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Summary

An important emerging topic in satellite image content extraction and classification
is building retrieval systems that automatically learn high-level semantic interpreta-
tions from images, possibly under the direct supervision of the user. Indeed, because
of the increased resolution of sensors, the content of satellite images has diversified
enormously: it is not uncommon to see details such as cars, streets, technological
artefacts, and sometimes people. Thus, retrieval techniques developed initially for
multimedia databases are becoming increasingly more relevant to mining data from
Earth Observation repositories. The goal of these techniques is to discover new and
unexpected patterns, trends, and relationships embedded within large and diverse ge-
ographic data sets. Manual annotation is sometimes employed, but is extremely ex-
pensive and often subjective. Instead, systems which allow to perform visual content
mining from large-scale image databases as well as indexing of high-dimensional da-
tabase for fast relevant imagery retrieval have been proposed over the past few years.
The main contributions of this work are inscribed in the direct continuation of the
ideas developed in these systems. We envisage successively the two very broad cat-
egories of auto-annotation systems and interactive image search engine to propose
our own solutions to the recurring problem of learning from small and non-exhaustive
training datasets and of generalizing over a very high-volume of unlabeled data. We
first look into the problem of exploiting the huge volume of unlabeled data to discover
“unknown” semantic structures, that is, semantic classes which are not represented
in the training dataset. We among others propose a semi-supervised algorithm able
to build an auto-annotation model over non-exhaustive training datasets and to point
out to the user new interesting semantic structures in the purpose of guiding him in
his database exploration task. In our second contribution, we envisage the problem of
speeding up the learning in interactive image search engines. Minimizing the number
of iterations in the relevance feedback loop is indeed a crucial issue to build systems
which are well-adapted to a human user. With this purpose in mind, we derive a semi-
supervised active learning algorithm which exploits the intrinsic data distribution to
achieve faster identification of the target category. Our last contribution deals with
the problem of retrieving objects in large satellite image scenes. We describe an active
learning algorithm which relies on a coarse-to-fine strategy to handle large volumes of
data while keeping a satisfying level of accuracy. The proposed algorithm leads to a re-
duction by more than two orders of magnitude in the number computations necessary
at each active learning iteration in standard state-of-the-art interactive image retrieval
tools which do not allow to search for complex classes/objects in a really interactive
way because of the computational overload inherent to multiple evaluations of the de-
cision function of complex classifiers. We assess each time our results on Spot5 and
QuickBird panchromatic imagery and we show that the methods we propose signif-
icantly outperform state-of-the-art techniques while adding interesting new features
such as the “unknown” semantic structures discovery feature in the auto-annotation
case or the interactive search scheme in the object retrieval part.
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Chapter 1

Résumé français

1.1 Introduction

Cette thèse débutée en octobre 2008 a été effectuée sous la direction de Mihai Datcu et
la co-supervision Marin Ferecatu au sein du centre de compétence pour l’extraction
d’informations d’images de télédétection (Competence Center on Information and
Image Understanding (COC)).

1.2 Contexte

Le traitement des images de télédétection a reçu ces dernières années une attention
accrue du fait notamment de l’augmentation du nombre et de la résolution des instru-
ments d’observation de la Terre. Avec l’apparition de capteurs de résolution métriques,
les contenus informationnels des images se diversifient énormément et l’accroissement
des capacités d’archivage permet de stocker de plus en plus d’images. Dans ce con-
texte, la nécessité de recourir à des systèmes d’indexation automatique d’images se
fait nettement sentir car il n’est plus possible d’analyser toutes les images manuelle-
ment. Il existe donc un important travail de recherche dans lequel s’inscrit cette thèse
pour développer des outils capables de remplacer un opérateur humain au niveau des
tÃćches d’analyse et d’indexation des bases d’images satellitaires.

1.3 Objectifs

Le but des systèmes de recherche d’images est de diriger rapidement l’utilisateur vers
des contenus qui sont pertinents par rapport à la requête qu’il a formulée. Après une
présentation de la problématique et un état d’art du domaine, cette thèse présente
nos contributions dans le cadre de l’apprentissage avec très peu d’exemples qui est
propre à l’imagerie satellitaire. Ces contributions se situent principalement autour
de l’utilisation de méthodes semi-supervisées pour exploiter l’information contenue
dans les données non-labellisées et pallier en quelque sorte la faiblesse et la non-
exhaustivité des bases d’apprentissage. Nous présentons deux scénarios d’utilisation
de méthodes semi-supervisées. Le premier se place dans le cadre d’un système d’annotation
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Figure 1.1: Images panchromatiques QuickBird à une résolution de 61cm
©DigitalGlobe

Figure 1.2: Images panchromatiques SPOT5 à une résolution de 2.5m ©CNES

automatique d’images. Le but est alors de détecter les structures inconnues, c’est à
dire les ensembles cohérents de données qui ne sont pas représentées dans la base
d’apprentissage et ainsi de guider l’utilisateur dans son exploration de la base. Le
second scénario concerne les systèmes de recherche interactive d’images. L’idée est
d’exploiter une structuration des données, sous la forme d’un clustering par exem-
ple, pour accélérer l’apprentissage (i.e. minimiser le nombre d’itérations de feedback)
dans le cadre d’un système avec boucle de pertinence. La nouveauté de nos contri-
butions se situe autour du fait que la plupart des méthodes semi-supervisées ne per-



11

mettent pas de travailler avec de gros volumes de données comme on en rencontre
en imagerie satellitaire ou alors ne sont pas temps-réel ce qui est problématique dans
un système avec retour de pertinence où la fluidité des interactions avec l’utilisateur
est à privilégier. Un autre problème qui justifie nos contributions est le fait que la
plupart des méthodes semi-supervisées font l’hypothèse que la distribution des don-
nées labellisées suit la distribution des données non labellisées, hypothèse qui n’est
pas vérifiée dans notre cas du fait de la non-exhaustivité des bases d’apprentissage et
donc de l’existence de structures inconnues au niveau des données non labellisées. La
dernière partie de cette thèse concerne un système de recherche d’objets à l’intérieur
d’un schéma de type apprentissage actif. Une stratégie de type "coarse-to-fine" est in-
troduite pour autoriser l’analyse de la base d’images à une taille de patch beaucoup
plus "fine" tout en maintenant un nombre raisonnable d’évaluations de la fonction de
décision du classificateur utilisé à chaque itération de la boucle d’apprentissage actif.
L’idée est d’ élaguer de grandes parties de la base de données à une échelle d’analyse
dite “grossière”, afin de réserver un traitement plus complexe et plus coÃżteux sur des
zones restreintes et plus prometteuses des images.

Ce document est divisé en quatre parties. Les trois parties qui suivent donnent
un aperçu de nos trois contributions. Le lecteur est invité est invité à se référer au
manuscrit de thèse pour une description plus complète des solutions proposées. La
quatrième et dernière partie regroupe les conclusions et quelques perspectives et présente
le synopsis d’un système global unifiant nos trois contributions.

1.4 Méthodes semi-supervisées pour l’annotation automa-
tique d’images et la découverte de structures séman-
tiques inconnues

1.4.1 Description de la méthode

Dans cette partie nous décrivons un système d’annotation automatique d’images fonc-
tionnant avec une base d’apprentissage non-exhaustive. L’idée de non-exhaustivité
est fondamentale en imagerie satellitaire où il est pour ainsi dire impossible de con-
struire une base d’apprentissage résumant toutes les structures présentes à l’intérieur
des images. En d’autres termes, il existe de nombreuses classes sémantiques pour
lesquelles on ne possède pas d’exemple d’apprentissage. Dans la suite, nous pro-
posons une méthode semi-supervisée qui permet d’étendre le processus d’annotation
aux classes sémantiques inconnues avec des labels automatiques de type “classe in-
connue 1”, “classe inconnue 2” . . . Le principe n’est pas d’apporter une sémantique
aux classes inconnues mais de les identifier en vue d’une annotation ultérieure par
l’utilisateur. L’idée est donc de guider l’utilisateur dans sa tÃćche d’exploration de la
base et de l’orienter vers les structures non encore explorées. Un autre avantage lié
à l’utilisation d’une méthode semi-supervisée réside dans la qualité des estimateurs
statistiques obtenus: du fait de l’utilisation des données non labellisées, les méthodes
d’estimation utilisées ne sont pas sujettes au “small sample size problem” Shahsha-
hani and Landgrebe [1994] qui intervient dans les problèmes d’estimation statistique
où le nombre de paramètres à estimer est du même ordre de grandeur que le nombre
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d’échantillons d’apprentissage.

Data 
acquisition

Feature 
extraction

Learning model 
parameters

Extending 
annotations 
to the rest 

of the database

Image
data

Feature
data

Training
data

(labeled)

Rest of the 
database
(unlabeled

data)

Figure 1.3: Architecture générique de système pour effectuer l’annotation automa-
tique de bases d’images satellitaires. La première étape consiste à extraire des descrip-
teurs des images. Une base d’apprentissage constituée d’images annotées est ensuite
utilisée pour calculer les paramètres du modèle d’annotation. Ce modèle est ensuite
réutilisé pour étendre les annotations au reste de la base d’images.

La figure 1.3 résume les différentes étapes suivies pour extraire le modèle des don-
nées complètes (labellisées et non labellisées). On commence par extraire le mod-
èle M correspondant à la partie connue des données en utilisant uniquement la base
d’apprentissage (qui, par définition, contient des exemples de toutes les classes sé-
mantiques présentes dans la partie connue du modèle: sur le diagramme de la figure
1.3, il s’agit des classes “zones urbaines”, “déserts”, “forêts” et “champs”). Le modèle
M est ensuite réutilisé pour estimer le modèle complet des données. étant donné que
la partie non labellisée des données contient à la fois des classes sémantiques con-
nues et inconnues, nous l’utilisons pour apprendre le modèle M̄ correspondant aux
classes sémantiques inconnues. On exploite la connaissance du modèle M des classes
sémantiques connues pour déterminer lesquels des échantillons de la base appartien-
nent aux classes sémantiques inconnues. Ces échantillons sont ensuite utilisés pour
apprendre la deuxième partie M̄ du modèle et les échantillons non labellisés restant
sont ajoutés aux échantillons labellisés pour améliorer l’estimation des paramètres du
modèle M .

Notre modèle est similaire par nature au modèle LDA. On part de mots visuels
(les attributs primitifs extraits des images dans notre cas) que l’on associe aux con-
cepts sémantiques de haut niveau en utilisant des variables intermédiaires latentes
qui sont dans notre cas des composantes d’un mélange de Gaussiennes définies sur
l’espace des attributs primitifs. Les composantes du modèle de mélange ne sont donc
pas estimées directement sur les données mais sont “déduites” à l’instar des modèles
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Figure 1.4: Synopsis des différentes étapes suivies pour extraire le modèle complet des
données (i.e. le modèle des données labellisées et non-labellisées)

à variables latentes à partir des associations entre concepts sémantiques et attributs
primitifs dans la base d’apprentissage. Ainsi chaque concept sémantique est défini par
plusieurs composantes du modèle de mélange. Plus précisément, un concept séman-
tique sera représenté par un vecteur de probabilités caractérisant la probabilité qu’a le
concept d’être associé à chaque composante du mélange. Cette idée est illustré par le
diagramme de la figure 1.5. Les concepts sémantiques utilisés pour l’annotation sont
appelés des concepts atomiques: on fait en effet l’hypothèse qu’il s’agit de concepts
peu subjectifs qui ont des interprétations relativement similaires suivant les utilisa-
teurs.
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Figure 1.5: Modèle à variables latentes. Chaque variable observée, i.e. chaque concept atomique ai

est expliqué par une ou plusieurs composantes gaussiennes latentes cl .

Pour les développements techniques et algorithmiques, le lecteur est invité à se
référer au chapitre 5 du manuscrit. La partie qui suit donne un aperçu de quelques
résultats obtenus sur une base d’images satellitaires SPOT5.
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Figure 1.6: Exemples d’images de la base d’apprentissage annotées à l’aide des trois
concepts: “champs”, “zones urbaines” et “nuages”

1.4.2 Exemple d’annotation automatique sur des images SPOT5

Nous avons testé notre système d’annotation automatique et de recherche de classes
sémantiques inconnues sur une base d’images SPOT5 panchromatiques à 2.5 mètres
de résolution. La base de test utilisée est composée de 64 images 3000×3000 fournies
par le CNES 1. Nous avons découpé chaque image en patchs plus petits de taille 64×64.
Chaque patch est ensuite subdivisé en 4 "sous-patchs" sur lesquels sont extraits les
vecteurs d’attributs primitifs qui sont une combinaison d’attributs de texture (attributs
d’Haralick et filtres miroirs en quadrature) avec des attributs de couleur (histogrammes
pondérés de niveaux de gris). Une réduction de dimensionnalité est effectuée à l’aide
d’une analyse en composantes principales sur les attributs de texture et de couleur
pris séparément. La base d’apprentissage que nous utilisons est constituée de 600 im-
ages 64×64 prises en dehors de la base de test. Trois concepts atomiques sont utilisés
pour annoter ces images: “champs”, “zones urbaines” et “nuages”. La figure 1.6 mon-
tre des exemples d’images annotées prises dans la base d’apprentissage. Les images
représentées sont relativement “pures”, c’est à dire qu’un seul concept est générale-
ment suffisant pour annoter ces images mais la base d’apprentissage utilisée comporte
également des images annotées à l’aide de plusieurs concepts atomiques (par exem-
ple, une image occupée partiellement par une zone urbaine et partiellement par des
champs).

Pour appliquer notre procédure d’annotation, nous avons besoin d’une estimation
du nombre de composantes du modèle de mélange à la fois pour les parties connues
et inconnues du modèle. Nous avons utilisé un critère de type BIC (Bayesian Infor-
mation Criterion) McQuarrie and Tsai [1998]. Les images de la figure 1.7 représen-
tent les cartes a posteriori, c’est à dire les images obtenues en attribuant à chaque
patch la classe a j = argmaxai p(ai |Img ). Pour évaluer les performances de notre al-
gorithme, nous nous sommes comparés à un algorithme SVM semi-supervisé pro-
posé par Bruzzone et Al. Bruzzone et al. [2006]. Nous avons calculé dans chaque cas
des matrices de confusion en assimilant les concepts les plus probables à des labels
de classe (notre algorithme fournit en effet des résultats sous forme de vecteurs de
probabilités qui sont inadaptés pour une évaluation à l’aide de matrices de confu-
sion). Cinq structures inconnues ont été identifiées auxquelles on peut attribuer les
étiquettes suivantes: zones montagneuses, zones boisées, désert, mer et structures

1Centre National d’études Spatiales
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(a)

annotations

vérité zones urbaines champs nuages

zones urbaines 0.69 0.21 0.1

champs 0.22 0.68 0.1

nuages 0.04 0.16 0.8

(b)

annotations

vérité zones urbaines champs nuages

zones urbaines 0.74 0.17 0.09

champs 0.15 0.77 0.08

nuages 0.03 0.11 0.86

(c)

annotations

vérité zones urbaines champs nuages désert mer

zones urbaines 0.79 0.07 0.05 0.06 0.03

champs 0.05 0.81 0.02 0.09 0.03

nuages 0.01 0.12 0.8 0.07 0

désert 0.06 0.13 0 0.78 0.03

mer 0.02 0.02 0.03 0.01 0.92

Table 1.1: Matrices de confusion. Table I(a): cas supervisé (obtenu en utilisant
l’algorithme présenté dans la section 5.2.1 du manuscrit de thèse); Table I(b): SVM
semi-supervisé; Table I(c): cas semi-supervisé avec détection de structures inconnues.

urbaines (notamment aéroports et ports). Il est bien entendu que les étiquettes des
classes inconnues sont établies a posteriori par l’utilisateur, notre algorithme, lui, ne
leur attribue que des labels automatiques sous la forme “classe inconnue 1, 2” . . . .
Nous avons retenu les deux classes inconnues les plus représentées dans notre base de
test (désert et mer) et nous les avons intégrées dans la troisième matrice de confusion
qui illustre les performances de notre algorithme de détection de classes inconnues.
On remarque que les performances sont supérieures à celles du SVM semi-supervisé
pour les classes “zones urbaines” et “champs” mais pas pour la classe “nuages”. Cela
vient du fait que cette classe est presque monomodale du point de vie signal est donc
qu’elle possède une bonne représentation au niveau de la base d’apprentissage. Dans
ce cas de figure, les méthodes discriminantes comme les SVMs fonctionnent toujours
mieux qu’un modèle génératif. Une des hypothèses principales sur lesquelles reposent
les techniques SVMs, en effet, est que la distribution des données à l’intérieur de la
base d’apprentissage reflète celle des données non labellisées ce qui est souvent le
cas lorsque les classes sont monomodales. Par contre, dans le cas de classes multi-
modales, il peut arriver qu’il y ait des modes non représentés au niveau de la base
d’apprentissage. C’est ce qui se produit notamment pour les classes "champs" et "zones
urbaines". Les modes non représentés peuvent alors perturber l’apprentissage du SVM
transductif en agissant comme du bruit lors de l’apprentissage du classificateur, c’est
d’ailleurs un des problèmes principaux auxquels est sujet ce genre de méthode.

La partie suivante présente l’utilisation d’une méthode semi-supervisée dans la
cadre d’un système de recherche interactive d’images. L’annotation automatique te la
recherche interactive d’images sont en effet deux paradigmes qui peuvent être envis-
agés dans une optique complémentaire. Un des inconvénients majeurs des systèmes
d’auto-annotation est en effet la nécessité d’avoir une base d’apprentissage annotée
ce qui constitue une limitation en terme de diversité des requêtes possibles car ces
dernières sont spécifiées à l’aide des mots du vocabulaire utilisé pour annoter les im-
ages dans la base d’apprentissage. C’est pour pallier ce problème que les systèmes de
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Figure 1.7: Cartes a posteriori obtenues en appliquant notre algorithme sur deux im-
ages SPOT5 panchromatiques: les différentes couleurs correspondent aux concepts
atomiques avec la probabilité a posteriori la plus haute. Les concepts représentés ici
sont: "zones urbaines" (en bleu), "champs" (en vert), "nuages" (en rouge grenat). Cinq
structures inconnues ont été détectées correspondant respectivement à des zones
montagneuses (en gris foncé sur l’image en haut au milieu), des zones boisées (en vert
kaki sur les trois images du haut), des zones désertiques (en rose sur l’image en bas
au milieu), de la mer (en marron-orangé sur l’image en bas à droite) et des structures
urbaines (en violet sur l’image en bas à droite).

Figure 1.8: Détails des cartes a posteriori obtenues
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recherche interactive d’images ont été mis au point. La requête y est spécifiée à l’aide
d’une image exemple ("query by content") ce qui autorise a priori un nombre infini
de requêtes possibles et permet à l’utilisateur de spécifier de manière naturelle et très
précise ce qu’il recherche.

1.5 Intégration des données non-labellisées dans le cadre
de la recherche interactive d’images

1.5.1 Description de la méthode

Dans ce chapitre, nous proposons une méthode d’apprentissage actif semi-supervisée
qui se distingue des méthodes précédentes par sa capacité à gérer de gros volumes de
données et sa facilité d’intégration dans un schéma d’apprentissage actif. Les données
non-labellisées sont exploitées par l’intermédiaire d’une structuration de l’espace des
données sous forme de clustering. Le schéma de la figure 1.9 présente un "synopsis"
complet du système: l’utilisateur commence par pointer les prototypes des clusters
qu’il juge pertinents par rapport à sa requête. Une fois cette phase d’initialisation ef-
fectuée, l’apprentissage se fait à l’intérieur d’une boucle d’apprentissage actif. Le but
de la boucle est de construire itérativement une surface SVM approximant la catégorie
recherchée par l’utilisateur. Pour ce faire, un SVM modifié permettant de travailler di-
rectement au niveau des clusters est défini. Le repositionnement de la surface SVM
à chaque itération de la boucle se fait en ajustant de manière itérative les enveloppes
convexes des clusters à partir du feedback de l’utilisateur et en ré-entraÃőnant le SVM
modifié avec les nouvelles enveloppes. L’utilisateur se contente de donner un feedback
sur des points précis appelés points critiques qui sont (re)définis à chaque itération
comme les points des clusters les plus proches de la surface SVM courante.

Un concept alternatif permettant à l’utilisateur d’introduire progressivement au
cours de l’apprentissage les clusters dont il juge les prototypes pertinents par rapport
à sa requête est aussi présenté dans le chapitre 6 (cf. section 6.3.2). Le diagramme de
la figure 1.10 présente un synopsis de ce système.

Le lecteur est invité à se référer au chapitre 6 du manuscrit pour les développe-
ments théoriques et algorithmiques associés à la méthode.

1.5.2 Validation expérimentale

Nous avons réalisé nos tests sur une base d’images satellite haute résolution Quick-
Bird. Il s’agit d’images panchromatiques avec une résolution au sol de 61cm représen-
tant des survols d’Acapulco, Las Vegas, Los Angeles, Londres et Ouagadougou. Nous
avons 10 images de tailles approximatives 30000x30000. Nous extrayons des descrip-
teurs à l’intérieur d’une fenêtre glissante de taille 200x200 que nous promenons sur
toute l’image en la décalant d’un pas égal à la moitié de la fenêtre à chaque fois. Ainsi
pour une image 30000x30000, nous obtenons environ 90000 vecteurs descripteurs ce
qui fait une base de données contenant approximativement 900000 points (le terme
"point" faisant référence aux vecteurs descripteurs).
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3: Readjustment of convex hulls

New (readjusted) convex hulls

Previous convex hulls

Current SVM surface

2: User/system interaction

Critical points

4: Training of the new SVM model

Critical points of S

Critical points of S

New SVM surface

The user is asked to mark the 
relevant component prototypes

1: Initialization step

Figure 1.9: Synopsis du système complet.

Les diagrammes de la figure Fig. 1.11 représentent la précision, le rappel et le nom-
bre de vecteurs supports du classificateur SVM courant en fonction du nombre d’itérations
dans la boucle d’apprentissage actif. Nous voyons qu’avec notre méthode, nous ar-
rivons beaucoup plus vite à saturation en terme d’apprentissage, c’est à dire que nous
avons besoin de beaucoup moins d’itérations que la méthode dite "baseline" dans la
boucle d’apprentissage actif pour arriver à classificateur qui n’évolue plus en terme de
précision et de rappel.

1.6 Apprentissage actif en cascade pour la détection d’objets
dans des bases d’image satellites haute résolution

1.6.1 Description de la méthode

Le lecteur est invité à se référer au chapitre 7 du manuscrit pour les développements
théoriques et algorithmiques associés à la méthode dont nous donnons un aperçu ci-
dessous.

La méthode que nous développons dans cette partie a pour objectif d’effectuer de
la détection d’objets à l’intérieur d’un schéma de type apprentissage actif dans des
bases d’images satellites haute résolution. L’avantage du schéma interactif est de per-
mettre à l’utilisateur de rechercher tout objet qu’il juge intéressant et pas seulement
les objets qui sont répertoriés dans la base d’apprentissage (qui est inexistante dans
notre cas). La principale difficulté qui émerge est de maintenir un temps de calcul
raisonnable entre chaque itération d’apprentissage actif afin de garder une interaction
utilisateur-système relativement fluide. Nous proposons une stratégie multi-échelle
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New (re-adjusted) convex hulls

Previous convex hulls

Current SVM surface

2: Readjustment of convex hulls

New SVM surface

4: Training of the new SVM model

Prototypes of new components

Critical Points

1: User/system interaction

3: Computation of component member-
ships

Current SVM model
A priori structure 

of data

Component  memberships

New convex hulls

Component memberships

New tagged components

New SVM modelComponent-based 
fuzzy SVM

4: Training of the new SVM model (detailed diagram)

Figure 1.10: Concept proposé pour l’apprentissage "online" des composantes de
mélange pertinentes par rapport à la requête utilisateur.
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Figure 1.11: QuickBird dataset: comparaison en terme de précision (Fig. (a), (b), (c),
(d), (e), (f), (g)), rappel (Fig. (h), (i), (j), (k), (l), (m), (n)) et nombre de vecteurs supports
(Fig. (o), (p), (q), (r), (s), (t), (u)) de notre méthode (courbe verte) avec une "baseline"
(courbe noire) pour six classes sémantiques. L’axe des abscisses représente le nom-
bre d’itérations d’apprentissage actif. Les courbes rouges représentent les différences
moyennes de performance entre les deux méthodes sur les six classes.
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de type "coarse-to-fine" implémentée sous la forme d’une cascade de classificateurs
qui opèrent sur des tailles de patches de plus en plus petites. Le but de cette stratégie
est de maintenir un nombre raisonnable de patches à chaque niveau de la hiérarchie
afin de préserver la fluidité des interactions système / utilisateur au sein du proces-
sus d’apprentissage actif. En diminuant la taille du patch utilisé pour l’analyse, on
provoque effectivement une explosion du nombre de patches à traiter: il est par con-
séquent nécessaire d’incorporer une stratégie visant à élaguer certaines parties de la
base pour maintenir un nombre raisonnable d’évaluations de la fonction de décision
du classificateur utilisé (un classificateur SVM dans notre cas) à chaque échelle. La
figure 1.12 présente un résumé de cette idée.

T
L

C
L

T
L  - 1

C
L  - 1

F
T

T
T

L  - 2

F

C
L  - 2

Active learning loop

Figure 1.12: Représentation de la stratégie "coarse-to-fine" sous la forme d’une cas-
cade de classificateurs. Le processus interactif est effectué de manière descendante
à partir du haut de la cascade: on commence par construire le classificateur CL à
l’échelle L. L’ensemble TL−1 est défini comme l’ensemble de patches de EL−1 qui inter-
sectent avec les patches classifiés positivement au sein de l’ensemble TL . Cette procé-
dure est répétée à chaque niveau de la cascade. Les classificateurs Cl sont construits
en utilisant un processus d’apprentissage actif impliquant l’utilisateur.

1.6.2 Résultats

Nous utilisons pour les tests la base d’image QuickBird décrite dans la section 1.5.2 et
dix classes d’objets présents dans les images (cf. figure 1.13). Nous nous comparons à
une baseline décrite dans Ferecatu and Boujemaa [2007] qui opère à l’échelle la plus
fine.

Nous voyons que notre méthode (courbes bleues) conduit à beaucoup moins d’évaluations
de la fonction de décision du classificateur que la baseline SVMbasel i ne (courbes vertes):
sur la figure 1.14(a), nous voyons qu’il y a une différence d’environ deux ordres de
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Figure 1.13: Exemples d’objets appartenant aux dix classes cibles utilisées pour les
tests.

magnitude en moyenne. Les courbes des figures 1.14(b) et 1.14(c) représentent re-
spectivement la précision et le rappel moyennés sur les dix classes à chaque itéra-
tion d’apprentissage actif. Notre méthode a des performances moyennes légèrement
meilleures en terme de précision et le rappel est approximativement le même à la fin
du processus d’apprentissage actif.

1.7 Conclusion

Nos contributions concernent trois aspects des systèmes de recherche d’image par
analyse du contenu. Le premier est l’utilisation de méthodes semi-supervisées pour
guider l’utilisateur dans son exploration de la base et l’orienter vers des structures non
encore étiquetées et susceptibles de l’intéresser. Ce système repose sur l’existence
d’une base d’apprentissage : un premier modèle des données labellisées est extrait
et ensuite réutilisé pour apprendre un modèle complet des données labellisées et non-
labellisées. Les structures sémantiques inconnues figurant dans les données non-labellisées
sont annotées ‘a l’aide de labels automatiques en vue d’être identifiées ensuite par
l’utilisateur. Notre approche donne des résultats légèrement supérieurs à un SVM
semi-supervisé dans le cas d’une base d’apprentissage très peu exhaustive. Elle pos-
sède en outre certains avantages intrinsèques comme la possibilité d’utiliser des ex-
emples d’apprentissage possédant plusieurs annotations et celles d’identifier les struc-
tures inconnues dans les données.

Le deuxième aspect concerne l’utilisation des données non-labellisées pour ac-
célérer l’apprentissage dans un système de recherche interactive d’images. Nous avons
proposé une méthode basée sur une structuration de l’espace sous forme de cluster-
ing. L’idée est de travailler avec une granularité de l’espace plus élevée afin de position-
ner très rapidement une surface SVM approximative. Nous avons également proposé
une méthode de "raffinement" de cette surface basé sur l’ajustement interactif des en-
veloppes convexes des clusters. Les résultats obtenu sont prometteurs notamment en
ce qui concerne la vitesse d’apprentissage : en moyenne, beaucoup moins d’itérations
sont nécessaires à l’intérieur du processus d’apprentissage actif pour arriver à une ap-
proximation raisonnable du concept recherché par l’utilisateur. Le classificateur SVM
que nous obtenons est aussi moins complexe en terme de nombre de vecteurs de sup-
port que celui obtenu avec la méthode classique proposée par Chang et Al. ce qui nous
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laisse penser qu’il possède de meilleures capacités de généralisation (mais ceci reste
à vérifier). Notre méthode intègre enfin certains des avantages des méthodes semi-
supervisées comme l’exploitation des données non-labellisées sans les principaux in-
convénients que sont le temps de calcul et l’occupation mémoire.

Le troisième aspect concerne la recherche d’objets dans les images en utilisant
une approche de type apprentissage actif afin de pallier deux inconvénients majeurs
des méthodes classiques de détection d’objets que sont la constitution d’une base
d’apprentissage représentative pour les catégories d’objets que l’on souhaite rechercher
et la limitation inhérente en terme de diversité des objets que l’on peut détecter. Notre
approche présente des résultats concluant en terme de réduction du coÃżt calcula-
toire (à peu près deux ordres de magnitudes par rapport à la méthode dite "baseline")
mais ne propose pas de solution concernant certains l’ajustement des paramètres du
modèle comme le nombre d’itérations d’apprentissage actif nécessaires et la taille de
patch utilisée à chaque échelle. Une perspective intéressante serait d’apprendre ces
paramètres automatiquement en utilisant également le retour de l’utilisateur.

Nous avons envisagé de réunir nos différentes contributions à l’intérieur d’un sys-
tème mixte combinant les avantages respectifs des systèmes d’annotation automa-
tique et des systèmes de recherche interactive. L’idée serait d’avoir une approche per-
mettant d’étendre les annotations de la partie connue de la base tout en autorisant
la définition de nouvelles catégories via une boucle d’apprentissage interactif. Cela
permettrait de définir un système complet d’exploration incrémentale de la base de
données qui, à chaque session d’utilisation, incorpore dans le modèle d’annotation les
nouvelles catégories définies par l’utilisateur via la composante de recherche interac-
tive. Le diagramme de la figure 1.15 présente le synopsis d’un tel système.
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Figure 1.14: (a): Nombre moyen d’évaluation de la fonction de décision du clas-
sificateur SVM à chaque itération d’apprentissage actif. (b) et (c): précision et rap-
pel moyennés sur les 10 classes en fonction du nombre d’itérations dans la boucle
d’apprentissage actif. Les courbes bleues représentent les résultats obtenus avec notre
méthode et les courbes vertes les résultats obtenus avec SVMbasel i ne .
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Figure 1.15: Synopsis d’un système général de fouille de données dans des bases
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active de catégories / objets.
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Chapter 2

Introduction

With the diversification of human activities in the multimedia domain and the tech-
nological progresses made in image acquisition devices, very large volumes of image
data have become available, making obvious the need for efficient tools and methods
to organize multimedia contents and ensure quick access to them. This problem is par-
ticularly sensitive in the Remote Sensing (RS) domain which is our main case of study
though the methods we describe in this work could apply to a wider range of datatypes
in the multimedia area. The last few years have indeed witnessed an increase in both
the number and the resolution of Earth Observation (EO) imaging sensors, causing in
turn the volume and the information content of EO image databases to grow exponen-
tially during this period. In this context, it has quickly become an impracticable task
for a human operator to extract manually relevant information from such databases
and above all to search them exhaustively. Thus, techniques to automatically index
and retrieve the information of interest have begun to emerge.

In the upcoming section, we describe the overall context associated with the ac-
quisition and the treatment of remote sensing data. We then present an overview of
remote sensor types and we mention several research topics which are considered as
mainstreams by the remote sensing community. We conclude this part by positioning
our contributions within these research topics.

2.1 Overall context of our work

As a result of the recent advances in sensor as well as in platform technologies, Earth
Observation (EO) sensors onboard satellite platforms have been collecting increasingly
large volumes of geospatial data over the past decades, principally remotely sensed im-
agery. Moreover, many countries have launched Earth Observation satellites, making
available a large number as well as a wide variety of sensors. The geospatial domain
has thus reached a point where the amount of collected EO data to manage grows by
several terabytes per day. In this context, national space agencies and private entities
around the world have been assigned the task of collecting, archiving, processing, dis-
seminating and envisaging applications to the geospatial data coming from the satel-
lites. Along with this, the information systems for Earth Observation have experienced
major changes: the progresses in computer and information technologies in recent
years have allowed the data to be more readily accessible through the internet and



28 2. INTRODUCTION

many data centers have installed data servers allowing (controlled) web-based access
to their data repositories. The apparition of such online data servers for the sharing
and interoperability of geospatial data has in turn opened the way to the setting-up
of various services and applications. The rising question is now how to use effec-
tively the huge amount of geospatial data in applications. To be useful, the EO data
must indeed be preprocessed to extract application-relevant information and knowl-
edge. Traditional geographic information systems (GIS) used to rely on trained human
experts for the information extraction and knowledge discovery components, render-
ing applications highly dependent on the availability of such experts. But the growing
amount of GIS data available has rendered manual analysis an out-of-date and nearly
impracticable technique. It has thus become an urgent research area to which this
thesis is a modest contribution to evolve systems able to convert geospatial data into
user/application specific knowledge. Such knowledge building systems can then be
used to provide geospatial knowledge services for a wide range of applications. In this
work, we focus on the problem of knowledge extraction from high-volume satellite im-
age databases, letting aside the additional information which comes with the images
in the GIS data.

2.1.1 Remote sensing imaging sensors and data acquisition techniques

Remote sensors are devices which acquire measurements of the earth surface. They are
divided into three categories depending on the platform they are installed on: satellite,
airborne and ground-based sensors. In the following, we focus on sensors onboard
polar-orbiting Earth Observation satellites. These sensors provide a global coverage
of the earth surface with varying revisit frequencies. They can be classified according
to the number and the frequency range of the bands they can detect. We can roughly
distinguish among the following categories:

• Panchromatic sensors cover a continuous range of bands in the visible or near
infrared light spectrum.

• Multispectral sensors cover simultaneously several distinct bands with generally
quite large spectral bandwidths.

• Hyperspectral sensors cover spectral bands which are much narrower than those
covered by multispectral sensors. They allow the recording of several hundreds
of bands at the same time leading to a much greater spectral resolution than in
the multispectral case.

• Synthetic Aperture Radar (SAR) sensors

In our case, we principally dealt with panchromatic imagery provided by meter-
and half-a-meter-resolution sensors. Among meter-resolution optical imaging sen-
sors, we can mention SPOT5 which possesses a resolution of 2.5 meter in panchro-
matic mode and 4 spectral bands with a resolution of 10 meters each. This satellite
was launched with the purpose of performing environmental monitoring tasks such as
detecting and forecasting phenomena involving climatology and oceanography, mon-
itoring human activities such as deforestation and urban expansion ... Recent years
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Figure 2.1: Images centered on the same spot with three different resolutions. From
left to right: 2m, 1m and 60cm.

have seen the emergence of sensors with sub-metric resolutions: this is the case of
QuickBird for instance which provides a panchromatic mode with a ground resolution
of 60 centimeters and a multispectral mode consisting of four bands at a resolution of
2.4 meters. At this resolution, man-made structures such as buildings or even houses
are easily visible, making the image interpretation task even more complex due to the
increased semantic content, that is, the fact that the number of semantic classes ob-
servable in the images is potentially much higher. Ikonos and WorldViews 1 and 2 are
other examples of sub-metric sensors collecting both panchromatic and multispectral
imagery. The images in the figure 2.1 represent the same ground portion taken by dif-
ferent sensors of increasing resolutions (we start with a resolution of 2 meters on the
left and we go up to a resolution of 60 cm on the right). It gives an idea of how image se-
mantics “behave” as the resolution increases: on the left image, we only observe urban
structures whereas on the middle image, we clearly see vehicles and on the right im-
age, we begin to distinguish people. Assessing automatically the semantic content of
an image, i.e., estimating the number of semantic classes it contains is an open ques-
tion which is still under investigation by many researchers.

The figures 2.2 and 2.3 show samples of respectively 60cm resolution panchromatic
QuickBird images and 2.5m resolution panchromatic SPOT5 images. The semantic di-
versity we can observe in the images is decupled by the huge amount of data collected
every day. To mention several characteristics of QuickBird, it possesses an onboard
storage capacity of 128GB which is used to store about 57 scenes of size 30000×30000
per orbit, the orbital period lasting about 90 minutes. The acquired image data are
indexed with their geographic position but with no semantic information, which is a
big difference compared to multimedia databases that are most of the time (especially
images coming from the internet) indexed semantically.

2.1.2 Research topics related to remote sensing and overview of the
contributions

Research areas in remote sensing include standard topics in image interpretation, in-
formation mining and dynamic modeling. The first category covers generic domains
such as remote sensing image classification, data/information fusion and change de-
tection. The second one includes topics such as query by example and more generic
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Figure 2.2: Panchromatic QuickBird images at a resolution of 61cm ©DigitalGlobe

Figure 2.3: Panchromatic SPOT5 images at a resolution of 2.5m ©CNES
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topics related to information mining systems such as content-based image query sys-
tems, interactive image search engines, auto-annotation systems. The third category
refers to the understanding of how complex systems behave over time. It covers topics
such as risk assessment, identification of potential regions using geospatial informa-
tion systems, spatio-temporal modeling of dynamic phenomena in geospatial infor-
mation systems etc. Our own contributions are situated between the image interpre-
tation and the information mining category. We indeed address some problems related
to mining large image databases inside the framework of interactive image search en-
gines and auto-annotation systems but it cannot be done without resorting at some
point to image interpretation tools such as unsupervised/supervised/semi-supervised
classification methods.

In this thesis, we place ourselves in the framework of auto-annotation systems and
interactive image search engines which are two rather different approaches towards in-
formation mining in image databases. Auto-annotation systems try to associate key-
words belonging to a predefined vocabulary to the images in the database. Interactive
image search engines can be assimilated to standard category search engines with the
difference that the targeted concept is built using an interactive process involving the
user: the latter is asked to assess the results provided by the system at each iteration
of an interactive loop, rendering the building of the targeted category equivalent to an
exchange of information between the system and the human agent operating on it.

In each of our contributions, we explore a number of issues related to one or the
other of these two broad categories of systems. Our first two contributions are centered
around the problem of taking advantage of both labeled and unlabeled data through
the use of semi-supervised methods. Labeled data are indeed very expensive to obtain
because they require a human agent to determine explicitly the corresponding seman-
tic category they belong to. In this context, it is a natural idea to try to make the most
out of the huge volume of unlabeled data, which, on the contrary, are almost costless
to acquire.

In our first contribution, we propose a semi-supervised algorithm to perform auto-
annotation of satellite image databases and discover "unknown" semantic structures
inside the images. A setup which has indeed hardly been explored in auto-annotating
systems, but, which is the rule rather than the exception, is the case when the training
database used to learn the mapping function between images and semantic concepts
is not exhaustive regarding the semantic content of images. In other words, there ex-
ists "unknown" image classes, i.e., classes for which there isn’t any representative in
the training database used to train the auto-annotating model. Consequently, we pro-
pose a semi-supervised method allowing to incorporate within the training process the
unlabeled data which by definition contain the "unknown" image classes, the purpose
being to identify in the end both the “known” and the “unknown” image classes. The
latter are assigned automatic labels in the perspective of future annotation, the idea
being to help the user in his database exploration task. We demonstrate the perfor-
mance of our algorithm on a database of SPOT5 optical satellite images. We showed
that beside the "unknown" classes discovery feature, our algorithm achieves superior
performance (using confusion matrices as a performance indicator) compared to a
semi-supervised Support Vector Machine (SVM).

In our second contribution, we introduce an active learning algorithm that incor-
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porates the intrinsic data distribution modeled as a mixture of Gaussians to speed up
the learning of the target class using an interactive relevance feedback process. The
idea is to obtain a quick approximation of the targeted category by working at a low
"granularity" determined by the convex hulls/equiprobable envelopes of the mixture
components. Our scheme rely on a fundamental assumption of semi-supervised meth-
ods – the “cluster assumption” – which states that two elements of the same cluster are
likely to belong to the same semantic class. The active learning process consists in re-
adjusting iteratively the convex hulls to refine the definition of the target class. The
underlying idea is that by adjusting the “extent” of the convex envelopes, we get closer
to the cluster assumption, which allows us to obtain a better approximation of the tar-
get class. Further refinement can then be achieved by "bringing" back the learning at
the original data points granularity. The proposed algorithm belongs to the class of
semi-supervised algorithms in the sense that it implicitly uses the unlabeled data in
the learning process through the unsupervised modeling of the intrinsic data distri-
bution as a mixture of Gaussians. Results on a database of high-resolution QuickBird
images and on a generalist database of color images show that our algorithm performs
as well as other state-of-art interactive image search engines in terms of precision and
recall while still achieving a noticeable diminution in the number of iterations needed
in the active learning loop to arrive at a definition of the target class which satisfies the
user.

In our third contribution, we propose an active learning scheme to perform object
retrieval in high-resolution optical satellite image databases. Object retrieval is a fun-
damental challenge in machine learning but is often subject to the problem of gath-
ering enough labeled examples of the target object, and, also, to the computational
complexity inherent to the training and the evaluation of complex classifier functions
on large databases. To cope with this, we propose a hierarchical top-down process-
ing scheme to retrieve objects in high-volume image databases. We learn via a mul-
tistage active learning process a cascade of classifiers working each at a certain scale
on a patch-based representation of images. The active learning component removes
the dependence on the existence of a representative training set for each object class
and avoids the need for an offline training phase. The underlying idea of our method
is similar in nature to that behind coarse-to-fine testing, i.e., we seek to eliminate at
each stage of the cascade large parts of images considered as non-relevant, the pur-
pose being to set the focus at the finest scales on more promising and as spatially lim-
ited as possible areas. The whole scheme relies on the fact that by reducing the size
of the analysis window (i.e. the size of the patch), we better capture the properties of
the targeted object. The cascaded scheme is introduced to compensate for the extra
computational burden incurred by diminishing the size of the patch (which causes an
explosion of the number of patches to process). Tests on a database of 61cm resolution
QuickBird panchromatic images show the validity of our approach in terms of preci-
sion and recall compared to a recent state-of-the-art method and, most importantly,
we achieve a reduction of the number of computations (number of evaluations of the
decision function) of two orders in magnitude compared to the aforementioned state-
of-the-art method.
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2.1.3 Structure of the document

This work is divided into five parts.
The first part gives an overview of the state-of-the-art in the domain of content-

based image retrieval. We introduce the general problems of the field by giving an
insight into the following topics:

• we start with the extraction of information from the images. We detail the prin-
cipal methods of computing concise mathematical representations from the im-
ages and we discuss the ability of these representations to capture the underlying
image semantics. We also discuss several ways of building image signatures from
the extracted image descriptors. We conclude this part by presenting an overview
of the state-of-the-art in the field of attribute selection which is one of the sub-
domains of image retrieval which has concentrated the greatest efforts since the
emergence of the field in the 80’s.

• we then make a quick tour of the literature dealing with the three main learning
paradigms, i.e., unsupervised, semi-supervised and supervised learning.

• we conclude the chapter by describing some state-of-the-art content-based im-
age retrieval systems, making the distinction between auto-annotation systems
and interactive image search engines. This allows us to position our contribu-
tions within these two broad categories of systems and to introduce the partic-
ular case of satellite imagery, satellite image databases being characterized by a
huge semantic diversity along with quasi nonexistent training datasets, but, in-
stead of that, very high volumes of unlabeled data.

The second part deals with some theoretical aspects which are necessary to fully
understand our contributions to the field. We mainly review some techniques among
the three learning paradigms mentioned above and we mention how these techniques
can be adapted to different learning strategies, the three strategies we are interested in
being “active learning”, “multiple instance learning” and “cascaded learning”.

The next three parts correspond to our contributions in the domain of auto-anno-
tation systems and interactive image search engines. In chapter 5, we present a semi-
supervised algorithm to perform auto-annotation of image databases and to discover
“unknown structures” among these images. Then, in chapter 6, we introduce an ac-
tive learning algorithm which exploits the intrinsic structure of the data to speed up
the learning of the target category in the context of interactive image search engines.
And last, in chapter 7, we describe a cascaded active learning scheme to perform ob-
ject retrieval in large satellite image repositories. The figure 2.4 gives an hint about
how our three contributions can be combined to perform information mining in large
satellite image databases. Further explanations about the related concept are provided
in section 3.5. We conclude this work by envisaging some perspectives and further de-
velopments to the ideas presented throughout it.
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domains of auto-annotation, category search and object retrieval to perform informa-
tion mining in large satellite image databases.



