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Abstract

The goal of this work is to derive a consistent framework for the
treatment of contact problems within the Finite Element Method using
the Node-to-Segment discretization. Three main components of the
computational contact have been considered: geometry, detection and
resolution techniques. For the sake of completeness, the mechanical
aspects of contact as well as numerous numerical algorithms and
methods have been discussed. A new mathematical formalism called “s-
structures” has been employed through the entire dissertation. It results
in a comprehensive coordinate-free notations and provides an elegant
apparatus, available for other mechanical and physical applications.
Several original ideas and extensions of standard techniques have been
proposed and implemented in the finite element software ZéBuLoN (Z-
set). Numerical case studies, presented in the dissertation, demonstrate
the performance and robustness of the employed detection and
resolution schemes.

Le but de ce travail était de fournir un cadre cohérent pour le
traitement des problèmes de contact en utilisant une discrétisation
de type nœud à segment. Trois aspects principaux de la mécanique
numérique du contact ont été particulièrement considérés : la
description de la géométrie, le problème de détection de contact
et les techniques de résolution. Le manuscrit contient cependant
une présentation complète de la mécanique du contact et des
algorithmes numériques qui lui sont attachés. Un nouveau formalisme
mathématique – les s-structures – est employé dans l’ensemble de
la thèse. Il fournit un cadre de formulation intrinsèque qui permet
d’exprimer de façon compacte un grand nombre de problèmes de
mécanique et de physique. La thèse propose plusieurs idées originales
et des extensions des techniques classiques, qui ont toutes été mises
en œuvre dans le code de calcul par éléments finis ZéBuLoN (Z-set).
Plusieurs études de cas, présentées dans la thèse, viennent démontrer
les performances et la robustesse des méthodes numériques utilisées
pour la détection et la résolution.
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Notations

Vectors and tensors:

- Scalar (zero-order tensor) – small latin and greek letters:

a, α, b, . . .

- Vector (first-order tensor) – underlined small bold latin and greek letters:

c,β,d, . . .

- Second-order tensor – capital bold latin letters underlined twice:

E
=
,F
=
, . . .

- Higher order tensor – capital bold latin letters underlined twice with
upper left index of order:

3
G
=
,

4
H
=
, . . .

V-Vectors and V-tensors:

- V-scalar (“vector of scalars”) – small latin and greek letters underlined
by a wave:

i∼, γ∼
, · · · ∈ m

1S
n

0

- V-vector (“vector of vectors”) – small latin and greek letters underlined
by a line and a wave:

j
∼
, ε
∼
, · · · ∈ m

1S
n

1

- V-tensor (“vector of tensors”) – capital bold latin letters underlined by a
double line and a wave:

K
=∼
,L
=∼
, · · · ∈ m

1S
n

2

T-Vectors and T-tensors:

- T-scalar (“tensor of scalars”) – capital bold latin letter underlined by a
double wave:

M≈ , N≈ , · · · ∈
m

2S
n

0

- T-vector (“tensor of vectors”) – small latin and greek letters underlined
by a line and a double wave:

o
≈
,η
≈
, · · · ∈ m

2S
n

1
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- T-tensor (“tensor of tensors”) – capital bold latin letters underlined by a
double line and a double wave:

P
=≈
,Q
=≈
, · · · ∈ m

2S
n

2

Vector and tensor operations:

-
∥∥∥ a

∥∥∥ – euclidean norm of a vector;

- det A
=

– determinant of a tensor;

- I
=

– unit tensor;

- I≈ – unit t-scalar;

- trA
=

– trace of a tensor;

- A
=
−1 – inverse of tensor;

- A
=

T – transpose of tensor;

-
i
A
=
· j

B
=
=

i+ j−2
C
=

– scalar or dot product;

-
i
A
=
× j

B
=
=

i+ j−1
C
=

– vector or cross product;

-
i
A
=
⊗ j

B
=
=

i
A
=

j
B
=
=

i+ j
C
=

– tensor product;

-
i
A
=
· · jB
=
=

i+ j−4
C
=

– tensor contraction.

Other operations:

- (•)· = d•
dt – full time derivative;

- δ(•), ∆(•) – first variations;

- δ̄(•), ∆̄(•) – full first variations;

- ∆δ(•) – second variation;

- ∆̄δ̄(•) – full second variation;

- ∇ ⊗ (•) – gradient;

- ∇ · (•) – divergence;

- ∇ × (•) – rotor.
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Miscellaneous:

- δ j

i
– Kronecker’s delta δ j

i
= 1, if i = j else δ j

i
= 0;

- 〈x〉 = 1
2 (x + |x|) – Macaulay brackets;.

- [•, •]; (•, •); (•, •] – closed, open, open-closed intervals;

- ∀, ∃, ∃!, ∃!!, ∄ – for all, exists, exists only one, exists infinitely many, does
not exist;

- ⇒, ⇐, ⇔ – sufficient, necessary, sufficient and necessary conditions;

- min, max, ext, sup, inf – minimum, maximum, extremum, supremum,
infimum;

- m̃in, m̃ax – global minimum, global maximum;

- i = 1,n – i changes from 1 to n.

Abbreviations:

- PM, LMM, ALM – penalty, Lagrange multiplier, augmented Lagrangian
methods;

- FEM, FEA – Finite Element Method, Finite Element Analysis;

- CAD – Computer-Aided Design;

- NTN, NTS – Node-to-Node, Node-to-Segment discretizations;

- MPC – Multi-Point Constraints;

- PDN – Partial Dirichlet-Neumann;

- SDMR, MDMR – Single Detection Multiple Resolution, Multiple
Detection Multiple Resolution.

~
Remark on Macaulay brackets, dist(., .) and θ(.) functions.

Throughout the dissertation we use the notation of Macaulay brackets

〈x〉 =
{ ∣∣∣∣∣

x, x ≥ 0,
0, x < 0

; 〈−x〉 =
{ ∣∣∣∣∣
−x, x ≤ 0,
0, x > 0

The θ function is a similar notation widely used in both engineering and mathematical
literature

θ(x) = max(x, 0) =
{ ∣∣∣∣∣

x, x ≥ 0,
0, x < 0

; θ(−x) = min(x, 0) =
{ ∣∣∣∣∣
−x, x ≤ 0,
0, x > 0

viii



or a more general dist(, ) function

dist(x,Ω) =
{ ∣∣∣∣∣

dist(x, ∂Ω), x < Ω
0, x ∈ Ω,

where dist(x, ∂Ω) is a somehow defined distance from point x to the closure of the set
Ω. For example, in the simplest case Ω = R−, x ∈ R, then ∂R− = 0

dist(x,R−) =
{ ∣∣∣∣∣

x, x ≥ 0,
0, x < 0

; dist(x,R+) =
{ ∣∣∣∣∣
−x, x ≤ 0,
0, x > 0.

All these functions are equivalent for the considered case and interchangeable, so the
reader is invited to interpret the Macaulay brackets as one of above mentioned functions
to which he is more accustomed.
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Chapter 1

Introduction to contact
mechanics

Résumé de Chapitre 1 «Introduction à la mécanique de
contact»

Ce chapitre présente une brève histoire des développements de la mécanique du
contact, de sa naissance jusqu’à nos jours. On insiste en particulier sur les aspects
numériques et on présente une formulation mathématique rigoureuse des problèmes
associés. La littérature concernant la méthode du Lagrangien augmenté est exposée en
détail.

De plus, ce chapitre introduit les notions de base qu’on exploite au cours du
manuscrit. Pour donner une vue globale sur le traitement numérique des problèmes
de contact, on éclaircit toutes les étapes de l’algorithme : la détection du contact, la
discrétisation et la résolution. On présente la revue des possibilités existantes pour
chaque de ces étapes et on argumente les choix qui seront effectués par la suite :
méthode de «bucket sort» modifiée pour la détection, méthode du Lagrangien augmenté
et méthode de pénalisation pour la résolution et la discrétisation «Nœud-à-Segment».

On expose également les éléments qui ont motivé ce travail et on présente le plan du
manuscrit.

From a mechanical point of view, at macroscale, contact is a notion for
all types of interactions between separate bodies coming in touch. Direct
contact between solids allows to transfer a load, a heat and an electric
charge from one body to another. The physics of the contact interaction is
particularly rich and complicated, due to the multiscale and multiphysical
nature of the phenomenon. The branch of mechanical engineering studying
this interaction is called tribology – a science of relative motion of interacting
surfaces in a comprehensive framework combining mechanical, physical and
chemical effects at different scales. This dissertation presents the mathematical
description and modeling of the mechanical aspects of this interaction.

Contact problems in mechanics of deformable solids can be singled out
in a particular class. There are several reasons for that. Contact occurs in
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the interface formed by two separate continuous surfaces. However, the
contact constraints arising in this interface cannot be replaced by ordinary
boundary conditions imposed on both contacting surfaces. At the same time,
the contact interface itself cannot be simply considered as an internal surface.
In an idealized case, the contact interface is a zero thickness layer, which
sustains only compressive stress in the direction orthogonal to the contact
interface (Fig. 1.1,a.), any stretching leads to vanishing of the contact interface
(Fig. 1.1,b.). In case of frictionless contact, the contact interface contrary to an
ordinary internal surface, does not sustain any tangential efforts, which allows
two surfaces slide relatively to each other (Fig. 1.1,a.). In case of frictional
contact, tangential resistance of the contact interface is similar to the resistance
of an elasto-plastic material with saturation. For example, in case of the classic
Coulomb’s friction law in stick state, the contact interface represents an internal
surface – no separation, no tangential sliding – locally both surfaces remain
glued to each other (Fig. 1.1,c.). If a critical shear stress is reached, the surfaces
start to slip relatively to each other, however the nonzero shear stress remains
equilibrated (Fig. 1.1,d.). It follows from this simple representation that the
contribution of the contact interface to the energy of the system is always zero
except in the case of frictional slip.

Figure 1.1: Analogy between contact interface and internal interface: a –
frictionless contact sustains compressive stress in the local reference frame,
b – any stretching leads to vanishing of contact interface, c – frictional contact
interface can transfer shear stress; d – in Coulomb’s friction law in stick state
there is no relative sliding up to reaching a critical shear stress.

Mechanical problems are classically formulated as boundary value
problems, where a governing differential equations should be fulfilled within
the domainΩ and ordinary boundary conditions are imposed on the domain’s
closure ∂Ω. The balance of virtual work yields a weak (integral) form of this
boundary value problem, which presents a basis on which the structural Finite
Element Method is constructed. Contact constraints are formulated as sets of
inequalities. Such a formulation is not usual for boundary value problems. The
rigorous construction of a variational principle leads to a variational inequality
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Chapter 1. Introduction to contact mechanics

instead of a classic variational equality. Such a new mathematical structure
requires new solution approaches. The problem becomes even more complex
when a frictional effect is assumed at the interface. Coulomb’s friction law
states that tangential resistance depends upon the normal contact pressure,
but the latter is known only if the solution is known. Roughly speaking,
the boundary conditions are solution dependent, which naturally leads to
difficulties in the formulation of the frictional contact problem. Moreover,
the nature of Coulomb’s friction law yields a nonsmooth energy functional
resulting in even more difficulties from a numerical point of view. As pointed
out in the book of Kikuchi and Oden [Kikuchi 88] “Frictional contact problem
between continuous deformable solids involves formidable mathematical
difficulties”.

Another mathematical difficulty in contact mechanics arises from a rigorous
description of continuous interacting surfaces. First, contacting bodies may
penetrate each other or be separated. In both cases, a bijection between points
of the contacting surfaces does not always exist. Second, the finite element
discretization results only in piecewise smooth contacting surfaces, which leads
to mathematical and numerical difficulties. Third, a considerable effort has to
be undertaken to derive a rigorous linearization of the variational principle,
which in turn requires second order variations of the normal gap and the
tangential sliding, which is not an easy task. Basic knowledges of differential
geometry is needed to obtain the relevant quantities.

The discretization of the contact interface is a third challenge in
computational contact mechanics. A simple and stable discretization for
conforming meshes, i.e. each node on one contacting surface has a
corresponding node on the other surface, can be established only in case of
small deformations and infinitely small relative sliding. Such a discretization
is called Node-to-Node. A less simple but multipurpose discretization implies
the creation of contact pairs consisting of a node of one surface and a
corresponding segment of the other surface. This approach is known as
Node-to-Segment discretization. However, this discretizations does not fulfill the
so called Babuška-Brezzi conditions and leads to an unstable discretization.
Recently, new techniques based on segment-to-segment discretizations – Nitsche
and mortar methods – have been successfully introduced in computational
contact mechanics, however, the computer implementation of these methods
for a general case presents a real challenge both from algorithmic and technical
points of view. Seeking for a stable and relatively simple discretization of the
contact interface is still in progress.

All forementioned difficulties are related to the resolution phase of the
contact algorithm. It follows the detection phase, which determines the
contacting pairs on discretized surfaces. At first glance, the detection phase
is a standalone task, but in reality it appears to be strongly connected with
the discretization type of the contact interface, with the definition of the gap
function and with the type of contact (e.g., simple contact or self-contact). The
detection phase may present a bottleneck for an efficient treatment of contact
problems, both for rapidity and robustness. The contact detection becomes
one of the most crucial points for an efficient parallelization of the whole
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1.1 Historical remark

resolution scheme. Elaboration and implementation of an efficient contact
detection algorithm is an absolute necessity for a robust and fast Finite Element
Analysis of large contact problems.

In this introduction, after a brief historical review, the main notions of
contact mechanics and related applications will be given, followed by a short
presentation of the general concept of contact treatment in the framework of the
Finite Element Method and implicit integration. The questions of detection,
discretization and resolution will then be addressed in first approximation.
Further, the main physical aspects of frictional contact will be introduced.
Finally the contents of the dissertation will be presented.

1.1 Historical remark

The modern contact mechanics is about 130 years old. It started in 1882
with the publication of Hertz’s famous paper On the contact of elastic solids
[Hertz 82], which gives the solution for frictionless contact between two
ellipsoidal bodies. This problem had arisen from the problem of the optical
interference between glass lenses. Futher developments in the contact theory
appear only in the beginning of XXth century in application to railways,
to reduction gears and to rolling contact bearing industry. Progress in
contact mechanics was associated with removing the restrictions of the Hertz
theory, such as pure elasticity, frictionless and small deformations. A large
contribution has been made by the Russian school of mechanicians, starting
from Galin [Galin 53], [Galin 76] and Muskhelishvili [Muskhelishvili 66].
A synthesis of analytical solutions and approaches for contact problems
can be found in monographs [Lurie 70], [Alexandrov 83], [Johnson 94],
[Goryacheva 98], [Goryacheva 01], [Vorovich 01], etc.

Since the analytical solution is achievable only for a few simple
geometries, boundary conditions, and mostly for linear materials, only rough
approximations based on these solutions can be established for complicated
frictional contact problems. These problems come from industrial needs and
are usually coupled with complex geometries, boundary conditions and non-
linear materials. For that reason, with approaching computer age, more and
more numerically based semi-analytical solutions for contact problems appear.
But it is still not sufficient to answer the industrial demand for a fast and
accurate resolution of contact problems, which may include friction, wear,
adhesion, large deformations, large sliding and non-linear material.

Since 1965 (NASTRAN) the Finite Element Method (FEM) becomes one of
the most usable and efficient tools for the treatment of problems in structural
mechanics. In order to fulfill industrial demands related to contact problems,
the scientific society worked out a rigorous mathematical framework valid for
incorporation of the contact in the Finite Element Method. This task required
formidable efforts from the mathematico-mechanical community. First, the
frictionless Signorini’s problem (unilateral contact between a deformable body
and a rigid foundation) has been treated, further the developed approaches
have been extended to the case of unilateral frictional contact in small and
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Chapter 1. Introduction to contact mechanics

large deformations and finally to bilateral1 or multibody contact. At the same
time, the engineering practice tested the solution schemes and proposed new
challenging tasks. The work on a stable approach for treatment of large sliding
frictional contact is still in progress.

The history of the computational contact began in 1933 with the works
of Signorini who was the first who formulated the general problem of the
equilibrium of a linearly elastic body in frictionless contact with a rigid
foundation [Signorini 33], [Signorini 59]. The works of Fichera represents
the first treatment of questions of existence and uniqueness of the variational
inequalities arising from the minimization of functionals on convex subsets of
Banach spaces, which yields from his rigorous analysis of a class of Signorini’s
problems [Fichera 63], [Fichera 64], [Fichera 72]. Variational inequality is a
new structure in the field of the optimization theory; new approaches are
required to make use of such formulations for practical problems of physics and
mechanics. “Inequalities in mechanics and physics” by Duvaut and Lions (first
published in French and rapidly translated in English [Duvaut 76]) was a real
scientific breakthrough in this direction, the authors investigated the solution
of frictional contact problems and large deformation contact. Among the
early relevant contributions related to contact problems, the following can be
enumerated Cocu [Cocu 84], Panagiotopoulos [Panagiotopoulos 85], Rabier et
al [Rabier 86]. A consistent description of the variational inequality approach to
contact problems is given in the book by Kikuchi and Oden [Kikuchi 88], where
among other important results the existence and uniqueness of the solution of
Signorini’s problem is proven. Stability questions of contact problem solution
have been discussed by Klarbring [Klarbring 88]; examples of non-uniqueness
or non-existence were demonstrated by Klarbring [Klarbring 90] and Martins

et al. [Martins 94]. The existence and uniqueness results for dynamic contact
problems can be found in Martins and Oden [Martins 87], Jarusek and Eck

[Jarusek 99] and others.
The frictionless contact problem formulated as a variational inequality

presents a special type of minimization problems with inequality
constraints, which can be efficiently treated in a standard manner (penalty
method, Lagrange multiplier method, augmented Lagrangian method, etc.).
Unfortunately, there is no associated minimization principle for the frictional
contact problem [Kikuchi 88], [Mijar 00]. Such a problem is rather complicated
and unusual for optimization theory since the energy of the system (objective
function) depends on the frictional status which depends on the normal contact
pressure, which in turn depends on the displacements, i.e. on the solution of
the problem which again depends on the energy of the system. Since there is
no smooth energy functional associated with the frictional contact problem, its
formulation and resolution present real challenges.

The assumption of a known a priori contact interface on the current
computational step results in a reformulation of the variational inequality into a
variational equality problem with a special contact term; the form of this term

1bilateral - contact between two or more deformable solids, in contrast to unilateral contact -
contact between a deformable and a rigid solid.
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depends on the method chosen to enforce the contact constraints. Among
the well-known and widely used methods there are: barrier and penalty
methods, Lagrange multiplier methods and their combinations. Another
branch of methods makes use of different techniques from mathematical
programming: application of the simplex method to contact problems can be
found in [Chand 76], parametric quadratic programming method is employed
in [Klarbring 86], [Zhong 88]. Separately from these two branches, there is
a group of direct methods, which treats the contact problem independently
from the structural one: the flexibility method proposed by Francavilla and
Zienkiewicz [Francavilla 75], modified and improved by Jean [Jean 95], rarely
mentioned in the scientific literature, in practice this method demonstrates
a higher robustness and rapidity in comparison to ordinary methods if
the number of nodes in contact remains moderate. But this method is
not applicable for large contact problems and its parallelization is hardly
possible. A detailed description of the method and its application can be
found in [Wronski 94]. A complete list of methods used for the numerical
treatment of contact problems can be found in [Wriggers 06] and [Laursen 02].

1.1.1 The augmented Lagrangian method

As mentioned in the previous section, the assumption of a known a priori
contact surface allows to replace the variational inequality by a variational
equality with an additional contact term. The form of this contact term
depends upon the choice of the optimization method; the most usable in contact
mechanics are the Lagrange multiplier method, the linear penalty method and
an augmented Lagrangian method, the two latter methods are implemented
in leading modern finite element analysis softwares: ANSYS [Bhashyam 02],
[Oatis 07], [ANS 05], ABAQUS [ABA 07], COMSOL [COM 10] and others. In
this dissertation all forementioned methods are considered, but a particular
attention is paid to the augmented Lagrangian method, possessing several
advantages in comparison to other methods.

Within the framework of classical Lagrange multiplier method (LMM),
contact conditions are exactly satisfied by the introduction of extra degrees of
freedom called Lagrange multipliers. The constrained minimization problem
converts into an unconstrained saddle point problem often called min-max
problem. Due to inequality constraints this formulation has to be considered
in combination with an active set strategy [Luenberger 03], [Murty 88], i.e. a
check and update of active and passive constraints should be integrated in
the convergence loop. Moreover, the additional degrees of freedom of the
LMM introduce supplementary computational efforts. Penalty method (PM)
is simple to implement and to interpret from the physical point of view,
but, on the other hand, the contact conditions are fulfilled exactly only in
case of the infinite penalty parameter which results in ill-conditioning of
the numerical problem. The augmented Lagrangian method (ALM) is a sort of
Lagrange multiplier formulation regularized by penalty functions. It yields a
smooth energy functional and fully unconstrained problem, resulting in exact
fulfillment of contact constraints with a finite value of the penalty parameter.
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Chapter 1. Introduction to contact mechanics

In this section a few historical remarks concerning the augmented Lagrangian
method are given. For a more detailed background the reader is referred to the
articles and books cited below.

The augmented Lagrangian method has been proposed in the first
raw approximation by Arrow and Solow in 1958 [Arrow 58b]. Further
a more elaborated version of the ALM method for optimization problems
subjected to equality constraints has been independently proposed by
Hestenes [Hestenes 69] and Powell [Powell 69] in 1969. As mentioned by
Pietrzak [Pietrzak 97] it was proposed "rather in an intuitive way" and a lot
of questions have not been considered. The way to apply the ALM method
to optimization problems with inequality constraints has been developed by
Rockafellar [Rockafellar 70], [Rockafellar 73b] and Wierzbicki [Wierzbicki 71].

Using the augmented Lagrangian method as well as the Lagrange
multiplier method leads to the saddle point problem, i.e. the objective function
is to be minimized by "ordinary" primal variables (e.g., displacement degrees
of freedom (dof) in the displacement based FEM) and is to be maximized
by dual variables - Lagrange multipliers which represent contact stresses.
All forementioned authors approach this min-max (saddle point) problem
by an independent consecutive updating of the primal and dual degrees of
freedom. An algebraic formula is used to update the Lagrange multipliers
at each iteration step and consequently a standard minimization procedure is
used to update the primal degrees of freedom. This idea has been worked
out by Powell [Powell 69]. Nowadays such an approach is employed under
the name of Uzawa’s algorithm and the full method is referred as a nested
augmented Lagrangian algorithm. Another approach has been developed by
Fletcher [Fletcher 70]. It consists in a continuous minimization of the resulting
saddle problem with a simultaneous update of both primal and dual variables.

One of the first applications of the augmented Lagrangian method
to frictionless contact problem can be found in Glowinski and Le

Tallec [Glowinski 89] and Wriggers, Simo and Taylor [Middleton 85]. The first
application of the augmented Lagrangian method with Uzawa’s algorithm to
frictional problems has been reported by Simo and Laursen [Simo 92]. The
first successful attempt to apply the coupled augmented Lagrangian method
to frictional contact problems has been undertaken by Alart [Alart 88], and
Alart and Curnier [Alart 91]. The augmented Lagrangian approach has been
elaborated by developing the perturbation approach to convex minimization
as proposed in [Rockafellar 70] and first applied by Fortin [Fortin 76] to visco-
plastic flow problems (rather similar to frictional contact problems).

Further developments of the ALM method to large deformations, large
sliding and nonlinear materials can be found in [Heegaard 93], [Mijar 04a],
[Mijar 04b], etc. A comprehensive investigation on the implementation of
the ALM method in the framework of the Finite Element Method to large
deformation frictional contact problems has been carried out by Pietrzak and

Curnier [Pietrzak 97], [Pietrzak 99]. The attempts to work out a technique
for penalty parameter updating are worth mentioning, since it became
a crucial factor for convergence of the ALM. A direction was proposed
in early works [Hestenes 69] and [Powell 69]. The need was mentioned
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by Rockafellar [Rockafellar 73b], discussed in [Alart 97] and an approach
has been proposed by Mijar and Arora [Mijar 04a], [Mijar 04b]; another
phenomenological approach has been proposed in [Bussetta 09]. An early
attempt to parallelize the ALM has been undertaken by Barboteu and

Alart [Barboteu 99] for particular structures.
The augmented Lagrangian method combines advantages of both methods

LMM and PM and avoids their drawbacks, precisely it converges to the exact
solution for a finite value of the penalty coefficient and if a nested update
of dual variables is used, there is almost no additional computational efforts.
Following Pietrzak, we would like to emphasis the smoothing effect of the ALM
which is not the only advantage over ordinary LMM. Even in case of a smooth
objective function the ALM method shows its superiority. The ordinary LMM
does not fully reduce the optimization problem with inequality constraints to
an unconstrained problem, since the condition of positivity of the Lagrange
multipliers λ ≥ 0 has to be satisfied. The ALM method does not have this
restriction and therefore is better for practical use. An elaborated presentation
of the method will be given in Section 4.7.

1.2 Basics of the numerical treatment of contact problems

The part of the implicit Finite Element code aimed at the treatment of contact
problems consists in the following steps: contact detection, construction of
“contact elements”, incorporation of these elements with associated residual
vectors and tangential matrices in the general nonlinear problem and finally
resolution of the resulting problem. Here we give the main ideas and a
general view of these steps, which will be presented in details further in the
corresponding chapters.

Contact elements are a kind of “bridge elements” between locally separated
but potentially interacting surfaces. Each contact element contains components
(nodes, edges, segments or their parts) of both surfaces; the composition
of these components depends upon the choice of the contact discretization
method. Each contact element has its own vector of unknowns, residual
vector and tangential matrix, which are assembled with unknowns, residual
vectors and matrices of ordinary structural elements. The set of unknowns and
the structure of the residual vector and the tangential matrix are determined
by the resolution method. For example, in addition to primal unknowns
(e.g. displacement) contact elements may contain dual unknowns (Lagrange
multipliers) representing contact stresses.

The Contact detection is a step preceding all others. The aim of this step
is to create contact elements containing the proximal components of both
surfaces which may contact on the current solution step. As a consequence
the detection algorithm is based on a search for the closest components and
presents a particular algorithmic task. The criterion of proximity is either
provided by a user or is chosen automatically based on boundary conditions
and/or discretization of contacting surfaces. In order to incorporate contact
elements in the resolution cycle, they should be created before a contact occurs

12



Chapter 1. Introduction to contact mechanics

and if needed should be removed and recreated at each solution step. Contrary
to this scheme, in case of explicit integration, the searching step consists in the
detection of penetration, which has already occurred.

In order to treat contact problems, from the programmer’s point of view, a
standard finite element code has to be complemented by

1. a class governing contact;

2. a contact detection algorithm;

3. a class of contact elements;

4. the corresponding residual vectors and tangential matrices.

1.2.1 Contact detection

The development of numerical methods and the increasing demands on
complexity (large deformation, large sliding, self-contact) and size of problems
in computational contact mechanics entailed the development of contact
detection techniques. As previously mentioned the contact detection presents
a purely algorithmic task and is strongly connected with the discretization of
the contact interface. For example, in the case of Node-to-Node discretization,
the contact detection consists simply in establishing close pairs of nodes: nodes
from one surface form pairs with their closest opponents from another surface.
Since the Node-to-Node discretization is limited to small deformation and
infinitely small slidings, once created contact pairs do not change during the
solution steps. Node-to-segment discretization requires a more elaborated
detection procedure: for nodes of one surface (slave) the closest point on the
other surface (master) has to be found, the master segment possessing this point
complemented by the slave node forms a Node-to-Segment contact element.

This simple detection procedure generates several difficulties. First, the
detection of the closest point on the master segments may fail if the slave node
is not sufficiently close to the master surface or if the latter is not smooth, which
is the case in case of finite element discretization of the surface. The numerical
scheme of the closest point detection is based on the seeking for a minimum
of the distance function, but on the one hand this minimum does not always
exist, and on the other hand there may be several or infinitely many equivalent
minimum points. Second, the detection has to be organized in a smart way.
Large contact problems imply a large number of contacting nodes on both
surfaces, that is why a simple detection technique, based on a comparison of
distances from each slave node to all components of the master surface, leads to
an excessively time-consuming algorithm, especially if contact elements must
be frequently updated.

Segment-to-segment discretization requires totally different detection
algorithms based on surface topologies. Since we confine ourself to
consideration of the Node-to-Segment contact discretization, the questions of
detection for other discretizations will be omitted. The geometrical questions
of the closest point definition will be discussed in Chapter 2 and the detection
algorithms will be presented in Chapter 3.
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1.2.2 Contact discretization

As already mentioned, the contact discretization predetermines the structure
of contact elements transferring efforts from one contacting surface to another.
Three main types of discretizations may be distinguished:

• Node-to-Node, NTN

• Node-to-Segment, NTS

• Segment-to-Segment, STS

The simplest and the oldest Node-to-Node discretization [Francavilla 75]
(Fig. 1.2) does not allow any finite sliding or large deformations and introduces
restrictions on mesh generation. On the other hand it passes the contact
patch test – uniform pressure is transferred correctly through the conforming
contact interface. The NTN discretization is applicable for linear and quadratic
elements in two dimensional case and only to linear elements in three
dimensional case. The NTN technique smoothes the asymmetry between
contacting surfaces. However, the normal vector for each pair of nodes is
usually determined according to one of the surfaces. Different possibilities of
normal definition are presented in Remark 3.2 in Section 3.5.

Figure 1.2: Graphical representation of the Node-to-Node discretization,
associated pairs of nodes and corresponding normals constructed on the master
surface.

Node-to-segment (Fig. 1.3) is a multipurpose discretization tech-
nique [Hughes 77], valid for non-conforming meshes, large deformation and
large sliding. But this discretization is not stable and does not pass the
contact patch test proposed by Taylor and Papadopoulos [Taylor 91] for non-
conforming meshes – a uniform contact pressure cannot be transferred correctly
through the contact interface (see. Fig. 1.4). However, this discretization
technique passes this patch test in “double pass” for LMM, which means
that at each solution step the problem is solved twice: on the first step one
assignment of master and slave surfaces is assumed and on the second step
the master and slave surfaces are exchanged. A comprehensive discussion of
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the contact patch test for NTS discretizations can be found in [Crisfield 00c],
where a new approach combining linear and quadratic shape functions is
also suggested. Recently, a modification of the NTS discretization has been
proposed [Zavarise 09a], which passes the patch test if the PM is used. Besides
the drawbacks of this discretization, it is quite simple and robust, that is why it
is often implemented in commercial Finite Element Analysis packages. Contact
detection and resolution techniques presented in this dissertation are suitable
for the NTS discretization.

Figure 1.3: Graphical representation of the Node-to-Segment discretization for
different choices of master and slave.

Figure 1.4: a – Scheme of the Taylor contact patch test; b – the resulting
nonuniform distribution of the stress component σyy in case of the NTS
discretization.

Recently, another technique based on a symmetric Node-to-Segment
discretization, the Contact Domain Method, has been proposed in [Oliver 09],
[Hartmann 09]. The discretization of the contact interface is based on a full
triangulation of the zone between contacting surfaces based on surface nodes
(Fig. 1.5). This formulation seems to be rather stable and passes the patch
test, but its three dimensional implementation reported in [Oliver 10] is not
applicable for arbitrary discretizations of the contacting surfaces.
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Figure 1.5: Graphical representation of the discretization in the Contact Domain
Method, including a triangulation of the contact interface.

Segment-to-Segment discretization (Fig. 1.6) has been first proposed by Simo
et al. [Simo 85] for the two dimensional case (see also [Zavarise 98]). Recently
such a discretization has been efficiently applied to two and three dimensional
problems coupled with the mortar method for nonconforming meshes, inspired
by the domain decomposition methods [Wohlmuth 01]. This technique is stable
and passes the patch test but its implementation for a general case presents a
great challenge, “a nightmare”, according to Tod A. Laursen, one of the authors
of the mortar method’s implementation for two and three dimensional both
structural and contact problems [Puso 03], [Puso 04], [Yang 05], [Yang 08b],
[McDevitt 00].

Figure 1.6: Graphical representation of the Segment-to-Segment discretization,
contact elements and an intermediate surface.

A standalone discretization technique is needed for Nitsche method
[Becker 03], [Wriggers 08], Gauss points of one surface play the role of slave
nodes. The comparison of Nitsche and mortar techniques can be found
in [Fritz 04].

The basic idea of the mortar method appeared in the second half of
the 80s and in the beginning of 90s for domain decomposition techniques
between non-conforming subdomains, see, for example, [Bernardi 90]. In 1998
Belgacem [Belgacem 98] has adapted the mortar method for the multibody
or bilateral frictionless contact problem. Further in the beginning of 2000s
the rigorous formulation adapted to frictional contact problem subjected to
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large deformations and large slidings has been established by McDevitt and

Laursen [McDevitt 00]. The mortar method consists either in introducing an
intermediate contact surface where contact pressure is defined or in using
as mortar surface one of the contacting surfaces, for details see [Wriggers 06].
The mortar based formulation leads to a consistent formulation of the frictional
contact problem for large sliding and large deformations. It allows to pass the
contact patch test for nonconforming meshes and does not suffer from spurious
penetrations like the NTS (see Fig. 1.7 from [Zavarise 98]).

Figure 1.7: Example of spurious penetrations of NTS discretization and
accurate treatment in the framework of Segment-to-Segment (adapted from
Zavarise and Wriggers [Zavarise 98]).

1.2.3 Contact resolution

As mentioned above, the rigorous formulation of a variational principle for
contact problems, results in a variational inequality subjected to geometrical
constraints [Kikuchi 88]. These constraints can be brought as additional
terms in the objective energy functional by means of penalty, Lagrange
multiplier or other methods [Bertsekas 84], [Bertsekas 03], [Luenberger 03],
[Bonnans 06], etc. Such an operation converts the constrained optimization,
where constraints are given as inequalities, into an unconstrained or partly
unconstrained one. If one supposes the active contact zone to be known,
then the variational inequality can be replaced by a variational equality, which
finally results in an unconstrained problem written in a standard form of
variational equality [Wriggers 06]. This problem can be treated as a standard
nonlinear minimization problem by means available in the given finite element
code. A solver for systems of linear equations and a method for the treatment
of nonlinear problems are needed. Note that since the contact constraints are
given as inequalities, a special attention has to be paid to the definition of the
active contact zone. For penalty and augmented Lagrangian methods, this
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task is trivial. For the Lagrange multiplier method, an active set strategy
should be employed (for the definition of the active set strategy see, for
example [Luenberger 03]).

The resulting unconstrained minimization problem is not sufficiently
smooth, which may result in slow convergence of the employed iteration
scheme or even in divergence. The stability of the numerical scheme depends
on the discretization and on the solution parameters. Note that the frictional
contact renders the tangent matrix nonsymmetric, which presents a problem for
several solvers (like conjugate gradient method) and for the parallel treatment
of the problem: the Schwarz theory for nonsymmetric problems is less
satisfactory than for positive definite symmetric problems [Toselli 05]. The way
out has been proposed in [Laursen 92], [Laursen 93] for augmented Lagrangian
method with Uzawa’s algorithm – governing equations of Coulomb’s friction
have been linearized by the operator splitting technique, first recognized
in [Glowinski 89], i.e. the entire problem is recast in two subproblems, which
are solved once at each solution step. Augmented Lagrangian and Lagrange
multiplier methods derive a non-symmetric tangent matrices only for the slip
state. This is due to the nonassociativity of Coulomb’s friction law, i.e. slip
occurs in the plane of the constant contact pressure. The penalty method
suffers from a non-symmetry both in stick and slip states. A solution has been
proposed in [Wriggers 06], it consists in a similar treatment of all the deviations
from the stick state, i.e. no difference between normal and tangential deviations
from the stick are made. Another approach yielding a symmetric tangent
matrix in stick state has been proposed in [Konyukhov 05], based on a rigorous
covariant description of the contact geometry. The same authors proposed
a symmetrization of different friction models based on the augmented
Lagrangian method coupled with Uzawa’s algorithm [Konyukhov 07b].

1.3 Motivation and overview

The principal motivation of this dissertation is implementation of a robust and
fast sequential and parallel contact algorithm in the implicit Finite Element
software Z-set (ZéBuLoN) [Besson 97]. Since there is no specific predefined
application, the algorithm should be multipurpose. The principle requirement
is the efficient treatment of large contact problems within sequential or parallel
framework on parallel computers with distributed memory and within the
nonoverlapping domain decomposition methods. Another aim predefined the
size of the manuscript is to provide a reader with a consistent theoretical and
methodological foundation of the computational contact mechanics.

The three principal parts of the thesis are: geometry of the contact, contact
detection and resolution techniques. All parts are interdependent, but we tried
to render each chapter more or less self-sufficient. So the sequence order of
chapters is rather arbitrary. It is worth mentioning that in all chapters, except
the chapter devoted to contact detection, a new algebra is used. It arises from
a generalization of the tensor algebra and operates with abstract s-structures,
elements of s-spaces. A comprehensive presentation of s-structures in a general
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Chapter 1. Introduction to contact mechanics

context is given in Appendix A. It follows the presentation of vectors and
higher-order tensors which is given in a form conforming with s-structures.

Chapter 2 gives an elaborated presentation of the geometrically precise
theory of contact. The relevant geometrical quantities and notions are
introduced: closest points, gap function, tangential relative sliding. Several
original ideas related to the geometrically precise theory of contact are
presented.

In Chapter 3, different contact detection schemes for Node-to-Segment
discretization are elaborated in minute detail. Sequential and parallel
implementation are discussed both for known and unknown a priori master-
slave discretizations. Some numerical examples are given.

The main governing equations are given in Chapter 4. The presentation
starts from the primitive case of a unilateral contact with a rigid plane. Based on
this simple case an interpretation of frictional and contact constraints is given
by ordinary Dirichlet and Neumann boundary conditions. Next, Signorini’s
problem is presented and finally a bilateral (multibody) framework is given.
The resulting variational inequality is recast in a variational equality using
penalty, Lagrange multiplier and augmented Lagrangian methods. Related
weak forms for frictionless and frictional contact for each method are presented
and the resulting algorithm is illustrated by a simple example of unilateral
contact.

Chapter 5 provides the reader with a minimal knowledge of the numerical
schemes used in computational contact mechanics. Newton’s method and its
generalization for the case of nonsmooth functions and the return mapping
algorithm are presented. Next, a short introduction in the standard formalism
of the Finite Element Method is given, followed by the derivation of
the expressions needed for implementing of the penalty and augmented
Lagrangian method in a finite element code. Linearized forms adapted for the
Newton’s method are deduced. Finally, the details of implementation of the
partial Dirichlet-Neumann approach considered in Chapter 4 are discussed,
followed by several technical remarks on the implementation of the contact
algorithms in a Finite Element environment.

Numerical examples are brought together in Chapter 6. Contact problems
with known analytical solution and examples demonstrating the performance
of the implemented methods for highly nonlinear problems are presented.
Finally, in Chapter 7 the main contributions and the short term perspectives of
the dissertation are summarized.
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Chapter 2

Geometry in contact mechanics

Résumé de Chapitre 2 «Géométrie en mécanique de
contact»

Le deuxième chapitre présente un travail fondamental et original portant sur la
définition d’une théorie précise de la géométrie du contact. Après avoir démontré
l’importance de la description géométrique et les ambiguïtés qui peuvent être liées à des
situations pathologiques, on introduit quelques définitions de base telles que la distance
de séparation, le point le plus proche et la vitesse tangentielle relative. On discute en
détail les subtilités (asymétrie, non-unicité, existence) de la définition du point le plus
proche et la différence entre le minimum et infimum dans cette définition. Puis on
donne la forme qui définit de façon rigoureuse la distance de séparation normale ; cette
forme est adaptée aux surfaces lisses par morceaux et est bien adaptée aux méthodes
numériques de détection.

Cependant la séparation normale et la méthode de projection associée ont quelques
inconvénients : en particulier, le point de projection n’est pas une fonction continue de
la position du point esclave. La distance de glissement est associée directement à deux
positions consécutives de la projection et l’énergie dissipée due au frottement est liée à
la distance de glissement. Ainsi la forme faible du système devient-elle non continue,
si bien que la convergence de la résolution n’est pas assurée. Ceci est un argument
pour construire une nouvelle procédure de projection, dite «ombre portée». Le point de
projection de l’esclave sur la surface maître est construit en fonction de l’ombre projetée
du point esclave, la lumière étant émise par un point imaginaire, situé à une distance
finie, ou à l’infini. Cette procédure permet de retrouver une projection continue et, en
conséquence une forme faible mieux adaptée à la résolution numérique.
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2.1 Introduction

Puis on dérive les première et deuxième variations des variables cinétiques (la
séparation normale et le paramètre local) pour la géométrie continue. Tous les calculs
ont été faits en exploitant un nouveau formalisme, dit «algèbre de S-structure», qui est
une généralisation des opérations sur les tenseurs à des opérations sur des champs des
tenseurs. On obtient toutes les expressions nécessaires pour intégrer une géométrie
arbitraire et non-linéaire dans un code de calcul par élément finis pour la projection
normale et la projection d’ombre portée. Les expressions complètes sont comparées
d’une part avec les «vraies» variations obtenues numériquement, et avec les expressions
analytiques simplifiées souvent utilisées dans le calcul numérique. L’étude statistique
démontre l’avantage et la convergence des formes rigoureuses.

En fin de ce chapitre, on propose une nouvelle méthode d’enrichissement de la
géométrie de contact, inspirée par la méthode X-FEM. Le but est de prendre en compte
une géométrie complexe de la surface sans la discrétiser. Cette méthode est utile pour la
simulation du frottement anisotrope et dans le cas où la géométrie change localement
en raison d’un changement d’état de déformation et de contrainte (usure, mécanismes
d’intrusion–extrusion, etc. . . ).

2.1 Introduction

Contact phenomenon takes place at the interface between solids. This
fact implies a strong connection of the contact problem with a rigorous
description of the geometry of contacting surfaces. The first continuum based
description of the contact problem was given by Simo and Laursen [Laursen 93]
and Laursen [Laursen 94]. Such a geometrical description still presents an
interesting topic for research in computational contact mechanics, see e.g.recent
articles by Konyukhov [Konyukhov 06b], [Konyukhov 06a], [Konyukhov 09].
The mathematical formulation of frictionless contact conditions leads to
equations connecting the normal contact pressure σn with the mutual penetration
of bodies, expressed by a signed gap function, frequently the normal gap function,
gn is used. The formulation of frictional contact leads to the connection between
shear or tangential contact stress vector σt and the relative tangential sliding velocity
ġt. The contact stress has to be integrated over the contact surface Γc

i of each
solid, where i ∈ [0; Nc] and Nc the total number of contacting surfaces.

Let us show how important the geometry is for contact mechanics and
how the geometrical description may predetermine methods and approaches
which are used in numerical treatment of contact. As is known, there is an
ambiguity in the definition of the normal gap gn between contacting surfaces.
At first glance, it seems easy to determine the normal gap for each point of a
contacting surface as a distance to the closest point of the second surface: for
a point M of the first surface M ∈ ∂A one seeks for the closest point N on the
other surface N ∈ ∂B. Three problems arise from such a definition:

P1 Asymmetry of surfaces (Fig. 2.1,a.)
If instead of seeking for the closest point N ∈ ∂B to the point M ∈ ∂A,
one inverts the problem and searches for the point M′ ∈ ∂A closest to
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Chapter 2. Geometry in contact mechanics

the N ∈ ∂B, then the points M and M′ do not coincide as soon as the
contacting surfaces are not parallel at least locally. It means that there
is no one-to-one equitable correspondence between surface points. It
implies an asymmetry in the gap function and consequently in the entire
geometrical description.

P2 Non-uniqueness of the closest point (Fig. 2.1,b.)
For example, the center of a circle does not have a single closest
point on the circle, but all the points on the circle are equally close
to its center. All other points have a unique closest point on the
circle. The uniqueness of the closest point refers to the curvature
of the considered curve or surface and has been discussed in detail
by Heergaard and Curnier [Heegaard 96], Pietrzak [Pietrzak 97] and
Konyukhov [Konyukhov 08]. The limit case of the infinite curvature
corresponds to the third problem.

P3 Requirement of smoothness (Fig. 2.1,c.)
Smoothness of at least one of the contacting surfaces (master) is not
sufficient but necessary condition for existence of the normal projection1

point. The smooth surface allows a rigorous mathematical description
of contact, a robust detection procedure and a reliable convergence of
numerical schemes. However, surfaces in the Finite Element framework
are only piecewise smooth due to the discretization. The non-smoothness
represents another source for existence of multiple closest points and
generates blind angles in normal projection domains, discontinuous
normal vector field and related problems - oscillations and possible
divergence of the numerical solution.

Figure 2.1: Geometry related problems: a – asymmetry of the closest point
definition; b – non-uniqueness of the closest point; c – nonexistence of the
normal projection point.

All these difficulties affect the geometrical description of the contact.
The asymmetry of the closest point detection (P1) results in an asymmetric

1by normal projection of a slave we imply such a point on the master surface that the vector
connecting the slave and its projection is collinear with the normal vector constructed on the
master surface
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2.1 Introduction

treatment of contact surfaces, it leads to the so-called “master-slave” approach
(also called “target-impactor” or “target-contactor”). For each point of the
slave surface ri ∈ Γs the closest point on the master surface ρ

i
∈ Γm has to be

determined, i.e.

ρ
i
=

{
ρ

i
∈ Γm

∣∣∣∣ ∀ρ ∈ Γm : ‖ρ
i
− ri‖ ≤ ‖ρ − ri‖

}
.

Due to the non-uniqueness of the closest point (P2), a different technique
fulfilling additional conditions on the uniqueness and continuity of the
projection, can be elaborated (see section 2.2.3). That allows to improve the
convergence and to avoid nonphysical discontinuities in sliding path, which is
crucial for a rigorous description of frictional contact.

The non-smoothness of the surface (P3) arises from the discontinuity of
local bases across boundaries of adjacent segments or faces in the finite element
discretization and produces convergence problems and oscillations in the finite
element framework. The main remedy consists in smoothing the master surface
over several segments [Pietrzak 97], [Wriggers 01], [Krstulović-Opara 02].

As one can see, the definition of the gap function and the closest point brings
out a series of difficulties. This short preface allows to realize the importance
of a well founded geometrical approach needed to deal with contact problems.
Especially, it worth mentioning that classical contact detection techniques are
strongly connected with the closest point definition. All results concerning
the definition of the closest point will be used in Chapter 3 devoted to the
development of a reliable contact detection procedure.

The aim of this chapter is an elaborated analysis of geometry related
questions in computational contact mechanics in the framework of the FEM
and the Node-to-Segment discretization. According to the high standards
which were set up in computational contact mechanics by Simo and
Laursen [Laursen 93] and in order to provide a multipurpose and discretization
independent framework, we start from the continuous description of the
contact geometry. Such an approach is valid both for classical Node-to-Segment
discretization for any type of finite elements and for special cases, namely
unilateral contact with a rigid surface and smoothed master surfaces:

• Unilateral contact with a rigid surface:
contact between a deformable solid and a rigid surface, the latter can be
described by an analytical function or a CAD model, see [Hansson 90]
for frictionless and [Heege 96] for frictional cases; among engineering
problems subjected to this case there are metal forming and metal
processing, rubber-metal and tire-road contact, etc.

• Smoothed master surface: for many reasons it is advantageous to replace
a piecewise smooth master surface by a C1 smooth surface (NURBS,
Bézier, Gregory patches, etc) based on information from several adjacent
master segments; this procedure ensures a continuous projection on
the master surface and leads to a better convergence [Pietrzak 97],
[Padmanabhan 01], [Puso 02], [Wriggers 01], [Krstulović-Opara 02] and
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Chapter 2. Geometry in contact mechanics

[Wriggers 06], [Chamoret 04], etc; all smoothing procedures enrich the
geometry and require an adapted geometrical description, which can be
easily derived from the continuous description of the contact geometry.

The geometrical description is confined to the interaction between a point
(slave) and a surface (master). Such a description is adapted to the classic NTS
contact discretization, which as known introduces some important drawbacks.
Nevertheless it is widely used, rather robust and simple. We make a start
from a short description of a point-surface geometry. Furthermore, a rigorous
closest point definition will be given and two key geometrical quantities
will be introduced, the normal gap gn and the tangential sliding velocity ġt.
Next, a new projection technique (“shadow” projection) will be proposed,
providing a continuous and unique projection of a slave point onto C0, C1 and
C2 continuous surfaces.

The next part will be devoted to the incorporation of contact terms into the
weak form arising from the application of the principle of virtual works in the
Finite Element Method. The weak form consists of the total virtual work of
the internal and external forces over volumes and surfaces of contacting solids.
Variations of geometrical quantities – normal gap gn and tangential relative
slip g

t
:

δgn, δg
t

are needed to derive the contribution of the contact interface to the balance
of virtual works. The resulting equation is nonlinear, and its linearized form
is required to provide a solution within the implicit integration scheme in
the Finite Element Method. For that purpose, the second variations of these
geometrical quantities are needed:

∆δgn, ∆δg
t

Initially, the geometrical variations were obtained for particular finite
element discretizations in [Parisch 89]; they can also be found in a recent book
[Wriggers 06]. Laursen and Simo [Laursen 93] established a new standard in
computational contact mechanics by deriving all equations in continuous form,
which can then be easily applied to any discretization of the contact interface.
Different forms of these expressions can be found, e.g. in [Pietrzak 97],
[Pietrzak 99]. Simplified expressions using the assumption of a zero normal
gap can be found in [Konyukhov 05]. Here, all required variations will be
obtained without any assumptions concerning the value of the normal gap.
All computations have been carried out independently from other authors
using a new mathematical formalism (see Appendix A). Resulting expressions
have been validated numerically (Sec. 2.3) and a closed “ready-to-implement”
form, adapted for the Finite Element Method, is given in Sec. 2.4. In our
computation, we do not use any assumption concerning the size of the normal
gap. This differs from the approach, where the normal gap is assumed to be
negligibly small gn = 0, which makes the computation of necessary variations
quite simple, see [Konyukhov 05], [Wriggers 06], but leads to the lost of the
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2.1 Introduction

quadratic convergence of Newton’s method. In Section 2.3 both formulations
are compared.

All needed expressions will be obtained for two different projection types:
the classical normal projection and an original technique – the shadow projection
method, which smooths over some drawbacks of the normal projection (non-
uniqueness or nonexistence of the projection). Another original contribution
of this chapter is the introduction of enriched master geometry, see Section 2.5.
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Chapter 2. Geometry in contact mechanics

2.2 Interaction between contacting surfaces

Notation

• Time: t

• Radius vector of the slave point: rs = rs(t) ∈ Γs

• Master surface parametrization by v-scalar:

ξ∼ = ξ∼(t) =
[
ξ1(t)
ξ2(t)

]

• Surface coordinates of the slave point’s projection onto the master surface:

ξ∼π = ξ∼π(t)

• Radius vector of the slave point projection onto the master surface:

ρ = ρ(t, ξ∼π) ∈ Γm

• V-vector of covariant tangential vectors on the surface (covariant surface
basis at the projection point):

∇ξ∼
ρ(t, ξ∼π) =

∂ρ

∂ ξ∼

∣∣∣∣∣∣∣
ξ∼π
∼




∂ρ

∂ξ1

∂ρ

∂ξ2




• V-vector of contravariant tangential basis vectors on the surface
(contravariant surface basis at the projection point):

∂ρ

∂ξ∼
= Ā≈

∂ρ

∂ξ∼

• First covariant fundamental surface metric matrix (t-scalar):

A≈ =
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

• First contravariant fundamental surface metric matrix (t-scalar):

Ā≈ = A≈
−1 =

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T
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2.2 Interaction between contacting surfaces

• Second covariant fundamental surface matrix (t-scalar):

H≈ = n ·
∂2ρ

∂ ξ∼
2

• Unit vector normal to the master surface at the projection point:

n = n(t, ξ∼π) =
ρ

1
× ρ

2∥∥∥∥ρ
1
× ρ

2

∥∥∥∥

• Normal gap:
gn = gn(t) = (rs − ρ) · n (2.1)

• Tangential sliding velocity: ġt =
∂ρ

∂ξ∼
ξ̇∼

~
Remark 2.1 on s-structures (v- and t- notations).

At first sight, introducing s-structures seems cumbersome. However, the description
of spatial interaction between surfaces requires both 3D quantities associated with the
space and 2D quantities associated with the surface; consequently, the use of indices
and Einstein summation is ambiguous, because for some quantities index changes from
1 to 3, for other - from 1 to 2. In differential geometry this ambiguity is avoided by the
use of Greek and Roman alphabets to distinguish summation limits. However, I wished
to get rid of indices and to express everything in shorter and more transparent notations
of the direct tensor language. Moreover, a consistent formulation of s-structures over
the space of vectors and tensors leads to an improvement and simplification of the tensor
apparatus in many cases as shown in Appendix A. The new formalism of s-structures
(set-structures) is introduced and explained in details in Appendix A.6. In this chapter
a reduced form of s-structures is employed (see Section A.7).

2.2.1 Normal gap

Problem definition

As mentioned in the introduction, the definition of the gap2 between close
surfaces and the closest point determination are not trivial tasks. These two
quantities are of a big importance for computational contact mechanics. The
closest point projection is used during a local contact detection procedure and
its change describes the tangential sliding between surfaces. The normal gap
strongly connected with the closest point plays a crucial role in description of

2By “gap” between contacting surface we will understand any scalar function of the slave
point and the master surface, which is positive if there is no contact, zero if there is a contact and
negative if a penetration takes place. By “normal gap” we will understand the shortest distance
between the slave node and the master surface with the same sign rules.
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the normal contact.

Formally, the absolute value of the normal gap |gn| is defined as the closest
distance from the slave node to the master surface. It can be interpreted as the
minimal radius R ∈ [0;∞] of a sphere (circle in 2D) with its center placed in the
slave point rs and touching (but not intersecting) the master surface. Remark
that it does not matter if this sphere touches the master surface in one, several
or infinitely many points. The gap is positive if the slave point is outside of
the solid enveloped by the master surface, else it is negative. The sign of the
normal gap means that

• gn > 0 – solids are locally separated;

• gn = 0 – solids are locally in contact;

• gn < 0 – solids locally penetrate each other.

The normal gap can be also defined by using the closest point concept:
the absolute value of the normal gap is then the distance between the slave
node and the closest point on the master surface. It is considered positive
gn > 0 if the dot product of the vector connecting the slave node and the
closest point ρwith a vector normal to the surface is positive

(
rs − ρ

)
· n

(
ρ
)
> 0

and negative otherwise. The normal at the master surface in every point is
oriented outwards the bulk. Remark that for shell structures each surface has
two opposite normals. In the latter case to define the sign of the gap one needs
to know the history of the master-slave interaction. Formally, the point ρ on
the master surface is called the closest point to the slave point rs if all other

points of the master surface are not closer than
∥∥∥∥ρ − rs

∥∥∥∥. According to this
definition for any closed master surface, the closest point always exists, but it
is not always unique. Several closest points (or even an infinite number) may
satisfy this definition.

An attempt to summarize different approaches and to overcome the
difficulties related to the definition of the normal gap and the closest
point has been undertaken by Konyukhov et al. [Konyukhov 08], where
authors introduce a continuous projection domain and the generalized closest
point procedure. However, the proposed approach does not cover all cases
and requires proximity of the slave node to the master surface. Here, we
develop a new approach to the normal gap and the closest point definition
valid for piecewise C1-smooth master surface and for any position of the slave
point. This new approach is based on the rigorous definition of the normal
gap. Some techniques to overcome non-uniqueness of the closest point will be
also proposed.
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Definition

i Definition. Normal gap.

An absolute value of the normal gap |gn| between the slave point rs and the master

surface Γm is related to the infimum of the distance functional F
(
ρ
)

on the closed set

of the master surface ρ ∈ Γm in the following way:

F
(
ρ
)
=

1
2

(
rs − ρ

)2
, |gn| =

√
2 inf
ρ′∈Γm

{
F
(
ρ′

)}
(2.2)

The normal gap is positive if the slave point is outside of the solid enveloped by the
master surface, otherwise the normal gap is negative.

~
Remark 2.2 on the difference between infimum and minimum .

Frequently, for the definition of the normal gap a “minimum” of the distance function
is used instead of an “infimum”, moreover the distance functional is assumed to be
smooth enough. This imprecision often leads to a wrong or even non-existing normal
gap (see Fig. below). Rigorously speaking, a minimum of a function can be studied
only on an open set ρ ∈ Γm \ ∂Γm and it is defined for any continuous function (see

below). A function can have infinitely many minima or does not have them at all,
infimum always exists and is always unique. However, on an open set, minimum
point x∗ always belongs to the set, infimum M does not always belong to the image of
the set M < Im(F), it does when a closed set is considered. For scalar functions the
following equations define minima and infimum:
•Minimum of function F(x) ∈ C0

(x0;x1)

F(x∗) = min
x∈(x0;x1)

[F(x)]⇔ ∃ε, ∀x ∈ (x0; x1) and 0 < ‖x − x∗‖ < ε : F(x) ≥ F(x∗)

•Minimum of function F(x) ∈ C1
(x0;x1)

F(x∗) = min
x∈(x0;x1)

[F(x)]⇔ ∂F

∂x

∣∣∣∣∣
x∗
= 0 and

∂2F

∂x2

∣∣∣∣∣∣
x∗−

> 0 and
∂2F

∂x2

∣∣∣∣∣∣
x∗+

> 0

•Minimum of function F(x) ∈ C2
(x0;x1)

F(x∗) = min
x∈(x0;x1)

[F(x)]⇔ ∂F

∂x

∣∣∣∣∣
x∗
= 0 and

∂2F

∂x2

∣∣∣∣∣∣
x∗
> 0

• Infimum of function F(x) ∈ C0
(x0;x1)

M = inf
x∈(x0;x1)

[F(x)]⇔
{ ∣∣∣∣∣

∀x ∈ (x0; x1) : F(x) ≥M
∀M′ > M, ∃x ∈ (x0; x1) : F(x) ≤M′
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Difference between “inf” and “min” definition of the closest point: a. – wrong “min”
closest point, b. – “min” closest point does not exist, c. – multiple “min” closest

points.

According to this definition, the normal gap always exists. It follows from
the remark that the infimum and the global minimum m̃in are equivalent for a
closed set Γm except edges (see Fig. in Remark 2.3 and Fig. 2.2). Moreover,
according to the definition a smoothness of the distance functional is not
required.

���
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���

���

Figure 2.2: Equivalence between inf and inf
i

[mini] closest point definition for

C0 function far from edges.

From a numerical point of view, it is not convenient to solve directly Eq. (2.2)
for a C0 surface. It is better to split it into several smooth open sets and
points of nondifferentiability. So let us consider the master Γm as the union of
parametrized surfaces Γi

s, parametrized edges Γ j
e and vertices Γk

v (Fig. 2.3)

Γm =


⋃

i=1,Ns

Γi
s

 ∪


⋃

i=1,Ne

Γ
j
e

 ∪


⋃

i=1,Nv

Γk
v

 .

The parametrization of surfaces (segments) is defined by a scalar ξ ∈ Iξ in 2D
or by v-scalar ξ∼ ∈ Iξ in 3D, so ρ = ρ( ξ∼), ξ∼ ∈ Iξ where Iξ is an open set. The
parametrization of edges in 3D is defined by scalar parameter ζ ∈ Iζ, where Iζ
is also an open set. Finally, in 3D, a master surface consists of:

• Ns connected parametrized open and C2-smooth surfaces (segments)

ρi( ξ∼) ∈ Γi
s, i ∈ [1,Ns], ξ∼ ∈ Iξ,

∂3ρ

∂ ξ∼
3
< ∞
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• Ne C2-smooth open parametrized edges

ρ j(ζ) ∈ Γ j
e, j ∈ [1; Ne], ζ ∈ Iζ,

∂3ρ

∂ζ3
< ∞

• Nv vertices
ρ

k
∈ Γk

v, k ∈ [1; Nv].

Figure 2.3: Split of the 3D master surface into sets of surfaces, edges, vertices
and 2D master curves into sets of segments and vertices.

The absolute value of the normal gap can be expressed in a more appropriate
form from a numerical point of view:

|gn| =
√

2 inf
ρ∈Γm

{
F(ρ)

}

inf
ρ∈Γm

{
F
(
ρ
)}
=




3D : inf



inf
ρi∈Γi

s,i∈[1;Ns]

 ext
ξ∼ ∈ Iξ

F
(
ρi

(
ξ∼
))


inf
ρ j∈Γ j

e, j∈[1;Ne]

{
ext
ζ ∈ Iζ

F
(
ρ j (ζ)

)}

inf
ρk∈Γk

v,k∈[1;Nv]

{
F
(
ρk

)}

term 3D.1

term 3D.2

term 3D.3

2D : inf



inf
ρi∈Γi

s,i∈[1;Ns]

{
ext
ξ ∈ Iξ

F(ρi(ξ))
}

inf
ρk∈Γk

v,k∈[1;Nv]

{
F
(
ρk

)}
term 2D.1

term 2D.2

(2.3)
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Chapter 2. Geometry in contact mechanics

Remark that there is neither local nor global minimum in the definition, they
have been replaced by extremum (ext). It does not change the result, but
may facilitate the numerical treatment, because the investigation of the sign of
second or higher order derivatives of the functional F is no longer needed. A
sufficient and necessary condition for extremum of a smooth function is the
equality of the first derivative to zero:

F(x) ∈ C2(x), F(x∗) = ext F(x) ⇔ ∂F

∂x

∣∣∣∣∣
x∗
= 0.

According to Eq. (2.3) the infimum can correspond to one, several or infinitely
many points on the master surface Γm. One of these points can be defined as
the closest point.

2.2.2 The closest point

The closest point on 3D surface and 2D curve Let us analyze Eq. (2.3) term
by term; the extremum of the distance function on the i-th smooth and open
surface Γi

s (Fig. 2.4, Eq. 2.3 term 3D.1)

ρ′ ∈ Γi
m, F( ξ∼) ∈ C2(Iξ), ext

ξ∼ ∈ Iξ

[
F
(
ρ′( ξ∼)

)]
⇔

gives the following equation for the closest projection point:

⇔ ∂F

∂ξ∼
= 0⇔ (rs − ρ) ·

∂ρ

∂ξ∼
= 0 (2.4)

Since F(ρ) is C∞ smooth by ρ, then the requirement of smoothness of F( ξ∼) by ξ∼
is equivalent to the smoothness ofρ( ξ∼) by ξ∼ . The last equality in Eq. (2.4) means

that the vectors of the local basis in an extremum point ρ( ξ∼
j) are orthogonal to

the vector connecting this point with the slave point. The unit normal to the
master surface in the extremum point can be evaluated as a cross product of
the local basis vectors

n =

∂ρ

∂ξ1
×

∂ρ

∂ξ2∥∥∥∥∥
∂ρ

∂ξ1
×

∂ρ

∂ξ2

∥∥∥∥∥
(2.5)

All vectors which are orthogonal to both vectors of the local basis are collinear
with the normal vector, consequently from (2.4) and (2.5) rs − ρ( ξ∼

j) = αn( ξ∼
j),

where α is nothing but the distance between the slave point and its projection
taken with an appropriate sign

rs − ρ( ξ∼
j) = ±

∥∥∥∥ rs − ρ( ξ∼
j)
∥∥∥∥ n( ξ∼

j). (2.6)

If ξ∼
j is a point of the global minimum on the current surface Γ j

s, then the norm

appearing in (2.6) can be replaced by the local normal gap g
j
n

rs − ρ( ξ∼
j) = g

j
n n( ξ∼

j). (2.7)
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2.2 Interaction between contacting surfaces

Figure 2.4: Geometry of a smooth master surface with a close slave point.

However, Eq. (2.4) is not simple, different cases are possible. Let us analyze
them in detail. To employ Newton’s method to solve it, one has to linearize
this equation, at point ξ∼ it gives


(rs − ρ) ·

∂ρ

∂ξ∼




∣∣∣∣∣∣∣
ξ∼+δ ξ∼

=


(rs − ρ) ·

∂ρ

∂ξ∼




∣∣∣∣∣∣∣
ξ∼

+


−
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

+ (rs − ρ) ·
∂2ρ

∂ξ∼
2




∣∣∣∣∣∣∣
ξ∼

·δ ξ∼ = 0

The increment of the surface parameter is then:

δ ξ∼ =



∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

− (rs − ρ) ·
∂2ρ

∂ξ∼
2




−1

·

(rs − ρ) ·

∂ρ

∂ξ∼


 . (2.8)

Remark that we cannot substitute (rs − ρ) in (2.8) according to (2.7), since
the latter is correct only in the extremum point. It can be shown that the
inversed t-scalar in (2.8) is always defined for all ξ∼ which are not solutions of
Eq. (2.4). So if one makes a start from a non extremum point, at least the first
step of the Newton’s method (Eq. (2.8)) is ensured. If the starting point is an
extremum point, then the solution has been achieved; Newton’s method cannot
provide us with another extremum. To find all solutions of Equation (2.4) by a
simple Newton’s method, the master surface Γi

m has to be divided into regions
containing only one extremum or a more advanced method has to be used. In
case of a 2D geometry, the term 2D.1 from Eq. (2.3) gives the following equation
for the increment of ξ:

δξ =
(rs − ρ) ·

∂ρ

∂ξ

∂ρ

∂ξ ·
∂ρ

∂ξ − (rs − ρ) ·
∂2ρ

∂ξ2

. (2.9)
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It can be also shown that the denominator in (2.9) is not zero for non extremum
points.

Different simple and non-trivial cases of extremum location are presented
in Figure 2.5 for 2D and in Figure 2.6 for 3D geometries. Within the chosen
numerical scheme it is complicated to analyze cases when the functional F has
several or infinitely many extrema (Fig. 2.5: b,c,d and Fig. 2.6: b,c,d).
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Figure 2.5: Different cases of extremum location in 2D: a. – unique extremum
(global minimum), b. – several extrema located at the same distance from the
slave point, c. – case of infinite number of extrema, slave point is situated in
the local center of curvature of the master surface, d. – case of several different
extrema, e. – unique extremum (global maximum).
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2.2 Interaction between contacting surfaces

Figure 2.6: Different cases of extremum location in 3D: a. – unique extremum
(global minimum), b. – several extrema located at the same distance from the
slave point, c. – case of infinite number of extrema (curve), c. – case of infinite
number of extrema (surface).

The closest point on a 3D curve An extremum point on the j-th smooth curve
Γ

j
e (term 3D.2) can be determined (Fig. 2.7) just like as for the surface:

ρ′ ∈ Γ j
e, F(ζ) ∈ C2(Iζ), ext

ζ ∈ Iζ

[
F
(
ρ′(ζ)

)]
⇔

⇔ dF

dζ
= 0⇔ (rs − ρ) ·

∂ρ

∂ζ
= 0⇔ (rs − ρ) ·

∂ρ

∂s(ζ)
= 0,

(2.10)

where s is a classical parametrization of the curve and it denotes the curve’s
length

ds =

√
∂ρ

∂ζ
·
∂ρ

∂ζ
dζ.

Three normalized basis vectors can be associated with the curve:

• a unit tangential vector

τ =
∂ρ

∂s
;

• a unit normal vector pointing to a center of curvature of the curve

ν =
1
κ

∂2ρ

∂s2
;

• a unit binormal vector defined as the cross product of the first two

β = τ × ν;
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where κ is the curve’s curvature defined as

κ(ζ) =

∥∥∥∥∥∥
∂ρ

∂ζ ×
∂2ρ

∂ζ2

∥∥∥∥∥∥
∥∥∥∥∥
∂ρ

∂ζ

∥∥∥∥∥
3

.

Figure 2.7: Point-curve interaction in three dimensional space.

The numerical scheme to find an extremum point is derived just like for a
surface or a curve in 2D. The linearization of Eq. (2.10) gives:


(rs − ρ) ·

∂ρ

∂ζ




∣∣∣∣∣∣
ζ0+δζ

=


(rs − ρ) ·

∂ρ

∂ζ




∣∣∣∣∣∣
ζ0

+


−
∂ρ

∂ζ
·
∂ρ

∂ζ
+ (rs − ρ) ·

∂2ρ

∂ζ2




∣∣∣∣∣∣∣
ζ0

· δζ = 0

So the increment of the parameter δζ is always defined if the last term in square
brackets is not zero, i.e. if

(rs − ρ(ζ)) · t , 0,

where t =
∂ρ

∂ζ , then ζ is not solution of (2.10), then a finite increment for the
curve parameter is given by:

δζ =
(rs − ρ) · t

t · t − κν · (rs − ρ)
(2.11)

The last terms (3D.3) and (2D.2) in (2.3) are trivial: the distance from the
slave point has to be measured to each vertex of the master surface, no iterations
are needed. Finally, Eq. (2.8), (2.11) in 3D and (2.9) in 2D allow to determine an
extremum on surfacesΓi

m and edgesΓ j
e in 3D and on curvesΓ j

e in 2D respectively.
Next, the infimum over all extrema has to be determined. However, as already
mentioned sometimes the closest point is not unique, or even the number of
these points is uncountable. A remedy for that is a selection procedure between
several or an infinite number of closest points: for example, one can choose the
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2.2 Interaction between contacting surfaces

new closest point according to the previous position of the closest point. The
new point has to be chosen in agreement with the relative motion.

Let us demonstrate the closest point projection procedure for a special
master geometry and slave point’s path (Fig. 2.8,a). The master surface ABCD
consists of a straight segment AB, a circle arc BC and another straight segment
CD. The slave point follows the path 1-6-10-1. In Fig. 2.8,b, the following
projection zones are presented:

• all points in“K” zone are projected on the arc BC;

• “L” - on the segment AB;

• “M” - on the vertex B;

• “N” - on the vertex C;

• “P” - on the segment CD.

Some projection zones are separated by red dashed lines, they correspond
to discontinuities in the closest point projection, i.e. if a slave point crosses
such a line, its projection (closest point on the master surface) jumps from one
segment to another. For example, on path 1 − 2, the slave point moves in the
projection zone “K” and has a projection on the segment BC. At point 2, as
shown in Fig. 2.8,c, the slave point has two projections: point P on the arc
BC and point Q on the segment AB. Next, on path 2 − 3 − 4 − 5 − 6 there are
no discontinuities in the closest point projection. At point 6, the closest point
jumps from vertex B to C. Point 7 is a special point on the path, all points
of the segment BC are closest points; so in compliance with forementioned
any starting point in Newton’s procedure will be chosen as the closest one,
consequently sometimes the continuity of the projection point can be retained
if the starting point is chosen appropriately, however in the presented case there
is no way for that, so there is a discontinuity in point 7. On path 7−8−9−10 the
projection is continuous. At point 10, there are two closest points on different
segments. Path 10 − 1 is continuous.

From a numerical point of view, it is not crucial that on red dashed lines
several closest points exist, because the probability to find a slave node exactly
on these lines is zero. What is important is that, when such a line is crossed,
the projection point jumps relatively far from its position at the previous step.
Decreasing the time step to zero does not decrease the jump size. Another
observation can be made: in domains M and N, any change of position of the
slave point does not result in the change of position of the closest point.

A small change in position of the slave point does not always result in a
small change in the closest point projection, i.e. the closest point motion over
the master surface is not continuous. As seen from the example, this difficulty
is sometimes related to the fact that the slave point is relatively far from the
master surface (points 6 and 7 in Fig. 2.8), but it may be also crucial even for
sufficiently close slave nodes (point 10 in Fig. 2.8). In the case of far slave point
the jump can be very big even if the master surface is C2-smooth. The energy
dissipation within one computational increment in frictional contact problems
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Chapter 2. Geometry in contact mechanics

Figure 2.8: Path of a slave point close to a piecewise smooth master surface,
projection zones and related problems of the closest point projection.

is related to the sliding distance. If a small change in geometry results in a
jump of the projection point, so the sliding distance changes abruptly, then
the corresponding dissipated energy will also experience a jump, i.e. the
virtual work of frictional forces becomes non-continuous. In this case the
convergence of Newton’s method cannot be ensured. These consequences can
not be avoided in the classical approach, when the gap and sliding distance are
measured with respect to the closest projection point on the master surface. That
is why a new approach will be proposed in the next section.

2.2.3 Aircraft’s shadow projection method
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2.2 Interaction between contacting surfaces

Idea 2.1 Aircraft’s shadow projection method.

As an alternative to the closest point projection, we propose to determine the gap
and the relative sliding according to a new projection technique – aircraft’s shadow
projection or simply shadow projection. It establishes the relation between a slave
point and its shadow or “back-shadow” on the master surface. This shadow is cast
by an imaginary light-emitting-point (emitter) placed at some distance from the slave-
master system. This technique has been inspired from unique and continuous aircraft’s
shadow cast by the Sun on the Earth’s surface. Also this shadow projection point can
be used as a starting point for Newton’s procedure to detect the closest projection point
for complex surfaces.

Figure 2.9: An imaginary light-emitting-point (emitter) re produces shadows
and back-shadows ρ of slave nodes rs onto the nonsmooth master surface.

If the shadow exists, then it is unique, if the master surface does not cast
“shadows” on its own. To find a shadow or a ”back-shadow“ ρ (see Fig. 2.9)
of a slave point rs due to an imaginary point re emitting light, one has to solve
a nonlinear equation

F( ξ∼ , α) = ρ( ξ∼) − re − α(rs − re) = 0, (2.12)

whereα > 0 is an unknown coefficient. To solve Eq. (2.12) by Newton’s method,
it should be linearized

F( ξ∼ , α) +




∂F
∂ ξ∼
∂F
∂α




T [
δ ξ∼
δα

]
= 0 ⇔ ρ − re − α(rs − re) +




∂ρ

∂ξ∼
−(rs − re)




T [
δ ξ∼
δα

]
= 0
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We take the dot product of the latter expression with the v-vector
[
∂F
∂ ξ∼

∂F
∂α

]T

and extract the increments δ ξ∼
i and δαi

[
δ ξ∼

i

δαi

]
= −




∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

−(rs − re) ·
∂ρ

∂ξ∼
−(rs − rs) ·

∂ρ

∂ξ∼

T

(rs − re)
2




∣∣∣∣∣∣∣∣∣∣∣

−1

ξ∼
i,αi




∂ρ

∂ξ∼
·
(
ρ − re − α(rs − re)

)

−(rs − re) ·
(
ρ − re − α(rs − re)

)




∣∣∣∣∣∣∣∣∣
ξ∼

i,αi

(2.13)
It can be easily shown that the inverse matrix always exists, i.e. the determinant
is nonzero. The unknowns at ith increment become

ξ∼
i+1 = ξ∼

i + δ ξ∼
i, αi+1 = αi + δαi

and { ξ∼
0;α0} is the starting point. In this method, there is no need to split the

master surface into faces/segments, edges and vertices as it has been done for
the closest point projection. The projection point is assumed to be always
located on one of the master faces/segments ρ ∈ Γi

m. This is due to the
fact that the probability to get a shadow projection on an edge or a vertex
is zero. Since the projection zones of edges and vertices are simply surfaces
and lines respectively. Their measures are zero in comparison to the measure of
any volume (corresponding to projection zones of faces) in three-dimensional
space, so rigorously the shadow projection is situated on one of faces of the
master for almost all slave points if it exists.

The proposed method has some drawbacks:

• it is complicated to check that for a given light emitter there are no self-
shadows (see Fig. 2.10,c), i.e. there is no master points for which Eq. (2.12)
has more than one solution;

• it is not always easy to find a proper position for the emitter satisfying
the non self-shadow conditions, moreover such an emitter may not exist.

However there are also several advantages:

• If the master surface allows to find an emitter which does not create
self-shadows, it is rather simple to find the shadow projection point and
moreover such a point is unique.

• The projection of the master surface is continuous and does not depend
on smoothness and curvatures of the master surface; One can check the
continuity of the shadow projection by carrying out an imaginary test
with the slave point’s path and the master geometry given in Fig. 2.8,a
for the emitter re. This statement is valid if slave nodes remain closer to
the master surface than the emitter, which is always the case if the emitter
is chosen to be infinitely remote from the master.
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2.2 Interaction between contacting surfaces

• If the emitting point is placed infinitely far from the master surface, which
corresponds to the Sun shadow of an aircraft representing a slave point;
in this case Eq. (2.12) becomes simpler:

F( ξ∼ , α) = ρ( ξ∼) + αe − rs = 0, (2.14)

where e is a constant unit vector pointing in the direction of the infinitely
remote emitter - a pointer to the emitter. The resulting equation for
increments δ ξ∼ , δα in Newton’s method can be constructed as in Eq. 2.13

[
δ ξ∼

i

δαi

]
= −




∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

e ·
∂ρ

∂ξ∼
e ·

∂ρ

∂ξ∼

T

1




∣∣∣∣∣∣∣∣∣∣∣

−1

ξ∼
i,αi




∂ρ

∂ξ∼
·
(
ρ + αe − rs

)

e ·
(
ρ + αe − rs

)




∣∣∣∣∣∣∣∣∣
ξ∼

i,αi

(2.15)

where at the solution point, the coefficient α is nothing, but a new
“shadow” gap gs (different from the normal gap gn)

rs = ρ + gse.

As it will be demonstrated later, it is much easier to work with the latter
expression than with the similar one for the normal projection

rs = ρ + gnn.

In Fig. 2.10, different master surfaces and different positions of the emitter are
represented.

2.2.4 Tangential relative sliding

Consideration of frictional contact requires tracking of relative motion of two
surfaces both in normal and tangential directions. As shown later, the variation
of the tangential relative velocity ġt enters in the main equations governing
frictional contact (see Chapter 4). To obtain an accurate expression for ġt one
has to take into account two independent motions, those of the slave point and
of the master surface and to introduce the deformation of the latter.

A simple 1D example depicted in Fig. 2.11 demonstrates the relative motion
of a point A over a straight segment BC. Absolute velocities vA, vB, vC
correspond to points A,B and C respectively. Let us express the relative
tangential velocity ġt of the point A′ (projection of the point A) on the segment
BC. If the segment BC is parametrized with ζ ∈ [0; 1], then the point A′ can be
expressed as

ρ(A′) = ζρ(C) + (1 − ζ)ρ(B). (2.16)

Since the problem is one-dimensional, then

ρ(A) = ρ(A′) (2.17)
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Figure 2.10: Possible emitter-master configuration: unique projection of slave
nodes possessing a shadow: a – close emitter; b – infinitely remote emitter;
invalid configurations: c – incorrectly chosen emitter (there are self-shadows
on the master surface); d – the emitter deriving a unique projection for the
given master surface does not exist (self shadows are always present).

Figure 2.11: Scheme for definition of the relative tangential velocity in 1D.

and the parameter ζ can be expressed as

ζ =
(ρ(A) − ρ(B)) · (ρ(C) − ρ(B))

‖ρ(C) − ρ(B)‖2

Then the absolute velocity of the projection point can be calculated as

vA′ = ζvC + (1 − ζ)vB︸             ︷︷             ︸
=
∂ρ(A′)
∂t

+ [ρ(C) − ρ(B)]ζ̇
︸           ︷︷           ︸

∂ρ(A′)
∂ζ ζ̇
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Finally, to get the relative tangential velocity one has to substract from this

expression the velocity of the projection point
∂ρ(A′)

∂t = vA′(ζ) for a fixed ζ

ġt = vA′ −
∂ρ(A′)

∂t
= [ρ(C) − ρ(B)]ζ̇ + ζvC + (1 − ζ)vB −

∂ρ(A′)

∂t︸                          ︷︷                          ︸
=0

The expression for the relative tangential sliding is then

ġt =
∂ρ(A′)

∂ζ
ζ̇. (2.18)

The velocity of the parameter ζ̇ can be computed by taking the derivative
of Eq. (2.16), substituting (2.17) and evaluating the dot product with vector
t = ρ(C) − ρ(B)

ζ̇ =
[vA − ζvC − (1 − ζ)vB] · t

‖t‖2

Eq. (2.18) is nothing but the derivative of the projection point vector ρ(A′) along
the changing vector field ρ of the master segment BC.

