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Abstract

Traffic Sign Recognition (TSR) and pedestrian detection are important components
of an Advanced Driver Assistance System (ADAS). The former enhances the safety by
informing the driver of speed limits, road regulations and imminent dangers, such as icy
roads or pedestrian crossings. The latter warns the driver of the presence of a pedestrian
to avoid a potentially dangerous situation. These two ADAS functionalities are particularly
important when the driver is tired, distracted or affected by poor visibility conditions. The
pedestrian detection is also common to the video surveillance systems and is used to
warn residents of intruders. In this thesis, we focus on TSR and pedestrian detection for
ADAS and video surveillance applications.

We propose a novel three stage approach for TSR, consisting of a color segmenta-
tion, a shape detection and a content classification phase. The segmentation is based
on the color enhancement and an adaptive threshold. It extracts the relevant red regions
in the image and hereby reduces the search space. The shape detection is performed
by a linear Support Vector Machine (SVM) trained on Histograms of Oriented Gradients
(HOG). The extracted circular and triangular signs are passed on to the tree classifiers in
the third phase. These identify the content of the traffic sign. In our experiments, a recall
and precision rate of 90% are attained.

The choice of the classifier depends on the data set at hand. The K-d tree excels
on the smaller data set, yet are outperformed by the Random Forest on the larger one.
The performance of the K-d tree classifier was improved by up to 20% when introducing
the spatial weighting of the feature vectors. It yields an accuracy of 80% on our video
sequences. The Random Forest outperforms the K-d tree on the larger German Traffic
Sign Recognition Benchmark, achieving a classification rate of 97%.

Moreover, we examine three aspects of the classification process: the features de-
scribing the objects, the metrics used to compare them in the classifiers and the com-
bination of these classifiers. The selection of pertinent features using Random Forests
and Fisher’s Criterion reduces the feature space as well as the memory and processing
requirements, while retaining a high classification accuracy.

The choice of the metric has a significant effect on the performance of the Nearest
Neighbor classifer. We determine that the correlation is the most suitable metric for the
HOG features. The correlation was used to improve the pedestrian detection in a video
surveillance application by eliminating immobile false detections, such as trees. The
precision is doubled, without affecting the recall rate.

The combination of the tree classifiers with the HOG/linear SVM detector into a het-
erogenous mixture of experts improves the performance of the pedestrian detection al-
gorithm in ADAS. The false positives per frame rate is decreased by about half, while
maintaining a high recall rate.
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Résumé
Dans cette thèse, nous abordons la détection des piétons et la reconnaissance des

panneaux. Cette étude a pour applications l’aide à la conduite (anglais: Advanced Driver
Assistance Systems (ADAS)) et la vidéo surveillance.

Nous examinons, d’abord, trois aspects du processus de classification: les carac-
téristiques qui décrivent les objets, les paramètres utilisés pour les comparer et la combi-
naison des différents classifieurs. La sélection des caractéristiques pertinentes est faite
en utilisant des Random Forest et le critère de Fisher. Ce dernier réduit la dimension
des caractéristiques ainsi que la mémoire et le temps de calcul, tout en conservant une
précision de classification élevée.

Un des points faibles des systèmes de classification sont les fausses alarmes. Dans
une application de vidéo surveillance avec des caméras statiques, la plupart des fausses
alarmes sont des objets fixes, comme les lampadaires. Celles-ci sont éliminées grâce
à la corrélation sur plusieurs trames. Dans le cadre d’ADAS, les fausses alarmes récur-
rentes sont supprimées par un filtre complémentaire en forme d’arbre. La combinaison
des classifieurs d’arbre avec les histogrammes des gradients orientés (en anglais: His-
togram of Oriented Gradients (HOG)) et le séparateur à vaste marge (en anglais: Support
Vector Machines (SVM)) linéaires améliore la performance de l’algorithme de détection
des piétons. Le taux de faux positifs par image est diminué de moitié, tout en gardant le
taux de rappel.

Pour la reconnaissance des panneaux, nous proposons une nouvelle approche com-
posée de trois étapes: une segmentation de couleur, une détection de forme et finale-
ment la classification de contenu. La segmentation est basée sur la technique de color
enhancement et un seuil adaptatif. De cette manière, les régions rouges de l’image sont
extraites, mais l’espace de recherche est réduit. La détection de forme est effectuée
par un SVM avec les caractéristiques de HOG. Les panneaux circulaires et triangulaires
extraits sont ensuite transmis aux arbres de classifications qui identifient le contenu des
panneaux. Un taux de rappel et précision de 90% est atteint sur nos séquences de film.

Finalement, nous avons testé les classifieurs sur deux bases de données de pan-
neaux routières de différentes tailles et répartitions des classes. Le K-d tree donne de
meilleurs résultats sur la plus petite de nos bases. La performance a été améliorée
jusqu’à 20% lors de l’implémentation de la pondération spatiale des vecteurs des car-
actéristiques et une précision de 80% est atteinte sur nos séquences. Par contre, la
performance du classifieur Random Forest est supérieure sur la grande base German
Traffic Sign Recognition Benchmark, avec un taux de classification de 97%.
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Chapitre 1

Introduction

Ce chapitre présente le contexte de cette thèse, ses domaines d’applications, ses
objectifs ainsi que les contraintes associées. Il donne également un aperçu des contri-
butions scientifiques originales de ce manuscrit.

Les systèmes d’aide à la conduite (en anglais: Advanced Driver Assistance Systems,
ADAS) améliorent la sécurité du conducteur sur la route. Plusieurs types de capteurs
peuvent être utilisés, comme un laser, un lidar ou une caméra. Leurs principales fonc-
tionnalités sont la navigation, la détection de marquages au sol, la détection de piétons
et la reconnaissance des panneaux. Cette thèse porte sur ces deux dernières, car elles
sont encore à l’heure actuelle perfectibles.

Les trois grandes difficultés pour un système de détection des panneaux sont: i)
la mauvaise visibilité due à la basse résolution des images utilisées, à la météo, ou à
une faible illumination, ii) la rotation, occlusion ou détérioration des panneaux et iii) les
contraintes sur la capacité mémoire ou la puissance de calcul disponible et la nécessité
d’un système temps réel pour les dispositifs embarqués. D’autre part, la détection des
piétons amène des difficultés supplémentaires comme les mouvements intrinsèques des
personnes à repérer et la diversité de leurs vêtements, tailles et postures.

Étant donné que le point faible des approches existantes pour la détection est un
taux élevé de fausses alarmes, nous proposons deux méthodes pour filtrer les candidats
extraits et améliorer la précision. La première approche réduit le taux de fausses alarmes
dans une application de vidéo-surveillance avec des caméras fixes en éliminant les can-
didats statiques. La deuxième approche améliore les systèmes de l’aide à la conduite en
supprimant les fausses alarmes récurrentes comme les arbres et les lampadaires.

Finalement, nous proposons un système complet pour la reconnaissance de pan-
neaux de signalisation. Celui-ci se compose d’une segmentation d’image, suivie d’une
détection et d’une classification. La première étape réduit l’espace de recherche tandis
que la seconde en extrait les candidats triangulaires et circulaires. Ces panneaux po-
tentiels sont analysés par l’étape suivante de classification où ils sont identifiés par des
K-d tree et les Random Forests. Pour réduire les besoins en mémoire et en calcul, nous
examinons deux techniques de sélection des caractéristiques: les Random Forests et
Fisher’s Criterion.

Le chapitre 2 présente l’état de l’art des caractéristiques et des algorithmes de clas-
sification. Le chapitre 3 évalue trois aspects de la classification: l’importance des carac-
téristiques, la métrique utilisée dans les classifieurs pour comparer les caractéristiques
et la combinaison de différents classifieurs. Un système complet pour la reconnaissance
des panneaux routiers est décrit en détail dans le chapitre 4. Enfin les contributions
principales de cette thèse dans les domaines de l’ADAS et de la vidéo-surveillance sont
résumées dans le chapitre 5.
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Chapter 1

Introduction

Advanced Driver Assistance Systems (ADAS) aim at enhancing driving safety and
comfort through technology integrated on-board and in the infra-structure. One can dis-
tinguish between the autonomous applications, which rely on the first type, and the coop-
erative, which rely on both. The palette of available sensors includes navigation systems
which provide directions and up-to-date traffic information, radars and road sensors for
traffic surveillance as well as dynamic message boards to display warnings and traffic
information.

Currently, some ADAS technologies are mature enough to be commercialized and
implemented in vehicles. For example, lane departure warning systems are embedded in
cars, using camera vision to alert the driver when he accidentally crosses over the lane
markings. On the other hand, some vision-based systems, such as pedestrian detection
and traffic sign recognition, are not yet perfectionized.

Traffic signs inform the driver of speed limits and warn him against possible dangers
such as icy roads, imminent road works or pedestrian crossings. In fact, the on-board traf-
fic sign detection challenge, only introduced to the market in 2008 by BMW and Opel, are
currently limited to the speed limit and no overtaking sign detection. As for the pedestrian
detection, some carmakers, such as Volvo, offer a daylight pedestrian detection system
using a fusion of camera vision and radar.

1.1 Context

In this thesis, we focus on the development of monocular vision-based traffic sign
recognition and pedestrian detection systems. The advantage of using an embedded
camera over other sensors, such as radars, lidars or transmitters integrated in the infra-
structure, is that they are less expensive and multifunctional. The images captured can be
used for several functionalities including traffic sign recognition and pedestrian detection
in ADAS and video surveillance applications.

The bright colors and simplified pictograms of the traffic signs make them easily per-
ceivable and comprehensible. However, four of the main difficulties facing a TSR system
are: i) the poor visibility due to bad weather, poor illumination or low resolution, ii) the
rotation, occlusion and deterioration of the signs, iii) the limited memory and processing
capacities and the real-time requirements of the embedded systems and iv) the variations

3



CHAPTER 1. INTRODUCTION

(a) Video surveillance (b) ADAS

Figure 1.1: We propose two approaches to eliminate false alarms in video surveillance
and ADAS systems. Green: validated detection, red: discarded false alarm.

from one country to another. The pedestrian detection task imposes further difficulties
such as the non-rigid nature of humans as well as the diversity of their clothing, sizes and
postures.

1.2 Contributions

We develop a classification-based approach to overcome the aforementioned chal-
lenges in TSR and pedestrian detection. On the one hand, this allows us to exploit the
standardized nature of the traffic signs. On the other, a generic model for the pedestrian
detection can be generated. Moreover, the classification approach is feasible in real-time
and respects the memory constraints of an embedded system.

The existing pedestrian detection approaches often generate many false alarms. We
propose two approaches for the post-filtering of detected candidates to improve the preci-
sion. The first approach reduces the false alarm rate of a fixed camera video surveillance
system by eliminating static detections. The second approach enhances ADAS by re-
moving recurring false detections such as trees, poles and car tires. Figure 1.1 illustrates
some examples of the false alarms eliminated using our proposed approaches.

Moreover, we propose a complete TSR system in Chapter 4. This consists of a
segmentation, a detection and a classification step. The first reduces the search space
while the second step retrieves candidates based on their shape. These are passed on to
the classifier in the third step which identifies the content of the traffic signs found. Figure
1.2 illustrates an example of our TSR system for an embedded camera setup.

Further, to overcome the memory and processing constraints in embedded systems,
two feature selection techniques, Random Forest and Fisher’s Criterion, are implemented
to reduce the feature space by retaining only a subset of the most useful features.

1.3 Outline

This thesis is divided into five chapters:

• This chapter gives an overview of the aims and objectives of the thesis as well as
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1.3. OUTLINE

Figure 1.2: An example of Traffic Sign Recognition. We propose a complete TSR system
to detect and classify the traffic signs.

its contributions to the Advanced Driving Assistance Systems (ADAS) and Video
Surveillance applications.

• An overview of the state of the art, the existing features, machine learning algo-
rithms and applications is presented in Chapter 2.

• In Chapter 3, three aspects of the classification process are evaluated: the impor-
tance of the feature, the metric used in the classifier to compare the features and the
combination of different classifiers. Moreover, our improvements of the pedestrian
detection for video surveillance and ADAS systems are presented

• We propose a three-stage traffic sign recognition system in Chapter 4.

• The main contributions in the fields of ADAS and video surveillance systems as well
as the conclusions drawn in this thesis are summarized in Chapter 5.
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Chapitre 2

Apprentissage: Du spécifique au générique

Ce chapitre présente l’état de l’art des caractéristiques et des méthodes
d’apprentissages existantes les plus utilisées pour la reconnaissance d’objets. Le choix
des caractéristiques ou des algorithmes dépend souvent de la qualité des images
disponibles, de la nature de l’objet à reconnaitre et des contraintes de l’application fi-
nale. Les avantages et désavantages des différentes méthodes sont présentées ici, ainsi
que des exemples concrets d’applications.

Concernant les caractéristiques, on peut les répartir en deux catégories: locales et
globales. Le premier type, auquel appartiennent les points d’intérêt, décrivent une sous-
partie de l’image. Tandis que le second type, parmi lesquels les histogrammes de gra-
dients orientés (en anglais: Histogram of Oriented Gradients (HOG)), décrivent l’image
entière. Il est montré dans nos expériences et l’état de l’art présenté dans ce chapitre,
que les caractéristiques de HOG sont les plus appropriées pour la description d’images
d’objets hétéroclites.

Quant à la classification, nous comparons plusieurs approches différentes comme
Adaboost, les séparateurs à vaste marge (en anglais: Support Vector Machines (SVM))
et les classifieurs à base d’arbres: K-d tree et Random Forests.

Nous évaluons les différents algorithmes sur deux bases d’images publiques: ETH80
et Caltech 101. Nos expériences montrent que la performance des SVM et des
classifieurs à base d’arbres dépend de la cardinalité et la distribution des données
d’apprentissage. Les SVMs atteignent des taux de classification élevés, mais au prix
de temps de calcul importants. Cependant les arbres de classification sont une alterna-
tive efficace. Les Random Forests offrent de bonnes performances pour un coût moindre
en temps de calcul.
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Chapter 2

Learning:
From Characteristic to Generic
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This chapter gives an overview of the existing image features and machine learning
algorithms used for the vision-based object recognition. The choice of the suitable fea-
tures or algorithms usually depends on the quality of the images, the characteristics of the
object and the constraints of the application. The advantages and disadvantages of the

7



CHAPTER 2. LEARNING: FROM CHARACTERISTIC TO GENERIC

different techniques will be discussed and examples of applications presented. Further, a
comparison of various features and classifiers on two classification benchmark data sets
is presented.

2.1 Describing the Object

Image features can be divided into two categories: local and global. Local features,
such as interest points, describe sparse patches of the image. These patches are often
selected to be informative, such as corners and rich texture. An example of such features
is the interest point descriptor Speed-Up Robust Features (SURF). Global features, on
the other hand, describe the entire image. An example of such features is the Histograms
of Oriented Features (HOG).

2.1.1 Local Features

Local features describe patches of the image. One example is the Interest Points.
These are patches rich in information such as corners and edges. The gradient and
texture information in the patches is encoded using descriptors such as Scale-Invariant
Feature Transform (SIFT) and Speed-Up Robust Features (SURF). The sparse represen-
tation of the image using patch descriptors requires less computation time and memory.
The Haar features, Control Points and Interest Points will be presented in the following.

2.1.1.1 Haar

The Haar-like features introduced by Viola and Jones [Viola 01] compute the differ-
ence of the sums of the pixels in the adjacent regions: region1 and region2. A positive
sample is detected when this difference exceeds a predefined threshold θ as in equation
(2.1).

Σ(region1)− Σ(region2) > θ (2.1)

The basic types of Haar-like features are illustrated in Figure 2.1. As described in
[Viola 01], the computation of the Haar-like features can be accelerated using integral
images. A pixel at a point (x, y) in the integral image is defined as the sum of all pixels
above and to its left. This is calculated as shown in equation 2.2. Figure 2.2 illustrates
the computation of the pixel sum within an area using this method.

Figure 2.1: Examples of Haar-like features from [Viola 01]. The pixel values of the regions
of each color are summed and their difference computed.
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2.1. DESCRIBING THE OBJECT

Figure 2.2: Integral Image representation: The pixel sums at the points 1, 2, 3 and 4 are
that of the areas A, (A+B), (A+C) and (A+B+C+D) respectively. The sum of the pixels in
area D can be easily computed using the values at the points 1, 2, 3 and 4: D = 4-(2+3)+1.

Figure 2.3: A Control Points descriptor is a set of pixels divided into two subsets (red
and blue) and a minimum distance v between them. A sample descriptor is considered
positive (top) when the v > θ and negative (bottom) when the points are not linearly
separable.

ii(x, y) =
∑

x′≤x,y′≤y
src(x′, y′) (2.2)

2.1.1.2 Control Points

Abramson and Steux [Abramson 05] propose pixel-based features, called control
points. These are faster and require far less memory than the Haar-like features as
they eliminate the need for preprocessing and the storage of the integral images. They
are also illumination independent, making them more robust to variations in the image.

A Control Points descriptor consists of a vector cp = {{(xi, yi), li ∈ {a, b}}, i ∈
[1, N ], θ}, where N is the total number of control points, {(xi, yi), li} designates their
location and li ∈ {a, b} is the corresponding subset label. The minimum difference be-
tween the pixel values of the subsets a and b is defined as θ. The best descriptors are
selected from a randomly generated set of Control Points during the Adaboost training,
described in Chapter 2.2.1.

When classifying a new descriptor, the difference v between the values {(xi, yi)} of
the subsets a and b needs to exceed θ for a positive classification as shown in equation
2.3 and illustrated in Figure 2.3.
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CHAPTER 2. LEARNING: FROM CHARACTERISTIC TO GENERIC

Figure 2.4: Examples of control points features [Abramson 05] on full, half- and quarter-
resolution images (from left to right). Two colors designate the Control Point subsets a
and b.

Figure 2.5: Examples of Connected Control Point features [Stanciulescu 07] on full, half-
and quarter-resolution images (from left to right). Two colors designate the Control Point
subsets a and b.

∀i, j ∈ N ×N
Positive: min{value((xi, yi)|li = a)− value((xj , yj)|lj = b)} > θ

Negative: otherwise (2.3)

An optimal set size N of six points is empirically determined in [Abramson 05]. Ex-
amples of applications are shown in Figure 2.4.

Stanciulescu et al. [Stanciulescu 07] enhanced the Control Points by asserting an
8-connexity, leading to a reduction of the search space. In their experiments on real-time
vehicle detection, the Connected Control Points outperformed the classical ones as well
as the Haar-like features. Examples of the Connected Control Points used on pedestrian
images are illustrated in Figure 2.5.

We published a comparison of the Haar and the Control Points features for pedestrian
detection in [Zaklouta 09] showing that the latter yields better results.

2.1.1.3 Interest Points

An interest point is a point in an image which is rich in information, i.e. with strong gra-
dients. These points are found using detectors such as the Harris and the Hessian-based
detector. The quality of a detector can be measured by its robustness to variations and its
repeatabilty. The repeatability refers to the capability of detecting the same interest points
under different view conditions. The information at the interest points is then described
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Figure 2.6: Structure of SIFT interest points [Lowe 04]

Figure 2.7: Structure of SURF interest points [Bay 08]

using descriptors, such as Scale-Invariant Feature Transform (SIFT) and Speeded-Up
Robust Features (SURF).

Detectors
The affine invariant Harris detector [Mikolajczyk 02] locates corner points, i.e. points with
significant horizontal and vertical gradients, using the Harris Corner detector. It iteratively
analyzes them at different scales and neighborhood patch sizes. The Hessian-based de-
tector [Mikolajczyk 01] iteratively optimizes the location, scale and neighborhood of the
points to determine the affine invariant interest points. Bay et al. [Bay 08] introduced a
Fast-Hessian detector. It acclerates the computation by using the integral image repre-
sentation. Published surveys [Tuytelaars 08, Mikolajczyk 05] on local features determined
that the Hessian-based detectors are more stable and repeatable than the Harris-based
ones.

Descriptors
Once the interest points are detected, they are represented by a descriptor. Lowe et
al. [Lowe 04] developed the SIFT descriptor, which stores the local gradient histograms.
This proved to be fast and robust to changes in scale, rotation and illumination. Figure
2.6 illustrates the structure of the SIFT descriptor. The patch around the interest point
is divided into blocks, four in general. In each block, the histogram of the gradient orien-
tations of the pixels is computed. A 2-D Gaussian is applied to weight the values in the
center of the patch. The patch is rotated so that the strongest gradient faces north. This
makes the descriptors comparable and hence robust to rotations. The gradient orienta-
tion histograms are concatenated to form the SIFT descriptor vector.
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Figure 2.8: Gradient responses used in SURF[Bay 08]. Left: A uniform surface pro-
duces low responses. Middle: Stripes invoke a high

∑
|dx|. The positive and negative

dx responses counterbalance, keeping
∑
dx low. Right: Gradual increase in intensity

augments both
∑
dx and

∑
|dx|

The SURF is a 64 value descriptor introduced by [Bay 08], which describes the gradi-
ents in a patch around an interest point. Figure 2.7 illustrates the structure of the SURF
descriptor.

vsurf = (Σdx,Σdy,Σ|dx|,Σ|dy|) (2.4)

where dx and dy are the horizontal and vertical gradients respectively. The responses
dx and dy are illumination invariant as shown in Figure 2.8. The sum of the gradient
magnitudes describes the intensity information.