35

Part I

State of the art of content-based image
retrieval, dicussion and theoretical

concepts for classification and learning





37

Chapter 3

Content-based image retrieval: state of
the art and discussion

The development of digital imaging in the 1980s and the 1990s marked a turning point
in the way images were acquired and stored: traditional camera film reels were re-
placed by multimedia databases leading to increased browsing and searching facilities
as well as augmented storage capabilities. But along with the numerous advantages
of digital imaging such as the ease of acquisition and storage appeared the problem
of handling the exponential growth in size and variety of digital image databases. In
such a context and also because of the extensive needs associated with multimedia
data search, evolving techniques for effective indexing and searching of high-volume
multimedia databases has become in recent years a major and urgent research topic.
It has been encouraged and supported at the same time by the rapid growth of com-
putational power in computers, rendering realistic the processing of non-textual data
such as images and videos in the framework of industrial applications. Earth Observa-
tion image databases have followed the same trend. The scope, coverage and volume
of geospatial data sets have grown rapidly due to the progress in image acquisition
and data processing technologies. Recent Earth Observation repositories have thus
become vast heterogeneous data warehouses, created, processed, and disseminated
by government as well as private-sector agencies. They include vast amounts of geo-
referenced digital imagery acquired through high-resolution remote sensing systems
and other monitoring devices, geographic and spatiotemporal data collected by global
positioning systems as well as other position-aware devices, including cellular phones
and in-vehicle navigation systems. Geospatial images are being used in many applica-
tions, including hazard monitoring, drought management, commercial land use plan-
ning, agricultural productivity, forestry, tropical cyclone detection, and other civil and
intelligence applications. The range of users accessing remote-sensing images varies
from expert users such as meteorologists to novices such as farmers, trying to access
and interpret these images, especially satellite images.

In this chapter, we give an overview of state-of-art techniques in the domain of
content-based image retrieval. We start with a general overview of content-based im-
age retrieval systems, setting the accent on the underlying problematics. Next, we fo-
cus on methods related to the extraction and representation of information coming
from images. Then, we present generic and widely adopted frameworks for image
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retrieval and annotation. We conclude this chapter by presenting the problematics
which have motivated this work and which are envisaged in the previously mentioned
frameworks.

3.1 Searching and indexing image databases

Setting things to order for efficient retrieval is a preoccupation affecting many areas
and which is rendered necessary by the permanent growing of databases, whether it
is text, image, video databases ... Retrieval systems have been conceived in the pur-
pose of assisting the user during his database exploration task and of guiding him to-
wards relevant contents. This is a more and more crucial issue in many areas where
the amount of information has become so huge that standard manual browsing has
become impracticable, or, at least, much too long in contexts where fast access to in-
formation is necessary and an essential key to making the right decisions at the right
time. Many methods have already been developed successfully to index information
in the purpose of facilitating and accelerating searches. The most well-known example
is perhaps with web search engines which index hundreds of millions of web pages,
allowing users to find pertinent content in response to a textual request in less than
1 second. Keyword-based search such as used and implemented in web search en-
gines remains the standard for most content mining commercial tools, regardless of
the nature of data. Thus, for images, metadata under the form of side textual anno-
tation is used to answer the user requests, leading often to imprecise or completely
irrelevant answers. The observed lack of relevance could be explained by the fact that
the human language is somewhat unadapted to account for the reality of things such
as perceived by the human eye and it is often hard to characterize a scene using sim-
ply a few words. There is also the possibility that the side annotation is wrong or very
imprecise. A second problem is that some kind of images such as those provided by
remote-sensing sensors come with absolutely no annotations and the frequency of ac-
quisition as well as the increased resolutions render the task of annotating these im-
ages simply impossible (example of QuickBird). In this context, we need efficient tools
to learn automatically semantic from image data. This is specifically the problematic
addressed by content-based image retrieval systems: organizing image databases by
their visual content. This definition encompasses a wide range of systems, ranging
from simple similarity-based retrieval systems to complex auto-annotation engines.
Though “CBIR” is a kind of umbrella term designating a great variety of systems and
a large panel of applications ranging from medicine to satellite imagery, we can iden-
tify a “common denominator” which is the reliance on visual similarity for assessing
semantic similarity. This may prove problematic due to the semantic gap, that is, the
fact that similarity at signal (i.e. descriptors) level does not necessarily mean simi-
larity on a semantic point of view. All applications tackling directly or indirectly the
problem of robust image understanding are thus specifically oriented towards bridg-
ing the semantic gap, that is, towards building a mapping function between low-level
image descriptors and high-level semantic concepts which correspond to the human
representation of reality. To achieve this task, CBIR systems are designed to solve two
fundamental problems: (a) how to find a (good) mathematical description of the visual
content of images and (b) how to assess the semantic similarity between two images
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given their extracted mathematical representations (descriptors). A generic architec-
ture of CBIR is presented in figure 3.1. Image signatures are first extracted from images
most of the time as part of a preprocessing step. Signatures are generally obtained
from the raw features by “organizing” them into vectors or distributions. Vectors are
built by concatenating features of different natures (shape, color, texture ... ) whereas
distributions are obtained by computing histograms or by using region-based signa-
tures. Both histograms and region-based signatures are weighting sets of vectors which
can be normalized to form discrete distributions. A more complete overview of signa-
ture extraction is given in the next section, even though the building of the retrieval
model in a CBIR system is often tightly related to the nature of extracted signatures
and vice versa. The second step of CBIR generally consists in defining a measure of
similarity at signature level. This is again strongly dependent on the type and nature of
extracted signatures. Histogram signatures will benefit from the use of histogram dis-
tances, whereas region-based signatures may require the use of distances between dis-
tributions to plainly exploit the potential of discrete distributions used as signatures.
Generally speaking, the choice of a similarity measure is motivated by the following
factors:

• agreement with semantics, that is, how far similarity at signature level is reper-
cuted at semantic level, or, in other words, to which extent the employed simi-
larity measure allows to bridge the semantic gap.

• computational complexity, that is, the amount of computations required to eval-
uate the distance between two signatures. Some similarity measures are not
suited for real time applications or cannot cope with large-scale databases

• robustness to noise and invariance to background

Among state-of-the-art CBIR systems relying on similarity measures between vi-
sual signatures, we can mention systems such as QBIC [Flickner et al., 1995], Visu-
alSeek [Smith and Chang, 1996] and Photobook [Pentland et al., 1996]. In all these sys-
tems, signatures combining color, shape and textural information are extracted from
images. The retrieval process is then entirely based on the notion of similarity to the
user request, that is, the results are ordered according to the distance of their signature
to the signature extracted from the query image. Some improvements to the above-
mentioned basic matching scheme have been proposed from different prospects. The
SIMPLIcity system [Wang et al., 2000], for instance, makes use of adaptive features: a
preliminary categorization step separating images between textured/non-textured ...
allows to automatically select the most appropriate set of features for each category
before applying the matching scheme. In Zhang et al. [Zhang and Zhang, 2004], a
region-based retrieval scheme is proposed which makes the assumption of the exis-
tence of an underlying generative model for regions in images. Images are first seg-
mented into regions, then, using a vector quantization method, a region-based repre-
sentation of the database is achieved. A probabilistic model based on a hidden-class
assumption is computed on this representation, yielding a generative model of couples
images/regions, the presence of a particular region inside an image being conditioned
on a latent variable that reflects the underlying semantics. Instead of using a simple
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Figure 3.1: Paradigm of CBIR architecture (this diagram is directly inspired from the
one in Datta et al. Datta et al. [2008])

matching criteria in the retrieval scheme, the system computes the posterior proba-
bility of each discovered latent semantic concept given each image of the database.
The same is done for the query image and, then, similarity is computed in the concept
space using a cosine distance. The preceding approaches take the whole image into
account when performing a query which might not be the best way to do things. In
BLOBWORLD [Carson et al., 2002], the user is allowed to specify a portion of the im-
age to be of interest: images are divided into blobs, that is, homogeneous color-texture
segmented regions and, to perform a query, the user selects one or more blobs which,
according to him, define the target class. A score of similarity is then defined between
blobs and a fuzzy logic framework is used to handle compound queries consisting of
several blobs. While this method allows a more precise formulation of user queries and
a better understanding of the system responses, it may require to much involvement
from the user on complex queries. A more recent approach in the domain of retrieval
by similarity measures concerns the use of non-linear manifold to model the subspace
on which image vectors lie. The standard Euclidean distance in the original linear fea-
ture space is then replaced by a geodesic distance on a non-linear manifold.

It has been observed over time that making use of a simple similarity measure in the
retrieval process wasn’t sufficient to effectively bridge the semantic gap. More recent
CBIR systems try to set the focus on the learning part to counterbalance the weakness
of similarity measures when it comes to model semantics. Thus, machine learning
techniques borrowed to the domains of clustering and classification have been suc-
cessfully adapted to the problematics addressed by CBIR systems over the last few
years. The learning component on the diagram of figure 3.1 has thus become the new
area of investigation and up to now the most promising direction of improvement re-
garding retrieval performance in CBIR systems.
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Clustering techniques are useful in the unsupervised case, that is, when no labeled
datas are available. Their purpose is generally to speed up the retrieval process in large-
scale unstructured image repositories by precomputing an unsupervised index of the
database. A query is then simply handled by returning the elements of the database
having the same index as the query. Clustering can be performed on vector-based sig-
natures but also on more complex signatures such as distributions: Li et al. [Li and
Wang, 2003] for instance have proposed to extract region-based image signatures un-
der the form of weighted sets of vectors and then to compute an index using a D2 clus-
tering algorithm optimizing a functional similar to the one employed in K-means but
working on discrete distributions instead of data points. The employed similarity mea-
sure in this system is the Mallows distance [Mallows, 1972].

Image classification techniques can be employed when a set of labeled training ex-
amples is available. They are used either for auto-annotation or for retrieval purposes.
In the following, we make a distinction between generative and discriminative model-
ing approaches. Discriminative approaches try to estimate directly the posterior prob-
abilities of classes or to build a classification boundary. Among well-known discrimi-
native models, we can mention Support Vector Machines (SVMs) or nearest neighbors.
Generative models attempt to estimate the joint probability of classes and elements to
be classified. They require the computation of class-conditional probabilities and also
the knowledge of a prior over each class. Gaussian Mixture Models (GMMS), mixture
of experts, conditional random fields are examples of generative models. In the follow-
ing, we briefly describe some systems falling under the category of classification-based
CBIR systems.

Latent variables models rely on Latent Dirichlet Allocation (LDA [Blei et al., 2003])
to perform automatic annotation of image databases. The original LDA model is a
generative model of text documents. Each document is considered to be a mixture of a
small number of latent topics and the creation process of words inside this document
is supposed to be explainable through these latent topics. Fei-Fei et al. [Fei-Fei and
Perona, 2005] have proposed an extension of LDA to perform classification of image
collections. In this extension, textual words have been replaced with visual words re-
sulting from a vector quantization of the descriptor space. Thus, each image is consid-
ered to be a bag of visual words. Like in the LDA model for text, images are interpreted
as mixtures of latent themes and the creation process of visual words inside images is
conditioned on the themes present in the images. An application of this idea to satellite
imagery has been proposed in Lienou et al. [Lienou et al., 2010].

Generative models are widely used in auto-annotation systems: Fan et al. [Fan
et al., 2008] have proposed a generative hierarchical model which has some similari-
ties to GMM-based systems. The gap between “atomic image concepts” (that is, the
concepts with the smallest intra-concept variation on visual properties) and low-level
descriptors is bridged through the use of an algorithm called Product of Mixture Ex-
perts (POM). This algorithm exploits a modeling of the underlying data density under
the form of several GMMs (one per each kind of image descriptor: texture, color, shape,
...). “Experts” are then computed under the form of three-level associative models link-
ing the atomic image concepts to each mixture component of each GMM through an
intermediate level of co-appearance patterns (such as “sand and water”, “water, tree
and sky”, ...). Thus, estimating the whole model parameters consists in estimating the
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parameters of each GMM plus the probabilistic associations between Gaussian mix-
ture components and co-appearance patterns and the probabilistic associations be-
tween co-appearance patterns and atomic image concepts. Barnard et al. [Barnard
et al., 2003] have proposed an extension to the basic LDA idea developed by Blei under
the form of a generative model of words and pictures. More precisely, images are seg-
mented into regions and the notion of “document” such as introduced by Blei makes
reference here to sets of image regions and words. The generative model is then con-
structed by considering that inside a document, words on one hand and image re-
gions on the other hand can be explained through the intermediary of latent topics.
Among other well-known auto-annotation systems, we can mention ALIPR [Li and
Wang, 2003] (Automatic Linguistic Indexing of Pictures - Real Time). In this system,
signatures under the form of color and texture distributions are extracted from images.
Then, for each semantic concept, statistical models called “profiles” are learned in the
space of signatures. To annotate a new image, the system starts by extracting a sig-
nature from this image and then compute its likelihood regarding each profile. Using
Bayes law, it is then possible to compute the probability for an image to be associated
with a concept of the training database, which defines a model for automatic annota-
tion.

Classification-based retrieval systems suffer from several problems. In the unsu-
pervised case, we have to estimate both the number of clusters and the clusters them-
selves, which often leads to poor indexation performance. The clusters indeed may
not be visually consistent, that is, they may contain different semantic concepts. Or,
on the contrary, clusters may not be representative of a semantic notion and just cor-
respond to a signal class with no proper semantic associated with it. Even though the
purpose of supervised classification methods is to remedy the two major drawbacks
of unsupervised clustering techniques mentioned above, these methods are strongly
dependent on the existence of comprehensive training sets, which is problematic in
practice. User annotations are besides often very subjective, rendering more complex
the problem of constituting a ground truth.

To cope with the non-existence of training sets (which is the rule rather than the
exception), recent Content Based Image Retrieval (CBIR) systems make use of a “rele-
vance feedback” feature to iteratively learn a model of the query target. The idea be-
hind relevance feedback is to involve the user in the learning process by asking him
to assess the relevance of the results which are fed back to him by the system at each
iteration. The system then uses the information about whether or not theses results
are relevant to update the current query and perform a new one. Through this user-
system interaction component, systems based on relevance-feedback help the user to
better characterize his search and do not require to have a training set at one’s disposal
to build the retrieval model. In the following, we only mention a few well-known state
of the art systems making use of a relevance feedback component. A more compre-
hensive review is done in section 3.4.3. Some learning methods can be adapted very
easily in a relevance feedback framework: Tong et al. have shown how SVMs can be
used to learn iteratively a model of the target class and how they provide at the same
time a natural way of determining which are the most informative examples to feed
back to the user at each iteration of the feedback loop so as to maximize the transfer
of information between the user and the system and thus to minimize the number of
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iterations necessary to arrive at a suitable definition of the target class. The very sim-
ple idea exploited here consists in asking the user to assess the relevance on the most
ambiguous images defined as the images whose corresponding signature is the clos-
est from the SVM separating surface. The current most ambiguous elements are then
included in the training set used to build the SVM classifier at the next iteration. This
basic idea has been re-used in many recent CBIR systems. Costache et al. [Costache
et al., 2006] have proposed an adaptation of this strategy in the context of remote sens-
ing on both SAR and high-resolution optical satellite images. A more complex system,
RETIN, has been proposed by Gosselin et al. [Gosselin et al., 2008] still relying on the
initial idea of Chang et al. but with a supplementary strategy of user-system adapta-
tion through a modification of the ranking function. The system proposed by Chang et
al. [Tong and Chang, 2001] indeed yield good results on condition that the separating
surface is already approximately well positioned, which is not the case at the begin-
ning of the learning process. To alleviate this problem, an adaptive ranking function is
proposed which do not rely on the SVM separating surface and thus is not subject to
its fluctuations at the beginning of the learning process. Further improvements have
been added to the basic scheme by making use of a transductive SVM and of a clus-
tering in the signature space to ensure sparsity of the examples fed back to the user at
each iteration of the learning loop. The system IKONA proposed by Boujemaa et al.
[Boujemaa et al., 2001] allows the user to specify his request using a whole image or a
region of an image and then enters a relevance feedback loop. An extra criterion for
sparsity of examples displayed to the user has been added: instead of displaying most
ambiguous elements as in Chang et al., the system looks for the most ambiguous most
orthogonal, that is, the elements among the most ambiguous ones yielding the small-
est pairwise scalar products in the high-dimensional SVM feature space. The system
also includes a feature for mental image discovery which allows to find in a few itera-
tions an image corresponding to what the user has in mind. This is particularly useful
to solve the page zero problem which often occurs in relevance-feedback like systems:
due to the absence of any training set, there are no example images associated with
semantic concepts to initiate a request with. IKONA is a generic system working on
different kind of image datas, ranging from generalist color image databases to data-
bases of high-resolution optical satellite images.

A problematic which has hardly been explored but which is an emerging problem
in the actual CBIR community is how to handle databases containing hundred of ter-
abytes of images such as EO image databases. Much machine learning algorithms do
not scale well to such high-volume databases. Among the very few ones which have
been successfully implemented and deployed over very high-volume EO repositories
in the purpose of collecting and analyzing data with minimal human intervention,
we mention the GeoIRIS system [Shyu et al., 2007] which is a content-based high-
resolution satellite imagery retrieval system supporting Query-By-Example (QBE) us-
ing either image regions (patches) or anthropogenic objects, Geospatial Queries, and
Geospatial-enabled QBE queries. The KIM system [Datcu et al., 2002] is also a work-
ing solution deployed over very large remote sensing image databases. In this system,
high-level user concepts are linked to low-level primitive features trough the use of a
bayesian network.
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3.2 Overview and discussion of basic image descriptors

Computing informative and concise mathematical representations/descriptors from
images is one of the fundamental bricks of CBIR systems. In the following chapter,
we give an overview of different kinds of image descriptors. Among the major types
of image features, we can roughly distinguish between those describing color, texture
and shape. The use of a particular kind of feature rather than another is determined
by the nature of images inside the database on which we want to perform searches.
Many approaches use combinations of different kind of features to try to exploit the
potential of each feature regarding different visual aspects of the image. We discuss
this particular issue at the end of this chapter.

3.2.1 Color information

Color is perhaps the most commonly used feature to describe the content of digital
color images. The simplest expression of a color descriptor is obtained by calculating a
color histogram in the original RGB space (Swain et al. [Swain and Ballard, 1991]) or by
summarizing the corresponding discrete distribution with its first and second orders
statistical moments (Stricker et al. [Stricker and Orengo, 1995]). These simple descrip-
tors possess the advantage of being very fast to compute and also rotation and scale in-
variant, allowing to describe two images differing only by a geometric transformation
with the same color descriptor. But these representations do not include any spatial
information, which means that two different images can lead to the same color his-
togram. To remedy the lack of efficiency of color histograms in this prospect, color co-
herence vectors have been introduced by Pass et al. [Pass et al., 1997]. They start from
the observation that color information in uniform color regions should not be matched
against color information in regions with scattered pixel color values. They propose
thus to build two separate histograms for coherent and incoherent pixels respectively.
Still with the idea of integrating spatial information within color descriptors, Huang et
al. [Huang et al., 1997] have proposed to use color correlograms which analyze the cor-
relations between pairs of pixels at different distance steps. Vertan et al. [Vertan and
Boujemaa, 2000] have proposed the use of weighted color histograms which embed lo-
cal information about the statistical and visual relevance or importance of each pixel.
In practice, the authors propose to adaptively weight each pixel contribution into the
color distribution. They suggest several weighting schemes based respectively on the
edge strength (Laplacian) and on probabilistic and fuzzy measures such as entropy and
fuzzy entropy.

Another approach consists in envisaging color space transformations. The Lab
space is generally considered to better coincide with human perception than the RGB
space and to be perceptually uniform, i.e., distances between color triplets in that
space directly reflect perceptual color differences. Put in other words, the perceived
amount of difference between two colors will be directly related to the distance be-
tween these two colors in the Lab color space. A set of color descriptors using such
transformations is described within the MPEG-7 standard [Manjunath et al., 2002],
even though the “power” and the attractiveness of the MPEG-7 color descriptor relies
more on a compact representation of the color information than on the color space
transformation itself. A special emphasis has also been set on features which remain
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invariant under varying imaging conditions. Gevers et al. [Gevers and Smeulders,
2000] have proposed to extract color models independent of objects geometry, pose
and illumination. Then, from these models, “color invariant edges” are derived which
allow in turn the computation of shape invariant features. In the same vein, De Weijer
et al. [Van De Weijer et al., 2006] have described a robust photometric invariant feature
based on the computation of a color tensor describing the local differential structure
of images.

In panchromatic optical satellite imagery, color descriptors rely on a single chan-
nel representing the satellite-measured radiometry. Most descriptors described above
can be adapted on grey level images. Specific descriptors are also employed such as
the Weber Local Descriptors (WLD) proposed by Chen et al. [Chen et al., 2009]. These
descriptors rely on a perceptual law, the Weber law, which relates the physical magni-
tude of a stimuli to its perceived intensity. This law states that the smallest noticeable
difference on a perceptual point of view is proportional to the intensity level of the
background (a whisper will thus be easily perceived in a quiet environment whereas,
in a noisy place, speaking loudly is necessary to be heard). The idea underlying We-
ber’s law is used in WLD descriptors to compute in each pixel of the image a quantity
called differential excitation and which is defined to be the ratio of the value of the
pixel over the value of the background (the latter being computed as the mean value
over a small neighborhood around the current pixel). An orientation component is also
computed in each pixel as the gradient orientation. The intensity and orientation in-
formations are then combined into a joint histogram which is then reshaped into a 1D
histogram. Thus, both the intensity and the orientation information are captured by
the descriptor, the difference with the commonly used gray level-gradient orientation
two-dimensional histogram being that the WLD descriptor is insensitive to changes in
radiometry. This is due to the fact that we do not look directly at the intensity levels
but at the amplitude of the changes in intensity relatively to the background intensity
level. Thus, WLD histograms are particularly well adapted to high-resolution optical
satellite imagery where insensitiveness of descriptors to radiometry is a crucial point
due to extremely varying imaging conditions (which cause in turn important differ-
ences in brightness between different scenes taken by the same sensor, considerably
complexifying the task of retrieving similar objects/categories across different scenes).

Color information extraction from multispectral images requires the use of specific
techniques. The simple fact that multispectral images possess more than three bands
(Landsat has 7) which are besides not all located in the visible light spectrum renders
common color-space transforms inapplicable. The data acquisition techniques used
in multispectral imagery are indeed quite different from those used in common camera
devices: in multispectral imagery, acquisition is performed by radiometers which mea-
sure the radiant flux (power) of electromagnetic radiation whereas the CCD of a stan-
dard digital camera measures the light intensity. Multispectral image analysis is usu-
ally done by exploiting different spectral band combinations: the green-red-infrared
combination is used to detect vegetation and camouflage, vegetation being highly re-
flective in the near infrared. The well known Normalized Difference Vegetation Index
(NDVI [Kriegler et al., 1969]) is a numerical indicator computed on the red and infrared
bands which allows to say whether or not the observed target contains live green vege-
tation (NDVI is mainly sensitive to chlorophyll). The enhanced vegetation index (EVI)
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is an other vegetation spectral index which is this time responsive to canopy structural
variations, canopy type and plant physiognomy. The blue-nearIR-midIR combination
is used to observe the water depth, the soil moisture content and the eventual presence
of fires. There exists many other combinations in use. Baraldi et al. [Baraldi et al., 2006]
have proposed a “fuzzy rule-based per-pixel classifier” for preliminary classification of
Landsat multispectral images directly exploiting spectral band values in the classifica-
tion process. Their algorithm uses kernel fuzzy spectral rules implemented as logical
expressions composed of scalar variables which are combined with relational and log-
ical operators (the scalar variables being directly the Landsat spectral band numerical
values). The system is able to detect a set of “low-level” land cover classes such as
“Evergreen forest”, “Clearcut”, “Bare-soil cropland”, “Clouds”, “Perennial snow” ... thus
achieving a direct mapping between the spectral signature and (basic) image seman-
tics.

3.2.2 Textural information

An image texture is defined as a set of pixels spatially organized according to several
spatial relationships and forming an homogeneous region inside an image. Texture
features are used to capture granularity and to characterize repetitive patterns inside
images. Their role is particularly useful in optical satellite imagery due to their direct
relation to image semantics: classes such as forest, grassland and urban areas can be
very well distinguished between each other using simple texture attributes. The figure
3.2 shows some typical texture images extracted from different QuickBird scenes.

Haralick et al. [Haralick et al., 1973] have proposed to use quantities computed
from grey level co-occurrence matrices to characterize the image structure. Co-occur-
rence matrices correspond to second order statistics and represent the distribution of
co-occurring pixel values at a given offset. The fourteen Haralick coefficients are sta-
tistical measures such as entropy, homogeneity, up to fifth order statistical moments
... computed on these matrices. More recent approaches rely on transforms to ex-
tract textural information, mainly transforms in the spatial-frequency domain since
the purpose is to capture both the frequency and the orientation of repetitive patterns
which constitute a textured area. The first to exploit this principle were Manjunath et
al. [Manjunath and Ma, 1996] who introduced an extension of Gabor filters to two-
dimensional signals. Gabor filters allow to capture the spectral energy distribution in
different frequency domains and in different directions. The corresponding texture
descriptors are generally obtained by applying a bank of filters working each in a par-
ticular direction and in a particular frequency domain and by computing first and sec-
ond order statistics on their outputs. The same idea is applied in Randen et al. [Ran-
den and Husoy, 1994] using this time quadrature mirror filters to perform a wavelet
transform on the input image. First and second order statistics are then computed on
each sub-band of the wavelet decomposition and are concatenated in a single feature
vector which serves as the final texture descriptor. Instead of keeping only statistical
moments computed from wavelet coefficients, Do et al. [Do and Vetterli, 2002] have
proposed to model independently wavelet coefficient in each sub-band by using Gen-
eralized Gaussian Densities, arguing that it provides a natural and normalization-free
framework for retrieval thanks to the existence of an analytical expression of the Kull-
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Figure 3.2: QuickBird texture images corresponding to different image classes: ur-
ban area (first row), fields (second and third row), desert and forest (fourth row)
©DigitalGlobe.
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back Leibler divergence for such distributions.

Building texture features invariant to geometric and photometric transformations
is desirable for many applications such as segmentation of natural scenes, recognition
of materials ... In this prospect, Lazebnik et al. [Lazebnik et al., 2003] have proposed a
representation of textures based on a sparse set of regions selected using a Laplacian
blob detector and from which an affine-invariant descriptor is extracted. A distribu-
tion of textures inside each class is learned in a supervised way using a GMM in which
each mixture component corresponds to a sub-class. This allows to define a generative
model linking the sub-class labels to the extracted regions. This local representation
of textures is then augmented with a description of the spatial relationships between
neighboring regions through the use of a supervised sub-class co-occurring model.
The obtained framework allows to perform retrieval and segmentation of multi-texture
images through the combination of both the generative and the co-occurring model.
The same idea of interest point detection for sparsity has been exploited in Mikola-
jczyk et al. [Mikolajczyk and Schmid, 2004] where a Harris detector is used to locate
highly textured points and a method based on the derivatives of the Laplacian allows
to compute the scale and the affine shape of the corresponding local structures. Affine-
and scale-invariant texture information can then be extracted from these local struc-
tures/regions.

In parallel with the above mentioned approaches, models based on Gibbs-Markov
Random Fields (GMRF) have begun to emerge. In this kind of models, an image is
considered to be the realization of a stochastic process but with an added memoryless
(Markov) property i.e. the conditional probability of a pixel given the entire image is
equal to the conditional probability of the pixel given a local neighborhood, or in other
words, the value of a pixel will entirely depend on the knowledge of the pixel values in a
neighboring area. GMRF-based texture modeling consists generally in estimating the
parameters of the Gibbs distribution associated with the Markov Random Field. Cross
et al. [Cross and Jain, 1983] were the first to use GMRF to model spatial dependencies
inside textures. GMRF have then been applied successfully to many remote sensing
applications. For instance, Datcu et al. [Datcu et al., 1998] have presented a method
to extract structural information from remote sensing images where GMRF are used as
priors model in a Bayesian inference framework. Schröder et al. [Schröder et al., 2000b]
have proposed to use auto-binomial models (which are a very simple form of GMRF for
texture analysis involving only first and second order neighborhoods/cliques) in the
domain of optical satellite imagery. Auto-binomial models have received particular
attention due to the fact that they possess less parameters but still allow very good
performance in texture classification.

Another unrelated but very popular texture descriptor is Tamura’s texture feature
introduced by Tamura et al. [Tamura et al., 1978] which contains six features selected
via psychological experiments and which capture the high-level perceptual attributes
of a texture (coarseness, contrast, directionality, linelikeness, regularity, roughness).
These very simple features have been shown to perform very well on generalist data-
bases. Deselaers et al. [Deselaers et al., 2008] have noticed that in some cases, they
even outperform traditional texture features such as first and second order statistics
on Gabor filter banks outputs. The QBIC system makes use of these features.
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3.2.3 Geometrical information

During the past few years, shape has been considered as a key attribute in image re-
trieval because of the existence of robust and efficient representations of the corre-
sponding information. Besides, shape of object is often closely related to their func-
tionality and identity: humans can recognize objects solely from their shapes, which
illustrates the fact that shape is strongly linked to image semantics, much more than
color or texture attributes which, taken alone, generally do not allow to identify an ob-
ject.

Shape descriptors have been employed in many CBIR systems, including earliest
ones such as QBIC which makes use of simple geometrical features (shape area, cir-
cularity, eccentricity, major axis orientation and a set of algebraic moment invariants)
to describe image content. In the QBIC system, the object shape delineation is done
through a semi-automatic process where the user is asked to enter an approximation
of the object outline which is then aligned with the nearby edges using this time an
automatic active contours technique. The obvious drawback of such an approach is
the high user involvement in the feature extraction process.

A lot of shape descriptors require the extraction of edges as a preprocessing step.
This is the case of edge orientation histograms which characterize the spatial distribu-
tion of edges in an image. In the MPEG-7 standard, images are subdivided to allow the
computation of local edge distributions. Local orientation histograms are then gener-
ated from each image subdivision by mapping their edges into five bins: horizontal,
vertical, 45diagonal, 135diagonal and nondirectional edges. The resulting local his-
tograms are concatenated to form the final edge orientation histogram. In the same
vein, Histogram of Oriented Gradients (HOG) count occurrences of gradient orienta-
tions in an image. The technique differs from edge orientation histogram in that it con-
sists in computing local histograms on a grid of uniformly spaced and possibly overlap-
ping cells, using local contrast normalization over overlapping cell blocks for improved
accuracy. This descriptor was first described in Dalal et al. [Dalal and Triggs, 2005] and
was originally designed to perform human detection. It has been later proved to work
successfully also on generic visual object recognition problems (Dalal et al.). Ferecatu
et al. [Ferecatu, 2005] have proposed a modified edge orientation histogram based on
the Hough transform: the gradient direction is first computed in each pixel of the im-
age. Then, a joint histogram for the gradient direction and the distance of a reference
point (for instance the upper left corner of the image) to the tangent line going through
the current pixel is built.

Contour-based and region-based shape descriptors intended to be used in a com-
plementary way are described in the MPEG-7 standard. Region-based descriptors ex-
press the pixels distribution within an object or a region and can describe complex ob-
jects composed of multiple disconnected regions as well as holes. The descriptor works
by decomposing a shape into a number of 2D orthogonal complex-valued basis func-
tion using a complex 2D Angular Radial Transform introduced by .... The normalized
coefficients assigned to each basis function are then used to define the shape. As for
the the contour shape descriptor, it is based on the Curvature Scale-Space (CSS) repre-
sentation of the contours. This representation was introduced by ... and starts from the
observation that, when comparing shapes, humans tend to decompose contours into
convex and concave sections. The CSS representation thus decomposes objects into
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convex and concave parts by determining the inflection points. The multi-scale aspect
comes from the fact that contour representations are computed at different scales. A
CSS image is finally obtained representing the position of the inflection points on the
contour as a function of the scale. The extracted descriptor consists of the number of
peaks on the CSS image, the magnitude (height) of the largest peak and the x, y posi-
tions of the remaining peaks.

In a completely different prospect, object-oriented shape descriptors using mathe-
matical morphology have been proposed in Pesaresi et al. [Pesaresi and Benediktsson,
2001]. Their approach relies on Differential Morphological Profiles (DMP) which al-
low to perform a multi-scale analysis of an image and to extract an histogram of object
sizes from it. The multi-scale analysis consists in performing successive erosions fol-
lowed each time by a morphological reconstruction. The staged erosion process elim-
inates objects whose size is inferior to the current value of the scale. Other objects are
kept unchanged due to the reconstruction part. By subtracting images from consecu-
tive scales, we can then determine at which scale an object disappears (the difference
being null for objects still present in the image because of the reconstruction which
leaves them unimpaired despite the successive erosions) and subsequently the scale
of the object.

3.2.4 Building image signatures

Building image signatures from descriptors is not so trivial as one might think. There
exists of course the simple approach which consists in using directly the extracted de-
scriptor vector as the image signature but this is not always the smartest way to do
things. As mentioned in section ..., image signatures can roughly be divided into two
categories: vectors and discrete distributions. The latter are generally obtained by
computing histograms or a set of weighted vectors from images. As mentioned by Rub-
ner et al., histograms can be thought as discrete distributions by considering that each
bin is a couple containing the bin location and the associated frequency. Distances be-
tween distributions such as the Earth Mover Distance (EMD [Rubner et al., 1998]) can
then be used on histograms as well.

Region-based signatures also belong to the class of discrete distributions but pro-
ceed from a different extraction process. Generally, a clustering is performed on all
the database image pixels set together, leading to the creation of a codebook contain-
ing a certain number of visual words (codewords). The signature associated with an
image is then an histogram of visual words, each bin of the histogram counting the
number of pixels in the image which are the closest to the corresponding codeword.
This approach can be further refined by exploiting sparse-coding like approaches: in-
stead of letting a pixel vote for only one histogram bin, we can make it vote for all the
bins by considering the distances of the pixel to all the bins. Weights proportional to
the inverse squared pixel/codewords distances can be used as well as more elaborated
weighting schemes using sparse-coding (Liu et al. [Liu et al., 2009]). They are besides
plenty ways of building the codebook, taking the pixel values being the simplest one.
We could think for instance of extracting color, texture, shape ... descriptors on small
neighborhoods around each pixel and then of performing a clustering on the set of
obtained descriptors to extract the codebook. In the RETIN system, the visual feature



51

extracted from a pixel (x, y) is its value in the L?a?b? color space concatenated to the
output at the same (x, y) coordinates of 12 complex Gabor filters in three scales and
four orientations. The codebook is then computed on these visual features using an
ELBG algorithm.

3.2.5 Combining information of different nature

In this section, we focus on unsupervised ways to fuse image descriptors of different
natures. The most naive way of proceeding would consist in simply concatenating
after a normalization and weighting step the extracted descriptors of color, texture,
shape ... to form a signature vector and then use a metric provided by the L1 or L2
distance (Barnard et al.). The problem in doing so is that we do not keep the proper-
ties of descriptors such as histograms on which much more effective distances can be
computed. A widely spread technique for incorporating information from different na-
ture without sacrificing the histogram arrangement is to use joint (multidimensional)
histograms. This issue has been extensively studied in Pass et al. [Pass and Zabih,
1999] where combinations of different features (color, edge density, texturedness, gra-
dient magnitude, rank (Zabih et al. )) into joint histograms are tested on a general-
ist database of color images. Unsurprisingly, the more features are incorporated, the
highest the performance is, but often at the expense of extremely large-size and sparse
histograms, which in turn brings the problem of efficient histogram matching. Some
works address specifically this problem: in Jou et al. [Jou et al., 2004], an histogram
matching algorithm unrelated to the histogram sizes is proposed which allows the use
of common matching schemes such as histogram intersection, χ2 distance ... without
causing an increase in computational complexity as the size/number of dimensions of
the histograms augments.

Rather than fusing image descriptors at feature level right after the feature gener-
ation process, one could think of combining descriptors in an unsupervised learning
framework. A state of the art approach using this idea is that of Quelhas et al. [Quelhas
and Odobez, 2006] who have proposed a fusion strategy to combine color and texture
information in a bag-of-visual-words (BOV) representation. In this approach, texture
and color descriptors are first computed on small regions around interest points de-
tected using a Difference of Gaussians local interest point detector. Two separate code-
books/vocabularies are then extracted from color and texture descriptors respectively,
allowing to compute BOV representations of images under the form of histograms of
visual words. The two obtained BOV models are then fused by concatenating the cor-
responding histograms hC and hT with the use of a mixing coefficient α, yielding a
final signature under the form (αhV , (1−α)hT ). More recently, Hörster et al. [Hörster
and Lienhart, 2007] have described three unsupervised fusion techniques based on a
latent topic image modeling approach (i.e. images are considered to be random mix-
tures over latent topics). Latent Dirichlet Allocation (LDA) is used to compute the hid-
den/latent topic model in the three scenarios. The fusion process yields an expression
of the likelihood of every possible visual words combination given an image model.
The first scenario consists in extracting one LDA model per type of feature. Given an
image, the fusion is then carried out at decision level by multiplying the likelihood dis-
tributions of each visual word composing the image given the obtained image model
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(there exists on likelihood model per feature type). The second scenario fuses the fea-
ture types at the visual words level by assuming a joint observation of each kind of
visual word. A joint distribution over all kinds of visual word for each topic is thus
employed in the LDA model to relate images to latent topics. Given an image, the fu-
sion is performed by multiplying the likelihood distributions of all “joint visual words”
composing the image given the obtained image model. In the third scenario, fusion is
carried out during topic generation. In this model, topics represent visual words ex-
tracted from only one feature type, yielding a model containing one hidden variable
per feature type, but contrary to the fist scenario, the topic model remains the same for
all the hidden variables. Fusion is performed as in the first scenario by multiplying the
likelihood distributions of each visual word composing the image given the obtained
image model, the difference being this time that there exists only one single likelihood
model for all the feature types.

Many approaches in CBIR systems makes use of a feature combination process but
most of the time through the use of a supervised learning approach. A typical way
to do so is to use boosting approaches. In Yin et al. [Yin et al., 2005], for instance,
a boosting algorithm is proposed where one weak classifier per feature set is trained.
The outputs of the obtained classifiers are then combined through weighted voting
inside the boosting framework. But we will not develop further the progresses made
in the field of supervised feature combination since our purpose in this section was to
give an overview of unsupervised methods to extract and deal with features.

3.3 Attribute selection vs. dimensionality reduction

The features extracted from images are vectors with possibly a very high number of
dimensions. This may cause several problems. The first one and the easiest to under-
stand is the extra-computational burden generated by the adding of new dimensions
to the description space. Since the image retrieval process is based on the computation
of similarity measures between descriptors extracted from images, it is suitable at least
for real-time applications to restrain the size of the feature vector to as few dimensions
as possible.

Another fundamental motivation for feature selection is the curse of dimension-
ality, that is, the exponential increase of the volume of the description space (that we
can roughly model as a hyper-rectangle) with the adding of extra dimensions. This is
problematic in many machine learning problems where we try to learn the underlying
distribution of data from a finite number of data samples. Basic retrieval techniques
such as nearest neighbors search may also fail due to the fact that for equal sample
sizes, the probability of two samples to be close goes down very quickly as the dimen-
sion of space increases.

The other problem with maintaining a large number of dimensions is the volume of
the hypothesis space, i.e., the space which contains all the combinations of hypotheses
that can be learned from the data. This is even worse than the curse of dimensionality:

for N binary features, the hypothesis space will be of size 22N
! Selecting a subset of

feature makes it easier to find a correct hypothesis.
The process of feature selection consists in removing the irrelevant and redundant

features. A feature is considered irrelevant when it can be removed without impact-
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ing the learning. Redundant features can also be considered as a kind of irrelevant
features: the only difference is that two redundant features are relevant taken sepa-
rately but one of them can be removed without affecting the learning performance.
Most feature selection techniques in the literature are directly inspired from the idea
of maximizing the relevance while at the same time minimizing the redundancy. They
are mainly variations in the way of formalizing the ideas of relevance and redundancy:
... We observe two main strategies regarding the feature selection process: The first
one consists in ranking the features according to some criterion and then select the k
top-ranked features.

The second one consists in selecting a subset of k features where k is the mini-
mum number for which no performance deterioration is observed. The advantage of
this second class of methods is that they allow to determine the number of features to
select.

We can further distinguish between techniques using filter and wrapper approaches.
Wrapper techniques consist in embedding a learning algorithm in the feature selection
process and to use its performance on different feature subsets to determine which
group of attributes to select. Most supervised selction algorithms are based on the
idea of class separation: the interesting features are those which contribute the most
to separating data from different classes, the other can be removed. The most well-
known wrapper approach and which is a direct application of the class-based separa-
tion principle mentioned previously is the SVM-RFE (for Recursive Feature Elimina-
tion) method proposed by Guyon et al. [Guyon et al., 2002]. This algorithm achieves a
ranking of the features using a criterion which is the margin size of a linear SVM clas-
sifier trained on a set of labeled data. The SVM-RFE algorithm performs sequential
backward selection by starting with all the features and sequentially removing the one
which yields the smallest value of the criterion. The features are then ranked accord-
ing to their order of deletion in the sequential process. Peng et al. [Peng et al., 2005]
have proposed a method which relies on a maximal statistical dependency criterion
based on mutual information. The idea is to find the set of features S which has the
largest dependency on the target class c, the dependency being defined here as the
mutual information I (S,c) between S and c. The max-dependency problem being not
directly tractable, an approximation of this idea is described under the form of max-
relevance-min-redundancy (mRMR) scheme. The mRMR criterion is then embedded
in a wrapper which allows to select the right number of attribute using sequential for-
ward selection (i.e. new features are added sequentially using the mRMR criterion until
the classification error begins to decrease).

Dimensionality reduction refers mainly to unsupervised techniques, that is, tech-
niques able to deal with unlabeled data. Contrary to feature selection methods, they
do not necessarily keep the initial attributes as such but can also perform transfor-
mations of the initial description space. Principal component analysis is perhaps the
most illustrative space transforming technique which is also used for dimensionality
reduction purposes. It amounts to finding the principal directions defined as the di-
rections of space along which the variance of the data is maximum. The underlying
transformation is simply a rotation of the original orthogonal system of axis. Dimen-
sionality reduction properly speaking is then achieved by selecting the first k principal
components ordered by the percentage of the total variance they “explain”. Indepen-
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dent Component Analysis (ICA) tries to find a transformation of the space such that
the obtained transformed variables are statistically independent. It is closely related
to the problem of source separation. One way to achieve such a goal is to maximize
the “non-gaussianity” of the linear mixing of random variables corresponding to each
estimated source. By doing so, we ensure that the observed signal corresponding to
the mixed sources will be much closer to the Gaussian density than each source taken
separately. We are thus in the “frame” of the central limit theorem which allows to say
that the gaussianity of a sum/mixing of variables/sources is a measure of the statisti-
cal independence between these variables/sources. Such an approach is employed for
instance in FastICA (Hyvärinen et al. [Hyvarinen, 1999]).

We may wish to use techniques which perform “true” feature selection rather than
space transformations to keep the original meaning of features. Many unsupervised
feature selection methods which try to do so are closely related to unsupervised learn-
ing techniques. Supervised methods generally maximize a function of prediction accu-
racy, naturally selecting the features which lead to the predefined classes in the training
set. The problem is much more difficult in the unsupervised paradigm where we are
not given any class labels. Many unsupervised feature selection techniques rely on the
quality of an unsupervised clustering of the data, trying to find “the smallest subset
of features that best uncovers interesting natural groupings/clusters from data” (Dy et
al.). The adjective “interesting” is generally formalized into a criterion or an objec-
tive function such as the sum of intraclass variances which is the functional optimized
by the K-means clustering algorithm. We briefly review some generic clustering algo-
rithms in section 3.4.1. Unsupervised feature selection consists of two main steps: (1)
identifying a subset of relevant features and (2) assessing a measure of relevance of
the selected subset. Like in the supervised case, we can make a distinction between
wrapper and filter approaches. Wrapper methods consists of a (1) search component,
(2) a clustering part and (3) an evaluation criterion. So a wide variety of unsupervised
feature selection algorithms can be built by simply mixing these components, regard-
less of the techniques which are used for each one. As far as the search component is
concerned, Narendra et al. [Narendra and Fukunaga, 1977] have proposed a branch
and bound algorithm which allows to search for the best subspace among 2N possi-
ble subspaces (where N is the initial dimension of space). But this approach becomes
quickly impracticable as the number of features grows. To cope with this, greedy ap-
proaches have been introduced. Marill et al. [Marill and Green, 1963] have proposed a
sequential backward selection algorithm which begins with all the features and itera-
tively discards the feature among the remaining ones which contributes the less to the
criterion. Whitney et al. [Whitney, 1971] have introduced a sequential forward selec-
tion algorithm which starts with an empty set of feature and iteratively add one at each
iteration of the algorithm. The problem with the two above-mentioned approaches
is that once a feature has been added or deleted, one cannot delete or reselect it. To
remove this drawback, Stearns et al. [Stearns, 1976] have proposed a method called
Plus-l-Minus-r which involves at each iteration the augmentation of the current sub-
set of features by l new features followed by a depletion of r features, the number of
selected features at each iteration being thus l − r . Pudil et al. [Pudil et al., 1994] have
introduced a modified version of this algorithm by proposing to adjust automatically
the values of l and r at each iteration. Their algorithm is called sequential forward
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floating selection. In an other prospect, random search methods based for instance on
genetic and random mutation hill climbing algorithms have also been proposed in the
literature.