In the general case the tangential relative sliding velocity is given as

ġt =
∂ρ

∂ξ∼

T

ξ̇∼ , (2.19)

where
∂ρ

∂ξ∼
is a v-vector of the local basis and ξ∼ is a convective parameter of

the master surface. Note that sometimes instead of classical time derivative
notation ġt, a ◦

gt notation is employed (see [Pietrzak 97], [Pietrzak 99]) to
emphasize the fact that there is no vector, the time derivative of which is
equal to the tangential relative sliding velocity between two deformable bodies.
The required velocity vector is obtained as the Lie derivative of the vector
connecting slave point rs and its projection ρπ. The Lie derivative evaluates

the change of a tensor field3 along the change of a vector field. The objective
expression for the relative tangential sliding velocity has been obtained by
Laursen and Simo [Laursen 93], [Laursen 94] and following by Curnier, He
and Klarbring [Curnier 95]. A critical discussion of different forms for the
tangential relative velocity can be found in [Pietrzak 97]. In the following we
will make use of the variation of the tangential relative sliding, which is stated
as

δgt =
∂ρ

∂ξ∼

T

δξ∼ , (2.20)

3by tensor field here we mean any order tensor field.
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The length of the sliding path is computed as the following integral

gt =

t∫

t0

‖ġt‖ dt′ =

t∫

t0

∥∥∥∥∥∥∥
∂ρ

∂ξ∼

T

ξ∼

∥∥∥∥∥∥∥
dt′ =

t∫

t0

√
ξ∼

T A≈ ξ∼ dt′,

where t0 is the time of switch to the slip state, t is the actual time, and A≈ is the
first fundamental t-scalar of the surface.

2.2.5 First order variations

As already mentioned, the expressions of the first variations of the geometrical
quantities are needed to incorporate contact in the weak form. Now, the
first order variations of the normal δgn and “shadow” δgs gaps as well as
the variations of projection point coordinates δξ∼ for normal and shadow
projections will be derived for 3D surfaces and 2D curves. We will make
use of s-structures presented in detail in Appendix A. Results presented in
this section for normal projections have been obtained in collaboration with
Olga Trubienko, the master student at the Department of Mechanics and
Mathematics, Moscow State University, in Feb-Mar 2010.

Normal projection case

The slave point vector is represented by the sum of the projection vector and
the normal vector multiplied by the normal gap

rs = ρ + gnn. (2.21)

The full variation of Eq. (2.21) gives

δ̄rs = δ̄ρ + δgnn + gnδ̄n. (2.22)

It can be shown that δ̄gn = δgn; to show that, one can take a partial derivative
of expression (2.22) with respect to ξ∼ ; gn can be considered as the third
independent coordinate (the first two are given by ξ∼) of the slave point in
the local master basis. Expanding the full variations in (2.21) leads to

δrs = δρ +
∂ρ

∂ξ∼

T

δξ∼ + δgnn + gn


δn +

∂n

∂ ξ∼

T

δξ∼


 . (2.23)

Since rs, ξ∼ , gn depend only on time, their full variations δ̄ coincide with the
variation δ.
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~
Remark 2.3 on variations.

By variation of the function f (t, x(t)) at point {t0, x(t0)} we mean the following

δ f (t0, x(t0)) = lim
δt→0

(
f (t0 + δt, x(t0)) − f (t0, x(t0))

)
=
∂ f

∂t

∣∣∣∣∣
t0

δt.

The last equality is correct if the function f has a C1 smoothness by t within a certain
neighborhood of the point t0. In the considered framework, for example, the variation
of the projection point ρ is

δρ(t0) = lim
δt→0

(
ρ(t0 + δt, ξ∼(t0)) − ρ(t0, ξ∼(t0))

)
.

For the full variation of the function f (t, x(t)) we get

δ̄ f (t0, x(t0)) = lim
δt→0

(
f (t0 + δt, x(t0 + δt)) − f (t0, x(t0))

)
=

=
∂ f

∂t

∣∣∣∣∣
t0

δt +
∂ f

∂x

∣∣∣∣∣
t0

δx = δ f +
∂ f

∂x

∣∣∣∣∣
t0

δx,

The second equality is correct if the function f is C1 smooth by t and x within a certain
neighborhood of the point {t0, x(t0)}.

The scalar product of the expression (2.23) with the normal vector n gives
directly the first variation of the normal gap gn:

δgn = n · (δrs − δρ) , (2.24)

as

n ·
∂ρ

∂ξ∼
= 0; n · δn = 0 and n ·

∂n

∂ ξ∼
= 0. (2.25)

The dot product of Eq. (2.23) with the covariant basis v-vector gives

∂ρ

∂ξ∼
· (δrs − δρ) =

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

δξ∼ + gn



∂ρ

∂ξ∼
· δn +

∂ρ

∂ξ∼
·
∂n

∂ ξ∼

T

δξ∼


 ,

expressing δξ∼ we get

δξ∼ =



∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

+ gn

∂ρ

∂ξ∼
·
∂n

∂ ξ∼

T



−1

·


∂ρ

∂ξ∼
· (δrs − δρ) − gn

∂ρ

∂ξ∼
· δn


 , (2.26)

where the first term in square brackets is the first fundamental surface metric
matrix (t-scalar)

A≈ =
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

(2.27)
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and the second term should be transformed to get rid of the normal vector’s
derivative, so

∂ρ

∂ξ∼
· n = 0⇒ ∂

∂ ξ∼



∂ρ

∂ξ∼
· n


 = 0⇔

∂ρ

∂ξ∼
·
∂n

∂ ξ∼

T

= −
∂2ρ

∂ξ∼
2
· n (2.28)

which is nothing but the second fundamental surface matrix (t-scalar) with
minus sign

H≈ =
∂2ρ

∂ξ∼
2
· n. (2.29)

The last term in (2.26) should be also transformed in order to avoid the variation
of the normal, since it is more convenient to work with variations of the local
basis vectors. Similarly to (2.28) we get

∂ρ

∂ξ∼
· n = 0⇒ δ



∂ρ

∂ξ∼
· n


 = 0⇔

∂ρ

∂ξ∼
· δn = −δ

∂ρ

∂ξ∼
· n. (2.30)

Substituting (2.27), (2.29) and (2.30) into (2.26) gives the expression for the
variation of the local coordinate

δξ∼ =
[

A≈ − gn H≈
]−1



∂ρ

∂ξ∼
· (δrs − δρ) + gnn · δ

∂ρ

∂ξ∼


 . (2.31)

This is the classical expression originally obtained in [Laursen 92], [Laursen 93].
Often, the normal gap is assumed to be relatively small and is neglected, which
gives a simpler expression

δξ∼ = Ā≈
∂ρ

∂ξ∼
· (δrs − δρ) =

∂ρ

∂ξ∼
· (δrs − δρ), (2.32)

These two formulations (2.31) and (2.32) will be compared in Section 2.3.

Shadow projection case: infinitely remote emitter

In case of the “shadow” projection and an infinitely remote emitter, one makes a
start from the expression connecting the slave point rs and its shadow projection
ρ through the shadow gap gs and the unit vector e pointing to the emitter

rs = ρ + gse

the variation of this expression gives

δrs = δρ +
∂ρ

∂ξ∼

T

δξ∼ + δgse. (2.33)
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The scalar product of (2.33) with the vector e yields

δgs = e ·

(δrs − δρ) −

∂ρ

∂ξ∼

T

δξ∼


 , (2.34)

As one can see, to evaluate δgs one needs an expression for δξ∼ ; to get it, we take
a dot product of (2.33) with a v-vector containing two unit orthogonal vectors
s1, s2 laying in the plane orthogonal to the vector e:

s
∼
=

[
s1
s2

]
, s1 · s2 = 0, s

∼
· e = 0

s
∼
· (δrs − δρ) = s

∼
·
∂ρ

∂ξ∼

T

δξ∼ ,

from which it follows
δξ∼ = P≈ s

∼
· (δrs − δρ), (2.35)

with

P≈ =

s∼
·
∂ρ

∂ξ∼

T

−1

. (2.36)

It is worth mentioning that expression (2.35) in comparison to (2.31) does not
contain, at least explicitly, any gap gn or gs.

The product P≈ s
∼

can be represented in the following form

P≈ s
∼
=
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
(2.37)

To prove it we express the v-vector s
∼

through the surface basis vectors

s
∼
= a≈

∂ρ

∂ξ∼
+ b∼n (2.38)

Dot products of (2.37) with the contravariant basis v-vector and with the normal
vector give respectively

a≈ = s
∼
·
∂ρ

∂ξ∼

T

, b∼ = s
∼
· n, (2.39)

as
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼
= I≈, n ·

∂ρ

∂ξ∼

T

= 0 and
∂ρ

∂ξ∼
· n = 0

Now Eq. (2.36) can be rewritten using (2.37) and (2.39)

P≈ s
∼
=


s∼
·
∂ρ

∂ξ∼

T

−1 
s∼
·
∂ρ

∂ξ∼

T
∂ρ

∂ξ∼
+


s∼
·
∂ρ

∂ξ∼

T

−1 [
s
∼
· n

]
n, (2.40)
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where the first pair of square brackets gives a unit t-scalar I≈, and the second
pair of square brackets can be replaced by c∼

s
∼
·
∂ρ

∂ξ∼

T

−1

(s
∼
·n) = c∼ ⇔ s

∼
·n =


s
∼
·
∂ρ

∂ξ∼

T c∼ ⇔ s
∼
·

n −

∂ρ

∂ξ∼

T

c∼


 = 0⇔ n−

∂ρ

∂ξ∼

T

c∼ = βe,

(2.41)
where β is another coefficient. Left dot product of the last term with the
covariant basis v-vector gives the expression for c∼

c∼ = −β Ā≈
∂ρ

∂ξ∼
· e = −β

∂ρ

∂ξ∼
· e. (2.42)

Substituting (2.42) in (2.40) yields

P≈ s
∼
=
∂ρ

∂ξ∼
− β



∂ρ

∂ξ∼
· e


 n.

Finally, to evaluate the coefficient β, one takes the dot product of the latter
equation with vector e



∂ρ

∂ξ∼
· e


 (1 − βn · e) = 0⇒ β =

1
n · e .

So Eq. (2.37) has been proven. Using the latter equalities, the variation of the
surface parameter (2.35) can be rewritten as

δξ∼ =
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
· (δrs − δρ) . (2.43)

~
Remark 2.4 on the special projection operator.

The terms on the right-hand side appearing in Eq. (2.43) present a special
nonsymmetric projection operator. The left dot product with a given vector a projects
the latter on the plane orthogonal to the normal vector, the right dot product projects it
on the plane orthogonal to the pointer vector e, as presented in the figure below. If the
vector standing on right hand is collinear to the pointer e, then the projection operator
gives zero, if vector standing on left hand is collinear with the normal n, the projection
operator gives also zero.

[
I
=
−

e ⊗ n

e · n

]
· a = b ⇒ b · n = 0 and a ·

[
I
=
−

e ⊗ n

e · n

]
= c ⇒ c · e = 0
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if a = αe then

[
I
=
−

e ⊗ n

e · n

]
· a = 0

if a = αn then a ·
[
I
=
−

e ⊗ n

e · n

]
= 0

Fig. Representation of the projection operator

Substituting (2.43) into (2.34) yields the expression for the shadow gap’s
variation

δgs =


e − e ·



∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼



·
(
I
=
−

e ⊗ n

e · n

)

· (δrs − δρ). (2.44)

It can be shown that the term in square brackets is nothing but a symmetric

50



Chapter 2. Geometry in contact mechanics

projection operator on the basis (tangential) plane:

a ·



∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼



=



∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼



· a = a − a · n ⊗ n⇔




∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼



=



∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼



= I
=
− n ⊗ n,

(2.45)

carrying this in mind, (2.44) transforms into

δgs =
n

n · e · (δrs − δρ) . (2.46)

Shadow projection case: close emitter

In case of “shadow” projection from a close emitter, one starts from

rs = ρ + gse, (2.47)

the difference from the previous case is that vector e is not constant and takes
the following form

e =
re − rs∥∥∥ re − rs

∥∥∥
=

re − rs

dse
,

where dse =
∥∥∥ re − rs

∥∥∥ is the distance between the slave point and the emitter,
variation of this vector is

δe = −δrs
S (2.48)

where δrs
S is a normalized projection of the vector δrs on a plane orthogonal to

e

δrs
S =

(
I
=
− e ⊗ e

)
·
δrs

dse
= s
∼

T ⊗ s
∼
·
δrs

dse
= s
∼
◦
⊗ s
∼
·
δrs

dse
. (2.49)

The variation of (2.47) gives

δrs = δρ +
∂ρ

∂ξ∼

T

δξ∼ + δgse + gsδe. (2.50)

Since δe · e = 0, the dot product of expression (2.50) with vector e gives exactly
the same expression as (2.34)

δgs = e ·

(δrs − δρ) −

∂ρ

∂ξ∼

T

δξ∼


 , (2.51)

the dot product of (2.50) with v-vector s
∼

together with (2.48) gives

s
∼
·
∂ρ

∂ξ∼

T

δξ∼ = s
∼
· (δrs − δρ) + gss∼

· δrs
S, (2.52)
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and from (2.36), (2.37) and (2.49) carrying that

s
∼
· (s
∼

T ⊗ s
∼

) = s
∼

one has

δξ∼ =
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
·
[(

1 +
gs

dse

)
δrs − δρ

]
. (2.53)

This expression reduces to (2.43) for an infinitely remote emitter (dse →∞) and
for the small gap approximation (gs = 0). Substituting the surface parameter
variation (2.53) in (2.51) gives the expression for the shadow gap variation

δgs =
n

e · n · (δrs − δρ) −
gs

dse
e ·
∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
· δrs, (2.54)

using (2.45) one gets

δgs =
n

e · n ·
[(

1 +
gs

dse

)
δrs − δρ

]
−

gs

dse
e · δrs . (2.55)

Assuming small gaps gs ≈ 0 or infinitely remote emitter also leads to the
expressions obtained in the previous section (2.43) and (2.46).

2.2.6 Second order variations

Normal projection case

To get second order variations : ∆δgn and ∆δ ξ∼ , we take first the full second
variation ∆̄ of the expression (2.23):

∆̄δrs = ∆δrs = ∆δρ + δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼+

+
∂ρ

∂ξ∼

T

∆δ ξ∼ + ∆δgnn + δgn∆̄n + ∆gnδ̄n + gn∆̄δ̄n

(2.56)

The first term is zero by default, because rs = rs(t)⇒ ∆δrs = 0; it can be shown
also that the second term is zero (∆δρ = 0); however, a rather similar term
∆δn , 0. The underlined terms in (2.56) are orthogonal to the normal vector.
The twice underlined term is orthogonal to the tangential plane of the surface
basis.

In a dot product of Eq. (2.56) with the normal vector, the underlined terms
vanish

∆δgn = −n · δ
∂ρ

∂ξ∼

T

∆ ξ∼ − n · ∆
∂ρ

∂ξ∼

T

δξ∼ − ∆ ξ∼
Tn ·

∂2ρ

∂ξ∼
2
δξ∼ − gnn · ∆̄δ̄n, (2.57)
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where the third term in the right-hand part contains the second fundamental
surface matrix (t-scalar)

n ·
∂2ρ

∂ξ∼
2
= H≈ (2.58)

and the last term can be expanded as

− n · ∆̄δ̄n = ∆̄n · δ̄n, (2.59)

since
n · δ̄n = 0⇒ ∆̄(n · δ̄n) = 0⇔ −n · ∆̄δ̄n = ∆̄n · δ̄n.

A derivative of a unit vector is orthogonal to the vector itself. It means that
the derivative of the normal vector is a combination of in-plane basis vectors,
so it can be written in the following form

∂n

∂ξ∼
= B≈

∂ρ

∂ξ∼
. (2.60)

The right dot product with the transposed basis v-vector gives

∂n

∂ξ∼
·
∂ρ

∂ξ∼

T

= B≈
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

= B≈ A≈ , (2.61)

where the last term is a product of the t-scalar B≈ with the first fundamental
surface metric matrix A≈ and the first term can be transformed

n ·
∂ρ

∂ξ∼
= 0⇒ ∂

∂ ξ∼


n ·

∂ρ

∂ξ∼


 = 0⇔

∂n

∂ξ∼
·
∂ρ

∂ξ∼

T

= −n ·
∂2ρ

∂ξ∼
2
= −H≈ , (2.62)

that is nothing but the second fundamental surface matrix. From (2.61) and
(2.62) it follows that

B≈ = −H≈ A≈
−1 = −H≈ Ā≈ ,

substituting of this expression into (2.60) yields

∂n

∂ξ∼
= −H≈ Ā≈

∂ρ

∂ξ∼
⇒

∂n

∂ξ∼
= −H≈

∂ρ

∂ξ∼
. (2.63)

The same procedure can be carried out for the variation of the normal vector


δn = b∼
T
∂ρ

∂ξ∼
⇒ δn ·

∂ρ

∂ξ∼

T

= b∼
T A≈ = A≈ b∼

δ


n ·

∂ρ

∂ξ∼


 = 0⇔ δn ·

∂ρ

∂ξ∼
= −n · δ

∂ρ

∂ξ∼

⇒

⇒ b∼ = − Ā≈


n · δ

∂ρ

∂ξ∼


⇔ δn = −


n · δ

∂ρ

∂ξ∼




T ∂ρ

∂ξ∼

(2.64)
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Finally

δn = −

n · δ

∂ρ

∂ξ∼




T ∂ρ

∂ξ∼
and δ̄n = −


n · δ̄

∂ρ

∂ξ∼




T ∂ρ

∂ξ∼
(2.65)

According to Eq. (2.65) one can transform (2.59)

∆̄n · δ̄n =


n · ∆̄

∂ρ

∂ξ∼




T ∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T 
n · δ̄

∂ρ

∂ξ∼


 =


n · ∆̄

∂ρ

∂ξ∼




T

Ā≈


n · δ̄

∂ρ

∂ξ∼


 ,

expanding the full variations and using (2.58) results in

∆̄n · δ̄n =


n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼




T

Ā≈


n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼


 =

= ∆ ξ∼
T H≈ Ā≈ H≈ δξ∼ +


n · ∆

∂ρ

∂ξ∼




T

Ā≈ H≈ δξ∼ + ∆ ξ∼
T H≈ Ā≈


n · δ

∂ρ

∂ξ∼


 +


n · ∆

∂ρ

∂ξ∼




T

Ā≈


n · δ

∂ρ

∂ξ∼




(2.66)

Substituting (2.58), (2.59) and the contracted form of (2.66) in (2.57) gives
the second variation of the normal gap

∆δgn = − n ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 − ∆ ξ∼

T H≈ δξ∼+

+ gn


∆ ξ∼

T H≈ + n · ∆
∂ρ

∂ξ∼

T Ā≈


n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼




(2.67)

The same form has been obtained in [Laursen 92]. Often, to accelerate the
execution of the program, this expression is simplified based on the assumption
that the gap is negligibly small gn ≈ 0. It provides a simpler expression

∆δgn = −n ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 − ∆ ξ∼

T H≈ δξ∼ (2.68)

To derive the second variation of the surface parameter ∆δ ξ∼ one computes
the dot product of (2.56) with the surface basis v-vector; only the term
underlined twice in (2.56) vanishes:

0 =
∂ρ

∂ξ∼
· δ
∂ρ

∂ξ∼

T

∆ ξ∼ +
∂ρ

∂ξ∼
· ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2

∗

δξ∼ +
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

∆δ ξ∼

+ δgn

∂ρ

∂ξ∼
· ∆̄n + ∆gn

∂ρ

∂ξ∼
· δ̄n + gn

∂ρ

∂ξ∼
· ∆̄δ̄n

(2.69)
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~
Remark 2.5 on simplified form of s-structures.

As one can see, the boxed term in Eq. (2.69) is quite strange from the point of view of
Linear Algebra, since the product of non-consistent matrices and vectors is forbidden.
Formally in Linear Algebra one can choose between two possibilities:

∂ρ

∂ξ∼

T

·
∂2ρ

∂ξ∼
2
= •∼

T or
∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼
= •∼ .

Here, contrary to the rules of Linear Algebra, this product will imply the third-order
t-scalar 2 × 2 × 2

∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼

T

=
3•≈ . and

∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
=

3•≈ . (∗)

This non-consistency appears due to the fact that reduced s-structures, which are used
here for simplicity, do not allow to pass to higher order s-structures.
The apparatus developed for full s-structures (see Appendix A) is consistent and
rigorous, but notions are more complicated. So in this chapter the reduced form
of s-structures is employed and it will be simply supposed that operations (∗) are
permitted.

Let us consider the last term in (2.69)

∂ρ

∂ξ∼
· ∆̄δ̄n,

it can be expressed by taking the second variation of the expression

∂ρ

∂ξ∼
· n = 0⇒ ∆̄δ̄



∂ρ

∂ξ∼
· n


 = 0⇔ ∆̄


δ̄
∂ρ

∂ξ∼
· n +

∂ρ

∂ξ∼
· δ̄n


 = 0⇔

∆̄δ̄
∂ρ

∂ξ∼
· n + δ̄

∂ρ

∂ξ∼
· ∆̄n + ∆̄

∂ρ

∂ξ∼
· δ̄n +

∂ρ

∂ξ∼
· ∆̄δ̄n = 0⇔

∂ρ

∂ξ∼
· ∆̄δ̄n = −∆̄δ̄

∂ρ

∂ξ∼
· n − δ̄

∂ρ

∂ξ∼
· ∆̄n − ∆̄

∂ρ

∂ξ∼
· δ̄n

. (2.70)

The variations of the normal vector have to be avoided, so they are replaced
by (2.65) which yields

∂ρ

∂ξ∼
· ∆̄δ̄n = −∆̄δ̄

∂ρ

∂ξ∼
· n + δ̄

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T 
n · ∆̄

∂ρ

∂ξ∼


 + ∆̄

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T 
n · δ̄

∂ρ

∂ξ∼


 . (2.71)

The next two terms in Eq. (2.69) contain variations of the normal vector have
also to be replaced

∂ρ

∂ξ∼
· n = 0⇒ δ̄



∂ρ

∂ξ∼
· n


 = 0⇔

∂ρ

∂ξ∼
· δ̄n = −n · δ̄

∂ρ

∂ξ∼
(2.72)
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Substituting (2.71), (2.72) in (2.69) and replacing its fourth term by the first
fundamental metric matrix gives

0 =
∂ρ

∂ξ∼
· δ
∂ρ

∂ξ∼

T

∆ ξ∼ +
∂ρ

∂ξ∼
· ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
δξ∼ + A≈ ∆δ ξ∼

− δgnn · ∆̄
∂ρ

∂ξ∼
− ∆gnn · δ̄

∂ρ

∂ξ∼
− gn ∆̄δ̄

∂ρ

∂ξ∼
· n +

+ gnδ̄
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T 
n · ∆̄

∂ρ

∂ξ∼


 + gn∆̄

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T 
n · δ̄

∂ρ

∂ξ∼




(2.73)

Expanding the boxed term and carrying that

∆δρ = 0⇒ ∆δ
∂ρ

∂ξ∼
= 0

gives

∆̄δ̄
∂ρ

∂ξ∼
· n = n · δ

∂2ρ

∂ξ∼
2
∆ ξ∼ +


n · ∆

∂2ρ

∂ξ∼
2
+ ∆ ξ∼

Tn ·
∂3ρ

∂ ξ∼
3


 δξ∼ + n ·

∂2ρ

∂ξ∼
2
∆δ ξ∼ , (2.74)

the last term contains the second fundamental matrix H≈ ; remember that

∂3ρ

∂ ξ∼
3
=

3•≈

substituting Eq. (2.74) in (2.73) allows to group terms containing the second
variation of the surface parameter

(gn H≈ − A≈ )∆δ ξ∼ =
∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 + ∆ ξ∼

T



∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2


 δξ∼

− n ·

∆̄
∂ρ

∂ξ∼
δgn + δ̄

∂ρ

∂ξ∼
∆gn




︸                         ︷︷                         ︸
term 1

−gnn ·

δ
∂2ρ

∂ξ∼
2
∆ ξ∼ + ∆

∂2ρ

∂ξ∼
2
δξ∼


 − gn∆ ξ∼

T


n ·

∂3ρ

∂ ξ∼
3


 δξ∼

+ gn


δ̄
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T


n · ∆̄

∂ρ

∂ξ∼




︸                           ︷︷                           ︸
term 2

+ gn


∆̄
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T


n · δ̄

∂ρ

∂ξ∼




︸                           ︷︷                           ︸
term 3

(2.75)

The last step is to expand the full derivatives in the marked terms on the right
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hand

term 1 : n ·

∆̄
∂ρ

∂ξ∼
δgn + δ̄

∂ρ

∂ξ∼
∆gn


 = n ·


∆
∂ρ

∂ξ∼
δgn +

∂2ρ

∂ξ∼
2
∆ ξ∼δgn + δ

∂ρ

∂ξ∼
∆gn +

∂2ρ

∂ξ∼
2
δξ∼∆gn


 =

= n ·

∆
∂ρ

∂ξ∼
δgn + δ

∂ρ

∂ξ∼
∆gn


 + H≈ (∆ ξ∼δgn + δξ∼∆gn)

term 2 : gn


δ̄
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T


n · ∆̄

∂ρ

∂ξ∼


 = gn


δ
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
δξ∼


 ·


 Ā≈

∂ρ

∂ξ∼




T 
n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼




term 3 : expands as the term 2.
(2.76)

These terms inserted in expression (2.74) give the ultimate expression for the
second order variation of the surface parameter

∆δ ξ∼ = (gn H≈ − A≈ )−1


∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 + ∆ ξ∼

T



∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2


 δξ∼ −

− n ·

∆
∂ρ

∂ξ∼
δgn + δ

∂ρ

∂ξ∼
∆gn


 − H≈ (∆ ξ∼δgn + δξ∼∆gn)−

− gnn ·

δ
∂2ρ

∂ξ∼
2
∆ ξ∼ + ∆

∂2ρ

∂ξ∼
2
δξ∼


 − gn∆ ξ∼

T


n ·

∂3ρ

∂ ξ∼
3


 δξ∼+

+ gn


δ
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
δξ∼


 ·
∂ρ

∂ξ∼

T

Ā≈


n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼


+

+gn


∆
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
∆ ξ∼


 ·
∂ρ

∂ξ∼

T

Ā≈


n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼





(2.77)

Grouping terms with δgn and ∆gn gives a shorter expression

∆δ ξ∼ = (gn H≈ − A≈ )−1


∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 + ∆ ξ∼

T



∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2


 δξ∼ −

− gnn ·

δ
∂2ρ

∂ξ∼
2
∆ ξ∼ + ∆

∂2ρ

∂ξ∼
2
δξ∼


 − gn∆ ξ∼

T


n ·

∂3ρ

∂ ξ∼
3


 δξ∼+

+


gn


δ
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
δξ∼


 ·
∂ρ

∂ξ∼

T

Ā≈ − δgn I≈





n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼


+

+


gn


∆
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
∆ ξ∼


 ·
∂ρ

∂ξ∼

T

Ā≈ − ∆gn I≈





n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼





(2.78)
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This expression coincides with one originally obtained in [Laursen 92]. Remark
that this expression contains a third derivative of the master surface vector
ρ, which imposes a more strict conditions on the smoothness of the master.
However, the approximation of this variation for small gaps gn ≈ 0, leading to
a simpler form, does not contain this derivative

∆δ ξ∼ = Ā≈

δgn


n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼


 + ∆gn


n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼


 −

−
∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼


 − ∆ ξ∼

T



∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2


 δξ∼



(2.79)

Shadow projection case: infinitely remote emitter

It is much easier to compute the second order variations in case of the shadow
projection. Variation of Eq. (2.33) gives

0 = ∆̄δ̄ρ + ∆δgse,

expanding the full variations yields

∆δgse = −δ
∂ρ

∂ξ∼

T

∆ ξ∼ − ∆
∂ρ

∂ξ∼

T

δξ∼ − ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼ −

∂ρ

∂ξ∼

T

∆δ ξ∼ (2.80)

the dot product with vector e gives

∆δgs = −e ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


 − e ·

∂ρ

∂ξ∼

T

∆δ ξ∼ , (2.81)

where the last term can be determined by the dot product of (2.80) with v-vector
s
∼ 

s
∼
·
∂ρ

∂ξ∼

T∆δ ξ∼ = −s
∼
· δ
∂ρ

∂ξ∼

T

∆ ξ∼ − s
∼
· ∆
∂ρ

∂ξ∼

T

δξ∼ − ∆ ξ∼
Ts
∼
·
∂2ρ

∂ξ∼
2
δξ∼

using notation P≈ from (2.36) one has the expression for the second variation
of the surface parameter

∆δ ξ∼ = −
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


 . (2.82)

where the operator in square brackets is discussed in Remark 2.6. Substituting
(2.82) in (2.81) gives

∆δgs = −


e −


e ·

∂ρ

∂ξ∼


 ⊗

∂ρ

∂ξ∼
·
(
I
=
−

e ⊗ n

e · n

)


δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


 ,

(2.83)
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where the expression in square brackets is the same as in Eq. (2.44), so the
second variation of the shadow gap can be rewritten as

∆δgs = −
n

e · n ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


 . (2.84)

Shadow projection case: close emitter

In this case we take the variation of expression (2.50)

0 = δ
∂ρ

∂ξ∼

T

∆ ξ∼+∆
∂ρ

∂ξ∼

T

δξ∼+∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼+

∂ρ

∂ξ∼

T

∆δ ξ∼+∆δgse+δgs∆e+∆gsδe+gs∆δe .

(2.85)
The dot product with vector e and account of the following equality δe · e = 0
gives

∆δgs = −e ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


− e ·

∂ρ

∂ξ∼

T

∆δ ξ∼ − gse ·∆δe, (2.86)

where, due to the orthogonality of a unit vector to its variation and according
to (2.48) and (2.49) the last term becomes

e · ∆δe = −δe · ∆e = −
(δrs · s∼

T)(s
∼
· ∆rs)

d2
se

(2.87)

The dot product of (2.85) with v-vector s
∼

allows to evaluate the second variation

of the surface parameter

∆δ ξ∼ = −

s
∼
·
∂ρ

∂ξ∼

T

−1

s
∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


−

−

s
∼
·
∂ρ

∂ξ∼

T

−1

s
∼
· (δgs∆e + ∆gsδe) − gs


s
∼
·
∂ρ

∂ξ∼

T

−1

s
∼
· ∆δe.

(2.88)

Let us consider the right part of the last term using (2.48) and (2.49)

s
∼
· ∆δe = −s

∼
· ∆

[(
I
=
− e ⊗ e

)
·
δrs

dse

]
=

− s
∼
·
[(
∆e ⊗ e + e ⊗ ∆e

)
·
δrs

dse
+

(
I
=
− e ⊗ e

)
· δrs∆

1
dse

]
=

=
1

d2
se

s
∼
·
(
∆rs ⊗ e · δrs + δrs ⊗ e · ∆rs

)
(2.89)

in a similar manner, it is easy to show that

s
∼
· δe = −s

∼
·
δrs

dse
(2.90)
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2.2 Interaction between contacting surfaces

Substituting (2.89) and (2.90) in (2.88) and carrying (2.37) gives

∆δ ξ∼ = −
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
·
δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼−

− 1
dse

(
∆gsδrs + δgs∆rs

)
+

gs

d2
se

(
∆rs ⊗ e · δrs + δrs ⊗ e · ∆rs

)


(2.91)

Assuming small gaps gs ≈ 0 results in a shorter expression

∆δ ξ∼ = −
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
·
δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼−

− 1
dse

(
∆gsδrs + δgs∆rs

)


(2.92)

Substituting (2.91) and (2.87) in (2.86) gives

∆δgs = −e ·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼


 +


e ·
∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
·

·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼ −

1
dse

(
∆gsδrs + δgs∆rs

)
+

+
gs

d2
se

(
∆rs ⊗ e · δrs + δrs ⊗ e · ∆rs

)

 +

gs

d2
se

(δrs · s∼
T)(s
∼
· ∆rs),

(2.93)

where the expression in braces can be rewritten as

e ·
∂ρ

∂ξ∼

T

⊗
∂ρ

∂ξ∼
·
[
I
=
−

e ⊗ n

e · n

]
= e −

n

n · e = −
n

n · e · s∼
T ⊗ s
∼

consequently (2.93) transforms into

∆δgs = −
n

n · e ·


δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼ −

s
∼

T ⊗ s
∼

dse
·
(
∆gsδrs + δgs∆rs

)
+

+
gs

d2
se

s
∼

T
(
s
∼
· ∆rse · δrs + s

∼
· δrs ⊗ e · ∆rs

))
+

gs

d2
se

(δrs · s∼
T)(s
∼
· ∆rs)

(2.94)
Assuming small gaps gs ≈ 0 results in a shorter expression

∆δgs = −
n

n · e ·


δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

δξ∼ + ∆ ξ∼
T
∂2ρ

∂ξ∼
2
δξ∼ −

s
∼

T ⊗ s
∼

dse
·
(
∆gsδrs + δgs∆rs

)



(2.95)
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In the case of an infinitely remote emitter (dse →∞) we get the same expressions
as in the previous section both for surface parameter (2.43) and the shadow
gap (2.46).

~
Remark 2.6 on 2D case.

In order to get all variations for two dimensional geometries, one has to replace simply
all quantities by their two dimensional homologues:

ξ∼ → ξ,
∂nρ

∂ ξ∼
n →

∂nρ

∂ξn
, I≈ = 1,

A≈ → A =
∂ρ

∂ξ
·
∂ρ

∂ξ
, Ā≈ →

1
A
, H≈ → H = n ·

∂2ρ

∂ξ2
,

∂ρ

∂ξ∼
→ 1

A

∂ρ

∂ξ

2.3 Numerical validation

The aim of this section is to carry out a numerical validation of the expressions
obtained in the previous section. This validation allows us to estimate the
errors that we introduce in the incremental solution by approximating the
first and the second variations by analytical expressions obtained within the
assumption of infinitely small perturbations of the contact geometry. The
analytical expressions obtained with and without the assumption of small
gaps (gn ≈ 0) are compared.

The numerical validation technique can be summarized as follows: for a
randomly generated bi-quadratic master surface in 3D ρ( ξ∼) and a slave point
at a random position r, perturbations π′( ξ∼) and p′ are applied respectively:

ρ→ ρ + π′, r→ r + p′.

The direction of the perturbation is arbitrary and its value is given in fraction
of the master segment dimension (maximal length)

‖π′( ξ∼)‖ = εp dim(ρ), ‖p′‖ = εp dim(ρ).

The initial normal gap gn between the slave node and its projection is
prescribed, its value is also expressed in fraction of the master segment
dimension

gn = εg dim(ρ).

Applied perturbations π and p result in change of all geometrical quantities:

gn → g′n; ξ∼ → ξ∼
′.
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2.3 Numerical validation

The real variation of these quantities are evaluated as the difference between
the perturbed state quantities and the initial ones

δgn = g′n − gn, δ ξ∼ = ξ∼
′ − ξ∼

At the same time, these variations can be estimated according to analytical
formulae (2.24) and (2.31) as functions of the initial geometry and its
perturbation

δagn = δ
agn(ρ, r,π′,p′), δa ξ∼ = δ

a ξ∼(ρ, r,π′,p′)

the reduced expression for variations, i.e. without terms containing gn will
be noted with the r index δrξ∼ , δrξ∼ = δaξ∼ . Note that initial gap gn remains
nonzero, it simply does not enter in the expressions for variations. To evaluate
the second variations, another perturbation is imposed to the initial geometry
ρ, r. The value of this perturbation is the same εp, but direction is different

ρ→ ρ′′, r→ r′′.

The corresponding real change in geometrical quantities is denoted with ∆

∆gn = g′′n − gn, ∆ ξ∼ = ξ∼
′′ − ξ∼ .

To evaluate the second variations, the geometry should be perturbed once
again. The perturbation is fully determined by two previous perturbations

ρ→ ρ + π′ + π′′, r→ r + p′ + p′′.

The corresponding change in geometrical quantities will be

D gn = g′′′n − gn, D ξ∼ = ξ∼
′′′ − ξ∼

From these three perturbed states, the real second variations of geometrical
quantities can be deduced as

∆δgn = D gn − δgn − ∆gn, ∆δ ξ∼ = D ξ∼ − δ ξ∼ − ∆ ξ∼ .

These variations can be estimated by full analytical expressions

∆δagn = ∆δ
agn(ρ, r,π′,p′,π′′,p′′), , ∆δaξ∼ = ∆δaξ∼(ρ, r,π′,p′,π′′,p′′).

and approximated expressions ∆δrgn, ∆δrξ∼ which do not contain terms
with the normal gap. It remains to compare the full and truncated analytical
estimations with the real variations computed for a given negative initial
normal gap gn = −εg dim(ρ) and the given values of the perturbation
‖π‖ = εp dim(ρ), ‖p‖ = εp dim(ρ). The aim is to demonstrate that when the
perturbation of the geometry εp tends to zero, the analytical expression for
the variations tend to the real variations evaluated numerically. Another aim
is to show the difference between the truncated expressions (without terms
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containing gn) and the accurate ones derived in the previous section. For each
value of the initial gap gn, to get statistically meaningfull data the variations of
geometrical quantities have been evaluated 50 000 times.

The relative error between the real first variation of the normal gap δgn and
its analytical estimation is depicted in Fig. 2.12 for different perturbation values
εp = 10%, 1%, 0.1%, 0.01%, 0.001%, 0.0001%, 0.00001%. Each plot corresponds
to a given value of the initial normal gap εg = 0.01%, 0.1%, 1%.

Er(gn) =
∣∣∣∣∣
δgn − δagn

δgn

∣∣∣∣∣ 100%.

Here and further the left plots depict the general trend and the scatter of
the data, whereas the right figures depict the probability density function
(not normalized and shifted in vertical direction order to distinguish points
corresponding to different perturbations), i.e. number of occurrences for the
given precision of the expression. The data distribution is centered at zero, that
is why the absolute value is analyzed.

In Fig. 2.13 the relative error between the variation of the surface parameter
δξ∼ and its analytical estimation δa ξ∼ are presented

Er( ξ∼) =

∥∥∥∥δ ξ∼ − δ
a ξ∼

∥∥∥∥
‖δ ξ∼‖

100%

as well as the relative error of the analytical estimation obtained with
approximation of the zero gap gn = 0 denoted as “truncated”. As previously,
different perturbation values and initial normal gaps are used.

The relative error for the second variation of the normal gap ∆δgn is
presented in Fig. 2.14

Er(gn) =
∣∣∣∣∣
∆δgn − ∆δagn

∆δgn

∣∣∣∣∣ 100%.

and for the second variation of the surface parameter ∆δξ∼ is presented in
Fig. 2.15

Er( ξ∼) =

∥∥∥∥∆δ ξ∼ − ∆δ
a ξ∼

∥∥∥∥
‖∆δ ξ∼‖

100%.

The analysis of plots 2.12–2.15 shows that the relative error for accurate
expressions tends to zero with decreasing perturbation, whereas the error for
truncated expressions does not. Note that for second order variations the
inverse tendency is observed (increase of error with decreasing perturbation)
for very small perturbations, this fact is explained by reaching the limits of the
numerical precision.

The obtained results demonstrate that the scatter of the relative error
(plots on the left hand) is very large, it is due to possible close to zero
values of variations. It is worth noting that the relative error of the first
and the second variation of the normal gap have a peak at a certain value
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and decay exponentially to zero for higher relative errors. The value of the
peak error for the accurate analytical expression decreases with decreasing
perturbation, which is not the case for the truncated one. The relative error of
the surface parameter variations have a quite large “plateau” rapidly decaying
for larger values of errors. This plateau approaches zero error with decreasing
perturbation in case of accurate estimation of variations and remains within the
same error range for truncated expression. The figures also clearly demonstrate
that the accurate results are not affected by the value of the normal gap and
always converge to the real value for decreasing perturbation, whereas the
truncated expressions are highly affected by the value of the normal gap. Even
for relatively small value of the gap gn = 1%, the average relative error of
the first and second variation of the surface parameter remains at values of
10% and 100% respectively independently on the value of perturbation. The
numerical validation, which we use, may be helpful for verification of any
complexity expressions, for example, in case of three-dimensional smoothing
of the master surface.

2.4 Discretized geometry

2.4.1 Shape functions and finite elements

The finite element method approximates the real geometry by a so-called
finite element mesh. Such a mesh consists of nodes, which are connected to
form elements, which are coupled together into a structure. So we deal with
coordinates of nodes x and their displacements. What about the description
of material points which are situated somewhere inside the elements? Their
positions are determined by an interpolation of the nodal positions by means
of so-called shape functions

φi( ξ∼), i = i,N

where N is the number on nodes which determine the geometry of the given
element and ξ∼ is a vector (v-scalar) of normalized parameters (ξ j ∈ [−1; 1]),
which determine the coordinate in the “parent space” of internal points r

r =

N∑

i=1

φi( ξ∼)xi, (2.96)

where xi are nodal coordinates. Shape functions must verify the following
equality

φi( ξ∼ j) = δi j.

The coordinate of the j-th node in the local frame ξ∼ j must verify
Structural finite elements can be classified by the order of shape functions,

which depends on the number of nodes which form the element:

• linear elements - any internal point is approximated by means of the nodal
coordinates and linear shape functions (shape function depends linearly
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Figure 2.12: Comparison of the real variation of the normal gap and its
analytical estimation for different perturbations and initial values of the gap
gn given in percent of the master segment size.

on each parameter ξi), i.e.

∂φ( ξ∼)

∂ξi
, 0,

∂2φ( ξ∼)

∂ξ2
i

= 0;

• quadratic elements - any internal point is approximated by nodal
coordinates and quadratic shape functions (shape function has second
order dependence on each parameter ξi), i.e.

∂2φ( ξ∼)

∂ξ2
i

, 0,
∂3φ( ξ∼)

∂ξ3
i

= 0;
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Figure 2.13: Comparison of the real variation of the surface parameter and
its analytical estimations (full and truncated) for different perturbations and
initial values of the gap gn given in percent of the master segment size.

• higher order elements will not be considered here.

1D, 2D and 3D elements are available, they may contain different number of
nodes, for example, 2D triangle linear element, 3D tetrahedron linear element,
3D prismatic quadratic element, etc. In the following subsections, we will
consider an abstract 3D element, which contacting surface is formed by N nodes
with the corresponding order of approximation. A more detailed presentation
of the Finite Element formalism will be given in Section 5.3.
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Figure 2.14: Comparison of the real second variation of the normal gap and
its analytical estimations (full and truncated) for different perturbations and
initial values of the gap gn given in percent of the master segment size.

2.4.2 Geometry of contact elements

To describe the contact geometry, let us create an abstract element which
consists of one slave node x0(t) and several master nodes attached to one
structural element xi(t), i = 1, . . . ,N with a surface spanned on them. The latter
is determined by position of nodes and the shape functions of the element.
Such an element with some special properties will be called contact element. As
in the previous sections the master surface is parametrized by ξ∼

4. Vector of

4the dimension of the surface is equal to the space dimension minus one, master is a curve
in 2D and is a surface in 3D case.
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Figure 2.15: Comparison of the real second variation of the surface parameter
and its analytical estimations (full and truncated) for different perturbations
and initial values of the gap gn given in percent of the master segment size.

every point on this surface can be expressed through the nodal positions and
shape functions

ρ =
N∑

i=1

φi( ξ∼)xi =

N∑

i=1

φi(ξ1, ξ2)xi. (2.97)

The last equality is valid for 3D geometries, where the master surface can be
parametrized by two parameters ξ1 and ξ2, which, as previously, we assemble
in the v-scalar ξ∼ = [ξ1, ξ2]T.

Let us derive all the quantities we need to express the first and second
order variations in the frame of the contact element. First, we introduce some
notations.
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•

[
X
]

dim×N+1
– is an array (v-vector in s-structure notations) containing nodal

coordinate vectors of the contact element

X
∼
∼

[
X
]
=

[
X(t)

]
=

[
x0(t), x1(t), . . . , xN(t)

]T
;

• [Φ]
1×N+1

– is an array (v-scalar in s-structure notations) containing zero in
the first position and shape functions of the master surface

φ
∼
∼ [Φ] =

[
Φ( ξ∼)

]
=

[
0, φ1( ξ∼), . . . , φN( ξ∼)

]T
;

•

[
Φ′

i

]
1×N+1

– is an array (v-scalar in s-structure notations) of derivatives
of the shape functions by the surface parameter ξi with zero in the first
position

φ
∼
′
i ∼

[
Φ′i

]
=



∂Φ( ξ∼)

∂ξi


 =


0,

∂φ1( ξ∼)

∂ξi
, . . . ,

∂φN( ξ∼)

∂ξi




T

=
[
0, φ1,i , . . . , φN,i

]T
;

• And so on for the higher order derivations

φ
∼
′′
i j ∼

[
Φ′′i j

]
=



∂2Φ( ξ∼)

∂ξi∂ξ j


 =

[
0, φ1,i j , . . . , φN,i j

]T
,

φ
∼
′′′
i jk ∼

[
Φ′′′i jk

]
=



∂3Φ( ξ∼)

∂ξi∂ξ j∂ξk


 =

[
0, φ1,i jk , . . . , φN,i jk

]T
.

Now we have to express all the kinematic quantities and their variations
from Section 2.2 in a form adapted for the finite element formalism.

• Slave node coordinate vector

rs = rs(t) = x0(t) = [S0]T
[
X
]
,

where [S0]N+1 is nothing but a selection vector for the slave node
component

[S0] = [1, 0, . . . , 0]T.

• Projection point on the master surface

ρ = ρ(t, ξ∼π) =
N∑

i=1

φi( ξ∼π)xi =
[
Φ( ξ∼π)

]T [
X(t)

]
= [Φ]T

[
X
]
= φ
∼

TX
∼

where π in ξ∼π denotes that the surface parameter corresponds to the
projection point;
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• Local surface basis at the projection point

∂ρ

∂ξi
=
∂ρ(t, ξ∼)

∂ξi

∣∣∣∣∣∣∣
ξ∼π
=




∂Φ( ξ∼)

∂ξi

∣∣∣∣∣∣∣
ξ∼π




T

[
X(t)

]
=

[
Φ′i

]T [
X
]
= φ
∼
′T
i X
∼

;

• Unit normal to the master surface at the projection point

n = n(t, ξ∼π) =

∂ρ(t,ξπ)

∂ξ1
×
∂ρ(t,ξπ)

∂ξ2∥∥∥∥∥
∂ρ(t,ξπ)

∂ξ1
×
∂ρ(t,ξπ)

∂ξ2

∥∥∥∥∥
=

([
Φ′1

]T [
X
])
×

([
Φ′2

]T [
X
])

∥∥∥∥∥
([
Φ′1

]T [
X
])
×

([
Φ′2

]T [
X
])∥∥∥∥∥

,

further the n notation will be used.

Now the variations of the kinematic quantities can be derived in a finite
element format. Let us start with the first order variation of the normal gap

δgn . From (2.24) using the introduced notation we get

δgn = n · (δrs − δρ)⇒

δgn = n·
(
δ
[
X
]
0
− [Φ]T δ

[
X
])
=

(
[S0]T − [Φ]T

)
n · δ

[
X
] (2.98)

or in a component form

δgn =




n
−φ1n
...

−φNn




T

·




δx0
δx1
...
δxN



=

[∇gn
]T · δ

[
X
]
. (2.99)

The first order variation of the surface parameter δ ξ∼ can be expressed

from (2.31)

δξi = ( A≈ − gn H≈ )−1
i j



∂ρ

∂ξ j
· (δrs − δρ) + gnδ

∂ρ

∂ξ j
· n


 (2.100)

If we denote C≈ = ( A≈ − gn H≈ )−1 we get

δξi = Ci j



(
[S0]T − [Φ]T

) ∂ρ
∂ξ j
+ gn

[
Φ′j

]T
n


 · δ

[
X
]

(2.101)

or in component form

δξi = Ci j




∂ρ

∂ξ j

−
∂ρ

∂ξ j
φ1 + gnnφ1, j

...

−
∂ρ

∂ξ j
φN + gnnφN, j




T

·




δx0
δx1
...
δxN



= [∇ξi]T · δ

[
X
]
, (2.102)
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where the basis vectors
∂ρ

∂ξ j
may be either inserted explicitly in this expression

or expressed through the shape functions

∂ρ

∂ξi
=

[
Φ′i

]T [
X
]
.

The second order variation of the normal gap ∆δgn can be easily
expressed by rewriting (2.67)

∆δgn =−n · δ
∂ρ

∂ξi
∆ξi − n · ∆

∂ρ

∂ξi
δξi

︸                            ︷︷                            ︸
term 1

−δξi(Hi j − gnHikAkmHmj)∆ξ j

︸                               ︷︷                               ︸
term 2

+

+ gn


n · δ

∂ρ

∂ξi


 Ai j


∆

∂ρ

∂ξ j
· n




︸                            ︷︷                            ︸
term 3

(2.103)

To express ∆ ξ∼ and δ ξ∼ we use (2.102). The other terms are replaced by their
discretized homologues

∆δgn =−δ
[
X
]T
·
{
n
[
Φ′i

]
⊗ [∇ξi]T + [∇ξi] ⊗

[
Φ′i

]T
n
}
· ∆

[
X
]

︸                                                              ︷︷                                                              ︸
term 1

−δ
[
X
]T
·
{
(Hi j − gnHikAkmHmj)[∇ξi] ⊗ [∇ξ j]T

}
· ∆

[
X
]

︸                                                                ︷︷                                                                ︸
term 2

+ δ
[
X
]T
·
{

gnAi jn
[
Φ′i

]
⊗

[
Φ′j

]T
n
}
· ∆

[
X
]

︸                                            ︷︷                                            ︸
term 3

,

(2.104)

Grouping the terms leads to the final expression for the second variation of the
normal gap

∆δgn =δ
[
X
]T
·
{
−n

[
Φ′i

]
⊗ [∇ξi]T − [∇ξi] ⊗

[
Φ′i

]T
n

−
(
Hi j − gnHikAkmHmj

)
[∇ξi] ⊗ [∇ξ j]T + gnAi jn

[
Φ′i

]
⊗

[
Φ′j

]T
n
}
· ∆

[
X
]
=

= δ
[
X
]T
· [∇∇gn

] · ∆
[
X
]

(2.105)
where [∇ξi] should be substituted according to Eq. 2.102.
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The second order variation of the surface parameter ∆δ ξ∼ is derived from

its continuous form (2.78).

∆δξi = −Ci j




∂ρ

∂ξ j
·

δ
∂ρ

∂ξk
∆ξk + ∆

∂ρ

∂ξk
δξk + δξk

∂2ρ

∂ξk∂ξm
∆ξm




︸                                                       ︷︷                                                       ︸
term 1

− gnn ·

δ

∂2ρ

∂ξ j∂ξk
∆ξk + ∆

∂2ρ

∂ξ j∂ξk
δξk + δξk

∂3ρ

∂ξk∂ξ j∂ξm
∆ξm




︸                                                                    ︷︷                                                                    ︸
term 2

+


−δgnδkj + gnAkm

∂ρ

∂ξm
·
δ
∂ρ

∂ξ j
+

∂2ρ

∂ξ j∂ξl
δξl






∆
∂ρ

∂ξk
· n +Hks∆ξs


︸                                                                                   ︷︷                                                                                   ︸

term 3

+


−∆gnδkj + gnAkm

∂ρ

∂ξm
·
∆

∂ρ

∂ξ j
+

∂2ρ

∂ξ j∂ξl
∆ξl






δ
∂ρ

∂ξk
· n +Hksδξs


︸                                                                                   ︷︷                                                                                   ︸

term 4




.

(2.106)

We recall that Ci j = ( A≈ −gn H≈ )−1
i j

. Now we replace all the continuous quantities
by their discretized analogues term by term. Term 1.

∂ρ

∂ξ j
·
{
δ
[
X
]T [
Φ′k

]
[∇ξk]T · ∆

[
X
]
+

(
δ
[
X
]T
· [∇ξk]

) [
Φ′k

]T
∆

[
X
]
+

+
∂2ρ

∂ξk∂ξm

(
δ
[
X
]T
· [∇ξk]

) (
[∇ξm]T · ∆

[
X
])
 =

= δ
[
X
]T
·

[
Φ′k

] ∂ρ
∂ξ j
⊗ [∇ξk]T + [∇ξk] ⊗

∂ρ

∂ξ j

[
Φ′k

]T
+



∂ρ

∂ξ j
·

∂2ρ

∂ξk∂ξm


 [∇ξk] ⊗ [∇ξm]T

 · ∆
[
X
]

(2.107)

Term 2.

gn

{
δ
[
X
]T
· n

[
Φ′′jk

]
[∇ξk]T · ∆

[
X
]
+ δ

[
X
]T
· [∇ξk]

[
Φ′′jk

]T
n · ∆

[
X
]

+δ
[
X
]T
· [∇ξk]


n ·

∂3ρ

∂ξk∂ξ j∂ξm


 [∇ξm]T · ∆

[
X
]
 =

= δ
[
X
]T
·
{

gn

[
Φ′′jk

]
n ⊗ [∇ξk]T + gn[∇ξk] ⊗ n

[
Φ′′jk

]T

+gn


n ·

∂3ρ

∂ξk∂ξ j∂ξm


 [∇ξk] ⊗ [∇ξm]T+

 · ∆
[
X
]

(2.108)
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Term 3.


−

[∇gn
]T · δ

[
X
]
δkj + gnAkm

∂ρ

∂ξm
·

[
Φ′j

]T
δ
[
X
]
+

∂2ρ

∂ξ j∂ξl
[∇ξl]

T · δ
[
X
]



⊗

⊗
{[
Φ′k

]T
∆

[
X
]
· n +Hks[∇ξs]T · ∆

[
X
]}
=

−
(
δ
[
X
]T
· [∇gn

]
δkj

) ([
Φ′k

]T
n · ∆

[
X
]
+Hks[∇ξs]T · ∆

[
X
])

+


δ

[
X
]T
·
∂ρ

∂ξm

[
Φ′j

]
gnAkm



([
Φ′k

]T
n · ∆

[
X
]
+Hks[∇ξs]T · ∆

[
X
])

+

(
δ
[
X
]T
· [∇ξl]

) gnAkm
∂ρ

∂ξm
·
∂2ρ

∂ξ j∂ξl



([
Φ′k

]T
n · ∆

[
X
]
+Hks[∇ξs]T · ∆

[
X
])
=

δ
[
X
]T
·
−δkj

[∇gn
] ⊗

(
n
[
Φ′k

]T
+Hks[∇ξs]T

)
+ gnAkm

[
Φ′j

] ∂ρ
∂ξm

⊗
(
n
[
Φ′k

]T
+Hks[∇ξs]T

)

+gnAkm



∂ρ

∂ξm
·
∂2ρ

∂ξ j∂ξl


 [∇ξl] ⊗

(
n
[
Φ′k

]T
+Hks[∇ξs]T

) · ∆
[
X
]

(2.109)

Term 4 is nothing but the term 3 with ∆ replaced by δ and vice versa

∆
[
X
]T
·
−δkj

[∇gn
] ⊗

(
n
[
Φ′k

]T
+Hks[∇ξs]T

)
+ gnAkm

[
Φ′j

] ∂ρ
∂ξm

⊗
(
n
[
Φ′k

]T
+Hks[∇ξs]T

)

+gnAkm



∂ρ

∂ξm
·
∂2ρ

∂ξ j∂ξl


 [∇ξl] ⊗

(
n
[
Φ′k

]T
+Hks[∇ξs]T

) · δ
[
X
]
=

δ
[
X
]T
·
−δkj

([
Φ′k

]
n +Hks[∇ξs]

)
⊗ [∇gn

]T
+ gnAkm

(
n
[
Φ′k

]
+Hks[∇ξs]

)
⊗
∂ρ

∂ξm

[
Φ′j

]T

+gnAkm



∂ρ

∂ξm
·
∂2ρ

∂ξ j∂ξl



(
n
[
Φ′k

]
+Hks[∇ξs]

)
⊗ [∇ξl]

T

 · ∆
[
X
]

(2.110)

The final expression for the second order variation of the surface parameter
is the sum of the obtained terms (2.107)-(2.110) multiplied by t-scalar C≈ with
minus sign

−C≈ = (gn H≈ − A≈ )−1
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.

∆δξi = δ
[
X
]T
·
−Ci j



[
Φ′k

] ∂ρ
∂ξ j
⊗ [∇ξk]T + [∇ξk] ⊗

∂ρ

∂ξ j

[
Φ′k

]T

+



∂ρ

∂ξ j
·

∂2ρ

∂ξk∂ξm
− gnn ·

∂3ρ

∂ξk∂ξ j∂ξm


 [∇ξk] ⊗ [∇ξm]T

− gn

[
Φ′′jk

]
n ⊗ [∇ξk]T − gn[∇ξk] ⊗ n

[
Φ′′jk

]T

− [∇gn
] ⊗

(
n
[
Φ′j

]T
+H js[∇ξs]T

)
−

([
Φ′j

]
n +H js[∇ξs]

)
⊗ [∇gn

]T

+ gnAkm



[
Φ′j

] ∂ρ
∂ξm

⊗
(
n
[
Φ′k

]T
+Hks[∇ξs]T

)
+

(
n
[
Φ′k

]
+Hks[∇ξs]

)
⊗
∂ρ

∂ξm

[
Φ′j

]T



+ gnAkm



∂ρ

∂ξm
·
∂2ρ

∂ξ j∂ξl



(
[∇ξl] ⊗

(
n
[
Φ′k

]T
+Hks[∇ξs]T

)
+

+
(
n
[
Φ′k

]
+Hks[∇ξs]

)
⊗ [∇ξl]

T
)]}
· ∆

[
X
]
=

= δ
[
X
]T
· [∇∇ξi] · ∆

[
X
]

(2.111)
where expressions [∇gn] and [∇ξi] should be substituted according to (2.99) and
(2.102) respectively. All derivatives of the projection vector may be directly
substituted in this expression explicitly (as evaluated constant vectors) or
expressed through the shape functions and nodal values

∂ρ

∂ξi

∣∣∣∣∣∣
ξ∼π
=

[
Φ′i

]T [
X
]
,

∂2ρ

∂ξiξ j

∣∣∣∣∣∣∣
ξ∼π
=

[
Φ′′i j

]T [
X
]
,

∂3ρ

∂ξiξ jξk

∣∣∣∣∣∣∣
ξ∼π
=

[
Φ′′′i jk

]T [
X
]
.

The resulting matrices (2.105), (2.111) which connect δ
[
X
]
, ∆

[
X
]

with ∆δ ξ∼
and ∆δgn are symmetric.

2.5 Enrichment of contact geometry

In the second half of the 90s several approaches based on enriching
of the element interpolation functions have been proposed for different
problems [Heyliger 89], [Babuška 95].

r(t, ζ) = φ
∼

T(ζ)x
∼

(t) −→ re(t, ζ) =
(
φ
∼

T(ζ) + ψ
∼

T
e (ζ)

)
x
∼

(t),

where re denotes the enriched vector and ψ
∼e – the enriching function. The

entire class of enriched or extended finite element methods got the name
XFEM (extended finite element method) [Moës 99] or GFEM (generalized finite
element method) or PUM (partition of unity method) [Melenk 96]. The method
is used for modeling of dislocations, solidification, two-fluid flows, cracks and
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cohesive cracks, the last two examples are based on enriching by Heaviside
step function

ψ
∼

(ζ) = α∼H(ζ − ζ0).

Idea 2.2 On enrichment of contact geometry.

Inspired from the XFEM, we propose an enrichment method for the contact problems.
The method consists in enriching the master surface (Fig. 2.16) with an arbitrary
enriching function he

ρ −→ ρe = ρ + hen ⇔ ρe( ξ∼) = ρ( ξ∼) + he( ξ∼ , Θ∼ )n( ξ∼), (2.112)

where the enriching function he( ξ∼ , Θ∼ ) may depend on the surface parameter ξ∼ and

in general may also depend on the local stress-strain state and its history, which can
be used, for example, to account for geometry change due to wear, dislocation escape,
etc. This dependence is taken into account by means of θ∼ variables, which may also
include time or loading cycle. Such an enrichment allows to roughly account for
submesh features of the contact geometry without an excessive remeshing. The change
of the surface geometry due to a complex physics of deformation process can be taken
into account within the enriching function as a phenomenological model.

To keep the formulation consistent, let us impose two conditions on the
enriching function he( ξ∼ , Θ∼ )

• he( ξ∼ , Θ∼ ) ∈ C2( ξ∼)
⋂

C1(θ∼ ), i.e. he( ξ∼ , Θ∼ ) is a C2-smooth function by

surface parameter and C1-smooth by θ∼ ;

• in order to avoid self-intersection of the enriched surface, we require that
the value of enriching function remains smaller than the minimal local
curvature radius of the surface |he( ξ∼)| < min

i

{
1/κi( ξ∼)

}
.

If the enriching function depends only on the surface parameter (i.e. it
does not change in time and does not depend on deformation state) or if the
enriching function changes very slowly, then all the variations of the kinematic
quantities remain the same (see sections 2.2.5 and 2.2.6) if one replaces all
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Figure 2.16: Enriched geometry ρe of the master surface ρ.

quantities related to the master surface by enriched quantities •e:

a. ρ −→ ρe : ρe = ρ + hen

b. n −→ ne : ne =

∂ρe

∂ξ1
×

∂ρe

∂ξ2∥∥∥∥∥
∂ρe

∂ξ1
×

∂ρe

∂ξ2

∥∥∥∥∥

c. δ̄ρ −→ δ̄ρe : δ̄ρe = δρe +
∂ρe

∂ξ∼

T

δξ∼

d. δρ −→ δρe : δρe = δρ + heδn

e.
∂ρ

∂ξ∼
−→

∂ρe

∂ξ∼
:
∂ρe

∂ξ∼
=
∂ρ

∂ξ∼
+ n

∂he

∂ξ∼
+ he

∂n

∂ξ∼

f.
∂2ρ

∂ξ∼
2 −→

∂2ρe

∂ξ∼
2 :

∂2ρe

∂ξ∼
2
=
∂2ρ

∂ξ∼
2
+
∂n

∂ξ∼

∂he

∂ξ∼

T

+
∂he

∂ξ∼

∂n

∂ξ∼

T

+ he
∂2n

∂ξ∼
2
+ n

∂2he

∂ξ∼
2

g. A≈ −→ A≈ e : A≈ e =
∂ρe

∂ξ∼
·
∂ρe

∂ξ∼

T

h. H≈ −→ H≈ e : H≈ e = ne ·
∂2ρe

∂ξ∼
2

(2.113)

Let us consider in detail some of these quantities. The unit normal to the
enriched surface can be obtained by substituting (2.113.e) in (2.113.b). Then
the numerator takes the form

∂ρe

∂ξ1
×
∂ρe

∂ξ2
=



∂ρ

∂ξ1
+ n

∂he

∂ξ1
+ he

∂n

∂ξ1


 ×



∂ρ

∂ξ2
+ n

∂he

∂ξ2
+ he

∂n

∂ξ2


 , (2.114)
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where, according to (2.63)5

∂n

∂ξ∼
= −H≈ Ā≈

∂ρ

∂ξ∼
, where H≈ Ā≈ =




γ
∼

T
1

γ
∼

T
2



⇒

∂n

∂ξ∼
= −




γ
∼

T
1

γ
∼

T
2




∂ρ

∂ξ∼
= −




γ
∼

T
1

∂ρ

∂ξ∼

γ
∼

T
2

∂ρ

∂ξ∼



.

(2.115)
Expanding (2.114) and carrying (2.115) gives


∂ρ

∂ξ1
+ n

∂he

∂ξ1
− he γ∼

T
1

∂ρ

∂ξ∼


 ×



∂ρ

∂ξ2
+ n

∂he

∂ξ2
− he γ∼

T
2

∂ρ

∂ξ∼


 =

=
∂ρ

∂ξ1
×
∂ρ

∂ξ2
+
∂ρ

∂ξ1
× n

∂he

∂ξ2
− he

∂ρ

∂ξ1
×
∂ρ

∂ξ∼

T

γ
∼ 2 + n ×

∂ρ

∂ξ2

∂he

∂ξ1
− hen ×

∂ρ

∂ξ∼

T

γ
∼ 2
∂he

∂ξ1
−

− he γ∼
T
1

∂ρ

∂ξ∼
×
∂ρ

∂ξ2
+ hen ×

∂ρ

∂ξ∼

T

γ
∼ 1
∂he

∂ξ2
+ he

2 γ
∼

T
1

∂ρ

∂ξ∼
×
∂ρ

∂ξ∼

T

γ
∼ 2,

(2.116)

where the cross product of the basis v-vectors can be expressed through a
special antisymmetric t-scalar J

≈
:

J
≈
=

[
0 1
−1 0

]
, J
≈

T = − J
≈
, J
≈

J
≈

T = I≈, J
≈

J
≈
= − I≈, (2.117)

∂ρ

∂ξ∼
×
∂ρ

∂ξ∼

T

= n̂ J
≈
, (2.118)

where n̂ denotes not normalized vector normal to the initial master surface.
Some terms of (2.116) can be simplified in the following manner

he

∂ρ

∂ξ1
×
∂ρ

∂ξ∼

T

γ
∼ 2 + he γ∼

T
1

∂ρ

∂ξ∼
×
∂ρ

∂ξ2
= hen̂ (γ22 + γ11) = hen̂ tr[ H≈ Ā≈ ] (2.119)

γ
∼

T
1

∂ρ

∂ξ∼
×
∂ρ

∂ξ∼

T

γ
∼ 2 = n̂ γ

∼
T
1 J
≈
γ
∼ 2 = n̂ (γ11γ22 − γ12γ21) = n̂ det[ H≈ Ā≈ ] (2.120)

From (2.116), (2.119) and (2.120), the cross product of the basis v-vectors of the
enriched surface becomes



∂ρe

∂ξ1
×
∂ρe

∂ξ2
= n̂ (1 − he tr[ H≈ Ā≈ ] + he

2 det[ H≈ Ā≈ ] )+

+ n ×


∂ρ

∂ξ2

∂he

∂ξ1
−
∂ρ

∂ξ1

∂he

∂ξ2


 − hen ×

∂ρ

∂ξ∼

T (
γ
∼ 2
∂he

∂ξ1
− γ
∼ 1
∂he

∂ξ2

)
.

(2.121)
5here it is more convenient to use the components of s-structures
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2.5 Enrichment of contact geometry

The last two brackets in (2.120) can be transformed using J
≈

t-scalar

∂ρ

∂ξ2

∂he

∂ξ1
−
∂ρ

∂ξ1

∂he

∂ξ2
= −

∂ρ

∂ξ∼

T

J
≈
∂he

∂ξ∼

γ
∼ 2
∂he

∂ξ1
− γ
∼ 1
∂he

∂ξ2
= −H≈ Ā≈ J

≈
∂he

∂ξ∼
, as




γ
∼

T
1

γ
∼

T
2



= H≈ Ā≈ .

(2.122)

Now it is necessary to express the cross product of the normal vector with
the basis v-vector. This cross product lies in the tangent plane to the master
surface, moreover

n ×
∂ρ

∂ξ1
= α1

∂ρ

∂ξ2
and n ×

∂ρ

∂ξ2
= α2

∂ρ

∂ξ1
,

which can be rewritten as

n ×
∂ρ

∂ξ∼
= α≈

∂ρ

∂ξ∼
.

The right dot product of this expression with the covariant basis v-vector gives


n ×

∂ρ

∂ξ∼


 ·
∂ρ

∂ξ∼

T

= α≈ I≈ ⇔


∂ρ

∂ξ∼
×
∂ρ

∂ξ∼

T · n = α≈ ⇔ α≈ =
∥∥∥ n̂

∥∥∥ J
≈
= n̂ J
≈
,

consequently

n ×
∂ρ

∂ξ∼
= n̂ J
≈
∂ρ

∂ξ∼
and n ×

∂ρ

∂ξ∼

T

= n̂
∂ρ

∂ξ∼

T

J
≈

T. (2.123)

Substituting (2.122) and (2.123) in the last two terms of (2.121) gives

n ×


∂ρ

∂ξ2

∂he

∂ξ1
−
∂ρ

∂ξ1

∂he

∂ξ2


 − hen ×

∂ρ

∂ξ∼

T (
γ
∼ 2
∂he

∂ξ1
− γ
∼ 1
∂he

∂ξ2

)
=

= −n ×
∂ρ

∂ξ∼

T 
 J
≈
∂he

∂ξ∼
− he H≈ Ā≈ J

≈
∂he

∂ξ∼


 = −n̂

∂ρ

∂ξ∼

T

( I≈ − he J
≈

T H≈ Ā≈ J
≈

)
∂he

∂ξ∼

(2.124)

Finally, from (2.121) and (2.124) (replacement of the contravariant basis by the
covariant) we get the following expression for the numerator of the unit normal
vector to the enriched master surface

∂ρe

∂ξ1
×
∂ρe

∂ξ2
=

(
1 − he tr[ H≈ Ā≈ ] + he

2 det[ H≈ Ā≈ ]
)

n̂− n̂
∂he

∂ξ∼

T

( I≈− he J
≈

T H≈ Ā≈ J
≈

) Ā≈
∂ρ

∂ξ∼
.

(2.125)
Note that the t-scalar J

≈
T H≈ Ā≈ J

≈
= ( J
≈

T H≈ Ā≈ J
≈

)T is symmetric.
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Chapter 2. Geometry in contact mechanics

Now we can write the expression for the normal to the enriched surface

ne =

(
αn − β

∼
T
∂ρ

∂ξ∼

)

√
α2 + β

∼
T A≈ β∼

where

α = 1 − he tr[ H≈ Ā≈ ] + he
2 det[ H≈ Ā≈ ]

β
∼

T =
∂he

∂ξ∼

T

( I≈ − he J
≈

T H≈ Ā≈ J
≈

) Ā≈

(2.126)

It follows naturally from this expression that an adequate enriched geometry
(without singularities and self-intersections) is retained if and only if

∂he

∂ξ∼
< ∞, α > 0 and I≈ − he J

≈
T H≈ Ā≈ J

≈
> 0.

The last two conditions6 imply that

det( I≈ − he H≈ Ā≈ ) = 1 − he tr[ H≈ Ā≈ ] + he
2 det[ H≈ Ā≈ ] > 0,

which is equivalent to the requirement that he < min
{

1
κ1
, 1
κ2

}
, where κ1 and κ2

are local curvatures of the surface and consequently are the solutions of the
following equation (see, e.g. [Konyukhov 08])

κ2 − κtr[ H≈ Ā≈ ] + det[ H≈ Ā≈ ] = 0

To compute the explicit forms for two fundamental surface t-scalars ( A≈
and H≈ ) of the enriched surface; starting from (2.113.g) and using (2.113.e) we
get

A≈ e =
∂ρe

∂ξ∼
·
∂ρe

∂ξ∼

T

=



∂ρ

∂ξ∼
+ n

∂he

∂ξ∼
+ he

∂n

∂ξ∼


 ·



∂ρ

∂ξ∼

T

+ n
∂he

∂ξ∼

T

+ he
∂n

∂ξ∼

T

 =

= A≈ +
∂he

∂ξ∼

∂he

∂ξ∼

T

+ 2he

∂ρ

∂ξ∼
·
∂n

∂ξ∼

T

+ he
2 ∂n

∂ξ∼
·
∂n

∂ξ∼

T

=

= A≈ +
∂he

∂ξ∼

∂he

∂ξ∼

T

− 2he H≈ + he
2 H≈ Ā≈ H≈ ,

(2.127)

so

A≈ e = A≈ +
∂he

∂ξ∼

∂he

∂ξ∼

T

− 2he H≈ + he
2 H≈ Ā≈ H≈ (2.128)

6It is easy to show that: det( I≈ − he J
≈

T H≈ Ā≈ J
≈

) = det( I≈ − he H≈ Ā≈ ).
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2.5 Enrichment of contact geometry

To derive the second fundamental surface t-scalar, we make use of the equations
obtained for the enriched normal vector (2.126) and (2.113.f)

H≈ e = ne ·
∂2ρe

∂ξ∼
2
=

(
αn + β

∼
T
∂ρ

∂ξ∼

)

√
α2 + β

∼
T Ā≈ β∼

·


∂2ρ

∂ξ∼
2
+
∂n

∂ξ∼

∂he

∂ξ∼

T

+
∂he

∂ξ∼

∂n

∂ξ∼

T

+ he
∂2n

∂ξ∼
2
+ n

∂2he

∂ξ∼
2


 =

=
1√

α2 + β
∼

T Ā≈ β∼


αH≈ − αhe H≈ Ā≈ H≈ + α

∂2he

∂ξ∼
2
+ β
∼

T
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
−

− β
∼

T H≈
∂he

∂ξ∼

T

− βT
∂ρ

∂ξ∼
· ∂he

∂ξ∼

∂ρ

∂ξ∼

T

H≈ Ā≈ + he β∼
T
∂ρ

∂ξ∼
·
∂2n

∂ξ∼
2

T

 ,

(2.129)

where the last term can be expressed in the following way (in order to exclude
the derivative of the normal vector)

∂ρ

∂ξ∼
· n = 0⇒ ∂

∂ ξ∼



∂ρ

∂ξ∼
· n


 = 0⇔

∂2ρ

∂ξ∼
2
· n +

∂ρ

∂ξ∼
·
∂n

∂ξ∼

T

= 0⇔

⇔ ∂

∂ ξ∼



∂2ρ

∂ξ∼
2
· n +

∂ρ

∂ξ∼
·
∂n

∂ξ∼

T

 = 0⇔

∂3ρ

∂ ξ∼
3
· n + 2

∂2ρ

∂ξ∼
2
·
∂n

∂ξ∼

T

+
∂ρ

∂ξ∼

T

·
∂2n

∂ξ∼
2
= 0

⇔
∂ρ

∂ξ∼

T

·
∂2n

∂ξ∼
2
= −

∂3ρ

∂ ξ∼
3
· n + 2

∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼

T

H≈ Ā≈
(2.130)

Substituting (2.130) in (2.129) gives the final expression for the second
fundamental tensor of the enriched surface

H≈ e =
1√

α2 + β
∼

T Ā≈ β∼


αH≈ − αhe H≈ Ā≈ H≈ + α

∂2he

∂ξ∼
2
+ β
∼

T
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
−

− β
∼

T H≈
∂he

∂ξ∼

T

− βT
∂ρ

∂ξ∼
· ∂he

∂ξ∼

∂ρ

∂ξ∼

T

H≈ Ā≈ − he β∼
T
∂3ρ

∂ ξ∼
3
· n + 2he β∼

T
∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼

T

H≈ Ā≈




(2.131)
As one can see, the third derivative of vector ρ appears, which requires that

ρ( ξ∼) ∈ C3( ξ∼). This condition is satisfied for classic shape functions (linear,
quadratic) of the FEM within master faces, but not on their edges.

The form of the expressions of the geometrical variations does not
change. The master quantities have to be simply replaced by their enriched
homologues, and the variations of the geometrical quantities are expressed by
means of the basic variations of the master and slave vectors

δge
n, δξ∼ , ∆δge

n, ∆δ ξ∼ ←− δrs, δρe, δ
∂ρe

∂ξ∼
, δ

∂2ρe

∂ξ∼
2
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Chapter 2. Geometry in contact mechanics

However from the point of view of the Finite Element Method all variations
in the right part except δrs are not basic; some efforts have to be undertaken
to convert them in a suitable form for the Finite Element Method. We start
from the variation of the projection vector on the enriched surface, according
to (2.113.d) and (2.65)

δρe = δρ + heδn⇒ δρe = δρ − he


n · δ

∂ρ

∂ξ∼




T

Ā≈
∂ρ

∂ξ∼
. (2.132)

The variation of the covariant basis v-vector δ
∂ρe

∂ξ∼
does not stand alone in

expressions of variations, only its dot product with the normal ne or the basis v-

vector
∂ρe

∂ξ∼
of the enriched surface appears, since both of them can be expressed

through the normal n and the basis v-vector
∂ρ

∂ξ∼
of the original master surface

(see (2.113.e) and (2.126))

ne = a1n + a∼
T
2

∂ρ

∂ξ∼
∂ρe

∂ξ∼
= b∼1n + b≈2

∂ρ

∂ξ∼
,

(2.133)

where

a1 =
α√

α2 + β
∼

T A≈ β∼
; a∼

T
2 =

− β
∼

T

√
α2 + β

∼
T A≈ β∼

α = 1 − he tr[ H≈ Ā≈ ] + he
2 det[ H≈ Ā≈ ]; β

∼
=
∂he

∂ξ∼

T

( I≈ − he J
≈

T H≈ Ā≈ J
≈

) Ā≈

b∼1 =
∂he

∂ξ∼
; b≈2 = I≈ − he H≈ Ā≈

(2.134)

Let us derive the expression for the dot product of the basis vectors n and
∂ρ

∂ξ∼
with variations of the enriched quantities

n · δ
∂ρe

∂ξ∼

T

= n ·

δ
∂ρ

∂ξ∼

T

+ δn
∂he

∂ξ∼

T

+ heδ
∂n

∂ξ∼

T

 = n · δ

∂ρ

∂ξ∼

T

+ n · δ
∂n

∂ξ∼

T

he, (2.135)

where according to (2.63) and (2.65) the last term is

n · δ
∂n

∂ξ∼

T

= −δn ·
∂n

∂ξ∼

T

= −

n · δ

∂ρ

∂ξ∼




T

Ā≈
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈ = −H≈ Ā≈


n · δ

∂ρ

∂ξ∼

T .

(2.136)
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2.5 Enrichment of contact geometry

Finally, we get

n · δ
∂ρe

∂ξ∼

T

= n · δ
∂ρ

∂ξ∼

T (
I≈ − he H≈ Ā≈

)
(2.137)

The dot product of the covariant basis v-vector with the first variation of its
enriched homologue gives

∂ρ

∂ξ∼
·δ
∂ρe

∂ξ∼

T

=
∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

+ δn
∂he

∂ξ∼

T

+ heδ
∂n

∂ξ∼

T

 =

∂ρ

∂ξ∼
·δ
∂ρ

∂ξ∼

T

−n·δ
∂ρ

∂ξ∼

∂he

∂ξ∼

T

+he

∂ρ

∂ξ∼
·δ
∂n

∂ξ∼

T

,

(2.138)
where the last term can be derived from

δ
∂

∂ ξ∼


n ·

∂ρ

∂ξ∼


 = 0⇔

∂ρ

∂ξ∼
·δ
∂n

∂ξ∼

T

= −n·δ
∂2ρ

∂ξ∼
2
+


n · δ

∂ρ

∂ξ∼

T Ā≈
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
+δ
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈ .

(2.139)
Substituting the last expression in (2.138) yields a nonsymmetric T-scalar δQ

≈
,

(δQ
≈

)T

∂ρ

∂ξ∼
· δ
∂ρe

∂ξ∼

T

=
∂ρ

∂ξ∼
· δ
∂ρ

∂ξ∼

T

− n · δ
∂ρ

∂ξ∼

∂he

∂ξ∼

T

− hen · δ
∂2ρ

∂ξ∼
2
+

+ he


n · δ

∂ρ

∂ξ∼

T Ā≈
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2
+ heδ

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈ = δQ
≈

(2.140)

The same procedure has to be carried out with the variation of the

derivatives of the basis v-vector. Let us compute n · δ
∂2ρe

∂ξ∼
2 and

∂ρ

∂ξ∼
· δ

∂2ρe

∂ξ∼
2 .