2.1.2 Global Features

Global features describe the entire image. Examples of such features are Distance
Transforms (DT) [Gavrila 07, Franke 99] and Histograms of Oriented Gradients (HOG)
proposed by Dalal and Triggs [Dalal 05]. Both achieve high performance in pedestrian
detection applications.

2.1.2.1 Histogram of Oriented Gradients

Binning is defined as the combining of several pixels into a function unit. It is often
used to reduce the noise in an image. The HOG feature, proposed by Dalal and Triggs
[Dalal 05] and primarily used for pedestrian detection, is based on this principle. Figure
2.9 illustrates the structure of the HOG descriptor. The image is divided into overlapping
blocks. Each block, in turn, is divided into non-overlapping cells. The gradient orientation
and magnitude are computed for each pixel. A histogram of these orientations is formed
for each cell. The magnitude of the gradient is used as a vote weight. A local contrast nor-
malization is then performed on each block. The resulting histograms are concatenated
to form the HOG descriptor.

2.1.2.2 Spatial Pyramids

The concept of spatial pyramids such as Pyramid Histogram Of Visual Words (PHOW)
[Lazebnik 06, Bosch 06] and Pyramid of Histograms of Oriented Gradients (PHOG)
[Bosch 07b] is to describe the image at several repartition levels. The coarse represen-
tation at the low level of the pyramid captures the global form of the object, while the finer
partitioning of the image captures the specific details. Both PHOW and PHOG describe
the orientations and intensities of the gradients in the image.

Pyramid Histogram of Visual Words (PHOW)
These descriptors [Bosch 07a] are a variant of dense SIFT descriptors. The SIFT de-
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Figure 2.9: Structure of HOG descriptor [Dalal 05]

Figure 2.10: Structure of PHOG descriptor [Bosch 07b]

scriptors [Lowe 04] are computed at multiple scales on patches, which are densely dis-
tributed over the image. These descriptors are merged into visual words using k-means,
which is a clustering algorithm that divides a sample set into k clusters, resulting in a
Voronoi partitioning of the data space. Each sample belongs to the cluster with the
nearest mean value. The vocabulary set of each image, usually consisting of hun-
dreds of words, is represented by a histogram of word occurences. This feature is used
in [Lazebnik 06, Bosch 06] to classify scenes and in [Bosch 07a, Bosch 07b] for object
recognition

Pyramid of Histograms of Oriented Gradients (PHOG)
These descriptors [Bosch 07b] are a concatenation of HOG descriptors, calculated at
several partitioning levels of the image. Figure 2.10 illustrates the composition of the
PHOG descriptor. At the first level l = 0, the HOG descriptor is computed over the
entire image. At levels l = 1 and l = 2, the HOG descriptors of all four and eight image
subdivisions are computed and concatenated. The PHOG descriptor of the image is the
weighted concatenation of those from all three levels. The weights can be either learned
during training or set empirically.

2.1.2.3 Distance Transforms

The Distance Transforms (DT) represent the distance of each pixel to the nearest
edge in the corresponding Canny edge image as illustrated in Figure 2.11. The advantage
of the DT over the edge image is that the similarity measure is smoother. The correlation
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Figure 2.11: Distance Transform. The lighter the pixel, the further it is from an edge.

distance between the template DT and that of the test image determines the classification
decision.

2.2 Classifying the Object

Classification is the problem of identifying the class to which a new sample belongs
using the knowledge obtained from a set of training samples. There are several ap-
proaches to solving this problem. On the one hand, the tree classifiers, such as the
K-d tree, use optimized techniques, such as hierarchichal structures and Best Bin First
Approximate Search [Beis 02] to efficiently comb through the training samples and deter-
mine the Nearest Neighbor of the test sample. The advantage of this type of approach
is that they are particularly performant when using unbalanced data sets as shown in
[Khoshgoftaar 07].

On the other hand, algorithms such as Adaboost and Support Vector Machines (SVM)
learn a representative subset of weak learners or training samples. They are less sensi-
tive to outliers and posess a strong generalization capacity as they discover trends in the
data. The computation and memory requirements are reduced since only a representa-
tive subset is considered.

The choice of the appropriate classification algorithm depends on the quantity and
class distribution of the training samples as well as the features used. Different variants
of the Adaboost algorithm, the Support Vector Machines as well as the tree classifiers:
K-d tree and Random Forest are presented in this section.

2.2.1 Binary Adaboost

Adaboost [Freund 97, Schapire 99] is a powerful machine learning algorithm. It com-
bines T weak classifiers ht into a strong classifier H. They are chosen to minimize the
error on the samples from the training set. The confidence αt in their decision is a function
of their classification error εt. In each round, the misclassified training samples obtain a
higher weight, so that the weak learner focuses on classifying them correctly. The proce-
dure of the Binary Adaboost algorithm is described in Algorithm 1. Figure 2.12 illustrates
the general training and classification schemes of the Adaboost algorithm.

Each weak classifier has an accuracy better than that of random guessing. Dietterich
et al. [Dietterich 00] shows that there is a trade-off between accuracy and generalization
capacity. The more accurate the classifiers, the more often they agree, which in turn
implies that their errors are correlated, increasing the risk of overfitting. The less accurate
the weak learners, the more resistant they are to outliers, yet the less accurate they are,
increasing the error rate.
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(a) Training of weak learners h1, . . . , hT

(b) Classification of sample x by strong classifier H

Figure 2.12: Adaboost training and classification

2.2.2 Multiclass Adaboost

Several extensions to the Adaboost algorithm have been proposed over the past
decade. This section gives a brief overview of some of these variants.

Freund et al. [Freund 96] propose the Adaboost.M2 algorithm (see Algorithm 2) for
solving the multi-class problem. It differs from the original binary version in the weighting
of sample-label pairs W̃ as opposed to the sample weighting W in Adaboost, as well as
the use of the pseudo-loss measure in the error evaluation.

The weak learners in this algorithm predict a set of possible classes for a sample
x. The final decision is the class with the highest vote. The weak learner’s descision
is weighted according to the pseudo-loss measure, which penalizes the absence of the
correct label in the predicted set as well as the wrong labels. This measure focuses
the learning on the hard samples, as well as the labels which are difficult to distinguish.
The disadvantage of the pseudo-loss measure is, however, that it is time-consuming to
compute. For K classes, it takes O(K) times longer to evaluate the error than in the
binary Adaboost algorithm.

Error Correcting Output Codes
Error Correcting Codes (ECOC) were originally used to discover transmission errors in
signal processing. They are used to reduce the multi-class problem to several binary ones
in [Dietterich 95]. During training, a set of N binary classification functions are generated,
each partitioning the K > 2 labels into two classes. This repartition of the labels is known
as coloring. A coloring function µ maps each label li ∈ {1, . . . ,K} to +1 or -1.
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Algorithm 1 Binary Adaboost

Data D = {x1, . . . , xN}, Labels L = {li ∈ {1,−1}}, T number of weak learners
• initialize equal weights w for all N data samples

w = 1
N , w ∈W

for t=1 to T do
• find classifier ht with smallest error εt with respect to W

εt =
∑N

i=1wi, li 6= ht(xi)}
• compute classifier weight

αt = ln(1−εtεt
)

• update sample weights
wi = wi

Z · exp(−αt · li · ht(xi)), where Z =
∑n

i=1wi
end for

• Classification of sample x using strong classifier H
H(x) = sign

(∑T
t=1 αt · ht(x)

)
Algorithm 2 Adaboost.M2

Data D = {x1, . . . , xN}, Labels L = {li ∈ {1, . . . ,K}}, T number of weak learners
• initialize weights for all sample-label pairs W̃i,k

W̃i,k =

{ 1
N(K−1) , li 6= k

0, li = k

for t=1 to T do
• find classifier ht with smallest error εt with respect to W̃
using pseudo-loss measure

εt = 1
2

∑N
i=1

∑K
k=1 W̃i,k ·

([
li /∈ {ht(xi)}

]
+
[
l ∈ {ht(xi)}

])
• compute classifier weight

αt = 1
2 ln(1−εtεt

)
• update sample-label weights

W̃i,k = 1
Z · W̃i,k · exp(αt ·

([
li /∈ {ht(xi)}

]
+
[
l ∈ {ht(xi)}

])
),

where Z =
∑N

i=1

∑K
k=1 W̃i,k

end for

• Classification of sample x using strong classifier H
H(x) = argmaxl∈Y

(∑T
t=1 αt ·

[
l ∈ ht(xi)

])

Each of the K classes is assigned a codeword composed of T values. The t-th bit
of a codeword indicates the coloring of the class with respect to the t-th binary classi-
fication function ht. The result of the training is a K×T matrix consisting of +1 and -1
values. Table 2.1 shows an example of a coloring of four classes. The binary classifier
h1 learns to distinguish between classes {c1, c2, c3} and {c4}. The codeword of class c1
is < −1,−1,−1,−1,−1, 1 >.

The Hamming distance hd(w1, w2) between two codewords cw1, cw2 is the number of
bits in which they differ. The codeword of a new data sample x consists of the responses
of each of the T classifiers. Its class corresponds to the one with the smallest Hamming
distance to its codeword.
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Classifiers

Le
ar

ne
rs

l1 l2 l3 l4
h1 -1 -1 -1 1
h2 -1 -1 1 1
h3 -1 1 1 1
h4 -1 1 -1 1
h5 -1 1 1 -1
h6 1 1 -1 1

Table 2.1: Class Coloring: Codewords forK = 4 classes with T = 6 values corresponding
to the t1, . . . , tT weak learners

Figure 2.13: The Hamming-decoding (top) uses the Hamming distance for classification.
The Loss-based decoding (bottom) uses the an exponential function of the confidence
measures of each weak learner. [Allwein 01]

The robustness of the Error Correcting Codes is due to their ability of correcting up to
bd−12 c bit errors, where d is the minimum Hamming distance between any two codewords.
Given two classes c1 and c2 with codewords (1, 1, 1) and (−1,−1,−1) respectively. The
minimum Hamming distance is d = 3, i.e. one bit error can be corrected. Given samples
x1, x2 ∈ c1, with the codewords (1,−1, 1) and (1,−1,−1). The Hamming distances are
hd(cw(x1), cw(c1)) = 1 and hd(cw(x2), cw(c1)) = 2 to c1 and hd(cw(x1), cw(c2)) = 2 and
hd(cw(x2), cw(c2)) = 1 to c2. The ECOC was able to correctly classify x1 as there is only
a one bit error. However, x2 is misclassified as there are two bit errors.

The larger the minimum Hamming distance, the stronger the ECOC. A minimum Ham-
ming distance of 2 is given in a one-vs-all coloring, which does not have the error correct-
ing property.

Allwein et al. [Allwein 01] proposed the don’t care coloring value 0, which allows the
weak learner to ignore a class during the training. A don’t care value counts as half
a vote when computing the Hamming distance. They also introduced the more accurate
Loss-based Decoding of the vote vectors using a confidence measure to weight the weak
learner’s decision. The difference between the Hamming-decoding and the Loss-based
decoding is illustrated in Figure 2.13.
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Algorithm 3 Adaboost.OC

Data D = {x1, . . . , xN}, Labels L = {li ∈ {1, . . . ,K}}, T number of weak learners
• initialize weights for all sample-label pairs W̃i,k

W̃i,k =

{ 1
N(K−1) , li 6= k

0, li = k

for t=1 to T do
• compute coloring µt

µt : L→ {−1,+1}
• compute sample weights w ∈W

wi = 1
U ·
∑K

k=1 W̃i,k

[
µt(li) 6= µt(l)

]
, where U =

∑N
i=1wi

• find classifier ht with smallest error εt with respect to W
εt = 1

2

∑N
m=1

∑K
k=1 W̃i,k ·

([
li /∈ Lh

]
+
[
l ∈ Lh

])
Lh = {l ∈ {ht(x) = µt(l)}}

• compute classifier weight
αt = 1

2 ln(1−εtεt
)

• update sample-label weights
W̃i,k = 1

Z · W̃i,kexp(αt ·
([
li /∈ Lh

]
+
[
l ∈ Lh

])
)

Z =
∑N

i=1

∑K
k=1 W̃i,k is normalization factor

end for

• Classification of sample x using strong classifier H
H(x) = argmaxl∈L

(∑T
t=1 ht(x) · αt ·

[
l ∈ Lh

])

Adaboost.OC

The Adaboost.OC algorithm [Schapire 97], described in Algorithm 3, combines the
Error Correcting Output Codes and boosting. Similarly to Adaboost.M2, it weights
sample-label pairs using the distribution W̃ . These weights are then used to compute
the sample weight distribution W . In each round, a weak learner ht, minimizing the error
with respect to W , is generated. Its weight αt and the sample-label distribution W̃ are
updated with respect to its pseudo-loss error εt. The sample weights are updated in turn
with respect to W̃ .

The ECOC generate the coloring µt in each training round, reducing the multi-class
problem to a binary one. The decision of a weak learner ht is computed with respect to the
coloring µt in round t, i.e. a correct classification of a sample xi premises µt(li) ∈ ht(xi).
The final decision is the class with the highest vote.

Adaboost.ECC

The Adaboost.ECC algorithm [Guruswami 99], described in Algorithm 4, is similar to
Adaboost.OC, except that the time-consuming pseudo-loss error εt computation is elim-
inated. Instead, the confidence αt of each weak learner ht, is calculated based on its
error rate. This simplifies the algorithm and accelerates the training.

One can differentiate between the symmetric and asymmetric case. In the former,
there is only one weight αt per classifier ht, while in the latter the weight αt or βt depends
on the classification outcome of ht.
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Algorithm 4 Adaboost.ECC

Data D = {x1, . . . , xN}, Labels L = {li ∈ {1, . . . ,K}}, T number of weak learners
• initialize weights for all sample-label pairs W̃i,k

W̃i,k =

{ 1
N(K−1) , li 6= k

0, li = k

for t=1 to T do
• compute coloring µt

µt : L→ {−1,+1}
• compute sample weights w ∈W

wi = 1
U ·
∑K

k=1 W̃i,k

[
µt(li) 6= µt(l)

]
with U =

∑N
i=1wi is normalization factor

• find classifier ht with smallest error εt with respect to W
εt =

∑N
i=1wi,

[
li /∈ Lh

]
}

Lh = {l ∈ {ht(x) = µt(l)}}
• compute classifier’s positive and negative vote αt and βt respectively

gt =

{
αt, ht = +1
−βt, ht = −1

� Asymmetric case

αt = 1
2 ln
(∑

i:ht(xi)=µ(li)=+1 wi∑
i:ht(xi)=+1 6=µ(li)

wi

)
βt = 1

2 ln
(∑

i:ht(xi)=µ(li)=−1 wi∑
i:ht(xi)=−1 6=µ(li)

wi

)
� Symmetric case

αt = βt = 1
2 ln
(∑

i:ht(xi)=µ(li)
wi∑

i:ht(xi)6=µ(li)
wi

)
• update sample-label weights

W̃i,k = 1
Z · W̃i,k · exp

(
− 1

2 · gt ·
(
µt(li)− µt(k)

))
Z =

∑N
i=1

∑K
k=1wi is normalization factor

end for

• Classification of sample x using strong classifier H
H(x) = argmaxl∈L

(∑T
t=1 ht · gt · µt(l)

)
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Algorithm 5 Adaboost.ERP

for r = 1 to R do
• compute sample weights w ∈W

wi = 1
U ·
∑K

k=1 W̃i,k

[
µt(li) 6= µt(k)

]
with U =

∑N
i=1wi is normalization factor

• find classifier ht with smallest error εt with respect to W
εt = 1

2

∑N
m=1

∑K
k=1 W̃i,k ·

([
li /∈ Lh

]
+
[
l ∈ Lh

])
Lh = {l ∈ {ht(x) = µt(l)}}

• adjust coloring of each label k
µt(k) = sign

[∑N
i=1|li=k

∑K
k=1 W̃i,k · ht(xi)−

∑N
i=1 W̃i,k · ht(xi)

]
end for

Algorithm 6 Adaboost.ERC

for r=1 to R do
• find classifier ht with smallest error εt with respect to W

εt = 1
2

∑N
m=1

∑K
k=1 W̃i,k ·

([
li /∈ Lh

]
+
[
l ∈ Lh

])
Lh = {l ∈ {ht(x) = µt(l)}}

• adjust sample weight to new classifier hmt
wi = 1

Z · wi · exp
(
hmt (xi) · µt(li)

)
• add new classifier hmt to ensemble

h′t = h′t ∪ hmt
end for

Adaboost.ERP - ECC with Repartitioning

Li [Li 06] proposes an improvement of the Adaboost.ECC algorithm by adapting the
label repartitioning i.e. coloring to minimize the error of the best weak learner in each
round. This is done iteratively in a second boosting loop within the Adaboost.ECC algo-
rithm. This sub-loop, shown in Algorithm 5, replaces the search for the classifier ht with
the minimum error εt.

Adaboost.ERC - ECC with Repeating Codes

Lin et al. [Lin 06] extend the Adaboost.ECC algorithm to the Adaboost.ERC by itera-
tively training an ensemble of weak learners h′t on a given coloring µt and adjusting the
sample weights W in each repetition cycle r. The subloop is described in Algorithm 6.

In each Adaboost round t, a set of weak learners h1t , . . . , hRt is trained, with respect
to the coloring µt, and added to the strong classifier H. When the error of a weak learner
hrt is low, the sample weights in W hardly change and a similar weak learner hr+1

t is
generated in the next round. If it is too weak, the W is adjusted, so that a better one is
created in the next round. Therefore, the weighting αt is obsolete in this algorithm, as the
poor learners perish, while the better ones become numerous.

2.2.3 Support Vector Machines

A Support Vector Machine (SVM) [Burges 98] is a binary classifier. The best sepa-
ration between two classes is represented by a subset of data samples, called Support
Vectors. A test sample can be classified depending on its distance to the support vec-
tors. The binary SVMs can be combined into an ensemble of one-vs-one or one-vs-all
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Figure 2.14: Linear SVM: A hyperplane H separates the two classes. The support vec-
tors (encircled) hold up the separating margin.

classifiers to solve multi-class problems.

2.2.3.1 Binary

Given a set of N linearly separable, d-dimensional samples xi ∈ Rd with labels li ∈
{−1,+1}. A hyperplane H that separates the two classes is defined as w · x + b = 0.
The perpedicular distance of H to the origin is then |b|

‖w‖ and the vector w the normal to
H. Figure 2.14 illustrates this data separation.

The shortest distances to the data points of labels −1 and +1 are set to d− and d+
respectively. The corresponding points are called Support Vectors. The width of the mar-
gin surrounding H is d− + d+. Since the training set in this example is linearly separable,
one can assume that all the data points xi satisfy one of the following inequalities:

w · xi + b ≤ −1, li = −1 (2.5)
w · xi + b ≥ +1, li = +1 (2.6)

The inequalities 2.5 and 2.6 can be combined to the following:

li · (xi ·w + b)− 1 ≥ 0, 1 ≤ i ≤ N (2.7)

The support vectors lie on H+1 and H−1, with w · x + b = ±1. The perpendicular
distances from the hyperplanes H+1 and H−1 to the origin are then |−1−b|

‖w‖ and |1−b|
‖w‖

respectively. Therefore, the margin between H+1 and H−1 is 2
‖w‖ wide.

The Lagrangian Formulation
To optimize the classification performance, the hyperplanes H+1 and H−1 are chosen to
maximize the margin width 2

‖w‖ , which is equivalent to minimizing 1
2‖w‖

2. This can be
solved using quadratic programming.
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The minimization problem can be defined as a Lagrangian formulation L.

L =
1

2
‖w‖2 −

N∑
i=1

αi(li(xi ·w + b)− 1) (2.8)

where αi ≥ 0. The advantage of this form is that the inequality in 2.7 is replaced by
Lagrangian multipliers αi, which are easier to handle.

To find the optimal solution, L needs to be minimized with respect to w and b with the
Karush-Kuhn-Tucker (KKT) conditions:

∂L

∂w
= 0⇔ w−

N∑
i=1

αilixi = 0, ∀i (2.9)

∂L

∂b
= 0⇔ −

N∑
i=1

αili = 0, ∀i (2.10)

li(xi · w + b)− 1 ≥ 0, ∀i (2.11)
αi ≥ 0, ∀i (2.12)

αi(li(w · xi + b)− 1) = 0, ∀i (2.13)

Substituting the equations 2.9 and 2.10 into equation 2.8 results in the dual formula-
tion LD. This is to be maximized with respect to αi.