Filter methods refer to methods which are independent of any learning algorithm.
Most of filter techniques are space transforming methods such as the two cited pre-
viously. We can still mention the approach of Dash et al. [Dash et al., 2002] which is
based on the entropy of distances between data points. They relied on the observation
that when the data is clustered, the entropy of distances is lower. He et al. [He et al.,
2006] have proposed a method based on the Laplacian Score which is used to evaluate
the locality preserving power of the selected features. The underlying idea behind this
approach is that two data points belonging to the same class should be close from each
each other. Starting from this idea, a “good” feature is then a feature which preserves
this locality property.

Other simple unsupervised feature selection schemes can be envisaged: in Campedel
et al. [Campedel et al., 2008], a K-means algorithm is applied in the space of attributes.
The feature selection method then boils down to keeping the attributes which are the
closest to the obtained cluster centroids and to discarding the others. The same strat-
egy can be applied using a kernel K-means clustering or a Support Vector Clustering
(Ben-Hur et al. [Ben-Hur et al., 2002]) algorithm.

Another approach in feature selection which belongs neither to the class of super-
vised nor to the one of unsupervised methods is to embed the feature selection process
into an active learning scheme.

3.4 Learning paradigms for content-based image retrieval
systems

It is not our purpose to be exhaustive regarding learning paradigms. A complete review
of learning methods has been done for instance in Hastie et al. [Hastie et al., 2005].
We content ourselves with giving an overview of some techniques which have proved
useful in the following of this work. The presented methods fall each under one of the
three possible scenarios, that is, the unsupervised, supervised and semi-supervised
learning scenarios.

3.4.1 Unsupervised, Supervised and Semi-supervised learning mod-
els

Unsupervised learning models Unsupervised learning techniques generally refer to
clustering algorithms. They are useful when it comes to handling large amounts of un-
labeled data. They can roughly be divided into three types: optimization of an overall
objective function or quality measure, pairwise-distance-based and statistical mod-
eling. The first category covers fundamental techniques which have been explored
since the early days of machine learning. The most famous one is the K-means al-
gorithm ([MacQueen et al., 1967]) which measures the quality of a clustering as the
sum of intra-cluster distortions, i.e. the sum of the distances of each data point to
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the centroid of the cluster it belongs to. The drawback of this approach is that it re-
quires to specify the number of clusters in advance. A simple approach to assess the
number of clusters is to gradually increase it until the average distance between a data
point and its cluster centroid is below a certain threshold. Patané et al. [Patané and
Russo, 2001] have proposed a modified version of the standard K-means algorithm
called the Enhanced LBG (ELBG). This algorithm minimizes the same functional as
the standard K-means algorithm but is endowed with an heuristic to avoid conver-
gence towards poor local minima. The underlying heuristic consists, roughly speak-
ing, in equalizing the intra-cluster distortions, the aim being to obtain a final code-
book in which each codeword/cluster contributes equally to the total distortion (i.e.
to the sum of the intra-cluster distortions). The main operation to achieve such a goal
is the merging of pairs of neighboring low-distortion clusters in parallel with the split-
ting of high-distortion clusters to preserve the total number of codewords. The ELBG
algorithm is besides much faster (around 4 times) than the K-means algorithm since it
requires in average much less iterations to converge for the same computational com-
plexity at each iteration. A “fuzzified” version of the preceding algorithm has been
proposed in Bezdek et al. [Bezdek et al., 1984] under the name of Fuzzy C-means
(FCM). The objective function is the sum of the weighted square distances of each data
point xi to the cluster centroids β j : Fob j (K ) = ∑N

i=1

∑K
j=1 u2

i j d 2(xi ,β j ). The weights
ui j are generally computed as the inverse distances between data points and cluster

centroids normalized over all clusters, i.e., u2
i j =

1/d(xi ,β j )∑K
l=1 1/d(xi ,βl )

. A competitive agglom-

eration algorithm has been presented in Saux et al. which does not require to spec-
ify the number of clusters before running the FCM algorithm. A term is added to the
objective function through the use of a Lagrangian multiplier α to penalize complex
models with a large number of clusters, leading to the following objective function:
Fob j 2(K ,α) = Fob j (K )−α∑N

i=1

∑K
j=1 u2

i j . In an information theory perspective, Tishby et
al. [Tishby et al., 2000] have proposed a clustering algorithm based on the Information
Bottleneck (IB) principle. The information bottleneck principle amounts to modeling
processes such as clustering as the transmission of a coded signal over a communica-
tion channel: when transmitting a signal, we want to achieve the maximum compres-
sion ratio of the original signal X while at the same time minimizing the distortion of
the retrieved signal Y . Applied to a clustering problem and using the preceding nota-
tions, it boils down to solving the following problem: argminp(β j |xi ) I (X ,β)−γI (Y ,β),
that is minimizing the mutual information between the original and the coded signal
(in order to achieve maximum compression) and at the same time maximizing the mu-
tual information between the coded and the retrieved signal (in order to retain as much
as possible of the initial information). The term γ betrays the fact that the IB princi-
ple tries to achieve a compromise between compression and accuracy. In a supervised
setting, the retrieved relevant information Y is generally the class labels found in the
training database. An adaptation of the IB principle to unsupervised clustering has
been proposed in Goldberger et al. [Goldberger et al., 2002] who describe an algorithm
to cluster images represented by their extracted feature vector (a color histogram in
their case). The original signal X corresponds to the raw images whereas the retrieved
relevant information Y is considered to be the extracted feature vectors. The interme-
diary variables β are the underlying clusters that we seek to discover. Kernel methods
have also made their apparition in the domain of unsupervised clustering. The ker-
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nelized version of the K-means algorithm consists in simply replacing the standard
euclidean dot product by a kernel dot product. The objective function is the same as in
standard K-means. Dhillon et al. [Dhillon et al., 2004] have showed that the weighted
kernel K-means algorithm is tightly related to the spectral clustering and normalized
cuts algorithms. In another prospect, the Support Vector Clustering algorithm intro-
duced by Ben-Hur et al. [Ben-Hur et al., 2002] reformulates the problem of clustering
as a constrained quadratic convex optimization problem. This algorithm performs a
mapping of the data into a high-dimensional feature space as in commonly done in
kernel methods through the use of a kernel function. It looks then for the minimum
enclosing sphere in the high-dimensional space. By projecting the obtained sphere
back to the original data space, we obtain a set of contours delineating groups of data
points. Clusters are then formed by considering that elements inside a contour belong
to the same cluster. The idea behind the SVC algorithm is that the obtained support
vectors yield a surface delineating the underlying data distribution. The algorithm can
thus be seen as identifying valleys in the underlying data probability distribution.

The frontier between methods performing statistical modeling and those optimiz-
ing an objective function is not always very clear. The information bottleneck is an
example of the lack of separation between the two categories. Let’s say that statistical-
modeling-based clustering methods generally treat every cluster as a pattern charac-
terized by a simple distribution (for example the Gaussian distribution). One obvious
advantage of the statistical modeling approach is that it not only provides a partition of
the data but also an estimated density, which can be desired for some applications. The
baseline in this area is represented by Gaussian mixture modeling which amounts to
modeling the data as a mixture of Gaussians. The parameters of the statistical model,
that is, the means and covariance matrices of the Gaussian components, which cor-
respond respectively to the locations and shapes of clusters, are then obtained via an
Expectation-Maximization (EM) algorithm. To prevent the EM algorithm from falling
into a local optimum, Ueda et al. have introduced a variant using deterministic anneal-
ing. Their DAEM algorithm estimates the parameters of the Gaussian mixture through
the optimization of modified likelihood objective function. The proposed objective
consists of an energy term E modeling the distortion and an entropy term H modeling
the rate. A DAEM algorithm replaced in the framework of the rate-distortion theory
has been described in Rose et al. [Rose, 1998]. A more specific description of these
algorithms is done in the following chapter.

Pairwise-distance-based methods require the computation of distances between
every pair of data points and thus have a complexity of at least O(N 2). There is again
not a clear distinction between this category of methods and methods optimizing an
objective function. Spectral clustering is perhaps the most representative example.
Linkage clustering methods can also be placed under this category.

Supervised learning models When labeled data are available for training, supervised
learning paradigms have proved to be much more efficient than unsupervised ones.
Supervised classification methods allow the partition of image databases into seman-
tic categories in the purpose of retrieval or can be used to perform automatic anno-
tation as well. We focus here on the first type of methods. They can be divided into
two very broad though distinct categories: generative and discriminative approaches.
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There also exists hybrid generative-discriminative methods. As said in section 3.1, gen-
erative approaches model the density of data within each class and then, the Bayes for-
mula is applied to compute the posterior. The most representative example of a gen-
erative model is perhaps the Latent Dirichlet Allocation (LDA) model which we have
already shortly described in section 3.1. Prior to the apparition of the LDA model, we
can mention Probabilistic Latent Semantic Analysis proposed by Hofmann et al. [Hof-
mann, 1999]. PLSA is a latent variable model associating unobserved class variables z
with each observation. The probabilistic model consists in expressing a joint proba-
bility of words w and documents d by considering that each co-occurrence (w,d) is a
mixture of conditionally independent multinomial distributions, yielding the follow-
ing model of the joint probability: p(w,d) = ∑

z p(z)p(d |z)p(w |z). In this symmetric
formulation, w and d are generated in similar ways from the latent class z by using the
conditional probabilities p(w |z) and p(d |z). The values of p(z), p(w |z) and p(d |z) in
the model are then estimated using Expectation-Maximization. Among other state of
the art generative models, we can mention the naive Bayes classifier. In this model, we
make strong independence assumptions between the features characterizing a class,
that is, given a class C , we consider each feature Fi to be conditionally independent
on the other features F j ( j 6= i ), i.e. p(Fi ,F j |C ) = p(Fi |C ) · p(F j |C ). By deriving the
model using Bayes rule, we finally obtain: p(C ,F1, . . . ,Fn) = p(C )

∏n
i=1 p(Fi |C ). The pa-

rameters of the model are generally obtained using a maximum likelihood estimator
which amounts to counting occurrences of features in the training dataset and then
extracting corresponding relative frequencies. The Averaged One-Dependence Esti-
mators (AODE) have been introduced by Webb et al. [Webb et al., 2005] to address
the feature-independence issue in the naive Bayes classifier. These estimators try to
weaken the independence assumptions between attributes by selecting a subset of 1-
dependence classifiers, p(F j |C ,Fi ), and by combining the predictions of “qualified”
classifiers among this subset. The “qualified” classifiers are selected according to the
number ni of elements in the training data containing the attribute Fi , and by retain-
ing only the 1-dependence classifiers for which this number is superior to a thresh-
old m. The final model can be expressed under the following form: p(C ,F1, . . . ,Fn) =∑

i |ni ≥m p(C ,Fi )
∏N

j=1 p(F j |C ,Fi )

|{l |nl≥m}| .

Another very broad category of generative models are hidden Markov models (HMM).

More recently, Jacobs et al. [Jacobs et al., 1991] have introduced the Mixtures of Ex-
perts (ME). ME can be considered as mixture models in which the mixture components
are conditional probability distributions, p(y |x,ci ), where y is the output associated to
an input data x and ci refers to the i -th mixture component. In an ME framework, we
assume that the data can be explained by a collection of functions which are defined
each on a local region of the input data space. The regions possess soft boundaries
which are generally built using simple parameterized surfaces estimated from the data.
Thus, the input space is softly divided into overlapping regions that can be assigned to
one or more expert networks. A general ME model can be formulated using the fol-
lowing equations: p(y |x) = ∑

i p(y,ci |x) = ∑
i p(ci |x)p(y |x,ci ) = ∑

i gi (x)p(y |x,ci ). The
functions gi (x) are called “gating functions” because they are in charge of “assigning” a
region of space to a given classifier/expert. The power of such a formulation is that any
classifier can be employed to model the posterior probabilities p(y |x,ci ): Lima et al.,
for instance, have proposed a model called Mixture of Support Vector Machine Experts
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using SVM classifiers for the experts and soft-max activation functions for the gating
modules. The whole model is trained using an EM algorithm optimizing a global like-
lihood function. Bishop et al. have proposed an enhancement of the basic mixture of
experts model under the form of hierarchical mixtures of experts (HME).

Discriminative approaches try to estimate directly the posterior probabilities of
classes. Among the most famous discriminative learning methods, we can mention
the Support Vector Machine (SVM) classifier[Schölkopf and Smola, 2002] which, in its
simplest form, is a binary linear classifier. It belongs to the class of maximum-margin
classifier, that is, it tries to find the separating hyperplane which is the farthest from
both the positive and negative training data samples (under the constraint of course
that the separating hyperplane correctly classifies the training data, that is, respects
the class labels assigned to the training samples). Non-linear SVMs classifiers are ob-
tained by applying the kernel trick to maximum-margin hyperplanes. The idea is to
replace the standard euclidean dot product by a non-linear kernel function. It has
been shown to be equivalent to mapping the data from the original input space into
a high-dimensional feature space. A maximum-margin classifier is then fit to the data
in this transformed space. Many variants of the initial SVM algorithm have been pro-
posed, including fuzzy SVMs which allows to train the SVM model with fuzzy class
memberships, Relevance Vector Machine (RVM [Tipping, 2001]) which tries to further
sparsify the set of support vectors obtained by the standard SVM algorithm. The latter
approach exploits a Bayesian learning framework which brings the additional bene-
fits of yielding probabilistic predictions in the output as well as the possibility to use
non-Mercer kernel functions. The functional form of the model remains the same,
that is, we still seek to find the parameters (w,b) of a separating hyperplane y in the
high-dimensional feature space: y(x) =∑

i αi k(x, xi )+b where k(., .) is the kernel func-
tion (the hyperplane parameter w is defined by the equality < w,φ(x) >=∑

i αi k(x, xi )
where < ., . > is the dot product defined by k(., .) in the high-dimensional feature space
and φ the mapping function from the original input space to the feature space). The
RVM approach considers that the targets yn are sampled from the model with addi-
tive Gaussian noise, yielding: p(yn |xn) = N (xn ; yn ,σ2). By considering a function
y(xn) as a weighted sum of kernel functions, we obtain with an extra assumption of
independence between the targets yn : p(y |w,σ2) = (2πσ2)−N /2 exp(− 1

2πσ2 ||y −γw ||2)
where γ is an N × (N + 1) matrix corresponding to the Gram matrix {k(xi , x j )}1≤i , j≤N

with an added column of 1 before and w = [b, w1, . . . , wN ]T is the parameter defining

the separating hyperplane. Here, y = [
y1, . . . , yN

]T . To complete the Bayesian formu-
lation, priors are added on the parameters w and σ2. The choice of a Gaussian prior
on the hyperplane parameter w (i.e. p(w |α) = ∏N

i=0 N (wi ;0,α−1
i )) encodes a prefer-

ence for less complex models. Having defined the priors, we continue with the Baye-
sian inference process by trying to estimate the posterior over all unknown parame-
ters given the data: p(w,α,σ2|y) = p(w |y,α,σ2)p(α,σ2|y). Given a new test point x∗,
predictions are made for the corresponding target y∗ in the following way: p(y∗|y) =∫

p(w |y,α,σ2)p(α,σ2|y) d w dα dσ2. By deriving the model, it can be shown that
p(w |y,α,σ2) and p(α,σ2|y) are Gaussian distributions. Thus, p(y∗|y) =N (y∗;µ∗,σ∗2).
The general RVM framework described above can be applied to regression as well as
classification problems. The form of p(y |w) in the classification case will only be dif-
ferent from the one described above since we have to account for the distribution of
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the target values which do not follow a Gaussian distribution but a Bernouilli distri-
bution, yielding: p(y |w) =∏N

n=1σ
(
y(xn ; w)

)yn
[
1−σ(

y(xn ; w)
)]1−yn where σ is the sig-

moid function.
RVMs are a special case of a larger category of models called Gaussian Processes

(GP). In fact, GP models are derived exactly in the same way except that we replace
the distribution p(y |w) which relies on a predefined form of the prediction function
y(x) by a generic distribution p(y) following a multivariate Gaussian distribution. p(y)
is called a Gaussian process and it is a distribution over functions. According to the
above considerations, defining a Gaussian process amounts then to choosing a form
for the mean and covariance function defining the Gaussian distribution p(y).

There exists many other discriminative models for classification, like linear dis-
criminant analysis, neural networks, decision trees, boosting techniques ... We only
give here an insight into kernel-based classification techniques since these are the
techniques which have mainly been exploited throughout this work.

Discriminative methods possess the advantage of addressing the classification prob-
lem in a straightforward way by directly computing the probabilities p(y |x) of class
labels y given the input data x. In this sense, they can succeed where generative meth-
ods fail (Long et al. [Long and Servedio, 2006]). Generative approaches, indeed, seek
to solve a more general problem through the modeling of the conditional distribu-
tions of data given class labels p(x|y) (which generally leads us to make very strong
assumptions regarding the form of these distributions) instead of dealing directly with
the classification problem. But, discriminative methods will be impaired by the neces-
sity of having representative datasets to train the models. To cope with this drawback,
semi-supervised discriminative approaches have been proposed, which make use of
both labeled and unlabeled training data. In the following paragraph, we try to give an
overview of semi-supervised methods both from the discriminative and the generative
point of view. A complete survey of the field can be found in Chapelle et al. [Chapelle
et al., 2006a].

Semi-supervised learning models Gathering enough labeled data for a particular
learning problem often requires a lot of efforts from an outside agent (generally hu-
man) to manually classify training examples. The cost of constituting a representative
labeled training set may thus be prohibitive in many cases. In this context, it can be in-
teresting to try to make the most out of unlabeled data which are relatively inexpensive
to acquire. It has indeed been proved through years of research on semi-supervised
techniques that unlabeled data, when used in conjunction with a small amount of la-
beled data, can produce a considerable improvement in the learning accuracy. Three
of the main methods that seek to exploit the intrinsic information contained in the
unlabeled data are (a) statistical generative models, (b) kernel methods and (c) graph-
based methods.

Among the statistical methods which can be ranked among semi-supervised meth-
ods, we can mention the associative models and the latent variable models (whether
this last category of models belongs to semi-supervised methods is questionable). The
idea of associative models is to determine probabilistic associations between seman-
tic concepts and visual words (which most often result from a vector quantization or a
clustering of the database). In these models, the unlabeled data are used indirectly in
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the vector quantization step. More theoretically sound approaches consider an unsu-
pervised model of the data under the form of a mixture model. Computing the param-
eters of the whole associative model is done through the maximization of a global like-
lihood function, often using an EM algorithm. In this case, the parameters of the mix-
ture components and the probabilistic associations between components and seman-
tic concepts are determined simultaneously. Latent variable models are also based on
the idea of visual words, but seek to discover latent “topics” in the data which are in-
termediate unobserved variables allowing to explain the semantic categories in terms
of visual words. The goal of the learning process is thus to compute models which best
represent the distribution of codewords inside each category. Both associative models
and latent variable models can be considered as generative models.

Semi-supervised kernel methods exploit two guiding principles. The first is to mod-
ify a standard kernel (e.g. a Gaussian kernel), with the help for instance of an additive
or multiplicative term determined using the unlabeled data, hoping that the result will
better capture the geometric structure of the data. This idea is generally referred to
in the literature as the kernel deformation principle. Among the techniques based on
this principle, we can mention the approach of Chapelle et al. [Chapelle et al., 2006b]
who have proposed “cluster kernels” based on a modification of the metric of space:
at equal distances, two points are considered closer if they belong to the same cluster.
This is a direct translation of one of the fundamental underlying assumptions of semi-
supervised methods, the “cluster assumption” saying that two data points are likely to
have the same labels if and only if there is a path connecting them passing through ar-
eas of high density only. This assumption can be formulated in an equivalent way using
the idea of “low density separation” saying that a decision boundary between two dif-
ferent classes has to pass through areas of low density only. Although the equivalence
with the “cluster assumption” is easy to see, this second formulation has nevertheless
inspired quite different algorithms from the first one. In the “cluster kernels” approach,
the “cluster assumption” is encoded using a modification of the kernel matrix eigen-
spectrum. The proposed method possesses a strong connection to spectral clustering
methods. It consists first in extracting the Laplacian matrix L of the data and then to
compute the eigenvectors of L corresponding to the first k eigenvalues (v1, . . . , vk ). The
data points are then replaced by their spectral representation (the data point xi for in-
stance is replaced by (v i

1, . . . , v i
k ) with an added normalization step to have length one).

The advantage of the spectral representation is that points are naturally clustered along
(quasi-)orthogonal axis, i.e., if there exists k distinct groupings/clusters inside the data,
there will be in the new spectral representation k vectors orthogonal to each other such
that each data point is mapped to one of these k vectors depending on the cluster is
belongs to. It is then easy to see that the Gram matrix obtained from the new point
representation will have a general term equal to one for data points belonging to the
same cluster (since it will be the dot product of almost colinear vectors of norm 1) and
zero for data points belonging to different clusters (since it will be the dot product of
almost orthogonal vectors). The obtained kernel will thus reflect in a straight way the
natural clusters inside the data.

There exists other formulations of the “cluster assumption” whose purpose is also
to define a kernel which directly encodes the structure of the data. We can mention the
mutual information and the marginalized kernels which rely both on a statistical mod-
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eling of the data as a mixture of Gaussians. As in the preceding case, these kernels are
designed in such a way that two points belonging to two different clusters/components
will have a low dot product.

The second guiding principle in kernel-based semi-supervised methods is the one
exploited by transductive SVMs [Joachims, 1999]. The idea which is formalized here
is rather that of low density separation: transductive SVMs indeed look explicitly for a
separation surface passing through low-density regions. The basic problem is a combi-
natorial one: in addition to the parameters (w,b) of the separating hyperplane, we also
look for the labeling of the unlabeled data such that if a classical SVM was trained with
this labeling, we would obtain a classifier that has the largest possible margin (and
consequently that passes through the regions of lowest density). It amounts thus to
maximizing over the 2N possible labelings (where N is the number of unlabeled data).
Several solutions have been proposed in the literature to avoid solving the combinato-
rial problem as such. The historical approach is that of Joachims et al. who have de-
scribed an iterative method which converges towards a local optimum of the objective
function. The proposed method consists in initializing the problem with the labeling
given by an inductive (standard) SVM trained over the labeled data. Then the algorithm
improves the solution by switching the current labels of test samples based on the val-
ues of the associated slack variables. The influence of the test samples is gradually in-
creased through the iterations by adjusting the SVM cost-factors “C∗” associated with
the unlabeled/test samples. It has been shown that this scheme converges towards a
stable solution.

More direct approaches have been proposed to address the underlying combina-
torial problem. Chapelle et al. have introduced a branch and bound algorithm which
is an alternative to exhaustive search but which still finds the optimal solution of the
problem [Chapelle et al., 2007]. This method considerably reduces the number of pos-
sible solutions to train and evaluate but it remains impracticable when the number of
unlabeled data is very large. Xu et al. [Xu et al., 2005] have proposed an approximate
reformulation of the S3VM problem under the form of a semi-definite program, which
has interesting properties such as convexity but which is very expensive both in terms
of computations and memory requirements. In general, we may notice that the solu-
tions proposed to solve the basic transductive SVM problem are not designed to handle
large volumes of data or suffer from optimization issues such as convergence towards
local minima of the objective function.

Graph-based methods are the third category of semi-supervised methods we want
to briefly describe in this section. They are generally based on the construction of the
graph Laplacian of the data, on which is then applied a principle of label propagation
(which, as its name indicates, “propagates” the labels from the labeled data to the un-
labeled data). Zhu et al. [Zhu and Ghahramani, 2002] have proposed a slightly different
approach based on the notion of transition matrix but the derivation of the model fol-
lows essentially the same steps: given a transition matrix T whose general term Ti j is
the probability to jump from node j to node i and a label matrix Y of size l +u where
l is the number of labeled data and u the number of unlabeled data, we want to find
the final label vector Yn such that Yn = T Yn (which is equal to limn→∞ T nY0). It can
be shown that the solution to this problem can be obtained by solving a sparse system
of linear equations or by repeating an iterative scheme of the form Y n+1 ← T Y n until
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convergence. The main problem is the resources needed to store in memory a con-
nected graph with a number of nodes equal to the number of data points (typically, we
store the corresponding Laplacian or transition matrix depending on the method). It
is also quite computationally demanding since it amounts to solving a linear system
of size equal to the number of unlabeled data points. One can nevertheless mention
the approach of Zhu and Lafferty [Zhu and Lafferty, 2005] who use a structuring of the
input space by performing a clustering on the data to alleviate the problems due to the
size of the graph.

3.4.2 Learning models for auto-annotation

Semantic image annotation can be thought of as a supervised learning problem where
the parameters of a model are learned using a training dataset. Figure 3.3 illustrates a
typical scenario for analyzing and annotating image databases. The first step consists
of extracting feature vectors (descriptors) from images. A training database consist-
ing of annotated samples is then used to compute the model parameters. The com-
puted model is re-used in the last step to extend the annotations to the whole database.
We can roughly distinguish between three categories of image annotating systems: (1)
those which rely on a probability distribution of image data (most of the time, a Gaus-
sian Mixture Model (GMM)) to model the per-concept distribution of image data [Fan
et al., 2008], [Carson et al., 2002]; (2) those which use one versus all strategies where a
classifier is learned from a binary training set (concept we want to learn versus the rest).
The learned classifier is then used to annotate the rest of the database images. Most of
one versus all strategies rely on a Support Vector Machine (SVM) classifier which max-
imizes the margin between the positive and negative images [Tong and Chang, 2001];
(3) The last category consists of latent variable models [Loehlin, 1987] whose basic idea
is to use a set of latent variables which represent hidden (not directly observable) “be-
haviors” in the data [Fei-Fei and Perona, 2005], [Lienou et al., 2010]. These hidden
“behaviors” are generally called “topics” or “themes”. As a general rule, models falling
into the categories (1) and (3) can be considered as generative models whereas models
falling into the category (2) rather belong to the class of discriminative models.

3.4.3 Learning models for interactive image search

Interactive systems involving the user in the learning process have received a growing
interest these past few years, especially in the CBIR community. New learning para-
digms have emerged centered on the notion of human-computer interaction, marking
a difference with learning paradigms in earlier systems which were focused on fully
automatic strategies. More and more recent CBIR systems indeed make use of a "rel-
evance feedback" feature (which allows the users to mark retrieved images as relevant
or non relevant) to iteratively learn a model of the query target. In this context, active
learning has become a state of the art tool. At each retrieval step, it consists in present-
ing to the user the most informative items while trying to achieve two goals: first, to
learn with accuracy the targeted concept and, second, to do so as quickly as possible
with minimal effort from the user. In the following paragraph, we present a brief review
of active learning methods proposed in the literature.
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Figure 3.3: Analyzing and annotating image databases. We start by extracting descrip-
tors from images. A training database consisting of annotated samples is then used
to compute the model parameters. The computed model is re-used in the last step to
extend the annotations to the unannotated samples.

Relevance feedback and active learning: selecting the most informative samples in
the feedback process In interactive search systems, the user is allowed to initiate the
search using a single query image as an example of the category/target he is interested
in. A selection of images is then presented to the user by the system. It can be the first
top-ranked similar images or any other set of images depending on the feedback strat-
egy implemented by the system. The interactive process then allows the user to refine
his request as much as necessary using a relevance feedback loop. Many interaction
schemes have been proposed in the literature a review of which is presented in Chang
et al. but the most common one is a binary scheme in which the user is simply asked
to assess as relevant or non-relevant the images fed back by the system.

We can distinguish between two distinct approaches in the use of the relevance
feedback component. The first one consists in using the feedback loop to refine the
user query. These methods are generally referred to in the literature as query modifi-
cation or query reweighing, depending on the use they make of the user labelings. The
most simple query modification scheme consists in computing at each iteration of the
feedback loop a new query as the average of the descriptors corresponding to the im-
ages which have been tagged as relevant by the user (Rui et al. [Rui et al., 1998]). Roc-
chio et al. [Rocchio, 1971] have described a query point movement algorithm trying to
improve the estimate of the “ideal” query at each iteration, based on weighted means
of relevant and irrelevant queries respectively. At iteration k, the new query estimate

Qk is obtained as: Qk =αQk−1 +β
(

1
|DR |

∑
i∈DR νi

)
−γ

(
1

|DN |
∑

i∈DN νi

)
where DR and DN

are respectively the sets of relevant and irrelevant descriptors νi . The constants α, β, γ
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have to be determined using a cross-validation process for instance. The idea behind
the above update formula is to move away from irrelevant images while getting closer
to relevant images.

Query reweighing is a more sophisticated scheme whose purpose is to tune the dis-
tance/
similarity function between the query and any image in the database. Aksoy et al. [Ak-
soy et al., 2000] have proposed an approach consisting in weighting each axis in the
description space using the weighted L1 distance. The idea they exploit is based on
the fact that, for a dimension in the description space to be good/informative regard-
ing the targeted class, the variance of relevant elements along this dimension has to
be small compared to the total variance along the corresponding axis (i.e elements of
the same class have to be grouped along this dimension). The weight along the i -th

dimension is finally set as wi = σtot
i

σRel (k)
i

where σtot
i is the standard deviation of elements

in the database along the i -th axis and σRel (k)
i is the standard deviation of relevant ele-

ments at the k-th iteration of the feedback loop along the i -th axis. There exists many
other works presenting re-weighting relevance feedback algorithms. The idea is al-
ways to give more importance to the features which are helpful for retrieving relevant
information and to reduce the importance of the features which do not contribute in a
significant way to the retrieval process. We can nevertheless mention the approach of
Peng et al. [Peng et al., 1999] who have introduced a probabilistic method which uses
the Bayes prediction error as a criterion to automatically assess the relevance of a cer-
tain feature. The weight for the i -th dimension is computed as: wi = ri (z)t /

∑q
j=1 r j (z)t

where ri (z) is the reduction in the prediction error achieved by using a least square
estimate for the prediction function fi instead of the null predictor (i.e. the predic-
tor which predicts the class of z to be 0 while z belongs to class 1 with probability 1).
Thus: ri (z) = ( fi (z)−0)−( fi (z)−E [ f |xi = z]) = E [ f |xi = z] (z represents the query). The
weights wi are then used to compute a weighted Euclidean distance.

More efficient active learning schemes consider the relevance feedback compo-
nent inside a binary classification problem. In this case, finding the optimal query is
reformulated as a binary classification task between the relevant and irrelevant image
classes. Many classification techniques have been employed inside relevance feedback
schemes including decision trees, neural networks, kernel methods, Bayesian methods
...

The reference among Bayesian methods is perhaps the PicHunter system proposed
by Cox et al. [Cox et al., 2000]. This system implements the user feedback in terms
of “relative similarity judgments” among images (this imposes less constraints on the
user than a categorical feedback where one has to select only the images that are in
the same category as the target). The PicHunter system relies on a learned model of
human behavior to better exploit the user feedback at each learning iteration. The
retrieval model can be summarized by the following update equation:

p(Ii |Hk ) = p(Ak |Ii ,Dk , Hk−1)p(Ii |Hk−1)∑N
j=1 p(Ak |I j ,Dk , Hk−1)p(I j |Hk−1)

where Ii is the i -th image, Dk the set of images displayed at iteration k and Ak the
action taken by the user at this iteration (i.e., the images he intends to select on the



66 3. CONTENT-BASED IMAGE RETRIEVAL: STATE OF THE ART AND DISCUSSION

display as pertaining to the targeted concept). The history of previous iterations is
denoted as Hk = {D1, A1, . . . ,Dk , Ak }. The key element of this equation is the term
p(Ak |Ii ,Dk , Hk−1) which represents the user model. Ak is a discrete variable which
can take any value between 1 and the size of the display. In plain language, p(Ak =
l |Ii ,Dk , Hk−1) is the probability of the l -th image on the display to be more relevant
than the other images which are displayed. In the PicHunter system, a feedback strat-
egy is adopted which aims at minimizing the number of iterations left in the feedback
process. The resulting scheme tries to maximize at each iteration the transfer of in-
formation from the user to the machine, which is globally equivalent to minimizing
the number of “questions” the system has to ask the user to resolve the ambiguity
(i.e. to find the target concept). Information theory suggests the entropy as an esti-
mate of this number. The distribution P (I ) being the distribution which reflects the
amount of knowledge the system has acquired about the target, the number C (P (I )) of
remaining iterations/“questions to ask” is estimated as: −α∑N

i=1 P (I = Ii ) logP (I = Ii ).
This quantity is then re-used to compute the expected number of remaining iterations

C
(
Id1 , . . . , IdNd

)
when the display is composed of the images

{
Id1 , . . . , IdNd

}
. In order to

find which images to display in the end, an algorithm is proposed which minimizes

C
(
Id1 , . . . , IdNd

)
over all possible Nd tuples

{
Id1 , . . . , IdNd

}
.

The Knowledge-driven Information Mining (KIM) system proposed by Datcu et al.
[Datcu et al., 2002] is another relevance-feedback-based system using a Bayesian para-
digm. This system consists of three distinct parts: a primitive feature extraction com-
ponent, a Bayesian network as the classification component used to generate interac-
tively image classifications and a database management system for the image content
information catalogue. The user knowledge is transferred to the system by means of a
simple relevance feedback algorithm which consists in presenting to the user the pos-
terior maps of the targeted concepts. The user can then indicate positive and negative
examples directly on the posterior maps, which allows to update the posterior accord-

ing to the following equation: p(L|wi ,D) = p(L)
∑

i p(wi |L)p(wi |D)
p(wi ) where L is the target

concept, wi are signal categories obtained by performing a clustering on the database
and D represents the data. The user feedback is used to compute p(wi |L) according to
the formula: p(wi |L) = 1+Ni∑

j 1+N j
where Ni is the number of times we observe the signal

category wi among the positive feedback examples.

Among more recent Bayesian systems making use of interactive learning techniques,
we can mention the system proposed by Li et al. [Li and Bretschneider, 2006], which is
a relevance-feedback-based CBIR system using a context-sensitive Bayesian network
to link low level image features to semantic concepts. Among other characteristics, the
context-sensitive Bayesian network allows to take into account the context informa-
tion by considering pairs of adjacent regions. It consists of four interconnected layers

containing respectively an image Ii , the region pairs (R j1

i ,R j2

i ) extracted from this im-

age, the code pairs
(
C (R j1

i ),C (R j2

i )
)

associated with the region pairs and the semantic

concepts SC1, . . . ,SCL , the aim being to compute the posterior probabilities p(SCk |Ii )
of each semantic concept SCk given an image Ii . These posterior probabilities depend

on the probabilities p(C (R j1

i ),C (R j2

i )|SCk ) of the code pairs given the semantic con-
cepts which are learned using an interactive learning process that simply consists in
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counting the relative code pairs frequencies in a user-supplied training set. A query-
point-movement-like scheme is further added to better capture the user’s query inten-
tions. More precisely, the authors propose to combine all regions from the initial query
and the positive examples into a single pseudo query image which is used as the op-
timal query for the next retrieval iteration. They make use of a popular Region-Based
Relevance Feedback (RBRF) scheme proposed by Jing et al. [Jing et al., 2004] which
consists in reducing the size of the pseudo query image using a K-means algorithm.
The query image results indeed from the accumulation of positively-tagged examples
during the relevance feedback process, so, its size increases at each iteration, which,
in turn, causes the retrieval speed to slow down gradually. The only purpose of the
k-mean algorithm is to synthesize a pseudo query image of constant size.

In recent systems, more attention has been paid to techniques using kernel learn-
ing inside a relevance feedback scheme. The historical approach is perhaps the one
of Tong et al. [Tong and Chang, 2001] who have introduced a support vector ma-
chine active learning algorithm for image retrieval. At each iteration of the feedback
loop, the SVMactive algorithm selects the most informative samples to display to the
user and adjusts the SVM boundary delineating the target class in accordance with the
user feedback on each of these samples. More theoretical details about this algorithm
will be given in the next chapter, so we will content ourselves with mentioning that
this technique achieves significant improvements over preceding state of the art active
learning techniques in terms of both learning speed (number of iterations in the ac-
tive learning loop) and learning accuracy. Costache et al. [Costache et al., 2006] have
presented a slightly different version of the SVMactive algorithm and describe its in-
tegration into a search engine to perform category search in high-volume EO image
repositories.

Among more sophisticated approaches using an SVM classifier in an active learn-
ing context, we can mention the approach of Tao et al. [Tao et al., 2006] who have
introduced an algorithm to handle the class imbalance between positive and negative
samples. This naturally occurs when using relevance feedback to build the training
set, due to the fact that the number of positive feedback samples is often far less im-
portant than the number of negative feedback samples. To alleviate this problem, they
propose an asymmetric bagging-based SVM (AB-SVM) to address both the class im-
balance problem and the instability of SVM classifiers on small training sets. Bagging
(also called bootstrap aggregating) consists in training T classifiers on T different sub-
sets D1, . . . ,DT obtained by sampling uniformly and with replacement from the original
training set. The outputs of the obtained classifiers are then combined using a Major-
ity Voting Rule, or, if the classifiers yield probabilistic outputs, by using a Bayes Sum

Rule: C (x) = argmax
k

[
T∑

t=1
p(yk | ft (x))

]
where ft is the decision function associated with

the t-th classifier. Tao et al. propose to use only the negative samples in the bootstrap
process since there are far more negative samples than positive ones. The bagging pro-
cess allows thus to train a classifier with a balanced number of positive and negative
training samples.

Ferecatu et al. [Ferecatu and Boujemaa, 2007] have proposed a strategy to enhance
the sparsity of the feedback examples in the SVMactive algorithm. This ensures among
other a better exploration of the SVM separating frontier by eliminating redundancy
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among displayed feedback samples. Their approach called “Most Ambiguous and Or-
thogonal” (MAO) consists in selecting the samples which are the closest to the SVM
separating surface (most ambiguous “component”) and which possess the smallest
pairwise scalar products (most orthogonal “component”), i.e. the samples x1, . . . , xd

such that x j = argminx∈S maxi∈1,...,n k(x, xi ) where S is the set of images not yet in-
cluded in the preceding MAO steps and xi , i = 1, . . . ,n are the already chosen candi-
dates. In plain language, we seek each time to minimize the highest of the values taken
by k(x j , xi ) where k(., .) is the kernel function. The “max” part ensures that the new
candidate is close to the separating surface (in fact close to the already chosen candi-
dates which we assume close to the separating surface) and the “min” part guarantees
that the new candidate is as much orthogonal as possible to the already chosen ones.

The RETIN system [Gosselin et al., 2008] also uses an SVM classifier with a strategy
to prevent the selection of feedback samples close to each other. Considering the same
notations as before, a new candidate x j is selected according to:

x j = argmin
x∈S

(
g (x)+ max

i∈1,...,n
k(x, xi )

)
where g (.) is the decision function associated with the current SVM classifier. More-
over, a boundary correction feature is added to better position the separating surface
in the early steps of the relevance feedback process. This is indeed always problem-
atic since there are very few training samples available at this stage. It is also some-
times hard to find initial examples of the target class without some third-party knowl-
edge (such as keywords, for instance). And, mostly, the most ambiguous strategy yield
good results on condition that the class boundary is already quite accurately posi-
tioned. The correction scheme consists in shifting the SVM surface by a constant bt

recomputed at each iteration t of the feedback loop: g∗
t (x) = g t (x)− bt . The idea is

to move the boundary towards the most uncertain area of the database by consider-
ing the proportion of positive feedback samples against the proportion of negative
ones among the samples which are displayed to the user based on the current es-
timate of the boundary: the surface is well positioned when the set of selected im-
ages is well balanced between positive and negative samples. The proposed scheme
relies entirely on the ranking obtained using the current SVM decision function g t :
xi1 , xi2 , . . . , xir , xir+1 , . . . , xir+m , . . . , xin−1 , xin . The samples are ranked in decreasing order
of relevance. The area xir , xir+1 , . . . , xir+m represents the zone of highest uncertainty on
which the user is asked to give his feedback: if the user labels more relevant samples
than irrelevant ones, it means that the zone of uncertainty can be shifted towards sam-
ples of lower rank to get more irrelevant samples. On the contrary, if the user labels
more irrelevant samples than relevant ones, the threshold ir is shifted towards sam-
ples of higher rank to get more relevant samples. The shift bt is finally evaluated as
g t (xir+b m

2 c).

3.5 Proposed concepts for searching huge databases us-
ing small training sets

Among the difficulties encountered when searching image databases, we may think on
one hand to the problems arising when the training sets used to represent the targeted



69

Figure 3.4: Graphical user interface of the RETIN system (http://retin.ensea.fr/). The
above image corresponds to the current display after ten iterations of feedback. The
target class is the one represented by the images surrounded in green (here, we look
for batracians).

image classes contains very few examples, and, on the other hand to the problems
inherent to high-volume image databases.

Developing retrieval and indexing algorithms which scale with databases contain-
ing hundreds of terabytes of images is an emerging problematic which poses many
questions regarding the validity of state of the art approaches on such high-volume
databases. This problematic is also linked to the first one since large volume of data of-
ten means high semantic diversity i.e. that the number of semantic classes contained
in the database is very high. It is thus altogether impossible to constitute exhaustive
training datasets with representative examples of each semantic class present in the
database. High-volume datasets also render the task of exploring the database very
demanding on a computational point of view. This is a problem which has raised but
little concern in recent and less recent CBIR systems. Most active learning schemes im-
plemented in these systems nonetheless require the evaluation of the current decision
function on the whole dataset as an essential step of the feedback process. Choosing
the most informative examples to feed back to the user is indeed based on the response
of each element of the database to the decision function associated with the current
classifier. This is notwithstanding the fact that highly performant classifiers yield com-
plex decision functions involving a non-negligible amount of computation to train and
evaluate.

To handle this problem some systems use a metric structuring of the database to
quickly identify informative samples. This requires the use of space-partitioning meth-
ods and index data structures, such as kd-trees or quadtrees, which address the prob-
lem of how to organize the data and how to perform queries without accessing all avail-
able data. Among the few practical implementations of such systems, we can men-
tion the KIM system Datcu et al. [2002] as well as GeoIRIS Shyu et al. [2007] which are
both dedicated to the indexation of very high-volume (hundreds of terabytes) remote-
sensing image databases. However, these systems can be used only for direct queries
and ignore the intrinsic dependencies in the data which are needed to model more

http://retin.ensea.fr/
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complex classes.
Another way of coping with very high-volume databases is to use machine learning

techniques such as for instance “smart” semi-supervised active learning schemes in
the case of semantic category search and coarse-to-fine methods in the case of object
detection. We will focus on this second way of envisaging the problem to develop our
own solutions.

The ideal approach would be of course to combine the advances made by both the
database and the object retrieval communities. Databases moreover address frontally
the problem of large memory requirements such as may be encountered when dealing
with huge amounts of data. This problem is not tackled directly in this work, but we
refer to it frequently in the following since it is an underlying and recurring problem in
the deployment of semi-supervised methods.

The key contributions of our work are summarized below:

• We propose a method to handle the non-exhaustiveness of training databases in
the case of auto-annotation systems and we also describe how this approach can
be used to help the user in his database exploration task by providing him with
relevant examples of unseen categories [Blanchart and Datcu, 2009, 2010; Blan-
chart et al., 2011d], that is, categories which do not possess any representative in
the training set used to build the auto-annotation model.

• We describe a method which aims at increasing the learning speed in the case
of interactive image retrieval systems, that is, systems involving the user during
the learning through the use of a relevance feedback loop [Blanchart et al., 2010,
2011c,d]. Minimizing the number of iterations in this loop is a critical issue. We
propose a semi-supervised algorithm which exploits the intrinsic structure of the
data to speed up the interactive learning process.

• We introduce a cascaded active learning method to detect objects in large satel-
lite image repositories [Blanchart et al., 2011a]. Our method performs coarse-
to-fine testing using a multiscale patch-based representation of satellite image
scenes. Unlike most object detection methods which require large training sets
and a costly offline training step, our approach makes use of a “cascaded” active
learning strategy to build a classifier at each level of the coarse-to-fine hierarchy
(which can also be envisaged under the form of a cascade of classifiers).

