
HAL Id: pastel-00662744
https://pastel.hal.science/pastel-00662744

Submitted on 25 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML-Based Design Space Exploration, Fast Simulation
and Static Analysis

Daniel Knorreck

To cite this version:
Daniel Knorreck. UML-Based Design Space Exploration, Fast Simulation and Static Analysis. Elec-
tronics. Télécom ParisTech, 2011. English. �NNT : �. �pastel-00662744�

https://pastel.hal.science/pastel-00662744
https://hal.archives-ouvertes.fr

N°: 2009 ENAM XXXX

Télécom ParisTech
Grande école de l’Institut Télécom – membre fondate ur de ParisTech

46, rue Barrault – 75634 Paris Cedex 13 – Tél. + 33 (0)1 45 81 77 77 – www.telecom-paristech.fr

2011-TELP-00XX

EDITE de Paris

présentée et soutenue publiquement par

Daniel Knorreck

26/10/2011

UML-Based Design Space Exploration,

 Fast Simulation and Static Analysis

Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

Télécom ParisTech

Spécialité “ Electronique ”

Directeur de thèse : Ludovic Apvrille
Co-encadrement de la thèse : Renaud Pacalet

T

H

È

S

E

Jury
Mme. Laurence Pierre , Université Joseph Fourier, Grenoble, France Présidente
M. Lothar Thiele , Swiss Federal Institute of Technology, Zürich, Swisse Rapporteurs
M. Frédéric Mallet , Université Nice Sophia Antipolis, Sophia Antipolis, France
Mme. Cécile Belleudy , Université Nice-Sophia Antipolis, Sophia Antipolis, France Examinateurs
M. Jean-Luc Danger , Télécom ParisTech, Paris, France
M. Ludovic Apvrille , Télécom ParisTech, Sophia Antipolis, France Directeurs
M. Renaud Pacalet , Télécom ParisTech, Sophia Antipolis, France

UML-B
D S E,

F S S A

Daniel Knorreck

COMELEC, Institut Telecom, Télécom ParisTech

A thesis submitted for the degree of

Doctor of Philosophy from Télécom ParisTech

Reviewers:
Prof. Dr. Lothar Thiele, Swiss Federal Institute of Technology Zürich
Prof. Dr. Frédéric Mallet, Université Nice Sophia Antipolis, France

Supervisors:
Prof. Dr. Ludovic Apvrille, Télécom ParisTech

Prof. Renaud Pacalet, Télécom ParisTech, France

mailto:daniel.knorreck@eurecom.fr
http:///www.comelec.enst.fr/recherche/labsoc
http://www.comelec.enst.fr/recherche/labsoc

«Never write anything that does not give you great pleasure. Emotion is
easily transferred from the writer to the reader.»

Joseph Joubert

To Carina

Acknowledgements

All along this work, I had the pleasure to meet inspiring people that encour-
aged me, gave me advice, shared their opinion with me, guided me or were
simply there when I needed someone to talk to. Without their valuable assis-
tance, I wouldn’t have succeeded this thesis. As all these people helped me
in their own special way, it would be unfair to put their names in an order.
That is why I chose the following way to express my gratitude:

X X R R J I P E J K C L H Z F

X L I G A D M C L I K V E T H

M A A E B E L L E U D Y N R W

J U D S A R A B E A C M D A H

F D H E U R E C O M D H R U O

G S E B A S T I E N X W I D C

A F P M A L L E T O M J K E I

B X B Q R R L P I E R R E L N

R Z F V T O C H A F I C T R E

I D E H T D A N G E R O D E Q

E X R A L E X A N D R E Q N T

L T I Q L U D O V I C H X A C

Z D E B B E R N D P A U L U B

S A L C A R I N A C C T E D W

R P I N T H I E L E B V M P H

Abstract

Abstract: Design Space Exploration at system level is carried out early in
the design flow of embedded systems and Systems-on-Chip. The objective
is to identify a suitable hardware/software partitioning that complies to a
given set of constraints regarding functionality, performance, silicon area,
power consumption, etc. In early design stages, accurate system models,
such as RTL models, may not yet be available. Moreover, the complexity
of these models comes with the downside of being demanding and slow in
verification. It is commonly agreed that the only remedy to that problem is
abstraction, which triggered the advent of virtual platforms based on tech-
niques like Transaction Level Modeling. Non-functional, approximately timed
models go even further by abstracting data to its mere presence or absence
and introducing symbolic instructions.
The DIPLODOCUS methodology and its related UML profile realize the
aforementioned abstractions. It relies on the y-Chart approach, that treats
functionality (called application) and its implementation (called architecture)
in an orthogonal way. DIPLODOCUS’ formal semantics paves the way for
both simulation and formal verification, which has been shown prior to this
work. This thesis proposes enhancements to the methodology that make it
amenable to verification of functional and non-functional properties.
At first, we focus on the way functional properties are expressed. As veri-
fication of high level models is usually conducted with temporal logic, we
suggest a more intuitive way, matching the abstraction level of the model to
be verified. The graphical but formal language TEPE is the first contribu-
tion of this work. To achieve a high level of confidence in verification in a
reasonable amount of time, the model needs to be executed in an efficient
way. The second contribution consists of an execution semantics for DIPLO-
DOCUS and a simulation strategy that leverages abstractions. The benefit is
that a coarse granularity of the application model directly translates into an
increase in simulation speed. As a third contribution, we present a trade-off
between the limited coverage of simulation and the exhaustiveness of formal
techniques. Especially for large models, the latter may be hampered by the
state explosion problem. As a result of data abstraction, DIPLODOCUS ap-
plication models embrace non-deterministic operators. Coverage-enhanced
simulation aims at exploiting a subset or all valuations of the corresponding
random variables. Therefore, the DIPLODOCUS model is statically analyzed

and information characterizing the significant state space of the application
is propagated to the simulator.
Finally, we provide evidence for the applicability of contributions by means
of a case study in the signal processing domain. It will be shown that com-
mon system properties easily translate into TEPE. Moreover fast simulation
and coverage-enhanced simulation provide valuable insights that may assist
the designer in configuring a Software Defined Radio platform.

Keywords: Embedded Systems, System-on-Chip, Modeling, UML, SysML,
Abstraction, Simulation, Verification, Graphical Property Language, System
Level, Coverage

Résumé: L’exploration de l’espace de conception au niveau système est effec-
tuée tôt dans le flot de conception des systèmes embarqués et des systèmes
sur puce. L’objectif est d’identifier un partitionnement matériel / logiciel
approprié qui réponde à un ensemble de contraintes concernant la fonction-
nalité, la performance, la surface de silicium, la consommation d’énergie, etc.
Lors des étapes de conception précoces, des modèles de système précis, tels
que des modèles RTL, peuvent être encore indisponibles. Par ailleurs, la com-
plexité de ces modèles présente l’inconvénient d’être exigeant et lent dans la
vérification. Il est communément admis que le seul remède à ce problème
est l’abstraction, ce qui a engendré l’apparition de plates-formes virtuelles
basées sur des techniques telles que la modélisation au niveau transaction-
nel. Étant non fonctionnels, les modèles approximately timed vont encore plus
loin en faisant l’abstraction de données simplement selon leur présence ou
absence et en introduisant des instructions symboliques.
La méthodologie DIPLODOCUS et son profil UML correspondant réalisent
les abstractions susmentionnées. La méthodologie s’appuie sur l’approche
en Y, qui traite des fonctionnalités (appelées application) et leur réalisation
(appelée architecture) de manière orthogonale. La sémantique formelle de
DIPLODOCUS ouvre conjointement la voie à la simulation et à la vérifica-
tion formelle, ce qui a été démontré préalablement a ce travail. Cette thèse
propose des améliorations à la méthodologie qui permettent la vérification
des propriétés fonctionnelles et non fonctionnelles.
Au début, nous nous concentrons sur la façon dont les propriétés fonction-
nelles sont exprimées. Puisque la vérification des modèles de haut niveau
est habituellement réalisée avec la logique temporelle, nous suggérons une
façon plus intuitive qui correspond au niveau d’abstraction du modèle qui
doit être vérifié. Le langage graphique, mais formel nommé TEPE est la pre-
mière contribution de ce travail. Pour atteindre un niveau élevé de confiance
en vérification dans un délai raisonnable, le modèle doit être exécuté effi-

cacement. La deuxième contribution vise donc une sémantique d’exécution
pour les modèles DIPLODOCUS et une stratégie de simulation qui s’appuie
sur l’abstraction. L’avantage est qu’une granularité grossière du modèle
d’application se traduit directement par une augmentation de la vitesse de
simulation. Comme troisième contribution, nous présentons un compromis
entre la couverture limitée de la simulation et l’exhaustivité des techniques
formelles. Lorsqu’il s’agit de modèles complexes, l’exhaustivité peut être en-
travée par le problème d’explosion combinatoire. En raison de l’abstraction
de données, les modèles d’application DIPLODOCUS comportent des opéra-
teurs non-déterministes. La simulation à couverture élargie vise à exploiter
un sous-ensemble, ou bien l’intégralité, des valeurs des variables aléatoires.
Par conséquent, une analyse statique des modèles DIPLODOCUS est effec-
tuée et les informations caractérisant la partie significative de l’espace d’état
de l’application sont propagées au simulateur.
Enfin, nous fournissons des preuves de l’applicabilité des contributions par
le biais d’une étude de cas dans le domaine du traitement du signal. Il sera
démontré que les propriétés courantes se traduisent aisément en TEPE. Par
ailleurs, la simulation rapide et sa couverture élargie fournissent des indica-
tions pertinentes qui sont susceptibles d’aider le développeur à configurer
une plate-forme radio logicielle.

Mots clés: Systèmes embarqués, Systèmes sur Puce, Modelisation, UML,
SysML, Abstraction, Simulation, Vérification, Langage de propriétés graphique,
Niveau Système, Couverture

Contents

Contents vi

List of Figures xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Objectives and Contributions . 4
1.3 Outline . 5

2 The DIPLODOCUS environment for Design Space Exploration 7
2.1 Introduction . 7
2.2 Design Space Exploration . 7
2.3 Methodology . 9

2.3.1 Application model . 10
2.3.2 Architecture model . 11
2.3.3 Mapping . 13
2.3.4 Nomenclature . 13

2.4 A word on MARTE . 14
2.5 Model calibration . 15
2.6 Putting Contributions into context . 17
2.7 Conclusions . 18

3 Approaches for System Level DSE and Verification 20
3.1 Introduction . 20
3.2 Models of Computation . 20

3.2.1 Finite state machines and Statecharts . 24
3.2.2 Data Flow Networks . 25
3.2.3 Discrete event . 26

3.3 Classification . 26
3.4 Verification techniques . 30

3.4.1 Formal and static methods . 30
3.4.1.1 Event Stream Composition . 31
3.4.1.2 Operational Analysis . 31
3.4.1.3 Symbolic Computation . 31
3.4.1.4 Static program analysis . 32
3.4.1.5 Symbolic Simulation . 32
3.4.1.6 Model Checking . 33

3.4.2 MoC-centric methods . 34
3.4.3 Simulation centric methods . 35

3.4.3.1 Abstraction Levels . 35

vi

CONTENTS

3.4.3.2 Explicit Control Flow based methods . 37
3.4.3.3 Trace based approaches . 40

3.4.4 Hybrid Static/Simulation methods . 41
3.4.5 Communication centric methods . 42
3.4.6 Improving simulation speed . 42

3.4.6.1 Timing abstractions . 43
3.4.6.2 Simulation techniques . 43
3.4.6.3 Towards native execution . 44

3.5 Property specification . 45
3.5.1 Non-UML approaches . 45
3.5.2 UML approaches . 46
3.5.3 Tooling . 47
3.5.4 Conclusions . 47

3.6 Modeling and visualization . 48
3.7 Conclusions . 48

4 TEPE - A formal, graphical verification language 51
4.1 Introduction . 51
4.2 Formal toolbox . 52

4.2.1 Metric Temporal Logic (MTL) . 52
4.2.2 Fluent Linear Temporal Logic (FLTL) . 53

4.3 TEPE: TEmporal Property Expression language . 55
4.3.1 Requirements modeling with SysML Requirement Diagrams 55
4.3.2 Parametric Diagrams . 55

4.3.2.1 Intuition . 55
4.3.2.2 Construction . 57
4.3.2.3 Example . 58

4.3.3 Links . 59
4.3.4 Generic TEPE Constraints . 60
4.3.5 Attribute constraints . 61

4.3.5.1 Attribute Declaration . 61
4.3.5.2 Setting . 61
4.3.5.3 Equation . 62

4.3.6 TEPE Signal constraints . 62
4.3.6.1 Signal declaration . 62
4.3.6.2 Signal Alias . 63
4.3.6.3 Sequence Constraint . 63
4.3.6.4 Logical Constraint . 64
4.3.6.5 Temporal Constraint . 65

4.3.7 Property Constraints . 66
4.3.7.1 Property Logic . 66
4.3.7.2 Property Label . 67

4.4 TEPE and AVATAR . 67
4.4.1 AVATAR Methodology . 68
4.4.2 AVATAR Block and State Machine Diagrams . 68
4.4.3 Harmonising AVATAR and TEPE . 69
4.4.4 System design example . 69

4.5 TEPE and DIPLODOCUS . 69
4.5.1 Harmonising DIPLODOCUS and TEPE . 70
4.5.2 Example . 71

4.5.2.1 Requirements . 71

vii

CONTENTS

4.5.2.2 Property modeling . 72
4.5.3 Implementation Issues . 74

4.5.3.1 TEPE Verifier Architecture . 74
4.5.3.2 Tree and Path Quantifiers . 75
4.5.3.3 TEPE Constraints . 76

4.6 Conclusion . 78

5 An efficient Simulation Engine 80
5.1 Introduction . 80
5.2 Discrete Event MoC revisited . 81
5.3 SystemC - Virtues and Vices . 82
5.4 DIPLODOCUS’ Simulation Semantics . 83

5.4.1 Application . 83
5.4.2 Architecture . 84
5.4.3 Mapping . 86
5.4.4 Abstraction example: CAN bus . 87

5.5 Simulation strategy . 88
5.5.1 Improvements with respect to conventional DES . 88
5.5.2 Basics . 89
5.5.3 Transaction passing . 90
5.5.4 The simulation kernel . 92

5.5.4.1 Example . 94
5.6 Implementation Issues . 97

5.6.1 Simulator Architecture . 97
5.6.1.1 Interfaces . 97
5.6.1.2 Task Layer . 99
5.6.1.3 Abstract Communication Layer . 99
5.6.1.4 Execution HW Layer . 100
5.6.1.5 Schedulers . 100
5.6.1.6 Communication HW layer . 101
5.6.1.7 DE Simulation . 101

5.6.2 An exemplary simulation run . 102
5.6.3 Simulation event dispatching . 103
5.6.4 Experimental results . 106

5.7 Conclusions . 107

6 Extending Simulation coverage 109
6.1 Introduction . 109
6.2 State Space of DIPLODOCUS models . 110
6.3 Static Analysis of DIPLODOCUS applications . 112

6.3.1 Basic blocks . 113
6.3.2 Live Variable Analysis . 115
6.3.3 Reaching Definition Analysis and Constant Analysis 115
6.3.4 Local dependence analysis . 116

6.3.4.1 Dependence Relations . 116
6.3.4.2 Dependence discovery algorithm . 117

6.3.5 Putting it all together . 118
6.4 Checkpoint identification . 119
6.5 Implementation Issues . 120

6.5.1 Bit vector representation of dependencies . 121
6.5.2 Propagating static analysis results to the simulator 121
6.5.3 The IndeterminismSource interface . 121

viii

CONTENTS

6.5.4 Exhaustive and coverage driven Simulation . 122
6.5.5 State hashing . 123
6.5.6 Experimental results . 125

6.6 From bits and pieces to model checking . 126
6.7 Conclusions . 127

7 Tooling 128
7.1 Introduction . 128
7.2 Design Flow Revisited . 128
7.3 Automated model transformation . 131
7.4 Interactive Simulation . 134
7.5 Frontend-Backend Communication . 136
7.6 Conclusions . 138

8 Evaluation 139
8.1 Introduction . 139
8.2 Case study: An 802.11p receiver . 140

8.2.1 The Eurecom ExpressMIMO-Card . 140
8.2.2 DIPLODOCUS model . 141

8.2.2.1 Identification of functional entities . 142
8.2.2.2 Abstracting communication . 144
8.2.2.3 Behavioral description . 145
8.2.2.4 Architecture . 146
8.2.2.5 Discussion . 147

8.3 Experimental results . 147
8.3.1 Functional properties . 147

8.3.1.1 Simulation . 147
8.3.1.2 Design Space Exploration . 148
8.3.1.3 Discussion . 149
8.3.1.4 TEPE diagrams . 149
8.3.1.5 Discussion . 152

8.3.2 Non-functional properties and coverage enhanced simulation 152
8.3.2.1 Discussion . 154

8.4 Conclusions . 155

9 Conclusions 156
9.1 Resume of Contributions . 156
9.2 And finally. . . - initial claims revisited . 158
9.3 Limitations and Future Work . 160

9.3.1 Methodological Aspects . 160
9.3.2 TEPE semantics . 161
9.3.3 Coverage enhanced simulation . 162
9.3.4 Practical Aspects and Performance . 163

9.4 Publications . 164

10 French Summary 165
10.1 Introduction . 165
10.2 Problématique . 167
10.3 Objectifs et Contributions . 168
10.4 Plan de la thèse et résultats . 170

10.4.1 TEPE . 170
10.4.2 Simulation . 172

ix

CONTENTS

10.4.3 Couverture . 173
10.4.4 Tooling . 174
10.4.5 Evaluation . 174
10.4.6 Conclusion . 175

References 177

x

List of Figures

2.1 The Y-Chart approach and DIPLODOCUS . 10
2.2 DIPLODOCUS design flow . 17

3.1 Classification of Models of Computation . 21
3.2 Classification of Verification approaches . 26

4.1 Fluent example . 53
4.2 Intuition and corresponding UML based notations . 56
4.3 Excerpt from the TEPE PD Meta Model . 57
4.4 Example of a TEPE Parametric Diagram . 59
4.5 Temporal Constraint Operator Semantics . 66
4.6 Microwave oven case study: Block Diagram . 70
4.7 Microwave oven case study: Properties . 73
4.8 Architecture of TEPE constraints . 74
4.9 Example reachability graph with invoked verifier methods 75
4.10 Functional view of the Sequence constraint . 77

5.1 Simulation methodology at a glance . 93
5.2 Example of transaction truncation due to synchronization 94
5.3 Transaction truncation inside the DE kernel . 95
5.4 Example Scenario: Application . 96
5.5 Example Scenario: Architecture . 96
5.6 Simulator architecture . 98
5.7 Example Scenario: Sequence Diagrams . 104
5.8 Completion of the Write Command: Sequence Diagram . 105
5.9 Simulation time as a function of the average transaction length 108

6.1 Varying Model Coverage in DIPLODOCUS . 109
6.2 State Space Exploration Concept . 112
6.3 Running example of an Application Model . 112
6.4 Cascaded Static Analysis . 118
6.5 Example Tasks for Checkpoint Selection . 120
6.6 Illustration of the IndeterminismSource interface . 122
6.7 Sequence Diagram for state hashing during simulation . 124
6.8 Leveraging presented techniques for model checking . 126

7.1 TTool toolchain . 129
7.2 The Interactive Simulation Window . 134
7.3 Simulation results in the form of a reachability graph . 136
7.4 Simulation results in Gantt diagram format . 137

xi

LIST OF FIGURES

7.5 Tabulated benchmarks obtained from simulation . 137
7.6 Interaction of the Frontend and the Simulator within the TTool Framework 137

8.1 Baseband processing architectural overview . 141
8.2 802.11p packet . 142
8.3 Excerpt from the DIPLODOCUS application model of the 802.11p receiver 143
8.4 DIPLODOCUS Architecture of the 802.11p receiver . 146
8.5 Simulation result for two 64QAM (rate 3

4) packets . 148
8.6 TEPE properties to be verified . 150
8.7 Utilization of Hardware Components . 153

xii

Chapter 1

Introduction

Embedded systems are electronic devices whose computing elements are completely
encapsulated in the device they control [109]. As opposed to conventional general pur-
pose computers, the range of tasks an embedded system should accomplish is clearly
defined. Nowadays, complex embedded systems may be integrated on one single chip
and are thus referred to as Systems-on-Chip (SoC). SoC comprise a set of communicating
electronic components on the one hand and complex software programmable parts on
the other hand. SoCs are highly heterogeneous in nature: digital, analog and mixed sig-
nal components may be interconnected to form complex systems ranging from mobile
hand sets and set top boxes to automotive controllers and feedback control systems for
rail cars. Due to recent advances in the field of semiconductor physics, higher integra-
tion densities are achieved so that a given piece of silicon accommodates more and more
transistors.
To make use of the available resources, the complexity of embedded systems and
Systems-on-Chip has been rapidly increasing [35; 49]. On the one hand, users are
demanding products exhibiting sophisticated features that are reliable, easy to use and
affordable. On the other hand, the gap increases between integration and designer effi-
ciency due to inadequate tools and methodologies. In addition to the rising demand of
functionality, time-to-market is an issue of great concern. Hence, developers are facing
significant difficulties due to an exponentially raising complexity. It becomes more and
more unlikely that an optimal design represents an intuitive solution, thus the experi-
ence of the designer may not lead him/her to optimal designs with respect to functional
and non-functional requirements such as performance, size, energy consumption, reli-
ability. A whole body of work, including this thesis, is concerned with answering the
question how the increasing complexity can be dealt with.

Given a particular functionality and associated requirements, the design space is con-
sidered to encompass functionally equivalent implementation alternatives [40]. Being
almost infinitely large at the very beginning of the design flow, the design space should
be gradually reduced during the design process by refining the model of the system.
The less accurate the specification, the more indeterminism the system model exhibits,

1

and the larger the design space is. Optimally, a refinement results in a design which
optimizes a predefined weight function of requirements.
Although the procedure seems straight forward in theory, pruning the design space
is very difficult to achieve in practice. Experienced designers tend to leverage prior
knowledge and stick to favored designs, which have proved to be well suited for pre-
vious products. Thus minor changes on the architecture are applied to derive a new
one. While design reuse is a powerful means to cut down development costs of similar
products by reducing the design space, it is not that capable when it comes to finding a
close to optimal solution for innovative products. Also, platform-oriented design only
transfers the problem of pruning the design space from the end-product vendor to the
platform supplier. Hence, the essence of the problem remains unchanged and tools that
allow for assessing different implementation alternatives for the same functionality are
essential.

The analysis of systems at low abstraction levels assures a high degree of accuracy
but comes with the downside of being demanding and slow. State-of-the-art simulation
techniques operating at RTL, instruction or transaction level are not appropriate for
system-level design space exploration for two reasons:

• Only a very limited number of implementation alternatives can be examined due
to the high modeling effort and extensive simulation runtime.

• The lack of specification at early design stages may prohibit the construction of
detailed models - even if the effort was acceptable.

Thus, the use of abstractions is unavoidable [35] when performing System Level De-
sign and should be part of a thoroughly defined modeling methodology. The use of
abstractions implies as well that application and architecture concerns are handled in
an orthogonal fashion. Indeed, for the sake of reusability, an application model should
not need to be rewritten when being experimented on different platforms. This policy is
known as the Y-Chart approach [77] and widely used in the landscape of System Level
Design Space exploration.

1.1 Problem Statement

The work presented in the scope of this thesis advocates techniques to alleviate design
tasks at early design stages. In that context, the previous section has already pointed
out the need for abstractions. We will now have a closer look at the two main types of
abstraction, yielding either the functional aspect or the timing aspect of a system.
Consequently, two orthogonal views on the system intended for design are prevalent.
On the one hand, the designer relies on purely functional, untimed models to examine
especially intricate algorithmic parts of the application. For example, if the suitability of
a Quadrature amplitude modulation (QAM) decoder is to be looked into, the expected

2

outcome of the analysis is whether or not the decoder is able to reconstruct the original
sequence of samples for arbitrary signals. The availability of the samples at the right
time is taken for granted as the provisioning of the decoder with data is abstracted away.
Functional correctness is the only concern at this stage. In the domain of signal process-
ing and control engineering, mathematical tools such as Matlab have proven their value
for fast prototyping.

On the other hand, it is of utmost importance to have a global view of the interplay of
system components. Thereby, attention is consequently drawn to timing and perfor-
mance allowing functionality to be extensively abstracted. As a consequence, the bird’s
eye view on a system aids the developer to arrange and dimension components and
communication infrastructure in a way that non-functional constraints are met. To get
back to the QAM decoder example, the goal would be to figure out which implemen-
tations guarantee that the decoder never runs out of input samples and that the output
samples arrive on time at their destination. In that case, the internal computations can
be abstracted to symbolic instructions as merely the I/O behavior is of interest in this
analysis. This directly leads to the notion of non-functional performance models this
work is mainly concerned with.

The contributions of this thesis were made in the context of the DIPLODOCUS frame-
work, embracing a UML profile, a methodology and related tooling. It is especially
suited for reasoning about abstract (in terms of functionality), control dominated per-
formance models of today’s SoC. The framework complements the initially presented
fully functional, but untimed models. Also in domains traditionally relying on untimed
models, the interplay of various (signal) processing routines is getting more and more
sophisticated and needs to be orchestrated by control-centric algorithms. Despite this
increasing need for an adequate tooling, state-of-the-art environments of academia and
industry are often hampered by the following shortcomings:

• Application (functionality) and architecture (platform) issues are not handled in
an orthogonal fashion [60] to speed up HW/SW partitioning.

• Emphasis is exclusively put on either simulation or on formal methods.

• A trade-off between these two extreme cases of verification is not provided.

• Abstractions are not fully leveraged to perform fast simulation.

• Performance is the only concern; control flow cannot be modeled/verified.

• The methodology does not feature a modeling standard that enforces abstractions
(such as UML).

• Details of underlying algorithms must be provided in the form of source code in
order to execute the model.

3

• After model transformation to an executable counterpart, debug information is
not back-propagated to the original model.

• The level of abstraction of the language used to express functional properties does
not match the level of abstraction of the system model (Example: system model in
UML, verification language is CTL).

Some of the aforementioned downsides have been remedied in the context of research
prior to this thesis. In the next section, the objectives of this work are surveyed.

1.2 Objectives and Contributions

This thesis is devoted to the enhancement of an existing Design Space Exploration en-
vironment which is introduced in Chapter 2. Application functionality and architecture
are modeled by means of the previously introduced UML profile DIPLODOCUS. The
latter is very capable when it comes to modeling complex systems as it introduces data
and functional abstractions. DIPLODOCUS is supported by the open source toolkit
TTool that, prior to this work, was equipped with modeling features to draw diagrams,
a rudimentary simulation engine, and an automated model transformation to the for-
mal languages LOTOS and UPPAAL. The main contributions were made in the field of
simulation, coverage enhancement of models, expression of functional properties and
in the optimization of the design flow:

• An efficient simulation and validation strategy was conceived to complement the
formal capabilities of the framework. The novel simulation algorithm takes heavily
advantage of the properties of the application model with regards to granularity
and abstractions. An execution semantics for DIPLODOCUS operators has been
defined which is leveraged in simulation and matches the abstractions inherent to
the profile.

• Attention was devoted to finding a compromise between the limited coverage
of conventional simulation and exhaustive formal verification. To extend the
coverage of simulation, an algorithm is proposed which statically analyzes DI-
PLODOCUS applications and identifies the set of significant state variables at a
given point in the application. Methods are presented to exploit results of the
static analysis during simulation with the objective to examine several execution
branches. In case recurring system states are encountered, simulation of partic-
ular branches may be abandoned. With respect to conventional model checking
techniques, the coverage of the application model can be varied and constraints of
the architecture are taken into account. This considerably limits the state space ex-
plosion problem which is encountered when model checking application models
alone.

4

• Verification is often hampered by the obligation to rely on completely different
languages than those used for system modeling. For example, verification of a
UML system model should be feasible within the same environment in UML.
To address this issue, the verification language TEPE is introduced, a graphical
TEmporal Property Expression language based on SysML parametric diagrams.
TEPE enriches the expressiveness of other well-established property languages in
particular with the notion of physical time, easy to express logical and sequential
properties and highly composable operators. Thanks to two dimensional compo-
sition, TEPE supports both events and states based formalisms . Besides, TEPE is
endowed with a formal semantics which is also part of the contributions of this
work.

• The design flow has been optimized in the sense that the user does not need to refer
to the executable model for debugging purposes. Construction, debugging, and
verification can henceforth be seamlessly accomplished in the same environment,
using the same language, without having to write a single line of code.

• Last but not least, this thesis also comprises an extensive practical part. A prototype
has been developed which showcases the above mentioned concepts.

1.3 Outline

This remainder of this thesis is structured in 8 main chapters:

• Chapter 2 puts this thesis into the context of research carried out at our laboratory.
The objective is to make the reader familiar with the DIPLODOCUS framework
so as to ease the understanding of subsequent chapters. Furthermore, a clear
boundary is drawn between existing elements of the framework prior to this
thesis, and enhancements being part of the contributions.

• Chapter 3 positions the contributions in the landscape of related work on frame-
works for System Level Performance Analysis attempts to speed up simulation,
verification languages as well as visualization capabilities of development envi-
ronments. A classification and a thorough analysisof a considerable body of work
motivates efforts and contributions subsequent chapter elaborate on. Finally, an
overview of widely used Models Of Computation (MoC) is given to have a frame-
work for presenting the DIPLODOCUS MoC in 5.4.

• Chapter 4 presents the verification language TEPE, both intuitively and formally
and justifies our decision to build the language upon SysML parametric diagrams.
It surveys the SysML AVATAR profile for embedded systems, in the context of
which TEPE was initially developed. After exemplifying the use of TEPE with
some properties, light is shed on the integration of TEPE into DIPLODOCUS. At

5

the end of Chapter 4, 5 and 6, the interested reader may get some practical insights
into implementation issues in the corresponding sections.

• Chapter 5 covers the simulation semantics of DIPLODOCUS, the algorithm used
to simulate DIPLODOCUS models and it elaborates on design decisions such as
the use of C++ instead of SystemC. Furthermore, information on the automated
model transformation of a UML model to its C++ counterpart are provided.

• Chapter 6 exposes the methodology to enhance coverage of conventional simula-
tion based on static analysis and model checking techniques.

• Chapter 7 is concerned with practical matters regarding the Tooling which are
however of importance to make the theoretical contributions applicable in practice.

• Chapter 8 discusses a case study performed in the field of digital signal processing
with the objective to demonstrate the applicability of the concepts.

• Chapter 9 concludes the thesis with an outlook on future research and finally
summarizes the contributions and publications.

6

Chapter 2

The DIPLODOCUS environment for
Design Space Exploration

2.1 Introduction

This Chapter defines the context of this work, which is System Level Design Space
Exploration and introduces the methodology developed at our laboratory. As stated
in the previous chapter, the contributions highlighted in Chapters 4, 5, 6, 7 were made
within the modeling framework called DIPLODOCUS [14; 129]. Section 2.6 clearly
distinguishes contributions from existing elements of the framework prior to this thesis.
DIPLODOCUS is a UML profile targeting the design of System-on-Chip at a high level
of abstraction. A profile customizes UML [91] for a given domain, using UML extension
capabilities. This practice has the major advantage that the introduced language does
not have to reinvent the wheel in terms of syntax. Instead, predefined UML primitives
are reused and are assigned a user defined semantics. Moreover, a UML profile is usually
accompanied by a methodology so as to guide the user in his modeling efforts. Recent
history has shown that the acceptance of profiles hinges with adequate tool support.
Therefore, DIPLODOCUS is supported by a dedicated toolkit called TTool [16]. Section
2.4 justifies the usage of DIPLODOCUS with respect to the MARTE [93] profile, which is
increasingly gaining attention both from users and tool vendors. Section 2.5 gives some
insight into approaches to fine-tune high level models to improve their accuracy.

2.2 Design Space Exploration

Design Space Exploration (DSE) is the process of assessing viable implementation alter-
natives providing a defined set of functions with respect to non-functional metrics such
as performance, area, power consumption, heat dissipation, etc. By definition, only
solutions complying to functional constraints constitute the design space. That means
DSE is linked to the process of further constraining a correct and properly defined set
of functions by for example binding them to particular processing units. Throughout

7

the following chapters, we will be concerned with System Level DSE also referred to
as hardware software partitioning (the decision whether to implement a function in
hardware or in software). However, it should be emphasized that DSE is of course
not limited to that specific domain. DSE is similarly applied in other contexts and at
different stages of the design flow of SoCs:

• Evaluation of several pipeline based architectures for Application Specific Inte-
grated Processors (ASIPs), most efficiently carried out by means of architecture
description languages such as LISA [10; 130]

• Analysis of memory hierarchies and caches in particular to match the demand for
data accesses [99; 118]

• Assessment of bus and interconnect architectures in general with the objective to
minimize contention [61; 72; 73; 94; 133]

• Trading off delay and area in logic synthesis

Indeed, DSE originates from logic synthesis where the performance of a circuit improves
at the expense of an increased silicon area [40], provided that functions exhibit a suf-
ficient degree of parallelism. In general, the design parameters span the design space
and a variation of design parameters is tantamount to moving through this space. An
evaluation of a single design point reveals whether the given requirements are met or the
space has to be explored further. Obviously, the whole design space has to be explored
in general to spot optimal solutions if no specific knowledge of the problem domain is
available. In case an exhaustive search is too costly in terms of execution time or memory
consumption, heuristics may be incorporated to prune the design space. Often, covering
the whole design space is not feasible due to its sheer size. Nowadays, algorithms are
capable of leveraging the knowledge of encountered design points in order to direct the
search in an intelligent way. Pareto optimal algorithms for instance yield design points
where an improvement of an objective inevitably leads to a degradation of another.
However, an automated exploration of the design space is often restricted to a particular
family of architectures or is otherwise constrained.

When exploration tasks are performed at system level, abstractions on either data or
control flow are necessary to keep complexity within reasonable limits. The Y-Chart
approach [60] enables the designer to address separately functionality, architecture and
mapping issues. Applications are defined according to an underlying model of compu-
tation which captures important properties with respect to a specific problem domain.
Architecture models mimic a concrete hardware component or rather stand for a whole
family of components. Generic components normally expose parameters to the user
which have to be well configured in order to model the desired behavior. A mapping
stage binds functional entities to architecture building blocks. The subsequent eval-
uation stage may require model transformations (synthesis steps, compilations, code

8

adaptations) of the inputs models (Kahn Process Networks, Activity Diagrams,...) to
executable representations (for example C++, SystemC code). After having carried out
simulation, formal verification or static analysis, the designer has to validate the results
against the requirements. Further iterations on the involved models may be necessary
to obtain acceptable results.

2.3 Methodology

The UML-based DIPLODOCUS methodology for system Design Space Exploration
(DSE) is depicted in Figure 2.1. It obliges the user to adhere to the Y-Chart approach [60]
which has been extensively discussed in literature. In short it states that if application
(functional view) and architecture (platform view) are handled in an orthogonal fashion,
the burden of experimenting with several design points is considerably alleviated. The
Y-Chart approach is thus very capable when it comes to DSE, where an application is to
be assessed with different architecture constraints.
The design flow embraces the following three steps:

1. Applications are first described as a network of abstract communicating tasks
using a UML class diagram or a component diagram. This is the static view of the
application. One behavioral description per task must be supplied in terms of a
UML Activity Diagram.

2. Targeted architectures are modeled independently from applications as a set of
interconnected generic hardware nodes. A set of parameters permits to calibrate
components for their application area. UML nodes were defined to model HW
elements (e.g. CPUs, buses, memories, hardware accelerators, bridges).

3. A mapping process defines how application tasks are bound to execution entities
and similarly how abstract communication channels between tasks are bound to
communication and storage devices.

Within a SoC design flow, DSE is supposed to be carried out at a very early stage. Hence,
the main DIPLODOCUS objective is to help designers to spot a suitable hardware
architecture even if algorithmic details have not yet been stipulated thoroughly. To
achieve this, DIPLODOCUS relies (i) on simulation and formal proof techniques, both
at application and mapping level, and (ii) on application models clearly separated from
architecture models. Depending on the respective algorithm, simulation speed may
benefit from the high abstraction level of both application and architecture models, as
compared to simulations usually performed at lower abstraction levels (e.g. TLM level,
RTL level, etc.). Additionally, formal analysis techniques may be applied before and
after mapping. So far, DSE is not automated in the sense that simulation results and
constraints drive modifications on the architecture. However, there have been various
efforts in that field [25; 42] which could successfully be leveraged for that purpose.

9

ArchitectureApplication

Mapping

Constraints
Simulation

Formal verification

Figure 2.1: The Y-Chart approach and DIPLODOCUS

2.3.1 Application model

An application model is the description of functions to be performed by the targeted
SoC. Data-dependent decisions are abstracted by means of indeterministic operators.
An application model may give rise to several execution traces due to its inherent
indeterminism and the potentially undefined partial order of concurrent actions. At ap-
plication modeling level, computations and communication transactions are accounted
for by abstract cost operators. The time it takes to process the latter can only be resolved
with the aid of parameters annotated to the architecture model. Abstract cost operators
entail two kinds of abstractions which reflect the degree of uncertainty inherent to early
design stages:

• Data abstraction: Only the amount of transferred data is taken into account, not
the data itself.

• Functional abstraction: Algorithmic details are abstracted by means of their sym-
bolic cost operators.

As stated before, functions are modeled as a set of abstract tasks described within
UML class diagrams. Task behavior is expressed using UML activity diagrams that are
built upon the following operators: control flow and variable manipulation operators
(loops, tests, assignments, etc.), communication operators (reading/writing abstract data
samples in channels, sending/receiving events and requests), and computational cost
operators. This section briefly describes a subset of the aforementioned operators as
well as their semantics and provides definitions for Channels, Events and Requests:

• Channels are characterized by a point-to-point unidirectional communication be-
tween two tasks. Three Channel types exist:

– Blocking Read/Blocking Write (BR-BW)

10

– Blocking Read/Non Blocking Write (BR-NBW)
– Non Blocking Read/Non Blocking Write (NBR-NBW)

• Events are characterized by a point-to-point unidirectional asynchronous com-
munication between two tasks. Events are stored in an intermediate FIFO queue
which may be finite or infinite. In case of an infinite queue, incoming events are
never lost. When adding an event to a finite FIFO, the incoming event may be
discarded or the event that arrived earliest may be dropped if the FIFO is full.
Thus, a single element queue may be used to model hardware interrupts. In tasks,
events can be sent (Send Event), received (Wait Event) and tested for their presence
in a queue (Notified).

• Requests are characterized by a multi-point to one point unidirectional asyn-
chronous communication between tasks. A unique infinite FIFO between senders
and the receiver is used to store all incoming requests. Consequently, a request
cannot be lost.

As some of the constituting operators of Activity Diagrams are referred to in later sec-
tions, a brief survey is provided which is not meant to be exhaustive (see Table 2.1).

2.3.2 Architecture model

A DIPLODOCUS architecture is built upon the following parameterized hardware
nodes:

• Computation nodes: Typically, an abstract CPU model merges both the function-
ality of the hardware component and its operating system. The behavior of a CPU
model can be customized by the following parameters (amongst others): data size,
pipeline size, cache miss ratio, number of cores and scheduling algorithm.

• Communication nodes: A communication node is either a bus or a bridge. The bus
model exhibits the following parameters: data size, latency, number of channels
and scheduling policy. Note that connectors established during the mapping stage
are supposed to interconnect a hardware node - except for buses - with a bus. A
connector may be annotated by a priority if the respective bus has a priority-based
scheduling policy.

• Storage nodes: Memories are parameterized with two measures: latency and data
size.

• DMAs: So far, DMAs are represented with an adequately parameterized CPUs
and a dedicated task mapped onto it.

A DIPLODOCUS architecture is modeled in terms of a UML deployment diagram where
DIPLODOCUS links and nodes have their own UML stereotype.

11

Icon: Command: Semantics:

Start Denotes the beginning of a task

End Denotes the end of a task

Read Channel Read x samples from a channel

Write Channel Write x samples into a channel

Send Event Send an event including 3 parameters

Wait Event Wait for an event carrying 3 parameters

Select Event Wait for one of several events

Request Make a given task runnable

Notified Return the number of pending events

Execi Perform x computations

Execi Interval x y Perform between x and y computations

Choice Deterministic choice

Random Choice Indeterministic choice
Sequence Execute connected branches consecutively

Loop For loop construct

Action Variable assignments

Random Determine a random number between x and y

Table 2.1: Most prevalent DIPLODOCUS operators for task behavior

12

2.3.3 Mapping

A DIPLODOCUS mapping describes the association of application elements - i.e. tasks,
channels, requests and events - and hardware nodes. Thereby the following rules apply:

• Abstract tasks must be mapped on exactly one computation node. This is not
restrictive as the node may support concurrency (e.g. multi-core CPUs).

• Abstract communication entities must be mapped on communication and storage
nodes. A channel is usually mapped on n buses, n-1 bridges and exactly one
storage element. Furthermore, all connected communication links have to form a
continuous path without loops.

Depending on the mapping semantics, additional parameters may be of interest. For
example, when mapping a task on a CPU node having a priority-based scheduling pol-
icy, task priorities have to be defined.
The mapping stage is carried out based on previously created DIPLODOCUS architec-
ture diagrams: artifacts representing tasks and channels are simply bound to hardware
components in a drag and drop fashion. Post-mapping specifications contain less traces
than pre-mapping specifications since a mapping is intended to resolve shared resource
allocations. In contrast, the application model alone does not stipulate any temporal
order of concurrent actions, apart from causality constraints due to synchronization.
Moreover, traces obtained after mapping are supposed to be a subset of traces obtained
before mapping.

2.3.4 Nomenclature

Several notions are used abundantly throughout this thesis and therefore need some
closer attention. A formal definition of DIPLODOCUS operators and related notions is
out of scope of this work and can be found in [55].

• Command and Operator are used as synonyms and refer to the building blocks
of an Activity Diagram. They describe the behavior of DIPLODOCUS tasks. The
operators relevant for this work are depicted in Table 2.1.

• The execution semantics of DIPLODOCUS tasks implies that commands are not
considered as atomic. Commands can be split into smaller portions to satisfy
application and architecture semantics. This portion is henceforth referred to as
Transaction. As an example, an Execi 10 command may be broken down into two
transactions of length 8 and 2 respectively.

• The separation of concerns demands for different units of measurement for com-
plexity and time. At application level, complexity is specified in terms of Execi
units or data samples and is called (virtual) length. As soon as a transaction is
bound to HW devices, its physical duration may be computed as a function of its

13

(virtual) length and device parameters. The latter measure is therefore referred to
as duration.

• The notion of ”Channel“ appears in two contexts in this work: first a Channel
denotes a means of communication between two DIPLODOCUS tasks. Second, if
a bus may handle several data transfers concurrently, it is said to provide several
channels. The intended meaning should become clear from the context.

• Unfortunately, the notion of Event is overly stressed in different communities.
First, in DIPLODOCUS it stands for a means of synchronization among tasks.
Second, it is used in a broader sense to denote a transition from one system state
to another. The latter meaning applies in the context of Models of Computation
(cf. Section 3.2) and the simulation kernel (cf. Section 5.6.3).

• In DIPLODOCUS, behavior may be captured with a class diagram or likewise with
a component diagram. Classes and components share the same semantics; they
are defined as concurrent functional entities with their own control flow. In the
following, both notions are referred to as tasks to abstract from the underlying
diagram type.

2.4 A word on MARTE

Having gained an insight into DIPLODOCUS, the reader may ask the legitimate ques-
tion why we did not rely on the MARTE [93] profile. MARTE constitutes an extension of
the UML standard and its major concerns are specification, design, verification and val-
idation stages of real time and embedded system development. Packages are devoted
to resource modeling, non-functional properties, value constraints, hardware/software
resource modeling, allocation modeling and schedulability analysis. The profile thus
replaces the UML Profile for Schedulability, Performance and Time. MARTE seeks to
establish a common ground for reasoning about systems, by standardizing a particular
syntax. This policy enables designer to exchange models internally and between third
parties in a standard format. However, MARTE does not stipulate any particular se-
mantics or methodology; this is left to the user or a methodology provider respectively.
MARTE allows to annotate models with additional information which can be leveraged
for performance and schedulability analysis.
Even if the contributions of this thesis are exemplified with the aid of the DIPLODOCUS
framework, they apply just as well to any other language exhibiting the same semantics,
be it a textual form, MARTE, or others. The syntactical structure of the language has no
impact on verification, simulation or coverage procedures presented herein. Nothing
prevents the user from modeling the application in terms of MARTE blocks stereotyped
as schedulable resources, to make use of the MARTE Hardware Resource Model in archi-
tecture diagrams, to bind schedulers (defined with the MARTE GaExecHost stereotype)
to components using the MARTE allocate stereotype, etc.

14

In any case, MARTE Activity Diagrams would have to be enriched with the operators
described in 2.3.1.

2.5 Model calibration

Regardless of the formalism or UML profile used, the major goal of high level models
is to minimize the modeling effort and to reach a high execution speed. However, the
obtained performance figures will not lead the designer to the right design decisions if
they are too far from the actual system behavior. Therefore, an issue of great concern
is to yield sufficiently insightful performance estimations despite the applied abstrac-
tions. To achieve this, the parameters exposed by abstract models have to be fine-tuned
best possible to the respective circumstances. In that context, two use cases can be
discriminated:

• The system itself or a similar one has already been refined so that low level models
(source code for software, RTL for hardware) are available. High level modeling
in that case constitutes an efficient way to extend the scope of the analysis from
component to system level and to improve simulation speed significantly.

• The system under design is novel so that no suitable low level model is at hand.
High level modeling is the only way to get some first insights into the performance.

In literature [70; 103], four approaches for calibration are prevalent:

1. Deducing the number of operations from a purely algorithmic description: there-
fore, from a representation in pseudo-code, Matlab, or other high level domain
specific languages the number of instructions (different types of operations, mem-
ory accesses, etc.) is calculated

2. Extracting data from measurements or traces of similar existing systems: the first
step would consist in separating the individual contributions to system load, i.e.
the different applications. Thereafter, the utilization of a CPU would be measured
separately for each application and the results merged as a function of the particular
use-case. The last step aims at differentiating memory accesses from processing
instructions based on their assumed probability of occurrence.

3. Inferring the workload from low level models, for instance source code: The
simplest approach would just entail cross-compiling an application for the tar-
get platform and counting execution and memory access instructions. However,
provided that the high level model reflects control flow like DIPLODOCUS, the
challenge to match assembly instructions with high level control structures has to
be dealt with. In the presence of sophisticated optimization features of today’s
compilers, it is obvious that this is not a trivial exercise (cf. [116; 128]).

15

4. Rather than relying on tabulated values for calibration, so called on-line calibra-
tion could dynamically compute the exact values at simulation run time. This is
tantamount to integrating models of heterogeneous abstraction levels in order to
trade off simulation performance against increased accuracy. As this method is
currently not foreseen in DIPLODOCUS, it is not elaborated in further detail.

All hardware dependent measures obtained with the aforementioned strategies would
of course be annotated to the DIPLODOCUS architecture model. To make sure platform-
independence is respected, the DIPLODOCUS application model merely comprises fig-
ures characterizing the complexity of an algorithm in terms of instructions of particular
type (floating point instruction, FFT, etc.). In the further course of this thesis, the devel-
oper is assumed to have an adequate strategy for model calibration at hand.
In the following, several questions regarding model calibration and best practices of
DIPLODOCUS modeling will be answered in an FAQ manner.

Data abstraction: boon or bane?
It should be reemphasized that data-dependent behavior of the application has to be
expressed in terms of random operators. That is, a stochastic model of data hazards has
to be embedded into the application model. However, this effort is not particular to our
methodology, neither it is to a high level of abstraction. Whenever a system is loaded
with data-dependent tasks, the designer is obliged to come up with a statistical model of
the data to be processed. Only with that model, it is possible to avoid overdimensioning
the system for the worst case. The statistical model gives the designer the confidence
that an architectural trade-off delivers an acceptable performance with a known proba-
bility.

