arguments within a term,
with little-to-no sharing.

We proposed a new paradigm, Packed Classes, which also structures
hierarchies using those products, but packed within inductive types. This
let us use the fact that COQ maintains an environment of inductives when
analyzing terms and tries to deal with them by reference as much as possible.
We measured this sharing made COQ behave as if it was manipulating terms
much smaller than in the other paradigms, and demonstrated we lost none
of the expressivity. This achievement was prompted by a contribution to a
large formal development making extensive use of the generic programming
facilities of COQ, notably Canonical Structures, a flavor of type classes. It
was, then, implemented within that library and represented a major step
forward in the usability of this generic programming construct, after the
porting of several tens of thousands of lines of code.

THE SECOND CONTRIBUTION OF THIS WORK is a method for im-
peratively triggering the instantiation mechanism of Canonical Structures,
with custom equational constraints. It makes a synergical use of phantom
types and notations. It solves a key problem of expressivity in COQ: Math-
ematicians, as well as COQ users, like to refer to mathematical objects just
by mentioning the essential computational part of their definition. For ex-
ample, when a mathematician speaks of the image of x by f ◦ g , he means
sometimes the composition of the functions f and g and, sometimes the
composition of the homomorphisms f and g . The audience is supposed to
deduce which from the context -– for example, there is a strong hint that we
are talking about homomorphisms if x = 1. But composition (◦) is defined
computationally even if f and g are not morphisms.

139

140 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

On the other hand, Canonical Structures are a way to peg some data on
COQ terms. Here, we would use them to peg some mathematical structure
on mathematical objects : morphisms on functions. But the computational
part of mathematical object must, for that, exist independently of the ex-
istence of the structure of its components. When it does not — as, for
example, when talking about the domain of f — Canonical Structures are
of no help and the user has to provide the whole structure “by hand”. This
contribution provides the user with the ability to manipulate expressions
such as the domain of a morphism without having to enter more than a ref-
erence to f , the underlying function — that is, the essential computational
part of the equation. As an ancillary but valuable effect, we have obtained
a way to test (in the software-engineering sense) the sometimes mercurial
inferability of Canonical Structures.

THE THIRD CONTRIBUTION consists in a generic treatment of a fre-
quent kind of subgroup definition in mathematics. Recognizing that those
definitions, when represented as terms of type theory, yield polymorphic
subgroup-defining functions , we give an abstraction for this notion and give
them a unified treatment in the formalization. Our work shows that the
generic approach in representing those varied mathematical definitions —-
something which has been mostly forgotten in mathematics since the height
of the Soviet era — provides a way to shorten menial proofs using compo-
sitionality. Moreover, we were able to render in formal terms the link
between those subgroup-defining functions and some common group prop-
erties, represented as classes of groups. We provided a way to study the one
using the other within our formal library. We finish with an exploration
of the relationship between those polymorphic terms and the well-known
properties of relational parametricity.

FUTURE WORK in generic programming for mathematical formalization
in COQ would involve, to start with, the improvement of the prover itself.
It will provide a unification of the two flavors of type classes (Canonical
Structures and Classes) and, hopefully, better language support for manip-
ulating the higher order unification algorithm. In particular, we are envious
of the “hints in unification” approach of Matita, but would also like to see
the instance chains described in § 1.4.4 on p. 74 become native constructs
of the language.

The size and consequent performance issues of our library make us wish
for a more efficient back-end for dependently typed programming with
records. We wish for — as an example — the special treatment of poly-
morphic of record projections recently found to yield a great performance
increase in Agda.

Finally, another area in which further research needs to be done is in
the development of a reflection method capturing the full strength of the
relational parametricity of a given λ-calculus, within the language, scalable
along the ongoing development of the theory of parametricity for various
calculi — from system F to, hopefully, a calculus relatively close to that of
COQ— that the literature will certainly continue to show.

CONCLUSION 141

Bibliography

M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. In Proceedings of the 20th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’93, number X, pages 157–170,
New York, New York, USA, 1993. ACM Press. ISBN 0897915607. doi:10.1145/158511.158622.

M. Abbott. Categories of containers. Ph.d. thesis, University of Leicester, 2003. URL http://www.cs.le.ac.uk/

people/ma139/docs/thesis.pdf.

M. Abbott, T. Altenkirch, and N. Ghani. Categories of Containers. In A. Gordon, editor, Foundations of Software

Science and Computation Structures, volume 2620 of Lecture Notes in Computer Science, pages 23–38. Springer
Berlin /Heidelberg, 2003. ISBN 978-3-540-00897-2. doi:10.1007/3-540-36576-1_2.

P. Aczel. Galois: a theory development project. 1993. URL http://www.cs.manchester.ac.uk/~petera/galois.ps.gz.

P. Aczel. Simple overloading for type theories. In Types for proofs and programs, 1994a. URL http://www.cs.man.

ac.uk/~petera/overloading-for-type-theories-1994.pdf.

P. Aczel. A notion of class for theory development in algebra in a predicative type theory. In Talk presented at

the workshop on Types for Proofs and Programs, Båstad, Sweden, 1994b. URL http://www.cs.man.ac.uk/~petera/

classes-for-theory-development.pdf.

P. Aczel and G. Barthe. A notion of class for Type Theory. 1993. URL http://www.cs.man.ac.uk/~petera/

classes-for-type-theory-1993.pdf.

T. Altenkirch. Constructions, Inductive Types and Strong Normalization. Ph.d. thesis, University of Edimburgh,
Nov. 1993. URL http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-279/.

S. A. Amitsur. A General Theory of Radicals. I. Radicals in Complete Lattices. American Journal of Mathematics,
74(4):774, Oct. 1952. ISSN 00029327. doi:10.2307/2372225.

S. A. Amitsur. A General Theory of Radicals. III. Applications. American Journal of Mathematics, 76(1):126, Jan.
1954a. ISSN 00029327. doi:10.2307/2372404.

S. A. Amitsur. A General Theory of Radicals. II. Radicals in Rings and Bicategories. American Journal of

Mathematics, 76(1):100, Jan. 1954b. ISSN 00029327. doi:10.2307/2372403.

K. Appel and W. Haken. The Solution of the Four-Color-Map Problem. Scientific American, 237(4):108–121, Oct.
1977. ISSN 0036-8733. doi:10.1038/scientificamerican1077-108.

R. D. Arthan. Some Mathematical Case Studies in ProofPower-HOL. Technical Report January, 2006a. URL
http://www.lemma-one.com/papers/51.pdf.

R. D. Arthan. Mathematical Case Studies: — Some Group Theory. Technical Report July, 2006b. URL
http://www.lemma-one.com/ProofPower/examples/wrk068.pdf.

143

http://dx.doi.org/10.1145/158511.158622
http://www.cs.le.ac.uk/people/ma139/docs/thesis.pdf
http://www.cs.le.ac.uk/people/ma139/docs/thesis.pdf
http://dx.doi.org/10.1007/3-540-36576-1_2
http://www.cs.manchester.ac.uk/~petera/galois.ps.gz
http://www.cs.man.ac.uk/~petera/overloading-for-type-theories-1994.pdf
http://www.cs.man.ac.uk/~petera/overloading-for-type-theories-1994.pdf
http://www.cs.man.ac.uk/~petera/classes-for-theory-development.pdf
http://www.cs.man.ac.uk/~petera/classes-for-theory-development.pdf
http://www.cs.man.ac.uk/~petera/classes-for-type-theory-1993.pdf
http://www.cs.man.ac.uk/~petera/classes-for-type-theory-1993.pdf
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-279/
http://dx.doi.org/10.2307/2372225
http://dx.doi.org/10.2307/2372404
http://dx.doi.org/10.2307/2372403
http://dx.doi.org/10.1038/scientificamerican1077-108
http://www.lemma-one.com/papers/51.pdf
http://www.lemma-one.com/ProofPower/examples/wrk068.pdf

144 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. Hints in Unification. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in

Computer Science, pages 84–98. Springer Berlin /Heidelberg, 2009. doi:10.1007/978-3-642-03359-9_8.

D. Aspinall and M. Hofmann. Dependent Types. In B. Pierce, editor, Advanced Topics in Types and Programming

Languages, chapter 2, pages 45–86. MIT press, 2005. ISBN 0262162288. URL http://homepages.inf.ed.ac.uk/

da/attapl/.