The three different systems and the related methods mentioned above can be seen
as the core components of a more general system for auto-annotating image databases
starting from a small training dataset containing only a few semantic categories with
a few training examples per category [Blanchart et al., 2011b]. The auto-annotation
and the interactive image search components are indeed to be envisaged in a com-
plementary way, the interactive image search engine being used to build the training
dataset which in turn is used to build the auto-annotation model. The whole process
can thus be seen as a loop in which, after each use of the interactive image search
engine, the newly-learned categories are incorporated inside the training database of
the auto-annotation system. The latter is then used to extend the annotation to the
whole database based on the auto-annotating model trained over all the previously
learned categories. The unknown structure discovery feature of the auto-annotation
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system allows the identification of new unseen classes to be searched for with the cat-
egory search or the object detection tool (“unseen classes” are classes that are not rep-
resented in the current training set of the auto-annotation component). The whole
concept is summarized in the diagram of the figure 3.5.
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Figure 3.5: Concept for an hybrid system combining the advantages of auto-
annotation and CBIR systems. The whole information mining process can be seen as a
loop in which the interactive image search engine is used to build the training dataset,
which, in turn, is used to train the auto-annotation model. The latter allows then to ex-
tend the annotations to the whole database. The unknown structure discovery feature
of the auto-annotation system can also be exploited to identify new/unseen classes to
be searched for with the category search or the object detection components of the
interactive image search engine.
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Chapter 4

Basic algorithms and frameworks for
classification and learning

In this chapter, we introduce the theoretical foundations which are useful to under-
stand our contributions to the field. After exposing some basics, we start with an in-
sight into unsupervised classification methods, then we present supervised and semi-
supervised classification techniques, trying to identify common ideas which are used
by the three paradigms. We also point out how learning methods can be employed to
perform related tasks such as feature selection or feature extraction. In the end, we de-
scribe some well-known learning strategies, that is, some general frameworks in which
classification methods are deployed.

4.1 Statistical point of view of classification

In this section, we present some basic notions of probability and Bayesian inference
from the point of view of classification problems.

The most intuitive approach of probability is perhaps the frequentist one which
views probabilities as frequencies of occurrence of random repeatable events. It is of-
ten opposed to the Bayesian point of view in which probabilities are considered to pro-
vide a quantification of uncertainty.

In the following, we denote by X and Y two random variables. The corresponding
probability distributions are referred to as p(X ) and p(Y ). The probability that X takes
the value x is denoted p(X = x). To simplify the notations, we will simply write p(x) to
refer to the value taken by p(X ) in x. With these notations, the two fundamental rules
of probability can be written as:

sum rule : p(X ) =∑
Y

p(X ,Y ) (4.1)

product rule : p(X ,Y ) = p(Y |X )p(X ) (4.2)

By using the product rule and the symmetry property (i.e. p(X ,Y ) = p(Y , X )), we
obtain the following relationship between conditional probabilities:

p(Y |X ) = p(X |Y )p(Y )

p(X )
= p(X |Y )p(Y )∑

Y p(X |Y )p(Y )
(4.3)
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which is called the Bayes’ theorem. It plays a central role in pattern recognition and
machine learning where it is often formulated as:

p(w |D, M) = p(D|w, M)p(w |M)

p(D|M)
(4.4)

In this formulation, D = {x1, . . . , xn} refers to the observed data, M to the model which
best fits the data and w to the model parameters. In this case, M is considered to be
known in advance and the problem is thus to find the best set of parameters. Inferring
the model parameters w from the data implies making assumptions on:

• the likelihood function p(D|w, M): this function expresses how the data are gen-
erated from the assumed model.

• the prior function p(w |M): this function represents the prior belief, that is, the
assumptions about w before observing the data.

Fitting the model M to the available data D is done by estimating the model pa-
rameters w . In this work, we consider only the two most well-known estimators:

Maximum likelihood estimator : wML = argmax
w

p(D|w) (4.5)

Maximum a posteriori estimator : wM AP = argmax
w

p(w |D)

= argmax
w

p(D|w)p(w) (4.6)

Least squares estimator : wLSQ = argmin
w

N∑
i=1

||yi − f (xi , w)||2 (4.7)

In the least squares case, w is the parameter which controls the shape of a function f
we want to fit to the training data

(
xi , yi

)
i=1,...,N .

The choice of one estimator or the other is dependent on the problem at hand.

4.2 Unsupervised classification

In this part, we try to provide an insight into unsupervised classification techniques
starting from the statistical point of view exposed above. Then, we progressively move
towards more heuristic approaches less theoretically founded but which still provide
very good results in unsupervised classification/clustering.

Probabilistic models explain the dependencies within a set of observed data through
the use of hidden variables which are the parameters of an underlying probability den-
sity function (pdf). The most widely used probabilistic model in clustering is without
any doubt the mixture model and more particularly the finite Gaussian mixture model
which considers the data distribution to be a linear superposition of Gaussian compo-
nents:

p
(
ν;

{
πl ,µl ,Σl

}
l=1,...,L

)
=

L∑
l=1

πl ·N (ν;µl ,Σl ) (4.8)
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where the prior probabilities of each component of the mixture, πl , are normalized
such that

∑L
l=1πl = 1, and µl and Σl respectively denote the mean and covariance ma-

trices associated with each Gaussian component:

N (ν;µl ,Σl ) = 1

(2π)
d
2 |Σl | 1

2

exp(−1

2
(ν−µl )TΣ−1

l (ν−µl ))

(in the above formula, d is the dimension of the space). The parameters of such a
mixture model can be learned using an Expectation-Maximization (EM) algorithm. We
derive this algorithm below for the particular Gaussian mixture component case. In the
following, we denote by θ = {π1, ...,πL ,θ1, ...,θL} the mixture model parameters where
θl refers to l -th mixture component parameters: θl = {µl ,Σl }.

A common tool to learn the distribution of observed data conditioned on model
parameters is the Expectation Maximization algorithm. The EM algorithm [Dempster
et al., 1977] gives a way of finding maximum likelihood estimates of model parame-
ters and thus provides a convenient basis to perform Bayesian inference which is the
most common way of testing between several hypotheses when we have a probabilis-
tic model of the data. For Gaussian mixture models, the maximum likelihood problem
cannot be solved analytically because of the nonlinearity of likelihood equations. The
EM algorithm provides an iterative procedure for approximating these estimates by
iteratively updating the GMM parameters in such a way that the likelihood function
remains non decreasing. We derive a special case of this algorithm dedicated to GMM
parameters estimation in the forthcoming paragraph.

EM algorithm We denote L (D, Z ,θ) the likelihood of the complete data. D = {d1, ...,dN }
refers to the observed data (di ∈ Rd ), Z denotes the unobserved data (missing val-
ues) and θ is the vector of model parameters as introduced above. In the case of
finite mixture models, we often take: Z = {z1, ..., zN } where zi is a vector of length
L whose l -th component z l

i characterizes the membership of the observation di to
the component cl . The maximum likelihood estimate (MLE) consists in maximizing
the likelihood function L (D,θ) with respect to θ, which is equivalent to maximiz-
ing the marginal likelihood of the complete data EZ [L (D, Z ,θ)] with respect to θ:
θMLE = argmax

θ
EZ [L (D, Z ,θ)]. In the finite Gaussian mixture case, we obtain:

θMLE = argmax
θ

N∑
i=1

L∑
l=1

p(z l
i = 1|di ,θ) log

[
πl p(di |θl )

]
(4.9)

(we consider the expected log-likelihood EZ
[
logL (D, Z ,θ)

]
instead of the expected

likelihood EZ [L (D, Z ,θ)]). The EM algorithm provides a two-step procedure to try to
find the MLE. The first step (E-step) consists in computing the expected value of the
log-likelihood with respect to the conditional density of Z given D under the current
estimation of the parameter vector θ(t ):

Q(θ|θ(t )) = EZ |D,θ(t )

[
logL (D, Z ,θ)

]= N∑
i=1

L∑
l=1

p(z l
i = 1|di ,θ(t )) log

[
πl p(di |θl )

]
(4.10)
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with p(z l
i = 1|di ,θ(t )) = p(zl

i =1,di |θ(t ))

p(di |θ(t ))
= p(zl

i =1|θ(t ))p(di |zl
i =1,θ(t ))∑L

k=1 p(zk
i =1|θ(t ))p(di |zk

i =1,θ(t ))
= π(t )

l p(di |θ(t )
l )∑L

l=1π
(t )
l p(di |θ(t )

l )
. The

second step (M-step) consists in maximizing Q(θ|θ(t )) with respect to θ, i.e., we obtain
θ(t+1) as:

θ(t+1) = argmax
θ

Q(θ|θ(t ))

The above two steps are repeated until a convergence criterion is met.
To obtain the update equations in the M-step, we use the Lagrangian L of Q(θ|θ(t ))

with a normalization constraint on the prior probabilities πl of each mixture compo-
nent: L(θ) =Q(θ|θ(t ))−λ∑L

l=1(πl −1). By expanding the Lagrangian, we obtain:

L(θ) =
(

N∑
i=1

L∑
l=1

p(z l
i = 1|di ,θ(t ))

(
−d

2
ln(2π)− 1

2
ln(|Σl |)

−1

2
(di −µl )TΣ−1

l (di −µl )+ lnπl

))
−λ

(
L∑

l=1
(πl −1)

)
(4.11)

To find the new estimate θ(t+1) of the model parameters, we look for the point θ
where ∂L(θ)

∂θ
= 0. Thus for the mean, we have:

∂L(θ)

∂µl
=

N∑
i=1

p(z l
i = 1|di ,θ(t ))

(
− ∂

∂µl

1

2
(di −µl )TΣ−1

l (di −µl )

)

=
N∑

i=1
p(z l

i = 1|di ,θ(t ))
(
Σ−1

l (di −µl )
)= 0 (4.12)

4.12 =⇒ ∑N
i=1 p(z l

i = 1|di ,θ(t ))Σ−1
l di =∑N

i=1 p(z l
i = 1|di ,θ(t ))Σ−1

l µl

=⇒µl =
∑N

i=1 p(z l
i = 1|di ,θ(t ))di∑N

i=1 p(z l
i = 1|di ,θ(t ))

(4.13)

Taking the derivative with respect to the covariance matrices yields:

∂L(θ)

∂Σl
=

N∑
i=1

p(z l
i = 1|di ,θ(t ))

(
− ∂

∂Σl

1

2
ln(|Σl |−

∂

∂Σl

1

2
(di −µl )TΣ−1

l (di −µl )

)

=
N∑

i=1
p(z l

i = 1|di ,θ(t ))

(
−1

2
Σ−T

l + 1

2
Σ−T

l (di −µl )(di −µl )TΣ−T
l

)
= 0 (4.14)

4.14 =⇒ ∑N
i=1 p(z l

i = 1|di ,θ(t ))Σ−1
l =∑N

i=1 p(z l
i = 1|di ,θ(t ))Σ−1

l (di −µl )(di −µl )TΣ−1
l

=⇒Σl =
∑N

i=1 p(z l
i = 1|di ,θ(t ))(di −µl )(di −µl )T∑N

i=1 p(z l
i = 1|di ,θ(t ))

(4.15)

And last:

∂L(θ)

∂πl
=

(
N∑

i=1
p(z l

i = 1|di ,θ(t ))
∂ lnπl

∂πl

)
−λ

(
∂πl

∂πl

)

=
(

N∑
i=1

p(z l
i = 1|di ,θ(t ))

(
1

πl

))
−λ= 0 (4.16)
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4.16=⇒πl = 1
λ

∑N
i=1 p(z l

i = 1|di ,θ(t )) By inserting this expression into the normalization
constraint, we obtain:

L∑
k=1

πk =
L∑

k=1

1

λ

N∑
i=1

p(zk
i = 1|di ,θ(t )) = 1 =⇒λ=

L∑
k=1

N∑
i=1

p(zk
i = 1|di ,θ(t )) (4.17)

4.17 =⇒πl =
∑N

i=1 p(z l
i = 1|di ,θ(t ))∑L

k=1

∑N
i=1 p(zk

i = 1|di ,θ(t ))
(4.18)

The new values of µl , Σl and πl computed using the update equations derived above
become then the new estimate θ(t+1) to be used in the next estimation step.

We can see that the final values of probabilities p(z l
i = 1|xi ,θ) which characterizes

the obtained probabilistic clustering depend on the model parameters θ. This suggests
that there is an almost deterministic dependency of the algorithm on the initialization
parameter θ(0). This explains why EM is very sensitive to initial parameter values and
will thus get easily trapped in local maxima. To remove this dependence on initial pa-
rameters and make the convergence towards the global maximum more likely, a vari-
ant of EM called deterministic annealing EM (DAEM) has been proposed by Ueda et
al. [Ueda and Nakano, 1998].

Maximum likelihood estimation with Deterministic Annealing EM (DAEM) To in-
troduce the DAEM algorithm, we can start from the following observation: the maxi-
mization of L (D,θ) with respect to θ is equivalent to the maximization of the following
function:

F (Z ,θ) = EZ
[
logL (D, Z ,θ)

]+H(Z ) (4.19)

which we refer to in the following as the free energy. H(Z ) is the entropy of the variable
Z :

H(Z ) =−EZ
[
log fZ (Z )

]=−
N∑

i=1

L∑
l=1

p(z l
i = 1|di ,θ) log p(z l

i = 1|di ,θ) (4.20)

where fZ is an arbitrary pdf over the variable Z . It has been shown in Neal et al. [Neal
and Hinton, 1998] that if F (Z ,θ) has a local maximum at f ∗

Z and θ∗, then the likelihood
function L (D,θ) has a local maximum at θ∗ as well. The same result can be proved
for global maxima as well. By introducing d(di ,cl ) =− log

[
πl p(di |θl )

]
the distance be-

tween the vector di and the Gaussian component cl , we can rewrite EZ
[
logL (D, Z ,θ)

]
as a distortion measure:

EZ
[
logL (D, Z ,θ)

]=−Di st =
N∑

i=1

L∑
l=1

p(cl |di ,θ)d(di ,cl )

=
N∑

i=1

L∑
l=1

p(z l
i = 1|di ,θ)d(di ,cl ) (4.21)

The problem is now to maximize F =−Di st+H or to minimize F = Di st−H . By intro-
ducing a temperature parameter T , we can give more or less importance to the entropy
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parameter H . We obtain then the usual statistical mechanic formulation of the free en-
ergy: F = Di st −T H which is also the basic formulation of DA. At high temperature,
the term H is predominant which implies that we perform almost random moves on
the likelihood surface. As we lower the temperature, the term Di st gains more impor-
tance and we tend towards the initial EM approach. We recognize here the generic idea
behind deterministic annealing: at the beginning of the procedure, we do not have any
a priori knowledge about the ML clustering. Then, to obtain fZ , we adopt a maximum
entropy approach which is the only viable principle in that case (it says that when no
a priori information is available, the best probability assignment is given by the dis-
tribution that contains the less information, that is, the distribution with the highest
entropy). As we gain confidence in the initialization of the ML clustering, we can give
more importance to the first term Di st and tend towards a minimum distortion ap-
proach which performs local optimization and makes the algorithm converge towards
the closest local minimum. The relative importance of both principles (maximum en-
tropy and minimum distortion) is adjusted through the temperature parameter T .
We have seen above that finding the MLE is equivalent to minimizing Di st−H with re-
spect to fZ and θ successively. We can extend this idea to the minimization of the free
energy: at T = 1, we will obtain exactly the MLE. By differentiating F = Di st −T H with
respect to fZ and solving ∂F

∂ fZ
= 0, we obtain the Gibbs distribution, p(z l

i = 1|di ,θ) =
1

Zdi
exp(−d(di ,cl )

T ), which is the only distribution that maximizes the entropy for a given

expected distortion. Zdi =
∑L

l=1 exp(−d(di ,cl )
T ) is a normalization factor. By plugging the

expression of p(z l
i = 1|di ,θ) back into the expression of F , we get:

F∗(θ) = min
fZ

F (Z ,θ) =−T
N∑

i=1
log

L∑
l=1

exp(−d(di ,cl )

T
) (4.22)

To maximize F∗ with respect to θ, we proceed the same way as in the case of the EM
algorithm by computing the Lagrangian with normalization constraints. We find (Ueda

et al.) p(z l
i = 1|di ,θ) = (πl p(di |θl ))β∑L

l=1(πl p(di |θl ))β
where β is the inverse of the temperature: β= 1

T .

We can then express the expected log-likelihood of complete data as:

Q(θ|θ(t );β) =
N∑

i=1

L∑
l=1

{
(π(t )

l p(di |θ(t )
l ))β∑L

k=1(π(t )
k p(di |θ(t )

k ))β
log

[
πl p(di |θl )

]}
(4.23)

The DAEM algorithm as described by Ueda and Nakano [Ueda and Nakano, 1998] is:

1. Set min and max inverse temperature parameter values: βmi n and βmax

2. Set β=βmi n and choose a random initial parameter vector value θ(0)

3. Iterate the following two steps until convergence:

• E-step: Compute Q(θ|θ(t );β)

• M-step: Find θ(t+1) = argmax
θ

Q(θ|θ(t );β)

4. Increase β
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5. If β<βmax , t ← t +1, go back to step 3.

In the GMM case, the M-step consists in updating mixing proportions πl , mean
vectors µl and covariance matrices Σl of the Gaussian components according to the
recursive formulas 4.18, 4.13, and 4.15. The DAEM algorithm has been shown in Ge-
man et al. [Geman and Geman, 1993] to converge to a global maximum of the likeli-
hood function provided that the cooling scheme is sufficiently slow (but in practice, the
“sufficiently slow” is often unacceptable for computational reasons). Because of this,
the DAEM algorithm will still have a strong dependency on the initial parameter val-
ues θ(0). The mass-constrained algorithm introduced by Rose in Rose et al. [Rose et al.,
1993] starts from a very simple observation: at very high temperature, the distribution
fZ becomes uniform, that is, ∀i , p(z1

i = 1|di ,θ) = ·· · = p(zL
i = 1|di ,θ) = 1

L . By looking
at the recursive update formulas 4.18, 4.13, and 4.15, it is easy to see that we will then
have one single effective cluster which contains all di . On the contrary, when the tem-
perature is close to zero, the system tends towards a nearest neighbor approach, that
is, each data point di is assigned to the nearest cluster (the distance considered here
is the one introduced above: d(di ,cl )) with probability one (max

l
p(z l

i = 1|di ,θ) = 1).

We can then fix an arbitrary number L of clusters (L < N ) and still obtain the same
number L of effective (distinct) clusters. Between these two extreme cases, it has been
shown in Rose et al. that the system is subject to a sequence of phase transitions
which correspond to natural splitting of clusters. That is, as we lower the tempera-
ture, the number of effective clusters grows via splitting of clusters obtained during
previous steps of the procedure. This phenomenon can be explained from a heuristic
point of view: the temperature T can be seen as a scale parameter in the probabili-
ties p(z l

i = 1|di ,θ) = 1
Zdi

exp(−d(di ,cl )
T ) which determines the scope of the influence of

cluster cl over neighboring data points. As we lower T , we reduce this scope (i.e the
influence of cl becomes more localized) so we need new clusters around cl to explain
the data points which are no longer explained by cl . A natural solution to do so is to
split cl (in practice, we create an other cluster by introducing a small perturbation to
the initial cluster cl ). The interest of what precedes lies in the fact that critical temper-
atures which corresponds to phase transitions (cluster splitting) can be identified and
even computed analytically in certain cases. This allows us to considerably accelerate
the annealing process: we can indeed adopt a faster cooling schedule between phase
transitions without affecting the performance. We only need to be very careful around
the critical temperatures by lowering the temperature very progressively.

The mass-constrained algorithm relies on these observations to progressively in-
crease the number of clusters and accelerate the cooling in the temperature intervals
where nothing happens, that is, between phase transitions. We avoid thus the “suffi-
ciently slow” cooling schedule imposed by the DAEM algorithm to ensure convergence
towards a global maximum. In the following, we briefly evoke the mass-constrained
algorithm introduced by Rose et al.. In the contribution part, we propose a modified
version of this algorithm which allows to update both cluster means and covariance
matrices.

Mass-constrained clustering algorithm The mass-constrained algorithm as described
in [Rose et al., 1993] is a clustering algorithm that finds cluster centroids without as-
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suming a particular underlying statistical model of the data (there is still a Gaussian
hypothesis regarding the shape of clusters). The final clustering is given by the associ-

ation probabilities p(di |cl ) = p(cl )p(cl |di )
p(di ) = πl exp(− d(dl ,cl )

T )
N ·Zdi

. The chosen distance measure

d is often the Euclidean distance which makes the mass-constrained algorithm simi-
lar to a deterministic annealing K-means algorithm. The formulation of the algorithm
proposed by Rose is the following:

1. Fix the maximum number of clusters Lmax and the minimum temperature Tmi n .

2. Choose T > 2λmax , L = 1, µ1 = 1
N

∑N
i=1 di and α1 = p(c1) = 1.

3. Iterate the following two steps until a convergence criterion is met:

• E-step: Compute the association probabilities according to p(cl |di ) = exp(− d(di ,cl )
T )

Zdi

• M-step: Update the mixing proportions and the cluster centers according

to: πl =
∑N

i=1 p(cl |di )
N , and µl =

∑N
i=1 p(cl |di )di∑N

i=1 p(cl |di )

4. If T < Tmi n , stop.

5. Cooling step: decrease T .

6. If L < Lmax , check the condition for phase transition (i.e cluster splitting) for l =
1, · · · ,L. If the condition is met for cluster j , add a new cluster cL+1. Set µL+1 =
µ j +δ, πL+1 =π j /2 and α j =α j /2. Increment L. Go to step 3.

The problem of such an algorithm is that it becomes quite ineffective when the
volume of data is high due to the exponential term that we have to assess for each
data point in the E-step. Several heuristics have been proposed – mainly derived from
the K-means algorithm – which try to avoid convergence towards local optima of the
objective function. In the following paragraphs, we leave aside the statistical viewpoint
and ML estimators to focus on least squares approaches which differ from the previous
methods in the sense that they make no clear statistical assumptions on the data. The
simplest one is the K-means algorithm [MacQueen et al., 1967] which we expose next.

K-means The purpose of this algorithm is to minimize the sum of intraclass distor-
tions, i.e., using the same notations as above, to minimize the objective:

Fobj(D) =
L∑

l=1

N∑
i=1

z l
i d(di ,cl ) (4.24)

where z l
i is a point-cluster assignment variable which equals 1 if argmaxk d(di ,ck ) = l

and 0 otherwise (in other words, each data point is assigned to the closest cluster ac-
cording to the metric d). A two-step iterative procedure is used to compute the cluster
centers:

• Iterate the following two steps until a convergence criterion is met:
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– (Re-)compute cluster centers according to µl =
∑N

i=1 zl
i di∑N

i=1 zl
i

.

– (Re-)compute point-cluster assignments: set z l
i = 1 if argmaxk d(di ,ck ) = l

and z l
i = 0 otherwise.

The problem of the iterative procedure is that it converges towards a local minima of
the objective function Fobj. The Enhanced LBG (ELBG) algorithm is a very nice heuris-
tic which has been proposed by Patane et al. [Patané and Russo, 2001] to try to make
the iterative standard K-means procedure converge towards a better optimum. The
procedure is detailed in the next paragraph.

ELBG As said in section 3.4.1, the ELBG optimizes the same functional as the K-
means algorithm using roughly the same two-step iterative procedure but with an
extra-strategy so that each cluster makes an equal contribution to the total amount of
distortion. This strategy is inspired from the Gersho’s theorem ([Gersho, 1979]) which
states that: “Each cell makes an equal contribution to the total distortion in optimal vec-
tor quantization with high resolution”. This theorem is valid only for quantizers whose
number of codewords tends to infinite but it has been shown experimentally (Chin-
rungrueng et al. [Chinrungrueng and Sequin, 1995]) that it also retained some validity
when the codebook has a finite number of elements.

To assess the contribution of each cluster to the total distortion, Patane et al. have
introduced a measure U of the “utility” of a cluster:

Ul =
Dl

Dmean
with Dl =

N∑
i=1

z l
i d(di ,cl ) and Dmean = 1

L

L∑
l=1

Dl (4.25)

The idea of the ELBG is to obtain the equalization of the cluster utilities by perform-
ing simultaneously two kinds of operations: (1) merging a low-utility (lower than 1)
cluster with a cluster adjacent to it in order to obtain a cluster whose utility is closer
to 1 than before and (2), splitting a high-utility (higher than 1) cluster into two smaller
ones whose utilities are also closer to 1 than the original high-utility cluster. One it-
eration of the ELBG algorithm, besides the two standard operations performed in the
K-means procedure, consists in doing several shifts of clusters such as described above
and checking whether the performed shifts result in a lower mean square error (total
distortion) or not. In the following, the operations (1) and (2) are referred to as Shift
of Cluster Attempts (SoCA). A SoCA is performed on two clusters, a cluster cl1 such as
Ul1 < 1 (operation (1)) and a cluster cl2 such as Ul2 > 1 (operation (2)).

The low-utility clusters cl1 are taken in a sequential way whereas the high-utility
clusters cl2 are drawn randomly according to their weights wl2 computed as the nor-

malized utilities over all the current low-utility clusters: wl2 =
Ul2∑

lk :Ulk
>1 Ulk

. A SoCA op-

eration involves three clusters: a low-utility cluster cl1 , the adjacent cluster cl3 it is to
be merged with, and a high-utility cluster cl2 which is to be split in two. Concretely
speaking, the SoCA operation consists in merging cl1 and cl3 and to recompute the new
cluster centroid (recomputing the whole partition is too costly so the new centroid is
determined using only the elements of cl1 and cl3 before the merging operation). Then,
we perform the splitting of cl2 using a very simple strategy: the longest diagonal of the
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cluster bounding box is divided into three parts, the central part being twice as long as
the two other ones. The new cluster centers (i.e. the centers of the clusters resulting
from the splitting operation) are then placed at the two ends of the central part. At last,
we recompute the centroids of the two obtained cluster using only the elements from
the original high-utility cluster. The SoCA is confirmed iff Dnew < Dold where Dnew is
the new total amount of distortion. One iteration of the ELBG algorithm consists in
performing SoCAs until there is no low-utility cluster left.

The procedure is summarized by the Algorithm 1.

Algorithm 1 Algorithmic description of the ELBG procedure
• Initialize the cluster centroids
While the convergence criterion is not met do

• Compute the new partition according to the current estimates of the cluster cen-
troids
While there is at least one cluster whose utility is lower than 1 do

• Select two clusters cl1 and cl2 such as Ul1 < 1 and Ul2 > 1
• Perform a SoCA operation on the clusters cl1 and cl2

• Re-compute the centroids of the clusters resulting from the merging and split-
ting operations in the SoCA
If Dnew < Dold then

• Confirm the SoCA operation
Else

• Cancel the SoCA operation
End If

End While
• Compute the new cluster centroids

End While

Clustering and feature extraction Clustering operations are often used to generate
signatures under the form of visual words histograms. To obtain such representations
from images, a codebook is first generated using a vector quantization/clustering over
the whole database. The elements which are quantized are directly the pixel values
plus possibly extra information at the pixel level computed using a filtering process
(such as Gabor filtering if we want for instance textural information in addition to the
color information provided by the original pixel values). After the extraction of the
codebook, an histogram is computed from each image by mapping each pixel to the
closest codebook element, i.e., if νx y is the computed value of the pixel of coordinates
(x, y) and {c1, . . . ,cK } the obtained codebook, we compute the associated bag-of-words
representation of an image as the vector {h1, . . . ,hK } where hk = 1

Nx ·Ny

∑
x
∑

y
∑K

k=1δ
ck
νx y

.

The function δck
νx y

equals 1 if ck is the codebook element which is the closest to νx y and

0 otherwise. The term 1
Nx ·Ny

is a normalization term to ensure that the histogram bins
sum up to one.
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4.3 Supervised classification

Given a training set of the form
{
(x1, y1), . . . , (xN , yN )

}
, a supervised learning algorithm

seeks a function g : X → Y , where X is the input space and Y the output space. The
function g belongs to a space G of possible functions called the hypothesis space. In
many probabilistic models such as logistic regression for instance, g takes the form of
a conditional probability model, i.e., g (x) = P (y |x). There are two basic approaches
to choosing the function g : Empirical Risk Minimization (ERM) and Structural Risk
Minimization (SRM). The ERM principle consists in finding the function that best fits
the training data. SRM uses the same principle as ERM but adds a penalty function
which controls the tradeoff between bias and variance (which in classification is often
referred to as the tradeoff between goodness-of-fit and generalization capabilities).

Support Vector Machine (SVM) from the SRM point of view SVMs are directly in-
spired from the SRM principle and their formulation allows to control directly the
bias/variance tradeoff. In this paragraph, we will only envisage the SVM formalism
used in classification though there exists an extension to the regression case as well.

SVMs look for a function g of the form g (x) = sign( f (x)) where f is called the deci-
sion function and can be expressed as a linearly-weighted sum of possibly non-linear

basis functions φ(x) = {
φ(x1), . . . ,φ(xM )

}T , i.e., f (x; w,b) = ∑M
i=1 wiφ(xi ) + b = w T ·

φ(x)+b. From the geometrical point of view, it amounts to computing a separating hy-
perplane in a transformed space defined by the mapping function φ. Solving the SVM
problem consists then in finding “good values” for the parameters w = {w1, . . . , wM }
and b which are the hyperplane parameters, w being the normal to the hyperplane
defining its direction and b being the offset to the origin.

The SVM optimization problem can then be derived directly from the SRM prin-
ciple: we want to obtain a classifier that correctly fits/classifies the training data but
which is not too complex to avoid overfitting. This tradeoff is the main point of the
statistical learning theory (also known as Vapnik-Chervonenkis theory [Vapnik, 1998])
inside which the SRM principle is formulated. The goodness-of-fit is measured via
the empirical risk which is simply taken as the mean error rate of the classifier on the
training dataset: Remp (w,b) = 1

2N

∑N
i=1

∣∣yi − g (xi ; w,b)
∣∣. To assess the generalization

capabilities of the classifier, one has to compute the generalization error on unseen
data, that is, the expectation of the test error: R(w,b) = ∫ 1

2

∣∣y − g (x; w,b)
∣∣p(x, y)d xd y .

This quantity, which is the one we are ultimately interested in is of course not directly
tractable and we have to resort to a result obtained by Vapnik et al. which establishes
a very nice connection between the empirical risk and the expected risk. It states that
the following upper bound holds with probability (1−η) where 0 ≤ η≤ 1:

R(w,b) ≤ Remp (w,b)+
√(

h(log(2N /h)+1)− log(η/4)

N

)
(4.26)

In this equation, h is a non-negative integer called the Vapnik-Chervonenkis (VC)
dimension. It is a measure of the “capacity” of the classifier, that is, its ability to learn
any training set without error. More concretely speaking, given a certain class of classi-
fiers (such as linear classifiers for instance), the VC dimension is the maximum number
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(w, b)emp

g

Model Complexity (h)

  Error 
(R(w,b))

generalization bound

Figure 4.1: Relationship between the empirical risk Remp (w,b) and the VC-confidence
v(N ,h,η). As the complexity of the model increases, the empirical risk decreases: it
means that complex models will yield a better modeling of the data (with a risk of
overfitting). On the contrary, as the complexity of the model increases, so does the
VC-confidence: it means that complex models will commit more errors on data not
contained in the training dataset. The generalization bound is the sum of the two
other curves. Minimizing the generalization bound/expected risk is equivalent to mak-
ing the right tradeoff between the goodness-of-fit/empirical risk and the complex-
ity/generalization capabilities of the classifier.

of points that can be correctly classified by a member of this class, whatever their la-
beling is. In other words, we’ll say that the VC dimension associated with a class of
classifier C is h iff we can find h data points (and no more than h) for which there ex-
ists at least one member of C which correctly classifies these points (i.e. respects their
labels) for each of the 2h possible labelings over these points (it does not have to be of
course the same member of the class which correctly classifies the data points for all
the 2h possible labelings).

The SRM principle consists then in minimizing the upper bound on the expected
risk to minimize the expected risk itself. The upper bound is the sum of the empirical
risk and of a second term called the VC confidence (see the right hand side of equation
4.26) which is a monotonic increasing function of h. Thus for a selection of classifiers
whose empirical risk is zero, one wants to select the classifier which belongs to the class
having the lowest VC dimension since this classifier will yield a better upper bound on
the expected risk. This of course does not guarantee the chosen classifier to have better
performance than an another classifier belonging to a class of higher VC dimension.
Eq. 4.26 is only used as a guide to determine a classifier whose expected risk does not
exceed the upper bound (with some chosen probability (1−η)).

In the following, we look closer to how the SRM principle is concretely implemented
in the SVM formalism. We can start from the simple observation that classifiers with
small margins and large VC-dimensions will yield accurate but complex decision sur-
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faces whereas classifiers with large margins and small VC-dimensions will induce less
accurate but at the same time less complex decision surfaces.

The relation between SRM and SVM is established in the separable case by a the-
orem from Vapnik [Vapnik, 1998] which states that minimizing the norm of w in the
SVM problem is equivalent to minimizing the VC dimension h and consequently the
“capacity” term which is a growing function of h. The exact formulation of this theo-
rem is the following:

Let D be the diameter of the smallest ball around the training data points x1, . . . , xN .
Considering the class of separating hyperplanes described by the equation w T x +b = 0,
the upper bound to the VC dimension is

V C ≤ min

(
dD2

m2
e, M

)
+1

In the above inequality, M corresponds to the dimension of the input space and m
is the margin of the separating hyperplane that has the smallest margin within the class
of separating hyperplanes of the form w T x+b = 0. Thus, minimizing the expected risk
R(w,b) is equivalent to maximizing m while keeping the empirical risk Remp (w,b) low
or zero. By requiring the support vectors to lie on the hyperplanes w T x +b = −1 and
w T x +b = +1, the margin of the separating hyperplane can be shown to be 2

‖w‖ (see
next paragraph). Thus, we can see that the SVM plainly exploits the SRM principle
when it minimizes 1

2‖w‖2 = 2
m2 under the constraints:

(w T xi +b) ≥+1 for yi =+1 (4.27)

(w T xi +b) ≤−1 for yi =−1 (4.28)

These two sets of constraints ensure that the empirical risk is kept low or zero. The SRM
principles applies in the same way when using a mapping function φ to transpose the
SVM problem into a high-dimensional feature space.

Support Vector Machine from the geometrical point of view Support Vector Ma-
chines can also be formalized from a mere geometrical point a view. We consider first
the linear case, i.e. we look for a separating hyperplane of the form w T x +b = 0. The
SVM algorithm simply looks for the parameters w and b which maximize the margin.

We first envisage the separable case, that is the case where the training data can
be separated by a linear classifier without classification errors. In this simple setting,
the maximum margin is defined as the distance between the parallel hyperplanes that
are as far apart from each other as possible while still correctly separating the training
data. This imposes the contraints:

(w T xi +b) ≥+1 for yi =+1 (4.29)

(w T xi +b) ≤−1 for yi =−1 (4.30)

which can be rewritten: yi (w T xi +b) ≥ 1,∀i = 1, . . . , N . Let’s consider first the points for
which the inequality 4.29 holds (requiring that there exists such a point is just a matter
of correctly scaling w and b). These points lie on the hyperplane H1 : w T x +b = 1.



86 4. BASIC ALGORITHMS AND FRAMEWORKS FOR CLASSIFICATION AND LEARNING

Similarly, the points for which the inequality 4.30 holds lie on the hyperplane H2 :
w T x + b = −1. The perpendicular distances from H1 and H2 to the origin are then
respectively |1−b|/||w || and | − 1−b|/||w ||. Hence, the distance between H1 and H2

is (|1−b|/||w ||)− (|−1−b|/||w ||) = 2/||w ||. Maximizing the margin thus amounts to
maximizing the quantity 2/||w ||which is equivalent to minimizing the quantity 1

2 ||w ||2.
The SVM problem in the linear separable case can then be formulated as:

min
w,b

1

2
||w ||2 (4.31)

s.t. yi (w T xi +b) ≥ 1,∀i = 1, . . . , N (4.32)

The above optimization problem when applied to non-separable data possesses no
feasible solution. The idea is to relax the constraints 4.29 and 4.30 to allow the misclas-
sification of some points when necessary. To translate this idea, an extra cost is added
to the objective function of the SVM problem 4.31 and slack variables ξ1, . . . ,ξN are in-
troduced into the constraints 4.29 and 4.30 to account for eventual misclassifications.
The new constraints can then be formulated :

yi (w T xi +b) ≥ 1−ξi ,∀i = 1, . . . , N

ξi ≥ 0,∀i = 1, . . . , N

For a misclassification to occur, the corresponding slack variable must exceed 1. Thus,
the quantity

∑N
i=1ξi is a lower bound on the number of training errors. A natural way to

integrate the misclassification so that they penalize the SVM objective function is then
simply to add an extra term to the objective 4.31, yielding a new objective function of
the form: 1

2 ||w ||2 +C
∑N

i=1ξi . The SVM problem in the linear non-separable case can
then be written in the following way:

min
w,b,ξi

1

2
||w ||2 +C

N∑
i=1

ξi

s.t.

{
yi (w T xi +b) ≥ 1−ξi ,∀i = 1, ..., N

ξi ≥ 0,∀i = 1, ..., N
(4.33)

The parameter C is fixed by the user and allows to control the amount of classification
errors by penalizing models with a lot of such errors. A high value of C amounts to
assigning a higher penalty to errors, leading to a model which better fit the training
data but with a risk of overfitting. On the contrary, a small value of C might lead to a
model which underfits the training data. Finding the right value of C is thus equivalent
to finding the right tradeoff between goodness-of-fit and generalization capabilities,
which is a very interesting feature of SVM classifiers.

In the following, we derive the dual formulation of the problem 4.33. The advan-
tage of such a formulation is that the training data will only appear in the form of dot
products between training vectors. This property allows the generalization to the non-
linear case.

The dual formulation is obtained by writing the Lagrangian L(w,b,ξ;α,ν) of the
problem 4.33 and by using the Karush-Kuhn-Tucker (KKT) conditions on the Lagrangian.
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The KKT conditions are necessary conditions for the solution of a constraint optimiza-
tion problem to be optimal. In the case of a convex optimization problem with lin-
ear constraints, they can also be shown to be sufficient conditions for optimality. The
problem 4.33 is a quadratic optimization problem with linear contraints and as such
is convex. Thus, finding the optimum is equivalent to finding the point which verifies
the KKT conditions. This property can be used to derive another formulation of the
optimization problem 4.33 called the Wolfe dual and which is equivalent to the primal
problem.

To form the Lagrangian, we introduce 2N Lagrange multipliersα1, . . . ,αN , ν1, . . . ,νN

for the 2N constraints yi (w T xi+b) ≥ 1−ξi ,∀i = 1, ..., N and ξi ≥ 0,∀i = 1, ..., N , yielding:

L(w,b,ξ;α,ν) = 1

2
w T w +C

∑
i=1,...,N

ξi −
N∑

i=1
αi (yi (w T xi +b)−1+ξi )−

N∑
i=1

νiξi (4.34)

For the primal problem 4.33, the KKT conditions can be written as [Fletcher, 1981]:

∇L(w,b,ξ;α,ν) = 0 (4.35)

αi yi (w T xi +b) = 0, ∀i = 1, . . . , N (4.36)

νiξi ≥ 0, ∀i = 1, . . . , N (4.37)

αi ≥ 0, ∀i = 1, . . . , N (4.38)

νi ≥ 0, ∀i = 1, . . . , N (4.39)

Using the condition 4.35, we obtain (4.40, 4.41 and 4.42):

∂L(w,b,ξ;α,ν)

∂w
= w −

N∑
i=1

αi yi xi = 0 ⇒ w =
N∑

i=1
αi yi xi (4.40)

∂L(w,b,ξ;α,ν)

∂b
=

N∑
i=1

αi yi = 0 (4.41)

(
∂L(w,b,ξ;α,ν)

∂ξ

)
i
=C −αi −νi = 0 ⇒ νi =C −αi (4.42)

Because of (4.42), (4.34) is equivalent to:

L(w,b,ξ;α,ν) = 1

2
w T w −

N∑
i=1

αi (yi (w T xi +b)−1) (4.43)

By substituting 4.40 into equation 4.43 and by denoting 〈u, v〉 the scalar product
uT v , we obtain:
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L(w,b,ξ;α,ν) = 1

2
〈

N∑
i=1

αi yi xi ,
N∑

i=1
αi yi xi 〉−

N∑
i=1

αi (yi (〈
N∑

j=1
α j y j x j , xi 〉+b)−1)

= 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉−
N∑

i=1
αi (yi (

N∑
j=1

α j y j 〈x j , xi 〉+b)−1)

= 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉−
N∑

i=1
αi (

N∑
j=1

α j yi y j 〈xi , x j 〉+ yi b)+
N∑

i=1
αi

= 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉−
N∑

i , j=1
yi y jαiα j 〈xi , x j 〉−

(
N∑

i=1
αi yi

)
b +

N∑
i=1

αi

Using the equation 4.41, we finally obtain:

L(w,b,ξ;α,ν) =
N∑

i=1
αi −

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉 (4.44)

The KKT conditions 4.38 and 4.39 impose that αi ≥ 0,∀i = 1, . . . , N and νi ≥ 0,∀i =
1, . . . , N . Since minimizing the primal is equivalent to maximizing the dual in the case
of a convex optimization problem, we finally obtain the following quadratic optimiza-
tion problem:

max
α

L(α,ν) =
N∑

i=1
αi − 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉

s.t.

{
αi ≥ 0,∀i = 1, ..., N

νi =C −αi ≥ 0, i.e. αi ≤C ,∀i = 1, . . . , N
(4.45)

This problem can then be solved by any standard Quadratic Programming (QP)
solver. To compute b, we use the KKT condition 4.36, which yields:

αi (yi (
N∑

j=1
α j y j 〈x j , xi 〉+b)−1) =

N∑
j=1

αiα j yi y j 〈xi , x j 〉+bαi yi −αi = 0, ∀i = 1, ..., N

⇒ b =−yi

N∑
j=1

α j yi y j 〈xi , x j 〉+ yi , ∀i such as 0 <αi ≤C (4.46)

In the following, we show how the above problem can be generalized to the case
where the decision function is not a linear function of the training data. Boser et al.
[Boser et al., 1992] have proposed to use a “trick” based on the observation that the
training data only appear under the form of dot products 〈xi , x j 〉 in the dual formu-
lation. The “kernel trick” as it is referred to in the literature consists in considering a
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mapping of the data in another Euclidean (possibly infinite dimensional) space H , us-
ing a mapping function which we denote byφ in the following: φ : Rd →H . The train-
ing algorithm will then only depend on the dot products 〈φ(xi ),φ(x j )〉 in that space. We
thus never need to know the function φ explicitly, the mapping being defined through
the choice of a kernel function k(xi , x j ) = 〈φ(xi ),φ(x j )〉. One example of commonly
used kernel is the Gaussian kernel: k(xi , x j ) = exp(−d 2(xi , x j )/2σ2). Using the kernel
trick, the optimization problem in 4.45 is transformed into:

max
α

L(α,ν) =
N∑

i=1
αi − 1

2

N∑
i , j=1

yi y jαiα j k(xi , x j )

s.t.

{
αi ≥ 0,∀i = 1, ..., N

νi =C −αi ≥ 0, i.e. αi ≤C ,∀i = 1, . . . , N
(4.47)

yielding the following decision function: f (x) = ∑
i∈SV αi yi k(x, xi )+b where SV is

the set of support vectors, i.e. SV = {i |0 <αi <=C }.
The figures 4.3 represent the SVM decision function values in the four different

cases envisaged above.

“Soft” variants of SVMs In this paragraph, we present two soft variants of the stan-
dard SVM problem allowing the use of soft-labeled training examples. We introduce
first the well-known fuzzy-SVM and then we present an other formulation of a soft
SVM

Fuzzy SVMs have been introduced by Lin et al. [Lin and Wang, 2002] to account
for the fact that training data points in a two-class problem are not necessarily fully
assigned to one class or the other but instead may be given fuzzy membership degrees.
Thus, each training data point makes a different contribution to the learning of the
decision surface. In the following, we denote by µi (0 ≤µi ≤ 1) the membership degree
assigned to the training data point xi . The value µi represents the degree of belief we
have that the data point xi is a representative of the class yi . The idea is to modify the
slack variables by multiplying them by the membership degrees. The slack variable ξi

reflects indeed the amount of misclassification we authorize on the training data xi .
A high value of µi when multiplied with ξi will constrain the latter to remain low and
thus will limit the classification error made in this point. On the contrary, a low value
of µi will allow the value of ξi to grow higher and there will be thus less contraints on
the corresponding data point xi to be correctly classified. This amounts to giving more
importance in the learning to the training data points with high membership degrees
and to reduce the influence of those with low membership degrees. The formulation
of the fuzzy-SVM problem is the following:

min
w,b,ξi

1

2
||w ||2 +C

N∑
i=1

µiξi

s.t.