Which granularity has to be applied for data exchanges (Read/Write operators for
channels)?
Basically, all commands manipulating data could in theory entail a Read/Write trans-
action on a bus. Even if one considers a simple command such as an assignment, it is
not guaranteed that the variables referred to are held in cache. One can discern two
main types of data: on the one hand data related to control flow (loop variables, flags,
...) and on the other hand input or output data of an algorithm. The fast discrete cosine
transform algorithm for example exhibits two consecutive loops containing the compu-
tation of frequency coefficients as a function of the given input samples. Control flow
merely relies on the loop variables. Fortunately, the usage of control flow variables often
satisfies the temporal and the locality criterion of data caches. Furthermore, the amount
of control data is often neglectable as compared to the input and output values. For
these reasons, control data transfer is not modeled with DIPLODOCUS channel oper-
ators. The model of the DCT algorithm is thus reduced to reading the input samples,
executing the main algorithm and writing back the output frequencies to memory.

16

What about the detailedness of an algorithm?
The algorithmic model should cover branches that differ significantly in terms of pro-
cessing time. This means that the model should not reflect if statements spanning only
a few cycles. In this case, an average value of cycles should be applied in favor of sim-
ulation speed (an Execi Interval operator could be used as well). Adequate statistical
models should be provided which guarantee a realistic behavior in spite of the lack of
"real input data". DIPLODOCUS Action and Choice commands can be used for the
necessary computations of Exec units and to direct the control flow.

Which granularity of partial order to choose for read, execute and write operators?
The most simplistic model of an application would just consist of a read (for input data),
an Execi operator and a Write operator (for output data). The other extreme case would
be to spread the three operations more or less uniformly across the task, enriched with
control flow operators. The simulation algorithm presented in this thesis (Chapter 5)
is able to take advantage of long transactions in order to process more clock cycles per
time unit. Thus, simulation performance benefits from a coarse grained model to the
detriment of simulation accuracy. Consequently, there is no silver bullet to address this
problem, as its solution highly depends on the particular simulation objective.

2.6 Putting Contributions into context

Modeling

Formal Code

Generator
C++ Code Generator

UPPAAL

LOTOS

LOTOS

Executable Model

(C++)

Verification

Bisimulation

DIPLODOCUS Application DIPLODOCUS Architecture

DIPLODOCUS Mapping

Requirement Diagram

TEPE-formalized Requirements

Formal Code

Generator

Feedback

to UML

Models

Static Simulation &

Verification Library

Figure 2.2: DIPLODOCUS design flow

The open-source toolkit TTool [16] supports several UML2 / SysML profiles, in particular
DIPLODOCUS [11], AVATAR [65], TURTLE [13], CTTool [8] and Network Calculus [15].

17

TTool offers UML model editing facilities as well as press-button approaches for formal
verification. TTool and its profiles have proven their value in several projects conducted
with academic and industrial partners.
Formal verification can be conducted on the application model alone or on the mapped
model, embracing an application and an architecture (cf. ”Formal Code Generator“
labels in Figure 2.2). TTool is interfaced to verification tools by means of the intermediate
formal languages LOTOS and UPPAAL. However, these languages are transparent to the
user thanks to automated model transformations. TTool offers a user-friendly interface
to check simple properties such as liveness and reachability (e.g., with UPPAAL) of
UML operators. A reachability graph may also be transformed into a Labeled Transition
System, a structure for which CADP [38] implements minimization techniques based
on trace or observational equivalences just to mention a few. Formal techniques may
further be leveraged to carry out formal Design Space Exploration of Systems-On-Chip
[62].
In Figure 2.2, the achievements of this work are marked with a white background and
continuous borders, while existing elements are marked with a dashed border. Prior
to this thesis, merely liveness and reachability of DIPLODOCUS operators could be
checked at the push of a button. To this end, the UPPAAL verifier was invoked with
the corresponding CTL formula. When it came to more complicated and user defined
properties, they could only be expressed by means of SysML requirement diagrams in
an informal way, namely in plain text. The only way to formalize them was to provide
CTL formulas to TTool and which were simply forwarded to the model checker. This
work eliminates this rupture of the design flow by proposing a UML-based, formal
verification language suited for the abstraction level of DIPLODOCUS (see Chapter 4).
Moreover, a fast simulation engine was developed [63] which provides visual feed-back
to UML models [64] (see Chapter 7) and thus allows for debugging and verification
directly in the source model. Chapter 5 elaborates on the simulation algorithm, whereas
pivotal techniques permitting the extension of the simulation coverage are discussed in
Chapter 6.

2.7 Conclusions

In summary, this chapter made the reader familiar with the high level Design Space
Exploration Environment DIPLODOCUS, the homonymous profile, its methodology
and operators. It is based on the Y-Chart approach acknowledging the need for separate
models for application and architecture. That way, the developer may experiment very
efficiently with several possible implementations for a given set of functions. It has
been stated that the profile MARTE could also be used to express the semantics of
DIPLODOCUS, if Activity Diagrams were enriched with some additional operators.
The contributions of this thesis are however not impacted by the concrete syntax of the
modeling language, as long as the semantics is respected. Lastly, this chapter dealt with
the crucial issue of parameterizing high level models so as to improve their accuracy.

18

Algorithmic descriptions, low level model and knowledge of the field of application
may be leveraged for that purpose.
After the existing environment and the intended enhancements have been presented,
the next chapter justifies the latter by examining related work in the field of system level
modeling, simulation and verification of Systems-on-Chip.

19

Chapter 3

Approaches for System Level DSE and
Verification

3.1 Introduction

This Chapter surveys efforts to verify non-functional and functional properties of Systems-
on-Chip (SoC) early in their design flow. Section 3.2 paves the way for the analysis of
related work and the DIPLODOCUS simulation semantics (section 5.4). The section cov-
ers the common ground of all modeling efforts, namely Models of Computation (MoCs).
Section 3.4 focuses on System Level Design Space Exploration (DSE) where models are
tailored towards performance aspects and are not necessarily functional. In that context,
approaches can be roughly classified into three categories, to which separate sections
are devoted: formal/static approaches (Section 3.4.1), simulation centric approaches
(Section 3.4.3) and hybrid variants (Section 3.4.4). For a more thorough classification
of approaches please refer to section 3.3. Formal and simulation based environments
are contrasted with each other as well as approaches targeting whole systems or solely
communication architectures (Section 3.4.5). Depending on their methodology and the
underlying MoC, frameworks may be restricted to a particular range of applications
(such as signal processing applications) and attain a different coverage of the design
space. Simulation as a verification method plays a pivotal role in this thesis. To that
end, methods aiming at speeding up traditional simulation techniques are surveyed
as well in Section 3.4.6. Section 3.5 justifies our property expression language TEPE
with respect to popular approaches in that domain. To acknowledge the importance
of tooling for the acceptance of a methodology, TTool is related to state of the art UML
modeling environments embracing visualization features (see Section 3.6).

3.2 Models of Computation

As this section demonstrates, Models of Computation play a pivotal role in system
modeling and verification. In later sections, related approaches for DSE are compared

20

Models of

Computation

Abstraction Level

Timing

Concurrency

Communication
Data Structures

Synchronicity

Synchronous/

Asynchronous

Algorithmic

Abstractions

Global / Local Timing

Process Definition

Partial / Total order

Continuous/Discrete

Figure 3.1: Classification of Models of Computation

with respect to the underlying MoC (amongst other criteria such as the capabilities
of verification features). For this reason, this section paves the way for the analysis
of related work by providing definitions and examples of MoCs. Moreover, general
properties of MoCs are related to the DIPLODOCUS profile in particular. DIPLODOCUS
semantics of application models was formally defined and justified prior to this work in
[11; 14]. However, the semantics of hardware components and mapping leaves room for
different interpretations. Section 5.4 intents to clarify simulation semantics and justifies
the decisions.

In DIPLODOCUS . . .
Engineering as a discipline is heavily tied to the pro-
cess of modeling, which refers to solely taking into ac-
count relevant properties and parts of a system under
design. Details that do not impact design decisions
at the current stage can be abstracted away (com-
pare Section 3.4.3.1). The art of modeling amounts to
discriminating the relevant from the irrelevant with
respect to the expected outcomes, be it performance
figures, compliance to properties, etc.

. . . data abstraction, indetermin-
istic operators and symbolic oper-
ations attempt to abstract system
behavior while preserving perfor-
mance relevant properties to a
large extent.

As soon as digital electronic systems come into play,
basic atomic operations of the system are referred to
as computations.

. . . transactions of length one (1
Execi unit, 1 data sample) are con-
sidered as atomic actions.

21

A MoC specifies the set of allowable operations
and may account for their respective costs, the state
change provoked in the system, or both. Thereby,
MoCs may abstract from the underlying physical de-
tails to capture only features relevant to the problem.

. . . there are mainly two allow-
able operations: control flow re-
lated ones taking no time (Choice,
Action, etc.), and operations with
which are associated a cost (Execi,
Write, Read, etc.)

This suggests that the choice of an adequate MoC
highly depends on the nature of the application to
be modeled and the aspects to be investigated. For
instance, control flow issues of a video player ap-
plication could be expressed in terms of Petri nets,
whereas the signal processing part is analyzed by
means of synchronous dataflow models.

. . . emphasis is placed on per-
formance modeling. However,
ongoing research investigates to
what extent and under which con-
ditions functional properties are
preserved with respect to more de-
tailed models. DIPLODOCUS
is control flow centric and there-
fore less suited for modeling data
flow systems which are always as-
sumed to be in a (single) steady
state.

According to [35] and [74], a MoC can be character-
ized by the following elements:
An event comprising a tag (for example the time of
occurrence) and a value (for example an ID denot-
ing the nature of the event). Timed MoCs impose
the order of tags, untimed MoCs may merely estab-
lish a causal/partial order. Events often trigger the
transition to a new system state.

. . . application models are un-
timed and thus merely impose a
causal order on events (not to
be confused with DIPLODOCUS
events). Only after the mapping
stage the timing of events can be
resolved.

A process is considered as a set of possible behaviors
relating input signals to output signals. The MoC
determines the character and the building blocks of
the processes the application is made of.

. . . the notion of”task“ corre-
sponds to a ”process“ in the MoC
terminology.

The state of a system makes the system’s history ir-
relevant or in other words the system cannot distin-
guish between histories which lead to the same state.
The state of the system embraces all pieces of infor-
mation needed to determine the responses to future
inputs.

. . . the state space is spanned by
local variables of tasks, the cur-
rent position within a task and
the state of all synchronization
primitives. The architecture can
be seen as an instrument to limit
the partial order of the application,
which does not necessarily extend
the state space.

22

A MoC is chosen with regards to the investigated
properties: formal proofs certainly require a solid
mathematical foundation of the MoC, whereas exe-
cutable MoCs are more tailored towards simulation.
In general, SoC design should be based on two mod-
els. On the one hand, a logical mathematical model
involves nice properties which allow for performing
formal proofs (for instance by means of static analy-
sis, model checking,...).

. . . models may be verified by
both simulation and formal proofs
thanks to its formal semantics
[62].

On the other hand, the limitation of these models
is that aspects contributing to the system’s physical
behavior are not well captured. The underlying as-
sumption is that computation power of the computa-
tion engine is abundant and physical limitations do
not have any effect. The space of expressible designs
is reduced in favor of stronger and more sound math-
ematical underpinning [109]. On the other hand, this
assumption is often too strong in the field of embed-
ded systems and therefore more programmatic and
less formal models complement the tool box of the
designer. The latter models focus more on physical
aspects of the system, like for instance the Discrete
Event MoC, which is the underlying MoC for several
hardware description languages.

. . . the separation of concerns
leaves the choice to the user
whether physical constraints are
taken into account.

It is obvious that when dealing with complex
Systems-on-Chip, there is no omnipotent MoC which
is capable of expressing all system properties of in-
terest. Therefore, designer often resort to several of
them.

. . . data produced by algorithms
is abstracted and therefore cannot
be verified. To this end, verifica-
tion should be complemented with
purely functional, untimed mod-
els written in domain specific lan-
guages such as Matlab.

MoCs are classified [82] according to three orthog-
onal axes (depicted in Figure 3.1): Time describing
the evolution of a system with respect to a usually
global logical or physical clock, a concurrency rela-
tion defining the coincidence of time instants, and
finally communication specifying the interplay of
system entities. Timed models imply a total order
of event tags, whereas in untimed models causal-
ity and data dependencies stipulate merely a partial
order among them.

. . . time is introduced at mapping
stage, as stated before.

23

In synchronous designs, all model elements run in
lockstep and therefore state updates are carried out
at the same time. This may be achieved with the ab-
straction of computation and communication taking
zero time. Likewise one could think of the actual
delay introduced by communication and computa-
tion as being irrelevant because they do not over-
lap. In asynchronous models, a new state is propa-
gated directly between two individual elements and
no global clock is available.

. . . all components of the architec-
ture model are synchronized to in-
teger dividers of one global clock.
The application model alone ex-
hibits an asynchronous behavior.

In the context of communication, the notion of syn-
chronicity is used in another sense. Synchronous
communication implies the simultaneous participa-
tion of entities in an action, which is blocking as long
as at least one entity is not available. Asynchronous
communication temporally decouples sending and
receiving actions by involving a stateful mediator
(for instance a FIFO channel storing the sent but not
yet received events).

. . . has native support for asyn-
chronous communication exclu-
sively, which however permits to
emulate synchronous communi-
cation.

This section confronted general properties of MoCs with the particular characteristics of
DIPLODOCUS. To complement this survey, the following sections elaborate on discrete
time MoCs most frequently referred to in related work of this thesis.

3.2.1 Finite state machines and Statecharts

Communicating finite state machines (FSM) constitute a widely used synchronous and
timed model for the control flow of embedded systems. This representation explicitly
specifies the system states and thus the amount of memory elements the system em-
braces. A traditional FSM used for engineering purposes is defined as a set of input
signals, a set of output signals, a finite set of states, output functions relating output sig-
nals to the current state and the input signals, and a next state function mapping inputs
and the current state to the subsequent one. FSM have their roots in the more abstract
automata theory which is a branch of theoretical computer science. This theory does not
discriminate input or output signals and rather emphasizes the acceptance or rejection
of a sequence of symbols belonging to a formal language. Finite state machines however
are more pragmatic in the sense that they have a direct representation in hardware: the
two functions can easily be translated into boolean logic (combinational circuitry) and
states are directly presented by memory elements (sequential circuitry).

Traditional FSM are not very capable when it comes to modeling concurrency and (data)
memory: in that case, the so called state explosion problem is encountered. This latter
problem could be mitigated by using several distinct FSM, which would correspond to

24

a single machine having a number of states equal to the product of the number of states
of each machine. In addition to concurrency, hierarchy may be employed to cope with
complexity. These two concepts have been introduced in the framework of Statecharts
(synchronous, untimed) [44].
State machines constitute a good starting point for formal verification techniques such
as model checking. The basic idea is to use algorithms that pass through the FSM with
the objective to tag states which comply with a logic formula (CTL, LTL,..). Finally, a
yes or no answer is obtained depending on whether the resulting set of states is empty
or not. A large body of work exists on implicit representations, that yield a reduced
memory consumption by circumventing the explicit enumeration of all system states.

3.2.2 Data Flow Networks

In Data Flow Networks (DFN), systems are structured by means of directed graphs com-
prising nodes interconnected by arcs. Nodes stand for concurrent processes performing
operations on data and arcs symbolize event or data streams which are generated and
consumed by these processes. DFN are often organized in a hierarchic way such that
a process may be made of another graph. Synchronous data flow systems rely on the
assumption that a constant amount of data is produced, consumed and processed per
time unit. DFN are widely used in the context of signal processing and control applica-
tions (cf. Simulink).
Untimed, asynchronous Kahn Process Networks (KPN) [57] refer to a set of concur-
rent processes communicating through unbounded FIFO channels. As read requests
are blocking, a process is suspended when reading from an empty FIFO and can be
resumed as soon as data is written into the channel. Write requests are non-blocking
by definition due to unlimited channels. Channels interconnect exactly one sending
and one receiving process. The description of process behavior embraces sequential
computations on local data as well as read and write operations. Unlike other MoCs,
KPNs guarantee the useful property that resulting data streams solely depend on the
input streams regardless of the order of process scheduling. However, this property
comes at the expense of flexibility: a process is not able to verify the presence of input
data to prevent a preemption. Furthermore, deadlock free execution is guaranteed as
well by the MoC.
Petri nets [98] bear some resemblance with DFN and state machines. This MoC puts
emphasis on the interaction of systems rather than on the functionality by describing
systems in terms of places with transitions between them. To cause a transition to fire,
a given number of tokens must be available in the input place. The state transition is
finalized when tokens are generated in the output places. As firings of transitions may
occur at the same time, the MoC naturally captures concurrency.

25

3.2.3 Discrete event

Even though the discrete event (DE) MoC (timed, asynchronous) [78] has no formal un-
derpinning, it plays a very important role in hardware design and simulation in general.
Simulation semantics of languages such as Verilog, VHDL and SystemC are defined with
respect to this MoC. Events trigger processes at the time indicated by the time stamps
of the former. In turn, processes may give rise to further events. A scheduler maintains
a global event queue which is totally ordered with respect to the time stamps of the
events. The scheduler elects the receiver process of the top-most event in the queue for
execution. If time stamps are split into two parts, one standing for the physical part,
one indicating the number of times a process has been evaluated, concurrency can be
emulated on single processor systems. In VHDL, delta cycles and the evaluate-update
policy for signals ensure the causality of concurrent processes.
Obviously, simulation engines based on DE perform very well when the modeled sys-
tem is moderately active. An increasing activity leads to a considerable overhead due
to event ordering and processing.
The DE MoC suffers from mainly two flaws: potential indeterminism introduced by
simultaneous events and zero delay feed-back loops. However, the semantics of lan-
guages on top of the DE MoC such as VHDL may mask this indeterminism. DE models
are still considered as the workhorse of simulation as many wide spread simulation
environments are built upon them.

3.3 Classification

SoC Analysis and

Verification

Static Methods

Dynamic

Methods

Formal

Simulation

Trace based

simulation (P)

Simulation based on

explicit control flow

(P, F)

Symbolic Simulation (F)

Model checking (P, F)

Static Program Analysis (P, F)

Theorem Proving (F),

Symbolic Computation (P, F)

Queueing Theory

Equivalence Checking (F)

Scheduling

Theory

Event Stream

Composition (P)

Operational

Analysis (P)

Schedulability

Analysis (P)

Statistical

Analysis (P)

P: Performance Analysis, F: Functional Analysis

Figure 3.2: Classification of Verification approaches

Figure 3.2 constitutes an attempt to classify the huge body of work yielding verification
approaches for SoC. Thereby, both approaches yielding functional verification (marked

26

with ’F‘) and performance evaluations (marked with ’P‘) are considered. The most ev-
ident and most discriminating factor is whether a model needs to be executed in order
to produce results. The execution of a model is informally defined as the traversal of a
(possibly infinite) sequence of states, constituting a subset of the space spanned by all
possible valuations of the memory elements of the model. Therefore, the model must
stipulate a series of state transitions/instructions to be carried out in a defined order,
referred to as control flow.

Static methods usually do not define a sequence of transitions but embrace a list of
entities instead (be it tasks, clients, servers, logic gates) which are characterized by a set
of equations or key figures. (In the case of static program analysis, the input models yet
contain a sequence of transitions, which however do not get executed according to the
previous definition.)

Schedulability analysis defines a system as a set of tasks with properties such as best
case execution time, worst case execution time, priorities, deadlines, etc. As compos-
ability is of paramount importance, the theory has been extended to cover the interplay
of components providing and requiring service respectively.
In Figure 3.2 this technique is referred to as Event Stream Composition. The underlying
assumption is that events do not have to be considered individually but may be gath-
ered to streams governed by a certain regularity. Both schedulability analysis and Event
Stream Composition yield performance figures and shed light on whether a system may
cope with a given workload under certain constraints.

Equivalence checking is usually applied to digital electronic circuits at RTL level or
even below. It is capable of (dis)proving that two representations of a circuit present
the same behavior, from a black box perspective. Due to the sheer complexity of the
problem, the topology of memory elements is constrained to be quite similar in both
designs. This method is not discussed any further as this work is concerned with higher
abstraction levels.

Queueing theory is the mathematical foundation for describing queues of entities await-
ing service. The theory distinguishes several fundamental events such as arrival at the
queue, waiting in the queue and being served. On the one hand, the outcomes of the
theory consist of performance measures such as the average waiting time and the num-
ber of waiting/serviced entities. On the other hand, probabilities of particular system
states (queue empty/full, encountering a specific waiting time) may be deduced.
Operational Analysis has evolved from queuing theory due to the observation that this
theory even applies quite well if some of its assumptions are violated. The latter require
a system to be studied in equilibrum, stationarity, and ergodicity and to present expo-
nentially distributed service times. Operational analysis [34] relaxes the assumptions
inasmuch as statistical values, necessitating a thorough analysis of many experiments,
are replaced by parameters being directly measurable in practice.

27

Theorem Proving defines a system as a set of statements or axioms assumed to hold and
therefore not requiring any proof. A theorem prover is able to determine whether some
statement is a logical consequence of the axioms. The axioms could for instance describe
valid actions of a system and the statement to be proved could define an undesired state.
That way, the compliance of the system to constraints can be mathematically established.

As its name suggests, Static Program Analysis attempts to obtain information on a pro-
gram without actually executing it. Static analysis may result in mathematical proves of
properties (”Is the value of x twice the value of y after 3 iterations...“), hints to improve
program performance (reformulation of statements, elimination of unused variables or
dead code, data dependency information) or performance measures such as worst case
execution time, loop bounds. Even if many problems are undecidable in general due
to the halting problem, in practice programs often have nice properties allowing static
analysis to succeed.

Symbolic computation is capable when it comes to studying systems for which math-
ematically defined MoC (Petri Nets, Kahn Process Networks, etc.) or terms (closed
expressions, difference/differential equations) exist. For example, reachable markings in
Petri Nets can be calculated with the aid of matrix multiplications. Symbolic computa-
tion is also heavily used at low abstraction levels, such as electronic circuits or analog
systems

As stated previously, dynamic methods explicitly carry out system transitions stipu-
lated in the model. In the presence of loop-like structures with variable conditions, the
procedure does not necessarily terminate.

Model checking can be considered as a simulation technique that explores all reach-
able system states in a brute-force manner. Proofs of formulas in temporal logic are
achieved by traversing the state space and recursively marking states that satisfy the
property. Data-intensive systems should be abstracted before being checked, to avoid
state space explosion. Thus, especially control flow centered systems are amenable to
model checking techniques. Whenever execution comes to a point in the control flow
providing several options to continue, all branches are traversed in a defined order. To
limit runtime to a reasonable extent, branches are abandoned as soon as a recurring
state is encountered. Therefore, an implicit or explicit representation of all traversed
states has to be maintained. As a rule of thumb, an explicit representation entails the
presence of a piece of data in a data structure for each encountered state. An implicit
representation involves a boolean equation (often implemented in the form of a Binary
Decision Diagram) evaluating to true if the binary state vector of an encountered state
is plugged in.

Symbolic simulation covers several possible executions of a system at a single run. The

28

method is closely related to the notion of equivalence classes, denoting sets of elements
which are equal with respect to an equivalence relation. For instance, given that program
behavior depends on the equivalence relation sgn (x), we do not have to simulate the
program for each value in the range R of the datatype of x. Instead, we would conduct
a symbolic simulation for the three equivalence classes of the quotient set of R, namely
for x > 0, x < 0 and x = 0. Symbolic Simulation has the potential to greatly reduce
the complexity of verification problems. However, special measures have to be taken to
cope with loops exhibiting dynamic bounds.

Finally, the most popular and widely accepted verification technique in practice is Sim-
ulation. The lack of mathematical rigor comes with the advantage of making the
technique easily accessible and applicable. The other side of the coin is that the absence
of errors cannot be proved as the system is usually not analyzed exhaustively. While the
principles of simulation are easy to grasp, reaching a sufficiently high level of confidence
for results is an art. Therefore, various metrics mostly based on a certain type of cov-
erage (be it statements, branches, functions, decisions, etc.) have been thought of. For
large, partly critical systems, acceptable results from both performance and reliability
perspective are obtained by combining simulation with formal techniques.

Subdividing the simulation of a system into several (often two) stages and cascading the
corresponding simulators is referred to as Trace based Simulation. Thereby, simulation
results of one simulator, the so-called traces, are considered as an input to the subse-
quent simulator. The subparts of the system are required to be independent, hence the
traces provided by a simulator must not depend on decisions taken in the subsequent
simulator. The system may be partitioned such that functionality and timing constraints
introduced by an architecture (Y-Chart approach) are considered separately. That way
a trace reflects the computation and communication demand (workload) encountered
during a particular execution of the functional model. In that case, the method constrains
the functional model to be time invariant. For instance, if the control flow depends on
the number of samples stored in a communication channel, varying the timing may re-
sult in different traces. As the notion of time is not introduced until traces are generated,
this leads to a contradiction making trace based simulation ill-suited. Obviously, trace
based simulation proves its superiority as compared to conventional simulation if traces
can be reused for many experiments.

Except for simulation, the presented verification techniques are mostly tied to a particu-
lar MoC, i.e. a set of rules governing the underlying system model. However, simulation
is applicable at a broad range of abstraction levels characterized by their particular MoC.

29

3.4 Verification techniques

3.4.1 Formal and static methods

This section surveys related work based on dynamic, formal as well as on static tech-
niques and covers all branches in Figure 3.2 except for simulation. In the following, pros
and cons of formal and static methods are summarized:

+ exhaustive coverage of the design space captured by the system model

+ mathematical proofs of correctness are offered

+ possibility to spot corner cases for which suitable test vectors for simulation would
probably not have been discovered

+ little effort (as compared to finding test vectors in simulation) is needed to set up
formal verification with industrial tools

− The state explosion problem is encountered very quickly even for small-sized
designs.

− Data abstraction is crucial to avoid state explosion: in hardware design, data is
often abstracted to its presence or absence.

− A decision must be made concerning the main objective to be achieved: repre-
senting mainly the control flow of the system (data abstracted to the mere pres-
ence/absence vising equivalence checks or model checking) or focusing on the data
flow (data abstracted to key figures such as throughput, arrival patterns,. . . vising
traditional scheduling methods).

− Application models often have to be simplistic to be explored in a reasonable
amount of time and with a limited amount of memory.

− Only few engineers have expertise in handling formal verification tools. As the
latter have also had the reputation of belonging to the verification “nerd” domain,
engineers are reluctant to learning formal techniques.

− Final executable models (e.g. source code) are normally not amenable to formal
verification techniques any more; there are two viable solutions: automatic code
generation being correct by construction from higher levels of abstraction, or for-
mal verification of subparts.

30

3.4.1.1 Event Stream Composition

The so-called SymTA/S approach [42; 48] relies on classical methods for real-time
scheduling analysis to obtain performance measures of distributed systems. The acronym
stands for “Symbolic Timing Analysis for Systems”. The behavior of the environment
is modeled by means of standard event arrival patterns including periodic and spo-
radic events with jitters or bursts. The main contribution is the extension of the scope
of scheduling theory for mono-processors. Event streams are propagated among re-
sources of distributed systems in a way that each resource may be analyzed separately
with classical algorithms. However, the applicability of scheduling theories requires the
task model to be simplistic and thus it merely reflects best case and worst case execution
times. Control flow within tasks cannot be considered at all.
[28] Real Time Calculus has evolved from Network Calculus 1 and aims at determin-
ing the performance of distributed systems by analyzing event streams connecting
resources. Any deterministic event stream can be modeled with the aid of arrival curves
denoting lower and upper bounds for event occurrences. As compared to SymTA/S,
this approach is not limited to standard event patterns which turn out to be a special
case of this framework. Service curves are used to model hardware by accounting for
the availability of computation and communication resources. Concerning detailedness
of the task model however, it suffers from the same drawback as SymTA/S. It may be
tedious if not impossible to model tasks exhibiting data dependent or irregular behavior.

3.4.1.2 Operational Analysis

As mentioned earlier, operational analysis [34] has its roots in the mathematically well
founded queuing theory. [113] establishes performance laws that relate processor speed
changes in parallel computing systems to variations of job queuing time. As opposed
to queuing theory, only measurable, so called blackbox-observable information is lever-
aged to predict the behavior of a processor. [59] looks into the performance of parallel
servers at application level and allows for modeling multi-processor systems. The au-
thors come up with laws predicting the impact on performance of a varying number of
servers. Operational analysis is very capable when it comes to examining coarse grained
system performance based on weak assumptions which are easy to satisfy. System be-
havior should follow regular patterns, that is the number of job arrivals occurring during
an observation period and the service time of a task should not be subject to considerable
fluctuations. As for any static technique, control flow and data dependencies cannot be
accounted for.

3.4.1.3 Symbolic Computation

[81] presents a framework for computation and communication refinement for multi-
processor Soc Design. Stochastic automata networks model the application behavior

1a profile based on Network Calculus is supported by TTool [15]

31

and the authors claim that this formalism enables fast analytical performance evalua-
tions. Analytical techniques spare the developer time consuming profiling simulations
for predicting power and performance figures. When it comes to mapping an appli-
cation onto an architecture, transitions and states have to be added to the application
model. Therefore, application and architecture matters are not strictly handled in an
orthogonal fashion. Due to a lack of data abstraction, the modeling of memory elements
can quickly lead to the state space explosion problem.

3.4.1.4 Static program analysis

A program slice is defined as a subset of statements of a program that may have an
impact on a particular statement or value. The program is thus sliced with respect to
this slicing criterion.
[108] makes use of this method to infer upper bounds of program execution, so called
wort case execution times (WCET). WCET are crucial for dimensioning embedded sys-
tems and may also open the door to other static techniques. In this context, program
slicing reduces the significant part of a program by revealing statements and variables
which demonstrably do not have an influence on program execution. The presented
effort is a good representative for a huge body of work concerned with the static analysis
of program behavior for performance studies.
[125] provides means for formal and simulation based evaluation of UML/SysML mod-
els for performance analysis of SoCs. UML Sequence diagrams constitute the starting
point for the functional description. They are subsequently transformed into so called
communication dependency graphs (CDGs) which capture the control flow, synchro-
nization dependencies and timing information. CDGs are in turn amenable to static
analysis in order to determine key performance parameters such as best case execution
time (BCET), WCET and I/O data rates. A drawback of this approach is that data flow
independence has to be kept, thus preventing case distinctions and loops with variable
bounds to be part of the application model.
[76] is also dedicated to determining bounds on program runtime (WCET) on a given
processor. As opposed to [108], another formalism is utilized which bears resemblance
with the Kirchhoff’s nodal rule. Constraints are established for basic blocks relating
the control flows entering it and the control flows leaving it respectively. Together with
constraints provided by the user to denote loop bounds a solver calculates the maximum
run time of the entire program.

3.4.1.5 Symbolic Simulation

Formalization methods suggested in [66] pave the way for synthesis, performance anal-
ysis and verification based on high level models. To that end, C++ code is transformed
into data flow graphs (DFG) which store a symbolic representation of variables. During
the symbolic execution of the program, each variable assignment triggers an update
of the corresponding symbolic expression. As no assumption of the concrete value of

32

variables is made, conditional branches imply that both paths have to be taken. Each
explored branch is assigned a symbolic condition. Limitations of the approach are en-
countered as soon as loops with variable bounds come into play. Implicit loop unrolling
can lead to size explosion of the DFG holding the symbolic values of variables.
[31] describes a similar application of Symbolic Simulation which is more tailored to low
level models, that is assembly code of embedded software. The authors primarily target
verification and more specifically equivalence checks of different versions of a program.
To reduce the inherent complexity of the task, function calls may not be interpreted, i.e.
the function is not executed but treated symbolically as a mathematical expression. In
analogy with the previous work, the verification of large programs is hampered by the
sheer complexity of the problem.
[79] introduces a formal executable system model based on communicating tasks in-
terconnected with FIFO channels. Tasks are considered to be atomic and they are
characterized by the time interval [BCET, WCET]. The authors claim to bridge the gap
between simulation and formal verification by performing discrete event simulations of
the system model. Execution traces are provided by means of an event order tree. The
latter captures the indeterminism of the MoC and thus represents a symbolic represen-
tation of all distinguishable execution traces. Each path in the event order tree stands
for different constraints on the execution intervals of tasks.

3.4.1.6 Model Checking

[47] relies on timed automata to analyze timeliness properties of embedded systems. The
UPPAAL model checker is used to evaluate the automata which must be created man-
ually. There is no automated translation routine from a high level language (UML,...)
and thus the creation of the automata turns out to be error prone.
As shown in [126], not only formal models, but also software programs may be the start-
ing point for model checking. The authors believe that the focus of the model checking
community on formal languages should be shifted towards main stream programming
languages. Despite formal verification of high level models and correct by construction
methodologies, the final code is often modified by hand. Bugs are hence introduced
at levels formal tools do not deal with. The paper proposes solutions to some intricate
problems of model checking (JAVA) programs: mastering the huge state space spanned
by all used variables, extracting state vectors from the virtual machine and collapsing
them, leveraging data abstraction (predicate abstraction) and static analysis for pruning
the state space. The work is built on a custom model checker steamlined for JAVA input
models.
Another way of doing is to perform language translation and to rely on existing model
checkers. [50] attaches a formal semantics to SystemC models and transforms them
into UPPAAL timed automata. The methodology preserves the behavioral semantics
and the structure of a SystemC design while the model transformation is accomplished
automatically.
[51] extends the scope of the previous attempt by reconciling Model Checking and Sys-

33

temC simulation. It provides means for conformance testing for SystemC models at
different levels of abstraction. High Level SystemC models may be automatically trans-
lated into timed automata supported by the UPPAAL model checker. Traces obtained
from that formal model are compared against traces obtained from refined SystemC
models in order to determine whether properties proved for the high level model still
hold after refinement. However, as compared to SystemC, DIPLODOCUS pushes ab-
stractions further by enforcing the separation of application and architecture and thus
providing means for efficient Design Space Exploration.

3.4.2 MoC-centric methods

Some environments place emphasis on the interplay of several MoC. The verification
methods does not play a major role, attention is rather turned to bridging the semantic
gap between MoCs. For this reason, a special section is dedicated to the following ap-
proaches:
The PUMA [132] framework is a unified approach to software modeling. It provides an
interface between high level input models (such as UML diagrams) and performance
oriented models. For that purpose, input models are first translated into an intermediate
format called CSM so as to filter out irrelevant information for performance evaluations.
In a second step, CSM can be converted to Petri Nets, Markov models, etc., and the
resulting performance figures and design advice is fed back to the initial model. How-
ever, this framework concentrates on the modeling of software and thus does not yield
a mapping where functionality is associated to software or hardware elements.
Ptolemy [36] is a design framework targeting modeling, simulation and design of em-
bedded systems with emphasis on the integration of different MoC. Being a very general
framework, Ptolemy is able to deal with all kinds of systems and is not especially tai-
lored to the field of SoCs. So called domains encapsulate different MoC and comprise
concurrent functional units named actors. A domain is also equipped with a director
which is in charge of the control flow management, meaning that the order of execution
of actors. Data flow is implemented using receivers which define the communication se-
mantics between actors. Interface automata contained in receivers and directors bridge
the semantic gap between between different MoCs. As the modeling methodology of
Ptolemy mainly captures functionality, it lacks capabilities for performance modeling
such as resource sharing and contention.
BIP [22] describes a MoC which is aligned along three main axes: Behavior expressed in
terms of transitions, Interactions between transitions and Priorities arbitrating mutual
exclusive interactions (in analogy to a scheduling policy). BIP places emphasis on the as-
sembly of models in terms of components while preserving properties so as to facilitate
analysis and transformations across heterogeneous model boundaries (timed/untimed,
synchronous/asynchronous, etc.). Due to the separation of concerns, system construc-
tion can be considered as a superposition of elementary transformations along one of
the three axes. As opposed to other environments, the axes are really independent

34

which makes that any point in the three dimensional design space is meaningful. BIP
models are both amenable to simulation and model checking through transformation to
C++ code. A combination of an execution engine and the generated code can be run in
simulation or in state space exploration mode, the latter yielding graphs to be analyzed
with model checking tools.

3.4.3 Simulation centric methods

3.4.3.1 Abstraction Levels

As stated earlier, simulation is an important and widely used technique for the verifica-
tion of functional correctness of SoCs. Traditionally, simulation is classified according
to the abstraction level of the underlying system model. Abstraction is defined as ”the
cognitive process of isolating, or abstracting, a common feature or relationship observed
in a number of things, or the product of such a process.“ 1. In the domain of electronic
systems, the designer has to isolate details of the system that are relevant to the prop-
erties to be (dis)proved. Even if properties refer to system specific entities (like tasks,
signals), they are often quite similar in nature (compliance to deadlines, temporal order
of actions to be respected, etc.). This insight has stimulated the emergence of several
commonly agreed levels of abstraction, trading-off differently accuracy and simulation
speed. Given the variety of circulating definitions, the attempt to precisely define ab-
straction levels is doomed to failure.2 The following overview represents the common
denominator of definitions found in the related work of this thesis.
The chosen abstraction level presupposes some properties of the MoC to be applied.
The expressiveness of languages may be restricted to a single MoC (such as the “Petri-
Net-Language” to Petri Nets) or range from purely functional description to the cycle-
accurate level (such as SystemC).
Furthermore, simulation speed is an issue of great concern and depends on the simula-
tion engine as well as on the detailedness of the input model. Hence, moving down in
the abstraction hierarchy means refining a model to the detriment of simulation time.
Several levels of abstraction are usually considered in the context of embedded system
design:

System Level design is defined as “the utilization of appropriate abstractions in order to
increase comprehension about a system, and to enhance the probability of a successful
implementation of functionality in a cost-effective manner using generic architecture
and abstract application models” [20]. Of course, this concept is destined on the one
hand for early stages in the design flow where the specification still lacks many de-
tails. On the other hand, detailed models could be abstracted with the aim of extending
the scope of simulation or increasing simulation performance. Two complementary

1Online issue of Encyclopædia Britannica
2This is however not the case for Models Of Computation (see Section 3.2) which have successfully

been integrated into a formal framework [74; 82].

35

kinds of models have to be discriminated: purely functional models aim at assessing
(mathematical) algorithms and the application logic. High level and sometimes domain
specific languages such as Matlab, Simulink, C++ have proven their applicability for
that purpose. These models do not comprise any reference to the target platform, albeit
of course being constrained by the host platform used for their execution.
Other frameworks rather emphasize control or data flow and HW/SW partitioning: ap-
plications are abstracted such that they are not functional any more. Those models may
be tailored towards the data or control flow depending on the respective MoC. Func-
tional entities can be associated to rudimentary and generic hardware components so as
to obtain first performance figures. The aforementioned functional reference models can
serve as a good starting point for the estimation of algorithmic complexity. Qualified
annotations enhance accuracy of the non-functional performance models.

Transaction Level Modeling (TLM) highlights the concept of separating communica-
tion from computation within a system [41]. Modules, represented as communicating
concurrent processes, exchange information by means of transactions rather than driv-
ing signals. As signal handling and update mechanisms are very time consuming in
simulation, TLM also yields performance improvements. Transactions are conveyed on
channels providing standardized interfaces, which facilitates the encapsulation of com-
munication protocols in separate modules. Even if concrete communication protocols
are incorporated, emphasis is placed on the functionality of data transfers. Thanks to
the standardized interfaces, communication protocol implementations are interchange-
able and independent from the application. TLM is applied with different semantics
with respect to the granularity of data in communications and timing accuracy (timed,
untimed, intermediate variants).

Instruction Set Level models are applied in the context of programmable computing
devices. The underlying idea is that intermediate states and transitions of a device
while performing computations may not be of interest for the designer. This level solely
captures the system state (register values, flags,...) at the end of computations. The
latter are defined by a so called instruction together with corresponding operands and
addressing modes. Simulators are usually called instruction set simulators and involve
two machines: the host processor on the one hand and the target processor on the other
hand. The host processor executes the Instruction Set Simulator, whereas the simulator
constitutes a model of the target processor.

The Register Transfer Level is a widespread abstraction level focusing on the operation
of digital circuits. The latter are described in terms of storage elements, called registers
and combinational functions relating the current and the future state of registers. Data
is propagated by means of signals among hardware entities. Hardware description
languages such as Verilog and VHDL as well as SystemC are well suited for register
transfer modeling. If the RTL model complies to certain rules, Verilog and VHDL also
target an automatic translation into a netlist (gate level description).

36

Gate Level simulators take netlists consisting of interconnected logic gates (NAND,
NOR, etc) as an input and perform functional simulation as well as timing analysis.
Much effort has been spent on improving the performance of the first logic simulators.

The Switch Level abstracts transistors as on/off switches which may be used to obtain
more accurate delay estimations for logic gates.

The Transistor Level is the most accurate and complex representation for electronic cir-
cuits. Simulations (for instance using the SPICE simulator) are very time consuming as
the nonlinear dependency between voltage and current within transistors is accounted
for by mathematical models. Current and voltage may be determined anywhere in the
circuit using algorithms similar to nodal and mesh analysis.

A brief overview of pros and cons of simulation based techniques is given below:

+ scale very well with design size as opposed to formal methods

+ may deal with executable, realistic models that capture system performance very
accurately

+ the control flow within models can be very detailed and complex, real data samples
are taken into account

+ represent the tried and tested workhorse of verification, a lot of engineers are
familiar with simulation techniques which are widely adopted and accepted

− big effort needed to create test benches, to identify test vectors and to determine
the coverage

− do not scale at all with coverage, the incremental effort required to achieve each
percentage point of coverage beyond the first 90 percent increases exponentially
with simulation

− do not provide the measure of confidence obtained with formal tools and their
mathematical proofs

3.4.3.2 Explicit Control Flow based methods

UML based methods:
[54] elaborates on the integration of UML-based behavioral patterns into executable
functional and simulatable models. The authors developed an extension to Ptolemy in
the form of a domain which achieves the integration of the UML syntax and semantics.
However, as simulation in Ptolemy are purely functional, it is not obvious how to apply
the methodology in the context of SoCs. Separation of application and architecture

37

matters cannot be achieved easily.
[124] presents a UML modeling framework based on an existing UML modeler which
allows for designing real time and embedded systems. The lowest abstraction level
among the three supported ones enables code generation. It seems that simulation and
performance analysis cannot be carried out at the highest abstraction layer, as it is the
case for our modeling environment. No details are given concerning the underlying
simulation strategy.
[70] elaborates on a UML2 based environment for platform modeling and performance
evaluation. Workload models can be developed in UML in a hierarchical fashion or
in SystemC, whereas platform models must be described in SystemC only. Behavioral
descriptions of application entities have to be provided in the form of state machines.
They are abstract in the sense that they do not perform computations of the real ap-
plication. Simulations rely on the SystemC workload model generated from UML and
the SystemC component models taken from a library. The latter are timed in a cycle
approximate fashion.
[110] introduces a virtual machine which is amenable to the execution of a UML subset
(Class, State Machine and Sequence Diagrams) for embedded software and reconfig-
urable hardware. Hence, emphasis is put on executable models without making the dis-
tinction between application and architecture issues. UML specifications are compiled
to equivalent binary representations based on an instruction set supporting object man-
agement such as instantiation, destruction, operation invocation. The virtual machine
which executes the models can be implemented on software or hardware platforms.

Lower abstraction levels:
The work discussed in [105] bases on the Y-Chart approach. Applications are modeled
as concurrent tasks which have to be specified in C++. The architectural composition of
the system and the mapping of tasks on processing elements is provided in a separate
file. A library contains predefined hardware elements written in SystemC (TLM level)
which constitute the building blocks for an architecture model. The usage of graphical
high level languages such as UML is not supported so that the development of C++
models of application functionality may turn out to be cumbersome.
[10] addresses Design Space Exploration at ASIP level and focuses more specifically on
architecture exploration. The LisaTek design platform constitutes an abstraction layer
above the RTL level usually expressed in VHDL or Verilog. The approach is centered
around processor models written in the architecture description language LISA. The
framework permits the automatic generation of development tools such as instruction-
set simulator, C-compiler, assembler, and linker. LISA models may also be transformed
into VHDL, SystemC and Verilog representations as well.
[130] puts emphasis on the gradual and simultaneous refinement of processor models
written in LISA interconnected with bus models expressed in SystemC. Abstraction lev-
els range from transaction level to RTL level. Our framework however is settled at a
higher level of abstraction and primarily targets design space exploration at system level.

38

Data flow oriented methods:
SystemCoDesigner [45] supports automatic design space exploration and creation of
hardware accelerators. The application domain is restricted to multimedia and net-
working due to the applied MOC. The latter relies on finite state machines specifying
the communication behavior and controlling methods. Data consumption and produc-
tion may only take place after the execution of the methods. The SystemC model can be
transformed into hardware accelerators and software modules. Hardware modules are
generated by means of the Forte Cynthesizer. Graphical high level languages such as
UML are not available for system modeling. Furthermore, application and architecture
are merged in one model.
[17] bears resemblance with our approach with respect to the modeling language UML
which is applied for architecture, application and mapping models. As opposed to our
framework, the focus is put on streaming applications that make scarce use of control
messaging and branching. For this reason, the semantics of Kahn process networks has
been adopted for application models. Simulation is carried out on SystemC TLM level,
thus it does not leverage all abstraction applied at the modeling stage.

Non-UML system level methods:
[107] also follows the Y-Chart approach. Mapping of applications onto architectures
is performed automatically on graph-based descriptions and relies on side-information
provided by the system designer. Application models are not based on functional de-
scriptions but only on abstract information (such as cycle counts). They are therefore
independent of the modeling language. The aforementioned framework is not intended
for formal analysis.
The Metropolis [21] metamodel language enables the use of different kinds of MoC. De-
signs may be described at different levels of abstraction and subsequently be simulated
or verified. Processes communicating through media constitute the application model.
Constraints can be used to restrict possible executions in case of non-deterministic be-
havior. Architecture is accounted for by performance models associating a cost to events.
A mapping network establishes the link between events generated by the application
model and the underlying architecture model.
Koski [58] permits automated design space exploration and FPGA synthesis based on
orthogonal application and architecture modeling at system level. The input specifica-
tion is given as a Kahn process network modeled in UML, which may be refined with
Statecharts. The environment focuses on code generation for the target platform based
on libraries and does neither offer a trade-off between formal techniques and simulation
nor means to graphically and formally express properties to be verified during simula-
tion.
System level simulators such as VAST [4] and Coware [2] are typically platform based,
they rely on a bottom-up modeling methodology and require specific models of ar-
chitecture components (processors, buses,...) to perform transaction level simulation.
In that context, Instruction Level Simulators (ISS) may constitute an adequate means
to provide cycle accurate behavior of CPU models. Cofluent [1], [27] yet goes a step

39

further by introducing generic HW components being parameterizable by the designer
and a partially graphical way to describe application functionality. The latter approach
share common points with our architecture model because it is also generic and archi-
tecture exploration is accomplished on application models. But in addition to that, the
DIPLODOCUS methodology is based on data and functional abstractions which may
further reduce simulation time. Due to that functional abstraction, all involved models
are completely graphical and no line of code has to be produced. Even verification can
be seamlessly accomplished in UML by means of the TEPE language.
[69] presents a method for creating abstract instruction workload models from source
code. The source code is abstracted by introducing the symbolic instructions read, write
and execute. These symbolic programs can be used to speed up performance evalua-
tions of systems modeled in terms of processing units, communication units and storage
units.

3.4.3.3 Trace based approaches

SESAME ([77; 100; 101; 102]) stems from the earlier SPADE project and is developed in
the context of the ARTEMIS joint undertaking. SESAME provides high level modeling
and simulation methods for system level performance evaluation of embedded systems.
As the methodology bases on the Y-Chart approach, concerns of architecture and appli-
cation are separated. The applications are modeled in terms of Kahn process networks
(KPN). Therefore, they are not able to reflect indeterminism and time dependent behav-
ior. Traces produced by the application model represent the load for the architecture
components. Architecture models operate at transaction level and are implemented in
SystemC or Pearl. Generic building blocks for architecture components are gathered
in a library. The designer may be guided towards an optimal architecture by means of
multiobjective optimization techniques.
[117] attempts to compensate the general weakness of trace driven simulation to eval-
uate systems under a single application workload. It thus acknowledges the fact that
today’s embedded systems are operated in different use cases and therefore also the
applications’ resource demands change drastically over time. The paper advocates the
usage of hierarchical scenario databases: the multi-application level defines the con-
figuration of independent active KPN, the KPN level describes which combination of
traces of the Kahn processes are valid execution traces of the KPN, and the lowermost
level captures the respective traces which may also contain statically bounded loops.
Moreover, the paper elaborates on optimization techniques to detect iterations in traces
to reduce the total memory space of the data base.
[131] describes a trace based simulation environment based on SystemC hardware mod-
els. The underlying principle is to abstract the involved functionalities by their pro-
cessing latencies so that the corresponding program code does not have to be run at all.
Accurate hardware models interpret the traces and forward packet references through
the system. In this framework, source code of all applications must be available to
obtain initial traces of tasks. The control flow of involved applications does not have

40

to be time dependent, otherwise initial traces could not be determined independently
from the architecture.
[114] presents a SoC modeling methodology which does not offer a clear separation
of architecture/application. Software tasks are described with the aid of a textual task
description language whose operators bear resemblance at first glance with those avail-
able in DIPLODOCUS. Symbolic instructions account for communications (read/write
operations) and computations. However, commands directly reference hardware com-
ponents (for instance the memory data is read from) and hence the Y-Chart approach is
violated. The trace driven simulation relies on optimized SystemC models at TLM level.
The whole modeling procedure is accomplished in textual form - no graphical interface
has been defined.

