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General introduction

The work described in this manuscript has been carried out at Laboratoire de Physique
des Interfaces et des Couches Minces, or LPICM (Laboratory of Physics of Interfaces and
Thin Films), a CNRS-Polytechnique Joint Research Unit, located at Ecole polytechnique
in Palaiseau (France), as a new aspect of the now well established research activity at
LPICM on biomedical applications of polarimetry.

Historically, LPICM was created in 1986 to develop solar cells based on thin films
deposited by Plasma Enhanced Chemical Vapor Deposition. Ellipsometric instrumenta-
tion was developed first as a highly performing tool to monitor thin film growth and to
characterize the multiple layer structures at the core of solar cells. Later, though thin
film characterization was still a major application of ellipsometry, complete Mueller po-
larimetry was developed independently, in spectroscopic and imaging configurations. New
applications of this technique were investigated, among which semiconductor metrology
and biomedical diagnostics.

This last topic is now a major activity at LPICM, with collaborations with medical
teams at Institut Mutualiste Montsouris and Kremlin Bicêtre hospitals of Paris. One
goal of this activity is to improve the visualization of dysplastic regions of uterine cervix
in vivo, to allow a better definition of the locations to biopsy as well as the boundaries of
surgical removal of anomalous regions, if needed. Ex vivo samples are also being studied,
to help defining the best acquisition procedures and data treatments for in vivo diagnosis.
Besides, ex vivo studies may be of interest for their own sake, to improve the efficiency
of whole pathology examination procedures.

However, instrumental and data treatment optimizations may be very difficult to
achieve only on an empirical basis, especially for in vivo studies including clinical trials.
As a result, besides its intrinsic interest, the development of realistic yet tractable models
of the tissue polarimetric responses is mandatory for the envisioned medical applications.
The work presented in this manuscript is the first step made at LPICM towards this goal.

Many optical techniques are currently being developed and evaluated for medical
diagnostics. One major advantage of optics over X-rays or PET is the use of non-ionizing
harmless radiation. Moreover, optics may provide specific contrasts not available by other
techniques, such as the very widely used evaluation of the level of oxygen saturation of
hemoglobin based on near IR spectroscopy.

However, optical radiation is strongly scattered over typical depths in the millimeter
range. As a result, optical characterization of deep organs is usually realized endoscopi-
cally. Direct non invasive measurements of scattered light may also be performed, but at
definitely lower spatial resolutions.

If X-ray or magnetic resonance imaging are currently the most performing techniques
for non-invasive in-depth imaging, optics is much more effective to characterize superficial
tissues, and is thus widely used in dermatology, stomatology, gynaecology and ophthal-
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10 GENERAL INTRODUCTION

mology.
Traditional intensity imaging, possibly with endoscopic or other optical devices such as

binocular microscopes, is obviously the most widespread optical technique. The diagnosis
is thus based on the visual aspect of the organs, their color and texture. However, optics
may provide complementary information, not visible by usual imaging.

Fluorescence and Raman spectroscopy are sensitive to the chemical composition of
the tissue, which can change from healthy to pathologic regions due to metabolic modi-
fications occurring in diseased tissues. While fluorescence involves electronic transitions,
with typically rather broad spectra without fine structures, Raman spectroscopy is sen-
sitive to vibrational spectra, which are extremely detailed. As a result, fluorescence may
be implemented in imaging mode with relatively broad spectral filtering of the excitation
and emission wavelengths with little loss of chemical information with respect to full
spectral resolution. Conversely, Raman typically requires high spectral resolution with
very low signal levels and is thus difficult to implement in full field imaging mode.

Other techniques are sensitive to the tissue structure, at both macroscopic and mi-
croscopic levels, rather than its chemical composition. Confocal microscopy and Optical
Coherence Tomography (OCT) provide microscopic tomographic images from ballistic
(non-scattered) photons. These images are thus extremely detailed and in some cases
they can be directly exploited by pathologists along the same lines as histological plates.
The price to be paid for this advantage is a very small field of view (typically less than
1 mm2) and a penetration depth in the millimeter range.

Alternatively, the backscattered light from the sample can be analyzed spectrally
and/or angularly, to determine the size of the scatterers, which may be cell nuclei, or-
ganelles, or collagen structures in connective tissue. As scattered photons contribute
to the signal, for these techniques the relevant penetration depths may be significantly
larger than for OCT or confocal imaging. Spatial imaging with focussed illumination
can also be used to obtain the scattering coefficients from the analysis of the "halo"
observed around the illuminated spot, but this technique can be used only on spatially
homogeneous samples, which may be problematic in many practical cases.

Actually the size of the scatterers as well as the macroscopic multilayer structure of the
tissue determines not only the angular and spectral distributions of backscattered light,
but also its polarization. Typically, tissues exhibit substantial depolarization, with, possi-
bly, other polarimetric properties such as birefringence and diattenuation, corresponding
respectively to a dependence of the phase or the intensity of the backscattered light on
the incident polarization. As a result, complete polarimetric characterization of the tis-
sue requires Mueller polarimetry, which is the most complex polarimetric/ellipsometric
technique, but which can be implemented, at reasonable cost, in full field imaging mode.
Provided the polarimetric contrasts can be well correlated to specific diseases, polarimet-
ric imaging may constitute a promising alternative/complementary technique for medical
diagnostics.

Many studies involving polarimetric imaging have already been carried out in oph-
thalmology, often in conjunction with OCT (with, however, incomplete polarimetric anal-
ysis). Several studies have also been reported in dermatology while, to the best of our
knowledge, LPICM has been the first to implement this technique to gynaecology.

This manuscript comprises five main chapters and three appendixes.

The first chapter is devoted to a brief description of the mathematical formalisms
describing the light polarization, together with the changes that this polarization may



GENERAL INTRODUCTION 11

suffer when the light beam interacts with material systems. These formalisms are well
known; we thus introduced this chapter to keep the manuscript reasonably self-contained
and readable by non-specialists. After an elementary description of the polarization el-
lipse, we introduce the Jones formalism, which is well suited for totally polarized states
characterized by simple, deterministic time-space evolution of the electric field. We then
consider partially polarized states and the relevant Stokes formalism based on the sta-
tistical characterization of the electric field by a real, four component vector, the Stokes
vector. The interaction of light with a material system then induces a linear transforma-
tion of this vector described by a 4 x 4 real matrix, the Mueller matrix. We then present
the essential features of the Mueller matrices of elementary polarimetric components,
namely the diattenuators, the retarders and the depolarizers. In the last part of this
chapter, we outline the various mathematical methods currently available to decompose
any Mueller matrix into a product of matrices of elementary components, which allow
a physical interpretation of the polarimetric response of the sample under study. The
mathematical formulas for Jones and Mueller-Stokes formalisms are listed in Appendix
A.

In the second chapter we provide the essential notions relevant to the propagation of
polarized light in scattering media. The first part is focussed on single scattering, with
a derivation of the scattering cross-section of a spherical particle in the scalar approxi-
mation first, and for polarized light afterwards. In this latter case, the result is given in
terms of the development coefficients derived from Mie theory, which is summarized in
Appendix B. We then consider multiple scattering, in the independent scattering regime,
without any interference effects. The essential parameters relevant to this regime, namely
the scattering mean free path and the anisotropy are introduced prior to the derivation
of the radiative transfer equation (RTE), both in scalar and vectorial forms, i.e. for
unpolarized and polarized light respectively. The last part of this chapter reviews the
available methods of solution of the RTE, including the Monte Carlo algorithm that we
used throughout this work.

The third chapter describes the Monte Carlo solution of RTE. We first present a
broad overview of the problems which can be efficiently solved by using this approach,
and then we specialize this presentation to the radiative transfer. The bulk of the chap-
ter is devoted to the detailed description of the algorithm itself, including the generation
of random numbers with prescribed probability distributions, the study of individual
photon trajectories including free flight, scattering by spherical particles, refraction or
reflection at interfaces, and eventually detection or loss in free space. The photon po-
larization is fully taken into account, as well as the geometry of the scattering system
(with multiple layers and possibly different scatterer populations within each layer, and
a totally depolarizing lambertian which "lumps" the contributions of the bottom, thick
layers). Various possible detection geometries are also described. The Mueller matrix is
evaluated by proper statistical averaging of the individual trajectories of photons in large
"packages" with identical input parameters. The convergence of the statistics is greatly
improved by a "non analog" game, which evaluates the probability for each photon to
reach the detector directly after each event, instead of "waiting" for the photon trajectory
to actually hit the detector.

The fourth chapter is devoted to the experimental part of this work, which provided
the data taken with three different polarimeters and used afterwards to evaluate the sim-
ulation procedures described in Chapter 5. The first polarimeter, a manually driven setup
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mounted at LPICM, was designed for full Mueller imaging measurements on scattering
samples in the backward scattering geometry with focussed illumination. This instru-
ment was used with various known samples, among which two aqueous suspensions of
polystyrene spheres, to validate the Monte Carlo code.

The second instrument was set up and used during a three month stay at the Oregon
Healthy and Science University of Portland, Oregon, in Pr. Steven Jacques’ team. The
purpose was to perform polarimetric measurements with angular, rather than spatial,
resolution. Similarly to the first instrument, the input and output polarizations were
determined by manually adjusting polarizers and retardation plates. The angular reso-
lution was achieved in two ways. In a first implementation, the detection system was set
on a goniometric mount. Then the polarimeter was coupled to a Fourier optics imaging
system, for snapshot acquisition of two dimensional angular distributions. This instru-
ment was used to study various samples, such as polystyrene sphere suspensions, honey
and mice tendon, sufficiently thin to ensure an almost single scattering regime.

The last instrument was a real-space imaging full Mueller polarimeter, installed at
the Pathology Department of Institut Mutualiste Montsouris, where it was used for po-
larimetric imaging of ex vivo samples, at five different wavelengths. We studied uterine
cervix cone biopsies, as well as colon samples, with healthy and cancerous regions. These
samples were also thoroughly studied with improved pathology procedures, to map the
lesions and correlate these maps with the observed polarimetric contrasts.

The last chapter supplemented by Appendix C describes the theoretical model we de-
veloped to account for the main features of the observed polarimetric responses of colon
samples. We first considered tissue structures with one or two layers including monodis-
perse scatterers above a totally depolarizing lambertian of variable albedo. The variable
parameters were the layers’ thickness, the scatterers’ radius, their volume fraction, the
optical index contrast and the lambertian albedo. These simple models did not account
for an essential property of all observed tissues, namely a systematic Rayleigh-like re-
sponse, with larger depolarization for linear vs circular incident polarization. This issue
could be solved by considering bimodal scatterer populations.

Finally, the essential results and the perspectives opened by this work are summarized
in the Conclusion.



Chapter 1

Light polarization formalism

1.1 Introduction

Light is said to have a dual behavior: the wave-like behavior and the particle-like be-
havior, which means that light behaves simultaneously as a wave and a flux of particles.
Each description is better suited to some phenomena rather than others. For example,
light propagation in free space or homogeneous media, as well as interferences between
coherent beams, can be easily described by Maxwell wave equations (the classical theory),
whereas some aspects of light-matter interaction such as spontaneous light emission in-
volve quantum effects which can be understood only in the particle-like description of
light [1].

In this chapter we will extensively use the classical wave theory to describe the polar-
ization properties of light. Conversely, in Chapter 4 and 5 the propagation of polarized
light in layered scattering media such as biological tissues will be modelled by using
a Monte Carlo approach: light then is described as a flux of particles which may be
scattered, absorbed, refracted or reflected,according to known probability functions. We
point out, however, that these functions are derived from classical wave theories, namely
the Mie theory of light scattering by spherical particles (see Appendix B) and the Snell-
Fresnel’s equations for light interaction with interfaces. As a result, the particles involved
in Monte Carlo calculations are only virtual particles whose statistical distribution sat-
isfies the the radiative transfer equation rather than the "true" photons considered in
quantum theoryof light. However, in the following we will call these particles "photons"
as seen in virtually all publications on Monte Carlo simulations.

Within the classical theory the essential quantity describing the light properties is its
electric field vector E(r, t), which oscillates in the plane perpendicular to the propagation
direction and whose characteristics depend on the time and space coordinates as light
propagates.

Polarization, as well as intensity, wavelength and coherence, is a fundamental property
of light. In terms of the classical theory polarization refers to the pattern described by
the electric field vector E(r, t) as a function of time t at a fixed location r. When the
electric field vector oscillates in a single direction, light is said to be linearly polarized.
As discussed in more detail in the following paragraphs, if the direction of the electric
field rotates, light is said to be elliptically polarized, as in this case the electric field
vector traces out an ellipse at a fixed point in the space in function of time. If the ellipse
happens to be a circle, light is said to be circularly polarized. Finally, if the motion of
the electric field is somewhat disordered, this disorder (which is quantified by means of
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14 CHAPTER 1. LIGHT POLARIZATION FORMALISM

Figure 1.1: Different states of polarization [2].

the correlation functions of the electric field components) induces a depolarization, which
may be complete if the field trajectory is "totally" chaotic. Fig. 1.1 illustrates these
different states of polarization.

In practice, light is either unpolarized or partially polarized. Completely polarized
light is an idealization of natural light, similar to the perfectly monochromatic light with-
out any frequency spread. Sir George Gabriel Stokes (1819-1903) issued an experimental
definition of unpolarized light, namely "unpolarized light is light whose intensity is un-
affected when a polarizer is rotated or by the presence of a retarder of any retardance
value" [3]. However, by means of a polarizer and a retarder, we can change the charac-
teristic of polarization of natural light. The process of polarization introduces an order
to the oscillation of the electric field and reduces the intensity of the polarized light. On
the other hand, polarized light can lose its specific polarization as it propagates through
a medium which introduces disorder in the oscillation of the electric field.

In this chapter we recall the essential aspects of the Jones and Stokes-Mueller for-
malisms used to describe the polarization within the frame of the electromagnetic theory.
While the Jones formalism is well adapted to totally polarized states, the Stokes-Mueller
formalism is needed when depolarization is to be taken into account.

1.2 Totally polarized states

Electric field of a plane wave. Time-space light propagation, like all electromagnetic
phenomena, can be fully described in terms of Maxwell’s equations. In these equations
the electric and magnetic fields appear to be coupled. For homogenous non-magnetic lin-
ear optical media, without any charge and current densities, Maxwell’s equations simplify
and can be formulated for electric and magnetic fields separately (see Appendix B). The
electric field then obeys the well-known wave equation

∇E(r, t)− µε∂
2E(r, t)

∂t2
= 0 (1.1)
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whose general solution is written as

E(r, t) = <{E0(r, t)ejδ(r, t)} (1.2)

where the E0(r, t) and δ(r, t) are the amplitude and the phase of the wave respectively.
A monochromatic plane wave is a particular solution of the wave equation, character-

ized by the phase factor δ(r, t) = ωt−nmk·r, where k = 2π/λ is the propagation constant
(or wave number) and λ is the wavelength in vacuum. Consider a monochromatic plane
wave propagating in the positive z direction in an isotropic medium of refractive index
nm (real)

E(r, t) = <{E0e
j(−knmz+ωt)}. (1.3)

The amplitude vector E0 of the electric field is in general complex. The direction of the
amplitude vector in the (x, y) plane perpendicular to z represents the light polarization:

E0 = E0x + E0y =

= E0xe
jδx x̂ + E0ye

jδx ŷ (1.4)

where x̂ and ŷ are unit vectors along the x and y directions, respectively, and E0x and
E0y are positive real numbers. By replacing Eq.(1.4) in Eq.(1.3) and extracting the real
part, the monochromatic plane wave propagating in z direction takes the form

E(x, y, z, t) = E0x cos(ωt− knmz + δx) x̂ + E0y cos(ωt− knmz + δy) ŷ (1.5)

where

Ex(z, t) = E0x cos(ωt− knmz + δx) = E0x cos(τ + δx) (1.6a)
Ey(z, t) = E0y cos(ωt− knmz + δy) = E0y cos(τ + δy) (1.6b)

are the transverse components of the electric field, in x and y directions respectively.
E0x and E0y are the peak amplitudes, δx and δy the time independent phases of the two
relative components, τ = ωt− knmz is the overall time dependent phase of the wave and
knm is the propagation constant, or wave number, in the medium with refractive index
nm (k is the propagation constant in vacuum). For the totally polarized waves considered
in this section, the four parameters E0x, E0y, δx and δy are constant in time.

Intensity. The intensity of a propagating wave in a given point of the space is the tem-
poral average of the associated Poynting vector, proportional to the square of the field
amplitude. If we drop the "extra" constant factors which are irrelevant for our purposes,
we can write

I = Ix + Iy =
〈
Ex(t)

2 + Ey(t)
2
〉

(1.7)
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where Ix and Iy are the intensities associated with the components Ex and Ey of the
electric field and the symbol 〈...〉 represents the average. Due to the constancy of the
peak amplitudes E0x, E0y and the sinusoidal temporal variation of the fields, Eq.(1.7)
can be rewritten as

I = Ix + Iy =
1

2

(
E2

0x + E2
0y

)
. (1.8)

1.2.1 The polarization ellipse

The two transverse waves in Eq.(1.6) are said to be "instantaneous", since the electric field
takes only about 10−15 seconds to complete a single oscillation at the optical frequen-
cies [4], [5]. Hence the electric field vector traces a single curve almost instantaneously
with respect to all other time constants which may be experimentally relevant, such as
the time resolution of the detectors for example. In order to obtain this curve we need
to write cos(τ + δi) as a function of τ and δi (i = x, y) separately, then we multi-
ply the two equations by sin δy and sin δx, respectively, before subtracting them from
one another; similarly we multiply the two equations by cos δy and cos δx and subtract
them. Squaring the two final equations and adding them together gives the expression [5]:

E2
x(t)

E2
0x

+
E2
y(t)

E2
0y

− 2
Ex(t)Ey(t)

E0xE0y

cos δ = sin2 δ (1.9)

where δ = δy − δx is the phase retardation of one the transversal component of the
electric field with respect to the other.

We easily recognize in Eq.(1.9) the equation of a rotated ellipse (because of the "prod-
uct" term ExEy ), with an ellipticity angle (χ) and angle of orientation (ψ) with respect
to the axes of reference. We define the angle α by

tanα =
E0y

E0x

. (1.10)

As both E0x and E0y are positive, α is limited to the
[
0, π

2

]
interval. The ellipticity and

orientation angles are then related to α and δ by [6]

cos(2χ) cos(2ψ) = cos(2α) (1.11a)
cos(2χ) sin(2ψ) = sin(2α) cos δ (1.11b)

sin(2χ) = sin(2α) sin δ. (1.11c)

In Eq.(1.11a), when α varies from 0 to π
2
, cos(2α) can take all possible values from -1 to

1. In the following two equations sin(2α) is positive, but the right members can also take
any values between -1 and 1 due to the cos δ and sin δ factors. As a result, the ellipticity
and orientation angles can be taken in the following intervals [5]:

−π
4
≤ χ ≤ π

4
and − π

2
≤ ψ ≤ π

2
. (1.12)
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Figure 1.2: The polarization ellipse. The light is propagating along +z, towards the
observer (the frame of reference (x, y, z) is right handed).

Moreover, the sign of χ determines the handedness of the considered elliptical polar-
ization state. We assume that the observer is looking into the −z direction, as in Fig.
1.2 (the observer is receiving the wave traveling in the +z direction) [5]:

• if χ is negative, then δ is also negative and the field rotates counterclockwise, from
x to y, and the state is a left-oriented elliptical state,

• conversely, if χ is positive, the polarization state is right-oriented.

1.2.2 The Jones formalism

Jones vectors. The matrix approach to describe the polarization of light comes along
with the fact that the components of a light field after a polarizing device are linearly
related to its components before the device [6]. Several matrix representations of the
polarization states of a plane wave have been defined. In the following we will consider
the most widely used, namely the Jones formalism. We rewrite Eqs.(1.6) as[

Ex
Ey

]
e−jτ =

[
E0x e

jδx

E0y e
jδy

]
, (1.13)

where the two column (complex) time-independent vector on the right-hand side, which
completely specifies the amplitude and phase of a light fields and hence its polarization,
is called the Jones vector [6].

The above definition of the Jones vector can be simplified if this vector is used merely
to label the polarization state of light, with no need of any absolute phase reference. If
so, only the phase difference δ = δy − δx is needed to determine the polarization state of
the wave. Accordingly we can write the Jones vector as

J =

[
Ex
Ey

]
e−jτ = ejδx

[
E0x

E0y e
jδ

]
. (1.14)

The common phase factor ejδx can be removed without losing any information about the
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state of polarization of the light field. We may notice that this simplification cannot
be done, for example, if we consider the interference of this wave with another one, in
which case the overall relative phases of the two waves are crucial. Moreover, if only the
polarization is to be described and not the total intensity of the considered wave, the
Jones vector can be normalized :

J∗ · J = E∗0xE0x + E∗0yE0y = E2
0x + E2

0y = 1 (1.15)

where J∗ is the transpose conjugate of J (corresponding to a total intensity I=1/2) and
takes the form

J =

[
Ex
Ey

]
e−jτ =

[
cosα

sinα ejδ

]
, (1.16)

where the angle α is the same as in Eq.(1.10). The Jones vectors (J) for horizontally
(H), vertically (V), ±45◦-oriented linearly (P and M), left and right circularly (L and R),
left and right elliptically (LE and RE -with principal axes coinciding with the horizontal
and vertical directions; GLE and GRE -with principal axes generally oriented) polarized
light are listed in Table 1.1.

Orthogonal states. In this paragraph we consider a coherent superposition of two
waves, characterized by their Jones vectors J1 and J2, defined as in Eq.(1.13), to avoid
any loss of generality and include overall phase difference between the two waves. The
Jones vector of the resulting wave is simply J = J1 + J2. Its intensity I is then given by

2I = J∗ · J = (J1 + J2)∗ · (J1 + J2) = I1 + I2 + 2<(J∗1 · J2) (1.17)

where the last term describes the interference between the two waves.
The polarization states defined by the Jones vectors J1 and J2 are said to be orthogonal

if this interference term vanishes, independently of the overall relative phase of the two
waves. This last point is essential, as the interference term always vanishes for two waves
oscillating in quadrature, i.e. with an overall phase difference equal to 90◦. Actually, if
we change the relative overall phase shift between the two waves by δs, the intensities
I1 and I2 remain unchanged, while the scalar product J∗1 · J2 is multiplied by ejδs . As
a result, the polarization states defined by J1 and J2 are orthogonal if and only if their
scalar product J∗1 · J2 is zero.

Once this condition has been clarified, we can consider normalized Jones vectors. Tak-
ing for J1 the expression in Eq.(1.16), the scalar product with J2 vanishes if and only if
J2 is of the form

J2 = ejδ
[
− sinα e−jδ

cosα

]
(1.18)

where the factor ejδ represents the overall phase shift between the two waves (including
ejδx and ejδs). Eq.(1.18) shows that J2 is deduced from J1 by merely adding π

2
to α.

Then Eqs.(1.11) show that sin(2χ), sin(2ψ) and cos(2ψ) all change sign, implying that χ
is changed into −χ while ψ becomes ψ± π

2
, depending on which of these two possible

angles is found between −π
2

and π
2
. As a result:
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• the handedness of the considered state is reversed,

• the major and minor axes of the ellipse are exchanged.

The relationship between two orthogonal states is illustrated in Fig. 1.3.

Figure 1.3: Two orthogonal elliptical states.

Jones matrices. In general the action of a non-depolarizing optical system transform-
ing the state of polarization of a plane wave can be described by the matrix equation:[

cosα′

sinα′

]
=

[
T11 T12

T21 T22

] [
cosα

sinα ejδ

]
, (1.19)

where the 2 x 2 matrix
T =

[
T11 T12

T21 T22

]
(1.20)

is the Jones matrix of the optical system. The Jones matrix (T) of some optical devices
are listed in Tables A.1, A.2, A.5 (see Appendix A). The same matrix transformation can
be used to describe the action of a complex system constituted of n elementary optical
devices characterized by their Jones matrices Ti. Then, the transformation matrix that
changes the Jones vector of the light at the entrance of the optical system Ji in to the
Jones vector at the exit Jo has the expression:

Jo = Tn ·Tn−1...T1 · Ji. (1.21)

In the most general case, an elliptical input polarization state is transformed into another
elliptical state.

Polarization eigenstates. The polarization eigenstates of an optical system are the
polarization states which are not modified by the system. Therefore, their Jones vectors
are not modified either, except for an overall factor corresponding to the overall ampli-
tude or phase (or both) of the light wave. In other words, these Jones vectors are nothing
else but the eigenvectors J1 and J2 of the Jones matrix T of the system:

T · J1 = λ1 · J1

T · J2 = λ2 · J2,
(1.22)
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J

[
cosα
sinα ejδ

]

α = 0

[
1
0

]
JH

α = π
2

[
0
1

]
JV

α = π
4

δ = 0
1√
2

[
1
1

]
JP

α = π
4

δ = π
1√
2

[
1
−1

]
JM

E0x = E0y

δ = π
2

1√
2

[
1
−i

]
JL

E0x = E0y

δ = −π
2

1√
2

[
1
i

]
JR

E0x = a
E0y = b
δ = ∓π

2

1√
a2+b2

[
a
−ib

]
JLE

1√
a2+b2

[
a
ib

]
JRE

E0x = a

E0y =
√
b2 + c2

δ = ∓ tan−1( c
b
)

1√
a2+b2+c2

[
a

b− ic

]
JGLE

1√
a2+b2+c2

[
a

b+ ic

]
JGRE

Table 1.1: Jones vectors of totally polarized states.

where λ1 and λ2 are the corresponding eigenvalues.
In the most general case, the eigenvalues associated to the eigenvectors are complex

and defined as

λ1 = P1e
jδ1

λ2 = P2e
jδ2 ,

(1.23)

ordered so that P2 > P1. Although the eigenvectors form a base, they are not necessarily
orthogonal. The eigenvalues and eigenvectors of some some optical devices are listed in
Tables A.1, A.2, A.5 (see Appendix A).

Homogeneous systems. A non depolarizing system is homogeneous if its two polar-
ization eigenstates are orthogonal.
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Let’s consider a homogeneous system with the following orthogonal eigenvectors:

J1 =

[
a
b

]
J2 =

[
−b∗
a∗

]
. (1.24)

Since these eigenvectors are normalized their components verify the relation

aa∗ + bb∗ = 1. (1.25)

The Jones matrix can be rewritten as

T = MJ ·Λ · [MJ]−1 =

[
λ1aa

∗ + λ2bb
∗ (λ1 − λ2)ab∗

(λ1 − λ2)ba∗ λ2aa
∗ + λ1bb

∗

]
(1.26)

where

MJ = [J1 J2] =

[
a −b∗
b a∗

]
, (1.27a)

[MJ]−1 = [J1 J2]−1 =

[
a∗ b∗

−b a

]
, (1.27b)

Λ =

[
λ1 0
0 λ2

]
. (1.27c)

Rotation of the reference frame. If the x and y axes are rotated by an angle ϕ, the
Jones vectors are transformed by the usual rotation matrix RJ(ϕ):

S′ =

[
a′

b′

]
= RJ(ϕ) · J =

[
cosϕ − sinϕ
sinϕ cosϕ

]
·
[
a
b

]
(1.28)

while we get for the Jones matrices

T′ = RJ(ϕ) ·T · [RJ(ϕ)]−1 . (1.29)

1.3 The Stokes formalism for partially polarized states
So far, we have been considering only totally polarized states, for which the electric field
describes a well defined ellipse in the xy plane. In practice, the motion of the electric
field can be somewhat disordered, and can be defined only statistically, by means of
correlation functions. Even though higher order correlation functions may be measured,
in the following we will restrict ourselves to second order ones, which are in turn directly
related to intensities.

In particular, as it has been already discussed in the first section of this chapter the
intensities related to the components of the electric field along the x and y axes are

Ix =
〈
E2
x(t)
〉
, Iy =

〈
E2
y(t)
〉

(1.30)
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where the brackets mean "overall" averages. We now discuss in more detail the nature
of this averaging process for partially polarized states.

In the following we’ll always consider quasi-monochromatic waves, meaning that
Eqs.(1.6) are still valid. However, the E0x, E0x, δx, δy are no longer constant, but they
vary much more slowly than the optical angular frequency ω. As a result, the intensities
Ii (i = x, y) defined above can be rewritten as

Ii =
〈
E2
i (t)
〉

=
1

2

〈
E2

0i

〉
(1.31)

which corresponds to a two-step averaging procedure:

1. We first take the average, at each spatial location, of the cos2(τ + δi) factor, which
oscillates at twice the optical frequency. Such an average can thus be taken over
times of the order of the inverse of the optical frequency, which is much shorter
than typical variation times of E0i, which can then be considered as a constant at
this point. As a result, this first averaging step merely divides by a factor of 2
the "instantaneous" values of E2

0i. This step has been already described for totally
polarized states, for which the amplitudes E0i (and the phase difference δ = δy−δx)
are constant in time;

2. In a second step, we take the average, over much longer times, of E2
0i. Moreover,

in this second step, we can also include other types of averaging, which may be
relevant to various experimental conditions:

• if the detector size is larger than the spatial coherence domains at the detector
location, then the polarization state may vary over the detector cross-section,
and a spatial averaging may be required,

• if the polarization varies inside the light spectral range, then a spectral aver-
aging may be necessary.

We now generalize the previous notions to the whole second order correlation matrix
of the two components of the electric field. This matrix is most easily defined from the
complex formulation of the electric field:

Ec
i = E0i e

j(τ+δi) where i = x, y. (1.32)

If we remove the terms oscillating at optical frequencies, whose time average is zero, the
field correlation matrix reduces to:

C =

[
〈Ec

x E
c∗
x 〉

〈
Ec
x E

c∗
y

〉〈
Ec
y E

c∗
x

〉 〈
Ec
y E

c∗
y

〉 ] =

[
〈E2

0x〉
〈
E0x E0y e

−jδ〉〈
E0x E0y e

jδ
〉

〈E2
0x〉

]
. (1.33)

The Stokes parameters. From the correlation matrix C we can define four real pa-
rameters, the Stokes parameters, which define all possible, totally or partially polarized,
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states:

S0 = 1
2

(Cxx + Cyy) =
1

2

〈
E2

0x + E2
0y

〉
(1.34a)

S1 = 1
2

(Cxx − Cyy) =
1

2

〈
E2

0x − E2
0y

〉
(1.34b)

S2 = 1
2

(Cxy + Cyx) =
1

2
〈2E0xE0y cos δ〉 (1.34c)

S3 = j
2

(Cxy − Cyx) =
1

2
〈2E0xE0y sin δ〉 . (1.34d)

From Eq.(1.31) the interpretation of the first two Stokes parameters is straightforward:
these parameters are nothing else but the sum and the difference of the intensities Ix and
Iy measured after ideal polarizers respectively aligned along the x and y axes.

The interpretation of S2 and S3 is a little bit more involved. The intensities IP/M
measured after the same ideal polarizers, set at ±45◦ are given by the rms values of the
projections of the field on these axes:

IP/M =
1

2

〈
(Ex(t)± Ey(t))2〉 (1.35a)

=
1

2

〈
(E0x cos(τ + δx)± E0y cos(τ + δy))

2〉 (1.35b)

=
1

2

〈
1

2
E2

0x +
1

2
E2

0y ± 2E0xE0y cos(τ + δx) cos(τ + δy)

〉
(1.35c)

from which we easily deduce

IP − IM = 〈2E0xE0y cos(τ + δx) cos(τ + δy)〉 (1.36a)
= 〈E0xE0y (cos(2τ + δx + δy) + cos(δ))〉 (1.36b)
= 〈E0xE0y cos δ〉 = S2 (1.36c)

where, again, we used the fact that the time average of the term oscillating at the optical
frequency 2τ is zero.

The physical meaning of the parameter S3 can easily be deduced from that of S2 if
we manage to replace cos δ by sin δ, which is equivalent to subtracting 90◦ from the
incoming wave phase difference δ = δy − δx. This can be achieved by setting an ideal
quarter-wave plate before the linear analyzer, with its slow axis along the x direction.

As it has been described in section 1.2.1 left circularly polarized light is a wave for
which the electric field has constant modulus and rotates counterclockwise (from x to y)
for an observer looking in the −z direction. For such a wave, the electric field components
are of the form [

Ex(t)
Ey(t)

]
=

[
E0x cos(ωt+ ϕ)
E0y sin(ωt+ ϕ)

]
. (1.37)

The quarter wave plate with its slow axis along x adds a 90◦ phase to Ex(t), which trans-
forms the factor cos(ωt+ϕ) into − sin(ωt+ϕ). The incoming left circular polarization is
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thus transformed into a linear one, oriented at -45◦. Conversely, if the incoming wave is
circularly right polarized (rotating clockwise in the same conditions of observation) the
quarter wave plate will again transform this polarization into a linear one, along the +45◦
direction. As a result, we can consider that the quarter-wave plate followed by a linear
analyzer set at -45◦ is equivalent to a left circular analyzer ; if the linear analyzer is set
parallel to the +45◦ the whole setup is a right circular analyzer. Finally, considering again
that S3 can be measured as S2 with the quarter wave placed before the linear analyzers
with its slow axis along x, we get from Eq.(1.36)

S3 = IR − IL (1.38)

where IL and IR are the intensities measured after ideal left and right circular analyzers,
respectively.

Finally, the four Stokes parameters can be seen as the four components of the (real)
Stokes vector S:

S =


S0

S1

S2

S3

 =


I
Q
U
V

 =


Ix + Iy
Ix − Iy
IP − IM
IL − IR

 . (1.39)

We can recast the meaning of the Stokes parameters as follows. The first parameter S0

(also often called I) is the total light intensity. The parameter S1 (or Q) describes the
amount of linear horizontal (x) or vertical (y) polarization. The parameter S2 (also called
U) quantifies the amount of linear polarization along the +45◦ or or −45◦ azimuths, while
S3 (or V ) is a measure of the amount of circular polarization, together with its handedness.

