
HAL Id: pastel-00654930
https://pastel.hal.science/pastel-00654930

Submitted on 23 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Réduction de modèle et contrôle en boucle fermée
d’écoulements de type oscillateur et amplificateur de

bruit
Alexandre Barbagallo

To cite this version:
Alexandre Barbagallo. Réduction de modèle et contrôle en boucle fermée d’écoulements de type
oscillateur et amplificateur de bruit. Mécanique des fluides [physics.class-ph]. Ecole Polytechnique X,
2011. Français. �NNT : �. �pastel-00654930�

https://pastel.hal.science/pastel-00654930
https://hal.archives-ouvertes.fr
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Résumé : Ce travail est consacré au contrôle en boucle fermée des perturbations se développant
linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et ampli-
ficateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur
un modèle d’ordre réduit de l’écoulement obtenu par projection de Petrov-Galerkin.
La stabilisation d’un écoulement de cavité de type oscillateur est traitée dans une première
partie. Il est montré que la totalité de la partie instable de l’écoulement (les modes globaux
instables) ainsi que la relation entrée-sortie (action de l’actionneur sur le capteur) de la partie
stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux,
modes POD et modes BPOD sont successivement évalués comme bases de projection pour
modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement
entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l’écoulement que lorsque
l’instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En
revanche, les modes POD et plus particulièrement BPOD sont capable d’extraire la dynamique
entrée-sortie stable et permettent de stabiliser efficacement l’écoulement.
La seconde partie de ce travail est consacrée à la réduction de l’amplification des perturbations
sur une marche descendante. L’influence de la localisation du capteur et de la fonctionnelle
de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du
modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler
une simulation non-linéaire avec un modèle linéaire est évaluée.

Mots clés : stabilité globale, contrôle d’écoulement, contrôle LQG, réduction de modèle,
modes globaux, modes POD, modes BPOD.

Summary : This work deals with the closed-loop control of disturbances which develop li-
nearly in laminar and incompressible flows. The control of both oscillator and amplifier flows
is assessed. We consider a LQG control strategy in which the control law is computed using a
reduced-order model of the flow. This reduced-order model is obtained by a Petrov-Galerkin
projection.
The first part is devoted to the stabilization of an open cavity flow which behaves as an
oscillator. It is shown that the unstable subspace of the flow (the unstable global modes) and
the input-output behaviour between the actuator and the sensor of the stable subspace must
be captured by the reduced-order model to stabilize the system. Global modes, POD modes
and BPOD modes are successively evaluated as projection bases to construct a reduced-order
model of the stable part of the flow. It appears that global modes are not able to reproduce
the input-output behaviour of the stable part of the flow and subsequently may only stabilize
the flow if the instability is very weak (close to the criticality). On the contrary, reduced-order
models based on POD modes and BPOD modes efficiently extract the input-output dynamic
of the stable subspace and are successful to stabilize the flow.
The second part of this work is dedicated to the reduction of the disturbances’ amplification
on a backward facing step. The influence of the sensor’s location and of the cost functional
on the performance of the compensator is studied. It is shown that the truncation of the
reduced-order model may lead to an unstable closed-loop system. Finally, the possibility to
control a non-linear simulation using a linear compensator is evaluated.

Key words : global stability, flow control, LQG control, model reduction, global modes, POD
modes, BPOD modes.
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excellente. Merci particulièrement à Xavier, Cristobal, Fulvio, Miguel, Gianluca, Joran, John,
Yongyun, Diego, Junho, Pierre, Madiha, Maria-Luisa, Frédérick, Christoph, Shehryar, Mathieu,
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1 Introduction

1.1 Flow unsteadiness

Although flow unsteadiness usually results in magnificent phenomena to observe (see figure
1.1), it is often prejudicial in engineering applications. This thesis is devoted to the design and
evaluation of control strategies which aim at suppressing unsteady perturbations and ultimately
return to a stationary flow.

Figure 1.1 – Left : cigarette smoke subject to buoyancy effects. After Perry & Lim [75]. Right :
Von Karmann vortex street in the atmosphere triggered by the flow over an island. (NASA
picture).

1.1.1 Flow unsteadiness in industrial applications

In day-to-day situations, we are surrounded by air with unsteady behavior. For example,
the smoke of a cigarette which rises under the buoyancy effect (see figure 1.1 left) is subject
to various flow instabilities which render the prediction of its trajectory almost impossible. In
the aerospace industry, and more generally in engineering domains related to fluid mechanics,
the flows can also exhibit erratic behaviors. This behavior can be desired : in combustion
chambers an enhanced mixing results in a better combustion ; but may also be detrimental to
the correct functioning of the system. When an airplane is flying at cruise conditions the flow
accelerates on the suction side of the wing and creates a stationary shock. If the angle of attack
suddenly increases (for example to avoid a collision with another aircraft) the shock will start
to oscillate and may trigger some structural modes of the aircraft. This phenomenon, known
as shock buffeting (see Jacquin et al. [52]), is dangerous for the airplane safety and reduces
the flight envelope of commercial airplanes. In order to reduce the electromagnetic detection of
modern military airplanes, the engine compressor is fed with external air through a curved air
intake (see figure 1.2). Due to strong adverse pressure gradients, the flow separates, creating
a shear layer which amplifies incoming perturbations and results in large vortical structures
which impact the compressor and diminish the performance of the engine.
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Figure 1.2 – Sketch of the creation of perturbations in an air intake.

These few examples are taken from the aerospace industry and therefore associated with
high velocities and turbulent flow conditions. However, similar flow unsteadiness may be en-
countered at lower Reynolds numbers and for laminar flows. Since laminar flows are less complex
and thus better understood than turbulent flows, the flow control techniques considered in this
thesis will be evaluated using laminar test cases. In addition, the perturbations described in
the previous examples are much larger than the typical turbulence length scales. Therefore,
as suggested in Sipp at al. [85], it is likely that the techniques developed in this thesis for
laminar flows may also be extended successfully to turbulent flow conditions by augmenting
the Navier-Stokes equations with one or more turbulence model equations.

1.1.2 Hydrodynamic instabilities

Turbulent flows are by definition unsteady. On the contrary, laminar flows may be either
stationary or unsteady. Hydrodynamic stability theory is the field which analyses how and
when the flow changes from a stationary state, usually referred to as a base flow, to an unsteady
behavior (perturbed flow). In the flow configurations of interest in this thesis, the parameter
which governs the transition between the stationary and unsteady states, referred to as the
control parameter, is the Reynolds number. This parameter quantifies the relative importance
of inertial forces and viscous forces. For low Reynolds numbers, the stabilizing forces due to the
viscous effects are predominant and would damp any external perturbations in the flow. As the
Reynolds number increases, the inertial forces become more important, allowing unsteadiness
in the flow. In this case it is instructive to distinguish flows which behave as oscillators and
flows which act as noise-amplifiers (Huerre & Rossi [46]).

1.1.2.1 Oscillators

Oscillator flows are characterized by a self-sustained beating of the flow at a particular
frequency. The usual mechanism leading to an oscillator behavior consists in an exponential
amplification of any perturbation of the flow field followed by its saturation due to non-linear
effects. In other words, when the control parameter is increased above a critical value the flow
is subject to a Hopf bifurcation and bifurcates from a stationary solution to a limit cycle. At
this point, no external perturbations are necessary to keep alive the oscillatory motion of the
flow ; this mechanism is intrinsic to the flow.

Oscillator behavior is well predicted by a global stability analysis (see Jackson [51] for the
first analysis in the case of a cylinder flow). Global stability computations have first been com-
puted on simple academic configurations : cylinder flow (Noack & Eckelmann [73]), backward-
facing step (Barkley et al. [12], Marquet et al. [68]), separated flows (Gallaire et al. [36], Akervik
et al. [4], Ehrenstein & Gallaire [31]). More recently, global stability analysis of complex geome-
tries have been considered : transonic flow over a wing (Crouch et al. [27]), compressible flow
over a swept leading edge (Mack et al. [67] and Mack & Schmid [66]) and a three-dimensionnal
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jet in crossflow (Bagheri et al. [10]). Additional details are available in the review articles of
Theofilis [89] and Chomaz [25].

Figure 1.3 – Supercritical flow over an open cavity at ReL = 11 150 (aspect ratio H/L = 1.5).
After Basley et al. [13].

The test case which will be representative of oscillator flow behavior in this thesis is the
incompressible flow over an open cavity. This flow is shown in figure 1.3 by smoke-visualization
for a Reynolds number ReL = 11 150 (based on the freestream velocity and the length L of the
cavity) and a cavity aspect ratio L/H = 1.5 (H is the height of the cavity). This figure is taken
from Basley et al. [13]. On top, the high velocity flow is visualized by bright colors. Due to
viscous effects, this flow drags along the fluid inside the cavity into a solid rotation. The main
vortex inside the recirculation zone is noticeable due to smaller vortices located between the
downstream edge and the bottom of the cavity. This recirculation zone is separated from the
main flow by an unstable shear-layer. The perturbations are amplified by the Kelvin-Helmholtz
instability during their convection along the shear layer and emerge as vortical structures. When
these structures impact the downstream edge of the cavity, the sensitivity zone of the shear-
layer located at the upstream edge of the cavity is triggered, creating new perturbations which
are again amplified along the shear-layer (see Rockwell & Naudascher [78], Gharib & Roshko
[40] and Faure et al. [35]). This feedback loop is responsible for the self-sustained nature of the
perturbations. The oscillator behavior of this flow by means of global stability theory analysis
has been treated by Sipp & Lebedev [84] for a two-dimensional incompressible flow and by
Brès & Colonius [20] for a three-dimensional compressible flow. Note that the compressible
cavity flow has been extensively studied (see original article of Rossiter [79] and recent review
by Rowley & Williams [81]).

1.1.2.2 Noise amplifiers

In some cases, an unsteady flow behavior which does not exhibit an organized and coherent
motion is observed. The length scales and frequencies of the detected perturbations have a
broad range and only exist if the flow is perturbed by an external noise source. Therefore
these flows are referred to as noise-amplifier flows and the mechanism leading to the emergence
of discernible structures is extrinsic. It is worth mentioning that a global stability analysis is
not capable of describing this flow behavior since it would result in a globally stable system.
Therefore these flows are preferably studied using the resolvent operator which highlights the
transient amplification of perturbations in such systems (see Sipp et al. [85]).

The prototypical configuration considered in this thesis is the incompressible flow over a
backward facing step. In figure 1.4 this flow is shown for a Reynolds number Re = 1050 based
on the freestream velocity and the step height, using Laser Induced Fluorescence visualiza-
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Figure 1.4 – Flow over a backward-facing step at ReH = 1050. After Aider [2].

tions. The figure is taken from Aider [2]. On top, the freestream flow separates from the wall
at the step. A recirculation bubble behind the step is visualized in green. As in the cavity,
the Kelvin-Helmholtz instability is responsible for the amplification of disturbances along the
shear-layer. In this case, the roll-up of vortices is particularly visible. However at sufficiently
low Reynolds number the vortices are convected downstream without triggering new pertur-
bations. As a result, this flow case requires external noise, e.g. a slightly perturbed incoming
flow, to maintain unsteadiness. The noise amplifier behavior of backward-facing steps has been
extensively studied in the literature (Barkley et al. [12], Beaudoin et al. [14], Blackburn et al.
[19], Marquet et al. [68]). These studies particularly emphasize the superposition of a strong
amplifier behavior as well the bifurcation to a steady 3D state.

1.2 Control

Flow unsteadiness limits the life expectancy of engineering systems by structural excitations,
increases the acoustic pollution by generating noise or may directly affect the system’s safety
(shock buffeting). It is therefore of pivotal importance to deliver robust and efficient flow control
techniques to design engineers.

1.2.1 Various control strategies

Flow control can be defined as the modification of a natural flow behavior towards a desired
flow state. To achieve flow control, two distinct strategies have been considered (see Rowley &
Williams [81]). The first, referred to as passive control, consists in a modification of the flow wi-
thout adding energy to the system. On the contrary, active control techniques are characterized
by an energy input.

Passive control strategies basically come down to a modification of the geometry aiming at
changing the mean flow (see review by Choi et al. [24]). This geometric modification can also
be achieved by adding a fixed device at a location where the flow is sensitive : in Strykowski &
Sreenivasan [88], the vortex shedding behind a cylinder has been suppressed for Reynolds num-
bers close to the critical Reynolds number (47 < Re < 60) by adding a small control cylinder
in a region close to the separation point. Note that the sensitivity regions of this flow have been
recovered by Giannetti & Luchini [41] and Marquet et al. [69] using tools from global stability
theory. At high Reynolds numbers, the noise of a transonic cavity has been reduced by placing
a small control cylinder at the upstream edge of the cavity (see Illy et al. [50]). Passive control
strategies are easy to implement due to the absence of moving devices (actuators). However,
this implies that the control is designed for a specific flow configuration and cannot adapt to
possible changes in the flow state. In addition, the geometric modifications or placement of
these control devices are usually obtained by trial-and-error or require a good expertise in the
flow case to be controlled, in particular, the knowledge of the physical mechanisms leading to
the unwanted situation and of the sensitivity regions of the flow. For example, to prevent the
formation of large vortical structures in air intakes, one possible solution would be to suppress
the recirculation zone. Recirculation zones are created by the separation of low momentum
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streamlines close to the wall. In case of a strong adverse pressure gradient the inertial forces
are too weak compared to the opposing force created by the adverse pressure gradient and the
flow separates. This phenomenon may be suppressed by transferring high momentum fluid into
the lower part of the boundary layer using, for example, vortices which are created by vortex
generators (Gardarin [39], Duriez [29]) or roughness elements (Pujals et al. [77]).

Contrary to the passive control strategies, active control strategies require energy and may
adapt to flow changes. Examples of active control devices are : moving flaps (such as high
lift devices on a wing) or actuators which inject fluid (jets) or momentum (plasma actuators)
into the flow. In their simplest form, these actuators are governed by a steady motion (see
Joslin [54] for an application to laminar flow control), a periodic control law (see review by
Greenblatt & Wygnanski [42]) or a predefined control law. However, more advanced strategies
use measurements extracted in real time from the flow to produce a relevant control action. To
this end, tools coming from control theory such as optimal control have recently been considered
to perform flow control and are considered in this thesis. Details about optimal control applied
to fluid mechanics can be found in Kim & Bewley [55].

1.2.2 Linear Quadratic Gaussian control

In this thesis, we consider the Linear Quadratic Gaussian (LQG) control framework to
suppress, or at least reduce, the perturbations which develop in oscillator and noise-amplifier
systems. LQG control computes a control law based on a Linear description of the system in
order to minimize a Quadratic cost functional, the system being driven by Gaussian noise. A
preliminary step is therefore to choose a set of actuators to act on the flow, a set of sensors
to extract real time information from the flow and to define a linear state-space model repre-
sentative of the system of interest (although the Navier-Stokes equations are non-linear). This
is generally overcome by studying the early stages of development of the perturbations to be
controlled since for small perturbations nonlinearities are negligible. Therefore a correct model
may be obtained by linearizing the equations around a base flow (solution of the steady non-
linear Navier-Stokes equations). LQG control consists in computing a so-called compensator
which takes as input one or many measurements of the system and returns the control law
which governs the actuators. Standard references about optimal control are Burl [21] and Zhou
[93].

A sketch representing the key elements of the compensated system is displayed in figure
1.5. In this sketch, the plant represents the system to be controlled. In the most general case,
the plant is initialized by the flow state X(t0) and subject to external noise which mimics
for example incoming perturbations. The sensor extracts a measurement from the state X(t)
which is given to the compensator. A control law is then computed to determine the temporal
behavior of the actuator and eventually control the plant. The compensator is composed of two
distinct components : a controller and an estimator, which may be designed independently (see
separation principle in Burl [21]).

The controller and estimator are computed based on a linear model of the plant. The
controller provides to the actuator a control law u(t) = KX(t) given by the multiplication of
the state X(t) and the so-called control gain matrix K. This matrix is computed by solving
a Riccati matrix equation (see Burl [21]) and minimizes a quadratic cost functional. In flow
control applications this cost functional is usually taken as the sum of the state energy (or
the measurement energy) and the energy of the control, a control cost parameter being used
to give more emphasis to the state energy or to the control cost (see Kim & Bewley [55]).
However, other cost functionals are possible (see Lee et al. [59] and Min & Choi [70]). The
input of the controller is the state of the system which is usually not a quantity available in
experiments, therefore an estimation of the flow state is required. The estimator has the task
of computing an estimated state (Y in figure 1.5) which is subsequently used by the controller.
The estimated flow state is computed using the time history of the measurement and of the
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X(t0)
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Figure 1.5 – Sketch of a typical Linear Quadratic Gaussian control setup.

control law. Similarly to the controller, the estimator is based on a linear description of the
system and aims at minimizing the error between the flow state and the estimated state. The
computation of the estimator also relies on the solution of a Riccati matrix equation.

1.2.2.1 Application of LQG controllers to simplified flow systems

The application of LQG compensators to fluid mechanics necessitates the solution of two
Riccati matrix equations involved in the computation of the controller and estimator. These
equations have the drawback of being computationally tractable only for systems of moderate
dimensions (≈ 103). However, typical hydrodynamic problems are usually characterized by
a wide range of length scales which have to be properly captured to accurately solve the
Navier-Stokes equations. This implies that the linear system which is directly extracted from
the discretization of the linearized numerical simulation has a very high number of degrees
of freedom (105 or 106 for two or three-dimensional configurations). For that reason, LQG
compensators have first been applied to simplified generic configurations. The control of channel
flow has been widely considered since Fourier transformations can be applied in the streamwise
and spanwise directions and the problem becomes one-dimensional. The stabilization of both
supercritical and subcritical channel flows for particular spanwise and streamwise wavenumbers
was obtained by Bewley & Liu [18] and the performance of the compensator was compared to
the proportional integral control of Joshi et al. [53]. Since all wavenumbers decouple in frequency
space, it is possible to compute the control for each wavenumber (centralized approach) and
recover the control law in physical space (decentralized approach) using an inverse Fourier
transform (see Bewley [17]). This strategy is adopted in Högberg et al. [43]. Finally, the ability
of LQG controllers to control the transient growth of a linearized channel flow was studied by
Lim & Kim [60]. The decentralized approach was also considered to control spatially developing
boundary layers in Högberg & Henningson [44] using full-state control (the entire state is
directly extracted from the simulation without referring to the estimator) and in Chevalier et
al. [23] using LQG compensators. Finally, the one-dimensional Ginzburg-Landau equation has
been considered as a benchmark for optimal control evaluation in subcritical and supercritical
cases (see Lauga & Bewley [56],[57],[58] and Bagheri et al. [9]) and for the optimal placement
of actuators and sensors in a supercritical case in Chen et al. [22].

When the geometry becomes more complicated (absence of invariant directions), Fourier
transformations cannot be applied and one-dimensional models can no longer be obtained. In
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this case, a reduced-order model of the flow becomes mandatory for the computation of the
compensator.

1.3 Model reduction

As mentioned previously, an accurate solution of the Navier-Stokes equations requires a
accurate discretization in order to resolve the smaller length scales of the problem. However, as
acknowledged by Kim & Bewley [55], the compensator design does not require such a complete
description of the system but only the dynamics from the actuator to the sensor. This dynamics
obviously depends on the number of actuators and sensors considered, but is generally rather
low-dimensional compared to the full discretization and may be easily captured by a reduced-
order model. In addition, in order to compute a control law in real time, the compensator
should have a reaction time similar to the phenomena to be controlled. This again leads to a
reduced-order model.

Two major strategies are available to arrive at a reduced-order model : system identifica-
tion techniques and projection techniques. System identification has the advantage of relying
only on data arising from simulations or experiments and is therefore easily applicable. After
having defined actuators and sensors, this technique consists of identifying the coefficients of
the reduced-order model. Many strategies are available for the computation of these coefficients
such as the ”autoregression with exogenous input” (ARX) considered in Huang & Kim [45] or
the Eigensystem Realisation Algorithm described in Ma et al. [65]. As already mentioned, the
main benefit of such techniques is that no a priori knowledge about the actuators, sensors and
dynamics of the system is required. Extensive details on system identification techniques are
given in Ljung [61] ; some applications to cavity flows may be found in Rowley & Williams [81].

A related technique consists in defining a theoretical representation of the system which can
subsequently be calibrated using data from simulations or experiments. For example in Rowley
et al. [82] and Illingworth [49], a resonant cavity has been modeled by a superposition of
independent transfer functions, each representing different physical mechanisms : shear-layer,
scattering, acoustics, receptivity ; to which are added a model for the actuator and for the
sensor. Note that this strategy relies on a solid understanding of the physical problem at hand,
which is not always accessible.

1.3.1 Galerkin projection

The technique which will be considered in this thesis to arrive at a state-space model of
the flow belongs to the category of projection techniques. The starting point of this method
is : (i) a high-dimensional state-space model arising from the discretization of the linearized
Navier-Stokes equations with actuators and sensors (see Kim & Bewley [55]) and (ii) a set
of vectors, called the reduced basis, which span the subspace onto which the dynamics will
be projected. The high-dimensional system is then projected onto the reduced basis using a
Galerkin projection (or Petrov-Galerkin projection in case of a bi-orthogonal basis). This results
in a reduced-order model whose size is equal to the dimension of the projection basis. In this
thesis we only consider linear reduced-order models since we are interested in the dynamics of
small perturbations which are superposed on a specific base flow. In this case, the Navier-Stokes
equations linearized about this base flow accurately represent the problem. However, non-linear
models may also be obtained using a Galerkin projection if the non-linear dynamics is studied,
e.g. the vortex shedding behind a bluff body (see section on POD modes).

The projection subspace has a great influence on the dynamics returned by the model and
its choice is of pivotal importance in this technique. In this thesis, three different projection
bases have been considered.
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1.3.1.1 Global modes

Reduced-order models may be obtained by projecting the high-dimensional system onto
global modes. The global modes are the eigenvectors of the linearized Navier-Stokes operator
(see Sipp et al. [85]). Initially, these modes have been computed during global stability analyses
as the spatial structures associated to the stable or unstable eigenvalues (see §1.1.2.1 and
references therein). Since the global modes are often non-orthogonal (see Cossu & Chomaz
[26]), an adjoint basis is required for the projection step. This adjoint basis is composed of the
adjoint global modes, i.e. the eigenvalues of the adjoint linearized Navier-Stokes operator. A
reduced-order model is obtained by projecting onto a reduced set of global modes, for example
the least stable ones. Such models have been used, in particular for the computation of optimal
growth (Ehrenstein & Gallaire [30], Akervik et al. [3], Ehrenstein & Gallaire [32], Alizard &
Robinet [5]).

By construction, global modes are related to the dynamics of the flow of interest without any
information about actuators and sensors. For that reason and due to the difficulty of computing
many global modes, their efficiency as a projection basis for control-oriented reduced-order
models is still questionable. Closed-loop control using such reduced-order models have been
studied in Akervik et al. [4] and recently in Ehrenstein et al. [33].

1.3.1.2 Proper Orthogonal Decomposition Modes

Proper Orthogonal Decomposition (POD) is one of the most popular technique in fluid
mechanics to obtain a reduced-order model. This technique consists of constructing a reduced
basis such that the approximation of a particular dataset which spans a high-dimensional space
is represented on the reduced basis in an optimal manner. The term “optimal” refers to the
fact that the error between the original dataset and its projection onto the reduced dataset is
minimal based on the energy norm.

This method was first used in fluid mechanics by Lumley [63] to extract the coherent
structures in turbulent flows. It is particularly attractive since it does not require any knowledge
of the flow but relies only on the dataset of interest. However, this method turns into solving
an eigenvalue problem whose size is equal to the number of degrees of freedom of the high-
dimensional system. A technique referred to as the snapshot method (Sirovich [87]) allows to
reduce the problem to an eigenvalue problem whose size is equal to the number of snapshots,
resulting in a computationally tractable method. For example, this method has been considered
for the description of a boundary layer flow in Aubry et al. [7] and a channel flow in Podvin
& Lumley [76]. However, reduced-order models obtained by a Galerkin projection onto POD
modes may be unstable (Ma & Karniadakis [64]). Therefore, improvements of these models
where obtained by adding ”shift modes” and stability modes (Noack et al. [72]), a pressure
term (Noack et al. [74]), a spectral viscosity (S. Sirisup and G. E. Karniadakis [86]) or by
calibrating the model coefficients (Galetti et al. [38]). In order to perform flow control, efforts
have been made to include the effects of actuators in the flow (Galetti et al. [37], Weller et
al. [91], Luchtenburg et al. [62]). Finally, flow control results based on reduced-order models
designed with POD modes may be found in Bergmann et al. [16], Bergmann & Cordier [15],
Weller et al. [90] and in the experimental work of Samimy et al. [83]. Note that in our study,
the POD basis is computed using snapshots from the impulse response of the linearized Navier-
Stokes operator. A similar technique was considered in Ilak & Rowley [48] and Bagheri et al.
[8] and [10].

1.3.1.3 Balanced Proper Orthogonal Decomposition Modes

Balanced Proper Orthogonal Decomposition is a model reduction technique linked to a
method from control theory called ”balanced truncation” (see Moore [71]). Having defined a
state-space model including actuators and sensors, this method relies on the notions of control-
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lability and observability. Controllability refers to the ability of a state to be influenced by the
actuators ; observability refers to the capacity of a state to be measured by the sensors. As
recognized in control theory, only the states which are both highly controllable and observable
are required for control design. For this reason, the general idea of balanced truncation is to
retain only the states which are highly controllable and observable. Theses modes correspond
to the eigenvalues with highest amplitudes of the product of the so-called controllability and
observability Gramians (see Antoulas [6]). These gramians are obtained by solving two Lya-
punov equations which, similarly to Riccati equations, cannot be solved computationally for
systems of high dimensions. Therefore, the strict application of balanced truncation is limited
to simple one-dimensional problems (see Farrel & Ioannou [34] and Bagheri et al. [9]).

A breakthrough in this technique was achieved recently by Willcox & Peraire [92] who
showed that low-rank approximations of the controllability and observability Gramians may
be reconstructed using a snapshot method (similar to the snapshot method in POD) and
by Rowley [80] who suggested an algorithm which recovers the balanced modes without the
explicit computation of the low-rank Gramians. Using this technique, referred to as Balanced
Proper Orthogonal Decomposition (BPOD), feedback control in various flow configurations has
recently been achieved : boundary-layer flow (Bagheri et al. [8]), transitional channel flow (Ilak
et al. [48] and Ilak [47]) and unstable flow over a flat plate at large angles of attack (Ahuja &
Rowley [1]). It should be mentioned that the reduced-order model obtained by projecting the
system onto BPOD modes is similar to the one obtained using the ERA as shown in Ma et al.
[65]. This result establishes a link between projection methods and identification methods, and
thus brings models based on BPOD closer to experimental implementations.





2 Summary of the articles

2.1 Article 1

In this article we study the stabilization of a globally unstable flow using feedback control
based on reduced-order models (ROMs). The test case considered is the incompressible flow
over a two-dimensional square cavity (figure 2.1) at Re = 7500 (based on the inflow velocity and
the height of the cavity). At this Reynolds number, the cavity exhibits self-sustained perturba-

(−1.2, 0) (0, 0)

(1,−1)

(2.5, 0)

(2.5, 0.5)

U∞

actuator sensor

Compensator

Figure 2.1 – Sketch of flow over an open cavity.

tions [84]. A control strategy based on a blowing/suction (vertical velocity) actuator located at
the upstream edge of the cavity and a shear-stress sensor located at the downstream edge of the
cavity is chosen to suppress these perturbations. Since we assume small amplitude perturba-
tions, we model the flow using the Navier-Stokes equations linearized about the unstable base
flow at Re = 7500 computed using a Newton method. The linearized Navier-Stokes equations
with the actuator (implemented using a lifting procedure) are discretized on a finite-element
mesh :

Q
dX

dt
= AX+ QCc, (2.1a)

m = MX. (2.1b)

X is the state vector (longitudinal velocity, transversal velocity and pressure), the matrices Q, A,
C andM are respectively the weight matrix arising from the discretization, the linearized Navier-
Stokes operator, the control matrix and the measurement matrix ; c and m are respectively the
control law and the measurement.

To obtain the stability characteristics of the flow, a global stability analysis is performed by
solving the generalized eigenvalue problem AX = λQX with λ = σ + iω. Four unstable modes
(positive growth rate σ) are found (see spectrum in figure 2.2). The aim of this paper is to
stabilize these unstable modes using Linear Quadratic Gaussian compensators based on ROMs
obtained by Petrov-Galerkin projections.
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Figure 2.2 – left : global spectrum of the cavity flow at Re = 7500, σ is the damping rate and ω
the frequency. Right : energy of the perturbations in the compensated system for ROMs based
on the unstable global modes and p BPOD modes (thin curves) and ”best control strategy”
(thick curve).

By decomposing the system into its unstable and stable subspaces, it is shown that all the
unstable global modes have to be included in the ROM. However, compensators based only
on the unstable global modes are found to be incapable of stabilizing the flow. The reason is
that while controlling the unstable subspace, the actuator also creates structures in the stable
subspace. Since the estimator is designed only with unstable modes, it restricts the complete
measurement (structures from both the unstable and stable subspaces) to the unstable modes
and converges to a wrong estimate of these modes. This, in turn, results in an inadequate
control law and in the instability of the compensated system. Thus, the stable subspace has to
be also modeled, in particular, the input-output behavior of the stable subspace of the original
system has to be captured [9]. To this end, projection bases consisting of global modes, BPOD
modes or POD modes are successively considered. The global modes are computed according
to the global stability analysis and the POD and BPOD modes are computed using a snapshot
method [80].

In order to assess the ability of these bases to capture the input-output behavior of
the original system we start by comparing the transfer function between the actuator and
the sensor of the full system and the transfer function predicted by the ROMs. The error
between them is evaluated using the H∞ norm. It is shown that the global modes are not
capable of reconstructing the initial transfer function, even using a very large number of
modes. In addition, when very damped global modes are added to the ROM, the discrepancy
between the ROM and the full model increases drastically. To further examine this surprising
feature we have derived a criterion to select the stable global modes which contribute the
most to the transfer function. This criterion is given by Γi = |Ci| |Mi| / |σi| where Ci is the
control coefficient of the mode i, Mi its measurement coefficient and σi its growth rate. It
preferably selects modes which are highly controllable and observable and less damped. These
modes are colored by hot colors in figure 2.2(a) and are very damped modes. This has been
further investigated and linked to the norm of the adjoint global modes which also increases
drastically for very damped modes. This feature is related to the convective non-normality
of the linearized Navier-Stokes operator which, in particular, locates the very damped direct
modes close to the outflow boundary and their respective adjoint modes close to the inflow
boundary. Therefore, in order to respect the bi-orthogonality condition, i.e. the scalar product
between a direct global mode and its corresponding adjoint mode is one, the norm of the
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adjoint modes increases tremendously. On the contrary, ROMs based on BPOD modes are
shown to accurately approximate the full transfer function with very few modes but are
sensitive to numerical issues and may be unstable. ROMs based on POD modes are always
stable but require a higher number of modes to achieve similar performances as ROMs based
on BPOD modes.

In the second part of this article, compensators based on these ROMs are computed and
their performance in stabilizing a Linearized Direct Numerical Simulation (LDNS) is assessed.
More precisely, the so-called control gain K̂ and Kalman gain L̂ (̂· refers to quantities in the
ROM) are computed according to the LQG control theory by solving two Riccati equations in
the small gain limit. The full compensated system (see figure 1.5) is composed of the state-
space system eq.(2.2) and of the controller defined by c = K̂X̂ and the estimator defined by
˙̂
Y = ÂŶ + Ĉc− L̂(m− M̂Ŷ). The integration in time of this augmented system corresponds to
the compensated system.

We found that the performance of the ROMs is highly correlated to their ability to cap-
ture the input-output behavior of the original system. In particular, when global modes are
considered as a reduction basis the compensated system is always unstable. This instability
gets stronger when very damped modes are added to the ROM. On the contrary, ROMs based
on BPOD modes stabilize the system with a reduced number of modes (see figure 2.2(right)).
ROMs based on POD modes benefit from their inherent stability, but need more modes to
achieve comparable results as ROMs based on BPOD modes. Considering a stability analysis
of the full compensated system, we suggested a computationally efficient method to assess the
stabilization of the compensated system for a large number of ROMs (see figure 2.3).

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

7 BPOD modes

28 POD modes

BPOD Modes
POD Modes
Global Modes

σ
m

a
x

number of modes

Figure 2.3 – Growth rate σmax of the least stable eigenmode of the full compensated system.

Finally, we observed that ROMs based on BPOD or POD modes converge to a particular
solution referred to as the ”best control strategy” (thick dark curve in figure 2.2(right)) when
the number of modes included in the ROM increases. It is shown that the ”best control strategy”
actually corresponds to the (artificial) case where the measurement m provided to the estimator
is replaced by its projection onto the ROM. This proves that the input-output behavior is the
correct quantity to be captured by the ROM in order to obtain optimal performance. We
conclude that the inability of ROMs based on global modes to approximate this quantity is the
reason of their failure to stabilize the flow.
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2.2 Article 2

This article is concerned with the feedback control of a globally unstable flow based on a
Reduced Order Model (ROM) obtained by a Petrov-Galerkin projection onto global modes. It
is motivated by the diverging conclusions available in the literature concerning the ability of
such models to successfully stabilize unstable systems. More precisely, the separated flow over
a shallow cavity and a bump have been stabilized close to criticality ([4], [33]) but the flow over
the square cavity described in §2.1 could not be controlled ([11]). The first goal of this article
is to explain these diverging results. The second goal is to improve the open-loop evaluation of
ROMs when their performance in capturing the input-output behavior of the original system
is assessed. We will particularly focus on improved evaluation norms.

The configuration considered in this article is the incompressible flow over the two-
dimensional square cavity studied in §2.1. The differences with the previous study are : an
evaluation of the control efficiency from the critical Reynolds number Rec = 4140 ([84]) to
Re = 7500 and the replacement of the blowing/suction actuator by a body force on the vertical
velocity. For different Reynolds numbers, a global stability analysis is conducted to compute
the eigenvalues λ = σ + iω such that their growth rate σ satisfies σ > −4. Reduced-order
models are then obtained for each Reynolds number using a Petrov-Galerkin projection. These
models may be written in state-space form as :

dX̂

dt
= ÂX̂+ B̂u, (2.2)

m = ĈX̂. (2.3)

X̂ is composed of the amplitude coefficients corresponding to each global mode, the matrices
Â, B̂ and Ĉ are respectively the linearized Navier-Stokes operator, the control matrix and the
measurement matrix ; u and m are respectively the control law and the measurement.

To control an unstable flow, the instability must be accurately captured by the ROM,
therefore all the unstable modes are included in the ROM ([11]). However, contrary to POD
and BPOD bases which are respectively ordered by energy content or input-output importance,
the choice of which stable global modes to include in the ROM is still open. We have considered
four different ranking criteria referred to as the growth rate, the criterion Γ, the criterion Γ̃ and
the ”quasi-optimal” ranking. The growth rate ranking ([4] and [11]) selects the least damped
modes. The criterion Γ ranks the modes by decreasing values of Γ where Γi = |Bi| |Ci| / |σi|. This
criterion selects modes which are highly controllable, highly observable and weakly damped. The
criterion Γ̃ works similarly but Γ̃ is defined by Γi = |B̃i| |Ci| / |σi| where the control coefficient
B̃i arises from an orthogonal projection which has the effect of minimizing the error between
the original and the projected actuator ([33]). Finally, the ”quasi-optimal” ranking criterion
consists in selecting iteratively the modes which, when included in the ROM, enable the largest
decrease of the compensated growth rate. This criterion is only considered as a demonstration
tool but gives valuable information about an optimal selection of global modes. As an example
of the ranking process, the modes preferably selected by the criterion Γ are displayed by hot
colors on figure 2.4(left).

The properties of the ROMs based on these different ranking methods are illustrated with a
detailed study at Re = 7500. The ability to capture the input-output behavior of the stable part
of the high-dimensional simulation is tested by comparing the transfer functionH of the original
system and the transfer function Ĥ of the ROMs for each ranking criteria. The error between
them is first evaluated using the traditional H2 (see figure 2.4(right) and corresponding legend
in figure 2.5) and H∞ norms. The lowest error (but still relatively high) is achieved using the
”quasi-optimal ranking” with O(100) modes. The criterion Γ behaves better than the growth
rate, and the ROMs based on the criterion Γ̃ display high errors.

Then, the stabilization of the system is evaluated for each ranking criterion using the method
described in §2.1. The growth rate of the least stable eigenvalue of the full compensated system
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is shown in figure 2.5(left). The flow is only stabilized (σmax < 0) using the ”quasi-optimal”
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ranking. When other criteria are considered, the instability is generally reduced but often
insufficiently to stabilize the flow. In particular, ROMs based on the criterion Γ̃ are surprisingly
efficient (see 20 < n < 50) although the same models behaved poorly during the open-loop
analysis (see figure 2.4(right)). This shows that there is not a good correlation between the open-
loop properties measured with the H2 and H∞ error norms and the closed-loop performance
evaluated with σmax and may indicate that the H2 and H∞ error norms are not optimal in
characterizing the ROMs’ ability to control unsteady flows. By closely studying the transfer
functions related to the different ranking criteria and correlating these observations to the
stability properties of the compensated systems, it appeared that the transfer functions of the
ROMs only need to approximate the transfer function of the full system in the frequency range
defined by the unstable modes. Following this idea, we have defined a frequency-restricted H2
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norm as :

‖H‖ω2 =

(
∫ 17

10
|H(ω)|2 dω

)1/2

. (2.4)

The error between the transfer function of the original system and the transfer function of
the ROM is evaluated using this norm and shown in figure 2.4(right). In this case, the plot
displays similar behavior as observed for the stability of the compensated system which proves
the relevance of a frequency-restricted evaluation of the ROMs.

The end of this article is devoted to the study of the stabilization of the flow from Re = 4140
to Re = 7500. Only considering the unstable modes in the ROM, it is shown that the flow can
be stabilized from Rec = 4140 to Re ≈ 5200 (see figure 2.6(left)). This proves that even if
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Figure 2.6 – left : growth rate σmax of the least stable mode of the compensated system versus
the Reynolds number. The ROM is only composed of unstable global modes. Right : growth
rate σmax of the least stable mode of the compensated system versus the number of stable
global modes included in the ROM. The modes are ranked according to the criterion Γ. The
different curves correspond from top to bottom to Re=7500, Re=7000, Re=6500, Re=6000 and
Re=5500.

the ROM does not approximate the input-output dynamics correctly, the inherent robustness
(stability margin) of the LQG compensator may be sufficient. When stable modes are added to
the ROMs we found that the flow can be stabilized at even higher Re numbers. This has been
investigated by computing the growth rate of the least stable mode of the compensated system
for each ranking criterion and each Reynolds number. This quantity is shown in figure 2.6(right)
for the criterion Γ. Each curve corresponds to a Reynolds number, as the Reynolds number
increases the curves rise, showing the limit of stabilizability using this approach. To conclude,
it may be stated that LQG compensators designed with a ROM based on global modes may
stabilize unstable flows close to criticality due the inherent robustness of the compensator. This
explains the successful results available in the literature. However, if the Reynolds number is
further increased these ROMs are no longer appropriate to stabilize the flow.



2.3 Article 3 19

2.3 Article 3

In this article, the feedback-control of a noise-amplifier flow is attempted using an LQG
compensator based on a reduced-order model. We study the incompressible flow over a two-
dimensional rounded backward-facing step (see figure 2.7). The Reynolds number based on the
step height and the inflow velocity is Re = 600. For this Reynolds number the flow is globally
stable and exhibits a noise-amplifier behavior which is triggered in our simulation by a noise
source (body force on the vertical velocity B1 in figure 2.7). To control these perturbations, an
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Figure 2.7 – Sketch of the geometry.