3.4.4 Hybrid Static/Simulation methods

Generally, an issue of great concern of informal verification techniques is to increase
design space coverage so as to evaluate more design points. Combining formal tech-
niques with simulation always results in an incomplete technique due to the lack of
exhaustiveness of informal techniques. In the following, frameworks are introduced
which employ analytic techniques with the objective to speed up simulation, to enhance
its coverage and to avoid the state explosion problem.
[26] speeds up the conventional simulation approach for interactions between shared
resources. The work advocates a hybrid simulation kernel which applies simulation to
capture system dynamics together with an analytical approach. The analysis bases on C
programs enhanced with annotations indicating the computational complexity of sec-
tions. The basic simulation concept is centered around the principle that contention of
shared resources is ignored between software annotations. Accesses to shared resources
within one annotation region are grouped and managed by an analytical model which
assigns time penalties to each competing logical thread. The penalties are taken into
account during future calculations of the physical time. The approach concentrates on
task scheduling on processor-based systems and does not model HW accelerators and
the impact of communication topologies.
[71] suggests a hybrid approach which paves the way for combining analytic and simula-
tion techniques. Event streams are defined by upper and lower arrival curves according
to the notation used in Real-Time Calculus. Interfaces are defined which permit the
conversion from event streams from the simulation subsystem into an event model for
formal analysis and vice versa. Hence task chains may be broken down into segments
which are treated separately on potentially different hardware resources and with dif-
ferent analysis procedures.
[96] sheds light on the combination of event stream analysis and dynamic, hence state
based models. The approach acknowledges the fact that static analytical approaches
tend to be overly pessimistic by assuming a stationary behavior of system components.

41

As system states cannot be expressed by definition, variability in the workload has to
be captured by average, pessimistic WCET values. To alleviate this shortcoming, two
remedies are proposed: considering workload variability automata when constructing
arrival curves that represent the resource demand, and solving the problem in the stateful
domain by transforming arrival curves to event generators expressed Timed Automata,
performing model checking, and finally leveraging the results to derive output arrival
curves. The methodology seems to be quite complex and thus its acceptance in practice
depends on the availability of adequate tooling.

3.4.5 Communication centric methods

Communication centric approaches such as [61; 72; 73; 94; 133] are concerned with the
analysis of SoC interconnect architectures (Buses, Crossbars, Networks-on-Chip, etc)
and their impact on system performance. As opposed to DIPLODOCUS, computation
architectures and the respective allocation of application tasks are ignored. Several
frameworks permit an automatic exploration of a clearly defined design space, for
instance communication channel mapping on a given bus topology.

3.4.6 Improving simulation speed

When it comes to improving simulation speed, two conceptually different ideas are
prevalent. The first one affects the modeling methodology by subdividing the model
into independent parts or augmenting its level of abstraction. In that case, simulation
results may suffer from a loss of accuracy:

• Trace based simulation: models are decomposed into independent parts (cf. Sec-
tion 3.4.3.3), which are simulated in a cascaded fashion. Simulation results from
one stage, referred to as traces that are fed to the subsequent simulator which
considers them as the workload. A performance gain is achieved by reusing traces
for several subsequent simulations, for example providing the same workload to
different architectures.

• Model abstraction: instead of a detailed simulation of the workload, the latter can
be abstracted by means of symbolic instructions. Moreover, timing behavior may
be abstracted by allowing local clocks of components to be in advance with respect
to the global simulation time. This may or may not require concessions concern-
ing accuracy, depending on whether possibly missed synchronization points are
compensated.

• Symbiosis of simulation and static techniques: may have an impact on accuracy
depending on the formal techniques used, see Section 3.4.4

The second idea is about increasing simulation performance while maintaining accuracy,
at least to a large extent.

42

• Simulation techniques: technical improvements may target the simulation en-
gine (e.g. the SystemC scheduler) or compilers (exploitation of multiprocessor
platforms, handling of compiler inlining, etc.) used to build and simulate exe-
cutable models.

• Towards native execution: in case source code is available, performance improve-
ments may target the partial or full native execution on the host (simulation)
machine. Parts of the model whose performance measures are not of interest are
executed natively, while parts to be assessed are passed to an ISS. This raises the
issue of capturing the system state on one side and restablishing it on the other.
Another solution consists in running an annotated version of the application na-
tively, which has been enriched with timing information of the target platform.
However, it is an intricate task to establish the relationship between the assembly
code of the application compiled for the target platform and the source code.

3.4.6.1 Timing abstractions

[116] points out an approach to temporarily decouple the clocks of SystemC processes so
as to minimize the synchronization overhead with the Kernel and to increase simulation
performance. The already existing SystemC QuantumKeeper merely allows a process
to postpone the synchronization with the global simulation clock as long as the local
time offset does not exceed a defined quantum. Issues concerning the dependency of
temporally decoupled processes are completely left to the user. The authors suggest an
extension called QuantumGiver, which keeps track of completed transactions since the
last synchronization point. Conflicts are automatically detected and resolved transpar-
ent to the involved processes. Moreover, a hybrid dynamic/static method is described
to augment the application with information about timing. If source code lines and bi-
nary level basic blocks cannot be statically related in an unambiguous manner, dynamic
information about the predecessor of a basic block is taken into account.

3.4.6.2 Simulation techniques

[123] proposes a methodology to speed up simulation of multi-processor SoCs at TLM
level with additional timing information. The idea of time propagation through transac-
tion passing bears some resemblance with our new simulation approach. However, our
environment is settled at a higher abstraction level so that the procedure of transaction
passing has been extended to optimally support high level models. As our aim is very
fast simulation from our specific UML models, our simulation engine is not based on
the SystemC kernel any more.
In the scope of [97], a new SystemC kernel was developed to maximize performance
and to avoid all unnecessary code. The kernel supports a subset of the standard Sys-
temC language. In addition to that, the compiler inlining algorithm was overwritten
to reduce the impact of virtual method calls and the handling of signal buffers was

43

optimized. A novel scheduling strategy addresses the problem of unnecessary wake-up
calls of processes. Signal dependency information provided by the user is fed to a hy-
brid scheduling engine. The latter is intermediate between static and dynamic so that
performance improves with the amount of available information.
The method presented in [87] aims at reducing the number of unnecessary output eval-
uations and wake-up calls of SystemC processes. Signal dependencies are automatically
extracted from the SystemC source code. SystemC processes are subsequently split with
the aid of this dependency information relating output signals and input signals of the
process. The objective is to obtain processes containing only code that evaluates their
own outputs. The SystemC scheduler is thus enabled to figure out the optimal order
of process execution which prevents unnecessary output evaluations. Furthermore, the
authors tend to limit the number of unnecessary wake up calls of processes by enhancing
the method outlined in [97].

3.4.6.3 Towards native execution

[112] describes a hybrid approach consolidating analytic and simulation methods. Static
execution time analysis is applied to get first estimates of the number of processor cycles
consumed by basic blocks of the application. In a second step, dynamic effects are ac-
counted for by a SystemC simulation of an annotated version of the source code. These
annotations comprise the calculation of cache and branching penalties which are added
to the statically determined cycle count at run time.
[68] aims at mitigating the issue of low simulation speed of ISS by means of a hybrid
simulation framework. The latter allows switching between native code execution and
ISS based simulation. Parts of the application are represented in the form of a copro-
cessor which is controlled by the ISS. The outsourced code is executed natively on the
host machine so as to speed up simulation. The application source code has to be pre-
processed for the native execution in order to assure a consistent handling of global
variables, floating point operations, call of C library functions, etc.
An application transparent emulation of OS primitives is shown in [23]. Applications
invoking OS routines may be executed by an ISS without having to simulate the whole
OS functionality. Low level system calls are intercepted by the ISS and redirected to the
host environment. An extension of this mechanism permits the emulation of concur-
rency management. This way, thread creation, destruction, mutex operations, etc can be
carried out and controlled on the host system.
[128] tackles the problem of mapping binary code on source code to enrich the latter
with timing annotations. In the presence of compiler optimization techniques, control
flow at binary level significantly differs from control flow at source level. The authors
rely on a three step approach consisting of the generation of mapping information, the
generation of timing information and the instrumentation of the source code. The pre-
sented mapping algorithm matches the loop levels of binary and source code and is that
way more accurate than approaches relying on code mapping.
[127] elaborates on speeding up HW/SW co-simulation by means of compiled simu-

44

lation. Standard ISS rely on an interpretative simulation technique which normally
embraces a main loop. In this loop instructions are fetched, decoded and executed using
a big case distinction statement. The compiled simulation approach directly translates
target instructions into host instructions thus eliminating fetch and decode steps as well
as interpretation overheads. Communication between a simulated processor and hard-
ware elements is possible.

3.5 Property specification

One contribution of this thesis is the seamless integration of formal properties into UML
based environments by means of the TEPE language. TEPE is appropriate for a wide
range of system models originating from labeled transition systems. A labeled transition
system consists of states and transitions between these states. Transitions are triggered
by so called events which may either refer to a single atomic action or to a set of actions
carrying the same label. In this work, the latter meaning of event is used synonym with
the notion of signal, also subsuming a set of similar events.
This section reviews popular languages in the field of property verification, some of
which are built upon UML while others define their own syntax. Especially in the
hardware community, verification statements referred to as assertions are interwoven
with the Register Transfer Level (RTL) source code and are closely tied to clock cycles
as a sampling event. That means, whenever it comes to defining the temporal scope of
conditions, the notion of clock cycles is taken as a reference. TEPE puts emphasis on the
temporal and logical relation of signals and properties, without attaching an outstand-
ing importance to a particular signal.

3.5.1 Non-UML approaches

System Verilog [5] provides concurrent assertions for describing behavior that spans
over time. The underlying event model is based on clock ticks. TEPE constraints how-
ever operate on physical or logical time for property verification.
The e-language [122] somewhat extends the System Verilog event model by introducing
user defined events derived from behavior or other events. However, temporal expres-
sions require a trigger event to be selected for condition evaluation. In TEPE, constraints
may specify several sampling events (e.g. signals) which may evolve over time.
PSL [6] can be considered as an extension of LTL and CTL temporal logic and the expres-
siveness of its temporal layer resembles the System Verilog specification language. The
boolean layer of PSL embraces a default clock declaration. This declaration is implic-
itly referred to in all properties and temporal expressions that are not annotated with
a clock. So called “properties” are used to describe behavior over time and they are
made up of a Boolean expression and a clock expression amongst others. However, the

45

aforementioned languages fail to model physical time independently of clock cycles.
The SystemC Verification Standard [90] addresses the creation of test benches and allows
both for random stimulus generation and recording of resulting transactions. To our
knowledge, it does neither comprise a syntax for expressing temporal properties, nor
automated ways to verify them.
[115] advocates a nice graphical notation which aims to simplify the formalization of
requirements for model checking. System executions are expressed in the form of time-
line diagrams discriminating optional, mandatory, fail events and related constraints.
As for other trace-based approaches, conditional or varying system behavior cannot
easily be expressed. Moreover, the approach does not address real-time or performance
requirements.

3.5.2 UML approaches

The MARTE profile embraces the Value Specification Language VSL [92]. The language
alone is not able to describe valid system executions: its goal is to verify the values of
constraints, properties and stereotype attributes particularly related to non-functional
aspects. When used in combination with sequence diagrams, VSL does not compensate
the poor formal expressiveness of the latter. Live Sequence Charts [33] [43] address this
issue by discriminating mandatory from provisional behavior. However, capturing a set
of acceptable traces still relies on condition and loop primitives of conventional sequence
diagrams and is therefore cumbersome. Additionally, the integration of equations that
have to be fulfilled as a function of the system behavior is not straightforward in UML
and requires the usage of OCL, thereby circumventing the graphical notation.

The MARTE Time model has defined an unambiguous time structure which can be
leveraged to build precise timed models amenable to formal analysis. A corresponding
concrete syntax is the clock constraint specification language (CCSL) [80] [9], which
describes system events of different types as abstract clocks. The language allows to
reason about relationships between these clocks, for instance periodicity, precedence
alternation, etc. The work inspired ours as it provides a solid theoretical foundation for
sequential and time constraint modeling. However, TEPE does not require the user to
abstract events to clocks. The user just has to identify structures similar to signals and
attributes. This procedure should be straightforward for formalisms stemming from
labeled transition systems. To specify time constraints, TEPE does not demand for a
clock whose ticks are interpreted as time advancements. The tool suite supporting TEPE
focuses on the verification of behavior defined in other formalisms (such as Activity Dia-
grams or State Machines). As opposed to that, CCSL tooling targets observer generation
in VHDL and Esterel as well as animation of UML models where CCSL formulas serve
as behavioral descriptions.
Moreover, our objective was to suggest a concrete syntax (based on UML/SysML) paving
the way for a seamless integration into various modeling environments.

46

3.5.3 Tooling

The Rhapsody tool used by [32] similarly enables formal verification of SysML diagrams
using UPPAAL. Unlike TTool, Rhapsody does neither distinguish between requirements
and properties nor does it support a property expression language - such as TEPE - and
computation operators in state machines. In terms of user-friendliness, TTool allows
one to right-click on an action symbol and automatically verify the reachability of that
action. In the same situation, the user of Rhapsody is obliged to enter a logic formula,
which assumes some knowledge in logic. The OMEGA2 environment [89] has also
strong connections with Rhapsody for it implements the same semantics. OMEGA2
supports requirement diagrams as defined in SysML. Conversely ARTISAN [46] extends
SysML to cope with continuous flows. ARTISAN models may contain probabilities and
interruptible regions, two concepts not yet supported by profiles compatible with TTool.
Electronic System Level (ESL), which is an emerging electronic design methodology, has
stimulated research work on joint use of SysML and formal languages supported by
simulation tools. Several papers discuss solutions where a model is designed in SysML
and translated into VHDL-AMS [3] or Simulink [121]. Mechanical engineering is another
area where SysML is combined with already existing domain specific languages, such
as Modelica or bond graphs.
TTool supports several UML profiles, in particular TURTLE [13], DIPLODOCUS [14]
and AVATAR [65] and may easily be extended to support others. Unlike TOPCASED
[19], TTool does not use a meta-modeler, nor it is linked to Eclipse, which makes it
independent from any third-party tool developer. As far as verification is concerned,
TTool does not rely on OCL [91] but TEPE as property expression language. Further,
the current version of TTool, as well as ongoing developments, aims to make the use of
temporal logic and formal languages transparent to users.

3.5.4 Conclusions

As the objective is to verify sequential behavior and its timing, property descriptions
could rely on state machines. However, if TEPE is applied to system models based on
UML Statecharts, the same formalism would be employed both for design and verifica-
tion. This is definitely not a good choice, as verification runs the risk of being hampered
by the same errors in reasoning as the model. Moreover, (1) the number of states tends
to explode when events may be received in various orders, and (2), statecharts put em-
phasis on implementation rather than on property relations, like TEPE. As mentioned
in 3.5.2 formally defined descriptions for sequential behavior fall short in UML.

To conclude, the comparison to existing work exposes the following strengths of TEPE,
which . . .

1. . . . focuses on relations of properties

2. . . . supports both state and event-based views of a system

47

3. . . . allows to seamlessly accomplish design and verification in UML

4. . . . relies on different formalisms than system design

5. . . . is more intuitive than temporal logic while exhibiting a comparable expressive-
ness

6. . . . provides a means to express time constraints

7. . . . applies directly to all Models of Computation exhibiting states and signals

8. . . . distinguishes safety and liveness properties

9. . . . generates helper signals and attributes that emulate non observable transitions
and states in the system model.

3.6 Modeling and visualization

For the construction of models and the visualization of simulation progress, we use an
in-house UML tool called TTool. On the one hand, it has a longer history than most of the
state of the art tools and has proven to be of great value in various projects and collabo-
rations with academia and industry. On the other hand, it comes with the advantage of
not being dependent on a third party, especially when bugs are encountered. Moreover,
animation of UML diagrams and direct feed-back of simulation results requires well
defined interfaces between modeling and simulation facilities. The latter are far easier
to achieve in an approach from one source.
TTool’s new capabilities are examined in more detail in Chapter 7. Some of the current
state of the art UML modeling tools (Topcased [120], Tau [119], Rhapsody [106], Artisan
[18] amongst others) provide simulation features. Simulations can only be performed
based on purely functional models in an untimed fashion. Our interactive simulator
however also accounts for architecture semantics such as arbitration of shared resources,
speed or data throughput of devices, etc. Furthermore, the execution behavior of models
is tool dependent as the UML standard lacks an execution semantics. The DIPLODO-
CUS profile however fills that semantic gap and thus also paves the way for formal
verification.

3.7 Conclusions

Nowadays, the separation of concerns, namely application and architecture, has been
seized by several academic and industrial approaches and is referred to as the Y-Chart
approach. However, there are several shortcomings of related work which have already
been addressed by our environment or which are dealt with in the scope of this thesis:

48

• Purely analytical (data flow) models tend to be overly pessimistic or optimistic
(WCET BCET) and do not detail control flow within tasks at all. Our framework
however allows for detailing task behavior in accordance with the aspired level of
abstraction. The metamodel is endowed with a formal semantics and thus paves
the way for simulation and formal verification combined in the same framework.

• In some frameworks, models need to be refined (using code) before being sim-
ulated which entails an increased modeling effort and badly affects simulation
performance. Our solution generates executable models at the push of a button,
without requiring any expertise in simulation or formal proofs techniques.

• Almost all simulation frameworks rely on SystemC and thus tend to make use of
detailed architecture models which are very costly in terms of simulation time.
Furthermore, the standard SystemC simulation kernel is not really vaunted for
its efficiency. Making extensive use of signals and processes slows down the
simulation due to an inefficient scheduling and results in unnecessary process
wake-ups. The seemingly promising but dangerous advantage is the compatibility
to existing low level models which could be used for Design Space Exploration
purposes. We believe that the key to efficient DSE is a meta model introducing
abstractions which are leveraged by the simulation environment.

• Many employed MoCs (KPN, data flow networks,..) do not make data dependent
control flow variations or indeterminism explicit at application level. Implicitly,
analysis merely covers an average load of the system, which does not necessarily
reflect realistic conditions.

• To our knowledge, state of the art UML model simulators target a solely functional
verification of the system. Semantics and constraints of shared resources and
more precisely communication and computation architectures are not considered
at all. In the scope of this thesis, a framework is elaborated which is capable of
animating UML application models while being executed on a specific architecture
configuration.

• The additional modeling effort inherent to some other approaches is mitigated in
our case by the usage of UML models and automated model transformations. The
necessary UML models can be regarded as a specification which would have had
to be established anyway, but with the positive side-effect of being executable and
analyzable.

• Many environments do not fathom the trade-off between exhaustive formal and
simulation techniques. Verification is thus hampered by state explosion or a too
narrow coverage of the application. In DIPLODOCUS, an explicit control flow
representation comprising operators for indeterminism enable a variable coverage
of the application model.

49

• Even though some frameworks are settled at a high level of abstraction, verifi-
cation relies on obscure logical formulas or instrumentation of source code with
assertions. A seamless integration of verification techniques into the design flow
is not provided.

After having reviewed shortcomings of state-of-the art approaches, this report now
elaborates on the contributions made in the field of verification, requirement capture,
simulation and tooling.

50

Chapter 4

TEPE - A formal, graphical verification
language

4.1 Introduction

The verification of abstract system level models is still hampered by the required ex-
pertise in temporal logic. Designers less familiar with that domain would definitely
appreciate a verification language that matches the abstraction level of the model to be
verified. To address this issue, we advocate TEPE1, a user-friendly graphical TEmporal
Property Expression language formally defined with fluents. TEPE both supports state-
based and event-based formalisms. It applies to a broad variety of systems defined in
terms of states (attributes) and transitions (signals) between these states.

The increasing importance of real-time systems in life-critical applications has stimu-
lated research work on modeling techniques that combine the friendliness of UML /
SysML with the formality of verification tools such as Temporal Logic, UPPAAL [24],
etc. So far, the use of SysML in verification centric methods has been hampered by the
poor formality of Requirement Diagrams and the lack of powerful property expression
languages. Thus, UML profiles commonly require the use of temporal logic (e.g., CTL)
that might not meet the level of abstraction of the system model. The MARTE standard
embraces VSL [92] which is more concerned with the specification of values related
to non-functional aspects. When it comes to the verification of sequential behavior,
MARTE suggests the Clock Constraint Specification language (CCSL). This theoretical
framework has a solid mathematical foundation but leaves the abstraction of system
transitions to clocks and practical tooling issues to the designer. Users lacking a math-
ematical background may be discouraged by formal methods not featuring a friendly
visualization.

To address the aforementioned shortcomings, this work extends SysML Parametric Di-

1TEmporal Property Expression Language

51

agrams with TEPE, a graphical but formal language for describing logical and temporal
properties. In TEPE, various design elements, such as SysML blocks attributes and
signals, can be combined together with logical (e.g., sequence of signals) and temporal
operators (e.g., a time interval for receiving a signal) to build up complex graphical
properties.
TEPE offers an intuitive two-dimensional way to compose safety and liveness properties
built upon constraints. The language comes with a graphical front-end that originates
from SysML parametric diagrams. Moreover, TEPE could be introduced into the OMG-
based SysML and a broad variety of SysML profiles. To provide evidence for this,
we integrate TEPE into two UML/SysML environments: AVATAR1 and DIPLODOCUS.
Thanks to the joint use of TEPE and an UML/SysML environment, requirement capture,
analysis, design, property description and verification tasks can seamlessly be accom-
plished in the same language with the same tool (cf. chapter 7). To utilize TEPE, the
designer is merely required to have minor UML skills and does not need any expertise
in formal languages such as CTL or UPPAAL.

The chapter is organized as follows. Section 4.2 surveys Metric Temporal Logic and
Fluent Temporal Logic serving as a formal base for TEPE constraints. Section 4.3 intro-
duces the TEPE language both in an intuitive and a formal way. Finally, two sections
are devoted to the integration of TEPE into two representatives of UML/SysML profiles
namely the AVATAR (section 4.4) and DIPLODOCUS (section 4.5). A joint case study
in DIPLODOCUS and AVATAR is presented covering design, property modeling and
verification stages of a microwave oven. Finally, Section 4.6 concludes this chapter.

4.2 Formal toolbox

This section surveys two logics used to formalize TEPE later in this chapter. The com-
bination of Metric Temporal Logic (MTL) and Fluent Linear Temporal Logic (FLTL) is
especially useful for reasoning about temporal properties in terms of both system states
and events.

4.2.1 Metric Temporal Logic (MTL)

Given a set of atomic propositions Π, a state trace h : N → 2Π maps to each position
i ∈ N the set of propositions that hold at that position. Metric Temporal Logic (MTL)
is presented in [67] and enriches LTL with bounded temporal operators: []∼d P, <>∼d P
and P U∼dQ where ∼∈ {<,≤, >≥} and d ∈ N. Therein, P stands for an MTL formula, []
and <> for the LTL operators always and eventually. MTL is defined with respect to a
temporal distance function dist : N ×N→ T, where T is the time domain and dist

(
i, j

)
denotes the time elapsed between position i and j in a trace. The distance function is

1Automated Verification of reAl Time softwARe

52

required to exhibit the properties of a metric. For this work, only the always and the
eventually operators are relevant. The notation (h, i) |= P means that the MTL formula P
is true at position i of trace h.

• (h, i) |= []∼dP iff
(
h, j

)
|= P for all j ≥ i and dist

(
i, j

)
∼ d

• (h, i) |=<>∼d P iff
(
h, j

)
|= P for at least one j ≥ i and dist

(
i, j

)
∼ d

4.2.2 Fluent Linear Temporal Logic (FLTL)

= fluent is true = event occurrenceLegend:

position in trace 5 10 15

= fluent is false = no event occurrence

f2 = f until
(

fσ1 , fσ2)

)fσ2 =< σ2,A \ σ2 >

fσ1 =< σ1,A \ σ1 >

f =< σ1, σ2 >

σ2 ∈ A

σ1 ∈ A

σ0 ∈ A

Figure 4.1: Fluent example

Fluents are defined in [75] as “state predicates whose values are determined by the oc-
currence of initiating and terminating events”. A fluent is thus a two tuple comprising
an initiating event σ1 and a terminating event σ2 , σ1 and is initially defined to be false1.
Fluents are denoted as suggested in [75]:

1In [75], fluents are defined over sets of initiating and terminating events and the initial value can be
set arbitrarily. For our purposes, the simplified definitions are sufficient.

53

f =< σ1, σ2 >. Let A be the set of all distinct events contained in an event trace tr :
N → A. A set Φ of fluents f maps an event trace tr to a corresponding state trace
h = StateTrace(tr) which is defined as follows: for every position i ∈ N and every fluent
f ∈ Φ, f is true at position i of h iff the following conditions are satisfied:

• Informally, some initiating event must have occurred before position i and no
terminating event has occurred since then.

• There exists some j ∈ N, j ≤ i such that tr
(
j
)

= σ1 and there is no k ∈ N, j < k ≤ i
such that tr (k) = σ2.

• An FLTL assertion P is said to be satisfied by an event trace tr, iff StateTrace(tr)
satisfies P.

By default, the interval over which a fluent is true is closed on the left and open on the
right. This means that an event at position i in the event trace affects a fluent starting
from the same position, namely i. This can be seen in Figure 4.1, where the fluent
f =< σ1, σ2 > becomes true at the instant of occurrence of signal σ1. In the same way,
the occurrence of sigma σ2 has an immediate impact on f ; the latter becomes false right
away.
In analogy to [75], we also define fluents for event occurrences. For an event σ, the
corresponding fluent is terminated by any other event in the system alphabet, and
hence fσ =< σ,A \ σ >. The fluent holds at the instant when the event occurs and
becomes false upon the first occurrence of any other event (cf. fσ1 and fσ2 in Figure 4.1)
Informally, the function funtil: Φ × Φ → Φ derives a fluent f1 = f until(f2, f3), which is
true at position i ∈ N if f2 was true at a position before i and f3 has not been true since
then. Hence, f1 is true at position i if there is some j ∈ N, j ≤ i where f2

(
j
)

= true and
there is no k ∈N, j < k < i, where f3 (k) = true. The meaning of f until can be understood
by looking at Figure 4.1: f2 is true from the instant when fσ1 is true until the instant when
fσ2 is true, including the boundaries.
Finally, two special cases of fluents are given a name: the false-fluent f f alse is always
false and the true-fluent ftrue is always true. To simplify textual descriptions, we define
an equivalent signal σ of a fluent f as a signal which is notified at position i in an event
trace tr if f is true at that position in the state trace h: σ = sigequiv

(
f
)
. In Figure 4.1 for

example, the following two identities hold: σ1 = sigequiv
(

fσ1

)
and σ2 = sigequiv

(
fσ2

)
.

Boolean algebra over fluents such as fr = f1 OP f2 is simply defined as an element-wise
application fr(i) = f1(i) OP f2(i) of the operator OP. For a given trace tr, all fluents are
supposed to have the same length as the trace.

54

4.3 TEPE: TEmporal Property Expression language

4.3.1 Requirements modeling with SysML Requirement Diagrams

SysML Requirement Diagrams (RDs) establish relations among requirements and define
testcases. Examples of these relations are << deriveReqt >> and composition relations.
Requirements may also be copied from other views (<< copy >>). SysML RDs define the
notion of testcases (named "properties" in the following) that are linked to requirements
using the << veri f y >> relation. Unfortunately, in SysMLRDs, properties are only
informally specified with an identifier and a plain text. The following section suggests
TEPE to remedy this shortcoming.

4.3.2 Parametric Diagrams

4.3.2.1 Intuition

TEPE constraints directly refer to attributes and signals, that is system states and events
in the MoC terminology. MoCs exhibiting either of the two primitives are amenable to
verification with TEPE. That way, TEPE acknowledges the fact that properties are some-
times more conveniently formulated in either a state-based or an event-based fashion.
As a rule of thumb, whenever a system’s history is relevant for a property, a state-based
expression is preferable. If a property applies in very different scenarios, which are
characterized by common behavioral patterns, then events are the formalism of choice.

TEPE was built on the two simple insights that properties are often not invariants and
that liveness and safety properties should be easily expressible and distinguishable. As
depicted in Figure 4.2a, vertically cascaded TEPE constraints determine the activation
period APn of the constraint immediately above. This is suggested by the vertical APn

arrow marked with 4©. In turn, they only operate on signals and properties during
the activation period APn−1 specified by the constraints immediately below (arrow 5©).
Properties, which are state predicates, are propagated along the vertical axis (cf. prop-
erty arrows Pn+1 and Pn in the figure), named state axis. A constraint receives an input
property Pn+1 to be verified and produces an output property Pn, which may be the final
result or subject to further verification. During its activation period APn−1, a constraint
observes three signals represented by horizontal arrows in Figure 4.2a. The signal s1
(arrow 1©) serves as trigger for the verification of the liveness of s2 (arrow 2©), and the
safety (arrow 3©) of the system prohibiting the occurrence of s3 between s1 and s2. To
account for time constraints, TEPE operators may specify a minimum duration Tmin and
maximum duration Tmax (marked with 7©) of the interval bounded by s1 and s2 (marked
with 7© as well). TEPE operator may also generate an output signal, indicating that an
input sequence has been correctly observed (arrow 6©)
The UML view below the intuitive representation reveals that TEPE operators only
support a subset of the aforementioned features. For instance, the Sequence Constraint

55

(LS) in Figure 4.2b has a trigger signal s1 and monitors the liveness of signal s2 and the
non-occurrence of s3 during the period bounded by s1 and s2. However, the time that
elapses during that period cannot be constrained, this can exclusively be realized with
the Temporal Constraint (TC) in Figure 4.2c. The latter does not offer signal inputs for
liveness and safety checks. Figure 4.2a further shows that signals are symbolized by
normal arrows (), whereas properties arrows () are marked with a circle at both
ends. Property arrows both symbolize a state predicate named Pn+1/Pn in the intuitive
schema, and the activation period APn/APn−1.
In subsequent sections, we will formalize how incoming arrows in Figure 4.2a (s1, s2, s3,
APn−1, Pn+1) relate to outgoing arrows (Pn, sout, APn) by means of the transfer functions
Fprop, Fsig, Fact. Therefore, signals and activation periods will be abstracted to fluents,
and properties will be deduced as a result of an expression in FLTL.

.

State Axis

Event Axis

Activation

Period APn

([s1,s2[in APn-1)

Tmin

Tmax

for

[s1,s2[

...then eventually s2 in AP...Liveness

Property Pn+1 to be

verified in [s1,s2[

If s1 occurs during AP...

...s3 is prohibited in [s1,s2[

Resulting signal sout if

[s1,s2[was observed

Activation

Period

APn-1

Resulting property Pn

Safety

Trigger

1

2

3

4

5

67

1

2

3

1

7

6

6

55

4
4(a) Intuition for the TEPE semantics

2©

3©
4©

6©

5©

1©

(b) Sequence Con-
straint, UML based
notation

1©

7©

6©

5©

4©

7©

(c) Time Con-
straint, UML based
notation

Figure 4.2: Intuition and corresponding UML based notations

56

4.3.2.2 Construction

Since SysML Parametric Diagrams (PDs) establish constraints between elements of sys-
tem design - i.e., parameters -, TEPE introduces a small set of SysML Constraints called
TEPE Contraints, or TC for short. As opposed to informal SysML PDs, TEPE PDs are
amenable to automated verification.

In TEPE, each property is expressed as a graph of TEPE Constraints which are: Alias
Constraints, Conjunction Constraints, Disjunction Constraints, Equation Constraints, Logical
Constraints, Sequence Constraints, Temporal Constraints, Property Definition Constraints and
Setting Constraints. Constraints are related to each other using three types of parameters:
Signals, Attributes and Properties. An excerpt of the TEPE meta model is depicted in Figure
4.3. All stereotypes of PDs are derived from their respective SysML counterpart: Blocks,
Constraints and Links. A block provides a scope to Attributes and Signals in order to
unambiguously map them to the system model. Properties are assembled by means of
Links which are attached to the ports of Constraints. Links may be established between
two parameters of the same type (Attribute, Signal or Property). Ports must obviously
have the same data type as the connected Link, and two connected ports must have the
inverse input/output configuration.

Figure 4.3: Excerpt from the TEPE PD Meta Model

A TEPE PD can be constructed in the following way:

1. First, Blocks are represented with their particular Attributes and Signals subject to
verification. These entities have been identified during the design phase. A Block
may refer to any entity in the system model providing a scope to Attributes and
Signals.

57

2. Values derived from original attributes and signals are introduced (cf. Equation
and Alias constraints).

3. The reasoning about the sequential and temporal traces of the system is expressed
in terms of logical and temporal constraints. These constraints can be composed
using Signals and Property parameters.

4. Several Properties may be combined via logical property constraints such as Con-
junction, Disjunction and Property Definition constraints.

5. Finally, using a reference label, the formal property to be verified is linked to an
informal testcase of a SysML RD. The formal property is tagged with a quantifier
attribute (non-) liveness or (non-) reachability.

6. To avoid overloaded diagrams, (possibly multiple) properties of a requirement can
be spread over several diagrams.

4.3.2.3 Example

The example in Figure 4.4 informally presents operators of PDs, which are described
in section 4.3.3 in more detail. The represented properties are somewhat artificial, but
nicely demonstrate the basic concepts of TEPE. More realistic properties can be found
in section 4.5.2.2 and 8.3.1.4.

• In the interval starting with s3 and ending with s1 or s2, the equation z > 0 must
be satisfied, and the expression z = x + y must remain constant. Moreover, the
interval must finally be concluded with s1 or s2.

• The signal s2 must be observed less than 10 time units after signal s1.

• We finally express that both properties have to hold.

The depicted PD defines two Blocks: BlockA has two attributes x and y as well as
two signals s1 and s2. BlockB declares a signal called s3. A Setting constraint declares
a temporary variable z = x + y which simply serves as a shorthand to derive other
expressions. The equation z > 0 is connected to the Logical Sequence (LS) operator and is
therefore only verified during its activation period, specified by the Sequence Constraint
(LS). An Alias constraint combines the two signals s1 and s2. The resulting signal is
raised upon occurrence of either of the two input signals s1 or s2. The two properties,
established by the LS and TC constraint, are combined with an AND constraint. The LS
constraint requires that upon occurrence of an s3 signal, the compound signal resulting
from the Alias constraint must eventually be observed, i.e. s1 or s2. Note that the safety
input of the LS constraint is connected to the toggle signal of the equation. In case of an
equation, a toggle signal announces a change from false to true, in case of a setting each
value change of the expression triggers an occurrence of the toggle signal. Therefore, if
the value of z changes or if the equation z > 0 is not satisfied between the occurrence of s3

58

and the compound signal, the LS constraint evaluates to false. The property established
by the TC constraint requires the signal s2 to occur less than 10 time units after signal s1.
The property resulting from the AND constraint must be satisfied for every execution.
This is made explicit with a Property Definition constraint configured for the verification
of liveness.

Figure 4.4: Example of a TEPE Parametric Diagram

4.3.3 Links

TEPE constraints are horizontally connected together with attribute and signal links, and
vertically with property links.

• Attribute links refer to the system model when originating from a Attribute
declaration constraint, or to attributes introduced withing a TEPE PD when origi-
nating from a Setting Constraint. The only purpose of attribute links is to unam-
biguously identify an attribute, even if several attributes of the same name exist.
In UML, the arrows of attribute links are decorated with a small rectangle at both
ends.

• Signal links convey signals originating directly from the system model, or
signals resulting from TEPE constraints such as toggle signals, Alias signals, etc.

59

To visually separate the state and signal domain, signals are connected to the left
and right border of constraints.

• Property links convey state predicates, thus boolean values resulting from
Equation, Temporal, Sequence or Logical constraints. Properties represent the state
domain in TEPE and are connected to the top and bottom border of TEPE con-
straints. In the following, constraint c1 providing a property to be verified to
another constraint c2 is said to be above c2. Conversely, constraint c2 verifying
this property is below c1. In UML, the arrows of property links are decorated with
with a small circle at both ends.

4.3.4 Generic TEPE Constraints

The formal definition of a TEPE constraint allows us to express each output of a TEPE
constraint as a function of its inputs. These so called transfer functions are formulated for
each constraint in FLTL. The following definition is generic in the sense that it embraces
the superset of all inputs and outputs of all types of TEPE constraints. For the existing
constraints however, only a fraction of these elements are relevant.
A generic TEPE constraint is an 9-tuple (Fi, Fneg, Fout, Tpar, Fsai, Fao, Fprop, Fsig, Fact)
comprising

• A set Fi of input fluents, with at most two input fluents fi1, fi2

• A set Fneg of negated fluents, with at most one negated fluent fneg

• A set Fout of output fluents, with at most one output fluent fout

• A set Tpar of time parameters, with at most two time parameters denoting a mini-
mum and a maximum time and referred to as Tmin and Tmax respectively

• A set Fsai with at most one pair of an activation period input and a property output:
Fai =

{
fn−1,Pn

}
• A set of at most two pairs of an activation period output and a property input:

Fao =
{{

fn,1,Pn+1,1
}
,
{
fn,2,Pn+1,2

}}
. To simplify matters,

{
fn,1,Pn+1,1

}
is written as{

fn,Pn+1
}

if there exists exactly one pair.

• A transfer function for the property output if applicable
Pn = Fprop

(
Fi, Fneg,

{
Pn+1,1 . . .Pn+1, j

}
, fn−1, Tpar

)
, expressed in FLTL.

• A transfer function for the output fluent if applicable fout = Fsig
(
Fi, fn−1

)
, ex-

pressed in FLTL.

• A transfer function for the activation period output if applicable{
fn,1 . . . fn, j

}
= Fact

(
Fi, fn−1

)
, expressed in FLTL.

60

In the further course of the formalization, we will assume that the activation period of
the lowermost constraint fn−1,low in a set of vertically cascaded TEPE constraints is the
true-fluent fn−1,low = ftrue.

4.3.5 Attribute constraints

Attribute constraints make system state variables, called attributes, amenable to ver-
ification with TEPE. The respective attributes must have been declared in the system
model or in Settings. As stated in the introduction, properties may sometimes be more
conveniently expressed in a signal based manner. If the system model does not associate
an observable signal to a change of an attribute, this is where toggle signals come in.
Toggle signals are defined to be sent upon a change of an expression depending on sys-
tem attributes, such as settings, equations or single attributes. That way, these signals
bridge the gap between the state and the signal domain.

4.3.5.1 Attribute Declaration

Semantic view Signal/Fluent relations UML view

fout

6© σout = sigequiv
(

fout
)

6©

An Attribute declaration refers to an attribute defined in the system model. The toggle
signal σout is sent whenever the attribute changes its value.

4.3.5.2 Setting

Semantic view Signal/Fluent relations UML view

fout

6© σout = sigequiv
(

fout
)

6©

Settings declare a new attribute as a function of existing ones. These attributes may be
useful to simplify otherwise complex expressions. The toggle signalσout is sent whenever
the declared attribute changes its value.

61

4.3.5.3 Equation

Semantic view Signal/Fluent relations UML view

Pn

fout

fn−1

6©

5©

σout = sigequiv
(

fout
)

5©

6©

An Equation constraint consists of a boolean expression Eq which is a function of at-
tributes. Eq has to hold during the activation period for the output property Pn to
evaluate to true. The toggle signal σout is sent upon a change of the equation result from
false to true. The transfer function is:

Fprop : Pn =
(

fn−1 → Eq
)

4.3.6 TEPE Signal constraints

Signal constraints express a property in terms of the presence and the absence of signals
during the activation period fn−1. As the semantic view suggests, Logical, Sequence
and Time Constraints represent the intersection of TEPE’s signal and property axes. The
activation period of a signal constraint is determined by the operator below and the given
constraint in turn determines the activation period of the operator above. Depending
on the constraint type, the interval denoted by two signals σ1 and σ2 may be required
. . .

• . . . not to include a signal σneg

• . . . to satisfy a property Pn+1

• . . . to terminate with the signal σ2 before the end of the activation period fn−1

• . . . not to exceed a maximum duration tmax; not to fall below a minimum duration
tmin

for the property to be satisfied.

4.3.6.1 Signal declaration

Semantic view Signal/Fluent relations UML view

fout

6© σout = sigequiv
(

fout
)

6©

A signal declaration merely makes a signal σout ∈ A occurring in a system’s event trace
tr available for TEPE constraints by converting it into a fluent fout. Its semantics unam-
biguously relates input fluents of TEPE constraints to signals of the system model.

62

4.3.6.2 Signal Alias

The output signal σout of an Alias constraint is a signal notified whenever either of the
two input signals σ1 and σ2 occurs. The constraint can be regarded as a logical disjunc-
tion in the signal domain.

Semantic view Signal/Fluent relations UML view

fout
σ1, fi1
σ2, fi2

6©

1© σ1 = sigequiv
(

fi1
)

σ2 = sigequiv
(

fi2
) 1© 6©

The transfer function is:

Fsig : fout = fi1 ∨ fi2

4.3.6.3 Sequence Constraint

Semantic view Signal/Fluent relations UML view

Pn

Pn+1fn

fout

fn−1

1© σ1, fi1
2© σ2, fi2

5©

4©

3© σneg, fneg 6©

σ1 = sigequiv
(

fi1
)

σ2 = sigequiv
(

fi2
)

σneg = sigequiv
(

fneg

) 2©

3©
4©

6©

5©

1©

The activation period of the constraint is determined by the constraint below and re-
ferred to as fn−1. Informally, if, during an activation period, the occurrence of signal σ1 is
eventually followed by the occurrence of signal σ2, and if during the interval delimited
by σ1 and σ2, the negated signal σneg is not observed and the property Pn+1 holds, the
property Pn evaluates to true. Otherwise, Pn is defined to be false. During the activation
period, the output signal σout is notified upon an occurrence of σ2, if it was preceded by
an occurrence of σ1. The transfer functions are:

Fprop : Pn =
(

fn−1 ∧ fi1
)
→ X

((
¬ fneg ∧ Pn+1 ∧ fn−1

)
U fi2

)
Fact : fn = fn−1 ∧ f until

(
fi1, fi2

)
Fsig : fout = fn ∧ fi2

63

4.3.6.4 Logical Constraint

Semantic view Signal/Fluent relations UML view

Pn

Pn+1fn

fout

fn−1

1© σ1, fi1
2© σ2, fi2

5©

4©

3© σneg, fneg 6©

σ1 = sigequiv
(

fi1
)

σ2 = sigequiv
(

fi2
)

σneg = sigequiv
(

fneg

) 2©

3©
4©

6©

5©

1©

The Logical Constraint extends the rules of Sequence Constraint (marked with (a) in the
following) with the same rules for the reverse signal order (marked with (b) in the fol-
lowing). The activation period of the constraint is determined by the constraint below
and referred to as fn−1. Informally, if, during an activation period, the occurrence of
signal σ1(a)/σ2(b) is eventually followed by the occurrence of signal σ2(a)/σ1(b), and if
during the interval delimited by σ1(a)/σ2(b) and σ2(a)/σ1(b), the negated signal σneg is not
observed and the property Pn+1 holds, the property Pn evaluates to true. Otherwise, Pn is
defined to be false. During the activation period, the output signal σout is notified upon
an occurrence of σ2(a)/σ1(b), if it was preceded by an occurrence of σ1(a)/σ2(b). Thereby,
both signals σ1 and σ2 exclusively belong to one interval, and either open or close it,
but not both. For example, the sequence of signals σ1, σ2 complies to the rules marked
with (a). However, to switch to case (b), the sequence must be followed by a second
occurrence of σ2. The transfer functions are:

Fprop : Pn =
((

fn−1 ∧ fi1 ∧ ¬ fo2
)
→ X

((
¬ fneg ∧ Pn+1 ∧ fn−1

)
U fi2

))
∧((

fn−1 ∧ fi2 ∧ ¬ fo1
)
→ X

((
¬ fneg ∧ Pn+1 ∧ fn−1

)
U fi1

))
Fact : fn = fn−1 ∧

(
fo1 ∨ fo2

)
Fsig : fout = fn ∧

((
fo1 ∧ fi2

)
∨

(
fo2 ∧ fi1

))
where fo1 = f until

(
fi1, fi2

)
and fo2 = f until

(
fi2, fi1

)

64

4.3.6.5 Temporal Constraint

Semantic view Signal/Fluent relations UML view

Pn

Pn+1fn

fn−1

Tmax

foutTmin
1© σ1, fi1
7© σ2, fi2

6©

4©

5©

σ1 = sigequiv
(

fi1
)

σ2 = sigequiv
(

fi2
) 1©

7©

6©

5©

4©

7©

Depending on the supplied number of signals and parameters, the Temporal Constraint
has several semantics. In case it operates on two signals σ1 and σ2, both physical times
tmin and tmax or only one of the two may be specified. In case the Temporal Constraint
operates on one signal σ1, exactly one time value T must be provided. In the following,
the operating modes and their corresponding transfer function are summarized.

1. σ1, σ2, tmin, tmax supplied:
σ2 has to occur at least tmin time units, at most tmax time units after σ1 and Pn+1 must
be satisfied from the occurrence of σ1 until the occurrence of σ2 (Figure 4.5a). The
transfer functions are:

Fprop : Pn =
(

fn−1 ∧ fi1
)
→((

[]{< Tmin}¬ fi2
)
∧

(
<> {≤ Tmax} fi2

)
∧

(
X

(
Pn+1 U fi2

)))
Fact : fn = fn−1 ∧ f until

(
fi1, fi2

)
Fsig : fout = fn ∧ fi2.

2. σ1, σ2, tmax supplied:
σ2 has to occur at most tmax time units after σ1 and Pn+1 must be satisfied from the
occurrence of σ1 until the occurrence of σ2 (Figure 4.5b). The transfer functions are:

Fprop : Pn =
(

fn−1 ∧ fi1
)
→

((
<> {≤ Tmax} fi2

)
∧

(
X

(
Pn+1 U fi2

)))
Fact and Fsig are defined as above.

3. σ1, σ2, tmin supplied:
σ2 has to be notified at least tmin after σ1 and Pi must be satisfied from the occurrence
of σ1 until the occurrence of σ2 (Figure 4.5c). The transfer functions are:

Pn =
(

fn−1 ∧ fi1
)
→

((
[]{< Tmin}¬ fi2

)
∧

(
X

(
Pn+1 U fi2

)))
Fact and Fsig are defined as above.