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjliljxi · xj (2.14)

The optimal values for w and b can be found using:

w =
N∑
i=1

liαixi (2.15)

b = lk −
N∑
i=1

liαixi · xk, αk > 0 (2.16)

where αi > 0 for the support vectors xi. The classification function f(x) for a new
sample x is defined as

f(x) = sign(w · x+ b) = sign
( m∑
i=1

liαi(xi · x) + b
)

(2.17)

Hence, only the support vectors, x1, . . . , xm, are needed to determine the label of an
unknown data vector x.

Linearly inseparable Data
White noise, inaccurate measurements or erroneous labeling can lead to inseparable
training data. The constraints are relaxed using a slack variable ξi ≥ 0, 1 ≤ i ≤ N , to
tolerate the samples within the separating margin. The constraints in 2.5 and 2.6 are
adjusted to:

xi ·w + b ≥ +1− ξi (2.18)
xi ·w + b ≥ −1 + ξi (2.19)
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Figure 2.15: Linear separator using slack variable ξi. The sample x1 is classified correctly
due to ξ1 < 1, while x2 is misclassified since ξ2 > 1.

Φ
ℝ2 H

Figure 2.16: The nonlinear function Φ maps linearly inseparable data from R2 to a higher
dimensional Euclidean space H .

A data point xi on the wrong side of H is considered an error, when ξi exceeds 1.
The upper bound for the training errors is

∑
∀i ξi. Figure 2.15 illustrates the use of slack

variables.

Nonlinear Support Vector Machines

The linear data classification can be generalized to find a separator for linearly insep-
arable data. This is done by mapping the data to a different Hilbert space H using a
nonlinear function Φ (see Figure 2.16). The linear classification of the data points in H
is equivalent to their nonlinear classification in Rd.

Φ : Rd →H (2.20)

The dot product of the data points xi · xj used in training is replaced by Φ(xi) ·Φ(xj).
This, however, makes it difficult to handle due to the high dimension of H . To avoid the
explicit computation of Φ, the adjusted dot product is replaced by a kernel function K.

K(xi, xj) = Φ(xi) · Φ(xj). (2.21)
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The kernel function K is symmetric (K(xi, xj) = K(xj , xi)) and satisfies the Mercer
criteria ∫

K(xi, xj)g(xi)g(xj)dxidxj ≥ 0 (2.22)

for any function g, having a finite value of
∫
g(x)2dx This criteria ensures that the Kernel

matrix K(i, j) is positive semi-definite. For more details on the characteristics of kernel
functions and their construction refer to [Genton 02].

Some examples of popular kernel functions are:

• Linear

K(xi, xj) = xi · xj (2.23)

• Polynomial

K(xi, xj) = (γxi · xj + r)d, γ ∈ R+, r ∈ R, d ∈ N (2.24)

• Gaussian Radial Basis Function

K(xi, xj) = e−γ‖xi−xj‖
2

(2.25)

To determine the label of an unknown data point x, the classification function defined
in 2.17 is adjusted to

f(x) = sign(w · x+ b)

= sign
( m∑
i=1

αili(Φ(xsi) · Φ(x)) + b
)

= sign
( m∑
i=1

αiliK(xsi, x) + b
)

(2.26)

where xsi are the Support Vectors.

2.2.3.2 Multiclass

Although Support Vector Machines are binary classifiers, they can be employed for
multi-class classification in several ways including: one-vs-all or one-vs-one. In the for-
mer, one SVM is trained to distinguish each class against all the N − 1 others. A test
sample is classified by all N trained SVMs. The highest confidence determines the clas-
sification decision. In the one-vs-one scenario, n·(n−1)

2 SVMs are trained to classify one
class against another. To classify a sample, each resulting binary SVM then votes for
a class and the highest vote is taken. In both cases, the SVM parameters need to be
adjusted to compensate for unbalanced data sets.

In [Weston 99], Weston et al. propose a formulation of the multiclass SVM problem
using a piecewise linear separation of the L classes. Their analysis on various bench-
marks shows that this approach attains a comparable performance to that of the one-vs-
all or one-vs-one SVM variants, however, with a smaller number of support vectors and
less kernel calculations.
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Kim et al. [Kim 02] compare different construction and evaluation methods for SVM
ensembles. They examine bagging and boosting for SVM construction, where the former
selects bootstrap samples at random and the latter uses a selection scheme such as
Adaboost. The output of the SVMs in the ensemble can be evaluated using different
techniques:

• In the majority voting scheme the highest vote determines the class.
• The LSE-based weighting extends this by weighting the SVM output.
• In the double-layer hierarchical combining the outputs of the first-layer classifiers

are evaluated by the second-layer classifier.

In their experiments on hand-written digit recognition and fraud detection, Kim et al.
[Kim 02] establish that the boosting outperforms bagging. However, the choice of the
aggregation method depends on the application. It is asserted that the SVM ensemble
techniques outperform a single SVM in terms of classification accuracy.

2.2.4 Tree Classifiers

Binary decision trees organize the data by splitting it hierarchichally. The nodes of
the tree recursively divide the data space. To classify a new sample, the tree is traversed
down to the leaves. The sample is compared to the information stored in the nodes and
the final leaf.

There are many ways to split the nodes in a decision tree. In [Tu 05], the split functions
in the nodes are strong classifiers trained using Adaboost. In [Wu 00], the split functions
are chosen so that the margin is maximized amongst all possible separating hyperplanes.
This improves the average accuracy and ensures a better generalization. Tibshirani et al.
[Tibshirani 07] yield comparable results to other state-of-the-art approaches by selecting
the largest margin between two classes in each node of the tree classifier. The K-d tree
uses median of the feature with the highest variance. The Random Trees in the Random
Forest select the feature with the highest Information Gain.

In this thesis, we examine K-d trees and Random Forests and introduce adjustments
to improve their performance.

2.2.4.1 K-d tree

A K-d tree is a binary search tree organizing K-dimensional data points. Each non-
leaf node splits the data into two subspaces according to the i-th feature fi with the
highest variance at that level. In Fig. 2.17, the 2-dimensional sample space is recursively
divided along the x and y axes. To ensure the tree is balanced, the median value mi of
fi is used for the split in each node. The left subtree contains data with values fi < mi

and the right subtree fi > mi. This division is repeated until the subtrees are leaves with
one sample each.

The K-d tree is a nearest-neighbor-based search tree. To classify a sample, the tree
is traversed until a leaf is reached. At each node, the i-th feature fi sample is compared
to the splitting criteria to determine which subtree to descend into. However, this search
is computationally expensive in high dimensional feature spaces.

Therefore, Beis et al. [Beis 02] introduce the Best Bin First algorithm [Beis 02], which
performs an approximate Nearest Neighbor search. This efficient variant of the K-d tree
search algorithm allows for the indexing of higher dimensional spaces which is required
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Figure 2.17: Example of a 2-dimensional K-d tree. Root node A divides feature space
using feature f1. Nodes B and C divide the corresponding subsets {D,E} and {F,G}
using feature f2.

when using HOG vectors or other large descriptors. The search is conducted using a pri-
ority queue containing candidate nodes ranked according to their distance to the query
sample. The ranking determines the order in which the nodes are examined. During the
search, the siblings of the current node being examined are iteratively added to the pri-
ority queue. The search is terminated when the algorithm scans a predefined maximum
number of nodes Emax.

During the testing phase, the k Nearest Neighbors (kNN ) are retrieved for each can-
didate x. The vote of the class li ∈ L is incremented for each kNN ∈ li. The vote is
weighted with the reciprocal of the distance d to x. The maximum vote determines the
class of x.

voteli =
L∑
1

1

d(kNN ,x)
, kNN ∈ li (2.27)

The Euclidean distance is the most common similarity measure. However, its perfor-
mance is compared to that of other metrics in Chapter 3.2.

2.2.4.2 Random Forest

Random Forests were introduced by Breiman and Cutler [Breiman 01]. An extensive
description is given in [Ho 95]. An ensemble of random trees forms a random forest.

A random tree is grown as follows:

• A subset I ⊂ IN of training samples is randomly chosen with replacement. The
tree is grown using this subset and is not pruned.

• In each node, a subset F of features is randomly chosen. The current data subset
is split into Il and Ir using the feature f ∈ F and threshold t ∈ [min(f),max(f)]
with the maximum Information Gain ∆. The entropy E is calculated over the labels
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Figure 2.18: Classification of a sample x in Random Forest

frequencies in I.

Il = {i ∈ I|fj < t},∀1 ≤ j ≤ |F | (2.28)
Ir = I \ Il (2.29)

∆ = −|Il|
|I|
E(Il)−

|Ir|
|I|

E(Ir) (2.30)

fj
opt = maxj∆ (2.31)

The size of F is an empirical choice. Too many features make the training slow and
risk over-fitting. The smaller F , the stronger the randomization, the faster the training,
yet the higher the risk of under-fitting. In [Geurts 06], the totally randomized trees, with
|F | = 1, yield higher classification accuracies for certain datasets.

Figure 2.18 illustrates the classification of a sample x in a Random Forest. Each of
the random trees Tj ∈ {T1, T2, . . . , TT } in the Random Forest is traversed. In the leaf
attained in Tj , the posterior probablity that x belongs to the class l ∈ {1, 2, . . . , L} is
denoted by Pj(l|x). The class l∗ of x is determined using the combined decision of the
ensemble of trees.

P (l|x) =
1

T

T∑
j=1

Pj(l|x) (2.32)

l∗ = maxLP (li|x) (2.33)

The random forests achieve state-of-the-art performance in many multi-class classi-
fication applications. They are used for tracking the keypoints of an object in [Lepetit 06]
and clustering visual words in [Moosmann 07]. Shotton et al. [Shotton 08] use Random
Forests to cluster and classify semantic texton, which represent patches of the image, to
segment images and classify the objects associated with the textons.

Using sample subsets for tree training improves the generalization capacity and re-
duces the memory and processing requirements. In [Bosch 07a], the random forests
outperform the SVM in classifying images from the Caltech-101 and Caltech-256 data
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Figure 2.19: The ETH80 [Eichhorn 04] data set contains images of 8 classes of objects
taken at 41 different angles.

sets. Khoshgoftaar et al. show in [Khoshgoftaar 07] that random forests perform well on
binary classification problems with imbalanced data sets and outperform SVM, Naives
Bayes, kNN and C4.5 classifiers. A further advantage is that they are fast to build, easy
to implement in a distributed computing environment and they enable online learning.

2.3 Comparing on Benchmarks

Two of the major challenges facing classification algorithms are the different view
points of the objects and the unbalanced data sets. The first problem requires discrimi-
nant features which are robust to rotations and affine transformations. The second prob-
lem demands classifiers which can handle classes with unbalanced cardinalities. We
evaluate the performance of various features and classifiers using the ETH 80 and the
Caltech 101 data sets, which simulate these two difficulties.

2.3.1 Data Sets

The ETH80 data set was first introduced in [Eichhorn 04]. This dataset consists of
images of 8 classes, with 10 objects each. Each object was photographed at 41 different
angles i.e. a total of 3280 images. Figure 2.19 illustrates some examples of these ob-
jects. This data set is often used in literature to benchmark classification algorithms. A
drawback, however, is that some of the objects are toys and the background is uniform.
This makes it less suitable to simulate a real-world classification problem. However, the
41 different viewpoints make it possible to evaluate the robustness of the features and
classifiers to rotations and affine transformations.

The Caltech 101 data set 1 contains images of 101 categories of objects, gathered
from the internet. There are between 40 and 800 samples per class, with 50 images on
average. This data set is often used for benchmarking classification and segmentation
methods. However, Ponce et al. [Ponce 06] constate that although the Caltech 101 data
set is very diverse, it lacks variety in terms of orientation, size and background of the
objects. Figure 2.20 shows the average images for the Caltech 101 classes.

1http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Figure 2.20: Average images of Caltech 101 classes [Ponce 06]. This data set is diverse,
yet it lacks variety in orientation, size and background of the objects.

2.3.2 Performance Evaluation

In this section, we compare the features and classification approaches presented in
the state-of-the-art using the ETH80 and Caltech data sets. We further evaluate the
performance of the HOG feature and tree classifiers: K-d tree and Random Forest. Refer
to Sections 2.1 and 2.2 for more details on the features and classifiers used in this section.

2.3.2.1 ETH80

Eichhorn et al. [Eichhorn 04] use eight one-vs-all SVMs with a Bhattacharyya kernel
to classify the SIFT features extracted from the ETH80 images. They use the Harris
corner detector to extract 40 interest points on average. The classifiers are evaluated
using a leave-one-object-out crossvalidation: the training is performed on 79 of the 80
objects and the classifier is tested using the 41 images of the remaining object. This is
repeated for all 80 objects in the data set. They achieve an average accuracy of 74%.

Grauman et al. [Grauman 07] repeat the same experiment using one-vs-all SVMs
and PCA-SIFT features. They use the pyramid matching kernel, which maps the sets of
features to multi-resolution histograms. The similarity of these histograms is defined as
their weighted intersection at the different pyramid levels. They show that this method
approximates the best partial matching of the two feature sets. The advantage of their
method is that it runs in linear time with respect to the number of features m. The Bhat-
tacharyya kernel requires O(dm3), where d is the feature dimension. They achieve an
accuracy of 83% when using 153 interest points on average and 73% when limiting the
average number of features to 40 per image.

The same experiment was repeated by Suard et al. [Suard 06] using Histogram of
Oriented Gradients (HOG) and graph features with 28 one-vs-one SVMs. The HOG fea-
tures used consist of 8464 values: 96x96 pixel images, 4x4 pixel cells, 8x8 pixel blocks,
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Source Feature Classifier Kernel Accuracy
[Eichhorn 04] SIFT (40 points) one-vs-all SVM Bhattacharyya 74%
[Grauman 07] PCA-SIFT (153 points) SVM pyramid matching 83%
[Grauman 07] PCA-SIFT (40 points) SVM pyramid matching 73%
[Suard 06] Graph one-vs-one SVM graph 78%
[Suard 06] HOG (8464) one-vs-one SVM linear 90.1%
[Suard 06] HOG (8464) + Graph one-vs-one SVM linear and graph 94.1%
This thesis HOG (8464) K-d tree - 89.4%
This thesis HOG (8464) Random Forest - 83.2%
This thesis HOG (784) SVM (one-vs-all) linear 87.90%
This thesis HOG (784) SVM (one-vs-all) χ2 89.02%
This thesis HOG (784) K-d tree - 92.23%
This thesis HOG (784) Random Forest - 86.49%

Table 2.2: ETH 80 classification results

4x4 pixel block stride and 4 orientation bins. The graph feature is extracted from the
object skeleton. It describes the coordinates of the vertices and the orientation, length,
strength and area of the edges. They achieve an accuracy of 78% when using an SVM
and the graph kernel. The HOG features are combined with a linear SVM to achieve an
accuracy of 90.1%. The combination of both features performed best with an accuracy of
94.1%.

We evaluate the K-d tree and Random Forest classifiers using the same dataset and
HOG features as in [Suard 06]. Various K-d tree parameters are tested and kNN = 5
and Emax = 1000 are chosen empirically as they achieve the best results. The Random
Forest contains 100 trees, each built with subsets of minimum 10 samples and 10 fea-
tures. Further, we train the classifiers on smaller HOG descriptors with only 784 values:
64x64 pixel images, 8x8 pixel cells, 16x16 pixel blocks, 8x8 pixel block stride and 4 ori-
entation bins. The average results of the leave-one-object-out crossvalidation of all the
approaches are shown in Table 2.2.

A single K-d tree achieves a classification rate of 89.4%, which is comparable to the
90.1% achieved by the 28 one-vs-one SVMs in [Suard 06] using the same sized HOG
descriptors. The Random Forest with 100 trees yields a slightly lower accuracy of 83.2%.

When using the only 784 dimensional HOG features, i.e. the coarser spatial parti-
tioning, the performance of the K-d tree was improved to 92.23%. The Random Forests
also achieve a high classification accuracy of 86.49%. The eight one-vs-all linear SVMs
performed better with a χ2 than with a linear kernel with 89.02% and 87.9% respectively.

2.3.2.2 Caltech 101 data set

The Caltech 101 is commonly used to benchmark features and classification algo-
rithms. We present the state-of-the-art techniques and perform our own evaluation using
SVM, K-d trees and Random Forests. We use the HOG/PHOG features, which will also
be used for the pedestrian detection and traffic sign recognition applications in Chapters
3 and 4 respectively. The results of all the approaches presented in the following are
obtained by using 30 images for training and the rest for testing.

Lazebnik et al. [Lazebnik 06] extract a predefined number of interest points. They
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then compute the corresponding SIFT features. Next, the image is divided into three
resolution levels. The histograms of the SIFT features are calculated and concatenated
from each of the subregions. They present two methods for generating the SIFT features:
"weak" and "strong" features. The former are the SIFT points whose gradient magnitude
exceeds a threshold. As for the latter, the SIFT features are densely calculated over a
grid. A k-means clustering is then performed on a random subset of the training exam-
ples to generate the vocabulary set. A one-vs-all SVM is trained for each class. The
pyramid matching kernel is used. This calculates a weighted histogram intersection at
each level of the pyramid. The weight of a level is inversely proportional to the respective
cell width. A four level pyramid of "strong" features yields a classification rate of 64.6%
on the Caltech 101 data set.

The appearance features App, consisting of densely computed and quantized SIFT
features, are also used in [Bosch 07b]. Further, they introduce global and class-specific
level weights for combining the four layers of the pyramid. The χ2 kernel is used in the
one-vs-all SVM classifiers, achieving a classification rate of 68.1% using the grayscale
Caltech 101 images. Bosch et al. [Bosch 07b] also evaluate the four level PHOG feature
and yield an accuracy of 69% on the Caltech 101 data set. They further combine the two
PHOG features Shape180 (gradients orientation in [0◦ − 180◦]) and Shape360 (gradients
orientation in [0◦− 360◦]), with the Appgray and Appcolor (App computed on gray and color
images respectively). These four features combined achieve an accuracy of 77.8%.

Bosch et al. [Bosch 07a] use the Shape180, Shape360, Appgray and Appcolor features to
train Random Forest classifiers. The similarity measure used in their experiments is the
exponential of the weighted sum of differences of the histograms at each pyramid level.
They grow 25 trees per feature and merge the weighted outputs into a final classification
decision. The size of the training set is augmented by generating 10 new images per
training class. This methodology yields an accuracy of 80%. The one-vs-all SVM yields
81.3% on the same data set. However, they establish that the computational cost is
reduced by factor 40 when using the Random Forests rather than the SVM.

Gehler et al. [Gehler 09] use boosting to learn the combination weights of the differ-
ent features in the one-vs-all SVM classifiers. The feature weights β are sparse, meaning
that for βf = 0, the feature f is not considered in the classification function. They eval-
uate the performance of various feature combinations, including PHOG, the appearance
descriptors App mentioned earlier, region covariance and Local Binary Patterns (LBP).
They yield a classification rate of 77.7% on the Caltech 101 data set by selecting 7 out of
the 39 given feature kernels.

We compare the performance achieved by the SVM, K-d tree and Random Forest
classifiers. We use the publicly available PHOG features2 used in [Gehler 09]. The pyra-
mid level L has 2L cells in each dimension and the histograms contain K bins. Therefore,
the PHOG descriptor vector at the level L contains K · 4L values. We use the directed
gradients, with orientations that lie in [0◦ − 360◦] and K = 40 bins. We also combine the
descriptors of all four pyramid levels in L0− 3. The results are shown in Table 2.3.

The higher pyramid levels, i.e. the finer image partitioning, achieve the better results.
The SVMs yield the best accuracy rates of 68.5% using the PHOG L3 descriptor. The
Random Forest has a poorer performance of 45.44% when using the L3 level and only 30
training images. However, it is shown in [Bosch 07a], that its performance is improved on

2http://people.ee.ethz.ch/ pgehler/projects/iccv09/
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L0 L1 L2 L3 L0-3
PHOG descriptor size 40 160 640 2560 3400
SVM 21.39% 49.13% 65.36% 68.50% 81.16%
K-d tree 18.82% 31.51% 35.84% 25.68% 27.06%
Random Forest 26.41% 40.0% 48.44% 45.44% 52.64%

Table 2.3: Classification results of SVM (χ2 kernel), K-d tree and Random Forest on
Caltech 101 data set using PHOG features (Pyramid levels L0-3).

the more complex Caltech 256 data set when increasing the number of training samples.
They use the PHOG and PHOW features in their experiments. One can conclude that the
SVM has a higher computational complexity [Bosch 07a], yet is more performant when
using small training sets.

The combination of all the pyramid levels with equal weights achieves the highest ac-
curacies when using the SVM and Random Forest classifiers, with 81.16% and 52.64%
respectively. The K-d tree performance suffers when increasing the size of the PHOG
descriptor, i.e. when using L3 and L0− 3, because of the accumulation of the Euclidean
distance over the large dimensionality. For example, two samples may have small dif-
ferences in several values of their descriptors, yet these are accumulated in the ample
dimensionality, resulting in a large Euclidean distance between the two vectors.