M. H. Austern. Generic programming and the STL: using and extending the C++ Standard Template Library.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998. ISBN 0-201-30956-4.

B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal metatheory. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 3–15, New York, New York, USA, 2008. ACM New York, NY, USA. ISBN 9781595936899.
doi:10.1145/1328438.1328443.

R. Baer. Group Theoretical Properties and Functions. Colloquium Mathematicum, 14:285–328, 1966. URL
http://journals.impan.gov.pl/cgi-bin/shvold?cm14.

A. Bailey. The machine-checked literate formalisation of algebra in type theory. Ph.d. thesis, University of Manchester,
1998a. URL http://anthonybailey.net/thesis/.

A. Bailey. Coercion synthesis in computer implementations of type-theoretic frameworks. In E. Giménez and
C. Paulin-Mohring, editors, Types for Proofs and Programs, volume 1512 of Lecture Notes in Computer Science,
pages 9–27. Springer Berlin /Heidelberg, 1998b. doi:10.1007/BFb0097784.

H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors,
Handbook of logic in computer science, volume 2, chapter 2, pages 117–309. Oxford University Press, Inc., New
York, NY, USA, 1992. ISBN 0198537611.

B. Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse de doctorat, Université Denis
Diderot (Paris VII), 1999. URL http://www.lix.polytechnique.fr/~barras/publi/these_barras.ps.gz.

B. Barras and B. Grégoire. On the Role of Type Decorations in the Calculus of Inductive Constructions. In L. Ong,
editor, Computer Science Logic, volume 3634 of Lecture Notes in Computer Science, pages 151–166. Springer Berlin
/Heidelberg, 2005. doi:10.1007/11538363_12.

G. Barthe. Implicit coercions in type systems. In S. Berardi and M. Coppo, editors, Types for Proofs and Programs,
volume 1158 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin /Heidelberg, 1996. doi:10.1007/3-
540-61780-9_58.

G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional Programming, 13(02):261–293,
Mar. 2003. ISSN 0956-7968. doi:10.1017/S0956796802004501.

H. Bender and G. Glauberman. Local Analysis for The Odd Order Theorem (London Mathematical Society Lecture

Note Series, No 188). Cambridge University Press, 1995. ISBN 0521457165. doi:10.2277/0521457165.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proceedings of the 15th ACM

SIGPLAN international conference on Functional programming - ICFP ’10, number Section 4, page 345, New York,
New York, USA, 2010. ACM Press. ISBN 9781605587943. doi:10.1145/1863543.1863592.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive

Constructions. Springer-Verlag, 2004. ISBN 3540208542.

http://dx.doi.org/10.1007/978-3-642-03359-9_8
http://homepages.inf.ed.ac.uk/da/attapl/
http://homepages.inf.ed.ac.uk/da/attapl/
http://dx.doi.org/10.1145/1328438.1328443
http://journals.impan.gov.pl/cgi-bin/shvold?cm14
http://anthonybailey.net/thesis/
http://dx.doi.org/10.1007/BFb0097784
http://www.lix.polytechnique.fr/~barras/publi/these_barras.ps.gz
http://dx.doi.org/10.1007/11538363_12
http://dx.doi.org/10.1007/3-540-61780-9_58
http://dx.doi.org/10.1007/3-540-61780-9_58
http://dx.doi.org/10.1017/S0956796802004501
http://dx.doi.org/10.2277/0521457165
http://dx.doi.org/10.1145/1863543.1863592

BIBLIOGRAPHY 145

Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca. Canonical Big Operators. In O. Mohamed, C. Muñoz, and
S. Tahar, editors, Theorem Proving in Higher Order Logics, volume 5170 of Lecture Notes in Computer Science,
pages 86–101. Springer Berlin /Heidelberg, 2008. doi:10.1007/978-3-540-71067-7_11.

G. Betarte and A. Tasistro. Extension of Martin-Löf’s type theory with record types and subtyping. In G. Sambin
and J. M. Smith, editors, Twenty-Five Years of Constructive Type Theory, Proceedings of a Congress held in Venice,

October 1995, chapter 2, pages 21–39. Oxford University Press, 1998. ISBN 0198501277.

F. Biancuzzi and S. Warden. Masterminds of Programming: Conversations with the Creators of Major Programming

Languages. O’Reilly Media, Inc., Beijing, 2009. ISBN 0596515170, 9780596515171.

L. Birkedal and R. Mø gelberg. On the definition of parametricity. Technical report, IT Univer-
sity of Copenhagen, Copenhagen, 2004. URL https://itu.dk/en/Forskning/Technical-Reports/2004/

On-the-Definition-of-Parametricity.

E. Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967.

N. Bourbaki. Théorie des ensembles. Springer, 2006. ISBN 3540340343.

A. Bove, A. Krauss, and M. Sozeau. Partiality and Recursion in Interactive Theorem Provers - An Overview. Under

consideration for publication in Math. Struct. in Comp. Science, 2011.

E. Brady, C. McBride, and J. McKinna. Inductive Families Need Not Store Their Indices. In S. Berardi, M. Coppo,
and F. Damiani, editors, Types for Proofs and Programs, volume 3085 of Lecture Notes in Computer Science, pages
115–129. Springer Berlin /Heidelberg, 2004. ISBN 978-3-540-22164-7. doi:10.1007/978-3-540-24849-1_8.

R. M. Burstall. Programming with modules as typed functional programming. In Shin Sedai Konpyūta Gijutsu
Kaihatsu Kikō, editor, Fifth generation computer systems 1984, pages 103–112. OHMSHA Ltd. Tokyo and North-
Holland, Tokyo, Japan, 1984. ISBN 0444876731.

P. Callaghan. Coherence Checking of Coercions in Plastic. In APPSEM Workshop on Subtyping & Dependent

Types in Programming, pages 1–20, Ponte de Lima, Portugal, 2000. URL http://www-sop.inria.fr/oasis/DTP00/

Proceedings/callaghan.ps.

P. Callaghan and Z. Luo. Implementation Techniques for Inductive Types in Plastic. In T. Coquand, P. Dybjer,
B. Nordström, and J. Smith, editors, Types for Proofs and Programs, volume 1956 of Lecture Notes in Computer

Science, pages 245–262. Springer Berlin /Heidelberg, 2000. doi:10.1007/3-540-44557-9_6.

V. Capretta. A polymorphic representation of induction-recursion. Technical report, ICIS, Radboud University
Nijmegen, 2004. URL http://www.cs.ru.nl/~venanzio/publications/induction_recursion.pdf.

M. M. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Associated types with class. ACM SIGPLAN Notices, 40
(1):1–13, Jan. 2005. ISSN 03621340. doi:10.1145/1047659.1040306.

G. Chen. Coercive subtyping for the calculus of constructions. ACM SIGPLAN Notices, 38(1):150–159, Jan. 2003.
ISSN 03621340. doi:10.1145/640128.604145.

J. Cheney and R. Hinze. First-class phantom types. Technical report, Cornell University, Ithaca, NY, 2003. URL
http://hdl.handle.net/1813/5614.

A. Chlipala. Certified Programming with Dependent Types. 2009. URL http://adam.chlipala.net/cpdt/.

C. Chong, Y. Leong, and J. Serre. An interview with Jean-Pierre Serre. The Mathematical Intelligencer, 8(4):8–13,
1986. ISSN 0343-6993. doi:10.1007/BF03026112.

C. Cohen. Les types quotient en Coq. Master’s thesis, Master Parisien de Recherche en Informatique, Université
Denis Diderot (Paris VII), August 2010. URL http://perso.crans.org/~cohen/stageM2/.

http://dx.doi.org/10.1007/978-3-540-71067-7_11
https://itu.dk/en/Forskning/Technical-Reports/2004/On-the-Definition-of-Parametricity
https://itu.dk/en/Forskning/Technical-Reports/2004/On-the-Definition-of-Parametricity
http://dx.doi.org/10.1007/978-3-540-24849-1_8
http://www-sop.inria.fr/oasis/DTP00/Proceedings/callaghan.ps
http://www-sop.inria.fr/oasis/DTP00/Proceedings/callaghan.ps
http://dx.doi.org/10.1007/3-540-44557-9_6
http://www.cs.ru.nl/~venanzio/publications/induction_recursion.pdf
http://dx.doi.org/10.1145/1047659.1040306
http://dx.doi.org/10.1145/640128.604145
http://hdl.handle.net/1813/5614
http://adam.chlipala.net/cpdt/
http://dx.doi.org/10.1007/BF03026112
http://perso.crans.org/~cohen/stageM2/

146 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

W. R. Cook. On understanding data abstraction, revisited, volume 44. ACM Press, New York, New York, USA,
2009. ISBN 9781605587660. doi:10.1145/1640089.1640133.