LQG control strategy is considered where the actuator B2 is a body force on the vertical velocity
and the sensor is a shear-stress measurement at the wall which will be chosen between C1, C2,
C3 and C4. Finally, a shear-stress measurement referred to as Cp in figure 2.7 is considered as
the quantity to be minimized. In order to study the linear evolution of the perturbations, we
consider the linearized Navier-Stokes equations which are discretized on a finite-element mesh.
The final system may be written :

Q
dX

dt
= AX+ QB1w + QB2u, m = CX (2.5)

X is the state vector (longitudinal velocity, transversal velocity and pressure), the matrices Q,
A, B1, B2 and C are respectively the weight matrix arising from the discretization, the linearized
Navier-Stokes operator, the noise matrix, the control matrix, the measurement matrix ; u, m
and w are respectively the control law, the measurement and a random noise of variance W 2.
Finally, the LQG compensator is designed using a ROM based on 150 POD modes computed
with a frequency-based snapshot method ([28]). The equation governing the ROM is :

dX̂

dt
= ÂX̂+ B̂1w + B̂2u, m = ĈiX̂. (2.6)

The superscript ·̂ refers to quantities of the ROM, the notations are similar to eq.(2.5).
Feedback control of globally stable flows has already been achieved, usually focusing on

the reduced-order modeling techniques. In this article the main motivation is to give physical
insight into the control’s action on the flow. For that reason, the ROM considered is quite basic
(although more advanced methods would have resulted in a smaller ROM). With the objective
to get closer to experimental implementation, we have adressed four practical questions about
LQG compensators in quasi-independent sections : how does the sensor location influence the
estimation process, which quantity to minimize in the cost functional, what are the effects of
shortcomings in the ROM on the performance of the controller and how well does a linear
compensator stabilize a non-linear system.

The first part of this article is devoted to the estimation process, in particular to the
placement of the sensor (the controller is turned off). It is shown that the estimation parameter
in the Riccati equation corresponds to the noise-to-signal ratio of the sensor. Choosing a high
value for this parameter simulates the case where the noise is large compared to the signal
received by the sensor : the estimator is not capable of estimating the flow. On the contrary
for lower values of this parameter, the signal is not corrupted by noise and the estimation is
efficient. Since the system exhibits a convective instability, the perturbation is amplified during
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its convection. It is therefore important to place the sensor downstream to reduce the noise-
to-signal ratio which permits a better estimation. However, by studying the estimation of an
impulse of noise, it is shown that an estimated state can only be computed if the perturbation
is detected by the sensor. This is illustrated in figure 2.8 where the error of the estimation Ẑ

(difference between the real state and the estimated state) is displayed for estimators based
on Ĉ1, Ĉ2, Ĉ3 and Ĉ4 with respect to time. The error decreases only when the perturbation
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Figure 2.8 – Energy of the error vector ||Ẑ||2 versus time color coded by the sensor considered,
energy of the (uncontrolled) state ||X̂||2 (in gray).

reaches the sensor. The placement of the estimator must be chosen by considering a balance
between the speed of estimation (location upstream) and a sufficiently low noise-to-signal ratio
(location downstream).

In the second part of the article, the controller is turned on and the attention is given to the
cost functional to be minimized. When the controller is designed to reduce the perturbations
measured by sensor Cp (as would be the case for ROMs obtained by system identification),
we observe that, in the large gain limit, the total kinetic energy is increased (although the
control objective is minimized). This has been further investigated and attributed to an extreme
sensitivity of the compensator when designed close to the large gain limits which creates strong
control actions at high frequencies. It is shown that this behavior can be suppressed by targeting
the kinetic energy in the complete domain in the cost functional (which is not possible with
ROMs obtained by system identification).

The third part of the article deals with the possibility of controlling a linear system, in
our case the linearized Navier-Stokes equations, with a compensator designed using a slightly
different model, in our case the ROM. This question is important since the loss of information
arising from the order reduction implies that the original system and the ROM are inevitably
different. It is found that the compensated system becomes unstable when the control parameter
l and the estimation parameter G/W are chosen in the large gain limit. When the plant
deviation increases, the unstable region grows and the range of usable parameters l and G/W
is reduced such that the optimal control performances are not available anymore. The region of
instability in the (l, G/W ) plane is displayed in figure 2.9. Considering a particular plant, we
have designed a ”perfect” compensator which has been used to control a modified version of the
plant. The difference err between the original plant and the modified plant is evaluated using the
relative H2 error. The different contour lines, separating unstable regions from stable regions,
correspond to different values of err. We see that the unstable region grows as the difference
between the original plant and the modified plant (err) increases. In addition, closed-loop
control of the linearized Direct Numerical Simulation (DNS) have been performed for various
values of l and W/G. The red square symbols (resp. green square symbols) denote unstable
compensated simulations (resp. stable compensated simulations). Since the error between the
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Figure 2.9 – Regions defining the unstable and stable compensated systems for different values
of the error between the plant and the reduced-order model based on which the compensator
is designed. The red squares (resp. green squares) represent the unstable (resp. stable) com-
pensated LDNS.

original ROM (used for the compensator design) and the linearized DNS is err = 0.02, the
previous results may be confirmed. Finally, one may remember that the more the ROM is
different from the plant to be controlled, the larger the mismatch between the ROM and the
compensated system, and the usable range of parameters l and G/W may be restricted.

The last part is devoted to the control of a non-linear DNS using a linear compensator.
The forcing term is chosen to be a random noise and its variance is modified to simulate a
quasi-linear, a weakly non-linear and a strongly non-linear development of the perturbations.
We have found that when the perturbations are sufficiently weak to be comparable to the
linear case the control is very efficient. If the perturbation is close to the linear solution before
reaching the sensor used for estimation and becomes non-linear after the sensor, a rather good
control effort is observed. When non-linear effects are visible upstream of the sensor used for
estimation, the control is less efficient. The strongly non-linear simulation is illustrated in figure
2.10 where the kinetic energy of the perturbations as a function of time is displayed. The thick
curves correspond to the non-linear simulations and the dashed curves to linear simulations.
The random sequence is identical and non-linear effects are clearly visible. Finally for even
stronger non-linearities, the compensated system may diverge. It is however interesting that
the compensator has a positive action on the flow for a wide range of perturbation amplitudes.
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3 Conclusions and future work

This thesis is a contribution to model reduction and feedback control of low Reynolds num-
ber flows. Our focus has been on the stabilization of small amplitude perturbations which
develop linearly on laminar base flows. Both categories of unsteady flow behavior have been
considered : oscillator and noise-amplifier flows. To control these perturbations a Linear Qua-
dratic Gaussian (LQG) control has been employed. The main advantages of this method are a
rigorous mathematical description and the availability of theoretical results such as the exis-
tence of a stabilizing solution at any control cost for oscillator flows using a linear quadratic
regulator (of course, under additional assumptions) or the reflection of the unstable eigenva-
lues into the stable half plane in the small gain limit. In addition, the optimal nature of this
control strategy is appealing since it gives the best performance achievable (with respect to
a particular cost functional). However, this method has also severe drawbacks, in particular,
the necessity to solve two Riccati equations. Since these equations are not computationally
tractable for common two- or three-dimensional discretizations. The compensator has to be
designed using a reduced-order model (ROM) of the flow. In this thesis, we have concentrated
on ROMs obtained by Petrov-Galerkin projection of the discretized equations onto a reduced
set of modes. The three most popular projection bases, namely the global modes, the Proper
Orthogonal Decomposition (POD) modes and the Balanced Proper Orthogonal Decomposition
(BPOD) modes have been evaluated for their ability to produce a successful compensator.

3.1 Summary of the results

We start by reviewing the results obtained with ROMs based on global modes to control a
globally unstable cavity flow. The starting point has been the computation of a large spectrum
with more than 5000 eigenmodes. This spectrum has first been analyzed in detail : presentation
of the spatial structure of the stable and unstable modes and location of the modes with respect
to their energy distribution. In particular, we have observed modes located on the shear-layer
which display vortical structures similar to Kelvin-Helmholtz vortices, modes located inside the
cavity which represent the dynamics inside the cavity and modes pinned against the outflow
boundary. The physical relevance of these latter modes is not obvious and this behavior has
been linked to the convective non-normality of the flow over the cavity. Finally, the effect
of increasing the Reynolds number was investigated for Reynolds numbers ranging from the
critical Reynolds number (where the first pair of global modes becomes unstable) to higher
Reynolds numbers (four pairs of unstable modes). It was observed that an unstable branch
composed of modes located on the shear-layer emerges from the spectrum and moves into the
unstable subspace. On the contrary the other branches, which are composed of cavity modes,
move towards the unstable subspace without crossing the critical line.

Then, ROMs have been computed using a Petrov-Galerkin projection onto these global
modes. While unstable modes are always included in the ROMs, various ranking criteria have
been considered for selecting the stable modes to be included in the ROMs. By studying the
stable part of this model in an open-loop configuration, we noticed that these ROMs were not
able to accurately capture the input-output dynamics between the actuator and the sensor, no
matter the ranking method considered or the number of stable modes included in the ROM.



24 Conclusions and future work

In particular, it was observed that the inclusion of very damped modes in the ROM adversely
influences the ROM. To explain this behavior we have derived a criterion which selects the
modes which most significantly contribute to the input-output behavior of the model. These
modes were found to be very damped modes. Further investigations showed that the non-
normality of the global mode basis was responsible for this behavior. These results suggest
that computing more global modes may only decrease the quality of the ROM. Finally, the
ability to stabilize a linearized direct numerical simulation has been assessed from the critical
Reynolds number Rec = 4140 to Re = 7500 (Reynolds number based on the depth of the cavity
and the inflow velocity). We found that if the instability is weak, i.e. the Reynolds number is
sufficiently close to criticality (Re < 5200), the flow may be stabilized using only unstable global
modes, although the input-output behavior of the original system is not correctly captured.
This was attributed to the inherent robustness of the LQG compensators. When relevant stable
global modes are included in the model, for example selected according to our input-output
ranking criterion, the stabilization of the flow was obtained for even higher Reynolds numbers
(Re < 6500). However, as the Reynolds number is further increased, these ROMs did not
provide sufficiently robust controllers to stabilize the flow.

ROMs based on POD and BPOD modes have also been considered to model the stable
part of the flow for designing LQG compensators to stabilize the globally unstable flow over a
cavity. These modes are computed using snapshot methods. In this case, the unstable global
modes are also included in the ROM to model the unstable subspace. Similarly to global modes,
the ability of these models to capture the input-output dynamics between the actuator and
the sensor of the original has been evaluated in an open-loop setting. It appeared that BPOD
modes approximate very accurately the input-output behavior with very few modes (1% error
with only 10 modes). Similar performances may be obtained using POD modes using a higher
number of modes (1% error requires 100 modes). This result is expected since POD modes are
by construction only optimal in extracting the energy content of the structures generated by
the actuator. BPOD modes are, on the contrary, optimal in capturing the structures created
by the actuator and measured by the sensor, which is exactly the definition of the input-output
dynamics. In order to emphasize this point, a comparison of POD and BPOD bases has been
conducted, which proved the higher observability of the BPOD modes. Even though ROMs
based on POD and BPOD modes should theoretically be stable, which was not always the case
for models based on BPOD. As a result, ROMs based on POD modes seem more robust.

LQG compensators based on the unstable global modes (to model the unstable subspace)
and POD or BPOD modes have been computed and used to stabilize the unstable cavity
flow at Re = 7500 (where compensators only based on global modes failed). Similarly to
their open-loop performances, ROMs based on BPOD stabilized the flow with only 7 modes
(provided the ROM is stable) and POD stabilized the flow when more than 27 modes are
considered. In addition, we noticed that both models converge to an optimal solution referred
to as the ”best control strategy” when the order of the system increases. We found that this
solution corresponds to the (artificial) case where the measurement fed to the estimator is
previously modified such that the part which is not captured by the model is removed. In other
words, this proves that the optimal solution is obtained when the ROM captures ”exactly”
the input-output behavior of the original system.

The control of noise amplifier flows is rather different from the control of oscillator flows
even though the control strategy is similar. In addition, studies concerned with the stabilization
of globally stable flows using ROMs based on POD or BPOD modes are already available in
the literature. For this reason, our study is designed to complement previous studies as far a
practical implementation of such control techniques in experiments is concerned. In this view,
the behavior of the estimator is first considered without control, in particular the position of the
sensor is assessed. Since the perturbation is amplified during its convection, a sensor located too
far upstream may not differentiate the perturbation signal from the inherent noise, resulting in
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a bad estimation. Even though the sensor needs to be placed sufficiently upstream such that
the detected perturbation is still controllable, i.e. in the control area of the actuator. In other
words, the placement of the sensor is a subtle balance between the speed of estimation and
the noise-to-signal ratio of the sensor. By studying the compensated system, we have observed
that, as the cost functional minimized by the controller targets the measurement’s energy at a
particular location of the system, the compensator can become unstable (when designed close
to the large gain limit) and generates large energetic structures at other locations of the flow. It
is shown that this behavior can be suppressed by minimizing the kinetic energy in the complete
domain in the cost functional. When the compensator designed using a ROM is used to control
a linearized Direct Numerical Simulation (DNS), the discrepancy between the ROM and the
linearized DNS may alter the control’s efficiency. It is shown that this discrepancy may actually
lead to an unstable compensated system ; in this case, the region of instability is proportional
to the error between the ROM and the linearized DNS. Finally, linear compensators have been
considered for the control of non-linear simulations subject to random forcing. It is shown that
as the amplitude of the forcing term increases, the non-linear effects are more visible and the
compensator’s action is less efficient. As the non-linearities become too strong, the compensated
system may even become unstable and converge.

3.2 Future work

Even if considerable care has been taken to remain close to physical experiments, a direct
implementation of the control techniques developed in this thesis in an experimental setting
would be premature.

So far, the application of optimal control to fluid dynamics has deliberately been considered
for idealized configurations in order to master the design process, to understand the physical
mechanisms at play and to optimize the control schemes. Along this line, theoretical tools such
as adjoint simulations (for the computation of BPOD modes) have been adopted. Given a di-
rect operator, the associated adjoint operator is a mathematical concept which can easily be
obtained theoretically and numerically, but which does not have an experimental counterpart.
This implies that BPOD modes, unlike POD modes, cannot be obtained from experimental
data. A recent suggestion to dispense with adjoints during the model reduction process has
recently been reported in [65] where it has been shown that the same ROM obtained by Galer-
kin projection onto BPOD modes may be obtained using only data from the direct simulation.
The algorithm considered in [65] belongs to the class of system identification methods. As sug-
gested below, ROMs obtained by system identification may be more easily applied in practical
applications.

Projection methods are generally difficult to handle since they require the computation of
a projection basis which often requires the solution of large eigenvalue problems. Whatever the
approach considered (computational or experimental), the ROM represents the dynamics of
the data on which it has been designed. If the purpose of the ROM is to accurately capture
various flow situations, the required amount of data for the ROM design will increase drastically.
For that reason, projection techniques may only accurately represent one or a few particular
flow situations ; in other words, they are particularly suited to control engineering systems
with a unique or very few operating regimes. To probe the off-design performance of a ROM
obtained by a projection technique, we have used our best compensator for the cavity flow,
designed at Re = 7500, to control linearized simulations at lower and higher Reynolds numbers.
These simulations could only be stabilized in the neighborhood of the design conditions. These
preliminary tests demonstrate that a rather accurate ROM is required for a successful control
application.

Considering the flow over an airplane, the conditions at take-off and landing are entirely
different from cruise conditions. In this case, it is unlikely that ROMs based on projection
techniques will be able to cope with such different flow situations.
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We believe that for a wide range of operating conditions only a ROM which can be adjusted
in real time can be expected to succeed. ROMs designed with system identification techniques
offer this possibility. One could imagine a control scheme composed of two separate components.
The first component is the same compensator as studied in this work and described in figure
1.5 ; the second component takes as input the measurement and control law and computes
(in real time) an updated ROM. As soon as the estimated state from the ROM used in the
compensator deviates too strongly from the real state, the ROM is updated in the compensator
(along with updated control and Kalman gains). This idea may be related to the ”trust-region”
concept considered in [15]. If the model is updated repeatedly, it is even conceivable to construct
a simple linear model to reproduce the non-linear dynamics of the flow.

In our approach, we have designed a linear compensator to control a linear flow (the Navier-
Stokes equations linearized about a particular base flow). This is certainly justifiable. When
this compensator is used to control the non-linear development of the perturbations, under
best conditions the performance of the compensator is reduced, under worst conditions the
compensated system becomes unstable. Preliminary tests of closed-loop control of a non-linear
cavity flow simulation at Re = 7500 with the linear compensator which stabilizes the linear flow
have always resulted in an unstable system as soon as (and sometimes before) non-linear effects
were observable. Even though the obvious solution is to convert to non-linear ROMs along with
non-linear control and estimation techniques (generalized Kalman filter, for example), a first
attempt and convenient way to bypass the difficulties arising from a non-linear control technique
is to adhere to a linear representation of the non-linear dynamics. Note that this model is
different from the linear model which simulates the linear dynamics of the flow. As mentioned
before, such models can be computed easily by system identification. Since a linear ROM is
unlikely to represent the changes of the non-linear dynamics with respect to a parameter change
(Reynolds number for example), a real-time adjustment of the ROM may be necessary. If this
simple solution of treating the non-linear case does not succeed, non-linear control techniques
may become inevitable.

In order to apply flow control techniques to ”real” situations, the robustness of the com-
pensator is a major issue. Similar to the investigation of the plant deviation from the ROM,
studies about shortcomings in the modeling of the actuator, the sensor and the noise should
be undertaken. These studies can simply be carried out by artifically perturbing the control
law, the measurement, the noise function and the location of the actuator, sensor and noise.
If the LQG compensator is not robust with respect to changes in these parameters, it will be
necessary to consider more robust control techniques such as the H∞ control or the Transfer
Loop Recovery (LTR). Finally, using these techniques, it should be possible to incorporate
in numerical simulations some practical informations taken from experiments : for example,
turbulence levels, noise-to-signal ratios of sensors, and time delays from the data acquisition
and processing. A low-cost investigation of important parameters such as the location of the
sensors and actuators may be achieved and directly transferred to experiments.

To conclude this outlook towards ”applied research” directions, we would like to mention
that a promising way to control low-frequency unsteadiness at high Reynolds numbers is to
consider the Unsteady Reynolds-Average Navier-Stokes (URANS) equations.

Finally, a more theoretical direction, where the control’s action is taken into account in
the design of the ROM, deserves further investigations. Following the idea that the control
triggers only a selected range of frequencies (i.e., the idea underlying the frequency-restricted
H2 norm), the POD and BPOD modes may be computed to capture, respectively, the energy
and the input-output dynamics corresponding to this frequency range. This may be obtained
by defining the Gramians in frequency-space ([28]) and restricting the frequency range of the
resulting integral. An attractive feature of this formulation is the possibility to capture both
the unstable and stable parts of the flow. If the snapshots are computed in the time domain,
it can be shown that frequency-restricted snapshots may be computed by using a simulation



References 27

where the control law is the inverse Fourier-transform of a gate function (or rectangle function)
defined over the frequencies of interest. Based on these snapshots, the remaining computation of
the modes is similar to the classical snapshot method. Preliminary results using such frequency-
restricted ROMs exhibit significant improvements over standard ROMs.
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(vortex generator application to separated flows control). PhD Thesis (2009).

[30] Ehrenstein, U., and Gallaire, F. On two-dimensional temporal modes in spatially
evolving open flows : the flat plate boundary layer. J. Fluid Mech. 536 (2005), 209–218.

[31] Ehrenstein, U., and Gallaire, F. Optimal perturbations and low-frequency oscilla-
tions in a separated boundary-layer flow. AIAA paper 2008-4232, 5th AIAA Theoretical
Fluid Mechanics Conference (2008).

[32] Ehrenstein, U., and Gallaire, F. Two-dimensional global low-frequency oscillations
in a separating boundary-layer flow. J. Fluid Mech. 614 (2008), 315–327.

[33] Ehrenstein, U., Passaggia, P.-Y., and Gallaire, F. Control of a separated boun-
dary layer : reduced-order modeling using global modes revisited. Theor. Comput. Fluid
Dyn. in press (2010).

[34] Farrell, B. F., and Ioannou, P. J. Accurate low-dimensional approximation of the
linear dynamics of fluid flow. Journal of the Atmospheric Sciences 58 (2001), 2771–2789.

[35] Faure, T. M., Adrianos, P., Lusseyran, F., and Pastur, L. Visualizations of the
flow inside an open cavity at medium-range reynolds numbers. Exp. Fluids 42 (2007),
169–184.

[36] Gallaire, F., Marquillie, M., and Ehrenstein, U. Three-dimensional transverse
instabilities in detached boundary layers. J. Fluid Mech. 571 (2007), 221–233.

[37] Galletti, B., Bottaro, A., Bruneau, C., and Iollo, A. Accurate model reduction
of transient and forced wakes. Eur. J. Mech. B 26 (2007), 354–366.

[38] Galletti, B., Bruneau, C., Zannetti, L., and Iollo, A. Low-order modelling of
laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503 (2004), 161–170.



References 31
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[44] Högberg, M., and Henningson, D. Linear optimal control applied to instabilities in
spatially developing boundary layers. J. Fluid Mech. 470 (2002), 151–179.

[45] Huang, S.-C., and Kim, J. Control and system identification of a separated flow.
Phys. Fluids 20 (2008), 101509.

[46] Huerre, P., and Rossi, M. Hydrodynamic instabilities in open flows. In Hydrodynamics
and Nonlinear Instabilities. Cambridge University Press, Cambridge, 1998, pp. 81–294.

[47] Ilak, M. Model reduction and feedback control of transitional channel flow. PhD Thesis
(2009).

[48] Ilak, M., and Rowley, C. Modeling of transitional channel flow using balanced proper
orthogonal decomposition. Phys. Fluids 20 (2008), 034103.

[49] Illingworth, S. J. Feedback control of oscillations in combustion and cavity flows. PhD
Thesis (2009).

[50] Illy, H., Jacquin, L., and Geffroy, P. Observations on the passive control of flow
oscillations over a cavity in a transonic regime by means of a spanwise cylinder. 4th AIAA
Flow Control Conference 2008-3774 (2008).

[51] Jackson, C. P. A finite-element study of the onset of vortex shedding in flow past
variously shaped bodies. J. Fluid Mech. 182 (1987), 23–45.

[52] Jacquin, L., Molton, P., Deck, S., Maury, B., and Soulevant, D. Experimental
study of shock oscillation over a transonic supercritical profile. AIAA J. 47 (2009), 1985–
1994.

[53] Joshi, S., Speyer, J., and Kim, J. A systems theory approach to the feedback stabili-
zation of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid
Mech. 332 (1997), 157–184.

[54] Joslin, R. D. Aircraft laminar flow control. Ann. Rev. Fluid Mech. 30 (1998), 1–29.

[55] Kim, J., and Bewley, T. A linear systems approach to flow control. Ann. Rev. Fluid
Mech. 39 (2007), 383–417.

[56] Lauga, E., and Bewley, T. Modern control of linear global instability in a cylinder
wake model. Int. J. Heat and Fluid Flow 23 (2002), 671–677.

[57] Lauga, E., and Bewley, T. The decay of stabilizability with Reynolds number in a
linear model of spatially developing flows. Proc. R. Soc. Lond. A 459 (2003), 2077–2095.

[58] Lauga, E., and Bewley, T. Performance of a linear robust control strategy on a
nonlinear model of spatially developing flows. J. Fluid Mech. 512 (2004), 343–374.

[59] Lee, C., Kim, J., and Choi, H. Suboptimal control of turbulent channel flow for drag
reduction. J. Fluid Mech. 358 (1998), 245–258.

[60] Lim, J., and Kim, J. A singular value analysis of boundary layer control. Phys. Fluids
16, 6 (2004), 1980–1988.

[61] Ljung, L. System identification. 2nd ed. Prentice Hall, 1999.



32 References

[62] Luchtenburg, D. M., Günther, B., Noack, B. R., King, R., and Tadmor, G. A
generalized mean-field model of the natural and high-frequency actuated flow around a
high-lift configuration. J. Fluid Mech. 623 (2009), 283–316.

[63] Lumley, J. L. Stochastic Tools in Turbulence. Academic Press, 1970.

[64] Ma, X., and Karniadakis, G. E. A low-dimensional model for simulating three-
dimensional cylinder flow. J. Fluid Mech. 458 (2002), 181–190.

[65] Ma, Z., Ahuja, S., and Rowley, C. W. Reduced-order models for control of fluids
using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 611 (2010), 205–
214.

[66] Mack, C. J., and Schmid, P. J. Global stability of swept flow around a parabolic body :
features of the global spectrum. J. Fluid Mech. in press (2011).

[67] Mack, C. J., Schmid, P. J., and Sesterhenn, J. L. Global stability of swept flow
around a parabolic body : connecting attachment-line and crossflow modes. J. Fluid Mech.
611 (2008), 205–214.

[68] Marquet, O., Sipp, D., Chomaz, J.-M., and Jacquin, L. Amplifier and resonator
dynamics of a low-Reynolds number recirculation bubble in a global framework. J. Fluid
Mech. 605 (2008), 429–443.

[69] Marquet, O., Sipp, D., and Jacquin, L. Sensitivity analysis and passive control of
cylinder flow. J. Fluid Mech. 615 (2008), 221–252.

[70] Min, C., and Choi, H. Suboptimal feedback control of vortex shedding at low reynolds
numbers. J. Fluid Mech. 401 (1999), 123–156.

[71] Moore, B. Principal component analysis in linear systems : controllability, observability,
and model reduction. IEEE Trans. Autom. Contr. 26 (1981), 17–32.

[72] Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G., and Thiele, F. A hierar-
chy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid
Mech. 497 (2003), 335–363.

[73] Noack, B., and Eckelmann, H. A global stability analysis of the steady and periodic
cylinder wake. J. Fluid Mech. 270 (1994), 297–330.

[74] Noack, B., Papas, P., and Monkewitz, P. A. The need for a pressure-term repre-
sentation in empirical galerkin models of incompressible shear flows. J. Fluid Mech. 523
(2005), 339–365.

[75] Perry, A., and Lim, T. Coherent structures in coflowing jets and wakes. J. Fluid Mech.
88 (1978), 243–256.

[76] Podvin, B., and Lumley, J. A low-dimensional approach for the minimal flow unit.
J. Fluid Mech. 362 (1998), 121–155.

[77] Pujals, G., Depardon, S., and Cossu, C. Drag reduction of a 3d bluff body using
coherent streamwise streaks. Exp. Fluids 49 (2010), 1085–1094.

[78] Rockwell, D., and Naudascher, E. Review - self-sustaining oscillations of flow past
cavities. Trans. ASME I : J. Fluid Engng 100 (1978), 152–165.

[79] Rossiter, J. Wind-tunnel experiments on the flow over rectangular cavities at subsonic
and transonic speeds. Tech. rep., Aeronautical Research Council Reports and Memoran-
dum num 3438, 1964.

[80] Rowley, C. Model reduction for fluids using balanced proper orthogonal decomposition.
Int. J. Bifurc. Chaos 15 (2005), 997–1013.

[81] Rowley, C., and Williams, D. Dynamics and control of high-Reynolds number flow
over open cavities. Ann. Rev. Fluid Mech. 38 (2006), 251–276.



References 33

[82] Rowley, C. W., Williams, D. R., Colonius, T., Murray, R. M., and Macmy-

nowski, D. G. Linear models for control of cavity flow oscillations. J. Fluid Mech. 547
(2006), 317–330.

[83] Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J., and

Myatt, J. Feedback control of subsonic cavity flows using reduced-order models. J. Fluid
Mech. 579 (2007), 315–346.

[84] Sipp, D., and Lebedev, A. Global stability of base and mean flows : a general approach
and its applications to cylinder and open cavity flows. J. Fluid Mech. 593 (2007), 333–358.

[85] Sipp, D., Marquet, O., Meliga, P., and Barbagallo, A. Dynamics and control
of global instabilities in open flows : a linearized approach. Appl. Mech. Rev. 63 (2010),
030801–1–030801–26.

[86] Sirisup, S., and Karniadakis, G. E. A spectral viscosity method for correcting the
long-term behavior of pod models. J. Comp. Phys. 194 (2004), 92–116.

[87] Sirovich, L. Turbulence and the dynamics of coherent structures. Quart. Appl. Math.
45 (1987), 561–590.

[88] Strykowski, P. J., and Sreenivasan, K. R. On the formation and suppression of
vortex ”shedding” at low reynolds numbers. J. Fluid Mech. 218 (1990), 71–107.

[89] Theofilis, V. Advances in global linear instability analysis of nonparallel and three-
dimensional flows. Prog. Aerosp. Sci. 39 (2000), 249–315.

[90] Weller, J., Camarri, S., and Iollo, A. Feedback control by low-order modelling of
the laminar flow past a bluff body. J. Fluid Mech. 634 (2009), 405–418.

[91] Weller, J., Lombardi, E., and Iollo, A. Robust model identification of actuated
vortex wakes. Physica D 238 (2009), 416–427.

[92] Willcox, K., and Peraire, J. Balanced model reduction via proper orthogonal de-
composition. AIAA J. 40 (2002), 2323–2330.

[93] Zhou, K., Salomon, G., and Wu, E. Robust and Optimal Control. Prentice Hall, New
Jersey, 2002.



34 References



Deuxième partie

Articles





4 Article 1

Closed-loop control of an open

cavity flow using reduced-order

models





J. Fluid Mech. (2009), vol. 641, pp. 1–50. c© Cambridge University Press 2009

doi:10.1017/S0022112009991418

1

Closed-loop control of an open cavity flow using
reduced-order models

ALEXANDRE BARBAGALLO1,2,
DENIS SIPP1 AND PETER J. SCHMID2†
1ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon, France

2Laboratoire d’Hydrodynamique (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau, France

(Received 30 October 2008; revised 23 July 2009; accepted 24 July 2009; first published online

30 November 2009)

The control of separated fluid flow by reduced-order models is studied using the two-
dimensional incompressible flow over an open square cavity at Reynolds numbers
where instabilities are present. Actuation and measurement locations are taken on
the upstream and downstream edge of the cavity. A bi-orthogonal projection is
introduced to arrive at reduced-order models for the compensated problem. Global
modes, proper orthogonal decomposition (POD) modes and balanced modes are
used as expansion bases for the model reduction. The open-loop behaviour of the full
and the reduced systems is analysed by comparing the respective transfer functions.
This analysis shows that global modes are inadequate to sufficiently represent the
input–output behaviour whereas POD and balanced modes are capable of properly
approximating the exact transfer function. Balanced modes are far more efficient
in this process, but POD modes show superior robustness. The performance of the
closed-loop system corroborates this finding: while reduced-order models based on
POD are able to render the compensated system stable, balanced modes accomplish
the same with far fewer degrees of freedom.

Key words: flow control, instability

1. Introduction
Regions of separated fluid flow are a common feature of a great majority of

realistic configurations. High-Reynolds-number flow about blunt bodies, airfoils
during moderate and high angles of attack, curved engine inlets or engine nozzles
or any occurrence of shock-boundary layer interactions are only a few examples
where adverse pressure gradients or adverse geometries cause the flow to detach from
the wall. Finite regions of separated flow commonly exhibit Kelvin–Helmholtz type
instabilities that manifest themselves in an unsteady flow behaviour in the wake of the
separation bubble. This behaviour, in turn, negatively affects the mean flow as well
as the perturbation dynamics further downstream as it imprints a specific frequency
on the subsequent flow. It is thus of great fundamental and technological interest to
describe the dynamics of separated flows and design means to suppress its formation
or – if separation is inevitable or prohibitively costly – to weaken its unsteadiness.

Because of its inherent complexity and marked sensitivity to specific flow and
geometric conditions, results on the dynamics of separated flows are challenging to

† Email address for correspondence: peter@ladhyx.polytechnique.fr
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generalize. For this reason, one particular prototypical configuration that captures
the dominant features of separated flows has received a great deal of attention and
has acted as a proxy for a wide range of more complicated situations: the flow over
an open cavity. Even though the majority of these studies has concentrated on the
compressible flow over a cavity, in particular the generation of acoustic waves (e.g.
Cattafesta et al. 2003; Rowley & Williams 2006; Bres & Colonius 2008; Cattafesta
et al. 2008), we will focus on the incompressible flow over a square cavity. This type
of flow exhibits a recirculating component (confined geometrically to the cavity) as
well as a strong shear layer that forms at the top of the cavity and, for sufficiently
high Reynolds number, becomes unstable and settles into a characteristic periodic
motion (see Sipp & Lebedev 2007). Experimental investigations on an equivalent
three-dimensional configuration have been carried by Faure et al. (2007) emphasizing
the three-dimensional development of the flow. An analysis of the dynamic behaviour
for an open-cavity flow by traditional means is complicated by the complex geometry
and, consequently, the lack of an easily available base flow profile. Rather, a global
approach, both for the base flow and the perturbation dynamics, has to be employed
in order to assess and quantify the stability characteristics of this type of flow.

The stability analysis of flows with more than one inhomogeneous coordinate
direction has been first pursued by Zebib (1987) and Jackson (1987) who studied
the stability characteristics of flow past a cylinder and other blunt bodies. These
early studies were soon followed by investigations into the perturbation dynamics in
cylinder wakes (e.g. Noack & Eckelmann 1994; Zielinska & Wesfreid 1995) using
similar means. Since then, the concept of global stability analysis has made significant
progress and gained in popularity due to the advent of iterative eigenvalue routines
(such as the Arnoldi method; see Lehoucq & Scott 1997; Lehoucq, Sorensen & Yang
1998) that, coupled with flow solvers, provide efficient techniques to extract relevant
stability information from simulations of the flow under consideration. This coupling
of iterative methods with numerical simulations allows the quantitative description of
the disturbance behaviour of any flow that can be simulated with a sufficient degree
of fidelity. Among the many stability studies of separated flows we mention Ding &
Kawahara (1999) who studied flow in the wake of a cylinder, Barkley, Gomes &
Henderson (2002) who analysed flow over a backward-facing step and Ehrenstein &
Gallaire (2005, 2008) who treated the separated flow over a smooth bump as a global
stability problem. Even the stability of more application-oriented geometries has
recently been treated from a global perspective (e.g. Crouch, Garbaruk & Magidov
2007 analysing the onset of transonic shock-buffeting; see Theofilis 2000 for a
review of global stability analysis in aeronautical applications). In each case, the
extracted global spectrum then represents the inherent dynamic behaviour of the fluid
system (given by growth rates, phase velocities, transient growth potential, receptivity
behaviour and their dependence on the governing parameters). Even the extraction
of non-modal behaviour, such as optimal transient growth, has been accomplished
by direct numerical simulations (DNS) feeding flow-field data into a direct-adjoint
optimization algorithm (see Blackburn, Barkley & Sherwin 2008 for an application
to the flow over a backward-facing step, and Marquet et al. 2008 for flow in a
curved channel). This type of analysis produces unprecedented stability information
about complex flows and forms an important and imperative first step in the more
challenging undertaking of manipulating the flow into a more desirable state or into
a more acceptable dynamic behaviour.

Over the past years the control of fluid flow has come to prominence as a new and
promising subject that combines our understanding of the dynamics of a fluid system
with techniques to manipulate it (Bewley 2001; Kim 2003; Kim & Bewley 2007).
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Remarkable progress has been made on generic configurations including full-state
information control of turbulent channel flow (Moin & Bewley 1994; Joshi, Speyer &
Kim 1997), partial-state information control of transitional channel flow (Högberg,
Bewley & Henningson 2003), estimation in wall-bounded shear flows (Hœpffner
et al. 2005) and control of spatially growing boundary layers (Chevalier et al. 2007).
The techniques applied in these situations have greatly relied on a mathematical
framework established in control theory as described in standard references (e.g. Burl
1999; Zhou, Salomon & Wu 2002), but additional complications had to be overcome
when adapting them to fluid flows. Under even slightly more realistic circumstances,
however, severe limitations due to the sheer size of the involved matrix equations have
been encountered. It has thus been quickly realized that the application of approximate
and iterative algorithms (as reviewed, for example, in Bai 2002 and Freund 2003), as
well as the a priori reduction of the number of degrees of freedom (see e.g. Antoulas,
Sorensen & Gugercin 2001), are crucial techniques when attempting the control
design for even moderately complex flows. Mathematically, model reduction can be
described as a projection method based on a hierarchical (generally) bi-orthogonal
expansion basis, and these techniques are now commonly applied to reduce a linear
(or nonlinear) system. It is important to realize, however, that the choice of these
fluid structures must be tailored to the application in mind; ignoring this fact can
yield to suboptimal results at best, to ineffective control strategies at worst.

Global modes, i.e. the eigenvectors of the global stability problem, are often
considered as the representation of the system’s linear dynamics. The expression
of this dynamics by a linear combination of global modes, hierarchically ordered by
their decay rate, can yield a reduced model that accurately describes the inherent
linear dynamics of the full system. As soon as forcing (representing either an external
disturbance environment or control input) is applied or measurements are extracted
from the system, the global mode expansion may no longer be appropriate for
capturing the modified dynamics. This behaviour has been observed by Lauga &
Bewley (2003, 2004) where the fluid system has been replaced by the complex
Ginzburg–Landau (cGL) equation and global modes have been used to reduce
the system. The loss of stabilizability using global modes has then been linked to
the domain of support of the adjoint global modes. An expansion of a larger-scale
fluid system into global modes has been taken by Åkervik et al. (2007) for flow
over a shallow cavity and by Ehrenstein & Gallaire (2008) for flow over a smooth
bump. A reduced-order controller has then been designed to stabilize the globally
unstable flow (see also the review by Henningson & Åkervik 2008). In a similar
effort, Ehrenstein & Gallaire (2008) could stabilize a globally unstable flow using a
reduced-order model based on global modes after they projected the control effort
onto the basis of the reduced model. We will outline and investigate the steps involved
in these control designs and, in particular, assess the effectiveness of this choice of
basis in accomplishing a globally stable compensated system.

Proper orthogonal decomposition (POD) modes are popular in describing fluid
dynamical systems by a reduced set of equations. This popularity stems from the
simple manner of extracting them from numerical simulations, their orthogonality
properties and their interpretation as energy-ranked coherent structures of the flow
(see e.g. Lumley 1970; Sirovich 1987; Berkooz, Holmes & Lumley 1993). POD is used
in a variety of ways to analyse and describe complex fluid systems. Following their
original objectives, POD modes describe a flow field in terms of coherent structures
ranked by their inherent energy content. As such, POD is a pattern recognition
tool that detects the most energetic fluid elements in a generally turbulent flow
configuration. This type of flow analysis has been pursued by a great many researchers
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(see Berkooz et al. 1993; Podvin et al. 2006, among others) for numerically as well
as experimentally generated data. It has quickly been recognized that the extracted
POD modes are suitable for a low-order approximation of the flow behaviour. The
argument that by using a POD-basis for the reduction of the full Navier–Stokes
equations via a Galerkin expansion the vast majority of the system’s energy can be
captured has spawned a substantial body of literature on low-dimensional models for
complex flow dynamics (see e.g. Noack et al. 2003; Buffoni, Camarri & Iollo 2006;
Galletti et al. 2007 and others). More recently, these low-dimensional models have
been incorporated into flow control strategies (see Delville, Cordier & Bonnet 1998;
Tadmor et al. 2004; Bergman, Cordier & Brancher 2006 for flow around a cylinder,
or Samimy et al. 2007 for flow over an open cavity). It is commonly known that POD
modes optimally express the driven dynamics of a fluid system; in mathematical
terms, an expansion in POD modes that have been constructed from an impulse
released from the control location produces optimal controllability of the reduced
system. The application of POD modes to partial-state information control problems
(where observability is equally important) may often lead to unsatisfactory results.
Adjoint POD modes, on the other hand, produce optimal observability of the reduced
model, but usually at the expense of controllability, which makes them less suited for
control problems.

It has long been recognized that in order to reduce control problems to a desired
size, both controllability, i.e. the ability of the applied forcing to reach flow states,
and observability, i.e. the ability of flow states to register at the sensor locations,
are equally important. An expansion basis that balances these two concepts would
be particularly suited to express the flow of information from the actuator via the
linear system to the sensor and thus yield a reduced model that could be subjected
to optimal control design. These balanced modes have been introduced more than
two decades ago (Moore 1981) and have been applied to small and moderately sized
problems; even extensions to unstable systems (Zhou, Salomon & Wu 1999) and
nonlinear control problems (Scherpen 1993; Lall, Marsden & Glavaski 2002) have
been developed. The necessity to solve matrix Lyapunov and Sylvester equations,
however, has precluded them from being applied to large-scale control problems.
A recent development (see Rowley 2005 and earlier work by Willcox & Peraire
2002), combining computational methodology from POD modes with a balancing
procedure, has overcome this difficulty and has brought the model reduction of large-
scale control problems within reach of current computational technology. Since this
breakthrough model reduction based on balanced POD modes has become a readily
applied technique for the analysis of generic wall-bounded shear flows such as channel
(Ilak & Rowley 2006; Ahuja & Rowley 2008; Ilak & Rowley 2008) and boundary
layer flow (Bagheri, Brandt & Henningson 2009a) as well as of model equations
(Bagheri et al. 2009b) mimicking fluid behaviour.