The vectors of the most usual polarization states are summarized in Table 1.2.
For totally unpolarized light all Stokes parameters but S0 vanish, as for unpolarized

light the intensity measured after any ideal analyzer (be it linear at any azimuth, or
circular, or even elliptical) is always one half of the total intensity.

1.3.1 The degree of polarization

Jones vectors are "true" vectors, as the electric fields they represent, in the sense that
no limitations are imposed on their components. Conversely, this is not true for Stokes
vectors, as we’ll see now. From the well known Schwarz inequality applied to random
variables

〈ab〉2 ≤
〈
a2
〉 〈

b2
〉

(1.40)

we deduce that

S2
2 +S2

3 = 〈E0xE0y cos δ〉2+〈E0xE0y sin δ〉2 ≤
〈
E2

0xE
2
0y

〉 〈
cos2 δ + sin2 δ

〉
= E2

0xE
2
0y (1.41)

and

S2
1 + S2

2 + S2
3 ≤

1

4

〈(
E2

0x − E2
0y

)2
〉

+
〈
E2

0xE
2
0y

〉
= S2

0 . (1.42)
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S 1
2


〈
E2

0x + E2
0y

〉〈
E2

0x − E2
0y

〉
〈2E0xE0y cos δ〉
〈2E0xE0y sin δ〉



E0x = 0
E0y 6= 0
I0 = E2

0y

δ = ∀ I0


1
1
0
0

 SH

E0x 6= 0
E0y = 0
I0 = E2

0x

δ = ∀ I0


1
−1
0
0

 SV

E0x = E0y

I0 = 2E2
0

δ = 0 I0


1
0
1
0

 SP

δ = π I0


1
0
−1
0

 SM

δ = π
2

I0


1
0
0
1

 SR

δ = −π
2

I0


1
0
0
−1

 SL

Table 1.2: Stokes vectors of usual polarization states.
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The inequality 1.42 becomes an equality for totally polarized states, for which E0x and
E0y are no longer random variables, but constants. It is then natural to define the degree
of polarization ρ of any polarization state as

ρ =

√
Q2 + U2 + V 2

I
. (1.43)

This degree of polarization varies from 0, for totally unpolarized states (i.e. when Q,
U and V all vanish) to 1, for totally polarized states, as seen above. This limitation
of ρ is the usual criterion of physicity of a Stokes vector: a four-dimensional (4D) real
vector for which ρ > 1 cannot represent any actual polarization state. In this sense
Stokes vectors are not "real" vectors. Moreover, they do not transform through rotations
as vectors. The degree of polarization quantifies the amount of polarized light in the
total beam intensity. Experimentally, this polarized component can be extincted by a
suitable elliptical analyzer, which may consist of a quarter wave plate followed by a linear
analyzer, both elements being adjusted in azimuth to minimize the transmitted intensity,
which in turn represents the non-polarized component.

In a way analogous to the (total) degree of polarization ρ, we can define:

• the linear degree of polarization

ρl =

√
Q2 + U2

I
, (1.44)

• the circular degree of polarization

ρc =

√
V 2

I
, (1.45)

which respectively represent the fraction of the light intensity which can be extincted by
a suitably oriented linear analyzer or a circular analyzer. In practice, these quantities
are the most useful when the system to be characterized has already known specificities
which make it possible to choose the most relevant among the degrees of polarizations
defined above, and to measure it more easily than the full Stokes vector.

So far, the Stokes formalism has been providing a "dictionary" of mathematical words
to define any state of polarization; the Poincaré sphere defined in the next section offers
a geometrical tool to visualize any state of polarization within a three-dimensional (3D)
picture, including its degrees of polarization.

1.3.2 The Poincaré sphere representation

We first consider totally polarized states. Eqs.(1.11) can be rewritten by taking into
account
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Figure 1.4: The Poincaré sphere.

cos(2α) = cos2 α− sin2 α =
E2

0x − E2
0y

E2
0x + E2

0y

(1.46a)

sin(2α) = 2 sinα cosα =
2E0xE0y

E2
0x + E2

0x

(1.46b)

which immediately yields:

cos(2χ) cos(2ψ) = cos(2α) =
S1

S0

= ς1 (1.47a)

cos(2χ) sin(2ψ) = sin(2α) cos δ =
S2

S0

= ς2 (1.47b)

sin(2χ) = sin(2α) sin δ =
S3

S0

= ς3 (1.47c)

As a result, we can represent a totally polarized state by a point on the surface of a
sphere with unit radius, the Poincaré sphere: the position of this point is determined by
the "longitude" 2ψ and the "latitude" 2χ. The "usual" polarization states listed in Table
1.2 are easily found on the sphere surface:

• the linearly polarized states are on the "equator", where those aligned along the x
and y axes (identified as xL and yL in Fig. 1.4) are on the "ς1" axis, while those
oriented at ±45◦ (identified as PL and ML) are on the "ς2" axis,
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• the right and left circularly polarized states (identified as RC and LC) are respec-
tively at the "North" and "South" poles, along the "ς3" axis.

More generally, all the "right-handed" elliptical states are on the "Northern hemi-
sphere", while the opposite holds for the "left-handed" states, with constant ellipticity
on "parallels" and constant azimuth on the "meridians". Orthogonal states are on di-
ametrally opposed positions on the sphere surface.

Finally, for partially polarized states, Eq.(1.43) can be rewritten as

ς2
1 + ς2

2 + ς2
3 = ρ2 (1.48)

where ρ is the degree of polarization. The points representing such states are thus inside
the sphere, at a distance ρ from the center. Totally unpolarized states are at the center
of the sphere.

1.4 The Mueller matrix

1.4.1 Definition and general properties

Definition. The action of a generic medium on the incident light can be described by
the matrix equation as

So0
So1
So2
So3

 =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 ·

Si0
Si1
Si2
Si3

 (1.49)

where the 4 x 4 transformation matrix M is called the Mueller matrix (by Hans Mueller,
1940s). The Mueller matrix M of a medium transforms the incident Stokes vector Si into
the corresponding output Stokes vector So, So = M · Si. Obviously the Stokes vector of
the output light depends on the Stokes vector of the incident light, conversely the Mueller
matrix carries information on the medium only. The 16 Mij coefficients of the matrix
are real and measurable. Hence the Mueller matrix can be used to fully characterize
the optical properties of the medium, whether it is non-depolarizing or depolarizing.
The Mueller matrix (M) of some optical devices are listed in Tables A.3, A.4, A.6 (see
Appendix A).

Similarly to the Jones formalism, the Mueller matrix can be used to characterize a
complex optical system defined by n elementary optical systems in cascade. The expres-
sion of the Mueller matrix of the complex system is:

So = Mn ·Mn−1 · ... ·M1 · Si. (1.50)

Physical realizability. In a similar way as for Stokes vectors, any 4 x 4 real matrix is
not necessarily the Mueller matrix of any physical system. A first criterion in this respect
is the following: a realizable Mueller matrix never "overpolarizes" the incoming light. For
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any input Stokes vector Si, the corresponding output vector must never feature a degree
of polarization ρ larger than 1. More detailed information is provided by Refs. [7, 8, 9].

Rotation of the reference frame. This transformation is analogous to that previ-
ously described for Jones vectors and matrices. If the x and y axes are rotated by an
angle ϕ, the Stokes vectors are transformed by the rotation matrix RM(ϕ):

J′ =


S ′0
S ′1
S ′2
S ′3

 = RM(ϕ) · S =


1 0 0 0
0 cos(2ϕ) − sin(2ϕ) 0
0 sin(2ϕ) cos(2ϕ) 0
0 0 0 1

 ·

S0

S1

S2

S3

 (1.51)

while we get for the Mueller matrices

M′ = RM(ϕ) ·M · [RM(ϕ)]−1 . (1.52)

Depolarizing and non-depolarizing Mueller matrices. As it has been already
discussed, a partially depolarized Stokes vector can be seen as an incoherent superposition
of various non-depolarizing Stokes vectors. In the same way, a depolarizing Mueller matrix
characterizes a system for which the Jones matrix is defined statistically as a superposition
of "elementary" Jones matrices distributed according to a (usually unknown) probability
function. Such an indeterminacy of the Jones matrix may come from the system itself:
for example, interaction of polarized light in biological tissues involves many scattering
events with particles at random locations, and possibly also in motion. Depolarization
may also occur as a consequence of the observation conditions: for example, a white
light source involves a broad spectrum of wavelengths. Even in cases where the system
would not depolarize monochromatic light, if its "monochromatic" Jones matrix varies
with the wavelength, then its "polychromatic" counterpart is a statistical superposition
of the monochromatic contributions, leading to depolarization.

As for the electric field, as long as only intensity measurements are concerned, only
the second moments of the distributions of the Jones matrix elements are relevant. More
precisely, the elements of the Mueller matrix M of a system described by a statistically
defined Jones matrix T are given by [10]

M =

〈
1
2

(|Txx|2 + |Tyy |2 + |Txy |2 + |Tyx|2) 1
2

(|Txx|2 − |Tyy |2 − |Txy |2 + |Tyx|2)
1
2

(|Txx|2 − |Tyy |2 + |Txy |2 − |Tyx|2) 1
2

(|Txx|2 + |Tyy |2 − |Txy |2 − |Tyx|2)
<(T ∗xxTyx + T ∗xyTyy) <(T ∗xxTyx − T ∗xyTyy)
=(T ∗xxTyx + T ∗xyTyy) =(T ∗xxTyx − T ∗xyTyy)

<(T ∗xxTxy + T ∗yxTyy) −=(T ∗xxTxy + T ∗yxTyy)
<(T ∗xxTxy − T ∗yxTyy) −=(T ∗xxTxy − T ∗yxTyy)
<(T ∗xxTyy + T ∗xyTyx) −=(T ∗xxTyy − T ∗xyTyx)
=(T ∗xxTyy + T ∗xyTyx) <(T ∗xxTyy − T ∗xyTyx)


〉

(1.53)

where the average values become exact values if the system is not depolarizing, and is thus
described by a well determined Jones matrix T (see Appendix A). Such Mueller matrices
are usually called Mueller-Jones matrices. More information about the conditions for a
Mueller matrix to be a Jones-Mueller matrix are given in Refs. [11, 12].
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An example of procedure to determine M. The Mueller matrix can be experimen-
tally obtained from measurements of the output light with several settings of the source
polarizer and the detection analyzer. In the most general case, a 4 x 4 Mueller matrix
has 16 independent elements; therefore at least 16 measurements are required. In this
paragraph, we provide an example of such procedure.

We may express the Mueller matrix as M = [M1 M2 M3 M4] where M1, M2,
M3 and M4 are four column vectors of four elements each. We may choose to use as
the input Stokes vector the normalized Stokes vectors of horizontal, vertical, +45◦-linear
and right circular state of polarization defined in Table (1.2) and hence denote them as
Si

H, Si
V, Si

P, Si
R, respectively, where i stays for incident. The four output Stokes vectors

corresponding to the four incident states of polarization, H, V, P and R can be defined
as So

H, So
V, So

P, So
R, where o stays for output. Each output Stokes vector associated

to any of the input Stokes vector is obtained from four measurements of intensity of the
output light as given in Eq.(1.34) and can be expressed by multiplying the input Stokes
vector for Eq.(1.4.1) as 

So
H = M · Si

H = M1 + M2

So
V = M · Si

V = M1 −M2

So
P = M · Si

P = M1 + M3

So
R = M · Si

R = M1 + M4.

(1.54)

Solving for the column vectors of M yields
M1 = 1

2
(So

H + So
V)

M2 = 1
2
(So

H − So
V)

M3 = 1
2
(2So

P − (So
H + So

V)
M4 = 1

2
(2So

R − (So
H − So

V)

(1.55)

and

M =
1

2
[So

H + So
V So

H − So
V 2So

P − (So
H + So

V) 2So
P − (So

H − So
V)]. (1.56)

This procedure gives an example of the determination of the full Mueller matrix from 16
raw data obtained with input and output polarizations described each by a set of four
linearly independent Stokes vectors. In contrast, the determination of the total, linear
and circular degrees of polarization would need less measurements. However, only special
samples can be fully characterized by one of three degrees of polarization. In the most
general case, the full Mueller matrix is needed for such a characterization.

Diattenuation and polarizance. As discussed below, once the Mueller matrix has
been obtained, its interpretation is by no means trivial, as some properties are not directly
accessible from the Mij elements. Typically, the matrix to be studied is "decomposed"
into products of "elementary" components, such as homogeneous diattenuators and re-
tarders, and various types of depolarizers. The properties of the matrix are then nothing
else but the properties of these elementary components. However, as several decompo-
sition schemes are available, these properties are not uniquely defined. As a result, in
principle the decomposition procedure should be applied with the scheme which best suits
the physical system under study.

However, two properties are directly "visible" on the Mij elements, and these are:
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• the diattenuation, or dichroism, which describes the variation of the output intensity
with the input polarization (for constant overall input intensity),

• the polarizance, which describes the capability of the system to polarize a totally
unpolarized input beam.

Any Mueller matrix M may be rewritten in the following form:

M = T0

[
1 DT

P m

]
(1.57)

where T0 is the transmission for incident unpolarized light, D is the 3D diattenuation
vector, P the 3D polarizance vector and m a 3 x 3 real matrix.

We now assume that the incident light is characterized by the (normalized) Stokes
vector Si = [1, si]T . From the very definition of the Mueller matrix, it immediately follows
that the emerging intensity, given by the first component So0 of the output Stokes vector
So, varies in the interval

Tmin = T0 (1−D) ≤ So0 ≤ Tmax = T0 (1 +D) (1.58)

the maximum and minimum transmission values Tmax and Tmin being reached when
si = ±D/‖D‖. From the diattenuator vector we can also define the scalar diattenuation
D as:

D =
Tmax − Tmin
Tmax + Tmin

, 0 ≤ D ≤ 1. (1.59)

This parameter quantifies the variation of transmission with incident polarization inde-
pendently of the input polarization states which reach the values Tmax and Tmin of the
transmission.

On the other hand, if the input Stokes vector is totally depolarized, the output Stokes
vector is nothing else but So = [1, P]T , showing that the polarizance actually quantifies
the capability of the system to polarize an incident totally depolarized beam.

1.4.2 Elementary polarization components

Homogeneous diattenuators. A diattenuator (also known as partial polarizer or
dichroic polarizer) is a non-depolarizing optical device with nonzero diattenuation but
zero retardance (a property which will be defined in the next paragraph). Here we’ll
consider only homogeneous diattenuators, which feature two orthogonal eigenstates and
these are elliptical in the most general case. The action of such a component on these
states is illustrated in Fig. 1.5.

As a homogeneous diattenuator does not introduce any phase shift between its eigen-
vectors, the eigenvalues of its Jones matrix can be taken both real, their moduli Pi being
related to the transmissions by

Tmax = P 2
1 , Tmin = P 2

2 . (1.60)



32 CHAPTER 1. LIGHT POLARIZATION FORMALISM

Figure 1.5: Action of a homogeneous diattenuator with elliptically polarized eigen-
states [2].

The Mueller matrix of such a component is:

MD = T0

[
1 DT

D mD

]
(1.61)

with

mD =
√

1−D2I3 + (1−
√

1−D2)D̂D̂T (1.62)

where D̂ is the unit vector parallel to the diattenuation vector D and I3 is the 3 x 3
identity matrix. This choice ensures that mDD = D. Due to its homogenous nature,
MD actually describes a rotation on the Poincaré sphere of the incident polarization
state towards the highest transmission axis, in the plane containing incident and exiting
polarization states and both transmission axes.

Of course, the most widely used homogeneous diattenuators are the linear polarizers,
characterized by linear eigenstates and a scalar diattenuation D = 1.

Homogeneous phase retarders. A phase retarder (also called retardation plate,
phase shifter or birefringent) transmits its two eigenstates with identical transmissions
(no diattenuation) but different phases. The difference between these phases is called
the phase retardation. In this paragraph we’ll consider only homogeneous retarders. The
action of such components on their eigenstates is illustrated in Fig. 1.6.

The Jones matrix of a homogeneous retarder is unitary. Its eigenvalues, and the re-
tardation δR are of the form:

λ1 = ejδs , λ2 = ejδf , δR = δs − δf . (1.63)

The Mueller matrix of a phase retarder can be expressed in the synthetic format [13]:

MR =

[
1 0T

0 mR

]
(1.64)
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Figure 1.6: Action of a homogeneous phase retarder with elliptically polarized eigen-
states [2].

where

• 0T is the zero vector: a pure retarder features zero diattenuation and polarizance,

• mR is the reduced 3 x 3 matrix of the retarder. This matrix is a 3D rotation matrix,
which actually describes a rotation by an angle δR on the Poincaré sphere, the axis
being defined by the two diametrally opposed points representing the orthogonal
eigenstates.

A very common example of homogeneous retarders is a plate of thickness h cut in a
birefringent crystal. Provided the plate is not cut perpendicular to an optical axis of the
crystal, the eigenstates are linearly polarized along the axes with refractive indexes ns
and nf , respectively. The retardation is then

δR = δs − δf = (ks − kf )h =
2π

λ
(ns − nf )h, (1.65)

where ks and kf are the propagation constants along the axes of the crystal. Another
quite common example of homogeneous retarders is provided by optically active media:
in this case, the two eigenstates are circularly polarized.

Depolarizers. A pure depolarizer does not feature any diattenuation nor birefringence:
it merely reduces the degree of polarization of the incoming beam. Of course, in the most
general case, this depolarization depends on the incident polarization state. It can be
shown that the most general Mueller matrix of a pure depolarizer is of the form [13]:

M∆ =

[
1 0T

0 m∆

]
(1.66)

where m∆ is symmetric, semi-positive definite. This matrix can be diagonalized by a
unitary transformation into

m∆d =


1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

 with a, b, c ≥ 0. (1.67)
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This result shows that a pure depolarizer does not have eigenstates analogous to those of
the homogeneous diattenuators and/or retarders: the eigenvectors of interest are not the
4D complete Stokes vectors, but the 3D eigenvectors sr (r = 1, 2, 3) of m∆. An incoming
beam with a Stokes vector of the form Si = [1, sr]

T is not "mixed" with other states: its
degree of polarization will be reduced by a factor equal to the relevant eigenvalue among
a, b or c. Its representative point on the Poincaré sphere will migrate from the surface to
the center along a radius of the sphere.

A practical case of great importance in this work is that of isotropic scattering me-
dia observed in backscattering configuration. Due to the medium isotropy, all linearly
polarized states will suffer the same reduction of their degree of polarization. However,
this reduction may be different for incident circular polarizations. As a result, for such
systems the Mueller matrix in the usual basis is of the form in Eq.(1.67) with a = b 6= c.

1.4.3 Decompositions of Mueller matrices into elementary com-
ponents

The physical interpretation of the Mueller matrix makes the subject of a debate which
has been lasting over the past twenty years and is not closed yet. Ten years ago Lu and
Chipman [13] proposed a three-factor decomposition of an arbitrary Mueller matrix M
comprising a diattenuator (MD), a retarder (MR), and a depolarizer (M∆), in this
same order. This decomposition is a generalization to depolarizing systems of the polar
decomposition developed previously for Jones-Mueller matrices. Thus the initial Mueller
matrix M is written as

M = M∆ ·MR ·MD. (1.68)

The properties of the elementary components are then attributed to the initial Mueller
matrix. We point out that M∆ is not the matrix of a "pure" depolarizer: besides the
symmetric 3 x 3 matrix, the polarizance is not zero. This choice of a "polarizing depo-
larizer" is necessary to properly take into account the 16 elements of the initial matrix
M. On the other hand, this procedure always provides physically realizable matrices for
the elementary components.

However, this decomposition really makes sense for systems which can be reasonably
seen as serial combinations of a diattenuator, a retarder and a depolarizer in this order.
As a result, if the depolarization occurs mainly in the first part of the propagation through
the system, before a more "diattenuating" part, then the parameters provided by the Lu
and Chipman decomposition may be irrelevant.

A first attempt to generalize the serial decomposition to cases where the depolarizer
precedes the diattenuator has been proposed by Morio et al. [14], with the same form
of "polarizing depolarizer" as the standard Lu and Chipman decomposition, with zero
diattenuation and nonzero polarizance. However, in cases of strong depolarization, this
method could provide unphysical matrices, and in some cases it could not converge.

These issues have been solved by Ossikovski [15], who introduced a new type of
depolarizer, with zero polarizance and nonzero diattenuation. This procedure features the
same advantages as the standard Lu and Chipman decomposition in terms of convergence
and physical realizability of the elementary matrices, for the components in "reverse"
order (with the depolarizer before the diattenuator). Later on Anastasiadou et al. [16]
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experimentally demonstrated the validity of the Ossikovski reverse decomposition, on
ad-hoc systems made of elementary components (diattenuator, retarder and diagonal
depolarizer) which could be measured individually or stacked up to provide a composite
Mueller matrix which could be decomposed, to compare the result of the decomposition
with the individual measurements.

Recently, Ossikovski [17] proposed another decomposition, the "symmetrical" one,
which recasts (almost) any input Mueller matrix under a product of five factors:

M = MD2 ·MR2 ·M∆d ·MR1 ·MD1 (1.69)

where D1 and D2 are two homogeneous diattenuators, R1 and R2 two homogeneous
retarders and ∆d a diagonal depolarizer, with zero polarizance and diattenuation. This
decomposition may be better suited than the two previous ones for isotropic tissues, for
which diattenuation and/or retardance may occur essentially at the tissue surface, while
diagonal decomposition is expected from backscattering in the bulk.

However, in biological tissues we can anticipate that the three basic effects (diat-
tenuation, retardance and depolarization) are not necessarily so well localized, and may
occur simultaneously, though to various extents. If so, none of the currently available
decomposition methods is expected to provide a realistic description of polarized light
propagation in tissues. To address this issue, we can imagine to model the sample as a
stack of finite number of thin tissue "slices", with equally distributed polarimetric prop-
erties. The effect of each tissue slice on the incident light is represented by means of a
Mueller matrix whose decomposition provides the values of the incremental properties
of the thin tissue. From the incremental values we may obtain the global polarimetric
properties which hopefully will be close to the real ones. The actual implementation of
this approach is under study.

1.5 Conclusion

This chapter was intended as an introduction to the Jones and Stokes-Mueller formalisms,
the latter being the only one adapted to the tissue samples studied in the following. Of
course, no original information was presented: the purpose of this chapter was to make
the manuscript reasonably self-contained and easily readable by non-specialists.

We first recalled the usual description of polarization states and their transformation
by propagation through optical systems in terms of electric fields – the Jones formalism.
We then provided what we hope to be a "pedagogical" description of partially polarized
states in terms of electric field correlation functions, recast as Stokes parameters and
"vectors", together with the practically very important notion of degree of polarization.
We then presented the essential features of the geometrical representation of polarization
states on (or inside) the Poincaré sphere.

The second (and last) part of the chapter was devoted to Mueller matrices. Again,
in this relatively short presentation we tried to emphasize the basic notions behind these
matrices, which are most relevant when depolarization is present and the Jones formalism
does not apply. In pretty much the same way as for polarization states, in presence of
depolarization the system Jones matrix is defined only statistically: then for linear optics
only the second order correlation functions of the various matrix elements are meaningful.
The Mueller matrix is nothing else but the relevant linear combination of these functions
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which describes most easily the transformation of the light Stokes vector by propagation
through an optical system.

We discussed several general properties of Mueller matrices, such as their physical
realizability, their depolarizing or non-depolarizing character, a possible experimental
procedure to measure them and the polarimetric parameters which can be unambigu-
ously extracted from the matrices themselves (diattenuation and polarizance). Then we
provide the Mueller matrices of elementary polarization components (homogeneous diat-
tenuators and retarders, depolarizers) for their own sake and because they are used in
the decomposition schemes presented in the last part. These procedures recast the initial
Mueller matrix into a product of several elementary components, as if they were stacked
in a well-defined order.

These decompositions can provide useful information about the properties of Mueller
matrices other than the diattenuation and polarizance. However, several decompositions
may be applied to a given Mueller matrix, with different final results. It is then important
to choose the scheme which best suits the system under study. For the polarimetric imag-
ing based on backscattered light in tissues, as we’ll see later, the available decomposition
schemes already provide interesting results. However, new decomposition schemes taking
into account the fact that the polarimetric changes take place over the full propagation
length are being developed to improve the relevance of the data treatments.



Chapter 2

Polarized light propagation in
scattering media

2.1 Introduction
As it is well known, when a light beam propagates in an homogeneous medium its phase
velocity is reduced to c/nm, where nm is the real part of the medium refractive index,
while its intensity decreases exponentially, according to the Beer-Lambert law

I(z) = I0 e
−µaz (2.1)

where z is the coordinate along the beam propagation direction and µa the absorption
parameter, whose dimension is the reciprocal of a length. We write the medium complex
refractive index ncm as

ncm = nm + jn′m (2.2)

where nm and n′m are real. The absorption coefficient is then:

µa = 4π
n′m
λ

(2.3)

where λ is the light wavelength in vacuum. We can then define the mean absorption
length as

`a =
1

µa
. (2.4)

In inhomogeneous media, such as biological tissues, in addition to a possible absorp-
tion, the essential other process is the scattering by material inhomogeneities, which may
change both the propagation direction and the polarization of the light beam. Through-
out this work, we’ll restrict the scope to the case of non-absorbing spherical scatterers
suspended in homogeneous (possibly absorbing) media.

We first recall the essential theoretical features of single scattering processes, which
may occur in sufficiently thin samples or at low enough scatterer concentrations, both in
the scalar and vector descriptions of the light wave.

37
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We then consider multiple scattering, which is the dominant process for the sam-
ples studied in the experiments and the numerical simulations described in the following
chapters. After introducing the main phenomenological parameters relevant to multiple
scattering, we establish the radiative transfer equation (RTE), which describes the evo-
lution of radiance in scattering media. We first consider the scalar form of this equation,
which is suitable for unpolarized light. Then we generalize this approach to the vector
form (VRTE), which is needed if the light polarization is to be taken into account. Fi-
nally, we outline the main methods currently available to solve this equation, including
the Monte Carlo approach that we extensively used in the numerical simulation part of
this work.

2.2 Single scattering

2.2.1 Scattering cross-section for spherical scatterers

This part is a reformulation of the calculation presented in Ref. [18]. Our purpose is
to evaluate the attenuation of a plane wave by a single non-absorbing scatterer. The
scattering cross-section is then defined as the area of an opaque small screen which would
lead to the same attenuation of the incoming beam.

As the scatterer is assumed to be non-absorbing the attenuation of the incident plane
wave is due to a redistribution of a (typically small) fraction of the incident beam into a
scattered spherical wave, centered on the scatterer. As we will see in the following, this
redistribution is due to destructive interferences of the incident wave and the part of the
scattered wave propagating in the forward direction (i.e. along the propagation direction
of the incident wave).

The interaction geometry is illustrated in Fig. 2.1. A plane wave propagating along
the z axis impinges onto the scatterer Sc, which generates a spherical wave centered on
Sc. The scattered wave carries a much lower intensity than the incident wave. The
purpose of the following calculation is to evaluate the energy flux through a circular
aperture of radius R0 in a plane Π perpendicular to the z axis and at a distance zd
from Sc. In order to evaluate the extinction of the incoming wave due to the scattering,
we will show that when zd increases, the angle θ0 which subtends the aperture can be
made arbitrarily small, meaning that the final intensity can be interpreted as that of the
attenuated incident wave.

Due to the spherical shape of the scatterer and the small angles involved in the cal-
culation, the polarization of the incident wave is not modified by the scattering process.
The results are thus independent of this incident polarization, meaning that the incident
and scattered waves can be described by the scalar approximation: their electric fields E0

and Es are numbers and not vectors. More precisely, if we drop the temporal evolution
of these fields, their amplitudes are:

E0(r) = u0 e
−jknmz (2.5a)

Es(r) = us e
−jknmr (2.5b)

where r = |r− rSc| is the distance between the point r and the scatterer Sc. The phase
factors knmz and knmr respectively account for the plane and spherical nature of the two
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Figure 2.1: Geometry of the interaction of a plane wave and the spherical wave
centered on the scatterer Sc.

waves. Moreover, the scattered amplitude us can be written as

us = u0
S(θ)

jknmr
(2.6)

where the amplitude function S, which determines the angular distribution of the scat-
tered light, depends only on the polar angle θ, as expected from the symmetry of the
problem, and the factor r in the denominator comes from the conservation of the total
energy when the wave propagates in a medium which is assumed to be non-absorbing.
The intensity at the plane z = zd is then given by

|E0 + Es|2 = |E0|2 + 2<{E0E
∗
s}+ |Es|2 (2.7)

where the last term may be neglected due to the weakness of the scattered wave with
respect to the incident one. The Eq.(2.7) then becomes

|E0 + Es|2 = u2
0

{
1 +

j

knmzd

[
S∗(θ)ejknm(zd−r) − S(θ)ejknm(r−zd)

]}
(2.8)

where we took into account that for the denominator we can replace the distance r from
Sc by zd. Now, due to the smallness of the angle θ0, the distance r between Sc and the
point with coordinates (x, y) in the plane (Π) can be approximated as

r ≈ zd +
x2 + y2

2zd
. (2.9)

By taking into account this approximation in Eq.(2.7) we evaluate the energy flux through
the aperture of radius R0 and area A = πR2

0 as

F =

∫∫
A

|E0 + Es|2 dxdy = u2
0

[
πR2

0 +
j

knmzd
K

]
(2.10)

where the integral K is
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K =

∫∫
A

[
S∗(θ)e

−jknm

(
x2+y2

2zd

)
− S(θ)e

jknm

(
x2+y2

2zd

)]
dxdy. (2.11)

In Eq.(2.11) when (x2 + y2) increases the exponential terms oscillates faster and faster
and contributes less and less to the integral K. We can consider that the "active" region
actually contributing to K is the circular domain of Π with radius

Ra = 2π

√
zd
λ

(2.12)

for which the phase factors are of the order of 2π. As a result, if we keep the angle θ0

constant and increase zd, the ratio Ra/R0 tends to zero, implying that in the integral K
or F we can take the integration limits at infinity. We can thus consider arbitrarily small
values of θ0, meaning that what we are considering is actually the superposition of the
incident and the forward scattered wave. Then, we can assume that in the integral K,
θ ≈ 0 independently of x and y coordinates. From∫ +∞

−∞
ejαx

2

dx =

(
jπ

α

) 1
2

(2.13)

we easily deduce the expression of K and rewrite Eq.(2.10) as

F = u2
0

[
πR2

0 +
4π

k2n2
m

<{S(θ = 0)}
]
. (2.14)

In Eq.(2.14) the distance zd does not appear any more. This equation shows that the
effect of the particle in the forward direction (the same as the incoming wave) is a reduc-
tion of the energy flux equivalent to that obtained if an opaque screen of area

σs =
4π

k2n2
m

<{S(θ = 0)} (2.15)

had been placed at the location of the scatterer Sc.

2.2.2 Scattering of polarized waves

Scattering by particles of arbitrary shapes. We now consider a single scattering
event for which we explicitly take into account the polarizations of the incident and scat-
tered waves. The scattering in any direction of the space by a particle of arbitrary shape
is described by four amplitude functions, S1, S2, S3 and S4, all dimensionless, in general
complex, and dependent on the orientation of the particle as well as on the angles θ and
ϕ, which describe the direction of propagation in respect to the direction of propagation
of the incident light, but not on the distance r from the particle. The four amplitude
functions form a matrix S(θ, ϕ) of four elements that describes the relation between the
component of the incident wave and the components of the scattered wave, such that:[

Es‖
Es⊥

]
=

[
S2 S3

S4 S1

]
· e

jknmr−jknmz

jknmr
·
[
E0‖
E0⊥

]
(2.16)
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where ‖ and ⊥ refer respectively to the components of the field parallel and perpendicular
to the scattering plane. This matrix is nothing else but the Jones matrix describing the
single scattering event, with the ‖ and ⊥ directions as a reference frame for both the
incident and the scattered wave.

Scattering by spherical particles. If the scattering particle is spherical, then the
symmetry of the system forbids any intensity transfer between ⊥ to ‖ components of the
fields (see Appendix B). As a result, both S3 and S4 vanish, while the diagonal amplitude
functions S1, S2 depend on θ, but not on the azimuth ϕ. Then:

Es‖ = S2(θ)
ejknmr−jknmz

jknmr
E0‖ (2.17a)

Es⊥ = S1(θ)
ejknmr−jknmz

jknmr
E0⊥. (2.17b)

Both parallel and perpendicular components of the scattered wave are spherical waves
outgoing from the particle. The corresponding intensities are:

Is‖ = |Es‖|2 =
|S2(θ)|2

k2n2
mr

2
I0‖, Is⊥ = |Es⊥|2 =

|S1(θ)|2

k2n2
mr

2
I0⊥. (2.18)

Moreover, for forward scattering (θ = 0) by a spherical particle the two amplitude func-
tions become equal: S1(0) = S2(0), and will be denoted as S(θ), as in the previous
subsection, which justifies the scalar approximation.

For a spherical particle of radius rs we define the parameter x = knmrs, which deter-
mines the size of the particle with respect to λ. From the particle cross-section σs given
by Eq.(2.15) we define the scattering efficiency factor:

Qs =
4

x2
Re{S(0)}. (2.19)

The formal solution of Maxwell’s equations for the problem of plane wave scattering by
a spherical particle by the Mie theory provides the expressions of the fields both inside
and outside the scatterer. These expressions, in spherical coordinates are explicited in
Appendix B.