According to (2.113.f)

n · δ
∂2ρe

∂ξ∼
2
= n ·


δ
∂2ρ

∂ξ∼
2
+ δ

∂n

∂ξ∼

∂he

∂ξ∼

T

+
∂he

∂ξ∼
δ
∂n

∂ξ∼

T

+ heδ
∂2n

∂ξ∼
2
+ δn

∂2he

∂ξ∼
2


 =

= n · δ
∂2ρ

∂ξ∼
2
− δn ·

∂n

∂ξ∼

∂he

∂ξ∼

T

− ∂he

∂ξ∼

∂n

∂ξ∼

T

· δn + hen · δ
∂2n

∂ξ∼
2
,

(2.141)

carrying eq.(2.136)

n · δ
∂2ρe

∂ξ∼
2
= n · δ

∂2ρ

∂ξ∼
2
− H≈ Ā≈


n · δ

∂ρ

∂ξ∼



∂he

∂ξ∼

T

− ∂he

∂ξ∼


n · δ

∂ρ

∂ξ∼

T H≈ Ā≈ + hen · δ
∂2n

∂ξ∼
2
,

(2.142)
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where the last term is quite long. First, we evaluate the following expression

δ
∂

∂ ξ∼


n ·

∂n

∂ξ∼


 = 0⇔ δ

∂n

∂ξ∼
·
∂n

∂ξ∼

T

+
∂n

∂ξ∼
· δ
∂n

∂ξ∼

T

+ δn ·
∂2n

∂ξ∼
2
+ n · δ

∂2n

∂ξ∼
2
= 0⇔

n · δ
∂2n

∂ξ∼
2
= − δ

∂n

∂ξ∼
·
∂n

∂ξ∼

T

︸      ︷︷      ︸
term 1

−
∂n

∂ξ∼
· δ
∂n

∂ξ∼

T

︸      ︷︷      ︸
term 2

− δn ·
∂2n

∂ξ∼
2

︸   ︷︷   ︸
term 3

,

(2.143)

Replacing
∂n
∂ξ∼

in terms 1 and 2 in (2.143) and carrying of (2.139) yields

term 1: δ
∂n

∂ξ∼
·
∂n

∂ξ∼

T

= −δ
∂n

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈ =

= n · δ
∂2ρ

∂ξ∼
2

H≈ Ā≈ −

n · δ

∂ρ

∂ξ∼

T Ā≈
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2

H≈ Ā≈ −
∂ρ

∂ξ∼
· δ
∂ρ

∂ξ∼

T

H≈
2 Ā≈

2

term 2:
∂n

∂ξ∼
· δ
∂n

∂ξ∼

T

= −H≈ Ā≈
∂ρ

∂ξ∼
· δ
∂n

∂ξ∼

T

=

= n · δ
∂2ρ

∂ξ∼
2

H≈ Ā≈ −

n · δ

∂ρ

∂ξ∼

T Ā≈
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2

H≈ Ā≈ − H≈ Ā≈ δ
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈

(2.144)

The variation of the normal δn in the third term in (2.143) has to be replaced
by a combination of the basis vectors

δn ·
∂2n

∂ξ∼
2
= −


n · δ

∂ρ

∂ξ∼

T Ā≈
∂ρ

∂ξ∼
·
∂2n

∂ξ∼
2
, (2.145)

where the last product can be derived from

∂2

∂ ξ∼
2



∂ρ

∂ξ∼
· n


 = 0⇔

∂ρ

∂ξ∼
·
∂2n

∂ξ∼
2
= −n ·

∂ρe

∂θ∼
+ 2

∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼

T

H≈ Ā≈ . (2.146)

Substituting (2.144), (2.145) and (2.146) in (2.143) and consequently in (2.142)
gives, after grouping some terms, the final expression

n · δ
∂2ρe

∂ξ∼
2
= n · δ

∂2ρ

∂ξ∼
2

(
I≈ − 2he H≈ Ā≈

)
− H≈ Ā≈


n · δ

∂ρ

∂ξ∼



∂he

∂ξ∼

T

− ∂he

∂ξ∼


n · δ

∂ρ

∂ξ∼

T H≈ Ā≈ +

+ he

∂ρ

∂ξ∼
· δ
∂ρ

∂ξ∼

T

H≈
2 Ā≈

2 + he H≈ Ā≈ δ
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

H≈ Ā≈ +

+ he


n · δ

∂ρ

∂ξ∼

T Ā≈


−n ·

∂ρe

∂θ∼
+ 2

∂2ρ

∂ξ∼
2
·
∂ρ

∂ξ∼

T

H≈ Ā≈ + 2
∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2

H≈ Ā≈




(2.147)
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The dot product of the basis v-vector with the variation of its second
derivative can be expressed as

∂ρ

∂ξ∼
· δ
∂2ρe

∂ξ∼
2
=
∂ρ

∂ξ∼
·

δ
∂2ρ

∂ξ∼
2
+ δ

∂n

∂ξ∼

∂he

∂ξ∼

T

+
∂he

∂ξ∼
δ
∂n

∂ξ∼

T

+ heδ
∂2n

∂ξ∼
2
+ δn

∂2he

∂ξ∼
2


 =

=
∂ρ

∂ξ∼
· δ
∂2ρ

∂ξ∼
2
+
∂ρ

∂ξ∼
· δ
∂n

∂ξ∼

∂he

∂ξ∼

T

+
∂ρ

∂ξ∼
· ∂he

∂ξ∼
δ
∂n

∂ξ∼

T

+ he

∂ρ

∂ξ∼
· δ
∂2n

∂ξ∼
2
− n · δ

∂ρ

∂ξ∼

∂2he

∂ξ∼
2
,

(2.148)

Now we can derive all the variations for the enriched geometry. Although
all needed expressions have been just derived without approximation of small
gap, in order to keep the text more compact, below we present the variations of
the enriched geometrical quantities only within the assumption of small gap.
According to (2.24) the variation of the normal gap (2.24) using (2.132) is

δge
n = ne · (δrs − δρe)→ δge

n = ne ·

δrs − δρ + he


n · δ

∂ρ

∂ξ∼




T

Ā≈
∂ρ

∂ξ∼


 (2.149)

The approximated variation of the surface parameter (2.32) for the enriched
surface is

δξ∼ = Ā≈ e

∂ρe

∂ξ∼
· (δrs − δρe)→ δξ∼ = Ā≈ e

∂ρe

∂ξ∼
·

δrs − δρ + he


n · δ

∂ρ

∂ξ∼




T

Ā≈
∂ρ

∂ξ∼




(2.150)
The approximated second variation of the normal gap (2.67) is

∆δgn = −ne ·

δ
∂ρe

∂ξ∼

T

∆ ξ∼ + ∆
∂ρe

∂ξ∼

T

δξ∼


 − ∆ ξ∼

T H≈ eδξ∼ , (2.151)

Replacing of ne by (2.133) and carrying (2.137) and (2.140), we get

∆δgn = −

a1n · δ

∂ρe

∂ξ∼

T

+ a∼
T
2

∂ρ

∂ξ∼
· δ
∂ρe

∂ξ∼

T∆ ξ∼−

−

a1n · ∆

∂ρe

∂ξ∼

T

+ a∼
T
2

∂ρ

∂ξ∼
· ∆
∂ρe

∂ξ∼

T δξ∼ − ∆ ξ∼
T H≈ eδξ∼

(2.152)

∆δgn = −a1n ·

δ
∂ρ

∂ξ∼

T

b≈2∆ ξ∼ + ∆
∂ρ

∂ξ∼

T

b≈2δξ∼


 − a∼

T
2 [δQ
≈
∆ ξ∼ + ∆Q

≈
δξ∼] − ∆ ξ∼

T H≈ eδξ∼ ,

(2.153)
where a1, a∼

T
2 , b≈2 can be found in (2.134) and δQ

≈
, ∆Q
≈

in (2.140).
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The expression for the second variation of the surface parameter for the
enriched surface can be obtained from (2.79)
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As previously, we replace ne and
∂ρe

∂ξ∼
by (2.133),(2.134) and group terms, next

we substitute (2.137), (2.140) and get

∆δ ξ∼ = Ā≈ e
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where a1, a∼
T
2 , b∼1 and b≈2 have been taken from (2.134) and δQ

≈
,∆Q
≈
, from

(2.140).
Now it remains to define the enriching functions he( ξ∼) for the master

surfaces and substitute them into (2.113) and consequently in the expressions
for the variations. During this operation, one has to take into account that
the projection procedure has to be changed (see Fig. 2.17). Briefly the new
Newton’s procedure used for the definition of the projection point has the
same form as (2.8), but obviously all quantities related to the master should be
replaced by their enriched homologues

∆ ξ∼ =


 A≈ e − (rs − ρe) ·

∂2ρe

∂ξ∼
2




−1

·

(rs − ρe) ·

∂ρe

∂ξ∼


 . (2.156)

The shadow projection procedures undergo the same modifications and are
not presented here.
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2.5 Enrichment of contact geometry

Figure 2.17: Projection procedure for enriched geometry.

~
Remark 2.7 on enriched geometry.

As already mentioned, the enriching function he has to be rather smooth C2 and its
value |he| must remain smaller than the minimal local curvature radius. Moreover, if
one uses the normal projection, it is necessary to keep in mind that Newton’s method
allows to determine only one projection point (closest to the starting point). So in case
of enrichment of the master surface with a nonlinear function he( ξ∼), Newton’s method

may be insufficient to find the projection point (see Fig. a), a more advanced technique
should be used, for example, a dissection method combined with Newton’s method.
Contrary to the normal projection, the shadow projection is unique if there is no “self-
shadow” from the master surface on its own, so one has to pay attention to avoid
shadows due to the enrichment (see Fig. b).
In order to preserve the continuity of the discretized master surface, enriching functions
have to be zero at edges of each segment ξ∼ e ∈ Γe : he( ξ∼ e) = 0 (see Fig. c). It has to be

mentioned that there is a possibility of intersection of enriched geometries of adjacent
master segments, it has to be also avoided (see Fig. d).

Issues related to the enriching geometry: a – multiple normal projection within one
segment (Newton’s method is not sufficient to find the closest point); b – possible

presence of self-shadows on the master surface; c – discontinuity of enriched master
surface; d – self intersection of enriched master surface.
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2.5.1 Example of enrichment

Below we derive the expressions needed for implementation of a frictionless
contact for the case of a linear 2D element enriched by a function he(ξ) (Fig. 2.18),
where ξ is a segment parameter ξ ∈ [0; 1].

Figure 2.18: Example of linear master segments enriched by cosine wave.

Master segments are assumed to be linear; if one introduces the following
notation

t =
1
l
(ρ

2
− ρ

1
),

where l =
∥∥∥ρ

2
− ρ

1

∥∥∥, then

ρ(ξ) = ρ
1
+ ξ lt;

∂ρ

∂ξ
= lt;

n =
k ×

∂ρ

∂ξ

∥∥∥
∂ρ

∂ξ

∥∥∥
= k × t,

(2.157)

The unit normal vector n, defined in such a way, points outward the solid if
the unit vector k point outward the page (to us) and at the same time if master
nodes in Fig. 2.18 are enumerated from left to right. The enriched master
geometry is defined by

ρe(ξ) = ρ(ξ) + he(ξ)n,

and consequently, as
∂n
∂ξ = 0

∂ρe

∂ξ
= lt +

∂he

∂ξ
n ⇒ ne =
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∂ρe

∂ξ

∥∥∥
∂ρe

∂ξ

∥∥∥
=

ln − ∂he

∂ξ t
√

l2 + ∂he

∂ξ

2
, (2.158)

in notations which have been introduced in the previous section

∂ρe

∂ξ
= b1n + b2lt, b1 =

∂he

∂ξ
, b2 = 1 (2.159)
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According to (2.149) we get the first variation of the normal gap to the enriched
surface
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(2.160)

In a ready-to-implement form, if ρ = ρi(t)φi(ξ)
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From (2.150) adapted to the 2D case, the first variation of the surface parameter
is
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(2.162)

The second variation of the normal gap (2.153) adapted to 2D case for linear
elements has the following form
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where from (2.140)

Q =
∂ρ

∂ξ
· δ
∂ρ

∂ξ
− n · δ

∂ρ

∂ξ

∂he

∂ξ

and from (2.131) we get the expression for He
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And finally the expression for the second variation of the normal gap for the
enriched surface takes the following form
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after grouping terms
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To get the ready-to-implement expression one needs to use (2.162) for δξ and
∆ξ

Concluding remarks

The enrichment of the contact geometry by an arbitrary function permits:

1. to take into account a complicated geometry within one contact element;

2. to account for a change of the local geometry due to loading conditions.

As mentioned, if the enrichment is chosen to be localized within NTS contact
elements, the choice of the enrichment function is limited: its value must be zero
at the edges of the master segments. It implies a strong connection between the
discretization and the enrichment. A possible application of this approach is
the modeling of periodic structures using a regular mesh, Fig. 2.19. Enrichment
of thin-walled or beam structure geometries by a constant enriching function
seems to be meaningfull, since the predominant deformation of such structures
does not affect the geometry of the surface (Fig. 2.19,a-b). Moreover, the
enrichment technique is the only way to account for the surface topology
for shell and beam elements. A possible applications is a modeling of contact
with grid structures, micro contact with fiber, etc. An anisotropic friction can
be simulated implicitly by a special enrichment of the master surface Fig. 2.20,
a-b.

Figure 2.19: Enriched geometry of the master finite element mesh: a-b –
periodic thin-walled structure, c-d – mesh of a screw with 4 turns, represented
by enrichment of 16 segments with a screw function ρe of the master surface ρ.

If one couples the enrichment technique with a global smoothing procedure
(Fig. 2.20, c-d) (for discussion of the latter, see, for example, [Pietrzak 97],
[Wriggers 01], [Krstulović-Opara 02]), the mentioned shortcoming of the
enrichment approach vanishes. Since the master surface is globally smooth,
it is not anymore required that the enriching function is zero along the edges
of the master segments/faces. However, it becomes a real challenge to obtain
the needed variations of the geometrical quantities for the resulting enriched
surface. On the other hand, this coupling makes possible to simulate properly
the phenomenon of wear and to enrich the master geometry independently on
the mesh.
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2.5 Enrichment of contact geometry

Figure 2.20: a-b – an example of enrichment for simulating anisotropic friction;
c-d – enrichment coupled with smoothing procedure.
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Chapter 3

Contact detection

Résumé de Chapitre 3 «Détection du contact»

Ce chapitre présente les techniques de détection locale du contact. Cette phase de
l’algorithme numérique est responsable de la construction des éléments de contact,
qui sont chargés de transférer les efforts d’un corps à l’autre au travers de l’interface
discrétisée. Issus de l’application du principe des travaux virtuels, les éléments de
contact contribuent avec les éléments structuraux à former le vecteur résidu et la
matrice tangente. La phase de détection est importante, car une opération incorrecte à
ce niveau conduit à une solution fausse.

Dans le cas d’une discrétisation simple (Nœud-à-Nœud) la procédure de détection
est évidente, elle consiste en la détection des paires des nœuds les plus proches. Comme
cette discrétisation est applicable seulement dans le cas des petites déformations et des
petits glissement, la détection ne doit être exécutée qu’une seule fois. Si on considère le
cas des grandes déformations et des grands glissements (par exemple, la discrétisation
Nœuds-à-Segment), la détection doit être répétée très souvent, puisque la topologie de
l’interface de contact change tout le temps. Pour les problèmes de contact qui possèdent
un grand nombre de nœuds à l’interface, la rapidité de détection devient un critère très
important pour l’efficacité de l’algorithme : la détection peut en effet prendre autant de
temps de calcul que la phase de résolution.

Dans ce chapitre, on présente donc les concepts permettant la détection du contact en
calcul par éléments finis implicite. Les notions de base (distance maximale de détection,
méthode «bucket sort», détection «tous-à-tous») sont introduites. On propose d’utiliser
des «boîtes» découpant le maillage pendant la phase préliminaire afin de réduire la
zone de détection. On développe également une méthode pour résoudre le problème des
«zones aveugles» et des «nœuds fuyants». En conclusion, les algorithmes de détection
classiques basés sur le concept du nœud le plus proche sont critiqués, et quelques
contre-exemples sont présentés et discutés en détail.
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On propose une technique de détection basée sur la méthode «bucket sort» et sur
la définition rigoureuse du point le plus proche (donnée dans Chapitre 2. Les valeurs
optimales des paramètres de la méthode (distance de détection maximale et taille des
mailles de détection) sont déduits de façon heuristique sur la base des nombreux essais
numériques. On discute également une approche basée sur des éléments de contact à
faces multiples ; les questions de détection liées à cette approche sont résolues.

La performance de la méthode de détection proposée est vérifiée sur les deux tests: un
calcul de contact pneu-asphalte (plus que 300 000 nœuds sur les surfaces de contact) et
un calcul de contact entre deux surfaces rugueuses (plus que 2 000 000 nœuds sur les
surfaces de contact). Pour certaines configurations, le gain en performance par rapport
à la méthode «tous-à-tous» peut atteindre 160 000 (4 secondes contre une semaine).

On discute en détail l’adaptation de l’algorithme considéré aux problèmes pour
lesquels la discrétisation «esclave-maître» est inconnue a priori. La dernière question
abordée est celle de la détection dans le cadre de calcul parallèle. Deux approches
(SDMR/MDMR - Détection Singulière/Multiple, Résolution Multiple) sont proposées.
On montre pour chacune les détails de l’implémentation dans un code, et également
un test de scalabilité.

Locating the contact points between two surfaces is an important step in
the numerical treatment of contact problems. Moreover, this is one of the
major computational costs of contact algorithms both in explicit and implicit
computations. Fast and accurate detection of contact is not an easy task and
has to be considered in detail. Here we present several classical approaches
and propose some improvements. We will mainly focus on the so-called local
contact detection in case of Node-to-Surface (NTS) discretization for implicit
Finite Element Analysis. However, some general remarks are also valid for
explicit codes.

First, some notions are introduced, different types and strategies of contact
detection are explained. Then simple algorithms and a more elaborated one
are discussed in detail both in case of known a priori and unknown master-
slave (e.g. self-contact) discretizations. Further some comments are given on
parallelization of the discussed algorithms and several examples of contact
detection in large contact problems are presented.

3.1 Introduction

Roughly, two steps can be distinguished in the contact algorithm: contact
detection and resolution. Resolution implies that penetration between
contacting solids has to be eliminated by applying repulsive forces to
penetrating elements. Consequently the detection phase must determine
which elements of the discretized solids are going to penetrate. It is worth
mentioning the key difference between contact detection in explicit and implicit
resolutions:
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• explicit – it is necessary to detect elements that have already penetrated
and further apply contact forces;

• implicit – possible penetration has to be known at the beginning of each
resolution step in order to include additional degrees of freedom1 in the
problem and to change the residual vector and the stiffness matrix.

In the Finite Element Analysis, contact can occur between discretized
deformable bodies or between one discretized deformable body and an
analytically defined rigid surface (curve). The penetration can be described in
different ways (see Fig. 3.1). The definition of the penetration often introduces
an asymmetry in the contact problem and the contacting surfaces have to
be treated differently at least locally in space and time. This procedure is
strongly connected with the asymmetric geometrical description of contact
and the discretization of the contact interface, i.e. contact detection relates to
the discretization method, i.e. symmetric discretizations (segment-to-segment
type) should use symmetric detection and vice versa. We restrict ourself to
node-to-segment discretization, so it is natural to define the penetration as
penetration of nodes of one discretized solid (slave) under the segments of the
second discretized solid (master) or under an analytical surface. Following we
will use these classical notions of master and slave for surfaces and for their
components (slave nodes of the slave surface, and master segments and master
nodes of the master surface).

Figure 3.1: Various definitions of the penetration. Symmetric: a – segment
intersection; b – volume intersection. Asymmetric: c,d – segment in volume;
e,f – node in volume; g,h – node under surface.

Two contact search phases should be distinguished [Wriggers 06]: spatial
search and contact detection. The first notion is used for searching between
separate solids coming into contact, i.e. rather between separate geometries
than discretizations. Contact spatial search methods are of big importance in
multibody systems and discrete element methods where interaction between
more or less identical particles such as crashed stone, sand, snow is considered

1supplementary degrees of freedom appear in Lagrange multiplier method and the coupled
augmented Lagrangian method.
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to analyze mud flows, opencast mines, avalanches, etc. It is worth mentioning
that previously the particular attention of the scientific community has been
paid mostly to this phase of contact search, as local discretization of solids
often remained rather moderate and even the simplest all-to-all approach often
appeared to be rather efficient and fast enough technique, especially in case of
small slip when only one execution of the detection procedure is required.

However, in large deformation and large sliding problems the contact
detection was one of the major computational costs, because the contact
geometry changes significantly through computation and detection is required
almost at each time step. The number of time steps depends on the
resolution framework (implicit, explicit) and on the nonlinearity of the
problem. Naturally, since the number of time steps is significantly higher
in case of explicit calculations the contact detection has been first considered
in detail in the framework of explicit codes [Benson 90]. Many simple and
efficient techniques have been proposed. They were inspired from hidden line
algorithm from computer graphics and based on the bucket sort method. The
recent advances in parallel computing make possible extremely large implicit
and explicit contact simulations between very finely meshed solids and so
it imposes even more severe requirements to the time needed for contact
detection. The contact detection algorithms are connected with the contact
discretization method and the parallel framework. However, there are not
so many publications concerning that phase of the contact algorithm and
frequently in moderate size engineering applications the basic ideas of the
bucket sort, proposed 20 years ago, is used. Some more recent techniques can
be found in [Oldenburg 94], [Bruneel 02], [Fujun 01]. It is worth mentioning
that the recently developed mortar based methods require a specific symmetric
detection; a method based on the bounding volume trees has been proposed
by B. Yang and T.A. Laursen [Yang 08a], [Yang 08b].

The goal of the detection phase in implicit analysis consists in creating
“contact elements” – abstract (not structural) elements, which include (in case
of a node-to-segment discretization) a slave node and several master nodes
united by a master surface segment2; normally this master segment should be
the closest master element and the slave node has a normal projection on it.
The simplest and straightforward method is the all-to-all detection: all slave
nodes are projected on all master segments and if for the current slave node
one or several projections exist, the closest master segment is chosen. The
growth rate of the method is O(Ns × Nm), where Ns and Nm are the numbers
of slave nodes and master segments respectively. If the master and slave
discretization is unknown a priori, the same problem will require four times
more time to achieve detection. If one considers a master surface formed by
quadrilateral segments3, then the determination of the projection requires the

2in case of Lagrange multiplier or coupled augmented Lagrangian methods, contact elements
contain also some additional degrees of freedom (Lagrange multipliers) – one in case of
frictionless contact and 2 or 3 in frictional case in 2D and 3D respectively. To keep track of
stick-slip-stick behavior it is sometimes necessary to store also an internal history variable.

3second order master surface in 2D, or any master surface in 3D except that surface formed
from triangles requires an iterative process to determine the projection point.
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solution of a nonlinear equation and takes several iterations, however often
only one iteration is required to realize that there is no projection.

The first generally accepted simplification of the detection is to start from
the detection of the closest node instead of the closest segment. Although the
growth rate remains the same O(Ns ×Nm), where Nm now denotes the number
of master nodes, the time needed to achieve such a detection is significantly
smaller. After detection of the closest master node, the slave node is projected
on the master segments adjacent to the determined master node. For each
slave node, the closest master segment is then established if it exists. Many
sorting algorithms from spatial search can be used for local detection in this
framework, based on the search of the closest node.

So there are two strategies: closest-node-and-adjacent-segment and closest-
segment. However, both of them are time-consuming and not robust
(especially the strategy based on the closest node detection, see remark below).
Although detection methods based on the closest node strategy have been
used for many years, these methods can not be easily improved to perform a
correct contact detection in all cases. That is why we will not base the detection
procedure on this strategy. The rigorous formulation of the closest point given
in the previous chapter will be exploited.

Let us imagine a set of spatially distributed compact objects (nodes,
segments). The problem is to detect for a given object the closest one from
this set. Human vision accomplishes this task easily by analyzing just a few
objects. It does not need any analysis of the whole set of objects while the
simple detection algorithm does, because it is “blind” and needs to “touch”
all the objects one by one and compare distances between them (e.g., between
their centers of mass). The techniques which have been worked out for contact
detection are aimed at reducing the quantity of points to “touch”: bucket sort
[Benson 90], [Fujun 00], the heap sort, the Octree method [Williams 99] and
others.

Another improvement to reduce the detection time in the master-slave
approach consists in considering only those parts of the contact surfaces which
are situated in a limited zone (bounding box), where contact can occur in the
current solution step. This zone can be confined to a bounding box that will
be updated during the computation. It is proposed to determine this detection
bounding box as an intersection of bounding boxes spanned on master and
slave surfaces. Another improvement, proposed in [Benson 90], consists in
a smart update of the closest element : an expensive detection procedure is
carried out only in the first time step (for each slave node the closest master
element (node, segment) is detected). For the following computational steps,
slaves nodes are checked for proximity only with master elements neighboring
to the previously determined. However, this method is not very general and
sometimes fails. These improvements are not applicable for contact detection
in case of unknown a priori master-segment discretization.

As already mentioned, the main difference in detection in explicit and
implicit simulations is that for the second case it is necessary to predict possible
contact occurrence and to establish contact elements before penetration occurs.
This implies that slave nodes approaching master surfaces have to be detected
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at a certain distance, the maximal detection distance (MDD), which is an
important parameter of the detection procedure. It is good to know that the
meaning of the MDD for closest-node and closest-segment based procedures
is quite different and will be discussed later.

Further we give a detailed description, analysis and validation of different
contact detection techniques. We start from the development of a robust
all-to-all detection technique, which is acceptable for a moderate number of
nodes in contact. Two strategies are considered based on the closest node and
the rigorous closest point definition. Multi-face contact elements, inspired
from [Heegaard 93] and [Barboteu 02] are introduced. Some important
remarks will be given on the closest node based detection and on the
relation between the maximal detection distance and the mesh size. Further,
the bucket sort method is considered in details, the optimal bucket size
is deduced and validated numerically. An extension of the considered
methods to contact in case of unknown a priori master-slave discretization
is discussed. Another contribution of this chapter is an extension of the
bucket detection method to parallel framework inspired from the so-called
Linked Cell Method widely used in molecular dynamic simulations for short-
range interactions [Griebel 07]. Some tests of contact detection for very large
problems are also presented.

To conclude this introduction, it is worth mentioning that there is a strong
correlation between robustness, accuracy of contact detection and the CPU
time. This dependence is not always inversely proportional. Sometimes one
can sacrifice robustness to keep things simple, a good example is the “closest
node” strategy complemented with bucket sort [Benson 90] - a quite simple
and rather robust strategy for quadrilateral meshes. However, to preserve both
accuracy of the contact detection and simplicity of the algorithm, we propose
a new robust and fast detection algorithm based on the rigorous formulation
of the closest point and on the bucket sort.

3.2 All-to-all detection

All-to-all algorithms are easy and fast to implement but long to execute.
Their growth rate is O(Ns × Nm). Their straightforward implementation is
not acceptable for large applications, however some simple improvements
mentioned above can significantly improve their performance.

3.2.1 Preliminary phase

First of all, the key parameter for the contact detection – maximal detection
distance (MDD) dmax – has to be introduced. In case of node-to-segment
detection, dmax determines the following: if a slave node is closer to the master
surface than dmax, then it is supposed that this node can come in contact
during the following time step, otherwise not. If one considers a node-to-
node detection technique, then the meaning of the maximal detection distance
is different. If the distance between a slave ri node and a master node r j
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di j = dist(ri, r j)
4 is smaller than the maximal detection distance, then the

corresponding slave node ri and one of the master surfaces containing the
mentioned node r j as its vertex are considered to be potentially in contact
during the following time step, otherwise not. This difference naturally results
in a limitation on the minimal value of the dmax for the closest node based
detection: MDD has to be greater than one half of the maximal distance between
master nodes attached to one segment

dmax >
1
2

i=Nm, j=Ni
n−1, k=Ni

n
max

i=1, j=1, k= j+1
dist(ri

j, r
i
k), (3.1)

where Nm is a total number of master segments, Ni
n is a total number of master

nodes attached to the i-th master segment, ri
j
is a coordinate of the j-th node of

the i-th master segment. If the condition (3.1) is not fulfilled, then some slave
nodes coming in contact with the master surface can be lost (see Fig. 3.2)5. The
value of dmax can be determined automatically according to the discretization
of the master or self-contact surface and to the maximal displacement of nodes
on contact interface during one time step. The MDD should be kept as small as
possible in order to accelerate the detection procedure and to avoid the creation
of non necessary contact elements. For simplicity, it is proposed to keep the
MDD unique for the entire contact area. In contrast to closest node based
detection, the MDD for the closest point based procedure has no connection
with the master surface discretization and can be chosen for all-to-all procedure
only according to the maximal displacement of contact nodes. So the following
discussions on the optimal choice of the MDD relate to the all-to-all closest node
based detection and to all detection strategies in the framework of the bucket
sort, which will be considered later.

For a reasonable number of time steps, in a geometrically or physically
nonlinear problem, the maximal detection distance can be determined as the
dimension of the largest master segment

dmax =
i=Nm, j=Ni

n−1, k=Ni
n

max
i=1, j=1, k= j+1

|ri
j − ri

k|. (3.2)

Such an estimation is reasonable in case of a regular discretization of the
master surface. On the other hand if the distribution of the master nodes
is very heterogeneous, i.e. fine surface mesh in one contact region and rough
in another, the value of dmax appears to be highly overestimated for certain
regions. This fact decreases the efficiency of the method, but in general for
an adequate finite element mesh the increase of the detection time is not so
high. The influence of the maximal detection distance on detection time will
be discussed later. The possibility of performing an automatic choice of the
MDD is of a big practical importance.

In the case of linearly elastic material and frictionless contact, the geometry
can change significantly during one time step. So the analysis of the

4Here the dist(r
i
, r

j
) denotes Euclidean metric in the global reference frame dist(r

i
, r

j
) = |r

i
−r

j
|.

5Here and further for the sake of simplicity and clarity, almost all figures represent two
dimensional cases but can be easily extended to three dimensions.
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dmax
?

?

slave nodes master nodes master surface detection zone

dmax

dmax

Figure 3.2: Maximal detection distance dmax for closest node base detection
strategies: on the left, not correct; on the right, correct choice.

discretization can only provide a lower bound for dmax and that is why its value
should be augmented manually or automatically according to the deformation
and/or displacement rate, for example in the following way

dmax = max
{

i=Nm, j=Ni
n−1, k=Ni

n
max

i=1, j=1, k= j+1
|ri

j − ri
k|; 2

Ncmax
i=1
|∆ri|

}
, (3.3)

where Nc is a total number of slave and master nodes and ∆ri is the
displacement of the i-th node. The factor 2 takes care of possible opposite
translations of master and slave nodes. In case of remeshing or sufficiently large
deformations of the master, the detection parameter dmax should be recomputed
at each remeshing or at each N-th time step.

To accelerate the procedure before carrying out any detection, the spatial
area where contact can take place during the following time step can be limited.
It has to contain as few master and slave nodes as possible but obviously it has
to include all the nodes potentially coming in contact during the next step. If
needed this area has to be frequently updated. We propose to confine this area
by a parallelepiped bounding box defined in the global reference frame.

The determination of the bounding box differs for known a priori and
unknown master-slave discretizations. In case of unknown master-slave, the
bounding box should include all possible contacting surfaces. But frequently
the discretization is known a priori even if contact occurs within one body (self-
contact). In this case the construction of an optimal bounding box allows to
exclude from consideration some nodes which cannot come in contact during
the next time step (Fig. 3.3) and consequently it results in an acceleration of the
detection procedure. It is worth mentioning that the most general case, where
any slave node can potentially come in contact with any master segment during
the loading is considered in the discussion. Often, this is not the case and for
each slave node the set of possible master segments is limited and partly
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predefined. But to take this limitation into account, the detection technique
should be tuned for each particular case, which is impractical.

extended bounding 
box of master

extended bounding 
box of slave

1r

2r

1rs

2rs

2rm

1rm

detection 
bounding box

masterslave 

Figure 3.3: Determination of the bounding box for the contact detection
procedure in case of a known master-slave discretization.

First of all the dimensions of master and slave surfaces are estimated. It is
proposed to construct two independent bounding boxes Bs : {r1

s , r
2
s } and Bm :

{r1
m, r

2
m} containing all slave and master nodes respectively, where r1 and r2 are

the vectors in the global reference frame of two opposite corners determining
the bounding boxes. Note that each bounding box confining master and slave
nodes includes also a node free margin zone, the size of which is the maximal
detection distance at each side:

r1 : r1
{x,y,z} =

Nb

min
i=1
{e{x,y,z}·ri}−dmaxe{x,y,z}, r2 : r2

{x,y,z} =
Nbmax
i=1
{e{x,y,z}·ri}+dmaxe{x,y,z},

(3.4)
where Nb is a number and ri is a vector of nodes to be included in the
bounding box and e{x,y,z} are unit vectors in the global reference frame. The
margin of ±dmax is introduced to avoid any loss of possible contact elements.
Some improvements can be introduced in order to reduce the time needed
for the construction of the bounding box. The user can precise that one or
several contact surfaces are rigid and do not move, then permanent bounding
boxes can be assigned to these surfaces and there is no need to update them.
Another possible feature is the prediction by the user that the deformation and
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displacement of a contact surface is connected to the displacement of certain
nodes. It allows to avoid the verification of all nodes in (3.4). Since the nodal
coordinates are stored in memory in the global reference frame, it is much
faster to work directly with these coordinates, so no rotation to the bounding
boxes must be applied. The resulting bounding box B : {r1, r2} is taken as
the intersection of the master and slave bounding boxes B = Bm

⋂
Bs. The

practice shows that a further contraction of the bounding box does not reduce
significantly the detection time. The construction of the bounding box and the
verification of the presence of nodes and segments inside the bounding box
requires about 2(Ns +Nm) operations.

3.2.2 Detection phase

In order to accelerate the detection procedure, one can detect first for each slave
node the closest master node (if there are master nodes closer than MDD). It is
then enough to find the projection of the slave node on the master segments
having this master node as a vertex. The case when only one projection is found
is trivial. It remains to create the corresponding contact element spanned on
the slave node and the master surface possessing this projection. If several
projections are found, the closest one is retained to create a contact element.
The case when no projection is found has to be considered in details. There are
two possibilities:

1. the slave node is situated in a “blind spot” of the discretized master
surface;

2. the slave node does not come in contact but just passes by close to an
edge of the master surface.

Let us remind the reader some facts from the previous chapter. Since the
finite element method requires only continuity of the discretization

(
Γc ∈ C0

)

the contacting surface may be not smooth
(
Γc < C1

)
. Each master segment

has its “normal projection” zone (Fig. 3.4), each point in this zone has at least
one normal projection onto the master surface. But often in the junction zone
of the master segments (at common edges and nodes) the intersections of the
“normal projection” zones do not fill the surrounding space entirely. Some gaps
are left, in form of prisms and pyramids in 3D or of sectors in 2D. This problem
exists not only for linear but for any order master elements. As it has been
discussed in the previous chapter, the rigorous definition of the closest point
does not possess such a problem: if there is no normal projection on the master
segments, the closest point is situated on the edges or on the closest master
nodes or it does not exist. However, if one confines to “normal projection”
as usual for the NTS discretization, it is necessary to find the closest master
segment to establish the contact element. For the sake of generality we will
consider the case when only normal projection on master segments is checked,
which naturally yields to blind spots.

Three types of blind spots can be distinguished: internal, external or blind
spot due to boundary conditions (see Fig. 3.4). If a slave node in a blind spot
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Figure 3.4: Examples of blind spots: external, internal and due to the symmetry
boundary conditions.

is overlooked, different consequences depending on the type of blind spot are
possible.

• External blind spot. Slave nodes situated in this kind of spot are not
detected before they penetrate under the master surface. After such a
penetration, it can be detected during the next time step and brought
back onto the surface, but the solution has been already slightly changed.
In certain cases especially in force driven problems such a penetration
can lead to a failure of the solution algorithm.

• Internal blind spot. Contact is predicted correctly, but if a slave node
penetrates just a little under the master surface and appears in its internal
blind spot, this node will be lost for the contact detection at least during
the next time step. Such little penetrations take place if the penalty
method for contact resolution is used or just due to the limited precision
of the iterative solution.

• Blind spot due to boundary conditions. This type of blind spot is situated
at the boundary and can be either internal or external. It appears due
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to the presence of symmetric or periodic boundary conditions on the
master surface, for example the basic Hertz contact problem with an
axisymmetric 2D finite element mesh.

In explicit formulation the internal blind spots are the most dangerous, for
implicit – external blind spots.

There are different possibilities to avoid the loss of contact in blind spots:

• Artificial smoothing of master surface for large sliding contact problems
[Pietrzak 99], [Wriggers 01], [Krstulović-Opara 02] etc. There are no more
gaps in “projection” zones except gaps due to symmetry, i.e. there are
almost no more blind spots and the problem of passing by nodes does not
exist. However, most of these methods have some inherent drawbacks,
e.g. the deformation obtained close to the edge of the active contact zone
may be erroneous.

• Master segments can be extended in all directions to cover gaps in the
normal projection zone.

• A “proximal volume” can be constructed by an extrusion of the master
surface in the normal direction and in the opposite one which fills both
projection zones and blind spots. If a slave node is situated in this volume
then it is considered as node in contact and the master surface is further
detected. “Passing by” nodes can be easily detected as they do not appear
in the “proximal volume”.

The first group of methods in general is too “expensive” if one uses them only
for the detection purpose. The methods are not applicable for arbitrary meshes.
The second group is good and reliable for linear elements. The third method
is also quite time consuming.

We use here a rather rough but quite simple and robust treatment of blind
spots. If a detected slave node has no projection and is not a passing by
node, then the corresponding contact element is constructed with the closest
(see [Zavarise 09b]) or randomly chosen master surface attached to the closest
master node. For sufficiently small time steps, such an approach is quite
reliable. It remains only to determine if the node is passing by or not. One
possible technique is represented in Figure 3.5.

First of all, in the preliminary phase, the boundary master nodes
surrounding the master contact surface have to be marked. Let us assume
that for one of such marked nodes rm, the closest slave node rs has been found.
If it has no projection onto the master segments attached to the marked master
node, two alternatives are possible: either the slave node is situated in a blind
spot, or it passes by the master surface. To choose between these two cases, one
has to verify if the slave node is located in one of the blind spots attached to
the master node, or to check if the slave node is in the local “proximal” volume
of the master surface. The second verification seems to be more simple and
natural. Note that such a verification is slightly different for locally convex and
concave master surface boundaries. The convexity can be known as nodes of
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Figure 3.5: Detection of passing by nodes. a – master surface and its boundary;
b – zoom on the geometry close to the passing by node; c – convex master
boundary; d – concave master boundary.

each master segment are ordered. The condition of convexity is

(rm − rm2) × (rm1 − rm) · (n1 + n2) ≥ 0, (3.5)

where n1 and n2 are respectively the average normals to the master segments
possessing the edges {rm, rm1} and {rm, rm2}. The criterion of the slave node
being in the proximal volume is then

n2 × (rm − rm2) · (rs − rm) ≥ 0 AND n1 × (rm1 − rm) · (rs − rm) ≥ 0 (3.6)

If this condition is fulfilled, the slave node is taken into account and the contact
element is established with the closest master segment. For the concave surface
AND in Eq. (3.5) should be replaced by OR.

As one can see, considering only normal projections on master segments
results in difficulties in detection of slave nodes in blind spots and in case of
passing by nodes. However, these difficulties are small compared to the main
drawback of the contact detection based on the closest node, such a detection is
not robust and may fail for nonregular meshes (see Fig. 3.6 and Remark 3.1). So
we propose not to start the detection procedure from searching for the closest
master node for each slave. According to the rigorous definition, the closest
point can be either on the master segments or master edges or master nodes, so
for the purpose of robustness it is recommended to search directly the closest
point, i.e. to check the projection on all master segments, all master edges
except edges surrounding the master contact zone and all master nodes. It
allows to avoid problems associated with blind spots and passing by nodes. It
increases significantly the robustness of the detection as well.
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3.2 All-to-all detection

Figure 3.6: Examples of failure of the contact detection algorithm based on the
closest node: a – flat triangular mesh of master surface; b – colors correspond
to the proximity zones of the master nodes; c,d – if a slave node is situated in a
red region, it has its projection on the master segment which is not attached to
its closest master node; e – on this particular mesh configuration, the fraction
of “bad” zones is over 15%.

~
Remark 3.1 on the contact detection based on the closest node.

The detection based on the closest node takes place in two stages:

1. for each slave node, the closest master node is determined;

2. if the master node is close enough, then one supposes that the “normal projection”
of the slave node onto the master surface is located on one of the master segments
that have the master node as one of their vertices; the projection point is then
calculated.
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As mentioned in [Benson 90], the fundamental assumption of such an algorithm (the
normal projection of the slave node is situated on master segments adjacent to the
closest master node) is not always correct. The slave node can penetrate a master
segment which is not attached to its closest master node. To demonstrate it the authors
give an example of highly distorted quadrilateral surface mesh. However, to keep the
detection algorithm fast, they accept the risk. There are several arguments in defense
of their choice: they are very experienced users, they used regular quadrilateral mesh
and a two pass∗ penalty method. These facts reduce the risk almost to zero.
However, for the general case and one pass resolution algorithms, the situation is more
dramatic and the risk to overlook penetrations is high, especially for the triangular
surface mesh of the master. Even a flat and quite regular surface mesh consisting
of triangles may have many zones where slave nodes can penetrate under master
segments which are not attached to the closest master nodes (see the figures below and
Fig. 3.6). For non-flat meshes, the risk to miss or to create incorrect contact element
is significantly higher. That is why we recommend to avoid contact detection methods
based on the closest master node.

Fig. 3D examples of failure of a detection algorithm based on the closest node search:
a flat distorted quadrilateral and triangular master meshes, triangle denotes a slave

node for which closest master point is not situated on the master segments having the
closest master node as its vertex.

Fig. 2D case: the slave node S has its closest point on the master segment CD not
attached to the closest node B; 3D case: the closest point to the slave node S is situated

on the segment ACD not attached to the closest node B.

∗ one node can be both master and slave during one increment.
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3.3 Bucket sort detection based on the rigorous definition

of the closest point

Bucket sort based on the closest node has been proposed by Benson and
Hallquist [Benson 90] for DYNA3D ([Benson 07]). It has been slightly
improved in [Fujun 00] and recently revisited with some improvements and
several comments concerning parallelization in [Yastrebov 11a]. Here we adapt
the bucket approach to account for the rigorous definition of the closest point
from the previous section. Many details of the algorithm based on the closest
node [Yastrebov 11a] remain unchanged. Nevertheless, the detection of the
closest point requires now about 2-3 times more verifications and several times
more floating point operations: the slave point is checked against master nodes,
edges and elements. On the other hand it, is not necessary to check for passing
by nodes and blind spots.

Before discussing particular details, let us derive a short description of the
bucket sort detection method. As previously, two phases can be distinguished.
In the preliminary phase, the optimal size of the bucket is evaluated, then
a potential contact area is determined and split in buckets (cells) by an
enumerated regular grid. That allows to reduce locally the area of the closest
point search. Finally all slave and master components (nodes, edges, segments)
situated in the detection area are distributed in the cells of the grid. In the
detection phase, for each slave node, we check for the closest master component
in the current cell. If needed, we check one or several neighboring cells for
possible proximal master components. Contact element is finally created in a
special manner.

3.3.1 Preliminary phase

First of all the maximal detection distance dmax is chosen equal to the maximal
size of the biggest segment of the master surface (Nm operations). The
spatial bounding box is then determined as the intersection of the master
and slave bounding boxes exactly as described in the previous section (Nm+Ns

operations). An internal grid should be constructed in a proper way: it should
be regular and the cell size w should be optimum, that is not too large in
order to keep the number of slave and master nodes in the cell as small as
possible. On the other hand, if one limits the operations to checking only one
neighboring layer of cells (9 cells in 2D and 27 in 3D), it can be shown that the
cell side must be greater than w ≥

√
2dmax for linear elements in order not to

overlook segments like AB for slave node S in Fig. 3.7. For quadratic elements
the limitation depends on the maximal curvature of the master segments, but
the rough estimation w >

√
2dmax seems to be reliable. If the size of the cell

is smaller, more than one layer of neighboring cells has to be checked. It
complicates significantly the coding of the algorithm and moreover the growth
rate of the maximal number of cells to be checked Nc is cubical

if w =
dmax

n
,n > 1⇒ Nc = (3 + 2n)3 (3.7)
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Figure 3.7: Example of 9 buckets (cells) and master-slave solids, triangles -
slave nodes, circles - master nodes. Distance between slave node S and master
segment AB (which is not included in the right bottom bucket) is higher than
MDD if cell side w >

√
2dmax: there is no risk to overlook possible contact.

The smaller the cell size, the higher the total number of cells and
consequently the smaller the number of contact nodes per cell. On the
other hand, the small cell size increases the need to carry out the detection
in neighboring cells. It can be shown analytically by means of probability
methods that for even distribution of master and slave elements both in 2D
and 3D cases the minimal detection time is unique and corresponds to the
minimal possible cell size. Such a simple analysis predicts a quadratic growth
of the detection time in 2D case and cubic in 3D. However, in real simulations,
the distribution of the contact elements is not even and so some numerical tests
have been performed in order to investigate the dependence of the detection
CPU time t on the cell size w.

3.3.2 Numerical tests

For the purpose of the optimal cell size definition, several artificial finite
element meshes have been considered. Slave and master surfaces consist of
about 10200 nodes each. Three sets have been considered: proximal meshes
with homogeneous (Fig. 3.8, left top) and heterogeneous (Fig. 3.8, left bottom)
node distributions and a convex mesh with a heterogeneous node distribution
(Fig. 3.8, right). Each set is represented by five different realizations of curved
surfaces. By homogeneous node distribution, we mean that the maximal
segment dimension does not exceed 200% of the minimal one. In heterogeneous
case, this difference reaches 700%.

In Figure 3.9, the dependence of the average detection CPU time and the
average number of investigated neighboring cells on the normalized cell size

107



3.3 Bucket sort detection

Figure 3.8: Example of finite element meshes used to determine the optimal cell
size: proximal meshes with homogeneous (a) and heterogeneous (b) spatial
node distribution and convex meshes (c).

w/dmax is represented for different sets. As expected, the detection time for
convex meshes is smaller because of the smaller associated bounding boxes.
Different discretizations (256x256, 512x512) have been tested. In all the cases,
the same dependence takes place. According to the analytical estimation and
to the test results, the optimal grid size is the minimal one and equal to the
maximal detection distance amplified by

√
2

w =
√

2dmax (3.8)

For such a choice, each grid cell contains the minimal number of elements,
but on the other hand it is necessary to carry out the detection procedure in
many neighboring cells: in average 12-16 cells from 26 surrounding cells in 3D
(Fig. 3.9).

This investigation allows to determine automatically the optimal maximal
detection distance and the size of the detection cell depending on the
discretization of the master surface. It makes the algorithm user friendly and
in most cases accelerates the computation. However, sometimes it is necessary
to keep the maximal detection distance significantly smaller than the biggest
master element. Such a situation arises in complex self-contact problems with
unknown a priori master-slave discretization. In this case, the detection cell
size is kept equal to the dimension of the largest master element d multiplied
by
√

2 and the MDD is set smaller than d.
When the maximal detection distance is determined and the bounding box

is constructed, the internal grid has to be established in the bounding box
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Figure 3.9: The dependence of the detection time and the average number of
neighboring cell investigated during the detection on the normalized cell size.

and further all slave nodes situated in the bounding box as well as all master
components (nodes, edges and segments) have to be distributed in the cells of
the grid. Since the optimal cell size wmin =

√
2dmax, the number of cells in each

dimension of the grid is defined as

Nx,y,z = max





r2

x,y,z − r1
x,y,z

√
2dmax


 ; 1

 , (3.9)

where [x] stands for the integer part of x. Such a choice of cell numbers provides
the size of the cell ∆x, ∆y and ∆z not smaller than wmin at least in case of N > 1

∆{x, y, z} =
r2

x,y,z − r1
x,y,z

Nx,y,z
≥
√

2dmax. (3.10)

Each cell of the grid has to be enumerated, the unique integer number N ∈
[0; Nx ×Ny ×Nz − 1] is given to each cell with spatial “coordinates” ix, iy and
iz, where ix,y,z ∈ [0; Nx,y,z − 1]

N = ix + iyNx + izNxNy. (3.11)

Now the growth rate of the method can be estimated roughly as O
(

NsNm

NxNyNz

)
.

If the average number of master and slave nodes per cell is supposed to be
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constant6 ̺ = N
Nc

, where Nc = NxNyNz and N is an average number of master
and slave nodes, then the growth rate of the method can be rewritten as O(N).
However, in practice the distribution of nodes is not even and the growth rate
is higher. Consequently the clustering of nodes and the nonregularity of the
mesh influences significantly the performance of the method.

Slave nodes and master components situated in the bounding box have to
be distributed in the cells. For this purpose several arrays As and Am

n ,A
m
e ,A

m
s

are created corresponding to slave nodes, master nodes, edges and segments
respectively. These arrays contain identification numbers (IDs) of components
which are contained in each cell: IDs of slave and master nodes, and edge
segments. Another possibility is to construct only one array for master
components which will include only master nodes, since edges and segments
can be derived from this information; but in this case it is necessary to avoid
identical verifications. For example, element As[i, j] keeps the ID of the j-th
slave node in the i-th cell of the grid, i ∈ [0; NxNyNz − 1], j ∈ [0; Ns

i
], Ns

i
being

the number of slave nodes in the i-th cell. In average, the number of integer
(32 bits) elements in an array does not exceed the number of contact nodes
and so even for extremely large problems it makes just a minor contribution
in memory requirement. However, the arrays can be replaced by linked-list
storages as in [Fujun 00].

For each node with coordinates r : {rx, ry, rz} inside the bounding box, the
corresponding cell number is easily determined as

Ncell =
[
rx − r1

x

∆x

]
+



ry − r1

y

∆y


 Nx +

[
rz − r1

z

∆z

]
NxNy, (3.12)

master segments and edges are supposed to be in the cell if at least one of their
nodes is in the cell. So contrary to nodes, master segments and edges can be
associated with several different cells.

3.3.3 Detection phase

All steps described previously represent the preliminary part of the detection
algorithm which demands in general 7 to 10 percent of the total detection
time. The next steps of the algorithm correspond to the detection of the closest
point and the construction of contact elements. For each grid cell ci and for
each slave node rs

i j
in this cell, i.e. for each node with ID As[i, j] we look for

the closest point on the master components associated with the current cell,
i.e. the closest component among Am

n [i],Am
e [i],Am

s [i] if they are not empty. Let
us suppose that among all master components in the cell the distance to the
closest point is ds

i j
≤ dmax. It is obvious that the master components situated

in neighboring cells (maximum 8 cells in 2D, 26 in 3D) have to be checked
as well. Not all the cells are considered, but only those which boundaries
are sufficiently close to the slave node. The criterion of the proximity is the
following: if any boundary of the current cell (face, edge or vertex) is closer

6the number of master nodes per cell can be considered constant as cell size is proportional
to the maximal distance between master nodes.
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than the closest master node found previously, i.e. closer than ds
i j

, then the
detection procedure has to be carried out in all neighboring cells attached to
the boundary one by one (Fig. 3.10).

Figure 3.10: Detection of the closest master point: a – two meshes of slave and
master solids; corresponding bounding boxes, their intersection and detection
grid; the slave node (triangle) in the current cell is checked for proximity against
all master components in the current and neighboring cells (in dark gray); b –
zoom on the local detection region.

For example, let us consider a vertex of the i-th cell rv
i
. For instance, after

checking all master components in the current cell, we find that the closest
component is remote at ds

i j
from the slave. Then if the considered slave node is

closer to the vertex than this distance, i.e. rv
i
: |rs

i j
− rv

i
| < ds

i j
, then all the master

components in one of the neighboring cells attached to the vertex rv
i

have to
be considered and consequently ds

i j
has to be decreased or left unchanged if

no closer master components is found in these cells. And so on for other cells
attached to this corner. In general the same procedure has to be performed
for all 8 vertices, 12 edges and 6 faces of the i-th cell. To get a more optimal
algorithm, it is better if such an investigation of neighboring cells starts from the
closest faces, further edges and finish the verification with vertices if needed.
Note that each verified cell may decrease the ds

i j
and consequently can decrease

the number of cells to be checked. In such a manner all possibly proximal
slave and master nodes are detected cell by cell. The average number of
verified neighboring cells for different meshes is represented in Figure 3.9.
This number decreases with increasing normalized grid size 1/

√
2w/dmax but

as the optimal ratio w/dmax =
√

2 the average number of verified neighboring
cells remains quite high, typically 12-16 cells.

3.3.4 Multi-face contact elements

In this manner each slave node in the bounding box is checked and for some
of them the closest master component has been found. Now let us discuss
how to create NTS contact elements. Barboteu and Alart in [Barboteu 02]
proposed to use multi-face NTS contact elements. Even earlier, it has been
proposed by Heegaard and Curnier for large-slip contact [Heegaard 93]. This
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idea is particularly interesting for accelerating the overall computation time,
moreover in some cases it renders a more accurate algorithm. It consists in
creating contact elements made of one slave node and several master segments,
in order

• to avoid frequent updating of the contact elements;

• to treat large sliding (over more than one master segment) during one
increment;

• to avoid random choice between two equally close master segments;

• to create a NTS element even when no normal projection has been found.

If the master-slave discretization is not too dense, then NTS contact elements
can contain one slave node and all possible master segments, as done in
[Alart 04]. Consequently, the values in the global stiffness matrix must
be updated, but not its structure, which decreases significantly the total
computational time. However, multi-face contact element should be used
carefully due to the risk of infinite loop, if a slave node finds itself in a concave
region of the master surface.

If a master component has been detected close enough to a given slave
node, several segments attached to this master component are included in the
contact element (see Fig. 3.11). If a slave node has the closest

• point on a master segment: the current master segment and several
neighboring segments are included in contact element;

• point on a master edge: the master segments adjacent to this edge are
included in contact;

• master node: the master segments having this node as one of their vertex
are included in contact.

Figure 3.11: Examples of multi-face contact elements in 2D and 3D, dashed
lines connect nodes of multi-face contact elements: triangles - slave nodes;
circles - master nodes.

Master segments, nodes and edges in such an element can be either active
(slave node passes over segment, edge or node) or passive. Only active
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components introduce nonzero values to the residual vector and stiffness
matrix.

3.3.5 Improvements

As proposed in [Benson 90], then used in [Pietrzak 97] and many others, in
case of a known master-slave discretization, all slave and master components
should be included in the detection procedure only once. Further contact
elements which have been already created can be updated in a more efficient
manner. If the slave node still has a projection on a master component included
in its contact element, this element will not be removed. If not, the detection
is performed only in a close vicinity of the former contact element and a new
element is created. By close vicinity we mean master components neighboring
to the former contact element. Normally it can be rather easily found as the
mesh topology is known. If a slave node has no associated contact element
on the previous time step, it should be included in the detection procedure.
Obviously, the slave bounding box is computed only for such inactive slave
nodes, and the master bounding box is still based on all master components.
This technique appears to be quite efficient and accelerates significantly the
detection phase and the matrix reconstruction.

Another technique consists in increasing the number of buckets, but since
this number is connected to the discretization of the master surface, the minimal
dimension of buckets is strictly limited. However, there is a way to solve this
issue: several artificial nodes can be set on each master segment, which results
in an automatic decrease of the limit on the MDD and consequently the number
of buckets increases. Two examples are given in Figure 3.12.

Figure 3.12: Examples of artificial nodes on the master surface: a – original
master mesh, b – one supplementary node per segment; c – 9 supplementary
nodes per segment.

3.4 Validation and performance

The preliminary validation of the proposed detection method based on the
bucket sort is easy to carry out on simple meshes. Normally a visual analysis
of the constructed contact elements is sufficient. A more secure validation
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consists in comparing with the rigorous all-to-all detection which is trivial to
implement.

To demonstrate the performance of the implemented detection, we consider
a tire-road contact problem. Its simulation can be helpful for example for
the improvement of tread patterns (stick increase and noise reduction). We
are particularly interested in this problem because contact elements change
intensively at each time step and consequently a fast detection procedure
is highly desirable, moreover many problems in tire-road contact require
transient analysis, i.e. a very large number of computational time steps.

A finely and regularly meshed tire wheel is translated over an artificially
rough road surface7 and its FE mesh is deformed manually accordingly to
the road roughness, then the contact detection procedure is used. The finite
element mesh of the tire (Fig. 3.13) consists of about 550 000 nodes with a
contact zone of about 105 000 nodes. The finite element mesh approximating
the road roughness (Fig. 3.14) consists of about 400 000 nodes, the half of them
being included in the master contact zone. Established contact elements are
shown in Figure 3.14 for different tire-road dispositions and imprint deep. It
can be noted that the choice of the bounding box as an intersection of master
and slave bounding boxes reduces significantly the number of contact nodes
to be considered. The bounding box of the road is kept constant, whereas the
bounding box of the tire is updated at each step. The contact detection time
at each time step in average is just 1.5-2 seconds on a laptop, i.e. the contact
detection time can be neglected in comparison to the system resolution time.
The analysis of the detection time shows that the estimation of the maximal
detection distance takes about 30% of the time, preliminary stage takes about
20% and the detection procedure requires just 50% of the time.

Another example is an artificial contact between two rough surfaces, each
consisting of 220 contact nodes. Rendered surfaces corresponding to the meshes
are represented in Figure 3.15. Such a kind of problems requires a longer
time for contact detection since the bounding box includes all or almost all
contact nodes and there are as many slave nodes as master ones. If one uses
the all-to-all method based on the closest node, the reliable estimation of the
reference detection time Tref exceeds 180 hours (almost 8 days) and 240 distance
verifications are needed. The proposed grid detection method requires much
less time than the all-to-all method. The time strongly depends on the geometry
and discretization, consequently on the constructed bounding box and the
number of contact components located in it, for example, for close enough
rough surfaces (Fig. 3.15) the detection time is much higher than for convex
surfaces and it is almost negligible if both surfaces are not far from each other
but not close enough to come in contact. The results are summarized in Table
3.3. Let us note that in both presented computations the quadrilateral master
segments are supposed to remain flat for the considered methods.

7The finite element mesh of the road has been generated by a composition of trigonometrical
functions.
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Figure 3.13: A part of the tire finite element mesh (full mesh contains 550 000
nodes, 105 000 slave nodes).

Figure 3.14: Tire-road contact problem: general view, three tire-road
dispositions and corresponding contact elements on the bottom of the tire
for different imprint configurations.

3.5 Case of unknown master-slave discretizations

There are mechanical problems for which the determination of master and slave
surfaces presents a big challenge or may be impossible. Among such problems
there are multi body systems, problems with complicated geometries (for
example highly porous media like metal foams), large deformation problems
with non regular discretization and self-contact problems.

This class of contact problems needs a particular contact detection
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Table 3.3: Detection of contact between rough surfaces (> 2 millions of master
and slave nodes)

Geometry Nodes in
bounding
box

Contact
elements

Detection
time, s

Gain,
Tref /CPU
time

Two close surfaces 2 100 000 75 300 2280 >300
Two convex sur-
faces

340 000 15 800 72 >10 500

Two close but not
contacting surfaces

50 000 0 4 >160 000

∗ Tref = 180 hours

Figure 3.15: Rendered surfaces of two finite element meshes (each contains 220

contact nodes).

procedure. In the past the bucket sort has been successfully applied
to contact detection and it is widely known as single surface contact
algorithm [Benson 90]. Here a more accurate adaptation of the previously
derived formulation for problem with unknown a priori master-slave
discretization is proposed. A particular attention is paid to self-contact
problems. Some examples will be given in Chapter 6. Such an adaptation
demands considerable modifications in all stages of the grid detection
procedure. The growth rate of the method is the same as for the case of
known a priori master-slave discretization. The method is straightforward
and adapted for NTS discretization. In case of a mortar-based formulation, the
reader is referred to the recently developed technique proposed in [Yang 08a].

A self-contact is more probable for thin or oblong solids, for which one
or two dimensions are much smaller than others, so often shell elements are
used to simulate self-contact. But there is a challenge which is illustrated
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in Figure 3.16. For a thin solid with one or two sided contact zones, it is
complicated to detect the contact with the reverse side (circles in Fig. 3.16)
even if in addition to node positions their normal vectors and corresponding
surfaces are taken into account. Precisely, an ordinary detection algorithm
would suppose that the circles are penetrating under the surface marked with
another circle of the same color, consequently associated contact components
have to be included in contact. A possible solution is to determine a maximal
detection distance smaller than the double minimal thickness of the contacting
structure, however very small time steps have to be made. A better solution
has been proposed in [Benson 90], where the authors introduce an additional
history variable to keep track of the side from which the contact surface has
been penetrated. This approach allows the MDD to overpass the thickness of
the structure. Remark that this problem is more severe if both surfaces can
contact each other.

Figure 3.16: Usual case of self-contact in a thin-walled structure: example
demonstrates the inherent problem of self-contact detection: triangles mark
correctly detected contact; circles mark zones that can be recognized as active
contact zones.

Let us enumerate the features of the implementation of the detection
method in case of unknown a priori master-slave discretization. The main
modification is that not only nodes, edges and segments have to be considered
but also associated normals to determine potentially contacting elements.

1. The bounding box has to include all contact components; it can be chosen
constant, if we know a priori a sufficiently small area, from where the
contact nodes do not escape.

2. Normals have to be assigned to each contact node and contact edge at
the beginning of each time step.
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3. Only one array Ac is created and filled with contact components. The
process is the same as in case of simple contact.

4. Since we cannot distinguish master and slave, the detection of the closest
point has to be carried out for each contact node – future slave node
against all contact components in the cell. To be sure that contact
components can contact and are not attached to a common element, the
normals associated with the slave node and the closest master component
should point towards each other ni ·n j ≤ 0. Obviously some neighboring
cells have to be verified as in case of simple contact.

5. Nodes for which a close enough contact component has been determined
should be marked as slaves and should not be included as slave node for
another contact element.

Details for self-contact detection based on the closest node are quite similar
and are discussed in [Benson 90] and [Yastrebov 11a]. Being adapted for
the case of an unknown master-surface, the detection procedure has been
verified on the challenging artificial problem of the self-contact within a
snail operculum structure containing over 130 000 nodes on the surface, all
nodes with attached segments are included in contact (see Fig. 3.17). The
detection time is higher than for the contact of the same order with an known
a priori master-slave discretization, because the preliminary stage requires
the assignation of normals to every node and edge. Moreover, as the main
detection stage requires significantly more verifications of distance and normal
than in master-slave conception. In practice the difference in detection time
between known a priori and unknown master-slave depends significantly on
the geometry and its evolution. For example, for the snail operculum problem
for the known master-slave the detection time (≈ 11 sec) is only 4 times faster
than for unknown a priori master-slave (≈ 45 seconds).
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Figure 3.17: Finite element mesh used to test the detection procedure for self-
contact problems.

~
Remark 3.2 on the definition of the normal vector for contact nodes.

Normal at node n can be defined in different ways:

• averaged vector of the averaged normals of the adjacent segments

n =
1
N

∑

i=1,N

ni,

where N is the number of adjacent segments and ni is the associated average
normal of segment i, normals in the middle of segments or normals in the point
where the needed node is situated (Fig.a).

• average between weighted average normals of adjacent segments (Fig.b)

n =
1
A

∑

i=1,N

niAi,

where Ai is area (length) of the i-th adjacent segment, and A is the total area
(length) of segments A =

∑
i=1,N

Ai, and ni is the average normal of the i-th

segment.

• If the surface is smooth, then the associated normal is unique (Fig.c).
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Fig. Different possibilities to define the normal at node/edge: a – average between
normals of adjacent segments in the node; b – average weighted normal; for smoothed
surfaces (e.g. with Bézier curve, c) the definition of normal is explicit and unique

In conclusion we confirm that the bucket sort method based on a rigorous
definition of the closest point can be extended to the case of unknown a
priori master-slave discretizations. The required detection time is significantly
higher but of the same order of magnitude as the time needed for simple
contact detection for the same problem. The availability of such a powerful
method for self-contact detection extends significantly the capacities of the
finite element analysis of contact problems. Some numerical examples will be
given in Chapter 6.

3.6 Parallel contact detection

3.6.1 General presentation

The sequential treatment of the problems presented above (tire-road, curved
contact surfaces, operculum structure) requires either too long computational
time or may be just impossible due to the large amount of memory needed.
The use of the parallelization paradigm is then a good way out. Many
parallelization techniques are available nowadays, the class of non-overlapping
domain decomposition or also called iterative substructuring method, is
successfully and widely used in computational mechanics ([Farhat 94],
[Toselli 05], [Gosselet 06]). It implies a splitting of an entire finite element mesh
into subdomains which intersect only at their interfaces. Each subdomain is
treated by one or several associated processors, and the global solution is
obtained by enforcing displacement continuity and the balance of reactions
across subdomains. The use of these techniques with affordable and powerful
parallel computers allows to solve very large mechanical problems in a
reasonable time. In general the resolution step cannot start before the detection
procedure has been finished, so the last one is very important for the efficiency
of the parallel computations [Brown 00]. It should not present a bottleneck in
the whole process and, if possible, it has to use all the available capacities of
parallel computers.

The key point for the contact detection procedure in parallel treatment
is the fact that the finite element mesh and possibly the contact surface are
divided into some parts associated with different processors and that, in
the case of distributed memory, it is not entirely available on a particular
processor. Since in principle we need the entire contact surface(s) to perform
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the detection procedure, this repartition implies data exchanges between
subdomains containing different parts of this surface(s). The amount of data
transfer should be kept minimal. This will be our goal in the framework of the
contact detection based on the bounding box conception and the bucket sort.

Two strategies for the parallel treatment of contact problems are proposed
and analyzed : Single processor Detection, Multiple processor Resolution
(SDMR) and Multiple Detection, Multiple Resolution (MDMR). As it is
straightforward from the notations, SDMR carries out the contact detection
on a single processor whereas MDMR uses all the available resources for
the detection procedure. The last implies a parallelization of the detection
procedure which will be discussed in details and tested.

3.6.2 Single Detection, Multiple Resolution approach

Let us consider the SDMR approach. The main idea is that all necessary
information is collected by one processor which carries out the contact detection
in the way explained above and distributes consequently the created contact
elements among all concerned subdomains. This method can be efficiently
applied to any contact problem and is relatively easy to implement. On the
other hand, this method does not use efficiently all available resources, i.e.,
except one, all the processors are idle and inactive during the main detection
phase; however all the processors possessing a contact surface are active during
the preliminary stage.

At first, the bounding box for the contact detection has to be defined. This
task is easily performed in parallel. Each subdomain i ∈ [1; Nc] possessing a
part of contacting surfaces examines it and derives the corresponding bounding
boxes mr1

i
, sr1

i
, mr2

i
, sr2

i
and the maximal dimension of the master segment di

max.
After data transfer, the global maximal detection distance dmax = max

i=1,Nc
{di

max}
and the master and slave bounding boxes are determined

m,sr1
{x,y,z} =

Nc

min
i=1
{m,sr1

i{x,y,z}} − dmax,
m,sr2
{x,y,z} =

Nc

max
i=1
{m,sr2

i{x,y,z}} + dmax. (3.13)

Finally the resulting bounding box {r1, r2} is constructed as the intersection of
master and slave bounding boxes, exactly as in the sequential procedure. The
data transfer involves at most 3Nc operations but the load is not uniformly
distributed between processors, because not all of them contain the contact
surface and, for those containing a contact zone, the size of the surface may be
quite different. Anyway, this operation is quite fast even for huge meshes.

The next step consists in the union of all the necessary parts of the contact
surface in one processor-detector. First, the information about the global
bounding box is distributed among the subdomains possessing the contact
surface, each of them counts the number of master and slave nodes located in
the bounding box, further the subdomain with the maximal number of master
and slave nodes is chosen as detector. Another possibility would be that this
choice is made in agreement with the processor network topology, to accelerate
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the data transfer on the next detection step. At this stage, the data exchange
between subdomains remains negligible.

It remains to transfer all master components and slave nodes from the
bounding box (global IDs, hosting subdomain ID, coordinates, etc) to the
subdomain-detector, to carry out the detection as described in Section 3.3 and
to attribute the constructed contact elements to the relevant subdomains. If
a contact element is made of a slave node and master nodes from different
subdomains, the interface between them has to be created or updated.
Duplicated slave nodes have to be formed as well. This step is the most
expensive in the terms of data exchange. The technical part of this operation is
also quite complicated, because in general it is not possible to exchange directly
mesh quantities: nodes, segments, edges. So, the developer has to design an
appropriate class structure for geometrical objects, which does not contain any
global pointers on the finite element mesh, elements, etc.

3.6.3 Multiple Detection, Multiple Resolution approach

Figure 3.18: Example of cells partition between two processors: each processor
gets one half of the total number of cells (with slave nodes and master
components – represented by triangles and connected circles respectively)
as well as one boundary layer from another half which contain only master
segments.

In MDMR the preliminary part of a bounding box construction is exactly
the same as in SDMR approach. The key difference between MDMR and SDMR
appears in the next step. Instead of transferring all necessary information to
the detector, the information is distributed between all subdomains in a special
way. As shown above, the grid is constructed in such a way that, for each slave
node, only one surrounding layer of neighboring cells has to be checked to
find the closest point on the master surface. If self-contact is excluded, we do
not care about slave nodes in neighboring cells. That is why the bounding box
with associated buckets can be divided into N non-overlapping parts, each of
them consisting of an integer number of buckets. Each part is then extended
in all directions (not exceeding the bounding box) by one cell overlapping
layer; the extended part is filled only with master components. An example
involving two subdomains is presented in Fig. 3.18. It shows the internal cells
(non-overlapping with other parts, light yellow color) including both master
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Table 3.5: Split of detection buckets for parallel detection (MDMR)
Number of
subdomains

split in 2D split in 3D

2

4

8

16

components and slave nodes and external cells (shared with neighboring parts,
light blue color) including only master segments. Each part is associated with
a processor. The nodes and surfaces located in the part (global IDs, hosting
subdomain ID, coordinates, etc.) are collected from different subdomains
and transferred to the relevant one. The detection can then be carried out
independently, i.e. in parallel for each part. No more data exchange is
needed, so that the performance and scalability of the MDMR approach are
significantly improved. The advantage of the method is that the total number of
operations per processor during the main phase of detection does not increase
for a given fraction of contacting nodes per number of processors. It is worth
mentioning, that during the main detection phase, the number of operations is
not homogeneously distributed between processors: there is still a need for a
special algorithm to perform a smart split of the detection buckets which would
take into account the distribution of contact elements into buckets. Actually
we use a simple split taking into account that the number of subdomains is
even and that the number of buckets is much smaller than the number of
subdomains (see Table 3.5). Since in many applications the contact interface
is concentrated in a thin flat zone, the 3D bounding box is not split along its
smallest side.

The same parallel procedure can be used for self-contact problems. The
first difference is that master and slave nodes are not distinguished and hence
all contact components have to be included in the overlapping cells. The
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second difference in treating contact components in internal and external
(overlapping) cells is that nodes from the latter cannot be assigned as slave
nodes. The described method is very similar to the parallelization of the
Linked Cell Method widely used in molecular dynamic simulations for short-
range interactions [Griebel 07].

Figure 3.19: Example of the finite element mesh split by the METIS
graph partitioning software [Karypis 95],[Karypis 98] into 16 sub-domains for
parallel computations, different colors correspond to different subdomains.
Remark that only 4 of 16 subdomains have components on the contact surface.

3.6.4 Scalability test

In Figure 3.19, the finite element mesh of a rough surface is presented.
Subdomains are highlighted by different colors. The scalability test for
MDMR approach has been performed between two such meshes containing
over 560 000 nodes and over 66 000 contact nodes each. The results
obtained for slightly different surface roughness is represented in Figure 3.20.
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“Heterogeneous distribution” of active contact zones means that the parts
of bounding box associated with different processors possess a significantly
different number of potential contact elements. In the considered case
some of subdomains may not have contact elements at all. “Homogeneous
distribution” means that this number is similar for different parts (± ≈ 5%).
The gain for a given number of processors is defined as the ratio between
the reference CPU time for a single processor to the CPU time of the slowest
processor. The average gain is calculated as the ratio of the reference CPU time
for a single processor to the average CPU time of all processors. The difference
between linear gain and the average gain highlights the time devoted to data
exchange between subdomains. The pronounced difference between the gain
for heterogeneous and homogeneous active contact zones distributions can be
explained by the following observation. If there is no master component in the
cell of the slave node and in neighboring cells, the time needed to conclude it
is very small. On contrary, if the considered cells are not empty and contain
several master components, it takes a much longer time to carry out the closest
point detection. Even in these conditions the gain is quite high and its rate does
not decrease with increasing number of detecting processors (for a reasonable
ratio of contact nodes to number of processors).

The SDMR and MDMR approaches can be efficiently applied to parallel
contact treatment. The second approach requires a larger amount of
programming but its performance allows to neglect the detection time for
large and extremely large contact problems.

Figure 3.20: Time gain for the parallel contact detection procedure (average
gain depicts the gain averaged by processors’ CPU time)..
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3.7 Conclusion

A very fast local detection method has been elaborated on the base of the bucket
method and a rigorous definition of the closest point. Sequential and parallel
implementations of the method have been discussed in details for known a
priori and unknown master-slave discretizations. Many previously proposed
detection techniques starting from the historical article of Benson and Hallquist
[Benson 90] are based on the closest node detection. Here we demonstrate that
such an approach is not robust. However, the bucket technique can be easily
generalized with a rigorous definition of the closest point.

The strong connections between the finite element mesh of the master
surface, the maximal detection distance and the optimal dimension of the
detection cells are established. The analytical estimation and numerous tests
demonstrate that the optimal cell size is equal to the maximal detection distance
multiplied by the square root of 2, and that the maximal detection distance can
be chosen arbitrary. A reasonable choice for the MDD is the dimension of
the biggest master segment if contact geometry changes relatively slowly. A
particular attention has been paid to the bounding box construction and to the
optimal choice of the neighboring cells to be verified. Techniques based on
the closest node strategy and related challenges (“passing by node” and blind
spot analysis) have been also discussed. An efficient implementation of the
approach on distributed memory parallel computers has been also examined.

The method is very flexible but it is not well adapted for very heterogeneous
distributions of the master segment dimensions or for very different mesh
densities of the master and slave surfaces. Contrary to the closest node strategy,
the dimension of the biggest master segment is not connected with the maximal
detection distance but only with cell size. If the master surface has at least one
segment which dimension is 10-100 times larger than the dimension of an
average segment, the detection time can be rather high, but always less than
in all-to-all approach.

The validation of the method has been performed on different contact
problems in sequential and parallel cases: contact between rough surfaces with
different geometries, tire-road contact, self-contact of a snail operculum and
on the extremely large contact problem between two rough meshes including
more than 1 000 000 segments on the master surface against 1 000 000 slave
nodes. For the latter problem, the detection time changes significantly for
different geometries from several seconds to 30-40 minutes in comparison to
almost 8 days needed for the all-to-all detection technique.

Two parallel strategies for contact detection have been proposed and
elaborated: Single Detection Multiple Resolution (SDMR) and Multiple
Detection Multiple Resolution (MDMR). The last one implies the parallelization
of the full detection cycle; it can be parallelized in a quite efficient manner,
however, for a simple split of the detection zone, the gain depends significantly
on the homogeneity of the distribution of the contact elements.
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Chapter 4

Formulation of contact problems
and resolution methods

Résumé de Chapitre 4 «Formulation du problème de
contact et méthodes de résolution»

Dans ce chapitre, on introduit les notations de base et on dérive les équations
pour les différentes classes de problèmes de contact. On considère d’abord le contact
d’un corps déformable avec un plan rigide. Les conditions de Hertz-Signorini-Moreau
pour le contact normal et les conditions de contact avec frottement sont présentées.
Ce cas simple permet de bien appréhender la spécificité de ces conditions et de les
interpréter comme une combinaison de conditions aux limites partielles de Dirichlet et
de Neumann. Cette interprétation débouche naturellement sur la méthode de résolution
de contact dite «PDN» (Partial Dirichlet-Neumann), ou méthode du statut. Dans la
première partie de ce chapitre, on décrit également un grand nombre de lois de frottement
différentes.

La deuxième partie est consacrée au contact d’un corps déformable avec une surface
rigide de géométrie arbitraire. La notion de séparation normale et son asymétrie
sont rappelées. L’interprétation des conditions de contact normal et de contact avec
frottement est aussi fournie.

Les équations générales du contact sont formulées en troisième partie. On utilise
pour cela une approche qui met en œuvre des inégalités variationnelles. On discute de
ses limitations sur quelques cas spécifiques. En raison de ces limitations, notamment
pour les problèmes de grands glissements et grandes déformation, on se focalise sur les
méthodes pour lesquelles on suppose que la zone de contact est connue. Dans ce cadre,
on présente en détail trois méthodes classiques : la méthode de pénalisation (linéaire
et non-linéaire), la méthode des multiplicateurs de Lagrange (avec des stratégies de
«active set» différentes) et la méthode du Lagrangien augmenté. Les formes faibles
pour le contact sans et avec frottement sont données pour les trois méthodes. Leurs
performances sont étudiées, et les détails de l’implémentation numérique sont discutés
sur un problème simple ne comportant qu’un degré de liberté.
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In this chapter we give the main notions and derive the governing equations
for different classes of contact problems. We start from a simple description
of contact between a deformable solid and a rigid plane. Based on this simple
problem, Hertz-Signorini-Moreau (non-penetration–non-adhesion) conditions
are derived and the frictional contact problem is formulated. An interpretation
of contact conditions is given using partial boundary conditions of Dirichlet
and Neumann type. Next, Signorini’s problem is formulated – contact between
a deformable solid and an arbitrary rigid smooth surface with and without
friction. This section is followed by a general multi-body contact problem
is formulated using variational inequality. Due to the complexity of this
formulation for large deformation/large sliding cases, for numerical purpose
the contact problem is often formulated as a variational equality for a known
contact zone. To derive the variational equality, either penalty or Lagrange
multipliers methods are used, which are discussed also in this chapter. A
widely used augmented Lagrangian method is also considered. A simple
nonlinear contact problem is resolved by all this methods, demonstrating
advantages and revealing drawbacks of each of them.

4.1 Unilateral contact with a rigid plane

We wish to describe the motion of a deformable body coming in contact with
a rigid plane (Fig. 4.1). The points of the body are described by vector X in the
reference configuration Ω0 and by vector x(X, t) in the actual configuration Ω
at time t. The motion is described relatively to a fixed spatial frame defined
by orthonormal basis vectors {ex, ey, ez}. Let us suppose that the motion of the
body is restricted to the upper half-space z ≥ 0 from the rigid plane z = 0. Then
the following condition on displacements is imposed

gn = x · ν ≥ 0 , (4.1)

where gn is a normal gap (see Chapter 2 and the next section for a more detailed
definition of the gap), ν = ez is a unit vector normal to the plane and pointing
to an acceptable area of motion z > 0, i.e. the points of the body at all time
instants cannot penetrate under this plane z < 0. If the displacement of a point
is defined as

u = x − X,

then expressing x from the latter equality gives (4.1) in the form

gn = u · ν + X · ν ≥ 0 , (4.2)

where X · ν = g0
n is a constant initial gap determined for all material points. If

the body retain its integrity as well as if its deformation are consistent, the non-
penetration condition (4.1), (4.2) are applied only to surface points ∂Ω, precisely
to the so-called potential contact zone denoted Γc in the actual configuration. Γc

can be splitted into two nonintersecting sets: active Γc (points are in contact)
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and inactive Γc \ Γc (points are not in contact) contact zones. The active contact
zone in the actual configuration is defined by the following equality

x ∈ Γc if and only if x · ν = 0 (4.3)

consequently in the reference configuration the contact zone can be easily
determined as

X ∈ Γ0 ′
c if and only if X · ν = −u · ν. (4.4)

As follows from the definition of the active contact zone, Γc is an unknown a
priori part of the potential contact zone: Γc ⊂ Γc ⊂ ∂Ω. To prevent the body

Figure 4.1: Reference and actual configuration of a deformable body in contact
with a rigid plane.

from penetrating the plane, a contact pressure arises in the contact zone. If
we confine ourself to the description of non-adhesive contact, then the contact
pressure should be non-positive (zero in inactive and negative in active contact
zones).