The article proceeds along the following outline. After introducing the flow
configuration and details of the discretization and solution algorithm, a partitioning
strategy into unstable and stable subspaces and a general bi-orthogonal projection
method will be presented which allow the assessment of various commonly used
expansion bases for the reduction of the full input–output behaviour to that of
a system with significantly fewer degrees of freedom. Global modes will then be
extracted from the flow via a shift-invert Arnoldi technique and used as a first
expansion basis. Their effectiveness in representing the input–output behaviour,
illustrated by the transfer function, will be critically evaluated and analysed. Expansion
bases consisting of proper orthogonal modes as well as balanced modes will also be
formed and evaluated using the same measure. By closing the control loop, the
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various expansion bases will then be examined as to their ability to control the
unstable flow and yield a stable compensated system. A summary and discussion of
the major findings, and details of derivations in form of an appendix, will conclude
this article. The main contributions of this work comprise the application of the
lifting procedure for flow in a complex geometry, the partitioning of the linearized
flow behaviour into stable and unstable dynamics, a demonstration of the importance
of modelling the dynamics in the stable subspace, the introduction of quantitative
performance measures for the latter modelling effort and the performance assessment
of closed-loop control schemes based on reduced-order models.

2. Configuration and mathematical background
2.1. Configuration

The two-dimensional configuration we consider in this article is sketched in figure 1(a).
It consists of a uniform flow of velocity U∞ over a square cavity of depth D. The precise
configuration with its geometric and numerical details is fully described in Sipp &
Lebedev (2007). The characteristic quantities of this configuration, i.e. U∞, D, as well
as the dynamic viscosity ν, are used as reference scales for non-dimensionalizing the
governing two-dimensional incompressible Navier–Stokes equations. This results in
the Reynolds number, defined as Re =U∞D/ν. In the following, we choose Re = 7500
so as to have an unstable configuration; the critical Reynolds number of Re = 4140
has been determined in Sipp & Lebedev (2007).

Before proceeding with the linear stability analysis and linear control design for
this flow a base flow to linearize about has to be determined. This is accomplished
by setting the unsteady terms of the two-dimensional Navier–Stokes equations to
zero and solving the resulting nonlinear equations by a Newton–Raphson method.
The base flow u0 = (u0, v0) displaying a shear layer above the cavity and a dominant
cavity vortex is shown in figure 1(b), visualized by contours of the streamwise velocity
and velocity vectors. Note that the boundary layer starts developing at x = −0.4 (the
origin of our coordinate system coincides with the top left corner of the square cavity).
The displacement thickness at the upstream edge of the cavity is δ1 ≈ 0.012, leading to
a Reynolds number based on the displacement thickness of Reδ1

= U∞δ1/ν ≈ 90. This
choice of parameters rules out instabilities related to the boundary layer dynamics.

2.2. Governing equations in state–space form

After a base flow given by the streamwise and normal velocities u0 = (u0, v0) has
been determined, the linearized governing equations can be written in the form of an
initial-value problem according to

Q∂XT

∂t
= AXT (2.1)

with

XT =

(
uT

pT

)
, (2.2a)

Q =

(
I 0

0 0

)
, (2.2b)

A =

(
−∇ () · u0 − ∇u0 · () + Re−1� −∇

∇∗ 0

)
(2.2c)
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(a)

L1 L2

D

HU∞ Actuator Sensor

1.05317

0

–0.175124

1.66416

0

–15.1731

(b)

(c)

Figure 1. (a) Sketch of the geometry for flow over a square cavity. (b) Base flow, visualized
by streamwise velocity contours and velocity vectors, for a Reynolds number of Re = 7500. (c)
Inhomogeneous solution C with a unit force at the actuator location, visualized by streamwise
velocity contours and velocity vectors.

with uT =(uT , vT ) as the perturbation velocity vector, pT as the perturbation pressure
and ∇, ∇∗, �= ∇∗∇ denoting the Cartesian gradient, divergence and Laplacian
operator, respectively. The superscript ∗ stands for the complex conjugate transpose.
The fluid enters the domain from the left of the domain (see figure 1a) where a
uniform streamwise velocity (uT = 1, vT = 0) is prescribed. On the top of the domain
a symmetry boundary condition (∂yuT = 0, vT = 0) is used. A no-slip (uT = 0, vT = 0)
condition is implemented starting at the location (x = −0.4, y = 0) while a symmetry
condition (no stress) is used for (−1.2 <x < − 0.4, y = 0) and (1.75 < x < 2.50, y = 0);
this will generate a boundary layer of moderate thickness at the upstream edge of the
cavity. Finally, a standard outflow condition is prescribed on the right of the domain.
More details can be found in Sipp & Lebedev (2007).
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In view of treating a flow control problem, we decide on a blowing/suction strategy
over a localized section ∂ΩC of the wall. Mathematically, this translates into a modified
boundary condition of the form uw = ρ(t)uG where uG describes the velocity profile
of the injected or extracted flow, while ρ(t) determines its magnitude and temporal
behaviour. This boundary condition renders the control problem inhomogeneous, but
a transformation, referred to as lifting, will allow us to formulate the control problem
as a driven homogeneous problem which has both mathematical and numerical
advantages. We take the state vector XT (t) as the sum of two parts: a solution X
of the homogeneous problem (i.e. with no control applied, ρ(t) = 0) and a solution
C of the steady but inhomogeneous problem (i.e. with the specific constant control
ρ(t) = 1 applied). We then express the state vector in the form XT (t) = ρ(t)C + X(t)
and, upon substitution into the governing equation (2.1), obtain

Q∂X
∂t

= AX + QCc, (2.3)

where c = −dρ/dt.

For the actuator we assume a localized region near the upstream edge of the cavity
(see figure 1a) and impose a parabolic normal velocity field over its streamwise extent
(−7/20 � x � 0, y =0). The profile is given as

uT (x, y = 0, t) = 0, (2.4)

vT (x, y = 0, t) = −x(1600x + 560)

147
ρ(t) (2.5)

with the scalings chosen such that (uT = 0, vT = ρ) at the centre of the actuator’s
support. The associated control function C stemming from the above-mentioned
lifting procedure is shown in figure 1(c), visualized by contours of the streamwise
velocity as well as velocity vectors.

What remains in the formulation of the complete control problem is the specification
of a measured quantity which yields information about the flow for the design of an
estimator. As the measured quantity we take the wall-normal shear stress evaluated
at and integrated over a localized region ∂ΩM of the wall (the sensor location). We
obtain

m = MX =

∫
∂ΩM

t · ∇u · n|w ds =

∫ x=1.1

x=1

∂u

∂y

∣∣∣∣
y=0

dx, (2.6)

where n is the inward unit normal on ∂ΩM and t denotes the associated unit tangential
vector. The sensor is located near the downstream edge of the cavity, on the segment
(1 � x � 1.1, y = 0). Note that m(t) = mT (t) − ρ(t)mC where mT (t) and mC are the
measures related to XT (t) and C.

Finally, an energy based inner product of the form

〈Y, X〉 ≡
∫∫

Ω

Y · QX dΩ (2.7)

will be used for projections.
This concludes the formulation of the continuous flow control problem in state–

space form. We then proceed to discretize the problem. To this end, we mesh the
domain by an unstructured finite-element grid to properly resolve near-wall and high-
shear features and employ (P2, P2, P1) finite elements, in conjunction with a weak
formulation of the above equations, to arrive at a discretized form of the governing
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equations (2.3). We obtain

Q
dX
dt

= AX + QCc, (2.8a)

m = MX, (2.8b)

XT (t) = ρ(t)C + X(t), (2.8c)

〈Y , X〉 = Y ∗QX (2.9)

with

AC = 0, (2.10a)

C = CG on ∂ΩC. (2.10b)

Again, the superscript ∗ represents the complex conjugate transpose. Assuming n

degrees of freedom for the state vector X which includes the two velocity components
and the pressure, the above matrices are of the following size: Q, A ∈ �n × n, C ∈ �n × 1,

M ∈ �1 × n and c, m ∈ �. A typical discretization yields about 900 000 degrees of
freedom stemming from about 200 000 triangles.

3. Perturbation dynamics and global mode analysis
The discretized system of equations (2.8) allows the computation of the temporal

global spectrum and the associated global modes via the common assumption of
an exponential time-dependence, i.e. X(x, y, t) = X̃(x, y)eλt . We consequently obtain
a generalized eigenvalue problem for λ ∈ � and X̃ of the form

λQX̃ = AX̃, (3.1)

which has to be solved by iterative numerical techniques.

3.1. Numerical method

The solution of this eigenvalue problem by the direct QZ-algorithm is rather costly
due to the size of the matrices Q and A. Instead, we apply an iterative Krylov subspace
technique, more precisely, the shift-invert Arnoldi algorithm, to extract information
about the global spectrum and the corresponding global modes. The inversion is
performed using a multifrontal sparse LU solver (MUMPS, see Amestoy et al. 2001).

Computations of global modes for flows in complex geometries are generally
challenging and care must be exercised to avoid spurious or insufficiently converged
eigenvalues and to still extract all relevant global modes. In our case, for each specified
shift location 100 eigenvalues have been computed in its neighbourhood, after which
the shift is moved to sweep over a sufficiently large part of the complex plane. For
each choice of shift location both the direct and the adjoint eigenvalue problem
has been solved, and particular care has been exercised to take into account each
computed mode only once.

3.2. Direct global modes

The eigenvalues λ= σ + iω of the open cavity flow at Re = 7500 are displayed
in figure 2(a). The horizontal and vertical axes correspond, respectively, to the
amplification rate σ and the frequency ω. The figure is symmetric with respect
to ω =0, and eigenvalues in the half-plane σ > 0 represent unstable eigenmodes. In
our computations the plane ω � 0 contains 2630 eigenvalues with a total of 5166
eigenvalues in the entire plane.
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(a)

0
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Figure 2. (a) Part of the global spectrum for flow over a square cavity at Re = 7500, showing
four unstable global modes (marked by circles and labelled E−3, E−2, E−1, E0) and their
symmetric counterparts. (b–e) Direct global modes corresponding to E−3 (b), E−1 (c), E1 (d )
and E2 (e). The global modes are visualized by their streamwise velocity component.

We observe that there are four unstable global modes in the half-plane ω � 0,

which yields a total of eight unstable global modes in the complete plane. The four
unstable global modes in the upper half-plane are denoted by E−3, E−2, E−1, E0. The
amplification rate and frequency of these modes are listed in table 1, and the global
modes corresponding to the eigenvalues E−3 and E−1 are displayed in figure 2(b,c).
In each subplot we have represented the global structure by the horizontal u-velocity
component. In figure 2(b) we observe that the most unstable global mode is composed
of a series of counter-rotating vortices located atop the shear layer separating the
outer and inner cavity flow. The eigenvector increases in amplitude as one moves
downstream along the shear-layer and is most pronounced at the downstream edge
of the cavity. Figure 2(c) represents similar results for the modal structure associated



10 A. Barbagallo, D. Sipp and P. J. Schmid

Number σ ω M̂i Re(Ĉi) Im(Ĉi) Γi

E−3 0.890 10.9 99.1 −1.65 0.764
E−2 0.729 13.8 84.2 −2.32 0.160
E−1 0.466 7.88 113.7 −1.14 1.97
E0 0.0324 16.73 73.1 −2.84 −0.155
E1 −0.00811 0 1.32 0.605 0 98
E2 −0.373 4.54 37.6 −6.48 9.32 1142
E3 −0.716 0.203 10.7 −3.81 9.21 148
E4 −1.12 19.7 64.1 −2.99 −0.499 173
E5 −2.70 22.7 50.7 −3.27 −1.84 71
E6 −5.01 2.71 0.0100 0.740 · 105 3.71 · 105 758
E7 −6.22 17.4 0.0104 −3.13 · 102 2.54 · 102 0.67
E8 −9.65 12.4 6.47 · 10−6 0.592 · 109 −8.15 · 109 5477

Table 1. List of selected global eigenvalues together with variables quantifying their
contribution in representing the flow’s input–output behaviour (see text for an explanation).

with E−1. We observe that the number of counter-rotating vortices is lower than for
E−3 which agrees with the fact that E−1 has a lower eigenfrequency than E−3.

Owing to the abundance of stable global modes, we will focus on two specific
eigenvalues numbered E1 and E2 that are listed in table 1 together with various
characteristic data. The least stable eigenmode among the damped eigenmodes
(denoted in the spectrum by E1) is depicted in figure 2(d ) and consists of a weakly
damped large-scale vortical structure located inside the cavity. Figure 2(e) focuses
on the global mode corresponding to E2 which is damped and oscillatory. It is
characterized by features both inside the cavity and outside. Inside the cavity, it
displays small-scale perturbations convected by the rigidly rotating base-flow. Outside,
this structure connects to vortical elements in the base shear-layer that propagate
downstream past the cavity.

In anticipation of further computations, the global modes will be gathered into a
matrix E, which is the solution of the generalized eigenproblem

AE = QEΛ, (3.2)

where Λ is a diagonal matrix of dimension n × n containing the n eigenvalues. Hence,
each column j of E is an eigenvector corresponding to Λjj . Since A is a real matrix, the
eigenvalues are real or appear as complex conjugate pairs. The ordering and grouping
of the eigenvalues and eigenvectors in Λ and E respect this fact, e.g. Λ11 = 0.890+10.9i,
Λ22 = 0.890−10.9i, Λ99 = −0.00811, etc. Furthermore, the eigenvectors are normalized
such that their energy E∗

jQEj is one and their phase MEj is real and positive.

3.3. Physical explanation of disturbance dynamics

A DNS of the linearized Navier–Stokes equations (2.8a), based on a second-order
accurate time marching scheme, has been used to gain further insight into the physics
of these unstable global modes. The results of the simulation using the most unstable
global mode E−3 as an initial condition along with c(t) = 0 are displayed in figure 3
where we show a spatio-temporal diagram of the pressure p(x, y = 0, t) in the (x, t)
plane.

Starting with an unstable initial condition the pressure increases exponentially.
On the shear layer we observe vortical structures associated with low and high
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Figure 3. Spatio-temporal x-t diagram of pressure p(x, y = 0, t) contours with no control
applied. The initial condition corresponds to the most unstable global mode. The two vertical
white lines indicate the cavity walls. See also movie I in the online version of the paper.

pressure zones that are convected at the speed dx/dt =0.53, i.e. approximately half
the free-stream base-flow speed. Once the vortical structures have left the cavity zone,
they accelerate and reach a convective speed of dx/dt = 0.62, which falls within the
range of the free-stream and the low speeds that are present in the boundary layer.
The cavity flow is globally unstable based on a classical feedback loop: the vortical
structures are convected downstream in the shear layer at a speed of 0.53; during
this phase they grow due to a Kelvin–Helmholtz instability (an inflection point is
present in the base-flow velocity profile u0(x = const, y) near y = 0). These vortical
structures subsequently impact the downstream cavity edge and generate an infinitely
fast pressure wave (dx/dt = −∞) which travels upstream, excites the shear layer near
the upstream edge of the cavity and regenerates perturbations that grow again due
to a Kelvin–Helmholtz instability (see also Åkervik et al. 2007).

The general objective is then to stabilize the flow using a closed-loop control.
Mathematically this corresponds to moving the unstable eigenvalue of A into the
stable half-plane. We first, however, have to introduce reduced-order models on
which our control design will depend.

4. Model reduction
Flows in complex geometries are characterized by a large number of degrees of

freedom and standard (direct) techniques for computing stability characteristics or
control schemes can no longer be applied. Instead, a projection onto relevant fluid
structures, known as model reduction, has to be employed to reduce the size of the
full problem to a more manageable number of degrees of freedom. For this reason,
the model reduction techniques and algorithms play an increasingly central role as we
attempt to control progressively complex flows. The choice of relevant fluid structures
onto which our full system is projected is not obvious; a significant part of this paper
is devoted to this important question.
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4.1. Bi-orthogonal projection

We will develop a mathematical framework that allows the model reduction of
any system in state–space form using a general bi-orthogonal projection basis. This
framework then allows the evaluation and analysis of various reduction techniques,
e.g. based on global modes, optimally controllable (POD) modes or balanced proper
orthogonal decomposition (BPOD) modes.

We start by introducing a general basis given by V and its dual equivalent W that
satisfy the bi-orthogonality relation based on Q of the form

W∗QV = I, (4.1)

where V, W ∈ �n×q and I stands for the q × q identity matrix. The parameter q

denotes the dimensionality of the projection basis. The discretized state vector X is
then expressed as a linear combination of the columns of the chosen expansion basis
V according to

X = VX̂, (4.2a)

X̂ = W∗QX, (4.2b)

and the coefficients of this linear combination are contained in the vector
X̂ ∈ �q×1 which can be determined by invoking the bi-orthogonality condition.
A straightforward Petrov–Galerkin projection then yields the reduced system

dX̂
dt

= ÂX̂ + Ĉc, (4.3a)

m = M̂X̂ (4.3b)

with the reduced system, control and measurement matrices given as

Â = W∗AV, (4.4a)

Ĉ = W∗QC, (4.4b)

M̂ = MV. (4.4c)

Depending on the bases used for the model reduction, the above system should be
able to represent critical features of the full system and capture the dynamics relevant
to a successful control design.

4.2. Basis consisting of global modes

The basis E consisting of n eigenvectors is non-orthogonal with respect to the scalar
product based on Q. This fact is a consequence of the non-normality of the system
matrix A, and the source of this non-normality lies in the convective terms of the
linearized Navier–Stokes operator. Consequently, a second set of vectors – the dual
basis F in the general framework – has to be determined to complete the bi-orthogonal
projection. This basis may be obtained by solving for the eigenvalues and eigenvectors
of the Hermitian of the linearized Navier–Stokes matrix, i.e.

A∗F = QFΛ∗. (4.5)

The above eigenvalue problem produces eigenvalues that are complex conjugate to the
eigenvalues of the previous problem. Hence, under the same ordering and grouping
each column j of the n × n matrix F is associated with the j th column of E and the
eigenvalue Λjj . It can easily be verified that the two bases E and F are bi-orthogonal
and that F may be normalized such that

F∗QE = I. (4.6)
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Although the adjoint system is characterized by a spectrum that is complex
conjugate to the direct spectrum, the corresponding adjoint eigenvectors differ
significantly from their direct counterparts, owing to the non-normal nature of
the underlying linearized Navier–Stokes equations. The adjoint global modes (not
shown) are similar to their direct counterparts when considering reversing the base
flow direction; the amplitude increases in magnitude as one moves upstream along
the shear-layer and is largest at the upstream edge of the cavity. These observations
confirm the non-normality of the linearized Navier–Stokes operator as the direct
global mode is convected downstream whereas its adjoint equivalent propagates
upstream.

4.3. Stable subspace based on BPOD or POD basis

The present paper treats a globally unstable flow. As we have seen, eight unstable
global modes exist for our parameter settings. A partition of the full dynamics into
two subspaces, one containing the unstable dynamics (based on the unstable global
modes) and another describing the stable dynamics is required for the subsequent
analysis. Since the dynamics within the unstable and stable subspaces are decoupled,
they can be modelled separately.

Because of their ability to model the inherent instability (see § 3) and because of
their low dimensionality, the unstable global modes can be used directly to represent
the dynamics in the unstable subspace (see Ahuja & Rowley 2008). This procedure
leads to an ‘exact’ model for this subspace in the sense that no modelling assumptions
have to be invoked. For the stable subspace, on the other hand, a variety of choices
are available.

We proceed by partitioning the eigenvectors E according to E = (Eu Es) where Eu

(resp. Es) of dimension n × 8 (resp. n × (n−8)) contains the eight unstable modes (resp.
remaining stable modes). Similarly, F is decomposed as F= (Fu Fs) and satisfies the
bi-orthogonality relation F∗

uQEu = I. Finally, the eigenvalue matrix Λ is split according
to

Λ =

(
Λu 0

0 Λs

)
,

where the dimension of Λu and Λs is 8 × 8 and (n − 8) × (n − 8), respectively. In what
follows, the subscripts u will refer to quantities of the unstable subspace while the
subscript s will refer to quantities that are defined in the stable subspace.

We proceed by forming the projection matrices Pu onto the unstable and Ps onto the
stable subspace as Pu = EuF

∗
uQ and Ps = I − EuF

∗
uQ. In the case the unstable subspace

is modelled by the unstable global modes, a general projection basis can be written as
V= (Eu Vs) and W =(Fu Ws) where Vs is defined as a basis belonging to the null-space
of Pu, and the relations W∗

sQEu = 0 and W∗
sQVs = I can be easily verified.

The matrices (defined in (4.4)) appearing in the reduced-order model can now be
rewritten as

Â =

(
Λu 0

0 Âs

)
, Ĉ =

(
Ĉu

Ĉs

)
, M̂ = (M̂u M̂s) (4.7)

where Âs = W∗
sAVs is, in general, a dense matrix, and the control and measurement

submatrices are respectively given as Ĉu = F∗
uQC, Ĉs = W∗

sQC, M̂u = MEu and M̂s = MVs .
The stable subspace is usually high dimensional, and the main effort in reducing

the system’s dimension is expended reducing the dynamics in the stable subspace.
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Anticipating the results of § 6, we assert that the modelling of the stable subspace is
essential when it comes to effective closed-loop control design. The stable subspace
contains substantial physical information about the overall dynamics, and we will
show that extracting the relevant dynamical features from this subspace is pivotal for
the success of any control strategy.

In control theory, it has long been recognized (see Zhou et al. 2002 and Antoulas
2005) that the transfer of information from the actuator to the sensor – the input–
output behaviour – is the critical quantity that has to be carefully taken into
consideration. Recent studies of Bagheri et al. (2009b) and Bagheri et al. (2009a)
support this statement within a fluid mechanics framework. This statement then
provides the motivation for the following section where the ability of various bases
to reproduce the input–output behaviour of the stable subspace will be critically
assessed and quantified. Various bases consisting of stable global modes, POD modes
and BPOD modes will be successively considered and evaluated. At this point, we
would like to point out that a reduced model ÂS of the stable subspace dynamics
based on a Petrov-Galerkin projection does not necessarily have to result in a stable
reduced system. Since the stability of the reduced-order models is critical to the
success of closed-loop control, particular attention will be given to this property and
its preservation through the model reduction process.

5. Open-loop behaviour
5.1. Input–output behaviour

In closed-loop mode the actuator manipulates the flow in order to reduce the
perturbation growth and suppress the instability. Its action is, however, not limited to
the unstable perturbations, but also triggers some stable states which are subsequently
detected by the sensor. As we will see in the next section, this triggering process can
constitute a source of failure for the controller. It is therefore important to understand
and model these stable structures which are both excited by the actuator and observed
by the sensor; in other words, we have to concern ourselves with the input–output
behaviour of the stable subspace.

In this section our goal is to quantify the accuracy of various reduced models in
capturing the input–output behaviour of the stable subspace. During this study we
will thus consider the equations governing only the stable dynamics, i.e.

Q
dX
dt

= As X + QCsc, (5.1a)

m = MX, (5.1b)

where As =APs and Cs = PsC. The above set of equations represents the system
governed by (2.8) but projected onto the stable subspace.

By definition, the input–output behaviour links the effect of the actuator on the
flow to the information extracted by the sensor. It can be described by the impulse
response or, equivalently, by the transfer function. The impulse response, i.e. the
reaction of the system to a Dirac function for the control law c(t) = δ(t), produces
the measurement m(t) = MX(t) where X is the solution of the initial-value problem

Q
dX
dt

= As X,

X(t = 0) = Cs .
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Figure 4. Impulse response (a) as a function of time and transfer function (b) as a function
of frequency for the stable part of the flow over an open cavity at Re = 7500.

In figure 4(a), this impulse response is displayed. In the corresponding
simulation, 2.8(a) is integrated in time using a second-order accurate scheme, the
initial condition is the control matrix C and the control law c(t) = 0. After each time
step the solution is projected, using the matrix Ps, onto the stable subspace before the
computation is advanced in time. Strictly speaking, only the initial condition would
have to be projected; however, to avoid the amplification of numerical errors due to
components in the unstable subspace, the above projection technique is employed at
every time step. A first crucial observation is an immediate effect of the actuation at
the sensor location, even though the sensor is far from the actuator location. After a
rapid decay and a transient response, the signal settles into a periodic pattern which
eventually decays exponentially.

Since all frequencies are excited by an initial impulse, a convenient and alternative
way of expressing the input–output behaviour of a linear system is to switch to
the frequency domain. The amplitude of the transfer function, which is defined
as the Fourier transform of the impulse response, is displayed in figure 4(b). This
graph represents the amplitude part of a standard-type gain-phase plot (e.g. a Bode
plot); Since we use an impulse function on a causal system with m =0 for all times
t < 0, the transfer function is simply given by H(ω) =

∫ ∞
0

e−iωtm(t) dt. We recover a
preferred frequency around ω =4.6 which corresponds to the periodic signal observed
in figure 4(a).

In the following sections, we will use various bases to produce reduced models for
the stable subspace dynamics; in particular, we are interested in the dimensionality
of a particular basis to approximate the full transfer function to a prescribed degree
of accuracy. The discrepancy between reduced and full transfer function will be
quantified using the H∞ norm defined as

‖G(ω)‖∞ = sup
ω

|G(ω)|. (5.2)

The choice of this norm has been motivated by the availability of theoretical bounds,
as will be shown later. Nevertheless, the H2 norm has also been computed for each of
the following cases, and the results were found in qualitative agreement with the H∞
norm. The computation of the transfer function for the reduced model is obtained
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Figure 5. (a) Comparison of transfer function of the reduced-order model to the exact transfer
function for a projection basis consisting of p =132, 1201, 3000, 4000 stable global modes. (b)
Relative H∞-error norm as a function of the number p of included stable global modes.

using the equivalent denotation Ĥ(ω) = M̂s(iωÎ − Âs)
−1Ĉs where the quantities with ˆ

refer to the reduced matrices.

5.2. Reduced-order modelling using global modes

5.2.1. Transfer function and error norm

We start by considering stable global modes as a basis for computing a reduced-
order model; in particular, a stable subspace consisting of p stable global modes,
ranked by decaying amplification rate (see Åkervik et al. 2007 and Ehrenstein &
Gallaire 2008), are taken. The transfer functions corresponding to reduced models
based on p = 132, 1201, 3000 and 4000 global modes are displayed in figure 5(a) and
compared to the transfer function of the full system. It is evident that none of the
reduced models is able to approximate the exact transfer function to a satisfactory
degree of accuracy. Moreover, although the curves based on p = 132, p = 1201 and
p = 3000 accurately capture the peak around ω = 5, the reduced-order model based
on p = 4000 modes fails entirely, and it appears that taking additional stable modes
does not necessarily improve the quality of the reduced-order model. This is also
visible in figure 5(b) where the H∞-error ‖Ĥ − H‖∞/‖H‖∞ is plotted versus the
number of stable eigenmodes accounted for in the reduced-order model. For reduced
models including up to 100 modes, the error remains at order one. After the 132th
mode (E2 in table 1) has been included in the basis, the error decreases abruptly,
thus indicating that this mode is important to represent the correct input–output
behaviour. As more global modes are added, the H∞-error decreases again, starts
to oscillates and finally increases substantially. On the whole, the quality of the
reduced-order model is never satisfactory and generally becomes worse as additional
modes are included. Nevertheless, the inclusion of a few particular modes results in a
significantly drop in the error norm; these modes warrant some further investigation
as to their contribution to the input–output behaviour of the system. Specifically, a
criterion will be derived in the next section that facilitates the ranking of stable global
modes according to their importance in representing the transfer function.
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5.2.2. Criterion to select stable global modes

The erratic convergence behaviour of the transfer function of a reduced-order
system based on global modes to the transfer function of the full system portends
the fact that the choice of which stable global modes to include in the reduced-order
model of the estimator is far from trivial. Nevertheless, a theoretical criterion that
guides this choice can be derived (see also Bagheri et al. 2009b). To this end, let us
first recall the equations that govern the dynamics of the reduced-order model:

dX̂
dt

= Λ̂X̂ + Ĉc, (5.3)

m̂ = M̂X̂ . (5.4)

For simplicity and without loss of generality, we consider a particular control law in
the form

c(t) = cos(ωt), (5.5)

where ω is a given (real) frequency. We then determine the forced response of the
dynamical system expressed in terms of the measurement and omitting the initial
transient response. We obtain

m̂ =
1

2
M̂

(
iωÎ − Λ̂

)−1

Ĉ exp(iωt) +
1

2
M̂

(
−iωÎ − Λ̂

)−1

Ĉ exp(−iωt) (5.6)

from which we may extract the contribution of the ith global mode as

m̂i =
1

2

M̂iĈi

iω − Λ̂i

exp(iωt) +
1

2

M̂iĈi

−iω − Λ̂i

exp(−iωt). (5.7)

If the ith eigenvalue has a non-zero imaginary part, we get M̂i+1 = M̂∗
i , Ĉi+1 = Ĉ∗

i and
Λi+1 =Λ∗

i . It then follows that m̂i+1 = m̂∗
i and further

mi + mi+1 =

∣∣∣∣∣ M̂iĈi

iω − Λ̂i

∣∣∣∣∣ cos(ωt + ψ) +

∣∣∣∣∣ M̂iĈi

−iω − Λ̂i

∣∣∣∣∣ cos(−ωt + ξ ).

The forced response is the sum of waves of frequency ω. Maximizing over all forcing
frequencies ω, we can see that the contribution of the ith eigenmode is proportional
to the quantity (see also Antoulas 2005, p. 282 and Bagheri et al. 2009b):

Γi =

∣∣∣M̂i

∣∣∣ ∣∣∣Ĉi

∣∣∣∣∣∣Re(Λ̂i)
∣∣∣ . (5.8)

This criterion takes into account three different physical variables to quantify if a
stable global mode should or should not be retained in the reduced-order model basis
of the estimator: (a) the measurement coefficient M̂i , which is closely related to the
observability of the respective global mode, (b) the control coefficient Ĉi , a measure
of controllability of the associated global mode and (c) the decay rate |Re(Λi)| of
the global mode. In short, the criterion based on Γi selects global modes that are
observable, controllable and weakly damped. It is noteworthy that Lee et al. (2001)
used a similar technique for a reduced model by selecting modes that are equally
controllable and observable.

This analysis should validate, in some sense, the choice of least stable global modes
as adopted by Åkervik et al. (2007). Indeed, if the measurement and control coefficients
of all global modes were bounded (an assumption that will be proven wrong below),
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Figure 6. (a) Global spectrum of flow over an open square cavity at Re =7500 colour-coded
by Γi, a measure of each global mode’s contribution to the input–output relation (see (5.8)
and text for explanation). (b) Criterion Γi versus the each mode’s amplification rate.

then Γi would decay as 1/|Re(Λi)| as we move to larger decay rates |Re(Λi)|. This
would then justify neglecting highly damped global modes in the reduced-order basis
of the estimator. But the choice of included global modes, made purely on their
decay rate, does not yield satisfactory results since the notion of controllability and
observability of the global modes has not been taken into account.

For our present case of open flow over a square cavity, we observe that Γi does not
decrease with the decay rate |Re(Λ̂i)| of the global modes. In figure 6(a), which shows
the global spectrum in the (σ, ω) plane, the colouring of the eigenvalues corresponds
to Γi. The eigenvalues that appear in warm (cold) colours display high (low) values
of Γ ; a logarithmic colour map has been used here and Γi is meaningful only
for damped eigenmodes. We observe that some of the highest values of Γ appear
for strongly damped eigenmodes; moreover, the number of eigenmodes with high
values of Γ appears to increase as the damping increases since nearly all yellow-
and red-coloured eigenvalues appear on the left side of the figure. In figure 6(b), the
same information is plotted in a different form: the horizontal axis represents the
amplification rate σ of each eigenvalue while the vertical axis represents its value of
Γ (on a logarithmic scale). It is clear that Γ does not decrease for highly damped
eigenvalues and that more and more eigenvalues with high Γ appear as the damping
rate −σ increases. Since no theoretical argument can be made for an eventual
decrease of Γ as the damping rate increases, we conclude that the damping rate is
a poor and inappropriate measure for the judicious inclusion of global modes into
the reduced-order model or for the truncation of the expansion basis. We also want
to remind ourselves that numerical difficulties stemming from the non-normal nature
of the problem prevented us from computing converged global modes beyond the
damping rates shown in the above figures. Furthermore, reduced-order models with
more than about 100 degrees of freedom quickly become untractable and impractical
for closed-loop control efforts.

The divergence of Γ with the damping rate −σ warrants a more thorough
investigation. We recall from the definition of Γ given in (5.8) that it consists
of the product of the control coefficient Ĉi and the measurement coefficient M̂i

divided by the damping rate. In figures 7(a) and 7(b) we present, for all converged



Closed-loop control of an open cavity flow 19

(a)

(c)

(b)

(d)

103

102

101

0

10–1

10–2

10–3

10–4

10–5

10–6

10–7

100

10–1

10–2

1015

1010

105

100

10–5

10–3

10–4

10–6

10–7

1010

108

106

104

102

100

10–2

–12 –10 –8 –6 –4 –2 0

–12 –10 –8 –6
σ

–4 –2 0 –12 –10 –8 –6
σ

–4 –2 0

–12 –10 –8 –6 –4 –2 0

|M̂
i|

|Ĉ
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Figure 7. Breakup of criterion Γi into its individual components. (a) Measurement coefficient

M̂i versus the amplification rate, and (b) control coefficient Ĉi versus the amplification rate.

The control coefficient Ĉi is further factored according to (5.9) into (c) the angle between
adjoint global mode Wi and control function C, and (d ) the norm of the adjoint mode Wi

which are displayed versus the amplification rate of the corresponding global mode.

eigenvalues, the modulus of the measurement coefficient and the control coefficient
as a function of the amplification rate. Figure 7(a) reveals that modes with higher
damping rates have a lower observability. This tendency alone would suggest that
based on observability we would be justified in excluding global modes with higher
damping. An opposite trend can be observed when controllability is considered: in
this case, controllability increases with increasing damping rates. The disadvantageous
behaviour of the composite coefficient Γ can thus be traced back to the controllability
coefficient defined as Ĉi = W∗

i QC. We note that

|Ĉi | =
√

C∗QC
|W∗

i QC|√
W∗

i QWi

√
C∗QC︸ ︷︷ ︸

angle(Wi ,C)

√
W∗

i QWi︸ ︷︷ ︸
norm(Wi )

. (5.9)

The second term on the right-hand side of the above expression describes the angle
between the adjoint global mode Wi and the control function C while the last
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term on the right-hand side denotes the norm of the adjoint mode Wi , which may
be interpreted as a measure of non-normality of the global mode Vi . These two
quantities have been plotted versus the amplification rate σ of each global mode in
figures 7(c) and 7(d ), respectively. These two figures show that the non-normality
(figure 7d ), rather than the angle term (figure 7c), is responsible for the overall lack
of convergence of Γ with respect to the damping rate −σ. This non-normality of
the damped global mode basis is linked to physical properties of the base flow.
Non-normality has also been identified by Lauga & Bewley (2003) as the reason
for loss of stabilizability in their study of the controlled linear Ginzburg–Landau
model.

To summarize this section, global modes have been used as a projection basis to
capture the input–output behaviour of the stable subspace. Selecting global modes
according to either their damping rate or their contribution to the input–output
behaviour produced disappointing results as no satisfactory agreement between the
reduced and the full transfer function could be obtained. For this reason, other
expansion bases to construct a reduced-order model have to be considered.

5.3. Reduced-order modelling using BPOD modes

A powerful technique, commonly applied in control theory and known as balanced
truncation, allows us to reduce the stable part of the linear system while optimally
preserving its input–output behaviour. The key idea is to compute, rank and select
modes that are equally observable and controllable.

We will see in § 5.3.2 that the computational effort to compute these balanced
modes is rather high for systems of moderate size and quickly becomes unaffordable
for systems of large size and realistic complexity. Instead, we will compute an
approximation of the balanced modes by an algorithm referred to as balanced
proper orthogonal decomposition (BPOD) which remains tractable even for very
large systems (see Rowley 2005).

Before dealing with balanced truncation, we will first introduce and analyse the
concept of controllability and observability Gramians which will lay the foundation
and provide the necessary background for the derivation and application of the
exact and approximate balancing transformation. We rewrite (5.1) in the classical
state–space formulation (see § A.1 of appendix):

dX1

dt
= A1 X1 + C1c, (5.10a)

m = M1 X1, (5.10b)

which governs the dynamics of the velocity field X1. In what follows, the subscript 1

will refer to quantities that consist of the velocity components only. We note that the
scalar product restricted to the velocity field is written accordingly as X∗

1Q1 X1.

5.3.1. Controllability and observability Gramians

A specific state is deemed controllable if there exists a control law c(t) which is
able to modify the flow from any state towards this specific state. For controllable
states, the notion of controllability then quantifies how easy (or difficult) the state
can be reached from any state. Mathematically this is expressed in terms of the
controllability Gramian GC defined as

GC =

∫ ∞

0

eA1tC1C
∗
1e

A∗
1t dt, (5.11)
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which is a convergent integral as t → ∞ since A1 is stable. The expression X∗
1G

−1
C X1

can be interpreted as the minimum control energy expended over an infinite time
horizon, i.e.

∫ ∞
0

c(t)2 dt, to drive the system from the initial zero state to the state
X1 (see more details in § A.2 of appendix). Using the snapshot technique introduced
by Rowley (2005) the controllability Gramian may be factored as

GC = T1T
∗
1, (5.12)

where T1 stands for the matrix containing nd rescaled snapshots arising from a DNS
initialized by the control matrix C at t = 0 (see § A.2). Note that this is the same
simulation as the impulse response presented in § 5.1.

As controllability quantifies the amount of effort it takes to manipulate a particular
flow state, observability measures how easy (or difficult) a given flow state can be
detected by the sensors. At the sensor location almost unobservable flow states leave
hardly any footprint behind and are thus nearly ‘invisible’ to our measurement efforts.
The mathematical quantity that enables measuring the observability of a given flow
state is the observability Gramian which is defined as

GO =

∫ ∞

0

eA∗
1tM∗

1M1e
A1t dt. (5.13)

The expression X∗
1GO X1 represents the maximum energy

∫ ∞
0

m2(t) dt produced by
observing the output of the initial state X1 (more details are given in § A.3). Again
following Rowley (2005) the observability Gramian may be factored according to

GO = Q1U1U
∗
1Q1, (5.14)

where U1 denotes the matrix containing na snapshots arising from the simulation of
the adjoint problem initialized by the measurement matrix M at t = 0 (see § A.3). It
should be mentioned at this stage that the above-described technique requires the
knowledge of the adjoint state. For experimental applications, this approach may thus
become inapplicable. However, recent attempts to determine balanced modes without
having to resort to adjoint information have been reported by Or & Speyer (2008)
and Ma, Ahuja & Rowley (2009).

5.3.2. Balancing transformation using the snapshot method

Since both controllability and observability are important when choosing a
reduction basis that preserves the input–output relation, a technique has to be applied
that extracts flow fields with equal emphasis on either property. This technique is
referred to as balancing. Mathematically, it is equivalent to finding a transformation
basis in which the Gramians GC and GO appear diagonal and equal (see Zhou et al.
2002). This basis, denoted by J, and its associated adjoint basis, denoted by K, satisfy
the bi-orthogonality relation

K∗QJ = I, (5.15)

where Q takes into account the finite-element discretization by adding a weight matrix
to the standard inner product. The established procedure of finding the balancing
transformation consists of computing the Gramians (see § A.2 and § A.3) followed by
an eigenvalue decomposition of one of the following products

GCGOJ1 = J1Σ
2, (5.16a)

GOGC (Q1K1) = (Q1K1) Σ2. (5.16b)
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These eigenvalue problems yield the same eigenvalues, since the transpose of the
matrix GCGO is simply GOGC. The diagonal matrix Σ contains the Hankel singular
values. By definition, the Hankel singular values are the non-zero singular values of
the Hankel operator associated with our linear system.

Solving the Lyapunov equations and the eigenvalue problem for the balancing
transformation, however, is computationally not feasible. It has been shown (Rowley
2005) that a good approximation of this transformation can be obtained while entirely
avoiding the explicit computation of the Gramians. The associated technique relies
on the decomposition of the Gramians in the form of (5.12) and (5.14).

A singular value decomposition (SVD) of the matrix product U∗
1Q1T1 = U∗QT, which

is of dimension na × nd, results in

U∗
1Q1T1 = U′ΣT′∗, (5.17a)

U′∗U′ = I, (5.17b)

T′∗T′ = I, (5.17c)

where T′, U′ and Σ are of dimension nd × nd, na × na and na × nd, respectively. In a
final step, the bi-orthogonal balancing bases given by J and K in (5.16) are found as

J = TT′Σ−1/2, (5.18a)

K = UU′Σ−1/2. (5.18b)

It is easily confirmed that the bi-orthogonality condition K∗QJ= I is satisfied. We
verify that

(Q1K1)
∗ GC (Q1K1) = Σ, (5.19a)

J∗
1GOJ1 = Σ . (5.19b)

In Rowley (2005) it is shown that this implies that the columns of J1 form the first
columns of the balancing transformation and the columns of Q1K1 constitute the first
columns of the inverse transformation.