65

Semantic view Signal/Fluent relations UML view

Pn

Pn+1fn

fout

fn−1

T
1© σ1, fi1

6©

4©

5©

σ1 = sigequiv
(

fi1
) 1© 6©

5©

4©

4. σ1, t supplied:
after occurrence of σ1, Pn+1 must be satisfied at least for t time units (Figure 4.5d).
The transfer functions are:

Fprop : Pn =
(

fn−1 ∧ fi1
)
→ ([]{< T}Pn+1)

fto =< σto,A \ σto > where σto indicates the expiration of t time units
Fact : fn = fn−1 ∧ f until

(
fi1, fto

)
Fsig : fout = fto

tmaxtmin
σ1 σ2

Pn+1 = true

(a) Semantics 1

tmax
σ1 σ2

Pn+1 = true

(b) Semantics 2

tmin
σ1 σ2

Pn+1 = true

(c) Semantics 3

σ1
t

Pn+1 = true

(d) Semantics 4

Figure 4.5: Temporal Constraint Operator Semantics

4.3.7 Property Constraints

4.3.7.1 Property Logic

Semantic view UML view

Pn+1,2

Pn

Pn+1,1 fn,2

fn−1

fn,1

5©

4©
4©

5©

66

Property Logic Constraints perform logical operations OP such as conjunction and dis-
junction on properties. The transfer functions are:

Fprop : Pn = Pn+1,1 OP Pn+1,2

Fact :
{
fn,1, fn,2

}
=

{
fn−1, fn−1

}
4.3.7.2 Property Label

Semantic view UML view

Q

Pn

Pn+1fn

fn−1

5©

4©
4©

5©
Property Labels assign a name to a TEPE property and provide path and temporal quan-
tifiers. So far, three combined quantifiers Q have been predefined: Reachability, Liveness
and Safety, which are equivalent to the CTL semantics of EF, AF and AG respectively.
From our experience, these three cases already cover the lion’s share of usual verification
scenarios. However, path and temporal quantifiers could also be freely combined by
the user in future versions of TEPE, if it turns out that the expressiveness is limited by
our choice. The transfer functions are:

Fprop : Pn = Q Pn+1

Fact : fn = fn−1

4.4 TEPE and AVATAR

To provide evidence for the effortless integration of TEPE into UML/SysML environ-
ments, we draw on two examples, namely the AVATAR profile and the DIPLODOCUS
profile. While DIPLODOCUS has been extensively discussed in chapter 2, AVATAR
is surveyed in the following to convince the reader of its different nature. AVATAR is
much less tied to physical constraints, hardware software partitioning and DSE. AVATAR
does not offer a separation between architecture and application concerns. The common
ground of both profiles is data abstraction and the fact that algorithms are abstracted
in the form of symbolic operators. The primary goal of AVATAR is to verify high level
models by simulation and formal verification and to conduct schedulability analysis.
Instead of renouncing the graphical support of SysML and writing complicated logical
formulas, this section suggests to take advantage of the convenience of TEPE.
Recently, the profile has been enhanced to make models amenable to the verification of
security properties [95], such as confidentiality, integrity, authenticity, and freshness.

67

4.4.1 AVATAR Methodology

The AVATAR methodology comprises the following stages:

1. Requirement capture. Requirements and properties are structured using AVATAR
Requirement Diagrams. At this step, properties are just specified in plain text and
named with a label.

2. System analysis. A system may be analyzed using usual UML diagrams, such as
Use Case Diagrams, Interaction Overview Diagrams and Sequence Diagrams.

3. System design. The system is structured in terms of a Block Diagram and at most
one State Machine per SysML block to describe its behavior.

4. Property modeling. Properties are refined and formalized within TEPE Parametric
Diagrams (PDs). Since TEPE PDs involve elements defined in system design (e.g, a
given integer attribute of a block), they may be constructed only after a first system
design has been performed.

5. Formal verification. The latter can finally be conducted over the system design
and for each property.

Once all properties are proved to hold, requirements, system analysis and design, as well
as properties may be further refined. Thereafter, and similarly to most UML profiles for
embedded systems, the AVATAR methodological stages are reiterated. Having reached
a certain level of detail, refined models may not be amenable to formal verification
any more. Therefore the generation of prototyping code may become the only realistic
option [12].

4.4.2 AVATAR Block and State Machine Diagrams

Apart from their formal semantics, AVATAR Block and State Machine Diagrams only
have a few characteristics which differ from their SysML counterpart.
An AVATAR block comprises a list of attributes, methods and signals. Signals can
be transmitted on synchronous or asynchronous channels which are represented by
connectors linking two ports. Connectors are associated to a list of signals.
A block constituting a data structure merely contains attributes. A block modeling a
sub-behavior of the system must define an AVATAR State Machine.
AVATAR State Machine Diagrams are built upon SysML State Machines, including
hierarchical states. AVATAR State Machines further enhance the SysML ones with
temporal operators:

• Delay: a f ter(tmin, tmax). It models a variable interval during which the activity of
the block is suspended, waiting for a delay between tmin and tmax to expire.

68

• Complexity: computeFor(tmin, tmax). It models a time during which the activity of
the block actively executes instructions, before transiting to the next state: that
computation may consume between tmin and tmax units of time.

The combination of complexity operators (computeFor()), delay operators, as well as the
support of hierarchical states - and the possibility to suspend an ongoing activity of a
substate - endows AVATAR with features essential for real-time system schedulability
analysis.

4.4.3 Harmonising AVATAR and TEPE

The correspondence between TEPE signals, attributes and blocks and the AVATAR
model is straight forward as AVATAR exhibits exactly the same primitives. AVATAR
expresses behavior with state machines, and therefore its concepts closely relate to
labeled transitions systems.

4.4.4 System design example

The block diagram (see Figure 4.6) gives a first impression of an AVATAR block diagram.
It is structured in such a way that the main block called MicroWaveOven represents the
overall system and encapsulates the components the oven consists of. A block named
Controller is the heart of the system and manages all peripheral equipments, that is
a control panel comprising a start button and an LED indicating an ongoing heating
process (block ControlPanel), the heating unit (block Magnetron), a Bell informing the
user about the completion of the heating process, and finally a sensor element providing
information about the current position of the door (Door). The links between blocks
shown in the block diagram symbolize a synchronization mechanism based on rendez-
vous. For instance, Controller and ControlPanel synchronize with each other by means
of three distinct signals. Signals may be named differently in each block, so they need
to be explicitly plugged to each other which is visualized with labels drawn next to the
respective port.
Once the relation between TEPE signals/attributes and the underlying MoC of the system
model has been established, TEPE properties are always formulated in the same way.
That is why the properties studied in section 4.5.2 would apply equally well to the
AVATAR model presented here.

4.5 TEPE and DIPLODOCUS

In section 4.1 it was argued that the only assumption TEPE makes on the system model is
that it discriminates events and attributes. For Models of Computation stemming from
labeled transition systems, the association is straight forward. We will demonstrate that
with the example of the DIPLODOCUS profile. TEPE attributes can be directly related

69

Figure 4.6: Microwave oven case study: Block Diagram

to task variables in DIPLODOCUS, and the scoping established by DIPLODOCUS tasks
is expressed with Blocks. However, the correspondence between TEPE signals and
operations in a DIPLODOCUS model deserves further attention. Moreover, this section
addresses implementation issues of the TEPE constraint verifier which was integrated
into the simulation engine (cf. chapter 5).

4.5.1 Harmonising DIPLODOCUS and TEPE

In DIPLODOCUS, tasks may be executed concurrently on different hardware compo-
nents. Due to that concurrency semantics, events1, denoting for instance the beginning
and the end of transactions, may happen to occur at the same time instant as well. TEPE
Logical and Sequence constraints however require signals to be totally ordered. The
following three approaches may remedy that problem:

1. Imposing an arbitrary order satisfying particular criteria, for instance that the si-
multaneous occurrence of signals does not make a property (resulting from Logical
and Sequence constraints) fail. In case simultaneity of signals is considered as an
incorrect system behavior, TEPE time constraints could be used to detect it.

2. Introducing a third valuation of a property besides true and false, indicating that
the property cannot be evaluated (for instance “undefined”)

3. Considering all possible interleavings of signals as distinct paths and relying on
TEPE path operators to determine the resulting property

So far, we opted for the first solution just to simplify the implementation of the TEPE
verifier which will be surveyed in section 4.5.3. However, future experiences and in-
sights to be gained with case studies may bring us to reconsider this decision.

1as defined in 3.2, not to be confused with DIPLODOCUS events

70

Another issue is how operations in DIPLODOCUS models should translate into TEPE
signals. Obviously, one identifies application and architecture components as potential
sources of signals: Tasks, commands, channels, events and requests belong to the ap-
plication domain and CPUs, buses, memories, bridges and hardware accelerators to the
architecture domain. All these components are subsumed in the Source Type category.
Source ID specifies the name or ID of the concerned DIPLODOCUS element. Trans-
actions are defined as an executable portion of a command (cf. section 2.3.4) and play
a pivotal role for the execution semantics of DIPLODOCUS (see section 5.4). For this
reason, a TEPE signal may be associated with the start or the end of a transaction. These
two options are captured by the Synchronization option. Lastly, signals can be classified
according to the type of transaction they are associated with. These Transaction Types
are named in the same way as the DIPLODOCUS operators that issue the transaction:
Send, Receive, Read, Write, Exec. In summary, a combination of Source Type, Source ID,
Synchronization and Transaction Type accurately identifies an event (again in the MoC
sense) in a DIPLODOCUS model. In the context of DIPLODOCUS, the notion of signal
thus corresponds to a possible valuation of the aforementioned categories labeled with
a unique identifier. The next section exemplifies the mapping of DIPLODOCUS events
to TEPE signals.

4.5.2 Example

To illustrate the compatibility of TEPE and DIPLODOCUS, we get back to the example
of a microwave oven, introduced in section 4.4.4. Table 4.1 demonstrates how the TEPE
signals open, closed, ringBell referred to in Figure 4.7 relate to DIPLODOCUS elements.
Therefore, we rely on the above mentioned categories. The first three TEPE signals
originate from DIPLODOCUS send transactions of the event indicated in the Src ID
column. The TEPE signals are thereby synchronized to the end of the send transaction.
The cooking process of the microwave oven is assumed to be modeled with an Execi
command, carrying the ID 221. The startCooking TEPE signal announces the beginning
of the associated DIPLODOCUS transaction, and the stopCooking signal its termination.
Note the respective settings of the Synchronization option. The explicit assignment
of TEPE attributes to DIPLODOCUS task variables has been omitted, as it is straight
forward. TEPE blocks are assumed to carry the same name as DIPLODOCUS tasks, just
as TEPE attributes and DIPLODOCUS task variables.

4.5.2.1 Requirements

A model of a microwave now serves as an example to illustrate the ease of use and the ex-
pressiveness of TEPE. Four functional safety-related requirements have been identified
and modeled in a Requirement Diagram:

• Req1: The heating unit is not started if the door is open.

• Req2: When the bell rings, the cooking time must be expired.

71

Src Type Src ID Sync Trans Type TEPE ID
Event door_open End Send open
Event door_closed End Send closed
Event ringBell End Send ringBell

Command ID221 Start Exec startCooking
Command ID221 End Exec stopCooking

Table 4.1: Microwave Oven: TEPE signals and DIPLODOCUS elements

• Req3: When the door is opened during operation, the magnetron is switched off
for the time the door remains open.

• Req4: To avoid an overload of the magnetron, it should not be operated for more
than 5 consecutive time units at full power.

4.5.2.2 Property modeling

After having assigned a semantics to TEPE blocks, attributes and signals in a DIPLO-
DOCUS context, the developer may proceed with the formal model of the properties
to be verified, corresponding to requirements (Req1 to Req4). As we will show in this
section, the requirements naturally translate into TEPE.
Req1 (depicted in Figure 4.7a) is expressed in terms of a Sequence Constraint which is
applied to three input signals: between occurrences of the open and close signal sent by
the block Door, the occurrence of the startMagnetron signal originating from the Controller
is considered as an abnormal system behavior. Therefore, the latter is marked as negated
by means of a small cross.
The second requirement Req2 (see Figure 4.7b) demonstrates the usage of the Temporal
Constraint and shows its ability to express simultaneity. The remaining cooking time,
stored in the variable remainingTime of block Controller, should evaluate to zero at the
time instant when the bell rings.
Req3 (see Figure 4.7c) makes use of the TEPE feature to vertically compose constraints
in order to interleave the respective intervals. The lowermost constraint characterizes
the time interval when the oven is in operation by referring to the signals startCooking
and stopCooking, both raised by the Controller. The second Logical Sequence Constraint
examines the occurrence of the signals open and close during the aforementioned interval
and makes sure that the magnetron is switched off while the door remains open.
Finally, it should be reemphasized that the evaluation of equations may trigger signals
as well. In Req4 (shown in Figure 4.7d) for instance, the first Equation Constraint stud-
ies for a value change of the power attribute of block Magnetron from power , 100 to
power = 100. The second Equation Constraint watches for the opposite value change. The
time elapsing while the magnetron is operated at full power is that way constrained to
be smaller than 5 time units.

72

(a) Property 1 (b) Property 2

(c) Property 3 (d) Property 4

Figure 4.7: Microwave oven case study: Properties

73

4.5.3 Implementation Issues

This section covers the verification engine for TEPE properties, which was integrated into
the overall simulation environment for DIPLODOCUS models. However, the engine
was designed with the objectives to (1) keep it independent of the model to be verified,
(2) architecturally separate state and event formalisms and to (3) easily incorporate
potential new operators, as TEPE is still in its infancy. In this context, the simulation
environment is abstracted to a mere generator of signals and attribute values. A detailed
discussion of the simulation environment is deferred to chapter 5. A dedicated layer
between the simulator and the TEPE verifier converts representations of signals and
attributes. In so doing, the mutual independence of simulator and verifier is achieved.

4.5.3.1 TEPE Verifier Architecture

PropConstraint

SigConstraint

TwoSigConstraint

ThreeSigConstraint

FSMConstraint

TimeMMConstraint

LogConstraint

TimeTConstraintEqConstraint

AliasConstraint

SeqConstraint

PropLabConstraint PropLogConstraint

notifyEnable()

evalProp()

PropStateConstraint

active: boolean

reportPropOccurrence(flag: bool)

evalInput()

backToState(s: State)

Figure 4.8: Architecture of TEPE constraints

Two separate base classes account for the horizontal and vertical semantics of TEPE
constraints: SigConstraint and PropConstraint. PropConstraint defines an interface for
controlling the activation period (notifyEnable method) and for evaluating the property
output (evalProp method) of constraints. PropLabConstraint and PropLogConstraint di-
rectly inherit from PropConstraint and implement Property Logic and Property Label
constraints.
The PropStateConstraint class is endowed with a flag indicating whether a constraint is
currently activated and implements the method evalProp and reportPropOccurrence. Both
methods are discussed in section 4.5.3.2 in more detail. reportPropOccurrence is invoked
with a boolean parameter whenever a logical, sequence or time constraint was satisfied
or violated. That way it keeps the property value of the constraint up to date and real-
izes TEPE’s default path quantifier (in general). PropStateConstraint serves as base class
for all constraints treating signals (except for AliasConstraint) and defines the evalInput
method. The latter is implemented by all constraints receiving signals and executed

74

whenever a signal at the input of a constraint toggles. Section 4.5.3.3 elaborates on how
the Sequence constraint implements this method.

TEPE constraints that observe the occurrence of signals inherit from SigConstraint. This
interface provides the basic functionality for one signal input and one signal output.
The inheritance structure of constraints is governed by the number of signals they may
be connected to, and whether they can be represented in terms of an untimed finite
state machine. It might seem astonishing that an EqConstraint (short for Equation con-
straint) inherits from SigConstraint for it is not supposed to evaluate any TEPE signal.
However, for technical reasons, the change of equation results is broadcasted by means
of signals. TimeTConstraint realizes semantics no. 4 of the Time constraint (involving
only one time value T). TwoSigConstraint is the interface for all constraints evaluating
more than one signal. AliasConstraint and TimeMMConstraint (implementing semantics
1-3 of the Time constraint, involving Tmin and Tmax) are direct subclasses of TwoSigCon-
straint. ThreeSigConstraint enhances the latter with a third signal and constitutes the
base class of FSMConstraint. The latter subsumes constraints monitoring sequential be-
havior, independently from physical time, namely Logical (LogConstraint) and Sequence
(SeqConstraint) constraints.

4.5.3.2 Tree and Path Quantifiers

s1
s2

reportPropOccurrence(true/false)

End of trace, evalProp(),

backToState(state)

sx system state where traces fork

Legend:

1
2 3

4 5
6

7

8

9

10 11

Figure 4.9: Example reachability graph with invoked verifier methods

This section elaborates on how violations and correct occurrences of signal sequences
are logically combined to obtain the resulting property of one possible execution. In
turn, results of several branches are logically combined to derive the final property of
the whole tree of possible executions. Figure 4.9 puts the invocation of evalProp, re-
portPropOccurrence and backToState methods in the context of an abstracted reachability
graph. Table 4.2 examines the response of the respective methods (columns), for Time,
Sequence and Logical constraints in row one and for Label constraints in row two. To
simplify matters, the constraints subsumed by row one are henceforth called R1 con-
straints. The variable prop extensively used in table 4.2 refers to the property result of a

75

constraint. The example reachability graph embraces three possible system executions,
originating from the two states s1 and s2 where traces fork. All along a trace, a constraint
can be satisfied (p=true) or violated (p=false), which results in a call to reportPropOccur-
rence with parameter p. In Figure 4.9, this is symbolized by arrows with a black head.
Table 4.2 reveals that the parameters passed to reportPropOccurrence are simply logically
combined with the current property value to obtain its new value. For the default TEPE
path quantifier (in general) a logical and is applied. The eventually semantics could be
realized with a logical or.
At the end of a trace (arrows 6, 8, 11 in Figure 4.9), the simulator sends an evalProp
message to the lowermost of all vertically chained constraints. R1 constraints return
the conjunction of their own property value and the one of the constraint above. That
way, the final property of a set of vertically chained constraints is the logical conjunction
of all constraints in the set. At the end of a trace, exhaustive simulation (see chapter
6) demands for the recovery of a past system state to explore another execution. For
instance, at the end of trace one (arrow 6 in Figure 4.9), the simulator might get back to
state s1 to explore the path towards arrow 8. A state change of simulation to s1 must be
accompanied by a state change of R1 constraints, which need to recover the past value of
their property (variable prop) at s1. This is symbolized by the invocation of propertyAt(s)
in backToState(s), where in this particular case s would be equal to s1. Label Constraints
(row two in Table 4.2) act as tree quantifiers and therefore update their property output
only at the end of a trace (arrows 6, 8, 11). Hence, Label Constraints do not need to im-
plement the reportPropOccurrence method. The realization of Liveness and Reachability
quantifiers within evalProp of Label Constraints resembles the one of path quantifiers of
R1 constraints in reportPropOccurrence. However, Label Constraints combine the current
value of prop with the property value of the constraint directly above. Label constraints
are not reset at the end of a trace so as to keep track of all executions of the system. The
backToState method is therefore left empty.

4.5.3.3 TEPE Constraints

The particular behavior of Sequence, Logical and Temporal constraints mainly stems
from a customized implementation of the evalInput method defined in the PropertyState-
Constraint class. Even if this section draws on the example of the Sequence Constraint
(SeqConstraint class), it illustrates the common ground of the implementation of EqCon-
straint, LogConstraint, TimeMMConstraint, and TimeTConstraint. The behavior descrip-
tion in terms of a state machine and its synchronization to input signals is common to all
these constraints. Figure 4.10 structures the behavior of constraints into two concepts:
a petri net with 4 initial places, an intermediate place containing a state machine and 2
output places. The notation suggests that transitions of the state machine are triggered
by the availability of tokens in all input places representing fluents fi1, fi2, fneg and fn−1.
In turn, each transition of the state machine produces 2 output tokens, namely fn and
fout.
In accordance with the definition of fluents in section 4.2.2, a token specifies the value of

76

Wait for f1

Wait for f2Deactivated

?act / 0,0

?deact / 0,0

?deact / 0,0

?f1 / 0,0

?fneg / 1,1,failed

?f2 / 1,1,passed

noEvt / 0,0

noEvt / 0,0 noEvt / 0,1

f1 f2 fneg fn-1(act, deact)

fn fout

fn fout

Figure 4.10: Functional view of the Sequence constraint

77

PPPPPPPPPop
method reportPropOcc(flag) evalProp() backToState(s)

Constraint

general:
prop &= flag
eventually:
prop | = flag

return prop &
above.evalProp() prop = propertyAt(s)

Label

Liveness:
prop & =
above.evalProp()
Reachability:
prop | =
above.evalProp()
return prop

Table 4.2: Implementation of Tree and Path quantifiers

a fluent (0 or 1) at a particular simulation time instant. A transition in the state machine
is taken if the value of the corresponding fluent is equal to 1. The notation of transitions
comprises the fluent serving as trigger and right to the slash the output values of fn and
fout in that order. The complement passed/failed implies an invocation of reportPropOc-
currence with parameter true/false. To simplify the state machine, two additional triggers
have been introduced: an act transition is taken if the previous value of the fn−1 fluent
was 0 and the current is 1. deact denotes the inverse edge, thus a value change of fn−1

from 1 to 0. Obviously, act and deact can never occur at the same time instant. However,
it is possible that more than one token carries the value 1. In that case, a total order of
signals is imposed as described in section 4.5 and one transition (if available) per 1-token
is taken. If all fluent values are zero, the transition noEvt is taken by default. If several
transitions are executed at the same time instant, only the last value of the output fluents
is taken into account.
The state machine itself is trivial and just makes sure that the semantics of the Sequence
Constraint is respected, which has been elaborated in section 4.3.6.3.

4.6 Conclusion

The TEmporal Property Expression language, or TEPE for short, customizes SysML
parametric diagrams. Properties are built upon logical and temporal relations between
block attributes and signals. TEPE diagrams are structured in a two dimensional way,
where system states are related vertically and transitions between these states, called
signals, are propagated horizontally. To prevent that errors in reasoning transfer from
design to verification stage, TEPE enforces a formalism different from state charts and
sequence diagrams. While being formally defined, the methodology may appeal to

78

designers less familiar with temporal logic. The comparison with FLTL revealed that
especially the composition of TEPE constraints translates into sophisticated, lengthy for-
mulas. Although nothing prevents from using the textual form of TEPE, the graphical
representation based on Parametric Diagrams outreaches the latter in terms of readabil-
ity. Moreover, an adequate coloring of operators facilitates the clear distinction between
timed (signals) and untimed parts (properties) of the diagram.
As an OMG-SysML compliant language, TEPE may seamlessly be integrated in a broad
variety of SysML real-time profiles defining notions similar to signals and attributes.
The granularity and the abstraction level of diagrams is in line with high level system
models.This has been demonstrated by means of the two representative UML/SysML
profiles AVATAR and DIPLODOCUS. TEPE makes the underlying formalism transpar-
ent to the user while providing an expressiveness comparable to temporal logic.
TEPE opens the door for an automatic verification on the fly during simulation. Some in-
sights into implementation issues provided evidence for the feasibility of an automated
verification of TEPE properties. The verifier discussed in this section is interfaced to a
DIPLODOCUS simulator through abstraction layers to keep simulation and verification
matters separated. The next chapter examines the simulation part of the DIPLODOCUS
environment.

79

Chapter 5

An efficient Simulation Engine

5.1 Introduction

The previous chapter has advocated a formal and graphical language to express system
properties. To pave the way for verification of these properties, we first have to breathe
live into UML models by making them executable. While the transformation of UML
models into executable code is demonstrated in chapter 7, this chapter suggests a novel
simulation approach for high level models of Systems-on-Chip. In the introductory
part, we motivate our decision not to rely on the widely-used SystemC simulation
library (Section 5.3) and review the Discrete Event MoC from a simulation performance
perspective in Section 5.2. Section 5.4 reveals the simulation semantics of DIPLODOCUS
and covers assumptions made on architecture, application and mapping. To get a bit
more concrete, abstractions with respect to the separation of concerns are illustrated
with the example of the field bus standard CAN in Section 5.4.4. Section 5.5 elaborates
on the simulation strategy and makes the reader familiar with simulation phases and
synchronization mechanisms. For details about some intricate implementation issues,
the reader may refer to Section 5.6.
Our fast simulation approach is centered around two basic principles:

• A modeling methodology which abstracts both data and functionality.

• A simulation strategy which exploits efficiently the properties of high level mod-
els. Thereby, the granularity of the simulation matches the granularity of the
application model.

This implies that the simulation speed highly depends on the way the application is
modeled. Indeed, the more coarse grained the model, the longer the contiguous actions
considered by the simulator (the so called transactions) and the more efficient (in terms
of cycles/sec) is the simulation. If synchronization of concurrent processes does not
require transactions to be truncated, the simulator executes transactions spanning many
clock cycles as a whole.

80

5.2 Discrete Event MoC revisited

A general introduction to the Discrete Event (DE) MoC was given in Section 3.2.3. This
chapter provides a more practical view on the topic and places emphasis on simulation
and implementation aspects.
The focus of DE simulation may be oriented towards two building blocks of a MoC
[30; 37]: events and processes (cf. Section 3.2). Three perspectives also referred to as
world views are prevalent in DE simulation. The ”event scheduling“ and the ”activity
scanning“ view are event centric, whereas the ”process interaction“ view focuses on
processes, as its name suggests.

In the event scheduling view, systems are expressed in terms of events to which a
particular handler, e.g. a behavior is attached. The handler embraces event specific
actions to be taken (calculation, modification of system states) as well as notification and
cancellation of events. Consequently, the simulation procedure consists in selecting the
earliest event, advancing simulation time accordingly and carrying out the correspond-
ing event handler.
The activity scanning view is similar to the event scheduling view but enhances the
latter with contingent events. The term refers to events, whose occurrences are not trig-
gered by time but by a condition, being a function of the system state. A contingent event
usually denotes the beginning of some activity and triggers another event that stands
for the end of that activity. In addition to the above mentioned simulation procedure,
all conditions of contingent events have to be evaluated upon simulation progress. This
significantly slows down the simulation.
In contrast to the previous world views, process interaction defines a system in terms
of actors implicitly triggering events. Processes capture sequences of actions and event
handling primitives, potentially augmented with control flow operators. Dedicated in-
structions may suspend the execution of a process for a certain amount of time, or until
a resource is available. That way, the process traverses the states ”suspended“, meaning
that it is waiting for time to elapse or condition to be met and ”active“ if the process is
scheduled for reactivation at a definite time instant.
Each simulation round is thus structured in three phases: first, simulation time is ad-
vanced to the earliest activation time of the active processes. Second, processes with
the earliest activation time are executed until they suspend. Third, conditions of idle
processes are checked and the processes are reactivated if necessary. The second and the
third step are iterated until a steady state is reached where no processes are activated.
After that, a new simulation round is entered.
The process interaction view has been adopted by various RTL simulators for VHDL,
Verilog and also SystemC. The next section elaborates on the execution semantics of
SystemC and to what extend it could be reused to simulate DIPLODOCUS models.

81

5.3 SystemC - Virtues and Vices

SystemC is an extension to the C++ language introducing a notion of concurrency
and time. It is based on an event-driven simulation kernel and very capable when it
comes to jointly modeling hardware and software at various levels of abstraction. It
is debatable whether SystemC can be seen as a language on its own or simply as a
C++ library embracing classes, macros and datatypes. The designer is provided with
facilities that mimic a concurrent real time environment, such as concurrent processes,
delayed and resolved signals, structural hierarchy, connectivity and clock cycle accuracy.

As the semantics of clock cycle accurate SystemC (as defined in [85]) bears resemblance
with VHDL and Verilog, SystemC also features the process interaction view of the Dis-
crete Event MoC (cf. Section 5.2). Concurrency should be expressed in terms of distinct
processes, in order to fully leverage the functionality of the kernel. In the case of DIPLO-
DOCUS, that means that every abstract task should have a corresponding counterpart
in SystemC. If we were to represent the semantics of the application model alone, this
would be an efficient way of doing. However, as a DIPLODOCUS simulator is faced
with constraints imposed by the architecture, the aforementioned methods seams much
less appealing. As the level of concurrency decreases significantly when considering
shared resources, the usage of more SystemC tasks than there are active hardware com-
ponents would be wasteful. Work concerned with SystemC simulation performance
[87; 97; 123] reveals that the open source simulation kernel leaves considerable room
for improvements. The overhead of task maintenance is mostly due to an immediate
execution of SystemC tasks. As opposed to our methodology, there exists no model
transformation besides the compilation and binding with the SystemC library. This
entails that every context switch that hands over control to the simulation kernel must
guarantee the proper setting of registers. For that reason, the performance of context
switches suffers from the necessary save and restore operations. An explicit transfor-
mation stage allows us to decompose tasks into sections between potential preemption
points and to execute them in the context of a task object. Context switching is thus re-
duced to passing a reference to a respective task data structure and executing an atomic
section with respect to that reference. In conclusion, the mapping of tasks on concurrent
hardware entities should avoid the SystemC task primitives and rather be built on an
individual solution, tailored to the DIPLODOCUS semantics.

A SystemC simulation round is structured in accordance with the basic requirements of
DE simulation and the three supported task variants. Tasks are classified into methods,
threads and clocked threads. Clocked threads are evaluated upon an advancement of
simulation time, whereas the signals to which methods and threads are sensitive have
to be defined. Methods and threads differ in the sense that in threads control has to be
relinquished explicitly (e.g. wait command), whereas the last statement of a method is
implicitly interpreted as a preemption point. The complexity of the kernel originates
from the sophisticated semantics of tasks and their potentially complex activation con-

82

ditions. When all tasks are suspended, the kernel first generates events for all active
clocks. Thereafter, methods and threads are evaluated until the last statement or a wait
statement is encountered. After clocked threads have been scheduled for execution, all
modified signals must be updated. This can cause other events to be notified, and in
turn tasks may have to be executed once again. As soon as this loop terminates, i.e. no
further events are generated, clocked threads are evaluated, simulation time is advanced
and finally clocks are updated.
Thanks to the simple but expressive semantics of DIPLODOCUS, its simulation does not
demand for the support of such involved task and signal types. Even DIPLODOCUS
tasks receiving requests can be represented with a simple preemptive task model. In
the DIPLODOCUS MoC, communication is not immediate and is defined to consume
simulation time, thus preventing zero delay feedback loops. For this reason, tasks only
need to be evaluated at most once per simulation round. Moreover, synchronization is
accomplished in an asynchronous fashion and so no logic is needed to resolve the value
of shared signals, like in SystemC.
In summary, as (1) we want to stress the SystemC concurrency model the less possible
and (2) extensive parts of the kernel are irrelevant for DIPLODOCUS models, we would
end up reusing mainly the SystemC DE engine. As it is explained in 5.5, even this part
can be optimized with the DIPLODOCUS semantics in mind. This is where our decision
to refrain from using SystemC comes from.

5.4 DIPLODOCUS’ Simulation Semantics

In the subsequent three sections, the simulation semantics is informally presented and
classified into the three categories: Application, Architecture and Mapping. Assump-
tions were made for three reasons: first, some of them stem from abstractions inherent
to the DIPLODOCUS model of computation which is especially tailored to performance
aspects. In the following, these assumptions are marked with (Perf). Other assumptions
(denoted by (Sim)) are either technical and simply facilitated the implementation of the
simulator or are of descriptive nature. A relaxation of these assumptions is envisaged
in the future. Assumptions indicated by (Sys) are normally driven by particularities of
the system to be modeled. (Sys) assumptions were obtained from the insights gained in
various projects and case studies.

5.4.1 Application

Concerning the application model, the following assumptions were made:

• (Perf): A transaction is considered to be monolithic in the sense that the partial
order of actions within a transaction is not resolved. Branch prediction penalties
are spread uniformly across a transaction (cf. section 5.4.2), and so it is not intended
to specify their start and finish time. This assumption comes with the positive effect

83

of reducing indeterminism and augmenting simulation performance while being
justifiable at the given level of abstraction. Performance figures primarily depend
on which control flow path in a DIPLODOCUS task is taken. The respective guards
(of Choice commands) are mostly time invariant, as long as they do not refer to
a value obtained from a Notified Command. (Recall: This command returns
the number of events stored in a FIFO). By assuming a scarce use of Notified
Commands, the overall workload imposed on the hardware architecture is largely
independent of the timing. Therefore, given the inherent inaccuracy of high level
models, the partial order within transactions is assumed to play a marginal role
for performance measurements.

• (Perf): As a rule of thumb, control flow related operators do not advance simu-
lation time whereas commands triggering transactions indeed do. The following
commands are executed in zero time: Action, Choice, For Loops, Sequence, Ran-
dom Sequence, Random Number. Other commands let time elapse: Write Channel,
Send Event, Send Request, Read Channel, Wait Event, Notified Event, Select Event,
ExecI, ExecC, Delay. The assumption requires that computational complexity and
data transfers are concentrated in Write, Read and Exec commands. However, this
is not a limitation as the latter operators can be placed anywhere in the task.

• (Sys): In the simulation framework, synchronization is expected to have an impact
on system performance. The cost of Send Event/Wait Event commands is provided
as a parameter to the simulator. In case events are mapped onto a bus the cost is
expressed in terms of bytes, otherwise it is considered as an ExecI unit. However,
in practice it can often be argued that the performance impact of data transfers
due to synchronization is neglectable with respect to the rest of the application.
This heavily depends on the average length of computations and data transfers of
the system to be modeled. The simulator is flexible enough to be adjusted to the
different circumstances.

• (Sim): The application model embraces indeterministic commands such as Ran-
dom, Random Sequence, Random Choice, ExecIInterval, ExecCInterval, DelayIn-
terval. During simulation, indeterminism is simply resolved by means of a random
number generator, whereas formal techniques and the exhaustive simulation ex-
plore all valuations of the particular random variable. This complies to prevalent
model checking practices.

• (Sim): So far, Select Event commands are defined to be deterministic. Events are
checked in the order in which they were connected in the graphical model.

5.4.2 Architecture

In this thesis, the impact of caches, memories, CPU power saving strategies and operat-
ing systems are modeled in a rudimentary way. To increase the accuracy of simulation

84

results, the proposed models should be refined and calibrated according to the used
cache hierarchy, memory technology, power manager and operating system. In the field
of simulation, the purpose of this work is to propose an efficient simulation strategy
tailored to the properties of DIPLODOCUS models. The simulator has been designed
with future enhancements in mind, which means that it could accommodate a more
sophisticated cache or energy manager model. The issue of adequately representing
data and instruction caches has been investigated in the scope of a dissertation [55] si-
multaneously to this work. Moreover, there is an ongoing dissertation which addresses
the refinement of the existing energy consumption models and their integration into the
simulator.
Three deterministic penalties may be imposed on Exec operations:

• Power saving mode: If a CPU is not loaded with instructions for a given time, it
enters an idle mode which reduces the energy consumption. When the CPU is in
idle-mode, tasks requesting CPU processing time suffer from a constant wake-up
delay.

• Context switch: The scheduler of the operating system may also degrade perfor-
mance especially if task switches occur frequently. To account for the additional
payload due to scheduling algorithms and context switching, a static task switching
penalty is introduced. It delays a transaction on a CPU, if the previous transaction
did not belong to the same task.

• Branch prediction: In pipelined CPU architectures, branch predictors attempt
to guess which branch of a conditional instruction will be chosen. The purpose
of the branch predictor is to avoid a pipeline-flush, implying that partially ex-
ecuted instructions have to be discarded. To account for this effect, the exe-
cution time of an Exec unit texec =

cyclesexec

fprocessor
is multiplied with a correction factor

texeci,branch = texec

(
pmiss · spipeline + 1 − pmiss

)
, where 0 ≤ pmiss ≤ 1 denotes the branch

miss probability of a conditional branching instruction and spipeline the number of
stages to be flushed in case of a branch miss

Moreover, the following modeling assumption have been made:

• (Sim): The master clock frequency is assumed to be a common integer multiple of
the frequency of all clocked components (CPUs, buses, memories). However, this
assumption could easily be eliminated.

• (Sys): When transferring data, the transmission speed is rather limited by the
interconnect than by execution components. The duration of Exec transactions is
therefore calculated as a function of CPU parameters, whereas the duration of data
transfers solely depends on interconnect parameters. This assumption should hold
for most of the modern chip architectures. Otherwise, it could be reconsidered by
slightly adapting the simulator.

85

• (Sim): The throughput is determined by the weakest link, meaning the slowest bus
or memory, and proportional to the transmitted data (for the time being, no static
offsets are added for memory accesses, but this decision could be reconsidered
with minor effort).

• (Perf): Each interconnect component on a route may delay a transaction, thus
recalculate the transmission time, or add a static access time.

• (Sim): Buses may be endowed with several independent communication channels
which can be used simultaneously. This extends the scope of the model to other
interconnect architectures like crossbars enabling multiple simultaneous connec-
tions.

• (Sim): The communication model bases on the circuit switching paradigm; for
the time being packet switching cannot be represented. During the entire data
transmissions on more than one bus, at least one communication channel on all
involved buses has to be available and is reserved. This could be prevented by
making bridges active components, that receive data on one bus and create a send
transaction on another bus. Reservation is accomplished starting from the CPU
towards the memory element in a causal fashion.

• (Sim): Deadlocks are not resolved in case two CPUs mutually try to get access to
a bus that has already been reserved by the other one.

• (Sim): A memory has as many ports as it has connections to buses. In case a bus
is equipped with several channels, all channels are assumed to have a separate
memory port.

• (Perf): Hardware accelerators are modeled as CPUs with all penalties disabled.
One CPU should be foreseen per task to avoid the implications of a scheduling
policy. Indeed, an operation in DIPLODOCUS is only characterized by its com-
plexity and therefore there is no fundamental difference in whether the operation
is executed on a CPU or on a dedicated hardware component.

• (Sim): DMAs are represented with dedicated CPUs running tasks which accom-
plish the data transfer.

5.4.3 Mapping

Concerning the mapping, the following assumptions were made:

• (Sys): The amount of data carried by events may or may not be neglectable with
respect to data transfers expressed with channels. Therefore, the simulation envi-
ronment leaves the decision to the user whether events are mapped onto buses.

86

• (Sim): Data associated to an abstract channel is assumed to be located at one single
physical position in the system. For that reason, a channel is implicitly mapped
onto n buses, n− 1 bridges and 0 or 1 memory. This assumption is debatable given
that embedded systems nowadays comprise a heterogeneous memory architecture
(volatile and non-volatile memory of different techniques). This assumption is
relaxed in [55].

• (Sim): If a channel is mapped onto a memory, the route connecting sending CPU,
memory and receiving CPU may be inferred by the code generator. The channel
does not have to be explicitly mapped onto buses or bridges. In case there exist
several routes, the intended route should be marked with at least one mapping ar-
tifact. Otherwise the result is undefined as it depends on implementation internals
of the code generator.

• (Sim): If a channel is mapped onto buses, read and write operations normally
involve transactions on those buses. However, if a channel is not mapped onto
any memory, it means that the data is buffered somewhere within the bus master
of the receiver. In this case, a read transaction is conveyed on the bus whereas the
write transaction does.

5.4.4 Abstraction example: CAN bus

The decomposition of a communication standard into its implications on application,
architecture and mapping model is now exemplified by means of the CAN bus. In the
context of the EVITA [104] project, a vehicular on board network had to be modeled
in DIPLODOCUS with the objective to obtain early performance figures. Even if new
standards for field buses such as FlexRay are emerging, the CAN bus still enjoys great
acceptance from manufacturers of cars, medical and industrial equipment. CAN, which
stands for Controller Area Network, is a serial field bus protocol especially suited for in-
vehicular use. The automobile industry witnessed the advent of an increasing amount
of electronic control systems. These systems present different requirements in terms of
communication data and reliability. To avoid dedicated wires for the various control
applications, the need arose to reconcile the requirements which culminated in the CAN
standard.
CAN is a serial bus comprising two wires. Arbitration is organized in decentralized
fashion according to the CSMA/CA policy: due to dominant and recessive potential
differences of the wires, a message that is transmitted with highest priority automatically
overrides others. Nodes transmitting a lower priority message sense this by comparing
the written potential with the actual potential on the wire, and upon unsuccessful
transmission nodes back off and wait.
The documentation of the CAN standard gives various physical details relevant for
pin and cycle accurate models. However three semantical characteristics have been
identified which are significant at the abstraction level of DIPLODOCUS:

87

• Bus arbitration is based on properties assigned to messages, not to nodes.

• Messages are broadcasted to all listening nodes in the same LAN.

• A message is only transmitted once on the bus. There are no distinct transactions
for a write operation, transferring the data to a memory, and a subsequent read
operation, transferring the data to a controller.

At application level, DIPLODOCUS channels and events are point-to-point links by
definition and thus do not support broadcasts. To achieve a broadcasting like behavior,
a multi channel write operator was introduced which writes a given amount of samples
to several channels. If the respective channels are mapped onto the same interconnect
supporting broadcasts (like the CAN bus), data samples are only transmitted once on
the bus. Otherwise, the new operator is handled in the same way as several distinct
(single channel) write operators. In so doing, the separation of concerns is maintained.
At architecture level, the above mentioned twofold semantics of multi channel write
operators has to be taken into account. Moreover, if the CAN protocol is selected for
buses, priorities assigned to channel mapping artifacts replace priorities assigned to bus
masters. That way, a conventional fixed priority scheduling algorithm can be used.
Finally, at mapping level, we have to account for the lack of a dedicated memory in a
CAN message exchange. Messages are implicitly buffered in the receiving node in case
they match its filter criteria. Thus, a special semantics is assigned to write operations
on channels not being associated with a memory. These operations are assumed to be
executed within the receiving node by reading the internal buffer, and do not require
bus access.

5.5 Simulation strategy

5.5.1 Improvements with respect to conventional DES

Methods to perform conventional Discrete Event Simulation (DES) were presented in
5.2. In Section 5.3 it was argued that for DIPLODOCUS, the utilization of SystemC does
not bring major benefits; just the basic DE kernel could potentially be reused. However,
DIPLODOCUS simulation semantics introduced in 5.4 was conceived with simulation
performance in mind. This semantics leaves room for further improvements of general
DES at the expense of generality. Indeed, our simulator is as a result of this trade-off
tied to high level models with a semantics similar to the one of DIPLODOCUS models.
The remainder of this section addresses the process of steamlining conventional DES to
the needs of high level models.
At first, the essential data structure in our simulator is not an event, but a transaction. A
transaction represents a computation or communication action involving one or more
hardware components. As opposed to an event, a transaction is characterized by a
duration and embraces two events, denoting its beginning and its end. This policy cuts

88

the number of data sets to be handled to half, as compared to an event based mechanism.
An intermediate objective consisted in minimizing the number of entities which may
trigger an event. In our simulator, CPUs are the only active components, i.e. they
are authorized to initiate transactions (recall: DMAs have to be modeled as dedicated
CPUs.) Passive components belonging to the application domain (channels, etc.) and
architecture domain (buses, memories, bridges) cannot generate transactions. This is
due to the fact that they are supposed to work in collaboration with a CPU or a DMA.
Passive components may however postpone or delay a transaction to account for bus
contention, access time of a memory, etc. As the amount of active components is usually
small as compared to the number of tasks, the simulator renounces an explicit event
queue. This data structure normally stores scheduled events in ascending order of their
time stamps allowing the simulator to simply elect the first one for execution. In our
simulator, it suffices to consult the list of CPUs, query the latter for transaction proposals
and select the transaction with earliest finish time. This procedure avoids the creation
and destruction of events as well and other maintenance operations for event queues.
In conventional DES, events may have to be canceled and removed from the queue
upon unforeseen incidents like task activation or synchronization hazards. As it is
demonstrated in the following section, the speculative policy of our simulator gives us
the opportunity to postpone or truncate transactions just by modifying a single value.
Our DE simulation further leverages architecture semantics by hiding transactions to
the main scheduler which are awaiting resource allocation. Only upon a grant of the
resource, the simulation kernel has to acknowledge the respective time stamp. This is
to guarantee a causal, consecutive allocation of a route consisting of several buses.

5.5.2 Basics

Unlike a simulation strategy where components schedule actions cycle by cycle, the
present approach leverages the granularity of the application model. The workload (in
terms of data or Exec operations) annotated to operators of the Activity Diagrams are di-
rectly seized for simulation. The layered architecture (depicted in Figure 5.1, explained
in section 5.5.3) gradually reduces the concurrency from application level to mapping
level. It should be reemphasized that tasks are defined to be concurrent at application
level whereas at mapping level the availability of resources constrains concurrency. Each
HW component is assigned a local clock which will be ahead of others as soon as the
component carries out a transaction. The built-in DE simulation kernel makes sure that
the transaction with earliest finishing time is served first as it could have an impact on
later transactions.

As stated previously, the vital data structure assuring synchronization across several
simulation layers and components is referred to as transaction. A transaction represents
a computation or communication operation initiated by a task. As opposed to discrete
events, transactions have a duration and may span many clock cycles, depending on the

89

granularity of the application model. The length of a transaction is initialized according
to the application model, and more specifically it is determined by the current command
of the task. At simulation runtime, a transaction may have to be truncated into smaller
portions. This could be due to a data dependency (for instance a task activation due
to a read/write operation) which has to be resolved by permitting the affected CPU to
reschedule. Consequently, truncation of transactions is likely to happen when the tasks
are heavily synchronized by means of DIPLODOCUS Channels, Events and Requests.

This chapter elaborates on the role and attributes of transactions. To account for the
separation of concerns, two time scales are used to quantify the duration of a transac-
tion at application and at mapping level. The virtual time scale refers to complexity
annotations of task level operators in terms of Exec operations or the amount of data to
be transferred. The virtual time scale is completely independent of architecture specific
parameters (such as the speed/data rate of devices). During simulation, the absolute
duration is calculated as a function of the virtual time and device parameters.
The main attributes of a transaction are listed below:

• startTime: Stands for the absolute point in time when a device starts executing the
transaction.

• duration: Indicates the number of time units needed to execute the transaction.
If several hardware components are involved in the execution, this value is deter-
mined in several stages

• virtualLength: Specifies the amount of data to read/write or the amount of pro-
cessing units to carry out (example: for a READ 3 and a channel having a width
of 2, the corresponding transaction spanning the whole operation would have a
virtualLength of 6).

• runnableTime: Indicates the point in time when the transaction gets runnable,
that is when the dedicated task is ready to execute it. As opposed to startTime,
runnableTime is independent of shared resource contention.

5.5.3 Transaction passing

Figure 5.1 illustrates the way of two exemplary transactions through the simulator. The
symbolic application diagram in the figure depicts two tasks comprising one exemplary
command each. The transactions stem from these commands: the first transaction is a
representative of a channel operation (Read/Write) and its way is marked with the suffix
a, the second one is a symbolic execution (Execi) of an algorithm denoted by arrows with
the suffix b. The number prefixes associated to arrows indicate the order of the different
stages of simulation. The columns stand for the consecutive simulation phases, whereas
the rows point out the layered architecture of the simulator.

90

Transactions are initially generated (arrow 1a/1b) according to the virtual length of the
current operator of the task. Control flow operators which are defined not to consume
simulation time (cf. Section 5.4) do not generate transactions either. During the Evalu-
ation Phase, the simulator executes all operators until it encounters the first one which
triggers the generation of a transaction. This evaluation of tasks based on DIPLODO-
CUS semantics is accomplished at a dedicated layer (called Task Layer).
Subsequently, during the Scheduling phase, abstract channels constrain the execution
of Read/Write operators and the Abstract Communication Layer may redefine the virtual-
Length attribute (arrow 2a). If channels exhibit a finite size, write transactions may be
shortened in order not to exceed the remaining space. Their virtualLength may even be
set to zero when the channel temporarily does not allow for read/write operations. Execi
transaction of course skip this stage for they do not rely on channels.
The Execution HW Layer is especially relevant to Exec transactions (cf. arrow 2b): the
parameters annotated to CPUs such as its frequency allow to derive the real duration
of the transaction in terms of physical time units. Furthermore, the scheduler of the
CPU calculates the startTime of the next transaction to be granted CPU time. As de-
fined in Section 5.4, channel operations are scheduled by CPUs and also are assumed
to consume computing time but their duration is determined by the weakest link in
the chain of interconnected buses. For this reason, merely the startTime of Read/Write
transactions is tentatively computed (arrow 3a) although the value is reconsidered at
potentially multiple cascaded Communication HW Layers.

The excerpt of the mapping diagram in Figure 5.1 suggests that the abstract channel is
mapped onto two buses, one bridge and a memory. Buses are endowed with a sched-
uler which arbitrates concurrent bus accesses. Due to congestion, a transaction may
experience delays, requiring its startTime to be postponed. Buses may further redefine
the duration attribute in case the data transfer exceeds the current value and set the
virtualLength to the maximum burst size (see arrow 4a) of the bus. A bus together with
a slave component (such as a bridge or a memory, cf. arrow 5a, 8a) is said to consti-
tute a Communication HW Layer. Slaves are not considered as active components and
are therefore not able to schedule transactions. However, a memory or a bridge may
introduce an additional delay, which is added to the duration parameter. In case several
buses are involved in the arbitration procedure, time elapses between two consecutive
grants. This requires the intervention of the Simulation kernel to guarantee causality
of the simulation (depicted by arrows 6a, 7a). When a transaction has been success-
fully granted access to all required resources, it is finalized by the simulation kernel
(DE Phase). The latter is in charge of ordering and truncating transactions as well as
designating a transaction for execution. This lowermost layer is called DE Simulation
(arrows 3b, 9a) and it is discussed in more detail in the following section.