The Coq Proof Assistant Reference Manual, version 8.3. Coq development team, 2010. URL http://coq.inria.fr/

distrib/V8.3/refman/.

T. Coquand. An Analysis of Girard’s Paradox. In LICS, pages 227–236. IEEE Computer Society, 1986. URL
http://www.cse.chalmers.se/~coquand/paradox.ps.

T. Coquand. An algorithm for type-checking dependent types. Science of Computer Programming, 26(1-3):167–177,
May 1996. ISSN 01676423. doi:10.1016/0167-6423(95)00021-6.

C. Cornes. Conception d’un langage de haut niveau de représentation de preuves : Récurrence par filtrage de motifs

Unification en présence de types inductifs primitifs Synthèse de lemmes d’inversion. Thèse de doctorat, Université
Denis Diderot (Paris VII), 1997. URL http://www.fing.edu.uy/~cornes/Papers/These.ps.

J. Courant. Explicit Universes for the Calculus of Constructions. In V. Carreño, C. Muñoz, and S. Tahar, editors,
Theorem Proving in Higher Order Logics, volume 2410 of Lecture Notes in Computer Science, pages 95–145. Springer
Berlin /Heidelberg, 2002. doi:10.1007/3-540-45685-6_9.

L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN, the Constructive Coq Repository at Nijmegen. In A. Asperti,
G. Bancerek, and A. Trybulec, editors, Mathematical Knowledge Management, volume 3119 of Lecture Notes in

Computer Science, pages 88–103. Springer Berlin /Heidelberg, 2004. doi:10.1007/978-3-540-27818-4_7.

N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information and Computation, 91(2):189–204, Apr.
1991. ISSN 08905401. doi:10.1016/0890-5401(91)90066-B.

S. E. Dickson. A torsion theory for Abelian categories. Transactions of the American Mathematical Society, 121(1):
223–223, Jan. 1966. ISSN 0002-9947. doi:10.1090/S0002-9947-1966-0191935-0.

J. D. Dixon. Problems in group theory. Courier Dover Publications, 1973. ISBN 048661574X.

G. Dowek. A Complete Proof Synthesis Method for the Cube of Type Systems. Journal of Logic and Computation,
3(3):287–315, 1993. ISSN 0955-792X. doi:10.1093/logcom/3.3.287.

G. Dowek. Higher-Order Unification and Matching. In J. A. Robinson and A. Voronkov, editors, Handbook of

Automated Reasoning, pages 1009–1062. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular type classes. In Proceedings of the 34th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’07, page 63, New York, New
York, USA, 2007. ACM Press. ISBN 1595935754. doi:10.1145/1190216.1190229.

M. du Sautoy. Thompson and Tits win the Abel Prize 2008. Technical report, Norwegian Academy of Science and
Letters, 2008. URL http://www.abelprisen.no/en/prisvinnere/2008/marcus/index.html.

D. S. Dummit and R. M. Foote. Abstract algebra. Wiley, 2004. ISBN 9780471452348.

P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics, pages 280–306.
Cambridge University Press, New York, NY, USA, 1991. ISBN 0521413001.

S. Eilenberg and S. MacLane. Natural Isomorphisms in Group Theory. Proceedings of the National Academy of

Sciences, 28(12):537–543, 1942. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1078535/.

S. Eilenberg and S. MacLane. General theory of natural equivalences. Transactions of the American Mathematical

Society, 58(2):231–231, 1945. ISSN 0002-9947. doi:10.1090/S0002-9947-1945-0013131-6.

http://dx.doi.org/10.1145/1640089.1640133
http://coq.inria.fr/distrib/V8.3/refman/
http://coq.inria.fr/distrib/V8.3/refman/
http://www.cse.chalmers.se/~coquand/paradox.ps
http://dx.doi.org/10.1016/0167-6423(95)00021-6
http://www.fing.edu.uy/~cornes/Papers/These.ps
http://dx.doi.org/10.1007/3-540-45685-6_9
http://dx.doi.org/10.1007/978-3-540-27818-4_7
http://dx.doi.org/10.1016/0890-5401(91)90066-B
http://dx.doi.org/10.1090/S0002-9947-1966-0191935-0
http://dx.doi.org/10.1093/logcom/3.3.287
http://dx.doi.org/10.1145/1190216.1190229
http://www.abelprisen.no/en/prisvinnere/2008/marcus/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1078535/
http://dx.doi.org/10.1090/S0002-9947-1945-0013131-6

BIBLIOGRAPHY 147

C. M. Elliott. Extensions and Applications of Higher order Unification. Ph.d. thesis, Carnegie Mellon University,
1990. URL http://conal.net/papers/elliott90.pdf.

W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific Journal of Mathematics, 13(3), 1963. URL
http://projecteuclid.org/euclid.pjm/1103053941.

R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. ACM Press, New York,
New York, USA, 1998. ISBN 1581130244. doi:10.1145/289423.289432.

M. Fluet and R. Pucella. Practical Datatype Specializations with Phantom Types and Recursion Schemes. Electronic

Notes in Theoretical Computer Science, 148(2):25, Oct. 2005. ISSN 15710661. doi:10.1016/j.entcs.2005.11.046.

M. Fluet and R. Pucella. Phantom types and subtyping. Journal of Functional Programming, 16(06):751, June 2006.
ISSN 0956-7968. doi:10.1017/S0956796806006046.

A. A. Fraenkel, Y. Bar-Hillel, and A. Lévy. Foundations of set theory. Studies in logic and the foundations of
mathematics. Noord-Hollandsche U.M., 1973. ISBN 9780720422702.

Y. Fujisawa, Y. Fuwa, and H. Shimizu. Euler’s Theorem and Small Fermat’s Theorem. Journal of Formalized

Mathematics, 10(20), 1998. URL http://www.mizar.org/JFM/Vol10/euler_2.html.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. An extended comparative study of language sup-
port for generic programming. Journal of Functional Programming, 17(02):145, Dec. 2006. ISSN 0956-7968.
doi:10.1017/S0956796806006198.

B. J. Gardner. Radical Theory. Longman Scientific & Technical, Harlow, Essex, England and New York, 1989.
ISBN 0470212713.

B. J. Gardner. Kurosh-Amitsur Radical Theory For Groups. Analele Stiintifice ale Universitatii Ovidius Con-

stanta, Seria Matematica, 18(2):73–90, 2010. ISSN 0092-7872. URL http://www.emis.ams.org/journals/ASUO/

volume-xviii-2010-fascicola-2.html.

F. Garillot. A small reflection on group automorphisms. Talk given at the TYPES 2008 conference, march 2008,
Torino, Italy, 2008. URL http://www.garillot.net/types-slides.pdf.

F. Garillot and B. Werner. Simple Types in Type Theory: Deep and Shallow Encodings. In K. Schneider and
J. Brandt, editors, Theorem Proving in Higher Order Logics, volume 4732 of Lecture Notes in Computer Science,
pages 368–382. Springer Berlin /Heidelberg, 2007. ISBN 978-3-540-74590-7. doi:10.1007/978-3-540-74591-4_27.

F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging Mathematical Structures. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture

Notes in Computer Science, pages 327–342. Springer Berlin /Heidelberg, 2009. doi:10.1007/978-3-642-03359-9_23.

H. Geuvers. Induction Is Not Derivable in Second Order Dependent Type Theory. In S. Abramsky, editor, Typed

Lambda Calculi and Applications, volume 2044 of Lecture Notes in Computer Science, pages 166–181. Springer
Berlin /Heidelberg, 2001. ISBN 978-3-540-41960-0. doi:10.1007/3-540-45413-6_16.

H. Geuvers. A Constructive Algebraic Hierarchy in Coq. Journal of Symbolic Computation, 34(4):271–286, Oct.
2002. ISSN 07477171. doi:10.1006/jsco.2002.0552.