In the actual configuration, the stress state is described by the Cauchy stress
tensor σ

=
and in the reference configuration by the first Piola-Kirchhoff stress

tensor P
=

, which are connected in the following way

P
=
= Jσ
=
· F
=
−T, (4.5)
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4.1 Unilateral contact with a rigid plane

where F
=

is the nonsymmetric deformation gradient tensor

F
=
=
∂x

∂X
,

J is the determinant of the deformation gradient (Jacobian), that should be
positive in order to prevent self-penetration of points of the body

J = det F
=
> 0

As det F
=
> 0, its finite inverse exists

F
=
−1 =

∂X

∂x
, F
=
−1 · F
=
= I
=
.

The Cauchy stress vector at the surface of the body is

σ = n · σ
=
,

where n is the outward normal at the surface of the solid in the actual
configuration. In the active contact zone this normal is opposite to the normal
of the rigid plane n = −ν, so the contact pressure σn in the actual configuration
can be written as

σn = σ · n = ν · σ= · ν.

In the reference configuration, the normal to the surface is n0, so the contact
pressure can be written in terms of the first Piola-Kirchhoff stress

σ0
n = P · n0 = n0 · P

=
· n0.

Applying the relations between the normal vectors, n = F
=
−T · n0 or n0 = F

=
T · n

and using Eq. (4.5) allows to rewrite the previous equalities as

σ0
n = Jn · F

=
· σ
=
· n = Jν · F

=
· σ
=
· ν.

The tangential component of the stress vector is

σt = ( I
=
− n ⊗ n ) · σ = σ − σnn. (4.6)

It should be zero for frictionless contact σt = 0.
Finally, for non-adhesive frictionless contact, we require that

σn ≤ 0 at Γc or σ0
n ≤ 0 at Γc

0. (4.7)

In general, we suppose that if a point is not in contact, then σn = 0, meanwhile
σn ≤ 0 in contact. This leads to the non-penetration–non-adhesion condition

σngn = 0 (4.8)

However, we have to keep in mind that this is a simplification. When contact is
considered in a gas/liquid environment, this simplification is acceptable only if
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Chapter 4. Formulation of contact problems and resolution methods

the pressure of the environment is negligible in comparison to arising contact
pressures. Another limitation is that this equality is limited to nonadhesive
contact. The set of conditions (4.1), (4.7) and (4.8) are called Hertz-Signorini-
Morea or Karush-Kuhn-Tucker conditions, complemented by a non-friction
condition σt = 0:

gn ≥ 0, σn ≤ 0, σngn = 0, σt = 0 (4.9)

These contact conditions together with the relevant boundary conditions
complement the static local balance of momentum and angular momentum
(σ
=
= σ
=

T)


∇ · σ
=
+ f v = 0 in Ω,

σ
=
· n = σ0 at Γ f ,

u = u0 at Γu,

gn ≥ 0, σn ≤ 0, σngn = 0, σt = 0 at Γc,

(4.10)

where f v is a vector of volume forces, σ0 is a prescribed traction (Neumann
boundary conditions) and u0 is a prescribed displacement (Dirichlet boundary
conditions). That is the starting point for the following investigation. First, we
propose to discuss in details the Hertz-Signorini-Moreau conditions imposed
on the contact zone.

4.1.1 Interpretation of contact conditions

Idea 4.1 Replacement of contact conditions by Dirichlet-like
boundary conditions.

Often the contact conditions are interpreted as a special type of Neumann boundary
conditions (penalty, Lagrange multiplier methods) as a function of displacement, the
problem being to find which contact pressure has to be applied in order to fulfill
non-penetration contact condition. However, the problem can be inverse: in stead of
prescribing the pressure at the contact zone, one can impose directly the displacement
according to the contact constraint, i.e. apply Dirichlet-like boundary conditions
depending on stress-state.

The unilateral contact conditions of non-penetration–non-adhesion can be
splitted into two parts: for active and inactive contact zones

gn ≥ 0, σn ≤ 0, σngn = 0 at Γc ⇔


gn = 0, σn < 0 at Γc (a)

gn > 0, σn = 0 at Γc \ Γc (b)
(4.11)

The condition (4.11,a) can be interpreted in the following way. According
to (4.2) and to the definition of the active contact zone (4.4), the first term
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4.1 Unilateral contact with a rigid plane

corresponds to

gn = 0⇔ ν · u = −g0
n ⇔ uz = −g0

n , (4.12)

the boxed term gathers the partial Dirichlet boundary condition. The condition
(4.11,b) is equivalent to the free boundary outside the active contact zone.
Finally, the Hertz-Signorini-Moreau conditions for the case of contact between
a deformable body and a rigid plane writes as

uz = −g0
n at Γc , where x ∈ Γc if σn < 0 (4.13)

The contact conditions have been replaced by the partial Dirichlet boundary
conditions on the unknown active contact zone Γc, which is determined
by negative contact pressure. The nonlinearity of the problem consists in
determining the active contact zone.

Note that only one component uz of the displacement vector u is prescribed,
and that the other components ux, uy are not specified. This is easily interpreted
in the Finite Element Method, where the displacement vector in 3D is splitted
in 3 degrees of freedom, each of them being prescribed independently. Note
that Cartesian, cylindrical or spherical basis in 3D allows to replace easily the
contact with a rigid plane, cylinder or sphere respectively by simple conditions
analogous to (4.13). Moreover, the limits of the possible contact zone can be
restricted in the following way

uz = −g0
n at Γc ∩ f (x) ≥ 0 , where x ∈ Γc if σn < 0 , (4.14)

where f (x) : R3 → R is an arbitrary function, f (x) = 0 determines the edge
of the plane. All forementioned extensions provide us with a rather simple
and multipurpose approach to the sub-class of contact problems. Intuitively, it
is easier to prescribe a given displacement than an unknown contact pressure
distribution on unknown active contact zones. In the first case, the active
contact zone is simply determined by the sign of the contact pressure, in the
second case by a zero value of the normal gap.

Another straightforward extension of this interpretation provides a solution
for simple adhesion. For this purpose, an active contact zone should be
determined according, for example, to

Γc : σn < an max
t∈[t0,t]

〈−σn〉,

where max
t∈[t0,t]

〈−σn〉 is the maximal reached contact pressure at the current

material point; t0 is the time moment when this point came in contact; an ≥ 0
is the normal adhesion coefficient and 〈•〉 denotes the Macaulay brackets
〈x〉 = max (0, x). If a point looses the contact, then its history variable should be
set to zero (max

t
〈−σn〉 = 0). The following expression describes the adhesive

contact with a rigid plane

uz = −g0
n at Γc ∩ f (x) ≥ 0 , where x ∈ Γc : σn < an max

t∈[t0,t]
〈−σn〉, (4.15)
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Up to now we discussed the cases when the normal to the rigid plane
(cylindrical or spherical surface) is parallel to one of the basis vectors in the
chosen reference frame. The situation changes drastically for the Finite Element
Method if the latter is not the case. Generalization of the presented approach
for arbitrary rigid surface would lead to classic Signorini’s problem and will
be discussed in the next section. Before that, the frictional conditions will
be formulated for the case of the contact with a rigid plane and will be also
interpreted similarly to frictionless conditions.

4.1.2 Friction

We return to the description of the motion of a deformable body in contact
with a rigid plane. Friction on the contact interface can be introduced in the
general form

σt = σt( σn, σ̇n, ġt, t, . . . ), (4.16)

where σt is the tangential stress vector at the interface, according to (4.6)

σt = ( I
=
− n ⊗ n ) · σ;

σ̇n is the contact pressure rate, ġt is the relative sliding velocity and t is the
time. For the time being, we restrict ourself to the classical non-associated
Coulomb’s friction law. Further some non-classical friction laws will be briefly
discussed.

In the simplest case, the friction law states that the tangential resistance of
the contact interface depends on the contact pressure and that the direction of
the tangential stress vector is given by the sliding direction

σt = σt( σn, s ), (4.17)

where s is a unit vector in the contact plane, which determines the direction of
sliding:

s =



ġt

‖ġt‖
, if ‖ġt‖ > 0;

0, if ‖ġt‖ = 0.
(4.18)

So in frictional case when a body comes in contact with a rigid plane, a stress
vector arises which contains not only the contact pressure but also the shear
stress vector due to friction

σ = σnn + σt(σt, σn, s).

At the same time, the relative motion of the point along the rigid plane is
confined by the frictional shear force in the way that the point remains at
the initial contact location if the shear stress vector is smaller than the critical
frictional stress σc

t , which in Coulomb’s friction law is proportional to the
contact pressure, so the point does not move if

‖σt‖ ≤ ‖σc
t‖ = µ|σn| , (4.19)
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4.1 Unilateral contact with a rigid plane

where the coefficient of proportionalityµ is the coefficient of friction. According
to the third Newton’s law in equilibrium state, the reaction should be equal by
value and opposite by direction to the action, i.e. the stress vector integrated
over a small surface of the body σdA should be equal by modulus and opposite
to the force vector at the rigid plane Fe. The resistance of the contact interface
in the tangential direction is limited, for instance in Coulomb’s friction law the
limit isµ|σn|. Up to this limit a motionless1 equilibrium state is preservedσtdA+
Fe = 0, ‖σt‖ < µ|σn|, the maximal permitted tangential stress in equilibrium
straight motion is limited by σt = µ|σn| providing the following equality

σt − µ|σn|s = 0.

This equality is valid only in case of slip, but can be generalized to stick case if
we multiply it by the norm of the sliding velocity ‖ġt‖

‖ġt‖σt − µ|σn|ġt = 0 . (4.20)

Conditions (4.19) and (4.20) can be complemented by an additional condition
distinguishing stick and slip states

‖s‖ ‖ σt − µ|σn|s ‖ = 0 .

Union of all forementioned conditions forms the set of conditions for
Coulomb’s non-associated friction

‖σt‖ ≤ µ|σn|, ‖ġt‖σt − µ|σn|ġt = 0, ‖s‖
∥∥∥∥ ‖ġt‖σt − µ|σn|ġt

∥∥∥∥ = 0. (4.21)

These conditions connecting σn, σt and s can be represented graphically
(Fig. 4.2) in a general form. In 2D case the sliding velocity and frictional
stress can be represented as

ġt = ġtt, σt = σtt,

where t is a unit tangential vector orthogonal to the normal vector ν, i.e.
ν · t = 0,

∥∥∥t
∥∥∥ = 1; in this case the graphical representation of the frictional

conditions can be extended as shown in Fig. 4.3. The graphical representation
of frictional conditions in 3D case can be found in Fig.4.4. The following notions
have been introduced

ġt = ‖ġt‖s = ġt1t1 + ġt2t2, σt = ‖σt‖s = σt1t1 + σt2t2,

where t1, t2 are orthonormal vectors in the contact plane. The cone in axes
{σt1, σt2, σn} in Fig.4.4 is called the Coulomb’s cone, an open set determined by

C(σn) =
√
σ2

t1 + σ
2
t2 < µ|σn|.

1by motionless here we mean that there is no relative motion between sticking points in the
interface, in space their motions are not limited.
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Chapter 4. Formulation of contact problems and resolution methods

Figure 4.2: Graphical representation of Coulomb’s frictional conditions (4.21):
the point corresponding to a given state can be situated either on the blue line
– stick state (‖ġt‖ = 0, ‖σt‖ < µ|σn|) or on the red line – slip state (‖ġt‖ ≥ 0, |σt| =
µ|σn|).

Figure 4.3: Graphical representation of Coulomb’s frictional conditions for
2D contact problem: left – relation between the tangential velocity and the
tangential stress, blue line (ġt = 0, |σt| < µ|σn|) represents stick state, red line
(|σt| = µ|σn|) – slip state; right – relation between the contact pressure and the
contact tangential stress: blue color (|σt| < µ|σn|) denotes stick state, its closure
in red (|σt| = µ|σn|) represents slip state.

Any stress-state fulfilling frictional conditions corresponds to a unique point
either in the interior of the cone

σt ∈ C(σn)

or on its closure
σt ∈ ∂C(σn).

The zone of positive contact pressure is excluded by the non-adhesion condition
(see Hertz-Signorini-Moreau conditions, (4.9)), however, for the sake of
consistency the cone can be extended to the area of positive contact pressure
as represented in Fig. 4.3 and Fig. 4.4 by a dashed red line. Moreover, such
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4.1 Unilateral contact with a rigid plane

an extension is consistent with the description of adhesive contact. So the
extended frictional conditions become

‖σt‖ ≤ µ〈−σn〉, ‖ġt‖σt − µ〈−σn〉ġt = 0, ‖s‖
∥∥∥∥ ‖ġt‖σt − µ〈−σn〉ġt

∥∥∥∥ = 0,

(4.22)
where 〈•〉 denotes the Macaulay brackets.

Figure 4.4: Graphical representation of Coulomb’s frictional conditions for 3D
contact problem: left – relation between the norm of the tangential velocity
and the components of the tangential stress vector: the admissible points are
situated either in the blue circle (‖ġt‖ = 0, ‖σt‖ < µ|σn|) – stick state or on
the surface of the semi-infinite cylinder (‖ġt‖ ≥ 0, |σt| = µ|σn|) marked with
red color – slip state; right – relation between the contact pressure and the
components of the contact tangential stress vector: in blue - interior of the
Coulomb’s cone (‖σt‖ < µ|σn|) – stick state, the surface of the cone in red
(‖σt‖ = µ|σn|) represents the slip state.

Let us consider the case when a point slides on the plane under a constant
contact pressure σn (Fig. 4.5): we plot its path in three spaces: stress, velocity
and displacement. Along the [0 − 1) path, the frictional stress remains inside
the circle

σt ∈ C(σn)

that is the section of Coulomb’s cone for a given contact pressure, so no relative
sliding occurs which corresponds to stick. At point 1, the frictional stress
reaches its limit – the boundary of the circle σt ∈ ∂C(σn) and stays on it until
point 3 is reached. Consequently, the relative sliding velocity follows the path
[1− 2− 3] in the velocity space in such a way that the vector of frictional stress
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Table 4.3: Analogies between friction and plasticity
Friction Plasticity
Stick state elastic deformation
Slip state plastic flow
Coulomb’s cone ∂C(σn) yield surface
Maximal frictional stress ‖σt‖ = µ|σn| yield strength

and the tangential velocity are collinear at every moment (see, for example, the
point 2), this state corresponds to slip. The relative displacement ∆g

t
is simply

the integral of the velocity vector over the sliding time, as seen in Fig. 4.5
the point moves from the stick point 1 to another stick point 3 by the curved
trajectory 1 − 2 − 3. At point 3, the relative velocity returns to zero, as in stress
space the point dives again inside the circle. Any motion in the interior of
Coulomb’s cone does not result in relative tangential displacements and any
relative sliding implies that the point is situated at the surface of Coulomb’s
cone in stress space. In general, contrary to this example, the normal pressure
changes during sliding and consequently the limits of the stick zone in stress
space change.

Figure 4.5: Graphical representation of frictional motion in stress, velocity and
displacement spaces: path 0 − 1 corresponds to stick, path 1 − 2 − 3 – to slip,
path 3 − 0 again to stick.

The derived formulation of friction is quite similar to the formulation of
plastic flow [Curnier 84] (see Tab. 4.3). Note that the flow rule is non-associated
since there is no irreversible slip in the normal direction and the principle of
maximum dissipation is inapplicable except in the case of a prescribed constant
contact pressure σn = const. So the model is somehow similar to the Drucker-
Prager yield criterion for pressure dependent plasticity [de Saxce 98]. A more
consistent analogy between associated/non-associated plasticity and friction is
given in [Michalowski 78].

4.1.3 Interpretation of frictional conditions
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4.1 Unilateral contact with a rigid plane

Idea 4.2 Replacement of frictional contact conditions by Dirichlet-
Neumann boundary conditions.

In case of unilateral contact with a rigid plane, Hertz-Signorini-Moreau conditions
can be replaced by prescribing partial Dirichlet boundary conditions on the unknown a

priori active contact zone Γc. To take the frictional resistance into account, depending
on the stress state, either Dirichlet-like conditions have to be complemented to ordinary
Dirichlet conditions (stick state) or partial Neumann boundary conditions have to be
applied in the contact plane (frictional slip state).

Let us split the active contact zone Γc into a slip Γ∗c and a stick Γ•c zone (in
reference configuration Γ∗c

0 and Γ•c
0 respectively), such that Γ•c ∪ Γ∗c = Γc and

Γ•c ∩ Γ∗c = ∅. Then the frictional conditions can be rewritten as



gn = 0, ġt = 0, σn < 0, ‖σt‖ < µ|σn|, in the stick zone Γ•c (a)

gn = 0, σn < 0, σt − µ|σn|s = 0, in the slip zone Γ∗c (b)

gn > 0, σn = 0, σt = 0, in the inactive contact zone Γc \ Γc (c)
(4.23)

Obviously, the first condition (4.23,a) for a motionless rigid plane can be
replaced by an ordinary Dirichlet boundary condition

u = −g0
nν + ( I

=
− ν ⊗ ν ) · ( x(t•) − X ), if X ∈ Γ•c 0, (4.24)

the time t• denotes the moment when the material point switches to stick
state either from slip state or from non-contact state; the state of the point is
determined by the stress, if it is in the Coulomb’s cone (stick):

Γ•c : σt ∈ C(σn), σn < 0.

The boundary condition (4.24) is not transparent and it is preferable to prescribe
directly the position of the point in the actual configuration, which corresponds
to prescribing the boundary conditions in the actual configuration at time t > t•,
then Eq. (4.24) can be rewritten simply as

x(t) = x(t•), if x(t) ∈ Γ•c . (4.25)

The interpretation is simple: if a point switches to a stick state it glues to the
position at which this switch has occurred and cannot move before another
switch to any other state happens.

The boundary conditions in the slip zone Γ∗c (4.23,b) correspond to the
partial Dirichlet boundary conditions for the z component of the displacement
(in general, component orthogonal to the rigid surface) and to the partial
Neumann boundary conditions in the contact plane 0XY (in general, tangential
plane), in the actual configuration, written as

xz = 0, σt = µ|σn|
σt

‖σt‖
, if x(t) ∈ Γ∗c (4.26)
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where the slip region is determined according to the stress state on the surface
of Coulomb’s cone σt ∈ ∂C(σn), i.e. ‖σt‖ = µ|σn|.

Without any loss of generality points are allowed to come in contact only
through the stick state and escape from the contact by any state, this can be
summarized as follows

{
Γc \ Γc

}
→ Γ•c →




{
Γc \ Γc

}

Γ∗c →
[{
Γc \ Γc

}

Γ•c

This assumption allows us to correctly prescribe the Neumann boundary
condition for the slip state. Suppose that a material point X touches the
plane at x(t) and changes its state from non-contact to stick. According to
Eq. (4.24), the point glues to the plane and reaction stresses appear: a contact
pressure σn < 0 and a tangential stress σt. Two cases are possible (Fig. 4.6):
the tangential reaction is either in the Coulomb’s cone σt ∈ C(σn) ∪ ∂C(σn) or
outside of the cone. For the latter (Fig.4.6,c), the point switches to the slip state
and a Neumann boundary condition should be applied (Fig.4.7) that is a shear
stress vector in the direction of the reaction stress vector and with the norm
equal to the maximal allowed frictional stress

σe
t = µ|σn|

σt

‖σt‖
. (4.27)

Tangential displacement should be set free ∀ux,uy; nonzero slip will occur
naturally.

Figure 4.6: Dirichlet boundary conditions for the stick state (b): a – tangential
reaction is in Coulomb’s cone σt ∈ C(σn)∪ ∂C(σn); c – tangential reaction is out
of the Coulomb’s cone σt < C(σn) ∪ ∂C(σn), stick state should be switched to
slip (Fig.4.7).

The inactive contact zoneΓc\Γc (4.23,c) remains free of boundary conditions.
The source of nonlinearity comes from the presence of unknown stick Γ•c ∈ Γc

and slip Γ∗c ∈ Γc zones (Γ•c ∪ Γ∗c = Γc). As we assumed that points always
pass through the stick state, this nonlinear problem can be splitted into two
iteratively repeated problems:
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4.1 Unilateral contact with a rigid plane

Figure 4.7: Neumann boundary conditions for the slip state: left – applied
external force density in the direction of the tangential reaction appeared in the
stick state (Fig.4.6,c) with norm equal to the radius of Coulomb’s cone µ|σn|;
right – resulting tangential slip.

• determination of the active contact zone Γc;

• determination of the slip zone Γ∗c = Γc \ Γ•c .

Finally we get the following set of boundary conditions which replace
frictional conditions formulated in (4.21):


x = x(t•), if x ∈ Γ•c
xz = 0, σe

t = µ|σn|
σt

‖σt‖ , if x ∈ Γ∗c
(4.28)

This formulation is simple and its implementation is straightforward in a finite
element code, if a dynamical update of the boundary conditions is allowed. As
previously discussed, this method is applicable for a rigid surface determined
by a constant value of one of the coordinates in the current reference frame

ζi = const,

for example, it can be a sphere in spherical coordinates r = const, a cylinder in
polar coordinates ρ = const, or a plane in Cartesian coordinates x = const, y =
const or z = const. Obviously, any region of such surfaces can be chosen. The
extension of such an approach for an arbitrary rigid surface will be discussed
later.

4.1.4 Non-classical friction and adhesion laws

In this section we discuss arbitrary non-associated friction laws written as

C̃(σn,σt, ġt, . . . ).

All the expressions given below are valid for arbitrary contact between
deformable solids. However, the case of contact with a motionless rigid plane
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suggests a consistent framework for straightforward interpretation of these
laws within the Dirichlet-Neumann boundary conditions and allows to avoid
some details nonrelevant for their presentation (relativity of motion, nonplanar
sliding paths, deformation of both contacting surfaces, etc.).

The first extension we consider is a non-associated anisotropic friction, the
slip surface for a given contact pressure can be represented by a super ellipse
as proposed in [Mròz 94]

Cµa(σn,σt) :
{
σt ∈ Cµa if

(
σt1

µ1

)p

+

(
σt1

µ2

)p

< |σn|p
}

A more general form of the anisotropic friction condition can be written as

Cµa(σn,σt) :
{
σt ∈ Cµa if ‖σt‖ < µ(φ)|σn|

}
,

where 0 ≤ φ < 2π is an angle in polar coordinates on the 0XY plane starting for
example from the OX axis. Such definitions of friction are possible only if the
anisotropy arises from the rigid plane, otherwise it is not possible to define the
anisotropic slip surface according to the fixed reference frame since the rotation
of the deformable body will change the axes of the super ellipse. In general
case, the anisotropy function becomes µ(φ−ψ), where φ,ψ ∈ [0, 2π) are angles
of orientations of the rigid plane and of the element of deformable surface with
respect to the global reference frame. For references see [Michalowski 78],
[Hjiaj 04b], [Hjiaj 04a] and others.

Following the same process as in (4.15), an isotropic adhesion can be
introduced

CAi

(
σn, max

t∈[t0,t]
〈−σn〉

)
:
{
σt ∈ CAi if ‖σt‖ < µ〈−σn〉 + at max

t∈[t0,t]
〈−σn〉

}

where max
t∈[t0,t]

〈−σn〉 is the absolute value of the maximal contact pressure at the

current material point, t0 is the moment when this point comes in contact; at ≥ 0
is the tangential adhesion coefficient. If adhesion is assumed to be anisotropic
(in tangential plane) (see, for example, [Chen 07]) then the expression for the
slip surface takes the following form

CAa

(
σn,σt, max

t∈[t0,t]
〈−σn〉

)
:
{
σt ∈ CAa if ‖σt‖ < µ〈−σn〉 + at(φ) max

t∈[t0,t]
〈−σn〉

}
,

where at(φ) ≥ 0 is the adhesion coefficient depending on the angle φ (see
Fig. 4.8,b) (as above, in general case, the angle φ should be replaced by
difference φ − ψ). Finally, the anisotropic friction can be coupled with an
anisotropic adhesion, however this formulation is very complex and is given
only for the sake of generality:

CµAa

(
σn,σt, max

t∈[t0,t]
〈−σn〉

)
:
{
σt ∈ CµAa if ‖σt‖ < µ(φ)〈−σn〉 + at(φ) max

t∈[t0,t]
〈−σn〉

}
,

where the friction coefficient is assumed to depend on the angle φ (in general,
φ − ψ).
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In Figure 4.8 several realizations of the discussed non-classical friction laws
are illustrated. In Fig. 4.8,a slip surface and its section are presented for friction
with isotropic adhesion for a given max

t∈[t0,t]
〈−σn〉 = const. Other examples are

given only for a single section of the slip surface: anisotropic adhesion and
anisotropic friction presented in Figures 4.8,b,c respectively, the slip surface
is given by the super ellipse with p = 2. A combination of both anisotropic
friction and adhesion is presented in Fig. 4.8,d; an example of highly anisotropic
friction is given in Fig. 4.8,e. Note that

• for adhesive friction, even for certain tensile contact pressure, the contact
interface resists to tangential sliding;

• transition from stick to slip occurs at the outer boundary of the slip
surface, so for a given max

t∈[t0,t]
〈−σn〉 = const there is no difference between

the blue area (due to friction) and the green one (due to adhesion).

Another important extension of the frictional rule comes from metal
forming applications. The tangential and normal resistances of the contact
interface are proportional to the real contact area [Rabinowicz 65], however,
this is true only for moderate contact pressures: if the real area approaches
the apparent contact area, the tangential resistance also approaches its limit,
whereas the normal resistance keeps on increasing up to the limits determined
by the compressive properties of the material. It results in deviation of the
linear relation between the normal contact pressure and tangential resistance.
Metal forming or metal processing with rigid tools imply very high pressures
in the contact interface, that is why in such analyzes the tangential resistance
of the interface has to be limited by a certain value independent of the normal
pressure. A very simple model introducing a limit for the tangential resistance
is Coulomb-Orowan friction law (Fig. 4.9,a),

‖σt‖ = min
{
µ|σn|, σc

}
. (4.29)

However, this purely phenomenological law does not reflect the fact
that according to experiments [Bay 87] the tangential resistance saturates
gradually. Another significant drawback relates to the non-smoothness of
this model, which affects the convergence of numerical computations. A more
sophisticated micro-mechanical based model has been proposed by Bay et al.
in 1987 [Bay 87], where authors related the tangential resistance and the real
contact area fraction Ar/Aa

‖σt‖ = f
Ar

Aa
σc, (4.30)

where 0 ≤ f ≤ 1 is a “friction factor”, Ar and Aa are the real and apparent
contact areas respectively and σc is the constant shear yield strength (Fig. 4.9,b).
For moderate pressures the real contact area is proportional to the contact
pressure with the constant of proportionality α Ar = α|σn|, it results in a linear
relation between slip surface and contact pressure as in Coulomb’s law for
small pressures

‖σt‖ =
[

fασc

Aa

]
|σn|.
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For higher pressures, when almost all the gaps in the contact interface are
closed at all scales, the relation between the real contact area and the contact
pressure becomes nonlinear and the fraction approaches gradually its limit

Ar/Aa −→ 1

So this law gives the following relation

‖σt‖ =
fσc

Aa
Ar(|σn|) −→ fσc.

This micro-mechanical model gives a qualitative explanation based on the real
contact area growth, however, many other factors which also influence the
tangential resistance of the contact interface have not been taken into account
(interlocking asperities, their elasto-plastic deformation and fracture, intense
plastic deformation of near surface metal layers, adhesion of newly created
uncontaminated material surfaces and wear particles [Suh 81], [Suh 86]). Other
models can be found in [Stupkiewicz 01] and [Wriggers 06].

An important drawback of the discussed friction models is that they do
not take into account the influence of the history of relative slip, which has
been clearly demonstrated by the well-known tests due to Courtney-Pratt
and Eisner (1957) [Courtney-Pratt 57]. Following these experiments, more
sophisticated models based on friction-plasticity analogy have been proposed,
see e.g. [Anand 93] and many others. Another important point is that real
contact area is time dependent due to viscous properties of solids it implies time
dependence of the frictional resistance and as a consequence, its dependence on
the velocity of sliding. Moreover, the temperature dependence of the sliding
may be crucial for some applications. Since the frictional sliding is always
related to the energy dissipation due to conversion of kinetic and potential
energy in heat, the local temperature of the sliding point may be strongly
affected by the locally dissipated energy or in other words by the total slip
and its velocity. That is why sometimes it is important to take into account a
phenomenological dependence of the friction on these quantities or explicitly
on the temperature. For a general discussion on friction, adhesion and physics
of contact the reader is referred to [Bowden 50], [Rabinowicz 65], [Popov 10]
and many others. Discussion of different contact and friction models and their
implementations in a finite element framework can be found in [Wriggers 06].
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4.1 Unilateral contact with a rigid plane

Figure 4.8: Examples of non-classical friction laws: a – adhesive friction, b –
anisotropic adhesion in friction, c – anisotropic friction slip surface of elliptic
shape, d – anisotropic friction combined with anisotropic adhesion, e – highly
anisotropic friction slip surface.
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Chapter 4. Formulation of contact problems and resolution methods

Figure 4.9: Graphical representation of friction laws for high contact pressures
a – Coulomb-Orowan model, b – from Bay et al. [Bay 87].
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4.2 Unilateral contact with an arbitrary rigid surface

4.2 Unilateral contact with an arbitrary rigid surface

In the previous section the treatment of frictionless and frictional problems of
a deformable body with a rigid plane was discussed. A simple technique
replacing the classical contact conditions by partial Dirichlet-Neumann’s
boundary conditions on unknown a priori parts of body’s surface has been
elaborated in order to demonstrate the analogy between contact and ordinary
boundary conditions. Now let us generalize the formulation of the contact
problem for the case of an arbitrary rigid surface: frictionless (Signorini’s
problem) and frictional formulation are considered. A non-selfintersecting,
motionless and smooth rigid surface S is described by a vector

r( ζ∼) ∈ S,

where ζ∼ is a v-scalar of surface coordinates (see Appendix A.6). Each point

of the surface has two basis vectors forming v-vectors in covariant
∂r
∂ ζ∼

and in

contravariant coordinates
∂r
∂ ζ∼

∂r

∂ ζ∼
= A≈ζ

∂r

∂ ζ∼
, A≈ζ =

∂r

∂ ζ∼
·
∂r

∂ ζ∼

T

, A≈ζ Ā≈ζ = I≈,

where A≈ζ is a first fundamental surface matrix (t-scalar in s-structure notations),

Ā≈ζ = A≈
−1
ζ

its inverse - first fundamental contravariant surface t-scalar. For
details see Chapter 2. The surface coordinates are chosen in the way that the
external unit normal to the surface is determined by

ν =

∂r
∂ζ1
× ∂r
∂ζ2∥∥∥ ∂r

∂ζ1
× ∂r
∂ζ2

∥∥∥
.

Initially, the deformable body is situated entirely on one side of the rigid surface
and is not allowed to penetrate on the other side.

The surface of the body ∂Ω can be described in exactly the same manner.
Each point of the surface in the actual configuration is characterized by vector

ρ(t, ξ∼) ∈ ∂Ω,

where ξ∼ is a v-scalar of surface coordinates. The corresponding pair of

covariant basis vectors
∂ρ

∂ξ∼
are enumerated to get the outward unit normal

as

n =

∂ρ

∂ξ1
×

∂ρ

∂ξ2
∥∥∥
∂ρ

∂ξ1
×

∂ρ

∂ξ2

∥∥∥
.

The first fundamental covariant surface matrix (t-scalar) is A≈ξ =
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

and

its contravariant form is given by Ā≈ξ = A≈
−1
ξ

.
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Chapter 4. Formulation of contact problems and resolution methods

4.2.1 Non-penetration condition

The contact between a point ρ ∈ Γc ⊂ ∂Ω and a the rigid surface in the point r

implies two equalities if both surfaces are smooth in the vicinity of the contact
point 

ρ(t) − r = 0 (1)

n(t) + ν = 0 (2)
(4.31)

If at least for one of the surfaces the normal cannot be uniquely determined,
then only the first equality holds (4.31.1). For the sake of simplicity here and
afterwards, we will suppose that the contacting surfaces are locally smooth.
Then the nonpenetration condition can be reformulated in two equivalent
forms 


(ρ(t + δt) − ρ(t)) · n(t) ≤ 0

(ρ(t + δt) − ρ(t)) · ν ≥ 0
, (4.32)

which imply that in the “near future” (t + δt, where δt is infinitely small), the
point ρ either remains on the surface or moves outward the rigid surface or
parallel to it. To get a more compact form, one can divide the inequalities (4.31)
by δt, take the limit and get the formulation in terms of velocities



ρ̇(t) · n(t) ≤ 0

ρ̇(t) · ν ≥ 0
(4.33)

Note all given formulations are valid only for the active contact area.

Gap function

The inequalities derived above are valid only for the contact state and are local
in time. A more consistent description requires a scalar gap function g(ρ,S)
for each point of the deformable surface ρ. This function is positive if the
point ρ is not in contact, is zero if the point is in contact and is negative if the
point penetrates. The gap can be defined relatively to the points of the body
surface g(ρ ∈ ∂Ω,S) or to the points of the rigid surface g(r ∈ S, ∂Ω). The
two descriptions are not identical (due to asymmetry of gap definition) but
equivalent, however, the first one seems to be more natural. In this case we
require for non-penetration that

g(ρ,S) ≥ 0. (4.34)

Some realizations of the gap function have been presented in Chapter 2:

• the classical normal gap

gn(ρ,S) = (ρ − r) · ν(r),

where r ∈ S is the point on the rigid surface closest to the point ρ and ν
- the normal at point r. This definition implies that the rigid surface is
smooth;
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4.2 Unilateral contact with an arbitrary rigid surface

• the closest point gap can be defined as the distance to the closest point
with the relevant sign

gc(ρ,S) = β‖ρ − r‖,

where β ∈ {−1; 1} determines the sign of the gap; this definition does
not require smoothness of the surfaces and is more appropriate for the
description of discretized media, however, additional efforts have to be
undertaken to determine the sign of g. For example, an average normal
can be assigned, if in a small vicinity ρ0 of the point r there are smooth
open sets Ci(r, ρ0), i = 1,N of points possessing a normal vector ν′

r′ ∈ Ci(r, ρ0) ⊂ S, ‖r′ − r‖ < ρ0 and ∃ν′,

then a normal can be assigned to the point r in the following way

ν̃ =
1
N

∑

i

1
Ai(ρ0)

∫

Ci(r,ρ0)

ν′dA, where Ai(ρ0) =
∫

Ci(r,ρ0)

dA.

Other definitions of the normal are discussed in Chapter 3, Remark 3.2
“On normal definition for contact nodes”. Now the closest point gap gc

can be rewritten like the normal gap

gc(ρ,S) = (ρ − r) · ν̃
(
Ci(r, ρ0)

)
.

On the other hand, if the contact occurs between a nonsmooth point
of one surface with a smooth point of another, due to requirement of
equality of normals (4.31),(2) one can easily assign the needed normal at
the nonsmooth point ν̃ = −n.

• the shadow gap gs (discussed in Chapter 2) is the signed distance between
the point ρ and its “shadow projection” on the rigid surface S

gs(ρ,S) = (ρ − r) · e(ρ) ,

where e is a unit vector pointing to the emitter of the light from the point
ρ.

Note that in general
gn , gc , gs , gn
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Chapter 4. Formulation of contact problems and resolution methods

~
Remark 4.1 on the asymmetry in gap definition.

According to (4.31), Eq. (4.32) can be rewritten as




(ρ(t + δt) − r) · n(t) ≤ 0

(ρ(t + δt) − r) · ν ≥ 0
, (4.35)

the second line is equivalent to the definition of the normal gap gn. By analogy, one
could define the gap according to the first line of (4.35)

g(ρ,S) = (r − ρ) · n,

However, this is not correct and leads to wrong results. Such a definition gc(ρ,S)
implies that r ∈ S in (4.35) is the closest point to ρ ∈ ∂Ω. In general, the closest point

r ∈ S for ρ does not coincide with the closest point ρ′ ∈ ∂Ω for the point r. The correct

symmetric definition for the gap with respect to the surface ∂Ω has the following form

g(r, ∂Ω) = (r − ρ) · n.

Sometimes it is convenient to introduce a gap vector g(ρ,S):

• normal gap vector

gn(ρ,S) = ρ − r,

where r ∈ S ∈ C1 is the closest point to the point ρ; ‖gn‖ = |gn|;

• closest point gap vector

gc(ρ,S) = ρ − r,

where r ∈ S ∈ C0 is the closest point to the point ρ; ‖gc‖ = |gc|;

• shadow gap vector

gs(ρ,S) = ρ − r,

where r = ρ − gse is the shadow of the point ρ corresponding to the light
emitter situated in the direction e from the point ρ; ‖gs‖ = |gs|.

For an arbitrary smooth surface S and infinitely small gaps or for a locally flat
surface the following equality holds

gn = ν ⊗ ν · gs ⇒ ν · gn = ν · e gs,

and
gn = ν · e gs (4.36)
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4.2 Unilateral contact with an arbitrary rigid surface

Finally, the penetration is restricted by the following inequality formulated
for the points of the deformable surface ρ ∈ ∂Ω respectively to the rigid surface
S

g(ρ,S) ≥ 0, ρ ∈ Γc ⊂ ∂Ω (4.37)

The set of points for which the gap function is equal to zero is nothing but the
active contact zone Γc

g(ρ ∈ Γc,S) = 0.

4.2.2 Hertz-Signorini-Moreau’s contact conditions

As discussed previously, due to the restriction on penetration, a reaction stress
arises at contacting points ρ ∈ Γc. For frictionless contact, the only nonzero
term is the normal stress

σn = n · σ
=
· n,

σt = σ=
· n − σnn = 0.

(4.38)

If contact holds and surfaces are smooth, according to (4.31,(2)) n = −ν and
consequently

σn = ν · σ= · ν ≤ 0,

σt = σ=
· ν − σnν = 0,

(4.39)

we require a non-positive contact pressure (for non-adhesive contact) and
zero tangential stresses for frictionless contact. The complementary condition
(switch between non-contact and contact states) holds the same as in the
previous section. So the Hertz-Signorini-Moreau contact conditions for
frictionless contact become

g ≥ 0, σn ≤ 0, gσn = 0, σt = 0 (4.40)

The boundary value problem retains the same form as in the previous section:



∇ · σ
=
+ f = 0 in Ω

σ
=
· ν = σ0 at Γ f

u = u0 at Γu

g ≥ 0, σn ≤ 0, σng = 0, σt = 0 at Γc

(4.41)

Existence and uniqueness of the solution of this problem has been proven for
linear material and small deformations by Kikuchi and Oden [Kikuchi 88]. For
further numerical analysis, this problem has to be reformulated in a proper
way. It will be done later for the general case of two deformable bodies.
Before, an attempt to extend the approach considered in the previous section
will be undertaken. The ultimate aim is to replace classical contact conditions
by boundary conditions imposed on the active contact zone for an arbitrary
rigid surface S.
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Chapter 4. Formulation of contact problems and resolution methods

4.2.3 Interpretation of contact conditions

To replace the contact conditions by a special type of Dirichlet-Neumann’s
boundary conditions, we return first to Eq. (4.32)

(
ρ(t + δt) − ρ(t)

)
· ν ≥ 0,

which can be rewritten if one puts ρ(t + δt) = ρ(t) + δu(t)

δu(t) · ν ≥ 0. (4.42)

The small variation of the displacement δu may be splitted in an orthonormal
system of coordinates into three vectors

δu = δu1e1 + δu2e2 + δu3e3.

In the active contact zone Γc, the inequality (4.42) converts into an equality,
which can be rewritten using the previously splitted form

δu1 cos(φ1) + δu2 cos(φ2) + δu3 cos(φ3) = 0,

where cos(φi) = ei · ν. Since the vectors ei are orthonormal, at least one of
the three cosine is nonzero. Without any loss of generality let us assume, that
cos(φ3) , 0, then we deduce directly

δu3 = −δu1
cos(φ1)
cos(φ3)

− δu2
cos(φ2)
cos(φ3)

, (4.43)

According to the later equality, one of the three displacement components of
the point ρ ∈ Γc depends on two other components. Another way to express
this relation consists in the following: if for ν · e3 , 0 and its vicinity the rigid
surface can be locally presented as

r ∈ S : R3 = s(R1,R2), (4.44)

where Ri are the coordinates of the point r in the orthonormal coordinate
system. Then the fact that the point is in contact ρ ∈ Γc implies that

ρ3 = s(ρ1, ρ2)⇔ ρ3(t0 + δt) = s(ρ1(t0 + δt), ρ2(t0 + δt)).

If one expands the last equality in Taylor’s series, keeps the first two terms and
subtracts ρ3(t0) from the left part and s(ρ1(t0), ρ2(t0) from the right part, then
for small δt we get the relation between displacement components

δu3 =
∂s

∂ρ1
δu1 +

∂s

∂ρ2
δu2, (4.45)

which is equivalent to the relation (4.43). If the considered rigid surface is flat
and orthogonal to the vector e3, the following equality holds

s(R1,R2) = const = R3,
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4.2 Unilateral contact with an arbitrary rigid surface

then from (4.45) we get directly the boundary condition which we imposed in
the previous section

δu3 = 0.

A more general connection between displacements follows directly from (4.44):
if the point ρ is in contact, it lies on the surface S and its coordinates fulfill the
condition

ρ3 = s(ρ1, ρ2)⇔ u3(t0 + t) = s
(
ρ1(t0) + u1(t0 + t), ρ2(t0) + u2(t0 + t)

) − ρ3(t0),

u3 = s(ρ1 + u1, ρ2 + u2) − ρ3, if ρ + u ∈ Γc (4.46)

This is the relation between the components of the displacement for a point
being in contact on the surface S : R3 = s(R1,R2), where ui are the displacement
components with respect to the configuration at time t ≥ t0, where t0 is the
moment when the point comes in contact and ρi are the spatial coordinates
of this point at time t0. The active contact zone is determined by a negative
contact pressure and a zero tangential stress at point ρ

{
σn ≤ 0
σt = 0

, on Γc.

The second condition is automatically fulfilled if the relations between the
components of the displacement are imposed in such a way that the point
slides freely along the tangential plane (4.45). The condition of negative contact
pressure has to be checked to determine the active contact zone.

4.2.4 Frictional conditions and their interpretation

In case of a contact with an arbitrary rigid surface the frictional conditions
derived in the previous section hold

‖σt‖ ≤ µ|σn|, ‖ġt‖σt − µ|σn|ġt = 0, ‖s‖
∥∥∥∥ ‖ġt‖σt − µ|σn|ġt

∥∥∥∥ = 0. (4.47)

As previously, the sliding direction is defined as

s =



ġt

‖ġt‖
, if ‖ġt‖ > 0;

0, if ‖ġt‖ = 0.

Contrary to the case of a rigid plane, the local reference frame changes when
the point ρ slides over the surface S. Stick state implies that the point ρ ∈ Γ•c
retains its position on the surface and since the surface is motionless

ρ(t• + δt) = ρ(t•), ρ ∈ Γ•c ,

where t• is the time when the point switches to stick state. The same statement
reformulated for displacements gives simply

u(t• + δt) = 0, ρ ∈ Γ•c , (4.48)
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where the stick zone Γ•c is determined from the stress vector σ, which should
be situated in the interior of Coulomb’s cone

x ∈ Γ•c : σn < 0, ‖σt‖ < µ|σn|. (4.49)

The stick condition can then be simply replaced by an ordinary Dirichlet
boundary condition.

The slip condition requires a slightly deeper analysis. For that, as
previously, we suppose that locally ν · e3 , 0 and that a point coming in
contact switches first to the stick state, so that a reaction stress vector σ arises
and if

( I
=
− n ⊗ n ) · σ ≥ µ|σ · n| ⇔ σt ≥ µ|σn|

then this point switches to the slip state. It remains to suppress the
corresponding part of Dirichlet’s boundary conditions to let the point slip
along the rigid surface and to apply an external frictional surface force density
in the direction of sliding. Additional investigations are required to ensure the
consistency of the problem when Dirichlet-Neumann boundary conditions
are simultaneously prescribed. A simpler approach consists in defining
an independent local basis for each contact point respectively to the rigid
surface S. This provides a consistent set of boundary conditions as discussed
in Paragraph 4.1.3.

4.3 Contact between deformable solids

4.3.1 General formulation and variational inequality

Up to now we considered a relatively simple case when a deformable body
comes in contact with a rigid smooth surface. Here, the formulation will be
generalized for the case when the contact interface separates two deformable
bodies: it is not important if the contact occurs between parts of one body
(contact within a crack, self-contact) or between several separate bodies, the
number of separate contact zones does not change the problem neither. So
without any loss of generality we confine ourself to the formulation of the
problem when contact occurs at a single contact zone between two separate
deformable bodies Ω1 and Ω2.

As previously, the vector X ∈ Ω0 denotes the position of the material point
in the reference configuration and the vector x ∈ Ω in the actual configuration.
To simplify the equations, we introduce the following notation

• the union of two bodies denotes two open sets Ω = Ω1 ∪Ω2;

• the union of their closures ∂Ω = ∂Ω1 ∪ ∂Ω2;

• the union of surfaces, where Neumann boundary conditions are applied

∂Ω ⊃ Γ f = Γ
1
f ∪ Γ

2
f ;
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4.3 Contact between deformable solids

• the union of surfaces, where Dirichlet boundary conditions are applied

∂Ω ⊃ Γu = Γ
1
u ∪ Γ2

u;

• the potential contact surfaces of two bodies Γ1
c ⊂ ∂Ω1 and Γ2

c ⊂ ∂Ω2.

The static balance of momentum states that for each point x ∈ Ω at any time
the volume is in equilibrium if and only if

∇ · σ
=
+ f v = 0 in Ω, (4.50)

where σ
=

is the Cauchy stress tensor and f v is the volume force density. If (4.50)
is satisfied in each point of the volumeΩ then the integral of the dot product of
this equation with any arbitrary vector-function v (also called test-function or
virtual function) over the volume is zero, the converse statement is also true:

∇ · σ
=
+ f v = 0 in Ω ⇔ ∀v,

∫

Ω

[
∇ · σ
=
+ f v

]
· v dΩ = 0. (4.51)

If we require that v ∈ C1, then the first term in the right part of eq.(4.51) can be
integrated by parts. After using the Green’s formula, we get

∫

∂Ω

n · σ
=
· v dΓ +

∫

Ω

[
f v · v − σ=·· ∇v

]
dΩ = 0, (4.52)

where n is an outward unit normal vector at ∂Ω. There is no more terms
containing the derivative of the stress tensor. It implies that the requirement
on smoothness of the stress vector (σ

=
∈ C1(Ω)) in the differential form (4.50),

has now been replaced by a weaker requirement of continuity (σ
=
∈ C0(Ω)). On

the other hand, according to (4.52) the test function must be smooth v ∈ C1(Ω).
Equation (4.52) is called the weak form of the equilibrium equation.

If the abstract test functions v ∈ C1(Ω) are replaced by arbitrary test
displacements (also called virtual displacements) δu = δ(x − X) = δx, then
the weak form (4.52) is nothing but the balance of virtual work

∫

∂Ω

n · σ
=
· δu dΓ +

∫

Ω

[
f v · δu − σ

=
·· δ∇u

]
dΩ = 0, (4.53)

The stress vector n · σ
=

entering in the first term in (4.53) is not zero only in the

active contact zones (Γc
1 ∈ Γ1

c , Γc
2 ∈ Γ2

c ), on the surface where the stress vector is
prescribed (Γ f ) and on the surface where the displacement is prescribed (Γu ).
By definition, since displacements are prescribed at Γu, δu = 0 at Γu so we get

∫

∂Ω

n · σ
=
· δu dΓ =

∫

Γc
1

n · σ
=
· δρ dΓc

1 +

∫

Γc
2

ν · σ
=
· δr dΓc

2 +

∫

Γ f

σ0 · δu dΓ f , (4.54)

where σ0 is a prescribed traction (Neumann boundary conditions), n is a unit
surface normal at Γc

1, ν is a unit surface normal at Γc
2, ρ = x at Γc

1 and r = x at Γc
2.
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In equilibrium state it follows from the 3rd Newton’s law that

n · σ dΓc
1 = −ν · σ dΓc

1

So the two integrals on the contact surfaces Γc
1 and Γc

2 can be replaced by one
integral over any of the two surfaces, we chose the surface Γc

1.
∫

Γc
1

n · σ
=
· δρ dΓc

1 +

∫

Γc
2

ν · σ
=
· δr dΓc

2 =

∫

Γc
1

n · σ
=
· δ(ρ − r) dΓc

1, (4.55)

where
r − ρ = g(r,Γc

1)

is a gap vector describing the position of the point r relatively to its projection
ρ. So if we want to determine the integrals in (4.55) both in contact and in
non-contact states, the vector ρ becomes a projection of the slave point r on

the master surface Γc
1, i.e. ρ = ρ(t, r). The expression δ(r − ρ) in the integral

implies that the relative motion of the independent point r(t+ δt) is considered
relatively to the other independent point ρ(t+δt), which was the projection of the
point r(t) in the non-perturbed state at time t.

In case of a shadow projection gs from an infinitely remote emitter (see for
details the previous section and Chapter 2) r = ρ + gse and directly

δ(r − ρ) = δgse +
∂ρ

∂ξ∼

T

δξ∼ , (4.56)

where e is a unit vector pointing towards the emitter. In case of a normal gap,
gn, r = ρ + gnn and consequently

δ(r − ρ) = δgnn + gnδ̄n +
∂ρ

∂ξ∼

T

δξ∼ , (4.57)

where δ̄n = δn +
∂n
∂ξ∼

T
δξ∼ is a full variation of the unit normal vector. It is worth

noting that δξ∼ describes a perturbation of the local coordinate of projection of

the point r on the surface Γc
1 and not the displacement of the material point ρ.

The surface stress vector can be splitted into normal and tangential parts, the
latter can be expanded into two components in the contravariant surface basis
∂ρ

∂ξ∼

n · σ
=
= nσn + σt = nσn + σ∼

T
t

∂ρ

∂ξ∼
(4.58)

Obviously, if the local contravariant basis
∂ρ

∂ξ∼
is not orthonormal, then

‖σt‖ ,
√
σ2

t1 + σ
2
t2,
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4.3 Contact between deformable solids

where σti, i = 1, 2 are components of the v-scalar σ∼t.
In the contact state, when points ρ = r, the local moment balance is

automatically fulfilled, as vectors σρ = σ= · n = −σ= · ν = −σr. When the two
points are distant, for a non-zero stress vector, we require that the moment is
zero, which is equivalent to the following equality

( r − ρ) × σr = 0 or (ρ − r ) × σρ = 0.

It requires that when two points are distant, the contact stress vector is collinear
with the gap vector

σ ‖ g, if g , 0 (4.59)

Substituting (4.56) and (4.58) into the last integral in (4.55) leads to the
expression for the contact contribution to the virtual work balance of the system
in case of a shadow projection from an infinitely remote emitter

∫

Γc
1

n · σ
=
· δ(ρ − r) dΓc

1 = −
∫

Γc
1


nσn + σ∼

T
t

∂ρ

∂ξ∼


 ·


δgse +

∂ρ

∂ξ∼

T

δξ∼


 dΓc

1 =

= −
∫

Γc
1


σnδgse · n + δgs σ∼

T
t

∂ρ

∂ξ∼
· e + σ∼

T
t δξ∼


 dΓc

1,

(4.60)

where the dot product of contravariant and covariant bases gives the unity

tensor (t-scalar)
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

= I≈ and is omitted in the last term. This expression

will not be investigated further in the thesis and suggests further direction of
development.

To derive a similar contribution to the virtual work balance in case of the
normal projection g = gn, let us first consider the dot product of (4.57) with
(4.58)


nσn + σ∼

T
t

∂ρ

∂ξ∼


 ·


δgnn + gnδn +

∂ρ

∂ξ∼

T

δξ∼


 =

= σnδgn + σn


n ·

∂ρ

∂ξ∼

T
︸    ︷︷    ︸
= 0

δξ∼ + σ∼
T
t



∂ρ

∂ξ∼
· n




︸   ︷︷   ︸
= 0

δgn + σ∼
T
t



∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T



︸       ︷︷       ︸
= I≈

δξ∼+

+ gn


nσn + σ∼

T
t

∂ρ

∂ξ∼


 · δ̄n

︸                  ︷︷                  ︸
=gnσ·δ̄n=0, since σ ‖n, if gn,0, see (4.59)

= σnδgn + σ∼
T
t δξ∼

(4.61)

Substituting this expression into the last integral in (4.55) gives the expression
for the contact contribution to the virtual work in case of the normal projection
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g = gn

∫

Γc
1

n · σ
=
· δ(ρ − r) dΓc

1 = −
∫

Γc
1

(
σnδgn + σ∼

T
t δξ∼

)
dΓc

1, (4.62)

Finally, the balance of virtual work (4.53) including contact contributions
(in case of the normal projection ) and Neumann boundary conditions from
(4.54) is
∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γc
1

(
σnδgn + σ∼

T
t δξ∼

)
dΓc

1 =

∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ, (4.63)

It can be shown that in actual configuration the second term the part related to
the normal contact contribution is negative. If the condition of non-penetration
holds, then point r either stays at the surface (sticks or slides over the tangential
plane δgn = 0) or moves out of the surface, which leads to inequality

δgn = δgn · n ≥ 0.

Since the contact pressure is non-positive σn ≤ 0 we have δgnσn ≤ 0, which
becomes in integral form ∫

Γc
1

σnδgn dΓc
1 ≤ 0. (4.64)

Frictional sliding is associated with energy dissipation, i.e. the dot product
between force and displacement vectors is negative (Fig. 4.10), so naturally,
a point slides in the direction opposite to the imposed frictional force. More
generally, the angle between the frictional force and the sliding directions is
larger than 90 degrees, i.e.

( I
=
− ν ⊗ ν ) · σ

=
· δgt ≤ 0.

It follows that the expression in the frictional part of the integral is positive
since

στ = ( I
=
− ν ⊗ ν ) · σ

=
= −( I
=
− n ⊗ n ) · σ

=
= −σt,

i.e.
σ∼

T
t δξ∼ ≥ 0

The integral form of this statement is given below
∫

Γc
1

σ∼
T
t δξ∼ dΓc

1 ≥ 0. (4.65)

The virtual work of frictional forces has the same sign as the virtual work of
internal forces and it is not conservative so all this energy dissipates, and cannot
be recovered. Since the direction of sliding and penetration and its relations
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4.3 Contact between deformable solids

with gap vector are relative, it is important to distinguish master and slave
surfaces. Either the stress on the master has to be compared to the gap with
respect to the master g(r,Γ1

c ) (as in considered case) or stress on the slave has
to be compared to the gap with respect to the slave, g(ρ,Γ2

c ) (for the graphical
interpretation see Fig. 4.10): a – two bodies in contact ρ = r; b – the slave point
moves out of the master δgn ≥ 0, σn ≤ 0, σnδgn ≤ 0, where σnn is the contact
pressure on the master surface; c – tangential relative movement, the slave r
slides over the master, relative displacement respectively to the master δξ∼ is

the same direction as the tangential stress vector on the master, so σ∼
T
t δξ∼ ≥ 0.

According to (4.64), the balance of virtual work (4.63) can be rewritten as
a variational inequality The variational inequality has to be complemented by
the restrictions on the possible virtual displacement arising from Dirichlet’s
boundary conditions and non-penetration conditions. Classically, the
variational inequality for frictional problem is written following Duvaut and
Lions [Duvaut 71] and Kikuchi and Oden [Kikuchi 88], where the proof of the
equivalence between the variational inequalities and the classical formulation
can be found. Here we provide a generalized formulation, which does not
limit the choice of the frictional law

∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γc
1

σ∼
T
t δξ∼ dΓc

1 ≥
∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

K =
{
δu ∈ V

∣∣∣∣ (r + δr − ρ − δρ) · n ≥ −gn0 on Γc

}
(4.66)

In case of frictionless contact, the formulation is significantly simpler and is
written as

∫

Ω

σ
=
·· δ∇u dΩ ≥

∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

K =
{
δu ∈ V

∣∣∣∣ (r + δr − ρ − δρ) · n ≥ −gn0 on Γc

}
, (4.67)

where H1(Ω) denotes Hilbert space of the first order, δr = δu on Γc
2, δρ =

δu on Γc
1 - contacting material points in actual configuration, gn0 = (Xρ +Xr) ·n

- initial gap. These variational inequality formulations (4.66),(4.67) are
valid for any material, since constitutive law does not enter in equations.
However, the presence of the inequality sign differs these expressions from
the classical weak form and requires new optimization methods for its
numerical treatment. No details are given here, the interested reader is
referred to monographs [Duvaut 76] and [Kikuchi 88], which are dedicated
to this approach.
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Chapter 4. Formulation of contact problems and resolution methods

Figure 4.10: Graphical interpretation of inequalities (4.64) and (4.65) with
respect to the master surface.

4.3.2 Remarks on Coulomb’s frictional law

For a detailed analysis of inequalities arising from the formulation of frictional
and frictionless cases, the reader is referred to books by Duvaut and
Lions [Duvaut 76] and Kikuchi and Oden [Kikuchi 88], where
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4.3 Contact between deformable solids

• the equivalence between the variational inequality and the classical
formulation of Signorini’s problem with Coulomb’s friction (following
Duvaut and Lions [Duvaut 71] and [Duvaut 76]) is determined;

• the existence and uniqueness of the solution is proved for small
deformation frictionless contact [Kikuchi 88];

• the finite element problem with unilateral contact with and without
friction for small/large deformations, incompressible and elasto-plastic
materials is treated [Kikuchi 88];

• the questions of convergence of the Finite Element Method are discussed
[Kikuchi 88];

• many other developments concerning contact with a rigid foundation
are elaborated in the rigorous mathematical framework developed by
authors [Kikuchi 88].

Following these works, let us make some remarks considering the frictional
problem.

As one can see, no friction law appears in the derived variational inequality
for frictional contact (4.66). If Coulomb’s law is assumed

‖σt‖ ≤ µ〈−σn〉, ‖ġt‖σt − µ〈−σn〉ġt = 0, ‖s‖
∥∥∥∥ ‖ġt‖σt − µ〈−σn〉ġt

∥∥∥∥ = 0,

where ġt =
∂ρ

∂ξ∼

T

ξ̇∼ is the relative tangential sliding velocity of the point r over ρ

for g = 0. Then, following [Duvaut 71], the integral related to the contribution
of the frictional forces can be rewritten as

∫

Γc
1

σ∼
T
t δξ∼ dΓc

1 =

∫

Γc
1

‖σt‖ ‖δgt‖ dΓc
1 =

∫

Γc
1

µ〈−σn〉 ‖δgt‖ dΓc
1 (4.68)

and the variational inequality for the frictional problem (4.66) becomes
∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γc
1

µ〈−σn〉 ‖δgt‖ dΓc
1 ≥

∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

K =
{
δu ∈ V

∣∣∣∣ (r + δr − ρ − δρ) · n ≥ −gn0 on Γc

}
(4.69)

However, the integral (4.68) entering in the variational inequality (4.69) has no
meaning, since σn = σn(u) is a contact pressure depending on the solution u of
the problem with friction. Furthermore, the term (4.68) is nonconvex and non
differentiable, consequently the questions of existence and uniqueness of the
solution for the problem (4.69) remain open.

«...the absence of a complete existence theory for the general
problem together with physical evidence of friction have led some
investigators to question the validity of the Coulomb friction law.»
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Chapter 4. Formulation of contact problems and resolution methods

Kikuchi and Oden [Kikuchi 88]

To derive some results for the frictional problem several possible
“simplifications” have been proposed: one can either assume a priori
known contact pressure or tangential stress or replace Coulomb friction
by a regularized law. For the case of a prescribed contact pressure, the
existence and uniqueness of the solution is proven under reasonable conditions
([Duvaut 76]). So for the numerical purpose, the iterative procedure can be
established using two special cases of known contact pressure and known
tangential stress repeated alternately (see [Campos 82]). However, the
frictional term remains nondifferentiable which presents a problem for the exact
numerical treatment of frictional contact. The regularization of the contact term
leads to a convex and Gâteaux differentiable integral for which the existence
and uniqueness of the solution can be proved. The regularization consists in
replacing the absolute value of the virtual displacement in integral (4.68) by a
smooth term containing ε

∫

Γc
1

µ〈−σn〉 ‖δgt‖ dΓc
1 −→

∫

Γc
1

µ〈−σn〉R(δgt, ε) dΓc
1 (4.70)

in the way that

R(δgt, ε)
ε→0−−−→ ‖δgt‖,

see [Kikuchi 88] for details. Such a regularization is in a good agreement
with experiments on friction between metal surfaces [Courtney-Pratt 57]
demonstrating that a tangential relative sliding may occur, even for a
small tangential stress. This microsliding is governed by the elasto-plastic
deformation of asperities in contact.
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4.4 Variational equality and resolution methods

4.4 Variational equality and resolution methods

According to the remarks made in the previous section, the variational
inequality is hard to apply for contact with finite sliding and/or rotations.
That is why nowadays most of the practical studies in contact mechanics are
based on the so-called variational equalities, which are easy to introduce in a finite
element framework and does not require totally new minimization techniques.
Here we derive the framework based on variational equalities constructued for
known active contact zone. Due to the requirement of known contact zone,
such a formulation should be coupled with an active set strategy. Active set
denotes such components of the potential contact zone which are in “active”
contact at the current solution step. Naturally, the inactive set contains only
components of the potential contact surface which are not in contact.

Assuming the known contact zone it becomes possible to transform the
nonlinear optimization problem under constraints into an unconstrained
problem and to apply further classical resolution methods. Among the most
popular and widely used methods in contact mechanics are those inspired
from optimization theory:

• the penalty method (exterior point methods);

• the barrier method (interior point methods);

• direct elimination of constraints;

• the Lagrange multiplier method;

• the perturbed Lagrangian (valid for stick or frictionless slip) method;

• the augmented Lagrangian formulation;

• Nitsche method (weak enforcement of constraints);

• cross-constraint method (see [Wriggers 06]);

and others, which can be found in [Wriggers 06] and multiple references in
it. We restrict ourself to three of them: penalty, Lagrange multipliers and
augmented Lagrangian methods. All methods have their own advantages and
drawbacks, which will be discussed in the following.

4.5 Penalty method

Let us assume that somehow the active contact zones Γc
1 ∈ Γ1

c ,Γc
2 ∈ Γ2

c are
known. Then the differential formulation of the contact problem can be
replaced by a variational equality (4.63) complemented by restrictions on the
virtual displacements δu ∈ V and contact constraints:
∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γc
1

(
σnδgn + σ∼

T
t δξ∼

)
dΓc

1 =

∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,K =

{
δu ∈ V

∣∣∣ g(u, δu) ≥ 0 on Γc

}
(4.71)
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We have a standard minimization problem under inequality constraints.

4.5.1 Frictionless case

The motion of material points x ∈ Ω is governed by Dirichlet boundary
conditions, by non-penetration conditions

g(ρ,S) ≥ 0

and by stick-slip relations which will be discussed later. First, we confine
ourself to the frictionless case. To fulfill the non-penetration conditions, a
normal contact pressure σn < 0 arises at the contact interface. Hertz-Signorini-
Moreau’s conditions summarize this effect

g ≥ 0, σn ≤ 0, gσn = 0, σt = 0. (4.72)

Let us construct the penalty method based on an approximate fulfillment
of these conditions. For that, let us suppose that the contact pressure is a
continuous function of the penetration

σn(g) = ǫn
(〈−g〉) =


0, g > 0

ǫn(−g), g ≤ 0
,

where ǫn is a non-positive continuous strictly monotonically decreasing
function and

ǫn(0) = 0, ǫn(x)
x→∞−−−−→ −∞

Then the contact condition is strictly fulfilled for non-negative gaps, however
according to the relations between contact pressure and the gap function, real
contact appears only for negative gaps, i.e. only if a penetration takes place

{
g ≥ 0, σn = 0, gσn = 0

g < 0, σn = ǫn(−g) < 0, gσn , 0
(4.73)

Logically, the higher the contact stress for small penetration the better Hertz-
Signorini-Moreau’s conditions are fulfilled. This approximation implies that
the contact surface does not restrict penetration but resists to it, the deeper the
penetration the higher the resisting reaction. The physical interpretation leads
to a representation of the master surface as a series of springs with zero initial
length, that can elongate inside the body normally to the master surface. The
reaction provided by the springs follows the law R = ǫn(−U), where R is the
appearing reaction and U is the elongation of the spring. At the same time
the surface of the master is supposed to be described by nondeformed springs.
Since these imaginary springs are joint to the master surface and transfer the
reaction forces to it, it also deforms. The energy accumulated by springs due
to their deformation is

Wp =

−U∫

0

ǫn(U) dU =

−〈−g〉∫

0

ǫn(〈−g′〉) dg′,
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which in case of linear penalty method

ǫn(〈−g〉) = −εn〈−g〉, εn ≥ 0

becomes

Wp = −
−〈−g〉∫

0

εn〈−g′〉 dg′ =

−〈−g〉∫

0

εng′ dg′ =
1
2
εn〈−g〉2,

which coincides with the energy accumulated by a linear spring of stiffness εn

due to an elongation or contraction U = 〈−g〉. Due to its simplicity and mainly
due to the smooth contribution (regarding penetration) to the energy of the
system, the linear penalty method is one of the most applicable methods for
treatment of contact problems both in commercial and scientific finite element
codes.

The assumption of dependency of the contact pressure on penetration
allows to represent the frictionless contact integral as the work of the contact
pressure σn on virtual penetration δgn, in analogy with the work of a prescribed
traction: the contact integral appears to be the virtual work due to the
deformation of imaginary springs in the contact interface (Fig. 4.11). For
normal projection gn(r,Γ1

c ), the contact contribution to the balance of virtual
work writes as follows

δWc =

∫

Γc
1

ǫn(−gn)δgn dΓc
1 =

∫

Γ1
c

ǫn(〈−gn〉)δgn dΓ1
c , (4.74)

after the choice of the penalty function ǫn (with an argument in Macaulay
brackets 〈−g〉) on can integrate the virtual work due to contact not only over
the active contact zone but over the full contact zone Γ1

c , which results in the
second equality in (4.74). For shadow projection from an infinitely remote
emitter gs(r,Γ1

c ) (see (4.60)), the contact integral has the form

δWc =

∫

Γc
1

ǫn(−gs)δgsn · e dΓc
1 =

∫

Γ1
c

ǫn(〈−gs〉)δgsn · e dΓ1
c , (4.75)

where e is the unit vector pointing towards the emitter.
The entire weak form for frictionless problems and normal projection writes

as
∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γ1
c

ǫn(〈−gn〉)δgn dΓc
1 =

∫

Γ f

σ0 · δu dΓ +

∫

Ω

f v · δu dΩ,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
(4.76)

If the mechanical problem can be formulated as a minimization of the
functional F(u) : V → R under constraints g(u) ≥ 0 and if the penalty
functional is P(u) : V→ R+0 then,
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Figure 4.11: Spring interpretation of the penalty method: left – undeformed
configuration; middle – configuration after penetration gn(ξ), which in turn
results in a contact pressure σn(ξ) = ǫn(−gn(ξ)) shown with red arrows on
the master and in blue on the slave, contact pressure results in decreasing the
penetration due to deformation and results in an right equilibrium state.

«The idea behind penalty method is, roughly speaking, to append to F a
”penalty functional“ P which increases the magnitude accordingly to how
severely the constraint is violated.»

Kikuchi and Oden [Kikuchi 88]

4.5.2 Example

Let us demonstrate the idea of the penalty method on a simple example of
minimization under constraints. Let the potential energy of the system with
one degree of freedom be

F(x) =
1
2

(2) (x + 1)2,

It corresponds to a mathematical pendulum in statics (see Fig. 4.12) where
c = (2)[N/mm] is the stiffness of the spring and x[mm] is the coordinate of the
mass-point. We require that at equilibrium the energy is minimal or that the
variation of the energy is zero:

min
x
{F(x)} or δF(x) = 0

It corresponds to the point x = −1[mm].

δF(x) = 2(x + 1)δx = 0⇔ x = −1

Let us introduce a wall, which restricts the penetration in the zone x < 0; now
the problem is reformulated as

min
x≥0
{F(x)}.

Note that strictly speaking we cannot use variational formulation δF(x) = 0, x ≥
0 since in contact state F(x+δx) is not determined for any δx. The actual position
of the mass can be expressed by x = X + u, where X = −1 is nothing but the
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4.5 Penalty method

equilibrium state without wall (position in the reference configuration), then
the gap can be simply expressed as

g(x) = x ≥ 0 ⇔ u ≥ −X ⇔ u ≥ 1.

then we can rewrite the problem in displacements

min
u≥1
{F(u)}

F(x) = F(X + u) = (X + u + 1)2 = u2 = F(u)

In the framework of variational equalities and the penalty method the
constrained minimization problem can be rewritten as a a simple minimization
problem:

min
u≥1
{F(u)} → min

u

{
F(u) + Fp(u)

}
,

where Fp(u) is the penalty term due to violation of contact constraints

Fp(u) =

−〈−g(X+u)〉∫

0

ǫ(〈−g(X + u)〉)dg(X + u),

or in case of linear penalty ǫ(〈−g(X + u)〉) = −ε〈−g(X + u)〉

Fp(u) = −
−〈−g(X+u)〉∫

0

εn 〈−g(X + u′)〉 dg(X + u′)

where

g(X + u) = X + u, 〈−g(X + u)〉 =

−X − u, X + u < 0

0, X + u ≥ 0

Fp(u) = −
X+u∫

0

εn(−X − u′) d(X + u′) =
1
2
εn(X + u)2 =

1
2
εn(u − 1)2

so we get the following minimization problem

min
u

{
F(u) + Fp(u)

}
⇔ min

x

{
u2 +

1
2
εn(u − 1)2

}

with the solution

min
u

{
F(u) + Fp(u)

}
⇔

∂[F(u) + Fp(u)]

∂u
= (2 + εn)u − εn = 0⇔ u =

εn

εn + 2

Since now the energy function F is determined for any displacements, in
a more general form, the problem can be rewritten as a variational problem
similar to (4.76)

δF(u) + ǫ(〈−g(X + u)〉)δg(X + u) = 0,
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where

δg(X + u) =
∂g(X + u)

∂u

∣∣∣∣∣
u=0
δu = δu

which in case of linear penalty method ǫn(x) = −εnx also provides

(2u − εn(1 − u))δu = 0 ⇔ u =
εn

εn + 2
.

The functional F(x) and F(x) + Fp(x) for linear penalty are presented
in Figure 4.13, which shows the energy functionals of unconstrained and
constrained problems respectively. One can see that the functional is smooth
and that the solution converges gradually to the solution of the problem
x∗ = 0,u∗ = 1 for increasing penalty parameter εn.

Figure 4.12: A simple example of contact problem, mathematical pendulum in
statics: left – initial state, right – deformed state due to the contact with a rigid
wall.

Figure 4.13: Extended energy functional F(x) + Fp(x) for different values of the
penalty (εn = 1, 10, 50) and corresponding solutions for the problem presented
in Fig. 4.12.
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4.5.3 Nonlinear penalty functions

The linear penalty method is optimal from a numerical point of view, because
it does not introduce additional nonlinearities in the problem. Moreover, its
linearization is a feasible task, whereas linearization of any nonlinear penalty
function leads to significant computational difficulties. However, as it can be
easily shown, the linear penalty function is not optimal from the point of view
of the precision. Let us compare linear penalty function with quadratic

ǫq(x) = −εn(x2 + x),
∫
ǫq(x)dx = −εn

(1
3

x3 +
1
2

x2
)

and exponential penalty functions

ǫe(x) = −εnx(2 + x)ex,

∫
ǫe(x)dx = −εnx2ex.

As one can see, the contribution of the penalty terms to the energy of the
system (integrals) is smooth (value and derivative of the energy due to penalty
in x = 0 is zero). In Tables 4.6, 4.7, 4.8 a comparison between linear, quadratic
and exponential penalty methods is presented for different values of the penalty
parameter εn = 1, εn = 10, εn = 100. To compare these methods on a nonlinear
problem, we assume that the spring energy is given by W = 1

2 cx4, with a
parameter c = 1

2 . It means that the value of penalty coefficient εn = 1 has the
same order of magnitude as the stiffness parameter. According to the tables,
we see that for high penalty εn ∼ 100c (Tab. 4.8), the linear method converges
much faster than both others and the solutions of the three are quite close. For
a moderate penalty εn ∼ 10c (Tab. 4.7), the quadratic penalty function gives
a faster convergence than linear and exponential ones. For a small penalty
εn ∼ c (Tab. 4.8), the exponential function gives the fastest convergence and a
much better solution that the others. It is worth mentioning that in all cases
quadratic and exponential penalty functions yield a better solution, and that
the best precision is obtained with the exponential function in all cases.

Let us also remark, that in 2D and 3D contact problems, the variation of the
normal gap function and its second variation are always nonlinear, so even for
linear material and a known contact zone, the linear penalty method does not
allow to achieve convergence within one iteration.
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Table 4.6: Comparison of different penalty functions, penalty εn = 1, exact
solution u∗ = 1.

Linear ǫl(x) Quadratic ǫq(x) Exponential ǫe(x)

Iter Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣
1 1.000 1.000 0.667 1.000 0.429 1.000
2 0.692 0.444 0.561 0.189 0.649 0.340
3 0.541 0.279 0.548 0.024 0.657 0.012
4 0.502 0.077 0.548 3.20e-4 0.657 1.81e-5
5 0.500 4.76e-3 0.548 5.67e-8 0.657 4.50e-11
6 0.500 1.71e-5 0.548 1.62e-15 0.657 1.69e-16
7 0.500 2.19e-10 0.548 2.02e-16 0.657 1.69e-16

Table 4.7: Comparison of different penalty functions, penalty εn = 10, exact
solution u∗ = 1.

Linear ǫl(x) Quadratic ǫq(x) Exponential ǫe(x)

Iter Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣
1 1.0 1.0 0.667 1.0 0.429 1.0
2 0.818 0.222 0.815 0.182 0.735 0.417
3 0.798 0.026 0.816 1.7e-3 0.867 0.152
4 0.797 3.0e-4 0.816 2.5e-8 0.884 0.019
5 0.797 3.8e-8 0.816 1.4e-16 0.884 2.38e-4
6 0.797 7.0e-16 0.816 1.4e-16 0.884 3.67e-8
7 0.797 0.0 0.816 1.4e-16 0.884 8.79e-16
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Table 4.8: Comparison of different penalty functions, penalty εn = 100, exact
solution u∗ = 1.

Linear ǫl(x) Quadratic ǫq(x) Exponential ǫe(x)

Iter Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣

Solution
ui

Relative
error∣∣∣∣ui−ui−1

ui

∣∣∣∣
1 1.000 1.000 0.667 1.000 0.429 1.000
2 0.964 0.037 0.918 0.274 0.746 0.425
3 0.964 1.41e-4 0.967 0.047 0.925 0.193
4 0.964 2.00e-9 0.965 1.61e-3 0.978 0.054
5 0.964 0.0 0.965 1.87e-6 0.982 4.12e-3
6 0.964 0.0 0.965 2.53e-12 0.982 2.25e-5
7 0.964 0.0 0.965 0.0 0.982 6.67e-10

4.5.4 Frictional case

In presence of friction the virtual work due to contact has to be complemented
by the frictional term. The classical Coulomb’s friction law reads as follows

‖σt‖ ≤ µ|σn|, σt − µ|σn|s = 0, ‖s‖ ‖ σt − µ|σn|s ‖ = 0.

As in the case of the normal contact, this set of conditions can be fulfilled
approximately using a penalty function. Let us assume that the tangential
stress is zero except when a tangential sliding gt occurs at the interface, so
the tangential stress can be considered as a function of the tangential sliding
limited by Coulomb’s cone surface:

σt =


ǫt(‖gt‖)s, ǫt(‖gt‖) < µ|σn|
µ|σn|s, ǫt(‖gt‖) ≥ µ|σn|

The penalty function should be positive and monotonically increasing,
moreover it should be zero for zero sliding

ǫt(x) ≥ 0, ǫt(0) = 0,
∂ǫt(x)
∂x

≥ 0

Consequently, the contribution to the weak form due to tangential contact in
the stick state is

∫

Γc
1•

σt · δgt dΓc
1 =

∫

Γc
1•

ǫt(‖gt‖)s · δgt dΓc
1 =

∫

Γc
1•

ǫt




∣∣∣∣∣∣∣
∂ρ

∂ξ∼

T

∆ ξ∼

∣∣∣∣∣∣∣


 s∼

Tδξ∼ dΓc
1,

where Γc
1• denotes the stick contact zone and

s∼ = s ·
∂ρ

∂ξ∼
.
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From the derived expressions it is clear that their linearization, needed for
the implicit treatment of the contact in the framework of the Finite Element
Method, is a complicated task. This is why a linear penalty method is used,
that gives the following expression for the stick case

σt = εt∆gt
•, ‖∆gt

•‖ <
µ|σn|
εt

,

where ∆gt
• is a discrepancy from the actual point and the stick point ρ( ξ∼

•).
The value of this discrepancy is limited by the Coulomb’s cone. The integral
of the virtual work for the linear penalty can be rewritten as

∫

Γc
1•

σt·δgt dΓc
1 =

∫

Γc
1•

εt∆gt
•·δgt dΓc

1 =

∫

Γc
1•

εt(∆ ξ∼
•)T

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼

T

δξ∼ dΓc
1 =

∫

Γc
1•

εt(∆ ξ∼
•)Tδξ∼ dΓc

1,

This integral can be interpreted as the work of the tangential stress vector σt on
the virtual relative sliding δξ∼ in the contact interface. The convective coordinate
ξ∼
• denotes the stick point, to where the slave point r returns if the external

load is removed. So ∆ ξ∼
• is an accumulated ”slip-in-stick“ over solution

steps ∆ ξ∼(t) = ξ∼(t) − ξ∼
•. From a physical point of view, the ”slip-in-stick“

represents elastic deformations within the contact interface (elastic deformation
of asperities) and should vanish when the load is removed. The direct
analogy with elasto-plastic deformation is the following: the deformation
inside the yield surface results in elastic deformation of the volume element,
whereas pushing the yield surface leads to plastic flow. After removing the
load, the accumulated plastic deformation remains unchanged and the elastic
deformation vanishes. By analogy, the total slip gt can be splitted into a sum
of ”slip-in-stick“ gt

• and real slip gt
∗

gt = gt
• + gt

∗ ∼ ε
=
= ε
=

e + ε
=

p

Note that gt
• and gt

∗ may be not collinear. To determine the slip direction, we
need to reformulate this expression in velocities

ġt = ġt
• + ġt

∗ ∼ ε̇
=
= ε̇
=

e + ε̇
=

p

Applying the incremental Euler method (ẋ = (xi+1 − xi)/∆t) to integrate this
equation, we get

gt
i+1 = gt

i + ∆gt
•i
+ ∆gt

∗i,

where
∆gt

•i
= gt

•i+1 − gt
•i, ∆gt

∗i = gt
∗i+1 − gt

∗i.

So for ∆t→ 0 the frictional conditions can be reformulated as

‖σt‖ ≤ µ|σn|, σt − µ|σn|
∆gt
∗

‖∆gt
∗‖ = 0, ‖gt

∗‖

∥∥∥∥∥∥∥
σt − µ|σn|

∆gt
∗

‖∆gt
∗‖

∥∥∥∥∥∥∥
= 0.
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4.5 Penalty method

This representation is important for the numerical treatment of frictional
contact problems by means of penalty method, which will be discussed in
details in Section 5.2.

As proposed in [Wriggers 06], in stick state, there is no need to distinguish
normal and tangential directions. The slave point has to stick to the master
point at which stick occurred and, according to the penalty method, all
violations of the stick condition will be penalized by a penalty stress vector
σ
=
· n in the direction of such a violation g = r − ρ, i.e.