The Update Phase concludes a simulation round (arrows, 10a/4b) and updates the inner
state of simulation components according to the just scheduled transaction. To give an
example, the variables to be updated are amongst others: the list of scheduled transac-

91

tions of CPUs (Execution HW Layer) and buses (Communication HW Layer) and the filling
level of abstract channels (Abstract Communication Layer). On the Task Layer, it has to be
determined whether the final transaction still covers the whole operator or if the latter
still has outstanding transactions. If the command is finished, simulation moves on to
its first successor that generates a transaction. That way, the Evaluation Phase is entered
and the procedure starts from the beginning.

5.5.4 The simulation kernel

As prefigured in 5.5.2 the simulation kernel is located at the lowermost simulation
layer and has the final say which transaction is designated for execution. From the
kernel’s perspective, the layers above act as a filter hiding all transactions which are
not runnable either due to application constraints or due to resource contention. The
Abstract Communication Layer filters out all transactions which are impeded by full or
empty channels. Figure 5.1 is simplified with respect to the Execution HW Layer which
is actually the only mediator between DE Simulation and the other layers. In reality,
the kernel exclusively queries the Execution HW Layer for new transactions. In turn, this
layer gathers the feedback of all involved HW Communication Layers before notifying its
presence to the kernel.
So far, it has not been discussed in which circumstances transactions need to be truncated
by the kernel. As described in Section 5.5.2, transactions arriving at the kernel may be
arbitrarily long. Their maximum virtual length depends on the application model
(length of commands, size of channels, etc.) and on the parameters annotated to HW
resources (maximum burst size of a bus, scheduling policies, etc.). To separate model
semantics from the simulation algorithm, the kernel makes no assumption on the virtual
length of transactions (although in some cases this would be feasible). A problem is
encountered when a CPU schedules a comparatively long transaction while another
transaction, running on the same CPU, becomes runnable. This could be due to a
task synchronization taking place and activating a blocked task. If the new transaction
becomes runnable before the termination of the long one, the scheduler of the CPU
has to be given the possibility to reschedule. This means that simulation must quit the
DE Phase, reenter the Scheduling Phase which in turn calls for a truncation of the long
transaction. Simulation is speculative in the sense that scheduling is performed with
transactions complying to application and architecture semantics, leaving the resolution
of synchronization conflicts to the lowermost layer. Thanks to this policy, transactions
neither need to be canceled nor reinserted, and truncation becomes tantamount to merely
replacing a single integer value.
The scenario depicted in Figure 5.2 illustrates the condition under which the transaction
tr2 is truncated at the finish time of transaction tr1. We assume that transaction tr1 was
issued by command c1 of task ta1 which is about to be executed on cpu1.

1. There exists a task tadep whose current command is called cdep. tadep could potentially

92

--
-

W
ri
te

 T
ra

n
s
 -

--

V
ir
tu

a
lL

e
n
=

�
.

--
-

E
x
e
c
i
T

ra
n

s
 -

--

V
ir
tu

a
lL

e
n
=

..
.

E
v
a
lu
a
ti
o
n
 P
h
a
s
e

S
c
h
e
d
u
li
n
g
 P
h
a
s
e

--
-

E
x
e
c
i
T

ra
n
s
 -

--

V
ir
tu

a
lL

e
n

=
�

D
u
ra

ti
o
n
=

�

S
ta

rt
T

im
e
=

..
.

--
-

W
ri
te

 T
ra

n
s
 -

--

V
ir
tu

a
lL

e
n
=

�
.

D
u
ra

ti
o
n
=

�

S
ta

rt
T

im
e
=

..
.

--
-

W
ri
te

 T
ra

n
s
 -

--

D
u
ra

ti
o

n
=

�
.

--
-

W
ri
te

 T
ra

n
s
 -

--

V
ir
tu

a
lL

e
n
=

�

D
u
ra

ti
o
n
=

�

S
ta

rt
T

im
e
=

..
.

--
-

W
ri
te

 T
ra

n
s
 -

--

D
u
ra

ti
o

n
=

�
.

D
E
 P
h
a
s
e

U
p
d
a
te
 P
h
a
s
e

T
a
s
k
 L
a
y
e
r

E
x
e
c
u
ti
o
n
 H
W

L
a
y
e
r

A
b
s
tr
a
c
t

C
o
m
m
u
n
ic
a
ti
o
n

L
a
y
e
r

S
im

.
K

e
rn

e
l

C
o
m
m
u
n
ic
a
ti
o
n

H
W
 L
a
y
e
r
I

C
o
m
m
u
n
ic
a
ti
o
n

H
W
 L
a
y
e
r
II

D
E
 S
im
u
la
ti
o
n

--
-

W
ri
te

 T
ra

n
s
 -

--

V
ir
tu

a
lL

e
n
=

�
.

1
a

1
b

2
b

2
a

4
a

5
a

6
a

8
a

9
a

3
b

1
0

a
/4

b

--
-

W
ri
te

 T
ra

n
s
 -

--

S
ta

rt
T

im
e
=

..
.

7
a

1
0
a

1
0
a

1
0

a
/4

b

1
0
a

/4
b

1
0

a

3
a

Fi
gu

re
5.

1:
Si

m
ul

at
io

n
m

et
ho

do
lo

gy
at

a
gl

an
ce

93

be activated by a read/write operation performed by c1.

2. tadep is not running on cpu1.

3. cdep and c1 access the same channel.

4. tadep proposes the transaction trdep and is therefore not blocked any more.

5. tr2 , trdep is scheduled on cpudep, the cpu onto which tadep is mapped.

Transactions that transfer data on a bus cannot be truncated; their size is however limited
to the burst size of the respective bus.

tr_1

tr_2

CPU_1

CPU_dep

t

finishTime of tr_1

Schedule on CPUs:

tr_dep

activates

Figure 5.2: Example of transaction truncation due to synchronization

5.5.4.1 Example

To illustrate the operating mode of the kernel including truncation of transactions, we
consider the three exemplary tasks depicted in Figure 5.4 together with the architecture
shown in Figure 5.5. Figure 5.3 illustrates the scheduling of the transactions generated
by the respective DIPLODOCUS operators. In Figure 5.4, commands are annotated
with their transactions. Task1 merely comprises two Execi operators representing com-
putations. Task2 first performs a variable assignment, which is immediate and does
neither let time elapse nor trigger a transaction. The two following operators model
some computations and a write operation. Task3 is supposed to read the data sample
written by Task2.

The system is assumed to comprise two CPUs. Task1 and Task3 are mapped onto CPU1
and Task2 onto CPU2. As mentioned earlier, CPUs are the only active components
which may signal transactions to the kernel. The layers above the kernel filter out
all transactions whose execution is impeded by application or architecture constraints

94

(compare Scheduling Phase, Section 5.5.2). Both CPUs have already invoked their sched-
uler and in turn notify the runnable transactions Tr1 and Tr2 to them (cf. Figure 5.3a).
The transaction on CPU1 is expected to finish at time t1, the one on CPU2 at time t2.
As we will see, the kernel may recalculate finish times in case transactions need to be
truncated. The kernel selects the transaction with the earliest finish time which is in line
with traditional discrete event mechanisms. This is simply due to the policy of cause
and effect: earlier transactions may defer or alter later transactions.

After the kernel has scheduled Tr1 as illustrated in Figure 5.3b, the Update Phase sets
component state variables accordingly. The subsequent Evaluation Phase brings out
the next transaction on CPU1, Tr4. t2 is the earliest finish time greater than t1, the
current simulation time, and consequently Tr2 is elected for execution (Figure 5.3c).
Subsequently, Tr3 is generated upon the next occurrence of the Evaluation Phase. In
Figure 5.4, it appears that transaction Tr3 belongs to a Write operator that writes one
sample to a channel. The execution of Tr3 makes Task3 on CPU1 runnable, as the
latter is attempting to read samples from the same channel. After having scheduled Tr3
(Figure 5.3d), the kernel must allow CPU1 to take a new scheduling decision at time t3,
to account for the new runnable task Task3. For that reason, the kernel cuts down Tr4
by t4 − t3 time units and subsequently initiates its execution (Figure 5.3e). The virtual
length of transaction Tr4 is recalculated as a function of its new duration t3 − t1, the
speed of CPU1 and the number of cycles per Execi unit of CPU1. Let us assume that the
new, shortened virtual length is 3. In that case, the remaining part of the Execi operator
amounts to 2 units, and consequently the virtual length of transaction Tr6 is set to 2.
In the following Scheduling Phase, the scheduler of CPU1 arbitrates between the two
competing transactions Tr5 and Tr6. The result depends on the respective policy of the
scheduler.

Tr1

Tr2CPU2

CPU1 Tr1

Tr2

Tr4

CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1

Tr1

Tr2

Tr4

Tr3CPU2

CPU1

t

t

t tt t1 t2 t3 t4t1 t2 t4

t1 t2 t3

t1 t2 t1 t2 t3 t4

Tr5

Tr6

?

(a) Step 1

Tr1

Tr2CPU2

CPU1 Tr1

Tr2

Tr4

CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1

Tr1

Tr2

Tr4

Tr3CPU2

CPU1

t

t

t tt t1 t2 t3 t4t1 t2 t4

t1 t2 t3

t1 t2 t1 t2 t3 t4

Tr5

Tr6

?

(b) Step 2

Tr1

Tr2CPU2

CPU1 Tr1

Tr2

Tr4

CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1

Tr1

Tr2

Tr4

Tr3CPU2

CPU1

t

t

t tt t1 t2 t3 t4t1 t2 t4

t1 t2 t3

t1 t2 t1 t2 t3 t4

Tr5

Tr6

?

(c) Step 3

Tr1

Tr2CPU2

CPU1 Tr1

Tr2

Tr4

CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1

Tr1

Tr2

Tr4

Tr3CPU2

CPU1

t

t

t tt t1 t2 t3 t4t1 t2 t4

t1 t2 t3

t1 t2 t1 t2 t3 t4

Tr5

Tr6

?

(d) Step 4

Tr1

Tr2CPU2

CPU1 Tr1

Tr2

Tr4

CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1 Tr1

Tr2

Tr4

Tr3CPU2

CPU1

Tr1

Tr2

Tr4

Tr3CPU2

CPU1

t

t

t tt t1 t2 t3 t4t1 t2 t4

t1 t2 t3

t1 t2 t1 t2 t3 t4

Tr5

Tr6

?

(e) Step 5

Figure 5.3: Transaction truncation inside the DE kernel

95

Figure 5.4: Example Scenario: Application

Figure 5.5: Example Scenario: Architecture

96

5.6 Implementation Issues

5.6.1 Simulator Architecture

The architecture of the simulator was conceived with a twofold separation of concerns
in mind: application from architecture on the one hand and communication from com-
putation on the other hand. In the view of future research work targeting for instance
energy consumption aspects, modification and enhancement of the environment should
be feasible with little effort. For this reason, the architecture is structured in five layers,
representing tasks, communication among tasks, execution hardware, communication
hardware and the simulation kernel. Section 5.5.2 elaborates further on the different lay-
ers. The simulation environment was developed in C++ in an object oriented fashion,
so that the architecture is structured in terms of classes and interfaces. The adequate use
of inheritance, polymorphism and templates paves the way for a hassle-free integration
of new application or architecture components. This section sheds light on the classes
at each of the simulation layers and their interrelationships.
Figure 5.6 provides a quick overview of the layered simulator architecture. The low-
ermost row in Figure 5.6 depicts global interfaces which may be used at any layer.
Inheritance relations among classes are denoted with arrows which are drawn in the
same color in case they stem from a common base class . Figure 5.6 is far from being
exhaustive as lots of classes have been left out for the sake of simplicity.

5.6.1.1 Interfaces

Interfaces generalize functionality being available in different contexts across all simu-
lation layers. More particularly, a standardized procedure governs the way in which
workload (e.g. transactions) are passed between components, benchmarking data is
exchanged, simulation states are saved and recovered. This implementation choice ap-
parently serves the goal of homogenizing the architecture and so facilitating debugging
and maintenance.
As its name suggests, WorkloadSource constitutes an interface of classes providing a
workload to other objects. Tasks for instance provide a workload to their scheduler.
Scheduler may provide a workload to other schedulers in a scheduling hierarchy or
directly to processing elements such as CPUs. The Workload interface comprises meth-
ods such as getNextTransaction to communicate the scheduling decision to the callee,
getPriority to determine the priority of the workload source and schedule which initiates
a new scheduling round. The TraceableDevice interface allows documentation functions
to query an object for benchmark data. For instance, at the end of a simulation run the
interface is used to extract performance key figures from CPUs and buses.
The Serializable interface is implemented by all classes that make up the overall simula-
tion state (such as TMLCommand, TMLChannel). The writeObject and readObject methods
transform relevant attributes into bit streams and vice versa. This functionality is crucial
for saving and recovering encountered simulation states which is needed to consecu-

97

T
a
s
k
 L
a
y
e
r

C
u
s
to
m
T
a
s
k
1

C
u
s
to
m
T
a
s
k
2

T
M
L
E
x
e
c
IC
o
m
m
a
n
d

T
M
L
W
ri
te
C
o
m
m
a
n
d

A
b
s
tr
a
c
t

C
o
m
m
.

L
a
y
e
r

T
M
L
C
h
a
n
n
e
l

T
M
L
S
ta
te
C
h
a
n
n
e
l

T
M
L
E
v
e
n
tC
h
a
n
n
e
l

T
M
L
n
b
rn
b
w
C
h
a
n
n
e
l

E
x
e
c
u
ti
o
n

H
W
 L
a
y
e
r

C
o
m
m
.

H
W
 L
a
y
e
r

D
E

S
im
u
la
ti
o
n

C
P
U

S
in
g
le
C
o
re
 C
P
U

W
o
rk
lo
a
d
S
o
u
rc
e

T
ra
c
e
a
b
le
D
e
v
ic
e

S
e
ri
a
liz
a
b
le

L
is
te
n
e
rS
u
b
je
c
t

S
im
u
la
to
r

S
im
C
o
m
p
o
n
e
n
ts

S
e
rv
e
r

S
im
S
e
rv
S
y
n
c
In
fo

S
la
v
e M

e
m
o
ry

B
ri
d
g
e

B
u
s

S
c
h
e
d
u
la
b
le
C
o
m
m
D
e
v
ic
e

R
R
S
c
h
e
d
u
le
r

B
u
s
M
a
s
te
r

In
te
rf
a
c
e
s

S
c
h
e
d
u
la
b
le

D
e
v
ic
e G
e
n
e
ra
lL
is
te
n
e
r

T
M
L
C
o
m
m
a
n
d

P
ri
o
S
c
h
e
d
u
le
r

T
M
L
T
a
s
k

Fi
gu

re
5.

6:
Si

m
ul

at
or

ar
ch

it
ec

tu
re

98

tively explore several branches of control flow. The generated bit streams may either be
saved in the RAM or on the hard disk.

5.6.1.2 Task Layer

Attention is now drawn to the classes within the layered structure. At the top of it,
TMLTask and TMLCommand classes constitute the Task Layer. Its emphasis is placed on
DIPLODOCUS task and operator semantics and it provides a common logical frame-
work for all imaginable DIPLODOCUS tasks. The broad variety of DIPLODOCUS
operators is transparent to the rest of the simulation environment.
All specific DIPLODOCUS application operators inherit from the TMLCommand class.
TMLTask serves as an abstract class and therefore cannot be instantiated directly. Con-
crete task classes are generated from the graphical UML model by a C++ code generator
and they have TMLTask as a common subclass. These customized task classes accom-
modate references to all commands that are contained in the DIPLODOCUS task. Their
constructor establishes the control flow by instantiating and chaining TMLCommand
objects accordingly. To satisfy the encapsulation principle, tasks variables are defined
locally in a task class derived from TMLTask. However, commands operate on local task
variables, to check for conditions, evaluate the variable length of operators, carry out
actions, etc. For that purpose, TMLCommands are given pointers to functions internal to
a task, which in turn have access to the local variables.
TMLCommand defines an interface comprising the following methods: prepare initiates
the Evaluation Phase, in which commands are executed until the first transaction is trig-
gered (as explained in Section 5.5.2). execute enters the Update Phase which aims at
updating the state of simulation components according to the transaction selected by
the simulation kernel. getCurrTransaction is inherited from the WorkloadSource interface
and invoked by CPU schedulers to obtain the next transaction of a task. prepareNext-
Transaction generates a new transaction with respect to the progress of the command and
its semantics. A subclass of TMLCommand usually has to implement prepareNextTrans-
action and execute as these two methods highly depend on the purpose of the command.
TMLCommand further manages a break point which can be used to halt the simulation
under specific circumstances.

5.6.1.3 Abstract Communication Layer

The Abstract Communication Layer implements the separation of communication and
computation at application level. The different DIPLODOCUS communication media
are classified in an inheritance hierarchy according to their semantics such as block-
ing characteristics and order relation (e.g. FIFO). Classes residing at this layer have a
common super class called TMLChannel. This class subsumes all available means of
communication/synchronization in DIPLODOCUS, be it Channels, Events or Requests.
The TMLChannel interface is characterized by four methods, two belonging to the Evalu-
ation Phase, and another two belonging to the Update Phase. testRead and testWrite check

99

whether a transaction is runnable according to synchronization constraints (channels
full/empty, events available in FIFO or not,etc.). If needed, the virtual length of a trans-
action may be reduced. Consequently, this has to be accomplished during the Scheduling
Phase before CPU schedulers query tasks for transaction proposals. The methods read
and write finalize a communication by updating internal channel variables such as the
content and internal FIFOs. This is of course accomplished in the scope of the Update
Phase. TMLStateChannel, TMLEventChannel and TMLnbrnbwChannel count among the
direct subclasses of TMLChannel. TMLStateChannel is the super class of all DIPLODO-
CUS channels presenting a blocking behavior. As the name suggests, TMLEventChannel
models the FIFO based synchronization scheme of DIPLODOCUS events. TMLnbrnb-
wChannel is a dummy class to account for the simplest of all DIPLODOCUS channels
which is never blocking.

5.6.1.4 Execution HW Layer

The Execution HW Layer constitutes an extensible skeleton for components for execution
of DIPLODOCUS tasks, such as CPUs, Hardware Accelerators, and perhaps also DMAs.
It satisfies the separation of communication and computation at architecture level. For
the time being, it only accommodates the CPU class and the derived class SingleCoreCPU.
As stated in section 5.4.2, HWA accelerators are modeled with a properly parametrized
CPU component. The CPU base class could also serve as common interface for other
more specific components like DMAs or a refined model of a hardware accelerator.
SingleCoreCPU acts as a model of an operating system together with a model of a
single core CPU. It mainly implements the inherited interfaces Traceable, Serializable and
Schedulable. The truncateAndAddNextTransAt methods realizes the transaction truncation
functionality of the kernel explained in Section 5.5.4. Even if multi core CPUs do
not directly have a counterpart in the class hierarchy, the simulation kernel offers the
possibility to treat a set of SingleCoreCPU objects as such.

5.6.1.5 Schedulers

Classes related to the scheduling functionality are common to both Execution and Com-
munication HW layer. This architectural choice allows to reuse algorithms once defined
on both layers and considerably alleviates the integration of new policies. The schedula-
bleDevice interface subsumes functionality to manage schedules and to derive a graphical
or textual representation for the latter. The schedule method for instance is unique to each
scheduling algorithm and describes the scheduling policy. The addTransaction method
concludes a simulation round by definitively adding a transaction to the schedule of
a component (Update Phase). getNextTransaction is invoked by the component owning
the scheduler to ask for the result of the scheduling procedure. The SchedulableDevice
interface is implemented by the CPU and the Bus class. RRScheduler and PrioScheduler
mainly override the scheduling method to model a round robin, time slice based policy
and a fixed priority policy respectively. Due to the transaction based simulation, the

100

local simulation time of active components (CPUs and Buses) differs. For that reason, a
scheduler has to discriminate tasks that became runnable in the past from task that will
become runnable in the future with respect to its local time. Runnable times in the past
are handled in compliance with the scheduling policy. If all runnable times lie in the
future, the task which becomes runnable first is selected by the scheduler. This simply
stems from the fact that the scheduler cannot anticipate transactions in the future.

5.6.1.6 Communication HW layer

Below the Execution HW Layer, the Communication HW layer resolves resource contention
on shared communication media. The SchedulableCommDevice extends the Schedulable
interface with mainly two methods: getBurstSize and registerTransaction. The former
defines the size of the largest, atomic bus transaction referred to as burst. The latter no-
tifies the arrival of a new resource request and is supposed to invalidate the scheduling
decision of the component. Buses perform scheduling in a lazy fashion, that means when
their getNextTransaction method is invoked and under the condition that the previous
decision has been invalidated. A Bus defines the methods required by the interfaces
SchedulableCommDevice and Traceable. Moreover, it is able to calculate the physical du-
ration of bus transactions. The BusMaster class plays the role of the mediator between
one CPUs and potentially several Bus objects. The number of instantiated bus objects
per DIPLODOCUS Bus amounts to the number of channels the user has specified for
the DIPLODOCUS bus. A BusMaster has to assure that a single transaction is never
granted more than one bus channel at a time. This is mainly achieved with the method
accessGranted, which queries all buses for their next transaction (via the getNextTrans-
action method) in the order of ascending endSchedule times of the buses. endSchedule
thereby denotes the end time of last transaction executed by the respective bus. The get-
NexTransaction method of the bus master, in turn called by bus schedulers to determine
the workload, only returns a transaction if it has not yet been scheduled on another bus
channel.
The Slave interface contains methods permitting slaves to delay transactions (method
CalcTransactionLength) and to add a transaction to the local schedule of the device
(method: addTransaction). For the time being, solely Bridges and Memories implement
the slave interface.

5.6.1.7 DE Simulation

The DE Layer finally embraces all general functions relevant for simulation (class Simula-
tor) and is to a large extent independent of the semantics of architecture and application.
However, for performance reasons, the simulator was built on the assumption that point
to multipoint communication does not exist among tasks. The assumption could easily
be relaxed with slight performance penalties.
Furthermore, the layer hosts the management of simulation components (class Sim-
Components), output of traces in various formats (class Simulator, presented in Section

101

7.4), coverage enhanced exploration of DIPLODOCUS applications (class Simulator, see
chapter 6) and thread safe synchronization of the integrated server module with the IDE
module (class SimServSyncInfo and Server, see Section 7.5).

5.6.2 An exemplary simulation run

To illustrate the simulation concept, this section presents the interaction of simulation
components with a simple example. We follow the execution of Task2 in Figure 5.4,
that only consists of a sequence of an Action command, an Execi command and a write
command. The architecture comprises a CPU, onto which the task is mapped, a bus and
a memory which are supposed to handle the data transfer issued by the write command.

The sequence diagram in Figure 5.7a depicts the Evaluation Phase of the Action com-
mand and the Evaluation and Scheduling Phase of the Execi command. The simulator
first queries the task for the current command (Step 1) and then sends a prepare mes-
sage to the latter (Step 2). As the Action command does not generate a transaction,
the corresponding action function can be invoked (Step 3,4) right away within the pre-
pareNextTrans method. The action function incorporates the action to be carried out
(variable assignment, etc.) and belongs to the scope of the task. Then control flow is
passed on to the prepare sequence of the Execi command (Step 5,6). As the length of
the command could be a sophisticated function of task variables, it has to be evaluated
within a dedicated function of the task (Step 7). The process culminates in the creation
of a new transaction, whose attributes virtualLength and startTime are initialized with the
length of the DIPLODOCUS command and the finishTime of the previous transaction of
the task respectively.
Thereafter, the Scheduling Phase is initiated by schedule message (Step 9) that the kernel
sends to the CPU. The CPU in turn forwards the message to its scheduler (Step 10)
and prompts it for the scheduling result (Step 11). The scheduler sends a query for the
current transaction to each registered task (Step 12) and the task finally forwards it (Step
13) to the current command. After the CPU has calculated the startTime, the duration and
the penalties of the transaction based on its internal schedule and parameters (Step 14),
the transaction is modified accordingly (Step 15).

Figure 5.7b illustrates the DE/Update Phase of the Execi command followed by the evalu-
ate and Scheduling Phases of the Write Command. To find the transaction that terminates
earliest, the Simulator queries each CPU for its next transaction (Step 1,2) within the
getEarliestTrans procedure. The CPU proposing this transaction then receives the order
to add it to its local schedule (Step 3). The CPU in turn invokes the execute method
(Step 4) of the Execi command which makes the command update its internal state. This
concludes the Update Phase and a prepare message forwarded to the write command (Step
5,6) announces the recurrence of an Evaluation Phase. The prepareNextTransaction (Step 7)
is as usual in charge of spawning a new transaction. As the number of samples could

102

be a complex expression, it is evaluated in the scope of the task (Step 8), in analogy to
the length of the Execi command. The write command also initializes the virtualLength
and startTime of a newly created transaction (Step 9). So far, the procedure is identical to
the Evaluation Phase of the Execi command. However Step 10 and 11 are specific to data
exchange (read, write) and synchronization (Wait Event, Send Event) commands. The
channel is informed about a write command awaiting execution (testWrite message) and
determines the virtualLength of the transaction as a function of its size and filling level.
The size could also be set to zero in case the channel is full, which makes the transaction
invisible to schedulers. Thereafter, the same scheduling sequence is encountered as for
the Execi command (Figure 5.7a, Steps 9-13). In Figure 5.7b this part has been left out,
except for the schedule message (Step 12). In the scope of the calcStartTimeLength method
(Step 13), the CPU advertises the transaction to the BusMaster (Step 14) which in turn
invalidates the current schedule of the bus (Step 15). Finally, the CPU may postpone the
startTime of the transaction, depending on its schedule (Step 16).

Figure 5.8 shows the completion of our scenario: the write command goes through
the DE and Update Phase. Steps 1 and 2 are similar to what was encountered for the
Execi command (compare Figure 5.7b). The simulator again searches for the runnable
transaction with the earliest finishTime. This time, upon reception of a getNextTransaction
message (Step 2), the CPU has to make sure that the write transaction is really granted
access to the bus. Therefore, it issues a grantedAccess message (Step 3) to the bus master.
The latter forwards the query to the bus (Step 4), which in turn realizes that its schedule
is obsolete and initiates (Step 5) a scheduling operation at the bus scheduler (Step 6).
When it comes to the Update Phase, addTransaction messages travel from the simulator via
the CPU and the bus master to the bus (Step 7-9). This laborious resolution is necessary
to allow CPUs to comprise several bus masters, and bus masters to be connected to
several buses (recall: one bus object is instantiated per communication channel of a
DIPLODOCUS bus). Thereafter, the memory is involved in the calculation of the duration
of the transaction, to account for memory access delays (Step 11). Last but not least, the
inner state of the write command and the channel have to be updated. To this end, the
simulator sends an execute message (Step 12) to the write command and the latter issues
a write message to the channel (Step 13). Again, this concludes the Update Phase and the
Evaluation Phase for the command following the write command is entered (Step 14,15).

5.6.3 Simulation event dispatching

The architecture depited in Figure 5.6 relies on the observer pattern to separate sim-
ulation logic from peripheral logic that is responsible for the evaluation of simulation
events. It should be noted that simulation events indicate actions taken by the simulation
engine and should not be confused with DIPLODOCUS events. In Figure 5.6, all classes
implementing the ListenerSubject interface are considered as simulation event sources.
That means that they provide facilities to register so called event listeners which must

103

S
im
u
la
to
r

T
a
s
k

(1
)
g
e
tC
u
rr
C
m
d
()

A
c
ti
o
n

E
x
e
c
I

C
P
U

C
P
U
S
c
h
e
d

(3
)
p
re
p
a
re
N
e
x
tT
ra
n
s
()

(6
)
p
re
p
a
re
N
e
x
tT
ra
n
s
()

T
ra
n
s
a
c
ti
o
n
1

(7
)
le
n
g
th
F
u
n
c
E
x
e
c
i(
)

(4
)
a
c
ti
o
n
F
u
n
c
()

(9
)
s
c
h
e
d
u
le
()

(1
2
)
g
e
tN
e
x
tT
ra
n
s
()

(1
4
)
c
a
lc
S
ta
rt
T
im
e
L
e
n
g
th
()

(1
5
)
s
e
t(
s
ta
rt
T
im
e
,
d
u
ra
ti
o
n
,
p
e
n
a
lt
ie
s
)

s
c
h
e
d
u
le

s
e
q
u
e
n
c
e

(1
1
)
g
e
tN
e
x
tT
ra
n
s
()

(2
)
p
re
p
a
re
()

(8
)
C
o
n
s
tr
u
c
to
r(
v
ir
tu
a
lL
e
n
g
th
,
S
ta
rt
T
im
e
))

(1
0
)
s
c
h
e
d
u
le
()

(5
)
p
re
p
a
re
()

(1
3
)
g
e
tC
u
rr
T
ra
n
s
a
c
ti
o
n
()

(a
)A

ct
io

n
C

om
m

an
d

an
d

Ex
ec

iC
om

m
an

d

S
im
u
la
to
r

T
a
s
k

E
x
e
c
I

W
ri
te

C
h
a
n
n
e
l

C
P
U

B
u
s
M
a
s
te
r

B
u
s

(1
)
g
e
tE
a
rl
ie
s
tT
ra
n
s
()

(2
)
g
e
tN
e
x
tT
ra
n
s
a
c
ti
o
n
()

(8
)
le
n
g
th
F
u
n
c
W
ri
te
()

T
ra
n
s
a
c
ti
o
n
2

(1
0
)
te
s
tW
ri
te
()

(1
2
)
s
c
h
e
d
u
le
()

s
c
h
e
d
u
le
 s
e
q
u
e
n
c
e
 g
o
e
s
 h
e
re

(1
1
)
s
e
t(
v
ir
tu
a
lL
e
n
g
th
)

(1
3
)
c
a
lc
S
ta
rt
T
im
e
L
e
n
g
th
()

(1
4
)
re
g
is
te
rT
ra
n
s
a
c
ti
o
n
()

(1
5
)
re
g
is
te
rT
ra
n
s
a
c
ti
o
n
()

(9
)
C
o
n
s
tr
u
c
to
r(
v
ir
tu
a
lL
e
n
g
th
,
s
ta
rt
T
im
e
)

(7
)
p
re
p
a
re
N
e
x
tT
ra
n
s
()

(3
)
a
d
d
T
ra
n
s
a
c
ti
o
n
()

(1
6
)
s
e
t(
s
ta
rt
T
im
e
)

(6
)
p
re
p
a
re
()(4
)
e
x
e
c
u
te
()

(5
)
p
re
p
a
re
()

(b
)E

xe
ci

C
om

m
an

d
an

d
W

ri
te

C
om

m
an

d

Fi
gu

re
5.

7:
Ex

am
pl

e
Sc

en
ar

io
:S

eq
ue

nc
e

D
ia

gr
am

s

104

Simulator nextCmd Write Channel CPU BusMaster Bus BusSched Memory Transaction2

(1) getEarliestTrans()

(2) getNextTransaction()

(3) accessGranted()

(4) getNextTransaction()

(5) schedule()

(6) getNextTransaction()

(7) addTransaction()

(8) addTransaction()

(9) addTransaction()

(10) addTransaction()

(11) set(duration)

(12) execute()

(13) write()

(15) prepareNextTrans()

(14) prepare()

Figure 5.8: Completion of the Write Command: Sequence Diagram

105

Operation 1 CPU 2 CPU
Execi 1.55 1.52

Send/Wait 1.46 1.41
Read/Write 0.86 0.79

Table 5.1: Simulator speed in MTrans./sec

inherit from the GeneralListener interface. Event listeners react to predefined events by
overriding the respective method of the base class. ListenerSubject may generate a subset
of the following events:

• simulationStarted: is notified once per simulation run upon the start of the simula-
tion

• simulationStopped: is notified once per simulation run upon the end of the simula-
tion

• timeAdvances: is notified whenever a transaction is scheduled by the simulation
kernel

• taskStarted: is notified once when the first transaction of a task is executed, if the
task receives requests the event is notified several times

• taskFinished: is notified once at the end of a task if the task does not receive requests

• transExecuted: is notified upon every executed transaction on a particular device
(Bus, CPU,etc.)/application entity (task, command,etc.)

• commandEntered: is notified as soon as control flow reaches a command

• commandFinished: is notified when the last transaction of a command is executed,
before control flow passes on

• commandExecuted: is notified upon execution of every transaction of a command,
except for the last one

• commandStarted: is notified upon execution of the first transaction of a command

5.6.4 Experimental results

We consider three of the most prevalent types of operations to evaluate the performance
of the simulation engine: event Send/Wait operations, Read/Write operations on chan-
nels and Execi operations. From our experience, these operations make up the lion’s
share of DIPLODOCUS applications together with Choice and Action commands. The
latter are implicitly considered as our operators are nested in a main loop which is

106

internally represented with structures similar to Choice and Action commands. Table
5.1 specifies the simulation speed for an application comprising two tasks which only
perform the given operations in a loop. Speed is measured in millions of transaction
per second of host processor time. The task set has been mapped onto an architecture
composed of 1 CPU and 2 CPUs respectively, which are represented in two separate
columns in the table. For experiments with read/write operations, the architecture was
extended with one memory and one bus. As expected, Execi operation are the less
costly because they do not involve any synchronization. Send and Wait transactions
are in between the latter and Read/Write transactions, which are most time consuming
as communication media need to be arbitrated. The simulation on an architecture with
two CPUs is more costly than on one with a single CPU due to additional scheduling
overhead.
The simulation speed in terms of cycles

sec may be calculated as the product of the above
mentioned simulator dependent part in trans

sec and the average transaction length in cycles
trans .

A strength of this simulation policy is consequently that the simulation speed increases
with the abstraction level (or granularity in other terms) of the model. This was not the
case for the ancient SystemC simulator, existing prior to this thesis. Figure 5.9 provides
evidence that simulation time increased more or less linearly with the average transac-
tion length. This experiment is conducted with a task set comprising two tasks: Task1
first sends an event of type evt1 to Task2, then performs an Execi of length l and finally
waits for an event of type evt2. Task2 carries out the complementary operations: it waits
for the reception of event evt1, then also performs en Execi of length l and finally sends
and event of type evt2. The commands in both tasks are iterated a million times. Figure
5.9 reveals that the length l of Execi commands is varied between 1 and 10. Even in the
worst case of an average transaction length of l = 1, the new simulator outperforms the
one based on SystemC by factor 10.
For all measurements, output capabilities of both simulators have been disabled in order
to avoid a distortion of results due to file I/O operations. The time consumed by the
initialization procedure of both simulation environments is neglected so as to measure
the real simulation time. The measured execution time may be subject to noise caused by
the other tasks running on the operation system. Therefore, the given results constitute
an average of several time measurements. The noise should thus equally distort the
results for both simulators. The performance study was conducted under Linux, Fedora
Release 11, on a Intel Dual Core CPU 2.7 GHz with 4 GB RAM.

5.7 Conclusions

In this Chapter, a simulation approach especially suited for high level models of Systems-
on-Chip was presented. The reason why we did not rely on the wide-spread SystemC
standard is twofold.

107

Figure 5.9: Simulation time as a function of the average transaction length

1. On the one hand, it was argued that SystemC concurrency primitives should be
used scarcely due to their impact on simulation performance. This insight calls for
a customized management of DIPLODOCUS tasks, that way reducing the number
of SystemC threads compared to the number of active components such as CPUs.

2. On the other hand, it was shown that DIPLODOCUS execution semantics paves
the way for further improvements of the conventional DE simulation approach.
Simulation of high level models can renounce many features provided by the stan-
dard SystemC kernel, such as sensitivity to signals, repeated execution of threads
until a steady state is reached, management of different concurrency primitives,
an explicit representation of events, event queues as well as the creation and can-
cellation of events.

In conclusion, the actual parts of the SystemC implementation reusable for DIPLODO-
CUS models would be restricted to a small subset of the kernel. Given that the existing
implementation therefore would have to be analyzed thoroughly, we believe that our
inhouse development made us not only realize a benefit in terms of simulation perfor-
mance, but also in terms of development time. The performance figures reveal not only
a notable performance gain, but also suggest that abstraction in the model is directly
leveraged to speed-up simulation. The simulation approach is merely specific to high
level models in general, not to either DIPLODOCUS or UML models in particular. It
could be adapted to other input models by providing a dedicated code generator. The
code generator for DIPLODOCUS is covered in chapter 7.

108

Chapter 6

Extending Simulation coverage

6.1 Introduction

High Level UML models

Formal verification

Coverage driven

Simulation
Simulation

Simulation Efficiency
Model Coverage

Model Transformation

Operation Point

Figure 6.1: Varying Model Coverage in DIPLODOCUS

Since formal verification on low-level models faces the state explosion problem, it is
merely applied to subparts of the system where data has been abstracted to its mere
presence or absence. This limitation is pushed further when raising the abstraction
level. Still, it remains a major obstacle for the verification of medium sized system
level models. Furthermore, representing high-level mapping models (e.g. models com-
prising an application and architecture) is extremely cumbersome in formal languages.
Methods such as DIPLODOCUS have been proposed to transform graphical high level
models (UML, etc.) into a representation amenable to model checking. To this end,
UML models must be endowed with a formal semantics. Nonetheless, we experienced
that the transformation of sophisticated mapping models results in complex syntactical

109

structures, often pushing both UPPAAL [24] and CADP [38] model checkers to their
limits.
Moreover, even if the model checker is able to handle the specification, system space cov-
erage cannot be varied: formal verification is exhaustive by definition and consequently
model-checkers are conceived to explore the entire state space. For that reason, varying
the coverage of the source model requires to reconfigure the model transformation al-
gorithm and to regenerate the formal model. However, from a designer’s perspective, it
would be desirable to generate an executable model once and to subsequently traverse
an interesting fraction of its state space. The design space may be pruned with the aid
of conventional coverage criteria (with respect to covered branches, statements, tasks,
conditions,etc.), expert knowledge provided by the user (e.g. potentially critical parts
of the control flow to the environment), or heuristics taking into account (non-) func-
tional properties. In any case, the objective is to allow for taking decisions dynamically,
at simulation runtime. That way, the developer may trade off more easily simulation
efficiency against coverage without regenerating the formal model. The operation point
thus ranges between the two extreme cases of formal verification and simulation, which
is denoted with the slider in Figure 6.1). Clearly, when moving away from exhaustive
formal verification, proves in a mathematical sense cannot be performed any more.
To address the aforementioned trade-off, we propose a novel way to enhance simulation
coverage of high level models based on model checking and static program analysis tech-
niques. A simulator steamlined for high level models of SoC was introduced in Chapter
5. It already enables the developer to manually explore several branches by saving the
simulation state at a decision point and getting back to it later. However, at the stage
described in Chapter 5, it lacks adequate state storage and comparison techniques which
are essential for merging logically equivalent execution paths. This chapter points out
remedies to this shortcoming. DIPLODOCUS mapping models are statically analyzed
to spot elements not being part of the state vector so as to speed up the identification of
recurring system states. Section 6.3 elaborates on that procedure. Furthermore, section
6.4 demonstrates a way to localize points in the model where executions are likely to be
joined and therefore states must be compared. In section 6.5, insights are given into the
implementation of for instance dependencies relations and state hashing. Methods for
the identification of recurring system states are addressed in section 6.5.5.

6.2 State Space of DIPLODOCUS models

The state space of DIPLODOCUS applications comprises all possible interleavings of
task executions. It is solely constrained by inter-task synchronization (events and re-
quests) and data dependencies (blocking channels). As depicted in Figure 6.2, the state
space is spanned by the current position within a task, local task variables and the state
of inter task communication primitives. According to Chapter 5, a command may be
broken down into several consecutively scheduled transactions. The current position in
a task is thus the combination of the current command and its progress. The progress of

110

a command amounts to the sum of the virtual length of all completed transactions. The
state of channels where either read or write operations are blocking can be characterized
by the number of samples currently stored in them. If both read and write operations are
non-blocking, channels can be considered as stateless. Each sent events or requests may
convey parameters. Therefore, parameters of all pending (sent but not yet received)
events/requests must be recorded in a separate data structure. For events based on
an infinite FIFO and requests (by default based on an infinite FIFO), state vectors are
unbounded.

According to the definition in section 3.2, a state makes the system’s history irrelevant
and permits to deduce unambiguously the response to future stimuli. In DIPLODOCUS
models, the above mentioned elements of the state vector serve this goal. Past state
transitions of the architecture model are implicitly contained in this state vector, as the
architecture has restricted the set of possible behaviors of the application model. While
application related information is sufficient for the detection of recurring system states, it
is unsuitable for restoring performance measures. For example, the simulator constantly
records the number of transactions processed on HW components, the local time of HW
components, the execution time of tasks, the overall contention delay experienced for
shared resource allocation, etc. These values do not impact future system behavior and
therefore are not part of the system state vector. However, performance values must be
restored when getting back to previous system states. This fact is acknowledged by an
extended vector, containing both intermediate performance figures and the system state.

Fortunately, not all partial orders of concurrent actions of the application model have to
be explored as soon it is bound to a mapping. Indeed, the mapping of application tasks
onto an architecture constrains the state space due to shared resources like processors,
buses, etc (cf. Constraints arrow in Figure 6.2). However, as data dependent behavior
is abstracted with non-deterministic operators, yet several execution traces exist. (The
behavior of the architecture is assumed to be deterministic, compare section 5.4). Traces
may significantly differ in terms of non-functional properties like execution time and
resource usage. and in whether they satisfy functional requirements. It may therefore
be important to explore more than one possible branch. To prevent equivalent execution
paths from being explored more than once, representations of encountered states have to
be maintained, similar to those in Model Checkers like SPIN [53]. The main objective of
this chapter is to suggest techniques essential to the realization of the coverage selector
shown in Figure 6.2 for UML models of SoC. Deriving appropriate coverage criteria
for DIPLODOCUS models as mentioned in section 6.1 is however out of scope of this
work. The challenge tackled in this thesis is twofold: it is crucial to minimize both the
size of particular state vectors and the number of times the latter have to be stored and
compared.

111

Non-significant

Application

State Space

Current Cmd

in Tasks

Task Variables

Inter Task

Comm. States

Constraints imposed by Architecture

Not Covered by Verification

Covered by Verification

Coverage Selector

Reaching Definition Analysis

Live Variable Analysis

Induction Variable Analysis

Sampled at Check Points

Local Dependence Analysis

Figure 6.2: State Space Exploration Concept

6.3 Static Analysis of DIPLODOCUS applications

Figure 6.3: Running example of an Application Model

This section covers static analysis methods applied to DIPLODOCUS models in order to
to identify significant state variables at each point in an activity diagram. Explicit state
representations are greedy in terms of memory. A thorough analysis of applications is
necessary to minimize information required to uniquely describe system states. Further-
more, system states encountered during simulation have to be compared to all previous
ones in order to merge similar execution paths. Reducing the footprint of state vectors
also comes with the positive side effect of cutting down time needed for comparison.
The bold arrow on Figure 6.2 illustrates the outcome of the two of the three pivotal
techniques presented in this section: Reaching Definition Analysis and Live Variable Anal-
ysis. Informally, Reaching Definition Analysis brings out reaching definitions of a DI-
PLODOCUS operator. A reaching definition is another operator comprising a variable
assignment that reaches the former operator. Thereby, the notion of reaching refers to a
possible path in control flow, be it conditional or not. Live Variable Analysis determines
variables considered to be live in a DIPLODOCUS operator, e.g. if they may potentially
be read before being redefined.
The latter two analysis methods are commonly accomplished by compilers. These tech-
niques belong to the realm of machine independent optimizations [7], as they only

112

require knowledge of an algorithm, regardless of the underlying execution platform.
Optimizations of this kind have been around for a while and will therefore be described
very concisely. However, Local Input Dependence Analysis is somewhat particular to the
DIPLODOCUS model of computation and is therefore covered in more detail. It detects
so called Check Points in a task where traces are likely to branch or join entailing that
states must be stored and compared (cf. sampling symbols in Figure 6.2).

The diagram depicted in Figure 6.3 serves as a running example throughout this section.
The contained DIPLODOCUS operators are henceforth referred to by their numbers
indicated inside of the memo symbols in the diagram. The application consists of an ini-
tialization part which first sets the variable a to zero and then receives an event carrying
two parameters. The parameters are saved in the task variables a and b. Depending on
the condition a > b, control flow is either directed to a sequence of Write (a samples) and
a Read command (b samples) or to a loop, whose body contains a variable assignment
and a subsequent symbolic operation (Execi a).

6.3.1 Basic blocks

A decomposition of the control flow into basic blocks is commonly used in static program
analysis. The purpose of basic blocks is to abstract a DIPLODOCUS task with respect
to the domain of a particular analysis. The domain is characterized by a set of possible
states observable at a point in the task. As a concrete example, Live Variable Analysis
operates on the power set of all variables used in the task, and Reaching Definition
Analysis on the power set of all definitions. Every basic block is assigned two data flow
values out of these sets, revealing for instance which variables are considered to be live
and which definitions reach the block [7].
As it will be shown in dedicated sections (6.3.2, 6.3.2), data flow values being valid
before and after a basic block are related to each other by a transfer function, abstracting
the operations of that basic block. Forward analysis differs from backward analysis in
that the transfer function is defined in the inverse way. Moreover, control flow (e.g. the
interconnections of basic blocks) imposes constraints on data flow values of adjacent
blocks.

Basic blocks are generally defined as maximal sequences of consecutive instructions that
have exactly one entry and no internal branching. In the context of DIPLODOCUS,
an analysis is always carried out with respect to a DIPLODOCUS task t, and so all of
the following definitions are also specific to a task t. To simplify matters, the index t
is however omitted. A basic block s is mainly defined by the following characteristic
functions:

• De f (s) = {v|v is a variable defined/modified in s},
∣∣∣De f (s)

∣∣∣ ≤ 1, is the set of defined
variables. To simplify some expressions, the number of defined variables is lim-

113

ited to 1. As a consequence, DIPLODOCUS operators modifying more than one
variable (e.g. Wait Event) translate into one basic block per variable.

• ID (s) is the basic block ID function, if a DIPLODOCUS operator is mapped onto
several basic blocks s1 . . . sx . . . sn, then ID(sx) = x.

• Re f (s) = {v|v is a variable referred to but not modified in s}, is the set of read vari-
ables

• Comm (s) =
{
c|c is a communication primitive (Channel, Event, Request) used in s

}
,

0 ≤ |Comm (s)| ≤ 1, is the set of communication primitives

• Succ (s) = {s′|s′ is a successor of s}, is the set of successors of the basic block. Unless
otherwise defined, DIPLODOCUS operators correspond to one basic block. The
successor relationship is established in exactly the same way as in the DIPLODO-
CUS model.

• Pred (s2) = {s1|s2 ∈ Succ(s1)} is the set of predecessors of s2

• Path (s1, s2) =

 true if s1 = s2∨
st ∈ Succ(s1)

Path (st, s2) ∨ Path (s2, st) otherwise

is the path function that evaluates to true if there exists a path between two basic
blocks s1 and s2.

As stated before, we consider each operator of a DIPLODOCUS activity diagram as a
basic block, except for Loop and Wait Event operators. Loop operators are decomposed
into three basic blocks, namely into an initialization, an increment and a condition block.
The initialization block is connected to the condition block, the condition block to the
first block of the loop body and to the first block succeeding the loop, the loop body to
the increment block and finally the increment block back to the condition.
In case DIPLODOCUS operators assign values to several variables, each of these assign-
ments is handled in a dedicated basic block. The resulting basic blocks are connected
consecutively and carry different IDs. The connections between all other basic blocks
are established in the same way as in the corresponding activity diagram.