{
yi (w T xi +b) ≥ 1−ξi ,∀i = 1, ..., N

ξi ≥ 0,∀i = 1, ..., N
(4.48)
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(a) (b)

(c) (d)

Figure 4.2: Fig. 4.2(a): linear SVM in the separable case. Fig. 4.2(b): linear SVM in the
non-separable case. Fig. 4.2(c): non-linear SVM in the separable case. Fig. 4.2(d): non-
linear SVM in the non-separable case. In all the figures above, the circled dots represent
the support vectors and the black line, the SVM separation surface. The green and red
lines correspond respectively to the +1 and −1 margins.
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which yields the following dual formulation:

max
α

L(α,ν) =
N∑

i=1
αi − 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉

s.t. 0 ≤αi ≤µi C , ∀i = 1, . . . , N (4.49)

The principal limitation of the fuzzy-SVM formulation is due to the fact that the
membership degree of a training sample is taken into account only when a misclas-
sification occurs (in the contrary case, the slack variable associated with the training
sample is 0, thus, the associated membership has no influence in the training). The
soft-SVM formulation which we derive below [Liu, 2006] allows to take account of the
membership degree no matter whether the training sample is correctly classified or
not. When misclassification occurs on a given training sample, the corresponding
slack variable is penalized in proportion to the membership degree associated with
the sample, i.e., the less certain the membership degree is, the less “important” the
misclassification will be. On the contrary, correctly classified samples are allowed to
influence the separating surface by pulling it close or pushing it away depending on
the value of the corresponding memberships. Thus, both correctly and non-correctly
classified samples will be allowed to have an influence proportioned to their respec-
tive membership values during the training. To reflect the degree of membership of
a training sample xi , we relax the constraint yi (w xi + b) ≥ 1 into yi (w xi + b) ≥ µi ,
which amounts to allow the optimal hyperplane to move closer to the samples with
less certain membership degrees. In the non-separable case, we obtain the following
constraint: yi (w xi +b) ≥ µi −ξi . To further penalize the misclassification of samples
with high µi values, we replace the error term ξi by µiξi as in the fuzzy-SVM problem.
We finally obtain the following primal formulation of the soft-SVM problem:

min
w,b,ξi

1

2
||w ||2 +C

N∑
i=1

µiξi

s.t.

{
yi (w T xi +b) ≥µi −ξi ,∀i = 1, ..., N

ξi ≥ 0,∀i = 1, ..., N
(4.50)

which yields the dual problem:

max
α

L(α,ν) =
N∑

i=1
µiαi − 1

2

N∑
i , j=1

yi y jαiα j 〈xi , x j 〉

s.t. 0 ≤αi ≤µi C , ∀i = 1, . . . , N (4.51)

An important question associated with the use of a soft-SVM classifier is how we
can obtain the membership degrees associated with the training samples. The most
natural way of proceeding is to envisage the problem from the probability point of view
and to use the conditional probabilities p(yi =+1|xi ) and p(yi =−1|xi ). The maximal
certainty about the class label is produced when p(yi =+1|xi ) = 1 or p(yi =−1|xi ) = 1.
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(a) (b)

(c) (d)

Figure 4.3: Effect of varying the membership degrees of the training data points in the
case of a linear (fig. 4.3(a) and fig. 4.3(b)) and a non-linear (fig. 4.3(c) and fig. 4.3(d))
soft-SVM classifier.
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In this case, µi = 1. The maximum uncertainty corresponds to p(yi = +1|xi ) = p(yi =
−1|xi ) = 0.5. In this case, µi = 0. In the following, we set p+

i = p(yi = +1|xi ) and p−
i =

p(yi = −1|xi ). One can observe that the quantity p+
i − 0.5 plays the same role in the

range [−0.5,0.5] that µi yi in the range [−1,+1]. A mapping between probabilistic and
fuzzy membership degrees can thus be established as: µi yi = 2(p+

i −0.5) = 2p+
i −1 =

p+
i −p−

i . The membership degree µi can thus be obtained as: µi = yi (p+
i −p−

i ) = |p+
i −

p−
i | since yi = sign(p+

i −p−
i ).

Probabilistic outputs for SVMs A classifier than can output a posterior probability
of the form p(class|input) is very useful in many practical situations. The problem of
SVMs is that they produce in the output an uncalibrated value which is not a prob-
ability. A common method to transform the value of the SVM decision function f
into a posterior probability consists in using a sigmoid, i.e. we compute p(y = 1|x) as:
p(y = 1|x) = 1

1+exp(A f (x)+B) . The problem is then to adjust the parameters A and B of the
sigmoid. Platt et al. [Platt, 2000] propose to perform maximum likelihood estimation
from the SVM training set

{
(xi , yi )i=1,...,N

}
. In the following, we denote by pi the sig-

moid response to xi (i.e. pi = 1
1+exp(A f (xi )+B) ). Considering that the variable Yi (i.e. the

random variable associated with the label of the training point xi ) follows a Bernoulli
law of parameter pi (the attribution of the label yi is similar in nature to the result of a
yes/no experiment with a probability of success equal to pi and a probability of failure
equal to 1− pi ), we have: p(Yi = yi |xi ) = p ti

i (1− pi )(1−ti ) with ti = yi+1
2 , i.e. ti = 1 if

yi = 1 and ti = 0 if yi =−1. Thus, the global likelihood can be written as (by assuming
independence between the training set instances): L (A,B) = ∑N

i=1 p ti
i (1−pi )(1−ti ). In

the following, we use the negative log-likelihood:

L(A,B) =−
N∑

i=1
ti log(pi )+ (1− ti ) log(1−pi ) (4.52)

The parameters A and B are found by minimizing L(A,B), i.e.: (A,B) = argmin(A,B) L(A,B).
This problem is a two-parameter non-linear estimation problem which can be solved
using any optimization algorithm (Levenberg-Marquardt ...). Platt et al. have proposed
their own algorithm which is described in [Platt, 2000].

The negative log-likelihood 4.52 can also be seen as the Kullback-Leibler diver-
gence between pi and ti . Thus, we can imagine that the variable ti does not only take
binary values. This is useful when we want to use a model of “out-of-sample” data (we
can for instance impose the distribution of the ti ’s).

Supervised methods and learning strategies In this paragraph, we describe three
different settings for supervised learning. We start with Multiple Instance Learning
(MIL). We then give an insight into active learning and cascaded learning strategies. We
focus each time on the use of SVMs within these three particular learning frameworks.

Multiple Instance Learning (MIL) Multiple Instance Learning refers to a learning
framework where there is an uncertainty on the labels of training instances: in the MIL
setting, training data is available under the form of bags of instances with labels for the
bags. Thus, the problem is to learn the target concept given positive and negative bags
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of instances. Each bag may contain one or several instances. A bag is labeled as posi-
tive if and only if there is at least one positive instance within the bag (i.e. one instance
which falls within the targeted concept). A bag is labeled as negative if and only if all
the instances it contains are negative (i.e. do not fall within the targeted concept). The
goal of the learning is to induce a classifier able to label individual instances correctly.
In the following, we introduce a common reformulation of Multiple Instance Learning
as a maximum margin problem using SVMs. We refer to this approach as MIL-SVM
[Andrews et al., 2003]. We will use the following notations: x1, . . . , xN refer to the train-
ing instances which are grouped into M bags B1, . . . ,BM where Bm = {xi |i ∈ Im} and Im

is a subset of {1, . . . , N }. We assume that the sets I1, I2, . . . , IM form a partition of the set
{1, . . . , N } and are non-overlapping. We denote by Ym the label associated with the m-th
bag. The maximum margin formulation of Multiple Instance Learning can be written
as the following mixed integer programming problem:

min
{yi }i=1,...,N

min
w,b,ξ

1

2
||w ||2 +C

N∑
i=1

ξi

s.t.


yi (〈w,φ(xi )〉+b) ≥ 1−ξi , ∀i = 1, . . . , N

ξi ≥ 0, ∀i = 1, . . . , N∑
j∈Im

y j+1
2 ≥ 1 ∀m s.t. Ym = 1

y j =−1 ∀ j ∈ Im ∀m s.t. Ym =−1

(4.53)

The problem is thus to discover the labels y1, . . . , yN of single instances. The third
constraint implies that there is at least one positive instance per positive bag and the
fourth constraint implies that all the instances inside a negative bag have a negative
label. The MIL problem taken as such is thus a combinatorial problem which can be
solved by a brute force approach which consists in testing all the possible labelings
inside the positive bags with the constraint that there is at least one positive element
per positive bag. By denoting Nm the cardinal of the m-th bag, we have thus(

Nm

1

)
+

(
Nm

2

)
+·· ·+

(
Nm

Nm

)
= 2Nm −1

possible labelings to test per positive bag. In the end, the MIL-SVM problem 4.53
amounts to training

∏M
m=1

[
2Nm −1

]
SVM problems and to select the one which gives

the largest margin. There exists of course approximate solutions in the literature which
do not require to solve the combinatorial problem as such but they all yield suboptimal
solutions.

Active learning In section 3.4.3, we mentioned that active learning could be en-
visaged from a machine learning point of view, the goal of the learner being to learn
the user’s query concept. We remain close to this idea in the following by consider-
ing active learning as a way to build the training set of a two-class classifier using an
interactive query process involving the user.

Using this definition, the main issue of active learning becomes to select the most
informative images to present to the user from the current pool of unlabeled images.
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The term “active” refers indeed to a strategy of “feedback images” selection which aims
at minimizing the number of iterations in the active learning loop. Active learners dif-
fer thus from “passive” learners which use random selection for the choice of feed-
back examples. In an active learning approach, this choice is performed according
to the user response on the set of images selected during the previous active learn-
ing iterations. As mentioned before, an active learning learner must ideally fulfill two
goals, which are: (1) to learn the user’s query concept as quickly as possible and (2)
as accurately as possible. In the following, we describe SVMactive which is a state-of-
the-art tool to perform active learning using an SVM classifier. In this algorithm, the
most informative samples are computed as the samples among the current pool of un-
labeled samples which are the closest to the current SVM separating surface. These
samples are termed Most Ambiguous (MA) in the following. For a feedback scheme
involving one feedback sample at a time, this strategy has been proved to be opti-
mal in terms of speed (the notion of “speed” being defined as the number of iter-
ations needed in the active learning loop to arrive at a proper definition of the tar-
geted concept using an SVM classifier). A theoretical justification is provided in [Tong
and Chang, 2001]. It relies on the notion of version space which is defined as the
set of hyperplanes that correctly separate the training data in the feature space in-
duced by the kernel function. By denoting H the set of possible hyperplanes (i.e.

H =
{

f
∣∣∣ f (x) = 〈w,φ(x)〉

||w || , w ∈F
}

where F is the feature space), we can define the ver-

sion space V as: V = {
f ∈H

∣∣ yi f (xi ) > 0 ∀i = 1, . . . , N
}
. There exists a bijection be-

tween the set of possible hypotheses in H and the set of unit vectors w in H . Thus, the
version space can be rewritten as: V = {

w ∈H
∣∣ ||w || = 1 and yi f (xi ) > 0 ∀i = 1, . . . , N

}
.

We have to notice that the notion of version space exists only if the training data is lin-
early separable in the feature space. In the following, we start from the idea that ob-
serving a training point xi restrains V to the set of hyperplanes that correctly classifies
xi , i.e. to the set of hyperplanes that satisfy yi 〈w,φ(xi )〉 > 0. By rewriting the new con-
straint brought by xi under the form 〈w, yiφ(xi )〉 > 0, we can view yiφ(xi ) as the normal
to an hyperplane in the “normalized” feature space. Thus, the constraint yi 〈w,φ(xi )〉 >
0 defines a half-space in the “normalized” feature space and yi 〈w,φ(xi )〉 = 0 corre-
sponds to an hyperplane which acts as a boundary of the version space. The latter can
be seen at the beginning of the active learning process (when there exists no constraint)
as a unit hypersphere. According to what precedes, adding a new training point divides
the hypersphere into two parts. With these considerations in mind, we can go back to
the problem at hand. Intuitively, we can easily figure that the winning search strategy
will be the one which halves the current version space at each active learning iteration,
thus reducing by two the uncertainty about the “target hypothesis” (i.e. the separating
surface delineating the user’s query concept). Thus, at each active learning iteration,
one has to choose the sample in the pool of unlabeled data that is the closest to the
center of the current version space. To do this, one can start from the observation that
the solution of the SVM problem trained with the current training dataset will be the
point of the current version space such that the hypersphere centered at this point and
which does not intersect with the hyperplanes corresponding to the current training
instances has the largest radius possible. The resulting hypersphere roughly approxi-
mates the version space, and thus, has its center close to the center of the current ver-
sion space. Choosing the next feedback sample is then somewhat equivalent to choos-
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(a) iteration 1 (b) iteration 2 (c) iteration 3

(d) iteration 4 (e) iteration 5 (f) iteration 6

(g) iteration 7 (h) iteration 8 (i) iteration 9

Figure 4.4: Iterations of the SVMactive algorithm. The green and red dots refer respec-
tively to positive and negative feedback examples and the blue line to the SVM sepa-
rating surface.

ing the sample whose corresponding hyperplanes comes closest to the center wt of
this hypersphere, i.e. we might want to choose the sample xt = argminxt∈U

∣∣wt ·φ(xt )
∣∣

where U is the pool of unlabeled samples. The sample xt will also be the point whose
image in the feature space will be the closest from the current SVM separating surface
defined by wt . Thus, at each active learning iteration, the strategy will be to return the
point belonging to the pool of unlabeled data whose image in the feature space is the
closest to the current SVM separating surface.

Cascaded learning In this paragraph, we shortly describe the Viola and Jones
[Viola and Jones, 2004] real-time object detection framework. The proposed scheme
relies on a coarse-to-fine strategy implemented as a cascade of detectors of increas-
ing complexity/discriminating power as we go down the cascade. The purpose is to
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further processing stage 1 stage 3stage 2
T TT

rejected sub-windows

F F F

all sub-
windows

Figure 4.5: Synopsis of a cascaded active learning scheme: sub-windows which are
“accepted” at one stage of the cascade are propagated to the next stage for further pro-
cessing, the other sub-windows are simply discarded. This diagram is directly inspired
from the one in [Viola and Jones, 2004].

eliminate a large number of sub-windows very unlikely to contain the targeted ob-
ject in the higher stages of the cascade with the help of very cheap detectors. We can
thus focus on a reduced number of sub-windows in the lower stages, allowing the use
of more complex/costly detectors on these sub-windows without “infringing” the real-
time constraint. The processing of a sub-window thus goes on as soon as it it is rejected
at some stage of the cascade, in which case, the sub-window will not be “propagated”
to the lower stages (see figure 4.5). To be more specific about the Viola et Jones object
detection framework, a boosted version of an SVM classifier is trained by progressively
introducing new features at each stage of the cascade. In the face detection applica-
tion described in [Viola and Jones, 2004], the first classifier in the cascade uses only two
features but still allows to eliminate around half the database with an almost null false
negative rate and a false positive rate of 40%.

Generally speaking, due to the cascaded structure, the detection rate of an L-stage
cascade is

∏L
l=1 dl where dl is the detection rate at stage l and similarly, the false pos-

itive rate is
∏L

l=1 fl where fl is the false positive rate at stage l . These formulas imply
that we do not need to set the focus on the discriminating power (false positive rate)
of the classifiers at each stage of the cascade since even a cascade of classifiers having
each quite a high false positive rate will still result in the whole cascade having a low
false positive rate (due to the global false positive rate being the product of the false
positive rates of all the classifiers). The counterpart is that we need each classifier to
have a very high detection rate to avoid missing too much objects.

4.4 Semi-supervised classification

Semi-supervised learning covers a class of learning methods that exploit both labeled
and unlabeled data during the training (typically a small amount of labeled data and
a large amount of unlabeled data). Thus, it falls between unsupervised and supervi-
sed learning and as such uses methods from both “domains”. The interest of semi-
supervised techniques has already been demonstrated in section 3.4.1, so, in this sec-
tion we will only quickly remind the fundamental assumptions on which semi -super-
vised methods lean and detail some of the semi-supervised techniques that are the
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closest to the algorithms we develop in the following parts of this work.
The two main assumptions of semi-supervised methods are on one hand the clus-

ter assumption and on the other hand the low density separation assumption. They
amount, in essence, to the same underlying idea but they have nevertheless inspired
quite different techniques in practice by suggesting two rather different ways of tack-
ling the problem of exploiting the unlabeled data. We can formulate these two assump-
tions in the following way:

• Cluster assumption: If two points are in the same cluster, they are likely to be in
the same class.

• Low density separation: The decision boundary between two classes should lie
in a region of low density.

Before using any semi-supervised method, one should systematically ask himself
the question: do the unlabeled data help or not ? From a very simple point of view,
many standard semi-supervised techniques make a very strong hypothesis on the dis-
tribution of unlabeled data compared to that of labeled data: these two distributions
are supposed to be the same in many approaches and by-passing this hypothesis may
impact the learning in a negative way, the “wrongly distributed” unlabeled data acting
as noise during the learning process. To put it in a more formal way, the knowledge of
p(x) that one gains through the use of the unlabeled data should bring some informa-
tion useful in the inference of p(y |x). If this is not the case, semi-supervised learning
will not bring any improvement over supervised learning and might even result in a
worse performance than using the labeled data alone. In the following, we illustrate
this fundamental idea within the particular case of transductive SVMs such as intro-
duced in [Joachims, 1999]. The underlying idea behind the method has already been
described in section 3.4.1, so we will just content ourselves with introducing the math-
ematical formalism. We wish to optimize over the 2Nu possible labelings of the Nu

unlabeled data points, the purpose of the optimization problem being to find the la-
beling which yields the SVM classifier with the largest margin (low density separation
assumption). The associated mathematical formalism is the following:

min
y∗

1 ,...,y∗
Nu

min
w,b,ξ,ξ∗

1

2
‖w‖2 + Cl

Nl∑
i=1

ξi + Cu

Nu∑
i=1

ξ∗i

s.t.


sign(yi · (〈w,φ(xi )〉+b)) ≥ 1−ξi ,∀i = 1, ..., Nl

sign(y∗
i · (〈w,φ(x∗

i )〉+b)) ≥ 1−ξ∗i ,∀i = 1, ..., Nu

ξi ≥ 0,∀i = 1, ..., Nl

ξ∗i ≥ 0,∀i = 1, ..., Nu

(4.54)

The variables related to the unlabeled data are denoted with a “∗”. In the two graph-
ics of the figure 4.6, we represent both the case where the unlabeled data help obtain
a better classifier and the case where they impact the performance of the learning in a
negative way. The brute force and most simple approach to solving the problem 4.54
consists in using exhaustive search over all the possible labelings. This isn’t of course
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+1
−1
unlabeled
standard
transductive

(a) Unlabeled data help (b) Unlabeled data do not help

Figure 4.6: Example of using a transductive SVM in the case where the distribution of
unlabeled data fits that of labeled data 4.6(a) and in the case where the distribution of
unlabeled data possesses an extra mode compared to that of labeled data 4.6(b). In the
second, case, the unlabeled data acts as noise during the training and the performance
is worse than using the labeled data alone.

a practicable solution in the case where Nu is large but one has to keep in mind that
all the proposed practical solutions [Joachims, 1999; Xu and Schuurmans, 2005] in the
literature are sub-optimal and subject to convergence towards local optima of the ob-
jective function.

4.5 Summary

In this chapter, we described some classification techniques and learning frameworks
which somewhat inspired our contributions to the field. In brief, we provided an in-
sight into the following methods:

• unsupervised classification methods: modeling the data as a mixture of Gaus-
sians and estimating the paramaters of that mixture with an EM algorithm is a
very common way to perform unsupervised classification. We inspire ourselves
from this approach in the chapter 5 to estimate the parameters of a three-level
hierarchical model which rely on a mixture-of-Gaussian assumption regarding
the intrinsic distribution of the data. We also use the mixture-of-Gaussian mod-
eling approach in the chapter 6, but, in this case, it is rather a weak assumption
regarding the “form” of the data than a real modeling used in the classification
process. We make use of unsupervised clustering algorithms like K-means or
ELBG in both cases to “seed” the EM algorithm. The ELBG algorithm is also used
in the chapter 7 to “summarize” the negative feedback examples we extract in the
automatic label propagation part of our cascaded active learning scheme.

• supervised classification methods: we mainly described the SVM formalism and
we introduced soft variants of this algorithm which we use in the chapter 6 and
more especially in the section of this chapter dealing with the unlearning of er-
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roneously introduced mixture components. We also use a soft-SVM as the base
learner in the cascaded scheme described in chapter 7.

• semi-supervised classification methods: the semi-supervised SVM described in
the section 4.4 is the closest in essence from the composent-based SVM we in-
troduce in the chapter 6. In both cases, we constrain the SVM surface to pass
through low-density areas but the two methods rely on completely different ap-
proaches to implement this idea.

• learning frameworks/strategies: we exploit the SVMactive strategy described in
4.3 to decide which samples to feed back to the user after each active learning
iteration in both the chapter 6 and the chapter 7. As for the MIL framework and
the coarse-to-fine strategy described respectively in 4.3 and 4.3, they are imple-
mented in our object retrieval scheme (see chapter 7).
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Chapter 5

Semi-supervised annotation and
unknown semantic structures discovery
in satellite image repositories

In this chapter, we envisage the problem of mining satellite image repositories from the
point of view of automatic annotation systems such as represented in figure5.1. These
systems are designed to achieve two goals which are: (1) the automatic annotation
of previously unseen images and (2) the retrieval of database images using keyword-
based queries. Through these two goals, annotation and semantic retrieval are envis-
aged in a complementary way: once the database has been annotated with predefined
keywords, it is indeed quite straightforward to formulate semantic queries using the
same keywords.

The system we introduce belongs to the category of latent variable models (we pro-
vide a general description of this category of models in section 3.1). A recurring prob-
lem with most state-of-the-art auto-annotation methods is that they rely on a fully-
supervised training step to build the annotation model, and, consequently, they need
a sufficiently large number of training samples to accurately learn the mapping model
between image descriptors and semantic concepts. They also make the assumption
that all the target classes possess representative training samples in the training da-
tabase, which is far from being a realistic scenario. In satellite image scenes, we can
indeed observe a quasi-infinite variety of structures because of, among others, spa-
tial and temporal variations in soil. Therefore, it is often not a reasonable hypothesis
to consider that there exists a training database summarizing all these structures. In-
stead, we might want a system able to learn the image classes present in the training
database and at the same time able to detect and retrieve unknown image classes by
analyzing the unlabeled data, the final goal being to feed back relevant examples of
these unknown classes to the user so that he/she gives them an annotation. Among
semi-supervised techniques dedicated to classifying/annotating remote sensing data,
we can mention the approach of Bruzzone et al. [Bruzzone et al., 2006] who have pro-
posed an adaptation of the S3VM described in Joachims [Joachims, 1999] to the multi-
class problem. Though the proposed method allows both the exploitation of labeled
and unlabeled samples, an extra hypothesis is made regarding the distribution of unla-
beled samples which is supposed to be the same as that of the labeled ones. In the con-
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Data 
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Feature 
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Learning model 
parameters

Extending 
annotations 
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of the database
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Feature
data
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Rest of the 
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Figure 5.1: Generic architecture of a system to perform analysis and auto-annotation
of remote sensing data. We start by extracting descriptors from images. A training
database consisting of annotated samples is then used to compute the model param-
eters. The computed model is re-used in the last step to extend the annotations to the
unannotated samples.

trary case (for instance if the distribution of unlabeled samples is modeled as a GMM
and possesses modes which do not figure in the distribution of labeled samples), unla-
beled samples will just act as noise in the model and the result can be a classifier which
performs worse than the classifier trained with only the labeled samples.

5.1 Latent variable models for semi-supervised knowledge
discovery

In the following, we introduce a semi-supervised approach based on latent variable
models to perform auto-annotation of image databases and discover unknown image
classes. We describe a semi-supervised three-level hierarchical model which allows us
to exploit the huge amount of unlabeled data. The advantages of such a model are:
(1) because of the presence of unlabeled data, the training algorithm used to learn the
model parameters is not affected by the small sample size problem [Shahshahani and
Landgrebe, 1994], thus leading to more reliable estimates of the model parameters; (2)
such a training algorithm can be used to infer unknown image classes among the data.

The flowchart of the whole system is given in Figure 5.2. We start by extracting the
model M corresponding to the labeled part of the training database. We use only la-
beled samples to do so, which is sufficient to obtain a first approximation of this model
since by definition, the labeled data contains all known image classes (i.e. the classes
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“urban area”, “desert”, “forest”, “fields” in the example of Figure 5.2). The model M is
then re-used to compute the general model of the data. Since the unlabeled part of the
training database contains samples from both known and unknown image classes, we
use it to learn the model M̄ corresponding to the unknown image classes. We exploit
the knowledge of the already learned model M to infer which of the unlabeled data
samples are likely to belong to an unknown image class. These unlabeled data are then
used to learn the model M̄ and the remaining unlabeled data are used to refine the
model M . Thus, the distribution of unlabeled data needs not necessarily fit the distri-
bution of the labeled data. There can be extra modes in the unlabeled data distribution
which will be interpreted as corresponding to unknown image classes and thus will not
weaken the performance of the classifier on known image classes.

Labeled 
images

Feature 
extraction

urban area

desert

forest

fields

new image class 1

new image class 2

new image class 3

new image class 4

new image class 5

Feature 
extraction

Unlabeled 
images

Add labeled 
data to 

unlabeled 
data

Extraction of 
labeled data 

model M

Labeled + 
unlabeled data 
model extraction

Use knowledge of M 
to learn M

Complete model : (M, M)

Latent Gaussian 
mixture components

Latent Gaussian 
mixture components

Figure 5.2: Flowchart of the whole system: the first step consists in extracting the de-
scriptors from the two parts (labeled and unlabeled) of the training database. We then
extract the model M of the labeled training data. The probabilistic associations be-
tween semantic concepts and clusters are represented through the use of a gradient of
color. For ease of representation, we have represented well-separated ellipsoidal clus-
ters and we have chosen to assimilate the latent Gaussian mixture components with
the Gaussian mixture components which would have been obtained in a purely data-
driven mode. In reality, Gaussian mixture components in our model are “discovered”
by analyzing the associations between semantic concepts and descriptors in the train-
ing database, so they may not match exactly those computed directly from data. The
last step is the semi-supervised part of the model and consists in incorporating the
unlabeled samples so as to make the unknown image classes appear. The model M is
re-used to identify these new classes and its parameters are also re-estimated. We ob-
tain in the output an estimation of both the known and the unknown part of the model
(M , M̄).
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Our model is similar in nature to LDA-based models. We start from low-level visual
words (image descriptors in our case) that we relate to high-level semantic concepts
through the use of intermediary latent variables which are, in our case, latent Gaus-
sian mixture components. As in latent variable models, the latent Gaussian mixture
components are not directly inferred from the data as would be done for instance in
a classical GMM-based approach [Carson et al., 2002; Fan et al., 2008], but from the
associations between semantic concepts and image descriptors in the training data-
base. Each semantic concept can be viewed as a “mixture” of a small number of latent
mixture components; more precisely we can define each semantic concept through
the use of a probabilistic vector describing the probability of the concept to appear
given each latent mixture component. The creation of each feature vector (which cor-
respond to visual words in our case) is also conditioned on the latent mixture compo-
nents. The main conceptual difference between our model and LDA-based models lies
in the fact that our model does not define a true top-down generative process, that is,
starting from a category of document, LDA defines a complete generative process of
documents falling into this category. Our approach is rather a bottom-up approach,
that is, starting from a feature vector, we define an inference process which allows to
compute the most probable semantic concepts given that feature vector. In this sense,
our approach is more similar to that of Fan et al. [Fan et al., 2008].

The use of GMMs as a basic modeling of data is questionable since it often leads
to difficult estimation problems especially when using high-dimensional feature sets.
However several approaches have been tested successfully in the literature [Fan et al.,
2008; Shahshahani and Landgrebe, 1994; Sheikholeslami et al., 2002; Barnard et al.,
2003; Carson et al., 2002]. In all these approaches, both the dimensionality of the fea-
ture space and the number of mixture components must be controlled but the ob-
tained results remain still very satisfying even for complex annotation problems. The
semantic classes are indeed formed by grouping together several mixture components.
Thus, even with a few mixture components, there is a huge number of possible com-
binations, making GMM-based systems suitable for complex annotations problems.
In table 5.1, we have represented the dimensionality of feature spaces along with the
number of mixture components and the sizes of training sets in several systems us-
ing GMMs. The last row represents the number of semantic classes which are learned
using these mixtures. We observe that the number of semantic classes is often com-
parable with the number of mixture components in the model. For complex semantic
classes, this means that the model is using combinations of mixture components to
define these classes.

The chapter is organized as follows: we introduce first two versions of a fully-supervised
algorithm using only the annotated samples in the training database. This algorithm
is used to compute the part M of the model (cf. Fig. 5.2). Next, we present a semi-
supervised procedure which allows us to incorporate unannotated samples and to in-
fer the existence of unknown image classes. In the last sections, we present experi-
mental results on a synthetic dataset, making a comparison of our algorithm with a
semi-supervised SVM as introduced in [Bruzzone et al., 2006]. We also demonstrate
the discovery of unknown image classes on a database of SPOT5 satellite images.
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system [Fan et al.,
2008]

[Shahshahani
and Landgrebe,
1994]

[Sheikholeslami
et al., 2002]

[Barnard
et al.,
2003]

[Carson
et al.,
2002]

D 35 10 20 30 24
L 25 4 22 500 15
S 4500 1000 2940 8000 5000
C 27 8 15 155 42

Table 5.1: Characteristics of different GMM-based systems. D refers to the dimen-
sion of the feature space, L to the number of mixture components in the GMM-based
model, S to the size of the training set used to train the model and C to the number of
semantic classes which are learned.

5.2 Computing the auto-annotation model via a fully su-
pervised approach

In this section, we introduce two fully-supervised algorithms using only the labeled
part of the training database to compute the model parameters. More precisely, we
define two procedures that allow us to predict "atomic" image concepts with high pos-
terior probability given an image. In our approach, "atomic" image concepts refer to
the keywords used to annotate images. We call them "atomic" since we usually choose
to annotate images low-level concepts with small intra-concept variations on visual
properties. For example, on SPOT5 images, we will use concepts such as “urban area”,
“fields”, “clouds”, “ports”, “forest”, “sea” (cf. section 5.4.2)... Some examples of images,
which can be annotated with these concepts, are given in Figure 5.4. We will avoid
using more generic concepts, such as “agriculture” or “nature”, which are in general
much more user-specific, that is, which may correspond to different visual realities de-
pending on the user. We could of course imagine a system which also allows the use
of higher level concepts, but this generally implies creating another level in the hier-
archy to map the high-level and often subjective semantic image concepts into more
“atomic” ones (cf. Fig. 5.3). Besides, hierarchical models with many levels are gener-
ally prone to inter-level error transmission, that is, an error which is committed in the
learning at one level of the hierarchy is propagated to the other levels since the learning
of the model parameters is done all at once for all the levels and not in several inde-
pendent steps. Instead, we might think of keeping things simple and consider that the
user is directly using “atomic” concepts to annotate the images. In the case of SPOT5
images, the “atomic” concepts are predefined in function of the different structures
we can observe in the images (some examples of “atomic concepts” have been given
above). The “atomic” concepts are sufficient to describe semantically these structures.
The idea behind using such “atomic” concepts is simply to remove all subjectivity in
the use of semantic concepts (subjectivity often means multiple and/or conflicting
annotations of images in the training database, so it is likely to impact the learning
process in a bad way).
The use of “atomic” concepts instead of more complex annotations will not impact the
generalizability of the approach since images are generally decomposable in terms of
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Figure 5.3: Hierarchy of concepts: the “atomic” image concepts are the concepts at
the lowest level of the hierarchy. Images may consist of several “atomic” concepts due
to their compositional nature. As we progress upwards the hierarchy, concepts are be-
coming more and more general. The highest level concepts are besides often subjec-
tive, that is, user-dependent.

low-level concepts. This is what is referred to in the literature as the compositional na-
ture of images [Barnard et al., 2003]. An example is given in figure 5.4 where we have
represented in the last two rows more complex images which cannot be explained with
only one “atomic” concept. We need instead two or three such concepts to summarize
the content of the image but the complex structure it contains can still be explained
using a combination of “atomic” concepts. For instance, in figure 5.4, the seaside ar-
eas will be decomposed into “sea”, “ports”, “residential area” with corresponding high
probabilities of these concepts in the unigram models describing the image.

The idea of the following two algorithms is to “explain” each atomic concept with
the help of one or several latent data structures (cf. Fig. 5.5). The two statistical models
which link "atomic" image concepts to low-level visual features are both computed on
a small training database using an Expectation-Maximization (EM) algorithm [Demp-
ster et al., 1977]. As mentioned in the introduction, the models presented here have
some similarities with latent variable models [Loehlin, 1987]. We assume that our data,
that is, feature vectors v extracted from images (color, texture, and shape descriptors
for instance), possess an underlying structure which can be modeled by a Gaussian
mixture density (in the formula below, we use a star to avoid confusion between the
parameters of the Gaussian mixture model used to represent the a priori distribution
of data and the parameters of the latent Gaussian mixture components in our model):

p(v |{π∗
l ,µ∗

l ,Σ∗
l

}
l=1,...,L) =

L∑
l=1

π∗
l ·N (v ;µ∗

l ,Σ∗
l ) (5.1)
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Figure 5.4: Examples of images which can be annotated with the five “atomic” con-
cepts “urban area”, “fields”, “clouds”, “ports” and “sea”. Images in the first three rows
can be annotated using only one “atomic” concept whereas images in the last two
rows are composed of several “atomic” concepts. The figures in the last column repre-
sent the number of latent mixture components which are used to explain the concepts
present in the images.

where the prior probabilities of mixture components, π∗
l , are such that

∑L
l=1π

∗
l = 1.

But rather than learning directly each mixture component as would be done in a clas-
sical Expectation Maximization approach, we infer those components from the associ-
ations between “atomic” image concepts and feature vectors. In this sense, the under-
lying Gaussian mixture components can be considered as latent variables since they
correspond to a latent (not directly observable) behavior in the data. The following
notations will be used: we denote a1, a2, ..., aI "atomic" image concepts used to anno-
tate images. Each "atomic" concept is "explained" by probabilistic associations with
latent mixture components (cf. Fig. 5.5). We denote v1, v2, ..., vN feature vectors ex-
tracted from each annotated image of the training database (for further details, see
section 7.7). We call an annotated image a "document". We can extract one or sev-
eral feature vectors from each image (on condition that they all belong to the same
feature space) and we can associate one or several annotations ("atomic" concepts) to
an image. A document dk will be thus represented by a couple of sets

{
Ak ,V k

}
with

Ak =
{

ak
1 , ..., ak

|Ak |
}

and V k =
{

vk
1 , ..., vk

|V k |
}

where |Ω| refers to the cardinality of set Ω.

In case we have explicit associations between "atomic" concepts and feature vectors

inside dk , we can also write: dk =
{

(ak
i , vk

j ), ...
}

where each couple (ak
i , vk

j ) points out

a specific association between the i -th "atomic" concept and the j -th feature vector
of dk . In the following we present successively two algorithms for handling the two
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Figure 5.5: Latent variable model. Each manifest variable, i.e. each "atomic" concept
ai , is explained by one or several latent Gaussian mixture components cl .
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Figure 5.6: Graphical model representing the generative process associated with doc-
uments in the case of no explicit associations between image concepts and feature
vectors. Rounded boxes represent replicates. Shaded circles represent hidden random
variables (not directly observed) and ordinary circles represent observed random vari-
ables. Rectangles contain model parameters.

situations, i.e., with and without explicit associations. In both cases we want to learn
the latent Gaussian mixture component parameters (mean µl , covariance matrix Σl ,
and prior probability of mixture component πl ) as well as the associations between
“atomic” concepts and latent mixture components, that is, the probabilities of each
“atomic” concept given the latent mixture components, p(ai |cl ).

5.2.1 Case 1: learning with no explicit associations between “atomic”
concepts and feature vectors

In this first case, we represent training documents as unordered collections of feature
vectors and "atomic" concepts. This is what is called the "bag of words" assumption in
latent variable models. Under this assumption, feature vectors within a document are
considered conditionally independent given a latent mixture component. The same
assumption holds for "atomic" concepts. More formally speaking, the "bag of words"
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assumption implies that documents inside a latent class are independent realizations
of a random variable whose distribution is that of the underlying generative model
associated with the latent mixture component. This allows us to interpret similarity
within a latent class as a statistical notion which implies that the underlying gener-
ative models of documents in that class are identical. Under the above-mentioned
two-fold "bag of words" assumption, the conditional probabilities of feature vectors
and "atomic" concepts can be written respectively as: p(V k |cl ) = p(vk

1 , ..., vk
|V k ||cl ) =∏|V k |

j=1 p(vk
j |cl ) where p(vk

j |cl ) is Gaussian with mean µl and covariance matrix Σl and

p(Ak |cl ) = p(ak
1 , ..., ak

|Ak ||cl ) =∏|Ak |
i=1 p(ak

i |cl ). Assuming that feature vectors and “atomic”

concepts inside a document are conditionally independent given a mixture compo-
nent cl , the probability of a document given a mixture component is expressed by:

p(dk |cl ) =
[|V k |∏

j=1
p(vk

j |cl )

]
·
[|Ak |∏

i=1
p(ak

i |cl )

]
(5.2)

We can then explain the generative process of a document by: p(dk |θ) =∑L
l=1πl ·p(dk |cl ,θ)

where θ refers to model parameters (cf. 5.6). The corresponding graphical model
is represented in Figure 5.6. To train the model, we use an Expectation Maximiza-
tion (EM) algorithm which is an iterative procedure to try to find the maximum like-
lihood estimate (MLE) of the model parameters. Using the EM algorithm involves
introducing a hidden variable, H k

l , characterizing the membership of document dk

into the latent class cl . In the EM procedure, the problem of finding the MLE (θMLE =
argmaxθL (D ;θ)) is reformulated in the following way: θMLE = argmaxθ EH [L (D, H ;θ)]
where H = {H k

l }l ,k refers to the hidden variable and D to the training documents (ob-
served variable). The EM procedure consists of two steps. The first (expectation step)
consists in computing the expected log-likelihood of complete data with respect to the
conditional distribution of H given D under the current estimate of the parameters θt :

QD (θ|θt ) = EH |D,θt

[
logL (D, H ;θ)

]
= EH

[
logL (D, H ;θ)|D,θt

]
(5.3)

The second step (maximization step) consists in maximizing the quantity QD (θ|θt )
with respect to θ:

θt+1 = argmax
θ

QD (θ|θt ) (5.4)

In the following, we refer to QD (θ|θt ) as the conditional expected log-likelihood of
complete (hidden and observed) data. The conditional expected log-likelihood QD (θ|θt ) =
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EH
[
logL (D, H ;θ)|D,θt

]
of complete data is given by:

QD (θ|θt ) = EH

[
log

K∏
k=1

p(dk , H k
l |θ)|D,θt

]
(5.5)

= EH

[
K∑

k=1
log p(dk , H k

l |θ)|{dk }k=1,...,K ,θt

]

=
K∑

k=1
EH k

l

[
log p(dk , H k

l |θ)|dk ,θt

]
=

K∑
k=1

L∑
l=1

p(H k
l = 1|dk ,θt ) log p(dk , H k

l |θ)

=
K∑

k=1

L∑
l=1

p(H k
l = 1|dk ,θt )×

log
[

p(dk |H k
l = 1,θ) ·p(H k

l = 1|θ)
]

=
K∑

k=1

L∑
l=1

p(H k
l = 1|dk ,θt ) · log

[
p(dk |cl ,θ) ·p(cl )

]
where θ refers to the model parameters:

θ=
{
πl ,µl ,Σl ,

{
p(ai |cl )

}
i=1,...,I

}
l=1,...,L

(5.6)

We have: p(cl ) = πl . To compute the EM iterative formulas, we use the Lagrangian
of the conditional expected log-likelihood with normalization constraints. The details
of the computations are provided in appendix A. We obtain the following coupled re-
estimation equations:

γk
l = p(H k

l = 1|dk ,θ) = πl ·p(dk |cl ,θ)∑L
l=1πl ·p(dk |cl ,θ)

,

πl =
∑K

k=1γ
k
l

K
, µl =

∑K
k=1

[
γk

l ·
∑

j vk
j

]
∑K

k=1γ
k
l · |V k | ,

Σl =
∑K

k=1

[
γk

l ·
∑

j (vk
j −µl ) · (vk

j −µl )T
]

∑K
k=1γ

k
l · |V k | ,

p(ai |cl ) =
∑K

k=1γ
k
l ·N k

ai∑I
q=1

∑K
k=1γ

k
l ·N k

aq

where N k
ai

is the number of times ai is in dk (a concept can be used several times to
annotate the same image).

5.2.2 Case 2: learning with explicit associations between “atomic”
concepts and feature vectors

In some cases, we possess explicit associations between “atomic” concepts and fea-
ture vectors in the training database. These associations are taken into account in the
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Figure 5.7: Graphical model representing the generative process associated with docu-
ments in the case of explicit associations between image concepts and feature vectors.
We use the same graphical conventions as in figure 5.6

learning procedure by modifying the hidden variable in the EM algorithm, i.e., we take
a variable H k

i j l which points out explicitly the association between the i -th "atomic"

concept and the j -th feature vector in the document dk . Thus, H k
i j l characterizes the

membership of the couple (ak
i , vk

j ) to the latent class cl . This allows us to relax the “bag
of words” assumption; we are not considering a generative model of documents any-
more but a generative model of couples {"atomic" concept, feature vector}. The mod-
ified graphical model associated with this generative process is represented in Figure
5.7. We keep however the document-based representation because it is the way the da-
tabase has been designed. The only assumption we are making is that of conditional
independence between "atomic" concepts and feature vectors inside a couple. That is,
given a latent class cl , an "atomic" concept ak

i is considered independent of the fea-

ture vector vk
j it is associated with: p(ak

i , vk
j |cl ) = p(ak

i |cl )·p(vk
j |cl ). Following a similar

approach as in 5.2.1, we obtain the following expression for the conditional expected
log-likelihood of complete data:

QD (θ|θt ) =
K∑

k=1

∑
(ak

i ,vk
j )

EH k
i j l

[
log p(ak

i , vk
j , H k

i j l |θ)|(ak
i , vk

j ),θt

]

=
K∑

k=1

∑
(ak

i ,vk
j )

L∑
l=1

γk
i j l (t ) · log

[
p(ak

i , vk
j |cl ,θ) ·πk

]
(5.7)

where γk
i j l (t ) = p(H k

i j l = 1|ak
i , vk

j ,θt ).
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This leads to the following EM iterative formulas:

γk
i j l = p(H k

i j l = 1|ak
i , vk

j ,θ) =
πl ·p(ak

i , vk
j |cl ,θ)∑L

l=1 p(ak
i , vk

j |cl ,θ)

πl =
∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l

NC
, µl =

∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l · vk

j∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l

,

Σl =
∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l · (vk

j −µl ) · (vk
j −µl )T∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l

,

p(ai0 |cl )=
∑K

k=1

∑
(ak

i ,vk
j )δ

ai0

ak
i

γk
i j l∑I

q=1
∑K

k=1

∑
(ak

i ,vk
j )δ

aq

ak
i

γk
i j l

where δ
aq

ak
i

is such that: δ
aq

ak
i

= 1 if ak
i = aq and 0 otherwise.

Remarks and notations: "
∑

(ak
i ,vk

j )" means a summation over all couples contained in dk

(the same "atomic" concept may appear in several couples). However, for probabilities
p(ai0 |cl ), we are considering only distinct atomic concepts. The summation "

∑I
q=1" is

thus over distinct concepts. NC refers to the total number of couples in the training
database.

5.2.3 Unigram models

Starting from the above statistical model, we can compute unigram models for new
unannotated images by using Bayesian inference. Given an unannotated image Img ,
which is modeled by a set of feature vectors

{
v j

}
, we obtain:

p(ai |Img ) =
L∑

l=1
p(ai ,cl |v j ∈ Img ) =

L∑
l=1

p(ai |cl , v j ∈ Img ) ·p(cl ) ·p(v j ∈ Img |cl ) (5.8)

According to the “bag of words” assumption, the feature vectors are conditionally
independent given a mixture component cl , thus: p(v j ∈ Img |cl ) = ∏

v j∈Img p(v j |cl ).
Using the hypothesis of conditional independence between feature vectors and “atomic”
concepts given a mixture component cl , we obtain: p(ai , v j ∈ Img |cl ) = p(ai |cl )·p(v j ∈
Img |cl ). We have also, using Bayes law: p(ai , v j ∈ Img |cl ) = p(ai |v j ∈ Img ,cl ) ·p(v j ∈
Img |cl ). By comparing the two last expressions, we obtain: p(ai |v j ∈ Img ,cl ) = p(ai |cl ).
Thus,

p(ai |Img ) =
L∑

l=1

[
πl ·p(ai |cl ) · ∏

v j∈Img
p(v j |cl )

]
(5.9)

{
p(ai |Img )

}
i=1,··· ,I is the unigram model associated with the image Img . The inter-

est of such an approach is that we can set an arbitrary “resolution” for the annotation
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process. For a given image, we can choose to annotate this image by conditioning the
unigram model computation on the entire image. We can also decide to divide it into
smaller patches and annotate each patch separately by making one unigram model
computation per patch (this is what is done in the example of the next section). This
is particularly useful when we have to model very large images such as satellite im-
ages, for which a global feature vector will not be able to individualize the model of
particular regions or structures contained in the image. Subdividing the image has the
advantage of extracting the significant feature vectors of smaller image patches which
will be then modeled by a non-singleton set

{
v j

}
. Thus the unigram model in 5.9 will

refer to the whole image, but will still be relevant with the localized image content.