σ
=
· n = ǫ(‖g‖)

g

‖g‖ , if gn ≤ 0, ‖σt‖ < µ|σn|, (4.77)

where ǫ(x) ≥ 0 is a positive penalty function of the stick constraint violation.
Such a formulation can be easily integrated in the weak form by substitution
(4.77) in (4.55), which leads to

∫

Γc
1•

ǫ(‖g‖)
g

‖g‖ · δ(ρ − r) dΓc
1,

and for a linear penalty function to a simpler form

−
∫

Γc
1•

ε(r − ρ) · δ(r − ρ) dΓc
1,

such an approach is formally equivalent to the standard linear penalty, if one
puts εn = εt = ε, but it yields a simpler numerical formulation as shown in
[Wriggers 06].

In slip state, the tangential stress is determined by the contact pressure and
the slip direction

σ∗t = µ|σn|
ġt

‖ġt‖
= µ|σn|s = µ|σn| s∼

T
∂ρ

∂ξ∼
;

the integral due to frictional contact in slip contact zone is formulated as
∫

Γc
1∗

µ|σn|s · δgt dΓc
1 =

∫

Γc
1∗

µ|σn| s∼
Tδξ∼ dΓc

1.

Since |σn| = −ǫn(〈−gn〉) we finally get the following integral due to frictional
sliding, which has to be introduced in the weak form

∫

Γc
1∗

µ|σn| s∼
Tδξ∼ dΓc

1 =

∫

Γc
1∗

−ǫn(〈−gn〉)µ s∼
Tδξ∼ dΓc

1.

For linear penalty |σn| = εn〈−gn〉, the integral takes the following form
∫

Γc
1∗

µ|σn| s∼
Tδξ∼ dΓc

1 =

∫

Γc
1∗

εn〈−gn〉µ s∼
Tδξ∼ dΓc

1,
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Finally, the full variational equality – balance of virtual works – for frictional
contact (Coulomb’s friction) and linear penalty method is
∫

Ω

σ
=
·· δ∇u dΩ −

∫

Γc
1∗

εn〈−gn〉
(
δgn − µ s∼

Tδξ∼
)

dΓc
1 −

∫

Γ f

σ0 · δu dΓ −
∫

Ω

f v · δu dΩ+

+

∫

Γc
1•

−εn〈−gn〉δgn + ǫt∆ ξ∼
•Tδξ∼ dΓc

1 = 0,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

(4.78)
where Γc

1∗ ∈ Γc
1 and Γc

1• ∈ Γc
1 are respectively the slip and the stick active contact

zones on the master. In case of frictionless contact, the variational equality
becomes

∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γ1
c

−εn〈−gn〉δgn dΓc
1 −

∫

Γ f

σ0 · δu dΓ −
∫

Ω

f v · δu dΩ = 0

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

(4.79)

4.6 Method of Lagrange multipliers

The method of Lagrange multipliers also allows to construct variational
equalities for contact problems. This method, named after Joseph-Louis
Lagrange, is used in optimization theory to find the extremum of a functional
subjected to constraints. Briefly, one has to seek for an argument u∗ which
minimizes the scalar functional Π(u) under constraints g(u) = 0

min
g(u)=0

Π(u).

This problem under certain circumstances can be replaced by the search of a
stationary point (extremum, precisely saddle point) of a specifically constructed
functional L(u, λ) called Lagrangian, where λ is an additional unknown
(Lagrange multiplier)

min
g(u)=0

Π(u) → ∇L(u, λ) = 0. (4.80)

The Lagrangian is constructed in the following manner

L(u, λ) = Π(u) + λg(u), λ ≤ 0,

its gradient reads as

∇L(u, λ) =




∂L
∂u

∂L
∂λ



=




∂Π(u)
∂u

+ λ
∂g(u)
∂u

g(u)



= 0 (4.81)
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4.6 Method of Lagrange multipliers

The lower equation is nothing but the constraint g(u) = 0. The upper one
implies that the gradient of the functional Π is opposite to the gradient of the
constraint with a multiplier λ

∂Π(u)
∂u

= −λ
∂g(u)
∂u

The solution of the minimization problem is a stationary point of the
Lagrangian (4.79), but in general not all stationary problems of (4.79) are
solutions of the initial minimization problem. The replacement of a one
argument functional Π(u) by a two argument functional L(u, λ) obviously
implies that the number of unknowns is higher for the Lagrangian. From a
numerical point of view, the discretized problem will contain NL more degrees
of freedom than the initial problem, where NL is the number of geometrical
constraints.

4.6.1 Frictionless case

The method of Lagrange’s multipliers can be extended for multiple and
continuous constraints formulated as inequalities. Let us remind the Hertz-
Signorini-Moreau conditions

g(u) ≥ 0, σn ≤ 0, σng(u) = 0 on Γc

On the active contact zone Γc, we require that

∀u ∈ Γc : g(u) ≥ 0.

The constrained minimization problem is formulated as

min
u∈V, g(u)≥0

{
Π(u)

}
⇔ ∃u∗ : ∀u ∈ V, g(u) ≥ 0 on Γc : Π(u∗) ≤ Π(u) in Ω,

where Π(u) is the energy of the mechanical system in Ω; this problem can be
replaced by a stationary point problem for the Lagrangian

∇L(u, λn(X)) = 0 in Ω, (4.82)

where λn(X) ≤ 0 on Γc
0

and λn(X) = 0 elsewhere, then the Lagrangian is given
by

L(u, λn) = Π(u) +
∫

Γc
1

λn(X)g(u) dΓc
1 (4.83)

The expression λn(X), where X denotes a material point in the reference
configuration, is rarely used and in the following we will also omit the
argument. By λn, we mean a continuous set of values on the active contact
zone (instead of a real number as in the discrete case). The stationary condition
in derivative form (4.82) can be replaced by the variation of the Lagrangian

δL(u, λn) = δΠ(u) +
∫

Γc

g(u) δλn + λn δg(u) dΓc = 0
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Chapter 4. Formulation of contact problems and resolution methods

The variation of the energy of the system δΠ(u) is equivalent to the variational
principle of virtual work, so the last equality can be rewritten in an extended
form

∫

Ω

σ
=
·· δ∇u dΩ+

∫

Γc
1

g(u) δλn + λn δg(u) dΓc
1 −

∫

Γ f

σ0 · δu dΓ −
∫

Ω

f v · δu dΩ = 0

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
λn ≤ 0 on Γ1

c ,

(4.84)
The constraintλn ≤ 0 has still to be fulfilled, that is why the Lagrange multiplier
method does not convert a minimization problem with inequality constraints
to a fully unconstrained one. For a more rigorous formulation of Lagrange
multiplier method for contact problems the reader is referred to the book of
Kikuchi and Oden [Kikuchi 88]. The integral due to contact for zero gap
g(u) = 0 degenerates to

∫

Γc
1

λn δg(u) dΓc
1 →

∫

Γc

λn δg(u) dΓc
1 ∼

∫

Γc
1

σn δg(u) dΓc
1.

This term is quite similar to the frictionless part of the contact integral in (4.71),
where instead of λn the contact pressure σn appears, both of them should be
negative. The Lagrange multiplier λn is interpreted as the contact pressure
needed to fulfill the contact constraints. By analogy with a potential field Π(r)
and the force F it generates in point r (gradient of the field)

F = −∂Π
∂r

the contact pressure is the gradient of the ”energy“L(u, λn) with respect to the
gap function

|σn| = |λn| = −
∂L
∂g

So we introduced a new unknown, the contact pressure λn, which will be
obtained as the solution (u∗, λn

∗), such that

∀u ∈ V, λn ≤ 0 : L(u∗, λn) ≤ L(u∗, λn
∗) ≤ L(u∗, λn)

which can be shortly formulated as a so-called min-max problem or saddle
point problem

min
u∈V

max
λn≤0
L(u, λn).

4.6.2 Frictional case

In case of frictional contact, a complementary condition on tangential sliding
in case of stick is

ġt(u) = 0, if ‖σt‖ ≤ µ|σn|, on Γc
1• (4.85)
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4.6 Method of Lagrange multipliers

if by analogy with frictionless contact we replace the tangential stress σt by a
Lagrange multiplier vectorλt defined on the contact surface, the stick condition
can be rewritten in new terms as

ġt(u) = 0, if ‖λt‖ ≤ µ|λn|, on Γc
1• (4.86)

It is worth mentioning that the vector λt lies in the tangential plane
∂ρ

∂ξ∼
and λnn

is orthogonal to this plane. So if the Lagrange multipliers λn,λt are added as
degrees of freedom of the problem, contrary to the ordinary degrees of freedom
determined in the global reference frame, they always correspond to the local
frame and consequently are invariant to any global rotations. The Lagrangian
with the stick term is

L(u, λn,λt) = Π(u) +
∫

Γc
1•

λng(u) + λt · ġt(u) dΓc
1

and the corresponding equilibrium of virtual works δL(u, λn,λt) gives

δL(u, λn,λt) = δΠ(u) +
∫

Γc
1•

g(u)δλn + λnδg(u) + ġt(u) · δλt + λt · δġt(u) dΓc
1

A more straightforward formulation of this functional can be obtained if
instead of ġt(u) = 0 it is explicitly required that the surface coordinate ξ̇∼ = 0,
then

δL(u, λn,λt) = δΠ(u) +
∫

Γc
1•

g(u)δλn + λnδg(u) + ξ̇∼
T
δλ∼ t + λ∼ t

T
δ ξ̇∼ dΓc

1,

where λ∼ t
T
= λt ·

∂ρ

∂ξ∼

T

or λt = λ∼ t
T ∂ρ

∂ξ∼
. Consequently the stick criterion can be

rewritten in new notations

√
λt · λt < µ|λn| ⇔

√
λ∼ t

T A≈ λ∼ t < µ|λn|

As noted in [Wriggers 06], in stick state there is no need to distinguish tangential
and normal directions so that the two constraints g = 0 and ġt = 0 can be
replaced by one

g(u) = r − ρ(X•) = 0,

where X• denotes the material point at which r and ρ stick together, the
associated spatial Lagrange multiplier vector – {λ} – represents the contact
stress vector. The Lagrangian of the energy becomes

L(u,λ) = Π(u) +
∫

Γc
1

λ · g(u) dΓc
1
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The criterion of stick is ∥∥∥∥λ · ( I
=
− n ⊗ n )

∥∥∥∥ < µ|λ · n|,

where n is the unit normal vector on the master surface. Finally, the variation
on the Lagrangian takes the following form

δL(u, λn,λt) = δΠ(u) +
∫

Γc
1•

g(u) · δλ + λ · δg(u) dΓc
1, (4.87)

In case of slip, for Coulomb’s friction law, the tangential stress is fully
determined by the contact pressure and the sliding direction, that is why there
is no more geometrical constraint on the tangential slip and so we do not need
the Lagrange multiplier λt which can be expressed through the λn:

σt = µ|σn| s ⇔ σt = µ|λn|
ξ̇∼

T

| ξ̇∼
T Ā≈ ξ̇∼ |

∂ρ

∂ξ∼
= µ|λn| s∼

T
∂ρ

∂ξ∼

and the virtual work balance takes the form

δL(u, λn,λt) = δΠ(u) +
∫

Γc
1∗

g(u)δλn + λnδg(u) + µ|λn| s∼
Tδ ξ̇∼ dΓc

1,

Finally, for the active contact zone (union of non-intersecting stick and slip
zones Γc

1 = Γc
1• ∪ Γc

1∗) the variational formulation becomes

δL(u, λn,λt) = δΠ(u)+
∫

Γc
1∗

g(u)δλn + λnδg(u) + µ|λn| s∼
Tδ ξ̇∼ dΓc

1+

+

∫

Γc
1•

g(u)δλn + λnδg(u) + ξ̇∼
T
δλ∼ t + λ∼ t

T
δ ξ̇∼ dΓc

1,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
λn ≤ 0 on Γ1

c .

(4.88)
or if one uses (4.87)

δL(u, λn,λt) = δΠ(u)+
∫

Γc
1∗

g(u)δλn + λnδg(u) + µ|λn| s∼
Tδ ξ̇∼ dΓc

1+

+

∫

Γc
1•

g(u) · δλ + λ · δg(u) dΓc
1

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
λn ≤ 0 on Γ1

c .

(4.89)

As one can see, one constraint, λn ≤ 0 is still remaining. To get rid of this
constraint, λn is often replaced by

λn → λn − dist(λn,R
0
−) = −〈−λn〉 =


0, λn > 0

λn, λn ≤ 0
,
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where 〈•〉 are the Macaulay brackets and dist(λn,R0
−) means the distance from

λn to the negative half-line, i.e.

dist(λn,R
0
−) =


λn, λn < R

0
−

0, λn ∈ R0
−

4.6.3 Example

Let us consider the same example as in the penalty method. The energy
functional and the contact constraint are given by

F(x) =
1
2

(2)(x + 1)2, g(x) = x ≥ 0,

expressed in displacement u = x + 1 it writes as

F(u) = u2, g(u) = u − 1 ≥ 0,

The corresponding Lagrangian has the following form

L(u, λ) = u2 + λ(u − 1), λ ≤ 0

or using Macaulay brackets

L(x, λ) = u2 − 〈−λ〉(u − 1).

The contours of this Lagrangian are represented in Figure 4.14. The saddle
point is easy to locate u = 1, λ = −4. The right plot in the figure allows to
demonstrate visually the lack of smoothness on the line λ = 0 (marked with a
black dashed line), which separates contact and non-contact zones.

Figure 4.14: Lagrangian L(u, λ) and several isolines, the saddle point is easy
to detect u = 1, λ = −2; on the black dashed line the Lagrangian lacks of
smoothness by λ.

The variation of the Lagrangian writes

δL(u, λ) =
[
2u + λ
u − 1

]T [
δu
δλ

]
= 0, λ ≤ 0
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As δu and δλ are arbitrary, for the solution we require that
{

2u + λ = 0

u − 1 = 0
⇔

[
2 1
1 0

] [
x
λ

]
+

[
0
−1

]
= 0

the solution of the last equation is [u λ]T = [1 − 2]T. Since λ is negative,
x = 1 is the solution, otherwise the second equation has to be excluded from
consideration and we simply get equality 2u = 0.

Let us demonstrate how a numerical solution for the nonlinear problem
with a Newton-Raphson’s method can be obtained: as in the analysis of the
nonlinear penalty method, we suppose that the spring is nonlinear with an
energy functional F(u) = 1

4 u4, where u = x+1, the contact constraint is u−1 ≥ 0.
The Lagrangian takes the form

L(u, λ) =
1
4

u4 + λ(u − 1), λ ≤ 0

or

L(u, λ) =
1
4

u4 − 〈−λ〉(u − 1)

its variation gives

δL(u, λ) =
[
u3 + λ
u − 1

]T [
δu
δλ

]
= 0 (4.90)

This system of equations is nonlinear, so we choose the starting point [u0, λ0]
and we resort to the help of Newton’s method. So we need to linearize
the equation (4.90) for a known iteration [ui, λi] to complete the increments
[∆ui, ∆λi]

δL(ui+1, λi+1) = δL(ui, λi) +
[
∆δL(u, λ)

]

ui,λi

[
∆ui

∆λi

]
= 0, (4.91)

where

δL(ui, λi) =
[
u3

i
+ λi

ui − 1

]

[
∆δL(u, λ)

]

ui,λi

=




∂2L(u,λ)
∂u2

∂2L(u,λ)
∂u∂λ

∂2L(u,λ)
∂λ∂u

∂2L(u,λ)
∂λ2




∣∣∣∣∣∣∣∣∣
ui,λi

=

[
3u2

i
1

1 0

]
,

Finally, from (4.91) the expression for the increments is
[
∆ui

∆λi

]
= −

[
3u2

i
1

1 0

]−1 [
u3

i
+ λi

ui − 1

]
,

[
ui+1
λi+1

]
=

[
ui

λi

]
+

[
∆ui

∆λi

]
(4.92)

For any initial conditions [u0, λ0] this procedure converges to the exact solution
in 3 iterations. However, we should not forget about the restriction λ ≤ 0,
related to the geometrical constraint g ≥ 0. There are several possibilities
to fulfill these conditions: note that one of them is of limited use (marked
with a star *). Advantages and drawbacks will be discussed below and some
examples will be given. The aim is to determine if the constraint is active or
not, so we will call these approaches - local active set strategies. Below three
of them are presented:

179



4.6 Method of Lagrange multipliers

1. If on certain iterations the geometrical constraint is inactive g(ui) > 0,
then the constraint is excluded and the reduced system (4.93) will be
solved. If on the k-th iteration g(uk) ≤ 0, then we turn back to the full
system (4.92) and solve it for starting from the initial guess [uk, 0].

2*. If during iterations a positive Lagrange multiplier occurs λi+1 > 0, then a
reduced system of equation will be solved

∆ui+1 = −
u3

i+1

3u2
i+1

, ui+2 = ui+1 + ∆ui+1, λi+2 = 0, (4.93)

else the full system (4.92) is solved.

3. Both approaches can be combined: on the first iteration, we solve the full
system (4.92). On the following iterations, if λi > 0 or g(ui) > 0, we solve
the reduced system (4.93), else we return to the full system (4.92).

The first active set strategy, based on the check of the violation of the
geometrical constraints g ≥ 0, is frequently used due to its robustness. It
provides the correct solution, however sometimes it can take more iterations
to converge. The second strategy is based on the check of the positivity of
the Lagrange multiplier, sometimes it leads to a constant switch between two
systems (4.92) and (4.93), i.e. between two functionals

L(u, λ) ↔ F(u)

which results in infinite oscillations if we fastly change the geometrical
constraint so that the solution of the problem switches from constrained
to unconstrained state. So this active set strategy (2*) should be avoided.
Anticipating things, we remark that when the solution of the problem remains
constrained on the following step, the second strategy converges to the correct
solution faster than the first one. That was the motivation for developing the
third strategy – which is based on both constraints. It converges fast towards
the correct solution in all considered cases. However, since on the first iteration
the material point follows the contact constraint, a fast remove of contact may
create a situation when the initial point for Newton’s iterations is too far from
equilibrium, so it may cause convergence problems. Finally, we conclude that
the first strategy is robust and conditionless, but it is not always fast. The
second strategy is of limited use. The third one is fast and robust, but its
convergence rate strongly depends on the loading of the problem. Remark
that when two initially separated points come and stay in contact, the three
strategies are equivalent. However, in case of unloading they behave quite
differently. Each strategy is characterized by its piecewise smooth functional,
where u denotes the displacement from the reference state of the spring. Each
functional is presented graphically in Fig. 4.15-4.17. A thick black dashed line
separates domains of different functionals (Lagrangian in contact and original
functional in non-contact domains).

It is worth mentioning that in implicit finite element codes, it is expensive
to remove or add degrees of freedom during iterations, so the equation due
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to the Lagrange multiplier is not eliminated, as it was done in (4.93), but the
stiffness matrix and the residual vector of the problem are to be changed:

[K] :
[
3u2

i
1

1 0

]
→

[
3u2

i
0

0 1

]
, [R] :

[
u3

i
+ λi

ui − 1

]
→

[
u3

i
0

]

Two functionals F(u) and L(u, λ) for different active set strategies occupy
different domains:
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1. Active set strategy 1 (Fig. 4.15):

g(u) > 0 : F(u) g(u) ≤ 0 : L(u, λ)

2*. Active set strategy 2 (Fig. 4.16):

λ > 0 : F(u) λ ≤ 0 : L(u, λ)

3. Active set strategy 3 (Fig. 4.17):

g(u) > 0 and λ > 0 : F(u) g(u) ≤ 0 or λ ≤ 0 : L(u, λ)

Figure 4.15: Energy functional for the active set strategy 1.

Figure 4.16: Energy functional for the active set strategy 2.

To demonstrate these three strategies let us consider the same configuration
of a mass on a nonlinear spring, but for the start point we choose the previously
archived solution [u = 1, λ = −1] – stressed spring due to the presence of the
wall at x = 0. The displacement u will be related to this configuration, so u = x.
We remind that the spring is free of stresses if the coordinate of the mass is
x = −1. Two cases are considered:
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Figure 4.17: Energy functional for the active set strategy 3.

• case I – the rigid wall is moved from position x = 0 to x = −0.9, see
Table 4.9 and Fig. 4.18;

• case II – the rigid wall is moved from position x = 0 to x = −1.1, see
Table 4.10 and Fig. 4.18.

As the tangent matrix is zero on the solution point, the convergence rate of
the Newton-Raphson method is only linear. The solution due to the second
active set strategy in case of full unloading (case II) oscillates, and finally after
iteration 20, one gets an infinite loop between [−1.05, 0.00] and [−1.075, 4e−4].
The third strategy converges in all cases faster than others, however, as it has
been mentioned the number of iterations in this case strongly depends on how
far the constraint has been moved. Roughly speaking, the difference between
the first and third strategies depends on the concrete situation, namely, on how
the solution is closer to the final state with enforced contact or to the reference
state with contact.

Table 4.9: Case I. Comparison of different active set strategies (ASS) in case of
partial unloading, exact solution u∗ = −0.9, λ∗ = −1e − 3 (converged iteration
put in bold).

Strategy ASS 1 Strategy ASS 2 Strategy ASS 3

Iter, i ui λi ui λi ui λi

1 -0.333 0.0 -0.900 1.70 -0.900 1.70
2 -0.556 0.0 -0.933 0.0 -0.933 0.0
3 -0.704 0.0 -0.933 -1.70 -0.933 -1.70
4 -0.802 0.0 -0.900 -7.4e-4 -0.900 -7.4e-4
5 -0.868 0.0 -0.900 -1.0e-3 -0.900 -1.0e-3
6 -0.912 0.0 -0.900 -1.0e-3 -0.900 -1.0e-3

7 -1.800 1.70 - - - -
8 -0.900 -1.30 - - - -
9 -0.900 -1.0e-3 - - - -
10 -0.900 -1.0e-3 - - - -
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Table 4.10: Case II. Comparison of different active set strategies (ASS) in case
of full unloading, exact solution u∗ = −1.0, λ∗ = 0.0.

Strategy ASS 1 Strategy ASS 2 Strategy ASS 3

Iter, i ui λi ui λi ui λi

1 -0.333 0.0 -1.100 2.30 -1.100 2.3
2 -0.556 0.0 -1.067 0.0 -1.067 0.0
3 -0.704 0.0 -1.067 -2.30 -1.044 0.0
4 -0.803 0.0 -1.100 7.4e-4 -1.030 0.0
5 -0.868 0.0 -1.067 0.0 -1.020 0.0
6 -0.912 0.0 -1.067 2.6e-4 -1.013 0.0
7 -0.941 0.0 -1.044 0.0 -1.009 0.0
8 -0.961 0.0 -1.078 4.8e-4 -1.008 0.0
9 -0.974 0.0 -1.051 0.0 -1.004 0.0
10 -0.983 0.0 -1.074 3.9e-4 -1.002 0.0

Figure 4.18: Sequence of iterations for different cases (case I – partial unloading,
case II – full unloading) and different active set strategies: on the left – iteration
sequence is plotted on the real functional field on the right on the Lagrangian
field.
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4.7 Augmented Lagrangian Method

4.7.1 Introduction

Another approach for the problem of minimization under constraints has
been proposed in 1969 independently by Hestenes [Hestenes 69] and by
Powell [Powell 69]. Originally, the method got the name ”the multiplier
method of Hestenes and Powell“ or ”method of multipliers“. This method
consists in a special combination of the penalty and Lagrange multiplier
methods, it converges to the solution for finite ”penalty“ coefficient and
provides an unconstrained minimization problem with a smooth functional,
which is a great advantage from a numerical point of view.

Let us shortly outline the idea. Let F(x) be the functional to minimize under
constraint g(x) = 0, in case of use of penalty or Lagrange multiplier methods
the functional to minimize (or maxi-minimize) changes respectively as

Fp(x) = F(x) +
1
2
εg(x)2; L(x, λ) = F(x) + λg(x)

For a given λ = λi, the Lagrangian can be considered as a function of one
argument x

L(x, λi) = F(x) + λig(x)

The application of the penalty method to this functional leads to

La(x, λi) = L(x, λi) +
1
2
εg(x)2 = F(x) + λig(x) +

1
2
εg(x)2

If [x∗, λ∗]T is a solution of minx maxλL(x, λ), then it can be shown that it is also
the solution of the minx maxλLa(x, λ). The original formulation was strictly
iterative and supposed an independent update ofλi at each iteration. In contact
mechanics this approach is also known as Uzawa’s algorithm [Arrow 58a]
(named after Hirofumi Uzawa, Japanese economist). Let [xi, λi]T be the result of
the current iteration, then the linearization procedure of the Newton’s method
provides us with the following expression for the solution increment

La(xi + ∆xi, λi) ≈ La(xi, λi) +
∂La(x, λi)

∂x

∣∣∣∣∣
xi

∆xi = 0

[
F(xi) + λig(xi) +

1
2
εg(xi)2

]
+

[
∂F(x)
∂x
+ [λi + εg(x) ]

∂g(x)
∂x

]∣∣∣∣∣∣
xi

∆xi = 0
(4.94)

So according to the last equality we evaluate the increment ∆xi, further we
need to update λ. Hestenes draws our attention to the boxed term in (4.94),
which suggests the updating procedure

λi+1 = λi + εig(xi), ∆λi = εig(xi),

where 0 < εi ≤ ε, which implies that if g(xi) < 0 then the Lagrange multiplier
λ should be decreased: as λ can be considered as a force, so it will push xi

closer to the solution and vice versa: if g(xi) > 0, the Lagrange multiplier
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should be increased to pull xi to the solution. If g(xi) gradually tends to zero,
λi converges to the solution λ∗. Also, the authors propose to choose εi = γε,
where γ is positive and smaller than 1, or to choose εi in order to approach the
constraint from one side (a kind of monotonic convergence)

g(xi)g(xi+1) > 0

In all cases, the rate of convergence of this method, where primal x and
dual λ variables are updated independently, is linear [Powell 69]. Further
this method has been generalized in 1973 by Rockafellar [Rockafellar 73b],
[Rockafellar 73a] for inequality constraints, the author formulated a new
unconstrained functional for the minimization of F(x) subjected to the
constraint g(x) ≥ 02:

La(x, λi) = F(x) − 1
2ε

(
λ2

i − 〈−(λi + εg(x) )〉2
)

(4.95)

In an expanded form, it rewrites as

La(x, λi) =


F(x) + λig(x) + 1

2εg(x)2, λi + εg(x) ≤ 0

F(x) − 1
2ελ

2
i
, λi + εg(x) > 0

(4.96)

Note that the Lagrange multiplier λ is not restricted to be nonpositive as in
case of optimization under inequality constraints by the Lagrange multiplier
method.

The variation of (4.95) with respect to x results in the following condition

δLa(x, λi) = δF(x) − 〈−(λi + εg(xi) )〉
∂g(x)
∂x

δx = 0 (4.97)

from where, Rockafellar deduced

λi+1 = −〈−(λi + εg(xi) )〉 ≤ 0

or

λi+1 = λi + ε
∂La(x, λ)
∂λ

= λi − ε
1
ε

(λi + 〈−(λi + εg(x) )〉)

in an extended form

λi+1 =


λi + εg(x), λi + εg(x) ≤ 0

0, λi + εg(x) > 0

Another possible interpretation of the update procedure can be derived if one
reasonably assumes that the Lagrangian multiplier should be a ”force“ due to
a change of the potential La(x, λ) related to the change of the constraint g(x),
so we get directly the expression for the update procedure

λi+1 =
La(x, λ)

g(x)
= −1

ε
〈−(λi + εg(x) )〉ε =


λi + εg(x), λi + εg(x) ≤ 0

0, λi + εg(x) > 0

2in the following paragraph we follow Rockafellar [Rockafellar 73b], except for the sign of
the constraint, to make the formulation adapted for contact problems within the previously
introduced notations.
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However, the linear instead of quadratic convergence rate is a quite high
price to pay for the unconstrained minimization even if a non-infinite penalty
coefficient leads to the exact solution and even if no additional unknowns3 are
introduced in the global convergence cycle. The advantage of the method is
that the functional La(x, .) is smooth so that a standard Newton’s technique
is applicable. Moreover there is no need to control the non-positivity of the
Lagrange multipliers.

In 1970 Fletcher [Fletcher 70] has developed a technique where both
variables are adjusted simultaneously. It follows quite naturally from previous
developments. Instead of the functional La(x, λi) where λi is fixed, the author
proposed to consider a full functional where both primal x and dual variables λ
are equivalent, La(x, λ). Then we obtain the min-max problem, where solution
[x∗, λ∗] minimizes the functional by x and maximizes by λ.

min
x

max
λ
La(x, λ)

In case of lack of a strictly convex functional F(x) we reformulate the problem
as a variational problem

δLa(x, λ) =
∂La

∂x
δx +

∂La

∂λ
δλ = 0, (4.98)

The associated numerical iterative scheme can then be easily deduced, but
another problem is generated: the new functional La(x, λ) is not sufficiently
smooth and so a generalization of the iterative scheme, often Newton’s
method, is required, which would ensure the convergence. A generalized
Newton method (GNM) has been proposed by Alart and Curnier for
nonsmooth potential present in contact mechanics (first for the penalty method
[Curnier 88], then for the augmented Lagrangian method [Alart 88],[Alart 91].
Some generalizations can be found in [Alart 97]).

An application of the augmented Lagrangian method to frictionless contact
problems can be found in Glowinski and Le Tallec [Glowinski 89] and also in
a report of Wriggers, Simo and Taylor [Middleton 85]. The first application
of the augmented Lagrangian method with Uzawa algorithm to frictional
problems has been reported by Simo and Laursen in [Simo 92]. The first
successful attempt to apply the coupled augmented Lagrangian method
to large displacement frictional contact problems has been undertaken by
Alart [Alart 88], Alart and Curnier [Alart 91]. The augmented Lagrangian
approach has been elaborated by developing the perturbation approach to
convex minimization as proposed in [Rockafellar 70] and first applied by
Fortin [Fortin 76] to visco-plastic flow problems (similar to frictional contact
problems). Further developments can be found in [Heegaard 93], [Pietrzak 97],
[Pietrzak 99]. For the following developments of the augmented Lagrangian
method for nonlinear constraints the reader is referred, for example, to Powell’s
survey paper [Powell 78] and for an extended theory of optimization, to the
related books [Luenberger 03], [Bertsekas 03], [Bonnans 06].

3additional unknowns are nested in local update procedure.
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To conclude the introductory part of this section I would like to cite Dimitri
Bertsekas’ statement on the augmented Lagrangian method

”The original proposal of an Augmented Lagrangian method by
Hestenes (1969) and Powell (1969) may be viewed as a significant
milestone in the recent history of the constrained optimization area.
Augmented Lagrangian methods are not only practically important
in their own right, but have also served as the starting point for a
chain of research developments centering around the use of penalty
functions, Lagrange multiplier iterations, and Newton’s method for
solving the system of necessary optimality conditions.“

Dimitri P. Bertsekas [Bertsekas 81]

4.7.2 Application to contact problems

Contact conditions in subdifferential formalism

A very detailed description of the application of the augmented Lagrangian
method has been given in the PhD thesis of Pietrzak [Pietrzak 97] and
in the related article [Pietrzak 99]. All developments are based on the
formalism applied in contributions of Alart and Curnier [Alart 91] and
Heegaard and Curnier [Heegaard 93], which in turn followed Moreau’s works
on convex analysis, the references can be found in the cited articles. Following
the cited authors, we introduce first an indicator function: indicator function
of the positive half line x ≥ 0

ψ+(x) : ∀x ∈ R→ ψ+(x) ∈ R+0 ∪∞

ψ+(x) =


∞, x < 0

0, x ≥ 0

Following [Heegaard 93], a simple interpretation of the indicator function can
be given using a piecewise linear function ψ̃+(x, r), r ≥ 0

ψ̃+(x, r) =


−rx, x < 0

0, x ≥ 0

Then the indicator function is a limit of the function ψ̃+(x, r) if r tends to infinity

ψ̃+(x, r)
r→∞−−−−→≈ ψ+(x)

The functionsψ+(x) and ψ̃+(x, r) are nondifferentiable in x = 0, however the last
one has left and right sided derivatives. Now we can give a short formulation
of the subdifferential of a function. For a simple locally convex function f (x) :
R→ R the subdifferential in the point x∗ is a set of all real numbers contained
between left- and right-sided derivatives. This set is denoted as ∂ f (x∗). If
the function is concave in a vicinity of the point x∗ then the subdifferential is
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confined between right- and left-sided derivatives. The subdifferential of the
function ψ+(0) is such that

∂ψ+(0) = (−∞, 0] ∼ ∂ψ+(0) =
dψ̃+(x, r)

dx

∣∣∣∣∣∣
x=0−

,∀0 ≤ r < ∞

Any element of the subdifferential is called the subgradient

s ∈ ∂ψ+(0)

If at a given point there is only one subgradient, then the function is at least
once differentiable at this point.

∂ψ+(x) =



∅, x < 0

(−∞, 0], x = 0

0, x > 0

A slightly extended discussion of subdifferentials and subgradients in the
framework of nonsmooth optimization will be given in the following chapter,
see Section 5.1.4, where some useful references are also given.

The Hertz-Signorini-Moreau condition for normal contact can be rewritten
as a so-called subdifferential inclusion

σn ∈ ∂ψ+(gn)

It means that for a positive argument gn > 0, the contact pressure can take
only a zero value, and for gn = 0, it can take any negative value. Indeed,
contact pressure is nonpositive, for negative normal gap the subdifferential is
undefined, so the normal gap is nonnegative and the complementary condition
is also fulfilled

σn ∈ (−∞, 0], gn ∈ [0,∞), gnσn = 0

Introducing a conjugate indicator function – indicator of the negative half-line
x ≤ 0

ψ−(x) : ∀x ∈ R→ ψ−(x) ∈ R−0 ∪ {−∞}

ψ−(x) =


0, x ≤ 0

−∞, x > 0

allows to reformulate the normal contact conditions as another subdifferential
inclusion

gn ∈ ∂ψ−(σn)

Now let us introduce a disk C(R) of radius R centered at the origin

CR =
{

x
∣∣∣ ‖x‖ ≤ R

}

The corresponding scalar indicator function of the vector argument is given by

ψR(x) : T2
1 → R

+
0 ∪∞
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ψR(x) =


0, x ∈ CR

∞, x < CR

We can extend the interpretation given in [Heegaard 93] for a two dimensional
case

ψ̃R(x, r) =


0, x ∈ CR

r(‖x‖ − R), x < CR
, r ≥ 0

The subdifferential of the disk indicator function can be interpreted as

∂ψR(x′) =
dψ̃R(x, r)

dx

∣∣∣∣∣∣
x=x′+

,∀r ≥ 0 =


r

x
‖x‖ , x < CR \ ∂CR

0, x ∈ CR \ ∂CR

,∀r ≥ 0,

where ∂CR =
{

x
∣∣∣ ‖x‖ = R

}
is a closure of the disk CR. The conditions

arising from the Coulomb’s friction law can be reformulated as a subdifferential
inclusion

ġt ∈ ∂ψµ|σn|
(
σt

)
(4.99)

This formulation is equivalent to the classic Coulomb’s friction law. Indeed, if
the tangential contact stress is inside the Coulomb’s disk ‖σt‖ ∈ Cµ|σn| \ ∂Cµ|σn|,
there is no tangential sliding ġt = 0. The closure of the Coulomb’s disk ∂Cµ|σn| is
called the slip surface. When the tangential contact stress reaches the slip surface
of the disk, sliding occurs in the direction of the applied tangential stress and

the velocity of sliding takes any nonnegative value ġt = r
σt

‖σt‖ , ∀r ≥ 0.
The conjugate function or Legendre-Fenchel conjugate of the disk indicator

function ψµ|σn| is constructed as a norm function

ψ∗µ|σn|(ġt) = µ|σn|‖ġt‖

which designates a convex cone. Then the subdifferential of the conjugate
function is given as

∂ψ∗µ|σn|(ġt) =



µ|σn|
ġt

‖ġt‖ , ġt , 0;

σt, ġt = 0,

where ‖σt‖ ≤ µ|σn|. Finally using subdifferential notations we can express the
tangential contact stress vector as a subdifferential inclusion

σt ∈ ∂ψ∗µ|σn|

(
ġt

)

which corresponds to the classically formulated frictional conditions.
Finally for a frictional contact problem in the interface we have two possible

sets of subdifferential inclusions, for kinematic arguments

σn ∈ ∂ψ+(gn), σt ∈ ∂ψµ|σn|
(
ġt

)
, (4.100)
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and for static arguments

gn ∈ ∂ψ−(σn), ġt ∈ ∂ψ∗µ|σn|

(
σt

)
. (4.101)

Note that the convex disc Cµ|σn| is a function of the unknown contact pressure,
consequently Alart and Curnier [Alart 91] proposed to call the indicator
function ψµ|σn| and its conjugate ψ∗

µ|σn| quasi-potentials to “stress the dependence
of the convex set on the pressure”. Note also, that if the gap is open
gn > 0 ⇒ σn = 0 then the tangential contact stress is also zero σt = 0
and the subdifferential ∂ψµ|σn|(σt) degenerates in ∂ψ0(0) ∋ ∀x

∼
, which means

that tangential sliding is not restricted. In the incremental quasi-static analysis
the tangential relative sliding velocity is replaced by increments

ġt → gt
i+1 − gt

i = ∆gt
i = ġt(ti+1 − ti) ⇒ ġt = ∆gt / (ti+1 − ti)

As previously, the increment of the tangential relative sliding will be denoted
simply by gt and time will be omitted without any loss of generality

ġt → ∆gt / (ti+1 − ti) → gt

In the introduced framework of subdifferential inclusions the variational
problem can be formally formulated as follows

min
{
Πs(u) +Πc(u)

}
, (4.102)

where Πs(u) is a smooth potential energy of the system of contacting elastic
bodies or its incremental homologue in plasticity and

Πc(u) =
∫

Γc
1

[
ψ+(gn) + ψ∗µ|σn|( ġt)

]
dΓc

1 (4.103)

is a non-differentiable energy of the frictional contact interaction. However
such a formulation is non-applicable in the numerical treatment of contact
problems because of the non-differentiability. That is the principal motivation
for the augmented Lagrangian method, however the smoothing effect is not the
only advantage of the method. The augmented Lagrangian method converts
the constrained minimization problem into a fully unconstrained problem,
contrary to the Lagrange multiplier method which requires fulfillment of the
constraint related to the Lagrange multiplier λ ≤ 0.

The regularization of the quasi-potentials entering in the contact
functional (4.103) by the augmented Lagrangian method is presented in
detail in [Pietrzak 97] (Chapter 5). The reader is referred to this volume
for the detailed transformation of the quasi-potentials into smooth potentials
– augmented Lagrangians ln and lt related to normal and frictional contact
respectively:

ψ+(gn) → ln(gn, λn, {εn}), ψ∗µ|σn|(ġt) → lt(ġt,λt, σn + εngn, {εt}),
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whereλn and λt are Lagrange multipliers representing the contact pressure and
the tangential contact stress vector respectively, εn and εt are regularization or
penalty coefficients for normal and tangential contact respectively and σn is the
contact pressure at solution u∗. Penalty coefficients are supposed to be constant.
They are not considered as arguments of the augmented Lagrangians, so they
are written in braces and further will be omitted. At solution it also holds

σn = σn + εngn(u∗).

The augmented Lagrangian functional is constructed from (4.102) and the
regularized form of (4.103):

La(u, λn,λt, σn+εngn, {εn, εt}) = Πs(u)+
∫

Γ1
c

ln(gn, λn, {εn})+lt(gt,λt, σn+εngn, {εt}) dΓ1
c ,

The closed forms for ln and lt are given in the following paragraph.

Formulation of the virtual work principle

Here we give a formulation of the augmented Lagrangian functionals ln
and lt which can be directly inserted as integrand in the weak form. The
regularized integrand due to the nonpenetration-nonadhesion condition for
the geometrical constraint gn ≥ 0, Lagrange multiplier λn (representing contact
pressure) and penalty parameter εn is written as

ln(gn, λn) =


λngn +

εn

2 g2
n, λn + εngn ≤ 0, contact

− 1
2εn
λn

2, λn + εngn > 0, non-contact

using Macaulay brackets a more compact form is given as

ln(gn, λn) = − 1
2εn

(
λn

2 − 〈−(λn + εngn )〉2
)

If following [Pietrzak 97] the augmented Lagrange multiplier is denoted by a
hat

λ̂n = λn + εngn

then the formulation can be shorten as

ln(gn, λn) = − 1
2εn

(
λn

2 − 〈−λ̂n〉
2
)
. (4.104)

The expanded form with hat notations takes the following form

ln(gn, λn) =


gnλ̂n − εn

2 g2
n, λ̂n ≤ 0, contact

− 1
2εn
λn

2, λ̂n > 0, non-contact
(4.105)

The regularized integrand due to Coulomb’s friction law for the incremental
tangential relative displacement gt, the corresponding Lagrange multiplier λt
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(representing tangential contact stress vector) and the penalty parameter εt is
written as

lt(gt,λt, σ̂n) =





λt · gt +
εt

2 gt · gt, ‖λt + εtgt‖ ≤ −µσ̂n stick

− 1
2εt

(
λt · λt + 2µσ̂n

∥∥∥∥λt + εtgt

∥∥∥∥ + µ2σ̂2
n

)
, ‖λt + εtgt‖ > −µσ̂n, slip

, σ̂n ≤ 0

− 1
2εt
λt · λt, σ̂n > 0

,

where σ̂n is a regularized contact pressure at solution

σ̂n = σn + εngn

Note that the tangential regularized functional lt is extended to the non-contact
domain σ̂n > 0. Making use of Macaulay brackets provides a shorter form of
the regularized functional lt

lt(gt,λt, σ̂n) = − 1
2εt

(
λt · λt − ‖λt + εtgt‖2 + 〈−(‖λt + εtgt‖ − µ〈−σ̂n〉)〉2

)

And finally, introducing the hat notations for the augmented Lagrange
multiplier

λ̂t = λt + εtgt

results in an even shorter form

lt(gt,λt, σ̂n) = − 1
2εt

(
λt · λt − ‖λ̂t‖

2
+ 〈‖λ̂t‖ − µ〈−σ̂n〉〉

2
)

(4.106)

The expanded form is given by

lt(gt,λt, σ̂n) =




λ̂t · gt − εt

2 gt · gt, ‖λ̂t‖ ≤ −µσ̂n stick

− 1
2εt

(
λt · λt + 2µσ̂n‖λ̂t‖ + µ2σ̂2

n

)
, ‖λ̂t‖ > −µσ̂n, slip

, σ̂n ≤ 0

− 1
2εt
λt · λt, σ̂n > 0

,

(4.107)
The integration of expressions (4.104) and (4.106) over the master surface leads
to the following contribution of the contact conditions to the energy of the
system

Wc =

∫

Γ1
c

ln(gn, λn) + lt(gt,λt, σ̂n) dΓc
1 =

=

∫

Γ1
c

− 1
2εn

(
λn

2 − 〈−λ̂n〉
2
)
− 1

2εt

(
λt · λt − ‖λ̂t‖

2
+ 〈‖λ̂t‖ − µ〈−σ̂n〉〉

2
)

dΓc
1

(4.108)

For frictionless contact, the augmented functional lt should be omitted.
Variation of the integral Wc leads to

δWc =

∫

Γ1
c

δln(gn, λn)+δlt(gt,λt, σ̂n) dΓc
1 =

∫

Γ1
c

∂ln
∂gn

δgn+
∂ln
∂λn

δλn+
∂lt
∂gt
·δgt+

∂lt
∂λt
·δλt dΓc

1

(4.109)
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Note that the contact pressure σ̂n is not subjected to the variation even if it
contains the geometrical quantity σ̂n = σn + εngn. This is due to the fact that
the contact pressure is assumed to be the known contact pressure at solution,
so its variation is zero. Since there are three possible contact statuses (stick,
slip and non-contact), it is convenient to split the contact zone into three non-
intersecting zones

Γ1
c = Γ

1
c
∗ ∪ Γ1

c
• ∪ Γ1

c \ Γc
1,

where Γ1
c
∗ is a slip zone, Γ1

c
• is a stick zone, Γc

1 is an active contact zone and
consequently Γ1

c \ Γc
1 is a non-contact zone.

To simplify the further derivations, four simple derivatives are given here

∂λ̂n

∂gn
= εn,

∂λ̂n

∂λn
= 1,

∂λ̂t

∂gt
= εtI=

,
∂λ̂t

∂λt
= I
=

Here and further it is more convenient to write all the derivatives in a classical
way using (4.105) and (4.107), instead of short expressions with Macaulay
brackets (4.104) and (4.106).

∂ln(gn, λn)
∂gn

=


λ̂n, λ̂n ≤ 0, contact

0, λ̂n > 0, non-contact
(4.110)

∂ln(gn, λn)
∂λn

=


gn, λ̂n ≤ 0, contact

− 1
εn
λn, λ̂n > 0, non-contact

(4.111)

∂lt(gt,λt)

∂gt
=





λ̂t, ‖λ̂t‖ ≤ −µσ̂n stick

−µσ̂n
λ̂t

‖λ̂t‖
, ‖λ̂t‖ > −µσ̂n, slip

, σ̂n ≤ 0

0, σ̂n > 0

(4.112)

∂lt(gt,λt)

∂λt
=





gt, ‖λ̂t‖ ≤ −µσ̂n stick

− 1
εt

(
λt + µσ̂n

λ̂t

‖λ̂t‖

)
, ‖λ̂t‖ > −µσ̂n, slip

, σ̂n ≤ 0

− 1
εt
λt, σ̂n > 0

, (4.113)

After grouping all the derivatives (4.110)-(4.113), the contact contribution to
the virtual work (4.109) takes the following form in case of frictional contact

δWc =



∫

Γ1
c
•
λ̂nδgn + gnδλn + λ̂t · δgt + gt · δλt dΓ1

c , ‖λ̂t‖ ≤ −µσ̂n stick

∫

Γ1
c
∗
λ̂nδgn + gnδλn − µσ̂n

λ̂t

‖λ̂t‖
· δgt − 1

εt

(
λt + µσ̂n

λ̂t

‖λ̂t‖

)
· δλt dΓ1

c , ‖λ̂t‖ > −µσ̂n slip

∫

Γ1
c\Γc

1

− 1
εn
λnδλn − 1

εt
λt · δλt dΓ1

c , σ̂n > 0 non-contact

(4.114)
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and a much simpler one in case of frictionless contact

δWc =



∫

Γc
1

λ̂nδgn + gnδλn dΓc
1, σ̂n ≤ 0 contact

∫

Γ1
c\Γc

1

− 1
εn
λnδλn dΓc

1, σ̂n > 0 non-contact
(4.115)

After incorporating the contact integral into the equation of the virtual work
balance, the following expression is obtained for the frictional contact

δLa(u, λn,λt, σ̂n) =
∫

Ω

σ
=
·· δ∇u dΩ −

∫

Γ f

σ0 · δu dΓ −
∫

Ω

f v · δu dΩ+

+

∫

Γ1
c
•

λ̂nδgn + gnδλn + λ̂t · δgt + gt · δλt dΓ1
c+

+

∫

Γ1
c
∗

λ̂nδgn + gnδλn − µσ̂n

λ̂t

‖λ̂t‖
· δgt −

1
εt


λt + µσ̂n

λ̂t

‖λ̂t‖


 · δλt dΓ1

c+

+

∫

Γ1
c\Γc

1

− 1
εn
λnδλn −

1
εt
λt · δλt dΓ1

c = 0,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

(4.116)
and for frictionless contact

δLa(u, λn,λt, σ̂n) =
∫

Ω

σ
=
·· δ∇u dΩ −

∫

Γ f

σ0 · δu dΓ −
∫

Ω

f v · δu dΩ+

+

∫

Γc
1

λ̂nδgn + gnδλn dΓ1
c +

∫

Γ1
c\Γc

1

− 1
εn
λnδλn dΓ1

c = 0,

V =
{
δu ∈H1(Ω)

∣∣∣ δu = 0 on Γu

}
,

(4.117)

4.7.3 Example

Let us illustrate how the augmented Lagrangian work in the simple case of
one primal unknown. For this purpose we return to the example considered
in the previous sections (Fig. 4.12): a mass (point) on a spring subjected to a
constraint due to the contact with a rigid wall g(u) = u − 1 ≥ 0. The spring
is considered to be nonlinear with a potential F(u) = 1

2 cu4, as previously. In
the following computations, we put c = 1/2, but we will keep this constant in
derivatives to make the example more meaningful from the numerical point of
view. The augmented Lagrangian takes the form

La(u, λn) =


1
2 cu4 + λn(u − 1) + 1

2εn(u − 1)2, λn + εn(u − 1) ≤ 0
1
2 cu4 − 1

2εn
λ2

n, λn + εn(u − 1) > 0
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4.7 Augmented Lagrangian Method

The graphical representation of the functional La in the neighborhood of the
solution point [1;−1] for different penalties εn = 0.5; 1; 5; 10 can be found in
Fig. 4.19; visually it is obvious that the functional is rather smooth: isolines
cross smoothly the line (white thick dashed line) dividing contact and non-
contact zones λn + εn(u − 1) = 0, this line is almost undetectable. The solution
corresponds to the saddle point which retains its position independently on
the penalty parameter, but higher stiffness leads to higher concentration of
isolines in the direction of the primal variable x. It is also interesting to visualize
gradients (Fig. 4.20) of the augmented Lagrangian∇xLa(x, λn) and∇λnLa(x, λn),
which loose the smoothness across the contact–non-contact interfaceλn+εn(u−
1) = 0.
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Figure 4.19: Augmented Lagrangian for a nonlinear spring compressed by a
rigid wall, plotted for different penalty parameters: εn = 0.5; 1; 5; 10.
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4.7 Augmented Lagrangian Method

Figure 4.20: Gradients ∇xLa(x, λn) and ∇λnLa(x, λn) of the Augmented
Lagrangian for a nonlinear spring compressed by a rigid wall are plotted for
different penalty parameters: εn = 0.5; 5.

The variation of the augmented Lagrangian is, for the considered case

δLa(u, λn) =





2cu3 + λn + εn(u − 1)

u − 1




T 

δu

δλn


 = 0, λn + εn(u − 1) ≤ 0




2cu3

− 1
εn
λn




T 

δu

δλn


 = 0, λn + εn(u − 1) > 0

(4.118)

and the second variation needed for the linearization of (4.118) is as follows

∆δLa(u, λn) =





δu

δλn




T 

6cu2 + εn 1

1 0





δu

δλn


 , λn + εn(u − 1) ≤ 0



δu

δλn




T 

6cu2 0

0 − 1
εn





δu

δλn


 , λn + εn(u − 1) > 0

(4.119)

One can note that the first variation of La (4.119) (the balance of virtual
work), is continuous for any values of u and λ, but its derivative (4.119) is
not continuous. It motivates the usage of the generalized Newton’s method.
Note that for linear material the {11} component of the matrix in (4.119) has
a form similar to c + εn, however in the finite element method the size of
the finite element will be present. This observation leads to an appropriate
choice of the penalty parameter of the order of the stiffness (εn ∼ c). If the
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{11} component of the matrix in (4.119) has the form cφ(u) + εn ψ(u), which
is the case for nonlinear material and nonlinear constraints, and if u tends
to the solution u∗ in the way that function ψ(u∗) → 0, then it is reasonable
to increase the penalty coefficient during iterations in order to improve the
convergence of the augmented Lagrangian without danger of ill-conditioning
of the matrix. Different techniques for the penalty update have been proposed
(see, for example, [Bussetta 09]).

Let us demonstrate the convergence of the augmented Lagrangian method
on a simple example of loading and unloading of the spring-mass system
considered in the previous section. The convergence for different constant
penalty coefficients and for the updated technique are compared in Table 4.11.
In case of loading, the free spring deforms due to the contact with a rigid wall,
the Augmented Lagrangian method converges in 3 iterations (as Lagrange
multiplier method), i.e. at the second iteration the exact solution is obtained.
Let us consider the case when from the obtained loaded state x = 0, λ = −1,
we move the wall at xw = −0.9, so the spring remains compressed. The system
of equation respectively to the deformed state becomes



[R] =
[
2c(ui + 1)3 + λi

n + εn(ui − xw)
ui − xw

]T

,

[K] =
[
6c(ui + 1)2 1

1 0

]
,

contact λi−1
n + εn(ui−1 − xw) ≤ 0



[R] =



2c(ui + 1)3

−λ
i
n

εn




T

,

[K] =
[
6c(ui + 1)2 0

0 − 1
εn

] non-contact λi−1
n + εn(ui−1 − xw) > 0

(4.120)

At each iteration we evaluate the solution increment in the following manner
[
∆ui

∆λi
n

]
= −[K]−1[R]

In case of non-contact, the eigen values of the tangent matrix are λmax =

6c(ui + 1)2 and λmin = − 1
εn

and the condition number is

Cond(K) =
|λmin|
|λmin|

= 6c(ui + 1)2εn ∼ cεn

For a high penalty coefficient εn and high stiffness coefficient c the condition
number of the tangent matrix becomes very high which is crucial for the
precision of the solution and its convergence. That is the price of the fully
unconstrained smooth energy functional. So even if formally the coupled
augmented Lagrangian derives the precise solution, it suffers from numerical
errors and its convergence is hindered. This is one of the main motivations
to update the primal and dual variables separately by means of the Uzawa’s
algorithm. In case of simultaneous resolution, the penalty coefficients should
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be chosen reasonably small at least in case of non-contact. This is especially
true for the frictional problems, for which a high penalty coefficient may lead
to cycling over solution. For some more details on the condition numbers and
the convergence of the Newton’s scheme, the reader is referred to Section 5.1.

Two different convergences can be observed, which depend on the penalty
parameter εn (see Fig. 4.21). If λ0

n + εn(u0 − xw) ≤ 0, we start from the ”contact“

type cycle, i.e. if εn ≤ εn∗ = − λn
0

u0−xw
, otherwise this is a no-contact cycle.

Sometimes it is advantageous to start from a ”contact“ type cycle, so for that
contact pressure σn ← λn should be transferred from one converged increment
to the following one. In Table 4.11, for example, we make a start from λn

0 =

−1, which was the solution of the spring problem when it came in contact
with a rigid wall. It is also interesting to compare simultaneous (coupled)
resolution of the problem for primal and dual variables with Uzawa’s algorithm
(nested resolution) (last four columns in Table (4.11)). The last one converges
significantly more slowly than the coupled algorithm in the contact domain.
Note that the initial guess of being in the contact domain (Uzawa for εn ≤ εn∗)
only disturbs the solution and increases the number of necessary iterations.
Linear convergence rate becomes clear when one studies the relative error
(not given in the table). In case of full unloading xw = −1.1, there are no
spurious modes, and the algorithm converges properly to the minimum of the
unconstrained functional both for Uzawa and coupled algorithms.

Figure 4.21: Two different types of convergence of the augmented Lagrangian
method in case of partial unloading: the convergence path depends on the
initial position of the point – inside contact domain or inside non-contact
domain, which in turn depends upon the penalty coefficient.
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Table 4.11: Augmented Lagrangian convergence in case of partial unloading.

Coupled resolution Nested resolution (Uzawa)
Penalty εn ≤ εn∗ Penalty εn > εn∗ Penalty εn ≤ εn∗ Penalty εn > εn∗

Iter,
i

ui λi ui λi ui λi ui λi

0 0.0 -1.0 0.0 -1.0 0.0 -1.0 0.0 -1.0
1 -0.90 1.7 -0.333 0.0 -0.225 -0.325 -0.333 0.0
2 -0.93 0.0 -0.556 0.0 -0.483 0.0 -0.556 0.0
3 -0.90 -0.087 -0.704 0.0 -0.656 0.0 -0.704 0.0
4 -0.90 -1e-3 -0.802 0.0 -0.770 0.0 -0.802 0.0
5 -0.90 -1e-3 -0.868 0.0 -0.847 0.0 -0.868 0.0
6 -0.90 -1e-3 -0.913 0.0 -0.898 0.0 -0.912 0.0
7 -0.90 -1e-3 -0.90 -0.03 -0.932 0.0 -0.900 -9.54e-4
8 -0.90 -1e-3 -0.90 -1e-3 -0.901 -7.48e-4 -0.900 -9.99e-4
9 -0.90 -1e-3 -0.90 -1e-3 -0.900 -9.92-4 -0.900 -9.99e-4
10 -0.90 -1e-3 -0.90 -1e-3 -0.900 -9.99e-4 -0.900 -1e-3
11 -0.90 -1e-3 -0.90 -1e-3 -0.900 -9.99e-4 -0.900 -1e-3
12 -0.90 -1e-3 -0.90 -1e-3 -0.900 -1e-3 -0.900 -1e-3
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Chapter 5

Numerical procedures

Résumé de Chapitre 5 «Procédures numériques»

Le but de ce chapitre est de présenter toutes les méthodes numériques nécessaires
pour le traitement des problèmes de contact par la méthode des éléments finis avec
résolution implicite.

Tout d’abord la méthode de Newton et sa version généralisée (nécessaire pour le
traitement des problèmes de contact) sont présentées. Quelques notions de base
de la théorie des sous-différentiels sont également décrites, avec une interprétation
géométrique originale. La dernière permet de raffiner l’interprétation du point le plus
proche et de la projection normale pour le cass des surfaces lisses par morceaux. Les
conditions de convergence de la méthode de Newton généralisée pour le problème de
contact avec frottement sont présentées et interprétées par un problème purement
géométrique.

L’algorithme de «return mapping» est celui qui est adapté pour traiter les problèmes
de contact avec frottement dans le cas où on utilise la méthode de pénalisation et
la méthode du Lagrangien augmenté avec l’algorithme d’Uzawa. Les détails de cet
algorithme sont illustrés pour le cas 2D et 3D.

La discutions de ces algorithmes est suivie par une présentation du formalisme
de la méthode des éléments finis dans le cadre de la nouvelle algèbre de S-structure.
On présente une définition rigoureuse des éléments de contact et les règles de leur
formation pour différentes discrétisations de l’interface, puis on dérive la forme faible
pour le problème de contact discrétisé et sa linéarisation pour la méthode de Newton. Les
vecteurs résidus et les matrices tangentes sont exprimés pour la méthode de pénalisation
et la méthode du Lagrangien augmenté pour le cas de contact sans et avec frottement.

En conclusion on discute l’implémentation de la méthode PDN dans un code
des éléments finis et plusieurs détails techniques utiles pour traiter des problèmes
particuliers : cas de la surface de maître rigide, éléments de contact à faces multiples,
frottement hétérogène, etc.

This chapter is devoted to the numerical aspects of the contact mechanics.
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5.1 Newton’s method

The classical Newton’s method is presented. Some remarks on its applicability
to contact problems are made, then the multidimensional version of the
method is stated and the main characteristics of the resulting system of linear
equations are briefly discussed. Further we give a detailed description of the
return mapping algorithm, which is often used for integration of frictional
conditions together with the penalty method. Next the Finite Element Method
formalism is briefly introduced using the new notations of s-structures. After
setting up this numerical framework, the closed form expressions for the
implementation of the penalty, Lagrange multiplier and coupled augmented
Lagrangian methods in a Finite Element code are given. Finally, some technical
details are presented.

5.1 Newton’s method

Generally for locally convex and smooth function, the solution of nonlinear
problem can be approximated by a well-known Newton or also called Newton-
Raphson procedure, which replaces a nonlinear problem by a series of linear
problems. If the starting point is sufficiently close to the solution (here it
implies, for example, small changes of boundary conditions) the Newton-
Raphson method provides a quadratic rate of convergence if the conditions of
convexity and smoothness are fulfilled. However, as it has been shown in the
previous chapter, it is not always possible to fulfill these conditions: the virtual
work functional is not smooth. Here a short discussion of the Newton-Raphson
method is given and its extension to the class of nondifferentiable problems
arising from contact mechanics are given.

5.1.1 One-dimensional Newton’s method

The main idea of Newton’s method can be easily captured on a one-dimensional
example. Let the solution x of an equation depend on an external parameter f ,
then any equation can be written in the following form

R(x, f ) = 0,

where R is a scalar function of two scalar arguments x and f . To fulfill this
equation, a change of f should result in a change of x. A straightforward
analogy with the mechanical system in statics containing one degree of freedom
is, for example, the displacement x of the mass m attached to a spring with a
linear stiffness k, under a gravity force f = mg. If the system is conservative,
then the solution corresponds to the minimum of its energy

W(x, g) =
1
2

cx2 +mgx→ ∂W

∂x
= cx +mg = 0 ∼ R(x, g) = cx +mg = 0

Let us consider a time discretized model, i.e. the external parameter f
changes incrementally f0, f1, f2, . . . and we seek the values of the argument
x0, x1, x2, . . . which fulfill R(xi, fi) = 0 at least with a given precision |R(xi, fi)| ≤ ε.
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We suppose that the starting point x0 is known from the initial conditions or
from a previously solved increment xi

R(xi, fi) = 0.

For the following increment, the external parameter f becomes fi+1. The aim
is to find xi+1. If the problem is nonlinear, an iterative scheme should be used.
The first terms of the Taylor series of R(x, f ) centered at the previous iteration
x j are

R(x j +∆x j, fi+1) = 0 ⇒ R(x j +∆x j, fi+1) = R(x j, fi+1)+
∂R

∂x

∣∣∣∣∣
x j
∆x j + r1(x j) = 0.

(5.1)
If higher order terms r1(x j) are negligibly small and if a nonzero derivative
∂R
∂x

∣∣∣
x j , 0 exists, then the increment ∆ui can be written as

∆x j ≈ − ∂R

∂x

∣∣∣∣∣
−1

x j
R(x j, fi+1), x j+1 = x j + ∆x j (5.2)

Further we put x j+1 = x j + ∆x j and check if the new result is sufficiently close
to zero |R(x j+1, fi+1| ≤ ε, if not we repeat (5.1), where Taylor series is centered
at x j+1.

According to expression (5.1), we should require smoothness of the function
R(x, .) at least in points x j. Since these points are arbitrary we require that

R(x) ∈ C1(x) (5.3)

It is also important that a small change in f leads to a small change in R, in
other words

∃K : 0 < K < ∞ : ∀ f 1, f 2 :
∣∣∣R(x, f 2) − R(x, f 1)

∣∣∣ ≤ K
∥∥∥ f 2 − f 1

∥∥∥ (5.4)

the smaller the parameter K, the slower function R changes with f , i.e. R(., f )
is a Lipschitz continuous function R(., f ) ∈ LK. As one can notice, the higher
derivatives of R do appear explicitly in the derived equations, however since
we neglected all terms contained in r1(x j), we suppose that they are negligibly
small. Let us demonstrate that this residual r1(x j) plays an important role. Let
us rewrite the residual in Lagrange form

r1(x j) =
1
2
∂2R

∂x2

∣∣∣∣∣∣
ξ j

(x∗ − x j)2,

where ξ j = x∗ +θ(x j − x∗), 0 < θ < 1 and x∗ is the exact solution. The expansion
of the function R is

R(x∗, fi+1) = R(x j, fi+1) +
∂R

∂x

∣∣∣∣∣
x j

(x∗ − x j) +
1
2
∂2R

∂x2

∣∣∣∣∣∣
ξ j

(x∗ − x j)2 = 0.

Dividing by ∂R
∂x , 0 and grouping the terms gives:

(
∂R

∂x

∣∣∣∣∣
−1

x j
R(x j, fi+1) − x j

)
+ x∗ = −1

2
∂R

∂x

∣∣∣∣∣
−1

x j

∂2R

∂x2

∣∣∣∣∣∣
ξ j

(x∗ − x j)2
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According to (5.2), the first brackets are nothing but −x j+1, so if the distance to
the solution is denoted as x∗ − x j = ε j, the equality can be rewritten

ε j+1 = −
1
2
∂R

∂x

∣∣∣∣∣
−1

x j

∂2R

∂x2

∣∣∣∣∣∣
ξ j

ε2
j ,

from where some corollaries can be deduced

• if everywhere ∂2R
∂x2 = 0 then ε j+1 = 0, the function R is linear and the

algorithm converges in one iteration;

• if ∃C,L : 0 < {C,L} < ∞ such that

1
2

∣∣∣∣∣∣
∂2R

∂x2

∣∣∣∣∣∣
ξ j

∣∣∣∣∣∣ ≤ C < ∞ and

∣∣∣∣∣∣
∂R

∂x

∣∣∣∣∣
−1

x j

∣∣∣∣∣∣ ≤ L < ∞

at least locally, then
|ε j+1| ≤ CL|ε j|2,

if CL|ε j| < 1 ε j then x j converges to the solution x∗, and if the starting
point x0 is sufficiently close to the solution x∗, i.e. CL|ε0| < 1 then the
convergence is quadratic;

• if one adds to the previously formulated conditions the following ones

sign



∂2R

∂x2

∣∣∣∣∣∣
ξ j


 = const, sign

[
∂R

∂x

∣∣∣∣∣
−1

x j

]
= const,

sign[ε0] = sign[x0 − x∗] = sign



∂2R

∂x2

∣∣∣∣∣∣
ξ j




(5.5)

i.e. R(x, .) is strictly monotonic and if the convexity does not change.
Moreover, if the first point x0 is to the right from solution for convex
and to the left for concave function, then x j converges quadratically and
monotonically to the solution;

• it follows, for example, that if

∂R

∂x

∣∣∣∣∣
x j

x j→x∗−−−−→ 0 or

∣∣∣∣∣∣
∂2R

∂x2

∣∣∣∣∣∣
x j

∣∣∣∣∣∣
x j→x∗−−−−→ ∞

then the convergence, if it presents, is not quadratic (as in examples
considered in the previous chapter).

This short reminder allows to proceed with analysis of Newton’s method for
special cases. Let us note that the rigorous statement of Newton’s method
convergence in a n-dimensional space is given by the Kantorovich theorem
[Kantorovich 48], where among other Lipschitz continuity of the first derivative
is required ∥∥∥∥∥

∂R(x, .)
∂x

−
∂R(y, .)
∂y

∥∥∥∥∥ ≤ L
∥∥∥ x − y

∥∥∥,
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bold symbols mean a ∈ Rn. Carrying the results of this paragraph in mind
we will shortly consider the application of Newton’s method for the case
of nondifferentiable functions, which is essentially the case in computational
treatment of contact problems. But before let us show how Newton’s method
works in a multidimensional space.

5.1.2 Multidimensional Newton’s method

In the discretized case if the problem can be stated as

R(u, f ) = 0,

where R ∈ Rn is a vector function of vector arguments u = [u1, u2, . . . ,un]T ∈ Rn

and f = [ f 1, f 2, . . . , f m]T ∈ Rm, the expression for the solution increment in the
framework of Newton’s method is written as

∆ui = −K(ui)−1 R(ui, f k+1), ui+1 = ui + ∆ui

where the upper index i, as before, denotes the iteration number and the lower
index the solution step or increment number. The matrix K in the Finite Element
method is called the tangent stiffness matrix for elastic problems or the tangent
matrix for nonlinear problems, in optimization theory the Hessian (second order
derivative of the objective function to be minimized, named after Ludwig Otto
Hesse (1811-1874), German mathematician) or the Jacobian (named after Carl
Gustav Jacob Jacobi (1804-1851), German mathematician) of the vector R

K(ui) =
∂R(u, f )
∂u

∣∣∣∣∣
ui

The inverse of this matrix exists if and only if its determinant is not zero which
is equivalent to the condition that the spectrum of the matrix σ(K) does not
contain any zero eigenvalue

det K(ui) , 0 ⇔ ∀λi ∈ σ
(
K(ui)

)
: λi , 0

If the matrix is not Lipschitz continuous, i.e.

∄K : 0 < K < ∞ : ∀λi ∈ σ(K), ∀u1,u2 : |λi(u1) − λi(u2)| ≤ K‖u1 − u2 ‖

then the assumptions of the Kantorovich theorem are not fulfilled and the
convergence of the Newton-Raphson method may experience some problems.
This case will be considered in the next paragraph.

Another important characteristic of the tangent matrix is its condition
number Cond[K]:

Cond(K) =
λmax

λmin
,

where λmax and λmin are respectively the maximal and the minimal by moduli

eigenvalues of the matrix [K]. In numerical analysis, the solution u∗n is different
from the exact solution u∗, first due to the finite precision required by the user,
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ε, for instance like this ‖ui+1 − ui‖ ≤ ε, and secondly due to the finite number of
digits in computer data types. The higher the condition number of the matrix,
the lower the number of correctly evaluated digits in the solution. The number
of lost digits N in accuracy can be computed according to the simple formula

N = log10 Cond(K)

So ill-conditioning of the matrix (high condition number) results in loss of
accuracy and may also result even in divergence of the iterative schemes. For
that reason, the so-called preconditioners should be used, which replace the
problem Ku = f with solution u∗ by a problem K̃[u] = f̃ such that the solution
remains the same but Cond(K̃) < Cond(K). In this context, it becomes evident
that, if the penalty method increases the condition number of the stiffness
matrix proportionally to the penalty coefficient, then a high penalty coefficient
results in ill-conditioning of the matrix. It is also true for the augmented
Lagrangian method.

It is worth mentioning that the procedure of the stiffness matrix calculation
is the major contribution to the computational time in the implicit Finite
Element Method. That is the main motivation for the group of so-called Quasi-
Newton’s method, for which the stiffness matrix is approximated according to
some rules (see, e.g. [Bonnans 06]): DFP (Davidon–Fletcher–Powell formula),
BFGS (Broyden–Fletcher–Goldfarb–Shanno method), Broyden method, etc.
Another approach is to inverse stiffness matrix only once at the zeroth iteration
and compute all solution increments with this matrix, which can be also
updated

∆ui = −K(u0)−1R(ui, f k+1).

These methods allows to avoid problems which appear if R is not strictly
monotonic, i.e. possible zero determinant of the stiffness matrix. The
convergence rate of such methods is slower, but each iteration is faster.
There are many techniques based on Newton’s method and resulting in faster
convergence in physical and/or numerical sense, see [Fletcher 77],[Bonnans 06],
[Bertsekas 03]. Another class of methods often used in Finite Element codes is
the one of Conjugate Gradient methods, however we will not consider them
here.

5.1.3 Application to nondifferentiable functions

Let us return to conditions formulated for the one dimensional case, i.e.
nonzero and Lipschitz continuous first derivative L(U) ∋ ∂R(u,.)

∂u
, 0 and

Lipschitz continuity by parameter R(., f ) ∈ L(F), whereU and F are allowable
sets for the argument u and the parameter f respectively. The condition for
the parameter holds for contact problems: any small change of boundary
conditions results in a smooth change in energy of the system and consequently
in continuous change of its variation. However, due to geometrical restrictions
on the displacement field we cannot require that function R(u, .) (variation of
the energy) would be everywhere smooth. It leads to a relatively new domain
in optimization theory – Nonsmooth or Nondifferentiable Optimization.
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According to the derived equations and the simple examples considered in
the previous chapter, we know that the function R(u, .) resulting from the
virtual work principle is piecewise smooth and so there is a set of points, also
called ”kinks“ us ∈ Vs ⊂ V, for which there is no unique but several one-sided
derivatives

∀us ∈ Vs : ∃
⋃

i

{
∂R

∂u

∣∣∣∣∣
us

}

i

.

However, the measure of such a set is zero in the whole spaceV ∋ u

M (Vs) = 0, M (V) > 0

It means that in practice the probability that during iterations u ∈ Vs is zero,
however often such points (kinks) appear to be solutions of minimization
problems, it is also true in our case. It is clear that in the vicinity of such points
the derivative is not any more Lipschitz continuous

∄K : 0 < K < ∞ : ∀u1,u2 ∀i, j :

∥∥∥∥∥∥∥

{
∂R

∂u

∣∣∣∣∣
u1

}

i

−
{
∂R

∂u

∣∣∣∣∣
u2

}

j

∥∥∥∥∥∥∥
≤ K‖u1 − u2‖.

So, a complementary convergence analysis is required, since Kantorovich
theorem [Kantorovich 48] (statement of multidimensional convergence of
Newton’s method) requires a Lipschitz continuity of this derivative.

5.1.4 Subdifferentials and subgradients

In nonsmooth optimization the gradient is generalized to the class of
nondifferentiable functions in the following way, in the kink point a nonempty
convex set is introduced as follows

∂ f (x) =
{

s
∣∣∣ s ∈ Rn, ∀y ∈ Rn : f (y) ≥ f (x) + s · (y − x)

}
,

where by dot we mean the scalar product of vectors in Rn. Another more
straightforward definition can be given in terms of directional derivatives,
where the direction is defined by a vector d ∈ Rn

∂ f (x) =
{

s
∣∣∣ s ∈ Rn, ∀d ∈ Rn : s · d ≤ lim

α→0

f (x + αd) − f (x)
α

}

This set is called a convex subdifferential of the function f at point xk, each
component of the subdifferential of f at x is called a subgradient.

To my opinion, it would even be preferable to use the definition given
below and graphically illustrated for the onedimensional case in Fig. 5.1. Let
us imagine that the kink point xk is surrounded by an hypersphere H ∈ Rn+1

x, f ∈ H :
(

f (x) − f (xk)
)2
+ (x − xk) · (x − xk) = R2,
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where R is the radius of the hypersphere H (Fig. 5.1,b.). Then if f (x) is locally
convex in the vicinity of the kink point, we can confine ourself to the lower half
of the hypersphere H−

x, f ∈ H− : fH(x) = f (xk) −
√

R2 − (x − xk) · (x − xk) < f (xk).

The gradient of such a function fH(x) at all points of the lower hypersphere in
all directions always exists and takes all values (−∞, ∞)

∇ fH(x) · d = (x − xk) · d√
R2 − (x − xk) · (x − xk)

∈ (−∞, ∞) for all x ∈ H.

Now we can tighten this lower hypersphere into a point R → 0, then fH(x) →
f (xk) but all gradients do not vanish but appear to be ”condensed“ in the kink
point if one replaces

x − xk = αRe′,

where e′ – is a vector filled with 1 and α ∈ (−1; 1). Then, for any R ≥ 0

∇ fH(x, α) · d = αe′ · d
√

1 − α2
∈ (−∞, ∞) ∀α ∈ (−1; 1).

Let us denote by e j = [0, . . . 0, 1︸︷︷︸
j

, 0, . . . , 0]T. This hypersphere-point

is put in the kink point and further we can define the positive and negative
subdifferential components j such that if

∂ f+j = ∇ fH(x, α) · e j, ∀α : 0 ≤ α ≤ α+j

∂ f−j = ∇ fH(x, α) · e j, ∀α : α−j ≤ α < 0

where ∂ f

∂x+
j
,

∂ f

∂x−
j
i

define positive and negative one sided derivative by the

argument x j respectively (Fig. 5.1,b.), and

α+j : ∇ fH(x, α+j ) · e j =
∂ f

∂x+
j

, α−j : −∇ fH(x, α−j ) · e j =
∂ f

∂x−
j

The subdifferential is then defined as the union of positive and negative
subdifferentials

∂ f = ∂ f− ∪ ∂ f+

or in a more compact form (Fig. 5.1,c.)

∂ f = ∇ fH(x,α), ∀α− ≤ α ≤ α+,

where through condition α− ≤ α ≤ α+ we mean that ∀ j α−
j
≤ α j ≤ α+j . In other

words, the subdifferential is defined as a set of derivatives of the hypersphere
limited by one sided derivatives of the function f : ∂ f

∂x−
j

and ∂ f

∂x+
j
, obviously
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if ∂ f

∂x−
j
=

∂ f

∂x+
j
, then ∂ f j =

∂ f

∂x j
. Such a definition is quite long but hopefully

it provides a more intuitive and tangible visualization of the subdifferential
notion. Moreover to my opinion it is easy to deal with a very small and
smooth sphere than with simply a singular kink point. In case of a locally
concave function f , the subdifferential defined on a hypersphere is easy to
generalize. For this purpose, instead of the lower hemisphere, one should
consider the upper hemisphere of the hypersphere fH. The generalization is
also straightforward in case of a concave-convex function f .
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5.1 Newton’s method

Figure 5.1: Graphical representation of a subdifferential based on hypersphere
notion: a. – kink point xk of the nonsmooth function f (x) and two one sided

derivatives: left-sided ∂ f

∂x−

∣∣∣∣
xk

and right-sided ∂ f

∂x+

∣∣∣∣
xk

; b. – a hypersphere fH(xk)

of finite radius R and limits on α : α− = ∂ f

∂x−

∣∣∣∣
xk

, α+ = ∂ f

∂x+

∣∣∣∣
xk

; c. – subdifferential

∂ f = ∇ fH(x, α), ∀α− ≤ α ≤ α+.

A more sophisticated description of subdifferentials applied to contact
mechanics can be found in the works of Alart and Curnier [Alart 91],
[Heegaard 93], [Alart 97], etc. A general subdifferential theory can be found,
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for example, in [Rockafellar 70].

Idea 5.1 Application of hyperspheres to normal projection
procedure.

The idea of subdifferential and particularly of hypersphere can be directly applied to
the definition of the normal projection of a slave node on the piecewise smooth master
surface. For this purpose, each master node ρi is replaced by a 3D sphere

S(ρi,R) : (ρ − ρi) · (ρ − ρi) − R2 = 0

and each edge curve ρ j(ζ) by a channel surface∗ (see Fig. below)

C(ρ j(ζ),R) : (ρ(ζ) − ρ j(ζ)) · (ρ(ζ) − ρ j(ζ)) − R2 = 0

Further we set R → 0 and S(ρi,R) → S(ρi, 0), C(ρ j(ζ),R) → C(ρ j(ζ), 0) The

derivative
∂ρ

∂ξ∼
always exists on the master surface, but on edges and on nodes the

derivative is not unique.

Fig. Improvement of the master surface with zero radius spheres on nodes and zero
radius channel surfaces on edges in order to provide an everywhere differentiable

surface.

∗ – ”A channel or canal surface is a surface formed as the envelope of a family of spheres whose
centers lie on a space curve“ [Wikipedia: http://en.wikipedia.org/wiki/Channel_surface].

5.1.5 Generalized Newton method

Even if the probability to meet a kink point (point where no classical derivative
exists) during the iteration process is zero, the convergence of the Newton
scheme is not anymore ensured by Kantorovich theorem. This is linked to
the fact that the solution of the contact problem is itself a kink point. If
the convergence is not monotonic the probability of convergence decreases.
Moreover, for nonsmooth functional, it is sometimes not possible to fulfill the
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condition of minimum ∇ f (x) = 0 or even ‖∇ f (x)‖ ≤ ε. A simple example is
a nonlinearity arising in Coulomb’s friction law f (x) = |x|. The derivative of
such a function is a kind of Heaviside function which takes the values −1 and 1
and so ∄|∇ f (x)| < ε < 1. Some other possible problems: different results due to
roundoff errors on different computers, approximated gradients, for example
by perturbation method, may not belong to subdifferential derivative.

Since late 80s Alart [Alart 88], Alart and Curnier [Curnier 88], [Alart 91],
Heegaard and Curnier [Heegaard 93] investigated an application of Newton’s
method to nonsmooth problems arising in contact mechanics. Authors worked
out a Generalized Newton Method (GNM) and investigated its convergence
properties for coupled augmented Lagrangian method [Alart 97]. Among
obtained results there are

• a good convergence observed for frictionless contact in case of small and
large slip;

• conditions on convergence of the GNM for frictionless contact, however
as asserted by the authors the conditions appear to be too strict and are
not fulfilled in real problems;

• the maximal number of iterations for the convergence is estimated by
2n−1, where n is number of dofs subjected to contact-type conditions,
moreover at least one local status (e.g., non-contact – contact) changes
without ever switch to the previous status.

• the absence of simple infinite cycling of the GNM around solution for
frictionless problem, however this remains the main cause of divergence
in case of frictional contact;

• a very important result is the upper estimation for penalty coefficient
in augmented Lagrangian method applied to frictional problems, which
avoids infinite cycling

0 < εt < 2λmin(K),

where εt is the penalty factor related to tangential slip and K is a
stiffness matrix corresponding to the problem without contact; here the
introduction of two penalty parameters, for normal εn and tangential εt

contact, becomes justified.