2.4 Conclusions

This chapter presents an overview of some of the common features and classifica-
tion algorithms used in the state-of-the-art. The features can be divided into two main
categories: the local, describing patches of the image and the global, describing the
entire image. Examples of the former include the interest points, while the latter com-
prises the Histograms of Oriented Gradients (HOG). As for the classification techniques,
we describe the binary and some multi-class variants of Adaboost, the Support Vector
Machines (SVM) and the tree classifiers: K-d tree and Random Forest.

The choice of the features and classifiers largely depends on the objects to be classi-
fied as well as the performance requirements and system constraints. The HOG feature
proved to represent the image classes efficiently both in our evaluation and the state-of-
the-art. The performance of the SVMs and the tree classifiers depends on the cardinality
and distribution of the training data. The SVM yields high performance rates, yet incurs
important computational costs. The tree classifiers are an efficient alternative. The Ran-
dom Forests attain high accuracy rates at a lower cost. However, additional samples may
need to be generated, as they require adequate amounts of training data.
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Chapitre 3

Classification: Identifier l’inconnu

Dans ce chapitre, nous examinons trois différents aspects du processus de classi-
fication: i) les caractéristiques, ii) la comparaison de ces caractéristiques au sein d’un
classifieur à l’aide de métriques et iii) la combinaison de différents classifieurs.

Tout d’abord, nous évaluons la réduction de la dimension des vecteurs caractéris-
tiques pour réduire les besoins en mémoire et le temps de calcul. Les composantes
de ces vecteurs sont triées en fonction de leurs importances via l’utilisation de Random
Forests ou du critère de Fisher. Nous validons cette approche sur deux bases d’images
publiques: ETH80 et Caltech 101. Les caractéristiques utilisées ici sont les histogrammes
de gradients orientés (anglais: Histogram of Oriented Gradients (HOG)) et leurs pyra-
mides (en anglais: Pyramid Histogram of Oriented Gradients (HOG)). Nous examinons
l’effet de cette réduction sur la performance de classifieurs à vaste marge (en anglais:
Support Vector Machines (SVM)) et nous obtenons des résultats tout aussi satisfaisants
en n’utilisant qu’une sous-partie de l’espace des caractéristiques.

Ensuite, nous examinons l’importance de la métrique utilisée pour comparer les car-
actéristiques de deux objets. Nous comparons les performances obtenues en utilisant la
distance euclidienne, la corrélation et la distance χ2 comme mesure de similarité entre
deux vecteurs caractéristiques. Nous évaluons également leur impact sur la performance
des K- d trees. Les résultats obtenus indiquent que la corrélation et la distance χ2 sont
plus adequates pour la comparaison d’histogrammes qu’une simple distance euclidienne.

De plus, dans le cadre d’une application de détection de piétons par des caméras
statiques, nous filtrons les fausses alarmes fixes comme les arbres et les lampadaires,
en utilisant la corrélation entre les vecteurs de caractéristiques. Nous évaluons cette
méthode sur les séquences de film CAVIAR, qui ont été prises par une caméra de vidéo-
surveillance fixe dans un centre commercial. Comme résultat, le taux de précision est
doublé tout en gardant un taux de rappel élevé.

Quant à l’ADAS, nous proposons d’utiliser un mélange d’experts consistant en un pre-
mier détecteur de piétons suivi d’un arbre de filtrage de fausses alarmes. Nous évaluons
cette méthode sur les séquences de film de Daimler, qui ont été prises par une caméra
embarquée dans une voiture. Le nombre de fausses alarmes par image est réduit de
moitié, tout en conservant le taux de rappel.

Nous concluons ce chapitre en proposant des extensions possibles, comme l’étude
de l’effet de la réduction de la dimensionalité des vecteurs sur d’autres types de carac-
téristiques et avec d’autres classifieurs, comme des réseaux de neurones ou Adaboost.
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We examine three different aspects of the classification process in this chapter: i)
the feature, ii) the comparison of the feature in the classifier and iii) the combination
of different classifiers. In Section 3.1 we evaluate the reduction of the feature space to
reduce processing and memory requirements. In Section 3.2 we evaluate the importance
of the metric used for comparing the descriptors of two objects. We evaluate its effect on
the K-d tree classification results and the filtering of false alarms in a pedestrian detection
application for static cameras. In Section 3.3, we use a mixture of experts in a pedestrian
detection application. The first classifier detects the pedestrians, while the second tree
classifier filters the false alarms.
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3.1 Importance of the Feature

The goal of feature selection is, on the one hand, to reduce the feature space, which
accelerates the training and testing phase and reduces the memory requirements. On
the other hand, it improves the classification performance by retaining only the most im-
portant features. It also helps in understanding the underlying structure of the generated
features.

3.1.1 Feature Ranking Techniques

The general outline of the feature selection process is given in this section. Further,
an assortment of four commonly used feature selection algorithms and their respective
applications are presented.

3.1.1.1 Feature Selection

The four steps of the feature selection process, as described in [Liu 05] and illustrated
in Figure 3.1 are:

I Subset Generation consists of selecting a representative subset of features. This
search can be performed by progressively adding features to an empty subset (for-
ward search) or by removing features from the entire set (backward search) or in
both directions (bidirectional search). There are several ways to perform the search.
A complete search, such as Branch and Bound, guarantees an optimal solution. The
sequential search, such as the greedy hill-climbing approach, may not find an opti-
mal subset, but is fast and simple. The random search avoids local optimas by either
generating random subsets or injecting random features into the subsets generated
by other methods.

II Subset Evaluation analyzes the quality of the generated feature subsets using the
distance, information, dependency or consistency measures.

III Stopping Criteria determines the end of the search process. It is often a predefined
number of iterations, error rate or no significant improvement over several iterations.

IV Result Validation determines the quality of the generated feature subset with re-
spect to a classifier. The decrease of the classification error is used as a goodness
measure.

3.1.1.2 Algorithms and Applications

In the following, we present four algorithms for the subset generation and evaluation
steps of the feature selection process. Moreover, we describe their applications in the
state-of-the-art, as well as their advantages and possible issues.

Relief Algorithm
The Relief algorithm [Kira 92] ranks the features f according to their quality wf . A data
sample x is selected at random. It’s contribution to the quality of f is the distance to
the nearest correct classification hit, and the nearest misclassification miss, as shown in
Equation 3.1. This is repeated m times, where m cannot exceed the number of training
instances.

wf =
m∑
i=0

|(xf )i − (missf )i| − |(xf )i − (hitf )i| (3.1)
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Figure 3.1: Feature selection process

In [Kononenko 94], Kononenko et al. establish that the Relief algorithm is sensitive to
outliers and redundant attributes. They overcome this problem by taking the k Nearest
Neighbors into account. They develop two multi-class extensions of the Relief algorithm:
i) the nearest miss is considered as the nearest neighbor with a different class, ii) the
nearest miss from each other class is taken into account.

Ribeiro et al. [Ribeiro 05] select suitable features for low-level, short-term human ac-
tivity recognition in video sequences. They propose the Brute Search, the Lite-Search
and the Lite-lite search algorithms and compare them to the Relief algorithm. They eval-
uate the generated feature subsets using the Naive Bayes classifier. The Brute search
evaluates all possible combinations of the K features. The Lite-search finds the single
best feature f1 using a Brute search and then finds another feature f2 ∈ K \ {f1} that
forms the best pair with f1. This procedure is repeated until the required subset size n
is attained. The Lite-lite search ranks the features individually and selects the best n to
form a subset. Ribeiro et al. determine that the Relief algorithm failed in modeling the
complex nature of the human activity data and was outperformed by the other proposed
approaches. The best performance for this application was attained by the Brute search.

Bins et al. [Bins 01] select relevant features using the Relief algorithm. They then
apply the k-means clustering on the correlation amongst the features to remove redun-
dant ones and the Sequential Floating Forward (or Backward) Selection to select the final
subset. They yield good results on aerial, handwritten digits and animal images.

In their experiments, Kohavi et al. [Kohavi 97] note that the Relief algorithm shows a
high variance in the feature rankings it produces due to the randomness in the generation.
They upgrade the Relief to a deterministic version that uses all the samples as well as
all the nearest hits and misses. They also state that the Relief algorithm fails to identify
redundant features and to remove irrelevant features with a high correlation with the label.

Fisher’s Criterion
Fisher’s Criterion is a statistical tool for ranking features. One of its advantages is that it is
simple to implement and efficient. The Linear Discriminant Analysis (LDA) finds a linear
transformation of the feature space that maximizes the Fisher criterion [Duda 01]. This
can be used for feature space reduction. Given a sample set X containing L classes and
K features. Fisher’s criterion F (j) of a variable j is defined as the ratio of the inter-class
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variance SB to the intra-class variance SW :

F (j) =
SB(j)

SW (j)
, j ∈ {1, . . . ,K} (3.2)

SB(j) =
L∑
k=1

|Xk|(µkj − µj)2 (3.3)

SW (j) =

L∑
k=1

∑
x∈Xk

(xj − µkj )2 (3.4)

where XK = {x ∈ X|class(x) = k} contains the samples x of the class K, µkj and µj are
the averages over the j-th feature of the samples XK and X respectively. The numerator
indicates the variance between the classes, while the denominator indicates the variance
within each class.

According to [Guyon 03], Fisher’s Criterion may be preferable to other approaches,
because it is computationally efficient, as it computes and sorts only n scores, and robust
against overfitting. However, it does not consider the characteristics of the underlying
classifiers, which might be a disadvantage in some applications.

In [Sahoolizadeh 08], the face recognition was performed by sequentially applying
the Principal Components Analysis (PCA) to extract the most important features, LDA for
selecting the significant features in terms of class separability and a neural networks to
classify the images using the reduced feature set. This approach yields high results on
the YALE face dataset and outperforms the Eigenfaces and Discrete Cosine Transforms
(DCT) approaches. Yang et al. [Yang 08] use a 10-dimensional feature space extracted
using LDA to classify human actions using motion sensor data. In [Wu 03], Wu et al. use
the Fisher Criterion to reduce the feature space in their palm recognition application and
yielding high accuracy rates.

Support Vector Machines
Mutch et al. [Mutch 06] use Support Vector Machines for feature selection. They use
L(L−1)

2 one-vs-one linear SVMs to learn L classes. The length of the normal of the sep-
arating hyperplane in the dth dimension is used to weight the dthfeature. The wider the
margin in the dth dimension, the better the separability between the two classes and the
more important the dth feature. They yield high classification accuracies on the Caltech-
101 objects and the UIUC car image dataset.

In [Weston 01], the linear and non-linear SVM feature selection techniques outper-
form Fisher’s Criterion and Pearson’s Correlation for face and pedestrian detection as
well as cancer classification. In [Rakotomamonjy 03], a wide spectrum of feature se-
lection criteria using SVMs are tested on several benchmarks. They conclude that the
change of the weight vector norm 5||w||2 has the best overall performance.

Random Forests
As mentioned earlier, each tree in the Random Forest is constructed using a subset
I ⊂ IN training samples randomly chosen with replacement. During the validation phase,
the out-of-bag (oob) data, which is left out during training, is passed through each tree Tt
and the respective classification error εt is estimated. To compute the variable importance
vk, each feature fk of the oob data is randomly altered. The permuted samples are
passed through each tree again and the difference in classification error is computed.
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Algorithm 7 Determining Variable Importance using Random Forests

oob = {x1, . . . , xO} with x = {f1, . . . , fK}
Random Forest F = {T1, . . . , TT }
compute ε′, ∀x ∈ oob
for k=1 to K do

for r=1 to R do
randomly permute fk for ∀x ∈ oob
compute εr for ∀x ∈ oob

end for
vk = 1

R ·
∑R

r=1 |εr − ε′|
end for

The average error over all trees Tt in the Random Forest determines the importance
vk of variable fk. Algorithm 7 summarizes the variable importance computation using
Random Forests.

3.1.2 Evaluation

In this section, we focus on two ranking methods to select a subset of adequate
features: Fisher Criterion and Random Forests, as they yield a high performance in
the state-of-the-art. We evaluate the effect of reducing the feature dimension on the
classification accuracy of the SVM classifiers. For this, we use the HOG and Pyra-
mid of Histograms of Oriented Gradients (PHOG) features, as they yield good results
in [Bosch 07b, Bosch 07a]. These are dense features, i.e. they are computed over the
entire image and hence, have very large descriptors, making it all the more important to
reduce the feature dimension.

The Random Forests and Fisher’s Criterion feature selection techniques are also
used in the context of traffic sign recognition in Chapter 4, as the memory and processing
constraints are important issues in embedded systems.

3.1.2.1 ETH80 data set

As shown in Chapter 2.3, the one-vs-all SVMs yield high accuracy rates on the ETH80
data set when using the 784 value HOG features. We further evaluate the effect of reduc-
ing the feature dimension by selecting a subset of the highest ranked features. Figure 3.2
illustrates the feature ranking using Fisher’s Criterion. Note that the variable importance
peaks recur every 112 values. This coincides with the borders of the block columns (7
blocks x 4 cells x 4 bins = 112 values). Therefore, the borders of the images, such as the
legs of the dog or the handle of the cup, are more important for the classification of the
ETH80 objects than the central regions.

Figure 3.3 shows the effect of reducing the feature space dimension on the classi-
fication accuracy of the different object classes. Note that, with exception of the cow
class, the performance remains unchanged when reducing the feature dimension from
784 to 484 values. The average accuracy rates over all the classes when using 784, 684
and 484 dimensional features, chosen using Fisher’s Criterion, lie at 89.02%, 88.05%,
88.54% respectively.

The training and testing of the one-vs-all SVM classifiers requires 13.31 seconds on
average when using the entire 784 values of the HOG descriptor. This is reduced to only
6.93 seconds when using a subset of 484 values. We use the Matlab implementation of
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Figure 3.2: Feature ranking using Fisher’s Criterion on ETH80 data set. The peaks in the
variable importance recur every 112 values (one column of blocks composed of 7 blocks
x 4 cells x 4 bins), coinciding with the blocks near the border.

the Pegasos solver used in [Shalev-Shwartz 07], as it optimizes the training process. The
experiments were run on a 2.93 GHz Intel Core i7 PC.

3.1.2.2 Caltech 101 data set

As shown in Chapter 2.3 the one-vs-all SVM with the χ2 kernel also yields high accu-
racy rates on the Caltech 101 data set when combined with the PHOG features. The four
pyramid levels L0 to L3 as well as their combination L0− 3 are evaluated. The improve-
ment in classifier accuracy induced by the increasing the image partitioning from level L2
to level L3 is relatively small compared to that procured by using level L1 instead of level
L0. This can be explained by examining the feature importance of the histogram bins
of the four pyramid levels. Figure 3.4 illustrates the feature ranking using Fisher’s Crite-
rion. The lower pyramid level bins have a higher ranking than those of the higher levels,
i.e. they are more important for the differentiation between the object classes. Hence,
we propose to select the most significant features to reduce the feature dimension and
processing requirements.

Further, we evaluate the effect of reducing the feature dimensionality on the perfor-
mance of the one-vs-all SVMs with the χ2 kernel. As shown in Figures 3.5, the accuracy
remains almost constant when reducing the PHOG L3 feature subset size from 2560 to
about 1000 features. The performance drops steeply when eliminating some of the most
important 500 features. A similar trend can be observed when selecting a feature subset
from the L0− 3 feature vector as shown in Figure 3.6. There is a small drop in accuracy
of about 1% to 3% when reducing the number of features from 3400 to only 1000. The
slope is steeper when selecting less than the 1000 best features.
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Figure 3.3: Effect of reducing the feature dimension using Fisher’s Criterion on SVM
accuracy on ETH80. One-vs-All SVMs trained in a leave-one-out scheme for 80 objects
of 8 classes. Used 784 value HOG feature and χ2 kernel.

The total time needed to train the SVM classifiers and test the remaining samples
drops from 671 seconds when using all 3400 features of the PHOG L0 − 3 descriptor
to only 415 seconds and 243 seconds when using a subset of 2400 features and 1400
features respectively.

Hence, the same high accuracy can be achieved with smaller feature vectors and in
less training and testing time for both the ETH80 and Caltech 101 data sets.

3.2 Importance of the Metric

After having established the importance of the feature selection, we now turn to its
evaluation in the classification process. In this section, we present three similarity metrics
used in the Nearest Neighbor classifiers to compare two object descriptors. We evaluate
their effect on the K-d tree classification accuracy. Further, we integrate the similarity
measure into the pedestrian detection application for static cameras to eliminate false
alarms.

3.2.1 Similarity Metrics

We examine alternative distance measures which can, amongst other applications,
be used in the Nearest Neighbor search in the K-d tree: Euclidean dEuclid, Correlation
dcorr and Chi Squared dχ2 .
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Figure 3.4: Feature Ranking of PHOG L0 − 3 on Caltech 101 data set using Fisher’s
Criterion. The lower pyramid levels are more important i.e. contribute more to the clas-
sification decision than the higher levels. Therefore, the improvement in classification
accuracy is larger when using L1 instead of L0 than when using L3 instead of L2.

Euclidean
The Euclidean distance is defined as the square root of the sum of the squared differ-
ences between the two D-dimensional vectors x and y.

dEuclid(x, y) =

√√√√ K∑
i=1

(xi − yi)2 (3.5)

Correlation
Pearson’s correlation coefficient ρ(x, y) is defined as the covariance between two vari-
ables x and y divided by the product of their standard deviation σ. The corresponding
distance dcorr is defined in Eq. 3.6.

dcorr(x, y) = 1− ρ(x, y) = 1− cov(x, y)

σx · σy
(3.6)

It is invariant to linear transformations of the variables x and y, which makes it more
suitable for the Nearest Neighbor search when using the HOG feature. For example,
two samples with similar trends but different magnitudes have a correlation close to 1,
yet a large Euclidean distance. When searching the tree for the Nearest Neighbors of a
candidate x, the samples y which minimize the distance 1− dcorr(x, y) are retained.

Chi Squared χ2

The Chi Squared distance measure dχ2(x, y) between two variables x, y ∈ RK × RK is
defined as

dχ2(x, y) =
1

2

K∑
i=1

(xi − yi)2

xi + yi
(3.7)

42



3.2. IMPORTANCE OF THE METRIC

Figure 3.5: Effect of reducing the feature dimension on SVM accuracy on Caltech 101
data set. Feature ranking performed using Random Forest and Fisher’s Criterion. One-
vs-all SVM with χ2 kernel and PHOG L3 feature used.

Domeniconi et al. [Domeniconi 02] use it to improve the Nearest Neighbor classification
of data sets. Further, it is used in [Zhang 07] to compare two histograms for texture clas-
sification. It is shown to outperform the Chamfer distance in [Bosch 07b], yielding good
results on the Caltech-101 and Caltech-256 image datasets using the PHOG feature.

3.2.2 Comparison on Benchmark Data Sets

We examine the effect of the similarity measure on the performance of the K-d tree
classifier. As shown in Chapter 2.3, the K-d tree with the Euclidean similarity measure
achieves a classification rate of 92.23% on the ETH80 and 27.06% on the Caltech 101
data set. The results obtained when using the Euclidean, Correlation and χ2 similarity
measures are listed in Tables 3.1 and 3.2 for the ETH80 and Caltech 101 data sets
respectively.

The K-d tree performance does not vary significantly on the ETH80 data set when us-
ing the different similarity measures. The highest accuracy of 92.71% is attained by the χ2

similarity measure. As for the Caltech 101 data set, the results are improved significantly,
by up to 26%, when using the χ2 and correlation similarity measures. The improvement
is stronger when using the finer image partitioning levels. This is because the histogram
differences are relativized when using these similarity measures as opposed to the Eu-
clidean distance. The highest results attained by the K-d tree are obtained when using
the correlation similarity measure and the PHOG L3 level.
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Figure 3.6: Effect of reducing the feature dimension on SVM accuracy on Caltech 101
data set. Feature ranking performed using Random Forest and Fisher’s Criterion. One-
vs-all SVM with χ2 kernel and PHOG L0− 3 feature used.

Similarity Measure Accuracy
Euclidean 92.23%
Correlation 91.01%

χ2 92.71%

Table 3.1: K-d tree classification results using different similarity measures on ETH 80
data set using 784 valued HOG descriptor.

3.2.3 Correlation for Video Surveillance

The video surveillance product offered by our project partner, Connected Objects,
informs the users of the presence of people near their home: whether the children are
back from school, the housekeeper arrived or intruders lurking in the backyard. The
images from various fixed cameras in and outside the house are captured periodically
(one image every few seconds). The ones containing people are stored for further use.

A HOG/linear SVM detector is used to detect people in the images, as it yields the
best performance in the state-of-the-art. The advantage of the HOG descriptor is that it is
resistant to variations in illumination due to the block normalization of the gradients. This
is particularly important during the rapid changes in illumination at dusk and dawn.

