Mouillage statique et dynamique : Influences géométriques aux échelles moléculaires

Antonin Marchand

PMMH – ESPCI 10 rue Vauquelin 75005 Paris

Soutenance de thèse 4 novembre 2011

Aperçu de la thèse

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Aperçu de la thèse

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Fil conducteur

- Influences des échelles microscopiques aux échelles macroscopiques
- Phénomènes contrôlés par la géométrie

Aperçu de la thèse

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Fil conducteur

- Influences des échelles microscopiques aux échelles macroscopiques
- Phénomènes contrôlés par la géométrie

La tension de surface - un déficit d'énergie de liaison

Définition

$$\gamma_{\rm LV} = \left(\frac{\partial F}{\partial A}\right)_{T,V,n}$$

La tension de surface - une force linéique

Principe des travaux virtuels

$$dE = \gamma_{\rm LV} L dx$$

Caractéristiques

- une force linéique attractive
- parallèle à l'interface, normale au contour

La pression de Laplace

Introduction

d'air

Pression de Laplace

$$\Delta P = \gamma_{\rm LV} \kappa$$

La ligne de contact

distribution microscopique des forces

Entraînement d'air

$$\gamma_{\rm LV} \cos \theta_{\boldsymbol{Y}} = \gamma_{\rm SV} - \gamma_{\rm SL}$$

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Distribution des forces capillaires dans les solides

Un solide élastique immergé

Introduction

Observation des déformations élastiques des substrats

Raisonnement macroscopique

Raisonnement erroné n°1 : À la ligne de contact

Raisonnement erroné n°1 : À la ligne de contact

exercée par le liquide sur le solide

Distribution des forces capillaires dans les solides Modèle de distribution microscopique des forces Entraînement d'air Conclusion	Introduction	
Modèle de distribution microscopique des forces Entraînement d'air Conclusion	Distribution des forces capillaires dans les solides	0
Entraînement d'air Conclusion	Modèle de distribution microscopique des forces	
Conclusion	Entraînement d'air	
	Conclusion	

Pericet-Cámara et al., Langmuir, 2008

Quelle distribution ?

Des représentations problématiques

- à la ligne de contact : une seule force / trois forces?
- aux interfaces courbées : quelle pression de Laplace?

Quelle distribution ?

Distinction dans la partie immergée

effets de compression/étirement

15/46

Quelle distribution?

Distinction dans la partie immergée

effets de compression/étirement

Capillaire élastique

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Introduction
Distribution des forces capillaires dans les solides
Modèle de distribution microscopique des forces
Entraînement d'air
Conclusion

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Déplacement relatifs des marqueurs

Déplacement relatifs des marqueurs

Déplacement relatifs des marqueurs

Distribution des forces capillaires

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Seul un modèle microscopique peut expliciter la distribution des forces

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Modèle de distribution microscopique des forces

La tension de surface en dynamique moléculaire

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Contraintes à l'interface

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Quelle est l'origine de l'anisotropie des contraintes à l'interface?
Répulsion et attraction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Modèle géométrique des interactions

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Hypothèses

- Phases homogènes
- Interfaces infiniment fines
- La répulsion est une force de contact isotrope, et détermine la structure du liquide loin des interfaces
- L'attraction est une force volumique sensible à la géométrie de l'environnement

Conséquences 1

Conséquences 2 : Force du liquide sur le solide

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conséquences 2 : Force du liquide sur le solide

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conséquences 3 : Pression de Laplace à l'interface liquide-solide

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

27/46

Interprétation de l'exemple de la plaque

Compatible avec le bilan thermodynamique

Conclusion

Distribution des forces capillaires

- Deux résultats importants :
 - $F_{L \to S}$ à la ligne de contact selon la bissectrice du coin de liquide
 - Pression de Laplace $\gamma_{\rm LV}\kappa$ sur le solide

- Distribution des forces capillaires dans les solides
- Modèle de distribution microscopique des forces
- Entraînement d'air
- Conclusion

• Saturation de l'électromouillage

Déformation du substrat au voisinage de la ligne de contact

 Deformation du substrat a voisinage de la ligne de contact

contact

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Entraînement d'air

Tirage d'un film

(a)