5.3 Computing the auto-annotation model via a semi-su-
pervised approach

The approaches presented above, however, have several drawbacks. For instance, they
do not allow us to exploit unannotated samples during the training step. This can be
critical in several cases where the ratio of the number of training samples to the num-
ber of feature measurements (unannotated samples) is small. It is well-known that,
in such cases, we are confronted with the "small sample size problem" [Fukunaga,
1990]; in particular, the estimates of the discriminant functions (in our case likelihood
functions) are very inaccurate since they rely on the maximum-likelihood estimates
of the covariance matrices, which are often singular for small sample sizes. A solu-
tion to this problem might be to use a plug-in estimate for covariance matrices like the
sample group covariance estimate [Thomaz et al.]. A more satisfactory solution can be
found in [Shahshahani and Landgrebe, 1994] where it is shown that by using additional
unannotated samples, more representative estimates can be obtained. In particular, it
is shown that the variance of estimators obtained by integrating unlabeled samples
is lower. This is not surprising since this quantity is lower-bounded by the Cramer-
Rao bound, which, in the Gaussian case, for the mean and covariance component es-
timates, is inversely proportional to the number of samples used in the estimation.
The authors of [Shahshahani and Landgrebe, 1994] propose a semi-supervised algo-
rithm relying on Expectation Maximization to perform maximum-likelihood estima-
tion. However, this approach does not take into account the fact that unknown image
classes might exist among unannotated data as it is the case, for instance, in Earth Ob-
servation imagery. The solution we propose is based on integrating an unknown class
inference process within the EM scheme. The model we develop in the following is
based on the approach presented in 5.2.1. The same line of reasoning would apply to
5.2.2.

5.3.1 Integrating unlabeled samples into the learning process

We divide the set of samples D tot into two disjoint subsets {Da ,Du}, which refer re-
spectively to annotated and unannotated samples. Thus, Da corresponds to the set
of annotated documents, which is referred to as D above. We wish to maximize the
joint likelihood of annotated and unannotated data. The conditional expected joint
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log-likelihood of the complete data is given by:

QD tot (θ,φ|θt ,φt ) =QDa∪Du (θ|θt ) =∑
dk∈Da

EH k
l

[
log pa(dk , H k

l |θ)|dk ,θt

]
+ ∑

dk∈Du

EH k
l

[
log pu(dk , H k

l |φ)|dk ,φt

]
(5.10)

where φ = {πl ,µl ,Σl }l=1,...,L . In this equation, the first term represents the conditional
expected likelihood of the complete (hidden and observed) annotated data and the
second the conditional expected likelihood of the complete unannotated data. We
use two different likelihood functions, pa and pu , since in the first term we want to
compute the likelihood with respect to the latent variable model parameters θ and
in the second term the likelihood with respect to the latent Gaussian mixture param-
eters φ. We denote by dk both the annotated and the unannotated documents but
in the latter case, dk is just a singleton containing one feature vector (unannotated
documents containing more than one feature vector are split into several singletons:
this avoids considering unannotated documents containing both known and unknown
structures, which might be problematic).

5.3.2 Inferring the existence of unknown semantic structures

“Known” structures are defined as the latent Gaussian mixture components which cor-
respond to “known” image classes. “Unknown” structures are defined as the latent
Gaussian mixture components which correspond to “unknown” image classes, that
is, image classes not represented in the training database. The previous approach
only considers “known” mixture components among the data: the expectation is done
over the same mixture components both for annotated and unannotated samples.
Unknown structures however correspond to the underlying mixture components that
cannot be inferred by using annotated samples only. Starting from this observation, we
introduce additional mixture components to account for unknown structures. The set
of latent mixture components thus becomes: C = {Cd ,Cnd } where Cd refers to already-
defined (known) mixture components and Cnd to unknown mixture components. The
corresponding conditional expected joint log-likelihood of the complete (hidden and
observed) data is given by:

QD tot (θ,φ|θt ,φt ) = ∑
dk∈Da

E l∈Cd

H k
l

[
log pa(dk , H k

l |θ)|dk ,θt

]
+ ∑

dk∈Dknown
u

E l∈Cd

H k
l

[
log pu(dk , H k

l |φd )|dk ,φd
t

]
+ ∑

dk∈Dunknown
u

E l∈Cnd

H k
l

[
log pu(dk , H k

l |φnd )|dk ,φnd
t

]
(5.11)

where φd = {πl ,µl ,Σl }l∈Cd and φnd = {πl ,µl ,Σl }l∈Cnd . The first term of (5.11) deals with
training database documents so the expectation is performed only over the known
mixture components Cd . The last two terms are explained by the fact that, in unan-
notated documents, we have both known and unknown mixture components, so we
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need to compute the expectation over both subsets Cd and Cnd . Like for mixture com-
ponents for which we consider two disjoint sets, we force a "hard" separation between
documents "explained" by known mixture components and those "explained" by un-
known mixture components (in the following, we call these documents "unknown el-
ements" and we write Du = {

Dknown
u ,Dunknown

u

}
). This works much better in practice

and can be explained from a heuristic point of view: at the beginning of the EM pro-
cedure, we don’t know anything about unknown mixture components (we perform a
random initialization of these components). So, instead of learning unknown mixture
components, the initial tendency of the algorithm might be as well to "unlearn" known
components. This might happen if the likelihood of "unknown elements" among unan-
notated data is higher with respect to already-defined components than with respect
to randomly-initialized unknown components. This is quite a normal behavior consid-
ering the fact that the EM algorithm converges towards a local maximum which can be
reached directly from its initialization point (that is, without jumping over states scor-
ing a higher likelihood). To avoid that, we might want to enforce already-defined com-
ponents to remain almost unchanged during the first iterations of the procedure while
waiting for "unknown elements" among unannotated data to become more likely given
the unknown mixture components. This is an heuristic way to force the EM scheme
to converge towards a more optimal solution (the ideal being a procedure which pre-
serves known components but still refines them using unannotated samples and at the
same time allows to learn unknown components from unannotated samples). The so-
lution we have retained to split the set of unannotated documents is to put a dynamic
threshold on the likelihood of a given sample given the part of the model constituted
by already-defined mixture components (φd ). We start with quite a high threshold to
be sure that samples in Dknown

u are not in fact "unknown elements". As the unknown
part of the model (φnd ) becomes better defined (that is as "unknown elements" be-
come more likely given that part of the model), we decrease the threshold to "equal-
ize" the chances of a sample to be explained either by known mixture components or
by unknown mixture components (by doing so, at each iteration, we get closer to the
standard EM procedure). When β reaches the value 0.5, we can replace the arbitrary
thresholding by a comparison of the respective likelihoods of both parts of the model,
φd and φnd . That is, we decide that an unannotated sample dk belongs to Dknown

u
when Lφd (dk ) >Lφnd (dk ) where:

Lφd (dk ) = ∑
l∈Cd

πl ·p(dk |cl ,φd ) and

Lφnd (dk ) = ∑
l∈Cnd

πl ·p(dk |cl ,φnd ) (5.12)

Lφd (dk ) represents the likelihood of the unannotated sample dk regarding the known

part of the model φd and Lφnd (dk ) the likelihood of the unannotated sample dk re-

garding the unknown part of the model φnd .
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The quantity we want to maximize at each iteration t is:

Q(θ,φ;θt ,φt ) =

∑
dk∈Da

∑
cl∈Cd

γk
l (θt ) · log

[
p(V k |cl ,θ) ·p(Ak |cl ,θ) ·πl

]
+ ∑

dk∈Dknown
u

∑
cl∈Cd

γk
l (φd

t ) · log
[

p(V k |cl ,φd ) ·πl

]
+ ∑

dk∈Dunknown
u

∑
cl∈Cnd

γk
l (φnd

t ) · log
[

p(V k |cl ,φnd ) ·πl

]
(5.13)

where γk
l (θt ) = p(H k

l = 1|dk ,θt ), γk
l (φd

t ) = p(H k
l = 1|dk ,φd

t ) and γk
l (φnd

t ) = p(H k
l =

1|dk ,φnd
t ).

The procedure described above is summarized in the algorithm 2.

Algorithm 2 Semi-supervised training algorithm
Step 1: training step using only annotated documents → θ0

Step 2: EM algorithm using the whole set D={Da ,Du}
Set t = 0, β=β0, Dknown

u = {;}, Dunknown
u = Du and θ = θ0

Iterate the following four steps until convergence:
E-step: Compute Q(θ,φ;θt ,φt )
Decision-step:
If β> 0.5 then

Set Dknown
u =

{
dk ∈ Du

∣∣∣Lφd (dk ) >β
}

Decrease threshold β, t → t +1
Else

Set Dknown
u =

{
dk ∈ Du

∣∣∣Lφd (dk ) >Lφnd (dk )
}

End If
Set Dunknown

u = Du\Dknown
u

M-step: Set
{
θt+1,φt+1

}= argmax
(θ,φ)

Q(θ,φ;θt ,φt )

End For

The EM iterative formulas we obtain are very similar to the ones obtained in section
5.2.1 and are displayed below. For the hidden variable, we have:

p(H k
l = 1|dk ∈ Da ,θ) =

{ πl ·p(dk |cl ,θ)∑
l∈Cd

πl ·p(dk |cl ,θ) if cl ∈Cd

0 if cl ∈Cnd

, (5.14)

p(H k
l = 1|dk ∈ Du ,φ) =

πl ·p(dk |cl ,φd )∑
l∈Cd

πl ·p(dk |cl ,φd )+∑
l∈Cnd

πl ·p(dk |cl ,φnd )
if cl ∈Cd

πl ·p(dk |cl ,φnd )∑
l∈Cd

πl ·p(dk |cl ,φd )+∑
l∈Cnd

πl ·p(dk |cl ,φnd )
if cl ∈Cnd

(5.15)
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and for the latent mixture components parameters:

πl=
∑

dk∈Da γ
k
l (θ)+∑

dk∈Dknown
u

γk
l (φd )

Nsamples
if cl ∈Cd∑

dk∈Dunknown
u

γk
l (φnd )

Nsamples
if cl ∈Cnd

(5.16)

where Nsamples is the total number of samples (annotated plus unannotated): Nsamples =
|Da |+ |Du |.

µl=


∑

dk∈Da γ
k
l (θ)

∑
j vk

j +
∑

dk∈Dknown
u

γk
l (φd )

∑
j vk

j∑
dk∈Da γ

k
l (θ)·|V k |+∑

dk∈Dknown
u

γk
l (φd )·|V k | if cl ∈Cd∑

dk∈Dunknown
u

γk
l (φnd )

∑
j vk

j∑
dk∈Dunknown

u
γk

l (φnd )
if cl ∈Cnd

(5.17)

Σl=



∑
dk∈Da γ

k
l (θ)

∑
j (vk

j −µl )·(vk
j −µl )T +···∑

dk∈Da γ
k
l (θ)·|V k |+ ··· · · ·

· · · ···+
∑

dk∈Dknown
u

γk
l (φd )

∑
j (vk

j −µl )·(vk
j −µl )T

···+∑
dk∈Dknown

u
γk

l (φd )·|V k | if cl ∈Cd∑
dk∈Dunknown

u
γk

l (φnd )
∑

j (vk
j −µl )·(vk

j −µl )T∑
dk∈Dunknown

u
γk

l (φnd )
if cl ∈Cnd

(5.18)

Remark: the probabilities p(ai |cl ) are computed during step 1 of the algorithm and
must also be updated during step 2 since the parameters associated with known mix-
ture components are modified during this step. This is done using the same formula
as in section 5.2.1. To compute unigram models which take into account the unknown
image classes, we need to introduce annotations for "unknown elements"; this can be
done in a very simple way by extending p(ai |cl ) to unknown mixture components. In
other words, we just add concepts "unknown1", "unknown2" ... that we associate re-
spectively with first, second, ... unknown mixture component with probability 1.

The Figure 5.8 shows the workflow of the steps employed in the algorithm 2.

5.4 Experimental results

In this section, we evaluate the procedure described previously on both synthetic and
real data sets. A testing protocol on synthetic data is first presented in order to illustrate
the capabilities of the model. We use synthetic data to test several configurations: we
vary for instance the numbers of annotated and unannotated data introduced. We also
employ synthetic data to compare our method with a semi-supervised SVM (SS-SVM)
as described in [Bruzzone et al., 2006] (it should be noted though that the two methods
are not fully comparable since SS-SVM does not allow to perform unknown structure
detection). In the second part, we present some results on a database of satellite im-
ages. We do not possess a complete ground-truth on this database but it is well-suited
for our purpose because of the huge amount of unannotated data and the potentially
high number of unknown structures it contains.
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Figure 5.8: Workflow of the steps employed in the algorithm 2. M refers to the model
of annotated (labeled) data which has been enhanced through the use of the unan-
notated data coming from known structures. M̄ refers to the model of unannotated
(unlabeled) data coming from unknown structures.

5.4.1 Evaluation on synthetic data

The choice of a synthetic dataset rather than a standard image database comes from
the fact that standard databases are not well-suited to test semi-supervised methods.
Most standard testing databases such as Caltech 101, Corel, Wang database [Wang
et al., 2006] ... possess indeed an important number of different classes but a rather
small number of images per class, which does not allow to place ourselves in a semi-
supervised setting. A realistic scenario such as the one presented in the second part
implies indeed having ten or even a hundred times as much unannotated samples as
annotated ones, which is impracticable on the previously mentioned databases.
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concept a1 a2 a3 a4 a5

mixture component c1 c2 c3, c4 c5, c6 c7, c8

Table 5.2: Associations between image concepts and mixture components in the first
testing scenario

c1 c2 c3 c4 c5 c6 c7 c8

a1 1 1 0 0 0 0 0 0
a2 0 1 1 0 0 0 0 0
a3 0 0 0 1 1 0 0 0
a4 1 0 0 0 0 0 0 1
a5 0 0 0 0 0 1 0 0
a6 0 0 0 0 0 1 1 0

Table 5.3: Associations between image concepts and mixture components in the sec-
ond testing scenario

5.4.1.1 Description of the test scenarios

We start by generating the data according to a two-dimensional Gaussian mixture dis-
tribution. The samples thus generated are supposed to represent feature vectors ex-
tracted from images. For a more realistic simulation, we change the distribution cor-
responding to each mixture component; instead of using one single Gaussian compo-
nent, we represent each mixture component as a sum of two Gaussians, one rather
peaked and the other with larger spread. By moving the two centers slightly apart from
each other, we get closer to real clusters which are often not strictly Gaussian and pos-
sess heavier asymmetric tails. The aim is not of course to simulate real features but
to test our algorithm in the case where the data do not exactly fit the model; on con-
dition that each cluster remains monomodal, the largest of the two Gaussians in each
cluster will not be detected and the samples corresponding to that Gaussian will act
as outliers. The advantage is that the overall distribution remains a Gaussian mixture
(drawing from such a distribution is very easy) but still differs from the assumed distri-
bution in term of the number of mixture components.

Assuming the existence of correlations between features, we use full covariance
matrices. According to what precedes, a cluster cl will be represented by the follow-
ing distribution:

f (v |cl ) = γ ·N (v ;µl ,Σl )+ (1−γ) ·N (v ;µl +δµl ,Ωl ) (5.19)

where 0 < γ< 1 andΩl = Pφl+δφl
ηDl P T

φl+δφl
.

Pφl is a rotation matrix whose angle φl is such that Σl = Pφl Dl P T
φl

. Dl is a diagonal
matrix whose diagonal elements represent the variance along the two axes of the φl -
rotated referential. δµl and δφl are slight "perturbations" that we add respectively to
the mean and the orientation of cluster cl . The overall distribution of data will thus be:

p(v |θ) =
L∑

l=1
πl · f (v |cl ) (5.20)
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For our experiments, we take L = 15, and we choose arbitrarily the first eight mix-
ture components to represent already-defined mixture components, the remaining
seven representing "unknown" mixture components. Thus, Cd = {c1, ...,c8} and Cnd =
{c9, ...,c15}. We then define two possible scenarios for the annotations. In the first one,
we suppose that one underlying mixture component can be associated with at most
one "atomic" image concept. This corresponds to the case where an image in the train-
ing database is annotated with one single "atomic" concept. In the second one, we al-
low the underlying mixture components to be associated with several "atomic" image
concepts. This corresponds to the case where an image in the training database may
be annotated with several "atomic" concepts. In the first case, we speak of "grouping
image concepts" and in the second of "overlapping image concepts". It should be no-
ticed that the second scenario does not exclude the possibility of having also "grouping
image concepts".

- First scenario: We arbitrarily fix the number of "atomic" image concepts to five.
The associations between concepts and mixture components are represented in Ta-
ble 5.2. Samples are generated according to the distribution (5.19). Our procedure to
generate annotated data follows the classical method to sample from a mixture distri-
bution:
1. An integer l ∈ {1, ...,8} is drawn with probability π

′
l =

πl∑8
j=1π j

.

2. A sample vk is drawn according to the distribution associated with the mixture com-
ponent cl : f (v |cl ).
3. We obtain a new annotated sample, dk = {

vk , ai
}
, where ai is the annotation associ-

ated with the mixture component cl (cf. table 5.2).
The unannotated samples are drawn according to the whole mixture distribution (in-
cluding both already-defined and "unknown" mixture components).

- Second scenario: The only thing we change here in comparison with the first sce-
nario is the association table between the mixture components and "atomic" image
concepts. We use this time 6 image concepts that we associate with the mixture com-
ponents according to Table 5.3. t able(l , i ) = 1 indicates that mixture component cl is
associated with image concept ai . The third step of the training data generation pro-
cedure is changed into:
3. We obtain a new annotated sample, dk = {

vk , Ak
}

where Ak = {ai |t able(ai ,cl ) = 1}.
It should be noted that the training documents dk produced by the two procedures

described previously contain only one feature vector, that is |V k | = 1 (In the previous
sections, we have described a method capable of handling several feature vectors per
training document). This restriction is necessary to compare our method with the
semi-supervised SVM described in [Bruzzone et al., 2006]. We shall see later the ef-
fect of using non-singleton ensembles V k when we compare the two cases described
in sections 2.1 and 2.2.

5.4.1.2 Evaluation of the performance and comparison with other models

In this section, we compare our method with a semi-supervised SVM and a traditional
SVM. We have re-implemented the SS-SVM algorithm proposed in [Bruzzone et al.,
2006] using CVX, a matlab package for solving convex programs [Grant and Boyd, 2008].
In the following, we present some results using the two testing scenarios described in
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Figure 5.9: Underlying Gaussian mixture distribution used for testing

the previous section. All the following experiments are done using the same under-
lying Gaussian mixture density (cf. Figure 5.9). For the need of the experiments, we
generate 10000 samples (5313 coming from already-defined mixture components and
4687 coming from “unknown” mixture components). Depending on the experiment,
we use a part or the integrity of this dataset. For testing, we use an other group of
10000 samples generated independently from the first group. Among the testing sam-
ples, 5322 are coming from already-defined mixture components and the other 4678
are coming from “unknown” mixture components (since the sample generation pro-
cess is based on randomness, we cannot ensure that the repartition of testing samples
between known and unknown mixture components is exactly the same). Likewise, de-
pending on the experiment, we use only the test samples coming from already-defined
mixture components or the integrity of the test samples.

- First scenario: In this scenario, the annotations can be considered as class labels
since we have exactly one annotation per training sample (case of "grouping image
concepts"). We start by using only the part of the dataset which corresponds to already-
defined mixture components (that is, the 5313 samples which can be annotated using
"known" image concepts). Figure 5.10 represents the average overall accuracy when
we vary the percentage of the total number of annotated data introduced (that is, the
number of annotated data introduced over the total number of annotated data) (left)
and when we vary the percentage of the total number of unannotated samples intro-
duced, keeping unchanged the number (350) of annotated training samples (right).
The traditional SVM has been trained using only the annotated part of the training
dataset. In the left figure, we are using only annotated samples so we just make a com-
parison of our algorithm with the traditional SVM. We observe in the left figure that
SVM-based methods are much more efficient when the number of annotated data is
very low. This can be explained by the fact that the association probabilities p(ai |cl )
cannot be reliably estimated on a small training database. There are indeed 5·|Cd | = 40
such probabilities to estimate. We observe on the right figure that adding unannotated
samples leads to an increase in the overall classification accuracy for both our method
and the SS-SVM. This comes from the fact that, here, unannotated samples have also
been sampled using the already-defined part of the model. To prove that this accu-
racy improvement is not due to random deviation, we compute the standard errors
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Figure 5.10: First scenario: Average overall accuracy when varying the percentage of
the total number of annotated samples introduced (left) and when varying the per-
centage of the total number of unannotated samples introduced, keeping unchanged
the number of annotated training samples (right). In this case, only unannotated sam-
ples coming from "known" mixture components are considered, which explains why
SVM-based methods are competitive here

associated with the misclassification probabilities for each image concept, that is, the
probabilities p(ai |¬ai ), i = 1, ...,5. We use a bootstrap estimator [Hollander and Wolfe,
1999] which relies on simple Monte Carlo simulation to compute the standard devi-
ation of the sampling distribution associated with each misclassification probability.
Figure 5.11 shows the results obtained using a fixed number of training samples and
increasing each time the number of unannotated samples introduced in the learning
process. We can see that as this number augments, the standard errors are decreas-
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Figure 5.11: Standard errors associated with misclassification probabilities

ing, which means that the estimates of the model parameters are becoming more and
more reliable. We observe though that standard errors are not strictly decreasing. This
comes from the bootstrap estimator used to estimate these quantities. Like all methods
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Figure 5.12: First scenario: Effect of introducing samples coming from unknown struc-
tures. Average overall accuracy when varying the proportion of annotated samples
among the samples coming from known mixture components (we fix in advance the
number of samples coming from known mixture components and from unknown mix-
ture components) (left) and when varying the percentage of the total number of unan-
notated samples introduced, keeping unchanged the number of annotated training
samples (right). In the two figures above, unannotated samples are coming from both
"known" and "unknown" mixture components

relying on Monte Carlo simulation, the bootstrap estimator is only proved to converge
asymptotically. We have repeated quite a high number of Monte Carlo experiments but
we can still have random fluctuations in the estimates which cause the standard errors
not to be strictly decreasing.

The experiments presented above are done using only samples coming from already-
defined mixture components. This is the main reason why the SS-SVM is performing
somewhat better than our method in these experiments (at least in the fully-supervised
case). Our algorithm is indeed not competitive with highly discriminative methods like
SVMs on a dataset containing only "known" structures, which are all represented in the
annotated part of the training database. To see the effect of integrating the "unknown"
part of the model, we repeat these experiments and we allow this time unannotated
samples to be sampled also from the "unknown" mixture components (cf. Figure 5.12).
We observe in the left figure that, in spite of the increase in the proportion of annotated
training samples, the performance of the SS-SVM remains almost constant. We ob-
serve a similar behavior when we increase the number of unannotated samples, keep-
ing unchanged the number of annotated training samples (right figure). Our method,
on the contrary, is able to benefit both from the increase in the training sample size and
the increase in the number of unannotated samples introduced. To see more directly
the effect of the unannotated samples coming from the "unknown" structures, we vary
the number of these samples, keeping fixed the number of annotated training samples
and the number of unannotated samples coming from "known" structures. We can
thus see (Figure 5.13) the influence of the "unknown" structures ("unknown" mixture
components) over the training of the already-defined part of the model. When we de-
crease the number of unannotated samples coming from "unknown" structures, the
accuracy increases (which is logical since the samples corresponding to "unknown"
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Figure 5.13: First scenario: Effect of varying directly the number of unannotated sam-
ples coming from "unknown" mixture components (the number of annotated training
samples and the number of unannotated samples coming from "known" structures is
fixed)

structures have a negative impact on the training of the already-defined part of the
model). We also see that our method is much less influenced by these "wrong" sam-
ples than the SS-SVM. This is due to the fact that the algorithm we propose is able to
categorize these samples into new categories (which we refer to as "unknown" mixture
components) so that they are not taken into account in the training of the already-
defined part of the model. The SS-SVM, on the contrary, will give good results only if
the distributions of labeled samples and unlabeled samples used in the training pro-
cess are very similar, which is not the case here by definition of "unknown" structures.
In other words, the SS-SVM assumes labeled samples and unlabeled samples used in
the training to represent a similar problem.

- Second scenario: In this scenario, we can no longer consider annotations as class
labels since several image concepts can be used to annotate the same sample. We need
consequently another type of measure to assess the accuracy of the predicted unigram
models for each sample. We use here a simple Euclidean distance, that is, given an
unannotated sample (which is represented here by a feature vector vk ) and its pre-
dicted unigram model ũk = {p(ai |vk )}i=1,...,6, we define a quantity acck = ‖ũk −uk‖
where uk is the true unigram model (ground truth). We average then over the whole
testing dataset to obtain an overall measure of accuracy like in the first testing sce-
nario. The results are presented in Figure 5.14 (see Figure 5.10 for an explanation of
what is represented). We can see in this figure (figure 5.14), when comparing with per-
formances obtained in Figure 5.10, that our method is less affected by multi-labeling
of training documents than the traditional and the semi-supervised SVM (as in Figure
5.10, we are only considering here samples coming from already-defined mixture com-
ponents).
Remark: We have slightly modified the training database in the case of SS-SVMs since
SS-SVMs cannot be trained on a testing database with multi-labeled samples. A train-
ing document dk annotated with n concepts ak

1 , ..., ak
n is thus split into n single-labeled

documents {vk , ak
1 }, ..., {vk , ak

n}, which can be handled by a SS-SVM. To obtain unigram
models also in the case of SVMs, we use the probabilistic output of standard SVMs.
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Figure 5.14: Second scenario: Effect of multi-labeling. Average overall accuracy when
varying the percentage of the total number of annotated samples introduced (left) and
when varying the percentage of the total number unannotated samples introduced,
keeping unchanged the number of annotated training samples (right). In this case,
only unannotated samples coming from "known" mixture components are consid-
ered, which explains why SVM-based methods still perform very well here

Probabilistic outputs can also be computed in the case of SS-SVMs (in both cases,
probabilities of belonging to a class are computed as functions of the distance to the
separation surface defining this class).

5.4.1.3 Explicit associations and no explicit associations: comparison

In this section, we compare the two cases when we know the explicit associations be-
tween feature vectors and image concepts inside a document and when we don’t. We
only show results in the fully supervised case. To generate the training documents, we
re-use the generation procedure used in the first testing scenario. We slightly modify
steps 2 and 3 to generate several feature vectors per document: instead of drawing only
one feature vector in step 2 of the procedure, we draw N such vectors. We then proceed
as before, using Table 5.2, to generate the annotations. Figure 5.15 represents the accu-
racy on the training database for different numbers of feature vectors per document.
We see that when we don’t know the explicit associations between image concepts and
feature vectors, the accuracy is decreasing very quickly whereas it remains almost con-
stant when we know these associations. In a real case, we would not have such a de-
crease since, most of the time, (and it is especially true in satellite imagery), the images
are spatially coherent; it means that, inside documents which are usually small patches
of an image, there isn’t such a great variability between the concepts represented.

5.4.1.4 Effect of increasing the dimensionality

In this section, we study the effect of increasing the dimensionality of the feature space
to assess the difficulty of the estimation problem. We generate a 15-dimensional data
set consisting of 10000 samples according to a Gaussian mixture distribution with 15
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Figure 5.15: Explicit associations and no explicit associations: comparison of the two
cases

mixture components. The means of mixture components are placed randomly in a
fifteen-dimensional hyper-rectangle. The 15-dimensional covariance matrices are gen-
erated randomly using the positive semi-definite property of covariance matrices, i.e.
given a covariance matrix Σ, there exists a normal matrix P and a diagonal matrix D
such that Σ= PDP T . The diagonal matrix D contains the variances in each direction.
In our case, we generate the diagonal values according to a uniform distribution. The
normal matrix P is more difficult to build. We use a Gram-Schmidt orthonormaliza-
tion procedure, that is, we start by generating a random set of linearly-independent
15-dimensional vectors. We then apply the Gram-Schmidt orthogonalization proce-
dure to this set to obtain an orthogonal basis {r1, · · · ,r10}. We then set P = {r1| · · · |r10}.

We use the same number of “atomic” concepts as in the first testing scenario and
the same associations between “atomic” concepts and mixture components (cf. Table
5.2). We do not use the second testing scenario since it does not allow an easy compar-
ison of our method with the SS-SVM due to the multi-labeling of training instances.
The figure 5.16 represents the average overall accuracy when we vary the dimension-
ality of the space. We add one dimension at a time starting from the two-dimensional
case. We use a fixed number (350) of annotated training samples which are chosen ran-
domly among the samples coming from known mixture components (but we keep the
same annotated training samples for the whole testing process: we just make an up-
date of these each time we add a new dimension). As in the first scenario, the tests are
made on a different data set of 10000 samples drawn from the same Gaussian mixture.

Both our method and the SS-SVM are affected by the increase of the space dimen-
sionality. The fact that our method still performs well in a high-dimensional feature
space comes from the fact that we are using unlabeled samples to learn the model
parameters. So, we do not encounter problems of sparsity which generally affect sta-
tistical methods when the training set size is very small. A similar study has been made
by Langrebe et Al. in [Shahshahani and Landgrebe, 1994] where a theoretical insight is
provided regarding the effect of introducing unlabeled samples to avoid sparsity issues
as well as to increase the accuracy of estimators in a small sample size setting.
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Figure 5.16: Effect of varying the dimensionality of the feature space, keeping un-
changed the number of annotated training samples.

5.4.2 Demonstration on Earth Observation images

We use a testing database of sixty-four 3000×3000 pixels SPOT5 panchromatic images
provided by CNES 1. The ground resolution of these images is 2.5 meters. The advan-
tage of satellite images is that they offer a huge diversity of structures provided we se-
lect images from various geographical locations. Moreover, the variations in soil, plan-
tation type, etc cause conditional densities, that is, densities of the data given "atomic"
concepts, to be multimodal, which is the case where latent variable models are ex-
pected to outperform more traditional methods. We cut each 3000×3000 image into
smaller patches of size 64×64, which still represent quite a large ground area given
the resolution. From each patch, we extract four feature vectors containing texture
and shape parameters (we subdivide each patch into four regions to obtain four fea-
ture vectors). For texture, we use Haralick descriptors as well as Gabor and Quadrature
Mirror filters [Campedel et al., 2004]. For shape descriptors, we use statistical moments
extracted from image edges. To eliminate redundant information, we perform dimen-
sionality reduction using Principal Component Analysis on texture and shape param-
eters separately. The final feature vector possesses 12 dimensions.

The training database we use consists of three hundred 64×64 images from the
same sensor, which have been picked outside the testing database. In comparison,
we can extract about 600000 such images from the testing database. Three "atomic"
concepts are used to annotate these images: fields, urban area, and clouds. Examples
of annotated samples are given in Figure 5.17. The images represented in this figure
are quite “pure”, that is, one of the three concepts “fields”, “urban area”, and “clouds” is
generally sufficient to annotate these images but we may have in the training database
training samples which possess more than one annotation, for instance, an image of
a field shaded by a cloud or an image which is partly occupied by an urban area and
partly by fields. In such cases, the images will appear in the training database with
more than one annotating concepts.

To run our algorithm, we need an estimation of the number of mixture compo-

1French Space Agency (Centre National d’Etudes Spatiales), http://www.cnes.fr
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Figure 5.17: Examples of training images annotated with the three concepts “fields”,
“urban area”, and “clouds”.

nents among annotated and unannotated data respectively. We use the Minimum De-
scription Length criterion (MDL) as described in [Kyrgyzov et al., 2007]. Other crite-
ria like the Bayesian Information Criterion (BIC) [McQuarrie and Tsai, 1998] could be
used as well or we could set a large number of mixture components at the beginning
and eliminate insignificant ones during EM iterations by looking for instance at the
singular values of the covariance matrices. Figure 5.19 represents posterior maps of
"atomic" concepts. A zoom is shown in Figure 5.18. Tables in Figure 5.4 represent
confusion matrices for the most probable concepts which are considered here as class
labels. Ground truth has been assessed visually on images containing at most three
known classes (fields, urban area, and clouds) plus several unknown classes. Five un-
known structures have been identified (see Figure 5.19) which can be matched with the
following real categories (or at least part of them): mountain-like areas, wooded areas,
desert, sea and urban structures such as airports or harbors. It should be noted here that
the annotation of unknown structures with meaningful concepts such as those enu-
merated above is done a posteriori by the user. Our algorithm is just able to identify
these structures and provide them with annotations such as unknown1, unknown2, ...
(cf. section 5.3.2). It belongs to the user to associate each unknown structure with a
meaningful annotation.

We have retained the two most represented unknown structures (desert and sea)
and we have included these two structures inside the third confusion matrix which il-
lustrates the performances of our semi-supervised algorithm. We observe that urban
areas are often annotated as fields; this happens mostly around city boundaries where
urban areas are less dense. Clouds are also often annotated as fields (this is often the
case when we have transparent clouds with fields below). We can also remark that
desert is often confused with fields: this comes from the fact that the two classes are
very close (or at least possess modes which are overlapping at signal level since in most
cases classes are multimodal). We see that the performance of our semi-supervised ap-
proach is better for the classes “urban areas” and “fields” but nor for the class “cloud”.
This can be explained by the fact the class “cloud” is almost monomodal at signal level.
So, the representation of this class in the training dataset is quite complete, which ex-
plains why the SS-SVM performs somewhat better for this class.

From the confusion matrices, we compute the average probability of a known el-
ement to be correctly annotated p(C A|known) and we see that it is higher using the
semi-supervised approach (second table) than the fully-supervised one (first table).
To prove this is not due to random deviation, we also compute the standard error
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"stderr" on this statistic via simple Monte Carlo simulation and see that it is smaller
in the second case. This second metric allows us to confirm the idea exposed in sec-
tion 5.3 that we get more reliable estimates by integrating unannotated samples. We
also compare our algorithm with a semi-supervised SVM (second confusion matrix).
Since the SS-SVM does not allow to perform unknown structure detection, we repre-
sent only three concepts in the second confusion matrix but the training is done with
the whole dataset (annotated plus unannotated samples). We observe that our method
gives slightly better results than the SS-SVM in addition to the fact that it provides some
valuable extra information by identifying unknown structures.

Figure 5.18: Zoomed areas of posterior maps obtained by applying our algorithm to
panchromatic SPOT5 images. We can see from these images that our method allows a
relatively accurate delineation of classes.

(a)

annotated
truth urban fields clouds
urban 0.69 0.21 0.1
fields 0.22 0.68 0.1

clouds 0.04 0.16 0.8

(b)

annotated
truth urban fields clouds
urban 0.74 0.17 0.09
fields 0.15 0.77 0.08

clouds 0.03 0.11 0.86

(c)

annotated
truth urban fields clouds desert sea
urban 0.79 0.07 0.05 0.06 0.03
fields 0.05 0.81 0.02 0.09 0.03

clouds 0.01 0.12 0.8 0.07 0
desert 0.06 0.13 0 0.78 0.03

sea 0.02 0.02 0.03 0.01 0.92

Table 5.4: Confusion matrices. Table IV(a): fully supervised case using the algorithm
presented in section 5.2.1: p(C A|known) = 0.71 and stderr = 0.01 ; Table IV(b): semi-
supervised SVM: p(C A|known) = 0.76; Table IV(c): semi-supervised case with un-
known structures discovery: p(C A|known) = 0.8 and stderr = 0.006.
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Figure 5.19: Posterior maps obtained by applying our algorithm to two panchromatic
SPOT5 images: the different colors correspond to "atomic" concepts with highest pos-
terior probability. Concepts represented here are "urban areas" (blue), "fields" (green),
"clouds" (garnet-red, upper left image). Five additional unknown structures have been
detected corresponding to mountain-like areas (dark grey, upper right image), wooded
areas (khaki, upper left, upper right and middle left images), desert (pink, bottom left
image), sea (orange-brown, bottom right image) and urban structures (purple, bottom
right image).
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5.4.3 A Deterministic Annealing Approach for Learning Finite Mix-
ture Model Parameters: results

The main drawback of the presented semi-supervised approach concerns the diffi-
culty to obtain accurate estimates of the model parameters. As in most techniques
relying on Expectation Maximization to find the MLE of the model parameters, there
is a risk of convergence of the proposed algorithm to a local minimum. A classical
solution to remedy this problem is to use an annealing-like process. The confusion
matrices in figure 5.20 are obtained using a modified version of the mass-constrained
algorithm ([Rose et al., 1993]) to perform maximum likelihood estimation of the pa-
rameters of finite mixture models. This section present the results obtained using this
algorithm, a complete description of which is given in appendix B. We consider only
the fully-supervised case using a training database consisting of 5 classes. We compare
our modified mass-constrained algorithm to a classical Deterministic-Annealing algo-
rithm to perform MLE such as described in [Ueda and Nakano, 1998]. We see that using
our algorithm, we obtain a perceptible amelioration on the diagonal of the confusion
matrix of around 5.5% in average.

annotated
truth class 1 class 2 class 3 class 4 class 5

class 1 0.8747 0.0349 0.0117 0.0592 0.0195
class 2 0.03 0.8026 0.0373 0.0786 0.0515
class 3 0.066 0.0554 0.7902 0.0431 0.0452
class 4 0.0168 0.0692 0.0387 0.8028 0.0725
class 5 0.0573 0.0068 0.0373 0.0663 0.8324

annotated
truth class 1 class 2 class 3 class 4 class 5

class 1 0.8801 0.0198 0.0072 0.0644 0.0286
class 2 0.0164 0.8911 0.0051 0.0574 0.0299
class 3 0.0563 0.0192 0.8748 0.0415 0.0082
class 4 0 0.0716 0.0524 0.8307 0.0452
class 5 0.0205 0.0095 0.0239 0.0462 0.8999

Figure 5.20: Confusion matrices. (top) training with the DAEM algorithm; (bottom)
training with our modified mass-constrained algorithm. We obtain an amelioration
on the diagonal of the confusion matrix of around 5.5% in average.

Further tests should of course be conducted by deriving a semi-supervised version
of the algorithm described in B.

5.5 Conclusion

In this chapter, we have presented a semi-supervised procedure to auto-annotate im-
ages and discover unknown structures inside them. Performance appears to be supe-
rior to that of semi-supervised SVM when the majority of unannotated samples in the
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training data reflect unknown semantic structures. Our method offers some advan-
tages over a semi-supervised SVM like the possibility of using multi-labeled samples
in the training database or the capability of discovering unknown structures among
data. We have demonstrated that our algorithm can perform well on satellite imagery.
The unknown structures we obtain are visually coherent and can be matched with real
categories or at least part of real categories.
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Chapter 6

Active learning using the data
distribution for interactive image
classification and retrieval

In this chapter, we describe a system that allows the users to explore large image data
repositories and to build semantic models for their search targets. Since methods
based on unsupervised learning are still far from providing acceptable results for open
systems (where the user can search anything), we focus on iterative supervised meth-
ods by asking the user to asses iteratively the results suggested by the current model
of the target class (relevance feedback). We take advantage of the intrinsic distribution
of the data and we propose a new semi-supervised SVM algorithm based on Gaussian
components that allows to process large data sets, while at the same time providing
good generalization properties.

Our main application is to geospatial images, but the methods we develop are not
specific to these and can be applied to less specialized images, such as those in mul-
timedia databases. For this reason, we asses the performance of our method both for
satellite images and for generic image databases.

Positioning, context and motivation Traditional spatial image analysis techniques
use local pixel characteristics to create a link between the low level features of the im-
ages and the high level descriptions needed by the users. The first generation of search
engines proposed for satellite imagery worked essentially as filters, trying to combine
knowledge of experts to low level image features to extract semantics relevant to the
query (see, for example, KIM [Daschiel and Datcu, 2005], SIMR [Samal et al., 2009],
RISE-SIMR [Bhatia et al., 2007]). Other successful methods include Bayesian classifiers
used to represent land cover labels for pixels [Schröder et al., 2000a], hierarchical image
segmentations for similarity retrieval [Tusk et al., 2003], visual grammars created by the
automatic fusion of spectral, textural and other attributes [Aksoy et al., 2005], multi-
resolution hidden Markov models [Parulekar et al., 2005] and interest points [Newsam
and Yang, 2007].

Another problem that often renders difficult the task of the retrieval systems is the
"semantic gap" which separates the high level user-defined semantic concepts from
the low level descriptors extracted from images. To alleviate this problem, recent Con-
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tent Based Image Retrieval (CBIR) systems make use of a "relevance feedback" feature
(which allows the users to mark retrieved images as relevant or non relevant [Zhou and
Huang, 2003]) to iteratively learn a model of the query target. In this context, active
learning has become a state of the art tool. At each retrieval step, it presents to the user
the most informative items while trying to achieve two goals: first, to learn with accu-
racy the target concept and, second, to do so as quickly as possible with minimal effort
from the user [Tong and Chang, 2001; Ferecatu and Boujemaa, 2007; Costache et al.,
2006].

In this chapter, we focus on the second goal. The idea is to use a structuring of
the database, obtained in our case with the help of an unsupervised generative model,
to accelerate its exploration. The word "structuring" refers here to an intermediate
representation situated between low-level descriptors and high level image semantic.
In our case, we learn the parameters of a Gaussian mixture model (which can be seen
as a probabilistic clustering) on the data. We then introduce a new semi-supervised
C-SVM algorithm which works directly on the convex hulls of the mixture components
and we describe an active learning strategy which consists first in readjusting at each
iteration of the feedback loop the convex hulls of the mixture components and second
in retraining our component-based SVM on these new convex hulls.

To illustrate the idea behind our approach, we compare the database to a book and
the structuring to an index of this book. The underlying idea is that it is much faster
when looking for something specific to navigate through the index of the book than
to browse all its pages. The index provides us with a rough idea of the range of pages
where the information we are looking for is situated and we can then proceed with a
more local search by refining the range of pages provided by the index.

In our context, active learning is seen as a form of semi-supervised learning, where
one has a relatively small number of labeled data (obtained from successive user feed-
backs) and a huge amount of unlabeled data. As a quick reminder, the three main
categories of methods that seek to exploit the intrinsic information contained in the
unlabeled data are (a) statistical methods [Shahshahani and Landgrebe, 1994; Nigam
et al., 2000], (b) kernel methods [Zhu, 2006] and (c) graph-based methods [Zhu, 2006;
Zhou et al., 2005]. We provide an overview of these three categories of methods in sec-
tion 3.4.1.

Among the state-of-the-art methods which get closest to the one we present in
this chapter, several SVM-based approaches exist in the literature which make use of
a structuring of the feature space in the form of a clustering. Although they do not
envisage the problem of semi-supervised learning as such, they are similar in essence
to what we propose, namely, they seek “to simplify” the learning process by position-
ing it at a lower granularity in the descriptor space, i.e. by considering bigger entities
such as clusters in place of data points. Yu et Al. [Yu et al., 2003] have proposed a
clustering-based SVM which exploits a hierarchical clustering to select better training
samples for the SVM algorithm and thus reduce its complexity. Their aim is to design
a SVM which scales with large datasets, but there is no suggestions regarding the use
of unlabeled data. The clustering is performed on a labeled dataset and is not usable
in our scenario, where we possess very few labeled training instances and a very large
amount of unlabeled samples. In the same spirit, Boley et al. [Boley and Cao, 2004]
have proposed an SVM algorithm which uses a clustering of the training dataset to
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achieve a quicker identification of the support vectors and non-support vectors. Tsang
et al. [Tsang et al., 2006] have proposed an algorithm which exploits the similarity be-
tween the formulation of the Minimum Enclosing Ball problem and the formulation
of the SVM problem. As before, these methods do not apply to our learning scenario
since they rely on a clustering of a labeled dataset and their aim is thus only to reduce
the complexity of the standard SVM training procedure. The link with our work may be
that we use a mixture of Gaussian components to model the intrinsic data distribution.
However, a Gaussian component is not a cluster, but a statistical assumption about the
data. We do produce clusters in our approach in the sense that we compute a convex
hull for each mixture component, and we use active learning to adjust interactively the
convex hulls (see Sec. 6.3.)

6.1 Mining image databases with adaptive convex hulls

In the following, we introduce a semi-supervised active learning method which in-
corporates the intrinsic data distribution in order to refine an SVM model of the tar-
get class using interactive relevance feedback and which is also able to manage large
datasets. First, each satellite image is split into a collection of small superposing patches
of 200 by 200 pixels and from each patch a set of image descriptors is extracted. A de-
tailed description of this procedure is given in Sec. 7.7 (Experimental Results.) The
database is thus seen as a set of images, each image being represented by a point in the
description space. We use the Expectation Maximization algorithm to compute the in-
trinsic data distribution as a mixture of Gaussian components. Each mixture compo-
nent generates a cluster as the set of data points situated inside its convex hull, which
is the surface of equi-probability situated around the mean value (see Fig. 6.1 for some
examples). In the following, whenever we use the word “cluster” it is understood that
we refer to the cluster associated to a mixture component. The descriptors’ space is
thus seen as a topological structure where the size of the clusters are controlled by the
convex hull of each Gaussian mixture component; however, we compute explicitly the
clusters only for very few mixture components: those annotated by the users.