In general, the false alarms obtained from the people detector are often static objects
which resemble people, such as trees and fences. Hence, we apply a HOG correlation
measure to reduce false alarms by eliminating the immobile candidates. The HOG de-
scriptor of a detected bounding box is compared to that in the previous image. If the
correlation between these two regions at the same location in consecutive images is suf-
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L0 L1 L2 L3 L0-3
PHOG descriptor size 40 160 640 2560 3400

Euclidean 18.82% 31.51% 35.84% 25.68% 27.06%
Correlation 19.14% 37.71% 49.71% 51.64% 33.91%

χ2 21.60% 35.84% 46.33% 45.31% 49.40%

Table 3.2: Classification results of K-d tree with different similarity measures on Caltech
101 data set using PHOG features (Pyramid levels L0-3).

ficiently high, the candidate is eliminated as part of the background, since insufficient
movement has been determined. The assumption that pedestrians are mobile is applica-
ble due to the fact that the cameras are static and that the images are taken at an interval
of a few seconds.

The disadvantage of this approach is that non-moving people are falsely eliminated
as background. This problem can be overcome by using a longer history span for the
comparison. Another drawback is that it is not applicable in embedded systems as such.
A complementary computation of the camera’s egomotion is needed to determine the
location of the detected candidate in the previous image.

The Detector
This approach is validated on the public benchmark dataset CAVIAR1, containing 26
video sequences captured by fixed video surveillance cameras at a shopping center in
Portugal. Only non-occluded pedestrians are considered. The minimum required overlap
ε of a candidate found and the ground truth is set to

ε =
candidate ∩ ground truth
candidate ∪ ground truth

>= 25% (3.8)

The detector performance is evaluated using the recall and precision values. These
are defined as following:

recall =
true positives detected (TP)

total true positives
× 100% (3.9)

precision =
true positives detected (TP)

all detections
× 100% (3.10)

The linear SVM/HOG detector is trained on the data set from [Enzweiler 09] using
a similar procedure to that described in [Dalal 05]. A positive:negative ratio of 50:50 is
used, with 15660 samples for each class. The bootstrap of negative samples is chosen
at random. A second SVM is trained using the original 15660 positive samples and a new
set of 15660 negative false alarms generated by the first detector on the training set. The
training samples are resized to 24x48 pixels. The cell, block and stride sizes are set to
4, 8 and 4 respectively. The histograms contain nine orientation bins for the undirected
gradients.

The Results
The effect of the correlation threshold ε on recall and precision is shown in Figure 3.7.
For example, ε = 0.1 requires a detection to be correlated by at least 10% with same

1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Figure 3.7: The effect of the correlation threshold on recall and precision on One Left
Shop Reenter1 (Corridor) sequence.

area in the previous frame. This weak constraint falsely eliminates many detections as
false alarms. When ε = 0.9, a high correlation is necessary, i.e. hardly any movement
in this area is tolerated. This eliminates less false alarms, yet retains all the detected
pedestrians. Therefore, when increasing the correlation threshold ε, the recall rate rises.
The precision is increased at first, as the number of correct detections rises, yet drops at
a ε > 0.5, due to the saturation of the recall and the continuous increase of the number
of false alarms.

The HOG correlation threshold ε is set to 0.5, as it achieves the best trade-off between
recall and precision. The average results over all 26 image sequences are shown in Table
3.3. The precision is increased by 18.94% when using the HOG correlation since many
false alarms, such as the railing and the trash can, illustrated in Figure 3.8, are eliminated.

Figure 3.8: The railing and the trash can are examples of false alarms in the CAVIAR
dataset eliminated by HOG correlation.
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Similarity Measure Average Recall Average Precision
None 64.93% 23.22%

Euclidean 58.42% 37.88%
Correlation 62.22% 42.16%

χ2 37.98% 39.77%

Table 3.3: Comparison of the HOG similarity measures for eliminating static false alarms
on CAVIAR benchmark sequences for pedestrian detection.

The average recall rate dropped slightly, by only 2.71%, when using the HOG correlation.
Unfortunately, the immobile pedestrians, especially the distant ones, are also eliminated
by the HOG correlation. Table 3.3 shows that the correlation similarity measure yields
better results than the Euclidean and χ2 distances.

3.3 Mixture of Experts

A fast and reliable pedestrian detector is required in ADAS. A large part of the false
alarms obtained by the linear SVM/HOG detector are trees, poles, tires and traffic signs,
due to their person-like silhouette. These recurring errors can be learned and eliminated.
We propose a mixture of heterogenous experts, in which the output of the linear SVM de-
tector is filtered by a subsequent tree classifier. The SVM learns to distinguish the general
form of the pedestrians, while the tree classifier compares the detected candidates with
known positive or negative samples to eliminate recurring false alarms.

We start this section by presenting the state-of-the-art approaches for pedestrian de-
tection using single classifiers and mixtures of experts in Section 3.3.1. We then describe
and evaluate our proposed approach in Section 3.3.2.

3.3.1 Pedestrian Detection Techniques

The task of pedestrian detection is challenging because of the non-rigid nature and
the common occlusions of humans as well as the diversity of their clothing, shapes and
sizes. Several algorithms, benchmark datasets and evaluation techniques for pedestrian
detection have been developed over the past decades. Amongst the most popular are
Adaboost, Hierarchical Template Matching using Distance Transforms [Gavrila 99], as
well as Support Vector Machines (SVMs) trained on Histogram of Oriented Gradients
(HOG) descriptors [Dalal 05]. Several recent works have combined heterogenous classi-
fiers and features, in a serial or parallel manner, to form a mixture of experts, as illustrated
in Figure 3.9. The cascading of heterogenous classifiers refines the candidate set and
reduces the false alarms. In this section, we present a brief overview of existing single
binary classifiers, used for pedestrian detection, and their combination into ensembles.

3.3.1.1 Single Classifier Detectors

The Adaboost algorithm [Viola 01] (cf Chapter 2.2.1) is combined with the Haar-like
features in [Viola 05] to detect far pedestrians in low resolution images. Their computa-
tion is accelerated by using the Integral Image representation. The cascade Adaboost
detector is enhanced by integrating the motion information.

In [Moutarde 08], Adaboost is combined with the Control Points features to efficiently

47



CHAPTER 3. CLASSIFICATION: IDENTIFYING THE UNKNOWN

(a) Mixture of Experts in Series

(b) Mixture of Experts in Parallel

Figure 3.9: Mixture of Experts

detect vehicles and pedestrians in an ADAS framework. As elaborated in Chapter 2.1.1.2,
a genetic algorithm is integrated in Adaboost to optimize the selection of suitable Control
Points. The pixel-based nature of these features simplify their computation and reduce
the memory requirements. We published a comparison of performance of the Haar-like
and Control Points features in pedestrian detection in [Zaklouta 09], showing that the
latter yields the better results.

The efficient linear SVM/HOG people detector, introduced in [Dalal 05], also achieves
high performance rates in [Enzweiler 09]. The Histogram of Oriented Gradients (HOG)
feature, describing the orientations of the local gradients in the image, are used to train
a linear SVM. The image is scanned at different scales and each candidate is classified
by the SVM. Details on the HOG/SVM detector are given in Chapter 2.1.2.1. A compre-
hensive study on pedestrian classification using HOG and Local Receptive Fields (LRF)
features with various SVM kernels is presented in [Paisitkriangkrai 07].

Dollar et al. [Dollar 09] introduce the new Caltech pedestrian dataset and benchmark
existing approaches. They establish that the HOG/linear SVM detector performs best
amongst the state-of-the-art approaches. We also yield high detection rates when using
this detector for traffic sign detection as shown in Chapter 4.

The Co-occurence HOG, introduced in [Watanabe 09], describes the distribution of
the oriented gradients within a given range. They used it for training a linear SVM and
reduce the miss rate by half on the INRIA and Daimler datasets compared to the HOG
descriptor. However, these features are more time consuming to compute than HOG.

The LRF features are combined with Neural Networks in [Enzweiler 09, Wohler 99]
and further with Support Vector Machines (SVM) in [Munder 06] yielding slightly better
results on the same data set.

3.3.1.2 Mixture of Experts

There are two main categories of ensemble classifiers: in serial or parallel as illus-
trated in Figure 3.9. As shown in [Kim 02], there are several methods for evaluating the
combined decision of the classifiers, such as by using a majority vote, a Least Square Er-
ror weighting or a double-layer hierarchical combination, where a classifier in the second
layer learns to evaluate the combined decisions of the classifiers in the first layer.

In [Li 10], the Haar and HOG features are combined to train a cascade Adaboost
detector. The extracted candidates are further filtered using the Edgelet features around
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the head and shoulder region. In [Zhu 06], a set of linear SVM classifiers are trained on
HOG descriptors with different size blocks in an Adaboost manner, i.e. in each round, the
classifiers are chosen to concentrate on the difficult samples from the previous round.
These boosted classifiers are in turn cascaded to reduce the false alarm rate. Gavrila et
al. [Gavrila 00] detect pedestrians using the template matching of Distance Transforms
and verify the candidates using a Radial Basis Function (RBF) classifier.

In [Sotelo 06], several SVMs are trained on different body parts, like the arms, legs
and head. The best suited feature, amongst the Texture Units, Normalized Histograms,
Haar wavelets, gradient magnitude and orientation, co-occurence matrix and Canny, is
selected for each body part. A further SVM classifier evaluates the outputs of the body-
part SVMs in parallel to make a final decision. In [Mikolajczyk 04], Adaboost is used to
train seven body part detectors. These are then combined using a joint likelihood body
model based on the appearance and position of the parts found. In the binocular setup
in [Curio 00], the pedestrians are detected using the texture, contour information and a
thresholding of the difference between the images from the two cameras. The detection
hypothesis is then validated by tracking the pedestrian’s torso and modelling his gait using
the leg movements.

3.3.2 Our Approach for False Alarm Elimination

In general, the false alarms obtained from the people detectors are often static objects
which resemble people, such as trees, poles or fences. Figure 3.10 illustrates some
examples of people and other objects and the corresponding HOG descriptors.

We introduce a new method for eliminating false alarms in embedded systems using
a serial, heterogenous mixture of experts. The HOG/linear SVM detector is combined
with a tree classifier, K-d tree or Random Forest. The latter filters out the false alarms of
the former.

The proposed approach is evaluated on the test dataset published in [Enzweiler 09].
It consists of five image sequences of a total duration of 27 minutes, filmed by an em-
barked camera in a car, driving through tree-lined suburban roads and crowded downtown
streets. Only non-occluded pedestrians with a minimum height of 72 pixels are consid-
ered. This corresponds to a height of 1.5 m at a 25 m distance for the camera setup
in [Enzweiler 09]. Further, we use the performance evaluation measures and learning
procedure described in Section 3.2.3. However, the sizes are adapted to the video se-
quence. The training samples are resized to 48x96 pixels. The cell, block and stride sizes
are set to 8, 16 and 8 respectively.

3.3.2.1 HOG/SVM and K-d tree

The K-d tree is built using the same HOG descriptors used for the SVM training, i.e.
15660 positives and 15660 negatives from the random bootstrapping. We add a further
set of 15660 false alarms, which were generated by the trained detector on the negative
samples and used to train the second SVM. The Euclidean distance, correlation and χ2

similarity measures in the Nearest Neighbor search are examined. More details on the
K-d tree and the similarity measures can be found in Chapter 2.2.4.1.

Table 3.4 lists the results obtained from the linear SVM with the K-d tree filtering
on the five test sequences. Note that the false positive per frame rate is halved when
concatenating the K-d tree with the correlation measure. There are significantly more

2http://opencv.willowgarage.com/wiki/
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(a) Pedestrian gradient image (b) Open legs more difficult (c) Weak contrast difficult

(d) Tire resembles a person (e) Default
detector
in OpenCV

(f) Our detector

Figure 3.10: a)-c) Examples of pedestrians and the corresponding gradient images, d)
Example of false positive that resembles a pedestrian, e) Positive weights of default HOG
descriptor gradients learned by SVM and provided in OpenCV library2 f) Positive weights
of HOG descriptor gradients obtained from our SVM training on [Enzweiler 09]

false alarms in the crowded downtown sequences 2 through 4. On average, the linear
SVM generates 0.67 false positives per frame. The K-d tree with the correlation similarity
measure reduces this to only 0.33 false positives per frame. Figure 3.11 shows some
examples of the false alarms correctly filtered out by the K-d tree with the correlation
similarity measure.

Unfortunately, in some sequences the detection rate tends to suffer due to the filter-
ing. On average, the recall of the linear SVM is reduced by only about 6% when using
the correlation measure. The largest decrease in recall, of 3% to 10%, occurs in the
downtown sequences 2 to 5 due to the frequent partial occlusion and grouping of the
pedestrians. Sequence 4 is particularly crowded with groups of pedestrians.

Other misclassifications include pedestrians with open legs, partially occluded or with
a weak constrast with the surroundings. The clutter in the background and the inaccu-
rate centering of bounding box around the pedestrian due to the regrouping of several
detections also lead to a misclassification of the extracted candidates. Some examples
of misclassified detected pedestrians are shown in Figure 3.12. The drop in recall can be
avoided by enriching the train data set with samples of pedestrians within a group.

The parameters of the K-d tree were varied and those attaining the best results were

50



3.3. MIXTURE OF EXPERTS

SVM
SVM & K-d tree SVM

Correlation & Random Forest
Seq Recall fppf Recall fppf Recall fppf

1 71.1% 0.218 70.2% 0.117 69.3% 0.156
2 78.5% 0.977 73.2% 0.492 75.7% 0.831
3 80.4% 0.764 70.7% 0.429 78.1% 0.659
4 77.5% 1.220 74.8% 0.529 76.5% 1.087
5 78.4% 0.176 67.2% 0.086 76.9% 0.134

Average 77.2% 0.67 71.2% 0.33 75.3% 0.573

Table 3.4: Recall and false positives per frame (fppf) on five test sequences using an
SVM with and without tree filtering. kNN = 4000 and Emax = 40000. Random Forest 100
trees.

Figure 3.11: Examples of false alarms, such as trees, tires and poles, correctly filtered by
K-d tree with the correlation similarity measure. kNN = 4000, Emax = 40000.

kept. Hence, the number of nearest neighbors is set to kNN = 4000 and the number
of candidates examined is set to Emax = 40000. The average time required to test a
detected candidate lies at 298 ms. This high latency is due to the large size of the tree.
Therefore, the K-d tree filtering approach is not feasible in real-time in crowded scenes.

The Euclidean and χ2 similarity measures achieve an average recall of 69.8% and
68.1% respectively. The false positive per frame rates lie at 0.65 and 0.61 respectively.
They require 102 ms and 601 ms respectively to classify a candidate.

To conclude, the performance of the K-d tree depends on the extent of the provided
training set, the quality of the preceding detector and the number of candidates extracted
at runtime.

3.3.2.2 HOG/SVM and Random Forest

The performance of the Random Forest as a post-detection filter is also evaluated.
The structure and parameters of the Random Forests are described in Chapter 2.2.4.2.
The best results are obtained by a Random Forest with 100 trees, 100 samples each,
100 variables selected at each node and a depth of 100 nodes. The trees are built using
the positive samples and the false alarms generated by the final linear SVM classifier.
The processing time required per extracted candidate is less than 1 ms. On average, a
recall rate of 75.3% and 0.573 false positives per frame are achieved. Hence, although
the Random Forest eliminates less false alarms than the the K-d tree with the correlation
similarity measure, the recall rate is less affected and the classification is feasible in real-
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(a) Weak contrast (b) Sprawled legs (c) Unfamiliar

(d) Bad centering of bounding box (e) Groups of pedestrians

Figure 3.12: Examples of detected pedestrians falsely filtered by K-d tree with the corre-
lation similarity measure. kNN = 4000, Emax = 40000.

time.

3.4 Conclusions and Perspectives

The contribution in this chapter is three-fold. In Section 3.1, we show that a high per-
formance can be achieved with a fraction of the feature dimension, reducing the memory
and processing requirements. The subset of the most important features is selected us-
ing the Random Forests or Fisher’s Criterion feature ranking methods. We evaluated this
feature space reduction approach using two classification benchmark data sets: ETH80
and Caltech 101.

Further, three distance metrics are compared and their effect on the K-d tree classi-
fication accuracy is evaluated using the ETH80 and Caltech 101 benchmark data sets.
We use the correlation measure to eliminate immobile false alarms in a pedestrian de-
tection application for static cameras in Section 3.2. This technique doubles the precision
rate while retaining a high recall rate. Moreover, we propose and evaluate a second
method for eliminating false alarms in an embedded ADAS system in Section 3.3.2. The
HOG/linear SVM pedestrian detector is complemented with a tree classifier containing
the false alarms generated by the former. This mixture of experts reduces the false posi-
tives per frame rate by more than half, while maintaining a high recall rate.

Future work could include the evaluation of the effect of the feature space reduction
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on other classifiers, such as Neural Networks and Adaboost. One can also consider
using the feature space reduction to accelerate and eventually improve the pedestrian
detection.

Moreover, the temporal information could be exploited to track the detected pedes-
trians. This could improve the recall and precision values. The performance of the tree
classifiers, used as filters in the post-detection phase, could be improved by enriching the
training data set and using online learning, where samples are added to the K-d tree or
new random trees are built in the forest. Further, different image features can be used in
the tree filtering stage to increase the robustness of the system.

The SVM and tree classifiers, as well as the feature space reduction and the different
similarity measures are used in the scope of the traffic sign recognition system described
in Chapter 4.
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Chapitre 4

Reconnaissance de Panneaux

La reconnaissance de panneaux routiers est un élément crucial dans un système
d’aide à la conduite. Elle informe le conducteur des limites de vitesse et des dangers
imminents. Malheureusement, tenter de réaliser cette tâche fait apparaître plusieurs ob-
stacles: i) la mauvaise qualité des images disponibles à cause d’une basse résolution,
de mauvaises conditions météorologiques ou de variations d’illumination, ii) la rotation,
occlusion ou déterioration des panneaux, iii) les contraintes en mémoire et capacités de
calcul imposées dans les systèmes embarqués, iv) les variations en taille, couleur et type
de panneaux entre les différents pays.

Nous commençons ce chapitre avec un état de l’art spécifique à la reconnaissance
de panneaux routiers. Ensuite, nous proposons un système temps réel. Celui-ci se com-
pose de trois étapes: la segmentation, la détection et la classification. La segmentation
réduit l’espace de recherche. Nous améliorons l’approche de Ruta et al. [Ruta 10], color
enhancement, en introduisant un seuil adaptatif. Nous comparons ceci avec des autres
approches de segmentation pour la détection de panneaux.

Dans la deuxième étape, un détecteur de cercles et un de triangles en forme de
séparateur à vaste marge (en anglais: Support Vector Machines (SVM)) linéaires et le
caractéristique des histogrammes des gradients orientés (en anglais: Histogram of Ori-
ented Gradients (HOG)), sont appliqués pour trouver les panneaux. La combinaison de
la segmentation et la détection atteint des taux de rappel et de précision de 90% sur nos
séquences vidéo de test.

Le contenu des panneaux est classé par des classifieurs multiclasses. Nous com-
parons les performances de classifieurs à base d’arbres- K-d tree et Random Forest -
à celles des SVMs. Nous proposons une pondération spatiale des composantes des
vecteurs caractéristiques, pour concentrer la mesure de similarité entre vecteurs sur les
parties les plus importantes. Ceci améliore la performance des K-d tree de 15% sur le
German Traffic Sign Recognition Benchmark. Les Random Forest atteignent un taux de
classification de 97% sur cette même base.

En outre, nous proposons de réduire la dimension des vecteurs caractéristiques en
choisissant les composantes les plus pertinentes à l’aide de Random Forests ou du
Critère de Fisher. Ceci réduit les besoins en mémoire et en puissance de calcul. La per-
formance des SVMs est même améliorée sur ces sous-ensembles de caractéristiques.
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Chapter 4

Real-Time Traffic Sign Recognition
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Advanced Driver Assistance Systems (ADAS) play an important role in enhancing
car safety and driving comfort. Some of their components include navigation systems to
provide directions as well as up-to-date traffic information and vision-based systems such
as lane departure warning systems and traffic sign recognition (TSR).

The latter enhances traffic safety by informing the driver of speed limits or possible
dangers such as icy roads, imminent road works or pedestrian crossings. The traffic
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Figure 4.1: Examples for difficulties facing the Traffic Sign Recognition (TSR) task: over-
illumination, under-illumination, rotation, occlussion and deterioration of the signs.

signs can be divided into different categories depending on their color and shape, e.g.
red-rimmed circular prohibition signs, triangular warning signs and blue information signs.
The simplified pictograms make them easily perceivable and comprehensible.

Traffic sign recognition algorithms face three main difficulties:

i the poor image quality due to low resolution, bad weather conditions, over- or under-
illumination,

ii the rotation, occlusion and deterioration of the signs,

iii the limited memory and processing capacities in real-time applications such as ADAS.

iv the size, font, color, etc. of the signs vary from one country to another.

Some examples of the first two difficulties are illustrated in Figure 4.1. We start this chap-
ter by giving a short overview of the state-of-the-art methods for TSR systems, with their
advantages and possible issues. We then describe our contributions the TSR process
and how we overcome these difficulties.