Following the cited authors let us derive the main principles. First of
all the nonlinear vector equation R(x,λ) = 0 arising from application of
the augmented Lagrangian method to contact problems is splitted into a
differentiable structural part Rd(x) (due to virtual work of contact-free system)
and a nondifferentiable contact part Rn(x,λ) (virtual work due to contact) parts

R(x,λ) = Rd(x) + Rn(x,λ) = 0

Further, the Generalized Newton method is stated as



∆xi+1

∆λi+1


 =




∂Rd(x)
∂x
+ ∇xRn(x,λ)

∇λRn(x,λ)




∣∣∣∣∣∣∣∣∣

−1

xi,λi


R

d(xi) + Rn(xi,λi)


 ,
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where i, i + 1 denotes iteration numbers. The subgradients ∇xRn and ∇λRn are
components of the generalized Jacobians (here also, Hessians) ∂λRn and ∂λRn

for primal and dual variables respectively:

∇xRn(x,λ) ∈ ∂λRn(x,λ), ∇λRn(x,λ) ∈ ∂λRn(x,λ).

In other words, these notions are a generalization of the subdifferentials to
the class of vector functions f (x) of vector argument x: each i-th line of the
generalized Jacobian is the subdifferential of the scalar component fi(x)

∂ f (x) =
[
∂ f1(x) . . . ∂ fi(x) . . . ∂ fn(x)

]T

The condition providing the convergence of the augmented Lagrangian
method for frictional problem has been formulated as ”sufficient stability
conjecture“ in [Alart 91] and investigated in more details [Alart 97]

0 < εt < 2λmin (∇xRn(x,λ))

A more sophisticated study of this condition can be found in theorem 6 in
[Alart 97]. Let us give a short demonstration of the analysis performed by the
author. Let us consider a scalar nonconvex and nondifferentiable function f (x)
(Fig. 5.2). If this function is such that close to the solution its maximal derivative
is sup |x − x∗| < ε f ′ = a, to the right from the solution x > x∗ there are points
where the smallest derivative f ′(x) = b < a and to the left inf

x<x∗
( f ′(x)) = c < a, then

there is a risk that Newton’s method does not converge, i.e. start to cycle over
two branches (Fig. 5.2,a.). Moreover, if the left branch is convex and the right
branch is concave, each iteration will move away from the solution. A similar
function arises from frictional contact problems even the simplest one with
one degree of freedom and prescribed contact pressure. However, Newton’s
method does not always diverge (Fig. 5.2,b.). The question is then to check
what is the condition on a, b, c which ensures the convergence of the method.
P. Alart proved that Newton or Generalized Newton Methods converge if the
maximal derivative of the function f (x) is not bigger than twice the minimal
derivative of the function f (x) at least in a vicinity of possible iterations of the
Newton’s method (N(x)):

sup f ′(x) < 2 inf f ′(x), x ∈N(x).

In case of a nondifferentiable function, the ordinary derivatives f ′ are replaced
by subdifferentials ∂ f ′

sup ∂ f (x) < 2 inf ∂ f (x), x ∈N(x).

Further, the author generalizes this result to the n-dimensional case by
comparing with convergence conditions of Uzawa’s algorithm.

The onedimensional problem: which function of considered type a > b, a >
c will converge can be formulated as a geometrical problem (Fig. 5.3): Newton’s
method converge if for three straight lines

L1 : y = bx + d, L2 : y = cx + e, L3 : y = ax + g, a > b, a > c
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Figure 5.2: Nonconvex nondifferentiable function f (x) for which Newton’s
method or GNM may not converge: a. – methods do not converge if the
starting point is located on the left or the right branch with a smaller slope, that
the slope close to the solution point x∗, b. – methods always converge .

Figure 5.3: Geometrical problem arising from convergence conditions of
Newton’s method .

there is no horizontal line Lc : y = h, such that part of L3 enclosed between L1
and L2 lies entirely in quadrangle ABCD, where A = (xA, h) is the intersection of
L1 and Lc, D = (xD, h) is the intersection of L2 and Lc and B = L2(xA), C = L1(xB).
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5.2 Return mapping algorithm

The return mapping algorithm (in onedimensional case) or radial return
mapping algorithm originally proposed in [Wilkins 64], is a well known scheme
employed in computational elasto-plasticity [Simo 98]. Since there is a direct
analogy between plasticity and friction as stated in Section 4.1.2, this method
can be successfully applied to the local resolution of frictional conditions. The
idea of the method in two words: elastic problem is solved, for a given strain
increment, and a trial stress is evaluated. If the new stress is situated inside the
yield surface, then this is the solution. Otherwise the slip rate increment
is changed to return to the yield surface and the stress is updated. The
application of the return mapping algorithm for frictional contact integration
for the penalty method can be found in [Giannakopoulos 89], [Wriggers 90],
[Simo 92]1 and for the augmented Lagrangian method with Uzawa’s algorithm
in [Simo 92]. For the sake of completeness, the return mapping algorithm is
presented below.

The contribution of the contact to virtual work principle was stated in the
previous chapter as

Ic(u, δu) =
∫

Γc
1∗

σn

(
δgn − µs · δgt

)
dΓc

1 +

∫

Γc
1•

(
σnδgn + σt · δgt

)
dΓc

1, (5.6)

where Γc
1∗, Γc

1• are slip and stick zones in active contact zones respectively, σn

the contact pressure, σt the tangential contact stress vector, δgn the variation of
the normal gap, δgt the variation of the tangential relative sliding. For a linear
penalty method, contact pressure and tangential stress vector σn,σt are linear
functions of the normal gap and of the relative sliding gn,∆gt

σn = −εn〈−gn〉, σt =


εt‖∆gt‖ s, εt‖∆gt‖ ≤ µ|σn|
µ|σn| s, εt‖∆gt‖ > µ|σn|

,

where εn, εt > 0 are the penalty parameters, s the slip direction. Substituting
contact pressure and tangential stress vector into Eq. (5.6), we get

Ic(u, δu) = −
∫

Γc
1∗

εn〈−gn〉
(
δgn − µs · δgt

)
dΓc

1+

∫

Γc
1•

(
−εn〈−gn〉δgn + εt‖∆gt‖ s · δgt

)
dΓc

1.

The constitutive equation for friction were given in (4.21) as

‖σt‖ ≤ µ|σn|, ‖ġt‖σt − µ|σn|ġt = 0, ‖s‖
∥∥∥∥ ‖ġt‖σt − µ|σn|ġt

∥∥∥∥ = 0. (5.7)

They can be reformulated in terms of elasto-plasticity: the slip surface f (σn,σt)
is given by

f (σn,σt) = ‖σt‖ − µ|σn| ≤ 0

1Note that there is a small misprint in Eq. (3.13) in the article [Simo 92], where the penalty
return mapping algorithm is stated the correct equation is given below.
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The slip rule is

ġt = γ̇
∂ f

∂σt
,

where γ̇ is a slip rate and ∂ f

∂σt
determines the normal to the slip surface and also

the slip direction, which for Coulomb’s friction is a radial unit vector

∂ f

∂σt
=
σt

‖σt‖
= st

The numerical resolution of the contact problems is incremental, so let
us suppose that on the i-th increment we know the solution ui and all
corresponding quantities σi

n,σ
i
t. On the first iteration of the next increment,

we suppose that the entire active contact zone switches to stick

Ic(ui+1, δu) =
∫

Γc
1•

(
σi+1

n δgn + σ
i+1
t · δgt

)
dΓc

1,

where
σi+1

n = −εn〈−gn(ui+1)〉.

Further, by analogy with plasticity, we determine the trial stick tangential stress
vector

σi+1
t trial = σ

i
t + εt

(
gt

i+1 − gt
i
)
= σi

t + εt∆gt
i

A graphical interpretation of the return mapping algorithm is presented in
Fig. 5.4, 5.5 for two dimensional and in Fig. 5.6 for three dimensional cases.
Now we check if this stress vector does not exceed the permissible stress, i.e.
is not outside of the Coulomb’s slip surface for the new contact pressure σi+1

n

f i+1
trial = ‖σ

i+1
t trial‖ − µ|σi+1

n |

If f i+1
trial ≤ 0, then the trial tangential stress is a correct one

σi+1
t = σi+1

t trial, if f i+1
trial ≤ 0

otherwise if f i+1
trial > 0, the current point switches to slip state and a tangential

stress is put
σi+1

t = σi+1
t trial − εt∆γ

isi
t, if f i+1

trial > 0

where si
t is the slip direction determined by the trial stress and ∆γ is the slip

increment, determining the slip distance

si
t =

σi+1
t trial

‖σi+1
t trial‖

∆γi =
f i+1
trial

εt
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Both results ∀ f i+1
trial, can be stated in one formula using Macaulay brackets

σi+1
t = σi+1

t trial − εt〈∆γi〉si
t (5.8)

Note that in the two dimensional case, the sliding vector si and the stress
unit vector si

t turn simply into sign(gt) and sign(σt) respectively, obviously
sign(gt) = sign(σt).

As discussed in the previous chapter, the total slip can be splitted into a
sum of “slip-in-stick” gt

• and real slip gt
∗

gt = gt
• + gt

∗

This split becomes more clear in the incremental procedure. Let us briefly
demonstrate by simple algebraic calculations and geometrical schemes the
meaning of such a split in the frame of the return mapping algorithm. On each
increment the relative sliding vector splits into an accumulated slip over the
previous increments gt

∗i and the total “slip-in-stick” relatively to this point gt
•i

gt
i = gt

•i
+ gt

∗i, gt
i+1 = gt

•i+1
+ gt

∗i+1 (5.9)

Further, the position vector on the increment i + 1, can be expressed as the
sum of the vectors on the previous increment, of slip-in-stick ∆gt

•i and of slip

increments ∆gt
∗i

gt
i+1 = gt

i + ∆gt
∗i + ∆gt

•i, or simply ∆gt
i = ∆gt

∗i + ∆gt
•i (5.10)

where

∆gt
•i
= gt

•i+1 − gt
•i, ∆gt

∗i = gt
∗i+1 − gt

∗i, ∆gt
i = gt

i+1 − gt
i

In other words, it follows from Eq. (5.10) that gt
i + ∆gt

∗i is the new position of
stick, where the point will return if external load vanishes. However, Eq. (5.10)
is not easy to interpret, because slip occurs relatively to the point of previous
stick gt

∗i and the direction of the total sliding increment s̃i does not make sense

s̃i =
∆gt

i

‖∆gt
i‖
,

since this is the direction of the sum of “slip-in-stick” and slip vectors, but not
of an occurred slip. All directions in general are different2, i.e.

∆gt
∗i ∦ ∆gt

•i ∦ ∆gt
i = s̃i ‖∆gt

i‖

2All these arguments relate to three dimensional contact. In two dimensional problems,
where all vectors at interface can be interpreted simply as signed real numbers sign(s̃i) =
sign(si) = sign(si

t
), the present discussion is not relevant.
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On the other hand if gt
i is splitted into “stick-in-slip” and accumulated slip

parts, then Eq. (5.10) can be rewritten as

gt
i+1 = gt

∗i + ∆gt
∗i + gt

•i
+ ∆gt

•i, (5.11)

where {
gt
•i
+ ∆gt

•i
}
‖ ∆gt

∗i ‖
{
gt

i+1 − gt
∗i
}
,

i.e. all these vectors can be rewritten as products of norms and sliding vector
si

gt
•i
+ ∆gt

•i
= ‖ gt

•i
+ ∆gt

•i ‖ si,

gt
i+1 − gt

∗i = ‖ gt
i+1 − gt

∗i ‖ si,

∆gt
∗i = ‖ ∆gt

∗i ‖ s = ∆γ si

(5.12)

Eq. (5.11) can be stated in an algebraic form

∆γ = ‖ gt
i+1 − gt

∗i ‖ − ‖ gt
•i
+ ∆gt

•i ‖

In other words slip increment is the difference between total slip from the point
of the previous stick ‖ gt

i+1 − gt
∗i ‖ and final “slip-in-stick” ‖ gt

•i + ∆gt
•i ‖.

Note that independently on the direction of the increment of tangential
stress σi+1

t − σi
t or tangential slip gt

i+1 − gt
i, the slip is supposed to occur in

the direction of the resultant trial stress σi+1
t trial. For an anisotropic friction

law, the slip direction depends upon the choice of the model: associated and
non-associated slip can be distinguished (see [Michalowski 78]).

Remark that in large deformation, large sliding problems a rigorous
definition must be used for the relative sliding velocity expressed through
the convective coordinates ξ∼ , as discussed in paragraph 2.2.4

ġt =
∂ρ

∂ξ∼
◦ ξ̇∼ ,

here ġt denotes Lie’s derivative of the relative tangential displacement vector.
For a detailed analysis of such a formulation the reader is referred to
works by Laursen and Simo [Laursen 93], Laursen [Laursen 94] and recent
articles by Konyukhov and Schweizerhof [Konyukhov 05], [Konyukhov 06b],
[Konyukhov 07a].
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Figure 5.4: Representation of the return mapping algorithm applied to a two
dimensional contact problem. A sequential set of step points is represented
by red contoured circles: initial state

{
gt

i, σi
t

}
, trial step

{
gt

i+1, σi+1
t trial

}
, return

mapping on the slip surface gives the solution point
{
gt

i+1, σi+1
t trial − εt∆γ si

t

}
;

the initial center of stick or previously accumulated slip is gt
∗i, and “slip-in-

stick” on the i-th increment is given by gt
•i = gt

i − gt
∗i, the total slip during

increment is gt
i+1 − gt

i, which is the sum of “slip-in-stick” increment ∆gt
•i

and real slip, accumulated during increment, ∆gt
∗i, final solution vector gt

i+1

consists of accumulated slip gt
∗i+1 = gt

∗i + ∆gt
∗i and actual “slip-in-stick”

gt
•i+1 = gt

•i + ∆gt
•i .
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5.2 Return mapping algorithm

Figure 5.5: Representation of the return mapping algorithm for a two
dimensional problem in stress space. A sequential set of step points
is represented by red contoured circles: initial state

{
σi

t, σ
i
n

}
, trial step{

σi+1
t trial, σ

i+1
n

}
and non-associated return mapping gives the solution state{

σi+1
t , σi+1

n

}
.
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Figure 5.6: Representation of the return mapping algorithm for three
dimensional contact problem, {e1, e2} orthonormal basis with coordinates {x, y},
figures a.,b. represent stress state in contact interface, figures c.,d. represent
displacements in contact interface, sequential set of step points is represented
by red contoured circles for stress (a.,b.) and in blue for displacement (c.,d.):
initial state

{
gt

i, σi
t

}
, trial step

{
gt

i+1, σi+1
t trial

}
, return mapping or radial return

mapping on the slip surface (b.) gives the solution point for stress and moving
of slip circle in direction si by value of real slip ∆γi gives the solution state
for displacements (d.)

{
gt

i+1, σi+1
t trial − εt∆γ si

t

}
; increment of position vector

∆gt
i = ‖gt

i+1 − gt
i‖ s̃i can be presented as the sum of differently oriented vectors

∆gt
∗i and ∆gt

•i corresponding to an increment of real slip and an increment
of “slip-in-stick” respectively; however as discussed above, it is more natural
to consider a displacement increment starting from stick point gt

∗i on the i-th

increment, then gt
∗i + ∆gt

i = ∆gt
∗i + gt

•i + ∆gt
•i, where ∆gt

∗i = ∆γisi – real slip

increment and actual “slip-in-stick” is presented by gt
•i + ∆gt

•i =
µ|σi+1

n |
εt

si, for

Coulomb’s friction si = si
t , s̃i .
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5.3 Finite Element Method

5.3 Finite Element Method

In this section the main notions of the Finite Element Method will be given:
mesh, elements, nodes, basis functions. Non-structural contact elements will
be introduced and the evaluation of contact integrals will be discussed.

5.3.1 Introduction

The Finite element method is a powerful and widely used approach for the
numerical resolution of boundary value problems

F
(

f (u)
)
= 0 + boundary and initial conditions

where F( f ) is a combination of differential operators applied to a tensor
function f (u) of vector argument u (in structural mechanical problem). The
method is applicable for arbitrary geometries as well as for linear and nonlinear
constitutive equations. The idea is to replace a continuous problem (i.e.
infinitely dimensional) by a finite dimensional problem. The method belongs
to the class of Bubnov-Galerkin methods, i.e. the solution of the problem u∗

is approximated by a decomposition over a finite number of basis function
φi(Xi), i = 1,N

u∗(t,X) ≈ uh(t,X) =
N∑

i=1

uh
i (t)φi(X), (5.13)

where t is the time, X denotes a material point vector in reference configuration,
uh

i
(t) is a coefficient at the i-th basis function. For structural problems, this

coefficient is a vector. The basis functions can be chosen in such a way that
uh

i
(t)φi(Xi) = uh

i
(t) is the solution value at the i-th node – material point Xi. It

implies that the i-th basis function is one in the associated node i, and zero in
all other nodes j , i.

φi(X j) = δ
j

i
.

The considered volume Ω – body – at which differential equation F
(

f (u)
)

is prescribed is split into finite elements Ωh
i
, i = 1,Ne spanned onto nodes X j,

which all together form a finite element mesh – a discretized representation of
the body Ωh =

⋃
i=1,Ne

Ωh
i
∼ Ω (Fig. 5.7). If the body Ω is continuous and non-

self-intersecting, then for almost all points of the body X there is a discrete
form

X =

M∑

j=1

X jψ j(X), (5.14)

where ψ j(X) is another set of basis functions describing the geometry and
Nn number of such functions and number of nodes. Note that for a finite
number of basis functions some of the points of the continuous body Ω have
no homologue in the discretized geometry and vice versa, i.e. in general

Ω \Ωh
, ∅, Ωh \Ω , ∅,
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Chapter 5. Numerical procedures

This difference appears only close to the boundary, which is essential for
accurately imposing boundary conditions and especially for contact treatment:
in general, the real surface of the body is different from the surface of the finite
element mesh

∂Ω , ∂Ωh =
⋃

i=1,Ns

∂Ωh
i

Another observation: in general, the geometrical basis functions (shape
functions) are compact, i.e. are zero outside the element (see Fig. 5.8,5.9), for
example, for element i spanned on Nn

i
nodes, the shape functions φ j

i
(X), j =

1,Nn
i

are defined as

φ
j

i
(X) = 0, x < Ωh

i and φ
j

i
(Xk) = δ j

k
, Xk ∈ Ω

h
i

Shape functions are normally infinitely differentiable φi ∈ C∞, but since they
are compact on the element, on the interface between elements any smooth
function approximated by shape functions is in general not differentiable, i.e.

∇φ j

i
(X j) , ∇φ

j

k
(X j),

where Xi is a common node of elements i and k.

Figure 5.7: Continuous body Ω and its discretized representation – finite
element mesh Ωh consisting of nodes X j and elements Ωh

i
. Surface of the

body ∂Ω, approximated by surface ∂Ωh =
⋃

i ∂Ω
h
i
.

Often the set of geometrical basis functions ψ j(X) is chosen the same as
the set of basis functions approximating the solution φi(X) (isoparametric
approximation of the problem). Further, all basis functions will be called
shape functions and denote with φ

X =

N∑

i=1

Xiφi(X),

An isoparametric choice of the basis functions is rather natural for structural
problems, if we seek for the field of displacement vectors, then the actual
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5.3 Finite Element Method

Figure 5.8: Example of compact shape functions φi(X) for the one-dimensional
3-node quadratic element Ωh

i
.

Figure 5.9: Example of compact shape functions φi(X) for two dimensional
4-node linear element Ωh

i
.

configuration of almost each point can be presented as

x = X + u =

N∑

i=1

( Xi + ui )φi(X)

The index h often stands to demonstrate that the current decomposition
by basis functions is finite dimensional, and h represents a maximal size of
finite elements into which geometry is split, then the solution of the discretized
problem tends to the precise solution if the maximal size of the finite elements
h tends to zero, or equally if the number of basis functions N tends to infinity

uh h→0−−−→ u∗,

Since further we will deal only with discretized quantities, the h index will be
omitted.

It is often convenient to determine the shape functions independently of
the reference coordinates X ∈ Ω. For this purpose, for each type of element,
a standard simple reference configuration – the parent space Ω̃ – is defined
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(Fig. 5.10) and then the approximation of the geometry/solution within the i-th
finite element can be reformulated as

∀X ∈ Ωi, ξ, η ∈ Ω̃i, u(t,X) =
∑

j=1,Nn
i

ui
j(t)φ

i
j(ξ, η),

where ui
j

is the j-th node of the i-th element and φi
j

is the j-th shape function
of the i-th element and {ξ, η} are convective coordinates of the point X in the
parent space Ω̃i. For contact problems, it is particularly important to consider
the mapping from the parent configuration to the actual configuration for the
contact surface Γc – a part of the body ∂Ω = ∪i∂Ωi. The closure of two-
dimensional simply connected bodies is a curve and of three-dimensional
bodies is a surface, so the dimension of the topology is one less compared
to the dimension of the problem. In Chapter 2 we considered the mapping
from a two dimensional parent space into a three dimensional vector space (3
dimensional tensor space of first order)

R2 ∋ {ξ, η} → ρ(ξ, η) ∈ T3
1

and also the mapping from one dimensional parent space to a two dimensional
vector space

R ∋ {ζ} → ρ(ζ) ∈ T2
1

Figure 5.10: Surface segment of element: mapping from two dimensional
reference space R2 ∋ {ξ, η} to three dimensional vector space ρ(ξ, η) ∈ T3

1.

In Chapter 2, we made use of the s-structures introduced in Appendix A.6.
In the new formalism, instead of R2 parent space, it is considered as a two
dimensional v-scalar space

2

1S
3

0 over scalars of three dimensional space or simply
as a two dimensional vector space T2

1. The mapping we need (Fig. 5.12)
becomes then:

2

1S
3

0 ∋ ξ∼ → ρ( ξ∼) ∈ T3
1
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5.3 Finite Element Method

Figure 5.11: Surface segment of element: mapping from two dimensional
v-scalar space

2

1S
3

0 to three dimensional vector space T3
1 .

Moreover, the set of shape functionsφi
j
( ξ∼), j = 1,Nn

i
can be replaced by another

v-scalar of dimension Nn
i

φi
j( ξ∼) ∼ φ

∼
i( ξ∼) ∈

Nn
i

1 S
3

0

and on the other hand the set of nodal vectors ui
j
, j = 1,Nn

i
can be replaced by

a v-vector
ui

j ∼ u
∼

i ∈
Nn

i

1 S
3

1

Then the finite element approximation of a vector field u within the surface of
the i-th element writes

∀X ∈ ∂Ωi, ξ∼(X) ∈ ∂Ω̃i, u(t,X) = u
∼

i(t) ◦ φ
∼

i( ξ∼)

Note that the dimensions of ξ∼ ∈
2

1S
3

0 and of φ
∼

i ∈ Nn
i

1 S
3

0, u
∼

i ∈ Nn
i

1 S
3

1 are different.

5.3.2 Contact elements

When two separated surfaces Γ1
c and Γ2

c come in contact from a continuum
mechanics point of view, they form a continuous contact interface. Through
this zone, contact stresses are transferred from one body to another according
to a constitutive law due to the physical, mechanical and chemical phenomena
occurring in the contact interface. From a numerical point of view, each
contacting surface is represented by a number of nodes and surface or line
segments – these components are not connected, so do not interact. In
the previous chapter, contact surfaces and related contact stresses have been
incorporated in the integral weak form – balance of virtual works; that implies
that work of contact stresses has to be integrated for given virtual displacements
within the contact interface. Due to the balance of forces in the contact interface,
the integration can be performed over any of its sides.
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The side over which the integrals will be evaluated is a master surface Γ2
c .

In the Finite Element Method, it is presented as a set of master segments

Γ2
c =

M⋃

i=1

∂Ωi

Another side of the contact interface is the slave surface, which in the node-to-
segment approach is presented by nodes

Γ1
c =

S⋃

i=1

xi

As discussed in Chapter 3: for all slave nodes, one or several master
components are determined. For the sake of simplicity, let us suppose that for
all contact nodes sufficiently close to the master surface there exists the closest
master segment. Then the integral of the virtual work over the master surface
can be split into a sum of M integrals over the master segments ∂Ωi, i = 1,M.
One slave node is attached at least to each segment, xi

j
, j = 1,Ni, where Ni is a

number of slave nodes attached to the segment i

∫

Γ2
c

F(gn, ġt, σn,σt, δgn, δgt, δσn, δσt) dΓ2
c =

=

M∑

i=1

∫

∂Ωi

Ni∑

j=1

F
(
{gn}ij, {ġt}ij, {σn}ij, {σt}ij, {δgn}ij, {δgt}ij, {δσn}ij, {δσt}ij

)
d∂Ωi,

(5.15)

where F is a scalar function of the relative surface motion gn, ġt and of the
arising contact stresses in normal and tangential directions σn,σt. Indices
{.}i

j
denote quantities related to the i-th master segment and the j-th master

node interaction, whereas indices {.}i represent the contribution of the master
segment quantities. The scalar function F depends on the choice of the
resolution method (see the previous chapter). Note that

∑
i=1,M

Ni
j
= S - number

of slave nodes. It implies that in active contact the number of slave nodes
should be not smaller that the number of master segments.

The combination of the j-th slave node rs associated with the i-th master
segment ρ ∈ ∂Ωi presents the geometrical part of the contact element, which
(depending on resolution method) can be complemented by a virtual node to
store Lagrange multipliers – the contact stresses (Fig. 5.12, 5.13, 5.14). Since by
definition a slave node can belong to only one contact element, the last can be
denoted by one index i – Ωc

i
Let us consider the contribution of one contact element to the virtual work

of the system

δWc
i =

∫

∂Ωi

F
(
{gn}ij, {ġt}ij, {σn}ij, {σt}ij, {δgn}ij, {δgt}ij, {δσn}ij, {δσt}ij

)
d∂Ωi (5.16)
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Figure 5.12: Construction of contact elements: a – continuous geometry two
bodies Ω1 and Ω2 are in contact, active contact surfaces are Γ1

c – slave surface
and Γ2

c – master surface, b – a discretized representation of bodies and contact
interface, c – three contact elements spanned on three slave nodes rs1, rs2, rs3
and two master segments ∂Ω1, ∂Ω2 d – zoom on three constructed contact
elements Ωc

1, Ω
c
2, Ω

c
3 .

The function F is a linear function of the variations {δgn}ij, {δgt}ij, {δσn}ij, {δσt}ij,
which can be presented as follows (in the following layouts, indices will be
omitted)

F = Fgn
δgn + Fġt

· δgt + Fσn
δσn + Fσt

· δσt = [Fgn
, F ġt

, Fσn
, Fσt

] ·




δgn

δgt

δσn

δσt




(5.17)

on the other hand

gn = gn(rs,ρ), gt = gt(rs,ρ), rs = xi
j, ρ ∈ ∂Ω

i,

representing ρ by nodal values ρi and shape functions φi( ξ∼), ξ∼ ∈ ∂Ω̃
i

[
rs(t)

ρ(t, ξ∼) = ρi(t) · φi( ξ∼)

]
⇒

[
δrs(t)

δρ(t, ξ∼) = δρi(t) · φi( ξ∼)

]
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Figure 5.13: 3D contact element based on a quadratic master surface. The
complementary node for Lagrange multipliers is marked with a green triangle.
The projection of the slave node (big red circle) is marked by a star .

The variations of the geometrical quantities can be presented, as it was done
in Section 2.4

δgn = [∇r gn, ∇ρgn] ·
[
δrs
δρi

]T

, δgt = [∇r gt, ∇ρgt] ·
[
δrs
δρi

]T

In general case, contact stresses are also split over dual shape functions ψi( ξ∼),
i.e.

σn(t, ξ∼) = σi
n(t)ψi( ξ∼), σt(t, ξ∼) = σi

t(t)ψi( ξ∼)

5.3.3 Discretization of the contact interface

Both shape functions for geometry φi( ξ∼) and for contact stresses ψi( ξ∼) have
to be chosen such that Babuška-Brezzi conditions (BB-conditions or also
called inf-sup conditions) are fulfilled. It does not present any difficulties
for small deformations and small sliding when contacting surface have
matching nodes (node-to-node discretization). For nonconforming meshes the
mortar method (based on Lagrange multipliers) and Nitsche method (purely
displacement based) are commonly used approaches, which provide a stable
discretization. Mortar approach was first applied in the framework of
the domain decomposition methods to “glue” the solution on the interface
of non-matching meshes corresponding to different subdomains. For an
extensive mathematical description, the reader is referred to the book of

231



5.3 Finite Element Method

Figure 5.14: 3D contact element of Fig. 5.13 presented at two consecutive time
steps t (transparent) and t + δt. Variational vectors are depicted as well as the
variation of the main geometrical quantities: the convective surface parameter
and the normal gap .

Wohlmuth [Wohlmuth 01] and references in it. For application to contact
problems, see [Belgacem 98]. Further development originates to works due
to McDevitt and Laursen [McDevitt 00], Puso [Puso 04], Puso and Laursen
[Puso 03]. More recently, one retains contributions for two dimensional
frictionless [Fischer 05] and frictional contact [Yang 05], [Fischer 06] and for
three dimensional frictional contact [Yang 08b]. However, such a discretization
requires the establishment of a segment-to-segment discretization as proposed
by Simo, Wriggers and Taylor [Simo 85], see also [Zavarise 98], [Wriggers 06],
which is a particularly complicated task for arbitrary contacting meshes in
three dimensional contact problems. Another idea – the contact domain method
– proposed recently by Oliver, Hartmann, et al. [Oliver 09], [Hartmann 09]
consists in replacing the integral over the surface by an integral over the interior
of the contact interface. A three dimensional version has been proposed by
authors in [Oliver 10]. However, a three dimensional version requires the
triangulation of the volume between two arbitrary contacting surfaces, which
is not always possible.

Here we consider a simple but rather robust, widely used and multi-
purpose node-to-segment discretization (NTS), so there is no freedom in the
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choice of the discretization for the contact stresses: the contact stress within
master segments is restricted to a constant value, i.e. ψi( ξ∼) = 1 and
σn(t, ξ∼) = σn(t), σt(t, ξ∼) = σt(t). Note that this discretization does not fulfill
the BB-conditions and so can exhibit locking, moreover, as is well known, NTS
discretization fails the patch test – contact interface for nonconforming meshes
cannot transfer uniform pressure see Taylor and Papadopoulos [Taylor 91]. On
the other hand, in the same article, the authors demonstrated that in case of
the Lagrange multiplier method and a sufficient number of slave nodes, the
“two-pass” NTS approach is able to transfer correctly the uniform pressure,
i.e. passes the patch test. Recently Zavarise and De Lorenzis [Zavarise 09a]
proposed a modified NTS discretization passing the patch test for the penalty
method.

5.3.4 Virtual work for discretized contact interface

According to all forementioned, the integrand of one contact element writes as

F = [Frs
F
∼ ρ

Fσn
Fσt

] ·




δrs
δρ

δσn

δσt



∼ F =




F
∼ x

F∼λ




T

◦
·




δx
∼

δλ∼



, (5.18)

where x
∼

is a v-vector containing the actual vectors of all geometrical nodes of

the contact element
{

M+1

1 S
D

1

}
∋ x
∼
∼

[
rs ρ1

ρ
2
. . . ρ

M

]T
.

M is the number of master nodes, D is a dimension of the contact problem.
Any point on the master surface is then determined by

∂Ω ∋ ρ = φ
∼

(0, ξ∼) ◦ x
∼
, (5.19)

where φ
∼

( ξ∼) is a v-scalar of the contact element shape functions constructed as

{
M+1

1 S
3

0

}
∋ φ
∼

(ζ, ξ∼) ∼
[
ζ φ1( ξ∼) φ2( ξ∼) . . . φM( ξ∼)

]T

Then, for example
gnn = −φ

∼
(−1, ξ∼π) ◦ x

∼
,

where ξ∼π is a normal projection point of the slave node on the master surface.
Further, λ∼ is a v-scalar containing Lagrange multipliers (contact stresses): the
normal contact pressure and the contravariant coordinates of the tangential
contact stress vector in the local surface basis are

{
D

0S
D

0

}
∋ λ∼ ∼

[
σn σt∼

]T
=

[
λn λ∼ t

]T
, λ∼ t ◦

∂ρ

∂ξ∼
= σt
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5.3 Finite Element Method

Due to the large number of s-structures of different dimensions

ξ∼ , λ∼ t, σt∼ ∈
{

D−1

0 S
D

0

}
, λ∼ , F∼λ ∈

{
D

0S
D

0

}
, x
∼
,F
∼ x ∈

{
M+1

1 S
D

1

}

all computations should be carried out carefully. The remaining terms F∼λ
and F
∼ x in (5.18) are v-vector and v-scalar corresponding to forces acting on

the virtual geometrical displacements δx
∼

and “forces” acting on the virtual

Lagrange multiplier stresses (contact stresses) respectively. Finally, in new
notations, from (5.16), the integral contribution of the i-th contact element to
the total virtual work becomes

δWc
i =

∫

∂Ωi

[
F
∼ x F∼λ

]
◦
·



δx
∼
δλ∼


 d∂Ωi =

[ ∫

∂Ωi

F
∼ x d∂Ωi

∫

∂Ωi

F∼λ d∂Ωi

]
◦
·



δx
∼
δλ∼


 ,

(5.20)
Let us demonstrate that in terms of the Finite Element Method the left term in
(5.20) is a kind of residual vector and the right term is a kind of vector of dofs.
For that, we consider a spatial basis e

∼

e
∼
∼

[
e1 . . . eD

]

Then the dot product of e
∼

components ek, k = 1,D with v-vectors from (5.20)

provides the components of the scalar residual vector
∫

∂Ωi

(
F
∼ x · ek

)
d∂Ωi = R∼

k

x
∼ [Ri

x]k+ j×D ∈ R(M+1)×D, j ∈ [1,M + 1],

δx
∼
· ek ∼ δ[xi]k+ j×D ∈ R(M+1)×D, j ∈ [1,M + 1]

∫

∂Ωi

F∼λ d∂Ωi = R∼ λ ∼ [Ri
λ] ∈ RD, δ λ∼ ∼ δ[λi] ∈ RD

(5.21)

and the full residual vector [Ri] of the i-th contact element and vector of its
unknown [xi] take the form

RM+D+1 ∋ [Ri] =
[
Ri

x

Ri
λ

]
, RM+D+1 ∋ [xi] =

[
δxi

δλi

]

This expression is given simply to have a link with classical notations of the
Finite Element Method.

We remind that the form of F
∼ x and F∼λ depends on the resolution method

and will be given in the following parts. Now let us assemble all contributions
to the virtual work balance equation. Here we will focus on the contact
elements and so the contribution of all structural finite elements will not
be derived in closed form. All necessary routines can be found in books
on Finite Element Method for solid mechanics: Zienkiewicz and Taylor

234



Chapter 5. Numerical procedures

[Zienkiewicz 00a], [Zienkiewicz 00b], Chrisfield [Crisfield 00a], [Crisfield 00b],
Bathe [Bathe 96], Belytschko et al. [Belytschko 08] and others. Let us denote
by δWs

j
the contribution to the virtual work of the j-th structural element. To

enforce equilibrium conditions we require the total virtual work on solution
path to be zero

Ne∑

j=1

δWs
j +

S∑

i=1

δWc
i = 0. (5.22)

Ne is the total number of structural elements and S is the number of contact
elements and at the same time the number of slave nodes included in the contact
elements. This equation can be presented as a set of ≈ Nn +S vector equations,
where Nn is a number of free nodes. The sign ≈ expresses that Dirichlet
boundary conditions can be imposed on any components of a displacement
vector, so that the number of algebraic equations in (5.22) is equal to the
number of free degrees of freedom Ndof plus the number of contact elements
multiplied by the dimension of the problem SD. If Lagrange multiplier or
coupled augmented Lagrangian methods are used, in case of use of penalty
method or augmented Lagrangian with Uzawa’s algorithm, the number of
equations in (5.22) reduces to Ndof

Ne∑

j=1

δWs
j +

S∑

i=1

δWc
i = 0 ∼

[
Rs

x + Rc
x Rλ

]
δ

[
x
λ

]
= 0, (5.23)

Rs
x is a dense3 residual vector related to structural elements, Rs a sparse residual

vector related to the contact elements, Rs
i

may be nonzero if the i-th dof belongs

to one node of the contact elements. x,Rc
x,R

s, x ∈ RNdof
and λ,Rc

λ
∈ RSD. Since

virtual displacements and virtual Lagrange multipliers are arbitrary, Eq. (5.23)
can be satisfied only if [

Rs
x + Rc

x

Rc
λ

]
= 0 (5.24)

This is a set of Ndof + SD algebraic nonlinear equations, the nonlinearity is
preserved: even if in the structural part the condition Rs

x = 0 appears to be a set
of linear algebraic equations, the contact problem is still nonlinear. Therefore
a solution technique for nonlinear equations has to be applied, for example,
Newton’s method discussed in Section 5.1. Hence the linearization of this
system of equations is required.

5.3.5 Linearization of equations

Newton’s method and its generalization for nonsmooth problems have been
discussed in Section 5.1. In this paragraph, this method will be applied for a
system of nonlinear algebraic Eq. (5.23) derived in the previous paragraph. We
assume that the solution {uk, λk} for given boundary conditions fk at time step

3here, dense vector in the sense that all components may be nonzero.
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5.3 Finite Element Method

tk is given either as initial condition or as solution of the k-th increment.
[
Rs

x(xk, fk) + Rc
x(xk, λk)

Rc
λ
(xk, λk)

]
≈ 0, (5.25)

At time step tk+1, a change of boundary conditions fk+1 = fk + ∆ fk makes
the system loose its equilibrium state. So we establish an iterative procedure
0, 1, 2, . . . , i and we wish that the sequence {ui, λi} converges to the solution
{uk+1, λk+1}which returns the system to equilibrium for the new given boundary
conditions fk+1. According to Newton’s method, the iteration increment is
given by




∆xi

∆λi


 = −




∂Rs
x

∂x +
∂Rc

x

∂x

∂Rc
λ

∂x

∂Rc
x

∂λ

∂Rc
λ

∂λ




∣∣∣∣∣∣∣∣∣

−1

{xi,λi, fn+1}




Rs
x(xi, fk+1) + Rc

x(xi, λi)

Rc
λ
(xi, λi)


 , (5.26)

and the corresponding update rule is given by

xi+1 = xi + ∆xi, λi+1 = λi + ∆λi

The structural tangent matrix is denoted by ∂Rs
x

∂x = Ks and we are particularly
interested in this remaining terms which can be called tangent contact matrix

[
Ks 0
0 0

]
+




∂Rc
x

∂x

∂Rc
λ

∂x

∂Rc
x

∂λ

∂Rc
λ

∂λ



=

[
Ks + Kc

xx Kc
λx

Kc
xλ

Kc
λλ

]

The full tangent contact matrix is an assembly of contact element stiffness
[
Kc

xx Kc
λx

Kc
xλ

Kc
λλ

]
=

S⋃

i=1

[
Kci

xx Kci
λx

Kci
xλ

Kci
λλ

]

Returning to (5.20), we can express all the terms of the elementary tangent
contact matrix through derivatives of v-vector F

∼ x and v-scalar F∼λ, so

[
Kci

xx Kci
λx

Kci
xλ

Kci
λλ

]
∼




∫

∂Ωi

[
∂F
∼ x

∂x
∼

]
d∂Ωi

∫

∂Ωi

[
∂F∼λ
∂x
∼

]
d∂Ωi

∫

∂Ωi

[
∂F
∼ x

∂λ∼

]
d∂Ωi

∫

∂Ωi

[
∂F∼λ
∂λ∼

]
d∂Ωi




So, to integrate contact into the resolution, it remains only to precise the form
of the functions

F
∼ x, F∼λ

and to evaluate their derivatives

∂F
∼ x

∂x
∼
,
∂F∼λ
∂x
∼
,
∂F
∼ x

∂λ∼
,
∂F∼λ
∂λ∼
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5.3.6 Example

Here we give a simple example of the procedure of tangent matrix construction
for a mechanical problem with contact. Let us consider two structural elements
Ω1 and Ω2 (Fig. 5.15) which come in contact. A constant pressure is imposed
on the upper segment between nodes 1 and 3. Nodes 6 and 7 are fixed so they
are not included in the computations. The tangent stiffness matrix for such a
configuration has the form presented in Fig. 5.15,a. The detection procedure
determines that the slave node 2 may come in contact with the master segment
between nodes 4 and 5. So the contact element 2− 4− 5 with a complementary
node 8 for the Lagrange multipliers is constructed and added to the global
tangent stiffness matrix (Fig. 5.15,b.)

Figure 5.15: Example of tangent matrix: a – structural matrix Ks for two
elements Ω1, Ω2 and given boundary conditions, b – contribution of the
contact element (spanned on slave node 2 and master segment 4 − 5 with a
complementary node 8 for Lagrange multipliers) to the tangent matrix .
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5.4 Residual vectors and tangent matrices

5.4 Residual vectors and tangent matrices for contact

elements

Residual vectors and tangent contact matrices for different resolution methods
will be derived in this section. All necessary integrals have been formulated in
Chapter 4 and all geometry related variations have been derived in Chapter 2.
Here it remains to give closed forms for

R
∼

c
x,R∼

cλ and K
=≈

c
xx,K=≈

c
λx,K=≈

c
xλ,K=≈

c
λλ

These vectors and matrices will be given for arbitrary discretization forms for
penalty method (linear penalty) and coupled augmented Lagrangian method.

5.4.1 Penalty method: frictionless case

Residual vector

The virtual work due to frictionless contact was given in (4.79) for continuous
problems. In the Finite Element framework the contribution of the i-th NTS
(node-to-segment) contact element for the linear penalty method writes as

δWc
i =

∫

∂Ωi

−εn〈−gn〉δgn d∂Ωi, (5.27)

according to (2.99) the variation of the normal gap can be presented as δgn =[∇gn
]T · δ[x] or in s-structure notations

δgn = G
∼

( ξ∼π) ◦· δx
∼
,

where ξ∼π is the projection of the slave node on the master surface and G
∼

is a

v-vector of first variation of the normal gap δgn given in (2.99). So Eq. 5.27
takes the form

δWc
i =

∫

∂Ωi

−εn〈−gn〉G∼
( ξ∼π) ◦· δx

∼
d∂Ωi =




∫

∂Ωi

F
∼ x d∂Ωi



◦
· δx
∼
= [Rc

x]T[δxi]. (5.28)

Consequently F
∼ x is given as

F
∼ x = −εn〈−gn〉G∼

( ξ∼π).

The integral of F
∼ x over the master surface ∂Ωi can be simply evaluated since

the integrand does not depend on the surface parameter ξ∼
∫

∂Ωi

F
∼ x d∂Ωi = −

∫

∂Ωi

εn〈−gn〉 d∂Ωi G
∼

( ξ∼π) = Pn G
∼

( ξ∼π), (5.29)
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where the first term is nothing but a normal contact force Pn computed on the
i-th iteration configuration

Pn = F · n =
∫

∂Ωi

−εn〈−gn〉 d∂Ωi.

Finally the residual v-vector is given by

R
∼

c
x = Pn G

∼
( ξ∼π).

Tangent contact matrix

To evaluate the elemental tangent contact matrix, it is necessary to take a partial
derivative of the v-vector F

∼ x

∂F
∼ x

∂x
∼
=



εn
∂gn

∂x
∼
⊠

⊗G
∼
+ εngnH

=≈
, gn < 0

0, gn ≥ 0

where all geometry related s-structures come from connections between the
variation of the geometrical quantities and the nodal coordinate vectors

δgn =
∂gn

∂x
∼
· δx
∼
= G
∼
· δx
∼

and ∆δgn = ∆x
∼
·
∂2gn

∂x
∼

2
· δx
∼
= ∆x
∼
·H
=≈
· δx
∼
.

These s-structures have been derived in Section 2.4. In general form we get

∂F
∼ x

∂x
∼
=



εnG
∼
⊠

⊗G
∼
+ εngnH

=≈
, gn < 0

0, gn ≥ 0
.

Integrating over the master surface gives

∫

∂Ωi

∂F
∼ x

∂x
∼

d∂Ωi = εnG
∼
⊠

⊗G
∼
∂Ωi + PnH

=≈
.

This expression can be interpreted as a tangent contact t-tensor K
=≈

c
xx

K
=≈

c
xx = εnG

∼
⊗G
∼
∂Ωi + PnH

=≈
, gn < 0

or in a slightly different form

K
=≈

c
xx = εn∂Ωi

[
G
∼
⊗G
∼
− 〈−gn〉H=≈

]
, gn < 0
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5.4.2 Penalty method: frictional case

In case of frictional contact, we have to distinguish stick and slip states, since
residual vector and stiffness matrix are different in each case. The virtual work
due to frictional contact was given in expanded form (4.79) for continuous
problem. In the Finite Element framework contribution of the i-th NTS (node-
to-segment) contact element for linear penalty method writes as

δWc
i =



∫

∂Ωi

−εn〈−gn〉
(
δgn − µs · δgt

)
d∂Ωi, slip

∫

∂Ωi

εn〈−gn〉δgn + εtgt
• · δgt d∂Ωi, stick

(5.30)

from (2.99) and (2.102) we get

δgn =
[∇gn

]T ·δ[x], δgt =
∂ρ

∂ξ1
δξ1+

∂ρ

∂ξ2
δξ2 =


∂ρ

∂ξ1

[
∇ξ1

]T
+
∂ρ

∂ξ2

[
∇ξ2

]T

·δ[x]

In s-structure notations these formulae can be rewritten as

δgn = G
∼

( ξ∼π) · δx
∼
, δgt =

∂ρ

∂ξ∼
◦ δξ∼ =

∂ρ

∂ξ∼
◦ T
≈
· δx
∼
,

where T
≈

is a v-v-vector (two v-vectors gathered together in a v-structure). In

these notations the integral in (5.31) takes the form

δWc
i =





∫

∂Ωi

−εn〈−gn〉


G
∼

( ξ∼π) − µs ·
(
∂ρ

∂ξ∼
◦ T
≈

)∣∣∣∣∣∣
ξ∼π


 d∂Ωi


 · δx
∼
, slip



∫

∂Ωi

−εn〈−gn〉G∼
( ξ∼π) + εtgt

• ·
(
∂ρ

∂ξ∼
◦ T
≈

)∣∣∣∣∣∣
ξ∼
•

d∂Ωi


 · δx
∼
, stick

(5.31)

Note that the term
∂ρ

∂ξ∼
T
≈

is evaluated at different points: in case of stick at point

ξ∼
• and in case of slip at the current projection point ξ∼π (see also Remark 9.2 in

[Wriggers 06]). This difference can be explained schematically if we assume
that in the contact interface there are rigid bars hinged to the master segment
by a nonlinear circular spring (fig. 5.16). The slave node, penetrating under
the surface at |gn|, is assumed to be in contact with this bar, so the tangential
movement of the slave produces a rotation of the bar (angle φ) such as

|gt| = |gn| tanφ.

A resulting force Ft
Ft = εt|gt| = εt|gn| tanφ

acts on the slave node and on the hinge of the bar. If the external force is
removed, then the slave node unloads the bar and returns to the stick position.
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According to Coulomb’s law, the tangential resistance is limited by the normal
force multiplied by the friction coefficient

Ft = µFn = µεn|gn| ⇔ Ft = εt|gn| tanφ∗ = µεn|gn| ⇒ φ∗ = arctan
(µεn

εt

)

This critical angle φ∗ determines the length of the bar

l =
gn

cosφ∗
=

gn

√
µ2ε2

n + ε
2
t

εt
.

When the critical angle is reached, the slave node jumps from the current bar
to the next one (see Fig. 5.17), which results in a new distribution of forces in
the master slave interface. Formally, this interpretation is valid only for the
stick state. Remark that the fact that slave node penetrates under the master
surface and slides over stick point results in appearance of a momentum.

Figure 5.16: Rigid bar hinged by a spring to the master segment and its
interaction with a slave node.

Residual vector

Since in the integral (5.31) the integrands do not depend on the convective
coordinate ξ∼ , the evaluation of the residual v-vector is straightforward

R
∼

c
x =



Pn


G
∼

( ξ∼π) − µs ·
(
∂ρ

∂ξ∼
◦ T
≈

)∣∣∣∣∣∣
ξ∼π


 , slip

PnG
∼

( ξ∼π) + Ft ·
(
∂ρ

∂ξ∼
◦ T
≈

)∣∣∣∣∣∣
ξ∼
•
, stick

(5.32)
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5.4 Residual vectors and tangent matrices

Figure 5.17: Representation of tangential interaction of the slave node with a
master, as interaction with a set of rigid bars hinged to the master segment by
a spring: a-b-c – stick state, d – slip.

where normal and tangential contact forces are Pn =
∫

∂Ωi

−εn〈−gn〉 d∂Ωi and

Ft =
∫

∂Ωi

εtgt
• d∂Ωi respectively.

Making use of the return mapping algorithm (see Section 5.2) leads to the
following scheme. We make a start from the evaluation of the contact pressure
for a given displacement field

σk+1
n = −εn〈−gk+1

n 〉 ⇒ Pk+1
n = −εn〈−gk+1

n 〉∂Ωi, (5.33)

(let us remind that the lower index i denotes the i-th contact element, and the
upper indices k, k + 1 denote solution increments) further the trial tangential
contact force in stick is computed as

Ftrial
t = Fk

t +

∫

∂Ωi

εt

∂ρ

∂ξ∼

k+1

◦ ( ξ̄∼
k+1 − ξ̄∼

k) d∂Ωi = εt∂Ωi( ξ̄∼
k+1 − ξ̄∼

• k) ◦
∂ρ

∂ξ∼

k+1

, (5.34)

where ξ̄∼
• k is the convective covariant coordinate of the stick point for k-th
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increment. Further, we check if this trial force is inside the Coulomb’s cone

‖Ftrial
t ‖ ≤ µ|P

k+1
n |.

If not, then the trial force has to be corrected. According to Eq. (5.8), the
tangential contact force writes

Fk+1
t = Ftrial

t −
∫

∂Ωi

εt〈∆γk〉sk
t d∂Ωi

where

sk
t =

Ftrial
t

‖Ftrial
t ‖

(5.35)

〈∆γk〉 =
〈‖σtrial

t ‖ − µ|σk+1
n |〉

εt

The integral of the slip ∆γk is
∫

∂Ωi

〈∆γk〉 d∂Ωi =
〈‖Ftrial

t ‖ − µ|Pk+1
n |〉

εt

The stick point is updated according to the simple rule

ξ̄∼
• {k+1}

= ξ̄∼
• k
+ ∆γk s∼

k
t ,

where s∼
k
t is the v-scalar of covariant coordinates of the sliding vector

s∼
k
t = sk

t ·
∂ρ

∂ξ∼
Finally we get the following return mapping scheme


Fk+1

t = Ftrial
t , ξ̄∼

• {k+1}
= ξ̄∼

• k, ‖Fk+1
t ‖ ≤ µ|P

k+1
n |, stick

Fk+1
t = µ|Pk+1

n |sk
t , ξ̄∼

• {k+1}
= ξ̄∼

• k
+ ∆γk s∼

k
t , ‖Fk+1

t ‖ > µ|P
i+1
n |, slip

(5.36)

Expressing the tangential force for stick in the contravariant basis gives the
following expressions (it seems to be more advantageous for the following
linearization to retain vector form for tangential slip sk

t )


Fk+1
t =


Ftrial

t ·
∂ρ

∂ξ∼

k+1 ◦
∂ρ

∂ξ∼

k+1

= F∼
trial
t ◦

∂ρ

∂ξ∼

k+1

, stick

Fk+1
t = µ|Pk+1

n |sk
t , slip

(5.37)

According to the definition of the updated normal contact force (5.33) and the
trial tangential contact force (5.34), we get



Fk+1
t = εt∂Ωi( ξ̄∼

k+1 − ξ̄∼
• k) ◦

∂ρ

∂ξ∼

k+1

, stick

Fk+1
t = µεn∂Ωi〈−gk+1

n 〉sk
t , slip

(5.38)
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For the following linearization, we derive here the variation of the sliding unit
vector sk

t ; from its definition (5.35) we get

sk
t =

Ftrial
t

‖Ftrial
t ‖
=

Ftrial
t√

Ftrial
t · F

trial
t

⇒ ∆sk
t =

(
I
=
− sk

t ⊗ sk
t

)
·
∆Ftrial

t

‖Ftrial
t ‖

(5.39)

If the unity tensor is presented as

I
=
= n ⊗ n + s̃k ⊗ s̃k + sk

t ⊗ sk
t ,

where s̃k is an in-plane unit vector orthogonal to the sliding direction, since
we have to take a dot product of the slip vector variation with in-plane basis
vectors (see (5.32)), we can neglect the normal components n ⊗ n, then the
expression (5.39) can be rewritten as

∆sk
t = s̃k ⊗ s̃k ·

∆Ftrial
t

‖Ftrial
t ‖

, (5.40)

where the variation of the tangential trial force follows from (5.34)

∆Ftrial
t = εt∂Ωi∆ ξ̄∼

k+1 ◦
∂ρ

∂ξ∼

k+1

+ εt∂Ωi( ξ̄∼
k+1 − ξ̄∼

• k) ◦ ∆
∂ρ

∂ξ∼

k+1

, (5.41)

If we represent the unit vector s̃k in the covariant basis

s̃k =


s̃k ·

∂ρ

∂ξ∼

k+1 ◦
∂ρ

∂ξ∼

k+1

= s̃∼
k ◦

∂ρ

∂ξ∼

k+1

,

the variation of the sliding vector takes a simpler form

∆sk
t =

εt∂Ωi

‖Ftrial
t ‖

s̃∼
k ◦


∆ ξ̄∼

k+1
+
∂ρ

∂ξ∼

k+1

⊠

· ∆
∂ρ

∂ξ∼

k+1

◦ ( ξ̄∼
k+1 − ξ̄∼

• k)


 s̃∼

k ◦
∂ρ

∂ξ∼

k+1

. (5.42)

Since the variation of the contravariant basis is a complicated task, we express
it by means of the variation of the covariant basis vectors

∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼
= I≈ ⇒ ∆

∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼
+
∂ρ

∂ξ∼
⊠

· ∆
∂ρ

∂ξ∼
= 0 ⇔

∂ρ

∂ξ∼
⊠

· ∆
∂ρ

∂ξ∼
= −∆

∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼

Omitting increment indices in the expression (5.42), we finally get

∆st =
εt∂Ωi

‖Ftrial
t ‖

s̃∼ ◦


∆ ξ̄∼ − ∆

∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼
◦ ( ξ̄∼ − ξ̄∼

•)


 s̃∼ ◦

∂ρ

∂ξ∼
, (5.43)
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Tangent contact matrix

To evaluate the elementary tangent contact matrix, it is necessary to take a
partial derivative of the residual v-vector R

∼
c
x from (5.32), however it is more

convenient to start from the variation of the virtual work ∆δWc
i

∆δWc
i = ∆Pnδgn + Pn∆δgn + ∆Ft · δgt + Ft · ∆δgt (5.44)

Since the normal contact force Pn is a function of the normal gap gn, its derivative
is evaluated as follows

Pn =

∫

∂Ωi

−εn〈−gn〉 d∂Ωi ⇒ ∆Pn =



∫

∂Ωi

εnG
∼
· δx
∼

d∂Ωi, gn < 0;

0, gn ≥ 0

and by replacing the integral

∆Pn = δx
∼
◦
·

[
εn∂Ω

iG
∼

]
, gn < 0

Substituting of the last expressions into (5.44) and considering the first two
terms gives

∆Pnδgn + Pn∆δgn = δx
∼
◦
·

[
εn∂Ω

i

(
G
∼
⊠

⊗G
∼
− 〈−gn〉H=≈

)]
◦
· ∆x
∼

(5.45)

Instead of the variation of the tangential force, a dot product with the
tangential sliding should be considered, slip and stick have to be also
distinguished.

∆(Ft · δgt),

where

δgt =
∂ρ

∂ξ∼
◦ δξ∼

according to (5.38) (increment indices are omitted) we get


Ft · δgt = εt∂Ωi( ξ∼ − ξ∼
•) ◦ δξ∼ , stick

Ft · δgt = µεn∂Ωi〈−gn〉st ·
∂ρ

∂ξ∼
◦ δξ∼ , slip

(5.46)

The variation of these expressions results in the following

∆(Ft · δgt) = εt∂Ωi∆ ξ∼ ◦ δξ∼ + εt∂Ωi( ξ∼ − ξ∼
•) ◦ ∆δ ξ∼ , stick (5.47)

∆(Ft · δgt) = −µεn∂Ωi∆gnst ·
∂ρ

∂ξ∼
◦ δξ∼ + µεn∂Ωi〈−gn〉∆st ·

∂ρ

∂ξ∼
◦ δξ∼+

+ µεn∂Ωi〈−gn〉st · ∆
∂ρ

∂ξ∼
◦ δξ∼ + µεn∂Ωi〈−gn〉st ·

∂ρ

∂ξ∼
◦ ∆δ ξ∼ , slip, gn < 0

(5.48)
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The expression for stick appears directly in a convenient form, whereas the slip
expression requires additional computations. Carrying (5.34), the first right
hand term in (5.48) becomes

− µεn∂Ωi∆gnst ·
∂ρ

∂ξ∼
◦ δξ∼ = −

µεnεt∂Ω2
i

‖Ftrial
t ‖

∆gn( ξ∼ − ξ∼
•) ◦ δξ∼ (5.49)

Using (5.43) allows to expand the second term in (5.48)

µεn∂Ωi〈−gn〉∆st·
∂ρ

∂ξ∼
◦δξ∼ = 〈−gn〉

µεnεt∂Ω2
i

‖Ftrial
t ‖

s̃∼◦


∆ ξ∼ − ∆

∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼
◦ ( ξ∼ − ξ∼

•)


 s̃∼◦A≈ ◦δξ∼
(5.50)

Expansion of the third term in (5.48) follows directly from substituting (5.34)
for the unit sliding vector

µεn∂Ωi〈−gn〉st · ∆
∂ρ

∂ξ∼
◦ δξ∼ = 〈−gn〉

µεnεt∂Ω2
i

‖Ftrial
t ‖

( ξ∼ − ξ∼
•) ◦

∂ρ

∂ξ∼
⊠

· ∆
∂ρ

∂ξ∼
◦ δξ∼ (5.51)

The same procedure for the last term in (5.48) yields

µεn∂Ωi〈−gn〉st ·
∂ρ

∂ξ∼
◦ ∆δ ξ∼ = 〈−gn〉

µεnεt∂Ω2
i

‖Ftrial
t ‖

( ξ∼ − ξ∼
•) ◦ ∆δ ξ∼ (5.52)

The variation of the basis vectors can be expressed directly through the
variation of the nodal coordinate vectors if one makes use of (5.19)

ρ = φ
∼

(0, ξ∼) ◦ x
∼
⇒ ∆

∂ρ

∂ξ∼
=

∂φ
∼

(0, ξ∼)

∂ ξ∼
◦ ∆x
∼

(5.53)

Together with (5.53), we use the following expressions

δgn = G
∼
◦
· δx
∼
, δξ∼ = T

≈
◦
· δx
∼
, ∆ ξ∼ = T

≈
◦
· ∆x
∼
, ∆δ ξ∼ = ∆x

∼
◦
· S=≈∼

◦
· δx
∼
, (5.54)

where S
=≈∼

is a v-t-tensor (precisely two t-tensors gathered in v-vector) connecting

nodal variation vectors with the second variation of the convective coordinate
v-scalar

∆δ ξ∼ = ∆x
∼
◦
· S=≈∼

◦
· δx
∼

;

all expressions for G
∼
, T
≈
, H
=≈

and S
=≈∼

can be found in Section 2.4 in Eq. (2.99),

(2.102), (2.105) and (2.111) respectively. Careful grouping of terms in (5.49)–
(5.52) and substituting of (5.53) and (5.54) leads to the following expression for
the variation of the tangential part for stick and slip
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Stick

∆(Ft · δgt) = ∆x
∼
◦
·


εt∂Ωi


T
≈
◦
⊠

⊗T
≈
+ ( ξ∼ − ξ∼

•) ◦ S
=≈∼






◦
· δx
∼ (5.55)

Slip

∆(Ft · δgt) = ∆x
∼
◦
·



µεnεt∂Ω2

i

‖Ftrial
t ‖

{
−G
∼
⊠

⊗T
≈
◦ ( ξ∼ − ξ∼

•)+

+ 〈−gn〉


 s̃∼ ◦ T

≈
⊠

⊗T
≈
◦ A≈ ◦ s̃∼ − s̃∼ ◦

∂φ
∼
∂ ξ∼
⊠

∂ρ

∂ξ∼

◦
⊗ ( ξ∼ − ξ∼

•) s̃∼ ◦ A≈ ◦ T
≈
+

+ ( ξ∼ − ξ∼
•) ◦

∂ρ

∂ξ∼
⊠

⊗

∂φ
∼
∂ ξ∼
◦ T
≈
+ ( ξ∼ − ξ∼

•) ◦ S
=≈∼








◦
· δx
∼

(5.56)

Grouping of (5.45) with (5.55) or (5.56) and getting rid of nodal variations
gives the tangential contact t-tensor for stick and slip states respectively

K
=≈

c stick
xx = εn∂Ω

i

(
G
∼
⊠

⊗G
∼
− 〈−gn〉H=≈

)
+ εt∂Ωi


T
≈
◦
⊠

⊗T
≈
+ ( ξ∼ − ξ∼

•) ◦ S
=≈∼


 (5.57)

and

K
=≈

c slip
xx = εn∂Ω

i

(
G
∼
⊠

⊗G
∼
− 〈−gn〉H=≈

)
+
µεnεt∂Ω2

i

‖Ftrial
t ‖

{
−G
∼
⊠

⊗T
≈
◦ ( ξ∼ − ξ∼

•) +

+ 〈−gn〉


 s̃∼ ◦ T

≈
⊠

⊗T
≈
◦ A≈ ◦ s̃∼ − s̃∼ ◦

∂φ
∼
∂ ξ∼
⊠

∂ρ

∂ξ∼

◦
⊗ ( ξ∼ − ξ∼

•) s̃∼ ◦ A≈ ◦ T
≈
+

+ ( ξ∼ − ξ∼
•) ◦

∂ρ

∂ξ∼
⊠

⊗

∂φ
∼
∂ ξ∼
◦ T
≈
+ ( ξ∼ − ξ∼

•) ◦ S
=≈∼





(5.58)
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5.4.3 Augmented Lagrangian method: frictionless case

Residual vector

Virtual work due to frictionless contact was given in (4.117) for continuous
problems. The significant difference of the coupled augmented Lagrangian
method from Lagrange multiplier and penalty methods is that all constructed
contact elements contribute to the virtual work of the system independently if
the gap between slave node and master segment is open or closed, i.e. contact
element is inactive or active. This fact ensures the smoothness of the energy
potential and the continuity of the virtual work. However, as was shown on
a simple example in Paragraph 4.7.3, the inactive contact elements increase
significantly the condition number of the tangent matrix of the system. That is
why the less useless contact elements have been formed during the detection
step, the better it is for the resolution step. So a careful detection procedure is
highly recommended, especially for the augmented Lagrangian method.

Remark that the difference between frictional (containing several
complementary degrees of freedom for Lagrange multipliers) and frictionless
(containing only one complementary degree of freedom) contact elements
should be made at the stage of their creation to accelerate the solution.

Below the contribution to the virtual energy of the i-th NTS contact element
is given for contact and non-contact status respectively

δWc
i =



∫

∂Ωi

λ̂nδgn + gnδλn d∂Ωi, λ̂n ≤ 0
∫

∂Ωi

− 1
εn
λnδλn d∂Ωi, λ̂n > 0

(5.59)

We remind that the hat denotes the augmented Lagrange multipliers

λ̂n = λn + εngn

As previously the variation of the normal gap δgn is replaced by the following
double dot product

δgn = G
∼
◦
· δx
∼

(5.60)

By grouping terms in matrices and replacing the integral by master segment
area we get

δWc
i =





λ̂nG
∼
∂Ωi

gn∂Ωi




T

◦
·



δx
∼

δλn


 , λ̂n ≤ 0




0

−∂Ωi

εn
λn




T

◦
·



δx
∼

δλn


 , λ̂n > 0

The residual v-vector for the primal variables (nodal displacement vectors) and
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the scalar residual component for the only dual variable takes then the forms




λ̂nG
∼
∂Ωi

gn∂Ωi




T

, λ̂n ≤ 0, contact




0

−∂Ωi

εn
λn




T

, λ̂n > 0, non-contact

(5.61)

Tangent contact matrix

To get the elementary tangent contact matrix, we take a variation of the virtual
work of the i-th contact element 5.59

∆δWc
i =



∫

∂Ωi

∆λ̂nδgn + λ̂n∆δgn + ∆gnδλn d∂Ωi, λ̂n ≤ 0
∫

∂Ωi

− 1
εn
∆λnδλn d∂Ωi, λ̂n > 0

(5.62)

As Lagrange multiplier is an independent variable, its second variations
vanishes. Expanding the variation of the augmented Lagrange multiplier

∆λ̂n = ∆λn + εn∆gn

and using the expression for the variation of the normal gap (5.60) we can
extract the tangent matrix from the resulting expression

∆δWc
i =





∆x
∼
∆λn




T

◦
·



εn∂ΩiG∼

⊠

⊗G
∼
+ λ̂nH

=≈
∂ΩiG∼

∂ΩiG∼
0



◦
·



δx
∼

δλn


 , λ̂n ≤ 0



∆x
∼
∆λn




T

◦
·



0 0

0 −∂Ωi

εn


 ◦·



δx
∼

δλn


 , λ̂n > 0

, (5.63)

where H
=≈

is a t-tensor connecting nodal variation vectors with the second

variation of the normal gap

∆δgn = ∆x
∼
◦
· H=≈
◦
· δx
∼

All needed expressions G
∼

and H
=≈

for arbitrary discretization can be found in

Section 2.4. The resulting elemental tangent contact matrices for contact and
non-contact statuses are given below. These matrices are symmetric.

Kc
contact =



εn∂ΩiG∼

⊠

⊗G
∼
+ λ̂nH

=≈
∂ΩiG∼

∂ΩiG∼
0


 , λ̂n ≤ 0, contact (5.64)

Kc
non-contact =

[
0 0
0 −∂Ωi

εn

]
, λ̂n > 0, non-contact (5.65)
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The structure of these matrices can be depicted by blocks

Kc =







∇x∇x

{N ×N}






∇λn∇x

{N × 1}




[
∇x∇λn

{1 ×N}

] [
∇λn∇λn

{1 × 1}

]




(ln + lt) (5.66)

where n×m in each block designates the number of “strings” n and the number
of “columns” m, where in s-structure representation N = D(M+1) and in scalar
representation N = D(M + 1): D is the dimension of the problem and M is the
number of nodes on the master segment, M+1 is a total number of geometrical
nodes of the contact element.

5.4.4 Augmented Lagrangian method: frictional case

Residual vector

The balance of virtual work for frictional contact coming from the variation of
the augmented Lagrangian functional was stated in (4.116). The contribution
of the frictional contact interface extracted from (4.116) being splitted into three
integrals over slip, stick and non-contact zones is stated below

δWc =

∫

Γ1
c
∗

λ̂nδgn + gnδλn − µσ̂n

λ̂t

‖λ̂t‖
· δgt −

1
εt


λt + µσ̂n

λ̂t

‖λ̂t‖


 · δλt dΓ1

c+

+

∫

Γ1
c
•

λ̂nδgn + gnδλn + λ̂t · δgt + gt · δλt dΓ1
c +

∫

Γ1
c\Γc

1

− 1
εn
λnδλn −

1
εt
λt · δλt dΓ1

c

(5.67)

A given contact element can be in one of three states: slip, stick or non-contact.
Depending on the status, its contribution to the virtual work of the system is
given by one of the three possible integrals stated below.

δWc
i =



∫

∂Ωi

λ̂nδgn + gnδλn − µσ̂n
λ̂t

‖λ̂t‖
· δgt − 1

εt

(
λt + µσ̂n

λ̂t

‖λ̂t‖

)
· δλt d∂Ωi, ‖λ̂t‖ > −µσ̂n︸         ︷︷         ︸

slip∫

∂Ωi

λ̂nδgn + gnδλn + λ̂t · δgt + gt · δλt d∂Ωi, ‖λ̂t‖ ≤ −µσ̂n︸         ︷︷         ︸
stick∫

∂Ωi

− 1
εn
λnδλn − 1

εt
λt · δλt d∂Ωi, σ̂n > 0︸ ︷︷ ︸

non-contact
(5.68)
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To extract the residual s-structures, we make use of the relations between
the variation of the nodal coordinate vectors of the contact element and the
corresponding variations of the geometrical quantities: see (5.60) and

δgt =
∂ρ

∂ξ∼
◦ δξ∼ =

∂ρ

∂ξ∼
◦ T
≈
◦
· δx
∼

(5.69)

Further let us replace the sliding direction by ŝ

ŝ =
λ̂t

‖λ̂t‖
, (5.70)

this sliding can be presented in the contravariant basis as well as the augmented
Lagrange multiplier vector corresponding to the tangential contact stress

ŝ =


ŝ ·

∂ρ

∂ξ∼


 ◦

∂ρ

∂ξ∼
= ˆ̄s∼ ◦

∂ρ

∂ξ∼
, λ̂t =


λ̂t ·

∂ρ

∂ξ∼


 ◦

∂ρ

∂ξ∼
= ˆ̄λ∼ t ◦

∂ρ

∂ξ∼
(5.71)

Regardless possible confusions, the Lagrange multiplierλt should be presented
in the contravariant basis and its variation in the covariant one

λt =


λt ·

∂ρ

∂ξ∼


 ◦

∂ρ

∂ξ∼
= λ̄∼ t ◦

∂ρ

∂ξ∼
, δλt = λ∼ t ◦

∂ρ

∂ξ∼
(5.72)

and finally the incremental change of the tangential relative sliding vector is
also given in the contravariant basis

gt ∼ ġt(ti+1 − ti) ⇒ gt = ( ξ̄∼
i+1 − ξ̄∼

i) ◦
∂ρ

∂ξ∼
. (5.73)

Note that this vector should be zero in stick state. Note also that this vector
appears in split of the augmented Lagrange multiplier λ̂t. After substituting
all these expressions into (5.68) and replacing the integral by the area of the
master segment ∂Ωi, we get

δWc
i slip
=




(
λ̂nG
∼
− µσ̂n ˆ̄s∼ ◦ T

≈

)
∂Ωi

gn∂Ωi

−∂Ωi

εt

(
λ̄∼ t + µσ̂n ˆ̄s∼

)




T

◦
·




δx
∼

δλn

δλ∼ t




, ‖λ̂t‖ ≥ σ̂n, σ̂n ≤ 0, slip

δWc
i stick
=




(
λ̂nG
∼
+ ˆ̄λ∼ t ◦ T

≈

)
∂Ωi

gn∂Ωi

( ξ̄∼
i+1 − ξ̄∼

i)∂Ωi




T

◦
·




δx
∼

δλn

δλ∼ t




, ‖λ̂t‖ < σ̂n, σ̂n ≤ 0, stick
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δWc
i non-contact

=




0

−∂Ωiλn

εn

−
∂Ωi λ̄∼ t

εt




T

◦
·




δx
∼

δλn

δλ∼ t




, ‖λ̂t‖ < σ̂n, σ̂n ≤ 0, stick

The left hand matrices in these expressions represent the residual vectors for
slip, stick and non-contact respectively.

Tangent contact matrix

To derive the tangent contact matrix, we start from the variation of the virtual
work contributions arising from one contact element (5.68). Slip, stick and
non-contact states will be considered separately. As Lagrange multipliers are
independent variables, their second variations vanish. It is worth mentioning
that the augmented contact pressure σ̂n = σn + εngn, previously assumed
known, now becomes the unknown variable and is replaced by the augmented
Lagrange multiplier λ̂n = λn + εngn.

Slip

∆δWc
i slip
=

∫

∂Ωi

∆λ̂nδgn + λ̂n∆δgn + ∆gnδλn − µ∆λ̂nŝ · δgt − µλ̂n

∆λ̂t

‖λ̂t‖
·
(

I
=
− ŝ ⊗ ŝ

)
· δgt−

− µλ̂n ˆ̄s∼ ◦ ∆δ ξ∼ −
1
εt
∆λt · δλt −

µλ̂n

εt

∆λ̂t

‖λ̂t‖
·
(

I
=
− ŝ ⊗ ŝ

)
· δλt −

1
εt
µ∆λ̂nŝ · δλt d∂Ωi

(5.74)

Let us get rid of dot products replacing them by s-dot products by means of
the expressions derived in (5.69)–(5.73)

ŝ · δgt = ˆ̄s∼ ◦ δξ∼ ,
∆λ̂t

‖λ̂t‖
·
(

I
=
− ŝ ⊗ ŝ

)
· δgt =

∆ λ̂∼ t

‖λ̂t‖
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ δξ∼

∆λt · δλt = ∆λ∼ t ◦ A≈ ◦ δλ∼ t,
∆λ̂t

‖λ̂t‖
·
(

I
=
− ŝ ⊠ ŝ

)
· δλt =

∆ λ̂∼ t

‖λ̂t‖
◦
(

A≈ − ŝ ⊠ ŝ
)
◦ δλ∼ t

ŝ · δλt = ˆ̄s∼ ◦ δλ∼ t

Expanding of the augmented Lagrange multipliers under the variation sign

δλ̂n = δλn + εnδgn, δλ̂t = δλt + εtδgt ⇔ δ λ̂∼ t = δλ∼ t + εtδ ξ∼
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Now we state the variation of the elemental virtual work in the expanded form

∆δWc
i slip
=

∫

∂Ωi

∆λnδgn + εn∆gnδgn + λ̂n∆δgn + ∆gnδλn − µ∆λn ˆ̄s∼ ◦ δξ∼ − µεn∆gn ˆ̄s∼ ◦ δξ∼−

− µλ̂n

∆λ∼ t

‖λ̂t‖
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ δξ∼ − µλ̂nεt

∆ ξ∼
‖λ̂t‖

◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ δξ∼ − µλ̂n ˆ̄s∼ ◦ ∆δ ξ∼−

− 1
εt
∆λ∼ t ◦ A≈ ◦ δλ∼ t −

µλ̂n

εt

∆λ∼ t

‖λ̂t‖
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ δλ∼ t − µλ̂n

∆ ξ∼
‖λ̂t‖

◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ δλ∼ t−

− 1
εt
µ∆λn ˆ̄s∼ ◦ δλ∼ t − µ∆gn ˆ̄s∼ ◦ δλ∼ t d∂Ωi

(5.75)

Finally the geometrical variations are expressed through the variations of the
nodal coordinate vectors and the integral is replaced simply by the area of the
master segment, which results in a “matrix”

∆δWc
i slip
=




∆x
∼
∆λn

∆λ∼ t




T

◦
·




K
=≈

xx K
∼xλn K

≈xλt

K
∼λnx Kλnλn K∼ λnλt

K
≈λtx K∼ λtλn K≈ λtλt



◦
·




∆x
∼
∆λn

∆λ∼ t



. (5.76)

The components of this “matrix” are stated below. Blue terms in braces denote
unsymmetrical components of the matrix

K
=≈

xx = ∂Ωi

(
εnG
∼
⊠

⊗G
∼
+ λ̂nH

=≈
−

{
εnµG
∼
⊠

⊗ ˆ̄s∼ ◦ T
≈

})
−

−
µλ̂nεt∂Ωi

‖λ̂t‖
T
≈
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ T
≈
− µλ̂n∂Ωi ˆ̄s∼ ◦ S

=≈∼
K
∼xλn = ∂ΩiG∼

K
≈xλt = −

µλ̂n∂Ωi

‖λ̂t‖
T
≈
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
−

{
µ∂ΩiG∼

⊠ ˆ̄s∼
}

K
∼λnx = ∂ΩiG∼

−
{
∂Ωiµ ˆ̄s∼ ◦ T

≈

}

Kλnλn = 0

K∼ λnλt = −
{
µ∂Ωi

εt

ˆ̄s∼

}

K
≈λtx = −

µλ̂n∂Ωi

‖λ̂t‖
◦
(

A≈ − ˆ̄s∼ ⊠ ˆ̄s∼
)
◦ T
≈

K∼ λtλn = 0

K≈ λtλt = −
∂Ωi

εt
A≈ −

µλ̂n∂Ωi

εt‖λ̂t‖

(
A≈ − ˆ̄s∼ ⊠ ˆ̄s∼

)

(5.77)
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All s-structures arising from variations of the geometrical quantities, namely
G
∼
,T
≈
,H
=≈
,S
=≈∼

, can be found in Section 2.4.

Stick In case of stick the elemental tangent contact matrix has a more simple
form. As previously, we start from the variation of the contact element
contribution (5.68,stick) to the virtual work of the system

∆δWc
i stick
=

∫

∂Ωi

∆λnδgn + εn∆gnδgn + λ̂n∆δgn + ∆gnδλn + ∆λ∼ t ◦ A≈ ◦ δξ∼+

+ εt∆ ξ∼ ◦ A≈ ◦ δξ∼ +
ˆ̄λ∼ t ◦ ∆δ ξ∼ + ∆ ξ∼ ◦ A≈ ◦ δ λ̂∼ t d∂Ωi

(5.78)

The replacement of the geometrical variations by dot products of s-structures
with variation of the nodal coordinate vectors and replacement of the integral
by the area of the master segment leads to the following structure

∆δWc
i stick
=




∆x
∼
∆λn

∆λ∼ t




T

◦
·




∂Ωi


εnG
∼
⊠

⊗G
∼
+ εtT≈

◦ A≈ ◦ T
≈
+ ∂Ωiλ̂nH

=≈
+ ˆ̄λ∼ t ◦ S

=≈∼


 ∂ΩiG∼

∂Ωi A≈ ◦ T
≈

∂ΩiG∼
0 0

∂Ωi A≈ ◦ T
≈

0 0




◦
·




∆x
∼
∆λn

∆λ∼ t




(5.79)

This matrix is symmetric; for expressions of G
∼
,T
≈
,H
=≈
,S
=≈∼

, see Section 2.4.

Non-contact In case of non-contact, the tangent contact “matrix” can be stated
immediately

Kc
i non-contact

=




0 0 0
0 −∂Ωi

εn
0

0 0 −∂Ωi

εt
I≈




(5.80)

Obviously this “matrix” is symmetric.

The structure of the derived matrices for frictional case can be depicted by
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blocks

Kc =







∇x∇x

{N ×N}






∇λn∇x

{N × 1}







∇λt∇x

{N ×D}




[
∇x∇λn

{1 ×N}

] [
∇λn∇λn

{1 × 1}

] [
∇λn∇λt

{1 ×D}

]


 ∇x∇λt

{D ×N}





∇λn∇λt

{D × 1}





 ∇λt∇λt

{D ×D}







(ln + lt)

(5.81)
where n×m in each block designates the number of “strings” n and the number
of “columns” m, where in s-structure representation N = D(M+1) and in scalar
representation N = D(M + 1). D is the dimension of the problem and M is a
number of nodes on the master segment, M+1 is a total number of geometrical
nodes of the contact element.

~
Remark 5.1 on the residual vector and the tangent matrix for the

multi-face contact elements.