E. Giménez. Codifying guarded definitions with recursive schemes. In P. Dybjer, B. Nordström, and J. Smith,
editors, Types for Proofs and Programs, volume 996 of Lecture Notes in Computer Science, pages 39–59. Springer
Berlin /Heidelberg, 1995. doi:10.1007/3-540-60579-7_3.

G. Gonthier. A computer-checked proof of the four-colour theorem. 2005. URL http://research.microsoft.com/

en-us/people/gonthier/4colproof.pdf.

http://conal.net/papers/elliott90.pdf
http://projecteuclid.org/euclid.pjm/1103053941
http://dx.doi.org/10.1145/289423.289432
http://dx.doi.org/10.1016/j.entcs.2005.11.046
http://dx.doi.org/10.1017/S0956796806006046
http://www.mizar.org/JFM/Vol10/euler_2.html
http://dx.doi.org/10.1017/S0956796806006198
http://www.emis.ams.org/journals/ASUO/volume-xviii-2010-fascicola-2.html
http://www.emis.ams.org/journals/ASUO/volume-xviii-2010-fascicola-2.html
http://www.garillot.net/types-slides.pdf
http://dx.doi.org/10.1007/978-3-540-74591-4_27
http://dx.doi.org/10.1007/978-3-642-03359-9_23
http://dx.doi.org/10.1007/3-540-45413-6_16
http://dx.doi.org/10.1006/jsco.2002.0552
http://dx.doi.org/10.1007/3-540-60579-7_3
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf

148 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

G. Gonthier. Formal Proof – The Four Color Theorem. Notices of the American Mathematical Society, 55(11):
1382–1393, 2008. URL http://www.ams.org/notices/200811/tx081101382p.pdf.

G. Gonthier. Formalizing the structure of extremal p-groups. Talk given at the MAP 2010 workshop, novem-
ber 2010, Logroño, Spain, 2010. URL http://wiki.portal.chalmers.se/cse/uploads/ForMathInternalPages/

Georges-Nov2010.pdf.

G. Gonthier. Point-Free, Set-Free Concrete Linear Algebra. In M. van Eekelen, H. Geuvers, J. Schmaltz, and
F. Wiedijk, editors, Interactive Theorem Proving, volume 6898 of Lecture Notes in Computer Science, pages 103–118.
Springer Berlin /Heidelberg, 2011. ISBN 978-3-642-22862-9. doi:10.1007/978-3-642-22863-6_10.

G. Gonthier and S. Le Roux. An Ssreflect Tutorial. Rapport Technique RT-0367, INRIA, 2009. URL http:

//hal.inria.fr/inria-00407778/en/.

G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq. Journal of Formalized Reasoning,
3(2):95–152, 2010. URL http://jfr.cib.unibo.it/article/view/1979.

G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A Modular Formalisation of Finite Group Theory.
In K. Schneider and J. Brandt, editors, Theorem Proving in Higher Order Logics, volume 4732 of Lecture Notes in

Computer Science, pages 86–101. Springer Berlin /Heidelberg, 2007. doi:10.1007/978-3-540-74591-4_8.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for the Coq system. Rapport de
recherche RR-6455, INRIA, 2008. URL http://hal.inria.fr/inria-00258384/en/.

G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof automation less ad hoc. In
Proceeding of the 16th ACM SIGPLAN international conference on Functional programming - ICFP ’11, page 163,
New York, New York, USA, 2011. ACM Press. ISBN 9781450308656. doi:10.1145/2034773.2034798.

D. Gorenstein. Finite groups. American Mathematical Society, second edition, 2007. ISBN 0821843427.

B. Grégoire and A. Mahboubi. Proving Equalities in a Commutative Ring Done Right in Coq. In J. Hurd and
T. Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of Lecture Notes in Computer Science,
pages 98–113. Springer Berlin /Heidelberg, 2005. ISBN 978-3-540-28372-0. doi:10.1007/11541868_7.

D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. Concepts: linguistic support

for generic programming in C++. ACM Press, New York, New York, USA, 2006. ISBN 1595933484.
doi:10.1145/1167473.1167499.

E. L. Gunter. Doing algebra in simple type theory. Technical report, University of Pennsylvania, Philadelphia,
1989. URL http://repository.upenn.edu/cis_reports/789.

F. Haftmann and M. Wenzel. Constructive Type Classes in Isabelle. In T. Altenkirch and C. McBride, editors,
Types for Proofs and Programs, volume 4502 of Lecture Notes in Computer Science, pages 160–174. Springer Berlin /
Heidelberg, 2007. doi:10.1007/978-3-540-74464-1_11.

T. Hallgren. Fun with functional dependencies. In Proc Joint CS/CE Winter Meeting, Chalmers Univerity, Varberg,

Sweden, 2001. URL http://www.cs.chalmers.se/Cs/wm-01/hallgren.ps.

MATITA User Manual. The HELM team, 2010. URL http://matita.cs.unibo.it/documentation.shtml.

H. Herbelin. Type inference with algebraic universes in the Calculus of Inductive Constructions. 2005. URL
http://yquem.inria.fr/~herbelin/publis/univalgcci.pdf.

H. Herbelin. The rules of PCIC. Email on the coq-club mailing-list, November 2009. URL https://sympa-roc.

inria.fr/wws/arc/coq-club. Msg-id: <20091102214459.A17165@pauillac.inria.fr>.

http://www.ams.org/notices/200811/tx081101382p.pdf
http://wiki.portal.chalmers.se/cse/uploads/ForMathInternalPages/Georges-Nov2010.pdf
http://wiki.portal.chalmers.se/cse/uploads/ForMathInternalPages/Georges-Nov2010.pdf
http://dx.doi.org/10.1007/978-3-642-22863-6_10
http://hal.inria.fr/inria-00407778/en/
http://hal.inria.fr/inria-00407778/en/
http://jfr.cib.unibo.it/article/view/1979
http://dx.doi.org/10.1007/978-3-540-74591-4_8
http://hal.inria.fr/inria-00258384/en/
http://dx.doi.org/10.1145/2034773.2034798
http://dx.doi.org/10.1007/11541868_7
http://dx.doi.org/10.1145/1167473.1167499
http://repository.upenn.edu/cis_reports/789
http://dx.doi.org/10.1007/978-3-540-74464-1_11
http://www.cs.chalmers.se/Cs/wm-01/hallgren.ps
http://matita.cs.unibo.it/documentation.shtml
http://yquem.inria.fr/~herbelin/publis/univalgcci.pdf
https://sympa-roc.inria.fr/wws/arc/coq-club
https://sympa-roc.inria.fr/wws/arc/coq-club

BIBLIOGRAPHY 149

R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors, The fun of programming, chapter 12,
pages 245–262. Palgrave McMillan, 2003. ISBN 0333992857.

C. A. R. Hoare. The emperor’s old clothes. Communications of the ACM, 24(2):75–83, Feb. 1981. ISSN 00010782.
doi:10.1145/358549.358561.

J. G. Hook and D. J. Howe. Impredicative Strong Existential Equivalent to Type:Type. Technical report, Cornell
University, Ithaca, NY, USA, 1986. URL http://www.ecommons.cornell.edu/handle/1813/6600.

G. Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer Science, 1(1):27–57, June 1975.
ISSN 03043975. doi:10.1016/0304-3975(75)90011-0.

G. Huet. The Constructive Engine. In R. Narasimhan, editor, A perspective in Theoretical Computer Science.

Commemorative Volume for Gift Siromoney. World Scientific Publishing, 1989. ISBN 9971509253.

G. Huet. Higher Order Unification 30 Years Later. In V. Carreño, C. Muñoz, and S. Tahar, editors, Theorem

Proving in Higher Order Logics, volume 2410 of Lecture Notes in Computer Science, pages 241–258. Springer Berlin
/Heidelberg, 2002. doi:10.1007/3-540-45685-6_2.

P. Jackson. Exploring abstract algebra in constructive type theory. Automated Deduction—CADE-12, (July 1994):
1–15, 1994. doi:10.1007/3-540-58156-1_43.

P. Jackson. Enhancing the Nuprl proof-development system and applying it to computational abstract algebra. Ph.d.
thesis, Cornell University, 1995. URL https://ecommons.library.cornell.edu/handle/1813/7167.