In the following, the initial definition of a basic block is complemented with some notions
essential for formalizing static analysis stages in later sections. Therein, V denotes the
set of all variables of a task and S is the set of all basic blocks of a task:

• In (s) = {(s′, v) |v was last defined at s′ before the execution of s}, is the set of incom-
ing definitions, i.e. v ∈ De f (s′), and there is a path from s′ to s, on which there is
no other node s′′, where v ∈ De f (s′′) except s′

• Out (s) =
{
(s′, v) | (s′, v) ∈ In (s) ∧ v < De f (s)

}
∪

{
(s, v′) |v′ ∈ De f (s)

}
, is the set of out-

going definitions

114

• Gen (s) =

{ {
(s, v) |v ∈ De f (s)

}
if De f (s) , ∅

∅ if De f (s) = ∅
is the generating set which contains

(s, v) if the basic block s defines a variable v

• Kill (s) = Out (s) \ In (s) \ Gen (s) is the set of definitions killed by s

• Dep (s): Boolean value indicating whether the basic block depends on non deter-
ministic choices

• varFunc: {(s, v)} → {v} is a projection of a set of basic block/variable pairs (s, v) on
the set of variables v which are contained in the preimage vectors

• blockFunc: {s, v} → {s} is a projection of a set of basic block/variable pairs (s, v) on
the set of basic blocks s which are contained in the preimage vectors

6.3.2 Live Variable Analysis

The intention of this analysis is to find out whether the value of a variable x at point
p could be used along some path in the control flow starting at p. If so, the variable is
significant and thus constitutes the system state at point p. Otherwise it can be safely
neglected at point p, and the corresponding assignment can be omitted. The transfer
equations for Live Variable Analysis are defined as follows:

• VarIn,VarOut ∈ ℘ (V) are the data flow values

• VarIn
(
sstop

)
= ∅ is the boundary condition, where sstop is associated to a Stop com-

mand terminating a task

• VarIn (s) = Re f (s)∪
(
VarOut (s) \De f (s)

)
is the data flow value immediately before

a basic block

• VarOut (s) =
⋃

p ∈ Pred(s)
VarIn

(
p
)

is the data flow value immediately after a basic block

In Figure 6.3, the variable a is not live after definition (1) because it is killed by operator
(2) before being used. Thus, it is not considered as significant for the system state before
operator (2).

6.3.3 Reaching Definition Analysis and Constant Analysis

Reaching Definition Analysis provides information on where in a task each variable
may have been defined when control reaches that position. This allows us to reason
about whether a statement is constant and can safely be excluded from the state vector.
Variables are not considered as relevant for the system state if they are reached only by
constant definitions (e.g. a = 5) of the same value. Informally, a definition d reaches
point p if there is a path from the point immediately following d to p, such that d is not

115

killed along the path. A definition d of a variable x is said to be killed if there is any
other definition of x along the path. For this analysis, only the previously identified live
variables are taken into account. By replacing an occurrence of a variable by its constant
value, the variable may in turn not be live any more after the corresponding reaching
definitions. Section 6.3.5 points out a strategy to overcome this circular dependency.

The transfer equations for Reaching Definition Analysis are defined as follows:

• De f In,De f Out ∈ ℘ (S) are the data flow values

• De f Out (sstart) = ∅ is the boundary condition, where sstart is associated to the Start
command at the beginning of a task

• De f Out (s) = varFunc (Gen (s))∪
(
De f In (s) \ varFunc (Kill (s))

)
is the data flow value

immediately after a basic block

• De f In (s) =
⋃

p ∈ Pred(s)
De f Out

(
p
)

is the data flow value immediately before a basic

block

In Figure 6.3 for example, the definition (7) is reached by itself (due to the loop) and
operator (2). As both definitions are not constant, the analysis gets to the conclusion
that the variable represents the system state after definition (7).

6.3.4 Local dependence analysis

Local Dependence Analysis reveals how control and data flow of a task are impacted
by both non-deterministic decisions and incoming parameters of Events and Requests.
The intuition behind this analysis is that several executions of a task are similar if a task
is neither influenced by its environment nor it contains non-deterministic operators. At
points where either of the two influences come into play execution traces are likely to
converge or diverge. Input dependence analysis serves two goals: on the one hand it
helps us to spot points where a system state should be saved and compared to previous
states (referred to as check points, cf. section 6.4). On the other hand, dependent vari-
ables are likely to discriminate the task executions from previous runs and should thus
be privileged when comparing system states.

6.3.4.1 Dependence Relations

One certainly has an intuitive understanding of the notion of dependence in the context
of concurrent tasks. For instance, we are aware that a reference to a variable depends
on its definition, the execution of a block may depend on a condition, in-deterministic
decisions may alter the execution of a task, the filling level of a channel depends on
the performed Write and Read operations and sending a parameterized event to another

116

task probably has an impact on its behavior. However, to clearly define dependence
analysis, it is unavoidable to substantiate these straight forward relationships. The
following identities have been established in accordance with [29] and [88] but have
been adapted to particularities of the DIPLODOCUS profile.

• Control dependency: Let s1, s2 and s3 be three basic blocks of a DIPLODOCUS task
T, s2 control depends on s1 iff whether or not s1 determines the execution of s2. If s2

control depends on s1, and there does not exist a statement s3, which is on the path
from s1 to s2 and on which statement s2 control depends, then s2 is directly control
dependent on s1, denoted by CND (s2, s1). For example, basic blocks enclosed in
the body of Loop or Choice statements control depend on the closest basic block
associated to a condition.

• Data Dependency: Let s1, s2 be two basic blocks of Task T, if variable v ∈ De f (s1)
and v ∈ Re f (s2) and there is a path from s1 to s2 only comprising basic blocks sp for
which v < De f

(
sp

)
holds, then s2 data depends on s1 denoted by DAD (s2, s1). For

example, a basic block data depends on another basic block if a value computed
in the latter has an influence on a value computed in the former.

• Selection Dependency: Let s1 and s2 be two basic blocks of a task T, s2 selection
depends on s1 iff whether or not s2 can be executed depends on a non deterministic
selection made in s1. Selection dependence is denoted by SED (s2, s1). Significant
non-deterministic DIPLODOCUS operators such as Random and Random Choice
impact either control flow, data flow or both. Selection Dependency is thus es-
tablished incrementally by propagating direct control and data dependency as
described in section 6.3.4.

• Synchronization Dependency: If an inner state of a communication medium
comm (Channel, Event, Request) depends on a basic block s1, the communication
medium synchronization depends on s1, denoted by SYD (comm, s1). For example,
a DIPLODOCUS Channel depends on basic blocks associated to blocking Read and
Write operators.

• Communication Dependency: Let s1, s2 be basic blocks corresponding to a Wait
event and a Send Event statement respectively, s1 communication depends on s2

if ID (s1) = ID (s2) ∧ Comm (s1) = Comm (s2) ∧ De f (s1) , ∅ ∧ Re f (s2) , ∅.
Communication dependency is denoted by CMD (s1, s2). This dependency can be
though of an inter task data dependency. Informally, it states that data dependency
is also propagated via parameters of DIPLODOCUS events.

6.3.4.2 Dependence discovery algorithm

The following algorithm propagates dependencies on non-deterministic decisions by
marking basic blocks with the Dep(s) flag:

117

1. At first, the initial marking is established: for all basic blocks s corresponding to ran-
dom statements (Random, Random Choice, Select Event) and to statements impacted
from outside the task (Notified, Wait Event receiving parameters) Dep(s) = true is
set. The initial marking of Wait Event commands accounts for communication
dependency. Following the definition of synchronization dependency, a poten-
tially blocking synchronization command (Read, Write, Send Event, Wait Event)
propagates its dependency to its related Channel, Event or Request.

2. Basic block s2 is marked (Dep (s2) = true) if it directly depends on basic block s1

and basic block s1 is already marked (Dep (s1) = true), thus Dep(s2) = Dep(s1) ∧
(CND (s1, s2) ∨DAD (s1, s2)) with CND and DAD from section 6.3.1. This step is
iterated until a steady state is reached and no further marking is produced.

In Figure 6.3, operator (2) is marked first as it receives two parameters a and b from the
outside. Given that the Choice operator (3) is reached by the definition of a and b in (2), it
is said to be data dependent on (2). Subsequently, the marking is extended to operators
(3) to (8) due to their control dependency on operator (3).

6.3.5 Putting it all together

Reset VarIn, VarOut

Reset Defs, DefsOut

DefsOut=Gen\Kill

Reach. Def. Analysis

Constant Analysis

Local Dep. Analysis

Determine Kill

Live Variable Analysis

Figure 6.4: Cascaded Static Analysis

Figure 6.4 illustrates the interplay of the employed static analysis techniques. The loop
back arrows indicate an iterative behavior of the algorithm, involving two nested loops.
The outer loop terminates as soon as data flow values remain constant, while the inner
loop iterates over all basic blocks of a task. Data flow equations defined in section
6.3.2 and 6.3.4 are solved in this fashion starting from the boundary condition and an
initial estimate for data flow values. Live Variable Analysis first determines the set of
significant variables at the entry and the exit of each basic block. Subsequent analysis

118

steps only consider basic blocks with variable definitions proven to be live. The next
stage consists in identifying the definitions (e.g. basic blocks) that are killed by each basic
block. This information is compulsory for Reaching Definition Analysis, which is carried
out thereafter. The constant analysis aims to replace variable occurrences by constants
whenever possible. The condition for variables to be replaced is easily expressed with
the knowledge of reaching definitions: in order to replace the variable a, a basic block
must only be reached by definitions for a referring to the same constant value. In so
doing, the whole procedure is required to start over, as a removal of assignments and
variables invalidates results of previous examinations. The first four stages are iterated
(see Figure 6.4, big surrounding box) until the constant analysis does not detect new
constant expressions any more. Intermediate data flow values have then converged to
the final solution: De f In (s) to blockFunc (In (s)), De f Out (s) to blockFunc (Out (s)), VarIn (s)
to varFunc (In (s)) and VarOut (s) to varFunc (Out (s)).
When the aforementioned steady state is reached, the dependence analysis covered in
section 6.3.4 concludes the overall procedure.

6.4 Checkpoint identification

The last section was concerned with the identification of significant parts of a state vector
given a position in a task. It was argued that there are often elements of the state vector
(such as task variables, Channels, Events and Requests) that do not influence the future
behavior of the model. In that case, they can be safely disregarded in order to speed up
the calculation of a state hash and to save memory for state dumps. Another important
issue is to determine at which point in DIPLODOCUS tasks states should be saved and
compared because control flow is likely to join. In the following, these particular points
in a task are referred to as checkpoints. Checkpoint Analysis is conservative in the sense
that even if we miss a check point, it only leads a small increase of simulation time.
The simulation of two branches is carried on a bit further than necessary, which does
not at all distort simulation results. Our assumption is that executions are only to be
merged after inter task synchronization operators like Send Event, Wait Event, Write and
Read operators. Moreover, we consider commands as being atomic, meaning that a
command of length n does not require states to be compared n times but only once, after
the execution of unit n. However, the state hash is updated after each transaction, as
explained in Section 6.5.5.
A first attempt to elect check points would just consist in selecting all synchronization

commands. But thanks to the previously performed static analysis of tasks, we can make
educated guesses on where execution traces may be joined. The objective is to balance
performance degradation due to state hashing on the one hand and due to unnecessarily
following a branch of execution on the other hand. To this end, five cases have been
identified that give rise to a checkpoint (cf. Figure 6.5). Therein, a synchronization
operator is said to follow another command if there is a path of control flow connecting
both which does not comprise another synchronization operator. To simplify matters,

119

(a) Task1 (b) Task2 (c) Task3 (d) Task4 (e) Task5

Figure 6.5: Example Tasks for Checkpoint Selection

we use a sloppy terminology in the following list. A command is assumed to directly
expose the Dep (s) flag, thereby omitting the indirection via the dedicated basic block. As
a basic block is mapped onto exactly one command, this should not cause any ambiguity.
Checkpoints are defined to be synchronization commands . . .

1. . . . being associated to a channel, event or request having at least one operator
where Dep (s) = true (in Figure 6.5a both commands are dependent).

2. . . . following a command that assigns to a variable a random value or a value
generated outside the task (in Figure 6.5b)

3. . . . following a join of control flow if the synchronization operator is reached
by more than one definition for the same variable, at least one of them having
Dep (s) = true (Figure 6.5c depicts a Write command being reached by two depen-
dent definitions of the variable a)

4. . . . following a command which kills at least one definition having Dep (s) = true
(Figure 6.5d shows a random assignment being killed by the assignment a = 1,
given that the variable is used later in the task)

5. . . . following a command where a variable goes out of scope which is reached by
at least one definition Dep (s) = true (represented in Figure 6.5e if we assume the
variable not to be used any more)

6.5 Implementation Issues

Static analysis of DIPLODOCUS tasks is accomplished in the context of the code gen-
eration stage. UML models are transformed into C++ code by means of a dedicated
module integrated in TTool. This section covers some technical issues important for
the realization of the aforementioned concepts, without focusing on the interplay with
the TTool framework. Chapter 7 catches up on this by positioning code generation and
static analysis in the overall tool chain.

120

6.5.1 Bit vector representation of dependencies

Data flow equations defined in section 6.3.2 and 6.3.3 are most efficiently represented in
terms of bit vector operations. The semantics of a single bit is defined as the significance
of a particular variable in case of Live Variable Analysis. For Reaching Definition
Analysis, a bit denotes whether a basic block is reached by a particular definition. That
means, Live Variable Analysis of a DIPLODOCUS task operates on bit vectors whose size
amount to the sum of task variables, channels and events used by the task. For Reaching
Definition Analysis, the bit vector must have as many elements as there are variable
definitions in the task. Action commands make definitions explicit, but many other
commands provide definitions for variables (Wait Event, Random, Notified commands,
etc.). The union of sets is simply computed with the logical OR of bit vectors. The
difference of two sets S1 \ S2 translates to the negation of vector T2, which is combined
with vector T1 using a logical AND. For example, Re f (s) ∪

(
VarOut (s) \De f (s)

)
⇒

Re f ∨
(
VarOut ∧ ¬De f

)
, Re f , VarOut and De f being bit vectors. This method avoids

the maintenance of lists or other data structures to hold intermediate data flow values.

6.5.2 Propagating static analysis results to the simulator

The propagation of results of the static analysis to the simulation environment is accom-
plished with interface being implemented by descendants of a DIPLODOCUS command
(TMLCommand class). The C++ code generator of TTool transforms each DIPLODOCUS
task to a class, in the scope of which the commands of a task are instantiated. Commands
of whatever type (descendants of TMLCommand, cf. Section 5.6.1) are initialized with a
bit vector in the form of a string of variable length. In this string, each bit stands for a
tasks variable, a channel or an event and denotes whether the latter is significant at the
given point in the task. Commands leverage this information to constrain generation of
state hashes to the relevant part of the state vector, and to (partially) avoid a regeneration
of the hash if some components of the state vector remain unchanged.

6.5.3 The IndeterminismSource interface

The simulation kernel relies on an interface called IndeterminismSource to obtain informa-
tion about the indeterministic behavior of a command. Random Choice, Random and
Execi Interval commands implement both methods of the interface: getRandomRange
and setRandomValue. The former returns the number of different executions permitted
by the command, the latter explicitly selects one of them. For conventional simulation,
a random generator picks the execution branch to be followed, whereas in exhaustive
simulation all possibilities are covered iteratively. In the example given in Figure 6.6,
a getRandomRange is sent (step 1) to three DIPLODOCUS commands: a Random com-
mand, a Choice command and a Execi Interval command. All commands will return
the same value (step 2), namely 3 because they all subsume 3 possible executions. The
second row of Figure 6.6 shows the equivalent DIPLODOCUS operator if the second

121

Indeterminism Interface

getRandomRange
Return 3

setRandomValue(2)

1 2 3

3 3 3

4

Figure 6.6: Illustration of the IndeterminismSource interface

execution is selected by calling setRandomValue(2) (step 3). The Random Command is
transformed into an assignment of the second value within the given range, the guards
of the choice command are disabled except the one of the second branch, and the Execi
Range Command is resolved to a simple ExecI with the complexity of 1 unit (second
value in the range).

6.5.4 Exhaustive and coverage driven Simulation

Within the simulation kernel (class Simulator), a dedicated procedure (exploreTree) directs
the exploration mode. In accordance to the backtracking algorithm, it incrementally
builds possible paths through the application model, and employs results obtained
from the aforementioned static techniques to decide whether to abandon a candidate.
The exploration mode yields a higher coverage of the application model as conventional
simulation. Algorithm 1 presents the exhaustive coverage of the application model. At
first, the model is simulated until one of three conditions is met:

1. a command with an indeterministic behavior is reached

2. the simulation terminates normally (thus all tasks either get blocked or terminate)

3. an already encountered state is reached.

In the two latter cases (handled by the if branch in Algorithm 1), the currently executed
branch can be aborted. The detection of a known system state signals that an equivalent
branch of execution has already been examined and so that pursuing the current branch
will not provide new insights. If simulation has stopped due to an indeterministic com-
mand (else branch in Algorithm 1), the current simulation state is first saved to variable

122

s, and then a loop iterates over all possible valuations of the random variable (method
getRandomRange, member of the IndeterminismSource interface). In the loop body, after
the saved state s has been restored, the valuation to be explored is communicated to the
indeterministic command (method setRandomValue, member of the IndeterminismSource
interface). Thereafter, the elected branch is processed recursively in the same fashion
(recursive call to exploreTree in Algorithm 1).

Algorithm 1 Coverage driven simulation algorithm
begin

exploreTree
while not (currCmd.isRandomCmd() or simTerminated() or knownStateReached) do

simulate()
od
if simTerminated or

knownStateReached then
quitBranch

else
s = saveState()
i = 1;
while i<=currCmd.getRandomRange() do

restoreState(s)
currCmd.setRandomValue(i)
exploreTree()
i = i + 1

od
fi

end

6.5.5 State hashing

Figure 6.7 sheds light on how state hashing is accomplished in order to detect recurring
simulation states. The scenario is initiated with a prepare message (Step 1 in Figure 6.7)
sent to a command that generates transactions, in the scope of the Update Phase. The
reader may refer to Section 5.6.1 and 5.6.2 for a detailed explanation of simulation phases
and the interplay of components. The scenario is encountered if the command, referred
to as Checkpoint in Figure 6.7, is terminated, i.e. if it has executed the whole amount of its
virtual length. Moreover, the command must have been declared as a checkpoint during
the Checkpoint Analysis stage (see Section 6.4). In Step 2, the checkpoint sends a refresh-
StateHash message to its task in order to invalidate the state hash of local task variables.
Then, it passes control on to sc of the class SimComp (Step 3, checkForRecurringSysState

123

Checkpoint:Command sc:SimCompallTasks:Task :Channel

(1) prepare()

(2) refreshStateHash(liveVarList)

(5) setSignificance()

currCmds:Command

(7) getProgress()

(8) getStateHash()

(4) getStateHash()

(6) getCurrCommand()

(3) checkForRecurringSystemState()

Figure 6.7: Sequence Diagram for state hashing during simulation

124

Operation 1 CPU 2 CPU
Send/Wait 1.24 1.19
Read/Write 0.77 0.72

Table 6.1: Simulator speed in MTrans./sec

message), which is in charge of managing all components relevant to simulation. In
Figure 6.7, the unnamed components of type Task and Command (short for TMLTask
and TMLCommand) stand exemplarily for all instances of these classes existing in the
simulation environment. To trigger the recalculation of a task’s state hash, sc issues the
getStateHash message to all tasks. All tasks inform their channels, events and requests
about their significance, that is whether a task will potentially perform operations on
them in the future. This is achieved by means of the setSignificance method (Step 5).
Thereafter, sc proceeds with the calculation of the hash by querying tasks for their cur-
rent command (Step 6) and in turn the respective command for its current progress (Step
7). Finally, all channels, events and requests provide their contribution to the overall
state hash when instructed with the getStateHash method.
To speed up the procedure, tasks, channels, events and requests locally calculate their
hash is a lazy fashion. That means, that tasks, when receiving a getStateHash message,
only recompute their hash if a progress was made since the last reception of getStateHash.
Tasks only include variables in the state hash if they have proven to be significant during
static analysis. This of course depends on the current position in the task.
In analogy to tasks, Channels, events and requests also refresh their hash only if they are
significant, i.e. if they will potentially be accessed by any task in the future. Moreover, a
state change since the last hash computation is also a necessary precondition for a reval-
uation of the hash. In case of events, all pending event occurrences have to be taken into
account for the hash. If only event instances have been added, but not removed, the new
hash is built incrementally based on the previous one. However, in case event instances
were removed, the hash must be rebuilt from scratch. This inconvenience is inherent to
the Jenkis hash function: elements added to the hash can be easily eliminated in a LIFO
fashion, but for a FIFO semantics all add operations applied to the hash since the one of
the element to be removed would have to be unrolled. We opted for the Jenkins Hash
[56] because it does a good job in spreading similar keys, which are very common to
DIPLODOCUS application states. This is due to the fact that a transaction only impacts
a small subset of the state vector.

6.5.6 Experimental results

We carried out similar experiments to those presented in section 5.6.4 to determine the
performance impact of state hashing. Again, we mapped an application comprising only
Send/Wait commands and Read/Write commands onto two architectures composed of
1 and 2 CPUs respectively, a bus and a memory. We assumed 25% of the commands

125

to be checkpoints, where hash values of past states have to be compared with the hash
value of the current state. In table 6.1 it can be seen that performance decreases by
roughly 15% for event operations, and by roughly 10% for channel operations. This
slight degradation should be more than compensated in case simulation branches can
be merged.
The performance study was conducted on a 2.7 GHz host machine with 4 GB RAM.

6.6 From bits and pieces to model checking

C++ Application Model (7.3)

Coverage driven

Simulation Algorithm (6.5.4)

IndeterminismSource

Interface (6.5.3)

TEPE

Verifier

(4.5.3)

State space info

obtained from static

analysis (6.2-6.4)

State Hash (6.5.5)

State Dump (5.6.1.1)

State Compression

e.g. Serializable

Interface (5.6.1.1)

Wrapper &

Interface

Legend:
Implemented module (Chapter)

Module not yet implemented

Figure 6.8: Leveraging presented techniques for model checking

Figure 6.8 shows how the techniques presented so far are combined to perform model
checking of DIPLODOCUS models. The respective section of this thesis that elaborates
on a module is indicated in parenthesis. Section 6.2-6.4 covered the generation of static
information characterizing the significant part of the state vector and check points. This
information is included in the C++ representation of the application, which is detailed
in section 7.3. Together with the coverage enhanced simulation algorithm explained
in section 6.5.4, we are able to exhaustively explore the state space of a DIPLODOCUS
application model. The algorithm relies on the IndeterminismSource interface to query
the application model for the range of random variables and also to communicate
the valuation to be explored to the application model. The generation of state dumps
(section 5.6.1.1) and state hashing (section 6.5.5) permits to compare encountered system

126

states with the current one and cancel simulation in case of a match. The simulation
algorithm triggers state dumps by means of the Serializable interface (section 5.6.1.1). So
far, state matching is accomplished with a hash and collisions in the hash table are not
resolved. Future work should remedy this issue by introducing a state compression and
comparison feature, see also section 9.3.3. The TEPE verifier (section 4.5.3) is supplied
with traces in the form of signals and attribute values via a dedicated interface. The
latter accomplishes a logical translation to keep simulator and verifier as independent as
possible.The TEPE verifier finally determines the result of the injected TEPE properties.

6.7 Conclusions

In this chapter, we advocated the combination of static analysis and model checking tech-
niques to enhance the simulation coverage of high level models of SoC. The methodology
yields a trade-off between exhaustive and costly formal verification and efficient simu-
lation exhibiting a limited coverage. That way, it complements the simulation strategy
presented in Chapter 5 and the formal techniques already existing prior to this work.
As opposed to conventional UML frameworks, both simulation and formal verification
outreach the functional level by considering constraints imposed by hardware architec-
tures
We firstly pointed out how the abstractions inherent to the model together with static
analysis techniques can be leveraged to identify the relevant part of state vectors at given
points in the model. Thanks to iteratively applied analysis stages, unused variables and
constant expressions can be eliminated to speed up state comparison and memory con-
sumption of state dumps.
Thereafter we defined check points as points in the model where different execution
paths are likely to be joined thus permitting to abandon similar simulation runs. Local
Dependence analysis allows for educated guesses on the positions of checkpoints, but
even if some checkpoints are missed, simulation results are correct. The objective is to
trade-off performance sacrificed for state hashing and for unnecessary reevaluation of
control flow branches.
The next chapter positions the different functional blocks that have been discussed so
far within the TTool development environment.

127

Chapter 7

Tooling

7.1 Introduction

So far, contributions of this work have been presented from a methodological perspec-
tive, mainly outlining the basic ideas and the underlying theory. Even if some insights
into implementation issues were provided at the end of each chapter, it is still outstand-
ing to put all these into the context of the toolchain. This chapter’s objective is to close
the circle and to review previously explained contributions in the overall framework
of TTool, from a practical perspective. Section 7.2 elaborates on the internal structure
of the elements of the toolchain, namely TTool and the simulation engine. Section 7.3
covers the transformation stage from the graphical UML model to C++ code. Interactive
simulation features and their importance for debugging are showcased in Section 7.4.
Thereby, special attention is drawn to the interaction between the simulator and TTool,
which were developed in different programming languages.

7.2 Design Flow Revisited

Figure 7.1 depicts the toolchain that implements the contributions of this thesis, the
latter being marked with a thick border. Third party tools are denoted with rectangles
with rounded corners. TTool is based on the widespread model view controller design
pattern. At its topmost level, diagramming facilities permit developers to draw class di-
agrams, activity diagrams and mapping diagrams. As we do not involve any third party
tool at this stage, bugs can be easily corrected without relying on official channels and
diagram animation features can be closely integrated. The Controller layer interprets
modifications on the graphical model so as to construct a more abstract model which
is independent of graphical elements. This abstract model solely reflects the semantics
of DIPLODOCUS and is the starting point for transformation either to formal or to
simulation models. Formal code generation and integration of 3rd party formal tools
(CADP, UPPAAL) were already existing prior to this work [16] and are therefore not
further discussed. This work addresses the generation of C++ code by means of a ded-

128

Abstract Model

UML & TEPE Diagram View

Controller & Server

Code Generator

Static Analyzer

Dynamic

Part

Component

Library&

Kernel

Simulator (C++)

Sim.

Server

TTool (Java)

C++ Compiler

Design Time

Simulation Time

TEPE

Verifier

Formal Code

Generator

CADP/UPPAAL

3
rd
partyInhouseThis work

Legend:

Figure 7.1: TTool toolchain

129

icated module integrated into TTool. This C++ code generator produces one separate
class file per DIPLODOCUS task along with a file which instantiates application and
architecture components. Moreover, it establishes links between the latter according to
the mapping model. As shown in chapter 4, TEPE diagrams have their counterpart as
a C++ class as well. We now reach the boundaries of the TTool application: generated
C++ classes are compiled with the GNU C++ compiler and linked with the static part of
the simulator. As depicted in Figure 7.1, the whole simulator is an achievement of this
thesis. Architecture components for instance do not need to be generated dynamically,
a parameterization is sufficient to conform the C++ model to the UML model. Simu-
lation kernel, simulation server and TEPE verifier are static parts as well. It should be
emphasized that model transformation for simulation is not a one way road: simulation
results are back propagated to the original UML model, so that the user does not have
to be aware of the executable model. This is accomplished at simulation run time, as the
dashed arrows with the small arrowhead suggest. From a functional perspective, the
enhancement of the environment brought the following improvements with respect to
shortcoming of related work summarized in section 3.7:

• The lack of simulation engines exploiting properties of high level models lead us
to an inhouse development of a simulator. It offers an efficient way to simulate
DIPLODOCUS models, thus complementing existing formal verification facilities
of the environment.

• DIPLODOCUS differs from other modeling methodologies in that data dependent
decisions are made explicit by means of indeterministic operators. This property
together with DIPLODOCUS’ ability to abstract but still to account for control
flow alternatives is leveraged for an intermediate application coverage in-between
conventional simulation and exhaustive exploration.

• A rupture in the design flow is prevented which arises when UML models are
verified with obscure logical formulas. The TEPE language seamlessly integrates
the verification stage into a full-UML environment.

• As opposed to state-of the art UML simulators, our engine is not restricted to the
mere functional domain but considers the impact of shared hardware resources.
Performance figures and compliance to functional properties are obtained on the
fly, at simulation time.

• Interactive simulation remedies the shortcoming of other simulators to generate
executable models which are decoupled from their UML counterpart. The DIPLO-
DOCUS environment provides direct feedback of simulation results to the UML
model. UML models may be animated to illustrate simulation progress.

The next section elaborates on the connector between TTool and the simulator, namely
the code generator.

130

7.3 Automated model transformation

To get an idea of how a UML model translates into C++ code, two of the three file
types built by the code generator are exemplified. The first file type is generated once
for a DIPLODOCUS model, and saved to a file named appmodel.cpp. An excerpt of this
file is given in Listing 7.1. The contained code instantiates all components needed for
simulation and adds them to internal lists using methods prefixed with add. First of
all, in lines 4-6 CPUs and their schedulers are created. Even if only two schedulers
(Round Robin and Priority based) have been defined so far, complex configurations can
be achieved with a hierarchical composition of schedulers. The simulator could also
effortlessly be enhanced with other scheduling algorithms. In lines 8-9/11-12, a bus
and a memory are instantiated. CPUs may be connected to several buses and buses
in turn may subsume several independent communication channels (not to confuse
with DIPLODOCUS channels). This complexity is managed by BusMasters, added to
the simulation environment in lines 14-16. Channels are initialized (lines 18-21) with
references to the communication components they are mapped onto. For example, the
newSamples channel is mapped onto the Crossbar and the DDR2 memory. Events (lines
23-25) and requests (lines 27-29) are not mapped onto the communication infrastructure
and are therefore just initialized with zeros and the FIFO size. The same schedulers that
are used with CPUs are suitable for buses. In lines 31-32, a new priority based scheduler
is assigned to a bus called LeonLocalBus. Finally, tasks (lines 34-39) are instantiated
with references to their associated CPUs and all channels, events and requests they are
connected to. In case a tasks runs on a multi core CPU, it receives a reference to every
single core.

Listing 7.1: Main model file appmodel.cpp
1 class CurrentComponents: public SimComponents{

public:
CurrentComponents():SimComponents(498536312){
PrioScheduler* Leon_scheduler = new PrioScheduler("Leon_PrioSched",0);
CPU* Leon0 = new SingleCoreCPU(7, "Leon_0", Leon_scheduler , 1, 1, 1, 5, 20, 2, 10, 10, 4);

6 addCPU(Leon0);
...
Bus* LeonLocalBus_0 = new Bus(5,"LeonLocalBus_0",0, 100, 4, 1,false);
addBus(LeonLocalBus_0);
...

11 Memory* DDR2 = new Memory(3,"DDR2", 1, 4);
addMem(DDR2);
...
BusMaster* Leon0_LeonLocalBus_Master = new BusMaster("Leon0_LeonLocalBus_Master", 0,
1, array(1,(SchedulableCommDevice*)LeonLocalBus_0));

16 Leon0->addBusMaster(Leon0_LeonLocalBus_Master);
...
TMLbrbwChannel* channel__Rec80211p__newSamples = new TMLbrbwChannel (52,
"Rec80211p__newSamples", 4, 2, array(2,FEP0_Crossbar_Master , Deinterleaver0_Crossbar_Master),
array(2, static_cast <Slave*>(DDR2), static_cast <Slave*>(DDR2)), 8, 0, 0);

21 addChannel(channel__Rec80211p__newSamples);
...
TMLEventBChannel* event__Rec80211p__consumeOK1 = new TMLEventBChannel(67,
"Rec80211p__consumeOK1", 0, 0, 0, 0, 0);
addEvent(event__Rec80211p__consumeOK1);

26 ...

131

TMLEventBChannel* reqChannel_Rec80211p__ChannelEstimation = new
TMLEventBChannel(81,"reqChannelRec80211p__ChannelEstimation", 0, 0, 0, 0, 0, true);
addRequest(reqChannel_Rec80211p__ChannelEstimation);
...

31 LeonLocalBus_0 ->setScheduler((WorkloadSource*) new PrioScheduler("LeonLocalBus_PrioSched",
0, array(1, (WorkloadSource*)Leon0_LeonLocalBus_Master), 1));
...
Rec80211p__PacketDispatcher* task__Rec80211p__PacketDispatcher = new
Rec80211p__PacketDispatcher(11,0,"Rec80211p__PacketDispatcher", array(1,CPU00),1

36 ,event__Rec80211p__consumeOK1
,reqChannel_Rec80211p__PacketDispatcher
);
addTask(task__Rec80211p__PacketDispatcher);

}
41 };

For each DIPLODOCUS task a corresponding C++ class is written to a separate file. A
shortened version of such a class file is shown in Listing 7.2. A class file is of course
accompanied by a trivial header file which merely contains the declarations of functions
exemplified in the Listing. As stated before, pointers to all communication primitives
are passed to the task (lines 1-6). In lines 7-8, local task variables are assigned their initial
value. The semantics of DIPLODOCUS operators is captured by separate classes which
are descendants of TMLCommand (compare section 5.6.1). Instances of these classes are
constructed in lines 9-13. Constructors of commands are invoked with a binary coded list
of significant state variables in the form of a string. This information is vital to efficient
state hashing (cf. section 6.5.5). Moreover, function pointers are passed to command
constructors as it will be explained later. Lines 14-15 relate two communicating tasks
with their channel, event or request. Lines 17-20 chain the commands according to the
control flow stipulated in the UML model.
In addition to numeric parameters, constructors of commands receive function pointers.
This is to avoid separate class definitions for every occurrence of a DIPLODOCUS
operators. For example, Action commands perform user defined assignments, Wait or
Send command may transfer values between the FIFO of an event and task variables,
and the complexity of Execi commands (virtual length) may be given in the form of
a complex equation. Furthermore, these operations often require access to local task
variables. To account for this, three types of task member functions have been defined:

• Functions transferring values between parameters and task variables: an example
can be found in lines 24-26, where a task variable datalen is assigned the value of
the first parameter of an event.

• Functions computing the virtual length of DIPLODOCUS operators: in lines 39-40,
the length of an Execi operator is just given by a single variable, called datalen.

• Functions performing the action specified in an Action operator: lines 35-36 show
an example of a variable assignment.

• Functions determining the number of active guards of a Choice operator: the
function in lines 29-32 results from a Choice operator with two guards:
(1) datalen > 0 represented by the first if block and (2) else leading to the second if

132

block. The return value is a randomly chosen candidate of all active guards. If no
guard is applicable, the else guard is taken if existing.

As stated in Chapter 5, readObject and writeObject methods rebuild a simulation com-
ponent from a byte stream or generate a byte stream from a simulation component
respectively. Together with the reset method, they implement the Serializable interface
which permits to save and restore simulation states. The getStateHash method (lines
56-61) adds task variables to the state hash in case they are considered as significant.
Furthermore, all channels, events and requests which will potentially be accessed in the
future are marked as significant (setSignificance method).

Listing 7.2: Task model
Rec80211p__DATA_FEP::Rec80211p__DATA_FEP(ID iID, Priority iPriority
, std::string iName, CPU** iCPUs, unsigned int iNumOfCPUs
, TMLEventChannel* event__Rec80211p__consumeOK4

4 , TMLEventBChannel* request__Rec80211p__startSync2
, TMLEventBChannel* requestChannel
):TMLTask(iID, iPriority , iName, iCPUs, iNumOfCPUs)
,datalen(0)
,arg1__req(0)

9 ,_wait209(209,this,event__Rec80211p__consumeOK4 ,(ParamFuncPointer)
&Rec80211p__DATA_FEP::_wait209_func , "\xf\x0\x0\x0", true)
,_lpChoice208(208, this, (RangeFuncPointer)&Rec80211p__DATA_FEP::_lpChoice208_func , 2, 0, false)
,_execi205(205,this,(LengthFuncPointer)&DIPLODOCUSDesign__DATA_FEP::_execi205_func ,0,1,
"\xf\x0\x0\x0",false)

14 ,_action262(262, this, (ActionFuncPointer)&Rec80211p__DATA_FEP::_action262_func , 0, false){
event__Rec80211p__consumeOK4 ->setBlockedReadTask(this);
event__Rec80211p__sendFEPCmd4 ->setBlockedWriteTask(this);
...
_wait209.setNextCommand(array(1, (TMLCommand*)&_send212));

19 _lpChoice208.setNextCommand(array(2, (TMLCommand*)&_request210 , (TMLCommand*)&_request205));
_action262.setNextCommand(array(1, (TMLCommand*)&_lpChoice208));
_waitOnRequest.setNextCommand(array(1, (TMLCommand*)&_action262));
...

}
24

Parameter <ParamType >* Rec80211p__DATA_FEP::_wait209_func(Parameter <ParamType >* ioParam){
ioParam->getP(&datalen);
return 0;

}
29

unsigned int Rec80211p__DATA_FEP::_lpChoice208_func(ParamType& oMin, ParamType& oMax){
if (datalen >0){...}
if (oMax==0){...}
return getEnabledBranchNo(myrand(1, oC), oMax);

34 }

void Rec80211p__DATA_FEP::_action262_func(){
datalen=1;

}
39

TMLLength DIPLODOCUSDesign__DATA_FEP::_execi205_func(){
return (TMLLength)(datalen);

}

44 std::istream& Rec80211p__DATA_FEP::readObject(std::istream& i_stream_var){
READ_STREAM(i_stream_var , datalen);
TMLTask::readObject(i_stream_var);
return i_stream_var;

}

133

49

std::ostream& Rec80211p__DATA_FEP::writeObject(std::ostream& i_stream_var){...}

void Rec80211p__DATA_FEP::reset(){
TMLTask::reset();

54 datalen=0;
}

HashValueType Rec80211p__DATA_FEP::getStateHash(){
if(_hashInvalidated){

59 _hashInvalidated=false;
...
if ((_liveVarList[0] & 1)!=0) _stateHash.addValue(datalen);
_channels[0]->setSignificance(this, ((_liveVarList[0] & 2)!=0));
...

64 }
}
return _stateHash.getHash();

}

7.4 Interactive Simulation

Figure 7.2: The Interactive Simulation Window

The simulation environment features an interactive exploration of an application mapped
onto a particular architecture. After having developed the static view of the application
in terms of classes, the behavioral view, the architecture and the mapping, the developer

134

first checks the syntax of the models. If the models comply to the DIPLODOCUS meta-
model, the designer proceeds with the automatic generation of a C++ model. Once the
sources have been compiled, the interactive simulation module is launched. All of the
aforementioned stages are accomplished at the push of a button. No expertise in C++
programming, simulation or formal verification is required. The starting point for an
interactive exploration is the window depicted in Figure 7.2. The interface provides the
following simulation commands:

• Different flavors of run commands: a given amount of transactions, commands or
time units can be simulated . . .

• . . . likewise the simulation may be interrupted when a particular hardware element
(CPU, bus, bridge, memory) or an application entity (channel, event, request)
processes a transaction.

• Reset the simulation to the initial state.

• Save and restore the simulation state, especially useful when several branches of
control flow are to be looked into manually.

• Simulation traces may be provided in several formats: the text based format is
a simple listing of all transactions encountered on a hardware component This
format enables the automatic evaluation of traces and the interchange of data with
other applications. The VCD format is supported for the sake of compatibility
with standard waveform viewers. The VCD output basically captures bus states
(read, write, idle), task states (ready, running, blocked, terminated), and CPU
states (executing, idle, sleep mode). For debugging purposes of small designs,
simulation results are displayed in the user friendly form of a Gantt diagram
(depicted in Figure 7.4). Transactions are represented on a time line for each
hardware component and colored according to their task of origin. Figure 7.3
visualizes the result of a coverage enhanced simulation in the form of a reachability
graph.

• Breakpoints can be set graphically on any command within the UML activity di-
agram simply by selecting a dedicated option in the context menu. Two kinds of
breakpoints are supported: conditional and unconditional breakpoints. Uncondi-
tional breakpoints stop the simulation whenever a specific command of an activity
diagram is reached. Conditional breakpoints interrupt the simulation as soon as a
condition (a function of task variables) is met.

• Coverage enhanced exploration is started with a dedicated button.

• Some commands return information on the simulation state and on the state of
application and hardware components. Normally, the user does not explicitly use
these commands as they merely serve as a means to propagate feed-back to the
graphical user interface.

135

• Commands may also be supplied directly in text format, without employing the
graphical interface. Thus, scripts can be written to automate the simulation steps.

TTool encompasses a graphical interface to direct the simulation (shown in Figure 7.2)
and thus unburdens the user from familiarizing with simulation commands. The feed-
back from the simulation engine is exploited by the graphical user interface and is used
to animate UML application diagrams. For instance, the current command of a task is
highlighted so that the user is able to closely follow the simulation progress.
In addition to traces, simulation results comprise performance figures (cf. Figure 7.5)
like the utilization of hardware elements, the contention delay for bus masters, the exe-
cution time of tasks, the average time a task gets blocked due to CPU contention, etc.
As a simple example, let us consider an algorithm having two main branches which
significantly differ in terms of execution time and resource usage in general. For the
performance evaluation of a specific architecture, it would be crucial to try out both
alternatives. As a first step, the designer could benefit from the various conditional run
commands so as to get a more intuitive view of the behavior of the application and
the interaction of hardware components. The next step could be to reset the simulation
and to set a breakpoint on the branch command which is crucial for the continuation
of the simulation. The simulation will stop at the previously defined choice command
therefore allowing the user to specify the branch to be explored. In combination with the
feature of capturing simulation states, complex scenarios can be evaluated and mean-
ingful traces be recorded. In our example, the user would certainly save the simulation
state when reaching the choice command so that it can be restored to study other alter-
native executions. However, if interactivity is not desired, the exploration mode may
automatically examine several executions.

Figure 7.3: Simulation results in the form of a reachability graph

7.5 Frontend-Backend Communication

As illustrated in Figure 7.6, the simulator and the graphical user interface embedded in
TTool are hosted in different processes communicating via a TCP connection. Therefore,
the simulator and the graphical user interface can be run on different machines to
increase performance. To get a better understanding of this interaction, let us now

136

Figure 7.4: Simulation results in Gantt diagram format

Figure 7.5: Tabulated benchmarks obtained from simulation

UML App. and

Architecture model

TTool client

User input

TCP socket TCP socket

Frontend C++ Simulator

Simulator Thread

Server Thread

async.

cmds

Return

value

FIFO for

sync. cmds

Reply in XML

format

Animated model

Reply Request

Modifications Model data

Comprises code dynamically generated

from the graphical model and static codeAutomatic model

transformation

Request in

text format

Scripting

Figure 7.6: Interaction of the Frontend and the Simulator within the TTool Framework

137

follow a user request which aims at setting a breakpoint. The user selects the option
by clicking on the respective command within the UML activity diagram. In turn, the
logic of the graphical user interface identifies the concerned command and signals a
modification to the TTool client. The latter may perform additional checks and wraps
information about the command (its ID, . . .) and the request into a message in text
format. The message is sent over the network and received by the server thread of the
simulator. The latter distinguishes so called synchronous and asynchronous requests.
Asynchronous requests may be issued at any time and normally request information
about the simulation without altering the simulation state. Asynchronous requests
are handled in the scope of the server thread. Synchronous requests however directly
impact the simulation state and must therefore be processed in order. Our breakpoint
request is considered as such. Synchronous commands are carried out by the simulator
thread which reads the FIFO entries one after another. In case of the breakpoint request,
the simulator updates internal data structures accordingly and notifies the successful
breakpoint insertion to the server. The server in turn encapsulates the reply into an XML
message and sends it over the network. The TTool client subsequently interprets the
message and informs the graphical user interface. The latter provides a feedback to the
user indicating that the breakpoint has been set successfully.

7.6 Conclusions

This Chapter reviewed the contributions of this thesis from the implementation point
of view. Emphasis was put on the practical part of this work, which aimed at prov-
ing the feasibility of aforementioned theoretical aspects. The initial configuration of
the toolchain, prior to this work, included the graphical front end and transformation
facilities to formal languages. The latter have been complemented with an efficient
simulation framework, incorporating the contributions outlined in previous chapters:
support of TEPE, an optimized simulation strategy for high level models and a variable
coverage of models. Even after compilation of the executable model, the semantic link
to the original model is not lost. Simulation progress is directly visualized within UML
application diagrams and performance figures within architecture diagrams. Thus, the
designer is given a powerful toolbox which is especially suited for performing early
System Level Design Space Exploration. It may considerably alleviate the burden of ex-
perimenting with several different architectures so as to obtain performance key figures
and to check compliance to functional properties. The following chapter will confront
the tool with a realistic case study to prove its practical applicability.

138

Chapter 8

Evaluation

8.1 Introduction

So far, we have proposed the property specification language TEPE, a simulation frame-
work for high level models of Systems-On-Chip, a methodology to enhance the cover-
age of latter and finally a tool suite that implements the whole design flow. Our efforts
were motivated by shortcomings of existing environments (identified in chapter 3) with
respect to abstraction level, simulation speed, representation of control flow and inde-
terminism. While evidence for the applicability of several concepts has been provided
throughout this thesis, this chapter emphasizes on a more comprehensive example. It
stems from the telecommunication domain and highlights the model of a receiver for
the 802.11p standard, its properties as well as its simulation and verification. More
precisely, the objective of this chapter is to

• exemplify the DIPLODOCUS modeling concept and its outcomes with a concrete
existing system

• demonstrate that TEPE is capable to express relevant properties of SoC

• illustrate how outcomes of simulation can be used

• provide evidence for the usefulness of coverage enhanced simulation

• illustrate the interplay of different tool components.

However, confronting simulation results with performance measurements on the real
hardware is out of scope of this work. With respect to non-functional properties, the
comparison published in [55] make us confident that the DIPLODOCUS methodology
yields insightful performance figures. The designer is indeed assisted in his effort to
spot an implementation complying to the given (non-) functional constraints. Concern-
ing functional properties, a refinement of DIPLODOCUS models preserving the latter is
currently investigated in the scope of an ongoing dissertation [84].
This chapter is structured as follows: section 8.2 surveys the application domain and

139

the system to be modeled and defines related notions. Section 8.2.2 covers DIPLO-
DOCUS models of application and architecture which will be leveraged to determine
performance figures and compliance to properties in section 8.3. The latter section also
analyzes the performance of the simulator, both in simulation and exploration (coverage
enhanced) mode. Section 8.4 finally concludes this chapter.

8.2 Case study: An 802.11p receiver

Wireless communication systems have witnessed a rapid evolution over the past decades.
The latest products support different radio spectra, protocols and access technologies
and add new features while merging existing applications in only one device. This
evolution triggers the need for flexible hardware platforms that are capable to deal with
a broad variety of standards while optimizing silicon area and power consumption.
This is where the concept of Software Defined Radio (SDR) [83] comes into play. Its
aim is to configure the behavior of radio devices through programming, rather than
directly modifying a dedicated circuit. The advent of SDR bears resemblance with the
evolution of calculators that culminated in the invention of programmable computers,
whose instructions are not hard wired but stored in a memory. The strengths of SDR are
for example the effective use of the spectrum, seamless mobility, maintenance cost re-
duction in networks and a faster deployment of new or modified standards. A challenge
to be met is that radio systems fall into the category of real-time embedded systems and
often need to be portable. Therefore time constraints, power consumption and silicon
area are just as crucial as the functional correctness of the final product.
In [86], a joint ongoing research project of Eurecom and Telecom ParisTech is presented.
The paper advocates the so called ExpressMIMO-Card (EC) which adheres to the SDR
paradigm. EC incorporates generic signal processing blocks to be dynamically config-
ured for standards such as 2G, 3G, 4G/LTE and members of the 802.11 protocol family
(W-Lans). The standard modeled in this case study (802.11p) is destined for wireless
communication in vehicular environments. Its purpose is to permit data exchange be-
tween two vehicles and between vehicles and the roadside infrastructure for applications
such as toll collection, safety services, and commerce transactions.

8.2.1 The Eurecom ExpressMIMO-Card

The architecture of the ExpressMIMO-Card (EC) depicted in Figure 8.1 hosts the digital
part of the physical layer (PHY). The provided functionality belongs to the realm of
baseband processing, which is accomplished directly after analog to digital conversion
(called Radio Front-end in Figure 8.1). Obviously, the architecture is structured in two
parts: a module, named Processing or DSP Engine, implementing independent signal
processing blocks as well as a control module orchestrating their interplay.
The Processing engine embraces a set of IP blocks dedicated to a particular type of signal
processing. A crossbar permits the blocks to communicate independently of each other.

140

Baseband FPGA

Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g

e
A

H
B

/C
u

st
o

mC
u

sto
m

/V
C

I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Control and MAC interface FPGA

AHB

Figure 8.1: Baseband processing architectural overview

That way, the level of concurrency is only limited by the number of distinct destination
blocks; the crossbar itself is non-blocking. To satisfy the SDR principle, blocks are highly
configurable. Each block comprises a local memory, a data processing unit (IP core) and
a DMA engine to import or export data from/to other blocks.
The Pre-processor serves as an interface to A/D and D/A converters and is responsible for
sample rate conversion [111], sample rate adjustment and carrier frequency adjustment
amongst others. Mapper and Detector modules are not relevant for the case study and
are therefore not further discussed. The Deinterleaver is in charge of restablishing the
original order of data samples that have been scrambled by the sender. The Front-end-
Processor (FEP) is the basic toolbox for signal processing operations such as channel
estimation, energy detection, and fourier transforms. The Channel Decoder attempts to
recover the originally sent bit sequence even in the presence of transmission errors due
to the wireless channel. It implements decoding standards for convolutional and turbo
codes.
The control module is equipped with a SPARC CPU, peripherals, external memories
and interfaces to a host PC. Its main responsibility is to program and configure IP blocks
of the DSP engine and to initiate data transfers on DMAs. The synchronization between
the control module and the DSP engine is accomplished by a set of interrupts signaling
the end of data transfers and processing. Processing linked to layers above the physical
one (such as MAC) may be executed on the PC. However, in the case study the board is
considered to function in stand alone mode, making the interface irrelevant.