We start this chapter by giving an overview of the existing TSR approaches in Section
4.1. Our three stage approach is described in Section 4.2 and the overall performance of
the proposed system is presented in Section 4.3. The effect of the feature selection on
the performance of the traffic sign classification is evaluated in Section 4.4. We conclude
this chapter and present an outlook on further possible improvements in Section 4.5.

4.1 Existing Approaches

Most traffic recognition algorithms divide the problem into three stages:

i a rough segmentation to determine the location of the signs

ii category determination and

iii candidate classification to identify the content of the extracted traffic signs using vari-
ous machine learning techniques.

The segmentation phase is not a mandatory step. However, it is often deployed in ap-
proaches using color images. This section gives a brief overview of some of the tech-
niques used in the three TSR stages.

Some approaches, such as [Jimenez 05, Fang 03] reduce the memory and process-
ing requirements by using tracking. The candidates found are tracked over several frames
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Technique Color
Space

Reference Advantages Possible Issues

Fixed thresh-
olds for Hue
and Saturation
combined with
achromatic
decomposition

HSV [Bascon 10] Simple and fast Not resistant to il-
lumination varia-
tions and sign de-
terioration

Shadow-
highlight
invariant
algorithm:
thresholding in
H, then S and
V

HSV [Fleyeh 06] Robust to illumi-
nation changes

Time-consuming:
sliding window
post-processing
and region grow-
ing

HSI threshold-
ing

HSI [Qingsong 10,
Nguwi 08,
Kuo 07]

Hue robust to illu-
mination variation

Time-consuming
RGB to HSI
convesion;
Thresholds
set empirically

Multiple fixed
thresholds

YUV [Miura 00] YUV colorspace
invariant to illumi-
nation

Thresholds set
empirically

Classification
of RGB chan-
nel ratios

RGB [Le 10,
De La Escalera 97]

Robust due to ra-
tios of RGB and
blockwise classi-
fication

Requires prior
thresholding to
accelerate

Color en-
hancement
and recursive
thresholding

RGB [Ruta 11, Ruta 10] Relative domi-
nance of RGB
channels robust
and efficient

Recursive thresh-
olding and sub-
sequent region
growing slow

Color his-
tograms

RGB [Lim Jr 10] Relative chro-
matic map more
robust

Empirical thresh-
olding and ero-
sion for sign and
pictogram extrac-
tion

Chromatic and
achromatic
thresholding

RGB [Bascon 07] Simple and fast Thresholds set
empirically

RGB color
Haar wavelets

RGB
& nor-
malized
RGB

[Bahlmann 05] Relative differ-
ence in color and
feature selection
more robust

Minimum sign
size 20 pixels,
Slow due to
preprocessing

Table 4.1: Comparison of state-of-the-art segmentation techniques for Traffic Sign Recog-
nition (TSR).
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to reinforce the decision made or to reduce the search space in the subsequent frame
and therewith accelerate the performance. Some implementations, such as [Ruta 10],
only examine every n-th frame, to speed up the overall system.

4.1.1 Determining the Location using Segmentation

As traffic signs need to be easily perceivable, they are brightly colored in red, blue,
yellow. Hence, the detection is often based on a pre-segmentation of the image to reduce
the search space and retrieve possible Regions of Interest (ROIs).

Since the direct thresholding of the RGB channels is sensitive to changes in illumina-
tion, the relation between the RGB (Red Green Blue) colors is often used. In [Ruta 10],
the color enhancement is used to extract red, blue and yellow blobs. This transform em-
phasizes the pixels where the given color channel is dominant over the other two in the
RGB color space.

In [Bascon 07], chromatic and achromatic filters are used to extract the red rims and
the white interior of the speed limit and warning traffic signs respectively. The HSI model
(Hue Saturation Intensity) is used in [Kuo 07] as it is invariant to illumination changes.
Empirically determined fixed thresholds define the range of each HSI channel in which lie
the red and blue traffic sign candidates. It is pointed out in [De La Escalera 97], however,
that HSI is computationally expensive due to its nonlinear formulae.

Table 4.1 gives an overview of some of the existing segmentation techniques, their
advantages and possible issues.

4.1.2 Category Determination using Shape Detection

Several detection algorithms are based on edge detection, making them more robust
to changes in illumination. These are shape-based methods which exploit the invariance
and symmetry of the traffic signs. They are however often sensitive to the quality of the
preprocessing, such as edge extraction or color segmentation.

• Template matching
Franke et al. [Franke 99] use Distance Transform (DT) and Template Matching (TM)
to detect circular and triangular signs. Similarly, Ruta et al. [Ruta 10] use the Color
Distance Transform, where a DT is computed for every color channel separately.
The advantage of matching DTs over edge images is that the similarity measure is
smoother and robust to slight rotations. It is, however, sensitive to affine rotations
and occlusions. Refer to Chapter 2.1.2.3 for more details.

• Machine Learning
In [Bascon 07], four Support Vector Machines (SVMs) are trained on the Distance
to Border (DtB) vectors to classify the shape of an extracted candidate ROI. In
[Jimenez 05], the FFT signatures of candidate signs are used to detect relevant
shapes. This feature is robust to rotation and scaling, yet not to occlusion and
deterioration.

• Hough Transform
The Hough Transform is also widely used to detect regular shapes such as circles
and triangles [Moutarde 07, Ruta 09, Kuo 07]. The processing time is decreased
by the simpler Radial Symmetry Detector [Barnes 08], yet it is limited to circular
traffic signs. Ruta et al. [Ruta 09] refine the Hough Transform result using the
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Confidence-Weighted Mean Shift to eliminate redundant detections. The Hough
transform is combined with an iterative process of median filtering and dilation to
refine the candidate set in [Kuo 07].

• Shape Detection using Histogram of Oriented Gradients (HOG)
Many recent approaches use gradient orientation information in the detection
phase. Gao et al. [Gao 06] classify the candidate traffic signs by comparing their
local edge orientations at arbitrary fixation points with those of the templates. In
[Alefs 07], Edge Orientation Histograms (see Chapter 2.1.2.1 for details) are com-
puted over shape-specific subregions of the image. In [Xie 09, Qingsong 10], the
Regions of Interest (ROI) obtained from color-based segmentation are classified
using a HOG-based classifier. To integrate color information in the HOG descriptor,
Creusen et al [Creusen 10] concatenate the HOG descriptors calculated on each
of the color channels. The advantages of this feature are its scale-invariance, the
local contrast normalization, the coarse spatial sampling and the fine weighted ori-
entation binning.

Table 4.2 gives an overview of some of the existing shape detection techniques and the
features used.

4.1.3 Classification Techniques

The classification techniques used to determine the content of the detected traffic
signs belong to two general categories: learning and Nearest Neighbor approaches. The
learning consists of finding an optimal separation between two or more classes. It in-
cludes, amongst others, one-vs-all SVM classifiers, Adaboost and Neural Networks. The
Nearest Neighbor approaches seek the most similar existing training sample to the given
unknown. They include template matching and tree classifiers such as K-d trees and
Random Forests.

Xie et al. [Xie 09] train the HOG descriptors of each class using one-vs-all SVMs. The
Forest-ECOC Adaboost classifiers achieved high performance rates in [Baró 09]. Multi-
layer Perceptrons (MLPs) yield high accuracy rates in [Hoferlin 09, Nguwi 08]. They also
achieve low false positive rates when identifying the characters in speed limit signs in
[Bargeton 08]. The performance of the Neural Networks is improved by pre-selecting the
color-shape features using PCA and Fisher Linear Discriminant in [Lim Jr 10].

The K-d tree is used in [Kuo 07] to identify the content of the sign. The Random
Forests used in [Kouzani 07] outperform the one-vs-all SVMs on their dataset. They also
generate an ensemble of SVMs using bagging and a boosted ensemble of Naive Bayes
classifiers, which improve the performance of the non-ensemble version. However, these
do not outperform the Random Forests.

The advantage of the tree classifiers is that they are easy to train and update. The
learning approaches tend to be biased towards over-represented classes and generally
require a large training set. As described in Chapter 2.2.4, the Best Bin First Approximate
Search [Beis 02] enables a rapid search in the K-d tree. The randomness and ensemble
voting of the Random Forests make them robust to outliers and unbalanced datasets.

Table 4.3 gives an overview of some of the classification techniques used for traffic
signs, their advantages and possible issues.
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Technique Reference Advantages Possible
Issues

Fixed thresholds
on X and Y axis
projections

[Miura 00] Simple, fast Sensitive to oc-
clusion, transla-
tion and rotation

Threshold on
sum of abso-
lute differences
of Fast Fourier
Transform (FFT)

[Jimenez 05] Fast FFT
computation;
robust to
rotation and
illumination
variation

Not robust to
occlusions; False
alarms; Requires
good
pre-segmentation

Hierarchical
matching of Dis-
tance Transforms

[Franke 99,
Ruta 10]

Fast, DT is
robust to vari-
ance due to
smooth simi-
larity measure

Not robust to
occlusions, sen-
sitive to preseg-
mentation and
edge extraction

SVM and Dis-
tance to Border

[Bascon 07] 2-D rotation in-
variance

Four SVMs per
class; good
pre-segmentation
required

SVM and Rim
shape recogni-
tion using XOR
derived invariant
features

[Fleyeh 08] Robust, good
performance

Sensitive to pre-
segmentation

SVM and HOG [Xie 09,
Chen 08]

Robust Slow due to slid-
ing window and
one 1-vs-all SVM
per class

SVM and HOG,
concatenated
HOG on CIELab
& YCbCr color
spaces

[Creusen 10] HOG/linear
SVM detector
robust

Slow due to large
concatenated
HOG vectors
and color space
conversion

Gradient, Angu-
lar Radial Trans-
form, Histogram
of Phase Angles
etc

[Kuo 07] Robust due to
RBF training

Computation ex-
pensive

Maximum likeli-
hood voting and
Radial Symmetry

[Barnes 08] Simple, fast Limited to circular
road signs

Hough trans-
forms

[Bargeton 08,
Hoferlin 09,
Garrido 05,
Moutarde 07,
Ruta 09]

Robust, sim-
ple, applicable
to all regular
shapes

Parameter tuning

Table 4.2: Comparison of state-of-the-art detection techniques for Traffic Sign Recogni-
tion (TSR).
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Technique Reference Advantages Possible
Issues

1-vs-all SVM
(HOG)

[Xie 09,
Qingsong 10]

SVM robust to out-
liers

Many classes →
many classifiers
→ slow

Forest-ECOC [Baró 09] Fast, robust Require large
training set

Keypoints match-
ing

[Ren 09] Fast, rotation, scale
and illumination in-
variant

Minimum sign
size: 60 pix-
els; requires
pre-segmentation

MLP [Hoferlin 09,
Nguwi 08]

Robust, outperform
SVM in [Nguwi 08]

Computationally
expensive

MLP (characters) [Bargeton 08] Low FP rate, works
on LED signs

Requires good
character
visibility

Neural Networks
(Color-Shape
features)

[Fang 03,
Ohara 02,
De La Escalera 97]

High accuracy;
[Fang 03]: tracking
to reinforce and
accelerate

Require large
training set

Committee of
Neural Net-
works (Multilayer
Perceptron &
Convolutional
Neural Networks)

[Ciresan 11] High accuracy;
winner of GTSRB
challenge

Expensive in
terms of compu-
tational time and
resources

Multiscale Con-
volutional Net-
works

[Sermanet 11] High accuracy;
Runner-up at
GTSRB challenge

Expensive in
terms of compu-
tational time and
resources

PCA/FLD & RBF-
Neural Networks

[Lim Jr 10] High performance
rates

Computationally
expensive
pictogram and
feature
extraction &
classification

Genetic algorithm [De La Escalera 03] Robust:
genetically deter-
mine fittest sample
during training

Require large
training sets;
possible local
minima

K-d tree [Kuo 07] Two classifiers
more reliable

Computational
and memory
costs

Random Forests [Kouzani 07] Robust; Handle
large unbalanced
classes; High hit
rates

Require large
training datasets
and memory

Table 4.3: Comparison of state-of-the-art classification techniques for Traffic Sign Recog-
nition (TSR).
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Figure 4.2: Three stage coarse-to-fine approach proposed for Traffic Sign Recognition
(TSR): i) Segmentation ii) Detection using HOG/SVM, iii) Classification using tree classi-
fiers.

4.2 Our Approach

We propose a coarse-to-fine traffic sign recognition approach consisting of three
stages: i) segmentation, ii) shape detection and iii) classification. These are illustrated
in Figure 4.2. The image segmentation reduces the search space to the red regions
that potentially contain a traffic sign. We improve the red color enhancement approach
used by Ruta et al. in [Ruta 10] by introducing a global threshold. The circular and tri-
angular signs are detected using one linear SVM/HOG detector each. The candidates
found are further efficiently classified using tree classifiers. We further introduce spatial
weighting techniques to improve the accuracy and feature space reduction for resource
optimization.

The performance of each of these three stages is compared to the state-of-the-art
techniques. The classification step was also put to the test at the live German Traffic Sign
Benchmark Challenge [Stallkamp 11], where our approach was ranked 3rd in terms of
accuracy and proved to be suitable for embedded systems as it runs in real-time and is
resource efficient.

4.2.1 Image Segmentation

Potential ROIs are extracted in the segmentation phase. We implement the red color
enhancement [Ruta 10, Ruta 11], the chromatic filter [Bascon 07] and introduce the mor-
phological filters. After applying one of these filters, the image is thresholded using an
empirically determined threshold or the adaptive threshold which we propose. The re-
sulting binary mask is used to reduce the search space and reduce the number of false
alarms of the successive detector.

4.2.1.1 Color Enhancement

Color Enhancement is proposed by Ruta et al. in [Ruta 10, Ruta 11]. For each RGB
pixel x = {xR, xG, xB} in the image, the red color enhancement is provided by

fR(x) = max(0,
min(xR − xG, xR − xB)

s
) (4.1)

s = xR + xG + xB (4.2)
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(a) Original (b) Enhanced (c) Chromatic (d) Tophat (e) Bottomhat

Figure 4.3: Image segmentation for TSR: ROI extraction using red color enhancement,
chromatic, tophat and bottomhat filters to reduce search space and accelerate detection.

The pixels having a dominant red component are extracted, while all others are set to
zero. In their approach, the ROIs are found in a subsequent stage by recursive thresh-
olding using a Quad-tree.

In our approach, we accelerate the segmentation stage by eliminating the recursion
and applying a global threshold to the enhanced image to generate a binary mask of the
ROIs. The threshold used is empirically set to µ + 4 · σ, where µ and σ are the mean
and standard deviation of the pixel values over the entire filtered image. The global mean
helps take into account the illumination of the whole image, while a mean computed
locally is more sensitive to small illumination variations in the image.

Figure 4.3b shows the result of the red color channel enhancement. Note that the
rims and the red truck pictogram are emphasized. The search space is reduced when
applying the binary mask obtained from the red color enhancement. The false alarm rate
is also lowered as will be shown in Section 4.2.2.4. The global thresholding approach
is faster and more simple than the recursive thresholding using a Quad-tree. It is also
robust to local variations in illumination.

4.2.1.2 Chromatic Filter

We further evaluate the chromatic filter [Bascon 07] to determine the ROIs. Bascon
et al. [Bascon 07] use the achromatic segmentation masks to extract the white interior
of the traffic signs and the chromatic masks for the red rims and yellow construction site
signs.

The chromatic color decomposition of an image is computed using

f(R,G,B) =
|R−G|+ |G−B|+ |B −R|

3D
, (4.3)

where D is the degree of extraction of an achromatic color. It is empirically set to D = 20
in [Bascon 07]. To extract the chromatic pixels, f(R,G,B) > 1 is used.

A threshold of f(R,G,B) < 1 extracts the achromatic pixels i.e. those lacking hue.
However, the achromatic segmentation is not suitable for our application, since our se-
quences contain large white areas such as the sky and buildings. We therefore apply the
chromatic segmentation to obtain the red parts of the signs. The result of the chromatic
filter is shown in Figure 4.3c.
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Figure 4.4: Examples of traffic sign detection using HOG/linear SVM. The undirected
gradients used in the HOG detector allow for the detection of static and illuminated traffic
signs.

4.2.1.3 Morphological Filters

We examine two morphological filters, top-hat and its reciprocal bottom-hat. The
former emphasizes light pixels with a high contrast to their local environment, such as
the inside of the traffic signs. The latter emphasizes dark pixels with a high contrast to
their local environment such as sign rims and some pictograms. The images obtained by
these two operators, IT and IB respectively, are defined as

IT = I − IO, IO = ID ◦ IE (4.4)
IB = IC − I, IC = IE ◦ ID (4.5)

where I is the input image and IO, IC , ID, IE represent the opening, closing, dilation and
erosion operators respectively.

The result of the tophat and bottomhat filtering is shown in Figure 4.3d and e. Note
that the interiors of the traffic signs are emphasized in the tophat transform. The rims
and the pictograms are emphasized in the bottomhat transform. We further apply an
empirically determined adaptive threshold µ + 4 · σ to obtain a binary mask designating
the ROIs, where µ and σ are the mean and standard deviation of the pixel values over
the entire filtered image.

4.2.2 Category detection

In this thesis, we focus on the detection of speed limit and warning signs. To evaluate
the proposed detection algorithm and the performance of the color segmentation as a
filter, we use image sequences acquired during the daytime in both urban and highway
environments under different meteorological conditions. During the detection phase, the
image is scanned at multiple scales. Only the areas resulting from the segmentation
mask are examined. The resulting candidates are then passed on to the tree classifier in
the classification phase.

4.2.2.1 Data set and Evaluation

Our data set contains 24 classes of traffic signs: 12 round and 12 triangular. The
train and test data sets contain 14763 and 1584 signs respectively. There is a significant
imbalance in the number of training samples for each class as shown in Table 4.4. This
imbalance can also be found in the real world, as some signs, such as the speed limits,
are more abundant than the wind warning sign for example. The size of the training sets
varies from 15 to 3852 images. The frog, traffic jam and wind warning sign have no
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testing samples, because they appear in only one sequence, i.e. one physical sign over
a period of time. Nevertheless, they are used in the training set to reinforce the shape
detector. The image resolution is 752x480 pixels.

A predicted bounding box is considered correct if it overlaps more than 50% of the
ground truth.

ε =
prediction ∩ ground truth
prediction ∪ ground truth

>= 50% (4.6)

The evaluation is based on the recall and precision values, which are defined as follows:

recall =
true positives detected (TP)

total true positives
× 100% (4.7)

precision =
true positives detected (TP)

all detections
× 100% (4.8)

4.2.2.2 Implementation of the Detector

Two detectors are trained, one for the circular and another for the triangular traffic
signs. The detectors are trained at an empirically determined positive:negative ratio of
1:10. The false alarms generated by the initial detector on the training dataset are rein-
jected as new negative samples to train a cascade classifier. This method yields higher
recall/precision values than the single layer for pedestrian detection in [Dalal 05].

The Feature: HOG
The HOG descriptor is used, as it is fast to compute and robust to changes in illumination
and scale. A further reason for choosing HOG over other features is that when using
undirected gradients, i.e. orientations between 0◦ and 180◦, both static (red rim, white
interior) and dynamic (illuminated, red rim, black interior) signs can be found with the
same detector. Other features, such as Control Points or Haar, would fail in this case due
to their use of directed gradients i.e. orientations of 0◦ to 360◦. Examples of static and
illuminated signs are illustrated in Figure 4.4.

The Detector: SVM
The computed HOG descriptors are used to train two linear SVM classifiers (one for round
signs and another for triangular ones). This significantly reduces the computational costs
at runtime compared to the four SVM classifiers trained per shape in [Bascon 07].

The SVMLight 1 library is used. The m resulting support vectors are combined to a
single global vector v. Given the SVM classification function f(x) of an unknown sample
x from Chapter 2.2.3, with support vectors xi, Lagrange multipliers αi and labels li.

f(x) = sign
( m∑
i=1

liαi(xi · x) + b
)

(4.9)

⇔ f(x) = sign
(
x ·

m∑
i=1

liαixi + b
)

(4.10)

⇔ f(x) = sign
(
x · v + b

)
(4.11)

1http://svmlight.joachims.org/
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Sign Meaning Train Test

construction 21 2

danger 1474 149

deer 30 13

frog 30 0

slippery road 338 61

children 68 25

no overtaking 15 4

no overtaking truck 968 179

pedestrian 78 1

school 31 1

sharp curve 131 40

slope 113 20

speed 10 23 6

speed 30 651 111

speed 40 258 73

speed 50 1110 207

speed 60 1499 51

speed 70 316 46

speed 80 1900 171

speed 100 3852 276

speed 120 1726 126

traffic jam 18 0

truck 66 22

wind 20 0
Total 14763 1584

Table 4.4: The class sizes of Traffic Sign Recognition dataset. There is a large imbalance
in the number of train and test samples for 24 traffic sign classes.
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Figure 4.5: Detection times for different HOG descriptor sizes: 144 (B = 4, S = 4, C = 4),
576 (B = 4, S = 4, C = 2) , 900 (B = 8, S = 2, C = 4) , 1764 (B = 4, S = 2, C = 2) where
B = block size, S = stride, C = cell size in pixels, histograms with 9 bins

This reduction to one support vector accelerates the detection because the HOG descrip-
tor x of each subwindow is compared to a single vector v instead of several.