We conclude this section by emphasizing the fact that our initial condition (M) for
the adjoint simulation to obtain the approximate observability Gramian is different
from the one used by Rowley (2005) where the so-called output-projection technique
has been applied. This technique relies on first defining the entire state vector as the
output of the linear system. This in turn would call for one simulation for each degree
of freedom, a requirement that of course cannot be met. To nevertheless capture the
entire state in an optimal way, a projection onto POD modes is applied. The initial
conditions for the adjoint simulations are taken as these POD modes. As a result,
the input–output behaviour captured by their BPOD modes is between the actuator
(input) and the dynamics described by the POD modes. This technique may yield a
good estimation of the interaction of the actuator with the most energetic structures.

If an estimate of the flow state using the measurement matrix M is needed, an
increased number of POD modes may be necessary to reconstruct an accurate
measurement signal, since POD modes, by design, are not particularly efficient in
capturing information near the sensor. For instance, in Rowley et al. (2008) 20 POD
modes were needed which implies an equal number of adjoint simulations, a rather
costly requirement.

In our case, the output of our system is solely the measurement signal from the
sensor. The flow states which are observable from this sensor are given as the result
of an adjoint simulation. For this reason, only one adjoint simulation (with the
measurement matrix as the initial condition) is necessary. The apparent drawback,
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namely that our reduced model may not accurately capture the dynamics in the rest
of the domain but merely describe the states excited by the actuator and detected by
the sensor, is inconsequential since our primary objective is to control the flow over
the cavity by a reduced-order model that is as low-dimensional as possible, and for
this objective the input–output behaviour is the only quantity of importance.

5.3.3. Results

Both the direct and adjoint simulations are integrated up to T = 16 using a second-
order accurate scheme with a fixed time step of �t =2 × 10−4 in order to produce and
gather the snapshots. The direct simulation is identical to the one for extracting the
impulse response (see § 5.1) and illustrates the effect of the control on the stable part
of the flow. The adjoint simulation (defined in (A 17)) is initialized with the matrix M
which represents a unit measurement signal. As was the case for the direct simulation,
a projection onto the stable subspace is necessary which was accomplished in an
analogous manner. The adjoint simulation then gives us information on which flow
structures will be most detectable by the sensor.

Balanced modes forming the basis for the balancing transformation are computed
from a sequence of snapshots that are equispaced at an interval of 80�t = 1.6 × 10−2.

With this parameter setting we produce nd = na = 1001 snapshots for each the direct
and adjoint simulation.

In figure 8(a) the singular values (SV) Σ ii from the singular value decomposition
of U∗

1Q1T1 (see (5.17)) are shown. These singular or Hankel values provide a measure
of how controllable (and observable) the corresponding balanced modes are. This
information can then be used to decide on a truncation point and thus on the size of
the reduced-order model. Significant drops in the Hankel values are commonly used
to justify truncation of the balancing basis.

In figure 8 the balanced modes corresponding to the first, second, ninth and
thirteenth singular value are displayed. The first two modes show a similar structure:
vortices are present on the shear-layer, and the effect of actuation is clearly visible.
The pairwise occurrence of balanced modes with the displayed spatial structure is
linked to the representation of travelling structures by the superposition of these
modes. Both modes show an increased amplitude near the actuator (at the upstream
edge of the cavity). The ninth balanced mode is located mainly inside the cavity with
a structure reminiscent of the least stable global mode (see figure 2d ). The 13th BPOD
mode again shows structures inside the cavity as well as in the boundary layer. Near
the point of actuation a small but noticeable amplitude is present.

5.3.4. Transfer function and error norm

Next, we consider reduced-order models (Âs, Ĉs, M̂s) based on p BPOD modes
where the modes are ranked by decreasing Hankel values. The transfer function
corresponding to reduced-order models based on p = 2, 6, 8 and 10 modes are
compared to the exact transfer function in figure 9(a). Contrary to the reduced-order
models based on global modes, the exact transfer function is very well approximated
even for a moderate number p of modes. When only two balanced modes are
considered, the main peak is already well-captured. Figure 9(a) is meant to convey
the convergence behaviour of reduced-order transfer functions towards the exact
one for a particular number p of BPOD modes. As the number of modes further
increases, the approximate transfer function converges rapidly to the exact one. For
p = 13 modes (not shown in figure 9(a)), the curves for the approximate and exact
transfer function coincide to plotting accuracy; the dynamics of the stable subspace



24 A. Barbagallo, D. Sipp and P. J. Schmid

(a)

0 5 10

102

101

100

n

H
an

k
el

 s
in

g
u
la

r 
v
al

u
es

, 
Σ

(b)

1.157

0

–0.459

0.856

0

–1.045

0.994

0

–0.963

0.585

0

–1.117

(c)

(d)

(e)

Figure 8. (a) Hankel singular values for flow over a square cavity for Re =7500. (b–e)
Balanced proper orthogonal decomposition (BPOD) modes. (b) First, (c) second, (d ) ninth
and (e) thirteenth mode, visualized by the streamwise velocity.

and its projection onto 13 BPOD modes produces virtually the same input–output
behaviour.

Bounds on the discrepancy between the approximate and exact transfer function
are readily available for balanced truncation. An upper bound for the infinity norm
(maximum error) of the transfer function error is given by twice the sum of the
neglected Hankel values (see Antoulas 2005). We have

‖Ĥ − H‖∞ � 2

n1∑
j=r+1

Σjj , (5.20)
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Figure 9. (a) Comparison of transfer function of the reduced-order model to the exact
transfer function for a projection basis consisting of p = 2, 6, 8, 10 balanced modes. (b) Relative
H∞-error norm as a function of the number p of included balanced modes, together with an
upper (green line) and lower bound (blue line) on the error.

where H and n1 are the transfer function and dimension of the full system,
respectively, whereas Ĥ and r are the equivalent quantities for the reduced-order
model. Comparisons made in Rowley (2005), Ilak & Rowley (2008) and Bagheri et al.
(2009b) suggest that the error committed by approximating the true Gramians by a
series of discrete-time snapshots is very close to balanced truncation. A lower bound
on the maximum error also exists for any reduced-order model. It can be stated as

‖Ĥ − H‖∞ > Σr+1. (5.21)

In figure 9(b), the H∞ error is displayed together with the two error bounds discussed
above. For all cases, as required, the error falls between the upper and lower bounds
for balanced truncation.

5.3.5. The eigenvalues of the reduced-order model based on BPOD modes

The ability of reduced-order models based on BPOD modes to capture the input–
output behaviour, as demonstrated above by comparing the approximate and exact
transfer function, raises the question of which parts of the full global spectrum
contribute to this input–output relation. In answering this question we will establish
a link between balanced truncation and the criterion (5.8), introduced in § 5.2.2, that
quantifies the contribution of selected global modes to the input–output behaviour.

In figure 10 the eigenvalues of the reduced-order system matrix Âp,p based on p =13
BPOD modes are superimposed on the full global spectrum of the cavity which is, in
addition, colour-coded by the criterion Γi (same as figure 6). As the selection criterion
Γi is only valid for the stable global modes, we will restrict ourselves to the stable
part of the spectrum.

We first notice that the eigenvalues of the BPOD-reduced system are bounded
by the global spectrum. This is expected since the BPOD modes approximate the
subspace spanned by the stable global modes. Furthermore, varying the order of
the BPOD-reduced model does not have any influence on certain eigenvalues of
the reduced-order model (not shown here). These eigenvalues, labelled M1, M2, and
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Figure 10. Eigenvalues of the reduced matrix Âp̃,p̃ superimposed on the global spectrum
of the cavity. Eight unstable global modes and 13 BPOD modes have been included in the
reduced model. The global spectrum is coloured according to the criterion Γi.

M3 in figure 10, rapidly converge towards stable global modes with a high value
of the selection criterion Γi. We believe that this feature underlines the fact that
these selected individual modes are rather important in describing the input–output
behaviour. This stands as a validation of both the introduced selection criterion for
global modes and the extraction of BPOD modes.

In particular, M1 converges towards the 132th least stable global mode which has
a rather high value of Γi (see E2 in table 1). This mode, displayed in figure 2(e),
has an oscillatory frequency of ω = 4.54 and is responsible for capturing the peak
in the transfer function (see figure 4b). The importance of this mode in terms of
its contribution to the input–output relation is also visible in figure 5(b) where a
significant drop in the error norm ‖Ĥ − H‖∞/‖H‖∞ occurs as soon as this particular
global mode is included in the reduced-order model.

Note that M1, M2 and M3 appear to belong to the same branch as the one
comprising the unstable modes. This tendency should not come as a surprise as this
branch is composed of shear-layer modes whose shape provides a link between the
upstream edge of the cavity (where the actuator is located) and the downstream edge
(where the sensor has been placed) through the shear-layer which acts as an amplifier.
In a similar manner, the remaining modes in the BPOD spectrum account for more
general structures that play an important role in the overall input–output relation.

5.4. Reduced-order modelling using POD modes

Coherent structures based on the POD are often used in deriving reduced-order
models, and large body of literature exists which demonstrates their use in describing
the essential dynamics of uncontrolled and controlled fluid systems by a set of
equations with a significantly reduced number of degrees of freedom. For the sake
of completeness, we will also consider POD modes as a basis for low dimensionally
describing the input–output behaviour of our cavity problem.
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5.4.1. Presentation of POD modes

The classical snapshot method (see Sirovich 1987) is applied to compute POD
modes for the stable subspace of our flow. This technique relies on the snapshots T
collected during the impulse response simulation (see § 5.1, identical to the dataset
used for the BPOD computation).

The bi-orthogonal basis of the stable subspace is given by Vs = R and Ws = S with

GCQ1R1 = R1Σ
2
POD . (5.22)

Since GC =T1T
∗
1, we obtain

T∗
1Q1T1 = T′Σ2

PODT′∗, (5.23a)

T′∗T′ = I, (5.23b)

R = TT′Σ−1
POD . (5.23c)

The adjoint POD modes are not equal to the direct POD modes due to the existence
of an unstable subspace. The adjoint basis has to satisfy S∗QEu =0 which leads to
S = (PsR).

For our configuration, i.e. flow over an open square cavity at Re = 7500, the
singular values Σ2

POD are depicted in figure 11(a). The plot shows the energy content
of the coherent structures identified by the POD analysis, with a steady decay over
four orders of magnitude for the first 50 POD modes. The corresponding modes are
displayed, again by their streamwise velocity, in figure 11. Even though differences
between these modes and the BPOD modes are clearly noticeable, the modes show
finite amplitudes at the actuator and sensor location, thus anticipating their ability
to represent the flow’s input–output behaviour, even though this representation may
not be accomplished as efficiently as by BPOD modes.

We would like to emphasize that these POD modes are not general; rather, they
strongly depend on the chosen initial condition reflected in the control matrix C. The
extracted modes are optimal in representing the energetic structures triggered by the
control. In other words, they can be regarded as the most controllable modes and,
as a consequence, are an appropriate approximation basis for full-state information
control. However, since no information about their measurement is taken into account
in the construction of POD modes, we will show that BPOD-based models outperform
POD-based models with respect to capturing the open-loop behaviour.

5.4.2. Transfer function and error norm

We then consider reduced-order models based on p POD modes ranked by
decreasing singular values. The transfer functions using a selected number of
p = 10, 28 and 50 modes are displayed in figure 12(a). Similar to BPOD modes,
the reduced-order model correctly approximates the exact transfer function provided
that a sufficient number of POD modes are included. Contrary to BPOD modes, the
number of modes required for a satisfactory approximation is substantially higher.
Using 10 modes, the main peak is overestimated, and the transfer function displays
large errors across the entire frequency spectrum. The transfer function of a model
based on 28 POD modes shows oscillatory behaviour visible throughout the entire
frequency domain, but the general behaviour is rather well predicted. As the number
of modes is further increased, the approximate transfer functions match more closely
the exact one.

The H∞-error norm is displayed in figure 12(b). For very small-order models, the
error increases, but, as more modes are added, the error decreases to reach values
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Figure 11. (a) Singular values for POD modes. (b–e) POD modes for flow over an open
square cavity at Reynolds number Re =7500. The (b) first, (c) second, (d ) third and (e)
twenty-eighth POD modes are visualized by their streamwise velocity component.

similar to those observed for using BPOD modes. We stress again that, for a given
H∞-error, the number of required POD modes is significantly higher than the number
of required BPOD modes.

We observe that the reduced-order dynamics for the stable subspace spanned by the
POD modes has always been stable no matter the number p of POD modes. The same
was not the case for the BPOD bases (see figure 9 where the reduced model based
on nine BPOD modes was found unstable). Both POD- and BPOD-based reduced-
order systems should be stable, independent of the number p of included modes.
In reality, however, the BPOD basis, though far more efficient, is also far more
sensitive to numerical issues. POD modes are constructed using only information
from the actuator whereas BPOD modes incorporate additional information from the
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Figure 12. (a) Comparison of transfer function of the reduced-order model to the exact
transfer function for a projection basis consisting of p = 10, 28, 50 POD modes. (b) Relative
H∞-error norm as a function of the number p of included POD modes.

measurements. In the following section, we will present a comparison of BPOD and
POD bases in terms of their observability.

5.5. Comparison of BPOD and POD bases in terms of observability and controllability

Controllability and observability have been identified as the critical quantities to
measure the capability of a specific basis to accurately represent the input–output
behaviour of a linear system. It seems reasonable then to analyse the POD and BPOD
bases as to these two important criteria. To accomplish this we need to introduce a
measure of observability for a given bi-orthogonal basis (V, W) that satisfies W∗QV= I.

First, we recall that the direct BPOD basis, denoted by J1, is a solution of the
following eigenvalue problem

GCGOJ1 = J1Σ
2, (5.24)

where the controllability Gramian GC can be decomposed according to GC = T1T
∗
1,

and T1 represents a matrix whose columns contain the direct snapshots X1(t) defined
by (A 12). As shown by Rowley (2005), this result can be interpreted within a
POD framework, since the direct BPOD basis coincides with the POD basis when
the observability Gramian is used as a weight matrix in the scalar product, i.e.
〈Y , X〉GO

= Y ∗GO X . This means that the first i BPOD modes J1i form an orthogonal
basis with respect to an observability-based scalar product and that this basis
maximizes observability of the direct snapshots X1(t). In addition, one may show
that for the ith BPOD structure J1i , we obtain∫ ∞

0

|〈X1(t), J1i〉GO
|2 dt = Σ2

i . (5.25)

Hence, the square of the ith Hankel singular value, Σ2
i , is equivalent to the

observability of the ith BPOD mode, and consequently Σ2
1 + Σ2

2 + · · · + Σ2
i is the

observability of a basis consisting of the first i BPOD structures.
We are now in a position to define the observability of a given bi-orthogonal basis

(V, W). The snapshots X1 are first projected onto the subspace spanned by V using the
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Figure 13. (a) Controllability/observability of a BPOD (blue) and POD (black) projection
basis. (b) Observability measure of a POD basis according to criterion (5.27).

dual basis W. This yields projected snapshots X̃1 and, hence, a projected controllability

Gramian G̃C = T̃1T̃
∗
1. We proceed by using the true observability measure given by the

observability Gramian GO = Q1U1U
∗
1Q1 and subsequently compute the eigenvalues of

the large-scale system G̃CGO. For this, we perform a singular value decomposition

of the expression U∗
1Q1T̃1. The sum of the first i eigenvalues Σ̃

2

i (the remaining
eigenvalues are zero since the projection onto an i dimensional basis results in a
controllability Gramian G̃C of rank i) quantifies the observability of the basis (V, W).

This procedure, applied to a BPOD basis of size i, yields the results shown in
figure 13(a) by the blue symbols. This curve is simply the sum of the squared Hankel
singular values of the original input–output system. We see that the observability of
a basis consisting of i BPOD modes quickly rises to reach a plateau for i � 7. For
the bi-orthogonal POD bases introduced in § 5.4, the results are displayed in the same
figure by the black symbols. The observability of these POD-bases increases markedly
slower and reaches the plateau, defined by the BPOD bases, only after a minimum of
20 POD modes are considered.

Incidentally, the controllability of a given bi-orthogonal basis (V, W) can be defined
and analysed in an analogous way. In fact, the adjoint BPOD basis, denoted by K1,

is the solution of the eigenvalue problem

GOGC (Q1K1) = (Q1K1) Σ2, (5.26)

where the observability Gramian GO can be decomposed according to
GO = Q1U1U

∗
1Q1, and U1 represents a matrix whose columns contain the adjoint

snapshots Y 1(t) defined by (A 19). As before, an interpretation using a POD
framework also holds in this case: the adjoint BPOD basis Q1K1 corresponds to
the POD basis associated with the adjoint snapshots Y 1(t) and a scalar product
based on the controllability Gramian, i.e. 〈Y , X〉GC

= Y ∗GC X . The adjoint basis is
thus orthogonal with respect to a controllability-based scalar product and maximizes
controllability of the adjoint snapshots Y 1(t).

We then propose to define the controllability of a given bi-orthogonal basis as
follows. The adjoint snapshots Y 1 are projected onto the subspace spanned by the dual
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basis W using the primal basis V. This yields projected snapshots Ỹ 1 and a projected

observability Gramian G̃O = Q1Ũ1Ũ
∗
1Q1. Using the true controllability measure given

by the controllability Gramian GC =T1T
∗
1, we compute the eigenvalues of the large-

scale system G̃OGC. In other words, we perform a singular value decomposition

of the expression Ũ
∗
1Q1T1. The sum of the first i eigenvalues Σ̃

2

i constitutes the
controllability of the basis. The results are given in figure 13, showing values identical
to those obtained for the observability analysis.

An alternative way to compare the POD and the BPOD basis is to evaluate the
non-orthogonality of the POD basis with respect to the observability based scalar
product. We recall that the POD basis is orthogonal with respect to the energy-
based scalar product while the direct BPOD basis is orthogonal with respect to the
observability based scalar product. To compare the two measures, i.e. the energy
and the observability measures, we may, for example, evaluate directly the non-
orthogonality of the POD basis with respect to the scalar product based on the
observability Gramian. Hence, we compute for two POD modes, R1i and R1j , the
quantity ∣∣∣∣∣∣ R∗

1iGOR1j√
R∗

1iGOR1i

√
R∗

1jGOR1j

− δij

∣∣∣∣∣∣ , (5.27)

which would be zero if the energy measure based on Q1 were equal to the observability
measure based on GO. Each off-diagonal coefficient of this matrix lies within the
interval [0, 1], and the diagonal coefficients are identically zero by construction. If
an off-diagonal term is close to zero, the two corresponding POD modes are nearly
orthogonal with respect to the observability-based scalar product (in addition to being
orthogonal with respect to the energy-based inner product). If, on the other hand,
an off-diagonal term is close to one, the two corresponding POD modes are nearly
collinear with respect to the observability criterion, even though they are orthogonal
with respect to the energy-based inner product.

In figure 13(b) we visualize the matrix defined above for the first 50 POD modes.
We observe significant off-diagonal coefficients (indicated by dark blue symbols
representing values close to one) which further supports our previous findings and
provides additional evidence that POD bases are inferior to BPOD bases when the
full-scale input–output behaviour of a fluid system has to be approximated in a
lower-dimensional yet efficient manner.

6. Closed-loop control
Among the various bases that have been considered in the previous section, global

modes were unsuitable to represent the input–output behaviour while BPOD modes
and (to a lesser degree) POD modes were capable of reproducing the transfer function
of the full system. In this section we further expound on these findings by considering
the complete problem of designing feedback control strategies to stabilize the globally
unstable cavity flow. This step constitutes an important step in the performance
analysis of reduced-order controllers, since the H∞-error in approximating the exact
transfer function gives a first indication of the suitability and effectiveness of the
chosen expansion basis but does not allow definite conclusions about the performance
of the closed-loop system.

The linearized Navier–Stokes equations (defined in (2.8)) represent the plant to be
controlled. For the computation of the control law and the design of the estimator,
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a reduced-order model based on (4.3) and (4.7) will be used. This model consists of
an unstable subspace which is represented by the unstable global modes and a stable
subspace which is modelled by either global modes, BPOD modes or POD modes.
After a brief explanation of the LQG framework, the performance of the closed-loop
control applied to the linearized numerical simulation will be studied for each of
the above bases. In this effort the stability of the compensated system will emerge
as a relevant quantity and will be linked to the open-loop behaviour of the model
reduction bases.

6.1. The LQG framework

A description that is particularly suited for many fluid dynamical application is based
on the LQG framework (Zhou et al. 2002). In this formulation, one describes the
controlled system by a linear (L) model, a quadratic (Q) cost functional, and an
external Gaussian (G) stochastic noise source.

The design of an LQG system consists of two principal steps: the design of a
full-state information controller, and the design of an estimator. The estimator’s role
is to reconstruct, in the best possible manner, the reduced state vector X̂ based only
on the discrepancy of the measurements from the plant and the estimator. The role
of the controller is the forcing of the linear system such that a specified cost objective
is reached. The input for this control stems from the estimator. The above-mentioned
two principal steps can be taken independent from each other due to the well-known
separation principle of control theory (Zhou et al. 2002; Kim & Bewley 2007).

We start by designing the full-state information controller and assume a linear
relation between the reduced state vector X̂ and the control c,

c = K̂X̂ . (6.1)

The control gain K̂ can be determined from a variational principle that minimizes

the cost functional X̂
∗
T̂X̂ + 
2c2 subject to the constraint of X̂ and c satisfying

the governing equations. The user-specified parameter 
2 determines the cost of the
control effort. T̂ is a Hermitian matrix describing the cost functional. Usually T̂
represents the kinetic disturbance energy according to T̂ =V∗QV but it may also be
chosen as the square of the measurement signal T̂ =V∗M∗MV.

The resulting optimal control gain K̂ can be expressed as K̂= −ĈK̂
′
where K̂

′
satisfies

the algebraic matrix Riccati equation

Â
∗
K̂

′
+ K̂

′
Â − K̂

′
ĈĈ

∗
K̂

′
+

T̂


2
= 0. (6.2)

With the relation between c and X̂ established we can close the loop on the reduced
model and formulate the reduced-order closed-loop system as

dX̂
dt

= (Â + ĈK̂)X̂, (6.3)

where Â + ĈK̂ is a stable evolution operator contrary to Â which is unstable.
The second step, the design of the estimator, commences with the formulation of

the estimator system which will govern the approximation Ŷ to the exact reduced state
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vector X̂ . We have

dŶ
dt

= ÂŶ + Ĉc − L̂(m − M̂Ŷ ). (6.4)

where c = K̂Ŷ implements the previously defined control term. An additional control
term of the form L̂(m − M̂Ŷ ) appears which exerts a forcing on the estimator given by
the difference between the measurement m and the measurement M̂Ŷ of the estimated
system. The matrix L̂, referred to as the Kalman gain, determines the manner in
which this measurement difference is applied.

Analogous to the control gain K̂, the Kalman gain L̂ can be computed by invoking
a variational problem which aims at minimizing the state estimation error while

observing the governing equations (6.4). The Kalman gain is then given as L̂ = −L̂
′
M̂

∗

where L̂
′
satisfies the algebraic Riccati equation

ÂL̂
′
+ L̂

′
Â

∗ − L̂
′
M̂

∗
M̂L̂

′
+

W 2

G2
N̂N̂

∗
= 0. (6.5)

Here, N̂ and W 2 characterize, respectively, the correlation and the variance of the
plant noise while G2 denotes the variance of the measurement noise.

In a final step, the controlled system and the estimator are combined to form a
compensated system. This system is given by the set of equations

d

dt

(
X̂

Ŷ

)
=

(
Â ĈK̂

−L̂M̂ Â + ĈK̂ + L̂M̂

) (
X̂

Ŷ

)
, (6.6a)

(
X̂

Ŷ

)∣∣∣∣∣
t=0

=

(
W∗QX(0)

0

)
. (6.6b)

We would like to point out that the full-state information controller ĈK̂X̂ in (6.3)
has been replaced by the controller ĈK̂Ŷ using the estimated rather than the exact
reduced state vector. In the above system, only the measurements of the full system are
used, making this type of control design more promising for a realistic implementation.

An equally convenient and instructive formulation consists of replacing the
estimated reduced state vector Ŷ by the state estimation error Ẑ= X̂ − Ŷ (Kim &
Bewley 2007). A straightforward manipulation results in

d

dt

(
X̂

Ẑ

)
=

(
Â + ĈK̂ −ĈK̂

0 Â + L̂M̂

) (
X̂

Ẑ

)
, (6.7a)

(
X̂

Ẑ

)∣∣∣∣∣
t=0

=

(
W∗QX(0)

W∗QX(0)

)
, (6.7b)

which demonstrates that due to the block-triangular shape of the composite system
matrix in (6.7a), the controller design and estimator design decouple, illustrating the
separation principle of control theory. For this reason, the control K̂, determined
under the assumption of full-state information, does not have to be recomputed
when used with an estimated rather than an exact reduced state vector. The LQG
framework insures that Â + ĈK̂ and Â + L̂M̂ are stable while the reduced system Â is
unstable (Burl 1999).
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Note that we use an augmented system in this study where the flow-state includes
both the reduced dynamics X̂ and the magnitude of the blowing/suction ρ(t) :

d

dt

(
X̂

ρ

)
=

(
Â 0

0 0

) (
X̂

ρ

)
+

(
Ĉ

−1

)
c, (6.8a)

m = (M̂ 0)

(
X̂

ρ

)
. (6.8b)

This step enables us to penalize both the magnitude ρ(t) of blowing/suction and its
derivative c(t) = −dρ/dt. Hence, it allows the control effort – and not only its first
time-derivative – to be zero at infinite time. For the sake of simplicity, the derivations
to follow will tacitly assume this arrangement.

6.2. Small-gain limit

An interesting limit arises in the above equations as the cost of control and the
ratio between measurement noise and plant noise tends to infinity, i.e. 
2 → ∞ and
G2/W 2 → ∞. In this case, any exerted control and estimation effort concentrates on
suppressing and estimating the unstable modes of the uncontrolled system.

In this small-gain limit the control and Kalman gains take on the respective special
form (see Burl 1999):

K̂ = (K̂u 0), K̂u = −ĈuK̂
′
u, (6.9a)

L̂ =

(
L̂u

0

)
, L̂u = −L̂

′
uM̂

∗
u (6.9b)

with

Λ̂
∗
uK̂

′
u + K̂

′
uΛ̂u − K̂

′
uĈuĈ

∗
uK̂

′
u = 0, (6.10a)

Λ̂uL̂
′
u + L̂

′
uΛ̂

∗
u − L̂

′
uM̂

∗
uM̂uL̂

′
u = 0. (6.10b)

Hence the control and Kalman gains reduce in the small gain limit to the gains
pertaining only to the unstable modes. The Riccati equations to be solved are
therefore of very low dimension. Note that an analytical formulation for the gains in
the small-gain limit has been derived in Lauga & Bewley (2003). In addition, it can
be shown that the unstable eigenvalues of the uncontrolled system are reflected about
the imaginary axis (see Burl 1999) when control is applied. In this case the matrix T̂
related to the cost functional and the matrix N̂ characterizing the plant noise are no
longer significant here and, therefore, do not need to be defined.

To insure small amplitudes in the gains K̂, the location of the actuator is chosen
such that Ĉ =W∗QC is sufficiently large for the unstable global modes. Higher
values of W∗QC will be attained if the actuator location coincides with regions
of high amplitudes of the adjoint modes. The adjoint modes thus indicate the
location where the corresponding global modes can be easily excited. This actuator
placement procedure ensures reasonable controllability of the unstable global modes,
a prerequisite for an effective control design. The values of Ĉi = W∗

i QC for the global
modes E−3, E−2, . . . , E8 are given in table 1. Also, to ensure small amplitudes in the
Kalman gain L̂, the sensor location is chosen such that M̂ = MV is sufficiently large
for the unstable global modes. Under this condition, the unstable global modes are
reasonably observable. The values of M̂i = MEi for the unstable global modes are
given in table 1.
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Figure 14. Block diagrams for the DNS module (plant) based on (2.8) and the estimator
module based on a reduced-order model (ROM) described by (6.4).

The special form of the control and Kalman gain allows the partitioning of the
compensated system in matrix form into stable (subscript s) and unstable (subscript u)
components as follows:

d

dt

⎛
⎜⎜⎜⎜⎝

X̂ s

X̂u

Ẑu

Ẑs

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

Âs ĈsK̂u −ĈsK̂u 0

0 Âu + ĈuK̂u −ĈuK̂u 0

0 0 Âu + L̂uM̂u L̂uM̂s

0 0 0 Âs

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

X̂ s

X̂u

Ẑu

Ẑs

⎞
⎟⎟⎟⎟⎠ . (6.11)

Thus, provided the reduced models for the plant X̂ and for the estimator Ŷ are
the same, the eigenvalues of the compensated system are those of Âs , Âu + ĈuK̂u

and Âu + L̂uM̂u. The performance, usually assimilated as the least stable eigenvalue
(long-term smallest decay rate), can then be predicted theoretically.

If the plant X̂ is based on the complete set of global modes, the equation acting
on X̂ in (6.11) is equivalent to the full DNS. If, in addition, the estimated state Ŷ is
also based on the complete set of global modes, we obtain the ‘best control strategy’
which will be presented in § 6.3.3. In this case, we know that in the small-gain limit
the spectrum of this compensated system is composed of the stable modes of the
uncontrolled simulation (coloured eigenvalues in figure 10) and the reflection of the
unstable modes into the stable half-plane. The small-gain limit will be invoked in
what follows.

6.3. Analysis of the performance of the compensated system using DNS

For clarity and throughout this investigation, we will present the various control
configurations in block-diagram form which will help the reader to evaluate and
appreciate the many options and approximations in the design and operation of
control strategies. Two main blocks, the plant and the estimator, are principal
components of any subsequent control scheme. They are displayed in figure 14.
The plant module takes as input the initial condition and the control c and produces
a time sequence of state vectors X . Internally, this is accomplished by integrating the
control variable c to obtain ρ and by subtracting the solution C of the inhomogeneous
problem (with unit forcing at the control location). The internal structure of the DNS
module implements the lifting procedure. The estimator module has the task of
providing an approximate state vector based on the external measurements m and the
internally generated measurements. The Kalman gain L̂ is given by (6.9b) and (6.10b).
The estimator is driven by a control law c which is the same as the control law that
controls the plant.
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Figure 15. Block diagrams demonstrating (a) partial-state information control and (b) ‘best
control strategy’. Only the shaded blocks and the thick lines are active in each diagram. The
details of the plant and estimator blocks are given in figure 14.

We now turn our attention to the case of control with partial-state information. A
schematic of this set-up in form of a block diagram is given in figure 15(a). Once
the estimator and controller are defined, the procedure for partial-state information
control progresses as follows. The DNS of the flow over a cavity produces a flow
field X(t). The sensor, located at the downstream edge of the cavity, extracts from
this flow field a skin friction signal via m(t) =MX(t), which constitutes the only flow
information available to the compensator. The signal m(t) is subsequently fed into
the estimator which in turn yields an estimate Ŷ (t) of the flow field. In a final step,
the controller converts the estimated flow field Ŷ (t) into a control law c(t) according
to c(t) = K̂Ŷ (t) which governs the blowing/suction strength at the upstream edge of

the cavity in the numerical simulation, thus completing the feedback cycle. K̂ is given
by (6.9a) and (6.10a).

6.3.1. Performance of a reduced-order model based on BPOD modes

We start by assessing the performance of reduced-order model-based estimators
where the eight unstable global modes and a series of p BPOD modes are taken
into account. In figure 16(a) we plot the energy X∗QX as a function of time for
various partial-state control simulations. Each curve represents a different number
p of BPOD modes included in the reduced-order model. The uppermost thin line
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Figure 16. Performance of partial-state controller measured as the perturbation kinetic energy
versus time for different reduced-order models. (a) The number of included BPOD modes (in
addition to the unstable global modes) is denoted by p. (b) The number of included POD
modes (in addition to the unstable global modes) is denoted by p.

corresponds to an estimator based on a reduced-order model with the eight unstable
global modes and no BPOD modes (p = 0).

The energy diverges which indicates that this specific reduced-order model (based
on unstable global modes only) is not able to provide an accurate estimate of the
flow field. Thus, in order to suppress a global instability, modelling only the unstable
subspace is not sufficient; rather, a representation of the stable subspace has to be
included in the reduced-order model. In view of the results on the reduction of the
stable subspace (see § 5), it may come as a surprise that using a few stable modes (for
instance only two stable modes are considered in Åkervik et al. 2007) will provide
sufficient information about the stable subspace to result in a successful control
effort. A similar divergent behaviour can be observed for the two next-lower thin
lines which correspond to reduced-order models based on five and six BPOD modes,
respectively. The divergence though is less severe which we take as an indication that
the performance of the estimator improves as the number of included BPOD modes
increases. A breakeven point is reached for p = 7, when the partial-state control
manages to keep the energy bounded; for p = 8 the energy starts to decrease. The
sequence of curves depicted in figure 16(a) and labelled by p = 0, 5, 6, . . . converge
towards a curve (thick solid line) which corresponds to the best control achievable
using partial-state control (see § 6.3.3).

6.3.2. Performance of a reduced-order model based on POD modes

We continue our evaluation of reduction bases by studying reduced-order models
based on the eight unstable global modes and a series of p POD modes. The kinetic
energy of the perturbations is displayed in figure 16(b). A similar behaviour as for
the BPOD modes is recovered: when only a few modes are considered in the reduced-
order model, the flow cannot be successfully stabilized whereas the energy behaviour
converges to the ‘best control strategy’ curve (thick solid line) when more POD modes
are added. This behaviour corroborates the results obtained from our analysis of the
open-loop response. We however emphasize the fact that the order of the stable
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reduced model using POD modes is higher than the one based on BPOD modes
which is again in complete agreement with the results of our open-loop analysis.

6.3.3. Convergence towards the ‘best control strategy’

Using reduced-order models based on BPOD and POD modes, we have seen
that while the order of the model is increased, the input–output behaviour is better
captured and the energy curves converge to a particular curve, the ‘best control
strategy’. In this section, we will show that this optimum solution may be obtained
through a full-state control strategy, which only involves the unstable global modes
in the reduced-order model.

We first emphasize the fact that the estimators and the controllers are based on a
reduced model. In particular, we recall the equation governing the approximation of
the reduced state (defined in (6.4))

dŶ
dt

= ÂŶ + Ĉc − L̂(m − M̂Ŷ )

in which the quantity (m−M̂Ŷ ) is minimized. It is then clear that the relevant quantity
to be fed into the estimator is not m which corresponds to the measurement of the
whole flow, but a reduced measure m̂ which corresponds to the measurement arising
from the modes comprised in the reduced model, i.e. m̂= M̂X̂ . This is done in the
‘best control strategy’, illustrated in form of a block diagram in figure 15(b). At first
sight it seems similar to the above partial-state information control set-up; but closer
inspection shows that the measurement signal to be provided to the estimator is
the projected measurement m̂(t) rather than the true measurement m(t). Note that
this control strategy requires knowledge of the full flow field and is thus closer to
a full-state than to a partial-state information control strategy. It is only considered
here as an analysis tool. It is important to note that within the best control strategy
the same result (same control law, same simulation) is obtained regardless of the
number p of included vectors in the stable subspace. In particular, the best control
strategy may be determined with p = 0, i.e. with only eight unstable global modes in
the reduced-order model of the estimator.

Applying this control strategy, we obtain the thick black lines in figures 16(a)
and 16(b). The partial-state simulations in these figures therefore converge towards
this curve as the performance of reduced-order models is increased. The energy
first increases exponentially up to t ≈ 2, after which we observe a drastic decrease.
More insight into the control’s physics can be gained by looking at the evolution
of the pressure field taken along the line y = 0. This is shown in the form of an
(x, t) plane in figure 17. We notice that the pressure signal first increases, reaching
its maximum at time t ≈ 2. During this initial phase, the vortices, which are low-
pressure areas, are convected downstream at the local speed of the base flow. They
finally impact the downstream cavity edge and generate an infinitely fast pressure
wave which subsequently excites the shear layer at the upstream edge of the cavity.
After t ≈ 2, the pressure signal decreases continuously, and the pressure feedback
between the downstream and upstream cavity edge diminishes significantly. Within
the linear framework the actuator now generates vortical structures that annihilate
the uncontrolled flow field (i.e. the unstable global mode). At the end, the impact of
vortical structures on the downstream edge of the cavity is substantially suppressed
which in effect eliminates any pressure feedback. From a physical point of view then,
the control acts to break the closed pressure feedback-loop that is responsible for the
global instability of the uncontrolled flow.
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Figure 17. Spatio-temporal x-t diagram of pressure p(x, y =0, t) contours with “best control
strategy” applied. The initial condition consists of the most unstable global mode. The two
vertical white lines indicate the cavity walls. See also movie II in the online version of the
paper.

It is interesting to see that even when the ‘best control strategy’ is considered, a
certain amount of transient growth is still observed. It is a consequence of the time it
takes to estimate the flow state as well as the convective time for the control to be
felt. Roughly speaking, the estimator produces a good approximation of the flow field
only for t > 1, and therefore the control law c(t) which is fed back to the numerical
simulation via the controller is only effective for t > 1. Vortical structures are then
created at the leading edge of the cavity and need approximately t ≈ 1 to act on
the most energetic perturbations located at the trailing edge of the cavity. Thus, the
total time before a decrease of perturbation energy due to partial-state measurement
control can be expected to be t ≈ 2.

From these results we conclude that the compensator works optimally if the
estimator is provided with the projected measurement m̂(t). To highlight the difference
between the full measurement m and the projected (or reduced) measurement m̂ we
plot the two quantities versus time for the best control strategy with p = 0 (only eight
unstable global modes are used in the reduced-order model) in figure 18(a). We notice
that the true measurement m(t) (green line) is significantly different from the projected
measurement m̂(t) (black dashed line), particularly in the range 0 < t < 3. This fact
explains the failure of partial-state control with only unstable global modes contained
in the reduced-order model. Note also that for 0 < t < 1.7 the full measurement m is
equal to the measurement given by the uncontrolled case (red line). Since the reduced-
order model in this case is only based on the unstable global modes, this shows that
the stable subspace is excited in a manner that keeps the complete measurement
unchanged (see Barbagallo et al. 2008).

In addition, this demonstrates that, if the full measurement is to be fed into the
estimator (as for partial-state control), the stable subspace needs to be modelled
such that the full measurement can be satisfactorily approximated by the reduced-
order model. In figure 18(b), it is shown that for partial-state simulations based on
a reduced-order model with 13 BPOD modes, the full measurement (green solid
line) and the projected measurement m̂ (dashed line) agree. When this agreement
does not exist, the following arguments furnish an explanation for the failure of the
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Figure 18. Measurement as a function of time using a reduced model based on the unstable
global modes with “best control strategy” (a) and using a reduced model based on unstable
global modes and 13 BPOD modes with partial-state control (b). Comparison of the true
measurement signal (green solid line) with the measurement signal obtained from projecting
onto a reduced basis consisting of the unstable global modes and 13 balanced POD modes
(black dashed line). Red solid line: full measurement of uncontrolled simulation.

compensator to stabilize the flow: the actuator acts on the modes of the reduced-order
model in order to suppress the instabilities but, by doing so, also excites flow states
outside the range of the reduced-order model. These states are in turn detected by
the sensor and cause a discrepancy between m and m̂ which, as demonstrated above,
results in an unstable system.

As reported by Ehrenstein & Gallaire (2008), if the control action is restricted to
the space spanned by the modes of the reduced-order model, the additional structures
(outside the range of the reduced-order model) alluded to above do not arise, and
the compensator will be effective in rendering the system stable.

6.3.4. Performance of a reduced model based on global modes

For our flow configuration it has been demonstrated (see § 5.2) that an expansion
in global modes did not succeed in approximating the exact transfer function to a
sufficient degree of accuracy; and it is natural to assume that this shortcoming will
also have consequence for the performance of a reduced-order controller based on
global modes. Nevertheless, this plan of action has been followed by Åkervik et al.
(2007) and Ehrenstein & Gallaire (2008) where least stable eigenmodes have been
added to augment the expansion basis of the reduced-order model. The same strategy
has also been attempted in our case with reduced-order models including up to a
few thousand global modes. Alas, a stabilization of the flow could not be obtained,
which indicates that the expansion of the stable subspace by the least stable modes
does not always yield satisfactory results. This is in agreement with the open-loop
behaviour of reduced-order models based on stable global modes which has been
found inadequate to approximate the transfer function of the stable subspace.