P. Johann and J. Voigtländer. Free theorems in the presence of seq. In Proceedings of the 31st ACM SIGPLAN-SIGACT

symposium on Principles of programming languages - POPL ’04, pages 99–110, New York, New York, USA, 2004.
ACM Press. ISBN 158113729X. doi:10.1145/964001.964010.

M. Jones. Type Classes with Functional Dependencies. In G. Smolka, editor, Programming Languages and

Systems, volume 1782 of Lecture Notes in Computer Science, pages 230–244. Springer Berlin / Heidelberg, 2000.
doi:10.1007/3-540-46425-5_15.

M. P. Jones. Computing with lattices: An application of type classes. Journal of Functional Programming, 2(04):475,
Nov. 1992. ISSN 0956-7968. doi:10.1017/S0956796800000514.

M. P. Jones. A system of constructor classes: overloading and implicit higher-order polymorphism. Journal of

Functional Programming, 5(01):1, Nov. 1993. ISSN 0956-7968. doi:10.1017/S0956796800001210.

W. Kahl and J. Scheffczyk. Named instances for Haskell type classes. In Haskell Workshop, 2001. URL http:

//www.cas.mcmaster.ca/~kahl/Publications/Conf/Kahl-Scheffczyk-2001.html.

D. Kapur, D. R. Musser, and A. A. Stepanov. Operators and algebraic structures. ACM Press, New York, New York,
USA, 1981. ISBN 0897910605. doi:10.1145/800223.806763.

O. Kiselyov. Operator Overloading. Email on the ocaml mailing-list, March 2007. URL http://okmij.org/ftp/

ML/ML.html#typeclass.

O. Kiselyov and R. Lämmel. Haskell’s overlooked object system. Draft, (September), 2005. URL http://homepages.

cwi.nl/~ralf/OOHaskell/.

O. Kiselyov and C.-c. Shan. Functional pearl : Implicit configurations. In Proceedings of the ACM SIGPLAN

workshop on Haskell - Haskell ’04, page 33. ACM Press, New York, New York, USA, 2004. ISBN 1581138504.
doi:10.1145/1017472.1017481.

http://dx.doi.org/10.1145/358549.358561
http://www.ecommons.cornell.edu/handle/1813/6600
http://dx.doi.org/10.1016/0304-3975(75)90011-0
http://dx.doi.org/10.1007/3-540-45685-6_2
http://dx.doi.org/10.1007/3-540-58156-1_43
https://ecommons.library.cornell.edu/handle/1813/7167
http://dx.doi.org/10.1145/964001.964010
http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.1017/S0956796800000514
http://dx.doi.org/10.1017/S0956796800001210
http://www.cas.mcmaster.ca/~kahl/Publications/Conf/Kahl-Scheffczyk-2001.html
http://www.cas.mcmaster.ca/~kahl/Publications/Conf/Kahl-Scheffczyk-2001.html
http://dx.doi.org/10.1145/800223.806763
http://okmij.org/ftp/ML/ML.html#typeclass
http://okmij.org/ftp/ML/ML.html#typeclass
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://dx.doi.org/10.1145/1017472.1017481

150 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

G. Klein, M. Norrish, T. Sewell, H. Tuch, S. Winwood, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, and R. Kolanski. seL4: formal verification of an operating-system kernel.
Communications of the ACM, 53(6):107, June 2010. ISSN 00010782. doi:10.1145/1743546.1743574.

K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys, 21(1):93–124, Mar. 1989. ISSN
03600300. doi:10.1145/62029.62030.

N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse. Design patterns in separation logic. ACM
Press, New York, New York, USA, 2008. ISBN 9781605584201. doi:10.1145/1481861.1481874.

A. G. Kuroš. Radicals of rings and algebras. In Colloq. Math. Soc. Janos Bolyai, Vol. 6, pages 297–314, Amsterdam,
1973a. North-Holland. URL http://www.ams.org/mathscinet-getitem?mr=345998.

A. G. Kuroš. Radicals in the theory of groups. In Colloq. Math. Soc. Janos Bolyai, Vol. 6, pages 271–296, Amsterdam,
1973b. North-Holland. URL http://www.ams.org/mathscinet-getitem?mr=345997.

H. Kurzweil and B. Stellmacher. The theory of finite groups: an introduction. Springer, 2004. ISBN 0387405100.

R. Lämmel and K. Ostermann. Software extension and integration with type classes. Proceedings of the 5th

international conference on Generative programming and component engineering - GPCE ’06, page 161, 2006.
doi:10.1145/1173706.1173732.

M. Lecat. Erreurs des Mathématiciens des origines à nos jours. Ancienne librairie Castaigne & librairie Ém. Desbarax,
Bruxelles, Louvain, 1935.

G. Lee and B. Werner. A proof-irrelevant model of CIC with predicative induction and judgemental equality. to

appear in Logical Methods in Computer Science, 2011. URL http://www.lmcs-online.org/.

D. Leijen and E. Meijer. Domain specific embedded compilers, volume 35. ACM Press, New York, New York, USA,
1999. ISBN 1581132557. doi:10.1145/331960.331977.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107, July 2009. ISSN
00010782. doi:10.1145/1538788.1538814.

P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes dans l’assistant Coq. Thèse de
doctorat, Université Paris-Sud (Paris XI), July 2004. URL http://tel.archives-ouvertes.fr/tel-00150912/en/.

R. Lidl and G. Pilz. Applied abstract algebra. Springer, New York, 1998. ISBN 0387982906.

G. Lo Russo. An Interview with A. Stepanov, June 2000. URL http://www.stlport.org/resources/StepanovUSA.

html. STLport, Edizioni Infomedia srl.

J. O. López Gerena. Closure operators, torsion theories, and radicals in a non-abelian environment. Master of science
thesis, University of Puerto Rico-Mayaguez, 2009. URL http://gradworks.umi.com/14/68/1468669.html.

Z. Luo. Computation and reasoning: a type theory for computer science. Oxford University Press, 1994. ISBN
0198538359.

Z. Luo. Coercive subtyping in type theory. In D. van Dalen and M. Bezem, editors, Computer Science Logic, volume
1258 of Lecture Notes in Computer Science, pages 275–296. Springer Berlin /Heidelberg, 1997. doi:10.1007/3-540-
63172-0_45.

Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, Feb. 1999. ISSN 0955-792X.
doi:10.1093/logcom/9.1.105.

S. Mac Lane and G. Birkhoff. Algebra. Chelsea Pub. Co., New York, 1988. ISBN 0828403309.

http://dx.doi.org/10.1145/1743546.1743574
http://dx.doi.org/10.1145/62029.62030
http://dx.doi.org/10.1145/1481861.1481874
http://www.ams.org/mathscinet-getitem?mr=345998
http://www.ams.org/mathscinet-getitem?mr=345997
http://dx.doi.org/10.1145/1173706.1173732
http://www.lmcs-online.org/
http://dx.doi.org/10.1145/331960.331977
http://dx.doi.org/10.1145/1538788.1538814
http://tel.archives-ouvertes.fr/tel-00150912/en/
http://www.stlport.org/resources/StepanovUSA.html
http://www.stlport.org/resources/StepanovUSA.html
http://gradworks.umi.com/14/68/1468669.html
http://dx.doi.org/10.1007/3-540-63172-0_45
http://dx.doi.org/10.1007/3-540-63172-0_45
http://dx.doi.org/10.1093/logcom/9.1.105

BIBLIOGRAPHY 151

S. MacLane. Duality for groups. Bulletin of the American Mathematical Society, 56(6):485–517, Nov. 1950. ISSN
0002-9904. doi:10.1090/S0002-9904-1950-09427-0.

D. MacQueen. Modules for standard ML. ACM Press, New York, New York, USA, 1984. ISBN 0897911423.
doi:10.1145/800055.802036.

L. Márki. The Categorical Approach to General Radical Theory - a survey. In E. Puczylowski, editor, Talk

presented at the workshop on Radicals of rings and related topics, Stefan Banach International Center, 2-8 August,
Warsaw, Poland, 2009. URL http://aragorn.pb.bialystok.pl/~piotrgr/BanachCenter/lectures/Marki.pdf.

J.-P. Marquis. What is category theory? In G. Sica, editor, What is category theory ?, chapter 9, pages 221–255.
Polimetrica s.a.s., 2006. ISBN 8876990313.