To determine the optimal size of the HOG descriptor, a preliminary linear SVM is
trained on the triangular signs, with a positive:negative ratio of 50:50. The negative sam-
ples are generated randomly. The Recall/Precision curves for different HOG descriptor
parameters (block, cell and stride sizes) are illustrated in Figure 4.6. All descriptors use
9 bin histograms. Each curve is obtained by varying the classifier threshold in the linear
SVM. Note that the finer block and cell partitioning yields higher precision values as they
describe the image more precisely.

The drawback of the larger descriptors, however, is that they are more time-
consuming to compute and compare. The detection times using the different HOG de-
scriptor sizes and the same SVM threshold are depicted in Figure 4.5. As the speed and
memory requirements are important constraints in emarked systems, the smaller and
more efficient 144 value vector (B = 4, S = 4, C = 4) will be optimized and used for
the traffic sign detection in further experiments. Its low precision is improved using the
segmentation as shown in Figure 4.8.

4.2.2.3 Use of Segmentation Masks

We propose to use a sliding window on the binary mask resulting from the segmen-
tation in the detection phase. The image is resized and scanned at different scales.
The sum of the pixel values sum(img(x, y, w, h)) in each subwindow img(x, y, w, h) is
computed, where (x, y) and (w, h) are the top left corner, width and height of the sub-
window in the image. If the ratio of the white pixels to the area of the subwindow
area(img(x, y, w, h)) exceeds a given threshold θ as in Equation 4.12, the subwindow
is considered to contain a potential sign. The integral image representation of the binary
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Figure 4.6: Recall and precision for different HOG detector sizes for triangular traffic
signs. B = block size, S = stride, C = cell size in pixels.

mask image is used to accelerate the sum computation.

sum(img(x, y, w, h))

area(img(x, y, w, h))
> θ (4.12)

Hence, the candidate subwindows are passed on to the HOG/linear SVM detectors for
cirlces and triangles, which in turn verify the presence of the respective shape.

This methodology is illustrated in Figure 4.7. This approach reduces the search space
and accelerates the detection. As an alternative, the ROIs can be found using a con-
nected components approach. This could, however, require a longer computation time.

4.2.2.4 Effect of Segmentation on the Detection

The influence of the segmentation masks on the performance of the HOG/linear SVM
detectors is illustrated in Figure 4.8. The best trade-off between the recall and precision
values as well as the respective average processing times per image are listed in Table
4.5. The red channel color enhancement improves both the recall and the precision of the
HOG detector. It yields the best results with a recall of 90.21% at a precision of 90.9%.
Note that the HOG descriptors computed on the RGB color space achieve a 10% higher
recall than those computed on the grayscale images. This improvement is due to the
strong gradients in the red color channel which are diminished in the grayscale images.

Table 4.5 also shows the average time (in ms) required to process a 752x480 pixel
frame on a 2.93 GHz Intel Core i7 PC. The grayscale HOG detector achieves real-time
performance, running at 35.56 ms per frame (28 frames per second). The improved red
enhancement segmentation mask requires a longer processing time, yet can run in near
real-time at 48.85 ms per frame (20.5 frames per second).

In general, the segmentation reduces the number of false positives, yet decreases the
number of true detections. The morphological operators falsely eliminating signs with a
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(a) Input image (b) Red Color Enhancement

(c) Color enhancement image thresholded
using adaptive threshold. Sliding window
finds candidates in binary segmentation
mask at different scales

(d) Pass candidates from input image to
detector

(e) Category detection using HOG/linear SVM detectors for cirlces and triangles verify
the presence of respective shape category.

Figure 4.7: Using the segmentation mask to find candidate ROIs: The sliding window
is passed over the binary image resulting from the red color enhancement and adaptive
thresholding. The extracted subwindows contain a sufficient ratio of white pixels to their
area. These are passed on to the HOG/linear SVM detectors for circles and triangles.
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HOG Grayscale HOG RGB
Mask Recall Precision Time (ms) Recall Precision Time (ms)

No mask 75.82 90.16 35.56 84.72 89.89 49.31
Tophat 38.45 92.13 32.89 41.67 88.95 45.78

Bottomhat 42.05 91.48 32.75 45.20 88.40 45.52
Chromatic 42.11 78.29 48.07 38.38 92.68 55.24

Red 84.66 94.77 48.85 90.21 90.90 55.54

Table 4.5: Effect of segmentation masks on HOG/lin. SVM detection performance.

Name Cell Block Stride Bins Oriented Gradients Dimension
HOG 1 5x5 10x10 5x5 8 true 1568
HOG 2 5x5 10x10 5x5 8 false 1568
HOG 3 4x4 8x8 4x4 9 true 2916

Table 4.6: Parameters of the HOG 1-3 descriptors provided by GTSRB [Stallkamp 11].

low contrast to the background or within the sign due to poor illumination or deterioration
of the sign. The chromatic filter omits distant and poorly illuminated traffic signs due to the
lack of color richness of the corresponding pixels. The red color enhancement technique
is less sensitive to changes in illumination, since it takes the relative dominance of one
channel over the others into consideration.

We choose to combine the linear SVM/HOG detector with the red color enhance-
ment segmentation technique, as it proved to be a good compromise between the re-
source efficiency and overall performance. The work on traffic sign recognition using
segmentation masks and HOG-based SVMs presented in this section was published in
[Zaklouta 11a, Zaklouta 11b].

4.2.3 Sign classification

The content of the candidate traffic signs detected is identified using the tree classi-
fiers. For an extensive evaluation of the tree classifiers, we use the German Traffic Sign
Recognition Benchmark [Stallkamp 11], which contains a large number of classes and
images. We replace and evaluate the Euclidean similarity measure in the K-d tree by
the correlation and χ2 distance of the HOG descriptors. Further, we introduce the spatial
weighting, which is particularly adapted for the traffic sign classification. This improve-
ment weights the feature vectors to focus the Nearest Neighbor comparison in the tree
classifers on the interior of the sign.

4.2.3.1 German TSR Benchmark

We further evaluate the performance of combining the HOG features with the K-
d trees and Random Forests using the German Traffic Sign Recognition Benchmark
[Stallkamp 11]. The work presented in this section was published in [Zaklouta 11c].

This image data set contains 43 classes, 26640 train images and 12569 test images.
The parameters of the three HOG features used are listed in Table 4.6. All the images
used are resized to 40x40 pixels using a bilinear interpolation. The precalculated HOG
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Figure 4.8: Effect of segmentation on RGB HOG detection results.

1, 2, and 3 descriptors for the train and test images are available online2.

Overview of Approaches at Live Competition
Several teams participated in the GTSRB online and live competitions. The best per-
formance of 99.15% in the online competition and 99.46% at the live competition were
achieved using a committee of Neural Networks by Ciresan et al. [Ciresan 11]. They
combine Multi-layer Perceptron (MLP) with deep Convolutional Neural Networks (CNN)
of alternating convolutional, maximum pooling and fully connected hidden layers to en-
sure the robust and accurate classification of the input traffic signs. The human classifier
correctly classified 98.81% and 98.84% in the online and live competitions respectively.
Sermanet et al. [Sermanet 11] achieved 99.17% and 98.31% for these same data sets
using Multi-Scale Convolutional Networks. They experiment with various feature subsets,
network parameters and structures to optimize the results. Boi et al. [Boi 11] use a hi-
erarchichal ensemble of SVM classifiers trained on shape, color and gradient-based fea-
tures to achieve a classification accuracy of 96.89%. Rajesh et al. [Rajesh 11] combine
the Coherence Vector of Oriented Gradients (CVOG), Color Coherence Vector (CCV)
and the HOG features with Neural Network classifiers to achieve a best performance of
94.73%. Our efficient approach using Random Forests yield 97.2% on the online compe-
tition dataset and came in 3rd at the live competition with a classification rate of 96.14%.

The memory and processing contraints in embedded systems render the large Neural
Networks and extensive preprocessing and feature extraction techniques inapplicable
inspite their high recognition rates. Our approach proved to be the most suitable for

2http://benchmark.ini.rub.de/
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Emax HOG 1 HOG 2 HOG 3 Avg ms
500 71,30% 68,84 % 71,08% 1.59
1000 73,03% 70,40% 72,75% 3.29
1500 73,76% 71,25 % 73,65% 4.91
2000 73,94% 71,87 % 74,00% 6.55
2500 74,37% 72,03% 74,53% 8.19
5000 74,92% 73,39% 75,03% 16.36

Table 4.7: Classification results when varying Emax in K-d tree. kNN = 5

embedded systems, as it runs in real-time and is resource efficient. It is described in
detail and compared to other classifiers in the following.

4.2.3.2 Comparison of Classifiers

In this section, we compare the tree classifiers, K-d tree and Random Forests, to
the state-of-the-art Support Vector Machine (SVM) classifier. We also evaluate the new
approaches proposed: the spatial weighting and the correlation and χ2 as similarity mea-
sures.

A K-d tree
The construction and the parameters of the K-d tree are described in Chapter 2.2.4.
Five nearest neighbors are retrieved for each test candidate, i.e. kNN = 5. This value
was determined empirically. Unless otherwise specified the similarity measure used in
the K-d tree is the Euclidean distance.

I Influence of the Emax parameter
The performance of the K-d tree also depends on the value of the Emax parameter,
which determines the number of neighbors examined during the search. Its effect
on the classification results is shown in Table 4.7. Increasing the Emax parameter
by a factor of 10 increases the classification rate by up to 4.55% for the HOG 2
descriptor. The average time needed to classify a sample, however, also increases
significantly by a factor 10 from 1.59 ms to 16.36 ms. The Emax parameter in the
K-d tree is set to 5000 in further experiments, as it yields the best results.

The HOG 2 descriptor has a poorer overall performance than HOG 1 and HOG 3.
The former computes signed gradient orientations i.e. 0◦ to 360◦, while the two
latter use unsigned gradients i.e. 0◦ to 180◦. When using the same number of
bins, the binning is coarser in the HOG 2 descriptor i.e. the bins are larger (45◦

per bin) than in the HOG 1 (22.5◦ per bin) and HOG 3 (20◦ per bin) descriptors. A
finer spatial binning better describes the characteristics of each traffic sign class.

II Correlation as a Similarity Measure
The Euclidean distance measure in the K-d tree is replaced by the correlation,
which is described in Chapter 3.2.1. The results obtained when checking five
Nearest Neighbors (kNN = 5) and examining 5000 nodes at most (Emax = 5000)
are shown in Table 4.8. The accuracies are improved by up to 2.44%. This im-
provement shows that the correlation is a more robust measure for this application,
as it takes into account the trend and not the difference between the HOG descrip-
tors.
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Weighting HOG 1 HOG 2 HOG 3
Euclidean 74.92% 73.39% 75.03%
Correlation 75.20% 73.78% 77.47%

Chi Squared χ2 76.83% 76.01% 77.87%

Table 4.8: Improvement of the K-d tree classification results when using the correlation
or χ2 distance instead of default Euclidean similarity measure on the HOG descriptors.
Emax = 5000, kNN = 5

Figure 4.9: Tight bounding box around the traffic sign used for computing the HOG 4
feature

III Chi Squared χ2 as a Similarity Measure
The Euclidean distance measure in the K-d tree is replaced by the χ2 distance,
which is described in Chapter 3.2.1. The classification results obtained using this
measure are shown in Table 4.8. There is an improvment of up to 2.84%. This
shows that the χ2 distance measure is a more suitable similarity measure for the
histograms, as it relativizes the difference between the bins to their average size.
This also makes it more robust to noise. The Euclidean distance measure, on the
other hand, does not take into account the fact that the feature differences are not
the same in all the dimensions of the feature space.

IV Spatial Weighting
In the K-d tree the Nearest Neighbor search extracts the signs which are the most
similar to the test sample. The difference between the signs usually lies in the
interior region containing the pictogram or speed limit.

To evaluate the effect of the background on the classification performance, the
HOG 4 descriptor was calculated on a tight bounding box of the images as shown
in Figure 4.9, using the same parameters as the HOG 3. It yields an accuracy of
92.7%, i.e. 17% higher than HOG 3, using the Euclidean distance, kNN = 5 and
Emax = 5000. This shows that the effect of the small strip of background around
the traffic sign has a significant effect on the performance of the K-d tree classifier.

We propose a new spatial weighting of the features to increase the influence of the
central part of the image rather than the borders. When computing the Euclidean
distance between a training sample in the tree and the HOG descriptor of the
test image, the difference between the individual blocks is multplied by a factor
f ∈]0, 1[, depending on the position of the block. The interior blocks have a larger
factor than the ones along the border. Table 4.9 depicts the weighting scheme for
5x5 non-overlapping blocks.

The 30, 50 and 80 speed limit signs are most frequently confused by the K-d tree.
The spatial weighting of the HOG descriptor values according to the location of

73



CHAPTER 4. REAL-TIME TRAFFIC SIGN RECOGNITION

1 2 3 2 1

x 1∑2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

Table 4.9: Spatial weighting for 5x5 non-overlapping blocks.

Weighting HOG 1 HOG 2 HOG 3
No Weighting 74.92% 73.39% 75.03%

With Spatial Weighting 88.53% 88.73% 90.39%

Table 4.10: Improvement of the K-d tree classification results when applying the spatial
weighting to the HOG descriptors. Emax = 5000, kNN = 5

the block improves the results of the approximate Nearest Neigbors search in the
K-d tree significantly. The prioritizing of the interior helps better distinguish the fine
difference between the contents of the traffic signs. As shown in Table 4.10, the
overall classification hit rates were increased by about 15% with an Emax = 5000.

Table 4.11 shows the confusion matrix of some of the largest improvements in-
duced by the spatial weighting. The HOG 3 descriptor is used, as it achieved the
best results. The classification accuracy for the 20 km/h speed limit, for example,
increased by 25 samples, of which 10 were previously confused with the 70 km/h
speed limit. Similarly, 73 less Right of Way signs are confused with the Con-
struction Site sign when using the spatial weighting, increasing the classification
accuracy of this sign by a total of 117 samples.

Figure 4.10 illustrates the effect of the spatial weighting on all 43 classes using the
HOG 3 descriptor. Note that the rate of correct classifications along the diagonal
is improved. The misclassifications between similar classes, depicted as light blue
patches around the diagonal, are reduced significantly.

B Random Forests
To evaluate the performance of the Random Forest classifier, we vary its parameters:
the number of trees in the forest, the number of features to be chosen at random
and the size of the training sample subset. The structure of the Random Forest and its
parameters are explained in Chapter 2.2.4. The results of changing the parameters are
shown in Table 4.12. The HOG 2 descriptor is used as it yields the highest accuracy of
97.2%, compared to 95.1% and 95.2% for the HOG 1 and 3 descriptors respectively.
The performance of the Random Forest does not vary significantly (0 to 2%) when the
parameters are changed, which makes it more generic and easier to use. The number
of trees is set to 500, the number of features and samples to 100, as these parameters
yield the best results for these features.

The Random Forest achieves up to 7% higher classification rates than the K-d tree
with spatially weighted blocks. Since small subsets of 100 features and 100 training
samples are used to construct the random trees, the probability of choosing the HOG
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(a) Without applying the spatial weighting

(b) When applying the spatial weighting

Figure 4.10: Confusion matrices for GTSRB with and without spatial weighting in K-d tree
classification. The HOG 3 descriptor is used. Note that the classification accuracy along
the diagonal is improved when applying the spatial weighting.
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True Label
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-6 -30 +214 -9 2 9 0 0

0 -25 -27 +95 -4 -48 -5 -1

-10 -11 -57 -3 +69 -22 -2 -2

0 -41 -33 -48 -29 +122 -21 -26

-1 -21 -35 -24 -8 -37 +41 -37

-3 -4 -20 -1 -21 -6 -9 +68

..
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..
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..
.

..
.

+117

-73

-24

-2

-30

-5
Total 60 720 750 450 660 600 480 450 420

Table 4.11: Effect of Spatial Weighting on classification accuracy of speed limit and warn-
ing signs with K-d tree and HOG 3 descriptor.

descriptors of the 10% border region is small and the perturbation caused by the
background is less significant. Hence, the randomness of the Random Forest classifier
makes it more robust to variations than the K-d tree, which uses the entire descriptor
set.

C Multi-class SVM
To extend our study of classifiers for TSR, the performance of the multi-class SVM
classifiers is also evaluated. One linear SVM is trained per class to obtain 43 one-
vs-all classifiers. The entire ensemble is queried and the highest confidence vote
determines the class of a test sample. The Pegasos solver [Shalev-Shwartz 07] is
used, as it optimizes the training process. Table 4.13 shows a comparison of the
results obtained on the HOG 2 feature. The multi-class SVM achieves an accuracy of
95.04%. The Random Forests outperform the SVM classifiers by 1.6% to 2.1%.

4.2.3.3 Comparison of HOG and Distance Transforms

To further evaluate the effect of the features used on the performance of the K-d tree,
we also use Distance Transforms (DTs). This is an efficient method to determine the
similarity between two contour images. Various metrics can be used. In our experiments,
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Nb Samples Nb Features Nb Trees Accuracy

Fe
at

ur
es 100 10 500 95.5%

100 50 500 97.1%
100 75 500 97.0%
100 100 500 97.1%

S
am

pl
es 10 100 500 97.1%

100 100 500 97.2%
500 100 500 95.2%

Tr
ee

s

100 100 50 96.0%
100 100 100 96.7%
100 100 300 97.2%
100 100 500 97.1%
100 100 750 97.2%

Table 4.12: Classification results do not fluctuate when varying the parameters of the
Random Forests using the HOG 2 descriptor.

Classifier Parameters Accuracy
K-d tree Emax = 5000, kNN = 5 73.39%
K-d tree (Correlation) Emax = 5000, kNN = 5 73.78%
K-d tree (χ2) Emax = 5000, kNN = 5 76.01%
K-d tree (Spatial Weighting) Emax = 5000, kNN = 5 88.73%
Random Forest 100 trees 96.70%

100 var, 100 samples
Random Forest 500 trees 97.20%

100 var, 100 samples
1-vs-all SVM (Pegasos) C=10 95.04%

Table 4.13: Overview of K-d tree, Random Forest and SVM classifier accuracies using
the HOG 2 descriptor of GTSRB.

the pixel value in the DT is the Euclidean distance of this pixel to the nearest nonzero
pixel in the binary image.

Similarly to the HOG descriptor computation, the images within the bounding box are
used. These are resized to 50x50 pixels. We test both the entire resized image and an
interior patch of 41x41 pixels, further eliminating the background and capturing only the
pictogram or characters inside the traffic sign.

We use the bottom-hat transform with a filter size of 2x2 pixels and an adaptive thresh-
old to obtain the binary image as in Section 4.2.1. The result is a segmentation of the
dark regions that are surrounded by light pixels: for example pictograms and characters.
Figure 4.11 juxtaposes the result of the bottomhat thresholding and the Canny edge de-
tection with their corresponding DT. Note that the bottomhat thresholding preserves the
details of the pictograms. Since the Canny edge detector uses the first derivative of a
Gaussian, it considers the weak gradients around the characters in a poorly illuminated
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(a) Top: Edge image, Bottom: DT (b) Top: Edge image, Bottom: DT

Figure 4.11: Comparison of Distance Transforms (DT) using Bottomhat thresholding and
Canny edge detection.

Feature Bottom hat Canny HOG 2
Entire Image (50x50 pixels) 81.2% 77.8 %

97.20%
Interior (41x41 pixles) 81.8% 77.4%

Table 4.14: Random Forest classification results using Distance Transform (DT) and
HOG.

image as noise. On the other hand, the bottomhat operator considers local gradients and
is less sensitive to global variations in illumination.

The results obtained using the Random Forest classifiers and the Distance Trans-
forms are shown in Table 4.14. The number of random trees in the forest is set to 500 and
100 variables and samples were chosen at random for their construction. Removing the
background information eliminates irrelevant information and increases the classification
rate by about 4%. The bottomhat thresholding approach achieves higher classification
rates than that using the Canny edge detection. However, the DT classification results
are lower than those obtained using HOG descriptors.

4.3 Overall Performance of the TSR System

The overall performance on the traffic sign recognition data set presented in Section
4.2.2.1 is shown in Table 4.15. The red color segmentation and the 144 value HOG/linear
SVM detector presented in Section 4.2.2.4 were used, because they achieved the best
results. The parameters of the K-d tree were set to kNN = 5 and Emax = 1000, as
they were shown to be a good compromise of processing time, memory requirements
and accuracy rate. The Random Forest used contains 100 trees. The parameters of the
1568 value HOG 1 descriptor presented in Section 4.2.3 were used to compute the HOG
training and testing features in the classification phase.