This theory provides the amplitude function as two infinite series of the form:

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
{anπn(cos θ) + bnτn(cos θ)}, (2.20a)

S2(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
{bnπn(cos θ) + anτn(cos θ)} (2.20b)

where again the coefficients an and bn and the functions πn and τn are explicited Appendix
B.
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For the forward direction (θ = 0) we get:

S(0) =
∞∑
n=1

(2n+ 1)(an + bn), (2.21)

where we have used the relations:

πn(1) = τn(1) =
1

2
(n+ 1). (2.22)

Then, the extinction cross-section due to the scattering is given by:

σs =
4π

k2n2
m

Re

{
∞∑
n=1

(2n+ 1)(an + bn)

}
. (2.23)

The Mueller matrix of a single scattering sphere can be obtained from the Jones ma-
trix (defined in Eq.(2.30)) as:

M(r, θ) =
1

k2n2
mr

2
M(θ) =

1

k2n2
mr

2


M11 M12 0 0
M12 M11 0 0

0 0 M33 M34

0 0 −M34 M33

 , (2.24)

where the nonvanishing elements of the matrix M(θ) are

M11 =
|S2(θ)|2 + |S1(θ)|2

2
(2.25a)

M12 =
|S2(θ)|2 − |S1(θ)|2

2
(2.25b)

M33 =
1

2
[S1(θ)S∗2(θ) + S2(θ)S∗1(θ)] (2.25c)

M34 =
j

2
[S1(θ)S∗2(θ)− S2(θ)S∗1(θ)] (2.25d)

m has the block-diagonal form of a Mueller matrix derived from the diagonal Jones matrix
describing the scattering by a single sphere by the relation given in subsection 1.4.1 and

• the two 2 x 2 blocks out of the diagonal are zero,

• M22 = M11,M21 = M12, M43 = M34, M44 = M33,

• M11,M12,M33,M34 are linearly independent and verify the relation

M2
11 = M2

12 +M2
33 +M2

34. (2.26)
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Figure 2.2: Illustration of the regime of scattering (x = knmrs) [19].

2.2.3 Short-cutting the Mie theory: the scattering regimes

The Mie theory detailed in Appendix B provides the formal solution of the Maxwell’s
equations for the scattering of an electromagnetic wave by a sphere embedded in a
medium. However, it may be convenient in practice to identify the essential scatter-
ing regimes which may occur, depending on the values of the size parameter (x = knmrs)
and the refractive index contrast (m = ns

nm
). These two parameters provide complemen-

tary information about the scattering medium: the size parameter x = 2π
λ
nmrs gives

information on the "size or length of the wave" in the medium where the wave is trav-
elling, i.e. the wavelength denoted as λ, the refractive index of medium nm and the size
(radius) of the sphere rs; the refractive index contrast m takes into account the refractive
indexes of the medium inside ns and outside the sphere nm.

We consider the case where m > 1, that is ns > nm, (see Fig. 2.2). Then depending
on the value of the size parameter we distinguish the following regimes of scattering:

• Rayleigh scattering regime. This regime carries the name of the physicist who
wrote on the first theory of light scattering (1871). In this case, the scattering sphere
is much smaller than the wavelength of the incident light in the hosting medium.
As a result, the electric field E0 associated to the incident wave is uniform on the
sphere, which then behaves as a single dipole. This is so provided that

knmrs � 1. (2.27)

The magnitude of this dipole p is proportional to the incident field: p = ℘E0 where
℘ is the sphere polarizability. Since E0 has the dimension of a charge per area and
p is a charge times length, then ℘ has the dimension of a volume. In general ℘ is
a tensor, which implies that the directions of p and E0 coincide only if the field is
applied along one of the three mutually perpendicular directions by the eigenvectors
of ℘.

In the specific case of a spherical scatterer the polarizability is isotropic, then the
directions of p and E0 always coincide, and ℘ in the previous formula can be taken
as a scalar. [20]

The scattered field and its amplitude in a point P in the far field-zone (r � λ) of
the spherical scatterer in a direction that makes an angle γ with p is
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Figure 2.3: Electric dipole scattering [20].

Es =
k2n2

mp sin(γ)

r
e−jknmr (2.28)

times the unit vector directed as the component of p perpendicular to the radius
vector (see Fig. 2.3).

The angle γ is the angle of a direction of scattering with the incident electric field
E0. If θ is the scattering angle, the perpendicular (⊥) component has γ = 90◦ and
the parallel (‖) component has γ = 90◦ − θ. Then, the scattered field is obtained
by substituting the following scattering tensor in Eq.(2.16)[

S2 S3

S4 S1

]
= jk3n3

m℘

[
sin(90◦ − γ) 0

0 sin 90◦

]
= jk3n3

m℘

[
cos θ 0

0 1

]
(2.29)

and we obtain

Es‖ =
k2n2

m℘ cos(θ)

r
e−jknmr+jknmzE0‖ (2.30a)

Es⊥ =
k2n2

m℘

r
e−jknmr+jknmzE0⊥. (2.30b)

The scattered intensity for incident natural light I0 is

Is =
(cos2 θ + 1)k4n4

m|℘|2

2r2
I0 (2.31)

where the term cos2 θ comes from S2(θ) and corresponds to the ‖-component and
1 comes from S1(θ) and corresponds to the ⊥-component.

The scattering diagram in Fig. 2.4 illustrates the equations above. The black line
denotes the total intensity of the unpolarized light; the red and green lines the
parallel and the perpendicular polarized component, respectively.

We remark that for the scattering by a sphere both ‖- and ⊥- components, and
then the unpolarized light, are symmetrically scattered in the space. In particular,
the scattering of the ‖- component reduces as we move from θ = 0◦ to the directions
given by the angles θ = 90◦ and θ = 270◦, while the scattering of the ⊥- component
is independent from the direction. In fact, at θ = 90◦ or θ = 270◦ light is completely
polarized and consists of ⊥-component, since the ‖-component is zero; as we move
to θ = 0◦ and θ = 180◦ directions the ‖- and ⊥- components sum together into the
total scattered light.
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Figure 2.4: Rayleigh scattering: polar diagram of scattered intensity if incident
radiation is unpolarized, 1 = polarized with electric vector perpendicular to the plane
of drawing, 2 = polarized with electric vector parallel to the plane of drawing, 1 + 2
= total. The incident light is travelling from left to right [20].

Although the diagram in Fig. 2.4 is commonly referred as the diagram for the
Rayleigh scattering it is valid only is the incident light is natural and the scatterer
is isotropic (℘ is a scalar).

• Mie scattering regime. (1908) In this regime of scattering the sphere is compa-
rable to the wavelength of the light travelling in the medium:

0.1 < knmrs < 10. (2.32)

We can visualize the single sphere (rs) as an aggregate of many smaller spherical
scatterers (drs, drs � rs) that look small to the eye of the incident light (drs,
drs � λ) of similar size and optical properties. The applied electrical field E0 is
not homogenous on the large sphere, and induces a different dipole on any small
sphere included in the large sphere. As a consequence the field irradiated by a single
sphere (drs) is modified and distorted by the field irradiated by any others and the
scattering from the large sphere (rs) is not isotropic anymore. In particular the
scattering by the large sphere exceed in the forward direction (θ = 0◦) and lacks
in the backward direction (θ = 180◦) in respect to isotropic scattering. Also the
excess of forward scattering increases as the size of the sphere gets bigger.

• Geometrical optics regime. This regime of scattering occurs when

knmrs � 0.1. (2.33)

The sphere looks very large to the eye of light traveling in the medium. Indeed
the incident light perceives the spherical scatterer as another infinitely extended
medium with different optical properties from the embedding medium, rather than
a confined body. In this case we do not talk anymore of scattering by a sphere but of
reflection, refraction and diffraction at the interfaces between the two homogenous
media, which are treated by the laws of geometric optics.

• Rayleigh-Gans scattering regime. We now consider the case |m − 1| << 1.
This is specific of a sphere embedded in a medium whose refractive indexes (ns,
nm, respectively) almost match, then the refractive index contrast approximate one
(m ≈ 1). In this case we talk about soft scattering medium. We do not make any
restriction on the size of the sphere for a moment. In the most general case the
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scattering sphere is large at the eyes of the incident light, then the description of
the large sphere (rs) as an aggregate of smaller spheres (drs) is still appropriate and
in general the incident field is different from one small sphere to another and as a
consequence the scattering from the large sphere is not isotropic anymore. In par-
ticular we make the hypothesis of small phase shift for the incident wave, written as

2krs|m− 1| << 1, (2.34)

and ensuring a small value of the efficiency factor for the scattering

Qs << 1. (2.35)

Under this condition the incident field E0 to the "large" sphere (rs) is still homoge-
nous on the sphere, and it is the same for any "small" sphere (drs) included in
the large sphere. Then the incident wave induces identical electric dipole moment
on any small sphere and any small sphere irradiates isotropically in the space as
any other was there (we talk about independent scattering). Due to their differ-
ent locations inside the volume of the large sphere the single waves of independent
scattering interfere to each other producing Rayleigh-Gans scattering regime.

2.3 Multiple scattering

2.3.1 The essential assumptions

We now consider a sample consisting of many scatterers embedded in an homogeneous
medium. While in the previous section we considered single scattering events, now we
take into account the possibility that multiple scattering can take place before the wave
emerges from the sample. Throughout this work, we make the two following basic as-
sumptions:

• The interaction takes place in the independent scattering regime. This means that
the scattering spheres are sufficiently far away from each other so that in each
sequence of two successive scattering events one can neglect the light backscattered
by the second sphere into the first one. Then, the spherical wave generated by
a single scatterer is almost a plane wave when it reaches the next particle in its
trajectory. A crude, but conservative criterion in this respect is that the mean
distance between the scatterers is much larger than their radius. If so we can
consider that the overall scattering process is a sequence of single events which can
be described as in the previous section;

• We neglect any interference effects among scattered waves which have followed
different paths to eventually emerge with sufficiently close geometrical parameters to
be detected "together", as it would be the case for waves emerging at the same point
of the sample surface for real space imaging, or with the same direction for Fourier
space imaging. So in all cases we’ll add the intensities due to individual emerging
waves and not their fields. In other words, we do not consider the speckles which
are seen in the light scattered by a static sample illuminated with spatially and
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temporally coherent light. This assumption is valid for the experiments described
in the following chapters. Actually, in the first experimental investigations we used
coherent illumination, but on "moving samples", such as suspensions of polystyrene
spheres in water: due to the Brownian motion of the spheres, the speckle pattern
was blurred in very short times with respect to the detector integration time, thus
destroying any coherence effects. To image "real" tissue samples, we used spectrally
filtered classical sources (halogen lamps) featuring too small coherence lengths to
see any speckle pattern in the polarimetric images.

In the following of this section, we define the main parameters (mean free paths, anisotropy...)
useful to describe the multiple scattering process.

2.3.2 The usual scattering parameters

Mean free path. Let us consider a well collimated light beam with unit section travel-
ling along the z axis. Calling I(z) its intensity at a depth z and Ns the scatterer number
density (i.e. the number of scatterers per unit volume), from the previous definition of
the scattering cross-section and a straightforward evaluation of the average number of
scatterers found in a slice of thickness dz, we get

I(z + dz)− I(z) = −I Ns σsdz (2.36)

which can be recast into a Beer-Lambert law

dI

dz
= −µsI ⇒ I(z) = I0 e

−µsz (2.37)

where µs is the scattering coefficient. Its reciprocal

`s =
1

µs
(2.38)

is the scattering mean free path. The parameters µs or `s quantify the progressive ex-
tinction of the beam due to the successive scattering events, in way analogous to their
counterparts µa or `a for absorption. Moreover, µs is nothing else but the average distance
between two successive scattering events.

Of course, the above formulas are easily generalized to cases where several populations
of scatterers are simultaneously present in the homogeneous medium. Such samples will
be called "polydisperse", while samples with a single population of scatterers are called
"monodisperse". If we identify these populations by the index i, the overall scattering
parameter is simply the sum of the scattering parameters of all the populations

µs =
∑
i

µs,i =
∑
i

Ns,iσs,i. (2.39)

If both scattering and absorption by the homogeneous medium are present, then the
extinction of the incoming beam is still governed by a Beer-Lambert law, with the ex-
tinction parameter

µe = µa + µs. (2.40)
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Let’s consider a scattering medium whose shape is that of a slab with thickness h along
the direction of light propagation. Then, assuming the homogeneous medium is non-
absorbing the average number νs of scattering events the light beam suffers during its
propagation over the length h is

νs =
h

`s
(2.41)

Scattering anisotropy. The parameters which have been defined so far essentially
describe the behavior of the incident beam, and more particularly its attenuation when
it propagates. We now introduce the parameters which characterize the scattered light,
with particular emphasis on the asymmetry parameter (or anisotropy) g. However, this
semiquantitative description will be currently restricted to the scattering of unpolarized
light by spherical particles. The effects of polarization will be fully taken into account in
the next section, where we establish the vector radiative transfer equation (VRTE).

Under this assumptions, the angular distribution function of the scattered intensity,
for an incident unpolarized beam and without any polarization selection on the scattered
beam is directly related to the phase function p(θ) which is the probability of a scattered
wave to be found in the solid angle dΩ = 2π sin θ dθ which subtends all directions with a
polar angle in an interval dθ around θ. As the phase function is a probability distribution,
it is normalized according to∫

4π

p(θ) dΩ =

∫ π

0

p(θ) 2π sin θ dθ = 1. (2.42)

This phase function can be expressed in terms of the Si(θ) amplitude functions defined
previously. From Eqs.(2.18) we obtain for the total intensity I scattered in the θ direction

Is(θ) =
1

2

(
Is‖ + Is⊥

)
=
|S1(θ)|2 + |S2(θ)|2

2k2n2
mr

2
I0 (2.43)

where I0 is the total intensity of the unpolarized incident beam.
The energy flux F (θ)dΩ in the solid angle dΩ around the polar angle θ is the prod-

uct of the probability per unit time to see a scattering event and the normalized phase
function:

F (θ) dΩ = Is(θ) r
2 dΩ = σsI0 p(θ) dΩ (2.44)

which, combined with the previous equation, yields

p(θ) =
|S1(θ)|2 + |S2(θ)|2

4πk2n2
m σs

. (2.45)
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The anisotropy parameter g is then defined as

g = 〈cos θ〉 =

∫ π

0

p(θ) cos θ 2π sin θ dθ. (2.46)

This parameter, always comprised between -1 and 1, may take the following values

• g = 0 for isotropic scattering (Rayleigh scattering),

• g = 1 for purely forward scattering (θ = 0◦),

• g = -1 for purely backward scattering (θ = 180◦).

More in general, when g is positive the scattering by the medium is principally in the
forward direction, while for negative g values the scattering is principally in the backward
direction. As a good approximation, we can assume that g ranges from 0.6 to 0.99 [21]
for most biological tissues. Hence, the corresponding maximal scattering angles range
most frequently from 8◦ to 45◦ from the forward direction.

Several analytical approximations for phase functions p(θ) have been proposed. The
most widely used is the Henyey-Greenstein function defined as:

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)
3
2

. (2.47)

From the anisotropy factor we define another mean free path:

`′s =
`s

(1− g)
(2.48)

which characterizes the mean distance needed for the scattered light to significantly de-
viate from the direction of the incoming beam. If g ≈ 1, at each scattering event the
light is only very slightly deviated and many scattering events will be needed to reach a
significant deviation. In this case `′s >> `s. Otherwise, if the scattering is more isotropic
(or even backward oriented) then g ≤ 0 and the two mean free paths become comparable:
the light is strongly deviated at each scattering event.

When the absorption and scattering mean free paths are comparable it is very con-
venient to define an additional parameter called as optical albedo and expressed as the
ratio between the scattering coefficient and the total attenuation coefficient:

a =
µs

µa + µs
. (2.49)

For a = 0 the incident beam attenuation is exclusively due to absorption, whereas a = 1
only to the scattering. In general, both effects take place with variable weights.

In presence of absorption, the normalization of the phase function as given by Eq.(2.42)
must be modified: ∫

4π

p(θ)dΩ = a. (2.50)
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2.3.3 The Radiative Transfer Equation

Transport equations, such as that formulated by Boltzmann for the motion of gases, are
based on local balance for the relevant quantities (particle number, energy, momentum...).
Such equations have been used, among many other applications, to calculate fission rates
in nuclear reactors [22]. However, photons and neutrons differ in two principal aspects:
the polarization and the nature of the interaction with the scatterers. The polarization
of photons is essential in the description of photons propagation and scattering, while the
spin of neutrons, in general, is neglected [23]. On the other hand, collision of polarized
photons with scattering particles looks simpler to describe in comparison with that of
neutrons with atoms, as the nature of the collision neutron-atom depends on the energy
of the incident neutron. However, all analytical and numerical methods developed to solve
the neutron transport equation can be applied to the case of polarized-photon traversing
scattering media.

In this part, we will introduce the radiative transfer equation (or RTE), which governs
the evolution of light in a scattering medium. We shall first restrict ourselves to the scalar
approximation, meaning that we neglect the polarization effects. The corresponding
equation is usually called radiative transfer equation. This approach provides reasonable
results for the intensity, and becomes more and more accurate when the scattering light
gets strongly depolarized. In a second step, we will derive the vector RTE, which fully
takes into account the polarization effects.

Derivation of the scalar RTE. At each spatial location r inside a scattering medium
one finds light rays propagating in various directions, as, for, example, at the output of
an extended light source. The intensity dI of the light propagating in a solid angle dΩ
around the direction defined by the unit vector Ω is given by

dI(r,Ω, t) = L(r,Ω, t) dΩ (2.51)

where the function L is the radiance, expressed in units homogeneous to [W cm−2 sr−1].
To establish the radiative transfer equation, we "follow" the propagation, over a time

interval ∆t, of the light directed into the solid angle dΩ around the unit vector Ω. This
light propagates with the velocity v=c/n. During its propagation, the evolution of the
radiance is the result of three contributions

• an attenuation due to absorption by the medium and the scattering of the considered
beam into directions different from Ω. As described above, this attenuation is
quantified by the extinction coefficient µe,

• an intensification due to the scattering into dΩ of light beams initially travelling
into other directions Ω′,

• the contribution of internal sources, if any. We add this contribution for complete-
ness, but it will be dropped for the modelling of tissues, where such sources are
obviously absent, except for modelling fluorescence imaging, which is outside the
scope of this work. Internal sources continuously distributed within the system are
defined by their radiance Σ(r,Ω, t) per unit volume

LΣ(r,Ω, t) dΩ = Σ(r,Ω, t) dV dΩ (2.52)
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where LΣ is the radiance of the sources found within dV .

The overall variation of radiance over a distance v∆t along the direction Ω is thus

L(r + v∆tΩ,Ω, t+ ∆t)− L(r,Ω, t) = −µe L(r,Ω, t) v∆t+

+

∫
Ω′
µe v∆t p(Ω′ → Ω)L(r, Ω′, t) dΩ′ + Σ(r,Ω, t) v∆t.

(2.53)

In this equation, the three terms on the right side correspond to the contributions cited
above. The first and third terms corresponds respectively to the beam extinction and the
contribution of the sources. In the second term, the factor µs v∆t is the probability for
a scattering to occur over the distance v∆t. p(Ω′ → Ω) is a phase function, normalized
as above: ∫

4π

p(Ω′ → Ω) dΩ = a. (2.54)

As a result, the second term is the product of the number of scattering events per second
and the probability, once the scattering has taken place, that it corresponds to a devia-
tion from Ω′ to Ω. The previous relationship is valid only if the scattering and extinction
coefficients are time-independent. If we divide all terms of Eq.(2.53) by v∆t→ 0, the in-
crease of I in the first term can be expressed in terms of time and space partial derivatives:

∂L(r,Ω, t)

∂t
+ Ω · ∇L(r,Ω, t) = −µe L(r,Ω, t)+

+

∫
Ω′
µs p(Ω

′ → Ω) L(r,Ω′, t) dΩ′ + Σ(r,Ω, t).
(2.55)

Derivation of the vector RTE. To take into account the polarization in the radia-
tive transfer equation we define a vectorial radiance L in an analogous way as the scalar
radiance L, with the components of the Stokes vector replacing the intensity I

dSi(r,Ω, t) = Li(r,Ω, t) dΩ (i = 1..4). (2.56)

The vectorial radiance L is thus the density probability distribution of the four com-
ponents of the Stokes vector (which are actually intensities) in the Ω space. Similarly,
if internal sources are to be considered, the LΣ and Σ also become four-dimensional
"vectors" LΣ and Σ.

The phase function p(Ω′ → Ω) must also be adapted to the vectorial description
of radiances. This phase function now provides the probabilities for an input L vector
of a wave propagating along Ω′ to be scattered into a small solid angle dΩ around the
direction Ω. Of course, the polarization of the scattered photon is described by a Stokes
vector. As a result, the phase function P takes the form of an angle-resolved 4 x 4 real
matrix, similar to a Mueller matrix. However, the normalization conditions imply that
this "matrix" depends on the input vector radiance L, and therefore it is not a "true"
Mueller matrix.
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For completeness here we outline the essential steps of the calculation, which is de-
scribed in more detail in the next chapter. We define an orthonormal frame of reference
(e0

x, e
0
y, e

0
z) for the "incident" wave travelling along Ω′, with e0

z = Ω′. In this frame, the
direction Ω is given by its two usual polar and azimuthal angles (θ, ϕ). As shown in
subsection 3.2.2, if we first assume that the incident wave is well collimated along Ω′,
with a polarization S0, the Stokes vector Ss(θ, ϕ) of the wave "scattered" along Ω is given
by

Ss(θ, ϕ) = M(θ) ·RM(ϕ) S0 (2.57)

where the matrix M(θ) was explicited in Eqs.(2.24) and RM(ϕ) is the rotation matrix for
Mueller matrices defined in Eq.(1.51). If we now take into account that both the incident
and scattered waves are continuously distributed in the solid angle space, according to
their respective radiances, the Eq.(2.57) can be rewritten as

d2Ss(r,Ω, t) = L(r,Ω, t) dΩ′dΩ =
1

Is(L)
M(θ) ·RM(ϕ) L(r,Ω′, t) dΩ′dΩ (2.58)

where the normalization factor Is is the integral, over the full solid angle, of the scattered
intensity, which is nothing else but the d2Ss0 component of the scattered Stokes vector
d2Ss vector defined above:

Is(L) = dΩ′
∫

4π

[M(θ) ·RM(ϕ)L(r,Ω, t)]0 dΩ. (2.59)

Finally, we define the vector phase function as

P(Ω′ → Ω,L) =
1

Is(L)
M(θ) ·RM(ϕ). (2.60)

On the other hand, as it has been shown in section 2.2.1, the total scattering cross-
section does not depend on the polarization of the incoming wave for the spherical scat-
terers considered throughout this work. In other words, µs and µe are polarization inde-
pendent.

Finally, with the above definitions, the vector radiative transport equation (VRTE)
takes the form:

∂L(r,Ω, t)

∂t
+ Ω · ∇L(r,Ω, t) = −µe L(r,Ω, t)+

+

∫
Ω′
µs P(Ω′ → Ω,L) L(r,Ω′, t) dΩ′ + Σ(r,Ω, t).

(2.61)

The above equation is the integro-differential formulation of the VRTE. This equation
may be converted into an integral form, which, however, we will not use in this study.
The interested reader is referred to Ref. [24].
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2.4 Methods of solution of the RTE

For realistic media and boundary conditions the (V)RTE tends to be rather complex and
often intractable, without exact analytical solutions. Efficient numerical methods are
therefore crucial. However, approximate analytical methods are available, such as the
transfer matrix method, the singular eigenfunction method, the perturbation method,
the small-angle approximation... with various conditions to be fulfilled for their validity.
On the other hand, several numerical techniques have been used: the adding-doubling
method, the discrete-ordinate (DISORT) method, the invariant embedding method, the
matrix operator method, the spherical harmonics method, the multi-component method,
the spherical harmonics discrete ordinate method and the Monte Carlo method. A brief
description of most of these techniques can be found in Ref. [25].

In the following we will outline only a few of these techniques including the Monte
Carlo method extensively described in the next chapter.

First-order solution. This straightforward approach is adequate when the scattering
medium is illuminated (from outside) by a well collimated (parallel) beam propagating
along the direction Ω0. The radiance inside the medium can be written as

L = L0 + Ls (2.62)

where the first term is the radiance of the illuminating beam and the second is the contri-
bution due to the scattering. If the scattering contribution is sufficiently weak (meaning
that the medium is also weakly scattering or optically thin) the second term may be
neglected, while the radiance of the incoming beam decreases exponentially:

L ≈ L0(z) = I0δD(Ω−Ω0)e−µez (2.63)

where I0 is the incoming intensity, the Dirac δD function reflects the "perfect" direction-
ality of the beam, and the exponential factor is nothing else but the attenuation factor
already introduced in this chapter.

In practice, the Eq.(2.63) may be useful even if the medium is not weakly scattering.
Actually, as the contribution of the scattered light around Ω0 is diffuse while that of
the incoming beam is much "sharper", with an adequate spatial filtering, e.g. with a
sufficiently small pinhole at the image focus of a suitably chosen lens, the diffuse contri-
bution may be reduced enough to make it possible to "follow" the exponential decay of
L0 over a sufficient dynamical range, determine µe and thus the mean free path in the
medium. This "rejection" of the scattered contribution has indeed been used in the first
experiments carried out in this work.

Discrete ordinates approximation. A more general solution of the RTE is provided
the discrete-ordinates (DISORT) approximation which is behind the so called multi-flux
theory. In this method, the integro-differential equation are transformed into a sys-
tem of ordinary differential equations and then into a matrix differential equations, by
considering the radiance along only along discrete directions (angles). Of course, this
approximation becomes more and more accurate as the number of angles increases. The
number of equations, equal to the number of fluxes, gives the name to the theory: two
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(Kubelka-Munk theory [26]), three, four, seven (by Yoon et al. [27]), twenty-two (by
Mudgett and Richards, 1971 [28]) and multi-flux theory whose comprehensive descrip-
tion can be found in the book by Ishimaru (1978) [29]. The seven-flux method is the
simplest three-dimensional representation of scattered radiation and an incident beam
in a semi-infinite medium. In general, the multi-flux theory is still restricted to linear
geometries and to the assumption that the incident light is already diffuse

L0 = 0. (2.64)

Moreover, this approach requires extensive computer calculations [30].

Spherical harmonics and diffusion approximation. The scalar diffuse radiance Ls
may be expanded in spherical harmonics. This expansion leads to a system of (N + 1)2

connected differential partial derivative equations known as PN approximation. This sys-
tem is reducible to a single differential equation of order (N + 1) [31]. For N = 1 we
obtain the diffusion equation for Ls

(∇2 − µ2
d)Ls = − Σ

Dd

(2.65)

where

µd = [3µa ((1− g)µs + µa)]
1/2 (2.66)

is the diffusion parameter and Σ represents the internal sources. Moreover

Dd =
v

3
((1− g)µs + µa) . (2.67)

The diffusion approximation provides a good approximation for small scattering anisotropy
factor g ≤ 0.1 and large albedo (a→ 1). This approximation can also be used at g < 0.9
when the optical thickness τ =

∫ s
0
µeds of a material is of the order of 10-20 [32].

Inverse Adding-Doubling method. A numerical approach to the RTE is called in-
verse adding-doubling which was recently introduced by Prahl et al. [33]. The term
inverse refer to the usual process of extracting the intrinsic optical properties of a sample
from the measurements of observables like total transmission and reflection. The IAD
program does this "by repeatedly guessing the optical properties and comparing the ex-
pected observable with the observable measurements". The term adding-doubling refers
to the method introduced by van de Hulst (1962) [34] and Plass et al. (1973) [35].

The doubling method assumes that transmission and reflection of the incident light at
a certain angle for a slab of turbid media of any thickness are known. Then, transmission
and reflection for a slab of the same turbid media but twice as thick can be obtained by
dividing the slab into two identical slabs and doubling the contribution of transmission
and reflection. Thus, transmission and reflection for a thick slab of turbid media can
be calculated by starting from a thin slab whose properties are known, as obtained by
absorption and single scattering measurement, for example, and doubling them until the



2.4. METHODS OF SOLUTION OF THE RTE 55

total thickness is achieved. The term "adding" is used to generalize to the case where
we divide the thick sample in an arbitrary number of dissimilar thin slabs and then
transmission and reflection for the thick slab are obtained by adding the contribution from
any of the thin slabs. This extension allows to use the same methods for multilayered
turbid media characterized by layers with different optical properties as well. Then, the
transmission from the thick turbid media is calculated by adding the contributions from
any different slab [30].

Monte Carlo Simulations. Another numerical approach to the solution of the RTE
is the Monte Carlo (MC) method.

According to the definition of any MC method given by Lux and Koblinger [36] any
Monte Carlo method requires a stochastic model, where the value of the mathematical
expectation of a certain random variable is the value of the physical property to be
determined by means of the numerical calculation. This mathematical expectation is
calculated as the average of the series of the independent values associated to the random
variable. The series of independent values is given by the random numbers following the
distribution law of the random variable to determine.

Monte Carlo simulation in turbid media is based on the numerical simulation of the
random walk into the medium of any photon in a package constituting the incident light
and the repetition of the simulations for all photons in the package.

Monte Carlo versus deterministic methods. We would like to emphasize the fact
that deterministic and Monte Carlo methods solve the same problem, i.e. (V)RTE, or
more in general the transport equation, whatever its expression is integral or integro-
differential. Often there is some misunderstanding about the fact that deterministic
methods solve the integro-differential expression of the transport equation, while Monte
Carlo methods solve the integral expression of the problem. This comes mostly from the
fact that deterministic methods are presented when dealing with the scalar differential
formulation of the transport problem, while Monte Carlo methods when dealing with the
integral formulation of the problem.

In fact, in the discrete ordinates method the space phase divided into many small
boxes, then, as the particle travels in the space it moves from one box to another within
a certain amount of time. This is an example of finite-difference and finite-elements
method [37]. As the boxes become progressively smaller the same does the time to
travel from one box to another, the particle traces a differential distance of space in a
differential amount of time. Hence, in the limit, the integro-differential expression, which
presents derivatives in space and time seems to better suit the description of the transport
problem. On the other hand, Monte Carlo describes transport in terms of particles freely
traveling in the medium between events of collisions well separated in time and space.
As a consequence, the integral expression of the RTE, which does not present either
time or space derivatives, better suits the integral formulation of the problem. However,
when a sufficiently large number of trajectories is taken into account, Monte Carlo and
deterministic methods eventually provide exactly the same answers for the quantities of
interest.
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2.5 Conclusion
This chapter was devoted to a reasonably self-contained overview of the essential features
of the propagation of (unpolarized or polarized) light in scattering media. We restricted
the scope of this review to the topics relevant to the experimental results as well as the
numerical simulations presented in the following chapters. For example, we limited the
presentation to the case of spherical scatterers, which will be the only ones considered
in this work, even though further developments including anisotropic scatterers may
eventually prove necessary to fully account for the experimental data taken on tissues.
We first considered the single scattering regime, and evaluated the total scattering cross-
section of a spherical particle. This part was presented in detail due to its fundamental
interest and its relevance for all the following, in particular the independence of this
cross-section with respect to polarization.

We then presented the theory of the single scattering of polarized waves, again by
spherical particles, with particular emphasis on the corresponding angular distributions
and Mueller matrices, as provided by the Mie theory, which is very shortly outlined.

Then we addressed the more complex topic of multiple scattering. After having for-
mulated the essential assumptions of independent scattering and absence of interfer-
ence effects, we defined the usual scattering parameters, namely the mean free path, the
anisotropy and several other parameters deduced from these and/or including absorption
effects, such as the albedo.

We then established the radiative transfer equation, both in scalar and vectorial forms.
This derivation is based on local detail balance between the incident beam attenuation
due to scattering and the reverse effect, which is the result of "reverse" scattering into
the incident beam and the contribution of the sources. Even though this equation may
also be established from first principles derivation based on Maxwell equations [38], this
more rigorous approach was not presented due to its formal complexity.

The final part was devoted to a short review of various methods to solve the (V)RTE,
among which the Monte Carlo method which has been used in the simulations realized
in this work, and which will be described in detail in the next chapter.



Chapter 3

Monte Carlo solution of the VRTE

3.1 Introduction

The Monte Carlo method was first proposed by Metropolis and Ulam [39] (1949). It has
meanwhile advanced to a powerful tool in many disciplines. Here, we will first discuss its
specificities with respect to other methods, and then outline its application to the solution
of radiative problems, with the essential steps of the algorithm described in more details
in the following sections.

According to the general definition of the Monte Carlo method by Lux and Koblinger
[40], whatever the application of the Monte Carlo method, a stochastic model is built,
where the values of the physical quantity (in our case the Mueller matrix coefficients of
the scattering medium) are nothing else but the mean values of certain random variables.
These values are obtained by the averaging over multiple independent samples.

The principle of statistical sampling, behind Monte Carlo method, dates back to the
eighteenth century, but because of the long time and the labor required by the calcula-
tions it was not applied before the advent of computer. Only in mid 1946, when computer
had recently become a reality, the mathematician Stanislaw Ulam realized that it could
turn the statistical sampling principle into a practical tool. Ulam discussed the idea with
the mathematician John Von Neumann, who proceeded to outline a computerized statis-
tical approach to the problem of diffusion and multiplication (by fission) in an assembly
containing a fissile material. Among the researchers that developed the Monte Carlo
method is Nicholas C. Metropolis who gave it his name. Metropolis technique uses the
Monte Carlo method for funding the equilibrium energy, at a given temperature, of a sys-
tem of many interacting particles. The Monte Carlo has also more strictly mathematical
application, namely, estimating the value of complex, many-dimensional integrals [37].

The Monte Carlo takes advantage of the speed of electronics computer to make use of
statistical sampling a practical technique for solving complicated problems. Monte Carlo
methods are especially useful for those complicated problems that cannot be modeled by
deterministic methods.

3.1.1 Overview of the applications of Monte Carlo method

The contents of this subsection is taken from Ref. [37].

Nuclear energy. Monte Carlo simulations are of great importance in the context of
criticality safety. In particular, when dealing with the prevention of inadvertent assembly
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masses of fissile material, it is needed to assess whether a given amount of fissile material
in a given geometry constitutes a critical mass or whether a chemical reaction involving
fissile material can lead to the assembly of a critical mass. While answering such questions
by physical experimentation would be far too dangerous, Monte Carlo simulation is a safe,
reliable way to do it.