P. Martin-Löf. An intuitionistic theory of types. Bibliopolis, 1984. ISBN 88-7088-105-9.

C. McBride. Faking it (Simulating dependent types in Haskell). Journal of Functional Programming, 12(4-5):375–392,
July 2003. ISSN 0956-7968. doi:10.1017/S0956796802004355.

D. Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification.
Journal of Logic and Computation, 1(4):497–536, 1991. ISSN 0955-792X. doi:10.1093/logcom/1.4.497.

A. Miquel. Le Calcul Des Constructions Implicite: Syntaxe Et Sémantique. Thèse de doctorat, Université Denis
Diderot (Paris VII), 2001. URL http://perso.ens-lyon.fr/alexandre.miquel/publis/these.pdf.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM Transactions on Programming Languages

and Systems (TOPLAS), 10(3):470–502, 1988. doi:10.1145/44501.45065.

J. G. Morris and M. P. Jones. Instance chains. ACM SIGPLAN Notices, 45(9):375, Sept. 2010. ISSN 03621340.
doi:10.1145/1932681.1863596.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of Programming Using Dependent Types. In P. Audebaud and
C. Paulin-Mohring, editors, Mathematics of Program Construction, volume 5133 of Lecture Notes in Computer

Science, pages 268–283. Springer Berlin /Heidelberg, 2008. doi:10.1007/978-3-540-70594-9_15.

O. Müller and K. Slind. Treating Partiality in a Logic of Total Functions. The Computer Journal, 40(10):640–651,
Oct. 1997. ISSN 0010-4620. doi:10.1093/comjnl/40.10.640.

U. Norell. Towards a practical programming language based on dependent type theory. Ph.d. thesis, Department
of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, Sept.
2007. URL https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=46311.

U. Norell. Agda performance improvements. Email on the agda mailing-list, August 2011. URL
https://lists.chalmers.se/pipermail/agda/2011/003266.html. Msg-id: <CAJjNqYGxDDNtnO8247u=

GMx1e1pxKkVCYdtYb0XTK=MZUQn3yQ@mail.gmail.com>.

M. Odersky and A. Moors. Fighting Bit Rot with Types (Experience Report: Scala Collections). FSTTCS 2009,
page 427, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2338.

M. Odersky and M. Zenger. Independently Extensible Solutions to the Expression Problem. In Proc. FOOL 12,
Jan. 2005. URL https://infoscience.epfl.ch/record/64421.

K. Ohtake. A torsion theory for the category of finite groups. Gumma University technical report, 56:5–8, 2008.
ISSN 0017-5668. URL http://hdl.handle.net/10087/3001.

B. Oliveira. Modular Visitor Components. In S. Drossopoulou, editor, ECOOP 2009 – Object-Oriented Program-

ming, volume 5653 of Lecture Notes in Computer Science, pages 269–293. Springer Berlin / Heidelberg, 2009.
doi:10.1007/978-3-642-03013-0_13.

http://dx.doi.org/10.1090/S0002-9904-1950-09427-0
http://dx.doi.org/10.1145/800055.802036
http://aragorn.pb.bialystok.pl/~piotrgr/BanachCenter/lectures/Marki.pdf
http://dx.doi.org/10.1017/S0956796802004355
http://dx.doi.org/10.1093/logcom/1.4.497
http://perso.ens-lyon.fr/alexandre.miquel/publis/these.pdf
http://dx.doi.org/10.1145/44501.45065
http://dx.doi.org/10.1145/1932681.1863596
http://dx.doi.org/10.1007/978-3-540-70594-9_15
http://dx.doi.org/10.1093/comjnl/40.10.640
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=46311
https://lists.chalmers.se/pipermail/agda/2011/003266.html
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
https://infoscience.epfl.ch/record/64421
http://hdl.handle.net/10087/3001
http://dx.doi.org/10.1007/978-3-642-03013-0_13

152 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. In Proceedings of the ACM

international conference on Object oriented programming systems languages and applications - OOPSLA ’10, page
341, New York, New York, USA, 2010. ACM Press. ISBN 9781450302036. doi:10.1145/1869459.1869489.

S. Ould Biha. Composants mathématiques pour la théorie des groupes. Thèse de doctorat, Université de Nice - Sophia
Antipolis, 2010. URL http://tel.archives-ouvertes.fr/tel-00493524/en.

C. Paulin-Mohring. Inductive definitions in the system Coq: rules and properties. In M. Bezem and J. Groote,
editors, Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages 328–345.
Springer Berlin /Heidelberg, 1993. doi:10.1007/BFb0037116.

C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur. Habilitation à diriger les recherches,
Université Claude Bernard (Lyon I), Dec. 1996. URL http://www.lri.fr/~paulin/PUBLIS/habilitation.ps.gz.

A. J. Perlis. Special Feature: Epigrams on programming. ACM SIGPLAN Notices, 17(9):7–13, Sept. 1982. ISSN
03621340. doi:10.1145/947955.1083808.

T. Peterfalvi. Character Theory for the Odd Order Theorem (London Mathematical Society Lecture Note Series, No 272).
Cambridge University Press, 2000. ISBN 9780521646604. doi:10.2277/052164660X.

S. Peyton-Jones. The Haskell 98 language and libraries: the revised report. Journal of Functional Programming, 13
(01), Jan. 2003. ISSN 0956-7968. doi:10.1017/S0956796803000315.

S. Peyton-Jones, M. P. Jones, and E. Meijer. Type classes: an exploration of the design space. In Haskell Workshop,
1997. URL http://research.microsoft.com/en-us/um/people/simonpj/Papers/type-class-design-space/.

F. Pfenning. Unification and anti-unification in the calculus of constructions. IEEE Comput. Sco. Press, 1991. ISBN
0-8186-2230-X. doi:10.1109/LICS.1991.151632.

B. I. Plotkin. The functorials, radicals and coradicals in groups. Ural. Gos. Univ. Mat. Zap., 7(3):150–182, 1969.
URL http://www.ams.org/mathscinet-getitem?mr=285614.

B. I. Plotkin. Radicals in groups, operations on classes of groups, and radical classes. American Mathematical Society

Translations, 119(2):205–244, 1983.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem and J. Groote, editors, Typed

Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages 361–375. Springer
Berlin /Heidelberg, 1993. ISBN 978-3-540-56517-8. doi:10.1007/BFb0037118.

R. Pollack. Implicit syntax. In Informal Proceedings of First Workshop on Logical Frameworks, Antibes, pages 421–434,
Sept. 1990. URL http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc90.ps.gz.

R. Pollack. Typechecking in pure type systems. In Informal Proceedings of the 1992 Workshop on Types for Proofs and

Programs, Båstad, Sweden, pages 271–288, 1992. URL http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/

proc92.ps.gz.

R. Pollack. Dependently Typed Records for Representing Mathematical Structure. In M. Aagaard and J. Harrison,
editors, Theorem Proving in Higher Order Logics, volume 1869 of Lecture Notes in Computer Science, pages 462–479.
Springer Berlin /Heidelberg, 2000. doi:10.1007/3-540-44659-1_29.

R. Pollack. Dependently Typed Records in Type Theory. Formal Aspects of Computing, 13(3):386–402, 2002. ISSN
0934-5043. doi:10.1007/s001650200018.

F. Pottier and D. Rémy. The Essence of ML Type Inference. In B. C. Pierce, editor, Advanced Topics in Types

and Programming Languages, chapter 10, pages 389–489. MIT Press, 2005. ISBN 0-262-16228-8. URL http:

//cristal.inria.fr/attapl/.

http://dx.doi.org/10.1145/1869459.1869489
http://tel.archives-ouvertes.fr/tel-00493524/en
http://dx.doi.org/10.1007/BFb0037116
http://www.lri.fr/~paulin/PUBLIS/habilitation.ps.gz
http://dx.doi.org/10.1145/947955.1083808
http://dx.doi.org/10.2277/052164660X
http://dx.doi.org/10.1017/S0956796803000315
http://research.microsoft.com/en-us/um/people/simonpj/Papers/type-class-design-space/
http://dx.doi.org/10.1109/LICS.1991.151632
http://www.ams.org/mathscinet-getitem?mr=285614
http://dx.doi.org/10.1007/BFb0037118
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc90.ps.gz
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
http://dx.doi.org/10.1007/3-540-44659-1_29
http://dx.doi.org/10.1007/s001650200018
http://cristal.inria.fr/attapl/
http://cristal.inria.fr/attapl/

BIBLIOGRAPHY 153

R. Prince, N. Ghani, and C. McBride. Proving Properties about Lists Using Containers. In J. Garrigue and
M. Hermenegildo, editors, Functional and Logic Programming, volume 4989 of Lecture Notes in Computer Science,
pages 97–112. Springer Berlin /Heidelberg, 2008. ISBN 978-3-540-78968-0. doi:10.1007/978-3-540-78969-7_9.