6.4. Analysis of the performance of the compensated system using stability analysis

The stability of the compensated system has been already alluded to earlier as a
desired and necessary property of a successful control design. In this section, we
introduce an alternative way of studying the stability of the compensated system
by taking advantage of the fact that the input–output behaviour of the numerical
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simulation (DNS) can be accurately captured by a low-order system including eight
unstable global modes (which model the unstable subspace) and 13 BPOD modes
for the stable subspace. This special configuration was chosen since it corresponds
to the lowest H∞-error norm (see figure 9). The resulting proxy system will be
particularly advantageous, as far as computational efforts are concerned, for our
continued investigation and analysis of the stability of the compensated problem
using various reduced-order models.

In what follows, we assume that the partial-state simulation is governed by the
following system of equations (see (6.6))

d

dt

(
X̂ ñ,1

Ŷ p̃,1

)
=

(
Âñ,ñ Ĉñ,1K̂1,p̃

−L̂p̃,1M̂1,ñ Âp̃,p̃ + Ĉp̃,1K̂1,p̃ + L̂p̃,1M̂1,p̃

) (
X̂ ñ,1

Ŷ p̃,1

)
, (6.12a)

(
X̂ ñ,1

Ŷ p̃,1

)∣∣∣∣∣
t=0

=

(
W∗QX(0)

0

)
, (6.12b)

where ñ= 13 + 8 and p̃ = p + 8 correspond to the total size of the plant and the
estimator. The true measurement is obtained through m(t) = M̂1,ñ X̂ ñ,1. We thus have

Âñ,ñ, Ĉñ,1, M̂1,ñ which remain unchanged since they represent the dynamics of the

DNS. On the other hand, Âp̃,p̃, Ĉp̃,1, M̂1,p̃ stand for the reduced matrices in the p̃

dimensional reduced basis. In short, the plant is a reduced-order model based on
eight unstable global modes and 13 BPOD modes whereas the estimator is based
on eight unstable global modes and p stable modes (considering successively BPOD
modes, POD modes and stable global modes). The eigenvalues of the coupled matrix
which appears in (6.12) may be analysed for different values of p, indicating whether
the compensated problem is stable or unstable.

6.4.1. Stability of a reduced-order model based on BPOD modes

In figure 19 we depict the spectrum of the coupled matrix for two cases, taking
p = 0 and p = 13. In the former case (p =0) we obtain five unstable eigenvalues in
the half-plane given by ω � 0 (the plot is symmetric with respect to ω = 0) which
leads to the conclusion that the system with an estimator based solely on the unstable
global modes is strongly unstable. As the number p of BPOD modes increases, the
eigenvalues move towards the stable half-plane. The limiting case is reached for p =13
when we retrieve the stable spectrum of the reduced model based on 13 BPOD modes
(displayed with black circles in figure 10) plus the four double eigenvalues that result
from the reflection of the four unstable global modes about the neutral stability line
(four for the estimator and four for the controller).

An interesting feature worth pointing out concerns the non-uniform sensitivity of
the eigenvalue location to the quality of the estimator. For example, the eigenvalue
located at (σ, ω) ≈ (−0.0324, 16.73) is only weakly affected by a decreasing number p

of included BPOD modes, whereas the eigenvalue located at (σ, ω) ≈ (−0.890, 10.9)
for p = 13 protrudes far into the unstable half-plane as p is reduced. This underlines
the fact that robustness of a closed-loop system cannot simply be defined by its least
damped eigenvalue.

In figure 20 the amplification rate σmax of the most unstable eigenvalue of the
coupled system as a function of the number of considered modes p is shown. For p =0
(not shown in figure 20), we find that σmax = 0.53 which shows again that a partial-
state simulation with a reduced-order model including only the eight unstable global
modes is strongly unstable. It is interesting to note that as soon as the control is active
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Figure 19. Global spectrum of the compensated system for p = 0 (triangles) and

p = 13 (squares). Red dots correspond to the uncontrolled plant, i.e. eigenvalues of Âñ,ñ.
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(after t = 2) the slope of the energy corresponding to this case (see figure 16) is equal
to 2 σmax. For p =13 BPOD modes, the amplification rate is σmax = −0.0144 which
is in agreement with the spectra presented in figure 19. Moreover, the partial-state
control based on BPOD modes remains unstable up to p = 6 suggesting a minimum
of seven BPOD modes to stabilize closed-loop simulations. For values of p � 7, the
simulations remain stable, and the amplificate rate of the least stable eigenmode
converges towards σmax = − 0.0144, a value which is close to the amplification rate
σ = − 0.00811 of the least stable eigenmode of the full system.
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6.4.2. Stability of a reduced-order model based on POD modes

We now turn our attention to partial-state control systems with estimators that
use reduced-order models based on the eight unstable global modes and p POD
modes. The procedure is analogous to the one described in § 6.4.1 in that, for each
number p of POD modes incorporated into the reduced-order model, we compute the
eigenvalues of the coupled system (6.12). Results are shown in figure 20 (open circles)
where we can see that a POD basis yields an effective estimator once at least 28 POD
modes are included in the reduced-order model of the estimator. This is deduced from
the fact that the amplification rate σmax of the most unstable eigenvalue of (6.12) is
positive for 0 � p � 27 and negative for p � 28. Based on these results we conclude
that the POD basis is suboptimal compared to the BPOD basis. Indeed, only seven
BPOD modes are needed to arrive at a successful partial-state control system using a
reduced-order model, whereas 28 POD modes are necessary to accomplish the same
goal.

6.4.3. Stability of a reduced-order model based on global modes

The results of this analysis are given by the solid-line curve in figure 20. For the
case p = 0, i.e. if the reduced-order model includes only the eight unstable global
modes, the partial-state control simulation is unstable, and the amplification rate
σmax is equal to 0.53, as previously shown. If we then add to the estimator p least
stable global modes, the coupled system becomes more unstable (for p = 400, the
amplification rate rises up to σmax = 0.75). This behaviour is followed by a drastic
decrease in the amplification rate down to a level of σmax ≈ 0.2 which is obtained
using 750 least stable eigenmodes. This result demonstrates that adding more global
modes to the estimator improves the coupled system since σmax decreased; at no point,
though, do we reach a stable coupled system with σmax < 0. As a matter of fact, by
including even more stable global modes in the reduced-order model of the estimator
the performance of the coupled system deteriorates yet again, as is evident by the
increasing amplification rate σmax.

7. Summary and conclusions
The incompressible flow over an open square cavity has been studied as a

representative example of separated flows. At sufficiently high Reynolds numbers
the shear layer atop the cavity exhibits a global instability. It is of general interest
to devise effective control strategies to suppress this instability by feeding back
measurement signals (taken downstream of the cavity) to actuators which manipulate
the flow upstream of the cavity. The design of these control schemes quickly becomes
computationally unfeasible due to the complexity of the problem and the resulting
size of the matrix equations for the control and estimation gains. A model reduction
has to be performed to bring back the construction of a compensated system
into the realm of direct design methods. The basis underlying this reduction is a
component that is pivotal to the success of the computed control scheme. A general
bi-orthogonal projection framework has been developed that allows the analysis of
different reduction bases.

The use of global modes for model reduction (see Ehrenstein & Gallaire 2005,
2008; Åkervik et al. 2007; Henningson & Åkervik 2008) is common despite the fact
that this type of basis may be insufficient and inefficient in representing the input–
output behaviour of the compensated system. Even though in Åkervik et al. (2007) the
studied flow configuration resulted in a stable compensated system based on global
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modes, our configuration provides a counter example which suggests that reduced-
order modelling based on global modes cannot be generalized to more complex
geometry and/or flow physics. In our case, this has been demonstrated by the lack of
convergence of reduced transfer functions (based on global mode expansions) towards
the exact one. The difficulties of expressing the transfer characteristics between sensor
and actuator stems from the non-normality of the linearized Navier–Stokes equations.
As a consequence, global modes with a substantial decay rate can still contribute to
the input–output behaviour, while weakly damped global modes may not. In other
words, the decay rate of global modes is a poor criterion for the inclusion of global
modes in a projection basis or in the truncation of the projection basis. Rather, a
criterion that accounts for the controllability and observability of each global mode, in
addition to its decay rate, is more accurate in assessing which global mode contributes
to what extent to the input–output behaviour.

The choice of a more appropriate expansion basis has to address the issues of
controllability and observability which is essential in accurately representing the
relation between actuator input and sensor output. Balanced modes are designed to
accomplish this task by paying equal emphasis to controllability and observability
and are thus ideally suited for the low-dimensional representation of the input–
output behaviour. Despite this property, their practical computation from numerical
simulation poses challenges that take significant effort to overcome. These challenges
are mainly related to stability issues of the reduced system which, in turn, is related to
the slow convergence of the approximate Gramians towards their exact solution when
fluid motion on a slow time scale (such as for modes that have a significant component
inside the cavity) is present and needs to be resolved. In this case, excessively long
sequences of snapshots are necessary which puts strain on computational resources
and memory requirements.

POD modes are often used as a technique to arrive at a reduced-order model. They
overemphasize controllability at the expense of observability, but are still capable of
expressing the input–output behaviour albeit not as efficiently as balanced modes.
Their advantage, however, lies in the simplicity of computing them: a simple snapshot
method suffices. In our case, reduced-order models based on POD modes, even though
higher-dimensional than models based on BPOD modes, showed improved robustness
when used in the design of reduced-order controllers. The approximation of the open-
loop transfer function by POD modes shows adequate convergence towards the exact
transfer function, even though, compared to balanced modes, many more POD
modes are necessary to achieve the same level of accuracy, as measured in the H∞-
norm.

In summary, both BPOD and POD modes are suitable choices for reducing the
input–output relation of a control problem to a manageable size, where a choice has
to be made between (i) an expansion in as few modes as possible, in which case
BPOD modes prevail, and (ii) a somewhat more robust computational procedure to
determine a larger reduced-order model, in which case POD modes appear to be a
reasonable choice.

One should keep in mind, though, that flow over an open cavity – with the sensor
located in the wake of the actuator – is particularly amenable to a reduced-order
controller based on POD modes since the flow structures identified by the POD reflect
the convective transport between the control and measurement device and thus are
able to represent the input–output behaviour of the compensated system. For more
challenging configurations, where this convective link between actuator and sensor
is not given, the discrepancy between POD and BPOD modes may be drastically
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higher, and balanced modes may markedly surpass POD modes in their ability and
efficiency in rendering the flow stable by reduced-order control schemes.

We like to thank Olivier Marquet and François Gallaire for helpful discussions and
comments during the course of this work. The third author gratefully acknowledges
financial support from the ‘chaires d’excellence’ programme of the Agence Nationale
de la Recherche (ANR). The staff at the Café Daguerre is thanked for indulging our
many animated discussions and work sessions.

Appendix. Reduced-order models based on balanced proper
orthogonal decomposition

A.1. Projected equations

In this section, we will show that the system of equations (5.1) which governs the
dynamics of the stable subspace can be written in the classical state–space form
(defined in (5.10)).
Equation (5.1) can be cast in the form(

Q1 0

0 0

)
d

dt

(
X1

X2

)
=

(
As1 A∗

s2

As2 0

) (
X1

X2

)
+

(
Q1 0

0 0

) (
Cs1

Cs2

)
c, (A 1a)

m = (M1 0)

(
X1

X2

)
, (A 1b)

where X1 denotes the velocity fields and X2 stands for the corresponding pressure
field. In what follows, the subscript 1 applied to a vector field will denote the part of
the state vector composed of the velocity field only. For the design of control and
model reduction schemes we need to reformulate the above equations into standard
state–space form. To this end we multiply the momentum equation by As2Q

−1
1 , which

yields – assuming that As2 Ẋ1 = 0 – an expression for the pressure in terms of the
velocity field

X2 = −
(
As2Q

−1
1 A∗

s2

)−1 [(
As2Q

−1
1 As1

)
X1 + As2Cs1

]
. (A 2)

This relation can be used to eliminate the explicit divergence constraint and allows
us to write the governing linearized equations in the desired form

dX1

dt
= P1As1 X1 + P1Q1Cs1c, (A 3a)

m = M1 X1, (A 3b)

where

P1Q1 = I − Q−1
1 A∗

s2

(
As2Q

−1
1 A∗

s2

)−1
As2 (A 4)

is the projection matrix onto the divergence-free space. This projector is reminiscent
of the steps taken by a projection method to correct a preliminary divergent velocity
field towards a solenoidal one. Starting from the right of the above expression, we take
the divergence (As2) of the velocity field, then solve a Poisson equation ((As2Q

−1
1 A∗

s2)
−1)

for the corrective pressure, and finally take the gradient of the pressure (Q−1
1 A∗

s2) and
subtract this component from the preliminary velocity field. This procedure then
renders the velocity field divergence free. In short, if X1 is a non-divergence-free
velocity field, then P1Q1 X1 is the projection of X1 onto the divergence-free subspace;
if X1 is already divergence free, we have P1Q1 X1 = X1. It is important to point out
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that the projector P1Q1 is also used to properly adjust an initial condition which does
not satisfy u · n = 0 along some boundaries like solid walls. It is equally noteworthy
that P1 is a Hermitian operator, so that we can take advantage of the relation P∗

1 = P1.

Defining A1 = P1As1 and C1 = P1Q1Cs1, we recover (5.10).

A.2. Controllability Gramian

We consider the controllability Gramian GC defined, for our system, as

GC =

∫ ∞

0

eA1tC1C
∗
1e

A∗
1t dt. (A 5)

Let us consider a fully controllable system, which means that all divergence-free states
X1 may be reached by a control law c(t). Furthermore, let X1 be a divergence-free
field. We will demonstrate that the minimum energy

∫ ∞
0

c∗(t)c(t) dt to reach X1 is

equal to X∗
1G

−1
C X1. We know that there exists a unique vector ξ such that X1 =GCξ

is satisfied and note that ξ =G−1
C X1, even though the matrix GC may be degenerate.

After considering the control law c(t) = C∗
1e

A∗
1tξ , it may easily be verified that this

control law yields X1 as t → ∞ ∫ ∞

0

eA1tC1c(t) dt = X1. (A 6)

One may furthermore show that this specific c(t) yields the minimum energy to reach
X1. This minimum energy reads∫ ∞

0

c∗(t)c(t) dt = ξ ∗
∫ ∞

0

eA1tC1C
∗
1e

A∗
1tdt ξ , (A 7a)

= ξ ∗GC ξ , (A 7b)

= X∗
1G

−1
C X1, (A 7c)

which verifies our proposition above.
The controllability Gramian GC can be computed by solving a matrix Lyapunov

equation (see Antoulas 2005); its actual solution by standard numerical techniques,
however, quickly becomes prohibitively demanding on computational resources and
algorithms. Instead, the Gramian can be approximated by a discrete integration in
time according to

GC =

∫ ∞

0

X1(t)X∗
1(t) dt, (A 8a)

≈
∑
i�0

X1(ti)X∗
1(ti)δi (A 8b)

with X1(t) = eA1tC1 and δi denoting appropriate quadrature coefficients. The flow fields
X1(ti) at discrete instances ti can be obtained by the integration in time of the linear
system

Ẋ1 = A1 X1, (A 9a)

X1(0) = C1 (A 9b)

or (
Q1 0

0 0

)
d

dt

(
X1

X2

)
=

(
As1 A∗

s2

As2 0

) (
X1

X2

)
, X1(0) = P1Q1C1. (A 10)

This system, corresponding to the direct problem (cf (5.1)), can straightforwardly be
solved by our linearized DNS programme. As a result, the controllability Gramian
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may therefore be written as

GC = T1T
∗
1, (A 11)

where

T = [X(0�t)
√

δ0 X(1�t)
√

δ1 . . .]. (A 12)

Although we use an equidistant spacing between the snapshots, a non-equidistant
spacing between them is conceivable to increase the accuracy of the integration in
time or to account for localized features that require higher temporal resolution. The
dimension of T is n × nd where n and nd denote the number of degrees of freedom in
X and the number of direct snapshots, respectively. Note that T1 which represents the
velocity components of T is of dimension n1 × nd with n1 as the number of degrees
of freedom of the velocity field. The quadrature coefficients δi correspond to the
fourth-order Simpson method.

The above demonstration shows that the controllability Gramian GC can be thought
of as the spatial correlation matrix for the evolution of an impulsive forcing at the
actuator location (the initial condition is PQ1C1). We further conclude that the
eigenvectors of GCQ1 are the commonly used POD modes for our particular initial
condition. These POD modes represent flow structures that are easily triggered by
control input since they require rather small amounts of control energy to be excited.

A.3. Observability Gramian

The observability Gramian is defined as

GO =

∫ ∞

0

eA∗
1tM∗

1M1e
A1t dt. (A 13)

With X1 denoting a divergence-free flow field, we will show that the measurement
energy is equal to

∫ ∞
0

m∗(t)m(t) dt = X∗
1 GO X1. The response of the sensor to our

initial state X1 is simply given by m(t) =MeA1t X1, and the following expression∫ ∞

0

m∗(t)m(t) dt =

∫ ∞

0

X∗
1e

A∗
1tM∗

1M1e
A1t X1 dt, (A 14a)

= X∗
1GO X1 (A 14b)

corroborates our statement above.
Analogous to the previous section, the observability Gramian GO can only be

meaningfully defined for stable linear systems and can then be determined as the
solution of a matrix Lyapunov equation. For the same reason as above, however,
the solution based on a Lyapunov equation becomes excessively expensive, thus
prompting us to compute an approximation of the observability Gramian based on a
discrete integration in time. GO can be rewritten as

GO =

∫ ∞

0

Q1P1e
A∗

s1P1tM∗
1M1e

P1As1tP1Q1 dt, (A 15a)

= Q1

(∫ ∞

0

eP1A
∗
s1tP1Q1

(
Q−1

1 M∗
1

)
M1Q

−1
1 Q1P1e

As1P1t dt

)
Q1, (A 15b)

= Q1

(∫ ∞

0

Y 1(t)Y ∗
1(t) dt

)
Q1, (A 15c)

≈ Q1

(∑
i�0

Y 1(ti)Y ∗
1(ti)δi

)
Q1, (A 15d)



48 A. Barbagallo, D. Sipp and P. J. Schmid

where Y 1(t) = eP1A
∗
s1tP1Q1(Q

−1
1 M∗

1) and δi denotes, as before, the quadrature coefficients
for the evaluation of the time integral. The flow fields Y 1(t) can be obtained by
integration in time of the adjoint system defined as

dY 1

dt
= P1As1

∗Y 1, (A 16a)

Y 1(0) = P1Q1

(
Q−1

1 M∗
1

)
(A 16b)

or (
Q1 0

0 0

)
d

dt

(
Y 1

Y 2

)
=

(
A∗

s1 A∗
s2

As2 0

) (
Y 1

Y 2

)
, Y 1(0) = P1Q1

(
Q−1

1 M∗
1

)
. (A 17)

This adjoint initial-value problem is solved by our adjoint linearized numerical
simulation code, i.e. (5.1) in which A is replaced by its transpose conjugate A∗.

As a result, the observability Gramian may therefore be rewritten as

GO = Q1U1U
∗
1Q1, (A 18)

where

U = [Y (0�t)
√

δ0 Y (1�t)
√

δ1. . .]. (A 19)

The dimension of U is n × na where na stands for the number of adjoint snapshots.
The quadrature coefficients δi correspond again to the fourth-order Simpson method.

REFERENCES

Ahuja, S. & Rowley, C. W. 2008 Low-dimensional models for feedback stabilization of unstable
steady states. AIAA Paper 2008-553.
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Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Linear feedback control and estimation
of transition in plane channel flow. J. Fluid Mech. 481, 149–175.

Ilak, M. & Rowley, C. W. 2006 Reduced-order modelling of channel flow using travelling POD
and balanced POD. In Third AIAA Flow Control Conference, San Francisco, AIAA paper
2006–3194.

Ilak, M. & Rowley, C. W. 2008 Modelling of transitional channel flow using balanced proper
orthogonal decomposition. Phys. Fluids 20, 034103.

Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously
shaped bodies. J. Fluid Mech. 182, 23–45.

Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A systems theory approach to the feedback stabilization
of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332,
157–184.

Kim, J. 2003 Control of turbulent boundary layers. Phys. Fluids 15, 1093–1105.

Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech.
39, 383–417.

Lall, S., Marsden, J. E. & Glavaski, S. 2002 A subspace approach to balanced truncation for
model reduction of nonlinear control systems. Intl J. Robust Nonlinear Control 12, 519–535.

Lauga, E. & Bewley, T. R. 2003 The decay of stabilizability with Reynolds number in a linear
model of spatially developing flows. Proc. R. Soc. Lond. A 459, 2077–2095.

Lauga, E. & Bewley, T. R. 2004 Performance of a linear robust control strategy on a nonlinear
model of spatially developing flows. J. Fluid Mech. 512, 343–374.



50 A. Barbagallo, D. Sipp and P. J. Schmid

Lee, K. H., Cortelezzi, L., Kim, J. & Speyer, J. 2001 Application of reduced-order controller to
turbulent flows for drag reduction. Phys. Fluids 13, 1321–1330.

Lehoucq, R. B. & Scott, J. A. 1997 Implicitly restarted Arnoldi methods and subspace iteration.
SIAM J. Matrix Anal. Appl. 23, 551–562.

Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi methods. SIAM Publishing.

Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.

Ma, Z., Ahuja, S. & Rowley, C. W. Reduced order models for control of fluids using the eigensystem
realization algorithm. Theor. Comput. Fluid Dyn. (submitted)

Marquet, O., Sipp, D., Chomaz, J.-M. & Jacquin, L. 2008 Amplifier and resonator dynamics
of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605,
429–443.

Moin, P. & Bewley, T. R. 1994 Feedback control of turbulence. Appl. Mech. Rev. 47 (6), S3–S13.

Moore, B. 1981 Principal component analysis in linear systems: controllability, observability, and
model reduction. IEEE Trans. Autom. Control 26, 17–32.

Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-
dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497,
335–363.

Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder
wake. J. Fluid Mech. 270, 297–330.

Or, A. C. & Speyer, J. L. 2008 Model reduction of input–output dynamical systems by proper
orthogonal decomposition. J. Guid. Control Dyn. 31–2, 322–328.

Podvin, B., Fraigneau, Y., Lusseyran, F. & Gougat, P. 2006 A reconstruction method for the flow
past an open cavity. ASME J. Fluids Engng 128, 531–540.

Rowley, C. W. 2005 Model reduction for fluids using balanced proper orthogonal decomposition.
Intl J. Bifurcation Chaos 15, 997–1013.

Rowley, C. W., Ahuja, S., Taira, K. & Colonius, T. 2008 Closed-loop control of leading
edge vorticity on 3d wings: simulations and low-dimensional models. In Thirty-eighth Fluid
Dynamics Conference and Exhibit , Seattle. AIAA paper 2008-3981.

Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over
open cavities. Annu. Rev. Fluid Mech. 38, 251–276.

Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J. & Myatt, J. 2007
Feedback control of subsonic cavity flows using reduced-order models. J. Fluid Mech. 579,
315–346.

Scherpen, J. M. 1993 Balancing for nonlinear systems. Syst. Control Lett. 21, 143–153.

Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its
applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.

Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45, 561–590.

Tadmor, G., Noack, B., Morzynski, M. & Siegel, S. 2004 Low-dimensional models for feedback
flow control. Part II. Control design and dynamical estimation. AIAA Paper 2004-2409 .

Theofilis, V. 2000 Advances in global linear instability analysis of nonparallel and three-dimensional
flows. Prog. Aerosp. Sci. 39, 249–315.

Willcox, K. & Peraire, J. 2002 Balanced model reduction via proper orthogonal decomposition.
AIAA J. 40, 2323–2330.

Zebib, A. 1987 Stability of a viscous flow past a circular cylindar. J. Engng Math. 21, 155–165.

Zhou, K., Salomon, G. & Wu, E. 1999 Balanced realization and model reduction for unstable
systems. Intl J. Robust Nonlinear Control 9, 183–198.

Zhou, K., Salomon, G. & Wu, E. 2002 Robust and Optimal Control . Prentice Hall.

Zielinska, J. A. & Wesfreid, J. E. 1995 On the spatial structure of global modes in wake flow.
Phys. Fluids 7 (6), 1418–1424.



5 Article 2

Input-output measures for model

reduction and closed-loop control:

application to global modes





Under consideration for publication in J. Fluid Mech. 1

Input-output measures for model reduction
and closed-loop control: application to global

modes

By ALEXANDRE BARBAGALLO1,2,
DENIS S IPP1

AND PETER J. SCHMID2

1ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon, France
2Laboratoire d’Hydrodynamique (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau,

France

(Received 25 August 2010)

Feedback control applications for flows with a large number of degrees of freedom re-
quire the reduction of the full flow model to a system with significantly fewer degrees
of freedom. This model-reduction process is accomplished by Galerkin projections using
a reduction basis composed of modal structures that ideally preserve the input-output
behavior between actuators and sensors and ultimately result in a stabilized compen-
sated system. In this study, global modes are critically assessed as to their suitability as
a reduction basis, and the globally unstable, two-dimensional flow over an open cavity is
used as a test case. Four criteria are introduced to select from the global spectrum the
modes that are included in the reduction basis. Based on these criteria, four reduced-order
models are tested by computing open-loop (transfer function) and closed-loop (stability)
characteristics. Even though weak global instabilities can be suppressed, the concept
of reduced-order compensators based on global modes does not demonstrate sufficient
robustness to be recommended as a suitable choice for model reduction in feedback
control applications. The investigation also reveals a compelling link between frequency-
restricted input-output measures of open-loop behavior and closed-loop performance,
which suggests the departure from mathematically-motivated H∞-measures for model
reduction toward more physically-based norms; a particular frequency-restricted input-
output measure is proposed in this study which more accurately predicts the closed-loop
behavior of the reduced-order model.

1. Introduction

As active control strategies are increasingly applied to high-dimensional and complex
flow configurations arising in industrial and academic settings, model reduction becomes
a key technology. The goal of model reduction is the projection of the high-degrees-of-
freedom flow dynamics onto a smaller system which is subsequently used in estimating
the flow state based on measurement information. There is a considerable amount of
choice for the bases of this projection which in the past yielded a wide range of reduction
strategies but also varied results. In this article we specifically consider global modes for
the reduction basis, develop measures and tools to assess their effectiveness and comment
on their suitability for feedback control applications based on reduced-order models.

In our study we will concentrate on a flow configuration that exhibits oscillator behav-
ior in the form of a self-sustained cyclic perturbation dynamics which is rather insensitive
to stochastic outside influences. A global stability analysis of this type of flows exhibits
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unstable global modes and provides frequencies and growth rates as well as the spatial
shapes of the self-sustained structures. In many industrial applications, oscillatory be-
havior is typical and often a source of acoustic radiation and/or structural excitation
which can cause material fatigue or damage. For this reason, passive and active control
strategies to weaken or suppress these oscillations are of great interest.

Passive control strategies, such as mean flow modifications, do not add energy to the
system and are particularly attractive due to their simplicity of implementation and
efficiency (see Strykovski & Sreenivasan 1990; Giannetti & Luchini 2007; Marquet et al.
2008). However, while these strategies can successfully extend the parameter range of
stable flows, they ultimately may not be able to prevent the onset of instabilities as a
critical parameter value is exceeded. In this case, due to their time-independent design,
they can no longer influence the unsteady nature of the flow. Active control, on the
other hand, adds energy to the system in form of a predesigned actuation (open-loop
control) or an actuation using flow information from sensor measurements (closed-loop
control). Among the closed-loop control theories, the Linear Quadratic Gaussian (LQG)
strategy (see Burl 1999; Zhou et al. 2002) has been considered for and successfully applied
to the feedback control of unsteady flows (see, e.g., Bewley & Liu 1998; Kim & Bewley
2007; Barbagallo et al. 2009; Bagheri et al. 2009a; Sipp et al. 2010). This method is
based on a linear description of the flow behavior and includes an estimator that optimally
reconstructs an approximate flow field from sensor measurements. This approximate flow
state provides the basis on which an optimal control law is designed. The optimization
of the estimation and control leads to two Riccati equations which can only be solved
for a rather low number of degrees-of-freedom. It is thus desirable and paramount to
reduce the size of the compensator (i.e. the combined estimator and controller) using a
procedure known as model reduction. However, since this reduction procedure implies
a loss of information, it is of critical importance to retain only the relevant features of
the original model in the reduced-order model. The key feature to be conserved is the
input-output behavior, i.e. the effect of the actuator on the sensor; its conservation is a
sufficient condition for the success of LQG control design based on reduced-order models.

Among the various procedures to obtain a reduced-order model, the Galerkin projec-
tion method has been widely used in flow control applications. This method consists in
projecting the Navier-Stokes equations (or Linearized Navier-Stokes equations) onto spa-
tial modal structures (Antoulas et al. 2001; Antoulas 2005). The choice of these modes is
pivotal and changes considerably the properties of the resulting reduced-order model (see
Bagheri et al. 2009b; Barbagallo et al. 2009). A common choice is to use Proper Orthog-
onal Decomposition (POD) modes as the projection basis. These modes are optimal
in describing the most energetic structures of the flow (Lumley 1970; Sirovich 1987;
Berkooz et al. 1993) but yield reduced-order models which are not optimal for closed-
loop control applications since they do not take into account the flow’s observability by
the sensors. This difficulty is overcame by projecting onto Balanced Proper Orthogonal
Decomposition (BPOD) modes which, by construction, give equal emphasis to the con-
trollability and observability of the flow (Moore 1981; Rowley 2005). Closed-loop control
with reduced-order compensators based on POD and BPOD modes have been studied
on various globally unstable configurations (see Barbagallo et al. 2009; Ahuja & Rowley
2010) where stabilization of the flow could be achieved within the limitations of the linear
approximation.

Reduced-order models obtained by a Galerkin projection onto global modes have also
been considered in previous work in an attempt to control globally unstable flows. The
flow over a shallow cavity has been successfully stabilized in Åkervik et al. (2007); Hen-
ningson & Åkervik (2008) using a reduced-order model merely based on the unstable and
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a few stable global modes. A similar model, however, failed at suppressing the instabil-
ities over an open square cavity, no matter the numbers of stable global modes added
to the reduced-order model (Barbagallo et al. 2009). This failure has been attributed to
the ineffectiveness of global modes in capturing the input-output behavior of the original
system which could further be linked to the strong non-normality of the global modes
yielding, in turn, extreme controllability coefficients. This feature has subsequently been
observed by Ehrenstein et al. (2010) in a study of the separated flow over a shallow
bump. Introducing the so-called double-projection (i.e., an orthogonal projection for the
actuator combined with a bi-orthogonal projection for the remaining terms in the gov-
erning equations) in an attempt to reduce in magnitude the coefficients arising from the
projection of the actuator, Ehrenstein et al. (2010) were able to stabilize the separated
flow.

In face of these diverse and possibly conflicting results, it seems helpful and beneficial to
assess and clarify the suitability of global modes as a reduction basis in closed-loop control
design for globally unstable flows. This is the primary aim of this article. A secondary, and
equally important, objective is the development of appropriate input-output measures
that allow the most efficient design of reduced-order models. For example, balanced
truncation, one of the most effective techniques for model reduction in feedback control
applications, minimizes the H∞-error between the full and reduced transfer function (see,
e.g., Antoulas 2005); yet, it may appear too stringent and limiting to focus on the worst-
case error over all frequencies and to tacitly neglect the flow response contained in other
frequencies. Our present studies suggest frequency-restricted input-output measures that
reflect physical attributes of the underlying fluid dynamics which in turn result in more
effective reduced-order models.

We will begin with a brief description of the flow configuration (§ 2) together with the
mathematical formulation of our problem. After a short outline of closed-loop control
and model reduction techniques (§ 3), we will introduce and motivate selection criteria
for the inclusion of global modes in a reduced-order model (§ 4). Open-loop transfer
functions and stability properties of the compensated system will aid in assessing the
effectiveness of the criteria and, more generally, the limitations of reduced-order model
based on global modes (§ 5). A representative case (Re = 7500) will be treated in detail;
key properties of the analysis will then be investigated for a range of Reynolds numbers
(§ 6). A summary and concluding remarks will complete this article.

2. Flow configuration and governing equations

The flow configuration chosen to address the suitability of global modes for closed-
loop control applications is the two-dimensional incompressible flow over an open square
cavity. The geometry and control set-up is shown in figure 1 and is identical to the one
studied in Barbagallo et al. (2009). The flow enters the domain from the left with a
uniform horizontal velocity U∞ after which a boundary layer develops. It then detaches
at the left side of the cavity and forms a shear layer instability if the critical Reynolds
number (based on the incoming velocity and the length/depth D of the cavity) exceeds
Rec = 4140 (see Sipp & Lebedev 2007). The shear layer separates the recirculation motion
inside the cavity from the external flow. Unstable flows that are characterized by self-
sustained oscillatory motion, like the open cavity flow at supercritical Reynolds numbers,
are often referred to as oscillators within a global stability framework. In this present
study, we will use active feedback control schemes and attempt to stabilize the flow for
marginal and supercritical Reynolds numbers ranging from Re = 4140 to Re = 7500.

The essential mechanism for the development of a global instability is based on a
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Figure 1. Sketch of flow over an open cavity.

combination of the linear amplification of specific infinitesimal perturbations followed
by their saturation due to nonlinear effects once finite-amplitudes have been reached.
In the present approach we aim at stabilizing the flow in its linear regime, i.e., under
conditions when the small perturbation amplitudes justify the use of a linearized model of
the flow. This model consists of the Navier-Stokes equations linearized about a base flow
u0 = (u0, v0). This base flow, which represents a solution of the nonlinear Navier-Stokes
equations, is unstable to perturbations and thus may be computed using a Newton-
Raphson technique. The linearized evolution equations for the perturbation field u =
(u, v, p) are then derived and nondimensionalized using the length of the cavity D and
the incoming uniform velocity U∞. They read

∂u

∂t
+ (u · ∇)u0 + (u0 · ∇)u = −∇p +

1

Re
∆u (2.1a)

∇ · u = 0 (2.1b)

where ∇ (resp. ∆) is the gradient (resp. the Laplacian) operator. The above equations are
spatially discretized using finite elements of Taylor-Hood type (P2-P2-P1) implemented
in the software Freefem++ (Hecht et al. 2005). The discretized system of equations can
formally be written in matrix form as

Q
dX

dt
= AX (2.2)

where X = (U V P)T is the state vector composed of the streamwise velocity U, the
normal velocity V and the pressure P. The matrix A represents the linearized Navier-
Stokes operator while the matrix Q contains the weights arising from the discretization
by finite elements. For our case, the total number of degrees of freedom of the discretized
system (i.e., the size of the matrices Q and A) is approximately n = 900, 000. The weight
matrix Q can also be used for defining a discrete scalar product based on a kinetic energy
norm according to

‖X‖2
2 = 〈X, X〉 = X

∗
QX (2.3)

where ∗ denotes the transpose conjugate operator. The actuation on the flow by the
controller is modeled as a Gaussian body force on the vertical velocity. This forcing is
spatially localized near the upstream edge of the cavity where it has a distinct effect on
the shear layer and, consequently, on the instability mechanism. Approximating a realistic
actuator requires its spatial extent to be small compared to the size of the cavity; we
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choose

v(x, y) = exp

[

−
(x − x0)

2 + (y − y0)
2

2σ2

]

with x0 = −0.1, y0 = 0.02 and σ = 0.0849. These specific values define a Gaussian func-
tion of unit amplitude and width 0.2. Using a body force (instead of a lifting procedure)
has the advantage of a direct comparison with previous work (Åkervik et al. 2007; Ehren-
stein et al. 2010) and results in a simplified formulation of the control problem compared
to a true actuation at the wall (see Barbagallo et al. 2009). The full control effort is
obtained by multiplying the spatial Gaussian profile by a temporal scalar function u(t)
which transforms equation (2.2) into a forced problem

Q
dX

dt
= AX + QB2u (2.4)

where B2 is a real vector of dimension n arising from the spatial discretization of the
actuator using the finite-element bases.

Within a closed-loop (feedback) framework the temporal control law u(t) is to be
computed in real time using real-time measurements of the system. In the present work
we choose to measure the wall-shear stress at the downstream edge of the cavity, expressed
mathematically as

m(t) =

∫ x=1.1

x=1

∂u

∂y

∣

∣

∣

∣

y=0

dx,

which, after finite-element discretization, yields m = CX with C as a real column vector
of length n extracting the wall-shear stress from the full state vector X. This concludes
the state-space formulation of the flow control problem given by

Q
dX

dt
= AX + QB2u, (2.5a)

m = CX. (2.5b)

In what follows, this system of equations will form the basis for control design and model
reduction efforts.

3. Closed-loop control design and model reduction

At Reynolds number above the critical one, instabilities arise that ultimately lead to
exponential growth in kinetic perturbation energy within the linear framework. In order
to suppress these instabilities we consider an active closed-loop control strategy that
exploits real-time flow information from the sensor and manipulates the flow via the
actuator such that a user-specified objective (the suppression of instabilities) is achieved
with optimal effort.

3.1. Linear Quadratic Gaussian (LQG) control

The design of such a control strategy takes advantage of the widely used Linear Quadratic
Gaussian (LQG) theory (Burl 1999; Zhou et al. 2002). The underlying principle of this
theory is graphically presented in figure 2. In this sketch the plant represents the inherent
(uncontrolled) dynamics of the flow, in our case governed by (2.4). The output from the
sensor, i.e., the measurement m(t) = CX, represents the sole information on which the
control law will be based. This measurement is then fed into an estimator which recovers
an approximate state Ŷ which is subsequently multiplied by the control gain K̂ to produce
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u(t)

Figure 2. Block diagram of feedback control set-up showing the plant, estimator and
controller components.

a control signal u(t); this signal is finally fed back into the flow system. The objective of
the control is the minimization of a given cost functional, in our case, the kinetic energy
of the perturbation. The design of both an estimator — in particular, the Kalman gain L̂

which optimally exploits measurement information to recover state information — and a
controller requires the solution of algebraic Riccati equations, a matrix equation that can
only be solved by direct techniques for a rather limited number of degrees of freedom. For
this reason, the feedback loop from measurement m(t) to control u(t) via the estimator
and controller has to be based on a substitute system of significantly fewer degrees of
freedom, i.e., on a reduced-order model (ROM). With this reduced-order model in place,

the Riccati equations for the control gain hatmathsfK and Kalman gain L̂ can be solved
by standard techniques (e.g., Datta 2003).

3.2. Model reduction basics

The goal of model reduction is to represent pertinent features of the original system (2.5)
with a reduced number of states. In its most common form this reduction is accomplished
by a Petrov-Galerkin projection of the full system onto an identified basis. The choice
of this basis then determines the effectiveness and accuracy of the reduced system. In
the present study, we will evaluate the performance of reduced-order models obtained
from a projection onto global modes and assess their efficiency when incorporated into a
feedback control loop. To this end, we gather a selection of nr global modes as columns
of the n × nr matrix V. The details of the selection will be left undetermined at this
point, but will be specified later. The state X will then be expressed in this basis as

X(t) = VX̂(t). (3.1)

where X̂ is a column vector of length nr, denoting the reduced state (the symbol .̂ shall

be used to indicate reduced variables or matrices). The ith component of X̂ represents
the dynamics of the corresponding ith global mode V(:,i).

Defining a second basis W that is bi-orthogonal to V according to W∗QV = I, the
reduced state variable X̂ is given by

X̂ = W∗QX. (3.2)

The reduced system in state-space form, obtained by applying the Petrov-Galerkin pro-
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Reynolds number Re 5250 5500 6000 6500 7000 7500
number of unstable modes 4 4 6 6 6 8
number of computed stable modes 1324 1391 1511 1636 1764 1875

Table 1. Number of unstable and computed stable global modes for flow over an open square
cavity at various Reynolds numbers considered in this study.

jection to (2.5), reads

dX̂

dt
= Λ̂X̂ + B̂2u (3.3a)

m = ĈX̂ (3.3b)

where the reduced system, control and measurement matrices are respectively given by

Λ̂ = W∗AV, B̂2 = W∗QB2, Ĉ = CV. (3.4)

The choice of global modes as a reduction basis yields a diagonal reduced system matrix
Λ̂ containing the associated eigenvalues of the selected global modes.

4. Reduced-order models based on global modes

To study the linear stability of non-parallel two- or three-dimensional base flows a
global stability analysis is commonly applied. It consists of a decomposition of the per-
turbation into a complex exponential time dependence and a purely spatial structure,
referred to as a global mode:

X(t) = X̃ exp(λt) where λ = σ + iω. (4.1)

The asymptotic temporal behavior of each global mode is then governed by its growth
rate σ and frequency ω. Positive growth rates (σ > 0) indicate global instability.