If one uses multi-face contact elements proposed by [Heegaard 93], [Barboteu 02] and
mentioned in Section 3.3.4, then the structure of the residual vector and the tangent
matrix are slightly different. Among Nm master segments of the i-th contact element
there is one active segment ∂Ωa

i
on the current iteration

∂Ωa
i ∈

Nm⋃

j=1

∂Ω
j

i

All master nodes of the contact element can be splitted into active nodes (denoted by an
upper index a), which are attached to the active master segment and passive – all other
nodes denoted by an upper index p). Active master nodes should be complemented by
the slave node. Then the v-vector of the nodal coordinate vectors of the contact element
can be written as

x
∼
∼ [ x

∼
a x
∼

p ]T
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5.4 Residual vectors and tangent matrices

The residual contact vector and tangent contact matrix take the following forms

Rc
i
∼







Rc
xa

0
Rc
λn

Rc
λt



, Kc

i
∼







Kxaxa 0 Kxaλn Kxaλt

0 0 0 0
Kλnxa 0 Kλnλn Kλnλt

Kλtxa 0 Kλtλn Kλtλt




In case of smoothing of the master surface (see e.g. [Pietrzak 97],[Wriggers 01], more
references can be found in [Wriggers 06]), the structure of the residual vectors and
tangent matrices does not change, the only difference is that the v-vector of nodal
coordinate vectors will consists of all the nodes of the contact element. To make use of
the smoothed master surface, it remains only to construct a new set of shape functions
φ
∼

, corresponding to a smoothed master surface spanned on all master nodes, further

this v-scalar of shape functions should be substituted into the expressions of G
∼
,T
≈
,H
=≈
,S
=≈∼

from Section 2.4. No additional computational efforts are needed.
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5.5 Method of partial Dirichlet-Neumann boundary

conditions

Here we give a brief explanation of the technique described in Paragraphs 4.1.1,
4.1.3, 4.2.3, 4.2.4 in the framework of the Finite Element Method. The main idea
is to replace the geometrical constraints due to normal and frictional contact
by partial Dirichlet-Neumann boundary conditions. Further we will refer to
this method as Partial Dirichlet-Neumann (PDN) method. This technique is
very advantageous in comparison to the standard methods described in the
previous sections of this chapter (penalty, Lagrange multipliers, augmented
Lagrangian method) because there is no need to evaluate the residual vectors
and the tangent matrices. Here we confine ourself to the contact between a
deformable body and a rigid surface. In this case, the rigid surface can be
described by a smooth function and there is no need for contact detection
or contact elements. This method can be extended to the case of two-body
contact [Wriggers 06]. Moreover, coupled with a Lagrange multiplier method,
it is equivalent to a mortar method, but contrary to Lagrange multiplier and
augmented Lagrangian methods, which increase the number of unknowns in
the system, the PDN method reduces the number of unknowns. Moreover the
PDN method is trivial to integrate in a parallelized Finite Element code.

5.5.1 Description of the numerical technique

Standard methods are based on a search for the contact stress vectors ensuring
the fulfillment of geometrical inequality constraints and equilibrium of the
bodies – this approach leads to an inequality variational problem which has a
limited use. If inequality constraints are replaced by equality constraints, i.e.
active contact zone is assumed to be known, then the standard weak form can be
constructed and implemented in a Finite Element code, as previously shown
in this chapter. In any case, the problem consists in determining unknown
contact stresses. The advantage of the PDN method is that, instead of seeking
for contact stress vectors, the geometrical inequality constraints are imposed
directly as partial Dirichlet boundary conditions and consequently the contact
stress arises directly as a reaction. It remains to determine the active contact
zone, this task will be discussed in the following section.

Four different classes of deformable-rigid contact can be distinguished:

1. frictionless contact with a rigid plane4;

2. frictional contact with a rigid plane;

3. frictionless contact with an arbitrary rigid surface (Signorini’s problem);

4. frictional contact with an arbitrary rigid surface.

4by plane here we mean any surface at which any coordinate of problem reference frame
takes a constant value, i.e. plane in Cartesian coordinates, cylinder in cylindrical coordinates or
sphere in spherical coordinates.
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To solve the first two classes (1,2), the Finite Element code should include the
possibility of a dynamical update of boundary conditions. In addition to this
feature, solving of remaining classes (3,4) needs to make use of the so-called
Multi-Point boundary conditions (MPC). Further we will consider only the last
classes of Signorini problem since they include the rigid plane as a subcase.

Briefly the Multi-Point boundary condition implies that a chosen degree of
freedom – “slave” dof us is replaced by a linear combination of “master” dofs
um

i
, i = 1,M

us = αium
i + β,

where αi and β are scalar coefficients. To replace the Hertz-Signorini-Moreau
conditions in case of an arbitrary rigid surface, the MPC is used in such a way
that one dof of the contacting node – slave dof – is expressed through the other
dofs of the same contacting node (2 in 3D, 1 in 2D):

us = α∼ ◦ u∼
m + β,

where u∼
m is a v-scalar of master dofs, α∼ is a v-scalar of the scalar coefficients

and β is also a scalar coefficient. The slave dof can be chosen arbitrarily for
each contacting node, however it is required that locally the coefficients

α∼ < ∞.

According to Paragraph 4.2.3, this condition is equivalent to the requirement
that es · n , 0, where es is a unit vector, along which the coordinate of the slave
dof is measured, and n is a normal to the rigid surface at projection point.

5.5.2 Frictionless case

As it was discussed in details in the cited paragraphs, the Hertz-Signorini-
Moreau conditions can be replaced by MPC boundary conditions, which allow
sliding of the contacting node only in the tangential plane. After introducing
some notations, a general algorithm will be given. Let xi be a coordinate vector
of a contacting node on the i-th iteration and x0 the coordinate vector of this
node at the previous increment, then the incremental displacement vector is
given by

ui = xi − x0

The increment of the degrees of freedom is given by splitting of the vector u
into the reference frame basis

ui
j = ui · e j,

where e j is a set of basis vectors (normally in the Finite Element code an
orthonormal set of basis vectors is used, so we will not distinguish basis and
dual basis). The rigid surface in general can be described by a vector ρ( ξ∼) =
ρ j( ξ∼)e j with a normal n pointing to the permitted area of body motion. Without
any loss of generality, let us suppose that locally it exists a function f such that

z = f (x, y),
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where x, y, z are coordinates of the surface points in the chosen coordinate
system

x = ρ · e1, y = ρ · e2, z = ρ · e3.

Then the geometrical constraint can be rewritten in the classical form

xi
3 ≥ f (xi

1, x
i
2) ⇔ ui

3 ≥ f (x0
1 + ui

1, x
0
2 + ui

2) − x0
3.

The tangential plane at the given point {x∗, y∗} is determined by the following
equality

P : z =
∂ f

∂x

∣∣∣∣∣{x∗,y∗}
(x − x∗) +

∂ f

∂y

∣∣∣∣∣
{x∗,y∗}

(y − y∗) + f (x∗, y∗),

after introducing the following notations

a =
∂ f

∂x

∣∣∣∣∣{x∗,y∗}
, b =

∂ f

∂y

∣∣∣∣∣
{x∗,y∗}

, c = f (x∗, y∗)

the equation for the tangential plane can be rewritten as

P : z = a(x − x∗) + b(y − y∗) + c,

and the MPC to be imposed is given as

u3 = au1 + bu2 + c − x0
3,

where x0
3 is a z coordinate of the node at the beginning of the increment (see

Fig. 5.18). Further it is necessary to check that there is no tension forces in the
created contact interface. The reaction force R appearing in the nodes, where
the MPC boundary conditions have been imposed, has to be checked

R · n ≥ 0,

precisely the normal contact force should point in the same direction as the
normal to the rigid surface, otherwise the imposed MPC at adhering node
should be removed (see Fig. 5.19). The full algorithm is stated in the box
below.

Figure 5.18: MPC boundary conditions y = ax + x − y0.
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Figure 5.19: Illustration of the iterative process of MPC update procedure:
a – initial configuration, b – first iteration, three MPC boundary conditions
are imposed at penetrated nodes, c – after solution some nodes adhere to the
surface, MPC at these nodes are removed, d – final solution.
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i=0;
i<n;
i++;

PDN algorithm for frictionless contact

• Iterations (i = 0; i < imax; i + +)

1. Loop over possibly contacting nodes j

◦ IF penetration
(
xi
3
< f(xi

1
, xi
2
)
)
THEN

∗ impose MPC boundary condition

ui+13 = aiui+11 + biui+22 + ci − xi3

2. Solve i→ i + 1
3. Check convergence:

loop over possibly contacting nodes j

◦ IF penetration
(
xi+1
3

< f(xi+1
1
, xi+1
2

)
)
THEN

∗ impose MPC boundary condition

ui+23 = ai+1ui+21 + bi+1ui+22 + ci+1 − xi+13

◦ IF adhesion Ri+1·ni+1 < 0 THEN
∗ remove MPC

◦ IF penetration or adhesion
∗ GOTO 1

◦ ELSE finish

Active set search

For simple geometries of contacting body and rigid plane: for example, sphere
on plane or sphere on sphere, for reasonable time step this algorithm converges
in one iteration. However, for certain geometries and/or boundary conditions
the cycling between contact–non-contact states is possible. This is why we
propose a simple algorithm which provides a fast determination of the active
contact zone and ensures the absence of the cycling.

In case of undesirable adhesion the proposed technique suppresses the
imposed MPC boundary conditions gradually. The idea consists in sorting of
all nodes in the contact interface by their statuses (normal contact, adhesion and
non-contact) and further analysis of the contact topology. Below the algorithm
is explained in details.

Contacting surface consists of a set of segments

Γc =
⋃

i

Γci.

Each segment has several nodes

xi
j ∈ Γci
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After the solution step (step 3 in the box above) to each node in the contact
interface the corresponding status αi

j
is assigned: normal contact αi

j
< 0,

adhesion αi
j
> 0 or non-contact αi

j
= 0. If there are penetrations of nodes

then new MPC boundary conditions are imposed. If there is an adhesion the
detection algorithm is executed: it checks all contact segment Γci, which contain
at least one node in adhesion αi

j
> 0, if all other nodes of this segment are in

adhesion or in normal contact

αi
jα

i
k > 0 or αi

jα
i
k < 0, k = 1,Ni, k , j

the algorithm goes to the next contact segment, otherwise if there is at least one
node with non-contact status

∃k : αi
jα

i
k = 0,

or if the adhering node is situated on the edge of the contact zone, then the
MPC boundary conditions are removed on the given contact segment i. In
other words it means that the algorithm unsticks nodes layer by layer starting
from the edge of the adhesion zone (see Fig. 5.20).

Figure 5.20: Active set strategy based on the gradual suppression of the MPC
boundary conditions starting from the edges of the contact zone: a – MPC
boundary conditions are imposed at all penetrated nodes, b – arising reactions
in blue normal contact in red adhesion, MPC is removed at adhering nodes on
the edges of the contact zone, c – still some nodes adhere, MPC is removed at
edge nodes, d – converged solution.

The proposed technique is adapted for globally convex geometry of
contacting interfaces, in a more complicated situation the full topology of
contact, non-contact and adhesion zones should be analyzed. Since this
technique depends on the number of nodes in contact interface, it is not directly
applicable to large problems. An adaptation is required: instead of detaching
node-by-node one should detach entire groups of nodes determined according
to the topology. This is especially crucial for frictional contact, where all nodes
may slip.
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5.5.3 Frictional case

The frictional case has been discussed in details for the case of contact with a
rigid plane orthogonal to one of the basis vectors in paragraph 4.1.3. The idea
consists in replacing the stick conditions by full Dirichlet boundary conditions,
i.e. if a node x penetrates the rigid plane, it should be returned to the penetration
point x• and stuck to this point by imposing

u = x• − x.

Further the reaction R arising at the node should be splitted into the normal
Rn and tangential Rt parts and the non-adhesion condition

Rn · n ≥ 0

should be checked as well as the stick-slip condition


Rt ∈ C f (Rn,Rt, . . . ), stick

Rt < C f (Rn,Rt, . . . ), slip
,

where C f (Rn,Rt, . . . ) denotes the stick zone. In case of Coulomb’s friction law,
the stick-slip conditions take the following form


‖Rt‖ ≤ µ‖Rn‖, stick

‖Rt‖ > µ‖Rn‖, slip

In case of slip, the full Dirichlet boundary condition has to be replaced by an
MPC boundary condition (in case of arbitrary surface) or by a partial Dirichlet
boundary condition in the direction orthogonal to the rigid plane (in the case
discussed in Paragraph 4.1.3). Moreover, in the tangent plane, the external
force Fe should be applied to the sliding node in the opposite direction to
the arisen tangential reaction Rt, and the magnitude of the applied load is
evaluated according to

Fe = −µ‖Rn‖
Rt

‖Rt‖

Elaboration of this scheme to an arbitrary rigid surface has not been yet
achieved.

5.5.4 Remarks

Many engineering contact problems can be approximated by contact between a
deformable body and a rigid surface: metal forming and metal processing, tire-
road contact, polymer-metal water seals, indentation tests and, in general, any
contact occurring between materials with significantly different stiffnesses. The
PDN method seems to be very useful for the mentioned problems: first, because
of its simplicity and second due to its stability and accurate fulfillment of the
geometrical constraints. It is worth mentioning that the method is applied
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both for linear and higher order discretization5 of the Finite Element mesh in
the contact interface. The practice demonstrates that the most challenging part
is the determination of the active contact zone. Further investigation is still
required on the subject. The PDN method can be also efficiently used in case
of possible contact through the planes of symmetry, i.e. can be considered as a
“symmetry contact boundary condition”, see examples in Chapter 6.

5the method is applicable to second order discretizations in two dimensional case; in three
dimensional case additional developments are required.
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5.6 Technical details

This section contains short descriptions of different contact related features
and improvements which have been incorporated in the Finite Element code
ZéBuLoN (Zset) [Besson 97].

5.6.1 Rigid master surface

Sometimes it is useful to approximate one of the contacting surfaces by a rigid
surface. Frequently the master is chosen to be rigid, since that provides a
better convergence of the numerical scheme. For that purpose it is convenient
to organize one directional transfer of contact stresses, i.e. contact stress arises
only on the slave surface due to violation of geometrical constraints but are not
transferred through the contact interface to the master surface.

From a technical point of view, such an approximation leads to much
simpler forms of the geometrical variations G

∼
,T
≈
,H
=≈
,S
=≈∼

and consequently to

simpler forms of the residual vector and tangent matrix. As the reader may
remember these s-structures connect the variations of geometrical quantities
with variations of nodal coordinate vectors of the contact element

δgn = G
∼
◦
· δx
∼
, δξ∼ = T

≈
◦
· δx
∼
, ∆δgn = ∆x

∼
◦
· H=≈
◦
· δx
∼
, ∆δ ξ∼ = ∆x

∼
◦
· S=≈∼

◦
· δx
∼

To obtain a simplified discretization, one has simply to put all variations of the
master nodes to zero, i.e., if x

∼
is a v-vector of contact element nodal coordinate

vectors
x
∼
∼

[
rs ρ

1 . . . ρM
]
,

where rs and ρi are coordinate vectors of the slave and master nodes
respectively. Then the v-vector of variations has the following form

x
∼
∼

[
δrs 0 . . . 0

]

It allows to reduce the order of geometrical s-structures

G
∼
→ G, T

≈
→ T
∼
, H
=≈
→ H
=
, S
=≈∼
→ S
=∼
,

δgn = G ◦· δrs, δξ∼ = T
∼
◦
· δrs, ∆δgn = ∆rs

◦
· H=
◦
· δrs, ∆δ ξ∼ = ∆rs

◦
· S=∼
◦
· δrs

To obtain simplified expressions for the variations of the geometrical quantities,
one can simply put the corresponding shape functions to zero:

φi = 0

in (2.99) and (2.102), and
[
Φ′i

]
= 0,

[
Φ′′i j

]
= 0,

[
Φ′′′i jk

]
= 0
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in (2.105) and (2.111). Or directly put

δρ = 0, δ
∂ρ

∂ξ∼
= 0, ∆

∂ρ

∂ξ∼
= 0, δ

∂2ρ

∂ξ∼
2
= 0, ∆

∂2ρ

∂ξ∼
2
= 0

in continuous form of the geometrical variations of the normal gap (2.24),
surface parameter (2.31), second variations of the normal gap (2.67) and surface
parameter (2.78). These settings results in simple expressions given below

• Variation of the normal gap

δgn = n · δrs ⇒ G = n

• Variation of the surface parameter (convective coordinate)

δξ∼ =
(

A≈ − gn H≈
)−1
◦
∂ρ

∂ξ∼
· δrs ⇒ T

∼
=

(
A≈ − gn H≈

)−1
◦
∂ρ

∂ξ∼

• Second variation of the normal gap

∆δgn = ∆rs ·
[
−T
∼
◦ H≈ ◦ T

∼
+ gnT
∼
◦ H≈ ◦ Ā≈ ◦ H≈ ◦ T

∼

]
· δrs

H
=
= −T
∼
◦ H≈ ◦ T

∼
+ gnT
∼
◦ H≈ ◦ Ā≈ ◦ H≈ ◦ T

∼
• Second variation of the surface parameter

∆δ ξ∼ = ∆rs ·


(
gn H≈ − A≈

)−1
◦
T
∼
◦


∂ρ

∂ξ∼
⊠

·
∂2ρ

∂ξ∼
2
+ gnn ·

∂3ρ

∂ ξ∼
3


 ◦ T
∼
−

− n ⊗ T
∼
◦ H≈ − H≈ ◦ T

∼
⊗ n +

+gnT
∼
◦


∂2ρ

∂ξ∼
2
⊠

·
∂ρ

∂ξ∼
◦ Ā≈ ◦ H≈ + H≈ ◦ Ā≈ ◦

∂ρ

∂ξ∼
⊠

·
∂2ρ

∂ξ∼
2


 ◦ T
∼




 · δrs

(5.82)

These variations are relatively simple and can be easily integrated in any
Finite Element code as a special case for rigid master surfaces.

5.6.2 Multi-face contact elements and smoothing techniques

Multi-face contact elements have been discussed in Section 3.3.4 and some
remarks concerning the residual vector and tangent matrix are made in
Section 5.4.4. Here a brief discussion of the multi-face contact element will
be given in the framework of the Finite Element Analysis.

A standard contact element consists of one slave node and one master
segment. What happens when the slave node during the iterative process
slides out of the master segment? It has no more projection on the master
segment, but excluding this slave node from the solution would result in a
penetration. So a possible way out is to create a new contact element, but
this procedure is quite time consuming, because it requires an update of the
tangential stiffness matrix and its re-factorization. There are two possibilities:
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1. extend the parent domain of the master segment (see 5.21, a);

2. extend the standard contact element by adding the adjacent master
segments, i.e. create a multi-face contact element in advance, before
starting the iterative solution procedure.

The first possibility results in continuous sliding of the slave node along
the extension of the current master segment before the equilibrium is reached.
Such a sliding results either in penetration if the surface is locally concave or in
opening of the gap in case of convex surface. These drawbacks are negligible
if the sliding increment is small in comparison to the size of master segment,
otherwise the solution becomes unrealistic. In this case the use of multi-face
elements is highly desirable: when the slave node passes from one master
segment to another, the residual vector and tangent matrix are reformulated
respectively to the new active master segment and the corresponding master
nodes (see Fig. 5.21, b). Note also that in frictional case the described situation
results in loss of the sliding path tracking, i.e. the relative sliding increment
cannot be approximated by

∆gt =
∂ρ

∂ξ∼
◦ ∆ ξ∼

and hence some special techniques are required, see e.g. [Konyukhov 07a] and
[Wriggers 06]. Another drawback is the presence of possible oscillations in the
neighborhood of concave angles – constant switching between two adjacent
segments. Such oscillations are also possible within the first approach but in
this case the oscillations take place from one increment to another and the
local convergence is often achieved (see 5.22). In other words, to avoid this
undesirable effect the node-to-node, node-to-edge and node-to-vertex elements
should be available in the Finite Element code, however it does not always solve
the problem, another approach is required.

An extension of the multi-face contact elements leads to an even more
advantageous treatment of the problem: instead of distinguishing between
active and inactive master segments, one can construct a C1-smooth surface
based on all master nodes included in the multi-face contact element (see
Fig. 5.23). One of the first successful applications of the smoothing procedures
to large sliding contact problems can be found in [Pietrzak 97],[Pietrzak 99],
where authors use Bézier curves and Splines to smooth a structured surface
mesh consisting of regular quadrilateral segments. However, in case of
arbitrary surface mesh, the construction of a C1-smooth surface is not evident
and presents an up to date research topic in computational contact mechanics;
many details, examples and references on this topic can be found in books
of Wriggers [Wriggers 06] and Laursen [Laursen 02]). Hermitian, Spline and
Bézier polynomials as well as Gregory patches are used for smoothing the
master surface in two and three dimensional contact problems.
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Figure 5.21: Example of two dimensional large sliding contact: extension of
the master segment (a) and multi-face contact element (b).

Figure 5.22: Example of frictionless oscillations in a neighborhood of the
concave vertex.

5.6.3 Heterogeneous friction

Contact modeling of heterogeneous materials (composites, alloys with an
explicit representation of the microstructure) leads to a problem with
heterogeneous friction. For engineering aspects of the problem, see [Dick 06a],
[Dick 06b], [Dick 08]. The computational aspects of this type of problems
are shortly discussed below. Two types of friction heterogeneity can be
distinguished:

• friction properties are determined by domains (e.g. composite material,
polycrystalline surface, Fig. 5.24);

• friction properties change smoothly along the contact interface (e.g., due
to temperature distribution).
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Figure 5.23: Example of master surface smoothing by a cubic Bézier curve and
surface, based on the structured quadrilateral surface mesh.

A rigorous treatment of the friction change within one master segment leads
to a quite complicated linearization of the virtual work, however it seems to
be always possible to assume a constant friction within one contact element.

Note that the friction is an interface phenomenon, i.e. both contacting
surfaces determine the friction properties. For example, in case of contact
between two bi-phase composites f 1

1 , f 1
2 and f 2

1 , f 2
2 , four local coefficients of

friction (in case of Coulomb’s friction law) have to be defined if self-contact is
excluded:

µ1 = µ1( f 1
1 , f 2

1 ), µ2 = µ2( f 1
1 , f 2

2 ), µ3 = µ3( f 1
2 , f 2

1 ), µ4 = µ4( f 1
2 , f 2

2 )

Treatment of such problems requires a proper definition of the friction
coefficient for each contact element. A standard Node-to-Segment contact
element consists of one slave node and master segment, so to each slave
node and master segment friction IDs f s

i
and f m

j
should be assigned and a

corresponding rule for friction coefficients:

µi j = µi j( f s
i , f m

j ).

Another possibility leading to a symmetric treatment of contacting surfaces
consists in assignment of friction IDs to both slave and master nodes: f s

i
,

f m
j1
, f m

j2
, . . . , f m

jM
and a corresponding rule, for example, as proposed below

µi j =
1
M

M∑

k=1

αkµi j( f s
i , f m

jk
),

M∑

k=1

αk = 1.

Such an approach is valid both for normal and self-contact and includes the
previous possibility as a subcase, for properly chosen αk coefficients.
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Figure 5.24: Example of heterogeneous friction between a composite and a
polycrystalline structure.

5.6.4 Short remarks

Below some short remarks concerning the code organization are listed:

• It is often advantageous to organize the code in a way that independent

contact zones can be treated separately but within a common contact
framework; it leads to an efficient organization of the contact detection
procedure (as described in the Chapter 3) and also to a smart update of
the tangent matrix.

• The components of contact elements may change from one increment to
another, however sometimes it is advantageous to keep the values of

Lagrange multipliers from the previous time step and use them as an
initial guess. It is easy to save these values directly for each slave node as
well as the sliding path; the initial guess is especially important in case
of use of Uzawa’s algorithm.

• Regardless all advantages of the augmented Lagrangian method,
its convergence strongly depends on the choice and update of the

penalty parameters εn and εt related to normal and tangential contact
respectively. We did not elaborate any consistent and theoretically
based updating technique, but some general rules can be deduced.
From remarks given in Section 5.1 according to the investigations of
Alart [Alart 97] and Alart and Curnier [Alart 91] on the convergence
of the augmented Lagrangian in frictional contact it follows that if a
frictional cycling occurs, then the tangential penalty parameter should
be decreased

stick-slip cycling ⇒ εi+1
t = αtε

i
t, 0 < αt < 1.

On the other hand if a slave node looses the contact, then high penalty
coefficients εn and εt may result in a poor conditioning of the tangent
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matrix, so both of them should be decreased:

non-contact ⇒ εi+1
n = βnε

i
n, εi+1

t = βtε
i
t, 0 < β, βt < 1

And finally if the contact status of the contact element remain constant
(slip or stick) then the penalty parameters should be increased in order
to enforce the fulfillment of geometrical constraints

stick or slip ⇒ εi+1
n = γnε

i
n, εi+1

t = γtε
i
t, γn, γt > 1

A more elaborated update scheme may also take into account the values
of normal gap, tangential sliding and of the corresponding Lagrange
multipliers. An example of phenomenological update scheme can be
found in [Bussetta 09].

• A FE problem, containing, for example, two initially separated bodies,
has a tangent matrix (sparse matrix) with a block structure and the
minimal thickness of the bandwidth of each block is ensured by a smart
numbering of nodes and dofs. If contact occurs between these bodies the
optimality of the sparse structure may be lost, i.e. the band-width can be
significantly enlarged. Hence the storage of the sparse matrix becomes
non-optimal and requirements on the needed memory space can reach
the amount needed for storage of the full matrix. There are at least two
solutions:

– renumbering of nodes after construction of contact elements at each
change of mesh topology;

– one preliminary renumbering of nodes in the way that all possible
mesh graphs (due to presence of contact element) retain a narrow
bandwidth.

• According to our experience, the user friendliness of the FEA code
is very important, namely, the FEA tool should check automatically
the orientation of the master surface and change it if needed, also it
should choose automatically the optimal “maximal detection distance”
parameter and the detection cell size, the two latter are possible in the
framework of the bucket sort detection algorithm (see Chapter 3).

• In case of complex geometry, large deformations and/or self-contact, it is
complicated or even impossible to know the master-slave discretization
a priori. This is why Benson and Hallquist [Benson 90] introduced the
single contact surface. From the programming point of view, such a
surface is nothing but a master surface. It is necessary simply to adapt
the the detection algorithm, as described in Chapter 3, the rest of the
code remains unchanged. It is worth mentioning also that, in case of
simple buckling simulations, the contact may occur only after a certain
amount of time. In order to accelerate the solution, the contact detection
procedure should not be executed before that time.
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• Parallel treatment of contact problems requires a special detection
technique. From the programming point of view, it is easy to construct a
single contact detection procedure which takes as arguments master and
slave surfaces. Further in the parallel framework it remains only to joint
all the parts of the slave and master surfaces from different subdomains
and to pass them to the detection procedure. This approach was called
SDMR (Single Detection, Multiple Resolution). If there are several
independent contact zones, then the SDMR detection procedure can be
carried out independently for each zone at different processors. The same
detection procedure is valid for the MDMR (Multiple Detection, Multiple
Resolution) technique, in this case each processor does not receive the
entire master and slave surfaces, but their close parts, which should be
simply passed to the detection procedure (for details, see Chapter 3).
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Numerical examples

Résumé de Chapitre 6 «Exemples numériques»

Ce chapitre réunit neuf simulations numériques obtenues à l’aide des différentes
méthodes de contact implémentées dans le code de calcul par éléments finis Z-set
(ZéBuLoN). Trois méthodes sont considérées : méthode de pénalisation, méthode
du Lagrangien augmenté et méthode PDN. On présente six problèmes 2D et trois
problèmes 3D. Deux des exemples 2D sont des problèmes de contact frottant pour
lesquels on dispose d’une solution analytique : indentation d’un demi-espace par un
cylindre rigide, et contact entre un espace trouée et un cylindre situé à l’intérieur.
On compare les solutions analytiques avec les simulations obtenues par la méthode du
Lagrangien augmenté.

Le troisième exemple est un problème 2D d’indentation d’une pièce rectangulaire
par un cylindre rigide, les résultats de cette simulation sont obtenu par la méthode
PDN, avec des éléments linéaires et quadratiques.

Le quatrième exemple est un problème d’emboutissage qui réunit trois non-linéarités
fortes : matériau élasto-visco-plastique avec écrouissage non linéaire en grande
déformation et contact avec frottement. Le problème est traité par la méthode du
Lagrangien augmenté.

Le cinquième problème considéré est le repassage peu profond d’une plaque par un
indenteur déformable. Il s’agit donc de contact multi-corps avec frottement en présence
des grands glissements et grandes déformations avec un matériau Neo-Hookéen. Nos
résultats, obtenus par la méthode du Lagrangien augmenté, sont comparés à ceux de la
littérature, obtenus soit avec une discrétisation «Nœuds-à-Segment» [Fischer 06] par
la méthode de «sliding cone» et la méthode «mortar», soit par la méthode des domaines
de contact [Hartmann 09]. La méthode du Lagrangien augmenté fonctionne mieux
que la méthode de domaine de contact, et permet de retrouver les résultats de référence
obtenus par [Fischer 06].
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Le dernier des problèmes 2D considérés présente le comportement en post-flambage
d’un tube mince élasto-plastique, dans le cadre des grandes déformations, avec auto-
contact. Ce problème a été considéré dans [Laursen 92]. On utilise la même méthode
que dans le travail original (méthode de pénalisation) et deux maillages différents.
Les résultats démontrent la sensibilité importante de la solution au paramètre de
pénalisation.

Le premier exemple 3D est un cas de post-flambage non-symétrique avec auto-contact
d’un tube mince élasto-plastique, qui a été calculé par la méthode de pénalisation. Le
deuxième exemple traite du début d’extrusion d’une plaque à travers un trou circulaire,
qui a été simulé par la méthode PDN et différents modèles de matériau en petites et
grandes déformations. Le dernier exemple considère le glissement avec frottement d’un
cube sur un plan rigide. L’effet de détachement qui est classiquement observé pour
les grands coefficients de frottement est bien capté par la méthode PDN. Cet effet est
conduit à une intéressante réduction du coefficient de frottement global.

Some simple and not so simple examples are demonstrated in this chapter.
Penalty, augmented Lagrangian and PDN methods are used. Two and
three dimensional frictional and frictionless contact problems are considered,
in small and large deformations for linear and nonlinear material models.
The more contact elements the problem contains, the more complicated its
numerical treatment, so in order to demonstrate the performance of the
contact implementation in the finite element code (ZéBuLoN) we use quite fine
discretizations, even when a coarser mesh would provide a reliable estimation
of the solution. A full input data is given for many considering problems.

6.1 Two dimensional problems

6.1.1 Indentation by a rigid flat punch

Indentation of an elastic half space by a rigid axisymmetric flat punch is
considered in presence of finite friction. The analytical solution can be found,
for example, in [Spence 75]. An attempt of numerical solution within the Finite
Element Method and the augmented Lagrangian method was undertaken
in [Pietrzak 97],[Pietrzak 99], however the numerical solution appears to be
significantly different than the analytical one. This error can be explained by
the coarse mesh used by the authors. Here a more precise numerical solution
is given, but the discrepancy between numerical and analytical solutions still
exists.

A rigid flat axisymmetric punch of radius a is indented into an elastic half
space by a force P (see Fig. 6.1). The Coulomb’s friction law with the coefficient
of friction µ is considered. The frictionless contact pressure distribution is
described by the following function (see e.g. [Johnson 94])

σn(ρ) =
P√

a2 − ρ2
,
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where ρ is a distance from the axis of symmetry. Note that due to this equation,
the mesh convergence cannot be obtained for this problem, because of the
singularity on the edge of the flat punch ρ = a. However, a rather good
numerical estimation can be given.

Figure 6.1: Indentation of an elastic half space by a rigid axisymmetric flat
punch: a – radius on the punch, s – radius of the stick zone.

The problem is solved with an axisymmetric mesh. All relevant data are
listed in the box below, all quantities are given in force units (f.u.) and length
units (l.u.), which consequently will be omitted. The finite element mesh of
the halfspace consists of a half circle fixed along the radial perimeter R = 9a.
The indenter (master) is constructed in such a way that its nodes coincide
with the nodes on the opposite contact surface of the half space (slave).
Such a construction of the finite element mesh allows to avoid the inherent
problem of the node to segment discretization – inability to transfer a uniform
pressure through the contact interface for an arbitrary discretization. Three
finite element meshes were used with 41, 201 and 401 nodes on the active slave
surface, the finest mesh is represented in Fig. 6.2. The meshes contain 4183,
60533 and 95872 nodes respectively.
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Figure 6.2: Whole finite element mesh and zoom on the contact region, 400
slave nodes in contact.

• Linearly elastic material, small deformations:

Young’s modulus E = 1000 [f.u./l.u.2]

Poisson’s ration ν = 0.

• Boundary conditions and geometry:

Punch radius a = 1. [l.u.]

Pressure on the indenter p = 1.61 [f.u./l.u.2]

Friction coefficient µ = 0.2063, 0.2986, 0.4013

• Solution conditions:

Method: augmented Lagrangian

Penalty coefficients εn = εt = 100 [f.u./l.u.2]

Increment 1

• Finite element mesh:

linear full integration quadrilateral axisymmetric elements
(4 nodes, 4 integration points)

In his article [Spence 75], the author gives semi-analytical estimations of the
friction coefficients µ for different stick regions s/a and different Poisson’s
ratios ν. His estimations are presented for ν = 0 in Tab. 6.2. Here the problem
is inverse and for the given friction coefficient, the stick region is measured,
the results for different finite element meshes are presented in Tab. 6.3. The
convergence is quite slow and the correct values of the stick zone taken from
[Spence 75] have not been reached. Contour plots of shear stress σ12, stress
σ22, von Mises stress σv and horizontal displacement u1 distributions are
represented in Fig. 6.3.
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Table 6.2: Semi-analytical estimations (from [Spence 75]) for the friction
coefficient ensuring stick zone of radius c for ν = 0.

µ 0.2063 0.2986 0.4013 0.4862
s/a 0.24 0.5 0.7 0.8

Table 6.3: Finite element estimation of the stick region radii for given friction
coefficients (ν = 0), convergence by mesh.

Friction µ 0.2063 0.2986 0.4013
FE mesh Ns stick zone s/a

41 0.300 0.550 0.750
201 0.260 0.534 0.735
401 0.255 0.520 0.717
exact 0.240 0.50 0.700

The stress distribution (extrapolation from Gauss points to nodes) in the
contact interface is represented in Fig. 6.3
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Figure 6.3: Contour plots of shear stress σ12, von Mises stress σv, horizontal
displacement u1 and stress component σ22 for µ = 0.2063.
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Figure 6.4: Distribution of the contact pressure for different coefficients of
friction.
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6.1.2 Elastic disk embedded in an elastic bored plane

The geometry presents a thin elastic infinite plane with a hole of almost the
same radius as a thin elastic disk, embedded in the hole. A concentrated force
is applied in the middle of the disk, the value of the force is chosen such that
the contact occurs at one third (120o) of the interface between the hole and the
disk (Fig.6.5).

Figure 6.5: Setting of the problem: a thin elastic disk embedded in a thin elastic
infinite plane with a circular hole.

Figure 6.6: Finite element mesh (2502 nodes, 54 active slave nodes in the
interface) and zoom on the contact region.

Coulomb’s friction law is assumed in the interface. Again due to the
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inability of the Node-to-segment discretization to transfer a uniform pressure
through an arbitrary discretization, the finite element mesh is created in the
way that master and slave nodes coincide in the interface.

A solution for this problem has been given by Klang [Klang 79], numerical
treatments can be found in [Alart 91], [Pietrzak 97] or in [Pietrzak 99]. The
finite element mesh is represented in Fig. 6.6. As one can see in the middle of
the embedded disk, there is a circular hole in the center, where the concentrated
force is applied to a node on the axis of symmetry and MPC boundary
conditions are applied to all other nodes of this hole to retain its circular
form. The concentrated load is applied in several increments. As proposed
in [Alart 91] the force value changes quadratically with increments:

Fi = Fmax
t2
i

t2
max

,

where Fmax is the load and ti ∈ [0; tmax] is the incremental time with ti = i tmax
n ,

where n is a number of increments and tmax is the total solution time. The
remaining data are given in the box below.

• Linear elastic material, small deformations:

Young’s modulus E = 2.1e7 [f.u./l.u.2]

Poisson’s ration ν = 0.3

• Boundary conditions and geometry:

plane stress

Disk radius r = 5.999

Hole radius R = 6

Concentrated force F = 9375t2/t2
0

Friction coefficient µ = 0.4

• Solution conditions:

Method: augmented Lagrangian

Penalty coefficients εn = εt = 500 [f.u./l.u.2]

Increment 1, 5, 10, 25, 50, 100

• Finite element mesh:

linear full integration quadrilateral axisymmetric elements
(4 nodes, 4 integration points); 2502 nodes, 54 active slave
nodes in the interface
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The experience shows that the shear contact stress distribution in the slip
zone and the limit of the stick zone (−40o < αs < 40o) as well as the contact zone
width −60o < αs < 60o are easily achieved in at least two increments. However,
the shear stress distribution in the stick zone appears to be strongly dependent
on the mesh density and on the number of increments. The correct shear stress
distribution in the stick zone for the considered finite element mesh is achieved
only when the load is applied in more than 50 increments. The distribution
of the shear stress in the contact zone for different number of increments is
represented in Fig. 6.7. Our experience demonstrated, that the precision of
the mesh node positioning in the interface must be very accurate: for example
the relative error (respectively to the size of element) in node positioning is
about 5 10−3%, which seems to be negligible leads to severe oscillations of the
solution in the interface, the maximal allowed precision in node positioning
(5 10−7%) yields a smooth result.
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Figure 6.7: Shear stress distribution in the contact interface for different number
of increments are compared with analytical results and numerical results
from [Alart 91].
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6.1.3 Indentation of an elastic rectangle by a circular indenter

This short example illustrated the PDN method performance for a non flat
rigid surface in contact with a deformable body. The geometry of the problem
is depicted in Fig. 6.8. All data are given in the box below.

• Linearly elastic material, small deformations:

Young’s modulus E = 210

Poisson’s ration ν = 0.3

• Boundary conditions and geometry:

Indenter radius R = 1

Rectangle L = 4,H = 2

Friction coefficient µ = 0.

Bottom of the block is fixed and moved towards the indenter
ux = 0,uy = 1

• Solution conditions:

Method: PDN

Increments 10

• Finite element mesh:

linear and quadratic full integration quadrilateral plane-
strain elements (4 nodes, 4 integration points for linear and
8 nodes, 9 integration points); 200 elements

The von Mises stress distributions in Gauss points and nodal reactions in
the interface due to MPC boundary conditions, arising from application of the
PDN method, are represented in Fig. 6.9 for linear and quadratic meshes.

284



Chapter 6. Numerical examples

Figure 6.8: Scheme of the problem: indentation of an elastic rectangle by a
rigid circle.

Figure 6.9: Von Mises stress distribution and nodal reactions for linear (left)
and quadratic (right) meshes.
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6.1.4 Axisymmetric deep cup drawing

Metal forming process is one of the important engineering applications of the
computational contact mechanics, many examples can be found in scientific
literature. Here we consider an axisymmetric deep cup drawing problem,
stated in [Rousselier 09], see Fig. 6.10. This problem engenders many non-
linearities: large deformations within the updated Lagrangian framework,
frictional contact and nonlinear material model (elasto-visco-plastic with
exponential hardening). All parameters of the problem are stated in the box
below. The problem is mixed force-displacement driven: the holding pressure
p is applied linearly within the first 100 time units, and the die is gradually
moved down up to t = 335, then removed. In order to stabilize the solution a
soft spring (700 times softer than the material of the sheet) is attached to the
edge of the sheet, as shown in Fig. 6.10.

Figure 6.10: Geometrical setting of the deep cup drawing problem: rounded
cylindrical die and metal sheet fixed within the tool.

Figure 6.11: Finite element mesh for the axisymmetric deep cup drawing
problem.

286



Chapter 6. Numerical examples

• Finite deformation elasto-plasticity (updated Lagrangian):

Young’s modulus E = 69.

Poisson’s ration ν = 0.33

Yield criterion: von Mises R0 = 0.22

Norton creep power law:

λ̇ = 〈 f/K〉n, K = 0.5, n = 7

Isotropic power hardening law

R = R0 + K(e0 + p)n, K = 0.99, e0 = 7e−4, n = 7

• Boundary conditions and geometry:

Applied pressure p = 1.86e−2

Die is gradually moved down uz = −33.5t/tl and removed
uz = −33.5 + 5.5 t−tl

t f−tl

Die diameter d = 97.46

Rounding radius R = 12.7

Die opening w = 101.48

Sheet thickness h = 1.6

Sheet diameter L = 158.76

Friction coefficient µ = 0.1

• Solution conditions:

Method: augmented Lagrangian

Penalty coefficients εn = εt = 200

Increments 1414

Full solution time: loading tl = [0, 335] and unloading t f =

[335, 420]

• Finite element mesh:

linear full integration quadrilateral axisymmetric elements
(4 nodes, 4 integration points for linear and 8 nodes, 9
integration points); 6063 elements (Fig. 6.11)

In average, on each time step 1000 contact elements are created, 400 of them
are active. In average convergence on each time step is achieved within 10-
15 iterations. The distribution of accumulated plastic strain for different time
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steps is represented in Fig. 6.12. The force-displacement curve is represented
in Fig. 6.13. Note that even in presence of viscosity the reaction force oscillates
(see Fig. 6.14). This is due to the fact that at this stage the sheet slides along
the surface of the holder, which is not smooth. That is why in case of large
sliding, it is more advantageous to use either smoothing of the master surface
or determine the holder and the punch as analytical surfaces, or use the PDN
method described in previous chapters.

Figure 6.12: Distribution of accumulated plastic strain (in Gauss points) on
different time steps.
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Figure 6.13: Evolution of the reaction on the punch with time, time = 10×
vertical displacement of the punch before t = 335.

Figure 6.14: Oscillations of the reaction on the punch, zoom on the region
marked in Fig. 6.13 by a rectangle.
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6.1.5 Shallow ironing

The example shown in this paragraph consist in sliding of a deformable
indenter along a deformable rectangle. The geometrical setting of the problem
as well as the finite element mesh are presented in Fig. 6.15. This example has
been proposed and solved in [Fischer 06] with the mortar based method using
moving friction cone (see [Wriggers 06]), and resolved with contact domain
method in [Hartmann 09]. Here the problem is solved using the augmented
Lagrangian method and the Node-to-Segment discretization. Our results are
compared with results of the cited authors in Fig. 6.16. Contrary to [Fischer 06],
here and in [Hartmann 09] linear elements are used, however the total number
of dofs is in average preserved.

The surface of the rectangle is set as slave and the surfaces of the indenter
are considered as masters. Note that both the lower surface of the indenter and
the front come in contact as depicted in Fig. 6.15. A two dimensional plane
strain displacement driven problem is considered, the indenter is pushed down
on uy = 1 in 10 increments then to the right ux = 10 within 500 increments, the
rectangle is ten times softer than the indenter. A zoom on the contact topology
in the vicinity of indenter’s corner is given in Fig. 6.17 for several consecutive
increments. This behavior explains the oscillations in the tangential reaction
(Fig. 6.16). The distribution of shear stress for several increments is represented
in Fig. 6.18. All input data is summarized in the box below.
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• Neo-Hookean material, large deformations:

Indenter: Young’s modulus E∗ = 68.96, Poisson’s ratio ν∗ =
0.32

Rectangle: Young’s modulus E = 6.896, Poisson’s ratio ν =
0.32

• Boundary conditions and geometry:

Displacement on the indenter

uy = t, t = [0; 1], uy = 1, t > 1

ux = 0, t = [0; 1], ux = 10 (t − 1), t = [1; 2]

is prescribed on the top surface

The rectangle is fixed in all directions on the lower edge

Geometry: d1 = 0.2, d2 = 1.2, d3 = 10.6

r = 0.75, h1 = 0.95, h2 = 1.2, a1 = 0.3, a2 = 0.2

Friction coefficient µ = 0.3

• Solution conditions:

Method: augmented Lagrangian

Penalty coefficients εn = εt = 0.5

Increments: 10 for t ∈ [0; 1] and 500 for t ∈ [1; 2]

• Finite element mesh:

linear full integration quadrilateral plane strain elements (4
nodes, 4 integration points); 3672 elements
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Figure 6.15: Geometrical setting of the problem and finite element mesh.

Figure 6.16: Results of the finite element simulation: comparison of vertical
and horizontal reactions on the indenter, data of Fischer, Wriggers [Fischer 06],
Hartmann and Oliver [Hartmann 09] and our results.
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Figure 6.17: Zoom on the contact zone in the neighborhood of the indenter’s
angle, 6 consecutive increments.
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Figure 6.18: Contour plot of shear stress at time t = 1, 1.25, 1.5, 1.75, t = 2.
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6.1.6 Axisymmetric post buckling of a thin-walled cylinder

This axisymmetric problem combines large plastic deformations, buckling,
Signorini contact and self-contact phenomena. A force driven elasto-plastic
cylinder is forced towards a rigid fixture, where, after some deformations,
it gets stuck, and further a series of buckles occur; besides the contact
between the cylinder and parts of the fixture, neighboring bends also come
in contact. Since the master-slave discretization is not known a priori, the
Single Surface algorithm (proposed in [Benson 90] and discussed in Chapter 3)
has to be employed. The original numerical solution of this problem was given
in [Laursen 92], here we use the same penalty method, but a finer finite element
mesh. All details of the problem setting are given in the box below, geometry
and a part of the finite element mesh are given in Fig. 6.19. Four independent
contact zones can be distinguished a: self-contact within interior and exterior
surfaces of the cylinder and Signorini contact between interior and exterior
parts of the fixture and the corresponding surfaces of the cylinder.

Figure 6.19: Geometrical setting of the problem and finite element mesh.

An updated Lagrangian formulation is used. The loading conditions
are very severe. The accumulated plastic deformation in the interior of the
bends reaches 190%. In post buckling regime, the contact topology changes
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significantly during forming of each new bend. Due to the redistribution
of momentum, self-contact between already formed bends vanishes on a
part of the surface; Fig. 6.21 depicts the accumulated plastic strain and post
buckling shapes on different time steps. It is interesting to note that the
penalty parameter influences significantly the post-buckling behavior. The
number of contact elements in the final stage of the post buckling deformation
reaches 90 elements. PDN method, instead of penalty, is used to enforce the
nonpenetration conditions on the interior surface of the fixture. The contact is
assumed frictionless.

• Finite deformation elasto-plasticity (updated Lagrangian):

Young’s modulus E = 210, Poisson’s ratio ν = 0.3

Von Mises yield strength R0 = 0.7

Nonlinear isotropic hardening:

R = R0 +Q(1 − e−bp),Q = 10, b = 10

• Boundary conditions and geometry:

Displacement on the top of the cylinder uy = −100 t, t ∈
[0; 13]

Friction coefficient µ = 0.

• Solution conditions:

Methods: PDN, penalty

Penalty coefficients εn = 5 104 for selfcontact, εn = 1 105 for
contact with fixture

Time t ∈ [0; 13] increments N = 15, t ∈ [0; 1.5], N = 240, t ∈
[1.5; 10], N = 80, t ∈ [10; 13]

• Finite element mesh:

linear full integration quadrilateral plane strain elements (4
nodes, 4 integration points); 2117 nodes, 1803 elements

A totally different post buckling behavior (see Fig. 6.21) is obtained in the
simulation with a two times higher penalty coefficient (εn = 105 instead of
εn = 5 104) and a slightly more coarse finite element mesh (765 nodes, 603
elements). No contact occurs between the cylinder and the horizontal surface
of the fixture. This example emphasizes that the penalty method should be
used very carefully for such error dependending simulation as buckling. It is
possible that assuming a nonzero friction in the self-contact interface would
lead to a more stable solution.
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Figure 6.20: Accumulated plastic strain (Gauss points) at different time steps
and corresponding geometry, scale bar is limited by 110% of accumulated
plastic strain, however the maximal extrapolated value reaches 194%, maximal
value at Gauss points is 181%; penalty value εn = 5 104.
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Figure 6.21: Another post buckling behavior (penalty value εn = 1 105):
accumulated plastic strain (Gauss points) at different time steps and
corresponding geometry, scale bar is limited by 110% of accumulated plastic
strain, however the maximal extrapolated value reaches 156%, maximal value
at Gauss points is 148%.
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6.2 Three dimensional problems

6.2.1 Accordion post buckling folding of a thin-walled tube

This problem is similar to the axisymmetric post buckling behavior considered
in the previous section. One quarter of an elasto-plastic thin walled tube, fixed
on both edges, is compressed beyond the critical load, so that it starts to buckle
first in axisymmetric mode, then in accordion mode. The problems considered
in the two last sections are encountered in crashwortiness research; during post
buckling folding of metal thin walled structures, large amounts of energy due
to an impact are consummed. Such structures are thus used for improvement
of vehicles safety.

The axisymmetry of the problem is disturbed by small errors due to
numerical precision, that is why classical axisymmetric post buckling changes
quickly to an accordion mode. Note that the numerical treatment of this
problem is impossible without using symmetric contact boundary conditions
which prevent the forming bends from penetration beyond the planes of
symmetry, so the penalty method is combined with the PDN method. The
geometrical setting and the finite element mesh of the problem are presented
in Fig. 6.22. All necessary data are listed in the box below.

Figure 6.22: Geometric setting of the problem, boundary conditions and finite
element mesh.
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• Finite deformation elasto-plasticity [Weber 90] (updated La-
grangian):

Young’s modulus E = 69, Poisson’s ration ν = 0.33

Von Mises yield strength R0 = 0.25

Isotropic hardening constant Q = 1.5

• Boundary conditions and geometry:

Inner radius R = 14.5

Tube thickness h = 0.5

Tube height H = 150

Displacement on the top of the cylinder

uy = −7 t, t ∈ [0; 10], uy = −70 − 3 (t − 10), t ∈ [10; 15]

uy = −85 − 13 (t − 15), t ∈ [15; 16]

Friction coefficient µ = 0.

• Solution conditions:

Methods: PDN, penalty (with updating coefficients)

Initial penalty coefficients ε0
n = 102, tolerable penetration

gn = 0.01

Time t ∈ [0; 16]; increments N = 100, t ∈ [0; 4]

N = 1500, t ∈ [4; 15], N = 300, t ∈ [15; 16]

• Finite element mesh:

linear full integration brick elements (8 nodes, 8 integration
points); 2662 nodes, 1200 elements

Fig. 6.23 depicts post buckling geometry and the corresponding
accumulated plastic strain at several time steps, the minimal accumulated
plastic strain reaches 7% and the maximal 73% at final time. The reaction-
displacement curve is represented in Fig. 6.24.
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Figure 6.23: Post buckling geometry and corresponding accumulated plastic
strain.
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Figure 6.24: Reaction on the top of the folding cylinder.
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6.2.2 Hydrostatic extrusion of a square plate through a circular hole

This problem deals with an artificial hydrostatic extrusion process: a thin
square plate is loaded by a hydrostatic pressure from one side. On the other
side, the motion of the plate is limited by a rigid foundation with a hole.
Elastic and elasto-plastic material models, small and large deformations and
different configurations are considered. We do not relate this simulation with
any particular industrial problem, it presents simply a demonstration of the
PDN method performance in case of large three dimensional contact problems
between a deformable body and a flat rigid foundation with an edge, Fig. 6.25.
Two finite element meshes (coarse – 900 linear element and fine – 13946 linear
elements) are presented in Fig. 6.26.

Figure 6.25: Geometrical setting of the problem.

Figure 6.26: Finite element meshes: coarse and fine.

Note that the problem is not axisymmetric, but there is a symmetry of
8th order. However, to demonstrate the performance of the algorithm a
quarter of the problem is considered. Regardless a high hydrostatic pressure,
a detachment in the contact zone close to the hole can be observed. Due
to this detachment the determination of the active contact zone takes up to 11
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iterations for the fine mesh. The problem with the coarse mesh has been solved
for an elastic and elasto-plastic material models within small deformations,
ratio of the plate side to the diameter of the hole is 5/2. A fine mesh is associated
with a problem in large deformations and linear material, to highlight the lack
of axisymmetry the ratio of the plate side to the diameter of the hole is chosen
3/2. All input data can be found in the box below:

• Finite deformation elasticity (updated Lagrangian) for fine mesh;
small deformation elasticity and elasto-plasticity for coarse mesh.

Young’s modulus E = 210, Poisson’s ration ν = 0.3

Von Mises yield strength R0 = 0.25

Nonlinear isotropic hardening:

R = R0 +Q(1 − e−bp),Q = 10, b = 10

• Boundary conditions and geometry:

Hole radius r = 10

Plate thickness h = 0.1

Plate half-side a = 25 (coarse mesh), a = 15 (fine mesh)

Hydrostatic pressure p = 0.0125 (coarse mesh), p = 0.0008
(fine mesh)

Friction coefficient µ = 0.

• Solution conditions:

Methods: PDN

Time t ∈ [0; 1]; increments N = 1 (coarse mesh), N = 12 (fine
mesh)

• Finite element mesh:

coarse mesh – linear full integration brick elements (8 nodes,
8 integration points); 1922 nodes, 900 elements

fine mesh – linear full integration brick (8 nodes, 8
integration points) and prismatic elements (6 nodes, 6
integration points); 25350 nodes, 13946 elements

The comparison of the deformed shape and the vertical displacement in the
detachment zone are presented in Fig. 6.27. The maximal vertical displacement
of the middle point is about −3 for the case of elasto-plastic material model.
It is about 30% lower for the elastic material −2.15. Detachment (positive
vertical displacement) seems to be similar in both cases. A detailed zoom on
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the detachment zone shows a slight difference in Fig. 6.28. The displacements
in the radial plane are represented in Fig. 6.29 for coarse meshes, besides
the quantitative difference, a qualitative difference can be observed in the
detachment zone. Note that for the given configuration (ratio of the plate side to
the diameter of the hole is 5/2) the entire lower surface of the sheet is expanding
due to the applied hydrostatic pressure. Von Mises stress distribution and
accumulated plastic strains are plotted on the nonscaled deformed geometry
in Fig. 6.30. The maximal value of the accumulated plastic strain is situated on
the edge of the contact zone and does not overpass 2.4%.

A qualitatively different result has been obtained for the fine mesh, a central
region of radial expansion is followed by a contraction region, see Fig. 6.31 and
in plot Fig. 6.32. Also for the fine mesh the vertical displacement both in
extrusion and detachment zones appears to be axisymmetric, see Fig. 6.33.
The distribution of von Mises stress for this case is given in Fig. 6.34. Slight
oscillations appear in the stress distribution due to numerical errors. Since the
edges of the circular hole are sharp and the detachment effect takes place, the
contact zone in the vicinity of the hole edge is given by several nodes with
radial coordinate r = 10, then r = 10 − ε are not in contact and r = 10 + ε are
normally in the detachment region. In Fig. 6.35 only nodes which are in contact
are plotted, this plot allows to visualize two things: the nonregularity of the
contact on the edge of the hole and the size of the detachment zone.

Figure 6.27: Vertical displacement on the lower surface of the deforming
plate: a – elasto-plastic material model; b – elastic material model; scale of
displacement 500%.
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Figure 6.28: Zoom on the vertical displacement on the lower surface of
the deforming plate; different scales for extrusion zone r < 10 (10%) and
detachment zone r > 10 (600%): a – elasto-plastic, b – elastic material models.

Figure 6.29: Displacement on the lower surface of the deforming plate in
the horizontal plane OXY, different scales are chosen for different zones :a –
elasto-plastic, b – elastic material models.

Figure 6.30: Distribution of von Mises stress at Gauss points for the elasto-
plastic material (a), accumulated plastic strain (b); scale 100% .
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Figure 6.31: In plane displacements on the lower surface of the deforming plate
in case of finite elastic deformations and fine mesh, zones of radial extension
and contraction can be distinguished .
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Figure 6.32: Radial displacements along two axes of symmetry.

Figure 6.33: Vertical displacements along two axes of symmetry.
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Figure 6.34: Distribution of von Mises stress (contour plot) for elastic material,
large deformations and fine mesh, scale 300% .

Figure 6.35: Nodes in contact (lower surface of the deforming plate in case of
finite elastic deformations and fine mesh) .
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6.2.3 Frictional sliding of a cube on a rigid plane

A frictional sliding of a deformable block on a rigid plane demonstrates the
difference between local and global (measured) coefficients of friction. The
geometry and the finite element mesh are presented in Fig. 6.36. A deformable
cube is moved towards a rigid plane and further is moved along the plane,
three coefficients of friction are considered: µ = 0.2, 0.5, 0.8; for the latter a
detachment of a part of a cube takes place in the sliding motion. Rigorously this
problem is not well posed, because of sharp angles resulting in infinite stresses;
a given finite element discretization can be considered as a regularization of
the problem. The mesh of the cube contains 1000 equal linear brick elements.
All data are given in the box below.

• Small deformation elasticity:

Young’s modulus E = 210, Poisson’s ratio ν = 0.3

• Boundary conditions and geometry:

Cube side a = 1

Friction coefficient µ = 0.2, 0.5, 0.8

Vertical displacement on the top of cube uz = −0.05 t, t ∈
[0; 1], uz = −0.05, t > 1

Horizontal displacement on the top of cube ux = 0, t ∈
[0; 1], ux = 1/6 (t − 1), t ∈ [1; 3]

• Solution conditions:

Methods: PDN

Time t ∈ [0; 3], increments:
µ = 0.2: t ∈ [0; 1.2],N = 12, t ∈ [1.2; 3],N = 36
µ = 0.5: t ∈ [0; 3],N = 30
µ = 0.8: t ∈ [0; 2],N = 20, t ∈ [2; 3],N = 20

• Finite element mesh:

linear full integration quadrilateral plane strain elements (4
nodes, 4 integration points); 2117 nodes, 1803 elements

Deformed geometries and the corresponding shear stress σxz distributions
are assembled in Fig. 6.37 for the three considered friction coefficients µ =
0.2, 0.5, 0.8 and three time points t = 1, 2, 3. The case of friction µ = 0.8
is qualitatively different from the two other, since detachment occurs in the
contact zone. As a consequence, there is some stress redistribution in the
contact interface and a change of the sliding velocity. Contrary to expectations,
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due to this detachment, the box with a higher friction µ = 0.8 slides further
than the box with a lower friction µ = 0.5. The total vertical reaction scaled
by the friction coefficient µ|P| and the tangential reaction |Tx| are plotted in
Fig. 6.38. Remark that in slip state the absolute value of the tangential reaction
is not equal to the absolute value of the contact pressure multiplied by a friction
coefficient µ|P| , |Tx|, but

µ|P| > |Tx|.

This is due to the fact that the shear stress in the direction orthogonal to sliding
σzy is not zero. Nevertheless, the problem remains symmetric respectively to
the XOZ plane passing through the middle of the cube, so the integral ofσzy over
the contact interface is zero. To make it evident, nodal tangential reactions in
the contact zone are represented in Fig. 6.39. The difference between the global
coefficient of friction µ̄ and the predefined local one µ remains low. Relative
error (µ − µ̄)/µ is 3% for µ = 0.2, 2% for µ = 0.5 and only 1.1% for µ = 0.8.

Figure 6.36: Geometrical setting of the sliding cube problem: finite element
mesh and boundary conditions.
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Figure 6.37: Contour plots of shear stress σxz for different friction coefficients
and time moments.
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Figure 6.38: Evolution of the scaled normal reactionµ|P| and tangential reaction
|Tx|.
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Figure 6.39: Tangential reactions on the bottom of the cube for different friction
coefficients and time moments t = 0.9, 1.3, 2., 3.; different scales are used for
different plots.

314



Chapter 7

Conclusions and perspectives

Résumé de Chapitre 7 «Conclusions»

Ce chapitre énumère les contributions originales de la thèse et donne des perspectives
pour les travaux futurs. Les contributions originales peuvent être distinguées par les
thèmes dans lesquels elles se situent : géométrie, détection et résolution.

• Géometrie :

– définition rigoureuse du point le plus proche pour le cas d’une surface lisse
par morceaux ;

– nouvelle procédure de projection de type «ombre portée» ;

– expressions «prêtes-à-implémenter» pour les quantités cinétiques sont
dérivés pour la discrétisation arbitraire de la surface maître ;

– méthode d’enrichissement de la géométrie de contact ;

– nouvel algèbre de s-structure.

• Détection :

– utilisation de boîtes englobantes pour accélérer le processus ;

– parallélisation de la méthode de «bucket sort» ;

– établissement des paramètres optimaux pour le «bucket sort» ;

– nouvelle procédure de détection basée sur une définition rigoureuse du
point le plus proche.

• Résolution :

– nouvelle approche de résolution des problèmes de contact unilatéral (PDN) ;

– considération de fonctions de pénalisation non linéaires et de différentes
stratégies «active set» pour la méthode des multiplicateurs de Lagrange.
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Les méthodes développées dans cette thèse sont applicables à une très grande
variété de problèmes de contact. L’une des prolongations en cours concerne le
problème de contact entre surfaces rugueuses, pour lequel une discrétisation très
fine est indispensable, afin de bien représenter le caractère fractal de la surface
réelle. La résolution de ce type de problème demande un traitement sur machine
parallèle [Yastrebov 11b]. Une autre application qui est prévue dans un avenir proche
présente l’analyse sous chargement cyclique d’un composant aéronautique constitué
de trois grandes pièces assemblées par 45 boulons.

The goal of this work is to derive a consistent framework for the treatment of
contact problems within the Finite Element Method using the Node-to-Segment
discretization. Three main components of the computational contact have been
considered: geometry, detection and resolution techniques. For the sake of
completeness, the mechanical aspects of contact as well as numerous numerical
algorithms and methods have been discussed. A new mathematical formalism
called “s-structures” has been employed through the entire dissertation. It
results in a comprehensive coordinate-free notations and provides an elegant
apparatus, available for other mechanical and physical applications. Several
original ideas and extensions of standard techniques have been proposed
and implemented in the finite element software ZéBuLoN (Z-set). Numerical
case studies, presented in the dissertation, demonstrate the performance and
robustness of the employed detection and resolution schemes.

7.1 Original contributions

7.1.1 Geometry

The classical normal projection technique for searching for the closest point
is widely used in computational contact; however this formulation has some
inherent problems: the objective distance function used for the determination
of the closest point may be not smooth and the minimum point may be not
unique. The latter results in a discontinuous projection when the point slides
along a surface. To provide an always existing normal projection 1) we have
proposed to seek for an infimum of the minimal distance on the union of open sets
of master edges and segments as well as on the discrete set of master nodes, see
Section 2.2.1. 2) A new technique, shadow projection, has been proposed (see
Section 2.2.3), which ensures an always existing and unique projection of
any point onto the surface. Moreover this projection is continuous, i.e. a
small change of the geometry results in a small change of the projection point.
However, this method is not applicable for arbitrary surfaces and the imaginary
“emitting light” point has to be chosen carefully.

In Sections 2.2.5 and 2.2.6 the first and second order variations of the
geometrical quantities are derived for continuous geometries. Arbitrary gaps,
normal and 3) shadow projections have been considered. The accuracy of derived
expressions have been validated by several numerical tests (see Section 2.3). 4)
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Statistical analysis of these tests allowed to demonstrate the difference between
the real variations of geometrical quantities and the designed analytical
expressions. Moreover the tests allowed to compare the error limits and their
deviations between the rigorous expressions and their truncated versions with
and without use of the assumption of infinitely small gaps.

In Section 2.4 the 5) ready-to-implement expressions for variations of geometrical
quantities have been derived. The expressions are valid for any discretization of
the master surface including smoothing techniques. It remains only to choose
the appropriate shape functions.

In order to enrich the contact geometry on the submesh scale or to take
into account its change due to loading, 6) an analytical description of the enriched
geometry and needed variations have been derived in Section 2.5. An example of
closed form expressions is given for the two-dimensional linear frictionless
element.

All geometrical computations have been carried out using 7) the new
mathematical formalism of s-structures. The s-structures or set-structures consist
in a generalization of a set of tensor components with related internal and
external operations. In Appendix A the notion of s-structures is extended and
an attempt to construct invariant structures has been undertaken. Moreover
8) an extended introduction to tensor algebra is given within the s-structure
formalism. The s-structures have been initially introduced in order to carry out
computations with objects of different dimensions and to provide a coordinate-
free framework.

7.1.2 Detection

A comprehensive framework for the NTS contact detection inspired from the
bucket sort method is derived. The original approach proposed in [Benson 90]
has been complemented by the 9) bounding box concept and 10) extended to the
parallel case [Yastrebov 09]. Two approaches for parallel detection have been
proposed in Section 3.6 and implemented in the finite element code: the Single
Detection, Multiple Resolution (SDMR) and the Multiple Detection, Multiple
Resolution (MDMR). The MDMR scheme has been inspired from the Linked
Cell Method widely used in the Molecular Dynamic simulations with short
range potentials. The parallel test of a contact between two rough surfaces has
demonstrated a good scalability of the approach.

For the closest node based detection 11) a strong connection between the
master mesh, the maximal detection distance and the optimal bucket cell size has
been established and validated on various numerical tests in Section 3.3.2. Contact
detection based on the closest node requires additional verifications due to
blind angles and passing by nodes. The techniques allowing to overcome these
difficulties have been discussed. The derived numerical scheme is valid both
for known and unknown a priori master-slave discretizations [Yastrebov 11a].

Next we have demonstrated that the contact searching algorithms based
on the closest node detection are not robust (see Remark 3.1), that is why
in Section 3.3 we have proposed to 12) construct a detection procedure based on
the rigorous definition of the closest point. The performance of the method has
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been tested on large contact problems (up to 2 million nodes in contact), the
designed algorithm in sequential case works up to 160 000 times faster than a
simple all-to-all technique.

7.1.3 Resolution

Based on a simple case of contact between a deformable solid and a rigid
plane, the classical Hertz-Signorini-Moreau contact conditions and frictional
conditions are replaced by partial Dirichlet-Neumann boundary conditions on
the active contact zone. Further this approach has been extended for the case
of an arbitrary rigid surface. Within this representation, 13) a simple and robust
approach to treat frictionless and frictional contact problems has been derived.

After consideration of the variational inequalities approach, we focus on
the implementation of three basic methods in the framework of variational
equalities: penalty (PM), Lagrange multiplier (LMM) and augmented
Lagrangian (ALM) methods. The variational formulation for each method has
been derived; the principle of operation has been demonstrated on a simple
test. 14) Nonlinear penalty functions are considered within the PM (Section 4.5.3)
and different local active set strategies are compared within the LMM (Section 4.6.3).

For the sake of completeness the basic ingredients of the Newton’s scheme
(Section 5.1) and the return mapping algorithm (Section 5.2) have been
presented in the context of the computational contact. 15) A geometrical
interpretation of subdifferential formalism has been proposed in Section 5.1.4. This
interpretation is also valid to establish an always existing normal projection.
Further the finite element formalism has been presented using the s-structures
(Section 5.3).. Elementary contribution of the NTS contact elements to the
virtual work of the system and its linearization has been derived for the
PM (Sections 5.4.1, 5.4.1 for frictionless and frictional cases) and the ALM
(Sections 5.4.3, 5.4.4)). Some relevant technical details have been discussed in
Section 5.6.

The accuracy, performance and robustness of the implemented techniques
and methods have been validated on nine two- and three-dimensional contact
problems, among them:

• two with available analytical solutions (Section 6.1.1 – indentation of
a half space by a rigid cylindrical punch, Section 6.1.2 – elastic disk
embedded in an elastic bored plane);

• two problems with numerical solutions obtained by other authors
(Section 6.1.5 – shallow ironing, Section 6.1.6 – post-buckling folding
of a thin-walled tube);

• two highly nonlinear problems with frictional contact and finite strain
plasticity (Section 6.1.4 – axisymmetric deep cup drawing, Section 6.2.1 –
accordion post-buckling folding of a thin-walled tube);
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7.2 Intermediate results and perspectives

The fast and robust parallel framework established in the PhD dissertation
allows to perform large parallel computations including frictional contact. Two
large applications are to be considered:

1. analysis of the normal contact between rough metallic surfaces;

2. simulation of the aeronautic turbine disk consisting of three separate
parts assembled by 45 bolts.

Further investigations are required to improve the stability of the parallel
scheme. Different types of contact element distribution among the subdomains
have to be investigated. A standard test procedure has to be established in order
to analyze the performance of detection/resolution steps in parallel treatment
of contact problems.

7.2.1 Normal contact of rough surface

The problem of the normal contact between two metallic rough surfaces arises,
for example, in metal-to-metal water seals. The aim of the study, carried
out in close collaboration with Julian Durand (PhD student at the Centre des
Matériaux, Mines ParisTech) and Electricité de France (EDF), is to predict the
leakage through such water seals for a specific material, used in nuclear power
plants.

An accurate measurements of various rough surface 3D profiles have been
carried out by C. Vallet [Vallet 09]. Based on these measurement (610 µm × 460
µm and 736 × 480 pixels), a Representative Surface Element has been chosen
(54 µm × 63 µm) based on the height distribution. Further the resulting surface
profile has been enriched by a bi-cubic Bézier surface. The resulting profile
has been projected on a flat finite element mesh. The finite element analysis
has been carried out on a mesh containing 964 000 nodes. More than 945 000 of
these nodes are located in 8 layers forming a regularly meshed zone adjacent
to the contacting surface (Fig. 7.1). An elasto-plastic material model with an
isotropic exponential hardening has been used within the updated Lagrangian
formulation for finite strain plasticity. Symmetric boundary conditions have
been imposed on the lateral sides of the specimen. The maximum applied
normal load generates a contact area equal to 6% of the nominal area. The PDN
method for contact and the FETI (Finite Element Tearing and Interconnecting,
[Farhat 94]) method have been used to perform the full computation. The finite
element analysis demonstrated:

• a linear increase of the real contact area with increasing normal load;

• a strong interaction between asperities;

• the evolution of the real contact area and of the residual volume as well
as their topologies to analyze the percolation;
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• a statistical study of the three-dimensional rough surface has shown the
that distribution of asperity relative heights is not Gaussian.

The maximal accumulated plastic deformation in the test on the Representative
Surface Element reached 200%, i.e. since the metal cannot sustain such a large
deformations, a damage and/or a fracture mechanism have to be introduced
in the material model in order to make the simulation more realistic. The von
Mises stress distribution on the surface and the vertical displacement for the
ultimate load are depicted in Fig. 7.2.

Figure 7.1: The finite element mesh used for the analysis of rough surface in
contact: a – assembly of 9 elements to get a fast transition from coarse mesh
to fine mesh; b – full finite element mesh containing 964 000 nodes, more than
945 000 of these nodes are located in 8 regularly meshed layers close to the
surface; different color designate subdomains for the parallel computation .

At the same time a reduced model has been proposed based on the
finite element simulations of a single asperity and periodic structures of
similar asperities. Different asperity shapes and geometrical characteristics,
coefficients of friction and meshes have been used. The reduced model is
based on the accurate analysis of the rough surface (location and geometrical
characteristics of each asperity) and in the reconstruction of the surface
consisting of super-elements – asperities with a prescribed force-displacement
behavior. The interaction between asperities has been also taken into account
by an analytical function of the relative displacement, distance and geometrical
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Figure 7.2: Results of the FEA of the normal contact between a metallic
rough surface and a rigid plane: a – von Mises stress distribution, b – vertical
displacement (blue color correspond to the real contact area) .

characteristics of each asperity. This function has been calibrated by means of
a series of finite element analyses. The displacement–force, force–contact area
and force–residual volume curves, predicted by the reduced model are in
good agreement with large parallel finite element simulations as well as the
topology of the real contact area and the residual volume. For more details,
see [Yastrebov 11b].

In perspective, the parallel framework and the augmented Lagrangian
method will be used to simulate a contact between two rough deformable
surfaces. Such an analysis will allow to determine the application limits of the
Johnson’s assumption1.

7.2.2 Aeronautical applications

A large aeronautical engineering problem has been considered. Three parts
of a turbine disk are assembled by 45 bolts and loaded by a centrifugal load.
The difficulty of the problem arises, first, from the fact that all parts of the disk
allow rigid-body motions, which should be removed by contact constraints
and second, due to the relatively large size of the mesh (180 000 nodes coarse
mesh, 820 000 fine mesh) the number of contact elements and the number of
independent contact zones. Moreover the aim of this study is to investigate the
cycling loading of a turbine disk due to a) the presence of a small eccentricity,
which results in an oscillation of the load and b) the start-up and shut-down
cycles. That is why many time steps are needed. The need to consider the full

1Johnson’s assumption affirms that the contact between two elastic frictionless rough surfaces
can be replaced by the contact between a rigid plane and a body with effective material properties
and with a roughness obtained by the “sum” of the roughnesses of two undeformed surfaces.
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assembly instead of a sector, stems out of the need to investigate the behavior
of precracked disks.

The assembly of a disk without cracks has been analyzed by means of a
representative sector (the stress states for different time steps are presented in
Fig. 7.3). The next step is the parallel treatment of the entire assembly. The
partition on subdomains is depicted in Fig. 7.4.

Figure 7.3: Von Mises stress distribution for different rotational frequency in a
representative sector of the full mesh.
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Figure 7.4: Domain decomposition of the disk assembly.
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Appendix A

Vectors, tensors and s-structures

Here the vector-tensor formalism employed through the dissertation is briefly
presented. All computations have been carried out using a rigorous vector-
tensor apparatus and the associated notations – the direct “tensor language”.
In my honest opinion the used formalism - the direct (component-free) tensor
language – is an elegant and intuitive tool which can be easily employed
in mechanics; moreover it allows to decrease significantly the probability
of errors and/or misprints in comparison to index notations. In spite of all
forementioned, sometimes a rigorous proof can be more easily obtained in the
coordinate form of tensor with respect to a given basis. So here almost all
operations will be duplicated in index notations.

Generally in literature bold symbols or explicit indices are used both for
vectors and tensors; sometimes the “array” and “matrix” notations are used.
The notations used here are intentionally different and may look unusual.
Vectors are underlined by one line, tensors of 2nd and higher orders by two
lines. It is due to the fact that we will distinguish two different vector spaces
and their elements. This task is hard to accomplish using standard notations.

The first systematic exposition of the tensor language was given by Josiah
Willard Gibbs [Gibbs 84], improved and extended in [Gibbs 60]. We follow
the course of lectures given by Pavel A. Zhilin at the Saint-Petersburg State
Polytechnical University [Zhilin 01]. The originality of our description of the
tensor language consists in the introduction of new constructions – s-structures,
which results in fruitful extension of the tensor language and its application in
mathematics and physics.

A.1 Fundamentals

• A vector a of dimension n is an element of the vectorial oriented space

a ∈ T1
n

and should be associated with an oriented segment in this space, but not
with a set of n real numbers, which depend upon the choice of the basis.
This is the main difference between the direct (component-free) tensor
language and the component form.
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• A special construction
Tn

2 = T1
n ⊗ T1

n

– the tensor product of two vector spaces – will be called the second-order
tensor space and its elements second-order tensors

a
=
∈ Tn

2

The simplest element of this tensor space is a diad [Gibbs 84] – an ordered
pair of vectors

a ⊗ b.

Every diad is a second-order tensor but not every second-order tensor is
a diad. Any second order tensor is a formal sum of a finite number of
diads

a
=
= a ⊗ b + c ⊗ d + · · · +m ⊗ n

• In the same manner, higher order tensor spaces can be introduced

Tn
m = T1

n ⊗ T1
n ⊗ · · · ⊗ T1

n

︸                    ︷︷                    ︸
m times

For example, the third-order tensor is a formal finite sum of triads

3a
=
= a ⊗ b ⊗ c + d ⊗ e ⊗ f + · · · +m ⊗ n ⊗ o.

In the following, the notation of tensor spaces without upper index Tm

will define vectors and tensors in the three dimensional space.

• To move to component notations the oriented vector space T1
n has to be

complemented by a basis B; every vector can be associated with a unique
set of coordinates in the basis B and vice versa, i.e. spaces T1

n and Rn

are bijective. By basis we mean a material point in space, with associated
linearly independent axes, and a clock1 – reference frame – and established
coordinate system.

• Scalars can be considered as zero-order tensors; a scalar is determined by
one real number which does not depend on the choice of the coordinate
system. So coordinates of a vector cannot be considered a scalar. Scalars
may depend on the reference frame (kinetic energy) or not (temperature,
internal energy, etc.)

• For the sake of generality here and below the expressions in the
direct tensor language are followed by the corresponding expressions
in component form in dark gray. Each vector is associated with n
real numbers – its components in the given coordinate system in the
reference frame. In this paragraph, for simplicity, the coordinate system
is supposed to be orthonormal. The basis unit vectors of the system are

1clock is not necessary for the tensor formalism, but for physics for which this formalism is
used, the clock is necessary.
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e1, e2, . . . , en such as ei ·e j = δ
j

i
, where “·” denotes the dot product (defined

below), and δ j

i
is Kronecker delta

δ
j

i
=


1, if i = j

0, if i , j

For such a choice any vector can be splitted as follows

a = a1e1 + a2e3 + · · · + anen = aiei,

where ai = a · ei are the components of the vector. So each vector for
a fixed coordinate system has a one-to-one correspondence with n real
numbers

a↔ ai, i = 1,n

The Einstein summation from 1 to n by identical upper-lower indices is

used, e.g. aibi =
n∑

i=1
aibi. In details, the basis and all related questions will

be considered in the following section.

• Each vector is characterized by a direction and by a length – the vector’s
norm

‖ ‖ : T1
n → R+0 :

∥∥∥ a
∥∥∥ ≥ 0.

Let ‖ ‖ be the Euclidean norm, so in component form

‖a‖ =
√

a2 =
√

a · a; ‖a‖ =
√

aiai

• Two types of vectors are distinguished: straight vectors and spin-
vectors (denoted with ∗, e.g. a∗). The first ones intuitively describe
forward motions (translation), while the second ones characterize proper
rotations. There is a correspondence between straight vectors and spin-
vectors: this correspondence is uniquely defined if the reference frame is
oriented (left-hand or right-hand oriented). A straight vector is called
polar if it does not change its direction when the orientation of the
reference frame changes. An axial vector is a straight vector which changes
its direction to the opposite if the orientation is changed. Tensors of any
order can be polar or axial. The type of tensor is determined by the
sensitivity to orientation change: axial tensors are multiplied by −1,
polar remain the same, if the orientation changes (independently from
left-hand oriented to right-hand of vice versa). Axial tensors of zero order
are called pseudoscalar.

• Vectors summation.

Contrary to mathematics, in physics, vectors summation is not abstract
and is determined by the well known triangle or parallelogram rules.
The result of the summation is a vector.
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– Commutativity: a + b = b + a; ai + bi = bi + ai

– Associativity: (a + b) + c = a + (b + c); (ai + bi) + ci = bi + (ai + ci)
– Zero vector 0: a + 0 = 0 + a = a; ai + 0 = 0 + ai = ai

• Product of a vector and a scalar

The product of a vector a and a scalar α ∈ R is a vector b

b = αa; bi = αai,

such as ‖b‖ = |α| ‖a‖ and if α > 0, then vectors a and b are similarly
directed. If α < 0 – oppositely directed.

α(a + b) = αa + αb; α(ai + bi) = αai + αbi

(α + β)a = αa + βa; (α + β)ai = αai + βai

• Scalar product or dot product of vectors

The dot product of two vectors is a scalar

{·} : T1× T1→ R

α = a · b = ‖a‖ ‖b‖ cos(φ); α = aib
i = aibi,

where φ is the angle between vectors.

– Commutativity: a · b = b · a; aib
i = biai

– Distributivity: a · (b + c) = a · b + a · c; ai(bi + ci) = aib
i + aic

i

• Orthogonality

Vectors are orthogonal if their dot product is zero

a ⊥ b ⇔ a · b = 0; aib
i = 0

• Unit vector

The unit vector of a nonzero vector a is the vector â such that

â =
a

‖a‖ ; âi =
ai

‖a‖

• Projections

Projection of the vector a on the vector b is a vector p such as

p = (a · b̂)b̂; pi = a jb̂
jb̂i.