As mentioned earlier, the combination of the red color enhancement segmentation
and HOG/linear SVM detector achieves a detection rate of 90.21%. The traffic signs
found are then recognized by the tree classifiers. The K-d tree with the Euclidean distance
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similarity measure yields a classification rate of 59.21%. The correlation and χ2 metrics
improve the accuracy slightly to achieve 61.02% and 66.13% respectively. However, the
spatial weighting of the HOG features in the K-d tree improves the classification accuracy
by over 20%, attaining the best overall rate of 80.90%. This outperforms the Random
Forest by about 10%.

The Random Forests achieve a poorer performance on this data set due to its small
size. The random selection of samples when constructing the random trees favors the
highly represented classes. The K-d tree classifiers are able to overcome this problem,
as they use the entire data set. When considering the results at hand, one can conclude
that the choice of the classifier strongly depends on the training data set. The Random
Forests outperformed the K-d trees on the German Traffic Sign Recognition Benchmark
due to the sufficient amount of 26640 training samples. The K-d tree yields the better
performance on the smaller data set containing only 14763 training images.

4.4 Feature Space Reduction

The feature space reduction techniques are designed to minimize the memory and
processing requirements as well as yield higher accuracy rates by eliminating less im-
portant features. The minimization of resource requirements is particularly important in
embedded systems, which are often subject to physical and financial constraints. The
feature selection also helps understand the generated features. In the following exper-
iments, the German Traffic Sign Recognition Benchmark and the corresponding HOG
2 feature are used for the evaluation of the Random Forests and Fisher’s Criterion for
feature space reduction.

4.4.1 Feature Selection

Two selection techniques are implemented for the feature space reduction: Random
Forests and Fisher’s Criterion. We use the HOG 2 descriptor in the experiments as it
yields the best results.

As described in Chapter 3.1.1, the Random Forest can be used to evaluate the feature
importance based on the variance of the classification errors on the permuted out-of-bag
data. The variable importance of the HOG 2 feature values obtained using a Random
Forest of 100 trees, 100 variables and 100 samples is shown in Figure 4.12. Each row or
column of blocks of this feature is described by 224 values (7 blocks x 4 cells x 8 bins). In
Figure 4.12, the peaks in the variable importance recur every 224 values, coinciding with
the interior region of the image. Therefore, the central blocks have a higher variable im-
portance than the marginal ones. This affirms the performance improvement when using
the spatial weighting, as the interior of the traffic sign image, containing the pictogram or
the speed limit, is more important for the classification than the border regions.

Fisher’s Criterion ranks the features according to their ratio of inter-class to intra-
class variance. Refer to Chapter 3.1.1.2 for more details. The Fisher Scores of the HOG
2 feature vector are shown in Figure 4.13. A similar trend to the Random Forests ranking
can be observed, where the interior blocks yield a higher score than those on the border.
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Classified
Sign Train Test Detected K-d tree

(Euclidean)
K-d tree
(spatial
weighting)

K-d tree
(Correlation)

K-d tree
(χ2)

Random
Forests

21 2 2 0 1 0 0 0

1474 149 145 144 140 144 144 139

30 13 3 0 1 0 0 0

30 0 0 0 0 0 0 0

338 61 33 1 16 1 1 19

68 25 16 0 0 0 0 0

15 4 4 0 0 0 0 0

968 179 173 143 172 142 157 168

78 1 0 0 0 0 0 0

31 1 0 0 0 0 0 0

131 40 2 0 1 0 0 0

113 20 18 2 15 2 2 13

23 6 6 0 0 0 0 0

651 111 83 37 59 37 36 47

258 73 68 11 27 9 8 12

1110 207 201 112 181 123 141 163

1499 51 50 44 44 44 44 39

316 46 43 12 25 12 13 14

1900 171 167 64 131 74 97 126

3852 276 269 259 267 258 268 268

1726 126 124 23 76 26 34 3

18 0 0 0 0 0 0 0

66 22 22 0 0 0 0 0

20 0 0 0 0 0 0 0
Average 90.21% 59.62% 80.90% 61.02% 66.13% 70.75%

Table 4.15: Overall performance of the TSR system using Red Color Enhancement,
HOG/linear SVM detector and tree classifiers on our data set.
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Figure 4.12: Variable Importance of HOG 2 feature using Random Forests. The peaks in
the variable importance recur every 224 values (One row or column of blocks is composed
of 7 blocks x 4 cells x 8 bins), coinciding with the interior region of the image.

4.4.2 Evaluation

The n most important features are selected from the ranking obtained from a Random
Forest with 100 trees or Fisher’s Criterion. To evaluate the feature space reduction, we
combine the feature selection techniques with the Random Forest and SVM classifiers.
A Random Forest with 100 trees or an SVM is then trained using this subset.

Figure 4.14 illustrates the effect of the number of selected features n on the clas-
sification accuracy. Note that the Random Forests outperform the SVMs. The former
yield higher classification accuracies on subsets with more than 500 features, due to the
random variable selection in the random trees. The accuracy of the SVMs, however, is
improved when using only 200-500 feature values.

The overall performance is compared in Table 4.16. Note that similarly high accuracy
rates are obtained by the Random Forest and SVM when using only about one third of
the features.

4.5 Conclusions and Perspectives

A real-time Traffic Sign Recognition system was presented in this chapter. The first
step of the three stage approach is the image segmentation to reduce the search space.
We improve the color enhancement approach proposed by Ruta et al. [Ruta 10] by in-
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Figure 4.13: Feature ranking using Fisher Scores on HOG 2 feature. The peaks in the
variable importance recur every 224 values (One row or column of blocks is composed of
7 blocks x 4 cells x 8 bins), coinciding with the interior region of the image.

troducing an adaptive threshold. In the second stage, the circular and triangular signs
are detected using the efficient HOG/linear SVM detector. The combination of these two
phases achieves recall and precision rates of over 90% at a processing rate of 18 to 28
frames per second.

The candidates found by the detector are identified using multi-class classifiers. We
compare the performance of the K-d trees, the Random Forests and the one-vs-all SVM
classifiers. We improve the K-d tree accuracy by up to 15% when applying a spatial
weighting to focus the Euclidean similarity measure on the interior of the traffic sign.
This technqiue outperforms the K-d tree with the Euclidean, correlation and χ2 distance
metrics on our traffic sign recognition data set with a classification rate of about 81%.
However, the Random Forest outperforms the K-d tree and SVM on the larger German
Traffic Sign Recognition Benchmark, yielding a classification accuracy of 97%. One can
conclude that the choice of the suitable classifier depends on the cardinality of the training
data set.

Moreover, we employ the Random Forests and Fisher’s Criterion feature selection
techniques. The benefit of this is two-fold. On the one hand, the feature space dimen-
sion is reduced, minimizing the memory and processing requirements. On the other,
the classification accuracy of the SVM is improved when using a well-chosen subset of
features.
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Feature Selection # Features Random Forests linear SVM (Pegasos)
None 1568 96.69% 95.00%

Random Forest 500 96.63% 96.48%
Fisher Criterion 500 96.63% 96.41%
Random Forest 1000 96.70% 95.94%
Fisher Criterion 1000 96.85% 95.67%

Table 4.16: Feature Space Reduction using Fisher’s Criterion and Random Forests.
Fisher’s Criterion and Random Forest (100 trees, 100 variables and 100 samples) used
for feature ranking and classification. Classifiers: Random Forest and linear SVM with
C=10.

Figure 4.14: Effect of feature selection using Fisher Criterion and Random Forests on
Random Forest and SVM classification accuracy. Subsets of n = 100, 200, 500, 750 and
1000 of the 1568 values of HOG 2 descriptors selected using Random Forests or Fisher
Criterion.

Future work could integrate the temporal information to track the detected traffic signs
and reinforce the decision making process. This would further accelerate the candidate
detection by restricting the search space. The feature selection can be employed to
accelerate the detection phase by reducing the size of the descriptor vectors. Further,
this could be combined with other classifiers, such as the Neural Networks. Moreover,
the adaptive threshold can be combined with other color enhancements to detect blue
traffic signs or green traffic lights, for example.
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Chapitre 5

Conclusion

Ce chapitre conclut le manuscrit avec un résumé des solutions présentées. Nous
avons abordé la détection de piétons et la reconnaissance de panneaux pour les appli-
cations d’aide à la conduite et la vidéo-surveillance.

Nous avons examiné tout d’abord trois aspects du processus de classification: les
caractéristiques, les métriques de comparaison et la combinaison de différents classi-
fieurs. La sélection des caractéristiques réduit leur dimension ainsi que le besoin en
temps de calcul et mémoire, tout en gardant un taux de classification élevé.

Dans le cadre de la détection de piétons, la plupart des fausses alarmes sont des
objets fixes, comme des lampadaires. Celles-ci sont éliminées grâce à la corrélation sur
plusieurs trames en utilisant des caméras statiques et par un filtre complémentaire en
forme d’arbre dans des systèmes embarqués.

Pour la reconnaissance de panneaux, nous proposons une nouvelle approche com-
posée de trois étapes: une segmentation de couleur, une détection de forme et une
classification. La segmentation a pour but de réduire l’espace de recherche et d’éliminer
une partie des fausses alarmes. Nous adaptons la segmentation proposée par [Ruta 10]
qui cherche les pixels avec un canal rouge dominant par rapport aux autres. Nous
améliorons cette approche en introduisant des seuils adaptatifs qui prennent en compte
l’illumination de l’image entière.

La détection est réalisée à l’aide d’un classifieur à vaste marge (en anglais: Sup-
port Vector Machines (SVM)) travaillant sur des histogrammes de gradients orientés (en
anglais: Histogram of Oriented Gradients (HOG)). Cette méthode, combinée avec la seg-
mentation, atteint un taux de rappel et de précision de 90% sur nos séquences de film.

La classification se fait quant à elle grâce à des algorithmes à base d’arbres: K-
d tree et Random Forest. La performance du premier est améliorée jusqu’à 20% lors
de l’implémentation de la pondération spatiale des vecteurs de caractéristiques, et une
précision de 80% est atteinte sur nos séquences. Le Random Forest atteint un taux de
classification de 97% sur le Benchmark Allemand de la Reconnaissance de Panneaux
(German Traffic Sign Recognition Benchmark ).

Nous concluons cette thèse en proposant des extensions possibles, comme
l’intégration de l’information temporelle et spatiale pour suivre les panneaux détectés
et réduire les fausses alarmes. De plus, l’approche de la reconnaissance de panneaux
peut être étendue à d’autres types de panneaux, comme ceux d’information.

En enrichisant la base d’apprentissage de plus nombreux exemples, il serait possible
d’améliorer le résultat. Il serait également intéressant d’examiner d’autres classifieurs
comme Adaboost ou des SVMs avec différents noyaux.

L’effet de la réduction de la dimensionalité des vecteurs caractéristiques pourrait
quant à lui être étudié sur d’autres types de caractéristiques et avec d’autres classi-
fieurs, comme des réseaux de neurones ou Adaboost. Enfin, son effet sur la vitesse et
la performance de la détection de panneaux pourrait être évalué.
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5.1 Summary

The main objectives of this thesis were to develop a robust, real-time Traffic Sign
Recognition System (TSR) and to enhance the existing pedestrian detection algorithms
for Advanced Driver Assistance Systems (ADAS) and video surveillance applications.
This chapter provides a summary of the contributions made in this thesis as well as an
outlook for further research.

5.1.1 Three Aspects of Classification

In Chapter 3, we examine three aspects of the classification process: the features
describing the object, the metrics used to compare them and the combination of the
classifiers which distinguish between the object categories.

The importance of the features for the distinction between the classes can be evalu-
ated using the Random Forest and Fisher’s Criterion. Our experiments show that a well
chosen subset of the most significant features is sufficient to attain an equally high clas-
sification rate as when using the entire feature set. This helps reduce the memory and
processing requirements.

Moreover, the importance of the metric used in the K-d tree classifiers is evaluated.
We establish that the correlation and the χ2 distance measures are more suitable for the
comparison of the Histogram of Oriented Gradients (HOG) and Pyramid HOG (PHOG)
features. We use the correlation of the HOG descriptors to eliminate immobile false
alarms, such as trees and poles, in a static camera video surveillance application. The
precision rate was doubled using this technique, while maintaining the high recall rate.

A further pedestrian detection application for ADAS was developed by combining the
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HOG/linear SVM detector with the K-d tree and Random Forest classifiers. This het-
erogenous mixture of experts decreased the number of false positives per frame to about
half, while maintaining the recall rate.

5.1.2 Real-Time Traffic Sign Recognition System

We propose a three stage approach for TSR consisting of a segmentation, a category
detection and a classification phase. We compare four different segmentation techniques:
color enhancement, chromatic filtering as well as the tophat and bottomhat morphological
filters. We propose to use the red color enhancement technique to reduce the search
space of traffic signs. Moreover, we improve the segmentation by introducing an adaptive
threshold. The result is combined with the triangular and circular shape detectors. These
consist of linear Support Vector Machines (SVM) trained on the Histogram of Oriented
Gradients (HOG) features. The combination of the red color enhancement segmentation
and the shape detector attained a recall and precision rate of 90%, running at about 18
frames per second.

In the classification phase, we use the K-d tree and Random Forest classifiers. From
our experiments, we can conclude that the choice of the classifier depends on the data
set at hand. The K-d tree excels on the smaller data set, yet is outperformed by the
Random Forest on larger data sets. The performance of the K-d tree was improved by up
to 20% when introducing the spatial weighting of the feature vectors, which concentrates
the comparison on the interior of the traffic sign. It attains an accuracy of 80% on our film
sequences. The Random Forest outperforms the K-d tree on the German Traffic Sign
Recognition Benchmark, achieving a classification rate of 97%.

The memory and processing requirements were reduced when applying the afore-
mentioned feature reduction techniques. However, the high classification accuracies of
the Random Forest and SVM classifiers were maintained. The accuracy of the latter was
even augmented, when removing the redundant features.

5.2 Future Work

Future work could include the use of the temporal information to reinforce both the
traffic sign as well as the pedestrian detection algorithms, by tracking the object found.
This would also accelerate the process by restricting the search space.

Further improvements can be procured by enriching the data sets used in the K-d
tree and Random Forest classifiers. This can be achieved using online learning, where
the user contributes to updating the training data set.

The TSR system presented in this thesis can be extended to other sign categories.
The adaptive threshold can be combined with various color enhancements to detect blue
traffic signs or green traffic lights, for example.

The tree filters used to eliminate false alarms in the pedestrian detection applications
can be combined with other features than those used in the detector, such as denser
HOG descriptors or Distance Transforms, to better complement it. Other classifiers, such
as Adaboost or SVMs with non-linear kernels could also be considered.

Moreover, the effect of the feature space reduction can be evaluated on other dense
image descriptors such as the Pyramid Histograms of Visual Words (PHOW). Further, its
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influence on other classifiers such as Neural Networks or Adaboost can also be evalu-
ated. Finally, the effect of reducing the dimensionality of the feature vector on the speed
and performance of the traffic sign and pedestrian detectors can also be examined.

87



CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

88



Appendix A

Courses and Publications

A.1 Publications

• Real-Time Traffic Sign Recognition in Three Stages, Fatin Zaklouta, Bogdan Stan-
ciulescu, Invited Paper for Special Issue of Robotics and Autonomous Systems
Journal (affiliated with the Intelligent Autonomous Systems (IAS) Society), submit-
ted October 2011

• Real-time Traffic Sign Recognition using Tree Classifiers, Fatin Zaklouta, Bogdan
Stanciulescu, Special Issue on Machine Learning for Traffic Sign Recognition, IEEE
Intelligent Transportation Systems Journal, submitted October 2011

• Real-time traffic sign recognition using spatially weighted HOG trees, Fatin Za-
klouta, Bogdan Stanciulescu, IEEE International Conference on Advanced Robotics
(ICAR) 2011, Best Student Paper Award

• Traffic Sign Classification using K-d trees and Random Forests, Fatin Zaklouta,
Bogdan Stanciulescu, Omar Hamdoun, IEEE International Joint Conference on
Neural Networks (IJCNN) 2011

• Segmentation Masks for Real-time Traffic Sign Recognition using Weighted HOG-
based Trees,Fatin Zaklouta, Bogdan Stanciulescu, IEEE Intelligent Transportation
Systems (ITS) 2011

• Warning Traffic Sign Recognition using a HOG-based K-d Tree, Fatin Zaklouta, Bog-
dan Stanciulescu, IEEE Intelligent Vehicles Symposium (IV) 2011

• Classifying Bags of Keypoints using HMMs, Fatin Zaklouta, Bogdan Stanciulescu,
IEEE ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA) 2010

• Object Classification Using Bags of Local Features, Fatin Zaklouta, Bogdan Stanci-
ulescu, Cognitive Systems with Interactive Sensors (COGIS) 2009

• Performance of Haar-like Features and Control Points on Pedestrian Detection,
Fatin Zaklouta, Bogdan Stanciulescu, Amaury Breheret, Cognitive Systems with
Interactive Sensors (COGIS) 2009
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APPENDIX A. COURSES AND PUBLICATIONS

A.2 Courses

Attended

• Morphologie Mathématique, Centre de Morphologie de Mines ParisTech,
Fontainebleau, Oct. 2008

• Reconnaissance d’Objets et Vision Artificielle, by Schmid and Ponce, École Nor-
male Supérieur, Nov.-Dec. 2009

• Colloquium STAtistiques pour le Traitement de l’IMage (STATIM2010), Université
d’Evry, 11 et 12 mars 2010

• Computer Vision and Machine Learning (CVML) Summer School 2010, INRIA
Grenoble, July 2010

Given

• Reconnaissance des Formes, EFREI, 2010/2011
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Reconnaissance d’Objets Multi-Classes
pour des Applications ADAS et Vidéo Surveillance

Résumé : La détection de piétons et la reconnaissance des panneaux routiers sont des fonctions
importantes des systèmes d’aide à la conduite (anglais : Advanced Driver Assistance System - ADAS).
Une nouvelle approche pour la reconnaissance des panneaux et deux méthodes d’élimination de
fausses alarmes dans des applications de détection de piétons sont presentées dans cette thèse.

Notre approche de reconnaissance de panneaux consiste en trois phases : une segmentation
de couleurs, une détection de formes et une classification du contenu. Le color enhancement des
regions rouges est amélioré en introduisant un seuil adaptatif. Dans la phase de classification, la
performance du K-d tree est augmentée en utilisant un poids spatial. Les Random Forests obtienent
un taux de classification de 97% sur le benchmark allemand de la reconnaissance des panneaux
routieres (German Traffic Sign Recognition Benchmark ).

Les besoins en mémoire et calcul sont réduits en employant une réduction de la dimension des
caractéristiques. Les classifieurs atteignent un taux de classification aussi haut qu’avec une fraction de
la dimension des caractéristiques, selectionée en utilisant des Random Forests ou Fisher’s Crtierion.
Cette technique est validée sur deux benchmarks d’images multiclasses : ETH80 et Caltech 101.

Dans une application de vidéo surveillance avec des caméras statiques, les fausses alarmes des
objets fixes, comme les arbres et les lampadaires, sont éliminées avec la corrélation sur plusieurs
trames. Les fausses alarmes récurrentes sont supprimées par un filtre complémentaire en forme
d’arbre.
Mots clés : Aide à la Conduite (anglais : Advanced Driver Assistance System - ADAS), reconnais-
sance de panneaux routiers, Détection de piétons, vidéo surveillance, apprentissage automatique,
segmentation de couleurs, réduction de dimension des caractéristiques

Multiclass Object Recognition
for Driving Assistance Systems and Video Surveillance

Abstract: Pedestrian Detection and Traffic Sign Recognition (TSR) are important components of an
Advanced Driver Assistance System (ADAS). This thesis presents two methods for eliminating false
alarms in pedestrian detection applications and a novel three stage approach for TSR.

Our TSR approch consists of three phases: a color segmentation, a shape detection and a content
classification. The red color enhancement is improved by using an adaptive threshold. The perfor-
mance of the K-d tree classifier is augmented by introducing a spatial weighting. The Random Forests
yield a classification accuracy of 97% on the German Traffic Sign Recognition Benchmark.

Moreover, the processing and memory requirements are reduced by employing a feature space
reduction. The classifiers attain an equally high classification rate using only a fraction of the feature
dimension, selected using the Random Forest or Fisher’s Criterion. This technique is also validated
on two different multiclass benchmarks: ETH80 and Caltech 101.

Further, in a static camera video surveillance application, the immobile false positives, such as
trees and poles, are eliminated using the correlation measure over several frames. The recurring false
alarms in the pedestrian detection in the scope of an embedded ADAS application are removed using
a complementary tree filter.
Keywords: Advanced Driver Assistance Systems (ADAS), Traffic Sign Recognition (TSR), Pedes-
trian Detection, Video Surveillance, Machine Learning, Color Segmentation, Feature Space Reduction
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