4.1. Direct and adjoint global modes

The assumption (4.1) transforms the initial-value problem (2.2) into a generalized eigen-
value problem for the eigenvalue λ and the global mode X̃. We have

AX̃ = λQX̃ (4.2)

which has to be solved by iterative techniques owing to the size (∼ 106 × 106) of the
matrices A and Q. A shift-invert Arnoldi algorithm (see Lehoucq & Scott 1997) has been
used to determine the global spectrum, where we restricted our computations to growth
rates above σ = −4. Details of the numerical procedure can be found in Barbagallo
et al. (2009). Depending on the Reynolds number Re the number of eigenvalues found
in this domain varies from 1328 to 1883 modes (see table 1). For eigensolutions with
decay rates lower than σ ≈ −4 first effects of round-off errors are encountered which
exacerbate until they entirely inhibit computations of global modes beyond σ < −8 due
to the non-normality of the matrix A. Moreover, the availability of O(103) global modes
for a model reduction effort was deemed sufficient for the reduced-order model to still
qualify as “reduced”; ideally, much fewer modes should be necessary.

The matrix A is non-normal, resulting in a set of non-orthogonal global modes (Schmid
& Henningson 2000). An additional basis W – the set of adjoint global modes – is thus
necessary. The adjoint global modes are solutions of the adjoint eigenvalue problem
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Figure 3. Global spectrum for flow over an open cavity at Re = 7500.

A∗X̃+ = λ∗QX̃+. (4.3)

The adjoint global modes are denoted by X̃+; the eigenvalues of the adjoint problem are
simply the complex conjugate of the direct eigenvalues λ. After proper normalization,
the direct and adjoint global modes satisfy the bi-orthogonality relation

〈X̃+
i , X̃j〉 = X̃

+∗
i QX̃j = δij (4.4)

with δij as the Kronecker symbol.

4.2. Analysis of the spectrum

Since we wish to construct reduced-order models based on global modes, it will be in-
structive to analyze the properties and characteristics of the eigensolutions of A. We will
focus on the case Re = 7500, but would like to stress that equivalent results have been
obtained for lower Reynolds numbers. The global spectrum (restricted to the half-plane
ω > 0 due to symmetry) for Re = 7500 is displayed in figure 3. At this parameter set-
ting, we have eight unstable global modes with σ > 0 (four appear in the ω-half-plane in
figure 3). The spatial structure of the most unstable global mode is presented in figure 4,
visualized by contours of the streamwise velocity. It is spatially localized and describes
a Kelvin-Helmholtz-type instability of the shear-layer across the cavity.

In contrast to the unstable eigenspace, the stable subspace (consisting of modes with
σ < 0) is high-dimensional; see table 1. In addition, while the unstable global modes had a
clear physical explanation in terms of observable instabilities, the interpretation of stable
modes is far less obvious. More insight can be gained by computing the energy-weighted
x-centroid xc for each global mode defined by

xc =

∫∫

Ω

xe dx dy

/∫∫

Ω

e dx dy (4.5)



Input-output measures for model reduction and closed-loop control 9

(a)

(b)

Figure 4. Selected direct and adjoint global modes for flow over an open cavity at Re = 7500. (a)
Most unstable direct global mode, (b) adjoint global mode associated with the most unstable
direct global mode in (a). Both modes are visualized by contours of the streamwise velocity
component.

with e as the energy of the global mode and Ω denoting our computational domain. By
definition, this quantity falls within the interval −1.2 6 xc 6 2.5. The global spectrum,
colored by the centroid xc, is shown in figure 5 and indicates the energy-weighted location
of global modes within the computational domain.

Two principal groups of global modes can be distinguished: (i) modes located near
the cavity with 0 6 xc 6 1 and (ii) modes located near the outflow boundary of the
domain with xc ≈ 2.5. Eigenvalues for the former group can be found in the upper right
part of the spectrum. These modes describe the stable dynamics of the motion inside the
cavity as well as the unstable motion of the shear layer atop the cavity. Eigenvalues for
the latter group (with xc ≈ 2.5) are mainly located near the left part of the (σ, ω)-plane
at higher damping rates; their corresponding global modes are pinned to the right edge
of the computational domain. Surprisingly few global modes have their energy-weighted
centroid in the interval 1 6 xc 6 2.5, thus leaving essentially only global modes linked to
either the cavity dynamics or the outflow boundary. A similar picture arises for the adjoint
global modes: a first group of modes, whose centroid is located inside the cavity, can be
distinguished from a second group of highly damped modes, whose centroid coincides
with the inlet boundary at x = −1.2.

The localization of the global modes near and inside the cavity and at the outflow
boundary is even better illustrated by computing the energy density d of a global mode
versus the streamwise coordinate. The energy density is defined as the kinetic energy
of a mode at a fixed streamwise location integrated over the vertical coordinate, i.e.,
d(x) =

∫

e(x, y) dy. Results are given in figure 5(c,e). Cavity modes, with significant
energy density values in the interval 0 6 x 6 1, rapidly decrease in energy density
away from the cavity; they show strong localization within our computational domain.
Global modes located at the outlet, on the other hand, show only low to moderate energy
densities near the cavity and exponential growth over many decades toward the outflow
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Figure 5. (a) Global spectrum color-coded by the x-centroid of associated global modes, (b)
global spectrum color-coded by the x-centroid of the associated adjoint global modes. (c,e)
Energy density versus the streamwise position for two direct global modes, (c) the least stable
direct global mode and (e) a strongly damped (σ ≈ −4) direct global mode; both modes are
labeled by symbols in subfigure (a). (d,f) Energy density versus the streamwise position for the
two associated adjoint global modes, (d) the least damped adjoint global mode and (f) a strongly
damped (σ ≈ −4) adjoint global mode; both modes are labeled by symbols in subfigure (b).

boundary. Similar observations can be made for the corresponding adjoint global modes
(figure 5(d,f)): spatially localized adjoint cavity modes coexist with adjoint modes with
strong exponential growth toward the inlet boundary.

The above analysis raises the question about the physical significance of stable global
modes, in particular, in light of the fact that increasing the computational domain will
influence the stable global modes and pin them anew against the extended computational
boundary. In this sense, the majority of stable global modes are linked to numerical
details, in particular, to the discretization and location of outflow boundaries (see Sipp
et al. 2010, for more details).

4.3. Selection criteria for inclusion in a reduced model

At this point, the global modes and their adjoint counterparts are available for the de-
sign of a reduced-order model and a feedback control strategy. It remains to be decided,
however, which of the global modes shall be included in the reduction basis V (and the
associated basis W). We recall that all unstable modes have to be included; for the se-
lection of global modes from the stable half-plane a criterion has to be specified. Even
though many options exist and a clear choice is far from obvious, we will concentrate on
four criteria that have either appeared in previous studies (Åkervik et al. 2007; Barba-
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gallo et al. 2009; Ehrenstein et al. 2010) or can be argued for mathematically. In the next
sections we will introduce and discuss these criteria and present their advantages, limita-
tions and deficiencies. Arguments will be made and presented for the case of Re = 7500;
it is important to stress, however, that the results extend qualitatively to lower Reynolds
numbers.

4.3.1. Damping rate

The first criterion is based on the damping rate of the global modes and employs
the argument that modal structures with large decay rates are dynamically less relevant
than modes that are only weakly damped. This criterion has been applied by Åkervik
et al. (2007) in their study of flow over a shallow cavity. This criterion is particularly
convenient from a numerical viewpoint as highly damped global modes are difficult to
compute by iterative means — even after applying spectral transformations. An obvious
flaw of this criterion is the fact that modes are selected on the basis of their dynamics
rather than their controllability, observability or their contribution to the input-output
behavior between actuator and sensor. Figure 6(a) displays the stable part of the global
spectrum for Re = 7500, colored by the growth rate. Using a criterion based on the
damping rate, global modes of darker colors are included first in the basis V; global
modes of lighter colors are included last.

4.3.2. Contribution to the input-output behavior

Acknowledging the importance of controllability and observability of each individual
global mode, the criterion (see, e.g., Bagheri et al. 2009b; Barbagallo et al. 2009)

Γi =
|Bi| |Ci|

|λi|
(4.6)

has been introduced where Bi is the projection of the actuator onto the ith global mode,
Ci is the measured component of the ith global mode and λi is the decay rate of the ith

global mode. This criterion identifies modes that are simultaneously responsive to control
efforts, can be measured by the sensor and are only weakly damped.

Figure 6(b) depicts the global spectrum, again for Re = 7500, colored by the criterion
Γ. Darker colors indicate modes with high values of Γi; these modes would be preferen-
tially included in a reduced-order model based on the Γ-selection criterion. Modes with
lighter colors have lower associated values of Γi and would tend to be neglected in a
reduction basis. The first modes selected according to the criterion are clustered near
λ = (σ, ω) ≈ (−0.4, 4.5), (−1.1, 19.7) and (−2.7, 22.7). Close analysis (see also Barba-
gallo et al. 2009) reveals that the corresponding modes show a spatial structure similar
to the unstable global modes, that is, linking actuator and sensor by a chain of vortical
elements. More problematic is the fact that a substantial number of modes with high
damping rates appear to contribute to the input-output behavior; even modes near our
cut-off damping rate of σ = −4 seem to be important, which suggests that even higher
damping rates would have been favored, had they been available.

4.3.3. Orthogonal projection

The third criterion makes use of an additional projection and has been suggested
in Ehrenstein et al. (2010). It has been shown to improve results obtained by only applying
the bi-orthogonal projection introduced earlier. The method combines the bi-orthogonal
projection for the unstable subspace with a least-squares projection for the stable sup-
plementary one. The central idea stems from the observation by Ehrenstein et al. (2010)
that the actuator expressed in the bi-orthogonal projection is spatially rather different
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Figure 6. Identification of global modes by color-coding according to the four respective criteria
(see text): (a) growth rate, (b) contribution to input-output behavior, (c) orthogonal projection,
and (d) “quasi-optimal” stability ranking. Only the stable part of the spectrum is displayed; the
Reynolds number is Re = 7500.

from its original form. For this reason, they suggest a least-squares projection method
for the actuator as it minimizes the error between the original and projected actuator.
Following this concept, the global modes are ranked using the criterion

Γ̃i =
|B̃i| |Ci|

|λi|
(4.7)

where the coefficient B̃i is now based on the least-squares projection.

Figure 6(c) shows the global spectrum (Re = 7500) colored by the above criterion Γ̃ to
indicate a classification of global modes (from darker to lighter colors) for their inclusion
in the reduced-order model. A similar general tendency is observed as in figure 6(b):
preference of modes that resemble the globally unstable modes and of highly damped,
low-frequency modes. In addition, the least-squares projection becomes computationally
more sensitive for modes at higher damping rates which allowed us to accurately evaluate
the criterion Γ̃ only for modes with σ > −3.4. This marked numerical sensitivity has been
observed for all Reynolds numbers considered in this study. It is also worth pointing
out that due to the two independent projections (bi-orthogonal and least-squares), the
resulting reduced-order model cannot be written as a single projection of the initial
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system onto a set of global modes; rather, the coefficients B̃i enter the dynamics given
by (3.3).

4.3.4. ”Quasi-optimal” stability ranking

The fourth criterion is included as a demonstration tool for the ability of reduced
models based on global modes to yield a stable compensated system. As will become
clearer in the following sections, the fully compensated system, i.e., the plant coupled
with a reduced estimator and controller, suffers from instabilities when global modes
are used in the reduced-order model. These instabilities render the ROM ineffective and
provide quantitative proof of the unsuitability of the chosen reduction basis for closed-
loop control applications. The fourth criterion aims at exploring the best possible choice
of global modes such that stability of the fully compensated system is approached as
swiftly as possible. As such the criterion provides a benchmark for what is possible with
a judicious choice of global modes. It is computed iteratively and a posteriori as follows.
We start with a reduced-order model comprising only the unstable modes and compute
the growth rate σ of the compensated system (plant plus reduced-order estimator plus
reduced-order controller). Next we search through all available stable global modes and
add the one to the reduction basis V which results in the largest reduction of σ for the
augmented compensated system. This procedure is repeated, thus building a sequence of
global modes where each added global mode improves the stability of the compensated
system more than any of the remaining modes.

We note that for a model with p stable modes, the truly optimal ranking according to
stability would be given by the best combination of p modes chosen from the complete
set of n stable modes. The number of admissible combinations is n!/(p!(n − p)!) which
far exceeds our computational means. For this reason, the “quasi-optimal” sequential
algorithm for building a reduction basis has been chosen.

Figure 6(d) illustrates the global spectrum colored by the ordering based on the above
criterion. The eigenvalues selected by the “quasi-optimal” stability procedure are rem-
iniscent of some of the eigenvalues chosen by the Γ-criterion (see figure 6(b)). On the
other hand, many global modes with high values of Γ are not selected by the stability
criterion, a feature that will be discussed in more detail later.

4.4. Final form of the compensator using a reduced-order model based on global modes

We conclude this section by stating the equations governing the compensator. In particu-
lar, we emphasize the partitioning of the reduced-order model into an unstable (indicated

by subscript u) and stable (indicated subscript s) part. The control gain K̂ as well as the

Kalman gain L̂ have been computed in the small gain limit (see, e.g., Burl 1999) which
introduces zero matrices since the estimator and controller only act on the unstable
subspace. We have

d

dt

(

Ŷu

Ŷs

)

=

(

Λ̂u 0

0 Λ̂s

) (

Ŷu

Ŷs

)

+

(

B̂2u

B̂2s

)

(

K̂u 0
)

(

Ŷu

Ŷs

)

−

(

L̂u

0

) [

m −
(

Ĉu Ĉs

)

(

Ŷu

Ŷs

)]

, (4.8a)

u =
(

K̂u 0
)

(

Ŷu

Ŷs

)

. (4.8b)

The complete compensator is now set up. In the following section we will present open-
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loop tests based on the approximation of the full transfer behavior by the reduced model
and closed-loop tests based on the stability properties of the compensated system. The
four selection criteria will be investigated for the representative case of cavity flow at
Re = 7500.

5. Performance evaluation of reduced-order models for Re = 7500

Two performance measures will be used to assess the performance of the reduced-
order models based on global modes. The first measure is concerned with the accurate
representation of the input-output behavior of the full system by the reduced model. The
approximation error is quantified by the mismatch of the true transfer function and the
transfer function of the reduced system, measured in the H2- or H∞-norm. The second
measure probes the ability of the reduced model to yield a stable compensated system.
In this case, the eigenvalue of the coupled plant-compensator system with the largest
growth rate will be used as a performance indicator.

5.1. Open-loop performance evaluation

It is generally acknowledged that a successful control design requires the representation
of the correct input-output behavior by the reduced model. Since there is no choice in
selecting unstable global modes, only the accuracy of modeling the stable subspace dy-
namics needs to be addressed. The governing equations for the stable subspace dynamics
in state-space form can be written as

Q
dX

dt
= AsX + QB2su (5.1a)

m = CX (5.1b)

where B2s denotes the actuator projected onto the stable subspace. The input-output
dynamics is computed numerically by imposing a Dirac impulse u(t) = δ(t) as the con-
trol input and subsequently measuring the signal m(t) at the sensor location. Since, by
definition, the subspace system given by As is stable, the signal m(t) will eventually de-
cay as t → ∞. Transforming this impulse response into the frequency domain according
to m̂(ω) =

∫ ∞

0
m(t) exp(−iωt) dt (for a causal system), we obtain the transfer function

H(ω) = m̂(ω) which quantifies the response of the system to a harmonic forcing at a
frequency ω. In figure 7 the transfer functions (in the frequency domain) are shown. The
transfer function curves correspond to the amplitude part of a Bode diagram and exhibit
two (nearly constant) plateaus for ω ∈ [0, 3] ∪ [20, 25] and ω ∈ [5, 19]. The latter range
approximately corresponds to the frequency range of the unstable modes. We also notice
an abrupt drop around ω ≈ 4, causing a nearly vanishing response at this frequency and
suggesting the presence of nearly unobservable states.

Once the transfer function of the full system has been computed from a Fourier trans-
form of the impulse response, we can juxtapose the transfer functions of the reduced-order
models and assess the quality of the approximation as more and more global modes are
added to the reduction basis according to one of the four criteria.

In figure 7 the amplitude of the transfer function is displayed for reduced-order models
using the selection criteria described in paragraph § 4.3. The transfer functions have
been computed using the expression Ĥ(ω) = Ĉ(iωI − Âs)

−1B̂2s. The different reduced-
order models are identified by colors (see the figure legends) and correspond to a specific
number of included global modes ranked by the respective criterion. The transfer function
of the original (full) system is given in black. At a first glance it can be observed that
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Figure 7. Approximation of the modulus of the exact transfer function (in black) as global
modes are added to the reduction basis V according to the four selection criteria; (a) adding
modes based on damping rate, (b) adding modes according to their contribution to the in-
put-output behavior, (c) adding modes using orthogonal projections, (d) adding modes based
on the ”quasi-optimal” stability ranking. The Reynolds number is Re = 7500.

– maybe with the exception of the “quasi-optimal” stability criterion – none of the four
selection criteria produces satisfactory results even if more than a thousand global modes
are included.

To quantify the degree of approximation of the original transfer function we consider
the H2- and H∞-norms defined as

‖H‖2 =

(∫ 25

0

|H(ω)|2 dω

)1/2

, (5.2a)

‖H‖∞ = sup
ω

|H(ω)|. (5.2b)

The H2-norm measures the overall error over a given frequency range, whereas the H∞-
norm concentrates on the worst error that occurs in a frequency range. In figure 8 the
H2- and H∞-error are displayed and corroborate the findings from the previous plot. In
particular, the ranking based on orthogonal projections of the controller shows rather
discouraging results.

Figure 7(a) displays the amplitude of the transfer function for reduced-order models of
dimension 128, 132, 457, 1350 and 1875 where the modes have been ranked by damping
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Figure 8. Relative approximation error of the full transfer function as global modes are added
to the reduction basis V according to the four criteria (see text). (a) Relative error measure in
the H2-norm, (b) relative error measured in the H∞-norm. The Reynolds number is Re = 7500.

rate (first criterion in § 4.3). As the dimension of the reduced models is increased, the
transfer functions of the reduced models approach the transfer function of the original
system. This effect is also visible in figure 8 (red curves); in both norms, the error
is gradually decreasing. The convergence, however, is rather erratic: for example, the
transfer functions of a reduced model of order 128 and of order 132 are entirely different,
even though they merely differ by four stable global modes that have been added to the
latter model.

In figure 7(b) we see the amplitude of the transfer function for reduced-order models
of dimension 6, 14, 36, 200 and 1875; this time, the modes have been ranked by the
input-output criterion Γ (see § 4.3). Similarly to the previous case, the transfer functions
approach the one of the original system, but better approximations are achieved for
smaller numbers of included modes. This validates the relevance of the Γ-criterion in
selecting global modes for the reduction basis V. The first few modes are assumed to
contribute significantly to the input-output behavior; it may thus seem confusing that the
relative errors (green curves in figure 8) do not decrease as the first modes are added. This
phenomenon can be explained by the fact that phase information is lost in the definition
of the Γ-criterion. For this reason, it seems conceivable that, while the amplitude of
the transfer function approaches the one of the full system, the phase between full and
reduced system drifts apart. Unless the original transfer function is known a priori, it
does not seem straightforward to include phase information into the definition of Γi.

Figure 7(c) depicts the amplitude of transfer functions for reduced models of dimen-
sion 2, 8, 16, 52 and 1601 where the modes have been ranked by the criterion Γ̃i (see
§ 4.3). Compared to the transfer functions of figures 7(a) and 7(b) all reduced-order
transfer functions exhibit very high amplitude values at low frequencies. This is not sur-
prising since the Γ̃-criterion mainly selects modes associated with low frequencies (see
figure 6(c)). A more grave difference to the previous two criteria is the lack of conver-
gence towards the original system as the order of the reduced model is increased (see
blue curves in figure 8).

Finally, figure 7(d) shows the amplitude of the transfer function for reduced models
of dimension 4, 20, 60, 80 and 139 where the modes have been ranked according to
the ”quasi-optimal” stability criterion (see § 4.3). As the dimension of the reduced-order
model increases, we observe an adequate convergence of the reduced transfer functions to-
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ward the original one (in particular, for the frequency interval ω ∈ [5, 20]). This behavior
may indicate that the transfer function does not have to approximate the original trans-
fer function over the entire frequency range — an issue that will be further investigated
in paragraph § 5.3.

Overall, we confirm that the relative error norms based on the fourth criterion are
markedly lower than the error norms for the previous three criteria. This indicates that
a particular ordering of global modes may indeed produce an effective reduced-order
model, an a priori and definitive selection criterion, however, may be difficult to devise.
The study of the open-loop behavior of reduced-order models, expressed by their transfer
function, has established that the criterion for selecting global modes that are to be
included in a reduced-order model is pivotal. Intuitive concepts, such as growth rate, are
often misleading and produce ineffective models; even more sophisticated criteria cannot
guarantee robust success over a broad range of flow parameters. The underlying reason
for this may lie in the fact that most of the stable global modes carry little physical
meaning.

In the following section, the more categorical test of a reduced-order model, namely
the stabilization of the full compensated system, will be presented.

5.2. Performance of the closed-loop system

For supercritical Reynolds numbers, the objective of the LQG-control loop, shown in fig-
ure 1 and 2, is to suppress the instabilities in the system. To test whether the closed-loop
system has succeeded in this effort, the growth rate σmax of the least stable eigenvalue of
the compensated system is the natural quantity to evaluate. If at least one unstable eigen-
value exists, the controlled system is still unstable. If all eigenvalues of the compensated
system are stable, the originally unstable system has been stabilized.

The compensated system is constructed by coupling the plant (2.5) to the compen-
sator (4.8). The spectrum of this coupled system then provides information about the
success of our closed-loop control design as well as our model reduction efforts. Since the
plant contains a very large number of degrees of freedom (in our case, nearly one million),
spectral information about the coupled system is challenging to extract. Instead, we will
follow Barbagallo et al. (2009) and reduce the computational costs by replacing the full
plant model (2.5) by a reduced-order model based on unstable global modes and proper
orthogonal decomposition (POD) modes for the stable subspace; see the appendix for
further details. A sufficient number of POD modes has to be taken into account to ac-
curately represent the plant dynamics and its response behavior. With this substitution,
the compensated system can then be written as

d
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Figure 9. Growth rate of least stable eigenvalue of the compensated system as global modes are
added to the reduction basis V according to the four criteria (see text). The Reynolds number
is Re = 7500.

Superscripts gm and pod denote whether the respective matrix has been reduced by global
or POD modes; the subscripts u and s stand, as before, for the unstable or stable subspace,
respectively. The above system then describes the compensated dynamics, and the growth
rate of the least stable eigenvalue of the matrix Âc indicates failure or success of the
reduced-order LQG controller to stabilize the otherwise unstable system. We will now
use this technique to evaluate the closed-loop performance of reduced-order models based
on selected global modes, again for a representative Reynolds number of Re = 7500.

The eigenvalues of the compensated system matrix Âc have been determined. Direct
methods could be employed since the original system matrix A for the plant has been
replaced by a lower-dimensional matrix based on POD modes. The growth rate σmax of
the least stable eigenvalue determines the stability property of the compensated system.
Figure 9 displays this growth rate σmax as a function of the number n of stable global
modes included in the reduced-order model. The selection and ranking criteria introduced
earlier have been used, and the various stability characteristics for each criteria are color-
coded in the figure.

The compensated system can only be stabilized by the ”quasi-optimal” ranking pro-
cedure (black line). In this case, stabilization of the flow is achieved, once more than
120 stable global modes are used in the reduced-order model. We observe a monotonic
decrease of σmax which is expected since at each n only the global mode that maximally
decreases σmax is added to the reduced-order model.

Models using the growth rate criterion (red line) also show a decrease in σmax as more
stable modes are taken into account. Within the limits of our available modes, however,
a stable compensated system could not be attained. An interesting observation is that
the red curve in figure 9 is highly correlated to the equivalent curve representing the
relative H2-error (red curve in figure 8(a)) which appears to suggest a link between a
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better approximation (in the H2-sense) of the open-loop input-output behavior and an
improved stability of the closed-loop system.

Similar results are obtained when using a ranking of the stable global modes according
to the Γ-criterion (green curve). However, as in the open-loop test, an improvement of the
stability properties of the compensated system emerges substantially earlier compared to
the ranking based on the growth rate. Nevertheless, within the limit of available global
modes, no stabilization could be achieved.

Lastly, the results corresponding to the Γ̃-criterion (using an orthogonal projection for
the actuator) are displayed in blue. The behavior of σmax appears quite erratic for less
than n = 200 global modes; variations from “close to optimal” (for n = 2, 8, 20 − 50) to
“worse than uncontrolled” (for n = 12 − 18) can be observed. The favorable properties
of this projection reported in Ehrenstein et al. (2010) could not be recovered for our flow
configuration. In addition, the abrupt changes in stability of the flow when only a few
modes are added (for example, comparing n = 8 and n = 10, or n = 52 and n = 60) cast
doubt on the practicality of this criterion.

5.3. A frequency-restricted norm measuring open-loop behavior

The similarities between the curves of σmax (figure 9), which express the performance of
the compensator, and the curves of the relative H2-error (figure 8), which express the
accuracy of capturing the input-output behavior of the original system, are striking and
warrant a further investigation.

Special attention has to be paid to the choice of norm when evaluating the open-loop
characteristics. The H∞-norm is commonly adopted in control and model reduction ap-
plications since rigorous error bounds are available for this norm (see, e.g. Antoulas 2005).
Our study, however, indicates that the performance of the closed-loop system (figure 9)
is much closer linked to the H2-errors (figure 8(a)) than the H∞-errors (figure 8(b)) of
the reduced transfer function. This suggests that the overall behavior of the reduced-
order model may be more relevant than its worse departure from the exact behavior at
a particular frequencies.

Another remarkable observation is that, according to the H2-error of the open-loop
behavior, the reduced-order models based on the Γ̃-criterion are expected to perform
poorly: the (blue) error curve is far above the curve representing models based on the
growth-rate criterion (in red) in figure 8(a). Nevertheless, Γ̃-models stabilize the system
noticeably better than models using the growth-rate criterion, as can be seen in figure 9.
This apparent inconsistency may give insight into which frequency range of the open-
loop transfer function has to be captured sufficiently by the reduced-order model to
yield improved stability properties for the closed-loop system. None of the reduced-order
models reproduces the full transfer function behavior adequately at low frequencies (see
figure 7); the Γ̃-model (subfigure (c)) shows the most irregular behavior. Nevertheless,
considering the case n = 52 for the Γ̃-criterion, the instability of the full system is reduced
convincingly (see figure 9, blue curve) while the transfer function is well-approximated
over a frequency range of ω ∈ [10, 20] (see figure 7(c), orange line).

This observation is in agreement with the physical understanding of the control dy-
namics. In an effort to eliminate an unstable mode, the controller generates an opposite
structure that destructively interferes with the instability. Since the unstable modes are
characterized by well-defined frequencies, the actuator also has to operate at the same
frequencies. Doing so, it mainly triggers the stable part of the flow at theses frequencies.
As a result, the control-oriented reduced-order model must largely capture the full input-
output behavior at these frequencies. Frequencies outside this range play a subordinate
role in the control law, and the transfer behavior at these frequencies may not have to be
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captured as accurately. Based on this argument, we propose to evaluate the reduced-order
models using a frequency-restricted H2-norm; the frequency range is chosen to include
the frequencies of the unstable modes. We introduce

‖H‖ω
2 =

(∫ 17

10

|H(ω)|2 dω

)1/2

(5.4)

and refer to this norm as the Hω
2 -norm. The Hω

2 -error of the reduced transfer functions
is plotted in figure 10. First inspection shows that all curves reflect the corresponding
performance of the closed-loop system (figure 9). More importantly, the relative positions
of the curves are very similar to the results in figure 9 which confirms our supposition
that it is of critical importance to capture the behavior of the original system at the
frequencies where the control acts.

6. Reynolds number dependence

It is apparent from the previous sections that the performance of reduced-order mod-
els based on global modes depends on the details of the instabilities that have to be
controlled, which in turn depend on the Reynolds number. The goal of this section is to
explore the range of Reynolds numbers for which closed-loop control can be successfully
applied with a compensator based on global modes.

6.1. Changes in the spectrum

We start by studying how the stability properties of the uncontrolled flow are modified as
the Reynolds number Re is increased. In figure 11 the spectrum (in the ω > 0 half-plane)
is displayed for Reynolds numbers from Re = 4800 to 7500. Only the branch containing
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Figure 11. Changes in the global spectrum of flow over an open cavity as the Reynolds
number is varied from Re = 4800 to Re = 7500.

the unstable global modes and the least stable of stable branches are shown. The general
behavior is a destabilization of the spectrum as the Reynolds number increases. The
unstable branch is further displaced into the unstable half-plane and the number of
unstable modes increases. The stable eigenvalues move closer towards the unstable half-
plane, but ultimately remain stable. This behavior is to be expected from an advection-
diffusion problem as the diffusive terms play an increasingly minor role. While the decay
rates are affected noticeably, the frequencies and spatial shapes (not shown) seem rather
insensitive to Reynolds number variations.

6.2. Changes in the stability of the controlled system

An interesting question concerns the ability of the compensator to stabilize the flow for a
range of Reynolds numbers. To this end, a compensator based on global modes of the flow
at a given Reynolds number is computed, after which the previously described method
will be employed to determine the least stable eigenvalue of the compensated problem –
and thus the performance of the reduced-order control problem.

6.2.1. Compensators based only on the unstable global modes

Previously it was argued that the unstable global modes of the flow have to be ac-
counted for in the reduced-order model. The stable subspace, though, is not necessarily
required, which prompts the questions (i) whether the flow can be stabilized using only
the unstable modes and (ii) if so, up to what Reynolds number such a primitive com-
pensator will be successful. In answer to these questions, figure 12 displays the growth
rate of the least stable mode (σmax) of the closed-loop system where the compensator
consists of only the unstable global modes. For Reynolds numbers less than Re ≈ 5250,
the growth rate σmax is indeed negative which indicates that the flow can be stabilized
without accounting for the stable subspace in the reduced-order model. For Reynolds
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compensated system using a reduced-order model based on the unstable global modes only.

numbers above Re ≈ 5250, the instability grows too strong, and reduced-order models
based on merely the unstable global modes cease to succeed in stabilizing the flow.

In Barbagallo et al. (2009) it has been shown that the flow can be stabilized at
Re = 7500, if relevant information about the stable subspace, in this case using proper or-
thogonal decomposition (POD) modes or balanced (BPOD) modes, is incorporated into
the reduced-order model. The subsequent paragraph explores the question whether the
same can be accomplished by including global modes where Reynolds numbers ranging
from Re = 5250 to Re = 7500 are considered.

6.2.2. Compensators based on the unstable and selected stable global modes

Unstable and stable global modes are added to the reduction basis V to obtain a
reduced-order model of the flow. Stable modes are included according to one of the
four ranking criteria defined in § 4.3. In figure 13 the largest growth rate σmax of the
compensated system is displayed. Each subplot represents a specific ranking criterion;
the various colors denote different Reynolds numbers.

In figure 13(a), stable global modes are included in the ROM according to their damp-
ing rate. Independent of the Reynolds number, the curves display similar behavior. As
the first stable modes are included, each curve shows a nearly constant plateau, until ap-
proximately n = 500 stable global modes have been added; at this point, σmax decreases
as more modes get incorporated into the reduced-order model. If the initial instability is
sufficiently weak, as is the case for Re = 5250, 5500 and 6000, the system can eventually
be stabilized. However, even with all global modes (up to σ > −4) included, flow over
an open cavity for Reynolds numbers larger than Re ≈ 6500 can no longer be rendered
stable by a compensator based on global modes.

When the global modes are ranked according the Γ-criterion (see figure 13(b)) analo-
gous conclusions can be drawn. However, similar to the case Re = 7500 studied in § 5,
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Figure 13. Growth rate of the least stable eigenvalue of the compensated system as global
modes are added to the reduction basis according to the four selection criteria (see text): (a)

growth rate, (b) contribution to the input-output behavior Γi, (c) orthogonal projections Γ̃i,
and (d) ”quasi-optimal” stability ranking. The Reynolds numbers range from Re = 4800 to
Re = 6500. Stabilization of the compensated system is achieved when σmax < 0.

the stabilization of the compensated system occurs at a lower number of stable modes.
In figure 13(c) we consider stable global modes ranked by the Γ̃-criterion. In this case,
the system can only be stabilized for Re = 5250. As mentioned previously, the criterion
does not yield favorable results for our case, even though it has been successfully applied
to other configurations (Ehrenstein et al. 2010).

In contrast (and as expected), the system can be eventually stabilized for all considered
Reynolds numbers (5250 6 Re 6 7500) if the “quasi-optimal” ranking is employed (see
figure 13(d)).

The above results demonstrate that some unstable flows can be stabilized using reduced-
order models based on global modes. Despite that, the number of stable global modes
necessary to model the stable subspace dynamics increases dramatically with Reynolds
number. The question then arises whether, given an arbitrary (high) Reynolds number,
a sufficient number of stable global modes can be computed accurately so that such a
reduced-order model can be constructed. In our case, a large but still finite number of
global modes could be calculated, before round-off error deteriorated the iterative com-
putations. This phenomenon can be linked to the non-normality of the linearized Navier-
Stokes matrix A which makes iterative eigenvalue computations an ill-conditioned (and
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ill-fated) undertaking. But as more stable global modes become necessary to stabilize
the flow at larger Reynolds numbers, the finite limit of computable modes will at last be
reached.

Another relevant question is concerned with the reason for the drastic increase in
stable global modes needed to stabilize the flow at higher Reynolds number. A facile
and simplistic answer would argue that the stable subspace is generally less damped (see
§ 6.1) which generates a more complex dynamics and, in turn, a larger number of degrees
of freedom. To follow up with this argument, we consider a compensator based on the
unstable global modes and POD modes to model the stable subspace. The minimum
number of POD modes required to stabilize the flow is shown in figure 14. The flow
can be stabilized at each Reynolds number considered using at most thirty POD modes
to represent the stable subspace dynamics. Clearly, this behavior runs counter to the
claim that the complexity of the stable subspace requires a reduced-order model of high
dimensions. We are left with the fact that a few thousand stable global modes need to be
computed, ranked and incorporated into a reduced-order model in order to represent a
subspace dynamics that can equally well (or better) be described by thirty POD modes;
we thus conclude that global modes constitute a poor basis when designing closed-loop
control strategies using reduced-order models. Our study suggests that a reduced-order
model based on global modes is capable of stabilizing systems that are only weakly
unstable (such as the configurations studied by Åkervik et al. (2007) and Ehrenstein et al.
(2010)). If stronger instabilities (such as the one studied in Barbagallo et al. (2009)) are
encountered, reduced-order models based on global modes will fail and different reduction
bases, such as POD modes or balanced modes, have to be explored.

7. Summary and conclusions

Projection-based model reduction techniques leave a great many choices to compute
low-dimensional systems from high-dimensional models. In this article, we have investi-
gated the suitability of global modes in closed-loop control applications of oscillator-type
flows (in particular, the flow over an open cavity at supercritical Reynolds numbers).

The reduced-order models are composed of unstable global modes, capturing the in-
herent instability, and selected stable global modes, representing the stable subspace of
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the perturbation dynamics. The selection of stable global modes is critical and has been
carried out based on four criteria, yielding four different reduced-order models composed
of global modes. Using a representative test case (Re = 7500) the open-loop behavior
of these models has first been assessed, which revealed that the damping rate (criterion
1, Åkervik et al. (2007)) is a poor indicator in selecting global modes, while choosing
global modes with high controllability and observability but low damping rate (crite-
rion 2, Bagheri et al. (2009a); Barbagallo et al. (2009)) showed better performance but
nonetheless failed since phase information has been disregarded. A selection criterion (cri-
terion 3, Ehrenstein et al. (2010)) based on double-projection could not demonstrate the
same advantages and potential as reported in Ehrenstein et al. (2010), but rather showed
irregular and unpredictable convergence behavior when applied to our configuration. A
fourth criterion, an a posteriori-selection rule, has been added both as a benchmark to
gauge near-optimal results and as verification that highly damped modes have to be
considered to capture the correct input-output behavior. The closed-loop performance of
the different models has been characterized by the stability of the compensated system.
With the exception of the artificial fourth criterion (“quasi-optimal” stability ranking),
all computed system were found unstable for the test case, thus confirming the conclu-
sions drawn from the open-loop study.

An interesting finding of our analysis was the strong evidence that the commonly
applied H2- and H∞-measures are not optimal to evaluate the open-loop behavior of
reduced-order models and their performance in feedback control applications. Since global
instabilities occur at discrete frequencies, the compensator responds at these same fre-
quencies. For this reason, it seems sensible that a reduced-order compensator that well
captures the perturbation dynamics in the vicinity of these frequencies should perform
better — or more efficiently — than a compensator that approximates the transfer
function over a wide range of (some dynamically irrelevant) frequencies or puts em-
phasis on minimizing the largest-magnitude error with no concern at which frequency
this maximum error occurs. This reasoning is in contrast to the widely accepted H∞-
norm minimization intrinsic in balanced truncation (see Antoulas 2005) and may war-
rant a re-evaluation of proper input-output measures that favor physically motivated
frequency ranges over mathematically inspired optimization. Based on our observations,
a frequency-restricted Hω

2 -norm, which accurately links open-loop and closed-loop per-
formance analysis, has been proposed and defined. Applications and consequences of this
definition will be further explored in a future effort.

The limits of stabilizability using reduced-order models based on global modes has been
quantified by conducting a parameter study in the Reynolds number ranging from the
critical value of Rec = 4140 to Re = 7500. For very weak global instabilities (Re 6 5250)
only the unstable modes suffice to stabilize the system. Thus, even entirely neglecting
the stable subspace dynamics, the LQG compensator successfully suppressed the global
instability. This seeming robustness of the compensator, however, does not extend far
beyond weak instabilities: already moderate instabilities can no longer be controlled, even
if stable global modes are added. The flow cases considered in Åkervik et al. (2007) and
Ehrenstein et al. (2010) are believed to fall into the “weak” category where reduced-order
compensators accounting for all unstable and a few stable modes are still able to stabilize
the flow.

Nevertheless, accounting for the limitation to control only weak instabilities, recogniz-
ing the difficulty of computing a large number of global modes owing to non-normality
and acknowledging the lack of a rigorous and effective selection criterion, it must be
concluded that global modes do not constitute a suitable choice of reduction basis for
closed-loop control applications.
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Appendix A. Replacing the full system by a reduced-order model

The behavior of an unstable system can be separated into its unstable and stable
dynamics which decouple. The system matrix A can be decomposed according to

A =

(

Au 0

0 As

)

(A 1)

where Au (resp. As) denotes the matrix governing the unstable (resp. stable) states (see
Barbagallo et al. 2009; Ahuja & Rowley 2010). We wish to replace the full system by a
reduced model which (i) still captures the unstable dynamics of the original system and
(ii) accurately reproduces the input-output behavior, that is, the link between actuator
and sensor. The first requirement is satisfied by choosing the unstable global modes
for a reduction basis. For the Reynolds numbers considered in this work the dimension
of the unstable subspace (dimension of Au) varies from two to eight. For the second
requirement we choose proper orthogonal decomposition (POD) modes to express the
stable subspace dynamics. This choice has been shown (see, e.g., Barbagallo et al. 2009)
to result in an accurate description of the stable input-output behavior with a moderate
number of modes. The POD modes are computed for each Reynolds number using a
snapshot method (Sirovich 1987). An impulse response is computed based on (5.1) until
a dimensionless time of T = 20 resulting typically in a decrease of the perturbation energy
by three orders of magnitude. Snapshots are extracted from the linearized simulations at
equi-spaced time intervals of ∆t = 0.02. The POD modes are then computed from these
snapshots and used in a Petrov-Galerkin projection of the system (2.5) resulting in

dX̂

dt
= Âpod

s X̂ + B̂
pod
2s u (A 2a)

m = Ĉ
pod

X̂ (A 2b)

where the symbol .̂ denotes quantities with reduced dimensions; the superscript pod in-
dicates a reduction based on POD modes.