In the domain of nuclear energy Monte Carlo simulations serve a variety of purposes,
such as the design of shielding and spent-fuel storage pounds and estimate the radiation
dose received by the operators, or the design assemblies so that the fuel is "burned" more
efficiently, which implies cheaper electricity and less nuclear waste.

Talking about nuclear safeguards, a cornerstone is the inspection of nuclear facilities
to ensure that no "special" nuclear materials are stolen from the facilities. The non-
destructive assay technique are based on detecting either the radiation emitted by certain
isotopes in the course of decay or the radiation emitted by the products of nuclear reaction
induced in the isotopes by irradiation with neutrons and or gamma rays. Monte Carlo
has helped in designing many of the detector used in such inspections.

Research about controlled nuclear fusion to produce energy is continuing, motivated
by the absence of hazardous fission product and consumption of naturally abundant fuel
(deuterium). The Monte Carlo has long been the premier code used for studying the
transport of neutrons and photons produced by fusion reaction. Another application of
Monte Carlo in fusion research is studying ways to prevent damage to personnel and
equipment by fusion-produced radiation.

Geology. Monte Carlo simulations play important roles also in the search for oil. The
pattern of scattering of neutrons and gamma rays from rocks formation can indicate
the presence of oil in the rock. Monte Carlo simulations can predict the pattern of an
oil-bearing rock. Then by comparing the measured and simulated scattering pattern
of oil-bearing rocks obtained respectively using Monte Carlo method and introducing a
specific tool in a hole in the rock formation, it is possible to know about the oil content
in the rock.

Space exploration. When dealing with the exploration of space, radiations are intense
and could cause invasive bursts on the astronauts. Hence, simulating the effect of the
radiation on the equipment and personnel is preliminary to the exploration of space.
Monte Carlo and other method of calculation have helped design shielding to protect the
astronauts and demonstrating that, in case of solar shares, they were safer outside the
shelter than inside!

Medical applications. Medicine is the third largest domain of application of nuclear
reactions, raking behind only energy and defense. Some examples of the nuclear medicine
technologies are the boron neutron-capture therapy and the positron-emission tomogra-
phy (PET). The boron capture therapy is a selective technique used to kill the tumors.
This consists of injecting cancer patient with stable isotope boron-10 and irradiating the
patient with neutron. Boron is chosen because of its preference in collecting in tumor
cells and facility in capturing neutrons due to its large cross-section. Then, Monte Carlo
is used to determine the neutron dose and energy spectrum that kill the tumor and not
the patient. PET is a non destructive technique for observing metabolism in situ. It
consists of detecting the gamma rays resulting from the reaction of positrons and elec-
trons in cells, after the ingestion of the radiative active isotope oxygen-15 contained in
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water rather then the usual, non-radiative isotope oxygen-16. For example, PET scan
can reveal the part of heart that is dead and need to be replaced rather then repaired.
Monte Carlo simulations can help interpreting properly the images, which are blurred
by the effect of scattering by photons and electrons. Similarly Monte Carlo can help
in many other medical technologies including computer-assisted tomography, radiation
therapy for cancer, and protection of medical personnel from nuclear radiation and x-ray.

The studies more directly related to the biomedical optics are presented in the next
subsection.

3.1.2 Application to the radiative transfer problem

Motivation. The Monte Carlo method is particularly well suited to the study of the
radiative transport. In fact, this technique is so pre-eminently realistic for radiative
transport so that the calculations are also called "numerical experiments" of radiative
transport.

The greatest advantage of using Monte Carlo methods when dealing with numerically
solving the radiative transport problem is that it is able to handle complex geometries.
This comes from the fact that, when propagating a photon in a medium inside an ob-
ject, using Monte Carlo methods, the choice of next segment along the random path is
determined by identifying the surface closest to the traveling photon. Hence, only the
geometry in the vicinity of that photon located at any point in the medium is of interest.
By looking locally at the object, its geometry can be described by the combination of
many simple objects, such as rectangular parallelepipeds, ellipsoids, cylinders, cones and
so on. However, even if a "combinatorial" object is easier to handle, its description is not
that general as the model given by means of its boundary-surfaces. In fact, a "surface-
sense" object is characterized by the combination of bounding surfaces, each of which is
assigned of two values (sometimes each surface is assigned of one single value while the
sign (+ or -) establishes on which side of the bounding surface the object lies. [37]

On the other hand, the greatest drawback of using Monte Carlo methods to solve
the radiative transport problem is its cost in terms of computation time. Usually, the
algorithm is stopped when the variances of the quantities of interest become smaller than
predefined target values. Of course, the smaller these target values, the more accurate is
the final result. The standard variances decrease with 1

n
(standard deviations with 1√

n
,

where n is the number of photons), and so the number of times that the calculation is
repeated. This corresponds to repeating the simulation for a single photon many times,
generating each time a different history for the single photon. Since a certain level of
accuracy has to be ensured, we need to go round to the time consumption problem.
Four types "variance-reduction" techniques are available: truncation, population control,
modification and pseudodeterministic methods [37]. Truncation involves ignoring aspects
of the problem that are irrelevant or inconsequential. Population control involves sam-
pling more important portions of the sampled group of photons (the population) more
often and less important group of photon less often. Modification methods, or probability
modification, involve sampling from a fictitious but convenient distribution rather than
the true distribution characterizing the population and weighting the results accordingly.
Pseudodeterministic methods involve replacing a portion (or portions) of random walk
by deterministic or expected-value results.
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Brief review of the topic. Over the past fifty years, polarized light propagation
through scattering media has been studied by many groups and in particular by the
atmospheric optics and oceanography community. Chandrasekhar in 1950 obtained an
exact solution of the radiative transfer equation (RTE) for the simplest geometry of
plane-parallel atmosphere with Rayleigh scattering [41, 42]. On the other hand, for more
complex geometries this equation becomes untractable analytically, making it necessary
to revert to numerical solutions, using the methods outlined at the end of the previous
chapter. The first numerical solution of the vector radiative transfer equation (VRTE)
with multiple scattering by means of a Monte Carlo method was achieved by Kattawar
and Plass [43].

In the field of biomedical optics, Monte Carlo programs have been used to model
laser tissue interaction, fluorescence and many other phenomena. In optical imaging
and diagnostics, the intensity of the input and output light (transmission, reflection,
absorption, scattering and fluorescence) are the only measurable quantities; the optical
properties of a biological sample are the unknowns. The objective is to retrieve the
tissue optical properties, such as µs, µa and g from measurable quantities, by solving an
inverse scattering problem. As these quantities may be related to the nature of the tissue
and may be different for healthy and pathological samples, this technique may provide
new non-invasive diagnostic tools. The forward problem is solved first, by calculating
the measurable output quantities by means of known values of the optical parameters
that define a possible model of the biological sample. An efficient implementation of the
forward problem solution is prerequisite for the typically variational numerical solution
of the inverse problem [44].

Here we can cite only a few examples of such investigations. Ledanois and Virmont [45]
evaluated theoretically the characterization of a spherical object embedded in a scattering
and absorbing medium from CW (continuous-wave) and modulated illumination.

Wang et al. [46] developed a Monte Carlo code to solve the RTE in multilayered
tissues. This code was subsequently generalized for polarized light and birefringent scat-
tering samples [47] and used later for time-resolved experiments [48]. Bartel and Hielscher
[49] developed a Monte Carlo model that uses a local coordinate system to keep track of
the polarization reference frame.

Ramella-Roman et al. [50, 51] developed three Monte Carlo codes for the backscat-
tered Mueller matrix, including the effect of skewed illumination. These codes are freely
available for download. Another freely available Monte Carlo code has been proposed by
D. Côté and A. Vitkin [52].

Jaillon and Saint-Jalmes [53] used backscattered patterns obtained with focussed po-
larized illumination to determine the medium anisotropy factor g. Falconet et al. [54]
later showed that a Fourier analysis of the backscattered patterns observed with linear
polarization could provide a simple way to accurately estimate g. Dillet et al. [55] also
used Monte Carlo simulations to validate approximate analytical formulas describing the
backscattered Mueller images of samples illuminated by a focussed source, from which
the volume fraction of the particles could be retrieved.

Tinet et al. [56] developed a fast semianalytical Monte Carlo based algorithm to sim-
ulate time-resolved measurements of light propagation in turbid media. Later the same
group used Monte Carlo simulations for real-time determination of absorption coefficients
in multilayered tissues [57, 58].

For the interested reader, an extensive list of the programs using the Monte Carlo
method to solve the radiative transport equation for polarized light in scattering media
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(haze and clouds, inhomogeneous atmosphere-ocean system, dusty spiral galaxy, slab ge-
ometry, optically active media, birefringent media, monodisperse solutions of polystyrene
spheres, layered media), to study the optical properties (polarization, optical activity
birefringence, speckles) by measuring diverse physical quantities (electric field, Stokes
vectors, degree of polarization, Mueller matrix) of light, in multiple configuration (angles
of scattering), is available in [50]. The Monte Carlo programs are listed by quantity of
polarimetric information calculated by the code, where the Mueller matrix constitutes
the most complete information about the medium, which makes any program an improve-
ment of another. The list includes Monte Carlo codes that use diverse methods to work
around the problem of high time consumption when dealing with high accuracy of the
result.

3.2 The algorithm

The algorithm described in this section is the one implemented in a code previously used
at LPICM [59], where it was brought by Guy Ledanois. This code is written in Fortran
90 and wasconceived to describe the propagation of a polarized light beam in a cuvette
filled with a scattering medium. We adapted this code to the propagation of diffuse light
in turbid media such as tissue. This included changing the description of the light source
from focused to diffuse; modifying the geometry of the sample from single layer with a
flat surface to multilayer with irregular interfaces and then handling the resolution of
the Fresnel law; substituting monodisperse scatterers to bimodal population of scatterers
and redefining the scattering parameter; introducing the absorption by the embedding
medium and accounting for the scattering parameter in the Lambert-Beer law; performing
multi–spectral calculation and using dispersion law for the optical refractive index as well
as for the absorption coefficient. Simulations were run by 8 independent calculators set at
specific value of the model parameters any time. The run–time for a simulation was from
an hour to a week depending on the number of photons of same state of polarization per
launch (1–200) as well as on the number of launch (10000-100000) and the characteristics
of the medium (longer run-time for larger scatterers) in order to achieve desired accuracy.

Each photon, modeled as a particle, is emitted by a point source, with a given po-
larization and follows a trajectory within an object comprising scatterers immersed in
homogeneous surrounding media and interfaces. The trajectory consists of a succession
of straight-line paths between scattering, refraction or reflection events. The effects of
these events are described statistically. We currently exclude the absorption by scattering
particles while we may take into account possible absorption by the medium where the
scatterers are immersed. While elastic scattering changes the direction of propagation
but not the energy of the photons, the absorption by the medium gradually reduces the
statistical weight of a photon.

This procedure is repeated with "packages" of photons whose initial parameters are
defined statistically in order to reproduce the relevant features of the illumination beams
(spatial intensity distribution, polarization and the like). The outcoming photons are col-
lected into "boxes" defined from the characteristics of the detectors (geometry, sensitivity
to the polarization...). Within each box, the photon intensities are averaged incoherently.
No speckle effect is taken into account in this code, as our imaging polarimeter is illumi-
nated with spatially incoherent light. These averages eventually provide the quantities of
interest, such as the output spatial and/or angular distributions, as well as the Mueller
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matrix of the sample. The procedure is described in detail in the following sections.

3.2.1 Generation of random numbers with given probability dis-
tributions

The statistical treatment of each step simply means that the quantity of interest, such as
the free path length before the next event, or the direction taken by the photon due to its
scattering, for example, are drawn according to known probability distributions, e.g. a
decreasing exponential for the free path length, and an angular distribution derived from
Mie theory for the scattering on spherical particles. We now describe in detail how to
generate random numbers with given probability distributions.

Single real variables. Let us consider a random variable y, which is supposed to fol-
low the probability distribution P (y) between the lower and upper boundaries y0 and y1,
meaning that the probability dP to find this variable in an interval dy around the value
y (y0 ≤ y ≤ y1) is given by

dP = P (y) dy, (3.1)

then the cumulative probability fP (y) is defined as

fP (y) =

∫ y

y0

P (u) du. (3.2)

As a result, when y varies between y0 and y1, fP (y) varies between 0 and 1, with the
distribution probability Q(fP ), which is related to P by the straightforward relation

Q(fP ) dfP = P (y) dy, (3.3)

leading to

Q(fP ) = P (y)
1

dfP
dy

= 1. (3.4)

In other words, fP is uniformly distributed between 0 and 1, a very useful result for
numerical simulations, as all numerical pseudorandom number generators provide series
of "random" numbers uniformly distributed in the [0, 1] interval.

The generation of the random variable y with a prescribed distribution P is then based
on the generation of a random variable fP equidistributed between 0 and 1, followed by
one of the two following procedures.

• Analytical inversion of Eq.(3.2). As an example of this procedure, we can con-
sider the propagation of photons within a homogeneous absorbing and/or scattering
medium. The probability that a photon propagates over a distance y without being
absorbed nor scattered is a decaying exponential:

P (y) dy = µee
−µey dy, (3.5)
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where µe is the extinction coefficient, the reciprocal of the photon mean free path
(`e) in the considered medium. In this case, Eq.(3.2) becomes:

fP =

∫ y

0

µee
−µey dy =

(
1− e−µey

)
(3.6)

or

y =
ln(1− fP )

µe
=

ln(z)

µe
(3.7)

where z, like fP , is also equidistributed over the [0, 1] interval, and thus can be
drawn by a standard numerical random number generator to provide the variable
y following the distribution given by Eq.(3.5).

• Acceptance-rejection method. This method is based on simultaneous numerical
equidistributed drawing of y in the prescribed interval [y0, y1] (if both boundaries
are finite) and x between 0 and 1. Then fP (y) =

∫ y
y0
P (u) du is calculated and

compared with x. If fP (y) ≤ x then the drawn value of y is retained, otherwise it
is rejected. For a large number N of draws, the probability for fP to be found in
the [0, z] interval is given asymptotically by

P (0 ≤ f ≤ z) ≈ N(x ≥ z)

N
≈ 1− z. (3.8)

As a result, this "rejection method" [50] ensures that the retained values of fP (y)
are equidistributed between 0 and 1, implying that y is distributed in the [y0, y1]
interval according to P .

Multiple variables. The above idea can easily be generalized to the case of multiple
variables. This generalization will be detailed for the case of two variables (θ, ϕ), which
is particularly relevant for the multiple scattering problem. Generalization to more than
two variables is straightforward.

The variables (θ, ϕ) are to be distributed according to the joint probability distribu-
tion function P (θ, ϕ) limited to the finite intervals [θ1, θ2] and [ϕ1, ϕ2], respectively.

• Acceptance-rejection method. In a similar way as for a single variable, we define the
two-dimensional cumulative probability function as

fP (θ, ϕ) =

∫ θ

θ1

∫ ϕ

ϕ1

P (u, v) du dv (3.9)

which is again uniformly distributed over the [0, 1] interval. The acceptance-rejection
method is thus generalized as follows: three independent random numbers (θ, ϕ, x)
are drawn with uniform probabilities over the intervals [θ1, θ2], [ϕ1, ϕ2] and [0, 1],
respectively. Then, if fp(θ, ϕ) ≤ x the pair of values (θ, ϕ) is accepted, otherwise it
is rejected.
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• Composition method. Let’s now consider a case for which the probability density
function P (θ, ϕ) can be decomposed into the sum of two positive and non-zero
functions as

P (θ, ϕ) = q1(θ, ϕ) + q2(θ, ϕ). (3.10)

The functions q1 and q2 are not density probability functions since they are not nor-
malized. Denoting by F1 and F2 their norms (i.e. their integrals over the full finite
range of variations of (θ, ϕ)) the probability density function P (θ, ϕ) can be written
as a linear combination of two probability density functions P1(θ, ϕ) and P2(θ, ϕ) as:

P (θ, ϕ) = F1
q1(θ, ϕ)

F1

+ F2
q2(θ, ϕ)

F2

= F1P1(θ, ϕ) + F2P2(θ, ϕ). (3.11)

This equation can be interpreted as a division of all possible events generating the
(θ, ϕ) variables into two mutually exclusive classes, with overall relative weights F1

and F2. To numerically generate the (θ, ϕ) pairs, one draws a number, here denoted
as u, which is uniformly distributed in the interval [0, 1] and is used as a criterion to
choose one of the two classes of events to be considered: if u is smaller than F1

F1+F2
,

than the pair (θ, ϕ) is drawn following the probability density function P1, otherwise
it is drawn following the probability density function P2. Obviously, this method is
of particular interest if the expressions of the two probability density functions P1

and P2 are simpler than the expression of the original probability density P .

3.2.2 Individual photon trajectories

All over its trajectory the current status of a photon is described by the group of coor-
dinates {r, S(ex, ey, ez)}. r is the initial position in a fixed laboratory reference frame.
S = [I, Q, U, V ]T is the four-dimensional Stokes vector describing the state of polar-
ization of a photon. S is defined in the orthonormal system of coordinates (ex, ey, ez),
where the unit vector ez indicates the current direction of propagation of the considered
photon. The orientation of the couple of unit vectors (ex, ey) could, in principle be cho-
sen arbitrarily. However, as shown below, each event (scattering, reflection, refraction...)
naturally leads to well definite choices of the orientation of these vectors in the (x, y)
plane.

In its step one, the algorithm defines the initial status of the injected photons. All
over the trajectory, the decision on the nature of the next event and on the location of
the photon at the next step constitutes the step two of the algorithm. If the photon
next location is inside the medium (propagation, scattering, interface), then, according
to the nature of the event, the actual direction of propagation and state of polarization
associated to the photon change into new ones. The former transformation constitutes the
step three of the algorithm. As the photon propagates, the new direction of propagation
and state of polarization update the actual ones. The updating defines the step four in
the algorithm and leads back to step two. On the other hand if the photon next location
is outside the medium (boundary) then the photon is discarded and this is the last step
of the algorithm.

The details of the process will be illustrated below by the construction of a single
polarized photon history, as described in the next paragraphs.
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Definition of the incoming photon statistics. A "package" of N photons are as-
sumed to start from the N points of a grid that faces the surface of the medium up
to cover it. The initial direction of propagation, as well as the polarization state, are
assumed to be the same for all the photons of the package. These initial conditions cor-
respond to a numerical experiment with a spatially diffuse but collimated illumination
(of course, other illumination geometries could be simulated as well). The trajectories of
all photons are followed until the photon is detected or lost, as explained in the following
paragraphs.

Then, another package of photons is launched, with the same spatial parameters,
but a different polarization. This initial polarization state has to be varied over the
surface of the Poincaré sphere widely enough to allow an adequately accurate estimation
of the sample Mueller matrix. As described in more detail in section 3.2.3, the initial
polarization states can be defined in two ways:

• the sampling can be limited to a set of four polarization states, with four linearly
independent Stokes vectors. In this case, the optimal choice corresponds to four po-
larization states whose Stokes vectors are located at the tips of a regular tetrahedron
on the Poincaré sphere,

• alternatively, the input Stokes vectors can be sampled statistically over the whole
surface of the Poincaré sphere. As discussed below, this last procedure has been
found to be the most effective in terms of calculation time for multiple scattering
media.

This overall procedure is repeated until a sufficiently low variance in achieved on the
output Mueller matrix.

Scattering by spheres embedded in an homogeneous medium. In this part, we
neglect events other than the interaction with the spherical scatterers, as if the medium
with these scatterers were infinite. The interaction with various boundaries, such as the
"lateral" walls of a container, or the boundaries between successive layers in a layered
system, or the absorption, will be described in the following paragraph.

As it has been shown in the previous section (see Eq.(3.5)) the distance d over which
a photon propagates in the scattering medium between two scattering events is a random
variable defined as

d =
ln(z)

µe
(3.12)

where z is a random number uniformly distributed between 0 and 1 and µe [cm−1] is
the inverse of the mean free path of monodisperse solution of scattering spheres that is
denoted as ` [cm]. This mean free path is defined by the expression `e = Nsσe, where
the Ns is the density of the scatterers and σe the extinction cross-section (extinction =
absorption + scattering) of a single sphere. This cross-section has the dimensions of a
surface.

Then, the probability that the photon is scattered through various angles is calculated
as function of the relevant parameters (the photon energy, the scatterer radius, the index
contrast between the scatterer and the surrounding medium...) by means of the Mie
theory (see Appendix B). This probability or cross-section is a necessary input for solving
the problem.
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Figure 3.1: The angles (θ, ϕ) are drawn according to a law depending on two non-
independent parameters. The initial local reference frame (e0x, e0y, e0z) is rotated by the
angle ϕ in order to put the incident reference frame (eix, eiy, eiz) in the local reference
frame. After the scattering by the sphere, the polarization is given by the Mie theory in
the system of axes of the scattering (esx, esy, esz), which becomes the new local system
of reference [23].

The scattering event transforms the wave incident on the scatterer along the direction
Ω′ into a scattered wave travelling along the direction Ω. As the photon bounces on a
scattering sphere the vector basis is rotated so that the unit vectors ex and ey match
the unit vectors parallel and perpendicular to the scattering plane (usually indicated by
the symbols ‖ and ⊥, respectively). This allows to take advantage from the geometrical
symmetries of the scattering matrix defined in the scattering plane.

The Mie theory is used to evaluate the angular distribution probability of the scatter-
ing direction Ω as well as the corresponding Mueller matrix. As shown in Fig. 3.1, the
direction of the vector Ω is defined by its polar and azimuthal angles (θ, ϕ).

Let S0 = [I, Q, U, V ]T be the Stokes vector of the incident photon, defined in the local
reference system (e0

x, e0
y, e0

z). The Stokes vector associated with the scattered photon
traveling along the direction of scattering Ω = (sin θ cosϕ, sin θ sinϕ, cos θ) is obtained
from the Stokes vector associated to the incident photon throughout the two following
steps:

1. S0 and (e0
x, e0

y, e0
z) are rotated around the direction of propagation e0

z by the angle
+ϕ, which constitutes a rotation in the Stokes space and the real space respectively
described by the matrix RM(ϕ) suitable for Stokes vectors (see Eq.1.51) as:

Si(ϕ) = RM(ϕ) · S0,


ei

x = cosϕ e0
x + sinϕ e0

y

ei
y = − sinϕ e0

x + cosϕ e0
y

ei
z = e0

z .

(3.13)

The rotation of the local reference plane by the angle ϕ places the initial local
reference system (e0

x, e0
y, e0

z) into the scattering plane;

2. M(θ) is the Mueller matrix defined in Eq. 2.24, which describes the scattering by a
single sphere along the angle θ = êi

z, es
z in the scattering plane. The Stokes vector
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associated to the scattered photon denoted as Ss is obtained from the Stokes vector
Si by means of the transformation described by the matrix M(θ) in the scattering
reference frame. The scattering reference frame is obtained rotating the incident
reference frame by the direction ei

y perpendicular to the reference plane about the
angle θ:

Ss(θ, ϕ) = M(θ) ·RM(ϕ) · S0,


es

x = cos θ ei
x + sin θ ei

z

es
y = ei

y

es
z = sin θ ei

x + cos θ ei
z.

(3.14)

The intensity dIs of the light scattered in a small solid angle dΩ around the direction
u is expressed by the first components of the Stokes vector associated to the scattered
photons

dIs = is(θ, ϕ) dΩ, (3.15)

with

is(θ, ϕ) = m11(θ)I +m12(θ) cos(2ϕ)Q−m12(θ) sin(2ϕ)U =

=
1

2

[
|S1(θ)|2(I −Q cos(2ϕ) + U sin(2ϕ)) + |S2(θ)|2(I +Q cos(2ϕ)− U sin(2ϕ))

]
(3.16)

where |S1(θ)|2 = (m11−m12) and |S2(θ)|2 = (m11 +m12) are the absolute values squared
of the complex amplitude functions. The total intensity of the scattered light in the space
is obtained by integrating the intensity of the scattered light along the generic direction
of propagation over all directions of propagation included in the sphere of unit volume as:

Is =

∫
is dΩ = 2π

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

is(θ, ϕ) sin θ dθ dϕ. (3.17)

Since we have supposed to have a single wavelength incident light on the scattering
media, then the total intensity of the scattered light in any direction of propagation in
the space, denoted by the angles (θ, ϕ), is proportional to the number of the photons that
scatter along that direction. It comes that the total scattered intensity is proportional to
the total number of photons that scatter in every direction in the space. This function is
known as angular probability density function and is denoted as P (θ, ϕ).

The combined probability density function of the the pairs (θ, ϕ) is expressed as:

P (θ, ϕ) dθ dϕ =
is(θ, ϕ)

Is
sin θ dθ dϕ. (3.18)

In order to describe a scattering event, one has to draw the direction of scattering (θ, ϕ)
following the angular probability density function P (θ, ϕ) and then calculate the change
in polarization along the new direction of propagation. Since the angular probability
density function characterizing the scattering is a joint probability density function of
the random variables θ and ϕ, one applies the acceptance-rejection method outlined in
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section 3.2.1 can be used to generate these angles: three independent random numbers
denoted as θ0, ϕ0 and ξ all are drawn as random variables uniformly distributed within the
intervals of values [0, π], [0, 2π] and [0, max(θ, ϕ){is(θ, ϕ)}], respectively; if ξ ≤ is(θ0, ϕ0)
then the pair θ0, ϕ0 is accepted as the next direction of scattering, otherwise it is refused
and the drawing is repeated again.

This probability of acceptance is always smaller than 0.5 (limit case for very small
scattering particles) since the scattering intensity is mostly forward and backward di-
rected. The probability that the pair (θ0, ϕ0) is accepted decreases with the increase of
the radius of the scattering spheres, leading to a high percentage of rejections and thus
a "waste" of calculation time.

The acceptance-rejection method can be improved by choosing for the ξ those expres-
sion that suit better the specificity of the differential scattering section. As a consequence,
the method for generating random numbers become more complex and the computational
time depends on the size of the spheres. In order to work around this problem, the den-
sity probability function P (θ, ϕ) is written as the sum of positive terms and the joint
probability method described in section 3.2.1 is applied.

Let’s choose ϕ0 ∈ [0, 2π] and W ∈ [0, 1] to be defined by the following expression:

Q = IW cos(2ϕ0) U = IW sin(2ϕ0) (3.19)

which is always possible since the degree of polarization is smaller than 1. By noticing that

Q cos(2ϕ) + U sin(2ϕ) = IW cos(2(ϕ− ϕ0)) (3.20)

the expression of the two-dimensional probability density function P (θ, ϕ) gets changed
its expression in Eq.(3.18) into

P (θ, ϕ) =
I

Is
(t1(θ, ϕ) + t2(θ, ϕ)) (3.21)

with

ti(θ, ϕ) = |Si(θ)|2 sin θ
[
1−W + 2W sin2(ϕ− ϕ0 + (i− 1)

π

2
)
]
, i = 1, 2. (3.22)

The norms of t1 and t2 are the integrals over the unit sphere

T1, 2 =

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

t1, 2(θ, ϕ) dθdϕ = 2π

∫ θ=π

θ=0

|S1, 2(θ)|2 sin θ dθ. (3.23)

From

t1(θ, ϕ) + t2(θ, ϕ) =
is(θ, ϕ)

I
sin θ (3.24)

we immediately get

Is
I

= T1 + T2 (3.25)
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which, in turn, implies that

P (θ, ϕ) =
T1

T1 + T2

t1(θ, ϕ)

T1

+
T2

T1 + T2

t2(θ, ϕ)

T2

, (3.26)

where

P1, 2(θ, ϕ) =
t1, 2(θ, ϕ)

T1, 2

(3.27)

are the density probability functions related to the functions t1 and t2. We may notice
that the random variables θ and ϕ are statistically independent, as each of the expressions
of P1 and P2 is the product of a function Pθ,i of θ only and a function Pϕ,i of ϕ only (with
i = 1 or 2).

To summarize, the angles (θ, ϕ) are generated in four steps

1. The composition method outlined after Eq.(3.11) is used first, to decide which of
the combined probabilities P1(θ, ϕ) or P2(θ, ϕ) will be followed;

2. Once the index 1 or 2 is chosen, the angle θ is defined by applying the inversion
method to the probability density

Pθ,i(θ) =
|Si(θ)|2 sin θ∫ π

0
|Si(θ)|2 sin θ dθ

(3.28)

via a numerical calculation of its cumulative probability density;

3. Then, the method of compositions is applied again to the probability density

Pϕ,i(ϕ) =
1

2π
(1−W ) +W

sin2(ϕ− ϕ0 + (i− 1)π
2
)

π
(3.29)

as this probability density is the sum of the constant 1
2π

(1−W ) and the function

gi(ϕ) =
W

π
sin2(ϕ− ϕ0 + (i− 1)

π

2
); (3.30)

4. Finally, if the previous step selects the constant, ϕ is drawn uniformly in the [0, 2π]
interval; otherwise ϕ is determined by applying once more the inversion method to
the probability density Gi(ϕ) = 1

W
gi(ϕ) obtained by normalizing gi.

Interaction with interfaces and layered media. Let’s consider a photon whose
current location is rn and which flies along the direction Ωn. We call d0 the distance
separating rn from the closest interface in the direction Ωn. A distance d is drawn
according to the probability function given in Eq.(3.5). If d > d0, then the next location
of the photon to be considered is at the interface in rn+1 = rn +d0Ωn, where it undergoes
a reflection or a transmission; conversely, if d < d0, then the next photon location is
at the scatterer’s location rn+1 = rn + dΩn and it undergoes an event of scattering as
described in the previous paragraphs.
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When dealing with the encounter of the photon with an interface between two semi-
infinite media, we use the Fresnel’s laws to describe the two possible events, namely the
reflection and transmission at the interface. Actually, any time the photon encounters an
interface, one has to choose between reflection and transmission. This choice is realized
as follows:

• first, the frame of reference (ex, ey, ez) is rotated so that (ex, ey) are respectively
parallel and perpendicular to the incidence plane. In other words the x and y axes
coincide with the usual ‖,⊥ axes in which the Fresnel laws are most conveniently
expressed,

• then, calling R‖ = r2
‖ and R⊥ = r2

⊥ the intensity reflection coefficients for the ‖ and
⊥ polarizations (r‖ and r⊥ being the usual field amplitude reflectivities appearing
in the reflection Jones matrix), the actual reflectivity for an incoming Stokes vector
S = [I, Q, U, V ]T is

R =
1

2

[
(r2
‖ + r2

⊥) +Q(r2
‖ − r2

⊥)
]
. (3.31)

A random number pR is generated with uniform probability in the interval [0, 1]
and compared with R.

If pR ≤ R then the photon is reflected at the interface, otherwise it is transmitted. In
the new location at the interface, the new state of polarization of the photon is given by
means of the Fresnel’s law, while the new direction of flying is obtained by means of the
Snell’s law, so that the new status of the photon is completely described.

When dealing with a model involving several layers of scattering media, then the
algorithm is applied to each layer identified by the index i with the proper mean free
path `i.

Interaction with a lambertian. A totally depolarizing, lambertian partially reflect-
ing surface is a special case of an interface. A lambertian reflecting surface is often used
in multilayer models as the "bottom" interface to "lump" the contributions of the deepest
layers into a single response, provided that these layers are strongly depolarizing.

A lambertian is characterized by an angular distribution of the scattered light inde-
pendent of the direction of the incoming light, and which follows the Lambert’s law

I(θ, ϕ) dΩ = Zi
a

π
cos θ dΩ = Zi

a

π
cos θ sinϕ dθdϕ (3.32)

where dΩ is the collection solid angle, Zi the illumination power, and a the lambertian
albedo, which defines the fraction of the illumination power which is backscattered into
the full π solid angle, or, in other words, the probability that an incoming photon has to
be backscattered.

The Monte Carlo treatment of the backscattering on a lambertian is quite straightfor-
ward. From Eq.(3.32) above, we see that the azimuthal angle ϕ is uniformly distributed
between 0 and 2π, while the normalized distribution of the polar angle θ is given by

PL,θ(θ)dθ = sin(2θ)dθ (3.33)
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from which we get the cumulative probability

x(θ) =

∫ θ

0

sin(2u)du =
1

2
(1− cos(2θ)). (3.34)

A number ζ uniformly distributed in the interval [0, 1] is drawn and the polar and az-
imuthal angles are calculated as:

θ =
1

2
arccos(1− 2ζ), ϕ = 2πζ. (3.35)

For a partially reflecting lambertian a < 1, some of the photons impinging on the
scattering medium get lost in the medium while the others are backscattered.

A random number ā uniformly distributed in the interval [0, 1] is generated and its
value is compared with the albedo a of the lambertian. Then, if ā ≤ a the photon is
backscattered as described above, otherwise the photon is absorbed.

As the lambertian is assumed to be totally depolarizing, the backscattered photons
emerge with a Stokes vector S = [1, 0, 0, 0]T .

Photon collection. Typically, scattering experiments are carried out with a CCD
(Charge-Coupled Devise) camera coupled with an imaging optical system. In most cases,
the surface of the sample under study is directly imaged on the CCD. In this case, each
pixel of the detector is conjugated with a well defined (small) surface element dS of the
sample. As a result, the photons reaching this pixel are those leaving dS with a direction
within the solid angle Ωd defined by the imaging system. Then one obtains a space-
resolved polarimetric image of the sample surface. All the simulated and almost all the
experimental data presented in this thesis are of this type.
Alternatively, it may be interesting to collect angle-resolved polarimetric data, typically
with a sufficiently small illuminated area to make it sure that the photons collected in a
given direction are coming from the entire illuminated area. Two experimental detection
setups can be used for this purpose:

1. The most traditional is based on a goniometric mount supporting both the optics
and the detector. A small pinhole is usually placed at the image focal point of the
optics, to define a small acceptance solid angle for the light allowed to reach the
(usually single) detector. This mount is then rotated, typically around one axis,
but a two-axis rotation is also possible. An angular scan is then required, in most
cases, to obtain the desired information;

2. An alternative solution consists in imaging on a 2D camera the back focal plane of a
lens featuring a large numerical aperture (N.A.). Typically this lens is a microscope
objective. When compared with the goniometric mount, the main advantage of this
solution is the simultaneous acquisition of 2D angle resolved data over all the solid
angle defined by the lens N.A. The corresponding drawbacks are:

• a limitation of the polar angle to about 65◦ for the usual high N.A. objectives,
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Figure 3.2: Schematic representation of typical photon collection systems. (a):
real space imaging of the surface sample. (b): goniometric mount for angle resolved
measurements. (c): angular resolved collection system imaging the back focal plane
of a high N.A. Fourier lens.