To start a search loop, the user is presented with the prototypes of all the mixture
components and asked to mark as positive or negative those that are close to his query
target. We thus make the implicit supposition that the target class can be seen as a
union of existing clusters. While this is definitely limiting its generality, as long as the
clusters are consistent, the method manages to get very good results on our test da-
tabases (see Sec. 7.7 for cluster consistency tests). Once this initialization step is over,
the system enters an active learning loop the aim of which is to build iteratively an SVM
classifier which approximates the concept targeted by the user. To do so, we define a
modified SVM which works directly on the convex envelopes of the mixture compo-
nents. The repositioning of the SVM surface is performed at each iteration of the active
learning loop by first adjusting iteratively the convex hulls of the mixture components
using the user feedback and second by re-training the modified SVM on the new con-
vex hulls. The user provides feedback on the critical points, defined as the points of the
convex hulls which are the closest to the current SVM decision surface, and which are
re-computed at each iteration of the active learning loop.

Of course, the consistency of a cluster depends on its size, smaller clusters being
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(a)

(b)

Figure 6.1: (a) Two-dimensional Gaussian mixture component with an equiprobable
envelope (convex hull) which is in this case a two-dimensional ellipse (cyan blue dot-
ted line). (b) Three-dimensional mixture component under its sampled form with an
equiprobable envelope (convex hull) which is in this case a three-dimensional ellip-
soid.
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more likely to be consistent and larger ones being more loose. By dynamically adjust-
ing the convex envelope during the active learning process, we use the user’s super-
vision to find the right balance between accuracy (small clusters) and speed (larger
clusters). If the clusters were consistent enough, to define the target class we would
only need to learn the envelopes of the mixture components and the binary associative
model between the mixture components and the target concept. The SVM classifier
is in fact introduced to compensate for the lack of precision of the associative model
which is very rough even with carefully adjusted envelopes of mixture components.
It is indeed too strong an hypothesis to consider that the target class can be defined
by a union of Gaussian clusters even if this is a good approximation in many cases
(this is actually the assumption our method is exploiting to quickly position an SVM
surface which is then used to refine the model of the target class). In the case of very
complex target classes, the discriminative method we present will succeed whereas the
probabilistic model associating the targeted concept to clusters will yield poor results
because it seeks to solve a more general problem, that is, modeling p(y |x), the poste-
rior distribution of labels y given data points x, as a continuous density (which leads us
to generally make very strong and restrictive assumptions on the form of the distribu-
tion p(y |x)) instead of directly solving the classification problem by simply estimating
p(y |x) on each data point x. This is one of the main issue pointed by Long et Al. [Long
and Servedio, 2006] to explain why discriminative classifiers are still likely to yield ac-
ceptable results on problems where generative classifiers do not perform well. Even
though the simple associative model we present does not belong to the class of gen-
erative models, it shows the same limitations as a generative approach which seeks to
solve the very general problem of finding the distribution of p(x|y). As a consequence,
we do not expect our method to bring an improvement for all target classes: it all de-
pends on the goodness of the adopted model of class labels given data points p(y |x) (in
our case, a union of Gaussian clusters). On classes that can be well approximated using
a union of Gaussian clusters, our method converges much faster in terms of precision
and recall than the baseline. On more complex classes, we have showed experimentally
that our method does not perform worse and might even bring a small improvement
since clusters always retain some consistency near their center (see Sec. 7.7).

More specifically, our key contributions are the following:

• We introduce a new semi-supervised C-SVM algorithm, that works directly on
the convex hulls of the mixture components and we investigate its stability and
convergence properties. This algorithm allows us to manage much larger vol-
umes of data, without sacrificing too much the quality of the resulting learning
model. In the following, we refer to this new form of semi-supervised C-SVM as
the “component-based SVM”.

• We propose an active learning scheme which relies on the user feedback to it-
eratively re-adjust the convex hulls of the mixture components involved in the
training of the component-based SVM. To refine an SVM model of the targeted
category, it is indeed faster (in terms of learning speed) to directly re-adjust the
convex hulls of the mixture components than to work at the level of the data
points.
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• At last, we introduce an enhanced version of the preceding active learning al-
gorithm which allows to interactively adjust the weights of the mixture compo-
nents in relation to their relevance to the user’s target concept. This component
re-weighting approach allows both the unlearning of mixture components the
user might have tagged erroneously during the learning process and the intro-
duction of new mixture components during the feedback loop. Also, this allows
the learning of the associative model between the mixture components and the
targeted concept directly in the active learning loop. We call this approach online
learning, as opposed to the initial strategy, called batch learning, which requires
the user to annotate all mixture component prototypes before starting the active
learning loop (such a scenario is not very realistic for the simple reason that the
number of mixture components can be very high).

We use as a baseline a recent state-of-the-art active-learning-with-relevance-feed-
back method which have been reported to offer good results both on satellite images
[Ferecatu and Boujemaa, 2007] and generic multimodal text and image databases [Fer-
ecatu et al., 2008]. Experimental results obtained on a large dataset of QuickBird high
resolution satellite images and on the well known Corel image database are very en-
couraging: our system scales much better to large databases compared to the baseline
and in some cases offer more adequate results.

The chapter is structured as follows. In Sec. 6.2.1 we present the structuring of
the description space. The component-based SVM is described in Sec. 6.2.2 and in
Sec. 6.2.3 we discuss the convergence of the algorithm and its implementation. In
Sec. 6.3 we introduce our active learning scheme. We consider here two scenarios:
first, the case where the tagging of relevant components is done all at once at the be-
ginning of the active learning loop (batch learning approach Sec. 6.3.1) and second,
the case where components can be introduced progressively at each iteration of the
active learning process (online learning approach Sec. 6.3.2). We continue with the
experimental validation in Sec. 7.7 and we provide a quick conclusion in Sec. 6.5.

6.2 SVM and exploitation of the descriptor space struc-
turing

6.2.1 Notations and structuring of the descriptor space

Our system is restricted by three important constraints: (a) Generality: the target class
is not known a priori, thus the system must be able to function across a large range of
query subjects; (b) Scalability: the system functions on large databases—here we work
with hundreds of thousands of image patches; and (c) Real time: constraint specific to
search systems; they must return some answers in a relatively short time (typically no
more than a few seconds). These constraints guided many of our choices, including,
as we shall see next, the choice of image descriptors.

Finding image descriptors that accurately describe the visual content of many dif-
ferent classes of images is a difficult task [Deselaers et al., 2008]. Such descriptors are
easier to compute some specialized databases (for example medical images, finger-
prints, or face images), where prior knowledge can be used to devise dedicated mathe-



141

3: Readjustment of convex hulls

New (readjusted) convex hulls

Previous convex hulls

Current SVM surface

2: User/system interaction

Critical points

4: Training of the new SVM model

Critical points of S

Critical points of S

New SVM surface

The user is asked to mark the 
relevant component prototypes

1: Initialization step

Figure 6.2: Schematic view of our approach. Box 1: The user is asked to tag all the
images corresponding to the relevant Gaussian component prototypes. This is not a
part of the active learning loop, it is an initialization step and is performed once at the
beginning. Box 2: The user is asked to mark as relevant or non-relevant the images as-
sociated with the critical points (see Sec. 6.2.2) of components tagged by the user in the
initialization step (Box 1). In the online-learning approach, the display is split between
the critical points of components already annotated by the user and the prototypes of
new components which are likely to match the user request. Box 3: The convex hulls of
the mixture components are re-adjusted according to the user feedback in each of the
critical points. Box 4: Re-training of the component-based SVM with the readjusted
convex hulls of the components.
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matical models of the image content. Local descriptors, e.g., points of interest or image
regions, have been successfully used in several object detection tasks [Liu, 2006]. They
may be fine-tuned to perform well for a some specific classes of objects, but they need
large training sets, not available in a relevance feedback context. Moreover, they are
resource intensive in terms of storage and computation, and consequently not well
adapted to large-scale image retrieval systems that require answers in real time. In-
stead, we use a combination of different components of the image content, such as
color, texture and shape [Datta et al., 2008; Lew et al., 2006; Deselaers et al., 2008],
which is better adapted to generic images and, as in our case, to high resolution satel-
lite images. They have small memory requirements, do not necessitate complex data
structures or special handling and have been shown to perform well in our context, for
example with SVM-based relevance feedback [Zhou and Huang, 2003] (see Sec. 7.7 for
further details.)

t
l 
/ 2

t
l

Figure 6.3: Sliding window used to divide a large satellite image into smaller patches.

In the following, we denote by ν the feature vectors extracted from images as a con-
catenation of texture, color and shape descriptors. Since satellite images are very large,
we use a sliding window to divide each image into several smaller patches (see figure
6.3). From each patch, we extract a single feature vector. The structuring of space is
done by learning the parameters of a mixture model in the feature space V . To do this,
we assume that the feature vectors have a density that can be modeled by a mixture of
L Gaussians:

p
(
ν;

{
πl ,µl ,Σl

}
l=1,...,L

)
=

L∑
l=1

πl ·N (ν;µl ,Σl ) (6.1)

where the prior probabilities of each component of the mixture, πl , are normalized
such that

∑L
l=1πl = 1, and µl and Σl respectively denote the mean and covariance

matrices associated with each Gaussian component. The parameters of the mixture
model are learned using an Expectation Maximization algorithm [Hastie et al., 2005]
initialized with the Enhanced LBG clustering algorithm [Patané and Russo, 2001]. As
explained in paragraph 4.2, this algorithm minimizes the same functional as the stan-
dard K-means algorithm but is endowed with an heuristic to avoid convergence to-
wards poor local minima. In Sec. 6.4.2 we discuss the enabling assumption (the mix-
ture components are Gaussian) and we propose an heuristic method to determine the
number of components in the mixture model.
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Figure 6.4: Idea of “low density separation”: the surface separating the target S from
the background S̄ is constrained to pass through low density areas, represented here as
color saturated areas.

6.2.2 Low density separation and component-based SVM

The idea we try to exploit, which is one of the key assumptions underlying the semi-su-
pervised methods, is that of intra-cluster coherence: two elements belonging to a same
region of high density are very likely to belong to the same class (“cluster assumption”
[Chapelle et al., 2006a]). To re-use this idea and apply it to the SVM problem, we con-
sider the equivalent formulation: the decision boundaries between classes are located
in areas of low density, i.e. at the periphery of clusters (low density separation, see
Fig. 6.4).

In the following, we use interchangeably the words “cluster” and “mixture compo-
nent”, the mixture model applied to the data being comparable to a probabilistic clus-
tering, each cluster being delimited, for each given probability value, by the surface of
equi-probability (see Sec. 6.1). The problem we are interested in is a two-class problem:
the query target, S, and its complement in the database, S̄. We also assume, similar to
the case of hierarchical models discussed in 3.4.1, that the query target (known to the
user) is modeled by an association of clusters in the description space. The difference is
that, instead of probabilistic associations between concepts and mixture components,
we consider binary associations of type 0 (the components is not relevant to the user
query) or 1 (the component is relevant). Note that this assumption is not restrictive
regarding the final shape of the classifier; rather, it is used as a starting heuristics to
guide the construction of the SVM surface which will be refined later using the active
learning process (see Sec. 6.3). This is justified by the fact that semantic concepts in
satellite imagery often result in multimodal densities at descriptors level. For instance,
consider the semantic class "agricultural land". This class corresponds to regions in a
satellite image having each very particular texture characteristics, fact reflected by the
appearance of several modes in the space of texture descriptors. We first deal with the
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simpler case when the associations between the mixture components and the seman-
tic class S defined by the user query are known. For the general case, we describe in
Sec. 6.3.2 an online extension to learn these associations.

The first difficulty is to translate the idea of “low density separation” in our case.
Because semantic classes can be multimodal, the density is no longer a sufficient cri-
terion for characterizing the areas through which the separating surface has to pass
(there may indeed exist areas of low density within the same class between modes).
One way to constrain the problem is to force the separating surface to pass through ar-
eas of density as low as possible while remaining relevant to the associative model be-
tween the mixture components and the target semantic class. In the following, we note
Lp (ν) = p(S|ν,θ) = 1

p(ν;θ)

∑L
l=1δ

S
l ·πl ·N (ν;µl ,Σl ) and Lnp (ν) = p(S̄|ν,θ) = 1

p(ν;θ)

∑L
l=1(1−

δS
l ) ·πl ·N (ν;µl ,Σl ), where θ denotes the set of parameters of the associative model:

θ = {
δS

L ,πl ,µl ,Σl
}

l=1,...,L with δS
L = 1 if the l -th component is relevant to the query S

and δS
L = 0 otherwise. Lp (ν) is the likelihood of the concept S at point ν and Lnp (ν)

is the likelihood of the concept S̄ (see 6.5 for a complete derivation of the associa-
tive model). A point ν of the separation surface must necessarily respect the equality
Lp (ν) = Lnp (ν) so that the surface remains relevant regarding the associative model.
This condition is sufficient to define a hypersurface A = {

ν ; Lp (ν) =Lnp (ν)
}
. The idea

of “low density separation” appears here through the fact that the surface A is neces-
sarily located the farthest away from component centers because the two quantities
Lp (ν) and Lnp (ν) are very different in these places. The simplest idea to construct the
SVM surface is then to seek to approximate the surface A by noting that the member-
ship to S or S̄ is given by the sign of Lp (ν)−Lnp (ν). Denoting by N the total number
of vectors in the database, we try thus to build the following surface:

min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t.

{
sign(Lp (νi )−Lnp (νi )) · (w ·φ(νi )+b) ≥ 1−ξi

ξi ≥ 0,∀i = 1, ..., N
(6.2)

The problem in the above formulation is that all the points of the database will be in-
volved in the learning process, which is not desirable in a context of active learning.
Instead, we seek to identify M points ν∗1 , ...,ν∗M (not necessarily belonging to the da-
tabase) which are sufficient to obtain a reasonable approximation of the surface. We
call these critical points. For a problem with two components belonging respectively
to S and S̄, the two critical points will be the points of each corresponding cluster that
are closest to the other cluster. The idea is to place oneself systematically in the worst
case, i.e. to identify the points of each cluster such that the SVM classifier trained with
this set of points has the smallest margin possible (see Fig. 6.5(a)). Using this criterion
ensures that the obtained classifier retains a maximum of consistency with the asso-
ciative model. Indeed, critical points obtained with this criterion are necessarily closer
to the separating surface in the separable case. We will thus have (still in the separable
case): Lp (ν) ≥ Lnp (ν),∀ν ∈ DS and Lp (ν) ≤ Lnp (ν),∀ν ∈ D S̄ (see Fig. 6.5(b)) where
DS (resp. D S̄) refers to the set of points where the obtained classifier decides S (resp.
S̄).

The above reasoning holds of course only if we are able to define a convex hull for
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Figure 6.5: (a) Critical points in a linearly separable case. The magenta and black colors
refer respectively to the sets S and S̄. (b) Surface obtained by solving the problem (6.2)
in the separable case. In black, points such as Lp (ν) >Lnp (ν) and in magenta, points
such as Lp (ν) <Lnp (ν). The critical points are represented in blue and green.

each mixture component. We can solve the problem by noting that the equiprobable
envelope of a Gaussian i.e. the set

{
ν ; N (ν;µ,Σ) = ρ1

}
is a multidimensional ellipse of

equation (ν−µ)TΣ−1(ν−µ) = ρ2 with ρ2 =−2 · log
(
(2π)d/2 det(Σ)1/2 ·ρ1

)
. The problem

is then to determine ρ1 in order to have Lp (ν) = Lnp (ν) at critical points. This issue
will be examined in Sec. 6.3. For now, we consider that the constants ρ1 are known for
each component.

6.2.3 Algorithmic description of the component-based SVM

We have seen in the previous section that the problem is to identify L critical points
ν∗1 , ...,ν∗L such that the SVM classifier trained with this set of points has the smallest
possible margin. This problem can be reformulated as follows:

max
ν∗1 ,...,ν∗L

min
w,b,ξ

1

2
‖w‖2 + C

L∑
l=1

ξl

s.t.


(2δS

l −1) · (w ·φ(ν∗l )+b) ≥ 1−ξl

ξl ≥ 0,∀l = 1, ...,L

(ν∗l −µl )TΣ−1
l (ν∗l −µl ) ≤ ρl

2,∀l = 1, ...,L

(6.3)

To solve this problem, it is possible to use an alternative max min scheme that con-
verges under certain assumptions. We notice that the knowledge of critical points fully
determines the solution of problem (6.3) and vice versa, knowing the parameters of
the separating hyperplane completely determines the critical points. One can imagine
a two-stage iterative scheme: we first determine the parameters w and b of the separat-
ing hyperplane to compute the critical points associated with this hyperplane. These
points are determined as the points of the convex hulls of the mixture components
which are closest to the hyperplane. We then compute the parameters of a new hyper-
plane using the critical points we just determined as the new training set. To ensure
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Figure 6.6: (a) and (b) : Application of the algorithm 1 in the (a) linearly separable case
and (b) non-linearly separable case. The black dots on the ellipses represent critical
points at different iterations of the algorithm. The red classifier is the classifier ob-
tained after convergence of the algorithm. The magenta classifier is the one used to
initialize the algorithm (a smarter way of proceeding and which often accelerates the
convergence is to initialize the algorithm with a classifier trained with the cluster cen-
ters); (c) and (d): nonlinear classifier (Gaussian kernel) obtained with Algorithm 1 in
the (c) separable and (d) non-separable case. The critical points are represented in
yellow and magenta.

convergence towards a stable solution, we keep the critical points from previous itera-
tions in the training set. With this condition, it is possible to prove the convergence of
the alternating optimization scheme in the linearly separable case (see Appendix C.1),
i.e. the convergence of (w,b) to a value (w∗,b∗).

As long as the clusters are linearly separable, it is clear that the proposed optimiza-
tion scheme provides an alternative solution to the problem (6.2) — this solution of
course does not match exactly the solution we would have obtained if we had solved
the problem (6.2) as such since the points of the database are only an approximation
of clusters. The algorithm 3 summarizes the alternative scheme proposed to solve the
component-based SVM problem (6.3). In practice, convergence is very fast (4 or 5 it-
erations) and the size of the training set At remains very small even if completed with
the new critical points at each iteration.

Note that in the non-linear separation case a cluster may yield support vectors in
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Algorithm 3 Component-based SVM
Initialization
A0 =

{
(µ1,2δS

1 −1), ..., (µL ,2δS
L −1)

}
Train C0 with A0

While At+1 6= At do
Determine the critical points ν∗1 , ...,ν∗L associated with the current classifier Ct

Train Ct+1 with At+1 where At+1 is built from At by adding the pairs (ν∗i ,2δS
i −1)

such that min
ν j∈At

‖ν∗i −ν j‖ > ε
End

several directions from the center. This is due to the fact that at each step of the algo-
rithm 3, we retain the critical points from the preceding iterations.

6.3 Integration into an active learning scheme

In this section we propose a way to use the component-based SVM presented pre-
viously in an active learning context. We first consider the case where the mixture
components relevant to the user request are identified all at once during the first it-
eration of feedback. We term this approach “batch learning of relevant components”
(Sec. 6.3.1). We then extend this method to a more realistic scenario where the user
is allowed to identify progressively the components that are relevant to the search tar-
get and we present an algorithm which assists him in doing so. We call this approach
“online learning of relevant components” (Sec. 6.3.2).

6.3.1 Batch learning of relevant components

We have seen in Sec. 6.2.2 that building a SVM classifier approximating the surface of
equal likelihood between the two parts of the model (S and S̄) requires to know the con-
stants ρl

1 that define the convex hull associated with each mixture component. Since
our model uses Gaussian mixture components, the convex hull of constant probability
is a multidimensional ellipse with the directions of main axes given by the eigenvec-
tors of the covariance matrix. The convex hull associates to each mixture component
a cluster containing all elements of the database located inside it, and with its size
controlled by ρl

1. The ideal situation would be to have clusters as large as possible,
but that implies small values of the probability ρl

1, and thus there will be many data
points that do not fit well with the semantics of the cluster. Using the “right” values
for the constants ρl

1, l = 1. . .L, is essential, but computing them explicitly is impossi-
ble because consistency of semantics with respect to the descriptors depends on the
dataset. Instead, we determine them using the feedback from the user. In the follow-
ing, we propose an heuristic that, on our test data, has proved to work quite well. The
idea is to readjust the convex hulls of the mixture components based on the user feed-
back in each critical point (that is, for each of the images that are the closest to the
critical points). In the following we denote by P∗

n = {
ν∗1 (n), ...,ν∗L(n)

}
the critical points

obtained using Algorithm 1 at the n-th iteration of feedback.
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Figure 6.7: (a) The sum of likelihood ratios SR : we see that the value of SR on both
sides of the zone of equi-probability (dark blue zone) increases very quickly. The green
and blue ellipses represent the clusters associated respectively with the components
of S and S̄. (b) Adjusting the convex hull of a mixture component by progressing in the
direction of maximum increase of SR .

At each round of feedback, we display the images closest to the critical points,
which requires the user to evaluate L images where L is the number of mixture compo-
nents. It is better to identify the clusters that are very far from the separating surface,
which, in practice allows to reduce considerably the number of images that the user
must assess at each iteration. It is indeed unnecessary to modify the convex hulls of
the mixture components that are far from the surface and thus not involved in the
learning process. In the following, we propose a method to adjust the constants ρl

1
based on the likelihood ratio at critical points. The idea is to look for the direction of
maximum increase (steepest ascent) of this ratio and redefine the convex hulls of the
mixture components based on the variation of the likelihood ratio when moving in this
direction (see Fig. 6.7(b)). We do not use directly the likelihood ratio but rather the sum
of two ratios:

SR = Lp

Lnp
+ Lnp

Lp
= Lp

2 +Lnp
2

LpLnp

which possesses better properties in the area of equi-probability. In particular, it presents
a sharp increase on both sides of this area (see Fig. 6.7(a)). The use of SR instead of the
likelihood ratio can be justified in the following way: since the functions Lp and Lnp

are defined as linear combinations of Gaussians, they decrease very quickly outside
their respective supports SupLp = {

ν;Lp (ν) ≥Lnp (ν)
}

and SupLnp = {
ν;Lnp (ν) ≥Lp (ν)

}
.

It is thus a reasonable approximation to consider that SR ' Lp

Lnp
outside SupLnp and

SR ' Lnp

Lp
outside SupLp . As a consequence, the gradient of SR possesses the same ori-

entation as the gradient of the likelihood ratios
Lp

Lnp
or

Lnp

Lp
respectively on SupLp and

SupLnp .
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The direction of maximum increase is determined using the gradient:

∇SR = Lp
2 −Lnp

2

Lp
2Lnp

2

(
L ′

pLnp −LpL ′
np

)
(6.4)

where:

L ′
p (ν) =∇Lp (ν) =−

L∑
l=1

δS
l ·πl ·N (ν;µl ,Σl ) ·Σ−1

l (ν−µl )

The constant ρl
1 is then determined by ensuring that the move dl starting from the

critical point ν∗l in the direction −∇SR (ν∗l ) generates a variation |Lp (ν∗l +dl )−Lnp (ν∗l )|
which doesn’t exceed a threshold α, i.e. dl = rl ·nl with rl = argr

{∣∣Lp (ν∗l + r ·nl )−
Lnp (ν∗l )

∣∣=α}
and nl = −∇SR (ν∗l )

‖∇SR (ν∗l )‖ . To determine rl , we use a linear dichotomic search.

The value ρl
1 is then determined by computing ρl

1 =N (ν∗l +dl ;µl ,Σl ). In the following,
we denote by f n

l the user feedback associated with the image closest to the l -th critical
point at the n-th iteration of feedback. The value of f n

l is 0 or 1 depending on whether

the user finds the image relevant to his query or not. We decide that the constant ρl
1

is sufficiently well adjusted when f n
l changes value, i.e. when | f n+1

l − f n
l | = 1. The

approach described above is summarized in the algorithm 4.

Algorithm 4 Adjustment of the convex hulls of the mixture components via an active
learning process

Initialization
We start with a set K0 =

{
ρ1

1(0), ...,ρL
1 (0)

}
and we determine a first classifier C 0 using

Algorithm 1.
We set F0 = {1, ...,L} and n = 1
While Fn 6= ; do

For l ∈ Fn do
If | f n+1

l − f n
l | = 0 then

compute ρl
1(n) with the help of the critical points belonging to Cn−1

Else
ρl

1(n) = ρl
1(n −1)

Fn = Fn−1 − {l }
End If

End For
Compute the classifier C n using the algorithm 1 with the new set Kn ={
ρ1

1(n), ...,ρL
1 (n)

}
End While

The algorithm we described considers only the case where the relevant compo-
nents are marked all at once by the user during the first iteration of feedback. It does
not include the possibility to add or remove components during the learning process,
which might be problematic when the number of components is very high (we can-
not reasonably ask the user to annotate a thousand components during the first itera-
tion). We thus have to find a way to guide the user and help him explore the database



150
6. ACTIVE LEARNING USING THE DATA DISTRIBUTION FOR INTERACTIVE IMAGE

CLASSIFICATION AND RETRIEVAL

while continuing to improve the classifier on the already-annotated components. This
two-sided problem is often referred to in the literature as the compromise between da-
tabase exploration and exploitation. The exploration aims at roughly building a pro-
totype in the feature space of the category the user is looking for. The exploitation is
in some sort the complementary operation since it aims at improving the prototype
built during the exploitation step. Thus, the exploration feature will improve the recall
while the exploitation feature will improve the precision. In our case, the exploration
will consist in identifying (as exhaustively as possible) the components which are rele-
vant to the user request while the exploitation will consist in adjusting the convex hulls
of the mixture components. This motivates the introduction of the “online learning”
approach in the next section.

6.3.2 Online learning of the relevant mixture components

The method introduced in the previous section has two drawbacks: (1) it asks the user
to annotate the prototypes of all mixture components, which can be a lot a images for
large databases and (2) lack of flexibility: it does not allow unlearning of components
introduced by mistake, or adding new components to the target model. In this section
we remedy this situation and we describe a strategy to help the user in his database
exploration task. The operational flow of the system is described in Fig. 6.8. The idea is
to adjust interactively the weights of the components in the associative model at each
round of feedback. For this, we no longer consider a binary associative model between
mixture components and semantic concepts but a probabilistic model. Using Bayes
rule, we obtain:

p(S|ν;θ) =
L∑

l=1
p(S,cl |ν;θ) = 1

p(ν;θ)

L∑
l=1

p(S|cl ;ν;θ) ·p(cl ;θ) ·p(ν|cl ;θ)

= 1

p(ν;θ)

L∑
l=1

p(S|cl ) ·πl ·N (ν;µl ,Σl ) (6.5)

where θ = {
πl ,µl ,Σl

}
l=1,...,L and p(ν;θ) is the value of the underlying Gaussian mixture

density at point ν that is given by equation 6.1. In practice, we do not need to compute
this quantity since it disappears when computing the ratio ∇SR 6.4.

By setting p(S|cl ) = δS
l , we are in the particular case of the binary associative model

such as described in section 6.3.1. By using the probabilistic associations between
mixture components and semantic concepts, it is possible to introduce an unlearn-
ing component by adjusting the a posteriori probabilities, p(S|cl ), of each component
cl=1,...,L to belong to the semantic class S. The unlearning feature proved to be use-
ful in the case where the user slightly changes his request during the learning process.
This might happen when the number of components is very high, in which case, a real
user is often tempted to mark as relevant the components which partially match what
he is looking for and not necessarily the components which exactly correspond to his
request (to do so, he would have to browse all the component prototypes which can
be quite tedious). The aim of the system is then to guide the user towards the rele-
vant components while forgetting progressively the previously annotated components
which might not be pertinent regarding the user’s request. The unlearning feature can
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1: User/system interaction

3: Computation of component member-
ships

Current SVM model
A priori structure 
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4: Training of the new SVM model (detailed diagram)

Figure 6.8: Proposed concept for the online learning of relevant components. Box 1:
the user is asked to mark as relevant or non-relevant the images associated with the
critical points of clusters corresponding to components tagged during previous iter-
ations of the active learning loop as well as some images associated with prototypes
of new components. Box 2: the convex hulls of the corresponding mixture compo-
nents are re-adjusted according to the user feedback in each of the critical points.
The new components whose corresponding prototypes have been tagged by the user
are integrated with arbitrarily defined sizes of convex hulls. Box 3: component mem-
bership degrees (weights) inside the associative model components/user concept are
computed according to the current classifier and the intrinsic model of data. Box 4: a
fuzzified version of our component-based SVM algorithm is then trained with the re-
adjusted convex hulls of the mixture components and the new components tagged by
the user. The gradients of color inside the ellipses represent the weights of the mixture
components in the associative model. These weights are used to train our component-
based SVM with fuzzy membership degrees of components.
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also be useful to compensate for the lack of coherence of certain clusters by reduc-
ing the weights of the corresponding mixture components in the associative model.
The probabilities p(S|cl ) are thus re-computed at each iteration of feedback. We have:
p(S|cl ) = ∑

ν∈V p(yν = 1,ν|cl ) = ∑
ν∈V p(yν = 1|ν,cl ) ·p(ν|cl ) ' ∑

ν∈V p(yν = 1|ν) ·p(ν|cl )
where yν is the label of the feature point ν (yν ∈ {1,−1}). The probabilities p(ν|cl ) are
computed using the underlying probabilistic model, giving p(ν|cl ) = N (ν;µl ,Σl ). As
for the probabilities p(yν = 1|ν), they are calculated using the output of the current
SVM classifier at the n-th iteration of the active learning loop: denoting by fn the de-
cision function associated with this classifier, we use a sigmoid function to compute a
probabilistic output of the following form:

pν = p(yν = 1|ν) = 1

1+exp(−an · fn(ν)+bn)

Considering that the variable yν follows a Bernoulli law of parameter pν (the attribu-
tion of the label yν is similar in nature to a yes/no experiment with a probability of
success being equal to pν and a probability of failure equal to 1− pν and, thus, can
be modeled as a Bernoulli trial), we have: p(yν|ν) = pγν

ν · (1 − pν)1−γν where γν = 1
if yν = 1 and γν = 0 if yν = −1. The coefficients an and bn of the sigmoid are ad-
justed using a maximum likelihood estimator upon the training data i.e. (an ,bn) =
arg max

an ,bn

∏
ν∈T fn

pγν
ν · (1− pν)1−γν where T fn is the training set used to train the classifier

fn . To perform the optimization, we use Platt’s algorithm such as described in [Platt,
2000]. To take into account the probabilities associated with each component, we use
a fuzzified version of the algorithm 3, that is, we solve the following problem:

max
ν∗1 ,...,ν∗L

min
w,b,ξ

1

2
‖w‖2 + C

L∑
l=1

τl ·ξl

s.t.


(2δS

l −1) · (w ·φ(ν∗l )+b) ≥ τl −ξl

ξl ≥ 0,∀l = 1, ...,L

(ν∗l −µl )TΣ−1
l (ν∗l −µl ) ≤ ρl

2,∀l = 1, ...,L

(6.6)

The algorithm we use to solve the optimization problem above is similar to the one
used to solve the problem (6.3), with the difference that we replace the standard SVM
with a probabilistic SVM inspired from [Liu, 2006] in the second step of the while loop
of the algorithm 3. In the above probabilistic SVM formulation, each training element
must be given a membership 0 ≤ τl ≤ 1 which is the belief that the training sample
νl belongs to the class yl = 2δS

l − 1. We propose to compute τl for each component
as τl = p(S|cl )/NDl if cl ∈ S and τl = 1 otherwise. The normalization coefficient NDl

is computed as NDl =
∑
ν∈V p(ν|cl ). It ensures that 0 ≤ τl ≤ 1. Thus, we have τl =

δS
l ·p(S|cl )/NDl + (1−δS

l ).

The constraints (2δS
l −1)·(w ·φ(ν∗l )+b) ≥ τl −ξl in the problem 6.6 allow to account

for unbalanced memberships by shifting the SVM boundary towards the most uncer-
tain training samples. As in the standard SVM, ξl are slack variables which penalize the
objective function in the case of misclassification. The problem 6.6 is solved under its
dual form yielding the final objective function: f (ν) = ∑

l∈SV (2δS
l − 1) ·αl ·k(ν,νl )+b

where the αl are the coefficients associated with the support vectors SV and k the ker-
nel function.
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In the algorithm 8, the weights τl are only computed for the labeled components.
The weights of the unlabeled components are all set to 1: the unlearning component
concerns indeed only those components which have been tagged as relevant by the
user in a former iteration of the active learning loop. Since the coefficients τl are de-
grees of membership and not probabilities, we do not need any normalization.

In the following, we briefly describe the strategy we have retained for exploring the
database. The goal is to point to the user the components which are more likely to
correspond to his request. A quite straightforward strategy is to present to the user the
components which are close to the ones he has already marked as relevant: it ensures
a certain consistency in the database exploration while exploring uncharted territo-
ries near the already tagged components. In our experiments, it proved to work much
better than picking components at random or based on their proximity to the SVM
separating surface. The main reason is that the concepts we are looking for are repre-
sented in the feature space by several “superclusters” i.e. by several groups of clusters
(cf. Fig. 6.9(a)). In other terms, the semantic concepts consist of several homogeneous
sub-classes. So, it makes more sense to proceed with a local search near the already
tagged components than to look for new components far from the preceding ones. The
data exploration feature is preserved by the fact that we work directly at cluster levels,
which ensures a certain sparseness of the training data set. Considering a Gaussian
kernel for the SVM and a kernel bandwidth sufficiently small, the components close
to the already tagged ones will be those situated in a stripe [T,+∞] in the high dimen-
sional SVM feature space (with T sufficiently high). The notion of stripe is defined here
using the distance d(., f ) to the separating surface f (the distance d is defined as the
value given by the decision function associated with the SVM model and it is positive
since we only look on the positive side of the SVM decision surface f ). Thus, a point
ν will belong to the stripe [T,+∞] iff T ≤ d(ν, f ) < +∞. The advantage of such an ap-
proach is that we can adjust the range in which we want to perform the search for new
relevant components around the already marked ones (see Fig. 6.9). Such an approach
works well when the SVM surface is sufficiently well-positioned in the feature space,
which is not the case at the beginning of the learning process. So, we have first to ob-
tain an approximate positioning of the “superclusters” which define the class we are
looking for. The idea is to start with a broad search over all components and then to
restrain progressively the search to the components closest to the already tagged ones.
An example scenario is given in Fig. 6.9.

We use an annealing-like process on the “temperature” parameter T which tunes
the distance from the separating surface beyond which the system is allowed to search
for relevant components. The temperature parameter is decreased at each iteration of
the feedback loop to limit step by step the exploration of the database to the compo-
nents farthest to the SVM surface. To formalize this approach, we use a Gibbs distribu-
tion taking as the energy function the components distance to the separating surface
f :

p(cl ∈ S) = 1

ZC
·exp(−dmax −d(cl , f )

T
)

where dmax = maxl∈S d(cl , f ), ZC =∑
l∈S, d(cl , f )>T d(cl , f ). In these formulas, the notion

of distance of a mixture component to the separating surface f is understood as the
distance of the critical point associated with the mixture component to the SVM sepa-



154
6. ACTIVE LEARNING USING THE DATA DISTRIBUTION FOR INTERACTIVE IMAGE

CLASSIFICATION AND RETRIEVAL

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(c)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(d)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(e)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(f)

Figure 6.9: (a) Superclusters; (b), (c), (d), (e) and (f ) Illustration of the cooling scheme.
In each figure, the light blue area represents the zone inside which we perform the
search for new target components. We start with a high value of T , which amounts to
perform a broad search over almost all components (figure (b)) except the one tagged
as non-relevant (in red) and we progressively decrease the value of the temperature
parameter (the figures are ordered alphabetically ((b), (c), (d), (e) and (f)) in function
of their decreasing associated T value). We then see that the search area becomes more
and more concentrated around components tagged as relevant (green ones).

rating surface f . Also, it should be noted that the Gibbs distribution here is used more
as a formalism than a real modeling.

We use a display which is split into three parts to account for the two different
strategies used in the database exploration feature on one hand and the database ex-
ploitation feature on the other hand (see Fig. 6.22). The respective sizes of the displays
corresponding to the three parts of the graphical interface are referred to as K1, K2 and
K3 in the following. At each iteration of the active learning loop, K1 components are
sampled according to the Gibbs distribution. When the parameter T is high, the in-
fluence of the distance to the separating surface is less important in the exponential
term of the distribution, so components close to the surface can be sampled as well.
On the contrary, when we decrease T , the influence of the distance to the separating
surface increases, making components far from the surface more probable. To ensure
that the exploration is performed on both sides of the separating surface, we still main-
tain a most ambiguous (MA) feature, that is, we return the K2-th components closest
to the separating surface. The exploitation is done in a very simple way, by returning
on the display the K3 images corresponding to the critical points associated with the
K3 labeled components which are closest to the separating surface. The problem is
to optimize the display, that is, values K12 = K1 +K2 and K3 so as to find the correct
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compromise between the exploration of new regions and the refinement of the class
current estimate.

The algorithm 5 summarizes the procedure described above (the sub-programs
SampleGibbs (algorithm 7), ComputeComponentMembership (algorithm 8) and Com-
ponentBasedFuzzySVM (algorithm 9) are presented in the appendix C.3). The follow-
ing notations are used: K = K1 +K2 +K3 is the size of the display, n is the current iter-
ation of the active learning loop, Ln

comp and U n
comp are respectively the set of labeled

and unlabeled components at iteration n, C l osest n(D,k) refers to the k closest com-
ponents to the current decision surface at iteration n among the set of components D ,
the distance of a component to the current decision surface being defined as in 6.3.2 as
the distance of the current critical point associated with this component to the current
decision surface. C P n(D) are the critical points associated with the set of components
D at the n-th iteration. d n

comp (D) are the distances of a set of components D to the
current decision surface at iteration n. Ln

pt s and U n
pt s refer respectively to the set of la-

beled and unlabeled data points at iteration n. Comp is the set of components in the
mixture model. Prot(D) are the corresponding component prototypes associated with
the set of components D . f n is the current decision surface at iteration n and it also
refers in our formalism to the decision function associated with the classifier.

6.4 Experimental results and comparison

To assess the performance of our approach, we conducted tests on two datasets. The
first is a set of high-resolution QuickBird satellite images and the second consists of
images 60,000 images from the Corel Stock Photo Library 1, which is a widely used
image database in the image retrieval community. For each dataset, we evaluate the
retrieval capabilities of our system both in terms of precision and recall and we assess
the generalization capabilities of the obtained classifier by looking at the number of
support vectors defining the SVM surface. We also discuss the choice of the number
of mixture components, choice which influence the intra-cluster consistency (an im-
portant enabling assumption for our system). Other features like the ability to forget
irrelevant clusters are also evaluated. We conclude this section by discussing which
strategy performs best with respect to the choice of the new component prototypes to
be presented to the user at each iteration of the active learning loop. We compare our
strategy which consists in sampling new component prototypes according to a Gibbs
distribution with the classical most ambiguous and most relevant strategies used by
our baseline [Tong and Chang, 2001; Ferecatu et al., 2008]. According to the discussion
in 6.3.2, we also perform tests using a mixed strategy which consists in using our Gibbs
sampling based strategy along with a most ambiguous strategy, as proposed in the Al-
gorithm 3. We incidentally evoke graphical interface issues: our interface is indeed a
bit involved for a novice user — we propose and test an alternative to the three-part
interface needed by the Algorithm 3.

1http://www.corel.com
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Algorithm 5 active learning loop with online learning of relevant mixture components
Initialization
We set n ← 0, L0

comp ←;, U 0
comp ← {1, . . . ,L} , Mb0 ← {0, . . . ,0} ,T ← T0.

While 1 do %active learning loop
If n = 0 then

Di sp ← Prot(Comp(1 : K )) %we select the prototypes of the first K mixture
components for the display
Ln

comp ←Comp(1 : K )
Ln

pt s ← Di sp
Feed ← GetFeedback(Di sp)
Update(Mbn ; Feed)

Else
Set1 ← SampleGibbs

(
U n−1

comp ; d n
comp (U n−1

comp ) ; K1 ; T
)

Di sp1 ← Prot(Set1) %components drawn according to a Gibbs distribution in
the range [T ;+∞]
Set2 ←C l osest n(D,K2)
Di sp2 ← Prot(Set2) %most ambiguous components

Set3 ←C l osest n
(
Ln

comp ,K3

)
Di sp3 ← PC n−1(Set3) %already marked components (convex hulls re-
adjustment)
Di sp ← Di sp1 ∪Di sp2 ∪Di sp3

Ln
comp ← Ln−1

comp ∪Set1

U n
comp ←Comp \ Ln

comp

Ln
pt s ← Ln−1

pt s ∪Di sp1 ∪Di sp2 ∪Di sp3

%user feedback: we suppose here for clarity reasons that the user annotates all
the elements of the sets Di sp1,Di sp2,Di sp3

Feed1 ← GetFeedback(Di sp1)
Feed2 ← GetFeedback(Di sp2)
Feed3 ← GetFeedback(Di sp3)
AdjustConvexHulls(Set3 ; Feed3)
Update(Mbn ; Feed1 ∪Feed2)

End If(
fn ; C P n

)← ComponentBasedFuzzySVM(Ln
comp ; Mbn−1 ; Ln

pt s)
For i = 1 : Card(Ln

comp ) do %Re-compute membership degrees of tagged compo-
nents

Mbn(i ) ← ComputeComponentMembership(Ln
comp (i ) ; Ln

pt s ; fn)
End For
n ← n +1
T ←α ·T

End While
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Figure 6.10: Example of images from six ground truth classes. From left to right in
row-wise order: “flowers”, “castles”, “sportsmen”, “painted eggs”, “lions”, “molecules”.

6.4.1 Description of the test databases and of the image descriptors

Quickbird dataset: This dataset is built from 10 panchromatic scenes with a ground
resolution of 61cm representing overall views of Acapulco, Las Vegas, Los Angeles, Lon-
don and Ouagadougou. The whole scenes are of approximate size 30000 by 30000 pix-
els. We extract descriptors within a sliding window of size 200 by 200. To build the da-
tabase, we go through each scene by shifting the window in both directions, horizontal
and vertical, with a step equal to half the window size each time such as to cover the
whole scene. Thus, for a 30000×30000 scene, we obtain about 900000 feature vectors.
The descriptors we use with this database are texture descriptors (statistical moments
computed on gray-level co-occurrence matrices [Haralick et al., 1973] as well as statis-
tical moments computed on several sub-band decompositions obtained using a bank
of quadrature mirror filters), shape descriptors (Gradient Orientation Histograms) and
gray-level histograms [Deselaers et al., 2008]. We perform a principal component anal-
ysis (PCA) on each descriptor separately to eliminate linear dependencies. We retain
each time the first d principal axis where d is such that their cumulated inertia does
not exceed 95%. We then concatenate the results to obtain the final feature vector. The
data are then centered and normalized to unit variance.

Corel dataset: This is a well known database in image retrieval community. It con-
sists of 60,000 natural images covering a broad range of human activities. We selected
by hand a ground truth of about 5000 images organized in 46 different semantic classes,
which ensures a certain diversity and renders difficult the task of retrieving a given cat-
egory because of the presence of many other categories which can be very close or even
overlapping with the targeted one at signal level. A sample from several ground truth
classes is shown in Fig. 6.10. The descriptors here are the same as those used for the
Quickbird dataset, with the exception that we added color histograms in RGB space,
because they have been reported to improve the quality of results for many databases
of natural images [Deselaers et al., 2008].

6.4.2 Verifying the enabling assumption and tuning the number of
Gaussian components in the mixture model

As described in Sec. 6.2.1, we determine the intrinsic distribution of the data as a mix-
ture of Gaussians by using an EM procedure seeded by an ELBG algorithm to initialize
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a probabilistic clustering. The number of clusters in the ELBG algorithm is adjusted
so as to ensure intra-cluster consistency, which, as we have seen before is one of the
key assumptions on which rests the proposed method. We start by assessing how far
the cluster assumption holds for the test datasets and we present an heuristic way of
adjusting the number of Gaussian components of the mixture model.

6.4.2.1 Evaluating clusters consistency

Quickbird dataset To perform the evaluation, we use a ground truth with six seman-
tic classes (residential area, forest, road structures, parking lots, desert and agricultural
fields), each class containing approximately 5000 image patches. The ground truth was
built with the help of a CBIR system, and the content of each class was checked man-
ually to eliminate misclassified patches. A sample of each class is shown in Fig. 6.11.
Patches inside a class are coming from different scenes, which explains the observed
variability.

Some classes like agricultural fields, forest or desert are visually very consistent
whereas other like road structure or parking lots are much more mixed up. In fact,
the latter classes will be the most difficult to learn since on a signal point of view, they
strongly overlap with other classes. For instance, the class “road structures” is mixed
with the class “residential area”, which is also true on a mere visual point of view since
on each side of a road we often observe residential areas. Some illustrations of what
happens at signal level are given in Fig. 6.12. While reading this figure, keep in mind
that the overlap between some classes at signal level in is due partially to the projec-
tion on the first two principal components. There is probably a subspace where these
classes retain some separability otherwise it would be impossible to discriminate be-
tween them during the learning, which is not the case.

To assess the clusters consistency, we learn a Gaussian mixture model on the ground
truth. The purpose here is to assess the validity of the “Gaussian mixture assumption”
which in our case is closely related to the “cluster assumption” since clusters are ob-
tained at each iteration of the active learning loop as the sets delineated by the current
convex hulls of the mixture components. To be able to build quantitative measures
we perform the tests on the ground truth classes. Of course, the number of mixture
components is smaller compared to the mixture model on the whole database, but the
classes in the ground truth are representative for the type of images a user is likely to
search.