D. Pym. Proofs, Search and Computation in General Logic. Ph.d. thesis, University of Edimburgh, 1990. URL
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-125/.

J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In R. E. A. Mason, editor, Information

Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, September 19-23, 1983, volume 83, pages
513–523, Amsterdam, 1983. Elsevier Science Publishers B. V. (North-Holland).

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978. ISSN 00010782. doi:10.1145/359340.359342.

J. Rotman. An introduction to the theory of groups. Springer, 1995. ISBN 0387942858.

P. Rudnicki. Commutative Algebra in the Mizar System. Journal of Symbolic Computation, 32(1-2):143–169, July
2001. ISSN 07477171. doi:10.1006/jsco.2001.0456.

C. Sacerdoti Coen. A Semi-reflexive Tactic for (Sub-)Equational Reasoning. In J.-C. Filliâtre, C. Paulin-Mohring,
and B. Werner, editors, Types for Proofs and Programs, volume 3839 of Lecture Notes in Computer Science, pages
98–114. Springer Berlin /Heidelberg, 2006. doi:10.1007/11617990_7.

C. Sacerdoti Coen and E. Tassi. Working with Mathematical Structures in Type Theory. In M. Miculan, I. Scagnetto,
and F. Honsell, editors, Types for Proofs and Programs, volume 4941 of Lecture Notes in Computer Science, pages
157–172. Springer Berlin /Heidelberg, 2008. doi:10.1007/978-3-540-68103-8_11.

A. Saibi. Typing algorithm in type theory with inheritance. In Proceedings of the 24th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 292–301, New York, New York, USA, 1997. ACM New
York, NY, USA. ISBN 0897918533. doi:10.1145/263699.263742.

A. Saibi. Outils Génériques de modélisation et de démonstration pour la Formalisation des Mathématiques en théorie des

Types, Application à la théorie des catégories. Thèse de doctorat, Université Pierre et Marie Curie (Paris VI), 1999.
URL http://tel.archives-ouvertes.fr/tel-00523810.

A. Saibi and G. Huet. Constructive category theory. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

language, and interaction, volume 20, pages 239—-275. M.I.T. Press, Cambridge, MA, USA, Jan. 2000. ISBN
0-262-16188-5.

H. Saidi. Résolution d’équations dans le système T de Gödel. Master’s thesis, DEA d’Informatique Fondamentale,
Université Denis Diderot (Paris VII), Sept. 1994. URL http://www.csl.sri.com/users/saidi/PAPERS/dea94.

html.

T. Santen. Isomorphisms — A Link Between the Shallow and the Deep. In Y. Bertot, G. Dowek, L. Théry,
A. Hirschowitz, and C. Paulin, editors, Theorem Proving in Higher Order Logics, volume 1690 of Lecture Notes in

Computer Science, page 840. Springer Berlin /Heidelberg, 1999. doi:10.1007/3-540-48256-3_4.

L. Scott, R. Solomon, J. Thompson, J. Walter, and E. Zelmanov. Walter Feit (1930–2004). Notices of the American

Mathematical Society, 52(7):728–735, 2005. URL http://www.ams.org/notices/200507/fea-feit.pdf.

D. Seidel and J. Voigtländer. Automatically Generating Counterexamples to Naive Free Theorems. In M. Blume,
N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming, volume 6009 of Lecture Notes in Computer

Science, pages 175–190. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-12250-7. doi:10.1007/978-3-642-
12251-4_14.

http://dx.doi.org/10.1007/978-3-540-78969-7_9
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-125/
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1006/jsco.2001.0456
http://dx.doi.org/10.1007/11617990_7
http://dx.doi.org/10.1007/978-3-540-68103-8_11
http://dx.doi.org/10.1145/263699.263742
http://tel.archives-ouvertes.fr/tel-00523810
http://www.csl.sri.com/users/saidi/PAPERS/dea94.html
http://www.csl.sri.com/users/saidi/PAPERS/dea94.html
http://dx.doi.org/10.1007/3-540-48256-3_4
http://www.ams.org/notices/200507/fea-feit.pdf
http://dx.doi.org/10.1007/978-3-642-12251-4_14
http://dx.doi.org/10.1007/978-3-642-12251-4_14

154 GENERIC PROOF TOOL S AND FINITE GROUP THEORY

J. Shapiro, S. Sridhar, and S. Doerrie. BitC language specification. Technical report, The EROS Group, LLC, 2008.
URL http://www.bitc-lang.org/docs/bitc/.

V. Siles. Investigation on the typing of equality in type systems. Thèse de doctorat, École Polytechnique, 2010. URL
http://pastel.archives-ouvertes.fr/pastel-00556578/en/.

W. Snyder and J. Gallier. Higher-order unification revisited: Complete sets of transformations. Journal of Symbolic

Computation, 8(1-2):101–140, July 1989. ISSN 07477171. doi:10.1016/S0747-7171(89)80023-9.

E. Soubiran. Modular development of theories and name-space management for the Coq proof assistant. Thèse de
doctorat, École Polytechnique, 2010.

M. Sozeau. Un environnement pour la programmation avec types dépendants. Thèse de doctorat, Université Paris-Sud
(Paris XI), 2008. URL http://mattam.org/research/PhD.en.html.

M. Sozeau. A New Look At Generalized Rewriting in Type Theory. Journal of Formalized Reasoning, 2(1):41–62,
2009. URL http://jfr.cib.unibo.it/article/viewFile/1574/1077.

M. Sozeau and N. Oury. First-Class Type Classes. In O. Mohamed, C. Muñoz, and S. Tahar, editors, Theorem

Proving in Higher Order Logics, volume 5170 of Lecture Notes in Computer Science, pages 278–293. Springer Berlin
/Heidelberg, 2008. doi:10.1007/978-3-540-71067-7_23.

B. Spitters and E. van der Weegen. Type classes for mathematics in type theory. Mathematical Structures in Computer

Science, 21(04):795–825, July 2011. ISSN 0960-1295. doi:10.1017/S0960129511000119.

A. Spiwack. Followup (GT 3d of July) on reification. Email on the coqdev mailing-list, July 2011. URL
https://sympa-roc.inria.fr/wws/arc/coqdev. Msg-id: <b3314ad40907210522o794f20d7vb2b35698b9b080d2@

mail.gmail.com>.

A. Stepanov and M. Lee. The Standard Template Library. Technical report, Hewlett-Packard, Palo Alto, CA, 1995.
URL http://www.hpl.hp.com/techreports/95/HPL-95-11.html.

J. Stillwell. Elements of Algebra. Springer-Verlag, New York Berlin Heidelberg, 1994. ISBN 0387942904.

C. Strachey. Fundamental Concepts in Programming Languages. Higher-Order and Symbolic Computation, 13(1):
11–49, 2000. ISSN 1388-3690. doi:10.1023/A:1010000313106.

T. Streicher. Semantical Investigations into Intensional Type Theory. Habilitation thesis, Ludwig-Maximilians-
Universität München, 1993. URL http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf.

W. Swierstra. Data types à la carte. Journal of Functional Programming, 18(04):423–436, 2008. ISSN 0956-7968.
doi:10.1017/S0956796808006758.

I. Takeuti. The theory of parametricity in lambda cube. Technical report, Kyoto University Graduate School of
Informatics, 2001. URL http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1217-10.pdf.

E. Tassi. Interactive Theorem Provers: issues faced as a user and tackled as a developer. Dottorato di ricerca, Università
di Bologna e Padova, 2008. URL http://www.cs.unibo.it/pub/TR/UBLCS/ABSTRACTS/2008.bib?ncstrl.

cabernet//BOLOGNA-UBLCS-2008-03.