• a possible decrease in angular resolution at the highest polar angles, as for
quasi-stigmatic optics (which include microscope objectives), each exit direc-
tion defined by the polar and azimuthal (θ, ϕ) is mapped in the final image
as a point located at the azimuth ϕ and at radial distance from the center
proportional to sin θ,
• possible artefacts due to the objective Mueller matrix, which may become

significantly different from unity at large polar angles.

However, these drawbacks can be properly handled. The potential of this technique
has been demonstrated for grating metrology as well as the characterization of
various natural or artificial photonic structures [60]. Moreover, as discussed in the
last chapter, this technique may also prove useful to constrain the parameters of
tissue optical models, by measuring the angular distribution of the light scattered
in the forward direction from samples whose thickness can be selected in order to
enhance (or decrease) the contribution of single scattering events.

Fig. 3.2 schematizes the three types of setup.

As already stated, the simulations presented in this work have been realized for a
direct imaging configuration, with 0.025 cm sided detectors disposed over a squared grid
covering the 1 cm radius surface of the camera objective. Then, we have simulated the
polarized light scattering that is detected by the 1600 (40 x 40) detectors, with, however,
a very small N.A.: as discussed in the following paragraph, we used a "non-analog"
game where the photons were assumed to impinge the CCD pixels under quasi-normal
incidence.

The non-analog game. So far, we implicitly assumed that the number of photons
collected by any single detector –together with the resulting polarization– is evaluated
by simply counting the number of photons actually impinging on the detector in the
simulation, and summing up their Stokes vectors. However, this conceptually simple
procedure leads in many cases to prohibitive calculation times.
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To reduce the computational burden, we choose to evaluate the photons flux Φij

eventually impinging on the detector (i, j) by the method known as the non-analog game.
Let’s consider the photon k (belonging to a package of N photons) that propagates

into the medium and reaches a scatterer or an interface with the energy Ek. By bouncing
into a sphere or an interface, this photon gets scattered or refracted or reflected with
an angular distribution probability given either by the Mie theory for the scattering by
a sphere or by the Snell-Fresnel’s equations for the interaction with a surface. Calling
(θkij, ϕ

k
ij) the polar and azimuthal angles (in the proper reference frame centered at the

current position of the photon), defining the initial direction of the optical path joining
the current photon position and the detector (i, j) and dΩk

i,j the solid angle under which
the photon "sees" the same detector, the probability that the photon is directly sent into
this pixel after the current interaction event is given by

Φk
ij = WkP (θkij, ϕ

k
ij)T

k
ijdΩk

i,j (3.36)

where

1. P is the angular distribution probability for the scattered photon (P is defined by
Eq.(3.21) while it takes the form of a Dirac δD function for the interaction with an
interface);

2. T kij is the probability that the photon reaches the detector from its current position.
This quantity is evaluated as the product of the transmission coefficients through
the scattering media and the interfaces present on the optical path to the detector.
The contribution to each pixel is proportional to the probability of the photon to
reach the detector without other scattering. In our case, for each event we consider
only the pixel located at the orthogonal projection of the current photon position
on the sample surface. This is equivalent to considering an imaging system in real
space with a very small N.A.;

3. Wk is a "weight" attributed to the photon, whose initial value is equal to 1, and
which decreases at each event described by Eq.(3.36) by the quantity Φk

ij, to properly
take into account, at each step, the probability that the photon has already been
detected.

Finally the flux at point estimation at location of detector (i, j) for the whole photon
package is simply the sum of contributions of all the N photons:

Φij =
N∑
k=1

Φk
ij. (3.37)

Moreover, each individual photon trajectory is ended when the photon gets lost in the
geometrical sense, meaning that it has been scattered in the vacuum outside the sample
in directions were it cannot reach the detector anymore.

3.2.3 Evaluation of the Mueller matrix

Let’s first consider a package comprising N photons with the same Stokes vector Si for
all of them. The output of the Monte Carlo simulation provides an estimation of the
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emerging intensities and polarizations for all the detectors taken into account. Of course,
this procedure needs to be repeated, with the same Si, until the predefined variance on
the result is reached. As a result, we obtain, for each detector, the output Stokes vector

So = M · Si. (3.38)

Of course, in order to fully determine M, this procedure must be repeated with several
input Stokes vectors Si. This can be achieved in (at least) two different ways, as discussed
hereafter.

Minimal sampling. To determine M we need at least four input Stokes vectors Si
k

(with the integer k varying between 1 and 4), these vectors being the columns of a "polar-
ization modulation" matrix W. The four output Stokes vectors So

k can also be considered
as the columns of an output matrix F = M ·W. Provided the four Stokes vectors Si

k are
linearly independent, W can be inverted, and M is obtained as

M = F ·W−1. (3.39)

As it will be discussed later, in connection with the optimization of Mueller polarimeters,
the noise propagation from F to M is optimized (i.e. the noise on the elements of M
is minimized for a given noise level in F) when W is "as close as possible" to a unitary
matrix, a condition equivalent to choosing the Si

k at the tip of a regular tetrahedron at
the surface of the Poincaré sphere.

Of course, the matrix M can be overdetermined by using more than four input Stokes
vectors. If so, W becomes a rectangular matrix, with more than four columns. As a
result, M can still be calculated according to Eq.(3.39), where the inverse of W must be
replaced by its pseudoinverse. It is not clear, however, whether for the same computation
time this overdetermination provides better final results, in terms of variances of the
elements of M, than the minimal sampling with four input vectors.

Statistical sampling. This alternative approach is based on a statistical sampling of
the input Stokes vectors at the surface of the Poincaré sphere. If we call α and β the
polar and azimuthal angles on this sphere (α = π

2
− 2χ, β = 2ψ, where the angles ψ

and χ have been defined in section 1.3.2), a generic Stokes vector Si at the surface of the
sphere takes the form

Si(α, β) = [1, cosα, sinα cos β, sinα sin β]T . (3.40)

The angles α and β are distributed over the intervals [0,π] and [0, 2π] respectively ac-
cording to a joint probability density P (α, β).

We now define the 4 x 4 correlation matrix D of the input Stokes vector components as∫ α=π

α=0

∫ β=2π

β=0

Si(α, β) · [Si(α, β)]T P (α, β) dαdβ = D. (3.41)

Similarly, the correlation matrix G of the components of the output and input Stokes
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vectors is given by

G =

∫∫
So(α, β) · [Si(α, β)]T P (α, β) dαdβ

= M

∫∫
Si(α, β) · [Si(α, β)]T P (α, β) dαdβ = M ·D.

(3.42)

As for the minimal sampling described in the previous paragraph, M is obtained by in-
verting D:

M = G ·D−1 (3.43)

provided D is non-singular, a condition which depends on the definition of P (α, β). In
this respect, we made the simplest possible choice, namely a uniform distribution of (α, β)
over the intervals [0,π] and [0, 2π]. Then D takes the diagonal form

D = π2


2 0 0 0
0 1 0 0
0 0 1

2
0

0 0 0 1
2

 . (3.44)

Stop criterion. As a reasonable compromise between computation time and accuracy,
the simulations are considered as converged when the standard deviation of any coefficient
of the Mueller matrix Mij normalized by the first one M11 (Mij/M11, i, j = 1, 2, 3, 4, i ·
j 6= 1) denoted as M∗

ij, is smaller then 1.5%. This choice is justified by the fact that
the experimental Mueller matrices are provided in normalized form, without quantitive
values for the M11 element.

By applying the Central Limit Theorem for any coefficient we obtain the values be-
longing to the interval ±3% around its mean values at a 95% level of confidence.

It turns out that in our conditions, with the statistical sampling of the input Stokes
vectors the procedure converges faster than with the minimum sampling. The former has
thus been used throughout this work.

3.3 Conclusion
In this chapter we outlined the Monte Carlo algorithm we have modified and used for
the investigations reported in the following chapters. All the essential steps have been
described, including the definition of individual photon trajectories, statistical samplings
and evaluation of the sample Mueller matrix measured with various instrumental geome-
tries.

Perhaps the greatest advantage of using the Monte Carlo method to simulate physical
experiments, is its liability to handle complex sample geometries and particular illumina-
tion and detection setups. This method is thus the most suitable to realistic modelling of
tissue polarimetric response aimed at defining new diagnostic tools. Accurate modelling is
indeed necessary to optimize the experimental parameters to enhance the useful contrasts
between healthy and pathological zones: purely empirical optimization would require a
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clinical trial for each envisioned configuration! As discussed in the following chapters,
such models may involve many experimental parameters, especially if these models are
supposed to reach the accuracy needed for a realistic diagnostic tool. These parameters
should be constrained, if possible by different experiments, to reduce the ambiguities aris-
ing when too many parameters are involved in the fit. There again the capability of the
Monte Carlo technique to handle various geometries is decisive to run such simulations.



Chapter 4

Experimental activity

4.1 Introduction
Polarimetric imaging is based on the analysis of the modification of the incident light
polarization due to interaction with the sample. As such, it may provide different and
complementary information with respect to the usual imaging based on intensity mea-
surements. Polarimetric imaging may be implemented in several ways, based on various
ways to generate the incident polarization and to analyze its counterpart of the emerging
light.

For example, only two images are required for orthogonal state contrast (OSC). These
two images are typically taken with parallel and perpendicular linear polarizations, and
then combined to display the OSC image, which is has also been called improperly degree
Of linear polarization, or DOLP. The same approach may be applied to orthogonal states
of circular polarization, to display the degree of circular polarization, or DOCP. These
techniques provide contrasts which may be useful in various fields, i.e. in dermatology
[61]. However, OSC techniques can completely characterize only special samples, with
simple polarimetric responses, such as pure depolarizers.

Conversely, in the most general case, a complete characterization of the sample re-
quires Mueller polarimetry, which is based on the acquisition of 16 images (with four
input and four output polarization states). These images can subsequently be treated
by various algorithms to "extract" the essential polarimetric effects, namely the diatten-
uation, the retardation and the depolarization, by using one (or several) decomposition
techniques outlined in section 1.4.3.

In this chapter, we will present the experimental part of this work, which includes
data taken with three different setups, namely:
• a full Mueller imaging system, designed to make real-space images of the surface

of a scattering medium under focussed illumination, developed at Laboratoire de
Physique des Interfaces et des Couches Minces (LPICM) of Palaiseau, France, at
the very beginning of this work,

• a Fourier space polarimetric imaging system, developed during a three months stay
at the Oregon Health and Science University (OHSU) of Portland, Oregon, in Pr.
Steven Jacques’ team,

• a full Mueller real space imaging system, located in the Pathology Department of
Institut Mutualiste Montsouris (IMM), an hospital in Paris, where various tissues
(uterine cervix cone biopsies, colon samples...) have been imaged ex vivo.

77
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Mueller polarimeter
with focused illumi-
nation

Goniometric
polarimeter

Fourier space
imaging po-
larimeter

Real-space Mueller
imaging polarime-
ter

Application Spatially homogenous
medium µ′s

Determination
of the scatterer
size

2D image 2D imaging of any kind
of sample

Advantage Accurate information
due to the spa-
tial pattern of the
backscattered light

Full angu-
lar range of
investigation

Fast Full field, integration
to in vivo colposcopy

Disadvantages Does not work for spa-
tially inhomogeneous
sample

Slow (point
measurement)

Limited to 60◦
with micro-
scope objective

Difficult to reduce the
time of measurement

Table 4.1: Comparison between the three different setups developed in this work.

In Table 4.1 we compare the three experimental approaches pointing out applications,
advantages and disadvantages of each method.

4.2 Mueller imaging with focussed illumination

This part of the work was aimed at reproducing the results published by Hielscher et
al. [62], to get a first set of reliable experimental data to compare with Monte Carlo
simulations of Mueller images of scattering samples taken in the backscattering geometry.

4.2.1 The instrument

Figure 4.1: Scheme of the Mueller polarimeter for real space imaging of a scattering
sample in backscattering geometry and focussed illumination.
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The experimental setup. This polarimeter is schematized in Fig. 4.1. The source, a
Helium Neon (HeNe) laser, is well suited for an operation with tightly focussed beam on
the surface of the sample. The polarization of the beam incident on the sample is defined
by a Polarization State Generator (PSG), composed of a dichroic plastic polarizer and
a Babinet-Soleil-Bravais compensator (Cp) consisting of two wedged quartz plates with
parallel fast axes and a translation plate allowing to vary the effective quartz thickness
seen by the light beam. In addition of being adjustable in retardation, this compensator
may also be oriented at will in the xy plane. A photo of this device with its mount is
shown in Fig. 4.2.

Figure 4.2: The Babinet-Soleil-Bravais compensator with its mechanical mount.

In contrast, the polarizer is kept oriented horizontally (in the x direction) and the
laser can be rotated to accurately adjust the overall illumination intensity to match the
dynamical range of the CCD. The compensator retardation is adjusted either to 180◦
(λ/2), to generate linearly polarized states with various azimuths, or to 90◦ (λ/4), to
generate right and left circular polarizations. The polarizations actually used in the
measurements were linear, at 0◦, 90◦, +45◦ and -45◦, respectively labelled H, V, P, M.
The right and left circular polarizations are labelled R and L, respectively.

The lens L1 focusses the beam onto the sample surface. The fraction of the beam
transmitted through the sample is measured by a single detector, to evaluate the photon
mean free path `s in the scattering sample as described below.

The sample surface is imaged on a CCD by the lenses L2 and L3 and the CCD
objective. A tiny mask is inserted in the focal plane of L2 to reject the specular reflection
of the laser beam on the front surface of the sample, which would otherwise strongly
saturate the CCD.

The polarization of the backscattered light is analyzed by a Polarization State Ana-
lyzer (PSA) consisting of a true zero order quarter wave plate (QWP) made of quartz
and a second plastic dichroic polarizer P2. Both elements can be rotated at will in the
transverse plane of the emerging beam. The incoming polarization is then projected onto
linear states by setting the fast axis of the QWP parallel to the transmission axis of P2,
both at the chosen azimuth. The projection on circular states is achieved by setting the
axes of QWP and P2 45◦ apart from each other. The basis polarization states of the
PSA actually used are the same as those of the PSG, and they also labelled H, V, P,
M, R, L. Actually, PSAs comprising a linear polarizer and a QWP are very widespread,
but they are usually operated by rotating only the QWP and letting the polarized fixed.
However, by doing so the incoming state of polarization is projected onto elliptical states,
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which would need an extra calibration procedure that we avoided with the polarizer and
QWP settings described above.

The camera used for the image acquisition was a CCD from Princeton Instruments
Inc., with 575 x 384 pixels and a A/D conversion dynamics of 14 bits. This camera was
operated at room temperature, with a significant temperature dependent offset due to
the dark current. Consequently, periodic measurements of this dark current had to be
performed by taking an image with the CCD whip "in the dark", to be subtracted from
the subsequently measured images.

The measurement procedure. The PSG and the PSA were manually adjusted to
sequentially generate the six input and six output polarization basis states. The Mueller
image of the sample was then calculated from the 36 raw images corresponding to the
whole set of possible combinations of these states after subtraction of the dark current
which was done before each run. The overall acquisition time for a complete Mueller
measurement was typically 1 hour.

The combinations of the raw images providing the Mueller matrices are the same as
those used by Hielscher et al. [62] and are reported in Fig. 4.3.

Figure 4.3: Table of combinations of the raw images used to retrieve the Mueller
images [62].

In the table shown in Fig. 4.3, the meaning of the labels H, V, P, M, R and L is
the same as in the previous paragraph. The first label identifies the incident polarization
and the second the detected one: for example HP means that the sample is illuminated
with H polarization while the PSA is adjusted for projection on P polarization. The label
"O" identifies unpolarized states. As such states could not be generated directly by the
PSG and the PSA, they were "synthesized" from polarized measurements by taking the
average of the images corresponding to two orthogonal states (H and V, or P and M, or
L and R).



4.2. MUELLER IMAGING WITH FOCUSSED ILLUMINATION 81

Evaluation of the accuracy. The accuracy of the polarimeter was evaluated by com-
paring the measured Mueller matrices with their expected counterparts for well character-
ized optical elements, namely a dichroic polarizer and a retardation plate. This procedure
was implemented in two steps:

1. The scattering sample was replaced by a ground metal plate, whose Mueller matrix
M0 is close to that of a mirror, i.e. diag(1, 1, -1, -1). M0 was then measured.

2. The test sample was inserted, either in the illumination or in the detection arm,
without removing the metallic plate. The composite matrix M was then measured,
and then the sample matrix Ms was extracted as Ms = M−1

0 ·M if the sample was
inserted in the illumination arm while Ms = M ·M−1

0 if this sample was set in the
detection arm.

As test samples, we used a dichroic polarizer and a mica retardation plate specified
to be quarter wave at λ = 532 nm. For both samples, the experimental matrix to be
compared with the theory was M∗

s, i.e. the matrix Ms normalized by itsMs11 element, to
eliminate the overall transmission factor for unpolarized light, for which the instrument
was not calibrated. Moreover, both components were measured at different azimuths, to
explore the accuracy of the instrument on a "diversified" set of data. The theoretical
formulas are provided in Appendix A.

The results obtained with the polarizer inserted in the illumination arm and measured
at various azimuths between 90◦ and 180◦ are summarized in Fig. 4.4.

While the polarizer could be considered as perfect, the retardation of the mica plate
at λ = 633 nm had to be measured. This was done in a standard way, by placing both
the mica plate and the compensator with their axes aligned with respect to each other at
45◦ of the axes of crossed linear polarizers. The retardation δR of the mica plate was then
determined from the setting of the compensator for which a good extinction was observed
between the crossed polarizers, implying that the retardation δR had been compensated
by that of the Babinet-Soleil-Bravis. Of course, the compensator had been previously
calibrated, by pointing the settings for which the phase retardation was a multiple of
180◦. This procedure eventually provided δR = 74.2◦± 1◦. The results obtained with the
mica retarder also inserted in the illumination arm are shown in Fig. 4.5.

From the above data and the theoretical formulas in Appendix A we can define for
each measured matrix two quantifiers of the accuracy, namely the overall root mean
square deviation (rms) and the largest error (emax) among the 15 normalized elements
M∗

ij. The 15 elements of each Mueller matrix were normalized by M11. The values of
these quantifiers obtained from the data shown above are summarized in Table 4.2.

Azimuth 0◦ 30◦ 45◦ 60◦ 90◦ 135◦

rms MP 0.023 0.022 0.024 0.022 0.025
emax MP 0.061 0.039 0.053 0.046 0.058
rms MR 0.040 0.043 0.039 0.037 0.038 0.032
emax MR 0.092 0.094 0.093 0.073 0.097 0.084

Table 4.2: Overall root means square (rms) and largest error (emax) for the Mueller
matrix of the dichroic polarizer (MP) and mica retarder (MR) measured at different
azimuth angles. Each Mueller matrix was normalized by its MS11 (S = P and R,
respectively).
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Figure 4.4: Mueller matrices of the polarizer set a various azimuths. All elements
but M11 are normalized by M11 (M∗

ij , i, j = 1, 2, 3, 4). Top: elements expected to be
nonzero. The solid lines are fits by sine functions. Bottom: theoretically vanishing
elements.

The polarizer and the retarder were also measured in the detection arm, with very
similar results. Overall, the accuracy achieved without any specific calibration procedure
was considered as quite satisfactory, and was indeed sufficient for the studies on the sphere
suspensions described in the next subsection.

4.2.2 Results on suspensions of polystyrene spheres in water

We performed the measurements and simulations of polarimetric images of two different
suspensions of polystyrene spheres in water (radii r1 = 50 nm and r2 = 1500 nm, optical
index contrast m = 1.59/1.33 for both samples). For these studies we used the three cells
shown in Fig. 4.6. The cylindrical cell, with metallic sidewalls and glass front and rear
faces, was used for Mueller imaging of suspensions of polystyrene spheres in water.

The 1 mm thick cell was used to determine the mean free path `s of the suspensions by
measuring the intensity of the transmitted beam, which was not detectable after the thick
cell. This mean free path had to be determined experimentally with a good accuracy to
be used as an input parameter for the simulations. The anisotropy parameter g and the
directional mean free path `′s were determined theoretically, from the sphere radii and
the index contrast m. The result of this characterization of the two studied suspensions
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Figure 4.5: Analogous to Fig. 4.4 for the mica retarder.

are summarized in Table 4.3
The Mueller images of the two sphere suspensions characterized as explained above

are shown in Fig. 4.7, together with Monte Carlo simulations realized with the relevant
values of the radii ri, the index contrast m and the mean free path `s. These matrices
are given in normalized form: every element Mij is divided by M11, except, of course,
M11 itself, which is displayed in arbitrary units. The same scales have been used for the
experimental data and the simulations, both for transversal dimensions (2 cm width) as
well as color scales (between -0.2 to 0.2) for the normalized elements M∗

ij.
Two main conclusions can be drawn from these results:

• The essential features observed by Hielscher et al. [62] are reproduced: "small"
sphere suspensions (r1= 50 nm, Rayleigh scattering regime) exhibit essentially ra-
dially oriented diattenuation and zero retardation, while the opposite (radial re-
tardation without diattenuation) is seen for "large" particles (r2 = 1500 nm, Mie
scattering regime).

• The agreement between experiment and simulations is quite good: the current
version of the code is validated.
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Figure 4.6: Photo of the cuvettes used for the measurements on suspensions of
polystyrene spheres in water. From left to right : the 1 cm thick and 2 cm diameter
cylindrical cell used for Mueller imaging, a square based 1 cm thick cell, and the 1 mm
thick rectangular cell.

Sample Cell + water r1 = 50 nm r2 = 1500 nm

Signals [mV] 3580 1370 537
Transmission 1 0.383 0.15

`s [mm] 1.04 0.53
g 0 0.5

`′s [mm] 0.383 0.15

Table 4.3: Raw data and deduced scattering parameters for the two sphere suspen-
sions.

In the following, we will consider real space polarimetric imaging with uniform illu-
mination. As the setup used for the measurements described above did not allow full
field illumination, here we present only space averages of the images shown in Fig. 4.7.
These averaged images are spatially uniform. as the butterfly patterns with azimuthal
dependence proportional to the sine or the cosine of the aimuthal angle ϕ or its double
2ϕ average to zero only the diagonal terms remain, with the following values (values for
the off-diagonal terms are given to show the signal to noise ratio)

1 2.5 10−5 2.7 10−5 1.1 10−5

3 10−5 0.174 1.6 10−5 1.4 10−5

0.9 10−5 2.9 10−6 −0.174 8.3 10−5

−5.1 10−5 −2.7 10−5 2.1 10−5 −0.066

 (4.1)

for the small spheres, and
1 1.3 10−5 4.6 10−5 1.8 10−5

−1.8 10−5 0.083 6.3 10−5 2.5 10−5

5.8 10−6 4.3 10−6 −0.083 6.2 10−5

−7.6 10−5 −1.9 10−5 5.4 10−5 −0.328

 (4.2)

for the large ones. These matrices are written in extenso to show the "signal to noise"
ratio, given by the off-diagonal terms, which should be zero, and are of the order of 10−5.
These simulations thus confirm the general trends already reported [63] for the diagonal
terms of the Mueller matrix of isotropic scattering media:
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Figure 4.7: Backscattering Mueller matrix images of suspensions of polystyrene
spheres in water, taken at λ = 633 nm. (a, b): measured; (c, d): simulated. Sphere
radii: r1 = 50 nm for (a) and (c), r2 = 1500 nm for (b) and (d). The central spot
on the experimental images (a) and (b) is the shadow of the mask which eliminates
the specular reflection on the front surface of the cell containing the suspensions.

|M∗
22| = |M∗

33| > |M∗
44| (4.3)

for the Rayleigh scattering regime, while the opposite,

|M∗
22| = |M∗

33| < |M∗
44| (4.4)

holds for the Mie scattering regime. As we will see later, the vast majority of the tissue
samples that we studied in backscattering behave as depolarizers with diagonal Mueller
matrices. Moreover, these matrices always obey Eq.(4.3). At first sight, this behaviour
seems to indicate that the contribution of the nuclei in the backscattered light is negligible,
as this contribution is expected to obey Eq.(4.4), due to the radius of nuclei, which is
typically 2µm or more.

However, we should keep in mind that the index contrast m between the nuclei and
the cytoplasm is much lower than for polystyrene spheres and water. It is well known
[64] that for m ≈ 1 even particles much larger than the wavelength behave as small
scatterers, which corresponds to the Rayleigh-Gans scattering regime (described in sub-
section 2.2.3). If this regime has been well characterized for the usual single scattering
parameters (such as the cross-section or the angular distribution), to our knowledge the
Mueller matrix in the backscattering geometry has not been studied. We thus carried out
various simulations in this regime. A typical result is shown in Fig. 4.8, which is similar
to that seen in Fig. 4.7 for "true" Rayleigh regime. The larger noise is due to a very
large scattering anisotropy (g ≈ 1), which drastically decreases the number of detected
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photons in the backward direction with respect to the previous simulation.

Figure 4.8: Simulated backscattering Mueller matrix image of a scattering medium
under focussed illumination, with m = 1.03 and r = 3µm.

At this point, we may conclude that the contribution of the nuclei in the backscattered
light may be quite small due to the strong anisotropy of the scattering, but this contribu-
tion is likely to be of Rayleigh type, in agreement with the observations on real tissues.
However we will see later that the situation is more complex, with Mueller matrices of
Mie type appearing for realistic conditions if only the nuclei are taken into account in the
model.

4.3 Angle resolved Mueller imaging of thin tissues

As discussed in more detail in the next subsection, Fourier space imaging (FSI) provides
the angular distribution of the light emerging from the sample in a "snapshot", by imaging
the back focal plane of a lens set in front of the sample to collect this emerging light. FSI
provides full 2D angular distributions very quickly, with simple setups, while standard
2D goniometry typically requires a sophisticated mechanical mount to allow the two
dimensional angular scan of the detector, in a highly time consuming procedure. However,
the price to pay for this advantage of FSI is a limitation of the angular field to the
Numerical Aperture (N.A.) of the collecting lens, while classical goniometry may scan
the full range of polar angles, from 0◦ to 90◦. Of course both techniques have been used
to measure the angular distributions of intensities. However, by adding a PSG in the
illumination arm and a PSA in the detection arm, it is conceptually straightforward to
make these techniques polarization sensitive. The measured quantities are then angle-
resolved Mueller matrices.

Many applications can be envisioned for polarization sensitive FSI, including the char-
acterization of scattering or diffracting systems. In our case, the main interest of this
technique is the study of optically thin tissue samples, where single scattering is dominant.
This kind of measurements may prove very helpful to constrain the values of the param-
eters involved in the models aimed at reproducing the measured polarimetric responses
of tissues. As shown in the next chapter, even quite "simple" models may involve many
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parameters, and the constraints coming from single scattering data may be essential to
avoid ambiguities in the interpretation of the experimental data.

In this section, we will describe the sample preparation, the angular resolved po-
larimeters, and more particularly the FSI setup developed during my two months stay at
Oregon Health and Science University, Portland, in Pr. Steven Jacques’ team, in collab-
oration with Amy Winkler, another PhD candidate. We will also show the first results
obtained with these setups on the thin samples prepared as shown below.

4.3.1 The sample preparation

Ideally, the following measurements should have been performed in pure single scattering
regime. To this end, the sample thickness h must be much smaller than the scattering
mean free path `s. In other words, the optical depth do = h/`s must be much smaller
than 1. For an order of magnitude estimation of the contributions of multiple scattering
we can assume that the probability Pk for a photon to experience exactly k scatterings
is reasonably well described by a Poissonian distribution:

Pk =
dko
n!
e−do (4.5)

where do is the sample optical depth. Actually this law would be rigorously valid for
scatterings at small angles, but for a rough estimation it may be used anyway. As a
result we get

P2

P1

≈ do
2

(4.6)

which confirms the intuitive criterion do << 1 for single scattering operation. However,
the smaller do, the smaller the scattered intensity. Thus we had to find a good compromise
between the limitation of the multiple scattering contribution and the need to achieve a
reasonable signal to noise ratio. This compromise was found for do ≈ 1, meaning that
one third of the photons suffer two scatterings.

For all the measurements described in the following (excepted those on honey) we
used 150 µm thick cells composed of two microscope plates separated by coverslips, as
shown in Fig. 4.9.

Figure 4.9: Mounting of the 150 µm thick cell used for phantom or tissue measure-
ments.
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Tissue phantom. This phantom consisted of suspensions of polystyrene spheres in
distilled water (sphere diameter ds = 2µm, refractive indexes of the medium and sphere
nm = 1.33, ns = 1.59, respectively, density of spheres per µm3 Ns = 1%). The scattering
mean free path of these suspensions was evaluated by Mie theory as `s ≈ 166 µm, leading
to do ≈ 0.9, a slightly more favorable value for single scattering than the "target" do = 1.

Biological tissues. We cut very thin slices (approximately 150 µm thick) of fresh
vegetables and frozen tendon to provide biological thin samples. We placed the sample
in the 150 µm thick cell as described above. In order to create a humid chamber such
to prevent the sample to dry we placed a small piece of humid paper together with the
sample.

We also measured honey at room temperature to provide another biological sample
with optical activity. In this case we used a 3 cm thick quartz cuvette to get measurable
polarization rotations.

4.3.2 The polarimetric components and measurement procedure

The polarization state generator and analyzer. The two setups described in this
section are all based on the polarimetric design schematized in Fig. 4.10. The horizontally
(H) polarized output of a HeNe laser is sent into a PSG comprising a half wave plate
(HWP), a linear polarizer (P) and a quarter wave plate (QWP). The half wave and the
polarizer can be rotated in the HV plane. The quarter wave plate can be removed, or
oriented so that its optical axes coincide with the transmission axis of the polarizer P to
generate linearly polarized states. This plate was then set with its optical axis at +-45◦
from the incident linear polarization to produce circularly polarized states. In principle,
the HWP could be sufficient to generate any linear polarization by rotating the input H
polarization of the HeNe. However, this input polarization is not perfectly linear at the
laser output, and is further degraded if additional optics are inserted between the laser
and the PSG. The polarizer P is thus necessary to recover well defined linear polarizations,
to be used directly or to be converted to left and right circular states by the quarter wave
plate. The PSA is composed of the same elements placed in reverse order, excepted the
HWP, which is no longer necessary.

Figure 4.10: General scheme of the polarimetric components of the angularly resolved
polarimeters described in this section. HWP: half wave plate, P: polarizer, QWP:
quarter wave plate, S: sample, A: analyzer.

The polarization states generated by the PSG and analyzed by the PSA are the same
as in the polarimeter described in the previous section, namely H (linear horizontal), V
(linear vertical), P and M (linear, +45◦ and -45◦), R and L (right and left circular). The
settings of the PSG and PSA elements used to generate these states are summarized in
Tables 4.4 and 4.5.
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Polarization state HWP [◦] P [◦] QWP [◦]
H 0 0 removed
V 45 90 removed
P 45 45 removed
M 45 315 removed
R 45 90 +45
L 45 90 -45

Table 4.4: Settings of the PSG for the generation of the six input polarization states.

Polarization state QWP [◦] P [◦]
H removed 0
V removed 90
P removed 45
M removed 315
R 45 0
L -45 90

Table 4.5: Settings of the PSA for the analysis of the six output polarization states.

The measurement procedure. In total 36 raw data are taken to determine the polari-
metric response of the system. These measurements involve 6 input states of polarization
and 6 analyzed states of polarization, H, V, P, M, R, L. As already mentioned, the short-
hand for the intensity measured here is I with two subscripted letters indicating the
generated and analyzed state of polarization, respectively. For example, if H is the state
of polarization of the incident light, then the light traveling is denoted as IH and if P
is the state of polarization analyzed, then the measurement is denoted as IHP . Given
any state of polarization of the incident light, the Stokes vector of the scattered light
S = [I,Q, U, V ]T is obtained by calculating its components as

Q = I.H − I.V ; U = I.P − I.M ; V = I.R − I.L (4.7)

where the dot replacing the shorthand of the state of polarization of the incident light
stays for "any" state of polarization.

For comparison between theory and measurements we found more convenient to cast
the results as a 6 x 4 matrix, that we call "Polarimetric Matrix", rather than the usual
Mueller matrix (4 x 4). While the columns of the polarimetric matrix are the components
of the normalized output Stokes vectors, as for the Mueller matrix, the lines are the input
polarization states H, V, P, M, L and R. In some cases, the input states are reduced to
four. The details of the plotted quantities are shown in Fig. 4.11. Another reason to use
this matrix instead of the usual Mueller matrix is the normalization of each component
of the output Stokes vector by the relevant combination of orthogonal states, a procedure
which is probably more robust against the above mentioned errors in the evaluation of
the intensity than that used previously for the usual Mueller matrix.

The overall intensity is evaluated in multiple ways:
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Figure 4.11: The polarimetric matrix.

I = I.H + I.V ;

I = I.P + I.M

I = I.R + I.L

(4.8)

with the ultimate goal of normalizing any Stokes components to the value of the intensity
as following

Q

I
=
I.H − I.V
I.H + I.V

;
U

I
=
I.P − I.M
I.P + I.M

;
V

I
=
I.R − I.L
I.R + I.L

. (4.9)

In theory, the measures of I (Eq.(4.8)) should provide the same values, but in practice
this is not the case. A possible reason for these discrepancies is that the response of
the detector depends on the state of polarization of the detected light. Another possible
reason is that the optics and/or the detector may have some wedge or may be tilted
with respect to the beam (z direction), due to imperfect mounting in the rotation stages.
In fact, by rotating the polarizers and the wave plates we shows a noticeable change in
the beam location on the screen, which suggests that tilt and/or wedges are present and
modify the measured values.