8.2.2 DIPLODOCUS model

This section elaborates on the DIPLODOCUS model of the decoder described previ-
ously. Its structure reflects the stages of the DIPLODOCUS methodology: identifying

141

IP/Module Functionality Task Data Transfer Task

Pre-processor PacketGenerator
PacketDispatcher

Front-end Processor FEP_Func DMA_FEP_Func
Channel Decoder ChDec_Func DMA_ChDec_Func

Deinterleaver Deint_Func DMA_Deint_Func

Control module

Synchronization
ChannelEstimation

SignalFieldDetection
DATA_FEP

DATA_Deint
DATA_ChDec

Table 8.1: Mapping of IPs onto DIPLODOCUS tasks

functional entities by establishing a clear separation between functionality and plat-
form, expressing communication between tasks in terms of DIPLODOCUS primitives,
associating a behavior to each task and finally modeling the architecture and mapping
application tasks onto it.

8.2.2.1 Identification of functional entities

STS LTS SIGNAL DATA_1 DATA_N...

16us

160 samples 160 samples

16us 8us 8us8us

80 samples 80 samples80 samples

Figure 8.2: 802.11p packet

The first stage consists in consulting the specification and drawing clear boundaries
between pieces of information concerning the application and the architecture. For
instance, the notion of ”IP“ refers to both a behavior and an underlying execution
hardware. To get a first intuition on the behavior IPs may exhibit, we consider the
structure of an 802.11p packet shown in Figure 8.2. It is composed of a fixed size part
and a variable size payload part. The former can be subdivided into a

• Short Training Symbol (STS), containing 10 repetitions of a known sequence to
detect the beginning of a packet

• Long Training Symbol (LTS), containing guard intervals and two repetitions of the
same known sequence for calculating a channel estimate

142

Figure 8.3: Excerpt from the DIPLODOCUS application model of the 802.11p receiver

• SIGNAL, containing meta-data that specifies the length and the decoding scheme
of the subsequent DATA field.

The DATA field may contain between 1 and 1366 DATA symbols a 80 samples and
constitutes the actual payload to be transmitted.
It is out of scope of this work to discuss the modeled processing steps and their math-
ematical background in detail. However, sufficiently many details1 are provided to
convince the reader that the receiver has been adequately represented.
In DIPLODOCUS, the first challenge to be met is to abstract data, as the methodology
does not allow for real data samples to be manipulated. As stated in chapter 2, this
restriction comes with the advantage of limiting the state space. In turn, this makes
models amenable to exhaustive simulation (cf. chapter 6) and formal methods. In
signal processing applications, the complexity of filter and transformation routines is
usually not data dependent. However, for our receiver, the workload imposed on the
architecture strongly depends on

1. the length n of the payload of each packet (named DATA_x in Figure 8.2, x = 1 . . . n),

2. the inter packet arrival time, and

3. the respective modulation used to transmit the payload (such as BPSK, QPSK and
QAM).

1so just lagom many

143

A common practice in DIPLODOCUS is to externalize data dependent decisions in a
dedicated task, a so called test bench. Random variables representing the decisions
are passed to all tasks in the processing chain that would be data dependent on lower
abstraction levels. That way, a consistent behavior according to a specific class of input
data is assured across several DIPLODOCUS tasks.
Table 8.1 establishes the correspondence between the previously presented IPs and
DIPLODOCUS tasks. As DIPLODOCUS tasks are purely functional entities, this step
implies a separation of the IP’s architecture from its functionality. We will first discuss
the model from a functional perspective, architecture issues are deferred to the next
section. Table 8.1 discriminates two categories of tasks, namely Functionality and Data
Transfer Tasks. Functionality Tasks model the signal processing operations on the
respective IP, whereas Data Transfer Tasks account for the behavior of the local DMA
of the corresponding IP. The tasks executed on the LEON processor are henceforth
referred to as control tasks. They are not supposed to perform extensive computations
or data transfers. Instead, they delegate the work to a task running on a hardware
accelerator of the DSP module, hence a task suffixed with ”_Func“. This is achieved with
DIPLODOCUS synchronization mechanisms, events and requests. In the following,
whenever it is stated that a control task reads/writes data, it is implicitly assumed that
this task relies on the service of a Data Transfer Task.
At the end of this design stage, our UML component diagram (or an equivalent class
diagram) has been populated with tasks deduced from the specification.

8.2.2.2 Abstracting communication

After the functional analysis, emphasis is now placed on the the communication behavior
of the previously identified tasks. The designer is faced with the question which of the
available communication primitives best captures the data dependencies and the impact
of data transfers on performance. As a rule of thumb, events transfer control information
but no data and the opposite case (conveying data but no control) is handled by non
blocking write/non blocking read (nbrnbw) channels. The other channel types are in
between these extreme cases. In the model, we opted for a proper separation of control
and data flow. We relied solely on nbrnbw channels and operations on these channels
are synchronized by means of events. Moreover, abstract data samples need to be
accompanied by meta data as described previously. In DIPLODOCUS, this scenario
has to be captured by a combination of a channel and an event anyway. Recall that
abstract channels do not convey values at all. A detailed discussion of communication
links needed in the model would not bring new methodological insights and is therefore
omitted.
Hence, after having accomplished this stage, the component diagram has been enriched
with communication links between tasks.

144

8.2.2.3 Behavioral description

The next steps towards an executable model is to detail the behavior of each task by
means of a UML activity diagram. The global system behavior defined in the specifi-
cation must therefore be broken down into suitable local behavior descriptions for each
task.

The model includes a test bench task called PacketGenerator which compensates the lack
of real data samples. This task generates random variables for data length, inter packet
arrival time and modulation and forwards them to the PacketDispatcher. Moreover, the
PacketGenerator regularly sends events to the PacketDispatcher signaling the arrival of
new data samples from the antenna. PacketDispatcher, as its name suggests, notifies the
availability of data samples to the respective tasks of the control module. That way it
captures the relevant behavior of the Preprocessing IP on the real system, which regu-
larly sends interrupts to the control module.

Figure 8.3 gives an overview of the heart of the model, namely the control tasks direct-
ing the decoding of a portion of the 802.11p packet (cf. Figure 8.2). All depicted tasks
are supposed to run on the control module, hence the Leon processor. As mentioned
earlier, these tasks merely configure Functionality Tasks (suffix ”_Func“) mapped onto
the dedicated IP block of the DSP module (like FEP, Channel Decoder, Interleaver) and
initiate data transfers.
The Synchronization task evaluates the STS field of a packet. Its main purpose is to
distinguish noise from incoming data, and to detect the beginning of a new packet. The
synchronization to the input stream is achieved by energy detection and correlation of
the input samples with a known reference. Requests for DSP operations are sent to the
FEP_Func task
The ChannelEstimation task exclusively considers the LTS field of the packet. Its goal is to
correct the amplitude distortion caused by the transmission channel, by comparing the
spectrum of a known signal to the one of the received samples. The two aforementioned
tasks rely solely on the FEP IP represented by the FEP_Func task.
Subsequently, task SignalFieldDetection leverages the SIGNAL field of the packet to carry
out a phase correction, by applying the already identified correction factor for the am-
plitude. In a real system, meta-data such as the length of the data payload and the
modulation scheme is extracted from the signal field. In our model, we randomly deter-
mined the two values in the PacketGenerator task, as stated initially. SignalFieldDetection
accounts for the cost of decoding the meta-data by sending appropriate requests to
FEP_Func, ChDec_Func, Deint_Func.
The decoding of the payload (“DATA” symbols in Figure 8.2) is decomposed into three
stages, each of which exclusively uses one resource out of the three IPs Front-end Proces-
sor, Deinterleaver, Channel Decoder. The stages are represented by a dedicated control
task prefixed with “DATA” and may be pipelined for consecutive DATA symbols. As
a consequence of their resource usage, DATA_FEP only communicates with FEP_Func,

145

DATA_Deint with Deint_Func and DATA_ChDec with ChDec_Func.
DATA_FEP initiates phase and amplitude correction of data symbols and stores results
in a global memory to make them accessible to the DATA_Deint task. The latter sends
requests to the Deint_Func task according to the modulation algorithm, issues the pro-
cessing and again copies results to a global memory. Last but not least, the DATA_ChDec
task copies data to be decoded to the internal memory of the Channel Decoder IP, ini-
tiates the decoding procedure by sending a request to ChDec_Func, and reads back the
results.

The next section reveals how the architecture of the ExpressMIMO-Card (compare Figure
8.1) translates into a DIPLODOCUS architecture and mapping model, the last step in
the methodology.

8.2.2.4 Architecture

Figure 8.4: DIPLODOCUS Architecture of the 802.11p receiver

In Figure 8.4 it can be seen that the IPs of the DSP module share the same generic
structure. They are represented with two CPUs, one accounting for the processing
engine itself and another CPU running the DMA functionality, an internal memory and
an internal bus interconnecting the aforementioned components. Two global memories,
named DDR2 and VCIRam are accessible to all IPs and are used to store intermediate
results. The control module consists of the Leon processor onto which the tasks depicted
in Figure 8.3 are mapped, as well as a local memory. All IPs communicate by means of a
crossbar, which was simply modeled by interconnecting local buses with each other via
an intermediate bridge. For the sake of clarity, the mapping of channels onto memories
and buses has been omitted.

146

8.2.2.5 Discussion

The model of the decoder can be considered as a representative of a whole family
of signal processing applications. The pattern was basically characterized by three
elements: (1) a control task delegating workload to specialized tasks, (2) the latter being
chained consecutively with events and requests and (3) meta data that is generated in a
dedicated task with non-deterministic operators and subsequently propagated among
the processing tasks. We are confident that this pattern can be reused for future case
studies in the signal processing field. The model also suggests that even in traditionally
data flow dominated domains control flow is getting more and more involved. That
makes an even broader range of domains amenable to an analysis with methodologies
like DIPLODOCUS.

8.3 Experimental results

This section highlights the achievements of this work and explains how they are used in
practice. The developed simulator now supports sophisticated architectures including
multiple CPUs, (multi channel) buses and bridges, which was not the case for the
former one. Simulation outcomes in the form of waveforms are exemplified in section
8.5. Prior to this work, system properties could only be specified informally in the form
of Requirement Diagrams. The expressiveness and ease of use of TEPE is illustrated
in section 8.3.1.4 with common system properties. Coverage enhanced simulation,
another contribution of this work, is successfully applied in section 8.3.2 to partially
cover different valuation of non-deterministic operators in the model.

8.3.1 Functional properties

8.3.1.1 Simulation

The waveform depicted in Figure 8.5 illustrates the activity of components when treating
two 64 QAM (rate 3

4) packets comprising 5 data symbols. Note that the time line has
been cut off for space reasons as it is not relevant for the following qualitative analysis.
The time line normally provides first insights into the timing and duration of actions. A
waveform also allows developers more familiar with hardware description languages
to spot easily unexpected behaviors and to correct the model accordingly.
The first row shows the arrival of new data samples from the Preprocessor, each edge
stands for 160 samples. The subsequent six rows depict activity periods of tasks running
on the control module: ChannelEstimation, DATA_ChDec, DATA_Deint, DATA_FEP, Sig-
nalFieldDetection, Synchronization tasks. Finally, the last three rows correspond to tasks
mapped onto the processing IPs, namely ChDec_Func, Deint_Func and FEP_Func. It is
assumed that both packets are preceded by 100 non significant noise samples. As the
initial FFT operates on 256 samples, the procedure can start as soon as two times 160
samples are received from the Preprocessor task. The first two peeks of the FEP_Func

147

(a) First packet . . .

(b) . . . second packet

Figure 8.5: Simulation result for two 64QAM (rate 3
4) packets

waveform denote the energy detection and correlation procedure. Thereafter, the small
peaks in the waveform of FEP_Func, FEP_Func and ChDec_Func indicate the analysis of
the SIGNAL field. The five data symbols are decoded once the corresponding modula-
tion scheme is known. The figure shows five contiguous peaks for the DATA_ChDec and
DATA_Deint tasks, whereas the five activity periods of the DATA_FEP are interrupted
due to necessary data transfers and other operations. Note that that consecutive data
symbols are handled in a pipelined fashion by the three processing tasks. The processing
stages may thus overlap to reduce the execution time. After the last data symbol has
been processed, the system enters once again the energy detection and correlation mode
in order to wait for the arrival of the next packet. Throughout the figure, it is obvious
that each activity of a task running on an IP is preceded by an activation period of a
control task launching the former.

8.3.1.2 Design Space Exploration

To convince the reader that the simulator is a useful tool for Design Space Exploration,
several modifications of the original architecture have been examined. In the following,
we consider the decoding procedure of a 64 QAM (rate 3

4) packet comprising 100 data
symbols. At first, the crossbar, represented by a bridge in Figure 8.4, has been replaced
with a simple bus. The average contention delay denotes the average time experienced
by masters waiting for the arbitration of an interconnect device. The modification of the
architecture did not have a notable impact on the average contention delay experienced.
This is easily explained with the fact that data transfers are sequential for this communi-
cation standard to a large extent. This would surely be different when running several

148

communication standards in parallel.

Furthermore, we ran the model with various global clock rates (the same for all com-
ponents) between 1 and 150 MHz. Our objective was to find the smallest frequency
that does not violate the assumption that a packet is completed before the arrival of the
subsequent one. Therefore, we assumed a minimal inter packet spacing of 10 us. We
obtained a frequency of 136 MHz, which may guide the developers in their attempt to
fix the global frequency of the system.

To illustrate the significance of the parametrization of hardware components, we com-
pared the load of an ideal processor (disabled penalties) for the control module to a
processor with enabled penalties. A task switching time of 10 cycles, a branch predic-
tion failure rate of 10%, and wake up delay from power saving mode of 10 cycles lead
to an increase in load of 16% (from 7% to 23%).

One benefit of the methodology is to quickly change the allocation of processing ele-
ments to tasks, called mapping. This is simply accomplished in a drag and drop fashion.
However, for a lack of calibration data, we were not able to experiment with different
mappings. As defined in 2.5, calibration adjusts generic hardware models to the par-
ticularities of a real device. If the complexity of an FFT or correlation operation on the
Leon processor were known, processing tasks could be mapped onto the latter. In so
doing, software and hardware implementations could be traded-off against each other.

8.3.1.3 Discussion

The former simulator merely supported single processor systems comprising one bus
and one memory element. Thanks to the extension of simulation semantics, much
more sophisticated architectures may be simulated (see Figure 8.2.2.4) with a better
performance. The simulator supports the DIPLODOCUS Design Space Exploration
paradigm.
For previous studies, simulation was carried out at 20.25 cycles

trans · 0.782Mtrans
sec = 15.83Mcycles

sec ,
while performance figures turned out to be very close to results obtained with time
annotated functional models (roughly 5-10% deviation).

8.3.1.4 TEPE diagrams

This section discusses relevant properties of the receiver that were defined in close
collaboration with a domain expert. Figure 8.6 depicts the TEPE properties to be verified
on the model of the 802.11p receiver. We assume a table relating DIPLODOCUS and
TEPE entities (cf. section 4.5.2) to be given. Informally, the diagrams express the
following conditions to be met:

• Prop1: The deadline of packet processing is the arrival of a new packet, that means
that there is always at most one packet being processed in the system. A Sequence

149

(a) Prop1 (b) Prop2

(c) Prop3, Prop4 (d) Prop5

Figure 8.6: TEPE properties to be verified

150

Constraint is configured such that two consecutive occurrences of the packetArrival
signals sent by the Synchronization task without an intermediate packetCompleted
signal sent by the last task in the processing chain (DATA_ChDec) are considered
as a failure case.

• Prop2: The latency of packet processing, defined as the time between detection
of the packet by the Synchronization task (packetArrival signal) and the activation
of the ChannelEstimation task (procStarted signal) is bounded by tl. The property is
easily expressed with the TEPE time constraint.

• Prop3: The modulation type the SignaFieldDetection task has identified and the
demodulation algorithm chosen by the DATA_Deint task should agree. To this end,
three Sequence constraints monitor the signals that announce the arrival of packets
whose payload is modulated with BPSK, QPSK and QAM respectively. Depending
on the arrival signal, only one of the three signals denoting the execution of the
DATA_Deint task does not indicate a failure and is required. The other two are
combined with an Alias Constraint to a compound signal that reveals a failure case.
The output of the Alias constraint is thus connected to the negated signal input of
a Sequence constraint. The semantics of the Sequence constraint also implies that
an arrival signal is eventually followed by a procStarted signal.

• Prop4: If the first processing task (ChannelEstimation) is started, then all following
tasks (SignalFieldDetection, DATA_FEP, DATA_Deint, DATA_ChDec) are executed as
well. This example demonstrates the series connection of n Sequence Constraints
behaves like a Sequence Constraint with n + 1 inputs. This is made possible by
the output signal of a Sequence Constraint, which is notified upon a correctly
observed sequence of the two input signals. The property output of each Sequence
Constraints have to be logically combined with an AND to derive the final result.

• Prop5: This constraint is less relevant for the final system but important to the
DIPLODOCUS model. As stated previously, the latter comprises tasks for packet
generation (PacketGenerator) and distribution (PacketDispatcher). PacketGenerator
periodically informs PacketDispatcher about the arrival of new data samples. The
intention of this property is to guarantee that sufficiently many data samples are
produced to process a given number of packets. Otherwise the model could get
stuck just in the middle of a packet. A processing task (ChannelEstimation, Sig-
nalFieldDetection, DATA_FEP) attempting to read data from the wireless channel
should eventually be granted new samples. The lowermost Sequence constraint
limits the scope of the upper one to the period bounded by a packetArrival signal,
sent by the PacketDispatcher and the packetCompleted signal, sent by the last task
in the chain (DATA_FEP) that reads data samples. The upper Sequence operator
now makes sure that any requestData signal, stemming from ChannelEstimation,
SignalFieldDetection or DATA_FEP is concluded by a deliverData signal of the Pack-
etDispatcher.

151

8.3.1.5 Discussion

The provided examples cover some general types of constraints that are frequently en-
countered when verifying high level models of SoC. The first two properties (Prop1
and Prop2) refer to a deadline or latency to be respected. This is important to systems
subject to real time system constraints. However, when modeling the latter with DI-
PLODOCUS, one has to bear in mind that abstraction entails an inaccuracy of results.
Prop3 illustrates the common case in which the occurrence of a signal must eventually
be concluded by the concurrence of another one. This is the liveness part of the prop-
erty. In addition to that, some other signals are considered as indicators of a failure
case, which makes up the safety part of the property. Prop4 falls into the category of
properties where signals must be received in a specific order, which may be relevant for
the scheduling of data dependent actions. Finally, Prop5 realizes the nesting of intervals.
This is especially interesting if systems may function in different modes, that determine
the scope or relevance of properties.

8.3.2 Non-functional properties and coverage enhanced simulation

This section puts emphasis on the benefits of coverage enhanced simulation. Thanks to
the aforementioned features, the inherent indeterminism of the application model can
be exploited at the push of a button. Simulation results are presented in a form which
is easily accessible to developers of the signal processing community. This provides
evidence for the versatility of the DIPLODOCUS approach. Outcomes of simulation
are not limited to summary tables with performance figures and reachability graphs (cf.
section 7.4), being definitely ill-suited for visualization in this case.
As stated initially, the ExpressMIMO-Card will finally accommodate several telecommu-
nication standards which may also operate in parallel. With the hardware architecture
already dimensioned, the platform is currently simulated with different standards alone.
Performance measures can then be leveraged to spot a suitable scheduling strategy in
case several standard share the hardware resources. This study aims to give insights
into the resource consumption of the 802.11p standard.
Figure 8.7 has been established with results directly obtained from the simulator, that
were plotted in Matlab. In the figure, the utilization of components is plotted against the
number of data samples per packet for each modulation standard in the same diagram.
Three distinct diagrams visualize the utilization of FEP, Deinterleaver and Channel De-
coder respectively. The common ground of all curves is that departing from an initial
utilization where only one data symbol is sent, they eventually reach a steady state. The
initial utilization is largely determined by the computational power required to detect
the start of a new packet. That is why it does not differ much between different standards
for one processing IP. When moving towards large packet sizes, the impact of packet
detection decays while data processing starts to predominate resource utilization.
For Channel Decoder and Deinterleaver, processing gets more demanding from BPSK
(rate 1

2) to 64 QAM (rate 3
4), with modulation schemes being ordered in the same way

152

0
20

40
60

80
10

0
12

0
14

0
0.

1

0.
150.

2

0.
250.

3

0.
35

U
til

iz
at

io
n

F
E

P

N
b

of
 D

at
a

sy
m

bo
ls

Utilization in % of sim. time

0
20

40
60

80
10

0
12

0
14

0
0

0.
1

0.
2

0.
3

0.
4

U
til

iz
at

io
n

D
ei

nt
er

le
av

er

N
b

of
 D

at
a

sy
m

bo
ls

Utilization in % of sim. time

0
20

40
60

80
10

0
12

0
14

0
0

0.
050.

1

0.
150.

2

N
b

of
 D

at
a

sy
m

bo
ls

Utilization in % of sim. time

U
til

iz
at

io
n

C
ha

nn
el

 D
ec

od
er

B
P

S
K

1 2
B

P
S
K

3 4
Q

P
S
K

1 2
Q

P
S
K

3 4
16

Q
A

M
1 2

16
Q

A
M

3 4
64

Q
A

M
2 3

64
Q

A
M

3 4

Fi
gu

re
8.

7:
U

ti
liz

at
io

n
of

H
ar

dw
ar

e
C

om
po

ne
nt

s

153

as in the legend of Figure 8.7. In both cases, large packets are more demanding than
smaller ones. This is different for the FEP IP. As it is heavily involved in packet detection,
decoding BPSK and QPSK (lower curve) symbols is far less costly and 16 QAM (graph in
the middle) a bit less costly than the initial procedure, the corresponding graphs decay.
However, the graph for 64 QAM exhibits the same qualitative trend as the graphs for
the other IPs. The slight ripple of all curves can be explained with the periodic arrival
of data samples. Resource utilization locally decreases when the receiver has to wait
for one interrupt more in order to gather the data. With tw denoting the waiting time
for new data and tp the overall additional processing time, simulation time increases by
tw + tp whereas the utilization time of an IP increases by at most tp, hence less than tw + tp.
In the same way, we could have analyzed the idle time of components so as to figure
out laxity permitting to execute other standards.

8.3.2.1 Discussion

The previous study was made possible by the following features that are an achievement
of this thesis:

• extending the coverage of verification while preventing a conversion to formal
models. As stated in section 6.1, representing sophisticated mapping models is
cumbersome in formal language. We experienced that models are rejected by
UPPAAL and CADP model checkers and that the acceptable processing time or
memory is exceeded.

• selecting the non-determinism of the application model to be exploited without
having to recompile the model. Prior to this work, UML models had to be modified
and formal models to be regenerated in in order to vary the coverage.

• using a step width for valuations of random commands to be explored to prevent
state explosion. Especially for random commands spanning a huge range of values,
the new method makes it easy to cover only a subset of them.

• offering a convenient automatization of the design flow if non-determisism is
spread over several tasks. When compared to a manual exploration of different
executions, the new method prevents one from searching for an indeterministic
command in the model, modifying the model to chose one valuation, recompiling
and relaunching the simulation.

Coverage enhanced simulation was carried out at 14.54 cycles
trans · 0.272Mtrans

sec = 3.95Mcycles
sec ,

which includes the performance impact of state hashing.

154

8.4 Conclusions

In the case study, we have applied the contributions introduced in previous chapters
such as the formulation of properties in TEPE, the conventional simulation of DIPLO-
DOCUS models and the coverage enhanced simulation to a realistic problem. To this
end, we relied on the tool chain whose simulation features were developed in the scope
of this thesis. The section drew upon the example of an 802.11p receiver which is cur-
rently deployed on Eurecom’s ExpressMIMO-Card. The latter implements the Software
Defined Radio paradigm. In the introduction, we made the reader aware of the intricacy
of the task of hosting several wireless standards on the same platform, sharing the same
resources. Therefore, the need arose to build a high level model to study the resource uti-
lization of the 802.11p receiver. It was demonstrated that coverage enhanced simulation
alleviated this task considerably while preventing state explosion. With the valuable
assistance of a domain expert, it took us merely two weeks to familiarize with the prob-
lem domain and to conceive the model. This time, the hardware platform had already
been specified, making experiments with different architectures obsolete. Instead, it
was demonstrated that outcomes may guide the designer in his effort to spot a suit-
able scheduling involving more than one communication standard. Moreover, TEPE
was very capable when it came to expressing functional properties being intuitively
understandable by less experienced designers.

155

Chapter 9

Conclusions

In the introduction, we identified the need for modeling environments that capture
embedded systems and Systems-on chip at a high level of abstractions. That way,
the designer may obtain first insights into the behavior of the system under design
even if low level models are not available or too costly to build. Similarly, it could
be of interest to abstract detailed models in order to speed up simulation or to extend
its scope (for instance from module to system wide). Abstractions are essential for
Design Space Exploration, where a large number of implementation alternatives are to
be investigated. In chapter 3, we examined some representative samples of the huge
body of related work. The categorization of work revealed the fundamental difference of
static and dynamic models, the latter necessitating an implicit or explicit representation
of system states. DIPLODOCUS diagrams model behavior in a state based fashion and
thus (in general) necessitate a traversal of the state space to be verified. This thesis
is devoted to the execution and verification of high level models exhibiting a similar
semantics to DIPLODOCUS. Section 9.1 reviews the contributions of this thesis. In
section 9.2 we revisit shortcomings of related work identified in section 3.7 and our
initial claims. We summarize the benefits of DIPLODOCUS in general and this work
in particular and relate them to examples provided throughout this thesis. Section 9.3
surveys further research that could complement the presented solutions.

9.1 Resume of Contributions

TEPE
We have proposed the verification language TEPE, which aims to bring together design
and verification at the same level of abstraction. Emphasis is placed on relations of
properties and signals in the TEPE terminology, or in other terms states and events. The
language may be conveniently used in conjunction with UML/SysML and other models
of computation (MoC) originating from labeled transition systems. TEPE merely pre-
supposes the existence of primitives similar to signals and events. It allows both design
and verification to be seamlessly accomplished in the same environment. Our language

156

enriches conventional design methodologies with a different formalism preventing that
errors in reasoning propagate from design to verification stage. Traditionally, verifica-
tion of high level models is still conducted in temporal logic, an error prone undertaking
even for experienced designers. TEPE attempts to make formal verification more in-
tuitive while being formally defined in terms of fluent logic (FLTL). Constraints may
emulate non-observable states and signals of a system. In this thesis, we have success-
fully applied TEPE to two UML profiles, AVATAR and DIPLODOCUS. Moreover, we
demonstrated how informally defined requirements translate into TEPE. Thereby, the
model of a microwave oven and an 802.11p decoder served as an example. We further
elaborated on a possible implementation of a TEPE verifier which could be operated on
the fly during simulation or off-line on traces.

High Level Simulator
A simulation framework was conceived that is especially suited for high level mod-
els featuring data abstraction and symbolic instructions, like DIPLODOCUS. It was
argued that SystemC concurrency and synchronization primitives exhibit a sophisti-
cated semantics which is applicable to a broad variety of applications at different levels
of abstraction. DIPLODOCUS semantics is however far less involved, restricting for
instance communication to multi-point to point and preventing zero delay feed-back
loops. Thus, we realized a gain with a simplified simulation semantics, thus renouncing
the genericity of SystemC and tailoring discrete event simulation to the needs of high
level models. To this end, the simulation strategy avoids an explicit event queue and
limits the number of active components to the number of CPUs. Only active components
may propose transactions spanning possibly many clock cycles. Transactions are subject
to a lightweight postponing and truncating policy, thus circumventing time consuming
operations on an event queue.
The last part of chapter 5 elaborated on implementation issues and compared the per-
formance of the new simulator to the former one existing prior to this work. It turned
out that performance in terms of cycles per second is composed of a model and imple-
mentation dependent part. An achievement of this work is that a coarse granularity
of the application positively impacts the performance. Even in the worst case when
the average transaction length amounts to one, we experienced a gain of factor 10 with
respect to the SystemC based simulator.

Coverage enhanced simulation
The simulation methodology was extended to cover several control flow branches of the
application. In environments relying exclusively on simulation, spotting suitable test
vectors that provide an acceptable coverage of the model is difficult. DIPLODOCUS has
the nice property of making data dependent decisions explicit with non-deterministic
operators. Prior to this work, formal verification already leveraged these operators to
explore all possible executions. However, the translation of mapping models resulted
in complex syntactical structures impeding the verification with UPPAAL and CADP
model checkers. Moreover, once the UML model is transformed into a formal language,

157

coverage is static and may not be varied any more. Coverage enhanced simulation
addresses (CES) the mentioned shortcomings. Coverage criteria, being themselves of
scope of this work, can be taken into account on the fly at simulation time. In the case
study, a series of utilization curves was easily established thanks to a partially covered
application model.

Tooling
Finally, a prototype implementing the aforementioned contributions was realized. Sec-
tion 7.4 covered the design flow with TTool, the automated model transformation to
executable C++ code, interactive simulation for debugging purposes and the commu-
nication of the graphical interface and the simulation engine. TTool was enhanced to
support fast simulation, CES and basic verification features for TEPE diagrams.

9.2 And finally. . . - initial claims revisited

To complete the review of DIPLODOCUS in general and contributions of this work in
particular, we get back to the starting point of this report. The incentive for this work
directly resulted from shortcomings of existing approaches (cf. section 3.7). Based on
the insight gained in previous chapters, we can now give more concrete examples of
how these shortcoming are remedied:

• Purely analytical (data flow) models tend to be overly pessimistic or optimistic (WCET
BCET) and do not detail control flow within tasks at all. . .
Even if our approach relies on data and abstraction and symbolic operations,
control flow is represented to some extent, as it was demonstrated in the case
study. Behavioral task descriptions allow us to generate waveforms or Gantt
diagrams that visualize system behavior in an intuitive way. In our case study for
instance, results were easily understandable by a domain expert not familiar with
DIPLODOCUS. Nevertheless, she was able to suggest modifications of the model.

• In some frameworks, models need to be refined (using code) before being simulated which
entails an increased modeling effort and badly affects simulation performance. . .
An estimation of the accuracy of the DIPLODOCUS method is out of scope of
this thesis. It should however be noted that performance figures obtained in
the case study came close to the analytical calculations of domain experts. This
was achieved with a calibration based on estimations originating from low level
models. Design Space Exploration does not require a refinement of DIPLODOCUS
models. While capturing the main performance aspects of the application, the
model nevertheless simulates efficiently, as shown in the case study.

• Almost all simulation frameworks rely on SystemC and thus tend to make use of detailed
architecture models which are very costly in terms of simulation time. . .
In chapter 5, we provided evidence for the fact that the DIPLODOCUS semantics

158

can efficiently be expressed in C++ without relying on SystemC. The simulation
strategy introduced in this work has proven to be faster than the former SystemC
based simulator.

• Many employed MoCs (KPN, data flow networks,..) do not make data dependence or
non-determinism explicit at application level. . .
The case study (section 8.3.2) highlighted the strengths of coverage enhanced
simulation. Due to data abstraction, data dependent decision are modeled with
indeterministic operators in DIPLODOCUS. CES permits to automatically explore
all valuations of random variables to study their impact on system performance.
In the case study, we plotted the utilization of different IP blocks as a function of
random variables to exemplify the approach.

• To our knowledge, state of the art UML model simulators target a solely functional verifi-
cation of the system. . .
Embedded systems by definition involve computation that is subject to physi-
cal constraints. The case study revealed two kinds of constraints: on the one
hand, the presented decoder had to react to its environment, namely packets con-
veyed by the wireless channel. On the other hand, the predetermined architecture
imposes constraints on possible scheduling policies. The assumption of abun-
dant hardware resources cannot be maintained in the field of embedded systems.
The DIPLODOCUS methodology acknowledges this fact by explicitly considering
these constraints in the model, independently from the application.

• The additional modeling effort inherent to some other approaches is mitigated in our case
by the usage of UML models and automated model transformations. . .
All in all, it took us around two weeks to get familiar with the problem domain
of the case study and to build the model. Less than one week was allotted to
the construction of the model alone. A domain expert with a basic knowledge of
DIPLODOCUS would have accomplished that task even faster. We think that the
results definitely justify the effort, especially compared to the effort which would
have been spent on low level modeling. For the time being, DIPLODOCUS models
cannot be refined for code generation. Ongoing research work will remedy this
problem in the near future.

• Many environments do not fathom the trade-off between exhaustive formal and simulation
techniques
In the case study, we opted for a partial coverage of the model by only considering
the processing of one single packet. The exploration of series of packets would
not have yielded new insights into the utilization of IP blocks, as the procedure for
packets of the same type is always the same. Moreover, based on our results, the
utilization of components for a series of packets could be determined analytically.

• Even though some frameworks are settled at a high level of abstraction, verification relies
on obscure logical formulas. . .

159

In both presented case studies (microwave oven and 802.11p decoder), the formu-
lation of properties in TEPE turned out to be intuitive and has been feasible for a
designer with minor experience in temporal logic. TEPE directly refers to model
elements and captures properties at an equivalent abstraction level to DIPLODO-
CUS.

9.3 Limitations and Future Work

Attention is now turned towards future work complementing this thesis and aspects the
author would have liked to deals with, but could not for a lack of time.

9.3.1 Methodological Aspects

Targeting code generation and model refinement
Even if the construction of DIPLODOCUS models is not time consuming, it would be
desirable to leverage this formal specification for code generation purposes. Further
research has to reveal under which conditions functional properties proved in DIPLO-
DOCUS are conserved at lower abstraction levels. That way, the tedious tasks of defining
memory maps and the control part of a system could be considerably alleviated. How-
ever, it is unlikely that complete systems may be entirely generated at the push of a
button in the near future. For this reason, guidelines have to be pointed out stipulating
how the generated code may be manually refined without disrupting the relationship
with the high level model.

Drawing analogies between performance and power consumption
The idea of assigning costs to symbolic operations could apply equally well to the realm
of power consumption. The current model of a power manager only penalizes tasks that
become runnable after a certain idle time of the CPU. The implications of voltage and
frequency scaling have not been taken into account so far. To start with, one could just
assign an energy quantum to both operations and idle time of hardware components.
To calculate the energy consumption of an entire system, energy quanta are summed up
per operation and per involved hardware component. In a second stage, the approach
could be extended to a more complex power manager modeled with a DIPLODOCUS
activity diagram. If timing aspects are irrelevant, one could perhaps come up with a
simplified simulation procedure especially suited for power consumption. This proce-
dure could save time by disregarding the partial order of some operations, as long as
power consumption is not impacted.

Reinforcing modularization
In the future, DIPLODOCUS component diagrams should permit to reinstantiate com-
ponents once defined. This would especially be useful in applications that involve
recurring structural patterns. For the time being, common behavior within tasks or

160

across several tasks has to be externalized in another task. This requires additional
synchronization primitives, that could provoke inconsistencies with low level models.
If the latter are endowed with macro like constructs, the synchronization primitives
could vanish during the refinement process. DIPLODOCUS should consequently offer
parametrizable macros that are just expanded before model transformation. This would
even leave DIPLODOCUS semantics unchanged.

Introducing abstract, composable building blocks to model communication architectures
The multi-channel buses implemented in the simulator can be used to compose much
more sophisticated communication architectures. In the case study for instance, a cross-
bar has been adequately represented with buses, links and bridges. Architecture dia-
grams should model communication media in a much more composable and abstract
way, merely distinguishing the capacity of a link in terms of simultaneous transactions.
An infinite capacity could be assigned to a crossbar, where concurrency is only limited
by the number of communication targets reachable by initiators.

9.3.2 TEPE semantics

Thoroughly analyzing expressible properties
Let us assume that simulation start and termination have their representation in terms
of dedicated signals, sstart and send. In that case, we can come up with a TEPE constraint
expressing that something bad (sn) never happens. This could be realized with a Sequence
Constraint with sstart and send as input signals and sn as negated signal. We may further
formulate that something good (s2) eventually happens, for instance with a Sequence Con-
straint applied to sstart and s2. This thought experiment suggests that TEPE supports
both liveness and safety properties. However, the claim should be supported in a math-
ematically rigorous manner. The objective is to conclude that TEPE may express any
property that temporal logic can, based on the decomposition theorem for properties.

Establishing the relationship between TEPE Sequence Constraints and Regular Languages
As we succeeded implementing a TEPE verifier in terms of finite state machines, there
is a strong evidence that Sequence Constraints define a regular language. To reinforce
the formal underpinning of TEPE this relationship should be further investigated. Se-
quence and Logical operators could be generalized into extended regular expressions,
that way increasing the expressive power of the language. As a matter of fact, we
will not be able to formulate properties such as there are as many occurrences of s1 as of
s2. Properties of this type lie beyond the expressiveness of regular languages. Their
verification would in general require an infinite amount of memory. Moreover, the
expressiveness of TEPE with respect to temporal logic and verification languages such
as LTL, CTL, CTL* and PSL shuold be investigated in a mathematically rigorous manner.

161

Distinguishing simultaneity and periodicity
So far, TEPE Time Constraints cannot distinguish between simultaneity and periodicity.
If the same signal is connected to the two input ports, the property only holds if Tmin = 0.
For this reason, periodicity of signals cannot be checked for jitter, etc. It should be
investigated how to minimize the extension of the TEPE semantics when introducing
an additional operator.

Carrying out further case studies with TEPE
The semantics of TEPE should be validated with further case studies and adapted if
needed. Only an extensive practical use can expose deficiencies and properties which
are difficult to express.

9.3.3 Coverage enhanced simulation

Elaboration of coverage criteria
Sophisticated coverage criteria could be built upon CES proposed in this thesis. Heuris-
tics based on TEPE diagrams could be realized in addition to traditional function, state-
ment, decision and condition driven coverage criteria . For instance, if a property fails
upon occurrence of a particular signal, branches triggering the signal could be privi-
leged to disprove the property as soon as possible. All intermediate states of the verifier
automata are available and may be consulted for this purpose. In this context, the
power of genetic algorithms [39] could be adopted for a target oriented pruning of the
state space. A formal approach involving slicing of DIPLODOCUS applications and/or
symbolic simulation with respect to a TEPE property could potentially yield a proof of
that property while avoiding an exhaustive coverage of the model. For instance, if a
random decision does not have an impact on any TEPE property, it is not necessary to
explore all valuations of the corresponding random variable.

Minimization of traces
Up to now, branches can only be merged if similar system states are encountered. For
example, if loop boundaries of two executions differ, no merge could take place even if
loop counters have the same value. Live Variable Analysis would reveal that the loop
boundary is significant and to be taken into account for state hashing. This problem
could be remedied by post processing the reachability graph (minimization).

Comparison system states
The used state hashing policy an can be subject to collisions in the hash table. In that
case, execution branches would be erroneously merged. To resolve collision in the hash
table, a hierarchical technique with recursive indexing [52] should be employed. The
method is based on the observation that each task can reach only a relatively small num-
ber of local states. State explosion stems primarily from the huge amount of possible

162

combinations of local states. Obviously, if a local state has not been encountered yet,
the same applies for the global state. Moreover, state compression is a must to keep
memory consumption within reasonable limits.

Convergence of static analysis
It should be established whether the composition of algorithms used for static analysis of
DIPLODOCUS tasks always converges towards a steady state. Even if this has already
been accomplished for Live Variable Analysis and Reaching definition analysis (cf. [7]),
it is not obvious that the composition of the latter and their execution in a loop conserve
the convergence property.

9.3.4 Practical Aspects and Performance

Validation of memory models
For the time being, a fixed data rate accounts for the impact of memories on system
performance. This model should be carefully validated with respect to volatile and
non-volatile memory types prevalent in embedded system design.

Deadlock avoidance for communication architectures
Deadlocks are not resolved in case different CPUs mutually try to reserve buses already
reserved by the other one. Perhaps, an adaptation of the priority ceiling protocol could
produce relief.

Enhancement of simulation performance by avoiding too many scheduling rounds for small
transactions
For an average simulation run, scheduling accounts for about 10% of the simulation
time. This comes from the fact that every transaction is scheduled, even if its duration
is short. The overhead could be reduced if a latency tl is accepted between the activa-
tion of a task and its consideration by a scheduler. tl would then denote the maximum
cumulative duration of transactions to be executed without intervention of a scheduler.

Reduction of the overhead due to Action/Choice commands
The simulator was structured with an inheritance hierarchy so as to simplify mainte-
nance and extension. Lightweight operations like Choice and Action are subject to an
overhead as the respective function pointers are encapsulated into a class as well. A
performance gain could perhaps be realized by moving away from a strictly object ori-
ented architecture.

Automatic exploration of several architectures
It would be desirable to explore a set of architectures automatically, without having to
modify the graphical model and to relaunch the simulation. Thanks to the interme-
diate textual representation of architectures, the latter could be specified before hand

163

or automatically be generated. A script could then compile the simulator for different
architectures, launch it and record the results.

Purely functional simulation without mapping
It could be envisaged to perform simulation of an application model alone. The resulting
additional indeterminism could be handled with (1) the proposed CES techniques, (2)
a random number generator as in conventional simulation or (3) simply by the user
who navigates manually through the model. Together with a state compression and
comparison procedure, it could even be envisaged to discontinue the support for formal
languages.

9.4 Publications

• Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Fast simulation techniques
for design space exploration. In Objects, Components, Models and Patterns, Lec-
ture Notes in Business Information Processing, pages 308-327. Springer Berlin
Heidelberg, 2009.

• Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. An interactive system
level simulation environment for Systems on Chip. In ERTSS - Embedded Real Time
Software and Systems, May 2010.

• Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Formal system-level de-
sign space exploration. In Proceedings of the 10th IEEE Conference on Distributed
Systems and New Technologies (NOTERE 2010), Tozeur, Tunisia, May 2010.

• Daniel Knorreck, Ludovic Apvrille, and Pierre De Saqui-Sannes. TEPE: A SysML
language for timed-constrained property modeling and formal verification. In Proceed-
ings of the UML&Formal Methods Workshop (UML& FM), Shanghai, China,
November 2010.

• Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck, AVATAR: A SymML
environment for the formal verification of safety and security properties. The 11th IEEE
Conference on Distributed Systems and New Technologies (NOTERE 2011), Paris,
France, May 2011.

• Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Formal system-level design
space exploration. to appear in: Concurrency and Computation Journal, 2011.

• Currently under review at the Software and Systems Modeling Journal: Daniel
Knorreck, Ludovic Apvrille and Pierre de Saqui-Sannes. Formal and Graphical
Modeling and Verification of Temporal Properties in SysML/TEPE

164

Chapter 10

French Summary

10.1 Introduction

Les systèmes embarqués sont des équipements électroniques dont les unités de calcul
sont totalement intégrées à l’appareil qu’ils commandent [109]. Contrairement aux or-
dinateurs conventionnels à usage général, l’éventail de tâches réalisées par un système
embarqué est clairement prédéfini. Aujourd’hui, les systèmes embarqués complexes
peuvent être intégrés sur une seule puce et sont alors appelés systèmes sur puce (SoC).
Les SoC comprennent à la fois un ensemble de composants électroniques communicant
et des parties logicielles complexes. Les SoC sont hétérogènes par nature, et compren-
nent ainsi des composants dédiés au traitement des signaux numériques, analogiques
et mixtes. Ces composants sont interconnectés afin de former des systèmes complexes
allant des applications mobiles jusqu’aux systèmes de contrôle pour des rames ferrovi-
aires, en passant par des set-top boxes ou des blocs de contrôle électronique véhiculaires.
De plus, les densités d’intégration ne cessent de progresser grâce aux progrès dans le
domaine de la physique des semiconducteurs, permettant ainsi l’implantation de plus
de fonctions logiques dans la même surface de silicium.

Les ressources de traitement et stockage disponibles permettent d’exécuter des appli-
cations d’une complexité croissante [35; 49]. D’une part, les utilisateurs exigent des
produits présentant des fonctionnalités avancées qui sont fiables, faciles à utiliser et
peu couteuses. D’autre part, les développeurs ont du mal à suivre cette évolution en
raison des insuffisances des outils et méthodologies. En plus de cette problématique de
complexité, le temps de mise sur le marché est devenu un problème majeur. Enfin, les
développeurs sont confrontés à des difficultés en raison d’une croissance de complexité
importante. En effet, il devient de plus en plus improbable qu’une conception optimale
représente une solution intuitive, par conséquent l’expérience du concepteur ne le guide
par forcement par rapport aux exigences fonctionnelles et non fonctionnelles requises,
notamment en termes de performance, d’espace utilisé, de consommation d’énergie ou
de fiabilité. Tout un ensemble de travaux, dont cette thèse, tendent à répondre à la

165

question de comment la complexité croissante peut être maitrisée.

En considérant une fonctionnalité particulière et les exigences associées, l’espace de
conception englobe toutes les alternatives de conception qui sont fonctionnellement
équivalentes [40]. Étant presque infiniment grand au début du flot de conception,
l’espace de conception doit être progressivement réduit en affinant le modèle du système.
Moins la spécification est précise, plus le modèle du système présente d’indéterminisme,
et plus l’espace de conception est large. Idéalement, les modèles sont progressivement
raffinés au cours du flot de conception et résultent en une implémentation qui optimise
une fonction pondérée des exigences non-fonctionnelles.

Bien que la procédure semble simple en théorie, réduire l’espace de conception se
révèle difficile à réaliser en pratique. Des développeurs expérimentés ont tendance à
exploiter des plate-forme ou produits qui se sont révélées bien adaptées pour les produits
précédents. Ainsi, des incréments souvent mineurs sont apportés à aux anciennes
architectures pour en dériver de nouvelles. Si réutilisation de conception se révèle
un moyen puissant pour réduire les coûts de développement de produits similaires,
réduisant ainsi l’espace de conception, elle n’est pas absolument pas efficace quand il
s’agit de trouver une solution proche de l’optimale pour des produits innovants.
Enfin, la conception orientée plate-forme redirige le problème de l’exploration de l’espace
de conception du vendeur du produit final vers le fournisseur de la plateforme. Ainsi,
la nature du problème reste inchangée et les outils qui permettent d’évaluer des alter-
natives d’implémentation de la même fonctionnalité sont essentiels.

L’analyse de systèmes à faibles niveaux d’abstraction assure un degré élevé de préci-
sion, cependant elle devient exigeante et lente. Les techniques de simulation standard
appliquées au niveau transactionnel ou au niveau RTL ne sont pas appropriés pour
l’exploration des espaces de conception à un niveau système. Deux raisons à cela:

• Seul un nombre limité d’alternatives d’implémentation peut être examiné en raison
de l’effort de modélisation et du temps d’exécution de la simulation.

• Le manque de spécifications à des stades de conception précoces peut rendre
difficile - si ce n’est impossible - la construction de modèles détaillés, même si
l’effort était finalement acceptable.

En conclusion, l’utilisation d’abstractions nous parait inévitable [35] pour réaliser
l’exploration à un niveau système et devrait bien entendu faire partie d’une méthodolo-
gie de modélisation bien définie. Dans une approche système, l’application et l’architecture
doivent être traitées de façon orthogonale. En effet, pour des raisons de réutilisabilité,
un modèle d’application ne devrait pas avoir besoin d’être réécrit lors de son expéri-
mentation sur différentes plateformes. Cette stratégie d’exploration est connue comme
l’approche en Y [77], et est largement utilisée dans le domaine de l’exploration de l’espace
de conception au niveau système.

166

10.2 Problématique

Le travail présenté dans le cadre de cette thèse recommande des techniques d’exploration
pour faciliter le début du flux de conception d’un système embarqué complexe. Dans
ce contexte, la section précédente a déjà mis en évidence la nécessité d’abstractions.
Nous allons maintenant examiner en détail les deux principaux types d’abstraction,
qu’ils visent l’aspect fonctionnel ou l’aspect temporel d’un système.