By projection we often mean a scalar p

p = a · b̂; p = aib̂
i

The projection of the vector a on the plane with normal b is a vector p

such that
p = ( I

=
− b̂ ⊗ b̂ ) · a; pi = (δ j

i
− b̂ib̂

j)a j.
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• Vector product or cross product

The vector product can be introduced only in oriented reference frames,
contrary to previously defined operations which are valid also for non-
orientation reference frames. Moreover the vector product is meaningful
only in three dimensional spaces T1= T1

3. So if there is a vector product
in equation, spaces are implicitly supposed to be T3

n. The vector product
of two vectors a and b is a vector

c = a × b; ci = det




δi
1 δi

2 δi
3

a1 a2 a3

b1 b2 b3




such that
c · a = 0; c · b = 0; ‖c‖ = ‖a‖ ‖b‖ sin(φ)

cia
i = 0; cib

i = 0; ‖c‖ = ‖a‖ ‖b‖ sin(φ)

Two vectors fulfill these conditions: c and −c. To determine the direction
of the vector c we employ a spin-vector c∗, whose axis is parallel to
the vector c and whose rotation is oriented from vector a to b through
the minimal angle. If the minimal angle is 0 or 2π then by definition
‖c‖ = 0 so the orientation is meaningless. Finally the vector c or −c is
associated with the spin-vector c∗ respectively to the orientation of the
reference frame. For two polar vectors a and b, vector c is axial. As can
be demonstrated [Zhilin 01] vector product of two polar vectors a, b is
more meaningful for the spin-vector c∗ than for the axial-vector c, since
the spin-vector remains valid for mirror symmetries.

c = a × b = −b × a; ci = det




δi
1 δi

2 δi
3

a1 a2 a3

b1 b2 b3


 = −det




δi
1 δi

2 δi
3

b1 b2 b3

a1 a2 a3




a × (b + c) = a × b + a × c;

det




δi
1 δi

2 δi
3

a1 a2 a3

b1 + c1 b2 + c2 b3 + c3


 = det




δi
1 δi

2 δi
3

a1 a2 a3

b1 b2 b3


 + det




δi
1 δi

2 δi
3

a1 a2 a3

c1 c2 c3




• Three vector products

The mixed product of vectors

β = a · (b × c) = c · (a × b) = b · (c × a)

β = det




a1 a2 a3

b1 b2 b3

c1 c2 c3


 = · · · = . . .
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The double vector product of vectors

d = a × (b × c) = b(a · c) − c(a · b)

di = det




δ1i δ2i δ3i

a1 a2 a3

det
[
b2 b3

c2 c3

]
−det

[
b1 b3

c1 c3

]
det

[
b1 b2

c1 c2

]



= bia jc j − cia jb j.

Note that brackets which points the order of operations, i.e. which vector
product should be evaluated first are mandatory since

a × (b × c) , (a × b) × c

A.2 Vector space basis

A basis is any set of linearly independent vectors ei, i = 1,n. Vectors ei are
linearly independent if and only if

eiα
i = 0 ⇔ αi = 0

It can be shown that in 3D this condition is equivalent to the condition

e1 · (e2 × e3) , 0

Any vector a ∈ T1
n can be presented as

a = αiei,

where αi are the coordinates of the vector a in the basis ei. For two arbitrary
bases

a · b = aiei · b je j = aib jei · e j.

The dual basis ei is constructed such that

ei · e j = δ
j

i

Naturally vectors of the dual basis are linearly independent. If vectors of the
basis ei are normalized, i.e. ‖ei‖ = 1, then the norms of the vectors of the dual
basis are not smaller than one

‖ei‖ ≥ 0, since ei · ei = ‖ei‖︸︷︷︸
=1

‖ei‖ cos(φ) = 1 ⇒ ‖ei‖ = 1
cos(φ)

,

where φ is the angle between vectors ei and ei.
Now the summation by upper and lower repeated indices becomes more

clear. Coordinates ai of the vector a in the basis ei are determined by the dot
product of a with the corresponding coordinate of the dual basis and vise versa

ai = a · ei; ai = a · ei,
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where ai are the coordinates of the vector a in the basis ei. If the basis ei is
orthonormal, then the dual basis is identical to it

ei · e j = δ
j

i
⇔ ei = ei.

and the coordinates of vectors in both bases are equal ai = ai. Objects with
upper and lower index will be called respectively contravariant and covariant
objects. A more detailed explanation and definition is given below.

To read the end of this section, it is recommended to check briefly the
S-structure notations introduced in Section A.6. S-structures are special
constructions under the space of tensors of all ranks, which have been
introduced in the dissertation to simplify the formalism and to avoid the
indices. In the following, where it will be possible, instead of index notations,
s-structure notations will be employed

ei −→ e
∼
, ei −→ ē

∼
ai −→ a∼ , ai −→ ā∼

Using this notations we introduce a special t-scalar A≈ called the first
fundamental matrix or metric matrix, which is symmetric due to commutativity
of the scalar product

A≈ = e
∼
· e
∼
= A≈

T; Ai j = ei · e j = A ji

The term “matrix” is used to follow the tradition. It is important to remark
that this object formally is not an object of tensor space A≈ ∈ T

n
2 , since elements

of the tensor space are invariant objects and this object is double covariant.
However in coordinate form the metric matrix seems very similar to tensor
and is called the metric tensor. From the previous definition it follows directly
that

e
∼
= A≈ ē
∼

; ei = (ei · e j)e j

In the same manner the t-scalar Ā≈ – metric matrix for the dual basis is
determined; it is also symmetric

Ā≈ = ē
∼
· ē
∼
= Ā≈

T; Ai j = ei · e j = A ji

ē
∼
= Ā≈ e
∼

; ei = (ei · e j)e j

Considering the dot product of two bases.

I≈ = ē
∼
· e
∼
= Ā≈ e
∼
· ē
∼

A≈ = Ā≈ I≈A≈ ; δi
j = ei · e j = Ai je j · ekAlk = Ai jδk

jAlk

Directly due to the symmetry of fundamental t-scalars

Ā≈ A≈ = I≈, Ā≈ = A≈
−1; Ai jA jk = δ

i
k, Ai j =

cofactor
(
Ai j

)

det Ai j
,
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A.2 Vector space basis

where by cofactor
(
Ai j

)
we mean the determinant of matrix Ãi j with suppressed

i-th line and j-th column and multiplied by (−1)i+ j. It follows directly

det Ā≈ =
1

det A≈
Following the derived formulae, any vector a can be easily written in both
bases

a = a∼ ē
∼
= ā∼e
∼

; a = aiei = aie
i

where a∼ and ā∼ are the v-scalars of coordinates of the vector a in the basis ē
∼

and e
∼

respectively

a∼ = A≈ ā∼ , ā∼ = Ā≈ a∼ ; ai = Ai ja
j, ai = Ai ja j

A.2.1 Transformation matrices, covariant and contravariant objects

The choice of the basis is arbitrary. Vectors does not depend on this choice, so
for any basis the following equality holds:

a = ā∼e
∼
= a∼ ē
∼
= ā∼

′e
∼
′ = a∼

′ē
∼
′

where e
∼
′ and ē

∼
′ are the new basis and its dual basis respectively. As done

for the dual basis, the transformation t-scalar can be constructed to determine
coordinates of vectors in the new basis from known coordinates in the initial
basis and vice versa. Vectors of the new basis are expressed by the vectors of
the initial basis as follows

e
∼
′ = ( e
∼
′ · ē
∼

)e
∼

; ei′ = ( ei′ · e j )e j

the transition t-scalar P≈ , traditionally referred as the pushforward
transformation matrix, is then constructed as follows

P≈ = e
∼
′ · ē
∼

; P
j

i′
= ei′ · e j

For backward transition, the t-scalar P≈
′ – pullback transformation matrix – is

given by
P≈
′ = ē
∼
′ · e
∼

; Pi′

j = ei′ · e j

Note that these transformation matrices in general are not symmetric, so
indices are ordered

P≈ , P≈
T; P≈

′
, P≈

′T

It is easy to show that the t-scalars P≈
T and P≈

′ are inversely proportional:

P≈
T P≈
′ = I≈, P≈

′ = P≈
−T ; P

j

i′
Pi′

k = δ
j

k
, P

j

i′
=

cofactor
(
Pi′

k

)

det Pi′
k
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We clearly see that the initial basis and the new basis are related by the forward
transition P≈ ; The corresponding dual bases are related by the backward
transition P≈

′:
e
∼
′ = P≈ e

∼
ē
∼
′ = P≈

′ē
∼

One of the key notions of the theory is the definition of the covariant and
contravariant objects.

If an object c∼ of order n depends on the basis choice, then this object is
called

• n-order covariant if it follows the same transformation as the initial basis:

c∼
′ =

n times︷     ︸︸     ︷
P≈ P≈ . . . P≈ c∼; cα′β′...γ′ =

n times︷         ︸︸         ︷
Pi
α′P

j

β′ . . .P
n
γ′ ci j...n

• n-order contravariant if it follows the same transformation as the dual
basis:

c̄∼
′ =

n times︷       ︸︸       ︷
P≈
′ P≈
′ . . . P≈

′ c̄∼; cα
′β′...γ′ =

n times︷         ︸︸         ︷
Pα
′

i P
β′

j
. . .P

γ′

n ci j...n

• p-order covariant, q-order contravariant, p + q = n if it changes p times
according to the transformation of the initial basis and q times according
to the transformation of the dual basis:

c∼
′ =

p times
︷     ︸︸     ︷
P≈ P≈ . . . P≈

q times
︷       ︸︸       ︷
P≈
′ P≈
′ . . . P≈

′ c̄∼; cε
′ξ′...ζ′

α′β′...γ′ =

p times
︷         ︸︸         ︷
Pi
α′P

j

β′ . . .P
k
γ′

q times
︷         ︸︸         ︷
Pε
′

l
Pξ
′

m . . .P
ζ′
n clm...n

ij...k

An object of the first order c which does not follow covariant or contravariant
transformation rules are called non tensorial object and the position of the
index is not important. In such cases, the index is often put in brackets
c(i). If an object is m-order covariant and m-order contravariant, then the
object is invariant with respect to the change of basis. This is the case for a
vector, which consists of covariant coordinates and contravariant basis vector
or contravariant coordinates and covariant basis vectors. Since tensors of
higher ranks are constructed by means of tensor products of vectors, a tensor
of rank m is m-order covariant and m-order contravariant, so it is also invariant
in any basis change. The Kronecker delta δ j

i
= ei · e j is a first-order covariant

and first-order contravariant object, so is also invariant, and can be considered
as the coordinates of the second order unity tensor. Another example is the
metric matrix A≈ which is second order covariant; the metric matrix of the dual
basis Ā≈ is second order contravariant and naturally their product A≈ Ā≈ = I≈ is
an invariant object.
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A.2 Vector space basis

A.2.2 Gradient operator or Hamilton’s operator

Let e
∼

be a moving coordinate system in the reference frame, then the vector r

of each point, fixed in the frame of reference, is determined as

r = r( ȳ
∼
, t),

where ȳ
∼
= ȳ
∼

(t) are the coordinates of r in the basis e
∼

at time t, i.e.

r = ȳ
∼

e
∼

and

ṙ =
∂r

∂ ȳ
∼

˙̄y
∼
+
∂r

∂t
= 0.

For an observer in the moving coordinate system e
∼

, a change of point r leads

to a change of coordinates ȳ
∼

. Logically there exists changes of r in which

only one coordinate changes, for example yi. So for a smooth function r( ȳ
∼

)

at a given time, there exists one curve in space determined by the vector
r(y1, . . . , yi, . . . , yn) where all y j = const and only yi changes. The tangent
vector for such a curve is determined by

ri =
∂r

∂yi

A set of such tangent vectors is a covariant v-vector

D∼ r =
∂

∂ ȳ
∼

r,

where D∼ is a covariant operator

D∼ =
∂

∂ ȳ
∼

The dual local basis can be constructed in a standard manner

∂r

∂ ȳ
∼
= Ā≈

∂r

∂ ȳ
∼
,

where Ā≈ = A≈
−1 and

A≈ =
∂r

∂ ȳ
∼
·
∂r

∂ ȳ
∼

Covariant or contravariant sets of such tangent vectors can be chosen as a
basis. Since the basis depends on the points in the reference frame, such a
basis is called local. It can be shown that the basis constructed in such a way is
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covariant. It is worth mentioning, that in [Kagan 47], these sets of vectors were
interpreted as first rank tensors with vector components – an interpretation of
v-vectors.

Finally the well known gradient operator (invariant differential operator)
is written as

∇ =
∂r

∂ ȳ
∼
◦ D∼

The gradient vector is an objective operator, which does not depend on the
choice of the coordinate system, since it is first order covariant due to covariant

operator D∼ and first order contravariant due to
∂r
∂ ȳ
∼

. Another example of an

objective operator is the full time derivative d
dt . An example of a non-objective

operator is the partial time derivative ∂
∂t . The two following statements can be

easily proven

∇ d

dt
=

d

dt
∇, ∇ ∂

∂t
,
∂

∂t
∇

The gradient operator is very important for mechanical and physical
theories. For a scalar field s(r) = s(r( ȳ

∼
)), the influence of the gradient operator

is uniquely defined by

grad(s) = ∇s =
∂r

∂ ȳ
∼
◦ ∂s

∂ ȳ
∼

The gradient notation “grad” is equivalent to the tensor product of the gradient
operator and the field; in the case of a scalar field, the tensor product is
meaningless and so omitted. The gradient vector can act differently on tensor
fields of first and higher orders T

=
(r) = T

=
(r( ȳ
∼

)). The side (left-hand or right-

hand) and intermediate operators are important. Gradient of a tensor field:

grad
(
T
=

)
= ∇ ⊗ T

=
=
∂r

∂ ȳ
∼
◦⊗

∂T
=

∂ ȳ
∼
, T
=
⊗ ∇

The tensor product notation is often skipped. Divergence of a tensor field:

div
(
T
=

)
= ∇ · T

=
=
∂r

∂ ȳ
∼
◦·
∂T
=

∂ ȳ
∼

Remark that the following equality is correct only for vectors and symmetric
second-order tensors:

∇ · T
=
= T
=
· ∇

The rotor of a tensor field:

rot
(
T
=

)
= ∇ × T

=
=
∂r

∂ ȳ
∼
◦×

∂T
=

∂ ȳ
∼
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∇ × t = −t × ∇
Div and rot are alternative notations for the scalar and vector products of the
gradient operator with a tensor field.

Another important operator in physics and mechanics is the Laplace
operator or Laplacian ∆, which is defined as

∆ = ∇ · ∇ = ∇2

It should not be confused with ∇ ⊗ ∇ , ∆.
Some examples:

• Balance of momentum in the deformable body

∇ · σ
=
+ f v = 0

• Cauchy’s strain tensor

ε
=
=

1
2

(
∇ ⊗ u + u ⊗ ∇

)

• Compatibility of (small) deformations

∇ ×
(
∇ × ε
=

)
= 0

• Compatibility of (finite) deformations

∇ × F
=
= 0

• Maxwell’s equations

∇ · E =
ρ

ε0

∇ · B = 0

∇ × E = −
∂B

∂t

∇ × B = µ0J + µ0ε0
∂E

∂t

A.3 Sub-basis, vector function of v-scalar argument

Let us consider a vector function ρ of v-scalar argument ξ∼ such as

ρ( ξ∼) : Rm → T1
n, m ≤ n

If for each ξ∼ there exists only one element ρ( ξ∼) ∈ T1
n, where T1

n is a vector
space with a reference frame, then the image of the space Rm in T1

n is a set of
points. If ρ( ξ∼) = ρ(t, ξ∼), then this set of points changes in time. For instance,
in the 3D space at given time, the image ImRm in the space is

336



Chapter A. Vectors, tensors and s-structures

• a point, if m = 0;

• a curve, if m = 1;

• a surface, if m = 2;

• a volume if m = 3.

At each time at point ρ(t, ξ∼) a local sub-basis e
∼

can be established if the function

ρ(t, ξ) ∈ C1( ξ∼) is sufficiently smooth versus its second argument ξ∼

e
∼
=
∂ρ

∂ξ∼

For the given time t0 and point ξ∼
0 this basis determines a local subspace T1

m

of the full space T1
m ⊂ T1

n:

• a straight line, tangential to the curve at ρ(t0, ξ∼
0), if m = 1;

• a tangential plane of the surface at ρ(t0, ξ∼
0) if m = 2;

• a full space, if m = 3.

If needed, the basis e
∼

can be complemented by vectors orthogonal to the

subspace T1
n ∋ ei ⊥ T1. Moreover in the particular case of three dimensional

space n = 3 and m = 2, the third basis vector can be constructed as the vector
product of the basis vectors e

∼
e3 = e1 × e2.

However if we are interested only in the object described by the function ρ(t, ξ∼)
there is no need for such a completion.

The metric matrix associated with the object ρ(t, ξ∼) is nothing but:

A≈ =
∂ρ

∂ξ∼
·
∂ρ

∂ξ∼
= A≈

T,

and consequently the dual basis is:

ē
∼
=
∂ρ

∂ξ∼
= Ā≈

∂ρ

∂ξ∼
,

where Ā≈ = A≈
−1 =

∂ρ

∂ξ∼
·
∂ρ

∂ξ∼
= Ā≈

T.

A corresponding sub-gradient operator is constructed like in the previous
paragraph, (to avoid any confusions the order of the operator is marked):

∇m
= ē
∼
◦ ∂

∂ ξ∼
=
∂ρ

∂ξ∼
◦ ∂

∂ ξ∼
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Such a sub-gradient operator is used in theory of deformable rods (m = 1) and
shells (m = 2).

As one can note, the metric matrix associated with an object in a n
dimensional space has a dimension m × m instead of n × n. It is a normal
situation in differential geometry. But the classical rule of summations by
indices can not be used anymore, since the classical summation by indices
is defined according to the dimension of the full space, i.e. from 1 to n.
One possible solution employed in the literature is to introduce a reduced
summation from 1 to m, this summation will be performed only within, for
example small Greek indices or capital letter indices like

eα =
∂ρ

∂ξα
= Aαβ

∂ρ

∂ξβ
; eP =

∂ρ

∂ξP
= APQ

∂ρ

∂ξQ

Let us demonstrate the difference between an intuitive form constructed with
the direct tensor language and a half-index form based on Greek letters. For
quantities related to the surface, both of them are equivalent, but as in practice
the probability of error is lower if one uses the first formalism (this example is
taken from Chapter 2:)

∆δ ξ∼ = (gn H≈ − A≈ )−1


∂ρ

∂ξ∼
·

δ
∂ρ

∂ξ∼

T

∆ ξ∼ + ∆
∂ρ

∂ξ∼
δξ∼


 + ∆ ξ∼



∂ρ

∂ξ∼
·
∂2ρ

∂ξ∼
2


 δξ∼ −

− gnn ·

δ
∂2ρ

∂ξ∼
2
∆ ξ∼ + ∆

∂2ρ

∂ξ∼
2
δξ∼


 − gn∆ ξ∼


n ·

∂3ρ

∂ ξ∼
3


 δξ∼+

+


gn


δ
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
δξ∼


 ·
∂ρ

∂ξ∼
Ā≈ − δgn I≈





n · ∆

∂ρ

∂ξ∼
+ H≈ ∆ ξ∼


+

+


gn


∆
∂ρ

∂ξ∼
+
∂2ρ

∂ξ∼
2
∆ ξ∼


 ·
∂ρ

∂ξ∼
Ā≈ − ∆gn I≈





n · δ

∂ρ

∂ξ∼
+ H≈ δξ∼






(A.1)

∆δξα = Cαβ
{
∂ρi

∂ξβ

(
δ
∂ρi

∂ξγ
∆ξγ + ∆

∂ρi

∂ξγ
δξγ

)
+ ∆ξβ

∂ρi

∂ξβ

∂2ρi

∂ξγ∂ξη
δξη −

− gnni

(
δ
∂2ρi

∂ξβ∂ξγ
∆ξγ + ∆

∂2ρi

∂ξβ∂ξγ
δξγ

)
− gn∆ξ

γ

(
ni

∂3ρi

∂ξγ∂ξβ∂ξκ

)
δξκ+

+

[
gn

(
δ
∂ρi

∂ξβ
+

∂2ρi

∂ξβ∂ξγ
δξγ

)
∂ρi

∂ξη
Aηκ − δgnδ

κ
β

] (
ni∆

∂ρi

∂ξκ
+Hκτ∆ξ

τ

)
+

+

[
gn

(
∆
∂ρi

∂ξβ
+

∂2ρi

∂ξβ∂ξγ
∆ξγ

)
∂ρi

∂ξη
Aηκ − δgn∆

κ
β

] (
niδ

∂ρi

∂ξκ
+Hκτδξ

τ

)}
,

(A.2)

where Cαβ = (gnHαβ − Aαβ)−1, here α, β, . . . , κ ∈ 1, 2 and i ∈ 1, 2, 3.
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A.4 Tensors

Scalars and vectors are not sufficient for physical and mechanical theories.
More complicated structures, higher order tensors, are required. Second-
order tensors seem to be much more abstract and hardly imaginary objects
than vectors and scalars. However, a second-order tensor is not a purely
mathematical construction. In mechanics it appeared first as a mathematical
formalization of intuitive associations not connected with coordinate systems.

The first second-order tensors (tensor of inertia of a rigid body and rotation
tensor) have been introduced by Leonhard Euler in 1758. The term “tensor”
has been proposed by W. Voigt only in 1900. In 1788 Joseph-Louis Lagrange
introduced the second-order tensor of small deformations. In 1822 Augustin-
Louis Cauchy introduced a second-order tensor to characterize the stress state
– the stress tensor σ

=
– and gave a consistent mathematical framework for

the tensor space. Tensors became unavoidable objects for the description of
deformable continua. Ever since, this stress tensor is called Cauchy’s stress
tensor.

• Definition

The second-order tensor space is defined as tensor product of first order
tensor spaces (vector spaces).

Tn
2 = T1

n ⊗ T1
n

Note, that the direct product of such spaces T1
n × T1

n does not lead
to a tensor space; such a space is even not a linear space. Although,
tensors are “physical” in 3D space (n = 3), for the sake of generality, the
formalism will be derived for an arbitrary n dimensional space, except
some particularities related, for example, to vector product. Any element
of the constructed space – second-order tensor A

=
∈ Tn

2 – can be written
as a formal sum of tensor products of vectors

A
=
= a ⊗ b ⊕ c ⊗ d ⊕ . . . ⊕ e ⊗ f

Note that a tensor product of vectors a ⊗ b is an ordered combination of
two vectors called diads

a ⊗ b , b ⊗ a.

The maximum number of independent diads forming the tensor is equal
to the dimension of the space n. For diads we require that

α( a ⊗ b ) = (αa ) ⊗ b = a ⊗ (αb ) = αa ⊗ b

Following this axiom, a zero diad is determined if α is put to zero

0a ⊗ b = 0 ⊗ b = a ⊗ 0

(α + β)a ⊗ b = αa ⊗ b + βa ⊗ b
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If α = 1, β = 0 then

(1 + 0)a ⊗ b = a ⊗ b + 0 ⊗ b = a ⊗ b

So a zero diad is a zero element of the diad space and can be noted as 0.

a ⊗ (b + c) = a ⊗ b + a ⊗ c

(a + b) ⊗ c = a ⊗ c + b ⊗ c

The formal sums of diads ⊕ will be replaced by usual symbol +, which
should be understood as a sign of union like in complex numbers x + iy.

• Composition/union of tensors

The sum of diads is not ordered and any their combination defines the
same tensor

A
=
= a ⊗ b + c ⊗ d + · · · + e ⊗ f =

= c ⊗ d + a ⊗ b + · · · + e ⊗ f =

= · · · = c ⊗ d + e ⊗ f + · · · + a ⊗ b

(A.3)

The product with a scalar results in

αA
=
= (αa) ⊗ b + (αc) ⊗ d + · · · + (αe) ⊗ f

(α + β)A
=
= αA
=
+ βA
=

Composition, sum or union of tensors is a tensor from the same space

A
=
+ B
=
= C
=

As it can be easily shown, tensors are invariant objects, i.e. they do not
depend on the choice of basis. The second order tensor space is shown
to be linear.

• Coordinates of tensors

In coordinate form, any second-order tensor for a given basis and a dual
basis can be written in four ways

A
=
= A

∗ j
i∗e

i ⊗ e j = Ai∗
∗ jei ⊗ e j = Ai je

i ⊗ caj = Ai jei ⊗ e j

To avoid any confusions of components’ order the use of stars is
mandatory for mixed coordinates (co-covariant and co-contravariant),
the same for higher order tensors

3
A
=
= A

∗ j∗
i∗kei ⊗ e j ⊗ ek

By analogy with the s-structure formalism, in the basis e
∼

and its dual ē
∼

, a

tensor can be written also in four ways:

B
=
= ¯̄B≈◦◦E=≈

= B≈ ◦◦
¯̄E
=≈
= B̄≈◦◦Ē=≈

= B̄≈
T◦◦Ē
=≈

340



Chapter A. Vectors, tensors and s-structures

where t-tensor E
=≈

contains tensor product of basis vectors and t-scalar B≈
contains coordinates of tensor in this basis:

E
=≈
= e
∼
⊗ e
∼

; ¯̄E
=≈
= ē
∼
⊗ ē
∼

; Ē
=≈
= e
∼
⊗ ē
∼

Ē
=≈

T
= ē
∼
⊗ e
∼

All possible coordinates of tensors are connected by the fundamental
metric matrices A≈ and Ā≈ . To avoid any confusion, in a component

form, these matrices will be put in square bracket [Ai j], [Ai j]:

Bi j = [Aik]B∗ j
k∗ = [A jk]Bi∗

∗k = [Aik][A jl]Bkl

The change of basis is defined as the pushforward and the pullback
transformations:

e
∼
′ = P≈ e

∼
; ē

∼
′ = P≈

′ē
∼

in component form:

ei′ = [P j

i′
]e j ; ei′ = [Pi′

j ]e j,

square brackets imply that components [P j

i′
] do not represent tensors.

Using the transformation matrices the coordinates of tensors can be
defined in the new basis e

∼
′ or its dual ē

∼
′, if coordinates in the basis e

∼
or ē
∼

are known.

B
=
= Bi′ j′ei′ ⊗ e j′ = Bklek ⊗ el = Bkl[Pi′

k ][P j′

l
]ei′ ⊗ e j′

So the four pushforward transformation formulae for tensor coordinates
are:

Bi′ j′ = [Pi′

k ] Bkl [Pi′

l ]; Bi′ j′ = [Pk
i′] Bkl [Pl

j′]

Bi′∗
∗ j′ = [Pi′

k ] B∗lk∗ [Pl
j′]; B

∗ j′
i′∗ = [Pk

i′] Bk∗
∗l [P j′

l
]

The pullback transformations can be obtained by simple substitution of
indices without prime by indices with prime and vice versa. In s-structure
notations, this set of transformations can be written as follows:

¯̄B≈
′
= P≈

′ ◦ ¯̄B≈ ◦ P≈
′T; B≈

′ = P≈ ◦ B≈ ◦ P≈
T;

B̄≈
′
= P≈ ◦ B̄≈ ◦ P≈

′T; B̄≈
T′ = P≈ ◦

¯̄B≈
T ◦ P≈

′T

• Transposition

Let A
=
=

∑
i

D
=i

, where D
=i

are diads. The transposition for diads D
=
= a ⊗ b

is defined as follows:

D
=

T = (a ⊗ b)T = b ⊗ a
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Transposition of tensor:

A
=

T =
∑

i

D
=

T

i
; A

∗ j
i∗

T
= A

j∗
∗i , AT

ij = A ji, . . .

A tensor is called symmetric if:

A
=

T = A
=

A tensor is called antisymmetric if:

A
=

T = −A
=

Any tensor can be splitted into a sum of symmetric and antisymmetric
tensors:

B
=
= B
=

S + B
=

A, B
=

T = B
=

S − B
=

A

so the symmetric and antisymmetric parts of a tensor are defined as
follows:

B
=

S =
1
2

(
B
=
+ B
=

T
)
, B
=

A =
1
2

(
B
=
− B
=

T
)

The inverse and transposed second-order tensor often noted as

A
=
−T

• Dot product

– The inner product (contraction) of second-order tensors gives a
second-order tensor

{·} : Tn
2 × T

n
2 → T

n
2

A
=
= B
=
· C
=
= (C
=

T · B
=

T)T; A
∗ j
i∗ = B∗ki∗C

∗ j
k∗

– The double inner product (double contraction) of second-order
tensors gives a scalar

{:} : Tn
2 × T

n
2 → R

A
=

: B
=
= B
=

: A
=
= α; A

∗ j
i∗B

i∗
∗ j = α

– The double scalar product of second-order tensors gives a scalar (in
general different from the double inner product)

{··} : Tn
2 × T

n
2 → R

A
=
··B
=
= A
=

: B
=

T = B
=
··A
=

T = α; A
j

i
B

j

i
= Bi

jA
i
j = α
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The difference between the double inner product and the double
scalar product consists in the following: if A

=
· ·A
=
= 0 then A

=
= 0.

For double inner product, the equality A
=

: A
=

T = 0 does not mean
that A

=
= 0. By definition, the double inner product and the double

scalar product coincide if at least one of the tensors (in operation) is
symmetric. A general rule for the scalar product of q-th order is:

Tn
m · · · · ·︸  ︷︷  ︸

q times

Tn
l → T

n
l+m−2q.

It is obvious that l +m ≥ 2q as well as l ≥ q and m ≥ q.

• Operations with vectors

– Left and right scalar products of vector and second-order tensor are
defines as:

{·} : Tn
2 × T1

n → T1
n; {·} : T1

n × Tn
2 → T1

n

a · B
=
= c , d = B

=
· a ; c j = aiB

j∗
i∗ , d j = B∗ij∗ai

a · B
=
= B
=

T · a

– Left and right vector products of vector and second-order tensor are
defined in 3D space:

{×} : T2 × T1→ T2; {×} : T1× T2 → T2

a × B
=
= C
=
, D
=
= B
=
× a

a × B
=
= −

(
B
=

T × a
)T

– If the space of third order tensors is defined Tn
3 = T1

n ⊗ T1
n ⊗ T1

n,
then left and right tensor products of a vector and a second-order
tensor are defined by:

{⊗} : Tn
2 × T1

n → Tn
3 ; {⊗} : T1

n × Tn
2 → T

n
3

B
=
⊗ a =

3
C
=
,

3
D
=
= a ⊗ B

=
; C

∗ j∗
i∗k = B

∗ j
i∗ak

• Trace of a second-order tensor: scalar and vector invariants
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– Important for mechanics trace “tr”, or first invariant of a tensor, is
also denoted as I or I1. If a second-order tensor is written as a sum
of diads A

=
= a ⊗ b + · · · + c ⊗ d then

I(A
=

) = trA
=
= a · b + · · · + c · d; I(A j∗

∗i ) = Ai∗
∗i

tr
(
A
=
+ B
=

)
= trA
=
+ trB
=

trA
=
= trA
=

T

tr(A
=
· B
=

) = tr(B
=
· A
=

) = A
=

: B
=

tr(A
=
· B
=

) = tr(A
=

T · B
=

T)

trB
=
= trB
=

S, trB
=

A = 0

tr
(
B
=
· C
=

S
)
= tr

(
B
=

S · C
=

S
)

– A vector invariant of any second-order tensor B
=
= a⊗b+· · ·+c⊗d ∈ T

is a vector B
=× such that

B
=× = a × b + · · · + c × d; Bi

× = Bi∗
∗ jei × e j

(A
=
+ B
=

)× = A
=× + B

=×

B
=× = 0⇔ B

=
= B
=

S

Any antisymmetric tensor can be written as:

B
=

A = ω × I
=
= I
=
×ω, ω = −1

2
B
=

A

×

– Note the following useful formulae:

a × I
=
× b = b × a − (a · b)I

=
(
a × I
=

)
×
= −2a

a × b = (a × I
=

) · b
a × I
=
= I
=
× a

• Invariants of second-order tensors

Besides the trace or first invariant I1, two other invariants can be defined
for the second-order tensors. These three invariants are called principle
invariants of the tensor:

I1 = trA
=

I2 =
1
2

[
[trA
=

]2 − tr[A
=

2]
]

I3 = det A
=
=

1
6

(trA
=

)3 − 1
2

trA
=

tr(A
=

2) +
1
3

tr(A
=

3)

The determinant of a tensor will be introduced later in Section A.5.
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• Unit second-order tensor

The unit second order tensor (denoted I
=

) such that

a = I
=
· a = a · I

=
; I

j

i
= δ

j

i
; ai = δ

j

i
a j

consequently
A
=
= I
=
· A
=
= A
=
· I
=

The unit second order tensor in any basis may be written as:

I
=
= e
∼
· ⊗ē
∼
= ē
∼
· ⊗e
∼
= ei ⊗ ei = ei ⊗ ei

• Projection tensors

A tensor P
=

is called a projection if

P
=
= P
=

T, P
=
· P
=
= P
=

For example,
n ⊗ n

projects any vector on the direction n; and tensor

I
=
− n ⊗ n

projects any vector on the space orthogonal to the vector n.

• Spherical and deviatoric tensors

A tensor B
=

is called spherical if it can be written as

B
=
= αI
=
, α ∈ R

The spherical part of n-dimensional tensor C
=

is by definition:

1
n

trC
=

I
=
=

1
n

trC
=

S I
=

Any symmetric tensor C
=
= C
=

T for which trC
=
= 0 is called deviatoric tensor.

Note that for C
=

T = −C
=
⇒ trC

=
= 0 but the inverse statement is not true.

Any symmetric tensor B
=
= B
=

T can be written as a sum of its spherical
part and its deviatoric part

B
=
=

1
n

trB
=

I
=
+ B
=

d

Any tensor B
=
= B
=

S +B
=

A can be splitted into spherical and deviatoric part
plus its antisymmetric part

B
=
=

1
n

trB
=

I
=
+ B
=

d + B
=

A

In most mechanical and physical theories n = 3.
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A.5 Tensor as a linear operator on vector space

It can be shown that any linear vector operator on vector space, i.e. an operator
which transforms one vector into another

f : T1→ T1 y = f (x)

can be written as a right scalar product of a second-order tensor with the
argument

y = B
=
· x

By definition tensors fulfill the requirements of linearity

B
=
· (αa + βb) = αB

=
· a + βB

=
· b

Let us writes the conditions for an operator to be isomorphic, i.e. that
it transforms uniquely the space T1 in itself and that a unique inverse
transformation exists. For an arbitrary tensor operator B

=
∈ T2, the kernel

is all vector space, but the image is rigorously a subset of this space

ImB
=
= T1, KerB

=
⊂ T1

Let us derive the condition KerB
=
= T1. If B

=
transforms three linearly

independent vectors into three independent vectors, then KerB
=
= T1. Let

us consider three linearly independent vectors a, b, c, they are independent if
and only if

(a × b) · c , 0

Their images
a′ = B

=
· a, b′ = B

=
· b, c′ = B

=
· c

are linearly independent if and only if

(a′ × b′) · c′ , 0

The Determinant of the tensor det B
=

is introduced as follows

det B
=
=

(a′ × b′) · c′

(a × b) · c (A.4)

Such a definition of the determinant makes it invariant, i.e. independent on
the choice of the basis. It is easy to show that

det B
=
= det[ A≈ ] det[ ¯̄B≈] =

1
det[ A≈ ]

det[ B≈ ] = det[B̄≈] = det[B̄≈
T]

det B
=
= det[Ai j] det Bi j =

1
det[Ai j]

det Bi j = det Bi∗
∗ j = det B∗ij∗,

where A≈ or [Ai j] is the covariant fundamental metric matrix and

¯̄B≈,B
i j; B̄≈,B

i∗
∗ j; B̄≈

T
,B∗ij∗; B≈ ,Bi j
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are the contravariant, contra-covariant, co-contravariant and covariant
coordinates of the tensor B

=
.

It is worth noting that a tensor cannot be defined as the set of the matrix
of its covariant or contravariant coordinates and the associated transformation
rule:

Bi′ j′ = [Pi′

k ] Bkl [Pi′

l ]; Bi′ j′ = [Pk
i′] Bkl [Pl

j′]

because the determinant of these matrices changes with a basis change:

det Bi′ j′ = det[Pi′

k ]2 det Bkl,

since det[Pi′

k
]2 , 1

det Bi′ j′
, det Bkl

A tensor is an invariant object and its determinant det B
=

should be also
invariant. The determinant of a tensor is invariant if it is defined as in (A.4) or as
the determinant of the matrix of co-contravariant or co-covariant coordinates.

It is easy to show that

det I≈ = 1 ; det A
=
= det A

=
T ; det[A

=
· B
=

] = det A
=

det B
=

Now it is possible to introduce the inverse tensor B
=
−1 such as

B
=
−1 · B
=
= B
=
· B
=
−1 = I
=
⇒ det B

=
det B
=
−1 = 1 ⇒ det B

=
−1 =

1
det B
=

The inverse tensor of B
=

exists if and only if det B
=
, 0.

Similarly to the linear vector operator on the space of vectors, a linear tensor
operator on the space of tensors can be introduced.

T
=

: T→ T

Such a linear operator can be interpreted as a fourth order tensor
4
C
=

. Good
examples are the Young-Cauchy elasticity tensor and its inverse are linear
bijective operators which state that stress tensor is a linear function of strain
tensor and vice versa.

A.6 S-structures

In practice, in physical and mechanical theories, among widely employed
“spaces on spaces” there are the following constructions: complex numbers,
vectors, tensors of higher orders and matrices. Sometimes it is necessary to
consider sets of such structures: basis (set of vectors), stress-strain state (set
of stress and strain tensors), metric matrix (set of scalars), etc. To determine
elements of such sets we make use of indices: ei – i-th basis vector, Ai j – element
of the metric matrix and so on. As practice demonstrates, sometimes it is more
convenient to consider such sets not as sets of elements but as “one-piece”
elements of “higher” spaces and to work directly with them. To “work” means
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perform some operations on these elements in order to obtain some results.
For example, it seems very natural to determine bases ei , ei , i = 1,m as
vectors of vectors e

∼
, ē
∼

and to introduce operations to get the metric matrix not

in component form Ai j = ei · e j, but directly A≈ = e
∼
⊠

· e
∼
.

From an abstract mathematical point of view, a space defined on the
elements of another space – also called exterior algebra – has been employed
since a long time. A good example, a similar to one type of s-structures,
is a multivector – element of exterior algebra on a vector space, which
consists in linear combinations of k-vectors also called blades: bivectors a ∧ b,
trivectors (a ∧ b) ∧ c. Operator ∧ is called the wedge operator and somehow
is similar in our notations of a tensor product. A generalization of this algebra
complemented by relations to exterior algebras is called the Clifford algebra
[Lounesto 01], named after William Kingdon Clifford (1845-1879).

A similar idea of structure of structures appears in programming languages
as “container” class which contain elements of another class. Such container
can be used simply to keep some information. To make better use of such
containers a set of operations should be defined: comparison of element,
summation, subtraction, multiplication by scalar, etc. The operation result
can be of the same class as container or of another class. In such a way
the following structures are introduced in the programming code: complex
numbers, vectors, tensors and matrices with related operations. It is also
natural for programming languages to use sets of such structures: array of
vectors, matrix of tensors, etc. However, to make use of it, a consistent set of
operations has to be also defined as well as a suitable application.

A considerable part of the dissertation is devoted to the description of
surface-point interaction in the framework of classical differential geometry.
First, all computations have been performed using index notations. Both points
and surfaces are determined in the three dimensional space n = 3, all points
r(xi), i = 1, 2, 3 are determined by coordinates xi in three dimensional basis
ei. However, a local coordinate system can be established on the surface ξα
and so it can be parametrized by a vector ρ(ξα). To avoid any confusion
we are forced to determine new indices α = 1, 2. So we have to work with
different dimensions: 3 dimensional space and 2 dimensional surface. In three
dimensions we use established formalism of direct tensor language and in two
dimensions Greek indices. Why not to say that ξ1, ξ2 are covariant coordinates
of a two dimensional vector? In order not to mix up 3D and 2D vector the last
will be underlined by a wave ξ∼ .

We are now facing the need to evaluate the full variation of the vector ρ( ξ∼);
in index form, it is straightforward:

δ̄ρ = δρ +
∂ρ

∂ξα
δξα

With our new notations of 2D vectors it is less trivial

δ̄ρ = δρ +
∂ρ

∂ ξ∼
? δξ∼
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What is the relation between the two last terms? The first component is nothing
but a set of two 3D vectors and the second component is a 2D vector; their
product should be a 3D vector. So we need to define a product operation
between a 2D vector and a set of 3D vectors in a way that it gives a 3D vector.
Moreover this operation should be commutative and the notation should differ
from 3D notations. We propose:

a =
∂ρ

∂ ξ∼
◦ δ ξ̄∼ = δ ξ̄∼ ◦

∂ρ

∂ ξ∼
It is not so hard to introduce such a product. The situation becomes more
complicated when we need to evaluate the surface (induced) metric matrix

Aαβ =
∂ρ

∂ξα
·
∂ρ

∂ξβ

In new notations we get
∂ρ

∂ ξ∼
?
∂ρ

∂ ξ∼
=?

On the left-hand side of the latter expression we have an operation between a
pair of sets of two 3D vectors. The right-hand side should be a 2× 2 symmetric
matrix Aαβ. In the vector space, there is only one operation which converts two
vectors into a scalar: the dot product, so the left-hand part should contain a 3D
dot product. On the other hand the two structures on the left-hand side can be
considered as 2D vectors. In a vector space there is only one operation which
converts two vectors into a higher order tensor – the tensor product. Finally
it can be seen that between structures on the left-hand side one has to get two
operations respectively to 2D and 3D vectors and in the right part a kind of 2D
tensor. By analogy with 3D notations, 2D tensors will be underlined by two
waves. The s-tensor product “⊠” for 2D structure is combined with the dot
product “·” for 3D structures, so finally we obtain the following definition for
the induced metric matrix:

∂ρ

∂ ξ∼
⊠

·
∂ρ

∂ ξ∼
= A≈

Here and further the upper operation (here⊠) relates to 2D structure and lower
(here ·) to 3D.

The initial attempt to introduce s-structure over 2D and 3D vector spaces
was inspired from this example. After some trials to elaborate a more general
form of s-structures, we realized that the use of such structures is much more
rich both in mathematical and physical senses. Due to the complicated nature of
mixed spaces the setting of a consistent s-structure “language” is not a trivial
task. It is not yet fully elaborated, neither fully exploited. Below we make
an attempt to derive a consistent framework for the space of generalized s-
structures with related operations. The full formalism of diad-operations, like

in
∂ρ

∂ ξ∼
⊠

·
∂ρ

∂ ξ∼
, will be derived as well as its simplified form based on transpose

operations, which is valid for several limited cases.
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A.6.1 Formal definition, notations and types

The s-structure formalism consists in the introduction of ordered sets of tensors.
The “S” in the name refers to “set” or “super” (higher structure). S-structure
can be interpreted as k order “tensor” on the m dimensional space of l order
tensors of dimension n; all s-structures are elements of S-spaces:

m

kS
n

l =
m

1S
n

l

⊗
. . .

⊗
m

1S
n

l︸                 ︷︷                 ︸
k times

The sign ⊗ means that elements are ordered, however contrary to objects of
spaces Tn

p , S-space elements are not mandatory invariant, i.e. they do not
change according to the standard rules with change of the basis, that is why
“tensor” is put in quotes. To avoid any confusion instead of the previously
employed notation of tensor spaces a new one will be used for corresponding
s-structures T̃n

p . By definition:

1

0S
1

0 = R,
m

1S
n

0 = T̃
m
1 ,

1

0S
n

1 = T
n
1 ,

m

2S
1

0 = T̃
m
2 ,

1

0S
n

2 = T
n
2

It is worth noting that s-structures are introduced in such a way, that:

n

kS
n

k , T
n
k+k,

n

kS
n

k , T̃
n
k+k

For instance it is easy to show that
n

1S
n

1 , T
n
2 , if one considers the derivative of

the simple vector r( p
∼

) over v-scalar of its contravariant coordinates p
∼

in basis
ē
∼

, m = n

∂r

∂p
∼
∈ n

1S
n

1,
n

1S
n

1 , T
n
2 ,

n

1S
n

1 , T̃
n
2 .

This expression is neither an ordinary tensor nor an s-tensor, but a v-vector –
an element of

n

1S
n

1 space. Other definitions are possible but they may destroy
the invariance of the vectors.

Let us suppose that a zero order s-structure is equal to a tensor space over
which it is constructed:

m

0S
n

l ≡ T
n
l

Following this equivalence, one could consider an s-space is a super structure
over s-space of zero order.

An s-structure of order k is a generalization of a first order s-structure.
It would be convenient to define the space

m

1S
n

l
and the related operations.

Elements of this space, are considered as generalized vectors. They are
underlined by a single wave and will be called v-elements or v-tensors, since
these “vectors” are defined over a tensor space. However, since the nature of
these elements can be different, depending on the order l of the tensor space
over which they are constructed, it would be more convenient to distinguish
three types of v-tensors (see below). All the newly introduced operations will
be similar to vector operations.
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• V-scalars

V-scalars are elements of a linear space
m

1S
n

0 = T̃
m
1 ; note that the dimension

of the internal space n, as will be shown later, makes sense and has to
be retained. V-scalars and all s-structures are defined through a basis
in s-space of dimension m. The sub-space or tensor space basis (of
dimension n) should not be mixed up with the basis in the s-space.
Invariance of such s-elements will be discussed later. As the invariance
of s-structures is not always ensured, we put a tilde over the notation
of this vector space T̃m

1 . So it is better to consider these structures as
ordered set of scalars or simply as a matrix 1 ×m. But contrary to matrix
algebra the operation of transposition will not be introduced2. If needed,
the dimension m will be mentioned as the left top index m b∼ . Even if
m = n, i.e. vectors and v-scalars are both defined in an n dimensional
space, they remain elements of different spaces a∼ ∈ T̃

n
1 , b ∈ Tn

1 and
no invariant operations can be defined between them. In such a case
they are considered as vectors of completely different reference frames
(see the difference between reference frame and coordinate system in
Section A.1). Physically we would say that v-scalars and vectors are
elements of physical spaces associated with different observers. These
spaces are different, see illustration A.1. However, it does not make
sense if there is no connection between those two spaces, further we will
consider interdependent spaces. Some examples of v-scalar:

Figure A.1: A physical space for an observer A and two reference frames
(two other observers) - blue and red corresponding to space T1 and to two
dimensional m = 2 v-scalar space 2

0S
3
0 respectively. Corresponding vector and

v-scalar are represented both in the physical space, as observer A can they see,
and in their frames of reference on the right.

– a vector of dimension m, b∼ , invariant for any choice of the s-space

2Transposition of v-scalars will appear in reduced form of s-structures, which can be
employed as apparatus of a limited use. The aim is to avoid cumbersome two-level operations
appearing in consistent description of s-structures as well as to represent not invariant structures.
See Section A.7.
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basis;

– a set of vector coordinates a∼ in any basis of dimension m; in this
sense, the dimension of s-space should be limited to m ≤ n; here this
v-scalar is invariant respectively to the change of the s-space basis,
but covariant or contravariant respectively to the n space basis;

– values of shape functions for 3D finite element as function of local
coordinate 3 a∼ , which is a set of three coordinates: φ

∼
(3a∼), here m is

equal to the number of shape functions.

• V-vectors

V-vectors are elements of a linear space
m

1S
n

1 = T̃
m
1 seen as ordered sets

of invariant vectors. V-vectors are vectors of dimension m. In the given
basis in s-space, components of such vectors are vectors. As this structure
is invariant with respect to the vector space it cannot be invariant with
respect to the s-space. Some examples of v-vectors:

– a set of vectors of covariant basis ne
∼
′ is a v-vector of dimension n

over vector space n;

– a set of vectors of contravariant sub-basis mē
∼
′ is a v-vector of

dimension m over the vector space n;

– a set of node vectors of a 3D finite element mr
∼

, where m is number

of element, each vector r is a three dimensional vector r ∈ T1.

• V-tensors

They are a generalization of v-scalars and v-vectors for higher order
tensor ranks. Further elements of linear space A

=∼
∈ m

1S
n

l
will be called

v-tensors of order l. By “v-tensors” we will simply understand v-tensors
of order 2, B

=∼
∈ m

1S
n

2.

The generalization of v-structures are t-structures (“t” for tensor). A t-
structure of order k is defined as the tensor product of k v-spaces. Here we
confine ourself to second order t-structures k = 2

m

2S
n

l =
m

1S
n

l

⊗
m

1S
n

l

In this sense, this s-space is a generalization of the tensor concept in a space of
tensors, consequently all operations to be introduced will be similar to tensor
operations. By analogy with tensor theory notations, elements of such s-spaces
will be underlined by two waves. We will distinguish

• T-scalars elements of space
m

2S
n

0

• T-vectors elements of space
m

2S
n

1

• T-tensors elements of space
m

2S
n

l

Now we need to determine internal operations in all s-spaces and external
operations connecting all s-spaces.
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A.6.2 Simple operations

V-scalars

The most simple elements of s-spaces are v-scalars. All operations are similar
to ordinary vector. Let a∼ , b∼ , c∼ ∈ T̃

m
1 and α, β ∈ R. A typical list is:

Internal operations of type T̃m
1 × T̃

m
1 → T̃

m
1 , T̃m

1 ×R→ T̃
m
1

• c∼ = a∼ + b∼ = b∼ + a∼ ; ci = ai + bi = bi + ai

• ( a∼ + b∼ ) + c∼ = a∼ + ( b∼ + c∼); (ai + bi) + ci = ai + (bi + ci)

• α a∼ = a∼α = b∼ ; αai = aiα = bi

• (α + β) a∼ = α a∼ + β a∼ ; (α + β)ai = αai + βai

• For α = 0, β = 1, (0 + 1) a∼ = 0 a∼ + a∼ = a∼ , so zero element 0 = 0∼ = 0 a∼

External operations of type T̃m
1 × T̃

m
1 → R

• Scalar or dot product on s-space will be called s-dot product a∼ ◦ b∼ =
b∼ ◦ a∼ = α; ai e∼

i ◦ e∼ jb
j = aib jδ

j

i
= aibi = α

• Orthogonal v-scalars a∼ ◦ b∼ = b∼ ◦ a∼ = 0; ai e∼
i · e∼ jb

j = aibi = 0

• Norm ∀ a∼ ∃ ‖ a∼‖ ≥ 0: ‖ a∼‖ = 0⇔ a∼ = 0,
‖ a∼‖ =

√
a∼ ◦ a∼ ≥ 0, ∀ a∼ + b∼ = c∼ : ‖ a∼‖ + ‖ b∼‖ ≥ ‖ c∼‖

• Unit v-scalar: if ‖ a∼‖ , 0⇒ ∃! â∼ =
a∼
‖a∼‖

.

External operations of type T̃m
1 × T̃

m
1 → T̃

m
2 .

Let C≈ , D≈ ∈ T̃
m
2

• S-tensor product a∼ ⊠ b∼ = C≈ , D≈ = b∼ ⊠ a∼ ai e∼
i
⊠ e∼ jb

j , b j e∼
j
⊠ e∼ ia

i

V-vectors

All internal operations are formally similar to v-scalars. Let a
∼
, b
∼
, c
∼
∈ m

1S
n

1,

e∼, f∼, g
∼
∈ T̃m

1 and α, β ∈ R
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Internal operations of type
m

1S
n

1 ×
m

1S
n

1 →
m

1S
n

1 and
m

1S
n

1 ×R→
m

1S
n

1

• c
∼
= a
∼
+ b
∼
= b
∼
+ a
∼

; c(i) = a(i) + b(i) = b(i) + a(i), all indices are put in

brackets as vectors are invariant in vector space Tn
1 ; but in s-space they

are either covariant or contravariant coordinates of points in space
m

1S
n

1,
so the position of the index tells it, here, for example, that these vectors
are considered to be contravariant coordinates of v-vector in s-space.

• (a
∼
+ b
∼

) + c
∼
= a
∼
+ (b
∼
+ c
∼

); (a(i) + b(i)) + c(i) = a(i) + (b(i) + c(i))

• αa
∼
= a
∼
α = b
∼

; αa(i) = a(i)α = b(i)

• (α + β)a
∼
= αa
∼
+ βa
∼

; (α + β)a(i) = αa(i) + βa(i)

• For α = 0, β = 1, (0 + 1)a
∼
= 0a
∼
+ a
∼
= a
∼

, so zero element 0 = 0
∼
= 0a
∼

A.6.3 Invariant s-structures

Invariant v-scalars

To make the s-structure language consistent, we need to prove that s-structures
do not depend upon the change of basis. For v-scalars it is trivial, they are
invariant by definition, as vectors. Let us derive the operations which allow to
determine coordinates of a v-scalar in all bases.

Statement: the v-scalar a∼ does not depend on the change of basis. Let us
introduce a basis of m v-scalars e∼ i, such that all these v-scalars are linearly
independent, i.e.

e∼ iα
i = 0 ⇔ αi = 0

Then we construct a dual basis e∼
i, following the standard scheme

e∼ i ◦ e∼
j = δ

j

i

So now we can write a v-scalar a∼ in these two bases

a∼ = ai e∼ i = ai e∼
i (A.5)

Then the s-dot product with e∼ i of the last equality gives:

ai e∼ i ◦ e∼ j = ai e∼
i ◦ e∼ j

By definition of the dual basis e∼
i ◦ e∼ j = δ

i
j
and we get

ai[Si j] = a j,

where [Si j] = e∼ i ◦ e∼ j is the fundamental metric matrix. The same operations
are performed with the dual basis: we evaluate the s-dot product of (A.5) with
vectors of the dual basis and get

ai = e∼
i ◦ e∼

ja j = [Si j]a j
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If e∼ i are linearly independent, then det[Si j] , 0 and

[Si j][S jk] = δi
k

Following the process used for vectors, the pushforward and pullback
transformation of coordinates can be derived. Introducing a new basis e∼ i′ and
its dual basis e∼

i′ :

a∼ = ai′ e∼ i′ = ai e∼ i

The dot product of this expression with the new dual basis vectors gives

a j′ = ai e∼
j′ ◦ e∼ i,

where
e∼

j′ ◦ e∼ i = [P j′

i
]

is the pushforward transformation matrix. In the same way

a∼ = ai′ e∼
i′ = ai e∼

i ⇒ a j′ = ai e∼ j′ ◦ e∼
i

e∼ j′ ◦ e∼
i = [Pi

j′]

is the pullback transformation matrix. Finally

e∼
j′ = [P j′

i
] e∼

i e∼ j′ = [Pi
j′] e∼ i

a j′ = [P j′

i
]ai a j′ = [Pi

j′]ai

and
[Pk

i′][P
j′

k
] = δ j′

i′

V-vectors

The next question is: are v-vectors invariant or not? Yes and no, they are
invariant in a certain sense, precisely each component of a v-vector is invariant
with respect to the vector space, by definition of a vector, at the same time
the set of these vectors is invariant in s-space. But a v-vector is not invariant
respectively to both spaces simultaneously. Further we will call an element of a
s-structure invariant if its components are invariant in tensor space (i.e. follow
the transormation rules) and if the whole structure is invariant in the s-space,
i.e. it follows the transformation rules defined in the s-space.

Let a v-vector a
∼

be invariant in s-space, then

a
∼
= a(i) e∼ i = a(i) e∼

j;

from this expression and the previous paragraph it follows:

a( j) = [S ji]a(i) a( j) = [S ji]a(i)

a( j′) = [P j′

i
]a(i) a( j′) = [Pi

j′]a(i).
(A.6)

As expected, vectors a(i) change in vector space with a changing basis in s-space.
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Remark on induced metric and local basis

To describe a surface in a three dimensional space, we use the induced metric
t-scalar A≈ and another t-scalar H≈ . These structures are defined as follows

A≈ =
∂ρ

∂ξ∼
⊠

·
∂ρ

∂ξ∼
, H≈ = n ·

∂2ρ

∂ξ∼
2

None of these structures are invariant in the aforementioned sense, because

the components of v-vector
∂ρ

∂ξ∼
determining the local basis do not follow the

rule
∂ρ

∂ξi
= Si j

∂ρ

∂ξ j

The latter statement is true only if Ai j = Si j, which is not the case in general.
That is why the whole developed theory of invariant s-structures remains for
the moment a “thing-in-itself” and is applicable for considering problems only
if the basis in s-space is fixed which is the case for the parent space in the Finite
Element Method formalism. However, the range of possible application is not
limited by the considered situation.

A.6.4 Scalar products of V-vectors

Scalar product of v-vector and vector

The first product operation which will be introduced is the scalar product
between a v-vector and a vector. This operation associates one v-scalar to each
pair of a v-vector and a vector

m

1S
n

1 × T
n
1 →

m

1S
n

0

Let c∼ ∈
m

1S
n

0,a∼
∈ m

1S
n

1, b ∈ T1n then:

c∼ = a
∼
· b = b · a

∼
This operation is easy to introduce:

ci e∼ i = (a(i) · b) e∼ i = (b · a(i)) e∼ i

Let us demonstrate that the resulting s-scalar is bi-invariant, i.e. it does not
depend on the choice of the basis, neither in vector space nor in s-space. Since
vectors a(i) and b do not depend on the choice of the basis in the vector space,
it remains to show that:

ci e∼ i = (a(i) · b) e∼ i = (a(i) · b) e∼
i

According to (A.6), the latter equalities can be transformed into:

([Si j]a( j) · b)[Sik] e∼
k = (a(k) · b) e∼

k,

since [Si j][Sik] = δ
j

k
, the bi-invariance of such a v-scalar c∼ has been

demonstrated.
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Scalar product of v-vector and v-scalar

By analogy we define the scalar product operation between a v-vector and a
v-scalar. For each such pair, this operation associates one vector:

m

1S
n

1 ×
m

1S
n

0 → T
n
1

Let a
∼
∈ m

1S
n

1, b∼ ∈
m

1S
n

0, c ∈ T1n, then

c = a
∼
◦ b∼ = b∼ ◦ a

∼

In component form:

ciei = a(i)( e∼ i ◦ b∼ ) = a(i)( b∼ ◦ e∼ i)

To show that c is bi-invariant with respect to a basis change in s-space and
vector space, it remains to show that

ciei = a(i)( e∼ i ◦ b∼ ) = a(i)( e∼
i ◦ b∼ )

By analogy with the previous paragraph, according to (A.6), the last equalities
can be transformed into:

[Si j]a( j)([Sik] e∼
k ◦ b∼ ) = a(k)( e∼

k ◦ b∼ )

since [Si j][Sik] = δ j

k
, the bi-invariance of this vector c is demonstrated.

Double scalar product

Let us show that there is a scalar product operation such that for each pair of
v-vector it associates a unique real number. This operation will be called full
scalar product or double scalar product:

m

1S
n

1 ×
m

1S
n

1 → R

The requirement of obtaining a unique scalar implies that such an operation
does not depend on basis change both in vector space and s-space. Let a

∼
, b
∼
∈

m

1S
n

1, α ∈ R for any value of m and n

< a
∼
, b
∼
>= a
∼
◦
· b∼
= α

This operation can be introduced as follows:

α = a(i) · b(i) = a(i) · b( j)δ
j

i

which is equal to

α = a(i) · b( j) e∼ i ◦ e∼
j = [a(i) e∼ i] ◦· [b( j) e∼

j]
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Let us demonstrate that the SS-product, introduced in such a way, is bi-
invariant. For this purpose, let us write the v-vector in the s-space basis

a
∼
= a(i) e∼ i = a(i) e∼

i b
∼
= b( j) e∼ i = b( j) e∼

i

Due to the invariance in the s-space, it is necessary and sufficient that:

a(i) e∼ i
◦
· b

( j) e∼ j = a(i) e∼ i
◦
· b( j) e∼

j = a(i) e∼
i ◦
· b

( j) e∼ j = a(i) e∼
i ◦
· b( j) e∼

j

Carrying e∼ i ◦ e∼ j = [Si j] and e∼
i ◦ e∼

j = [Si j] we get

a(i) · b( j)[Si j] = a(i) · b(i) = a(i) · b
(i) = a(i) · b( j)[S

i j].

According to (A.6) and the symmetry of the fundamental metric matrices:

[Si j][S jk]a( j) · b(k) = a(i) · b(i) = [Si j][Sik]a( j) · b(k) = [Sik][Si j]a(k) · b( j)

Since [Si j][S jk] = δk
i

and [Si j] = [S ji], the equality is proven. So the SS-product
is a bi-invariant operation.

Scalar product or dot product

Let us introduce another important bi-invariant operation which to each pair
of ordered v-vectors associates a unique t-scalar. T-scalars being invariant by
definition in s-space, let us introduce the operation where the resulting t-scalar
is invariant to the change of basis in vector space:

{·} :
m

1S
n

1 ×
m

1S
n

1 →
m

2S
n

0

Let a
∼
, b
∼
∈ m

1S
n

1, C≈ ∈
m

2S
n

0

[a
∼
, b
∼

] = a
∼
· b
∼
= C≈

It is worth mentioning that n and m can take any value and that the resulting
t-scalar may be not symmetric

a
∼
· b
∼
, b
∼
· a
∼

This operation can be introduced in the following way:

C≈ = Ci∗
∗ j e∼ i ⊠ e∼

j =
(
a(i) · b( j)

)
e∼ i ⊠ e∼

j =
(
a(i) e∼ i

)
·
(
b( j) e∼ j

)

The following condition is requested to ensure the invariance of t-scalar C≈ :

Ci∗
∗ j e∼ i ⊠ e∼

j = Ci j e∼ i ⊠ e∼ j = Ci j e∼
i
⊠ e∼

j = C
∗ j
i∗ e∼

i
⊠ e∼ j,

which, according to the relations between the basis and the dual basis, is equal
to:

Ci∗
∗ j e∼ i ⊠ e∼

j = Ci j e∼ i ⊠ e∼
k[S jk] = Ci j[Sik] e∼k ⊠ e∼

j = C
∗ j
i∗ [S

ik] e∼k ⊠ e∼
l[S jl]
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which, in turn, is equivalent to:

Ci∗
∗ j = Cik[Skj] = Ckj[S

ki] = C∗lk∗[S
ki][Sl j], (A.7)

where the coefficients C are different scalar products of v-vector components.
By definition, they are determined as follows:

Ci∗
∗ j = a(i) · b( j) Cik = a(i) · b(k)

Ckj = a(k) · b( j) C∗lk∗ = a(k) · b
(l)

which according to (A.6) can be rewritten as

Ci∗
∗ j = a(i) · b( j) Cik = a(i) · b(m)[S

km]

Ckj = [Skm]a(m) · b( j) C∗lk∗ = [Skm]a(m) · b(n)[S
ln]

Substituting of these expressions in (A.7) gives

a(i) · b( j) = a(i) · b(m)[S
km][Skj] = [Skm]a(m) · b( j)[S

ki] = [Skm]a(m) · b(m)[S
lm][Ski][Sl j]

These three equalities are true as [Skm][Skj] = δm
j

, so the bi-invariance of this
scalar product has been proven. This operation associates only one t-scalar
with each ordered pair of v-vectors. This t-scalar is invariant in the s-space.

S-Scalar product or s-dot product

By analogy, another bi-variant scalar operation associates a unique tensor for
each ordered pair of v-vectors:

{◦} :
m

1S
n

1 ×
m

1S
n

1 →
m

0S
n

2

Let a
∼
, b
∼
∈ m

1S
n

1, C≈ ∈
m

2S
n

0

{a
∼
, b
∼
} = a
∼
◦ b
∼
= C
=

It is defined in the following way:

a
∼
◦ b
∼
= a(i)ei ◦ b( j)e j = a(i) ⊗ b( j)ei ◦ e j

As previously made this operation is introduced for any n,m and in general:

a
∼
◦ b
∼
, b
∼
◦ a
∼

Again, it can be shown that this operation is bi-invariant and the resulting
tensor is invariant in tensor space.
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A.6.5 Inverse v-vector

A v-vector B
∼
∈ m

1S
n

1 v-vector will be called inverse of a v-vector A
∼
∈ m

1S
n

1

respectively to the s-space, if the following conditions are fulfilled

A
∼
· B
∼
= I≈ ∈

m

2S
n

0

According to its definition, a unit t-scalar in any basis can be presented as
I≈ = e∼ i ⊠ e∼

i. Then

e∼ i ⊠ e∼
i = A
∼
· B
∼
= A(i) e∼ i · B( j) e∼

j = [A(i) · B( j)] e∼ i ⊠ e∼
j

In order to fulfill this equality we should require that

A(i) · B( j) = δ
i
j ⇔ A(i) · B( j) = 1, i = j A(i) · B( j) = 0, i , j

if A(i) = A
(i)
j

e j and B(i) = B
j

(i)e j the previous condition implies that

Bi
(i) =

A
(i)
i(

A
(i)
i

)2
, B

j

(i) = 0 ⇒ (A.8)

A
(i)
j
· B j

(i) = A
(i)
j

(e j · e j)
A

(i)
j

(
A

(i)
j

)2
= 1; A

(i)
j
· Bk

(i) = A
(i)
j

e j · ek

A
(i)
k(

A
(i)
k

)2
= 0

So the reasonable requirement for the inverse v-vector existence for A
∼

is

A
(i)
j
, 0. (A.9)

The inverse on the s-space v-vector to the v-vector A
∼

will be denoted by A
∼
−1s

,

where the small index s recalls that this is an inverse in the s-space. It can be
shown that if A

∼
−1s

is the inverse of a v-vector A
∼

on s-space, then A
∼
−1s

is the

inversed v-vector on tensor space and vice versa:

A
∼
· A
∼
−1s
= I≈ ⇔ A

∼
◦ A
∼
−1s
= I
=

Let us split the second equality:

A
∼
◦A
∼
−1s
= (A(i) e∼ i)◦( e∼

j{A−1s}( j)) = (A(i)
k

ek e∼ i)◦( e∼
j{A−1s}m( j)em) = ((A(i)

k
e∼ i◦{A−1s}m( j) e∼

j)ek⊗em,

to get a unit tensor we should require the following:

((A(i)
k

e∼ i ◦ {A−1s}m( j) e∼
j) = δk

m,

which is equivalent to:

((A(i)
k

e∼ i ◦ {A−1s}k( j) e∼
j) = 1; ((A(i)

k
e∼ i ◦ {A−1s}m( j) e∼

j) = 0,m , k
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A
(i)
k
{A−1s}k(i) = 1; A

(i)
k
{A−1s}m(i) = 0,m , k

which according to (A.8) is for k = m

A
(i)
k

A
(i)
k(

A
(i)
k

)2
= 0 + · · · + 0 + A

(k)
k

A
(k)
k(

A
(k)
k

)2
+ 0 + · · · + 0 = 1;

and for k , m

A
(i)
k

A
(i)
m(

A
(i)
m

)2
= 0 + · · · + 0 +

,0︷︸︸︷
A

(k)
k

=0; m,i
︷ ︸︸ ︷

A
(k)
m(

A
(k)
m

)2
+ · · · +

=0; m,i
︷︸︸︷
A

(m)
k

,0︷  ︸︸  ︷
A

(m)
m(

A
(m)
m

)2
+0 + · · · + 0 = 0

Thus it is demonstrated that the inverse v-vector on s-space is the inverse
on tensor space. Since all transitions are sufficient and necessary, the inverse
statement is also true. From now on, we will note A

∼
−1 all inverse v-vectors; if

such a v-vector exists, the following statements are true:

A
∼
◦ A
∼
−1 = I
=
, A

∼
· A
∼
−1 = I≈

Since I≈ = I≈
T and I

=
= I
=

T:

A
∼
◦ A
∼
−1 = A

∼
−1 ◦ A
∼
⇔ A

∼
· A
∼
−1 = A

∼
−1 · A
∼

A.6.6 Isomorphism of s-space and tensor space

If the dimensions of the s-space and the tensor space are equivalent n = m, then
they are isomorphic, i.e. for each element of the s-space of dimension n and
order k there is only one element of the k-th order tensor space of dimension n
and vice versa. All structures and operations are also preserved. Isomorphism
between vectors and v-scalars is ensured by v-vector A

∼
∈ n

1S
n

1, which can be

considered as bijective linear function:

A
∼

:
n

1S
n

0 → T
n
1 and A

∼
: Tn

1 →
n

1S
n

0

Not all v-vectors can establish an isomorphism. A
∼

should be defined such that

if KerA
∼
≡ n

1S
n

0, then ImA
∼
≡ Tn

1 ,

if KerA
∼
≡ Tn

1 , then ImA
∼
≡ n

1S
n

0,

It means that n linear independent vectors (or v-scalars) are transformed into
n linear independent v-scalars (or vectors).

Theorem. If A
∼
∈ n

1S
n

1 and A
∼
= A(i) e∼

i, where A(i) are n linearly independent vectors

and e∼
i are n linearly independent v-scalars, then A

∼
is a bijection from the v-scalar
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(vector) space to the vector (v-scalar space) space and the unique inverse bijection B
∼

from the vector (v-scalar space) space to the v-scalar (vector space) space exists, such
that B
∼
= A
∼
−1.

Proof. Let
∀ x∼ ∈

n

1S
n

0 | x∼ = xi e∼ i,∀xi
, 0,

where the v-scalars e∼ i are linearly independent, then A
∼

is a bijection

A
∼

:
n

1S
n

0 → T
n
1 ,

if and only if
∃y ∈ Tn

1 , y = ykek, y
k
, 0,

where ek are linearly independent vectors. The bijection A
∼

is as follows

y = A
∼
◦ x∼ ⇔ ykek = A(k) e∼

k ◦ xi e∼ i ⇔ ykek = A(k)x
k

if yk = 0, then
A(k)x

k = 0

since all xk are non-zero by default, then vectors A(k) are linearly dependent,
which contradicts the condition of theorem, so yk , 0 and A

∼
is a bijection from

n

1S
n

0 to Tn
1 .

Let an inverse bijection B
∼

exists such that

B
∼

:
n

1S
n

0 → T
n
1 ,

then it transforms elements:
x∼
′ = B
∼
· y

Substituting y as image of x∼ gives:

x∼
′ = B
∼
· ( A
∼
◦ x∼ ),

to get x∼
′ = x∼ , we require that B

∼
· A
∼
= I≈, and by definition B

∼
= A
∼
−1. The

theorem is proven.

Unit v-vector

At first glance it seems to be meaningfull to introduce a special kind of bijective
function – a unit v-vector I

∼
– which is its own inverse. The first form for this

v-vector which crosses on mind can be defined only if n = m in the following
way

I
∼
=

1
2

( ei e∼
i + ei e∼ i ), (A.10)
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where ei, e∼ i are vectors and v-scalars of bases and ei, e∼
i are vectors and v-

scalars of dual bases in vector space and s-space respectively. Then we require
that for any vector a ∈ Tn

1 and v-scalar α∼ ∈
m

1S
n

0

a = I
∼
◦ α∼ α∼ = I

∼
· a I

∼
= I
∼
−1

Let us proof, that I
∼

defined like in (A.10) is its own inverse:

I
∼
· I
∼
= I≈

I
∼
· I
∼
=

1
4

( ei e∼
i + ei e∼ i ) · ( e j e∼

j + e j e∼ j ) =

=
1
4

(
ei e∼

i · e j e∼
j + ei e∼

i · e j e∼ j + ei e∼ i · e j e∼
j + ei e∼ i · e j e∼ j

)
=

=
1
4

(
[A jk][S jm]ei · ek e∼

i
⊠ e∼m + δ

j

i
e∼

i
⊠ e∼ j + δ

i
j e∼

i
⊠ e∼ j + [Aik][Sim]ek · e j e∼

m
⊠ e∼ j

)

(A.11)

If [Aik][Skj] = δi
j
and [Sik][Akj] = δi

j
then

I
∼
· I
∼
=

1
4

(
[S ji][S jm] e∼

i
⊠ e∼m + [Si j][Sim] e∼

m
⊠ e∼ j

)
+

1
4

(
δ

j

i
+ δi

j

)
e∼

i
⊠ e∼ j

But since [Ai j] and [Si j] are independent metric matrices in different spaces
there is no connection between them, so the unit v-vector can be defined in
spaces with equal metric in each point. Under this condition the following
statement is true

I
∼
· I
∼
=

1
4

4 I≈ = I≈.

For arbitrary tensor space and s-space, the question of the unit v-vector remains
open.

Isomorphism between sub-spaces of s-space and tensor space

A more interesting case arises when the tensor space and the s-space are
of different dimensions, which is, by the way, the case considered in the
dissertation: the s-space, which relates to the surface, is two dimensional and
the tensor space is three dimensional.

Let us consider an isomorphism between a m dimensional s-space and a
sub-space of vector space of dimension Tm

1 ⊂ T
n
1 , m < n. Then it exists a

v-vector S
∼
∈ m

1S
n

1 ensuring a bijective projection from one space into another:

S
∼

:
m

1S
n

1 → T
n
1

and its inverse S
∼
−1 ∈ m

1S
n

1 ensuring the inverse projection:

S
∼
−1 : Tn

1 →
m

1S
n

1
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such that:
S
∼
· S
∼
−1 = I≈

Let us consider a sub-basis ei′ ∈ Tm
1 ⊂ T

n
1 allowing us to express any vector

y′ in this subspace:

y′ = yi′ei′

then there exists an isomorphism with a bijection function S
∼

such that for any

x∼ ∈
m

1S
n

0
y′ = S

∼
◦ x∼

If such a bijection exists, then the inverse also exists, such that:

x∼ = S
∼
−1 · y′

and:
S
∼
◦ S
∼
−1 = I≈

but obviously:
S
∼
· S
∼
−1
, I
=

A.6.7 Tensor product of v-vectors

The tensor product of two v-vectors or double tensor product (by analogy
with double scalar product) implies that the tensor product is evaluated both
between v-scalars and vectors. This product associates a t-tensor for each
ordered pair of v-vectors:

{ ⊠⊗ } :
m

1S
n

1 ×
m

1S
n

1 →
m

2S
n

2

Let a
∼
, b
∼
∈ m

1S
n

1 and C
=∼
∈ m

2S
n

2 then:

a
∼
⊠

⊗ b
∼
= C
=≈

This operation can be introduced as:

a
∼
⊠

⊗ b
∼
= a(i)ei

⊠

⊗ b( j)e j = a(i) ⊗ b( j)ei ⊠ e j = C
=≈

To demonstrate that the resulting t-tensor is invariant in s-space, it is sufficient
and necessary to show that:

a(i) ⊗ b( j)ei ⊠ e j = a(i) ⊗ b( j)ei
⊠ e j = a(i) ⊗ b( j)ei ⊠ e j = a(i) ⊗ b( j)e

i
⊠ e j

which according to (A.6) rewrites:

a(i) ⊗ b( j)ei ⊠ e j = [Sik]a(k) ⊗ b( j)el ⊠ e j[Sil] =

=[S jk]a(i) ⊗ b(k)ei ⊠ el[S
jl] = [Sik][S jl]a(k) ⊗ b(l)ep ⊠ eq[Sip][S jq]

(A.12)

since [Sik][Skj] = δ
j

i
, the invariance of the double tensor product is

demonstrated.
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A.7 Reduced form of s-structures

In Chapter 2 we make use of the reduced form of s-structures. The reduced
form of s-structure presents a matrix filled with scalars, vectors, tensors. To
define operations between matrices the transposition operation has to be
introduced. If the matrix is filled with tensors of second and higher order
two transposition operations should be distinguished. Since the matrix is a
two index construction, the use of the reduced form of s-structures is limited to
second order structures. So formally this form is of limited use, see Remark 2.5.
Here the main rules and forms of reduced s-structures are given.

For two v-vectors a
∼
, b
∼
∈ m

1S
n

1, two matrices of vectors [a
∼

]{1×m}, [b∼
]{1×m} are

defined then two scalar products are defined as (here and further the ∼ symbol
means the equivalence between different representations

α = a
∼
◦
· b∼

∼

α = [a
∼

]T · [b
∼

] ∼ α = a(i) · b(i), i = 1,m

A≈ = a
∼
⊠

· b
∼

∼

[ A≈ ] = [a
∼

] · [b
∼

]T ∼ Ai j = ai · b j, i, j = 1,m

Note that an orthonormal basis in s-space is required. Remark also that

[a
∼

] · [b
∼

]T =

[
[b
∼

] · [a
∼

]T
]T

For example, t-scalar, v-tensor and t-tensor,

D≈ ∈
m

2S
n

0, C
=∼
∈ m

1S
n

2, E
=≈
∈ m

2S
n

2

for which the following matrices are defined

[ D≈ ]{m×m}, [C=∼
]{1×m}, [E

=≈
]{m×m},

then the products with a v-vector can be presented in a reduced form as follows

d
∼
= a
∼
◦ D≈ ∼

[d
∼

] = [a
∼

]T[ D≈ ] ∼ d j = aiDi j, i, j = 1,m

[d
∼

] = [ D≈ ]T[a
∼

] ∼ d j = D jiai, i, j = 1,m

d = a
∼
◦
· C=∼

∼

d = [a
∼

]T · [C
=∼

] ∼ d = ai · C
=

i, i = 1,m
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d = [C
=∼

T] · [a
∼

] ∼ d = C
=

iT · ai, i = 1,m

d
∼
= a
∼
◦
· E=≈

∼

[d
∼

] = [a
∼

]T · [E
=≈

] ∼ d j = ai · E
=

i j, i, j = 1,m

[d
∼

] = [E
=≈

T]T · [a
∼

] ∼ d j = E
=

T ji · ai, i, j = 1,m

For A≈ , B≈ , C≈ ∈
m

2S
n

0 the s-dot product in the reduced representation is
defined as follows

A≈ = B≈ ◦ C≈ ∼

[ A≈ ] = [ B≈ ][ C≈ ] ∼ Ai j = BikCkj

For D
≈
,E
≈
∈ m

2S
n

1, the double dot product is defined as

A≈ = B
≈
◦
· C≈

∼

[ A≈ ] = [B
≈

] · [C
≈

] ∼ Ai j = Bik · Ckj

And so on for other combinations, for example,

A
≈
∈ m

2S
n

1,B=≈
∈ m

2S
n

2, A
≈
◦
· B=≈
= C
≈
∈ m

2S
n

1

Formally, the operations like the following are forbidden:

[a
∼

] · [b
∼

], [a
∼

] · [B
≈

], [B
≈

] · [a
∼

]T

but contrary to this restriction, we use such operations carrying in mind
that there exist higher order s-structures behind these matrix notations, see
Remark 2.5.
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Mécanique numérique du contact :
géométrie, détection et techniques de résolution

Résumé : Le but de ce travail était de fournir un cadre cohérent pour le traitement des problèmes
de contact en utilisant une discrétisation de type nœud à segment. Trois aspects principaux de la
mécanique numérique du contact ont été particulièrement considérés : la description de la géométrie,
le problème de détection de contact et les techniques de résolution. Le manuscrit contient cependant
une présentation complète de la mécanique du contact et des algorithmes numériques qui lui sont
attachés. Un nouveau formalisme mathématique – les s-structures – est employé dans l’ensemble
de la thèse. Il fournit un cadre de formulation intrinsèque qui permet d’exprimer de façon compacte
un grand nombre de problèmes de mécanique et de physique. La thèse propose plusieurs idées
originales et des extensions des techniques classiques, qui ont toutes été mises en œuvre dans
le code de calcul par éléments finis ZéBuLoN (Z-set). Plusieurs études de cas, présentées dans la
thèse, viennent démontrer les performances et la robustesse des méthodes numériques utilisées pour
la détection et la résolution.

Mots clés : mécanique numérique du contact, méthode des éléments finis, technique de détec-
tion, parallélisation, géométrie précise du contact, méthode du Lagrangien augmenté, méthode de
pénalisation, discrétisation nœud-à-segment.

Computational contact mechanics:
geometry, detection and numerical techniques

Abstract: The goal of this work is to derive a consistent framework for the treatment of contact
problems within the Finite Element Method using the Node-to-Segment discretization. Three main
components of the computational contact have been considered: geometry, detection and resolu-
tion techniques. For the sake of completeness, the mechanical aspects of contact as well as nu-
merous numerical algorithms and methods have been discussed. A new mathematical formalism
called “s-structures” has been employed through the entire dissertation. It results in a comprehensive
coordinate-free notations and provides an elegant apparatus, available for other mechanical and phys-
ical applications. Several original ideas and extensions of standard techniques have been proposed
and implemented in the finite element software ZéBuLoN (Z-set). Numerical case studies, presented
in the dissertation, demonstrate the performance and robustness of the employed detection and reso-
lution schemes.

Keywords: computational contact mechanics, finite element method, detection techniques, paral-
lelization, geometrically precise theory of contact, augmented Lagrangian method, penalty method,
node-to-segment discretization.
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