4.3.3 The goniometric polarimeter

The setup. This instrument is schematized in Fig. 4.12. The laser beam first passes
through a PSG designed as described above, then through the sample, where part of it is
scattered into a 2D "halo". A mask made of a glass plate with a tiny chocolate dot blocks
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the directly transmitted beam, to allow an easier detection of the scattered component
close to the incident direction. The PSA and the detector (a photodiode) are placed on
a rotating mount to take angle-resolved data by changing the detection angle in the xz
plane.

Figure 4.12: Scheme of a goniometric polarimeter. Left : top view, showing the
angular scan of the detection arm around the y axis. Right : front view, showing the
2D scattering "halo" as seen by an observer looking into the -z direction.

Results. We used the tissue phantom described above (aqueous suspension of polysty-
rene spheres in the 150 µm cell). With the goniometric system one of the main issues was
to separate the scattering signal from the noise. To this purpose we implemented a lock-in
detection of the signal modulated by a mechanical chopper. Nevertheless, the signal to
noise ratio remained too low to make measurements for all polarimetric configurations.
Hence we decided to perform angular measurements only in the HH configuration, which
provided the largest signal. The result is shown in Fig. 4.13. We obtained a reasonable
agreement with the predictions based on Mie theory, with, however, some "blurring" of
the curve, making the dip expected at 20◦ hardly visible. This blurring might be due to
the contribution of multiple scattering.

4.3.4 The Fourier space imaging polarimeter

Operating principle. The basics of this instrument is illustrated in Fig. 4.14. As
described in any optics textbook, a lens focuses an incident parallel beam in its forward
focal plane into a point at the intersection of the focal plane and a line parallel to the beam
and crossing the lens in its center. The same happens for a parallel beam propagating in
the reverse direction, and which is focussed in the back focal plane.

This well known description of the focussing lens properties makes use of geometrical
optics. In the wave description of light, these properties can be recast as follows: in the
paraxial approximation, for any beam travelling in the "forward" direction the field in
the forward focal plane is the Fourier transform of the field in the back focal plane, and
vice versa, of course, for any beam propagating in the opposite direction. This is why
the focal planes are also called FT (for Fourier transform) planes.



92 CHAPTER 4. EXPERIMENTAL ACTIVITY

Figure 4.13: Goniometric polarimeter measured (green crosses) and expected (blue
dots) angular distributions from the tissue phantom in the HH polarization states.

As a result, the lens maps the incident light angular distribution into its back focal
plane, where it can be conveniently visualized by a 2D detector such as a CCD camera.
Depending on the respective sizes of the image in the forward FT plane and of the
2D sensor of the camera, an imaging system with the appropriate magnification may
be inserted between the FT plane and the CCD sensor. Moreover, for polarimetric
measurements a PSG and a PSA may be inserted in the illumination and detection arms
respectively.

In the paraxial approximation, assuming the emitting part of the sample is small with
respect to the lens diameter, the angular range [−αm, αm] which can be mapped by a
lens with focal length f and diameter D is defined by

αm = arctan

(
D

2f

)
(4.10)

which yields αm = 26.6◦ for the lens used in the following, with D = f = 25.4 mm.

The setup. The complete Fourier space imaging polarimeter is schematized in Fig.
4.15. Fig. 4.16 shows a photo of the setup.

This setup comprises all the elements cited above, namely a HeNe laser, a PSG,
a PSA, a FT lens, an imaging lens LI and a CCD. Due to space limitations on the
breadboard, the setup has been folded with two mirrors (M1 and M2). The lens LI was
chosen and positioned in order to demagnify the FT image by a factor of 8.8, to match
the 2.9 mm height of the CCD sensor. Moreover, a beam de-expander has been added
before the mirrors, to reduce the size of the illuminated zone. This beam de-expander
is a telescopic setup, comprising a 500 mm focal length plano-convex lens and a 10X
microscope objective, whose focal length is 18 mm. As it is well known, such a system
decreases the beam size, but increases the beam divergence by the same factor, so that
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Figure 4.14: Principle of Fourier Imaging. Left : side view, showing the paths of
incident parallel beams getting focussed in the forward Fourier plane. Right : front
view of the image in the Fourier plane, showing the 2D angular intensity distribution
seen by an observer looking into the -z direction.

Figure 4.15: Scheme of the complete Fourier imaging polarimeter. This figure is a
top view of the setup, excepted the image at the bottom right, which is shown in front
view.

in the far field the beam size may actually increase. To reduce this divergence, a 35 µm
diameter pinhole was added at the common focal point of the 500 mm front lens and the
microscope objective. Another pinhole was added just before the sample, to reduce the
beam size to about 1 mm on the sample.

Angular calibration. In order to obtain accurate calibration of the position of the
CCD sensor as a function of the angle of the incoming beam we used a glass wedge set at
the sample position to deviate the beam by a known angle, in this case 10◦. The wedge
was mounted on a rotation stage, thus allowing to vary the azimuthal angle at constant
polar angle.

Fig. 4.17 shows a composite image obtained by superimposing eight images taken
with the wedge rotated by 45◦ between two successive acquisitions, and a scattering
sample providing an angular distribution which can be considered as uniform over the
relevant angular range. This image shows a halo whose radius is 1.6 times that of the
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Figure 4.16: Photo of the complete Fourier imaging polarimeter.

Figure 4.17: Superposition of the CCD images taken with a uniform scatterer or
with a wedge deviating the beam by 10◦ set at eight equally spaced azimuths.

circle defined by the eight bright spots, corresponding to a polar angle equal to 10◦. The
accessible angular range is thus limited to 16◦ and not 26.6◦ as expected. This limitation
is certainly due to a vignetting effect related to the diameter of LI lens, which was the
largest available for the relevant focal length. We thus decided to proceed with this
limitation.

Polarimetric calibration. The Fourier imaging system was characterized polarimet-
rically, by measuring the polarimetric matrix of air, without and then with the FT lens.
These matrices are shown in Figs. 4.18 and 4.19.

In both cases, we expected HQ = PU = RV = 1 and VQ = MU = LV = -1 as the
only non-vanishing elements. Without the FT lens, the maximum error, close to 5 %
occurs in the MQ element. With the lens inserted the maximum error, of the order of
8 % affects LQ and LU. As for the overall intensities, the values measured for P and M
incident states are one-third to one-half of the other values: this is due to the setting of
the HWP, which leaves the light incident on the PSG in the H polarization, while the
first polarizer is rotated to 45◦.
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Figure 4.18: Polarimetric matrix of air measured with the FT lens removed.

Figure 4.19: Polarimetric matrix of air measured with the FT lens inserted.

4.3.5 Results

Microspheres. We first measured the polarimetric matrix of the aqueous suspension
of polystyrene spheres described above (subsection 4.3.1). The matrix is not complete, as
the input M and L states have not been included. These data have also been simulated
by Pr. Steven Jacques’ Monte Carlo code. Measured and simulated data are shown in
bottom and top panels of Fig. 4.20, respectively.

The ring structure visible in these simulations is not found in the experiments. How-
ever, the simulations were actually carried out for a total angular range equal to 45◦,
corresponding to a maximum polar angle of 22.5◦ from the sample normal. We already
saw that the experimentally accessible total angular range is 16◦, due to a vignetting
effect at the imaging lens. Moreover, in the simulations the considered polar angle is
defined within the sample, while in the experiments the polar angle is measured outside
the sample. As a result, the refraction from water to air has to be taken into account (the
effect of the parallel glasses is negligible at the considered angles), resulting in an angular
magnification of 1.33. Thus the accessible angular range within the sample is reduced by
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the same factor, and is then equal to 16◦/1.33 ≈ 12◦. This range is materialized in the top
left panel of Fig. 4.20 as white squares. Even though the experimental data are noisy and
show some centering defaults and possibly other systematic errors the main patterns are
visible (with, however, opposite signs in all elements but HQ, VQ, PU and RV, certainly
due to different conventions in the measurements and the simulations). The scales for
these four elements are explicited by green or yellow arrows and by corresponding square
frames around the images.

Figure 4.20: Partial polarimetric matrix of the sphere polystyrene suspension. Top
left panel : simulations for an internal 45◦ angular range. Bottom left panel : mea-
surements on an external 16◦ angular range. The colorbars on the right define the
scales of the HQ, VQ, PU and RV elements for both images. The white squares in the
simulations indicate the experimentally accessible ranges.

Honey. Honey is measured in the polarimeter to see the effect of optical activity (cir-
cular birefringence) on scattering. The honey is poured into a 3 cm fused quartz cuvette.
Optical activity causes linearly polarized light to rotate and the amount of rotation is
referred to as "optical rotation". The optical rotation due to the honey sample was mea-
sured by sending in linearly polarized light and rotating the analyzer to minimize the
signal (which is easier than rotating to maximize the signal). The optical rotation is
consistently 7◦ for multiple linear polarization states, meaning H is attenuated with the
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Figure 4.21: Measured complete polarimetric matrix of honey.

polarizer at 97◦ instead of 90◦; V is attenuated at 7◦ instead of 0◦, and so. Fig. 4.21
shows the measured I, Q, U, V, where Q, U, V are normalized, for six input polarization
states. Scattering occurs within the honey sample itself, perhaps from small air bub-
bles or honey crystals. The measurements with R and L incident show a particularly
interesting pattern, suggestive of a rotated version of the simulated pattern shown in the
previous section. The figure below zooms in the center 100 x 100 pixels for the R and L
rows, scaled for enhanced contrast.

From the first figure, note the significant depolarization when R and L are incident.
For comparison, Fig. 4.22 shows the same data, but with Q, U, V vector normalized by
the degree of polarization.

Further analysis of the data suggested the presence of linear birefringence in addition
to optical activity (circular birefringence). Linear birefringence changes R and L circular
polarization states, while optical activity does not. Therefore, by analyzing the I, Q,
U, V vectors with R and L incident, the effect of linear birefringence can be isolated.
One method of quantifying the change in polarization state is to compute the "Stokes
rotation". The Stokes rotation is the angular distance between the input and the exiting
Stokes vectors on the Poincaré sphere (see subsection 1.4.2).

Let us recall that the axes Q and U, representing H and V, and P and M respectively,
form the equatorial plane of the sphere, while V, representing R and L, is its polar axis.
The Stokes rotation in the equatorial plane is equal to twice the optical rotation. For
example, the optical rotation from H to P is 45◦, while the Stokes rotation between H
to P is 90◦. To measure the Stokes rotation, the dot product is computed between the
input and the output polarization states. The dot product is proportional to the cosine
of the angular distance, or Stokes rotation, between two vectors. To compare the input
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Figure 4.22: Measured polarimetric matrix of honey normalized by the degree of
polarization. Comparison with the R raw of the measured polarimetric matrix for the
polystyrene sphere suspension described above.

and the output Q, U, V, the elements Q, U, V are normalized by the vector amplitude,
such that

√
Q2 + U2 + V 2 = 1. Then the inverse cosine of the dot product is computed

to solve for the angular distance. Fig. 4.23 shows the results as a function of scattering
angle for R (on the left) and L (on the right) incident polarization states.

Figure 4.23: Rotation of the Stokes vectors on the Poincaré sphere for R (left panel)
and L (right panel) input polarization states.

Note the rings as well as a rotating Maltese cross pattern. The mean rotation, con-
sidering only the center 100 x 100 pixels, for R and L is 18.9◦ and 22.5◦, respectively.

While the optical rotation (circular birefringence) of 7◦ should influence all linear
polarization states (H, V, P, M) equally (in fact we measure optical rotation for H and V
incident as equal and we suppose to be the same for P and M incident –optical rotation
does not affect R and L) the influence of linear birefringence depends on the axis of
rotation. We thus have to measure the Stokes rotation for all incident polarization states
(H, V, P, M, R, L). Both linear and circular birefringence show up simultaneously for
each linear polarization state while measuring the Stokes rotation for circular polarization
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states provides linear birefringence only, because optical rotation does not affect R and
L.

As outlined in subsection 1.4.2, the action of a homogeneous retarder on the Poincaré
sphere is a rotation by an angle δ around an axis passing by the points on the sphere
surface corresponding to the two orthogonal polarization eigenstates. The angle δ is
nothing else but the retardation between the two eigenstates.

Calling R the unit vector defining one of the two eigenstates on the surface of the
Poincaré sphere, for small enough values of δ an incident Stokes vector Si is transformed
into:

So = Si + δR× Si (4.11)

where "×" stands for the cross product of the two vectors. Actually, for all cases relevant
to this study the retardations to be considered are small enough for the Eq. (4.11) to be
valid.

The unit vector R can be decomposed into

R = cosχRL + sinχRC (4.12)

where χ is the ellipticity of the retarder eigenstates, while RC and RL are respectively
the projections of R on the polar axis and the equatorial plane of the Poincaré sphere.
Thus these unit vectors represent the circular and linear retarders "embedded" in R.

For circular input polarizations (R or L) the Stokes vector Si is parallel to RC. In
this case the cross product of the input and output Stokes vectors is:

Si × So = δ cosχ Si ×
(
RL × Si

)
(4.13a)

= δ cosχ
[
(Si · Si)RL − (Si ·RL)Si

]
(4.13b)

= δ cosχ RL (4.13c)

and thus the azimuth of RL in the equatorial plane of the Poincaré sphere is given by
that of Si×So. Fig. 4.24 shows the direction of RL as a function of the scattering angle,
in the central region (100 x 100 pixels) of the FT image, for R (on the left) and L (on the
right) input polarizations. This azimuth varies between -180◦ and -90◦, corresponding
respectively to the V and M states (or yL and ML in Fig. 1.4). Moreover, the dependence
of the RL azimuth is reversed when the input polarization is switched from R to L.

The symmetric scattering dependence of the rotation axis for R and L suggests that
linear birefringence may not effect the average optical rotation over scattering angle
(averaging the Stokes rotation for R and L we obtain 0, approximately, which makes
sense as it is the measure for the linear birefringence, but not for optical rotation. Thus
averaging Stokes rotation measurements we eliminate the effect of linear birefringence and
get the exact Stokes rotation as twice the optical rotation). The mean Stokes rotation
considering the center 100 x 100 pixels is 22.4◦ and 21◦ for H and V and 14.7◦ and 14.6◦
for P and M. Assuming the effect of linear birefringence is negligible when averaging
over scattering angle, the Stokes rotation should be twice the optical rotation. Half the
average Stokes rotation for P and M is equal to the measured optical rotation 7◦ within
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Figure 4.24: Azimuth of the linear birefringence vector RL on the equator of the
Poincaré sphere as a function of the scattering angle, for R (left panel) and L (right
panel) input circular polarizations.

experimental error, while half the average Stokes rotation for H and V is between 10◦
and 11◦, 3◦ to 4◦ different from the measured optical rotation.

The error in the measurement for H and V may be due to an error in shifting the
raw images. To calculate I, Q, U and V the raw images are subtracted from one another.
Unfortunately, due to the system tilt that changes with orientation of polarizers and wave
plates, the images need to be shifted in software in order to be properly aligned.

Tendon. A central goal of our project was to measure the polarization scattering prop-
erties of tissue. To this end, we collected data from a thin piece of leg of tendon from
mice.

As a test of the system, data were collected from the tendon in three different orien-
tations 0◦, 22.5◦ and 45◦ (the sample is mounted on a rotation gear). Fig. 4.25 are the
measured I, Q, U, and V for six input polarization states as the tendon is rotated from
0◦ to 45◦.

As before with honey, the Stokes rotation between the incident and the exiting Stokes
vector can be computed. Fig. 4.26 show the Stokes rotation for H, V, P, M, R and L
as the tendon rotate from 0◦ to 45◦. Note that when the tendon is oriented vertically,
the H and V states do not change, but P, M, R and L rotate on the Poincaré sphere
by approximately 180◦. Similarly, when the tendon is oriented at 45◦, P and M do not
change, but H, V, R and L rotate of 180◦. When the tendon is rotate at 22.5◦, H, V,
P and M rotate approximately 90◦ and R and L rotate 180◦. These measurements are
consistent and suggest that the tendon behaves like a half wave linear retarder.

4.4 Real space Mueller imaging of thick tissues

4.4.1 Overview of this activity

These images have been taken within a collaboration aimed at using polarimetric imaging
to enhance the visualization of cancerous or precancerous (dysplastic) regions of the uter-
ine cervix. This examination, also called colposcopy, is notoriously difficult and requires
a great experience to localize the dysplastic lesions, the best locations for biopsies and
the boundary of surgical removal of the pathological tissue. More details are given in the
following.

This collaboration, funded by ANR (the French National Agency for Research) in-
volved the following partners:
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Figure 4.25: Polarimetric images of tendon oriented at 0◦, 22.5◦, 45◦

• the Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), for
the developments of a first polarimetric colposcope, based on OSC imaging,

• the Institut Mutualiste Montsouris (IMM), an hospital located at the south of
Paris, and which has been involved in two ways: the in vivo examination of 145
patients in a clinical trial of the OSC colposcope carried out at the Gynaecology
Department and the examination of ex vivo tissues (conizations and colon samples)
at the Pathology Department,

• the Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection -
Télédétection, Radiométrie et Imagerie Optique (LSIIT - TRIO), at Louis Pasteur
University of Strasbourg, to develop new techniques, based on Baysian approach,
for the treatment of polarimetric images,

• the Biomedical Statistics Department at la Pitié-Salpétrière, another hospital in
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Figure 4.26: Stokes rotation for H/V, P/M, R/L

Paris, for the monitoring of the clinical trial and the statistical treatment of the
acquired data on biopsies and conizations.

• the company Horiba Jobin Yvon, which has been running a long term collaboration
with LPICM for the development of ellipsometric and polarimetric instrumentation,
for a possible industrialization of the instruments developed during this project.

Here we will briefly describe the imaging polarimeter used at the IMM Pathology De-
partment to examine the ex vivo samples, and typical results obtained on these samples,
essentially by Dr. Angelo Pierangelo.

4.4.2 The Mueller imaging polarimeter

This instrument is schematized in Fig. 4.27. The sample is illuminated by a halogen
source, via a bunch of optical fibers, a diffuser and a condenser. The image is acquired
by a CCD with 256 x 256 pixels, equipped with a zoom lens which allows to vary the
field of view from 2 x 2 to 6 x 6 cm2 approximately. Before the zoom, a close-up lens
is used to form a virtual image at a large enough distance from the lens to allow easy
focussing. Interference filters are used to acquire quasi-monochromatic images, at wave-
lengths varying between 500 and 700 nm in steps of 50 nm, with a bandwidth equal to
20 nm full width half maximum.

The polarization modulation and analysis are performed by a PSG and a PSA which
both comprise a linear polarizer and two nematic liquid crystal (NLC) cells, which act
as variable retarders. Each NLC cell features an electrically controlled linear retardation
between slow and fast axes whose orientation is constant. The PSA is the mirror image
of the PSG, with the linear analyser placed after the NLCs. The angles θ1 and θ2 defining
the orientations of the NCLs fast axes with respect to the polarizer transmission axis in
the PSG have been chosen so that with a suitable choice of the NLC retardations the
PSG can sequentially generate four polarization states whose Stokes vectors are at the
tips of a regular tetrahedron on the Poincaré sphere. The same applies to the PSA, which
projects the Stokes vector to be analyzed onto another set of four states with their Stokes
vectors at the tips of a regular tetrahedron. This choice has been shown [65, 66, 67] to
optimize the noise propagation from raw data to the corresponding Mueller matrix: for a
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Figure 4.27: Photo (left) and scheme (right) of the full Mueller imaging system
installed at the IMM Pathology Departement.

given noise level on the raw images, the noise on the Mueller images is minimized. More
information on similar NLC based polarimeters is reported in [68, 69].

However, with this choice all the polarization basis states of the PSG and PSA are
elliptical, so that the Mueller matrix cannot be extracted from the raw data by simple
relationships as it was the case for the two polarimeters described so far. Actually, if we
consider the four basis states of the PSG as the column vectors of a matrix W (usually
called the modulation matrix of the PSG), and the basis states of the PSA as the line
vectors of the analysis matrix A, then the 16 raw data are the elements of a 4 x 4 real
matrix B given by

B = AMW (4.14)

where the M is the Mueller matrix of the sample. This matrix can thus be calculated
from the raw data by inverting A and W provided these matrices are known, i.e. the
system is calibrated.

The calibration of a system like the imaging polarimeter we are describing is a very
difficult task by the usual approach involving a detailed model of the instrument, as this
system is a "stack" of many elements, each of which may introduce serious artefacts which
may be difficult to understand and model properly.

A very different approach has been followed at LPICM [70] to develop the eigenvalue
calibration method (ECM), which has been successfully used on many different Mueller
polarimeters. Without getting into details, which would be outside the scope of this
manuscript, this method can accurately retrieve the matrices W and A from four mea-
surements on calibration samples by linear algebra techniques, without any modelling of
the instruments. Moreover, the calibration samples are not very specific (typically one
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can use linear polarizers, retardation plates other than half wave) and do not need to be
accurately known, as they are characterized during the calibration procedure itself. Of
course, our imaging polarimeter was calibrated at each wavelength by using ECM, and
provided polarimetric images with a typical maximum error of the order of 0.02 to 0.03
on the normalized elements M∗

ij = Mij/M11, i, j = 1..4 i · j 6= 1.
If the calibration process is somewhat time-consuming (about 2 hours for the seven

wavelengths, to be repeated typically every two days) the measurement of a full Mueller
image takes about 10 seconds.

4.4.3 Typical results on cone biopsies

Overview of the anatomy and pathology of the uterine cervix. The innermost
part of the cervix (the endocervix ) is covered by a columnar epithelium, which exudes the
cervical mucus, while the outer part (the exocervix ) is coated by malpighian epithelium,
typically 300 µm thick. These epithelia are separated from the underlying connective
tissue by the basal membrane, covered by a layer of cells which normally proliferate
slowly to provide young cells which get differentiated while migrating towards the surface
and regenerating the tissue.

Figure 4.28: Outline of the evolution of cervical cancer. (a): CIN I. BM: basal
membrane, C1: proliferating cells at the basal membrane, C2: differentiated cells,
with condensed nuclei; (b): CIN II; (c): CIN III; (d): Invasive cancer.

The evolution of a cervical cancer is schematized in Fig. 4.28. The cell proliferation at
the basal membrane increases, and the young cells migrate towards the surface without
undergoing the normal differentiation process: in particular, their nuclei remain larger
than those of normal epithelial cells, a feature which is used by pathologists to identify
the anomalous cells and to determine the thickness of the invaded epithelium.

The disease is staged as follows: when the invaded thickness hi is less than one quarter
of the total epithelium thickness he, the disease is called CIN I, which means "Cervical
Intraepithelial Neoplasia", at its first stage. When he/3 ≤ hi ≤ 2he/3, the disease is
at stage CIN II. When epithelium is totally invaded but the basal membrane is still
intact, the stage is CIN III. Subsequently, the malignant cells perforate at the basal
membrane and invade the underlying connective tissue. The disease then becomes an
invasive cervical cancer, which can metastasize and may be lethal.

Fortunately, this evolution is very slow: it typically takes 10 years for untreated
patients to evolve from CIN I to invasive cancer. As a result, the detection of anomalous
cells by the Pap smear (or Papanicolau test) procedure can be very efficient. In case of
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Figure 4.29: Surgical removal of a cone at the front end of uterine body (top left)
and subsequent processing (right and bottom left).

positive result, the cervix is examined with a binocular magnifying system (colposcope) to
localize the anomalous zones, if any, and take small biopsies for further confirmation by
a pathologist. Again, if the result is positive (or if the Pap alone suggests that there may
be an anomalous zone in the endocervix, which cannot be visualized by colposcopy) a
cone biopsy is taken from the front part of the cervix, to remove the anomalous zones and
thus cure the disease. Overall, the mortality of women which comply with this procedure
is about 70% lower than that of women who don’t. This technique is by far the most
efficient cancer prevention based on systematic screening.

The cone biopsies are typically 2 cm in diameter, while their height varies from less
than 1 cm to 2 cm. After removal, they are fixed in formalin and cut into a few millimeter
thick slices. Then their water content is substituted by paraffin and very thin (about 5
µm thick) cuts are taken from each slice, stained and examined by standard optical
microscopes. This procedure is summarized in Fig. 4.29.

During the colposcopic examination the cervix is stained by diluted acetic acid first
and then by iodine. Anomalous regions get whiter with acetic acid, and are not stained
by iodine. However, besides CIN, many different benign lesions may occur, such as hy-
perkeratosis, metaplasia or ectropion. As a result, the diagnosis of CIN is based on visual
appreciation of subtle changes in shades, and is very operator dependent. Even experi-
enced colposcopists may fail to detect dysplastic zones, or, conversely, may overestimate
their sizes, which may lead to cone biopsies much larger than necessary, which, in turn,
may decrease the mechanical strength of the cervix and endanger future pregnancies. It
is therefore of high interest to develop new techniques, such as polarimetric imaging, to
improve the colposcopy performance.

Polarimetric images of ex vivo cone biopsies. As a first example, we show in Fig.
4.30 a sample featuring only one anomalous zone, with a CIN II-III dysplasia.

This image is essentially diagonal, which means that the sample behaves as a pure de-
polarizer, without any significant diattenuation or retardation. Moreover, the normalized
diagonal Mueller elements M∗

ii (i = 1..4) are larger in the anomalous zone than in the
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Figure 4.30: (a): White light photo of the cone biopsy; (b): Localization of a CIN
II - III lesion from pathology; (c): Mueller image of the biopsy at 550 nm, with all
elements normalized by M11. The scale of these M∗

ij , i, j = 1..4, i · j 6= 1 elements is
shown by the colorbar at the upper right corner of the figure.

healthy regions, indicating that the CIN lesion appears less depolarizing than the sur-
rounding tissue. (The other apparently less depolarizing features which look like "lines"
at the top, the left part and the bottom of the sample are artefacts due to localized
quasi-specular reflections which saturate the CCD). Furthermore, over the entire image
we observe that M∗

22 = M∗
33 > M∗

44, indicating that the tissue behaves like an isotropic
depolarizer for linearly polarized light, with a Rayleigh type response (the depolarization
is stronger for circular incident polarization), suggesting that "small" scatterers or "large
soft" scatterers may be dominant and may account for this Rayleigh or Rayleign-Gans
behaviour.

Fig. 4.31 shows another example of cone biopsy, with healthy tissue, a CIN III
dysplasia and an ectropion. The healthy and anomalous regions have been mapped by
detailed pathology examination, as shown in panel (b) of the figure. In the raw Mueller

Figure 4.31: (a): White light photo of the sample; (b): Mapping of the lesions,
reconstructed from histological examination of slides taken along the thin vertical
lines; (c): Depolarization image at 500 nm; (d): Retardation image at 500 nm.
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Figure 4.32: Left : Microscopic structure of a healthy colon sample, with its different
layers: the mucosa (M), the submucosa (SM), the circular muscular tissue (C), the
longitudinal muscular tissue (L) and the pericolic tissue (P). The very thin muscularis
mucosa (MM) separates M from SM. Right : microscopic structure of a pathological
sample, with a budding tumor (T) invading the mucosa and submucosa, with the
underlying tissues still intact. Taken from [72].

image taken at 500 nm (not shown here) the diagonal elements are still the largest, but we
also observe significant non-diagonal terms, which justify a Lu Chipman decomposition.
The result of this decomposition is summarized in the other panels ((c) and (d)) of the
figure.

Now the healthy region still displays strong depolarization, but also clearly measurable
birefringence, which was not seen in the previous example. Moreover, the presence of
retardation (or possibly diattenuation) was also observed in vivo, with an OSC colposcope
[71]. Actually, the second cone was definitely thicker than the first one, and thus, a priori
more representative of the very thick tissue observed in vivo. This issue is not yet really
understood and clearly requires further work.

The depolarization image could easily be segmented into three regions, with decreas-
ing depolarization powers, corresponding respectively to healthy tissues, CIN III and
ectropion. However, the retardation image proves also very useful to help distinguishing
healthy from anomalous regions.

4.4.4 Typical results on colon samples

Overview of the anatomy and pathology of colon. Normal colon tissue is orga-
nized in three layers (see Fig. 4.32). From the internal cavity, or lumen, outwards these
layers are: the internal coating or mucosa, the middle coat or muscularis externa propria
and the external coat or pericolic tissue (serosa). The mucosa includes a superficial thin
layer of epithelium on loose connective tissue. The epithelium is a one-cylindrical-cell
layer without capillaries. It receives oxygen and nutriments from the underlying connec-
tive tissue by means of exchanges through the basal membrane (BM) which separates the
epithelium from the underlying connective tissue which includes capillaries [73]. The BM
is a thin layer of specialized extracellular matrix (ECM) that holds the epithelium and
where the healthy epithelial cells regenerate and malignant cells, if present, start prolif-
erating. The ECM is a complex mixture of proteins and carbohydrates which aggregate
to form protein molecules with short residual or without carbohydrate chains (such as
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collagens and elastin) and protein-polysaccharide molecules such as proteoglycan, with
much larger amounts of carbohydrates than proteins. The ECM is the main component
of the loose connective tissue whose cells are embedded in an amorphous mixture of pro-
teoglycan molecules. In particular, the loose connective tissue of the colon mucosa and
submucosa layers is a mesh-like tissue with fluid matrix, whose principal constitutive
protein is collagen. The mucosa is composed of a network of densely arranged very fine
collagen fibrils; in contrast the submucosa is almost entirely composed of a dense network
of larger collagen fibers. In healthy mucosa the average collagen fibril size is similar to
that of the organelles and is of the order of a fraction of a micron. The average size of
collagen fibers of submucosa is typically about few microns [74]. The inner part of this
connective tissue constitutes the submucosa. The colon mucosa and submucosa layers
fold themselves into finger-like shapes for the colon inner part, while for other organs
(e.g. uterus) these layers remain flat. As a consequence, when the colon inner surface
is observed at a certain distance, the sample may appear as "mixture" of epithelial and
connective tissues with the BM close to the surface.

The muscularis mucosa (MM) is a very thin layer separating the mucosa from the
submucosa and similarly to the submucosa it is composed of a network of densely packed
large collagen fibers which scatter light predominantly in the forward direction [74]. Most
of the light propagating into the mucosa penetrates into the submucosa. The submucosa
comprises larger blood vessels compared to mucosa. As a result, the light incident on the
mucosa is more heavily absorbed in the submucosa, especially in the green part of the
spectrum, where the haemoglobin features the highest absorption. Hence, only a small
fraction of the incident light can penetrate into the deeper layers [74, 75, 76]. Typically the
thicknesses of the mucosa and submucosa are comparable. Moreover, as the muscularis
mucosa is very thin and probably features a scattering behavior quite similar to that of
the submucosa, in the model it will be lumped together with the submucosa into a single
layer, referred to as the submucosa throughout the rest of this paper.

Polarimetric images of ex vivo colon sample. We show a typical example of
Mueller image of a colon sample (see Fig. 4.33), taken from [77].

Again, this image is essentially diagonal. This sample comprises both healthy (bottom
left) and tumoral (top right) regions (see Fig. 4.33a). At this stage of the disease
(exophytic growth in the mucosa, with the underlying tissues still untouched) the tumor
is less depolarizing than the healthy part, as seen previously with cone biopsies. The
contrast between the two regions is clearly enhanced in the polarimetric images M∗

22 and
M∗

33 with respect to the intensity imageM11 (at the top left corner), showing the potential
of the technique for early tumor detection (see Fig. 4.33b).

At subsequent stages, the tumor gets ulcerated, corresponding to a decrease of the
upper tumoral layer, while the underlying tissues are progressively invaded and destroyed.
Due to its dependence on the thickness of the tumoral layer as well as the nature of the
tissue left intact beneath the tumor, the polarimetric response varies in a non-monotonic
fashion with the advancement of the disease.

Quite generally, with increasing wavelength in the visible range the overall depolariza-
tion of thick tissues increases, due to a decrease of light absorption by hemoglobin, which
in turn allows more scattering events to occur. However, multispectral Mueller imaging
has shown to be very helpful for the optical staging of the tumor. As these issues are
outside the scope of this manuscript, the interested reader is referred to [72, 78].

In this manuscript we present the current state of advancement of our work aimed
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Figure 4.33: (a): Ordinary photo of a colon sample, showing a tumor in the area
inside the circle in the upper right part of the image; (b): Normalized Mueller matrix
image of the same sample. The scale of the normalized elements is given by the
colorbar. The image was taken at 550 nm [72, 77].

at defining a realistic, yet tractable model of the polarimetric response of healthy and
pathological colon samples.

4.5 Conclusion
In this chapter, divided in three main parts, we reviewed the experimental activity which
have been undertaken in the course of this work.

The first part was devoted to the realization and use of an imaging polarimeter for
the study of scattering samples in background scattering geometry with focussed illu-
mination. This study was carried out at LPICM. The polarization was modulated and
analysed by manually adjusting various optical components. The instrument accuracy
was carefully evaluated and found to be of the order of 0.04 on the average, a quite
acceptable value for the envisioned studies. This instrument was then used to charac-
terize two suspensions of polystyrene spheres in water, with 50 nm and 1500 nm sphere
radii. The expected patterns typical for Rayleigh and Mie scattering were observed and
reproduced by the Monte Carlo code described in the previous chapter, a result which
definitely validated this code. Moreover, simulations for large and "soft" scatterers (i.e.
with a refractive index close to that of water), clearly demonstrated that in this case,
which may be relevant for the light scattering by cell nuclei, the response is Rayleigh-like.

The second part was devoted to the realization and use of two angle resolved po-
larimeters for the study of optically thin samples where single scattering was expected to
dominate. These studies were carried out during a three month stay at Oregon Healthy
and Science University, in Pr. Steven Jacques’ team. Both polarimeters used the same
PSG and PSA, comprising linear polarizer and a quarter-wave plate, with an additional
half wave plate in the PSG. Again, all these elements had to be rotated manually to
sequentially generate the required polarization states. The samples were included in thin
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cells to make sure that single scattering contributions were dominant.
The first polarimeter, based on a single detector on a goniometric mount, provided

data over a broad angular range, but with too small signal to noise ratio for the full
polarimetric measurements. However, the results obtained on aqueous suspensions of
polystyrene spheres were quite close to the expectations.