Deux vues orthogonales du système sont couramment répandues. D’une part, le con-
cepteur s’appuie sur des modèles purement fonctionnels et asynchrones afin d’étudier
les algorithmes complexes applicatifs. Par exemple, dans le cadre d’un décodeur de
modulation d’amplitude en quadrature (QAM), le résultat attendu pourrait être de
savoir si le décodeur est capable de reconstruire la séquence originale d’échantillons de
signaux arbitraires. Dans cet exemple, la synchronisation des échantillons est consid-
érée comme acquise puisque l’approvisionnement du décodeur avec des données n’est
pas pris en compte. L’exactitude fonctionnelle est la seule préoccupation à ce stade.
Dans le domaine du traitement du signal et de l’ingénierie de contrôle, des outils math-
ématiques tels que Matlab ont prouvé leur efficacité pour ce genre de prototypage rapide.

D’autre part, il est très important d’avoir une vue globale sur l’interaction des com-
posants du système. Ainsi, l’attention se focalise sur le timing et les performances,
ce qui permet de largement abstraire la fonctionnalité. En conséquence, la vue sur
l’ensemble du système aide le développeur à réaliser l’architecture du système, c’est à
dire à dimensionner les composants et l’infrastructure de communication de sorte que
les contraintes non-fonctionnelles soient respectées. Pour revenir à l’exemple du dé-
codeur QAM, l’objectif serait de déterminer quelles implémentations garantissent que
le décodeur n’est jamais à court d’échantillons d’entrée et que les échantillons de sortie
arrivent à temps à leur destination. Dans ce cas, les calculs internes peuvent être abstraits
et représentés par des instructions symboliques: en effet, seul le comportement observé
au niveau des entrées-sorties importe dans cette analyse. Ceci nous amène directement
à la notion de modèles de performance non-fonctionnels, constituant le sujet principal
de ce travail.

Les contributions de cette thèse ont été faites dans le contexte de l’environnement DI-
PLODOCUS, qui englobe un profil UML, une méthodologie et un outillage. Il est
particulièrement adapté pour raisonner sur des modèles de performance abstraits (en
termes de fonctionnalités) et focalisés sur le flux de contrôle des SoC actuels.
Cet environnement DIPLODOCUS complète avantageusement les premiers modèles
présentés initialement qui sont fonctionnels et untimed. Même dans des domaines
qui s’appuient traditionnellement plutôt sur des modèles untimed, l’interaction entre
les routines de traitement (du signal) est de plus en plus sophistiquée et doit ainsi
être orchestrée par des algorithmes de contrôle. Les environnements académiques et
industriels autres que DIPLODOCUS et ayant des objectifs similaires de l’état de l’art

167

sont souvent limités par les aspects suivants:

• L’application (les fonctionnalités) et l’architecture (la plateforme) ne sont pas
traitées de manière orthogonale [60] afin d’accélérer le partitionnement HW/SW.

• L’accent est exclusivement mis sur la seule simulation ou les seules méthodes
formelles.

• Un compromis entre ces deux cas extrêmes de vérification n’est pas proposé.

• Les abstractions ne sont pas entièrement mises à profit pour effectuer une simula-
tion rapide.

• L’approche est limitée à des mesures de performance ; le flux de contrôle ne peut
pas être modélisé/vérifié.

• Dans la méthodologie, la façon de construire des modèles n’impose pas d’abstractions
(par exemple : UML).

• Les détails des algorithmes sous-jacents doivent être fournis sous forme de code
source afin d’exécuter le modèle.

• Après la transformation du modèle en un équivalent exécutable, les informations
utiles pour le débogage ne sont pas propagées au modèle original.

• Le niveau d’abstraction du langage utilisé pour exprimer des propriétés fonction-
nelles ne correspond pas au niveau d’abstraction du modèle du système (dans
l’exemple d’un modèle de système en UML, le langage de vérification usité est
souvent CTL).

Certains des inconvénients susmentionnés ont été corrigés grâce à DIPLODOCUS lors
de travaux antérieurs à cette thèse : ils font l’objet de la prochaine section.

10.3 Objectifs et Contributions

Cette thèse est consacrée à l’amélioration d’un environnement existant d’exploration
de l’espace de conception qui est introduit dans le chapitre 2. Les fonctionnalités de
l’application et l’architecture sont modélisées avec DIPLODOCUS, le profil UML in-
troduit en 2006. Ce dernier est conçu pour la modélisation des systèmes complexes à
haut niveau d’abstraction : abstraction des données et des fonctions. DIPLODOCUS est
supporté par l’atelier logiciel de modélisation libre TTool qui était doté, préalablement
à ce travail, de plusieurs fonctionnalités : la modélisation graphique des diagrammes
UML/DIPLODOCUS, une simulation rudimentaire des modèles, et une transformation
de modèles automatisée visant les langages formels LOTOS et UPPAAL. Les principales
contributions apportées lors de cette thèse concernent le domaine de la simulation,

168

l’élargissement de la couverture de modèles, l’expression de propriétés fonctionnelles
et l’optimisation du flux de conception:

• Une stratégie efficace de simulation et validation a été conçue pour compléter
les capacités formelles de l’environnement. Le nouvel algorithme de simulation
exploite largement les propriétés du modèle d’application en ce qui concerne la
granularité et les abstractions. Une sémantique d’exécution pour les opérateurs
DIPLODOCUS a été définie, elle est mise à profit dans la simulation et correspond
au niveau d’abstraction du profil.

• Un effort s’est porté sur la recherche d’un compromis entre la couverture limitée
offerte par les techniques de simulation conventionnelles et l’exhaustivité de
la vérification formelle. Afin d’offrir un intermédiaire entre ces deux extrêmes,
une approche de simulation étendue a été définie et étendue. Notamment, il est
proposé un algorithme qui analyse statiquement les applications DIPLODOCUS
et identifie l’ensemble des variables d’état qui est significatif à un endroit donné
dans l’application. Des méthodes sont aussi présentées pour exploiter les résul-
tats de l’analyse statique lors de la simulation, afin d’examiner plusieurs branches
d’exécution. Dans le cas ou des états récurrents du système sont rencontrés, la sim-
ulation de certaines branches peut être abandonnée. Contrairement aux techniques
de Model Cheking conventionnelles, la couverture du modèle d’application est vari-
able. Aussi, les contraintes de l’architecture matérielle sont prises en compte ce qui
permet de limiter considérablement le problème d’explosion combinatoire qui est
rencontrée lorsque l’on prend en compte l’application uniquement (l’architecture
contraint les traces d’exécution).

• La vérification d’un modèle est souvent contrariée par l’obligation de s’appuyer sur
des langages de propriétés complètement différents de ceux utilisés pour la concep-
tion du système. Par exemple, les propriétés devant être respectées par un modèle
UML devrait être exprimables dans le même langage, en UML. Pour répondre à ce
besoin, un langage graphique d’expression de propriétés nommé TEPE (Temporal
Expression Language) est introduit. Il est basé sur les diagrammes paramétriques
SysML. TEPE enrichit l’expressivité des autres langages d’expression de propriétés
bien établis en particulier avec la notion de temps physique, la facilité d’exprimer
des propriétés logiques et temporels, et enfin la possibilité de combiner aisément
les différents opérateurs. De plus, grâce à une composition en deux dimensions,
TEPE supporte à la fois des formalismes orientés événements et états. Enfin, TEPE
est doté d’une sémantique formelle qui fait également partie de la contribution
apportée par cette thèse.

• Le flot de conception a été optimisé puisque l’utilisateur n’a pas besoin de se
référer au modèle exécutable pour pouvoir déboger son modèle. La construction,
le débogage et la vérification peuvent ainsi désormais être effectués de manière

169

transparente dans le même environnement, en utilisant le même langage, sans
avoir à écrire une seule ligne de code.

• Enfin, une partie importante de cette thèse porte sur le développement d’un pro-
totype qui implémente l’ensemble des concepts mentionnés ci-dessus.

10.4 Plan de la thèse et résultats

Cette thèse est structurée en 8 chapitres principaux:

Le premier chapitre explore les autres travaux visant la vérification des propriétés non
fonctionnelles et fonctionnelles des systèmes sur puce (SoC) dès le début du processus de
conception. En particulier, la section 3.2 présente des travaux en rapport avec ce travail
et avec la sémantique de simulation DIPLODOCUS (section 5.4). Cette section aborde
les points communs de toutes les approches de modélisation, à savoir les modèles de
calcul (MoC). La section 3.4 porte sur l’exploration de l’espace de conception (DSE) au
niveau système, où les modèles sont adaptés à des aspects de performance et ne sont pas
nécessairement fonctionnels. Dans ce contexte, les approches peuvent être classées en
trois catégories simples auxquelles des sections séparées sont consacrées : les approches
formelles / statiques (section 3.4.1), les approches centrées sur la simulation (section
3.4.3) et les variantes hybrides (section 3.4.4). Pour une classification plus approfondie
des approches, il convient de se référer à la section 3.3. Les approches formelles et celles
basées sur la simulation y sont comparées ainsi que les approches visant l’ensemble des
systèmes ou encore celles visant uniquement les architectures de communication (section
3.4.5). Les environnements peuvent être limités à un type particulier d’applications
(telles que les applications de traitement du signal) et atteindre une couverture différente
de l’espace de conception en fonction de leur méthodologie et du modèle de calcul . La
simulation en tant que méthode de vérification est un aspect central de cette thèse ; pour
cette raison les méthodes visant à accélérer les techniques de simulation traditionnelles
sont détaillées dans la section 3.4.6. La section 3.5 présente les avancées de notre langage
d’expression de propriétés TEPE par rapport aux approches courantes dans ce domaine.
Afin de souligner l’importance des outils pour l’acceptation d’une méthodologie, TTool
est comparé à l’état de l’art des environnements de modélisation UML qui proposent
des fonctionnalités de visualisation (voir la section 3.6).

10.4.1 TEPE

La vérification de modèles abstraits au niveau système est toujours entravée par l’expertise
nécessaire dans la logique temporelle. Les développeurs moins familiers avec ce do-
maine apprécieraient certainement un langage de vérification qui corresponde au niveau
d’abstraction du modèle à vérifier. Pour répondre à ce besoin, nous préconisons TEPE,
un langage graphique et convivial pour l’expression de propriétés temporelles définies

170

formellement avec le formalisme nommé fluent. Grâce à sa définition, TEPE supporte
aussi bien le formalisme à base d’états que le formalisme à base de transitions/événe-
ments. Ainsi, TEPE s’applique à une grande variété de systèmes définis en termes
d’états (attributs) et de transitions entre ces états (signaux).

L’importance croissante des systèmes temps-réel dans les applications critiques a stimulé
les travaux de recherche sur les techniques de modélisation qui combinent la convivial-
ité d’UML/SysML avec la formalité de langages de vérification tels que la logique tem-
porelle, UPPAAL [24], etc. Jusqu’à présent , l’utilisation de SysML dans les méthodes de
vérification a été entravée par la formalité insuffisante des diagrammes d’exigences et par
l’absence de puissants langages d’expression de propriété. Ainsi, les profils UML com-
muns nécessitent l’utilisation de la logique temporelle (par exemple CTL) qui risquent
de ne pas correspondre au niveau d’abstraction du modèle du système. La norme
MARTE intègre VSL [92], qui vise plutôt la spécification de valeurs liées aux aspects non
fonctionnels. Quand il s’agit de la vérification du comportement séquentiel, MARTE
propose le Clock Constraint Specification Language (CCSL). Ce cadre théorique est doté
d’une base mathématique solide, mais s’en remet au développeur pour l’abstraction des
transitions du système en terme d’horloges et pour les questions pratiques relatives aux
outils. Les utilisateurs dépourvus de connaissances mathématiques risquent d’être dé-
couragés par les méthodes formelles qui ne fournissent pas une visualisation conviviale.

Pour pallier les insuffisances susmentionnées, ce travail enrichit les diagrammes
paramétriques SysML avec TEPE, un langage graphique mais formel pour exprimer
les propriétés logiques et temporelles. Avec TEPE, les divers éléments de conception,
comme les attributs de blocs SysML et les signaux, peuvent être combinés avec la
logique (par exemple, la séquence des signaux) et les opérateurs temporels (par exem-
ple, un intervalle de temps pour la réception de signaux) pour composer des propriétés
graphiques complexes.

TEPE offre une interface intuitive et une stratégie à deux dimensions pour composer des
propriétés de sûreté et de liveness qui reposent sur les contraintes. Le langage est ac-
compagné d’une représentation graphique qui provient des diagrammes paramétriques
SysML. Par ailleurs, TEPE pourrait être introduit en SysML d’OMG et en dans une
grande variété de dérivés de SysML. Pour en faire la démonstration, nous intégrons
TEPE dans deux environnements UML / SysML assez différents par leurs objectifs et
leurs sémantiques : AVATAR 1 et DIPLODOCUS. Grâce à l’utilisation conjointe de TEPE
et d’un environnement UML / SysML, la capture d’exigences, l’analyse, la conception,
les taches de description et de vérification de propriétés peuvent être accomplies de
façon transparente dans le même langage avec un seul outil (cf. Chapitre 7) . Pour
utiliser TEPE, le développeur doit seulement présenter des compétences mineures en
UML et il n’est pas obligé de maîtriser les langages formels tels que CTL ou UPPAAL.

1Automated Verification of reAl Time softwARe

171

Le chapitre est organisé comme suit : la section 4.2 présente les formalismes Metric Tem-
poral Logic et Fluent Temporal Logic qui servent de base formelle pour les contraintes
TEPE. La section 4.3 introduit le langage TEPE d’abord d’une manière intuitive et ensuite
formellement. Enfin, deux sections sont consacrées à l’intégration de TEPE dans deux
profils UML / SysML représentatifs, notamment AVATAR (section 4.4) et DIPLODOCUS
(section 4.5). Une étude de cas en DIPLODOCUS et AVATAR est présentée, elle s’étend
sur la conception, les étapes de modélisation et de vérification de propriétés d’un four à
micro-ondes. Enfin, la section 4.6 conclut ce chapitre.

10.4.2 Simulation

Le chapitre précédent a préconisé un langage formel et graphique pour exprimer les
propriétés du système. Pour vérifier ces propriétés, nous devons tout d’abord don-
ner vie aux modèles UML en les rendant exécutables. Alors que la transformation de
modèles UML en code exécutable est démontrée dans le chapitre 7, ce chapitre pro-
pose une nouvelle approche de simulation pour les modèles à haut niveau d’abstraction
des systèmes sur puce. Dans la partie introductive, nous motivons notre décision de
ne pas nous appuyer sur la bibliothèque de simulation SystemC, qui est pourtant très
usitée dans notre domaine (section 5.3). De plus, le modèle de calcul Discrete Event est
analysé du point de vue performance de simulation dans la section 5.2. La section 5.4
révèle la sémantique de simulation de DIPLODOCUS et aborde les hypothèses faites sur
l’architecture, l’application et le mapping. Pour mieux expliquer les abstractions comme
la séparation d’application et d’architecture, un exemple est présenté avec un bus em-
barqué CAN dans la section 5.4.4. La section 5.5 donne des précisions sur la stratégie de
simulation et familiarise le lecteur avec les phases de simulation et certains mécanismes
de synchronisation. Pour plus d’explications sur les problèmes liés à l’implémentation,
le lecteur peut se référer à la section 5.6.

Notre approche de simulation rapide est centrée autour de deux principes fondamentaux
:

• Une méthodologie de modélisation qui implique l’abstraction de données et de
fonctionnalités.

• Une stratégie de simulation qui exploite efficacement les propriétés des modèles
de haut niveau. Ainsi, la granularité de la simulation correspond à la granularité
du modèle d’application.

Cela implique que la vitesse de simulation dépend essentiellement de la façon dont
l’application est modélisée. En effet, plus la granularité du modèle est grande, plus
les actions contiguës considérées par le simulateur (les transactions) sont longues et le
plus efficace (en termes de cycles / seconde) est la simulation. Si la synchronisation

172

des processus concurrents ne nécessite pas de tronquer des transactions, le simulateur
exécute des transactions couvrant plusieurs cycles d’horloge à la fois.

10.4.3 Couverture

Comme la vérification formelle des modèles de bas niveau est généralement confron-
tée au problème d’explosion combinatoire, cette vérification est simplement appliquée
aux sous-parties du système où les données sont abstraite par leur simple présence ou
absence. Cette limitation est écartée en augmentant le niveau d’abstraction. Cepen-
dant, il reste un obstacle majeur pour la vérification des modèles de taille moyenne au
niveau système. Par ailleurs, il est extrêmement difficile de représenter des modèles de
mapping de haut niveau (des modèles comprenant une application et l’architecture) en
des langues formelles. Des méthodes telles que DIPLODOCUS ont été proposées pour
transformer des modèles graphiques de haut niveau (UML, etc) en une représentation
appropriée pour la vérification. Pour cela, des modèles UML doivent être dotés d’une
sémantique formelle. Néanmoins, nous avons constaté par expérience que la trans-
formation de modèles sophistiqués de mapping résulte en des structures syntaxiques
complexes qui poussent souvent les modèles checkers UPPAAL [24] et CADP [38] à
leurs limites.

Toutefois, même si le model checker est capable de gérer la spécification, la couverture
de l’espace d’états ne peut pas être variée : la vérification formelle est exhaustive par déf-
inition et par conséquent les model checkers sont conçus pour explorer l’espace d’états
exhaustivement. Pour cette raison, afin de varier la couverture du modèle source, il
est nécessaire de reconfigurer l’algorithme de transformation et de régénérer le modèle
formel. Cependant, du point de vue d’un développeur, il serait souhaitable de générer
un seul modèle exécutable pour ensuite analyser différentes parties intéressantes de son
espace d’état.
L’espace de conception peut être réduit à l’aide de critères de couverture convention-
nelle (les branches couvertes, des commandes, des tâches, des conditions, etc), des
connaissances d’expert fournis par l’utilisateur (par exemple les parties potentiellement
critiques du flux de contrôle), ou des heuristiques tenant compte de propriétés (non-)
fonctionnelles. L’objectif est de permettre la prise dynamique de décisions, au temps
d’exécution de la simulation. De cette façon, le développeur peut trouver plus facile-
ment un compromis entre l’efficacité de simulation et la couverture sans régénérer le
modèle formel. Le point de fonctionnement varie ainsi entre les deux cas extrêmes de la
vérification formelle et de la simulation, ce qui met en évidence le curseur dans la figure
6.1). Bien entendu, le fait de s’éloigner d’une vérification formelle exhaustive ne permet
plus de fournir le même degré de confiance et garanties.

Pour répondre à ce besoin de compromis, nous proposons une nouvelle façon d’améliorer
la couverture de simulation des modèles de haut niveau basé sur le model checking et

173

de techniques d’analyse statique. Un simulateur particulièrement adapté aux modèles
de haut niveau de SoC a été introduit dans le chapitre 5. Il permet au développeur
d’explorer manuellement plusieurs branches en sauvegardant l’état de la simulation
à un point de décision et de le reprendre plus tard. Au stade qui est décrit dans le
chapitre 5 le simulateur manque de fonctionnalités de stockage d’état et des techniques
de comparaison qui sont essentielles pour la fusion de chemins d’exécution logiquement
équivalentes. Ce chapitre présente des solutions à ces défauts. Des modèles de map-
ping DIPLODOCUS sont statiquement analysés pour repérer les éléments ne faisant pas
partie du vecteur d’états afin d’accélérer l’identification des états du système récurrents.
Section 6.3 donne des précisions sur cette procédure. La section 6.4 démontre une façon
pour localiser les points dans le modèle où les exécutions sont susceptibles d’être fusion-
nées, et donc les états doivent être comparés. La section 6.5 donne une idée au lecteur
sur l’implémentation des relations de dépendances et le hashage d’états. Des méthodes
pour l’identification des états récurrents du système sont abordées dans la section 6.5.5.

10.4.4 Tooling

Jusqu’ici, les contributions de ce travail ont été présentées principalement d’un point
de vue méthodologique, décrivant les idées de base et la théorie sous-jacente. Même
si quelques indications sur les questions d’implémentation ont été fournies à la fin
de chaque chapitre, il reste encore à mettre tous ces éléments dans le contexte de la
chaîne de compilation. L’objectif de ce chapitre est de compléter ce travail en examinant
les contributions qui ont été exposées précédemment dans le cadre global de TTool,
d’un point de vue pratique. La section 7.2 aborde la structure interne des éléments de
l’ensemble d’outillage, notamment TTool et le moteur de simulation. La section 7.3 décrit
l’étape de transformation du modèle graphique UML en code C++. Les fonctionnalités
de simulation interactive et leur importance pour le débogage sont présentées dans
la section 7.4. Ainsi, une attention particulière est attirée sur l’interaction entre le
simulateur et TTool, qui ont été développés dans différents langages de programmation.

10.4.5 Evaluation

Jusqu’ici, nous avons proposé le langage de spécification de propriétés TEPE, un en-
vironnement de simulation pour les modèles de haut niveau des systèmes sur puce,
une méthodologie pour améliorer la couverture de ce dernier et enfin une suite d’outils
qui implémente entièrement le flot de conception. Nos efforts ont été motivés par les
inconvénients des environnements existants (identifiés dans le chapitre 3) par rapport
au niveau d’abstraction, à la vitesse de simulation, à la représentation des flux de con-
trôle et à l’indéterminisme. Bien que les preuves de l’applicabilité de plusieurs concepts
aient été fournies tout au long de cette thèse, ce chapitre met l’accent sur un exemple
plus complet. Il est inspiré du domaine des télécommunications et il met en évidence le
modèle d’un récepteur pour la norme 802.11p, ses propriétés ainsi que sa simulation et

174

sa vérification. Plus précisément, l’objectif de ce chapitre est :

• d’illustrer le concept de modélisation DIPLODOCUS et de ses résultats avec un
système embarqué concret et existant ;

• démontrer que TEPE est capable d’exprimer des propriétés pertinentes des SoC ;

• d’illustrer comment les résultats de simulation peuvent être utilisés ;

• de fournir des preuves pour l’utilité d’une couverture élargie de simulation ;

• d’illustrer l’interaction des composants de l’outillage.

Cependant, il reste hors de portée de cette thèse de confronter les résultats de simulation
avec des mesures de performances effectuées sur le matériel réel. En ce qui concerne
des propriétés non fonctionnelles, la comparaison publiée dans [55] nous rend confiants
que la méthodologie de DIPLODOCUS permet d’obtenir des chiffres de performances
réalistes. Le développeur est en effet assisté dans son effort d’identifier une implémen-
tation qui est conforme aux contraintes (non-) fonctionnelles. Concernant les propriétés
fonctionnelles, un raffinement des modèles DIPLODOCUS en préservant ces derniers
est actuellement étudié dans le cadre d’une thèse de doctorat [84].

Ce chapitre est structuré comme suit : la section 8.2 expose le domaine d’application
et le système à modéliser et définit des notions connexes. La section 8.2.2 présente les
modèles DIPLODOCUS de l’application et de l’architecture qui seront exploités pour
obtenir des chiffres de performance et pour vérifier la conformité à des propriétés dans
la section 8.3. La dernière section analyse également les performances du simulateur, à
la fois en mode de simulation classique et en mode de couverture améliorée. La section
8.4 conclut finalement ce chapitre.

10.4.6 Conclusion

Dans l’introduction, nous avons identifié le besoin d’environnements de modélisa-
tion qui décrivent les systèmes embarqués et les systèmes sur puce à un haut niveau
d’abstraction. De cette manière, le développeur peut obtenir un premier aperçu du com-
portement du système en cours de conception, même si les modèles de bas niveau ne
sont pas disponibles ou trop coûteux à construire. De même, il pourrait être intéressant
de faire l’abstraction de modèles détaillés pour accélérer la simulation ou étendre sa
portée (par exemple du niveau module au niveau système). Les abstractions sont essen-
tielles pour l’exploration de l’espace de conception, où un grand nombre d’alternatives
d’implémentations doit être analysé. Dans le chapitre 3, nous avons examiné quelques
exemples représentatifs des nombreux travaux de même nature. La catégorisation des
travaux a révélé la différence fondamentale des modèles statiques et dynamiques, ces
derniers nécessitant une représentation implicite ou explicite d’états de système. La
modélisation de comportement dans les diagrammes DIPLODOCUS est basée sur une

175

représentation d’états et donc (en général) engendre une traversée de l’espace d’états à
être vérifiée. Cette thèse est consacrée à l’exécution et la vérification des modèles de haut
niveau qui présentent une sémantique similaire à celle de DIPLODOCUS. La section 9.1
résume les contributions de cette thèse. Dans la section 9.2 nous récapitulons les incon-
vénients des travaux liés identifiés dans la section 3.7 et nos affirmations initiales. Nous
résumons les avantages de DIPLODOCUS en général, et de ce travail en particulier, et
nous les associons aux exemples fournis tout au long de cette thèse. Enfin, la section 9.3
présente des travaux futurs qui sont susceptibles de compléter les solutions présentées.

176

References

[1] CoFluent Studio www.cofluentdesign.com. 39

[2] Coware Virtual Platforms www.coware.com. 39

[3] SysML companion. In http://www.realtimeatwork.com/?page_id=683. 47

[4] Vast System Engineering Tools www.vastsystems.com. 39

[5] A O I. SystemVerilog 3.1a Language Reference Manual,
www.systemverilog.org. 45

[6] AO I. Property specification language, reference manual, version 1.1. 2004.
45

[7] A V. A, R S, J D. U. Compilers: principles, techniques, and tools.
Pearson Education, Boston, MA, USA, 2007. 112, 113, 163

[8] S A, L A, T́ B, A C, E M,
E S. Specifying fractal and GCM components with UML. In Proceedings of the XXVI
International Conference of the Chilean Society of Computer Science, pages 53–62, Washington, DC, USA,
2007. IEEE Computer Society. 17

[9] C Á, F́́ M, R S. Modeling time(s). In MoDELS, pages
559–573, 2007. 46

[10] F. A, J. C, R. L, F. F, C. F, L. B. An integrated open framework
for heterogeneous MPSoC design space exploration. Design, Automation and Test in Europe, 2006.
DATE ’06. Proceedings, 1:1–6, March 2006. 8, 38

[11] L. A. TTool for DIPLODOCUS: An Environment for Design Space Exploration. In Proceedings
of the 8th Annual International Conference on New Technologies of Distributed Systems (NOTERE’2008),
Lyon, France, June 2008. 17, 21

[12] L. A A. B. Fast and multi-platform prototyping of embedded systems from
UML/SysML models. In Proceedings of the 14th Sophia Antipolis Mircroelectronics Forum (SAME 2011),
October 2011. 68

[13] L. A, J.-P. C, C. L, P. S-S. TURTLE: A real-time UML profile
supported by a formal validation toolkit. In IEEE transactions on Software Engineering, 30, pages
473–487, Jul 2004. 17, 47

[14] L. A, W. M, R. A-B, S. C, R. P. A UML-based
environment for system Design Space Exploration. Electronics, Circuits and Systems, 2006. ICECS
’06. 13th IEEE International Conference on, pages 1272–1275, Dec. 2006. 7, 21, 47

177

REFERENCES

[15] L A, AM, P D S-S. Real-time distributed systems
dimensioning and validation: The TURTLE method. Studia Informatica Universalis, 8, no 3:47–69,
October 2010. 17, 31

[16] L A P D S-S. Making formal verification amenable to real-time
UML practitioners. In Proceedings of the 12th European Workshop on Dependable Computing, Toulouse,
France, May 2009. 7, 17, 128

[17] TA, E S, TḦ̈̈, MḦ̈. Performance evalu-
ation of UML2-modeled embedded streaming applications with system-level simulation. EURASIP
Journal on Embedded Systems, 2009, March 2009. 39

[18] A. Artisan studio, www.artisansoftwaretools.com/products/artisan-studio. 2009. 48

[19] M. A B. M. Topcased 3.4 tutorial - requirement management. In
http://www.topcased.org/index.php? documentsSynthesis=y&Itemid=59, 2010. 47

[20] B B, GM, A P, 2007. 35

[21] F. B, Y. W, H. H, L. L, C. P, A. S-V.
Metropolis: an integrated electronic system design environment. Computer, 36[4]:45–52, April 2003.
39

[22] A. B, M. B, J. S. Modeling heterogeneous real-time components in BIP. pages
3–12, Sept. 2006. 34

[23] S B, F. A real-time application design methodology for MPSoCs. Design,
Automation and Test in Europe, 2009. DATE ’09. Proceedings, 1, March 2009. 44

[24] J. B W. Y. Timed automata: Semantics, algorithms and tools. In Lecture Notes on
Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.
51, 110, 171, 173

[25] T B, T B, J T, L T. System-level synthesis using
evolutionary. Design Automation for Embedded Systems, 3:23–58, 1998. 9

[26] A. B, J.J. P, J.E. N, J.M. P, D.E. T. Modeling shared resource con-
tention using a hybrid simulation/analytical approach. Design, Automation and Test in Europe Con-
ference and Exhibition, 2004. Proceedings, 2:1144–1149 Vol.2, Feb. 2004. 41

[27] J. P. C D. I. A codesign experience with the mcse methodology. In Proc. Third
International Workshop on Hardware/Software Codesign, pages 140–147, September 22–24, 1994. 39

[28] S. C, S. K, L. T. A general framework for analysing system properties in
platform-based embedded system designs. In Design, Automation and Test in Europe Conference and
Exhibition, 2003, pages 190–195, 2003. 31

[29] ZC, BX, JZ. An overview of methods for dependence analysis
of concurrent programs. SIGPLAN Not., 37:45–52, August 2002. 117

[30] BA. C RG. S. A modification of the process interaction world view. ACM
Trans. Model. Comput. Simul., 2:109–129, April 1992. 81

178

REFERENCES

[31] D C, X F, M F, A J. H, M K, S R.
Embedded software verification using symbolic execution and uninterpreted functions. Int. J.
Parallel Program., 34[1]:61–91, 2006. 33

[32] E. C. S E. V. Integrando SysML e model checking para v&v de software crítico
espacial. In Brasilian Symposium on Aerospace Engineering and Applications, São José dos Campos, SP,
Brasil, in Portuguese, September 2009. 47

[33] WDDH. Lscs: Breathing life into message sequence charts. Formal Methods
in System Design, 19[1]:45–80, 2001. 46

[34] P J. D J P. B. The operational analysis of queueing network models.
ACM Comput. Surv., 10[3]:225–261, 1978. 27, 31

[35] S. E, L. L, E.A. L, A. S-V. Design of embedded systems:
formal models, validation, and synthesis. Proceedings of the IEEE, 85[3]:366–390, Mar 1997. 1, 2, 22,
165, 166

[36] J. E, J.W. J, E.A. L, J L, X L, J. L, S. N, S. S,
Y X. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE, 91[1]:127–
144, Jan 2003. 34

[37] G S. F. Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer-Verlag,
Berlin, 2001. 81

[38] HG, F́́L, RM, W S. CADP 2006: A Toolbox for
the Construction and Analysis of Distributed Processes. In Computer Aided Verification (CAV’2007),
4590, pages 158–163, Berlin Germany, 2007. 18, 110, 173

[39] P G S K. Exploring very large state spaces using genetic algo-
rithms. In TACAS ’02: Proceedings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 266–280, London, UK, 2002. Springer-Verlag. 162

[40] M G. Methods for evaluating and covering the design space during early design devel-
opment. Integration, the VLSI Journal, 38[2]:131 – 183, 2004. 1, 8, 166

[41] TG. System Design with SystemC. Kluwer Academic Publishers, Norwell, MA, USA,
2002. 36

[42] A H, M J, K R, R E. A framework for modular analysis
and exploration of heterogeneous embedded systems. Real-Time Syst., 33[1-3]:101–137, 2006. 9, 31

[43] D. H R. M. Playing with time: On the specification and execution of time-enriched
LSCs. In MASCOTS ’02: Proceedings of the 10th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, page 193, Washington, DC, USA, 2002.
IEEE Computer Society. 46

[44] DH. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8[3]:231–
274, 1987. 25

[45] C. H, T. S, J. K, M. M. SystemCoDesigner: Automatic Design
Space Exploration and rapid prototyping from behavioral models. In Design Automation Conference,
2008. DAC 2008. 45th ACM/IEEE, pages 580–585, June 2008. 39

179

REFERENCES

[46] M. H J. H. Testing solutions with UML/SysML. In http://www.artist-
embedded.org/docs/Events/2010/UML_AADL /slides/Session1_Matthew_Hause.pdf, 2010. 47

[47] M. H M. V. Timed automata based analysis of embedded system architectures.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages 8 pp.–,
April 2006. 33

[48] R. H, A. H, M. J, R. R, K. R, R. E. System level performance
analysis - the SymTA/S approach. Computers and Digital Techniques, IEE Proceedings -, 152[2]:148–166,
Mar 2005. 31

[49] T A. H J S. The discipline of embedded systems design. Computer,
40:32–40, 2007. 1, 165

[50] P H, J F, , S G. Model checking SystemC designs using
timed automata. In Proceedings of the 6th International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). ACM, 2008. 33

[51] P H, F F, S G. Combining model checking and test-
ing in a continuous hw/sw co-verification process. In C D, editor, 3rd International
Conference on Tests and Proofs (TAP’09), LNCS, pages 121–136. Springer, 2009. 33

[52] G J. H. State compression in spin: Recursive indexing and compression training
runs. In Proceedings of the third international Spin Workshop, 1997. 162

[53] G.J. H. The model checker spin. Software Engineering, IEEE Transactions on, 23[5]:279–295,
May 1997. 111

[54] L.S. I, A. T, M. G. Executable system-level specification models containing
UML-based behavioral patterns. Design, Automation & Test in Europe Conference & Exhibition, 2007.
DATE ’07, pages 1–6, April 2007. 37

[55] C J. High-level SoC modeling and performance estimation applied to a multi-core imple-
mentation of LTE eNodeB physical layer, PHD thesis. September 2011. 13, 85, 87, 139, 175

[56] B J. A hash function for hash table lookup, www.burtleburtle.net/bob/hash/doobs.html.
2006. 125

[57] G. K. The semantics of a simple language for parallel programming. In J. L. R, editor,
Information Processing ’74: Proceedings of the IFIP Congress, pages 471–475. North-Holland, New York,
NY, 1974. 25

[58] K. Methods and implementations for automated System on Chip architecture exploration.
PHD Thesis, September 2006. 39

[59] T K, K S, A Z, C S. Operational analysis of parallel
servers. In MASCOTS, pages 227–236, 2008. 31

[60] B K, E F. D, P W, K A. V. A methodology to
design programmable embedded systems - the Y-Chart approach. In Embedded Processor Design
Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, pages 18–37, London, UK, UK,
2002. Springer-Verlag. 3, 8, 9, 168

[61] S K S H. Efficient exploration of bus-based system-on-chip architectures.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14[7]:681–692, July 2006. 8, 42

180

REFERENCES

[62] D. K, L. A, R. P. Formal system-level Design Space Exploration. In
Proceedings of the 10th Annual International Conference on New Technologies of Distributed Systems
(NOTERE’2010), Tozeur, Tunisia, May 2010. 18, 23

[63] D K, LA, R P. Fast simulation techniques for Design
Space Exploration. In Objects, Components, Models and Patterns, 33 of Lecture Notes in Business
Information Processing, pages 308–327. Springer Berlin Heidelberg, 2009. 18

[64] DK, LA, R P. An interactive system level simulation
environment for Systems on Chip. In ERTSS - Embedded Real Time Software and Systems, May 2010.
18

[65] D K, L A, P D S-S. TEPE: A SysML language for
timed-constrained property modeling and formal verification. In Proceedings of the UML&Formal
Methods Workshop (UML&FM), Shanghai, China, November 2010. 17, 47

[66] AK C P. Constructing efficient formal models from high-level descriptions
using symbolic simulation. International Journal of Parallel Programming, 33[6]:645–666, December
2005. 32

[67] R K. Specifying Message Passing and Time-Critical Systems with Temporal Logic. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1992. 52

[68] K S., G L., W J., L R. A G. H. M. HySim: A Fast Simu-
lation Framework for Embedded Software Development. In Proceedings of the 5th Conference on
Hardware/Software Codesign (CODES+ISSS ’07) and System Synthesis, Salzburg, Austria, 2007. 44

[69] J. K, T. K, J.-P. S. Evaluation of platform architecture performance using
abstract instruction-level workload models. In System-on-Chip, 2004. Proceedings. 2004 International
Symposium on, pages 43–48, Nov. 2004. 40

[70] J K, M H, T K̈, Y Q, J-P S, P A,
K T̈. Combining UML2 application and SystemC platform modelling for performance
evaluation of real-time embedded systems. EURASIP J. Embedded Syst., 2008:1–18, 2008. 15, 38

[71] S. K, F. P, L. B, L. T. Combining simulation and formal methods for
system-level performance analysis. Design, Automation and Test in Europe, 2006. DATE ’06. Proceed-
ings, 1:1–6, March 2006. 41

[72] K. L, A. R, S. D. System-level performance analysis for designing on-
chip communication architectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 20[6]:768–783, Jun 2001. 8, 42

[73] K. L, A. R, S. D. Design Space Exploration for optimizing on-chip commu-
nication architectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
23[6]:952–961, June 2004. 8, 42

[74] E A. L A S-V. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17:1217–
1229, 1998. 22, 35

[75] E L, J K, J M, S U. Fluent temporal logic for
discrete-time event-based models. In Proceedings of the 10th European software engineering conference,
ESEC/FSE-13, pages 70–79, New York, NY, USA, 2005. ACM. 53, 54

181

REFERENCES

[76] Y-T S L S M. Performance analysis of embedded software using im-
plicit path enumeration. In DAC ’95: Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference, pages 456–461, New York, NY, USA, 1995. ACM. 32

[77] P. L, P. W, E. D, K. V. A methodology for architecture
exploration of heterogeneous signal processing systems. In Signal Processing Systems, 1999. SiPS 99.
1999 IEEE Workshop on, pages 181–190, 1999. 2, 40, 166

[78] Y-B L P.A. F. Asynchronous parallel discrete event simulation. Systems, Man and
Cybernetics, Part A, IEEE Transactions on, 26[4]:397–412, Jul 1996. 26

[79] GM, ND, SA. Performance estimation of distributed real-time
embedded systems by discrete event simulations. In EMSOFT ’07: Proceedings of the 7th ACM &
IEEE international conference on Embedded software, pages 183–192, New York, NY, USA, 2007. ACM.
33

[80] F́́M. Clock constraint specification language: specifying clock constraints with UM-
L/MARTE. Innovations in Systems and Software Engineering, 4[3]:309–314, October 2008. 46

[81] R M, U Y. O, N H. Z. Computation and communication
refinement for multiprocessor SoC design: A system-level perspective. ACM Trans. Des. Autom.
Electron. Syst., 11[3]:564–592, 2006. 31

[82] MM F B. An overall specification of a meta-model of computation
for model-driven embedded system modeling. In CTS ’06: Proceedings of the International Symposium
on Collaborative Technologies and Systems, pages 194–199, Washington, DC, USA, 2006. IEEE Computer
Society. 23, 35

[83] J. M. The software radio architecture. Communications Magazine, IEEE, 33[5]:26 –38, may 1995.
140

[84] H M. Design and formal validation of embedded systems, phd thesis. to appear in
2012. 139, 175

[85] WM, J R, D H, J G, T K, W-
 R. The simulation semantics of SystemC. In In Proc. of DATE 2001. IEEE CS, pages
64–70. Press, 2001. 82

[86] N.-.-I. M, R. R, R. P, R. K, K. K. Flexible baseband
architectures for future wireless systems. In Digital System Design Architectures, Methods and Tools,
2008. DSD ’08. 11th EUROMICRO Conference on, pages 39 –46, sept. 2008. 140

[87] Y.N. N R.S. G. Speeding up SystemC simulation through process splitting. In Design,
Automation & Test in Europe Conference & Exhibition, 2007. DATE ’07, pages 1–6, April 2007. 44, 82

[88] M G N S. R. Slicing concurrent programs. In Proceedings of the 2000
ACM SIGSOFT international symposium on Software testing and analysis, ISSTA ’00, pages 180–190,
New York, NY, USA, 2000. ACM. 117

[89] I O I D. OMEGA2: A new version of the profile and the tools (regular
paper). In UML&AADL’2009 - 14th IEEE International Conference on Engineering of Complex Computer
Systems, pages 373–378, Potsdam, June 2009. IEEE. 47

182

REFERENCES

[90] M SC VW G. SystemC Verification Standard Specifica-
tion Version 1.0e, www.systemc.org. 2003. 46

[91] OMG. UML 2.0 superstructure specification. In http://www.omg.org/docs/ptc/03-08-02.pd, Geneva,
2003. 7, 47

[92] OMG. A UML profile for MARTE, beta 2, www.omg.org. 2008. 46, 51, 171

[93] OMG. A UML profile for MARTE: Modeling and analysis of real-time embedded systems. In
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf, 2008. 7, 14

[94] S. P, ND, M. B-R. Extending the transaction level modeling approach
for fast communication architecture exploration. Design Automation Conference, 2004. Proceedings.
41st, pages 113–118, 2004. 8, 42

[95] G. P, L. A, D. K. AVATAR: A SysML environment for the formal
verification of safety and security properties. In The 11th IEEE Conference on Distributed Systems and
New Technologies (NOTERE2́011), Paris, France, May 2011. 67

[96] S P, K L, L T. Composing heterogeneous components for
system-wide performance analysis. In Proceedings of Design, Automation and Test in Europe, 2011
(DATE 11), Grenoble, France, 2011. 41

[97] D. G. P, G. M, O. T. A new optimized implementation of the SystemC engine
using acyclic scheduling. In Proc. Design, Automation and Test in Europe Conference and Exhibition, 1,
pages 552–557, February 16–20, 2004. 43, 44, 82

[98] C A P. Fundamentals of a theory of asynchronous information flow. IFIP Congress 62,
pages 386–390, 1962. 25

[99] J J. P, AM, JAM. P, D E. T, F K. High
level cache simulation for heterogeneous multiprocessors. In DAC ’04: Proceedings of the 41st annual
Design Automation Conference, pages 287–292, New York, NY, USA, 2004. ACM. 8

[100] A. D. P, S. P, F. T. Towards efficient Design Space Exploration of
heterogeneous embedded media systems. In In Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation, pages 57–73. Springer, LNCS, 2002. 40

[101] A.D. P, C. E, S. P. A systematic approach to exploring embedded system
architectures at multiple abstraction levels. Computers, IEEE Transactions on, 55[2]:99–112, Feb. 2006.
40

[102] A.D. P, L.O. H, P. L, P. W, E.E. D. Exploring
embedded-systems architectures with artemis. Computer, 34[11]:57–63, Nov 2001. 40

[103] A D. P, M T, S P, C E. Calibration of abstract
performance models for system-level Design Space Eexploration. J. Signal Process. Syst., 50:99–114,
February 2008. 15

[104] E P. Evita, www.evita-project.org. 2011. 87

[105] V. R, W. K, T. B, G. A, A. N. A unified system-level modeling
and simulation environment for MPSoC design: Mpeg-4 decoder case study. Design, Automation
and Test in Europe, 2006. DATE ’06. Proceedings, 1:1–6, March 2006. 38

183

REFERENCES

[106] R. Rhapsody, www-01.ibm.com/software/awdtools/rhapsody. 2009. 48

[107] B R, T L, G F. A mapping framework for guided
Design Space Exploration of heterogeneous MP-SoCs. Design, Automation and Test in Europe, 2008.
DATE ’08, pages 780–783, March 2008. 39

[108] C S, A E, J G, B̈ L. Faster WCET flow
analysis by program slicing. SIGPLAN Not., 41[7]:103–112, 2006. 32

[109] A. S-V. Quo vadis, SLD? reasoning about the trends and challenges of system
level design. Proceedings of the IEEE, 95[3]:467–506, March 2007. 1, 23, 165

[110] T S, W M, A R. A model-based approach for ex-
ecutable specifications on reconfigurable hardware. In DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, pages 692–697, Washington, DC, USA, 2005. IEEE Computer
Society. 38

[111] C S K, R K, R P. Hardware optimized sample
rate conversion for software defined radio. FREQUENZ, Journal of RF-Engineering and Telecommu-
nications, November-December 2010, Vol 64, No 11-12, 2010. 141

[112] J. S, O. B, A. V, W. R. High-performance timing simulation of
embedded software. pages 290–295, June 2008. 44

[113] K S, AZ, TK, C S. Operational analysis of processor
speed scaling. In SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, pages 179–181, New York, NY, USA, 2008. ACM. 31

[114] M. S, A. S, L. P, M. A, E. W, H. M, E. W.
Soc modeling methodology for architectural exploration and software development. Electronics,
Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th IEEE International Conference on,
pages 383–386, Dec. 2004. 41

[115] M H. S. Events and constraints: a graphical editor for capturing logic properties of
programs. In Proceedings of the 5th International Symposium on Requirements Engineering, pages 14–22,
2001. 46

[116] S S, O B, W R. Fast and accurate resource
conflict simulation for performance analysis of multi-core systems. Design, Automation and Test in
Europe, 2011. DATE ’11. Proceedings, 1:1–6, March 2011. 15, 43

[117] P. S A. D P. A trace-based scenario database for high-level simulation of
multimedia MP-SoCs. In Proceedings of Int. Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation (SAMOS ’10), pages 11–19, July 2010. 40

[118] G. E S, SD, L R. Analytical cache models with applications
to cache partitioning. In Proceedings of the 15th international conference on Supercomputing, ICS ’01,
pages 1–12, New York, NY, USA, 2001. ACM. 8

[119] T. Tau, www-01.ibm.com/software/awdtools/tau. 2009. 48

[120] T. Topcased, www.topcased.org. 2009. 48

184

REFERENCES

[121] Y V W D. From UML/SysML to matlab/simulink: current state and
future perspectives. In DATE ’06: Proceedings of the conference on Design, automation and test in Europe,
pages 93–93, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation Association.
47

[122] VD I. e Language Reference Manual, www.ieee1647.org/downloads/prelim_e_lrm.pdf.
2002. 45

[123] E. V, F. P, A. G. An efficient TLM/T modeling and simulation environment
based on conservative parallel discrete event principles. Design, Automation and Test in Europe, 2006.
DATE ’06. Proceedings, 1:1–6, March 2006. 43, 82

[124] J V, F L, G G, P S, J-P D.
A co-design approach for embedded system modeling and code generation with UML and MARTE.
In Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE ’09., pages 226–231, April
2009. 38

[125] A. V, T. S, O. B, W. R. Formal performance analysis and
simulation of UML/SysML models for esl design. Design, Automation and Test in Europe, 2006. DATE
’06. Proceedings, 1:1–6, March 2006. 32

[126] W V, K H, G B, SJ P. Model checking pro-
grams. In ASE 2000: Proceedings of the 15th IEEE international conference on Automated software
engineering, page 3, Washington, DC, USA, 2000. IEEE Computer Society. 33

[127] V Ž HM. Compiled hw/sw co-simulation. In DAC ’96: Proceedings of
the 33rd annual Design Automation Conference, pages 690–695, New York, NY, USA, 1996. ACM. 44

[128] Z. W, K. L, A. H. An approach to improve accuracy of source-level TLMs
of embedded software. Design, Automation and Test in Europe, 2011. DATE ’11. Proceedings, 1:1–6,
March 2011. 15, 44

[129] M. W, L. A, R. A-B, S. C, R. P. Abstract application
modeling for system Design Space Exploration. Digital System Design: Architectures, Methods and
Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, pages 331–337, 0-0 2006. 7

[130] A. W, M. D, R. L, G. A, H. M, T. K, G. B, A. N.
System level processor/communication co-exploration methodology for multiprocessor system-on-
chip platforms. Computers and Digital Techniques, IEE Proceedings -, 152[1]:3–11, Jan. 2005. 8, 38

[131] T. W, A. H, R. O. Performance evaluation for system-on-chip architec-
tures using trace-based transaction level simulation. 1, pages 1–6, March 2006. 40

[132] M W, D C. P, D B. P, H S, T I, J
M. Performance by unified model analysis (puma). In WOSP ’05: Proceedings of the
5th international workshop on Software and performance, pages 1–12, New York, NY, USA, 2005. ACM.
34

[133] X Z SM. A hierarchical modeling framework for on-chip communication
architectures of multiprocessing SoCs. ACM Trans. Des. Autom. Electron. Syst., 12[1]:6, 2007. 8, 42

185