W. Verbruggen, E. de Vries, and A. Hughes. Polytypic programming in COQ. Proceedings of the ACM SIGPLAN

workshop on Generic programming - WGP ’08, page 49, 2008. doi:10.1145/1411318.1411326.

J. Voigtländer. Free theorems involving type constructor classes. Proceedings of the 14th ACM SIGPLAN international

conference on Functional programming - ICFP ’09, page 173, 2009. doi:10.1145/1596550.1596577.

http://www.bitc-lang.org/docs/bitc/
http://pastel.archives-ouvertes.fr/pastel-00556578/en/
http://dx.doi.org/10.1016/S0747-7171(89)80023-9
http://mattam.org/research/PhD.en.html
http://jfr.cib.unibo.it/article/viewFile/1574/1077
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1017/S0960129511000119
https://sympa-roc.inria.fr/wws/arc/coqdev
http://www.hpl.hp.com/techreports/95/HPL-95-11.html
http://dx.doi.org/10.1023/A:1010000313106
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://dx.doi.org/10.1017/S0956796808006758
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1217-10.pdf
http://www.cs.unibo.it/pub/TR/UBLCS/ABSTRACTS/2008.bib?ncstrl.cabernet//BOLOGNA-UBLCS-2008-03
http://www.cs.unibo.it/pub/TR/UBLCS/ABSTRACTS/2008.bib?ncstrl.cabernet//BOLOGNA-UBLCS-2008-03
http://dx.doi.org/10.1145/1411318.1411326
http://dx.doi.org/10.1145/1596550.1596577

BIBLIOGRAPHY 155

D. Vytiniotis and S. Weirich. Parametricity, type equality, and higher-order polymorphism. Journal of Functional

Programming, 20(02):175, Apr. 2010. ISSN 0956-7968. doi:10.1017/S0956796810000079.

P. Wadler. Theorems for free! In Proceedings of the fourth international conference on Functional programming

languages and computer architecture - FPCA ’89, number June, pages 347–359, New York, USA, 1989. ACM Press.
ISBN 0897913280. doi:10.1145/99370.99404.

P. Wadler. The Expression Problem. Email on java-genericity mailing list, November 1998. URL http://homepages.

inf.ed.ac.uk/wadler/papers/expression/expression.txt.

P. Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer Science, 375(1-3):201–226,
May 2007. ISSN 03043975. doi:10.1016/j.tcs.2006.12.042.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages - POPL ’89, number October, pages 60–76, New York,
USA, 1989. ACM Press. ISBN 0897912942. doi:10.1145/75277.75283.

S. Wehr and M. Chakravarty. ML Modules and Haskell Type Classes: A Constructive Comparison. In G. Ra-
malingam, editor, Programming Languages and Systems, volume 5356 of Lecture Notes in Computer Science, pages
188–204. Springer Berlin /Heidelberg, 2008. doi:10.1007/978-3-540-89330-1_14.

S. Wehr, R. Lämmel, and P. Thiemann. JavaGI : Generalized Interfaces for Java. In E. Ernst, editor, ECOOP 2007 –

Object-Oriented Programming, volume 4609 of Lecture Notes in Computer Science, pages 347–372. Springer Berlin
/Heidelberg, 2007. doi:10.1007/978-3-540-73589-2_17.

J. Wells. Typability and type checking in System F are equivalent and undecidable. Annals of Pure and Applied

Logic, 98(1-3):111–156, June 1999. ISSN 01680072. doi:10.1016/S0168-0072(98)00047-5.

B. Werner. Une théorie des constructions inductives. Thèse de doctorat, Université Denis Diderot (Paris VII), 1994.
URL http://tel.archives-ouvertes.fr/tel-00196524/.

J. Yallop. Practical generic programming in OCaml. In Proceedings of the 2007 workshop on Workshop on ML - ML ’07,
page 83, New York, New York, USA, 2007. ACM Press. ISBN 9781595936769. doi:10.1145/1292535.1292548.

X. Yu, A. Nogin, A. Kopylov, and J. Hickey. Formalizing abstract algebra in type theory with dependent records. In
D. Basin and B. Wolff, editors, 16th International Conference on Theorem Proving in Higher Order Logics (TPHOLs

2003) , Emerging Trends Proceedings, pages 13–27. Universität Freiburg, 2003. URL http://files.metaprl.org/

papers/formalaa.pdf.

http://dx.doi.org/10.1017/S0956796810000079
http://dx.doi.org/10.1145/99370.99404
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1016/j.tcs.2006.12.042
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1007/978-3-540-89330-1_14
http://dx.doi.org/10.1007/978-3-540-73589-2_17
http://dx.doi.org/10.1016/S0168-0072(98)00047-5
http://tel.archives-ouvertes.fr/tel-00196524/
http://dx.doi.org/10.1145/1292535.1292548
http://files.metaprl.org/papers/formalaa.pdf
http://files.metaprl.org/papers/formalaa.pdf

OUTILS GÉNÉRIQUES DE PREUVE ET THËORIE DES GROUPES FINIS

Cette thèse présente des avancées dans l’utilisation des Structures Canoniques, un mécanisme du langage de
programmation de l’assistant de preuve Coq, équivalent à la notion de classes de types. Elle fournit un nouveau
modèle pour le développement de hiérarchies mathématiques à l’aide d’enregistrements dépendants, et, en guise
d’illustration, fournit une reformulation de la preuve formelle de correction du cryptosystème RSA, offrant des

méthodes de raisonnement algébrique ainsi que la représentation en théorie des types des notions mathématiques
nécessaires (incluant les groupes cycliques, les groupes d’automorphisme, les isomorphismes de groupe). Nous

produisons une extension du mécanisme d’inférence de Structures Canoniques à l’aide de types fantômes, et
l’appliquons au traitement de fonctions partielles. Ensuite, nous considérons un traitement générique de plusieurs
formes de définitions de sous-groupes rencontrées au long de la preuve du théorème de Feit-Thomspon, une large

librairie d’algèbre formelle développée au sein de l’équipe Mathematical Components au laboratoire commun
MSR-INRIA. Nous montrons qu’un traitement unifié de ces 16 sous-groupes nous permet de raccourcir la preuve

de leur propriétés élémentaires, et d’obtenir des définitions offrant une meilleure compositionnalité. Nous
formalisons une correspondance entre l’étude de ces fonctorielles, et des propriété de théorie des groupes usuelles,

telles que représentées par la classe des groupes qui les vérifie. Nous concluons en explorant les possibilités d’analyse
de la fonctorialité de ces définitions par l’inspection de leur type, et suggérons une voie d’approche vers l’obtention

d’instances d’un résultat de paramétricité en Coq.

GENERIC PROOF TOOLS AND FINITE GROUP THEORY

This thesis presents advances in the use of Canonical Structures, a programming language construct of the Coq
proof assistant equivalent to the notion of type classes. It provides a new model for developping hierarchies of

mathematical structures using dependent records, and, as an illustration, reformulates the common formal proof of
the correctness of the RSA cryptosystem, providing facilities for algebraic reasoning along with a formalization in

type theory of the necessary mathematical notions (including cyclic groups, automorphism groups, group
isomorphisms). We provide an extension of the Canonical Structure inference mechanism using phantom types,
and apply it to treating the notion of partial functions. Next, we consider a generic treatment of several forms of
subgroup definitions occurring in the formalization of the Feit-Thompson theorem, a large library of fomalized
algebra developed in the Mathematical Components team at the MSR-INRIA joint laboratory. We show that a

unified treatment of those 16 subgroups allows us to shorten menial proofs and obtain more composable
definitions. We formalize a correspondence between the study of those group functorials, and some common and
useful group-theoretic properties represented as the class of groups verifying them. We conclude in exploring the

possibilities for analyzing the functoriality of those definitions by inspecting their type, and suggest a path towards
obtaining instances of a parametricity result in Coq.

	Canonical Structures
	Model and Implementation: -types and dependent records in Coq
	From user input to typed term
	Canonical Structures in proofs
	Ecosystem and Improvements

	Implementation
	Groups, sets and structures
	Cyclic groups
	Morphisms and partial functions

	Subfunctors of the identity
	Subgroup-defining functions, generalizations, propositions
	Radicals: from subgroup-defining functions to torsion theories
	Torsion theories for groups
	Relational Parametricity

	Conclusion
	Bibliography