The second instrument was based on the Fourier optical imaging technique: the sample
is placed on the object plane of a (ideally large N.A.) lens, which maps the angular
distribution of light emerging form the sample in its image focal plane. The actually
implemented system provided a total angular range of 16◦. The polarimetric accuracy
was comparable to that of the first instrument, with average errors of the order of 0.05.

The polarimetric angular spectra obtained with the suspension of polystyrene spheres
were again in good agreement with expectations. On a (much thicker) honey sample
the optical activity was well measured, in spite of strong depolarization. Moreover, this
sample exhibited linear birefringence, with an interesting (and not yet fully understood)
dependence of the azimuth of the axes with the scattering angle. These measurements
would have been extremely time consuming and difficult to carry out with standard go-
niometric systems. Finally, a sample of mice tendon was characterized, and found to
behave as a half wave plate.

The third part describes selected results obtained with a full Mueller imaging sys-
tem on ex vivo samples of human tissues. This polarimeter, which used nematic liquid
crystals in its PSG and PSA, performed the acquisition of a full Mueller image in less
than 10 seconds. This instrument was installed at the Pathology Department of Institut
Mutualiste Montsouris and was routinely used to image various ex vivo samples, and
more precisely uterine cervix cone biopsies and colon samples. This activity was part of
a broader project aimed at developing a tool based on polarimetric imaging for enhanced
visualization of cervix precancerous zones, a notoriously difficult task with current stan-
dard imaging techniques. Mueller images of cone biopsies prior to fixation in formalin
showed that the healthy regions exhibit birefringence, in agreement with previous obser-
vations in vivo with a OSC imaging system. This birefringence disappears in anomalous
zones, which behave as pure depolarizers. In these zones the amount of depolarization
seems also to be a good diagnostic tool to distinguish precancerous and benign lesions.

These still preliminary results, if confirmed by further studies on a sufficient number
of samples, suggest that full Mueller polarimetry (possibly with a color CCD, to get
superimposable images at three wavelengths) may be a very powerful technique to identify
and characterize anomalous cervix regions in vivo, by providing separate depolarization,
retardation (and possibly diattenuation) images, while with less complete techniques,
such as OSC, the corresponding information remain "entangled" in images which are
then difficult to interpret.

Finally, the motivation to study colon samples is twofold. First, on such samples the
cancerous lesions are much easier to localize than on cone biopsies, as they are larger and
thicker, and thus provide easier to use test samples to develop theoretical models of tissue
polarimetric response. Second, if polarimetric imaging proves able to provide accurate
enough "optical staging" of the tumor, it could be used to make the whole pathology
characterization faster and cheaper.

In this manuscript, we considered only tumors at their initial stage, with a cancer-
ous layer "budding" over underlying intact tissue layers. The essential result is that all
investigated tissues, healthy or cancerous, had a Rayleigh-like response, with a larger de-
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polarization for circular rather than linear polarization. Moreover, cancerous "budding"
regions exhibited a lower depolarization power than healthy regions.

These results provide the criteria used to develop a realistic modelling of colon tissue,
along the lines presented in the next chapter.
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Chapter 5

Towards a realistic model of colon
tissue

5.1 The proposed model of ex vivo colon optical re-
sponse

To model the propagation of polarized light in ex vivo colon samples we have represented
such samples as multilayered scattering structures. In a first step we assumed that the
mucosa and the submucosa layers consist of a surrounding medium with monodisperse
scattering spheres. Due to very small thickness of the muscularis mucosa and the simi-
larity between the muscularis mucosa and submucosa optical properties, the muscularis
mucosa will be included in the submucosa layer in our model. All underlying layers were
lumped into a totally depolarizing lambertian substrate. In a second step, we consid-
ered the layers with bimodal populations representing both the collagen spheres and the
subcellular organelles – the most important scatterers – within each layer.

We used the description of normal colon tissue proposed in [74] to specify the char-
acteristics of each scattering layer. The scattering spheres with radius r, and optical
index ns were embedded in an extra cellular matrix with optical index nm. The photon
mean free path `s was defined as 1

Nsσs
, where Ns is the number density of scatterers

and σ is their scattering cross-section [64]. The number density Ns was calculated from
the volume fraction Fs of the scatterers (i.e. the volume occupied by scatterers per cubic
centimeter of sample) as Vr = 4

3
πr3 is the volume of a single spherical scatterer of radius r.

All layers of the virtual sample were placed within a cylinder (diameter 1 cm, variable
depth h, see Fig. 5.1a ). The lateral walls of cylinder were assumed to be totally
absorbing. The bottom of cylinder was either absorbing or lambertian substrate. The
diffuse illumination (λ = 633 nm) was propagated along the axis of the cylinder.

Each single layer is thus characterized by the radius r of the scattering spheres, their
number density Ns, which determines the photon mean free path ls, the optical index
contrast, m = ns

nm
; and the layer thickness hi. For the layer with bimodal population,

the radii, number density and optical index contrast of the two types of scatterers are
different: r1, r2, `s1, `s2, m1 and m2.

The semi-infinite lambertian substrate is a totally depolarizing, partially reflecting
medium, such that the intensity of the backscattered light follows the cosine law of the
polar angle θ of the scattered light, while being uniformly distributed over the azimuthal

113
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angle φ. More precisely the intensity I(θ, φ) [W sr−1] backscattered into a solid angle dΩ
around the angles (θ, φ) is given by:

I(θ, φ) dΩ =
aZ0

π
cos θ dΩ (5.1)

where Z0 is the illumination power [W] incident on the lambertian and a its albedo. This is
a first approximation of the response of the underlying layers, based on the assumption of
a complete randomization of the polarization and emerging direction of the backscattered
photons due to a large number of scattering events.

Finally, as shown in Fig. 4.32, in dysplastic or cancerous colon tissue this structure
gets disorganized and its morphology may change with respect to that of healthy tissue. In
particular, in cancerous regions the surface may remain flat or may develop an exophytic
growth (adenomatous polyps). The possible changes in sample morphology have also
been considered in our model by deforming the multilayered structure in two different
ways, as shown below.

The stochastic paths of the incident photons were simulated numerically by means of
Monte Carlo algorithm. The diffuse light illumination of the sample was modelled with
the photons impinging the sample surface at a random location. At each scattering event
the changes of photon polarization and direction of propagation were calculated making
use of the exact Mie solution for the scattering of plane wave on spherical particle. The
implementation of the rejection method and flux-at-point estimation technique allowed us
to accelerate the convergence of the statistical algorithm [59]. Moreover, all the Mueller
matrices given in the following were obtained by integrating the photon flux over the
entire sample surface.

We first performed the simulation with the single layer model varying the values of
model parameters in order to identify the impact of each individual parameter on the
ratio of linear to circular polarization of the backscattering light. Then we performed
the simulation with the double layer model to find out if the single layer model can be
considered as an approximation of the complex multilayered structure of the colon tissue.

5.2 Results and discussion

5.2.1 Multilayered structures with monodisperse scatterers within
each layer

Single layer (mucosa) on top of a lambertian. For the principal model parame-
ters we retained the average values given in [74]. The mucosa tissue was described as
a suspension of medium collagen spheres (r = 200 nm) at at 12% volume fraction in
physiological liquid (`s = 53.7 µm, m = 1.46

1.38
, h1 = 0.5 mm). The submucosa tissue was

modelled as a suspension of large collagen spheres (r = 1.75 µm), at 50% volume fraction
in physiological liquid (`s = 19.69 µm, m = 1.38

1.36
, h2 = 0.7 mm). No absorption (either

from the medium or from the spheres) was taken into account at this point.
The value of the lambertian albedo a was chosen in order to account for the absorption

by the mucosa and submucosa layers and the global contribution from the deeper layers.
We considered reasonable to vary albedo a values between 0 and 0.3.

In a first instance, we considered the mucosa alone, on top of a lambertian repre-
senting the submucosa and all underlying layers (see Fig. 5.1a). With nominal values
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Figure 5.1: Absolute values of the diagonal elements |M∗
ii| of the backscattering

Mueller matrix normalized to |M11|, simulated at λ = 633 nm (a): for mono-dispersed
scattering medium on a lambertian substrate, modelling the mucosa on underlying
layers. Each parameter was varied while keeping the others constant at the nominal
values for the mucosa (r = 200 nm, `s = 53.7 µm; m = 1.46

1.38 , h = 0.5 mm). (b):
variation of the sphere radius r with lambertian albedo a = 0; (c): variation of the `s
with a = 0, (d): variation of the scattering layer thickness with a = 0.3.

of parameters for mucosa given above and a totally absorbing lambertian (a = 0) the
simulated Mueller matrix of the sample obeys the relation:

|M∗
22| = |M∗

33| < |M∗
44|. (5.2)

This is typical for Mie scattering regime [77]. The albedo a had to be increased to 0.3
to make all the diagonal matrix elements equal, which is not yet what is observed in
experiments, namely a M∗

44 element being significantly smaller than both M∗
22 and M∗

33.
As a result, the single layer model with the nominal values of the parameters for the
mucosa is certainly not adequate.

Seeking for the characteristics of the phantom tissue that could reverse the regime of
scattering from Mie to Rayleigh-like we tuned the model parameters one by one while
keeping others constant. The results are summarized in Fig. 5.1.

We first decreased the radius of the scattering spheres from 200 nm to 50 nm to
determine the typical size of organelles which may reverse the scattering regime from Mie
to Rayleigh. It turned out that this regime reversal occurred already at 150 nm radius
(Fig. 5.1b).
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Alternatively, we reduced the volume fraction of the 200 nm radius scattering spheres
from 12% to 4%, leading to an increase of the light mean free path `s from 53.7 µm
to 161.11 µm (or a reduction of µs = 1

`s
from 186.20 to 62.07 cm−1). Increasing `s

is equivalent to shortening the thickness of the scattering medium, thus reducing the
number of scattering events. A transition from Mie to Rayleigh scattering regimes is
observed when µs decreases, with a threshold at µs = 95 cm−1 (see Fig. 5.1c). This
result suggests that multiple scattering may induce a Mie regime when the number of
scattering events is large enough, even for "small" scatterers, for which a Rayleigh regime
would be expected and is indeed observed at lower concentrations.

We also explored the influence of the sample thickness h, between 0.2 and 1.5 mm
(Fig. 5.1d). For this study, the volume fraction of the collagen spheres (with radius 200
nm), was fixed at 6% corresponding to a `s equal to 107.4 µm, so that the experimental
criterion was held among the diagonal elements of the Mueller matrix. Moreover, the
lambertian albedo a was set equal to 0.3 to account for the absorption by the medium
of the mucosa tissue phantom and the global contribution (absorption and scattering) to
the reflected intensity from the layers beneath the mucosa. Fig. 5.1d shows a transition
from Rayleigh to Mie regimes when h increases, a result consistent with the previously
discussed evolution of the scattering regime with µs. When layer thickness h increases,
the average number of scattering events increases too, leading to the same trend as that
observed when scattering coefficient µs increases.

The fact that the simulated Mueller matrices of the sample, described as a suspension
of collagen spheres (r = 200 nm) at 12% volume fraction in physiological liquid (`s = 53.7
µm, m = 1.46

1.38
, h = 0.5 mm) obtained by varying one model parameter (r, `s, h) at time,

for reasonable values of the parameters obey to the relation in Eq.(5.2) typical of Mie
scattering, while the occurrence of Mie scattering is never seen experimentally, lead the
conclusion that the proposed model of colon tissue is not realistic. It is therefore natural
to explore the polarimetric response of more complex structures, which might provide
better models of the complex colon tissue structure.

Double layer structure (submucosa and mucosa) on top of the lambertian.
We performed simulations with two superimposed layers, representing the mucosa and
submucosa, instead of a single one, on top of the lambertian substrate. We set the
parameters of the mucosa and submucosa layers at the nominal values defined at the
beginning of this section. The results of these simulations are shown in Fig. 5.2.

Histogram (1) represents the diagonal matrix elements of a single layer system rep-
resenting the submucosa alone, which behaves as a Rayleigh scatterer, but with unreal-
istically low values of the M∗

ii. In contrast, the histograms (2) and (3) of the diagonal
Mueller matrix elements, calculated with lambertian albedos equal to 0.1 and 0.3 respec-
tively, are typical of the Mie scattering regime. Moreover, the absolute values of the
|M∗

ii| are practically identical to those shown on Fig. 5.1 for the same parameters of the
mucosa scatterers.

The fact that the relation between the diagonal elements of the simulated backscat-
tering Mueller matrix image of the multilayered model remains unchanged compared to
that of the single-mucosa-layered model confirms that the single-layered model is a quite
good approximation of colon tissue. This observation supports the idea that only a small
fraction of the incident light reaches the submucosa layer and an even smaller fraction
is backscattered from the submucosa, without any major effect on the total polarimetric
response. As a result, in the following we will consider only models with a single layer
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Figure 5.2: Absolute values of the diagonal elements of the backscattering Mueller
matrix normalized by |M11| simulated at λ = 633 nm. (1): single layer representing
the submucosa (r = 1.75 µm, `s = 19.69 µm, m = 1.38

1.36 , h = 0.7 mm) on absorbing
substrate (albedo a= 0). (2): two layers representing the submucosa (same parameters
as above) and mucosa (r1 = 200 nm, `s = 53.7 µm, m = 1.46

1.38 , h = 0.5 mm) on
lambertian substrate of albedo a = 0.1. (3): same as (2), with a = 0.3.

above the lambertian.

Influence of the layer shapes: simulations of budding tumors. Normally the
initial stage of colon cancer development is linked to the growth of a polyp (exophytic
growth). So the question arises: can the polarimetric signature of the cancerous part be
affected by not only the changes on microscopic level (uncontrolled cell growth, increase
in cellular density) but on macroscopic level (morphological transformation of the sample
surface) as well? To answer this question we modified the model geometry (see Fig. 5.3).

We assumed that the colon tissue undergoes a uniform deformation originating from
the deep layers and pushing upwards the flat Rayleigh-like mucosa (r = 200 nm, m = 1.46

1.38
,

`s = 107.41 µm, h = 0.5 mm; a = 0) while preserving its thickness and optical properties,
as in [79]. We also assumed that the exophytic growth covers a surface of a circle with
diameter ds = 0.5 cm (which is one half of the diameter d of the whole sample). We
performed the simulations for different heights hs of the bump (0.5 mm, 1 mm, 2 mm)
to mimic the incremental growth of the colon tissue deformation. As shown on the right
panel of Fig. 5.3, these morphological changes do not reverse the scattering regime, they
only modify the absolute values of the diagonal elements of the Mueller matrix.

However the Rayleigh-like relation between the diagonal elements of the Mueller ma-
trix does not hold anymore when the morphological changes are combined with an in-
crease of the mucosa layer thickness. Fig. 5.4(a, c) represents two different modelled
non-uniform deformations of colon tissue originating in the mucosa layer.

In Fig. 5.4a the exophytic growth is described as an expansion of the mucosa tissue
covering a surface of radius equal to one half of the radius of the initial sample while
developing upwards (Rs = 0.25 cm; hs = 0.5 mm, 1 mm, 2 mm). In Fig. 5.4c the
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Figure 5.3: Left : sequence illustrating evolving exophytic growth in colon tissue
as uniform (constant thickness) morphological deformation of the superficial layer
(mucosa). Right : absolute values of the normalized diagonal elements |M∗

ii| calculated
at λ = 633 nm for the following scatterer parameters r = 200 nm, µs = 93.101 cm−1;
m = 1.46

1.38 , h= 0.5 mm, albedo a = 0 (a) or a = 0.3 (b).

Figure 5.4: Left : two illustrations of exophytic growth originating in the mucosa,
whose thickness increases in a non-uniform fashion (a, c). Right : absolute values of
the normalized diagonal elements |M∗

ii| of the backscattering Mueller matrix calculated
at λ= 633 nm for a single mucosa layer (r = 200 nm, µs = 93.1 cm−1; m = 1.46

1.38 , h =
0.5 mm) on absorbing substrate (albedo a = 0), with hs varying from 0 (flat surface)
to 2 mm (b); or Rs from 0 to 2.25 mm (d).
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exophytic growth is described as radially symmetric expansion of the mucosa tissue that
invades the deeper layer while also developing in height (Rs = 0.75 mm, hs = 0.5 mm;
Rs = 1.25 mm, hs = 1 mm, Rs = 2.25 mm, hs = 2 mm).

The results shown in Fig. 5.4(b, d) clearly indicate that the scattering regime for
the deformed sample changes from Rayleigh-like to Mie when the height/radius of the
budding area increases. This trend is consistent with that seen on flat surfaces and shown
in Fig. 5.4d. However we never experimentally observed any inversion for the diagonal
coefficients of the measured Mueller matrix images of the light backscattered from healthy
or cancerous colon tissue.

The essential conclusion that can be drawn from the results presented in this subsec-
tion is thus that the models involving only monodisperse populations of scatterers are
prone to switches between the two scattering regimes, for reasonable values of the various
parameters, in contradiction with the experimental data. It is therefore mandatory to
"stabilize" the model so that in all "realistic" cases the outcome is a Rayleigh scattering
regime.

5.2.2 Multilayered structures with bimodal populations of scat-
terers

We now consider bimodal populations in each layer, an approach which seems reasonable
to better reproduce the variety of scatterers actually found in real tissues. Moreover,
due to their isotropic scattering, small scatterers may significantly impact the polari-
metric response in the backscattering geometry, even at relatively low concentrations,
with a strong Rayleigh type contribution, thus improving the qualitative agreement with
experimental data.

In our refined model we represented the scatterers in epithelial cells in the mucosa
layer – by their nuclei, the scatterers in connective tissue – by collagen in the extracel-
lular matrix, the scatterers in cytoplasm and the extracellular matrix – by suborganelles
in physiological liquid. In particular we have described the mucosa layer as collagen-
like spheres (r1 = 200 nm, n2 = 1.46) and nuclei-like spheres (R2 = 3µm, n2 = 1.4)
or sub-organelles/protein (r2 = 50 nm) in physiological liquid (optical index contrast
m(λ) = ns(λ)

nm
, nm = 1.38; absorption coefficient µa(λ)) filling the cylinder described

above (diameter 1 cm; depth, h), with diffuse illumination at different wavelengths λ =
500, 550, 600, 633, 650, 700 nm propagating along the axis of the cylinder. We kept
the totally depolarizing lambertian substrate with typical albedo value of 0.3 to model
the contribution of the layers beneath the mucosa layer. The Monte Carlo algorithm was
modified in order to take into account the bimodal population of scatterers and a possible
absorption by the surrounding medium. The scatterers themselves were still considered
as non-absorbing (this limitation will be removed in future work). The overall scattering
parameter µs of the scattering medium was calculated as the sum of the scattering pa-
rameters µsi = Niσi of the embedded monodisperse media. The overall mean free path
of the medium is thus

`s =
1∑

iNsiσsi
. (5.3)

The average Mueller matrix of the sample was defined as weighted average of Mueller
matrices of the monodisperse media [59].
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Figure 5.5: Normalized diagonal elements of the simulated backscattering Mueller
matrices at λ = 633 nm for a single-layer with a bimodal population of scatterers
(r1 = 200 nm; r2 = 50 nm; m = 1.46

1.38 ), lambertian albedo a = 0.3. The images
were calculated with r1-sphere at 12% volume fraction varying the concentration of
r2-sphere from 0% (monodisperse population µs=186.202 cm−1) till 1%.

Preliminary studies with bimodal populations for λ = 633 nm. To investigate
the effect of the suborganelles we excluded the nuclei from the phantom tissue. The
simulations were performed for collagen spheres at 12% volume fraction and varying the
volume fraction of the suborganelles in the phantom tissue from 0.001% to 1% [80], which
make the `s decrease from 55.49 to 53.39 µm (r1 = 200 nm, r2 = 50 nm,m= 1.058, λ= 633
nm) and compared to the simulation without the suborganelles (monodisperse phantom
tissue, `s = 53.7 µm). The insertion of the suborganelles modified the scattering regime
of the phantom tissue already at 0.003% of volume fraction (`s = 53.7 µm, µs = 186.206
cm−1) as it is shown in Fig. 5.5. This trend is certainly due to a rapid increase of the
Rayleigh type contribution due to the small spheres to the backscattered light. Increasing
the concentration of the small spheres enhances the Rayleigh type contribution over the
Mie type contribution due to the large spheres and strengthens the Rayleigh-like nature
of the backscattering from the phantom tissue with bimodal population. It manifests
itself as growing divergence between the |M∗

22|, |M∗
33| and |M∗

44| values in Fig. 5.5.
We point out that M44 coefficient takes negative values as the concentration of the

small spheres overpass 0.01% volume fraction, which explains the kink in the curve of
|M∗

44| in Fig. 5.5.
However, to better assess the influence of organelles on the respective magnitudes of

|M∗
22|, |M∗

33| and |M∗
44| elements, we performed the series of simulations for different layer

thicknesses with volume fractions kept constant at 12% for the medium (radius 200 nm)
scatterers while the volume fraction for the small (radius 50 nm) scatterers was varied
from 0% to 1%. Fig. 5.6 shows the diagonal element values versus layer thickness ranging
from 0.5 to 10 mm.

In contrast with the monodisperse models investigated in the previous section, the
bimodal population model does not change its scattering regime with the layer thickness
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Figure 5.6: Normalized diagonal coefficients of the simulated backscattering Muller
matrices at λ = 633 nm for a single-layer with bimodal population of scatterers (r1 =
200 nm; r2 = 50 nm; m = 1.46

1.38 , lambertian albedo a = 0.3. The images were calculated
at different volume fraction of the r2-sphere (a): 1%; (b): 0.1%; (c): 0.01%; (d):
0.007%; (e): 0.005%; (f): 0.003%.
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λ [nm] 500 550 600 633 650 700
m(λ) = ns(λ)/nm 1.076 1.071 1.066 1.064 1.062 1.059
µs(λ) [cm−1] 570.72 394.86 279.29 224.43 201.25 148.27
µa(λ) [cm−1] 2.22 4.56 0.70 0.20 0.15 0.09

Table 5.1: Spectrally resolved optical index contrast m, scattering parameter µs and
absorption coefficient µa of the bimodal population tissue phantom.

increase. Moreover, at all concentration of the small scatterers, the diagonal coefficients
of the Mueller matrix obey the experimental criterion (Eq.(5.2)) (Rayleigh scattering
regime).

Preliminary studies with bimodal populations for λ = 633 nm. To take into
account the wavelength dependence of the simulated results the values of optical index
contrast, scattering and absorption coefficients have been calculated as a function of the
wavelength from the optical dispersion laws defined in Appendix C (Eqs.(C.1)-(C.6)).
The results are reported in Table 5.1. The absorption from the medium was included in
the model by modifying the extinction coefficient:

µe = µs + µa (5.4)

where µs is the scattering coefficient, µa is the absorption coefficient. The value of scat-
tering albedo β used in Lambert-Beer law [50, 51], [81]-[83] was defined as:

β =
µs

µs + µa
(5.5)

The data shown in Table 5.1 suggest that introducing the absorption should hardly change
the polarimetric response. The results presented in Fig. 5.7 clearly confirm this point.

5.3 Conclusion
Wavelength dependent ex vivo measurements of colon tissue show that this tissue behaves
as a pure depolarizer throughout the visible spectrum. The relation between the diagonal
elements of the experimental backscattering Mueller matrices provides the criterion to
discard wrong models of colon tissue. Colon tissue was described using multilayered model
with monodisperse or bimodal populations of scatterers. Monte Carlo simulations of the
light backscattered from monodisperse single mucosa layer with 200 nm scatterers showed
that the scattering regime switches between Mie and Rayleigh-like regimes according to
the value of model parameters (scatterer radius r, scattering coefficient µs, layer thickness
h), implying that the monodisperse single layer (mucosa) model is not adequate for
complex colon tissue. Simulated backscattering Mueller matrix images of the double
layer (mucosa and submucosa) model with monodisperse (radius 200 nm) mucosa and
monodisperse (radius 1.75 µm) submucosa layers illustrated that adding to the model
the monodisperse single submucosa layer does not impact the regime of scattering of the
monodisperse single mucosa layer. As a result, the single layer (mucosa) model constitutes
a valid simplification of colon tissue.
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Figure 5.7: Spectral dependence of normalized diagonal coefficients of the simulated
backscattering Mueller matrices images with diffuse light illumination for single layer
bimodal population model of colon tissue (r1 = 200 nm at 12% volume fraction value;
r2 = 50 nm at 0.01% volume fraction value, h = 0.5 mm, lambertian albedo a =
0.3). The images were calculated using the values of optical index contrast, `s and
absorption coefficient reported in Table 1 in non absorbing µa(λ) = 0, and absorbing
µa(λ) medium.
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The possible effects of the budding shape of tumors at early stages were also inves-
tigated by describing the tumor as a monodisperse scattering layer over a lambertian,
assuming that the budding was due to either the mucosa or the lambertian. In both
cases unrealistic Mie scattering regimes were observed for reasonable parameter values.
We therefore concluded that the monodisperse model of the mucosa had to be rejected.

Conversely, the simulations of the backscattering Mueller matrix images of the bi-
modal population model showed that the mixture comprising small and medium (com-
pared to wavelength) scatterers was in the Rayleigh regime of scattering already at small
volume concentration of the small scatterers. Moreover the ratio of linear to circular
polarization of the backscattering Mueller matrix of the phantom tissue always obeyed
the experimental criterion (see Eq.(5.2)) while varying the thickness of the layer, a re-
sult which was not obtained by simulations involving only monodisperse scatterers with
radius 200 nm representing the collagen. This means that the presence of the small
scatterers stabilizes the optical response of the phantom tissue in the Rayleigh regime
of scattering, ensuring for qualitative agreement between experimental and simulations.
The simulations of the backscattering Mueller matrix images of the phantom tissue mix-
ing large (representing the nuclei), medium and small (representing the cell organelles
and suborganelles respectively) scatterers need to be performed to attain quantitative
agreement between experiment and modelling. Including the absorption by the medium
in our model did not modify the relation between the diagonal elements of the Mueller
matrix and their absolute values at all studied wavelengths. However, the absorption
can not be neglected in the realistic model of colon tissue. The next step will be to
introduce the absorbing scatterers to the model in order to reproduce the experimentally
observed spectral dependence of diagonal elements of the Mueller matrix. The identifica-
tion of the key model parameters providing quantitative agreement between experimental
and modelling at various stages of cancer evolution can help in the interpretation of the
experimental data and consequently, in proper cancer staging and early cancer detection.



Conclusion and perspectives

This manuscript reports the first attempt performed at LPICM to develop realistic, yet
tractable models of the polarimetric response of tissues, the ultimate goal being a thor-
ough understanding of the experimentally observed contrasts between healthy and patho-
logical samples, both in vivo and ex vivo. Ideally, polarimetric imaging may emerge as
an efficient technique for optical biopsy, with high sensitivities and specificities for well
identified diseases, as uterine cervix CIN. Tissue models typically include multilayer struc-
tures with spherical scatterers in each layer, and totally depolarizing lambertian at the
bottom, to account for the strongly depolarized light backscattered from the deep tissue
layers.

This work included an experimental part, with polarimetric measurements carried out
in various optical configurations.

Full Mueller matrix imaging with focussed illumination was performed on suspensions
of polystyrene spheres in water, and was used to validate the Monte Carlo simulation
code used throughout this study to solve the radiative transfer equation describing the
propagation of polarized light in scattering media. Very good quantitative agreement was
found between experimental and simulated Mueller images, which were quite different
for the Rayleigh and Mie regimes, occurring respectively when the scatterer radius was
smaller or larger than the optical wavelength. Moreover, simulations carried out for a low
refractive index contrast between the scatterers and the surrounding medium provided
images of the Rayleigh type, corresponding to the Rayleigh-Gans regime. This latter
result may be relevant to the scattering by cell nuclei, whose refractive index is very close
to that of cytoplasm. On the whole, Mueller imaging in backscattering configuration with
focussed illumination might be useful to characterize biological samples, provided they
are sufficiently uniform over sizes of the order of the "directional mean free path" `′s.

Another set of experiments were carried out on an angle-resolved polarimeter mounted
during a three-month stay at Oregon Healthy and Science University of Portland. This
instrument included a Fourier optics imaging system, which allowed a snapshot acquisi-
tion of angle resolved Mueller matrix over 360◦ azimuthal angle and 0◦-16◦ polar angle.
Within this relatively small aperture we observed a clear dependence of the linear bire-
fringence of a honey sample on the scattering angle, in addition to the expected optical
activity. This effect is not yet fully understood. Other samples, namely suspensions of
polystyrene spheres in water and mice tendon, were also studied. These samples were thin
enough to ensure a dominant contribution of single scattering in the observed patterns.

This technique is a very promising one, provided it is implemented with very large
numerical aperture optics, such as microscope objectives. For our purpose, such studies
in single scattering regime may be very helpful to constrain some parameters relevant to
the tissue model, such as the size of the scatterers embedded in the tissue. Exfoliation
techniques may also be used to carry out such studies on well identified tissue layers,
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such as the mucosa, the submucosa or even the pericolic tissue in the case of colon. Such
"guidelines" may be essential for the correct interpretation of real space polarimetric
images of ex vivo or in vivo tissues.

The third instrument used in this experimental part was a liquid crystal based real
space imaging polarimeter, operated at the Pathology Department of Institut Mutual-
iste Montsouris. Many uterine cone biopsies and colon samples were imaged at various
wavelengths between 500 and 700 nm. Most of these samples were found to be almost
pure depolarizers, with a depolarizing power increasing with increasing wavelength. This
trend is certainly related to the decrease of absorption by hemoglobin from the green
to the red part of the spectrum, leading to an increase of the average number of scat-
tering events that photons suffer before leaving the sample backwards. Another very
general observation was that all tissues were found to scatter light in the Rayleigh or
Rayleigh-Gans regimes, with larger depolarization for circular rather than linear incident
polarization. Moreover, at initial stages of tumor evolution, tumoral regions appeared
to be less depolarizing than healthy tissue. Finally, we observed on thick cone biopsies
a complex polarimetric response, with a good correlation between detailed polarimetric
characteristics (birefringence and depolarization) and the nature of the tissue (healthy,
CIN III, ectropion). These results are very encouraging for the use of multispectral full
Mueller polarimetry in colposcopy.

In the simulation part, which was the core of this work, we investigated various models
for the tissue polarimetric response. Our priority was to reproduce the most generally ob-
served characteristics, and primarily the systematically observed Rayleigh type responses.
For colon tissue, we considered that the most efficient scatterers were collagen structures,
with refractive index 1.46, and radii of the order of 200 nm in the mucosa (the most su-
perficial layer) and 1.75 µm in the submucosa (the underlying layer). The simplest model,
comprising a single layer (the mucosa) over a lambertian representing all the underlying
layers, was found to be very unstable, with transitions from Rayleigh to Mie regimes
when the parameters (scatterer radius, mean free path and mucosa thickness) were var-
ied within reasonable limits for real tissues. Inclusion of a second layer, representing the
submucosa, brought only very minor changes, probably due to the strong anisotropy of
the scattering to large collagen structures, leading to a very small contribution of the
"large" scatterers in the backward direction. Coming back to a single layer on top of
a lambertian, we found the same kind of "instabilities" when geometrical changes were
introduced to mimic a budding tumor.

In contrast, the introduction of small scatterers, even at tiny concentrations, were
found to "stabilize" the response to a Rayleigh type. These small scatterers may represent
intracellular organelles, which may even not be visible with optical microscopes.

We believe that these results are likely to be the starting point of new developments
which may lead to the elaboration of realistic models which could be used as "guidelines"
for the interpretation of observed polarimetric responses. Given the number of param-
eters involved even in "simple" models, a first independent evaluation of some of them
by angle resolved polarimetry in single scattering regime would be very helpful. The
implementation of a polarimeter devoted to these studies is underway at LPICM.

Finally, we would like to stress that this work was a contribution to the now well
established collaboration of the LPICM optical team with medical doctors, aimed at
developing new instruments to be actually used in clinical practice.