The transfer function of the reduced-order model is given by Ĥ(ω) = Ĉpod(iωI −

Âpod
s )−1B̂

pod
2s and is displayed for Re = 7500 using 150 POD modes in figure 15(a) by a

solid line together with the transfer function of the full system (in symbols). Very good
agreement is observed which is confirmed by computing the relative error between the
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reduced-order and full transfer functions using the H2- and H∞-norm. Results are shown
in figure 15(b); both curves decrease rapidly and eventually converge to an acceptable
error for about 120 POD modes. Similar results have been obtained at lower Reynolds
numbers (not shown here); thus, reduced-order models for the full linearized dynamics
based on 150 POD modes will be considered for each Reynolds number. It is important
to keep in mind, however, that the reduced-order model does not capture the complete
dynamics of the stable subspace but only the part relevant to our study, namely the
input-output behavior between actuation and measurement.

In summary, the system given by (2.5) will be replaced by the reduced-order model

d

dt

(

X̂gm
u

X̂pod
s

)

=

(

Λ̂u 0

0 Âpod
s

) (

X̂gm
u

X̂pod
s

)

+

(

B̂
gm
2u

B̂
pod
2s

)

u (A 3a)

m =
(

Ĉgm
u Ĉpod

s

)

(

X̂gm
u

X̂pod
s

)

(A 3b)

which is based on unstable global modes for representing the unstable behavior (indicated
by the superscript gm) and on POD modes for capturing the input-output dynamics
contained in the stable subspace (indicated by the superscript pod).

REFERENCES

Ahuja, S. & Rowley, C. W. 2010 Feedback control of unstable steady states of flow past a
flat plate using reduced-order estimators. J. Fluid Mech. 645, 447–478.
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Amplifier flows are defined by their tendency to respond strongly to external sources
of noise and perturbations. This behavior poses significant challenges to the design of
closed-loop control strategies, since the sensitivity of the flow applies not only to physi-
cal perturbations but to inaccuracies in the design procedure as well. A comprehensive
study of various components of LQG-control design — covering sensor placement, choice
and influence of the cost functional, accuracy of the reduced-order model, compensator
stability and performance — is conducted on numerical simulations of two-dimensional
incompressible flow over a rounded backward-facing step. Robustness of the compensator
will be emphasized, and the effect of various environmental factors on its performance
and stability will be quantified. The noise-to-signal ratio of the estimation sensor fea-
tures prominently in this study. The results show that, contrary to oscillator-type flows,
amplifier flows require a judicious balance between estimation speed and estimation accu-
racy and between stability limits and performance requirements. Numerical experiments
using impulsive and random noise confirm that the inherent amplification behavior of
the flow can be reduced by an order of magnitude, if the above-mentioned constraints
are observed. Coupling the linear compensator to nonlinear simulations shows a gradual
deterioration in control performance as the amplitude of the noise increases.

1. Introduction

Many industrial fluid devices are afflicted by undesirable flow behavior — such as
unsteadiness, separation, instabilities, and transition to turbulence — which limits per-
formance, endanger safe operation or are detrimental to structural components. Flow
control is quickly becoming a key technology in engineering design to overcome inherent
limitations, to advance into unexplored parameter regimes, to extend safety margins and
to ensure operation under optimal conditions. A prototypical and much-studied example
is the compressible flow over a cavity which is characterized by instabilities that manifest
themselves in a buffeting motion, in induced drag (Gharib & Roshko 1987) and in in-
tense noise emission (see Rossiter 1964). In air intakes of aircraft engines separated flow
can act as an amplifier for incoming perturbations causing unsteadiness which in turn
results in loss of performance and material fatigue. Transitional and turbulent boundary
layers have long attracted attention from the flow control community (see, e.g., Joslin
1998; Saric et al. 2003; Kim 2003; Boiko et al. 2008; Archambaud et al. 2008), mainly
due to their ubiquity in vehicle aerodynamics and their central role as the source of skin
friction. For all three examples, flow control techniques that effectively eliminate insta-
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bilities, efficiently reduce noise amplification or successfully diminish drag are essential
in maintaining desired flow conditions.

Control strategies greatly vary in complexity, in expended energy, but also in their
ability to achieve prescribed control objective under realistic conditions. Passive con-
trol devices, which aim at modifying the mean flow, are popular in many industrial
applications due to their simplicity and reliability. For example, vortex generators can
be effective in energizing boundary layers and thus preventing or delaying flow separa-
tion (see Lin 2002; Choi 2008). Constant blowing or suction at the wall has similar effects,
but the considerable amount of required energy to modify the mean flow is generally ac-
knowledged as the principal drawback of passive control devices. An alternative strategy
directly targets the perturbation dynamics without altering the mean flow. This active
approach has received significant interest in industry and academia, and feedback control
methods have been developed and applied to a great many generic flow configurations.

The design procedure of flow control laws critically depends on the nature of the flow to
be controlled. Oscillator-type flows which are defined by a global instability resulting in
self-sustained oscillatory fluid behavior are more easily controlled, since the flow is dom-
inated by a limited number of structures of well-defined frequencies. Sensitivity to noise
is comparatively low, and the estimator and controller can simply reconstruct the flow
state from measurements and act upon it according to the control objective. A second
type of flow behavior, referred to as noise-amplifiers, is substantially more challenging to
control. This type of flow is globally stable but is characterized by a strong propensity
to amplify noise and a broadband spectrum of responsive frequencies. This characteristic
makes the flow and the control performance highly sensitive not only to physical noise
sources and uncertainties, but also to methodological approximations, modeling inaccura-
cies and truncation errors that inevitably arise during the estimator and control design.
The propagation of small perturbations, whether of physical or computational origin,
is appropriately tracked and quantified by frequency-based transfer functions which re-
veal preferred frequencies or confirm the successful reduction of the flow’s amplification
potential.

Optimal flow control techniques have been widely applied for active control purposes.
In particular, the linear quadratic Gaussian (LQG) framework has been adopted for the
control of small-amplitude perturbations in oscillator and amplifier flows. Examples of
oscillator flows include, among others, the supercritical flow over a shallow or deep cav-
ity (Åkervik et al. 2007; Barbagallo et al. 2009), the flow over a shallow bump (Ehrenstein
et al. 2010) and the flow past a flat plate (Ahuja & Rowley 2010). In all cases, stabilization
of the flow by feedback control strategies could be accomplished. Amplifier flows are domi-
nated by convective and transient processes, and successful control is defined by a marked
reduction of the flow’s inherent amplification potential. Control of amplifier flows using
LQG techniques has first been attempted for very idealized geometries (see, e.g., Joshi
et al. 1997; Bewley & Liu 1998), namely, in simple, one-dimensional configurations. For
more complex and higher-dimensional flows, direct application of the LQG-framework
becomes prohibitively expensive, and reduced-order models have to be introduced for
the practical design of the compensator. LQG-based compensators using reduced-order
models have been applied by Bagheri et al. (2009) to control the amplification of pertur-
bations in a spatially developing boundary layer and by Ilak & Rowley (2008) to control
transitional channel flow. In Bagheri & Henningson (2010), strong emphasis has been
put on the model reduction technology; in particular, it has been demonstrated that
the reduced-order model had to accurately capture the input-output behavior between
actuators and sensors to ensure a positive compensator performance (Kim & Bewley
2007). Despite first successful attempts at applying LQG-feedback control to amplifier
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flows, many questions remain open about the design and practical implementation of
compensators for this type of flow. Owing to the flow’s tendency to transiently amplify
perturbations, sensitivity becomes the key concept in the design and performance eval-
uation of compensators: sensitivity to sensor and actuator placement, sensitivity to the
accuracy of the reduced-order model, sensitivity to nonlinear effects. Some of these issues
have been addressed using an idealized (parallel base flow) model problem in Ilak (2009);
a comprehensive analysis of closed-loop control for amplifier flows, however, is missing.

The goal of the present study is an identification of the various environmental and
procedural factors and the assessment of their influence on the performance of the com-
pensator for amplifier flows. To this end, we consider the two-dimensional, laminar flow
over a rounded backward-facing step. This configuration is characterized by a detach-
ment of the flow close to the step followed by a recirculation zone; even though the flow is
globally stable, perturbations are amplified as they are convected along the shear-layer.
This flow thus represents a prototypical example of an amplifier flow (see Marquet et al.
2008). The present study is structured as follows. After a brief description of the flow
configuration, its noise amplification behavior and the basic principles of LQG-control
and model reduction (§ 2), we start by considering the estimation problem (§ 3), address
sensor placement and estimation speed and establish the noise-to-signal ratio as a crit-
ical parameter. In § 4 the controller will be introduced, performance limitations of the
compensator will be discussed and the influence of the choice of control objective will be
assessed. § 5 will present the application of the LQG-controller to linearized numerical
simulations; specifically the sensitivity to model inaccuracies and its relation to stability
margins for the compensated system will be treated. Two cases will be considered: the
control of an impulse of noise and the control of random forcing. In § 6 we apply linear
control to a nonlinear simulation and discuss the validity range of the linear compensator.
A summary of results and conclusions are given in § 7.

2. Configuration and mathematical model

2.1. Flow configuration and governing equations

We study the laminar and incompressible flow over a two-dimensional rounded backward-
facing step which is sketched in figure 1 together with the geometric measures, the base
flow streamlines and the setup of control inputs and sensor outputs. Only a reduced part
of the computational domain is shown. The step height h and the inflow velocity U∞ are
chosen as the characteristic length and velocity scales of the problem. The rounded part of
the step consists of a circular arc extending from (x = 0, y = 1) to (x = 2, y = 0). The flow
enters the computational domain from the left (at x = −20) with a constant streamwise
velocity. A free-slip condition is imposed on the upstream part of the lower boundary
(−20 6 x 6 −2, y = 1) beyond which a laminar boundary layer starts to develop; no-slip
conditions are enforced on the remaining lower boundary given by −2 6 x 6 100. On the
top part of the computational domain, at y = 20 a symmetry condition is implemented,
and a standard outflow condition is prescribed at the outlet (x = 100).

The Reynolds number based on the step height and inflow velocity is chosen as Re =
600 and held constant throughout our study. For this Reynolds number, the flow separates
at x ≈ 0.6 and reattaches at x ≈ 11, forming an elongated recirculation bubble. The
displacement thickness of the incoming boundary layer at x = 0 is equal to δ∗ ≈ 0.082
which yields a Reynolds number based on the displacement thickness of Reδ∗ ≈ 49.2.
The base flow, a solution of the nonlinear steady Navier Stokes equations, is visualized
by streamlines in figure 1.



4 A. Barbagallo, G. Dergham, D. Sipp, P.J. Schmid and J.-C. Robinet

-2 0 2 4 6 8 10 12 14
0

1

2 Inputs

Outputs

C1

B1 B2

C2 C3 C4 Cp

x

y

Figure 1. Sketch of the geometry for flow over a rounded backward-facing step, showing stream-
lines of the base flow at Re = 600. The upstream, downstream and top boundaries are respec-
tively located at x = −20, x = 100 and y = 20. A typical mesh yields n ≈ 360 000 degrees of
freedom from about 90 000 triangles. The positions of the input (B1,2) and output (C1,2,3,4,p)
devices are also shown.

Flow over a rounded backward-facing step is a prototypical example for an ampli-
fier flow since small upstream perturbations may be selectively amplified in the shear
layer due to a Kelvin-Helmholtz instability (see next section for details). Characteristic
unsteadiness arises from low-level noise via a linear amplification mechanism, which sub-
sequently saturates nonlinearly once sufficiently high amplitudes have been reached. It
is the goal of this article to devise and assess an active feedback control strategy that
decreases the convective amplification of random perturbations. This strategy is designed
for and operates within the linear regime which justifies using the Navier-Stokes equa-
tions linearized about the base flow as a mathematical model. The governing equations
are spatially discretized using finite elements of Taylor-Hood type (P2-P2-P1) and im-
plemented using the FreeFem++ software (see Hecht et al. 2005). In matrix form, these
read

Q
dX

dt
= AX (2.1)

where X denotes the state vector containing the velocity and pressure fields, A repre-
sents the linearized Navier-Stokes operator and Q stands for the mass matrix, which
simultaneously defines the perturbation kinetic energy according to ‖X‖2 = X∗QX.

2.2. Noise amplification behavior

For the chosen Reynolds number of Re = 600 the flow is globally stable and the matrix A

does not show any unstable eigenvalues. Yet, sustained unsteadiness may arise from the
continuous excitation of the flow by upstream noise. This noise amplifier behavior can
be analyzed and quantified in terms of the optimal harmonic forcing and its response in
the frequency domain (see Alizard et al. 2009; Sipp et al. 2010). For a given frequency ω,
a periodic forcing of the form Fω exp(iωt) yields a corresponding response Xω exp(iωt)
where Xω is given by Xω = (iωQ − A)−1QFω . The optimal forcing is defined as the
forcing Fω of unit energy (i.e. ‖Fω‖

2 = 1) which maximizes the energy of the response.
The corresponding response Xω is referred to as the optimal response; its energy ‖Xω‖

2

is the optimal energy gain due to external forcing at a prescribed frequency ω. We will
use the subscript ω to indicated quantities defined in the frequency domain.

In figure 2(a), the optimal energy gain is presented as a function of the forcing fre-
quency. The semi-logarithmic graph shows a parabolic curve with the highest response
to forcing around a frequency of ω = 0.8. For frequencies above ω ≈ 2, the energy gain
decays monotonically. In figure 2(b) and (c), the spatial shapes of the optimal forcing
and response (real part only) taken at the highest energy gain are visualized by contours
of the streamwise component. In accordance with the convective nature of the flow, we
observe that the optimal forcing is concentrated upstream near the step while the as-
sociated response is located further downstream. Hence, a noise source situated near
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Figure 2. (a) Optimal energy response of the linear system to a harmonic forcing of frequency
ω. (b) Optimal forcing visualized by contours of the streamwise velocity. (c) Optimal response
visualized by contours of the streamwise velocity.

the rounded step can efficiently trigger perturbations whose maximum amplitudes are
attained near x ≈ 12. Based on this result, we model the noise as a Gaussian-shaped
momentum forcing located at (x = −1, y = 1) with a width of 0.6 and a thickness of 1.
After discretization, this forcing appears in form of the matrix B1 in the following linear
system

Q
dX

dt
= AX + QB1w(t) (2.2)

with w(t) describing the temporal behavior of the noise. For the sake of simplicity, the
noise will be taken as white-in-time with zero mean 〈w〉 = 0 and variance 〈w2〉 denoted
by W 2.

In continuing to set up our flow control problem, an appropriate objective or cost
functional has to be specified. To this end, two quantities will be considered. The first
quantity consists of the shear stress measured at the wall and is computed following



6 A. Barbagallo, G. Dergham, D. Sipp, P.J. Schmid and J.-C. Robinet

mp = CpX =
∫ x=11.6

x=11
∂yu dx. The placement of this sensor has been motivated by the

location of maximum response of the flow to harmonic excitation (see figure 2(c)). The
second quantity of interest is the total kinetic perturbation energy contained in the entire
domain; it is given by E = X∗QX. The control to be designed will aim at diminishing
either mp or E. It is interesting to note that, under random forcing, the two quantities
of interest, mp and E, display a frequency response strikingly similar to the one given
in figure 2(a); the spatial structure of the stochastic response resembles the one given in
figure 2(c) (the reader is referred to figure 11 for verification).

2.3. Linear Quadratic Gaussian (LQG) control

A closed-loop control strategy is considered in order to weaken or suppress the amplifi-
cation of perturbations. In contrast to open-loop control strategies, this method extracts
information from the system via measurements which is then processed to apply real-time
actuation. This technique allows flow manipulation with rather low expended energy and
permits the application and adaptation of control laws to a variety of flow situations,
provided the model is representative of and robust to physical and parametric changes.
The approach taken in our study is based on a compensator designed within the Linear
Quadratic Gaussian (LQG) control framework (see Burl 1999). The actuator through
which control efforts are exerted on the flow consists of a body force acting on the verti-
cal momentum component; the location, shape and type of the actuator is summarized
in the matrix B2 (see figure 1). The control law u(t) which describes the temporal behav-
ior of the actuator is based on real-time measurements of the flow from sensors located
at various positions along the wall. These sensors extract either shear stress or pressure
information. The governing system of equations, including the actuators and sensors, can
be cast into the familiar state-space form

Q
dX

dt
= AX + QB1w + QB2u, (2.3a)

m = CX. (2.3b)

The link between the measurement signal m and the actuation law u is provided by
the compensator. Figure 3 presents a sketch of a typical LQG-control setup, including
the system to be controlled as well as the two components of the compensator: the
estimator and the controller. The module labeled ”plant” represents our fluid system
whose flow characteristics we wish to modify; it is given mathematically by (2.3a). The
plant depends on the initial condition X(t0), the noise input w(t) and the control law u(t)
and provides as an output the state vector X. A measurement signal m can be extracted
at all times from the state vector which is then passed to the compensator. In a first step,
the estimator will reconstruct an estimated state Ŷ(t) from the measurement m which
is, in a second step, used by the controller to compute the control law u(t). More details
about the design of the estimator and the controller will be given below.

It is important to stress that the placement of the actuator and sensor is critical
for the success of closed-loop control. In our case, the actuator is positioned near the
separation point (see control input B2 in figure 1) which corresponds to the location
where the optimal forcing structure is most prominent (see figure 2(b)). This placement
optimally exploits the sensitivity of the flow to external forcing and suggests that low-
amplitude control at this location may exert sufficient influence on the flow behavior to
accomplish our control objective. In other words, the chosen actuator location should
ensure low control gains. Analogously, the placement of the sensor requires care and
thought. Commonly, measurements are taken at locations where the flow feature we wish
to suppress is particular prevalent. Recalling the spatial structure of the most amplified
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Figure 3. Sketch of a typical LQG-control setup.

flow response to optimal forcing (see figure 2(c)), this would suggest a sensor placement
downstream of the reattachment point near x ≈ 12. Nevertheless, we will demonstrate
that this particular choice does not yield an efficient and effective closed-loop control, and
we will methodically explore the estimator performance based on sensors placed further
upstream in the recirculation bubble (see figure 1). In particular, four discrete sensor
locations, denoted by C1,2,3,4, will be assessed; these are distinct from the performance
sensor Cp.

2.4. Reduced-order model based on proper orthogonal decomposition

The design of the estimator and controller involves the numerical solutions of two Ric-
cati equations for the Kalman and control gain, respectively. The numerical effort is
proportional to the dimension of the system matrix A, which makes the direct solution
of the Riccati equation excessively expensive or even impossible. It is thus necessary and
common practice to substitute the full system by an equivalent system of considerably
smaller dimensions and to compute the two gains based on this reduced-order model
of the flow. A standard technique to arrive at a reduced-order model of the flow uses
a Galerkin projection of the governing equations onto proper orthogonal decomposition
(POD) modes (see Sirovich 1987). This method proves to be efficient (see Bagheri et al.
2009; Bagheri & Henningson 2010; Barbagallo et al. 2009) in capturing the main char-
acteristics of the original system required for closed-loop control, namely the dynamics
between the inputs (given by B1 and B2) and the outputs (given by sensors C1,2,3,4 and
the control objectives E and Cp). The governing equation for the reduced-order model is
similar to (2.3) and is given by

dX̂

dt
= ÂX̂ + B̂1w + B̂2u (2.4a)

m = ĈX̂ (2.4b)

where the superscript ·̂ indicates reduced quantities. The use of a reduced-order model
decreases the dimension of the system from O(106) to ∼ 150 degrees of freedom and thus
allows the application of standard direct algorithms for LQG-control design. Reduced-
order models with even lower dimensions are possible, e.g., by using balanced POD
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modes (see Bagheri et al. 2009; Barbagallo et al. 2009; Ahuja & Rowley 2010) but are
beside the point of this study.

3. Estimation and sensor placement

As a first step of the full control design and performance evaluation process, we con-
centrate on the estimator, in particular its performance with respect to the location of
the sensors.

3.1. Presentation of the estimator

In general, the estimator’s task is the approximate reconstruction of the full state vector
using only limited information from the measurement. This approximate state vector
will then be used by the controller to determine a control strategy that accomplishes our
objective. The estimated state Ŷ is assumed to satisfy a set of equations similar to the
one governing the original system (2.4). We have

dŶ

dt
= ÂŶ + B̂2u(t) − L̂(m − ĈŶ) (3.1)

where the original noise term B̂1w(t) has been replaced by the forcing term −L̂(m −

ĈŶ). The latter term represents the difference between the true measurement signal

m(t) = ĈX̂ and the estimated measurement signal ĈŶ and is applied as a forcing term

premultiplied by L̂. This term is to drive the estimated state Ŷ toward the true state X̂.
In the forcing term, the so-called Kalman gain L̂ can be computed from a constrained
optimization problem in which the cost functional is taken as the error between the
full and estimated state, i.e., Ẑ = X̂ − Ŷ, and is subsequently minimized. The resulting
optimality condition yields a Riccati equation, from which the Kalman gain L̂ follows (see
Burl 1999). Commonly, the energy of the estimation error is formulated in the time
domain; it will prove advantageous in our case, though, to recast the energy in the
frequency domain. Using Parseval’s theorem we obtain

Z̄ =

∫ ∞

−∞

‖Ẑω‖
2 dω (3.2)

where Ẑω denotes the Fourier-transform of the error Ẑ. Two sources of noise — both
assumed as white in time — are taken into account in the derivation and solution of
the Riccati equation: a plant noise w(t) of variance W 2 driving the dynamics of the
original system (2.4) and a measurement noise g(t) with variance G2 contaminating the
measurement m(t). The ratio of the two standard deviations, i.e., G/W, can be taken as
a parameter that governs the speed of the estimation process, but can also be interpreted
as the noise-to-signal ratio of the sensor. For example, considering a constant standard
deviation W of the plant noise, the parameter G/W represents a quality measure of the
sensor. Large values of G/W indicate that the measurement noise g(t) is too high to

ensure a correct signal; the corresponding Kalman gain L̂ tends to zero. Consequently,
the forcing term in (3.1) has a negligible effect on the system which, in turn, leads
to a poorly performing estimator. This parameter regime is referred to as the small
gain limit (SGL). Contrary to the small gain limit, for G/W ≪ 1 the corruption of
the measurement signal by noise is low compared to the stochasticity arising from the
system itself; as a consequence, the estimation process becomes highly effective due to
the substantial Kalman gains. This parameter regime, referred to as the large gain limit
(LGL), comprises the most performing estimators for a given configuration.
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By construction, the performance of the estimator crucially depends on details related
to the measurement signal, and the type of sensor (in terms of its noise-to-signal ratio)
as well as its location have to be chosen judiciously if overall success of the closed-loop
control effort is to be expected. In what follows, we will consider four sensors Ĉ1,2,3,4

that are identical in type but placed at four different positions within the recirculation
bubble and assess their capability of efficiently estimating the flow state. Special emphasis
will also be directed toward the quantitative influence of the noise-to-signal ratio G/W
introduced above.

3.2. Performance of the estimator

In this paragraph, we further elaborate on estimating the flow state X̂ governed by (2.4).
The estimation problem is decoupled from the control problem (see Burl 1999). For this
reason, we can set the control law to zero (u(t) = 0) without loss of generality and
continue our study of the estimation problem without actuation. The system is driven
by white noise represented by w(t); but, owing to the linearity of (2.4), the perfor-
mance of the estimator can equivalently be studied by considering harmonic forcings
w(t) = exp(iωt) of a given frequency ω. It is then convenient to reformulate the coupled
plant/estimator system in the frequency domain and state the governing equations for
the harmonic response as

(

X̂ω

Ŷω

)

=

(

iωÎ − Â 0̂

L̂Ĉ iωÎ −
(

Â + L̂Ĉ

)

)−1
(

B̂1

0̂

)

. (3.3)

where, as before, the subscript ω indicates variables defined in the frequency domain.
The estimation error in frequency space is given as Ẑω = X̂ω − Ŷω .

In figure 4 the frequency dependence of the estimation error ‖Ẑω‖
2 is displayed for

shear-stress sensors placed at the four above-mentioned locations (see figure 1) and for
selected values of the noise-to-signal parameter G/W. For comparison, the norm of the

state vector ‖X̂ω‖
2, which is similar to figure 2(a), is included in each subplot as a dashed

line. In the small gain limit (red lines), each estimator, as expexted, does not succeed
in identifying the state, producing an error as large as the norm of the original state.
As the parameter G/W decreases though, the estimation process improves due to a less
contaminated input from the sensors and the estimation error is reduced — mainly at
frequencies where the system reacts strongly to external excitations. As the parameter
G/W approaches the large gain limit (blue lines), the various error curves eventually
converge to the lowest possible values for each configuration. These curves then define
the best attainable performance for each sensor.

This general behavior is observable for each of the four sensors. The final errors in the
large gain limit (blue lines), however, are not identical for all sensors: the best perfor-

mance is achieved by sensor Ĉ1. As the location of the sensor is moved further downstream
in the separation bubble (considering successively the sensors Ĉ1, Ĉ2, Ĉ3 and Ĉ4), the
frequencies which are naturally amplified by the system are less well predicted; a failure
of correctly estimating the higher frequencies (ω > 3) is also discernible. This suggests

that the estimator based on Ĉ1 will be more efficient in accurately determining the flow
state.

An instructive way of assessing the performance of an estimator over all frequencies
is to directly compute the cost functional Z̄ (see eq. (3.2)) normalized by the energy

of the state. We thus introduce
√

Z̄/Ēo with Ē0 =
∫∞

−∞ ‖X̂ω‖
2 dω and X̂ω = (iωÎ −

Â)−1B̂1. When this quantity is close to 1, the estimation process has failed with a 100%
estimation error; the smaller the value, the better-performing the estimator. This quantity
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Ẑ

ω
||2

ω

||X̂ω||2

G
W = 10

2

= 4 ∗ 10
−1

= 10
−1

= 4 ∗ 10
−2

= 10
−6

1 2 3 4 5 6
10-3

10-2

10-1

100

101

102

103

||X̂
ω
||2

,||
Ẑ
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Figure 4. Performance of the estimator versus frequency using four different sensors and selected

values of the estimation (noise-to-signal) parameter G/W. Top left: sensor Ĉ1, top right: sensor

Ĉ2, bottom left: sensor Ĉ3, bottom right: sensor Ĉ4.
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is displayed in figure 5(a) versus the estimation parameter G/W for each of the four

sensors. The red curve represents the estimator performance based on sensor Ĉ1. For
this sensor location and for noise-to-signal ratios above 1, the sensor noise prohibits
a correct estimation resulting in an estimation error of 100%. As the noise-to-signal
ratio diminishes further, the performance of the estimator progressively increases until it
reaches the large gain limit for values of G/W less than approximately 10−2. Below this
value of G/W, the estimator performs at its optimum. Similar behavior can be observed

for the remaining sensor locations given by Ĉ2, Ĉ3 and Ĉ4 : the small-gain-limit regime
is clearly detectable at high values of G/W. However, the exact values for which the
estimator reaches the large gain limit becomes less sharply defined as the sensor location
is moved further downstream in the separation bubble. Comparing the performance of
estimators based on different sensors, we conclude, in agreement with figure 4, that the
performance in the large gain limit is best for the sensor Ĉ1 and decreases as the sensor
is moved further downstream. It is surprising though that the estimator based on Ĉ4,
which performs worst in the large gain limit, shows better performance at high values
of the noise-to-signal ratio G/W. For example, if we consider the value G/W = 100, the

estimator based on Ĉ4 displays a relative error of 20% while the estimator based on Ĉ1

still shows an error of 100%. If a constant noise level of the system-generated signal is
assumed (W = const.), this implies that the estimator based on Ĉ4 can cope with higher

levels of measurement noise than the estimator based on Ĉ1. In practice, this means that
less-quality sensors can be used as long as they are placed further downstream; this point
will be discussed further in the next section.

To conclude, the estimation errors are rather small (< 10−1) for all sensors in the large

gain limit. Yet, the estimator based on Ĉ1 is most efficient with a performance measure
of 2 ·10−2, while the estimator based on Ĉ4 only reaches a value of 10−1 in the large gain
limit. At first glance, this difference in performance may seem small and insignificant,
but it will be shown below (section § 4) that it nonetheless has a strong influence on the
efficiency of the compensator. But first, the next section will offer a physical explanation
for the observed loss of estimation performance by analyzing the above results in the
time domain rather than the frequency domain.

3.3. Interpretation in the time domain

Even though a formulation of the estimation problem in the frequency domain is the
proper choice for designing closed-loop control strategies for amplifier flows, it never-
theless remains challenging to attach physical meaning to the frequency-based results;
an interpretation of our findings in the time domain seems more intuitive. The main
result — the estimator’s performance deteriorates as the sensor is gradually moved from
the upstream Ĉ1 to the downstream Ĉ4 position — suggests that the travel time of a
perturbation, before it is detected by the sensor, plays a critical role. To validate this
proposition, we start by rewriting the estimation performance parameter in the time
domain using Parseval’s theorem. We obtain

∫∞

−∞ ‖Ẑω‖
2dω = (2π)−1

∫∞

0
‖Ẑ‖2dt, with

Ẑ = X̂− Ŷ and X̂ and Ŷ satisfying the following systems of equations in the time domain:

d

dt

(

X̂

Ŷ

)

=

(

Â 0̂

−L̂Ĉ Â + L̂Ĉ

)(

X̂

Ŷ

)

,

(

X̂

Ŷ

)

t=0

=

(

B̂1

0̂

)

. (3.4)

The above system determines an impulse response triggered by the noise term B̂1 : the
initial condition X̂t=0 = B̂1 is advected downstream while being amplified along the shear-
layer of the recirculation bubble. The energy ‖X̂‖2 of this perturbation is displayed versus
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time by a gray thick line in figure 6. In addition to the time axis, a second axis is displayed
at the top of the figure where the location of the advected wave packet, evaluated by
the energy-weighted x-centroid xc defined as xc(t) =

∫

xe(x, y, t)dx dy/
∫

e(x, y, t)dx dy
with e(x, y, t) = |u|2 + |v|2 as the pointwise energy at time t, is shown. The initial

condition is associated with the non-zero state energy ‖X̂‖2 = ‖B̂1‖
2 at t = 0. The

energy then decreases for 0 < t / 1.5 as the perturbation traverses the stable region
of the flow between the noise location and the separation point. Beyond the separation
point of the shear layer, the wave packet enters the convectively unstable region and its
energy grows until the perturbation reaches the attachment point. At time t ≈ 19 the
energy reaches a maximum; the corresponding energy-weighted x-centroid xc is located
at x ≈ 9.5. The perturbation continues through a convectively stable region and the
state energy decreases accordingly. During this advective process the estimator tries, in
real-time, to reconstruct the actual state from the information provided by one sensor,
and the estimation performance parameter is given by the integral in time of the actual
estimation error Ẑ. In the following analysis, all estimators (Ĉ1 to Ĉ4) will operate at
their respective large gain limit, which ensures the best attainable performance for each
estimator.

In figure 6 the thin solid lines display the energy of the estimation error ‖Ẑ‖2 as a
function of time for all four sensors. The red curve traces the estimation error associated
with sensor Ĉ1. For short times (0 < t / 3), the estimation error energy is comparable
to the state energy, indicating a relative estimation error of 100%. Starting at t ≈ 3, the
error drops abruptly by one order of magnitude before a more gradual decrease sets in for
t ' 6. The estimator becomes effective as soon as the error curve clearly detaches from
the state energy curve (gray thick solid line); the state is hence well estimated beyond

t ≈ 4 using sensor Ĉ1. The estimation error curves (green, blue and black curves) for the

remaining sensors Ĉ2,3,4 display a similar behavior: a relative estimation error of 100%
for early times, followed by a pronounced drop after a critical time and finally a gradual
decay. The abrupt decline in the estimation error energy, however, occurs considerably
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Figure 7. Measured impulse response at the four sensor locations, Ĉ1,2,3,4 (top to bottom);
shear stress measurement in red, pressure measurements in green. Notice the dual labeling of

the vertical axis. The blue vertical lines correspond to the times when ‖Ẑ‖2/‖X̂‖2 = 0.9 (see
figure 6). The black vertical lines indicate the times when the energy-based x-centroid of the
wave packet xc reaches the sensor; the dash lines give the times when xc ±σ reaches the sensor,
with σ denoting the standard deviation of the wave packet.

later than for sensor Ĉ1, and this delay increases steadily as the sensor location is moved
further downstream. Nevertheless, in all cases the estimation error ultimately decreases,
and the flow state appears to be well-estimated for large times. We thus conclude that
the principal difference between the estimators is the time at which they start to become
effective: sensor Ĉ1, located furthest upstream, yields the earliest accurate estimates of
the state, followed by Ĉ2, Ĉ3 and finally Ĉ4.

More insight is gained by displaying the measurements from the different sensors for
the above impulse-response simulation (see figure 7). We will for the moment concentrate

on the red curves, showing shear-stress measurements. For sensor Ĉ1 (top figure) we
observe a quiet phase (0 < t / 4), after which a sinusoidal signal, the footprint of the
wave packet traveling downstream in the shear layer above the sensor, is detected. The
measurement returns to zero for t ' 16. Similar features can be observed for the other
three sensors; however, the time of first detection is delayed and the amplitude of the
signal is substantially increased (by nearly forty times between Ĉ1 and Ĉ4) as we move
the sensor location further downstream. The time delay in detecting the wave packet is
closely linked to the overall performance of the four estimators: early detection yields
better results. The detection times in figure 7 (blue vertical bars) correspond to the
critical times in figure 6. After the wave packet has been captured by the sensor, the
estimation proceeds rapidly due to the large Kalman gains (large gain limit). If noise

is generated at B̂1, the Ĉ4-estimator is able to identify the associated response in the
region x > 5 but is imperceptive for any response in the region −1 < x < 5; the regions
of the flow domain where disturbances are undetectable by the four sensors are outlined
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(a)

Ĉ1

(b)

Ĉ2

(c)

Ĉ3

(d)

Ĉ4

Figure 8. Sketch of regions of the flow domain where disturbances cannot be detected by the

sensor: (a) for sensor Ĉ1, (b) for sensor Ĉ2, (c) for sensor Ĉ3, and (d) for sensor Ĉ4. The location

of B̂1 is indicated by a blue symbol; the respective sensor location is shown as a black rectangle.

in figure 8. The performance of the estimator is thus less determined by the quality
of the reconstructed state — all energy curves in figure 6 tend to zero — than by its
reaction time which translates into a spatial range where state responses to noise are
detectable. It is this distinction that will have a dramatic impact on the performance
of closed-loop control of amplifier systems (see § 4) and will reveal the effectiveness of
seemingly performing estimators when incorporated into a compensator.

Larger amplitudes are detected at sensors located further downstream which stems
from the amplification of the wave packet due to a convective instability along the shear
layer of the separation bubble; the four sensors Ĉ1,2,3,4 capture the wave packet at various
stages of this instability. This difference in amplitude also explains some features observed
in figure 5. Comparing the curves associated with the different sensors Ĉ1,2,3,4, we notice
that the estimation process becomes effective for different values of the noise-to-signal
ratio G/W. For example, sensor Ĉ1 starts to perform well for G/W < 1.25, while sensor

Ĉ4 only requires G/W < 52; which leads us to conclude that higher-quality sensors are
required when one plans to place them further upstream where signals are generally
weaker.

We continue by assessing the effectiveness of the estimation process by considering the
true noise-to-signal ratio G/W ′ with W ′ as the actual amplitude of the signal detected by
a given sensor. The ratio W ′/W may be obtained from figure 7 by finding the maximum
amplitude of the signal (the impulse response based on noise) measured by the respective

sensor; for example, W ′/W = 0.14 for sensor Ĉ1 and W ′/W = 4 for sensor Ĉ4. Values
for all four sensors are reported in the second column of table 1. We then determine, for
all four sensors, critical values of the true noise-to-signal ratio G/W ′ for the estimation

process using G/W ′ = (G/W )/(W ′/W ). Figure 5 displays results for sensor Ĉ1 showing
that estimation becomes effective for G/W < 1.25 which corresponds to G/W ′ < 8.9.
Analogous results for the other sensors are reported in table 1. It appears that the
estimation process for each of the four sensors starts being efficient for values of the true
noise-to-signal ratio G/W ′ ≈ 10, i.e., when the magnitude (measured by W ′) of the signal
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sensor W ′/W G/W |
SGL

G/W |
MGL

G/W ′|
SGL

G/W ′|
MGL

1 0.14 1.25 0.21 8.9 1.5
2 0.31 6.4 1 10.5 1.64
3 1.87 21 3.5 11.2 1.87
4 4 52 7 13 1.75

Table 1. Estimation parameters G/W and true noise-to-signal ratios G/W ′ for the four sensors

Ĉ1,2,3,4 in the small gain limit (SGL) and medium gain limit (MGL). The critical values for the

small gain limit are based on
p

Z̄/Ē0 = 0.95; the critical values for the medium gain limit are

based on
p

Z̄/Ē0 = 0.5.

from the plant is ten times smaller than the noise intrinsic to the sensor (measured by
G). If G/W ′ is of order one (see sixth column of table 1), the estimation process performs
significantly better: the estimation performance parameter in figure 5 has reached the
mean-value between the small-gain-limit performance (unity for all sensors) and the

large-gain-limit performance (e.g., 0.02 for sensor Ĉ1). Optimal performance is obtained
for true noise-to-signal ratios G/W ′ of order 10−2.

Besides the location and quality of sensors, the type of signal measured by the sensor
is equally important. For this reason, we also consider pressure probes by assuming that
both normal and tangential stresses can be measured simultaneously on a small segment
of the wall. A quantitative comparison between shear-stress and pressure sensors is made
possible by multiplying the measured pressure signal by the Reynolds number since the
stress component at the lower horizontal wall reads −pey + Re−1 ∂yu ex. The location
and size of the pressure sensors have been chosen identical to the previous study of
shear-stress sensors, and the signals from the impulse responses are plotted (in green)

in figure 7 for the four configurations Ĉ1,2,3,4. The general appearance of the signals
is similar to the shear-sensor case, the pressure signal, however, is approximately one
order of magnitude larger than the corresponding shear-stress signal. This finding is
also reflected in the estimation error analysis, shown in figure 5(b): the individual large
gain limits are nearly identical to the shear-stress case, the curves corresponding to the
pressure signals are shifted by about one decade to higher noise-to-signal ratios G/W.
The estimation performance of shear-stress sensors can be matched by pressure probes
with G/W one order of magnitude higher; in other words, pressure sensors can be far
less effective than shear-stress sensors and still accomplish equivalent results. The little
difference in behavior between shear-stress and pressure sensors runs counter to the
intuition that pressure perturbations propagate infinitely fast in incompressible flow;
our study illustrates that pressure probes do not detect disturbances any earlier than
shear-stress sensors.

In summary, two competing mechanisms have been isolated in the estimation process
for amplifier flows: (i) for an effective estimator, the sensor has to be located sufficiently
upstream to allow a rapid identification of the perturbation; (ii) on the other hand, the
noise-to-signal ratio G/W has to be sufficiently small to enable an accurate estimate, thus
favoring or forcing the placement of noisy sensors further downstream where the signal
amplitudes are higher. In short, a balance between speed and accuracy of the estimation
process has to be struck. Whereas the upstream placement of the sensors runs somewhat
counter to the intuitive placement of the sensor near the reattachment-line, it will be
shown that, for our prototypical configuration, the speed of estimation appears more
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critical for a successful compensator performance than the capture of highly accurate
measurements.

4. Closed-loop control based on reduced-order model

After our analysis of the estimator and its performance, we now direct our attention to
the complete compensator. After a brief presentation of the controller and its design steps,
we investigate the performance of the compensator built on the four sensors Ĉ1,2,3,4. Two
objective functionals for the controller will be studied: (i) the square of the measurement

based on Ĉp and integrated over time, and (ii) the time-integral of the entire perturbation
energy. Within this section, the plant is modeled by the reduced-order model introduced
in § 2.

4.1. Presentation of the controller

We will aim at suppressing perturbations in our fluid system by employing an optimal
control strategy which will be designed to minimize a predefined cost functional. In
mathematical terms, a control law of the form u(t) = K̂X̂ will be assumed where the

control gain K̂ arises from the solution of a Riccati equation (see Burl 1999). Traditionally,
the cost functional is related to a quantity measuring the energy of the state, but also
takes into account the control effort in terms of its expended energy.

In our study, two measures of the state will be considered in the minimization process:
the energy contained in the measurement extracted at location Ĉp (see figure 1) yielding
a cost functional of the form

Jm =

∫ ∞

0

(

X̂
∗
Ĉ
∗
pĈpX̂ + l2u2

)

dt, (4.1)

or the perturbation energy contained in the entire domain leading to a cost functional of
the form

Je =

∫ ∞

0

(

X̂∗Q̂X̂ + l2u2

)

dt. (4.2)

The parameter l appears in either choice and is referred to as the cost of control, as it
quantifies the user-specified weighting of the control energy compared to the quantity to
be minimized. Similar to the estimator, a small-gain-limit (resp. large-gain-limit) param-
eter regime exists where the controller exerts nearly no action (resp. maximum action)
on the flow. Invoking the separation principle (see Burl 1999), the controller design can
be carried out independent of the estimator design.