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Seuil d'entraînement du liquide

$$U_p > U_e$$

Snoeijer et al., PRL, 2006

Physique de la transition de mouillage dynamique

Dissipation à l'approche de la ligne de contact

Introduction Distribution Dissipation sur l'ensemble Effet de pointe en reculée des forces capillaires dans des échelles micro \rightarrow macro les solides Modèle de distribution microscopique des forces L Entraînement d'air Conclusion à une échelle L donnée : $\sigma_{\rm visc} \sim \frac{\eta_\ell U_p}{h} \nearrow$ $h \searrow$ $\sigma_{visc} \sim \frac{\eta_{\ell} U_p}{I \theta}$ $Ca_e = rac{\eta_\ell U_p}{\gamma_{\mathrm{LV}}} pprox 10^{-2}$

Avancée de la ligne de contact

Distribution des forces capillaires dans En avancée? les solides Modèle de $\theta \rightarrow \pi$: l'effet de pointe disparaît ! distribution microscopique des forces $\gamma_{\rm LV}$ Entraînement d'air Conclusion F_{visc} η_ℓ θ

Introduction

Entraînement d'air

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

gaz?

Driscoll *et al.*, PRE, 2010 Benkreira *et al.*, Chem. Eng. Sci., 2008 et 2010

Duez et al., Nature Lorenceau et al., PRL, Physics, 2007 2003 Seuil contrôlé par la La réduction de la Importance des viscosité du liquide propriétés de pression augmente le seuil d'entraînement mouillage η_ℓ Problématique Physique de la transition ? • Dépendance du seuil vis à vis des propriétés du liquide et du

Transition de mouillage dynamique en avancée

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Montage expérimental

Au delà du seuil

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Résultats

Interprétation

Modélisation

Modélisation : influence de la pression

• Si l'échelle de dissipation dominante dans le gaz \sim le libre parcours moyen, la dissipation baisse.

Conclusion

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

- Forte influence de la dissipation dans la phase gazeuse
- La pression a une influence sur le libre parcours moyen et donc sur le seuil d'entraînement

Introduction

Distribution des forces capillaires dans les solides

Modèle de distribution microscopique des forces

Entraînement d'air

Conclusion

Conclusion

Introduction

- Distribution des forces capillaires dans les solides
- Modèle de distribution microscopique des forces
- Entraînement d'air

- Élaboration d'un modèle géométrique de la capillarité à l'échelle microscopique
 - Réinterprète les lois classiques de Young, Neumann, Laplace
 - Explicite la distribution des forces dans un solide
 - Saturation de l'électromouillage
 - Tension de ligne (confirmation par des simulations numériques)
- Confirmation expérimentale par l'étude de la compression d'un capillaire élastique
- (2) Étude de la transition d'entraînement d'air
 - Effet de confinement géométrique
 - Effet des paramètres microscopiques : ℓ_{mfp}

Annexes

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Dissipation dans le substrat

Interprétation microscopique

Annexes DFT Tension de ligne Inhomogénéités Electromouillage Dissipation dans le substrat

L'interface liquide-vapeur

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Dissipation dans le substrat

L'interface liquide-solide

Annexes

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Dissipation dans le substrat

Amplitude de l'interaction solide-liquide

 $egin{aligned} \mathcal{A}_{SL} &= \gamma_{ ext{SV}} + \gamma_{ ext{LV}} - \gamma_{ ext{SL}} \ &= \gamma_{ ext{LV}} (1 + \cos heta_{Y}) \end{aligned}$

Construction d'Young

52/46

Pression de Laplace

Annexes

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Dissipation dans le substrat

Pression de Laplace

Propriétés de la pression de Laplace

Annexes

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Tension de Ligne

Nanogouttes en Dynamique Moléculaire

Annexes

DFT

Tension de ligne

Inhomogénéités

Electromouillage

Tension de ligne

Interprétation géométrique

Tension de ligne - résumé

- $\tau < 0$
- $\ell \approx \sigma$; $\tau \approx -10^{-11}$ J.m⁻¹.

Enfin, le faible ordre de grandeur de τ explique pourquoi il est très difficile à mesurer expérimentalement.

L'interface liquide-solide

La tension de surface des solides

$$s_{TT} = \gamma_{\rm SV} + \left(rac{\partial \gamma_{\rm SV}}{\partial \epsilon_{TT}}
ight)_{\mu_i, T, e_{NN}}$$

Electromouillage

Electromouillage