Appendix A

Jones and Mueller matrices

Given the Jones matrix
J =

[
T11 T12

T21 T22

]
≡
[
T2 T3

T4 T1

]
(A.1)

The associated Mueller matrix is obtained as

M =


1
2
(M2 +M3 +M4 +M1) 1

2
(M2 −M3 +M4 −M1) S23 + S41 −D23 −D41

1
2
(M2 +M3 −M4 −M1) 1

2
(M2 +M3 −M4 +M1) S23 − S41 −D23 +D34

S24 + S31 S24 − S31 S21 − S34 −D21 +D34

D24 +D31 D24 −D31 D21 +D34 S21 − S34


(A.2)

where 
Mk = TkTk

Ski = Sik =
1

2
(TiTk + TkTi)

−Dki = Dik =
j

2
(TiTk + TkTi)

(A.3)
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Optical device Eigenvalues Eigenvectors Jones matrix

Free space
[
1 0
0 1

]

Isotropic absorbing material
p2 = k

[
p 0
0 p

]

Linear polarizer in its axes
at ψ = 0

P1

0

[
1
0

]
[
0
1

] [
P1 0
0 0

]

Linear polarizer at ψ = π
2

0

P2

[
1
0

]
[
0
1

] [
0 0
0 P2

]

Linear polarizer at ψ = π
4

P1

0

1√
2

[
1
1

]
1√
2

[
−1
1

] P1
2

[
1 1
1 1

]

Linear polarizer at ψ

P1

0

[
Cψ
Sψ

]
[
−Sψ
Cψ

] P1

[
C2
ψ CψSψ

CψSψ S2
ψ

]

Right circular polarizer

P1

0

1√
2

[
1
j

]
1√
2

[
j
1

] P1
2

[
1 −j
j 1

]

Left circular polarizer

0

P2

1√
2

[
1
j

]
1√
2

[
j
1

] P2
2

[
1 j
−j 1

]

Elliptical polarizer

P1

0

[
Cα
Sαe

jδ

]
[
−Sαejδ
Cα

] [
P1C

2
α P1e

−jδCαSα
P1e

jδCαSα P1S
2
α

]

Cα = cos(α); Sα = sin(α)

C2α = C2χC2ψ; S2αCδ = C2χS2ψ; S2αSδ = S2χ

q1 =
1
2(P

2
1 + P 2

2 ); q2 =
1
2(P

2
1 − P 2

2 ); q3 = P1P2

Table A.1: Jones matrices of diattenuators [2, 84].
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Optical device Eigenvalues Eigenvectors Jones matrix

Linear dichroic polarizer in its axes
at ψ = 0

P1

P2

[
1
0

]
[
0
1

] [
P1 0
0 P2

]

Linear dichroic polarizer
at ψ = π

4

P1

P2

1√
2

[
1
1

]
1√
2

[
−1
1

] 1
2

[
P1 + P2 P1 − P2

P1 − P2 P1 + P2

]

Linear dichroic polarizer
at ψ

P1

P2

[
Cψ
Sψ

]
[
−Sψ
Cψ

] [
P1C

2
ψ + P2S

2
ψ (P1 − P2)CψSψ

(P1 − P2)CψSψ P1S
2
ψ + P2C

2
ψ

]

Circular dichroic polarizer

P1

P2

1√
2

[
1
j

]
1√
2

[
j
1

] 1
2

[
P1 + P2 −j(P1 − P2)
j(P1 − P2) P1 + P2

]

Elliptical dichroic diattenuator

P1

P2

[
Cα
Sαe

jδ

]
[
−Sαejδ
Cα

] [
P1C

2
α + P2S

2
α (P1 − P2)e

−jδCαSα
(P1 − P2)e

jδCαSα P1S
2
α + P2C

2
α

]

Cα = cos(α); Sα = sin(α)

C2α = C2χC2ψ; S2αCδ = C2χS2ψ; S2αSδ = S2χ

q1 =
1
2(P

2
1 + P 2

2 ); q2 =
1
2(P

2
1 − P 2

2 ); q3 = P1P2

Table A.2: Jones matrices of diattenuators [2, 84].
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Optical device Mueller matrix Diattenuation vector

Free space


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Isotropic absorbing material
p2 = k


k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k



Linear polarizer in its axes
at ψ = 0

P 2
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 1

0
0



Linear polarizer at ψ = π
2

P 2
2

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 −1

0
0



Linear polarizer at ψ = π
4

P 2
1

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


 0

1
0



Linear polarizer at ψ P 2
1

2


1 C2ψ S2ψ 0
C2ψ C2

2ψ C2ψS2ψ 0
S2ψ C2ψS2ψ S2

2ψ 0
0 0 0 0


 C2ψ

S2ψ

0



Right circular polarizer P 2
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 0

0
1



Left circular polarizer P 2
2

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 0

0
−1



Elliptical polarizer P 2
1

2


1 C2α S2αCδ S2αSδ
C2α C2

2α C2αS2αCδ C2αS2αSδ
S2αCδ C2αS2αCδ C2

δS
2
2α CδSδS

2
2α

S2αSδ C2αS2αSδ CδSδS
2
2α S2

δS
2
2α


 C2α

S2αCδ
S2αSδ



Cα = cos(α); Sα = sin(α)

C2α = C2χC2ψ; S2αCδ = C2χS2ψ; S2αSδ = S2χ

q1 = 1
2
(P 2

1 + P 2
2 ); q2 = 1

2
(P 2

1 − P 2
2 ); q3 = P1P2

Table A.3: Mueller matrices of diattenuators [2, 84].
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Optical device Mueller matrix Diattenuation vector

Linear dichroic polarizer in its axes
(at ψ = 0)

1
2


q1 q2 0 0
q2 q1 0 0
0 0 q3 0
0 0 0 q3

 q2
q1

 1
0
0



Linear dichroic polarizer
at ψ = π

4


q1 0 q2 0
0 q3 0 0
q2 0 q1 0
0 0 0 q3

 q2
q1

 0
1
0



Linear dichroic polarizer
at ψ


q1 q2C2ψ q2S2ψ 0

q2C2ψ q1C
2
2ψ + q3S2ψ C2ψS2ψ(q1 − q3) 0

q2S2ψ C2ψS2ψ(q1 − q3) q1S
2
2ψ + q3C

2
2ψ 0

0 0 0 q3

 q2
q1

 C2ψ

S2ψ

0



Circular dichroic polarizer


q1 0 0 q2

0 q3 0 0
0 0 q3 0
q2 0 0 q1

 q2
q1

 0
0
1



Elliptical dichroic diattenuator


q1 q2C2α q2S2αCδ q2S2αSδ

q2C2α q1C
2
2α + q3S

2
2α C2αS2αCδ(q1 − q3) C2αS2αSδ(q1 − q3)

q2S2αCδ C2αS2αCδ(q1 − q3) C
2
δ (q1S

2
2α + q3C

2
2α) + q3S

2
δ CδSδS

2
2α(q1 − q3)

q2S2αSδ C2αS2αSδ(q1 − q3) CδSδS
2
2α(q1 − q3) S2

δ (q1S
2
2α + q3C

2
2α) + q3C

2
δ

 q2
q1

 C2α

S2αCδ
S2αSδ



Cα = cos(α); Sα = sin(α)

C2α = C2χC2ψ; S2αCδ = C2χS2ψ; S2αSδ = S2χ

q1 =
1
2(P

2
1 + P 2

2 ); q2 =
1
2(P

2
1 − P 2

2 ); q3 = P1P2

Table A.4: Mueller matrices of diattenuators [2, 84].
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Optical device Eigenvalues Eigenvectors Jones matrix

Linear retarder
(phase shift δR)
in its axes (ψ = 0)

ej
δR
2

e−j
δR
2

[
1
0

]
[
0
1

]
[
ej

δR
2 0

0 e−j
δR
2

]

Linear retarder
(phase shift δR)
at ψ = π

4

ej
δR
2

e−j
δR
2

[
0
1

]
1√
2

[
−1
1

]
[
CδR

2
jSδR

2

jSδR
2
CδR

2

]

Linear retarder
(phase shift δR)
at ψ

ej
δR
2

e−j
δR
2

[
Cψ
Sψ

]
[
−Sψ
Cψ

]
 C2

ψe
j
δR
2 + S2

ψe
−j δR2 jSδR

2
S2ψ

jSδR
2
S2ψ S2

ψe
j
δR
2 + C2

ψe
−j δR2



Linear quaterwave retarder
(phase shift δR = π

2)
in its axes (ψ = 0)

ej
π
4

e−j
π
4

[
1
0

]
[
0
1

] [
ej

π
4 0
0 e−j

π
4

]

Linear quaterwave retarder
(phase shift δR = π

2)
in its axes (ψ = π

4)

ej
π
4

e−j
π
4

[
0
1

]
1√
2

[
−1
1

]
[

1
2e
j π4 + 1

2e
−j π4 j

√
2

2

j
√

2
2

1
2e
j π4 + 1

2e
−j π4

]

Halfwave linear retarder
(phase shift δR = π)
in its axes (ψ = π

4)

ej
π
2

e−j
π
2

[
0
1

]
1√
2

[
−1
1

] [
1
2e
j π2 + 1

2e
−j π2 j

j 1
2e
j π2 + 1

2e
−j π2

]

Right circular retarder

ej
δR
2

e−j
δR
2

1√
2

[
1
j

]
1√
2

[
j
1

]
[
CδR

2
SδR

2

−SδR
2
CδR

2

]

Left circular retarder

ej
δR
2

e−j
δR
2

1√
2

[
j
1

]
[
1
j

] 1
2

[
CδR

2
−SδR

2

SδR
2

CδR
2

]

Elliptical retarder

ej
δR
2

e−j
δR
2

[
Cα
Sαe

jδ

]
[
−Sαejδ
Cα

]  C2
αe

j
δR
2 + S2

αe
−j δR2 jSδR

2
S2αe

−jδ

jSδR
2
S2αe

jδ S2
αe

j
δR
2 + C2

αe
−j δR2



Cα = cos(α); Sα = sin(α);

d = C2αSδR
2
= C2χC2ψSδR

2
; e = S2αCδSδR

2
= C2χS2ψSδR

2
;

f = S2αSδSδR
2
= C2χSδR

2
; g = CδR

2
.

Table A.5: Jones matrices of retarders [2, 84].
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Optical device Mueller matrix Retardance vector

Linear retarder
(phase shift δR)
in its axes (ψ = 0)


1 0 0 0
0 1 0 0
0 0 CδR SδR
0 0 −SδR CδR

 δR

 1
0
0



Linear retarder
(phase shift δR)
at ψ = π

4


1 0 0 0
0 CδR 0 −SδR
0 0 1 0
0 SδR 0 CδR

 δR

 0
1
0



Linear retarder
(phase shift δR)
at ψ


1 0 0 0
0 C2

2ψ + S2
2ψCδR C2ψS2ψ(1− CδR) −S2ψSδR

0 C2ψS2ψ(1− CδR) S2
2ψ + C2

2ψCδR C2ψSδR
0 S2ψSδR −C2ψSδR CδR

 δR

 C2ψ

S2ψ

0



Linear quaterwave retarder
(phase shift δR = π

2)
in its axes (ψ = 0)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 δR

 1
0
0



Linear quaterwave retarder
(phase shift δR = π

2)
in its axes (ψ = π

4)


1 0 0 0
0 1 0 −1
0 0 1 0
0 1 0 0

 δR

 0
1
0



Halfwave linear retarder
(phase shift δR = π)
in its axes (ψ = π

4)


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 δR

 0
1
0



Right circular retarder


1 0 0 0
0 CδR SδR 0
0 −SδR CδR 0
0 0 0 1

 δR

 0
0
1



Left circular retarder


1 0 0 0
0 CδR −SδR 0
0 SδR CδR 0
0 0 0 1

 δR

 0
0
−1



Elliptical retarder


1 0 0 0
0 d2 − e2 − f 2 + g2 2(de + fg) 2(df − eg)
0 2(de− fg) −d2 + e2 − f 2 + g2 2(ef − dg)
0 2(df + eg) 2(ef + dg) −d2 − e2 + f 2 + g2

 δR

 C2α

S2αCδ
S2αSδ



Cα = cos(α); Sα = sin(α);
d = C2αSδR

2
= C2χC2ψSδR

2
; e = S2αCδSδR

2
= C2χS2ψSδR

2
;

f = S2αSδSδR
2
= C2χSδR

2
; g = CδR

2
.

Table A.6: Mueller matrices of retarders [2, 84].
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Appendix B

Outline of Mie theory

The contents of this subsection is taken from H. C. van de Hulst, Ref. [64].

The Maxwell’s equations describe the propagation of an electromagnetic wave in a
medium. The solution of the Maxwell’s equation for a scattering sphere in a host medium
constitutes the complete solution of the Mie problem, which includes the wave propagat-
ing inside (incident) and outside (scattered) the sphere. This formal solution in spherical
coordinates constitutes the Mie theory. In order to retrieve the essential features of Mie
theory we need to solve the Maxwell’s equations for the scattering by an homogenous
sphere of arbitrary size rs and refractive index ns of a plane wave propagating in an
homogenous, linear optical medium of refractive index nm (refractive index contrast of
the scattering medium m = ns/nm).

Let’s consider the Maxwell’s equations

∇ ·D(r, t) = ρ ∇× E(r, t) = −∂B(r, t)

∂t
(B.1a)

∇ ·B(r, t) = 0 ∇×H(r, t) = J +
∂D(r, t)

∂t
(B.1b)

where

D = εE B = µH J = σE. (B.2)

The meaning of the symbols is: t = time, D = dielectric displacement, ρ = charge
densities, E = electric field strength, B = magnetic induction or magnetic flux density,
H = magnetic field strength, J = current density, ε dielectric constant (or permittivity) of
the medium, µ = permeability of the medium, σ = electrical conductivity of the medium.
An homogenous medium is characterized by constant values of ε and µ. In particular,
for linear optical materials ρ = 0, J = 0, σ = 0 and Eq.(B.1) can be reformulated as

∇ ·D(r, t) = 0 ∇× E(r, t) = −∂B(r, t)

∂t
(B.3a)

∇ ·B(r, t) = 0 ∇×B(r, t) = µ ε
∂D(r, t)

∂t
. (B.3b)

135
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Taking curl (∇×) of Eqs.(B.3) and operating simple substitutions lead to formal de-
coupling the electro-magnetic (E, B) problem and expressing the electric and magnetic
problems by the well-known vector wave equations

∇2E(r, t)− µε∂
2E(r, t)

∂t2
= 0 (B.4a)

∇2B(r, t)− µε∂
2B(r, t)

∂t2
= 0. (B.4b)

Due to the dual nature of the electromagnetic wave all considerations and results con-
cerning the electrical problem are applicable to the magnetic problem. Hence, we can
solve the problem of an electric wave E propagating in a scattering medium and adapt the
results to the magnetic wave B to get the complete solution of the Maxwell’s equation.

A monochromatic wave propagating in a scattering medium has the form

E(r, t) = <{E0e
j(k·r−ωt)}. (B.5)

The hypothesis of a monochromatic wave simplifies Eq.(B.4a) into

∂2E(r, t)

∂t2
= −ω2E(r, t) (B.6)

and leads the following expression of the vector wave equation

∇2E(r, t) + k2n2
mE(r, t) = 0 (B.7)

where k = ω
√
µ0ε0 = ω/c = 2π/λ is the propagation constant (or wave number) in vac-

uum, with µ0 and ε0 stand for vacuum permeability and permittivity. The wavelength
in vacuum follows from it by λ = 2π/k. The parameter nm is the real refractive index at

the frequency ω (complex refractive index ncm =
√
ε− 4πjσ

ω
). An additional result found

from Eqs.(B.3) for an homogenous medium is that any rectangular components (x, y, z)
of E (Ex, Ey, Ez) verify the scalar wave equation

∇2f(r, t) + k2n2
mf(r, t) = 0 (B.8)

whose simplest type of solution is a plane wave. In particular a plane wave travelling in
the positive z direction at any point of the space P of rectangular components (x, y, z)
has the expression

f = e−jknmz+jωt. (B.9)

The scalar wave equation can be separated in spherical components and at any point
of the space P of spherical components (r cosϕ sin θ, r sinϕ sin θ, r cos θ) has elementary
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solutions of the following type:

fln =
cos lϕ
sin lϕ

}
P l
n(cos θzn(knmr). (B.10)

Here n and l are integer:

n ≥ l ≥ 0; (B.11)

the first factor can be either a cosine or a sine; the second factor is an associated Legendre
polynomial; the third factor may be any spherical Bessel function, defined by

zn(α) =

√
π

2α
Zn+1/2(α) (B.12)

in terms of Bessel functions. The general solution of the scalar wave equation (B.10)
is a linear combination of such elementary solutions. Within all possible solutions of
the scalar wave equation those which verify the vector wave equation can be found from
the following theorem, which is stated without proof [85]. If f satisfies the scalar wave
equation, the vectors Mf and Nf defined by

Mf = ∇× (rf) (B.13a)
knmNf = ∇×Mf (B.13b)

satisfy the vector wave equation and are, moreover, related by

knmMf = ∇×Nf . (B.14)

A simple substitution shows that, if u and v are two solutions of the scalar wave equa-
tion and Mu, Nu, Mv, Nv are the derived vector fields, the Maxwell equations B.3 are
satisfied by

E = Mv + jNu

H = nm(−Mu + jNv)

}
. (B.15)

The full components of Mf and Nf are

Mr = 0, knmNr =
∂2(rf)

∂r2
+ k2n2

mrf, (B.16a)

Mθ =
1

r sin θ

∂(rf)

∂ϕ
, knmNθ =

1

r

∂2(rf)

∂r∂θ
, (B.16b)

Mϕ = −1

r

∂(rf)

∂θ
, knmNϕ =

1

r sin θ

∂2(rf)

∂r∂ϕ
(B.16c)

where the spherical components of the solution of the vector wave equation are written
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in terms of the scalar solution and its first and second derivatives.

We now come to the Mie problem, that is the scattering of a plane wave by an homoge-
nous sphere. We assume that the embedding medium and the material of the scattering
sphere have arbitrary refractive indexes nm and ns, respectively. We assume that the
incident wave is linearly polarized. The origin is taken at the center of the sphere, the z
axis is taken as the direction of propagation of the wave and x axis in the plane of the
electrical vibration. Then the incident electromagnetic wave (propagating in the outside
medium, nm) of amplitude 1 has the expression:

E = axe
−jknmz+jωt (B.17a)

H = aye
−jknmz+jωt (B.17b)

where ax and ay are the unit vector along the x and y axes.
It can be proved (but we omit the derivation) that the same fields propagating in the

embedding medium towards the scattering sphere, and constituting the outside, incident
wave, are written in the form given in Eq.(B.15) by choosing u and v as

u = ejωt cosϕ
∞∑
n=1

(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn(knmr) (B.18a)

v = ejωt sinϕ
∞∑
n=1

(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn(knmr) (B.18b)

which contains the elementary solutions P l
n with l = 1 only and where jn(knmr) is the

spherical Bessel function derived from the Bessel function of the first kind, Jn+ 1
2
.

The form of the incident wave (outside the sphere) sets the expression of the complete
solution, which consists of the incident and scattered waves. By taking into account the
boundary conditions and the conditions to be verified at infinity, the outside, scattered
wave is found to have the expression:

u = ejωt cosϕ
∞∑
n=1

−an(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)

n (knmr) (B.19a)

v = ejωt sinϕ
∞∑
n=1

−bn(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)

n (knmr). (B.19b)

where we find the same elementary solution P 1
n only, as in the expression of the incident

wave (Eq.(B.18)); h(2)
n (knmr) is the spherical Bessel function derived from the Bessel

function of the second kind H
(2)

n+ 1
2

and has been chose for its asymptotic behavior,

h2
n(knmr) ∼

jn+1

knmr
e−jknmr, (B.20)

when combined with the factor ejωt, represents an outgoing spherical wave, as is required
for the scattered wave; an and bn are the coefficient to be determined [85].
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Similarly, the inside wave has the expression:

u = ejωt cosϕ
∞∑
n=1

nscn(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn (knsr) (B.21a)

v = ejωt sinϕ
∞∑
n=1

nsdn(−j)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn (knsr) . (B.21b)

Here cn and dn are another pair of undetermined coefficients, and the choice of jn (knsr)
comes along with the refractive indexes of the media inside and outside the sphere are
respectively ns and nm.

In order to find the undetermined coefficient (an, bn, cn, dn) we need to look at the
condition at the boundary between the medium inside and outside the sphere which. So
far we have considered a sharp boundary between the two media characterized by finite
refractive indexes ns and nm, respectively. Let denote as n the unit vector normal to the
boundary surface, directed from medium ns to medium nm and (E/H)m and (E/H)s the
fields outside and inside the sphere, respectively. Then from Maxwell’s equations (B.3)
we derive the boundary conditions for the tangential components :

n× (Hm −Hs) = 0 (B.22a)
n× (Em − Es) = 0 (B.22b)

for the normal components :

n · (n2
mEm − n2

sE
s) = 0 (B.23a)

n · (Hm − Es) = 0. (B.23b)

The set of boundary conditions ensure the continuity of the wave propagation at the
boundary between the medium inside and outside the sphere. They may be made com-
plete by introducing the surface charge density δ and ensuring the conservation of the
charge at the boundary:

n · (Im − Is) +
dδ

dt
= 0 (B.24a)

n · (εmEm − εsHs) = 4πδ. (B.24b)

There are no surface density here since ns and nm are supposed finite and surface density
exist only if ns and nm infinite. Moreover, in the hypothesis of homogenous linear optical
material (ns, nm real), i.e. the boundary between two dielectrics charge surface density
does not exists either and Eqs. B.24 simplify as

n · (Im − Is) = 0 (B.25a)
n · (εmEm − εsHs) = 0. (B.25b)
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We need to introduce the Riccati-Bessel functions which differ from the spherical
Bessel function by adding an additional factor z:

ψn(z) = zjn(z) = (πz/2)1/2Jn+1/2(z) = Sn(z) (B.26a)

χn(z) = −znn(z) = −(πz/2)1/2Nn+1/2(z) = Cn(z) (B.26b)

ζn(z) = zh(2)
n (z) = (πz/2)1/2H

(2)
n+1/2(z) = Cn(z). (B.26c)

ψn(z), χn(z) and ζn(z) are the notations introduced in 1909 by Debye; the notations Sn
and Cn are most common at present. By virtue of

H(2)
n (z) = Jn(z)− jNn(z) (B.27)

we get
ζn(z) = ψn(z) + jχn(z). (B.28)

The derivatives of these functions will be denotes by primes. The arguments are:

x = knmrs, y = knsrs. (B.29)

With this notations the boundary conditions, expressed by the continuity of the four
functions placed in brackets, assume the forms:

[
1

ns
u

]
: ψn(x)− anζn(x) = nscnψn(y) (B.30a)[

ns
∂(ru)

∂r

]
: ψ′n(x)− anζ ′n(x) = cnψ

′
n(y) (B.30b)

[v] : ψn(x)− bnζn(x) = dnψn(y) (B.30c)[
∂(rv)

∂r

]
: ψ′n(x)− bnζ ′n(y) = nsdnψ

′
n(y). (B.30d)

On eliminating cn from the first pair and dn from the second pair of equations we obtain
the solutions:

an =
ψ′n(y)ψn(x)− nsψn(y)ψ′n(x)

ψ′n(y)χn(x)− nsψn(y)χ′n(x)
(B.31a)

bn =
nsψ

′
n(y)ψn(x)− ψn(y)ψ′n(x)

nsψ′n(y)χn(x)− ψn(y)χ′n(x)
. (B.31b)

For cn and dn we find fractions with the same respective denominators and as common
numerator:

ψ′n(x)ζn(x)− ψn(x)ζ ′n(x) = j. (B.32)
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This complete the solution of the problem at any point inside and outside the sphere.

Let’s consider the scattered wave. In particular we want to take a point P at a very
large distance from the scattering sphere. Then, we can substitute to h

(2)
n (knmrs) its

asymptotic expression given in Eq.(B.20) and we obtain the scattered wave in the form:

u = − j

knmr
e−jknmr+jωt cosϕ

∞∑
n=1

an
2n+ 1

n(n+ 1)
P 1
n(cos θ) (B.33a)

v = − j

knmr
e−jknmr+jωt sinϕ

∞∑
n=1

bn
2n+ 1

n(n+ 1)
P 1
n(cos θ). (B.33b)

The spherical components of the scattered wave can be written as [85]

Er = Hr −→ 0 (B.34a)

Eθ = Hϕ = − j

knmr
e−jknmr+jωt cosϕS2(θ) (B.34b)

−Eϕ = Hθ = − j

knmr
e−jknmr+jωt sinϕS1(θ) (B.34c)

where

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
{anπn(cos θ) + bnτn(cos θ)}, (B.35a)

S2(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
{bnπn(cos θ) + anτn(cos θ)} (B.35b)

and

πn(cos θ) =
1

sin θ
P 1
n(cos θ) (B.36a)

τn(cos θ) =
d

dθ
P 1
n(cos θ). (B.36b)

The perpendicular and parallel components of the scattered wave are{
Es⊥ = −Eϕ
Es‖ = Eθ

(B.37)

The situation is illustrated in Fig. B.1. The plane of reference is defined by the specific
directions of propagation of the incident E0 and scattered wave Es and (e0‖, e0⊥) and
(es‖, es⊥) are the basis that decompose the amplitude vector of the incident and scattered
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Figure B.1: Decomposition of electric vectors of incident and scattered waves.

wave respectively, such that

E0 = E0‖e0‖ + E0⊥e0⊥ (B.38a)
Es = Es‖es‖ + Es⊥es⊥. (B.38b)

In particular, when the basis of the incident wave is{
e0‖ = sinϕ
e0⊥ = cosϕ

(B.39)

where ϕ is the rotation of the basis of the incident wave around the z axis, then the basis
of the scattered wave is {

es‖ = cosϕ
es⊥ = − sinϕ.

(B.40)

Then Eq.(B.34) can be reformulated as

Es = S2(θ)E0‖es‖ + S1(θ)E0⊥es⊥ (B.41)

and S1(θ) and S2(θ) are the amplitude functions of the spherical components of the scat-
tered wave, respectively. The same equation can be written as[

Es‖
Es⊥

]
=

[
S2(θ) 0

0 S1(θ)

]
·
[
E0‖
E0⊥

]
(B.42)

where the diagonal matrix is the Jones matrix of a single scattering sphere in the refer-
ence frames defined by (e0‖, e0⊥) and (es‖, es⊥).

In the expression of the spherical components of the wave scattered by an homogenous
sphere in any point in the far-field zone (Eqs.(B.34)) we may recognize the expression of an
outgoing spherical wave, in which the energy flows outward from the particle. In fact the
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Figure B.2: Definition of the scattering angle. Incident light is from below [86].

general expression of a spherical wave in a point P at a large distance r from the particle is

s = S(θ, ϕ)
e−jknmr+jωt

jknmr
= S0e

−jknmr (B.43)

where S0 = S(θ, ϕ) ejωt

jknmr
and S(θ, ϕ) is the amplitude function of the scattering particle

(S(θ, ϕ)/k2 is an area). S(θ, ϕ) is dimensionless and is a function of the direction of P
given by the polar and azimuthal angles (θ, ϕ) that it forms with the direction of propa-
gation of the incident light and the azimuth angle but not of its position (r), it depends
on the form, size and orientation with respect to the incident wave of the scattering par-
ticle and on the state of polarization of the incident wave. In particular, any amplitude
function Si(θ) (i = 1, 2) depends on the distance (r−1), the direction of scattering given
by the polar angle of P (θ) (see Fig. B.2).

Let I0 be the intensity of the incident light, Is(θ, ϕ) the intensity of the scattered light
in P. Since Is(θ, ϕ) must be proportional to I0 and r−2 we may write [86]

Is =
I0S(θ, ϕ)

k2n2
mr

2
. (B.44)

The relative values of Is(θ, ϕ), or of S(θ, ϕ) may be plotted in a polar diagram, as a
function of θ in a fixed plane through the direction of propagation. This diagram is called
scattering diagram of the particle (Figs. 2.2, 2.4). Dividing S(θ, ϕ) by k2n2

mσs, where σs
is the scattering cross-section defined in section 2.15 we obtain the phase function which
is dimensionless and its integral over all directions is 1.

The full relation indicating how the intensity and state of polarization of the scattered
light depend on the intensity and state of polarization of the incident light are contained
in the matrix equation 

I
Q
U
V

 =
1

k2n2
mr

2
S


I0

Q0

U0

V0

 (B.45)

where [I, Q, U, V ]T and [I0, Q0, U0, V0]T are the Stokes vectors associated to the scat-
tered and incident light respectively. The matrix S consists of 16 components Sij (i, j =
1..4) function of the incidence and scattering directions. The first of the four equations
contained in this matrix equation is
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Is =
1

k2n2
mr

2
{S11I0 + S12Q0 + S13U0 + S14V0}. (B.46)

Then by comparing this equation to Eq.(B.44) we observe that

S = S11 + S12
Qi

Ii
+ S13

Ui
Ii

+ S14
Vi
Ii

(B.47)

which specifies the manner in which S depends on the state of polarization of the incident
light, defined by the quantities Q0/I0, U0/I0, V0/I0. For incident natural light

S = S11. (B.48)

In the most general case S is asymmetric. For a single scattering particle the number
of independent constants reduces to 7 because 9 relations exist between the 16 elements
[87]. For an homogenous spherical particle it is characterized by 3 independent constants
i1, i2 and δ defined above and which are function of the angle θ. In this case 10 of the
16 components are zero, and other 6 are quadratic functions of the complex amplitude
functions S1(θ) and S2(θ).

In conclusion the whole computational problem behind the Mie theory resolves in the
computation of the numbers S1(θ, ϕ), S2(θ, ϕ). Generally, the scattered light is ellipti-
cally polarized even if the incident light has linear polarization, and S1(θ, ϕ), S2(θ, ϕ)
are complex number with different phase which justify the computation of their complex
conjugate S1(θ, ϕ), S2(θ, ϕ) and their intensity as |S1(θ, ϕ)|2, |S2(θ, ϕ)|2 .



Appendix C

Wavelength dependence of model
parameters

The dispersion law for collagen was defined as [88, 89]:

ncollagen(λ) = 1.426 +
19476

λ2
− 1131066900

λ4
. (C.1)

where λ is expressed in nm. The medium refractive index was kept constant (nm =
1.38).

The absorption coefficient of the medium was modelled as the sum of the absorption
coefficients of haemoglobin, β-carotene [90] and water [91]:

µa(λ) = µHba (λ) + µβ−cara (λ) + µwatera (λ). (C.2)

The absorption coefficient of haemoglobin was corrected by the factor Cdiff (λ, bvr)(<1)
suggested by Veen [92] and Svaasand [93] to account for the effects of vessel packing:

Cdiff (λ, bvr) =
1− exp[−2µblooda (λ)]bvr

2µblooda (λ)bvr
(C.3)

where bvr is the effective blood vessel radius in mm and µblooda (λ) is the absorption
coefficient of whole blood:

µblooda (λ) = ln(10)CHb(αεHb02(λ) + (1− α)εHb(λ))/64500 (C.4)

where CHb is the concentration of haemoglobin expressed in mg/mL, α is the degree
of oxygen saturation of haemoglobin, εHb02(λ) and εHb(λ) are the extinction coefficients
of oxygenated and deoxygenated haemoglobin, expressed in cm−1 mole−1L [94, 95]. CHb
is normally equal to 150 mg/ml. We set the value of 70% for α [74] and the value of 3 µm
for bvr, since the diameter of capillary is varied between 5 and 7 µm [76] and its lower
limit was estimated as 2.5 µm [89]. The absorption coefficient of the whole blood was
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multiplied by the volume fraction of blood in tissue VHb which approximated 2% [74].
The absorption coefficient of haemoglobin is given by the expression:

µHba (λ) = Cdiff (α, bvr)VHbµ
blood
a (λ). (C.5)

The absorption coefficient of β-carotene (in cm−1) is given by:

µβ−carotenea (λ) = Cβ−car log(10)εβ−car(λ) (C.6)

where the Cβ−car is the concentration of β-carotene(λ) [mg/ml] and εβ−car(λ) is its
extinction coefficient [95].
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Abstract. Improving the visualization of dysplastic regions of uterine cervix in vivo
is essential for a better identification of the locations to biopsy and a better definition
of the boundaries of the anomalous regions to be surgically removed. For this purpose
we propose an innovative optical technique based on multispectral full Mueller polari-
metric imaging in backscattering configuration. Measurements on ex vivo samples were
performed to define the best acquisition procedures and data treatments for in vivo di-
agnosis. As this optimization requires thorough understanding of polarimetric contrasts
between healthy and anomalous tissues, we simulated the propagation of polarized light
in multilayer structures representative of real tissues. These structures typically involve
an uppermost layer describing the epithelium and/or superficial connective tissue, on top
of a totally depolarizing lambertian surface lumping the contribution of deeper layers.
The simulations were performed by using a Monte Carlo code which has been modified
and adapted to our topic. We thus showed that the contribution of the cell nuclei is in
fact quite small in the backscattering geometry. For connective tissue, collagen fibers
were modelled as 200 nm radius scatterers. Once more this contribution alone could not
reproduce the main experimental features. Very small scatterers (50 nm typical radius)
have to be included to account for the Rayleigh-like polarimetric response observed in
all tissues, both healthy and diseased. These scatterers may be representative of pro-
teins, whose concentration seems to be a crucial parameter to account for the observed
contrasts. In this sense, polarimetric imaging may reflect not only the tissue morphol-
ogy as seen by optical microscopy, but also its physiological state, which may be a very
important point for cancer detection and staging.

Resumé. L’amélioration de la visualisation in vivo des lésions précancéreuse (dys-
plasies) du col utérin est essentielle pour mieux identifier les zones à biopsier et pour
optimiser la définition des limites d’exérèse chirurgicale. Dans ce but nous étudions une
nouvelle technique d’imagerie polarimétrique en rétrodiffusion, que nous avons mise en
œuvre sur des échantillons ex vivo dans des configurations expérimentales variées afin
d’optimiser le diagnostic in vivo. Comme cette optimisation passe par la compréhension
des contrastes polarimétriques observés, nous avons réalisé de nombreuses simulations de
la propagation de lumière polarisée dans des structures multicouche représentatives des
tissus. Ces structures comprennent typiquement une couche comportant des diffuseurs
dans une matrice homogène et représentant l’épithélium ou le tissu conjonctif superficiel,
et un substrat lambertien totalement dépolarisant pour les couches plus profondes. Ces
simulations ont été effectuées au moyen d’un code Monte Carlo que nous avons adapté
à notre problématique. Nous avons ainsi montré que la contribution des noyaux cellu-
laires est très faible en rétrodiffusion. Pour le tissu conjonctif, les fibres de collagène,
modélisées par des diffuseurs sphériques de 200 nm de rayon, donnent une contribution
plus importante que les noyaux, mais ne reproduisent pas la réponse polarimétrique de
type Rayleigh observée dans tous les tissus étudiés, qu’ils soient sains ou pathologiques.
En revanche, l’inclusion de diffuseurs de taille nettement inférieure à la longueur d’onde,
modélisés par des sphères de 50 nm, permet de reproduire cette réponse de manière
très stable. Ces diffuseurs correspondent a priori aux protéines intracellulaires. Dans le
cadre de ce modèle, les contrastes observés entre tissus sains et cancéreux s’expliquent
essentiellement par une variation de la concentration de ces petits diffuseurs. Ce résul-
tat, encore préliminaire, suggère que l’imagerie polarimétrique en rétrodiffusion peut être
sensible non seulement à la morphologie, mais également à l’état physiologique du tissu,
ce qui peut s’avérer important pour la détection sélective des dysplasies.