The performance assessment of the compensator will follow the frequency-based frame-
work for amplifier flows outlined in § 2 and § 3. Considering the state-space system (2.4)
driven by a harmonic excitation w(t) = exp(iωt) the response of the compensated system
reads

(

X̂ω

Ŷω

)

=

(

iωÎ − Â −B̂2K̂

L̂Ĉ iωÎ −
(

Â + B̂2K̂ + L̂Ĉ

)

)−1
(

B̂1

0̂

)

. (4.3)

The above equation will form the basis for our performance analysis of the compensated
system, where we will focus on the influence of controllers designed with Jm or Je as well
as on the impact of the control cost l and the noise-to-signal ratio G/W.
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Figure 9. Contours of the performance measure Pm based on the measurement energy as a

function of noise-to-signal ratio G/W and control cost parameter l. Top left: sensor Ĉ1, top

right: sensor Ĉ2, bottom left: sensor Ĉ3, bottom right: sensor Ĉ4.

4.2. Performance of the compensator using a cost functional based on the measurement

We start by considering a compensator whose controller has been designed using the cost
functional Jm, i.e., the state is measured by the energy output of the sensor Ĉp and the

resulting controller aims at minimizing the measurement mp = ĈpX̂.

4.2.1. Response in the frequency domain: effect on the perturbation measure mp

Even though the controller is designed based on the measurement mp only, the per-
formance of the compensator will be evaluated by considering the reduction of the per-
turbation measurement mp as well as the reduction of the perturbation energy in the
entire domain. This point has particular implications for experimental control setups
where reduced-order models are typically obtained by identification techniques based on
input and output data. By construction, such models cannot express or capture state
information, and the question arises whether targeting the measurement energy in the
cost functional produces commensurate reductions in the entire perturbation energy.

Figure 9 shows the performance of the compensator designed to minimize the measure-
ment where each subplot displays results using a different sensor Ĉ1,2,3,4 for the estimator.
The measurement-based performance Pm of the compensator is defined as

Pm =

[
∫ +∞

−∞
X̂∗

ωĈ∗
pĈpX̂ωdω

m̄2
0

]1/2

(4.4)
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Figure 10. Contours of the performance measure Pe based on the global perturbation energy

as a function of noise-to-signal ratio G/W and control cost parameter l for sensor Ĉ1.

where X̂ω is given by (4.3) and m̄2
0 is the measurement energy related to the uncontrolled

case. Each plot shows iso-contours of Pm in the (G/W, l)-plane. Contours with hot colors
(red) indicate parameter combinations where the control has been ineffective in reducing
the measurement energy; contours with cold colors (blue) point to values of (G/W, l)
where the perturbation measure has been reduced successfully. The convergence of the
performance Pm towards one (ineffective closed-loop control) is common to all sensor
configurations as either the control cost l or the noise-to-signal ratio G/W exceeds a
critical value. This parameter regime corresponds to small-gain-limit situations where
either the control gain K̂ or the Kalman gain L̂ approach zero. For small noise-to-signal
ratios G/W and small control parameters l (inexpensive control), the estimator provides
an accurate approximation of the state which is subsequently multiplied by a non-zero
control gain to obtain a positive action on the perturbation. As a result, the performance
measure Pm is rather small in this parameter regime since both the estimator and the
controller reach their large gain limit and behave at their best. The compensator based on
sensor Ĉ1 is, by a considerable margin, the most efficient with a performance parameter
Pm equal to 0.026 in the large gain limit; this means that only 2.6% of the uncontrolled
measurement energy remains after control is applied. As the sensor location for the
estimator is moved further downstream though, the performance parameter Pm rises
substantially in the large-gain region: 17%, 36% or 71% of the uncontrolled measurement
energy could not be removed by the compensator using sensors Ĉ2, Ĉ3 or Ĉ4, respectively.
This exercise clearly demonstrates that an actuator placed near the edge of the step
requires a sensor located in its vicinity, if satisfactory performance of the compensator is
to be expected; alternatively, a sensor further downstream (e.g., Ĉ4) requires an actuator
in its upstream neighborhood, but this layout will produce larger control gains and
ultimately less performance compared to the upstream configuration (e.g. Ĉ1). In what

follows, we will concentrate on sensor Ĉ1 and further probe its performance behavior and
limitations.

More physical insight into the compensated system can be gained by computing the
transfer function between the noise w and the performance measurement mp. Four cases,
labeled accordingly in figure 9(a), are analyzed in detail: case 1 is representative of an
ineffective compensator in the small gain limit, both cases 2 and 3 characterize a system
with average performance while case 4 corresponds to a compensator operating in the
large gain limit. The governing parameters, i.e., the noise-to-signal ratio and control cost,
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case l G/W Pm|
cf :m

Pe|cf :m
Pm|

cf :e
Pe|cf :e

1 103 101 1.000 1.000 1.000 1.000
2 101 10−1 0.566 0.574 0.784 0.707
3 100 10−2 0.135 0.254 0.292 0.157
4 10−3 10−4 0.026 1.084 0.037 0.005

Table 2. Performance measures based on measurement energy (subscript m) or global pertur-
bation energy (subscript e). The compensator has been designed using on a cost functional based
on measurement energy (subscript cf :m) or on global perturbation energy (subscript cf :e). Four
selected cases, ranging from the small gain limit to the large gain limit, are presented.
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Figure 11. (a) Magnitude of the transfer function |mpw| for four different (G/W, l)-parameter
settings, as well as the uncontrolled case. (b) Transfer function between noise and global energy
for the same four parameter settings.

for theses cases are summarized in table 2 (second and third column) together with values
of various performance measures.

In figure 11(a) the magnitude of the transfer function from w(t) to mp(t) for each of
the four cases is displayed, and results pertaining to the uncontrolled system are overlaid
in black symbols. As expected, the compensator operating in the small gain limit (case 1,
shown in red) does not act on the flow and the transfer function is identical to the uncon-
trolled one. By progressively reducing the noise-to-signal ratio and the control parameter
(light blue and dark blue curve), the most amplified frequencies are considerably reduced
and the compensator becomes effective over a wider range of frequencies, even though
frequencies above ω ≈ 1.5 are slightly more amplified compared to the uncontrolled case.
This tendency continues until the large gain limit (in green) is reached: the low frequen-
cies (ω < 2) which would be naturally amplified by the uncontrolled system have been
successfully suppressed, which explains the very good performance of the compensator
with Pm = 0.026 (see table 2, fourth column).

The results above confirm the successful manipulation of the inherent amplification
behavior (see figure 2(a)) of the uncontrolled flow: the pronounced response to low fre-
quencies has been strongly reduced by the compensator.
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4.2.2. Response in the frequency domain: effect on the perturbation energy

While the control gain is still based on the measurement-based cost functional Jm, we
now probe the broader impact of the control action on the entire domain by evaluating
the global energy performance measure

Pe =

∫ +∞

−∞
X̂∗

ωQ̂X̂ωdω

Ē0

(4.5)

with X̂ω from (4.3) and Ē0 as the energy based on the uncontrolled system. The ratio Pe

of the perturbation energy for the compensated case to the perturbation energy for the
uncontrolled case is depicted in the (G/W, l)-plane in figure 10. This plot shows similar
characteristics than figure 9(a) but also displays important differences. For large values
of G/W and l (the small gain limit for estimator and controller) the control action is
negligible and no reduction in the perturbation energy is achieved (Pe = 1). For mod-
erate estimation and control-cost parameters, the performance parameter Pe decreases,
and it appears that a reduction in measurement energy measure Pm brings about a pro-
portional reduction in the overall perturbation energy. However, as the large gain limit is
approached (case 4), the value of Pe increases again, even above one, indicating that the
perturbation energy of the controlled case exceeds the energy of the uncontrolled case.
The measurement energy, however, is efficiently reduced, as by design.

As before, the transfer function between the noise and the energy in the domain ‖X̂ω‖
2

provides more details of the observed behavior (see figure 11(b)). Case 1 (in red) rep-
resents the small gain limit, and the transfer function coincides with the one for the
uncontrolled flow since no control action is exerted on the flow. As G/W and l are re-
duced (light blue curve), the dominant, inherently amplified frequencies around ω = 1
are reduced by the compensator but higher frequencies appear near ω = 1.8. Nonethe-
less, the energy in the entire domain diminishes (Pe = 0.458), see values in table 2 (fifth
column). This trend continues as the governing parameters are further decreased (dark
blue curve). Finally, in the large gain limit (green curve), the dominant frequencies of
the uncontrolled system (ω ≈ 1) have been reduced by four decades, while the energy
in higher frequencies (ω > 2) has been amplified by four orders of magnitude. This am-
plification outweighs the control effort on the lower frequencies, thereby leading to an
increase in the overall energy of the system (Pe = 1.085) and a failure of the compensator
when measured in the global energy norm (figure 10).

4.2.3. Interpretation in the time-domain

A re-interpretation of the above behavior in the time-domain may shed some light on
the underlying physical processes. As before, we consider the impulse response of the
compensated system triggered by the noise term according to w(t) = δ(t). We obtain

d

dt

(

X̂

Ŷ

)

=

(

Â B̂2K̂

−L̂Ĉ Â + B̂2K̂ + L̂Ĉ

)(

X̂

Ŷ

)

,

(

X̂

Ŷ

)

t=0

=

(

B̂1

0̂

)

. (4.6)

In figure 12(a) the measurement signal mp(t) is shown for the four cases (as defined in
table 2). As expected, in the small gain limit (red curve) the measurement is identical to
the measurement extracted from the uncontrolled simulation (black symbols), since no
control action is employed in this limit. As the parameters G/W and l are decreased (cases
2 and 3), the measurement signal decreases in amplitude; interestingly, trailing-edge
features of the wavepacket are more effectively controlled than leading-edge components
(see, e.g., case 2). In the large gain limit (case 4), the measurement signal has been nearly
attenuated by control, in accordance with our frequency-based results above. Figure 12(b)
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Figure 12. (a) Measurement signal at Ĉp for four selected (G/W, l)-parameter settings. (b)
Temporal evolution of the global perturbation energy for the same parameters.

shows the temporal evolution of the perturbation energy in the entire domain. Starting
with the expected correspondence between small gain results and the uncontrolled case,
the curves for smaller values of G/W and l, in light and dark blue, show the addition
of energy by the control (at t ≈ 10 in case 2 and for 5 < t < 12 in case 3) after
which the perturbation energy in the entire domain drops rapidly and remains below
the uncontrolled level. The time behavior of case 4 is completely different: a rather large
energy amplification is observed for very early times. This result is unexpected in light of
the fact that the wavepacket triggered by B̂1 has not yet reached the sensor location Ĉ1

(see figure 7(a)) and the control at early times should be zero. We must thus conclude that
the large gain limit produces a highly sensitive estimator which produces large-amplitude
output from even minute measurement signals which, in turn, get further amplified by
the large control gain into a strong control input u(t).

In summary, the energy of the measurement signal extracted at Ĉp can be significantly
reduced by a compensator that operates in or near the large gain limit. The perturba-
tion energy in the entire domain, however, is affected by the increasing sensitivity of
the compensator as this limit is approached, and the reduction of global energy by a
compensator that has been designed on measurement energy only becomes progressively
difficult. A possible remedy would be to base the controller design on a cost functional
consisting of several sensors distributed along the lower wall of the recirculation bubble.
Alternatively, if a reduced-order model of the flow is available, a direct targeting of the
perturbation energy may be more efficient. This latter approach will be pursued next.

4.3. Performance of the compensator using a cost functional based on the energy

Since our reduced-order model is based on POD modes, it accurately captures the en-
ergy of the original system. It is therefore possible to base the controller design on the
cost functional Je and to directly target the perturbation energy in the entire domain.
This section then repeats the above analysis of the compensated system using Je-based
controllers.

4.3.1. Response in the frequency domain

We start by evaluating the performance of the compensator for different values of
G/W and l measured by the response of system (4.3). The two previously introduced
performance quantities Pm and Pe are shown in figure 13(a,b) as a function of noise-to-
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Figure 13. (a) Contours of the performance measure Pm based on the measurement energy

as a function of noise-to-signal ratio G/W and control cost parameter l for sensor Ĉ1. (b)
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Figure 14. (a) Magnitude of the transfer function |mpw| for four different (G/W, l)-parameter
settings, as well as the uncontrolled case. (b) Transfer function between noise and global energy
for the same four parameter settings.

signal ratio G/W and control-cost parameter l. The results based on the quantity Pm

are very similar to earlier findings in figure 9(a): a transition from entirely ineffective
to highly effective control as we change from the small gain to the large gain limit. A
quantitative comparison can be deduced from table 2 (sixth and seventh columns). In
contrast, figure 13(b) displaying the quantity Pe is markedly different from figure 10; in
particular, a substantial reduction of the global energy (Pe = 0.005) in the large gain
limit can be accomplished. The energy-based compensator was thus able to minimize the
energy in the entire domain and, with it, the measurement energy extracted from Ĉp.

The transfer functions from the noise w(t) to the measure mp(t) and from the noise
to the perturbation energy for the four cases introduced in § 3 are shown in figure 14.
Similarities with the corresponding plots in figure 11 are clearly visible, but the excitation
of high frequencies by the control action is entirely absent in figure 11. The energy in the
entire domain can be efficiently controlled if it is accounted for in the controller design
via the cost functional.
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Figure 15. (a) Measurement signal at Ĉp for four selected (G/W, l)-parameter settings. (b)
Temporal evolution of the global perturbation energy for the same parameters.

4.3.2. Interpretation in the time-domain

The time responses of mp and ‖X̂‖2 for the four cases (figure 15) again support our
frequency-based observations. Strong energy gains for short times (t < 5) are no longer
present in case 4, even though small energy oscillations are still visible as a reminder of
the sizable sensitivity of the compensator designed for the large gain limit.

5. Closed-loop control using linearized Navier-Stokes simulations

In general, the design of LQG controllers and estimators for the closed-loop control of
high-dimensional fluid systems requires a reduced-order model that accurately captures
the input-output (actuator-sensor) dynamics of the full system. Compensators based on
accurate reduced-order models are expected to perform well when employed directly on
the high-dimensional plant. If discrepancies between the full and reduced-order transfer
function prevail, however, a satisfactory performance of the compensator is no longer
guaranteed, nor can any bounds on the decline in performance be given. In any model
reduction effort, approximation errors are present and can potentially degrade or ruin the
compensator’s efficacy. The purpose of this section is an assessment of the compensator’s
sensitivity to deviations of the reduced-order input-output behavior from the one of the
full system. To this end, we will again consider the best-performing estimator based on
sensor Ĉ1 and design a controller based on the cost-functional Je.

5.1. Effect of the level of accuracy of the reduced-order model on closed-loop control

5.1.1. Modeling the deviation between the plant and the reduced-order model

Throughout our study, the compensator has been designed using a reduced-order model
based on the projection of the governing equations onto 150 POD modes; this model will
be referred to as ROM150. The same model has also been used to model the plant for the
study of the estimator (§3) and the compensator(§4). The question then arises whether
the good performance of the compensator based on this model is robust to small changes
in the plant. To quantify the robustness or sensitivity we will artificially degrade the
reduced-order model of the plant by considering only the first n components of the ROM150-
model, denoted by ROMn. Various levels of truncation may be compared to the earlier
model in terms of the dynamics between input variables (noise w(t) and control u(t)) and
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with a compensator based on ROM150.

output quantities (estimation measure m1(t) corresponding to sensor Ĉ1, performance
measure mp(t) and performance measure based on the global perturbation energy E(t)).
We will see that the input-output behavior from control u(t) to estimation m1(t) is the
most critical one. Figure 16 illustrates (in green) the error err between reduced-order
models of varying truncation levels, ROMn, and the original model ROM150 defined as

err =

[
∫∞

−∞
|m̂1ω − m1ω|

2dω
∫∞

−∞
|m1ω|2dω

]1/2

(5.1)

where m1ω is the frequency-transformed measurement triggered by an impulse on the
control B2 in model ROM150, and m̂1ω stands for the analogous measurement using model
ROMn. For severe truncations (n < 40), reduced-order models ROMn exhibit an error of
100% which can be linked to the fact that the relation between u(t) and m1(t) is not
well captured by the first forty POD modes. As more POD modes are included, the error
decreases steadily towards ∼ 10−3. This behavior will allow us to study the influence of
plant inaccuracies on the compensator performance, with plant errors ranging from 0.1%
to 100%.

5.1.2. Effect of the plant deviation on the closed-loop control

When the model, on which the design of the compensator is based, differs from the
model of the plant that it is intended to control, the performance of the compensator
may be negatively affected or the compensated system may even exhibit an instability.
The dynamics of the compensated system is given by

d

dt

(

X

Ŷ

)

=

(

A B2K̂

−L̂C Â + B̂2K̂ + L̂Ĉ

)(

X

Ŷ

)

+

(

B1

0̂

)

w(t) (5.2)

where the superscript ·̂ refers to matrices of the ROM150-system while matrices without
the superscript are associated with the ROMn-model. The performance of the above com-
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pensated system crucially depends on the stability of the matrix
(

A B2K̂

−L̂C Â + B̂2K̂ + L̂Ĉ

)

. (5.3)

If this matrix is unstable, performance of the compensated system is lost. A detailed
analysis between system inputs {B1, B2} and system outputs {C1,2,3,4, Cp, E} involves
transfer functions for all combinations; however, only the most dominant ones have to
be taken into account. Stability only depends on A, B2 and C, which describe the input-
output dynamics between u(t) and m1(t), but does not depend on B1 and Q, which is
to say, that the input-output dynamics between w(t) and m1(t), between w(t) and E(t)
and between u(t) and E(t) has no influence on the stability of the above matrix. For
stable matrices (5.3) the performance parameter may be defined as in § 4, that is,

Pe =

∫ +∞

−∞
X∗

ωQXωdω

E0

(5.4)

with
(

Xω

Ŷω

)

=

(

iωI − A −B2K̂

L̂C iωÎ − (Â + B̂2K̂ + L̂Ĉ)

)−1(

B1

0

)

(5.5)

and E0 as the energy of the uncontrolled case, given by E0 =
∫∞

−∞
X∗

ωQXωdω with

Xω = (iωI − A)−1B1. The performance parameter Pe depends on the quantities A, B1,
B2, C and Q, which affect the input-output dynamics w(t) → m1(t), w(t) → E(t),
u(t) → m1(t) and u(t) → E(t). In figure 16(b) we display the performance parameter
Pe as a function of l = G/W for a compensator based on ROM150 but coupled to plants
modeled by ROM150 (reference case in red squares), by ROM138 (green triangles) and by
ROM89 (black dots). In figure 16(a), we see that model ROM138 reaches an error of err =
0.2% whereas model ROM89 attains a larger error of err = 2%; incidentally, values of Pe

are only shown for stable compensated systems. For plants whose dynamics is described
by ROM138 or ROM89, stability of the compensated systems is lost when the parameters l =
G/W takes on sufficiently small values. Under stable condition, however, the performance
parameter Pe for the two models is identical to the reference case based on ROM150. This
leads us to conclude that performance of the compensated system is lost via a loss
of stability; as long as stability is maintained however, no difference in performance is
detected between the models with varying numbers of POD modes. Above a critical
value of G/W, where stability of the compensated system can be ensured, the error
between the plant and the reduced-order model will influence performance: if the error
is sufficiently large, the performance derived from ROM150 may not be observed. Hence,
it is sufficient to detect instability of the compensated system in order to assess its
performance, which furthermore means that only the input-output dynamics from control
u(t) to sensor measurement m1(t) suffices to describe overall robustness. For this reason,
we will investigate the stability of matrix (5.3).

Figure 17 displays regions in the (G/W, l)-plane where compensated systems are sta-
ble or unstable for different errors err between the plant (modeled by ROMn) and the
reduced-order-model (ROM150) on which the compensator is based. For five different val-
ues of the error err (highlighted by black symbols in figure 16(a)) the neutral curve —
separating stable from unstable compensated systems — is shown in the (G/W, l)-plane
(see figure 17). Concentrating on the dark blue curve, we argue that if the error between
the reduced-order model (on which the compensator is built) and the plant is 0.2%,
closing the loop will result in an unstable system if the control cost parameter l and
noise-to-signal ratio G/W are chosen from inside the unstable region (lower left corner
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Figure 17. Neutral curves defining the unstable and stable compensated systems for different
values of the error between the plant and the reduced-order model. The compensator has been
designed using model ROM150. The red squares (resp. green squares) represent unstable (resp.
stable) results from compensated linearized Navier-Stokes simulations.

of figure 17). Instability hence imposes limitations on the choice of l and G/W and,
consequently, on the final performance of the compensator. For less accurate reduced-
order models (light-blue, red, black solid, black dashed curve), the region of unstable
parameter combinations increases, and eventually the entire large-gain-limit (i.e., opti-
mal compensator performance) region is impeded by an instability of the compensated
system. For very accurate models, on the other hand, the entire parameter range in the
(G/W, l)-plane is accessible, and compensators at the optimal setting (large gain limit)
can be employed.

5.1.3. Validation using a linearized direct numerical simulation

In a further step to investigate the influence of discrepancies between the input-output
behavior upon which the compensator has been built and the input-output behavior of the
system that is to be controlled, we replace the plant by the linearized direct numerical
simulation (LDNS), i.e., the full, unreduced model for flow over a rounded backward-
facing step. In many flow control studies, this represents the essential performance test
of the compensator.

We again consider in this section the situation where an impulse of noise is controlled.
The plant is given by the discretized system of equations (2.3), a second-order scheme
is used for the time integration, and the system is triggered, as before, by an impulse
imposed on the noise term, i.e., Xt=0 = B1 and w(t) = 0; the compensator has been
designed based on model ROM150. Various test cases covering a range of control costs l
and noise-to-signal ratios G/W have been performed and indicated by square symbols in
figure 17. Both stable and unstable configurations have been found. When neither l nor
G/W are small (indicated by green symbols in figure 17), the response of the linearized
simulation is identical to the response of model ROM150 which is in agreement with the
results in § 5.1.2. We recall that the stability of the compensated system implies identical
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performances for reduced-order models of various levels of truncation. As a consequence,
the linearized DNS achieves the same performance as the one displayed in figure 13(b);
cases 1, 2 and 3, studied in § 3 and § 4, belong to this category and are thus recovered by
the linearized DNS. On the other hand, we also encountered cases in which the linearized
direct numerical simulation was rendered unstable by the compensator (indicated by red
symbols in figure 17). These cases are concentrated at the large gain limit in the (G/W, l)-
plane; case 4, studied in § 3 and § 4, falls into this category.

It is instructive to evaluate the error in the input-output dynamics u(t) → m1(t)
between the linearized DNS and the ROM150-model. Figure 16(a) displays (in red symbols)
the error err between the linearized DNS and reduced-order models of various truncation
levels ROMn. For n < 40, the reduced-order models fail to accurately represent the control
action, resulting in an error of 100%. As the order and accuracy increases, the error
between linearized DNS and reduced-order models decreases until it approaches a level
of 2% — which can be taken as the error between the linearized DNS and the ROM150-
model. This value is identical to the error between ROM89 and ROM150; we can thus make
use of the neutral curve given by the red line in figure 17. The stability observations from
our simulations (linearized DNS coupled with a ROM150-based compensator) fall correctly
on either side of the neutral curve (except for low values of l), i.e., the neutral curve
divides stable (green) parameter combinations from unstable (red) ones.

We note in passing that the above study has used the 2-norm for the definition of errors;
other choices may yield quantitatively different results. For example, frequency-restricted
2-norms may more accurately reflect the physical properties of the system and result in
more precise measures, as was shown in Barbagallo et al. (2010) for globally unstable
flows. Nevertheless, the qualitative behavior of the compensated system is expected to
be insensitive to our choice of error norm.

5.2. Control of an impulse using a linearized direct numerical simulation

We will take a closer look at case 3 (defined in table 2) which consists of the most efficient
compensator that still produces a stable compensated system; the performance of this
compensator is given by the dark blue curves in figure 14 and figure 15. We start by
studying the spatio-temporal evolution of the energy integrated along lines of x = const.
introducing

ey(x, t) =

∫ top boundary

wall

e(x, y, t)dy (5.6)

with e(x, y, t) as the pointwise energy. The x-t-diagram of ey is shown in figure 18. Hot
colors (in logarithmic scaling) indicate locations of high energy density ey; dark colors
point to areas of no or negligible energy density. Figure 18(a) presents the propagation
of an impulse of noise without control: at t = 0, the perturbation energy is localized in
x ∈ [−2, 0] since the initial condition B1 is centered at x = −1. The initial decay of the
wavepacket in the convectively stable region (in front of the separation point) is followed
by an exponential amplification until the reattachment point (x = 11) is reached, before
the wavepacket is convected and dissipated in the stable region of the flow (x > 11).
The trailing and leading edge of the wavepacket exhibit different propagation speeds,
affirming the dispersive properties of the perturbation. The equivalent scenario for the
compensated configuration is shown in figure 18(b). The control action is visible along
the line x = 0.5 (due to the placement of the actuator B2) and introduces structures
of smaller wave-lengths than those present in the uncontrolled case. These structures
destructively interfere with the original wave-packet, and attenuation of the perturbation
is corroborated by the successful suppression of high-energy (red) areas. We recall that



28 A. Barbagallo, G. Dergham, D. Sipp, P.J. Schmid and J.-C. Robinet

Figure 18. Contours of the energy integrated along lines x = const. in an x-t-diagram. (a)
Uncontrolled linearized simulation; (b) compensated linearized simulation (case 3).

for this case a 90%-reduction in the perturbation energy can be achieved (see the last
column in table 2). Interestingly, the leading edge of the wave packet appears unaffected
by the control; only the trailing edge region shows signs of control action. This may be
explained by the fact that the wave packet has to first reach sensor C1 before the state
can be estimated and the control law can be applied. During this time the leading-edge
of the wave packet has passed the actuator location, and only the trailing edge is subject
to control action.

5.3. Control of random noise in a linearized direct numerical simulation

Even though controlling the impulse response triggered by the noise terms gives impor-
tant insights into estimator and control action as well as into performance measures of
the compensated system, a more realistic setup is the control of a flow that is continu-
ously forced by random noise w(t). Despite the fact that, due to linearity, the two cases
are theoretically equivalent, we consider a plant governed by equation (2.3 a) where w(t)
now stands for a continuous source of white noise.

Figure 19(a) juxtaposes the temporal evolution of energy for the uncontrolled simu-
lation (in red) with the evolution of energy for the compensated simulation (in green),
where the same excitation sequence w(t) has been used to ensure a fair comparison.
Starting from a zero initial state, a transient phase is observed that quickly evolves into
a statistically stationary state. At t = 400 the compensator is switched on (green curve).
The energy rapidly decreases: nearly one decade smaller than in the uncontrolled simula-
tion. For completeness, the measurement signal mp(t) is displayed in figure 19(b) for the
uncontrolled (red) and compensated (green) simulation. Again, a noticable reduction in
variance can be observed.

The third column of table 3 contains the performance measures Pe and Pm correspond-
ing to the above simulation (see “long” dataset on the left). As expected, the values are
identical to the ones obtained for the reduced-order model (the values from table 2 have
been reproduced in the second column). It is seen that the overall perturbation energy
Pe and the perturbation measurement energy Pm have been reduced by a factor of 0.157
and 0.292, respectively.

Finally, figure 20 shows contours of the pointwise mean-energy for the uncontrolled (a)
and controlled (b) simulations. The perturbation energy increases along the shear-layer
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Figure 19. Temporal evolution of the energy based on a linearized numerical simulation con-
tinuously forced by random noise. The compensator has been designed under linear assumptions
based on the ROM150 model (case 3). (a) Perturbation energy for the uncontrolled (red) and con-
trolled (green) case, (b) measurement energy for the uncontrolled (red) and controlled (green)
case.

due to a convective instability; its maximum is reached near x = 10. This pointwise mean-
energy distribution for the uncontrolled case is closely related to the optimal response
given in figure 2(c). The mean-energy contours for the controlled simulation deviate
significantly, as the effectiveness of the compensator is clearly demonstrated by the greatly
reduced mean-energy in the shear-layer region. Table 3 (column 3, long dataset) shows
that the maximum mean perturbation energy is reduced by a factor of 0.138. Figure 20
is of interest for experimental studies of flow control in amplifier flows as it provides a
direct comparison of local turbulence levels throughout the recirculation bubble for the
uncontrolled and controlled case.

6. Nonlinear effects

We will now dispense with the assumption of a linear plant and apply the linear com-
pensator, designed to diminish perturbations governed by the linearized Navier-Stokes
equations, to the nonlinear Navier-Stokes equations in the hope of attaining similar reduc-
tions in noise levels. By gradually increasing the amplitude of the incoming perturbations
and the variance W 2, we can progressively introduce nonlinear effects and can study their



30 A. Barbagallo, G. Dergham, D. Sipp, P.J. Schmid and J.-C. Robinet

linear (ROM) linear nonlinear nonlinear nonlinear
(long/short) (small amp.) (medium amp.) (large amp.)

Pe 0.157 0.157/0.132 0.136 0.209 0.406
Pm 0.292 0.292/0.278 0.291 0.504 0.741

u2

max/U2

∞ (%) 0.0125 0.793 4.53
u2

max

˛

˛

c
/U2

∞ (%) 0.00144 0.158 2.11

u2

max

˛

˛

c
/u2

max 0.138/0.111 0.116 0.199 0.464

Table 3. Performance evaluation of linear and nonlinear simulations. Column 2: based on the
reduced-order model (§4), column 3: based on linear simulations with random noise (§5 for long
dataset and §6 for short dataset), columns 4, 5, 6: based on nonlinear simulations with random

noise with W = 0.1, W = 1 and W =
√

10 (§6).

(a)

(b)

Figure 20. Pointwise mean perturbation energy of simulations with random forcing. (a)
Uncontrolled linearized DNS; (b) compensated linearized DNS (case 3).

impact on the overall performance of the linear compensator under off-design conditions.
A similar test has been conducted by Ilak (2009) for impulsive initial conditions.

6.1. Control of a noise impulse

Following the previous experiment, we compute the temporal response of the nonlinear
system to an impulse of noise B1 (with w(t) set to zero). The degree of nonlinearity in
the system can be adjusted using the amplitude of the initial perturbation. Figure 21
displays the system energy for the uncontrolled simulation (in black) and for controlled
simulations (red curves) starting from three different initial amplitudes. Results from a
linear simulation, properly normalized to match the respective initial amplitudes of the
nonlinear runs, have been added by dashed lines. Discrepancies between the dashed and
continuous curves can thus be attributed to nonlinear effects. The evolution of energy
starting from a low-amplitude initial condition is shown in figure 21(a). Both the un-
controlled case (in black) and the compensated case (in red) show only minor nonlinear
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Figure 21. Energy versus time for the uncontrolled (black) and controlled (red) simulations
using different initial amplitudes of the perturbation: (a) small amplitude, (b) medium ampli-
tude, (c) large amplitude. In each plot, the linear simulation has been normalized at t = 0 for
comparison.

effects, and the performance of the compensator is not compromised appreciably; only
small deviations are noticeable near the maximum of the energy curve (t ≈ 20). For
medium-amplitude initial conditions (figure 21(b)) discrepancies between the linear and
nonlinear simulations become apparent during the initial amplification of the perturba-
tion and affect the energy peak as well as the disturbance propagation in the convectively
stable region (for t > 20). In this case, the control is still effective. The early stages of the
energy evolution (t < 10), however, behave largely linear and the control is well-designed
for this regime. A second transient amplification of energy is visible in the controlled
simulation (in red) for t ≈ 30 which may be caused by nonlinearly triggered structures.
Finally, figure 21(c) presents the energy curves for the large-amplitude initial conditions.
In the uncontrolled simulation, nonlinear effects are already visible at t ≈ 3, suggesting
that the perturbation entering the convectively unstable region is already different from
the linear one. Saturation of the energy is observed before the linear peak is reached,
but a strong second amplification occurs in the controlled and uncontrolled case. After
a maximum in energy is reached, a far lower decay rate during the advection through
the stable region is encountered. Unlike the previous cases, the exerted control efforts
influence the flow and generate structures that raise the energy levels above the uncon-
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trolled case. Evidently, this final case reveals and surpasses the limits of our linear control
strategy.

6.2. Control of random noise

The control of a random noise source is studied next. Whereas no new insight compared
to the noise impulse response is expected for the linear case, the nonlinear response to
continuous stochastic forcing is unrelated to the nonlinear response to a noise impulse
since no superposition principle can be invoked. In spite of that, the control of high-
amplitude random noise as a test to explore the limits of linear control design and
performance is seldom undertaken. In figure 22, the temporal evolution of the total energy
is displayed for different amplitudes of the noise variance W 2; uncontrolled simulations
are shown in red, compensated simulatons in green. The amplitudes of the noise variance
are increased from figure 22 (a) to (c). In each of the presented cases, the mean energy
level of the perturbation has been reduced by the linear compensator, but a noticeable
loss in performance can be observed for the high-amplitude case.

The performance measures Pe and Pm corresponding to these cases are reported in
table 3 (columns 4, 5 and 6). The simulations have been run up to t = 600, which is
sufficiently long to observe general trends in the curves, even though full convergence
would require longer simulations. The random noise sequence from the linear case has
been used, which allows a direct comparison with the linear results (reported in column 3
and labeled “small” dataset). In table 3, the maximum pointwise energy (normalized by
U∞) of the uncontrolled and controlled (indicated by |c) simulations are listed together
with their ratio. For a small noise variance (figure 22(a)) the evolution of the uncontrolled
perturbation is quasi-linear, and the performance of the compensator is nearly the same
as in the linear case (compare colmuns 3 and 4 of table 3). As nonlinear effects play an
increasingly important role, the oscillations of the energy curves for the uncontrolled case
are less proounced. The same observation can be made in the compensated simulations;
the compensator in this case is also less effective. The performance measures Pe and Pm

gradually deteriorate as the noise variance W 2 increases (compare columns 4, 5 and 6 of
table 3). If W 2 is increased beyond a critical value, the compensated simulations become
unstable.

As before, the pointwise mean-perturbation energy gives further insight into the tempo-
ral evolution of the energy as the disturbances advect along the shear layer. In figure 23(a)
and (b) the pointwise mean-perturbation energy from the nonlinear simulation with ran-
dom noise is displayed where a moderate variance has been used. The colormap has been
adjusted to permit direct comparison with the equivalent linear results given in figure 20;
significant differences to the linear case can be observed. Figure 23(a), illustrating the
uncontrolled case, displays saturation effects caused by nonlinearities; the overall shape
of the maximum energy contours are, however, similar to the linear case — concentrating
on the dynamics in the shear layer and the reattachment area. In contrast, the amplitudes
are higher in the convectively stable region (x > 10) for the nonlinear simulation. For the
compensated case (figure 23(b)) the energy is maximal in the shear-layer but is, again,
lower than the linear equivalent; in contrast, the energy is higher than in the linear case
for x > 10, indicating the appearance of nonlinear structures which are more difficult
to control. The pointwise mean perturbation energy from nonlinear simulations based
random noise of high variance is shown in figure 23(c) and (d). The uncontrolled case
(figure 23(c)) is similar to figure 23(a), even though higher amplitudes are reached. For
the compensated case (figure 23(d)), we observe that the energy could be less attenuated
by control efforts: in table 3 (column 6), a maximum mean perturbation energy of 4.53%
is observed in the uncontrolled simulation which reduces to 2.11% as the compensator is
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Figure 22. Temporal evolution of the perturbation energy based on a nonlinear numerical
simulation continuously forced by finite-amplitude noise. The compensator has been designed
under linear assumptions based on the ROM150 model (case 3). (a) Low-amplitude case, (b)
medium amplitude case, (c) high-amplitude case. The linear case has been added by dashed
lines and scaled to the initial energy of the nonlinear simulations.

switched on. The turbulent kinetic energy is thus diminished by a more modest factor of
0.464 (compared to a factor of 0.116 for the small variance simulations, see column 4).
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(a)

(b)

(c)

(d)

Figure 23. Pointwise mean perturbation energy of simulations with random forcing. (a) Uncon-
trolled direct numerical simulation for W = 1. (b) Compensated direct numerical simulation for

W = 1 (case 3). (c) Uncontrolled direct numerical simulation for W =
√

10. (d) Compensated

direct numerical simulation for W =
√

10 (case 3).

7. Summary and conclusions

Two-dimensional incompressible flow over a rounded backward-facing step, a canon-
ical configuration showing noise-amplifying behavior, has been controlled by feedback
control strategies. Specifically, the LQG-framework has been employed in conjunction
with POD-based reduced-order models for the plant. Similar techniques have previously
been studied (see Ilak & Rowley 2008; Bagheri & Henningson 2010), but with the main
emphasis on model reduction aspects. Important issues related to the practical imple-
mentation of feedback control laws for amplifier flows have been left unaddressed, which
motivated this present investigation.

The analysis of the feedback control setup first concentrated on the estimation pro-
cess. A placement of sensors throughout the convectively unstable region of the flow
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revealed a distinct advantage of measurement input from the most upstream sensor. It
further showed that the speed of estimation is more important than the accuracy of the
estimation, while keeping in mind that upstream sensor measurements are more easily
corrupted by noise since the signal has not yet been amplified by the flow. Low-quality
sensors should be placed further downstream where the amplitude of the detected signal
prevails over the added inherent measurement noise; the resulting delay in estimation,
however, will ultimately cause a loss in compensator performance. The noise-to-signal
ratio of the sensor thus plays an important role and has been linked to the estimation
parameter for the computation of the Kalman gain.

Continuing with the best (most upstream) sensor, the performance of the compensated
system has been studied under the idealistic assumptions that the reduced-order model
accurately mimics the plant. The noise-to-signal ratio (or estimation parameter) G/W
and the cost-of-control parameter l have been varied to cover a range of control scenarios
from the small gain limit (SGL), where the compensator is ineffective, to the large gain
limit (LGL), where the compensator operates at its maximal performance. An excess in
the total energy can be observed when the measurement energy is the control objective
and the design parameters are chosen close to the large gain limit; this phenomenon,
caused by the high sensitivity of the compensator in this parameter regime, can be
overcome by basing the cost functional for the controller design on the total energy.

The idealized match between reduced-order and original model has been relaxed by
considering various levels of truncation for the POD-based reduced-order model, thus
varying the accuracy up to which the plant is represented. Even if the compensator is
stable for the model it was design for, the stability of the compensator is no longer
guaranteed when applied to a slightly different plant. It has been found that the com-
pensated system becomes unstable in the large gain limit. Moreover, as the accuracy
of the reduced-order model decreases, the unstable (G/W, l)-parameter region becomes
larger and imposes limitations on performance. Finally, based on a stable compensated
system, a detailed study of noise attenuation by feedback control has been performed
for an impulse of noise and for continuous stochastic forcing in the DNS solver. In either
case, a substantial reduction in perturbation energy could be accomplished, as predicted
by the reduced-order model analysis.

Nonlinear effects have been reintroduced to the closed-loop control problem by apply-
ing the compensator, designed under linear assumptions, to the nonlinear Navier-Stokes
equations and attempting to suppress impulsive and continuous noise sources of progres-
sively higher amplitudes and noise variance W 2. Minor deviations have been detected
for small-amplitude initial conditions; in the large-amplitude case, however, compen-
sator performance deteriorated due to the appearance of nonlinearly triggered structures.
These structures cause a second rise in perturbation energy that remains unattenuated
by the control.

It can be concluded from our study that designing closed-loop control strategies for am-
plifier flows is significantly more involved than the equivalent design for oscillator flows.
While in this latter case instabilities are generally narrow-banded in frequency and thus
more easily detectable/controllable, a noise-amplifier produces more broadband signals
and magnifies physical and non-physical perturbations alike. For this latter reason, a
comprehensive study of the sensitivity of the compensator performance with respect to
various noise sources is inevitable for a successful closed-loop control design. Transfer
functions, i.e., frequency-based input-output relations, are particularly helpful in pin-
pointing strong sensitivities, in placing sensors efficiently, and in avoiding undesirable
parameter regimes. It is hoped that the present study has introduced and demonstrated
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effective tools that — despite the inherent challenges – aid in the design of effective
closed-loop control strategies for amplifier flows.

REFERENCES

Ahuja, S. & Rowley, C. W. 2010 Feedback control of unstable steady states of flow past a
flat plate using reduced-order estimators. J. Fluid Mech. 645, 447–478.
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