We study both the influence of the number of components in the mixture model
and the influence of the tightness of the convex hulls. We start by representing the
mean purity and the mean entropy of the clusters as a function of the number of com-
ponents (see Fig. 6.13(a) and 6.13(b)) for fixed convex hulls. For simplicity reasons, we
use cl to denote both the cluster associated with the l -th mixture component and the
mixture component itself. The mean purity is defined as Pur i t y = ∑L

l=1
nl

Ntot
pl with

pl = maxc pcl , nl = Card(cl ), Ntot =∑L
l=1 nl and pcl = nl

c
nl

where nl
c is the number of el-

ements inside the cluster cl belonging to the class c (c ∈ {residential area, forest, road
structures, parking lots, desert, agricultural fields }). The mean entropy is defined as
Entr opy = −∑L

l=1

∑
c

nl
Ntot

pcl log2 pcl , i.e, nl
c = Card({ν;ν ∈ cl and ν ∈ c}). The analyti-

cal expressions of nl and nl
c are given in the next paragraph. Both measures, purity
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Samples taken from each of the six ground truth classes: (a) residential
area; (b) forest; (c) road structures; (d) parking lots; (e) desert; (f ) agricultural fields.
Images in a column come all from the same scene whereas images in a row come each
from a different scene.
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Figure 6.12: Representation of the descriptors in the system of axes formed by the first
two principal components for three different scenes: (a) London; (b) Adelaide; (c) Las
Vegas. Visually consistent classes can be easily distinguished one from another: “for-
est” in cyan, “desert” in black and “fields” in green. On the contrary, less visually consis-
tent classes strongly overlap with each other. For instance, “road structures” in garnet
red is mixed with “residential area” in yellow.
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Figure 6.13: QuickBird dataset: (a) Clusters mean purity and (b) mean entropy as a
function of the number of components (r is fixed to 1.5). (c) Clusters mean purity and
(d) mean entropy as a function of the “tightness” of the convex hulls (the number of
components is fixed to 20).
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Figure 6.14: Convex hull of a mixture component as a function of the number r of
“sigmas” we keep in each principal direction.

and entropy, represent the extent to which a cluster consists of objects belonging to
a single class. As we increase their number, clusters become more and more coher-
ent, that is the purity increases (tends towards one) and the entropy decreases (tends
towards zero).

In the Fig. 6.13(c) and Fig. 6.13(d), we have represented the mean purity and the
mean entropy of the clusters as a function of the size of the convex hulls for a fixed
number of components. That is, for a given component cl whose covariance matrix is
given by Σl = t Pl Dl Pl , we make the values of ρl

1 vary in the interval
[
N (γl

(1
2

)
;µl ,Σl );

N (γl (3);µl ,Σl )
]

with γl (r ) = µl + r ×√
Dl (1,1)Pl (:,1). The matrix Dl is the diagonal

matrix obtained by diagonalizing the symmetric positive definite matrix Σl in an or-
thogonal basis of eigen vectors formed by the lines of the matrix Pl . The notation
Pl (:,1) is used to designate the first column of Pl . A simple calculation shows that:

N (γl (r ) ;µl ,Σl ) = exp(− r 2

2 )

(2π)d/2 det(Σl )1/2 . Because the probabilities ρl
1 do not reflect directly

the notion of tightness, we introduce the notation r to stand for the “number of sig-
mas” we retain in each principal direction to define the equiprobable envelopes (see
Fig. 6.14). Using the definition of clusters and for a given r , we obtain:

nl = Card
({
ν;N (ν;µl ,Σl ) <N (γl (r );µl ,Σl )

})
and

nl
c = Card

({
ν;N (ν;µl ,Σl ) <N (γl (r );µl ,Σl ) and ν ∈ c

})
The x-axis of the Fig. 6.13(c) and Fig. 6.13(d) represents the parameter r which varies
between 1

2 and 4. We see thus that low values of r (“tight” convex hulls) cause clusters
to be more coherent.

Corel dataset We repeat the same experiments for the Corel dataset. To be consis-
tent with what precedes, we only evaluate these two quantities on the same number of
classes (the six classes presented in Fig. 6.10), which we also use to assess the retrieval
performance of the system. The results are shown in Fig. 6.15.
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Figure 6.15: Corel dataset: (a) Clusters mean purity and (b) mean entropy as a func-
tion of the number of components (r is fixed to 1.5). (c) Clusters mean purity and (d)
mean entropy as a function of the “tightness” of the convex hulls (the number of com-
ponents is fixed to 20).
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For both datasets, we see that the assumption of intra-cluster coherence is well
justified provided we choose a high enough number of components in the mixture
model. For the Quickbird dataset, the value of purity is situated around 0.75 for a mix-
ture model consisting of only 12 components and a value of r equal to 1.5. In compar-
ison, for the partial Corel dataset, we attain the same “level of purity” by setting to 60
the number of components in the mixture model. Thus, to ensure that the enabling
assumption is verified, we have to tune the number of mixture components accord-
ing to the database. Generally speaking, a small number of mixture components will
ensure a small number of iterations in the first part of the active learning loop (the
one dedicated to the database exploration and the adjustment of convex hulls). But
the obtained SVM model will be much less precise since the clusters are not consis-
tent enough. Thus, we will have, in a second part of the active learning loop, to refine
the SVM model using a classical active learning scheme working at point level such as
our baseline. On the contrary, a large number of mixture components will ensure that
the obtained clusters are consistent. Thus, the first part of the active learning loop will
yield a very precise SVM model of the targetted category but at the expense of many
iterations in this part of the active learning loop. On the other hand, we might not
need to add a model refinement strategy in a second part, as it would be necessary in
the case of a small number of mixture components. The better is to find a compro-
mise by choosing a number of components which is not to small, to ensure that the
result of the first part of the active learning loop will be correct enough to minimize
the number of iterations in an eventual refinement step in a second part. And at the
same time, the number of components must not be too high, to arrive at a quick def-
inition of the target class in the first part. We still have to keep in mind that there is
a compensation mechanism for the lack of coherence of clusters which consists in re-
adjusting the convex hulls of the corresponding mixture components at each iteration
of the active learning loop. For both datasets, we have chosen to set to 0.7 the initial
level of purity of clusters, which, according to our tests, leads to a good compromise
in the above-mentioned acceptation: for the QuickBird dataset, the average precision
of the obtained classifier at the end of the first part of the active learning loop is ≈ 0.86
(for an average recall of ≈ 0.75) and 20 iterations are necessary to arrive at such a level
of precision (see Fig. 6.18). We then need only 10 iterations in the second part of the
active learning loop to obtain a “saturated” classifier, that is, a classifier which do not
improve on precision and recall anymore even when performing “extra iterations”. The
same considerations apply for the Corel dataset. In the following paragraph, we com-
pute bidimensional models representing the purity as a function of both the number
of components in the mixture model and the value of clusters “tightness” r . We then
determine the isolines for a purity value of 0.7 and we look for the best compromise
between r and the number of components.

6.4.2.2 Tuning the number of components in the Gaussian mixture model

To tune the number of components in the Gaussian mixture model, we repeat the
last experiments, using this time all the feature vectors even those not present in the
ground truth. In the case of the Corel dataset, we “simulate” a partial ground truth by
considering that we only know the ground truth for the six classes we want to learn (it
is indeed not a realistic setting to consider that we possess a complete ground truth
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over the whole database). We still use a majority voting rule to determine the class of
each mixture component and we discard the components which do not contain any
element from the ground truth. The measures of purity and entropy we obtain are, of
course, only approximations since we evaluate them only on the ground truth classes
and on the images of these classes which effectively belong to the ground truth (there
might be images which can be classified according to a ground truth class but which
are not in the ground truth). To compute the mean purity and the mean entropy of
clusters, we use slightly different formulas:

Purity =
L∑

l=1

n
′
l

N
′
tot

p
′
l and Entropy =−

L∑
l=1

∑
c

n
′
l

N
′
tot

p
′
cl log2 p

′
cl

In the above formulas, n
′
l refers to the number of elements from the ground truth be-

longing to the convex envelope of the mixture component cl i.e.:

n
′
l = Card(

{
ν;N (ν;µl ,Σl ) <N (γl (r );µl ,Σl

}∩{
ground truth

}
)

N
′
tot refers to the total number of elements in the ground truth inside the components

convex hulls i.e. N
′
tot =

∑L
l=1 n

′
l . We then have p

′
l = maxc p

′
cl and p

′
cl =

ng t l
c

n
′
l

where ng t l
c

is the number of elements from the ground truth inside the convex envelope of the
mixture component cl belonging to the class c.

We observe that the isolines of the Fig. 6.16(b) and Fig. 6.17(b) can roughly be de-
composed into two straight lines with different slopes. In the first part of the isolines,
the slope is quite small, meaning that an important increase in r will result in a rela-
tively small increase in the number of components necessary to ensure the same level
of purity. On the contrary, in the second part, a small increase in r will cause a rela-
tively large increase in the number of components to keep the purity constant. We have
chosen to place ourselves at the junction of the two parts, since it provides a natural
compromise between r and the number of components, which is what we are looking
since we want to retain as much information as possible from each component and at
the same time to minimize the number of components (keeping the purity constant).
For a purity level of 0.7, we obtain according to the above considerations: r = 2 and
L = 200 in the case of the QuickBird dataset and r = 2 and L = 300 in the case of the
Corel dataset. The differences in the found number of components between the two
datasets reflect the fact that semantic consistency at signal level, i.e. semantic consis-
tency inside a cluster is much more difficult to obtain on photographic images than on
remote sensing images. Similar results are obtained considering the entropy instead of
the purity as a measure of clusters consistency.

6.4.3 Evaluation of the system performance

In this section, we present a method of evaluation of our active learning scheme. We
perform six distinct experiments on each of the six classes of the ground truth. Each
time we compute the average precision and the average recall at each step of the active
learning loop. We compare ourselves to the art active learning method proposed in
[Ferecatu and Boujemaa, 2007], which has been reported to yield good results both for
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Figure 6.16: QuickBird dataset. Left: clusters mean purity as a function of the number
of components and the “tightness” of convex hulls. The whole dataset is used to esti-
mate the Gaussian mixture parameters but the purity is assessed only on the images
belonging to the ground truth. Right: Isolines for different purity values.
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Figure 6.17: Corel dataset. See caption of figure 6.16.
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satellite images and for generic images [Ferecatu et al., 2008] (called in the following
“the baseline method”). We consider here only the online learning of relevant clusters.
The batch learning procedure, presented in Sec. 6.3.1, is only used as an intermediary
step to facilitate the presentation of the whole online procedure. The batch learning
of relevant components does not correspond indeed to a realistic scenario since we
cannot reasonably ask the user to exhaustively mark all the components he thinks rel-
evant among hundreds of other components within one single iteration of the learning
process.

A key aspect in our evaluation method is the initialization of the two methods (base-
line and ours). To start a feedback loop, the baseline method needs both positive and
negative examples from the target class, while our method needs a few positive and
negative prototypes of components relevant to the target class. We chose to initialize
both methods with two positive and two negative component prototypes. The first it-
eration of the active learning loop in the figures below corresponds thus to the first
iteration after this initialization step. To give the two methods equal chances, we use
displays of equal sizes for both systems. That is, at each iteration of the active learning
loop, the user is asked to tag exactly the same number of images in both cases. The
precision is computed as the number of relevant images over the total number of re-
trieved images (we consider of course only images from the ground truth). The recall is
computed as the number of relevant images over the total number of retrieved images
from the target class.

Precision = Card
({

relevant retrieved images
}∩{

ground truth
})

Card
({

retrieved images
}∩{

ground truth
})

Recall = Card
({

relevant images
}∩{

ground truth
})

Card
({

retrieved images
}∩{

ground truth
}) (6.7)

We make a comparison of the two methods over 30 iterations of the active learning
process. For all the ground truth classes, we restrict to 20 the number of active learning
iterations within the Algorithm 3, because we observed experimentally that the accu-
racy did not improve any more after that. Indeed, because the Algorithm 3 works at the
cluster level, there is a saturation of the learning process induced by the stabilization
of the convex hulls of the clusters and also by the fact that all the relevant clusters have
been retrieved by the online learning process. At this point, further progress can be
made by focusing the learning process at a lower granularity, i.e. at the level of indi-
vidual points. Thus, from iteration 20 we switch our active learning process with that
of the baseline, which is better adapted to work with individual points. Practically, de-
pending on the target class this produces an improvement in precision of 5–10% dur-
ing iterations 20 to 30 in our experiments (see Fig. 6.18(a−f) and Fig. 6.19(a−f)). It has
almost no effect on the recall.

In the Fig. 6.18 and Fig. 6.19, we have represented for the two datasets the precision,
the recall and the number of support vectors of the current SVM classifier as functions
of the number of iterations in the active learning process. At each iteration, the values
of precision, recall and the number of support vectors are averaged over 30 retrieval
sessions.

We use a Gaussian kernel for both methods. In the first five cases (desert, fields,
forest, parking lots, residential area), our method converges much faster towards a sta-
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Figure 6.18: QuickBird dataset: comparison in terms of precision (Fig. (a), (b), (c), (d),
(e), (f), (g)), recall (Fig. (h), (i), (j), (k), (l), (m), (n)) and number of support vectors (Fig.
(o), (p), (q), (r), (s), (t), (u)) of our method (green curve) with the baseline (black curve)
for six semantic classes. The x axis represents the number of iterations in the active
learning process. The graphics with the red curves represents the average difference
between the two methods over the six classes.
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Figure 6.19: Corel dataset: cf. legend of Figure 6.18
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ble classifier, which does not improve the accuracy any more even by increasing the
number of active learning iterations. The result is less pronounced for the class “road
structures” (Fig. 6.18(f), 6.18(m) and 6.18(t)). This class possesses indeed a much more
complex representation at feature level and doesn’t easily lend itself to a standard clus-
tering, unlike the two previous classes for which the clusters obtained are very con-
sistent. Our method being highly dependent on the intra-cluster consistency (”cluster
assumption”), this explains why it does not work as well as in the other cases.

Similar tests are performed on the Corel dataset (see Fig. 6.19). The results are satis-
factory for the classes “sportsmen”, “painted eggs”, “flowers” and “molecules”, while the
gain of our method is less clear for the classes “castles” and “lions”. This comes from
the fact that these two classes are not well modeled by the Gaussian mixture model and
their elements are scattered over several mixture components and are mixed up with
elements from other classes.

6.4.4 Evaluation of the unlearning behavior

In this section, we evaluate the ability of the system to unlearn the mixture components
which have been misclassified as relevant by the user at the beginning of the learning
process. We perform tests on both our QuickBird image database and the Corel dataset.
For the first database, we use the class “urban area” as the target concept and for the
second database, the class “lions”. We introduce in both cases three errors in the initial
annotations of components, that is we start the learning process with three false pos-
itives (component wrongly annotated as relevant). In the graphics of the Fig. 6.20, we
have represented the membership degrees of the three misclassified components (Fig.
6.20(a) and 6.20(b)) and the membership degrees of three arbitrarily chosen relevant
components (Fig. 6.20(c) and 6.20(d)) as a function of the number of active learning
iterations. We observe that as the number of iterations augments, the memberships
of misclassified components decrease and the memberships of relevant components
remain almost constant, which is the expected behavior. We observe that at least 20
iterations are needed in the active learning process to completely forget a component,
but, as illustrated by the 2D example in Fig. 6.21, it is not mandatory for a compo-
nent to have a quasi null membership degree to be forgotten. In fact, after only ten
iterations a component wrongly annotated as relevant by the user has a much smaller
impact, even if its membership degree is still high. This behavior is clearly seen in our
2D example: even with a membership degree of 0.4, the major part of the red cluster
is situated outside the zone delineated by the SVM surface. The inconvenient is that
components wrongly annotated as relevant at the end of the learning process might
not be forgotten due to the low reactivity of the system. A solution to this problem
could be to emphasize the decrease of component membership degrees, but it might
wrongly affect the membership degrees of relevant components as well and cause rel-
evant components to be forgotten during the learning process, which is, of course, an
undesirable effect.
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Figure 6.20: Membership degrees of three misclassified components ((a) and (b)) and
membership degrees of three arbitrarily chosen relevant components ((c) and (d)) as
a function of the number of active learning iterations. In (a) and (b), the results are
averaged over ten runs of the whole learning process whereas in (c) and (d), the results
are computed over just one run. We cannot ensure in fact that relevant components
are added at the same iteration of the active learning loop each time so it just makes
no point here to average the results over several runs of the learning process.
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(a) m = 1 (b) m = 0.8 (c) m = 0.6

(d) m = 0.4 (e) m = 0.2 (f) m = 0.05

Figure 6.21: Example of application of our component-based fuzzy SVM on a 2D ex-
ample. The relevant components are those marked with a magenta dot in the cen-
ter. The others are considered to be irrelevant components. We vary the membership
degree of the mixture component corresponding to the red cluster in the associative
model and we train our component-based fuzzy SVM each time. As the membership
degree decreases, the part of the cluster contained in the zone delineated by the SVM
surface also decreases.
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Figure 6.22: Screenshot of the graphical interface of the system. The upper box con-
tains the prototypes of the most ambiguous components, the middle box the proto-
types of components sampled according to a Gibbs distribution and the bottom box
the critical points associated with the already marked components

6.4.5 Evaluation of the proposed strategy for the choice of new com-
ponents: comparison with a “Most Ambiguous” strategy

In this section, we compare our strategy which consists in sampling new components
according to a Gibbs distribution with the standard Most Ambiguous (MA) strategy de-
scribed in [Ferecatu and Boujemaa, 2007]. This selection strategy chooses as the next
batch of images to be sent to the user for feedback, the elements of the database that
are closest to the SVM decision function. The idea is to maximize the transfer of infor-
mation between the system and the user by avoiding regions of the description space
where the current SVM classifier is confident enough. We also evaluate the effect of
maintaining a MA component in the display throughout the learning process. Fig. 6.23
presents the three scenarios. We see that the “mixed strategy” which consists in dis-
playing to the user prototypes of components corresponding to both MA and Gibbs-
sampled components performs slightly better than the two others: there is almost no
increase in precision but the recall is better. For both datasets, we present the gain in
precision and recall over the baseline method averaged over the six classes.

The curves corresponding to the mixed strategy are the same as the average pre-
cision and recall curves in the figures 6.18 and 6.19. The strategy for the choice of
components used in Sec. 6.4.3 is indeed the mixed strategy described above and the
graphical interface is the three-part interface shown in Fig. 6.22.

We have also made some tests regarding the appearance of the graphical interface
presented to the user. Our standard interface, which consists of three distinct parts
(one for the most ambiguous component prototypes, one for the Gibbs-sampled com-



175

0 10 20 30
−0.1

0

0.1

0.2

number of active learning iterations

P
re

ci
si

o
n

Sample
Gibbs

MA

Mixed

(a) precision (Quickbird)

0 10 20 30
−0.1

0

0.1

0.2

number of active learning iterations
R

e
ca

ll

Sample
Gibbs

MA

Mixed

(b) recall (Quickbird)

0 10 20 30
−0.1

0

0.1

0.2

number of active learning iterations

P
re

ci
si

o
n

Sample
Gibbs

MA

Mixed

(c) precision (Corel)

0 10 20 30
−0.1

0

0.1

0.2

number of active learning iterations

R
e

ca
ll

Sample
Gibbs

MA
Mixed

(d) recall (Corel)

Figure 6.23: Comparison of the three strategies for the choice of new components. The
magenta curve refers to the strategy which consists in sampling new components ac-
cording to a Gibbs distribution, the black curve refers to the most ambiguous strategy
and the green curve to our “mixed strategy”. The curves represent the average differ-
ence in terms of precision and recall on the six classes of each dataset between our
method and the baseline used for comparison, a positive difference meaning that our
method performs better than the baseline.
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Figure 6.24: Impact on the system performance of changing the user interface. The
black curve refers to the single-part interface and the green curve to three-part inter-
face. The curves represent the average difference in terms of precision and recall on the
six classes of each dataset between our method and the baseline used for comparison,
a positive difference meaning that our method performs better than the baseline.

ponent prototypes and one for the critical points), is indeed a bit complicated for users
who are not familiar with the basic functioning of the system and have no idea of the
underlying algorithmic part. Consequently, we have tested a simplified version of the
system using a single-part graphical interface. In this simplified version, the images
which were spread between the three parts in the preceding case are simply mixed up
randomly and presented to the user on a single display. The results are still quite sat-
isfying compared to those obtained with the three-part interface (see Fig. 6.24). The
strategy used for the choice of new components is the mixed strategy presented be-
fore (this is of course not visible when using the system with the single-part simplified
interface).
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6.5 Conclusion

In this chapter, we have presented an active learning method that exploits a structur-
ing of the database in the form of a mixture of Gaussians to speed up an active learn-
ing process involving the user. The approach is very promising in view of the results
obtained on a large database of satellite images and on a generalist database of color
images. The tests on the Corel dataset let us think that our method still yields gains
in performance, even in cases where the intra-cluster coherence assumption is not
strictly verified. The advantages of the proposed approach are directly quantifiable
in terms of learning speed (much fewer feedback iterations are needed to arrive at a
classifier that satisfies the user) and complexity of the obtained classifier (number of
support vectors). The decrease in complexity lets us think that the obtained classifier
has better generalization capabilities. It has also the advantage of reducing the com-
putational cost when evaluating the SVM decision function. Also, our method retains
some advantages of semi-supervised methods such as the ability to exploit unlabeled
data without the drawbacks, such as the constraints in terms of memory occupation
and computation time for large volumes of data.
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Chapter 7

Cascaded active learning for object
retrieval using multiscale coarse-to-fine
analysis

High-volume datasets render the task of exploring the database very demanding from
a computational point of view. This problem has raised a lot of concern in recent in-
teractive image search engines. The active learning strategies implemented in these
systems require the evaluation of the current decision function on the whole dataset
as an essential step of the relevance feedback process Tong and Chang [2001]; Gosselin
et al. [2008]; Ferecatu and Boujemaa [2007]. Choosing the most informative examples
to feed back to the user is indeed based on the response of each element of the data-
base to the decision function associated with the current classifier. However, it should
be noted that high-performance classifiers yield complex decision functions involving
a non-negligible amount of computations when it comes to the evaluation part.

A way of proceeding is to use machine learning techniques, such as coarse-to-fine
strategies, to reduce the amount of data to process. Regarding hierarchical coarse-to-
fine approaches, the literature is very abundant in the face detection community. The
fact that faces are very rare events in the images and also require complex detectors
costly to train and evaluate has naturally led to methods which allow to quickly dis-
card large parts of images, reserving the evaluation of the complex detectors on more
promising (as well as more spatially limited) areas (see for example Sahbi and Geman
[2006]; Viola and Jones [2004]; Fleuret and Geman [2001]). There are other approaches
which still rely on a coarse-to-fine strategy but at the same time try to address specif-
ically the issue of minimizing the cost incurred by the computation of the decision
function. In Sahbi et al. [2002], a strategy is developed to reduce the number of sup-
port vectors defining the SVM model of the target. In Romdhani et al. [2001], the SVM
decision function is not evaluated entirely, the idea being that we do not need all the
support vectors in the decision function to determine whether we are in the presence
of a target or not.

A second aspect related to object detection is the need for (preferably large) train-
ing databases. Most state of the art object recognition methods, whether it be coarse-
to-fine methods Sahbi and Geman [2006]; Viola and Jones [2004]; Fleuret and Geman
[2001] or more classical learning approaches Perrotton et al. [2010], rely indeed on the



180
7. CASCADED ACTIVE LEARNING FOR OBJECT RETRIEVAL USING MULTISCALE

COARSE-TO-FINE ANALYSIS

presence of a training set which is used to build the retrieval model during an offline
training phase. But this is problematic in the case of high-volume databases where the
semantic diversity is very large and there is no a priori on the type of object the user
may be interested in. The problem of retrieving objects in an active learning context
has been so far little investigated in the literature. We can nevertheless mention the
work of Abramson et al. Abramson and Freund [2006] in which an extension of the
face detection framework of Viola et al. to an active learning setting is proposed. How-
ever, this method is not oriented towards the exploration of large databases and, most
importantly, the active learning scheme does not operate in unsupervised settings but
is used to select informative samples from a pre-constituted training set. In Lechervy
et al. [2010], an active learning strategy coupled with the RankBoost algorithm is pro-
posed. A weak classifier is trained on each feature, the combination of the weak clas-
sifiers being realized through the intermediary of the boosting framework. The main
drawback of this approach is that the number of iterations in the active learning loop
is correlated to the dimension of the input space, which is problematic in an active
learning context where the involvement from the user must be minimum. Moreover,
the proposed framework is not adapted to large databases and the complexity of the
obtained classifier is strongly related to the dimension of the input space, which is pro-
hibitive when the dimension is high.

In the following of this chapter, we describe a Cascaded Active Learning method
for Object Retrieval, CALOR, which relies on a coarse-to-fine strategy to retrieve any
object of interest in large satellite image databases. In Sec. 7.1, we give an overall de-
scription of the proposed approach. The next section is devoted to the description of
the cascaded active learning process. We justify the use of a certain type of features
and classifier and we describe the employed active learning strategy. In Sec. 7.3, we
describe a method to propagate the training examples pointed by the user at one level
of the hierarchy to the level below. We conclude this part with experimental results on
a large database of QuickBird high-resolution optical images.

7.1 Overview of the CALOR (Cascaded Active Learning for
Object Retrieval) process

The method we propose is inspired by the needs of satellite imagery users: our aim is to
build a system which allows to search for any object of interest in large satellite image
repositories. We focus this time on iterative supervised methods, meaning that we still
need the user’s assessing iteratively the results suggested by the current model of the
target class (relevance feedback). Each large satellite image scene is partitioned into
a set of overlapping patches (see Fig. 7.1(b)) which are then organized in a hierarchy
following the patch size. Thus, each level of the hierarchy corresponds to a particular
patch size, the smallest patches being at the bottom of the hierarchy. The aim of the
feedback process is then to learn a cascade of classifiers, each classifier being dedi-
cated to a specific level of the hierarchy and thus to a specific patch size. The cascaded
structure allows to quickly eliminate large parts of images in the highest/roughest lev-
els of the hierarchy and to considerably reduce the number of patches to be processed
at the lowest/finest levels. Our approach is thus similar in nature to that of Viola et al.
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Viola and Jones [2004] who have proposed a cascaded detector for face recognition in
video sequences. The principle is to quickly discard large parts of images with a very
cheap detector, reserving a more complex processing for more promising areas. The
key assumption is that objects being very rare events in the images, we can easily build
cheap detectors with very low false negative rates, and then reduce false positive rates
by using more and more powerful detectors in lower levels of the cascade Fleuret and
Geman [2001].

There are two main contributions of our object detection framework: First, we pro-
pose a multiscale coarse-to-fine approach in an active learning context with a strategy
of patches size refinement: instead of increasing the discriminating power of the clas-
sifier itself as in Viola et al. Viola and Jones [2004], we reduce progressively the patch
size (analysis window), relying on the fact that a smaller window will better capture
the properties of the object and thus yield a classifier with a much lower false posi-
tive rate. The increase in computational complexity comes from the fact that with a
smaller analysis window, we will have much more patches to process, justifying the
use of the above-mentioned cascaded structure. Second, we describe a Multiple In-
stance Learning (MIL) Yang [2008] algorithm to propagate automatically the training
examples from one level of the hierarchy to the other.

The experiments show that our method achieves an important gain in speed but
still compares favorably in terms of precision and recall with other recent state of the
art active learning approaches for satellite images, such as the one presented in Fere-
catu and Boujemaa [2007], working directly at the finest level of the hierarchy. Besides,
no further iterations are needed in the active learning loop to arrive at a suitable defi-
nition of the targeted object class.

7.2 Cascade of classifiers and learning

We use the following notations: we denote by El and Cl , l = 1, . . . ,L, respectively the set
of patches and the classifier at the l−th level of the L−level hierarchy. Tl refers to the
subset of El which is to be further processed i.e. Tl = {n ∈ El |∃x ∈ Tl+1 such as n ∩ x
6= ; and Cl+1(x) = true}. We set TL = EL . The aim of the feedback loop at the l−th level
will thus be to build a classifier which discards as much elements as possible among
the set Tl containing the patches which remain to be classified at this level. A synopsis
of the whole approach is given in Fig. 7.1(a).

7.2.1 Features and classifiers

Feature extraction Descriptors are extracted within a sliding window whose size tl

depends on the level l of the hierarchy. We go through each image of the database by
shifting the window horizontally and vertically with a step equal to half the window
size so as to cover the whole image (see Fig. 7.1(b)). The feature vectors

{
νi

l

}
i=1,...,|El |

at level l are Weber Local Descriptors (WLD) histograms Chen et al. [2009] computed
over the tl × tl analysis windows.
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Figure 7.1: (a) Synopsis of the CALOR procedure (see Sec. 7.2). The feedback process
is done in a top-down manner: we start by building the classifier CL at the L-th level
of the hierarchy. To define the set TL−1, we determine the patches of EL−1 which in-
tersect with positively classified patches of the set TL . We repeat this procedure until
we reach the lowest level of the hierarchy. The classifiers Cl are built using an interac-
tive relevance feedback process. (b) Extraction of patches from images using a sliding
window.

Description of the classifiers At each level of the hierarchy, we train a probabilistic
C-SVM classifier using an active learning strategy involving the user. The use of a prob-
abilistic SVM is justified here by the fact that the examples tagged by the user are prop-
agated in an unsupervised mode between the different levels of the hierarchy and thus,
with a certain degree of confidence (see Sec. 7.3). To take this into account, we use a
probabilistic SVM with soft-labeled training examples, except those directly tagged by
the user which are attributed a label −1 and 1. We use a soft-SVM formulation derived
from the theoretical framework proposed in Liu [2006].

min
w,b,ξ

1

2
‖w‖2 +C

∑
i
µiξi , s.t.

{
yi (w ·φ(νi )+b) ≥µi−ξi

ξi ≥ 0,∀i
(7.1)

The value µi is the belief that the training sample νi belongs to the class yi . In the fol-
lowing, µi is to be interpreted as a membership degree, so it is considered to lie in the
interval [0,1] although the problem 7.1 could be solved as well with negative values of
µi . The constraints yi (w ·φ(νi )+b) ≥µi −ξi allow to account for unbalanced member-
ships by shifting the SVM boundary towards the most uncertain training samples. As
in the standard SVM, ξi are slack variables which penalize the objective function in the
case of misclassification. The problem (7.1) is solved under its dual form:

max
αi

∑
i=1

µiαi − 1

2

∑
i

∑
j
αiα j yi y j k(xi , x j )

s.t.
∑
i=1

yiαi = 0 and 0 ≤αi ≤µi C , ∀i (7.2)

yielding the final decision function:

f (ν) = ∑
i∈SV

yiαi k(ν,νi )+b



183

where the αi are the coefficients associated with the support vectors SV and k the
kernel function. Since we are working on (WLD) histograms, an interesting kernel

function is the Gaussian kernel k(xi , x j ) = exp
(−d(xi ,x j )2

2λ2

)
since it allows to chose any

distance function d and, in particular, histogram distances. In our case, we made our

tests with a χ2 distance d(xi , x j )2 =∑R
r=1

(xr i−xr j )2

xr i+xr j
where R is the dimension of the WLD

histograms. We could use more robust distances such as the Earth Mover Distance but
this leads to extra-computational costs and might prove problematic to process huge
databases since the distance function is directly involved in the computation of the de-
cision function associated with the current classifier. In the following, we denote by a
triplet

{
{νi }i , {µi }i , {yi }i

}
the training set used to compute the classifier (7.1).

7.2.2 Active learning strategy

Choice of feedback examples Choosing which examples to feed back to the user is a
key issue of active learning. The most common approach used with SVM-like classi-
fiers is to select the most ambiguous elements, that is, those which are the closest to
the SVM separating surface. However, it is better to add a criterion to ensure sparsity
of the selected samples. We propose a strategy based on the solution of the following
problem (see Ferecatu and Boujemaa [2007]):

arg max
i1,...,iD∈S

min
( j1, j2)∈{i1,...,iD }

with j1< j2

d(ν j1 ,ν j2 ) (7.3)

In the above equation, D is the size of the display and i1, . . . , iD are the indexes of the
D selected elements among a set S of n elements with n > D . The set S is built by
considering the elements which are close to the SVM margin i.e. S = {

ν | ∣∣ f (ν)
∣∣< ε}. To

express the problem 7.3 in plain language, we look for the d elements of the set S whose
minimum pairwise distance is maximum. A sub-optimal solution to this combinato-
rial problem is obtained by setting arbitrarily the first element i1 and considering the
iterative rule: i∗t = argmaxi∈S\

{
i∗1 ,...,i∗t−1

} min j∈{
i∗1 ,...,i∗t−1

} d(νi ,ν j ).

Cascaded active learning strategy The feedback is done in a top-down manner, that
is, we start from the highest level of the hierarchy which corresponds to the largest size
of the analysis window and we go down progressively. However, since it is difficult to
assess the number of iterations necessary at each level, we use a heuristic criterion
based on experimental results such as the one shown in Fig. 7.7(a). Our objective is
to ensure a low False Negative Rate (FNR) at each level. Fig. 7.7(a) presents the av-
erage recall (which is equal to 1 − FNR) over ten image classes, as a function of the
percentage η of top-ranked elements that we retain for the recall computation. The
ranking function is the decision function fl (ν) of a SVM classifier working at level l . We

thus make the recall computation over the ql top-ranked elements νi1
l ,νi2

l , . . . ,ν
iql
l ∈ El

where ql = bη |El |c. For instance, we see on the curves of the figure 7.7(a) that with a
classifier learned over ten iterations of feedback, we can safely discard around 70% of
the database for a patch size of 100×100 pixels, still ensuring a recall of 90%, i.e. a False
Negative Rate of 10%. The values of precision and recall in Fig. 7.7 are computed on the
percentage of the database we keep.
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Figure 7.2: Patches of size 50 pixels (right) intersecting with a patch of size 100 pixels
(left). This example illustrates the difficulty of propagating training samples from one
level of the hierarchy to the level below.

(a)

Patch of size t
l
 tagged by the user

Intersecting patches of size t
l - 1

Neighboring patches of size t
l - 1

(b)

Figure 7.3: (a) Minimum enclosing rectangle. (b) Extracting the neighborhood of size
tl−1 from a user-tagged patch of size tl .

7.3 Inter-level propagation of training examples

7.3.1 Positioning of the problem

One key issue of our approach is to propagate the examples tagged by the user during
the feedback process at level l to the level below l −1. The case of a negative example
νi

l is straightforward: we determine all the negative patches of size tl−1 intersecting

with νi
l (i.e. the elements of the set b−

i =
{
ν

j
l−1 ∈ El−1|ν j

l−1 ∩νi
l 6= ;

}
) and give them a

negative label with an associated confidence level of 1. The case of positive examples
is more difficult, because we do not know which ones of the intersecting elements of
size tl−1 will effectively contain the targeted object (see Fig 7.2). The only information
we possess is that each set b+

i contains one or several positive elements (those marked
with a green dot in Fig. 7.2), the other being negative elements (those marked with a
red dot). Our problem is to identify in each positive bag which is the most representa-
tive element, that is, the one which is more likely to contain the object. This is typically
a MIL framework though our problem verifies only one of the two fundamental un-
derlying hypothesis of MIL problems. A key assumption of MIL (besides the fact that
the positive elements of positive bags must belong to the same class) is that the neg-
ative elements of the positive bags must have some similarities with the elements of



185

the negative bags so that we can differentiate the positive elements from the others.
The idea behind most MIL algorithms is indeed to identify the “outstanding” elements
that the positive bags have in common. If the negative elements of the positive bags
are different from the elements of the negative bags, they might be considered as “out-
standing” as well, which is, of course, not the expected behavior. In our case, we are
in the wrong settings since negative bags are taken as the negative examples given by
the user. They are thus very unlikely to share a similar visual context with the negative
elements of the positive bags. To cope with this, we discard the negative bags com-
ing from the user feedback and we replace them with the neighbors of positive bags,
relying on the assumption that the context of the neighbors will be the same as that
of the negative elements of the positive bags, which is most often the case due to low
spatial variability in satellite images (see Fig. 7.3(b)). To build the neighborhoods as-
sociated with the positive bags, we define a distance between square patches of equal
sizes based on the length smax of the longest side of the minimum enclosing rectangle
(that is, the rectangle of smallest area containing the two patches (see figure 7.3(a))).
Denoting by si and s j two squares of side length t , we set dsq (si , s j ) = (smax − t )/t .
We then define the negative neighborhood of a positive bag b+

i at level l as the set
Ni = Neigh

(
b+

i

)= {
n ∈ El |∃nb ∈ b+

i such as 1/2 ≤ dsq (n,nb) ≤ 3/2
}
.

To solve this problem, we use a common SVM-based MIL formulation Andrews
et al. [2003], looking for the K elements of the K positive bags such that the (possibly
probabilistic) SVM problem trained with this K elements as the positive part of the
training set and the elements of negative bags as the negative part of the training set
yields the largest possible margin. This is a combinatorial problem which becomes
quickly intractable as K augments. We propose in Sec. 7.3.2 an alternative solution
to the brute force approach. The latter consists indeed in evaluating all the possible
combinations of K elements, which is impossible to do in practice: let’s say the user-
tagged patches are of size 100× 100 pixels and the patches of the level below are of
size 50×50. This gives us bags of cardinality 25. Thus, for 10 feedback rounds and 3
positively-tagged patches per round in average, we obtain in the end 30 positive bags
and 2530 ≈ 1042 different problems to train and evaluate ! In the following, we denote
by N = ⋃

i Ni the set of elements contained in the negative bags and σ the selection
function whose value is 1 on the selected element of each positive bag and 0 on the
other elements of the positive bags. We denote by S the set of positive elements which
do not belong to a bag, but which can be incorporated in the MIL problem as well. The
probabilistic SVM-based MIL problem can be formulated in the following way:

min
σ,w,b,ξ

1

2
‖w‖2 +C

∑
i | νi∈N∪Pσ∪S

µiξi

s.t.


(w ·φ(νi )+b) ≥µi −ξi , ∀i | νi ∈ Pσ∪S

−(w ·φ(νi )+b) ≥µi −ξi , ∀i | νi ∈ N

ξi ≥ 0, ∀i | νi ∈ N ∪Pσ∪S

(7.4)

where Pσ = {νi1 ∈ b+
1 , . . . ,νiK ∈ b+

K such as σ(νi j ) = 1 for j = 1, . . . ,K }. In the problem
(7.4), the non-selected elements of the positive bags are discarded. To denote the train-
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ing set of the MIL classifier, we use a couple of ensembles of the following form:{{
b1 • . . .•bK , µ1 • . . .•µK

}
;

{
S ∪N , µS ∪µN , 1|S|∪−1|N |

}}
The first ensemble consists only of positive bags bi with their associated confidence
level µi . The second ensemble consists of single positive and negative elements, S
and N referring respectively to the set of positive elements and to the set of negative
elements. In our notations, |S| is the cardinal of the set S and 1|S| is the multiset of ones
of size |S|. The sets µS and µN contain the confidence levels associated respectively
with the elements of S and N .

7.3.2 Solving the MIL problem

In this section, we propose an iterative solution to the problem (7.4) that we refer to as
Incremental MIL-SVM (IMSVM) in the following. To eliminate redundant information
and reduce the cardinality of the negative set N , we perform a clustering on this set us-
ing the Enhanced LBG (ELBG) algorithm Patané and Russo [2001] described in section
4.2. The ELBG algorithm is much faster (around 4 times) than the K-means algorithm
since it requires in average much less iterations to converge for the same computa-
tional complexity at each iteration, and thus proves to be well suited for our application
where the clustering operations are to be performed in an active learning context. We
furthermore improve the quickness of convergence by choosing the initial codeword.
This allows to achieve a reduction in the number of iterations by a factor 3 in average.
We use an heuristic which consists in sampling the initial seeds according to the under-
lying data density. Among the ways of sampling through an unknown discrete density
of points, we propose an approximation which boils down to sampling according to
the kd-tree built from the data points on which we intend to perform the clustering.
The sampling operation on a kd-tree amounts to performing a random walk from the
root to a leaf. In other words, while descending from the root, a branch is selected
randomly at each level with a probability of 0.5 (kd-trees are binary trees). Even if this
delivers an extremely-biased sampling due to the fact that, at a given level, the nodes of
the tree possess a different number of branches, we achieve a significant reduction of
the number of iterations in the following clustering step using an almost costless oper-
ation (sampling from a binary tree yields an algorithmic complexity of O(h) where h is
the height of the tree). We fix arbitrarily the number of clusters to 4×K , where K is the
number positive bags. This can be explained by the fact that we consider square neigh-
borhoods around the positive bags, which leads us to look in four different directions
to extract the negative elements. Common sense suggests then that we will observe at
most four different contexts among the negative elements, necessitating a codeword
of 4 elements. We have performed tests (not reproduced here) using a higher num-
ber of codewords but we did not observe significant improvements over the solution
of our MIL-problem. The clustering process allows also to manage the presence of tar-
get objects in the negative neighborhoods of positive bags (this is rare but still likely to
occur). By setting the number of codewords to only 4 elements per positive bags, the
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clustering process will indeed only model the context of objects and not the objects
themselves and thus naturally discard the target objects from the negative elements.

Description of the proposed MIL procedure We start by replacing the set N of neg-
ative elements by a set P of much lower cardinality containing the cluster prototypes
obtained using the ELBG algorithm with the improvements described in the preceding
paragraph. Our solution consists in solving separately the K SVM-based MIL prob-
lems associated with each of the K positive bags, i.e. the problems defined by the MIL
training sets: {{

b+
k , γt−1

k

}
;
{
P , 1|P | , − 1|P |

}}
k=1,...,K

The idea is then to exploit the information that the positive bags have in common
(they each possess at least one representative of the target class) by incorporating at
each iteration t the most trustable solution not yet incorporated among the K solu-
tions {s t

k }k=1,...,K of the K MIL problems. The iterative process stops when one element
per positive bag has been incorporated into the training set. The problem is to find
a way to compute at each iteration a confidence level γt

k for each of the K solutions
in a completely unsupervised way. To do this, we train a probabilistic SVM 7.1 on the
triplet

{
{s t

k }k=1,...,K ∪P , {γt−1
k }k=1,...,K ∪ 1|P | , 1K ∪−1|P |

}
and then we determine the γt

k
as the probabilistic outputs obtained by fitting a sigmoid over the values given by the
decision function of the probabilistic SVM, as explained in Platt Platt [2000]. In our for-
mulation, we optimize a slightly different log-likelihood functional. We indeed replace
the probabilities of correct label that are computed in Platt using an out-of-sample
model by the confidence levels from the preceding iteration, yielding the following ex-
pression of the negative log-likelihood of the training data:

Lt (a,b) =− ∑
i | νi∈{st

k }k=1,...,K ∪P

[
ti log(pi )+ (1− ti ) log(1−pi )

]

where pi = 1
1+exp(ag t (νi )+b) , ti = γt

k if νi ∈ {s t
k }k=1,...,K and ti = 0 if νi ∈ P . The parameters

(at ,bt ) of the sigmoid are then obtained as (at ,bt ) = argmina,b Lt (a,b). A summary of
the whole procedure is given in the Algorithm 1. This algorithm is similar in nature to
a backtracking algorithm: to complete the set of already incorporated elements It−1 at
iteration t , we choose the positive bag k ∈ {1, . . . ,K } \ It−1 with the highest associated
confidence level γt

k and we update the already constituted training set, that is, the set{
s t

k

}
k∈It−1

.

In the above algorithm, the function ELBG(S) performs a clustering of the set S
and returns the obtained cluster prototypes. The function PROB_SVM(T1) solves the
probabilistic SVM problem 7.1 on the training set T1 and returns the decision function
associated with the computed classifier. As for the function MIL_SVM(T2), it solves the
SVM-based MIL problem 7.4 on the training set T2 and returns the positive element(s)
of the positive bag(s). A complete overview of the cascaded active learning scheme
with automatic inter-level propagation of training samples is given in the appendix
D.1.
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Algorithm 6 IMSVM algorithm for the automatic propagation of training samples be-
tween consecutive levels of the hierarchy.

Input
• Input a set of positive bags

{
b+

k

}
k=1,...,K

with associated initial membership degrees{
γ0

k

}
k=1,...,K

Initialization
• Set I0 =; and P = ELBG

(
Neigh

({
b+

k

}
k=1,...,K

))
For t = 1, . . . ,K do

• {s t
k } ← MIL_SVM(Mk ), k = 1, . . . ,K where Mk ={{

b+
k , γt−1

k

}
;
{{

s t−1
j

}
Jt−1

∪P ,
{
γt−1

j

}
j∈Jt−1

∪ 1|P | , 1|Jt−1|∪−1|P |
}}

and Jt−1 ={
j ∈ It−1, j 6= k

}
• g t ← PROB_SVM

({
{s t

k }k=1,...,K ∪P , {γt−1
k }k=1,...,K ∪ 1|P | , 1K ∪−1|P |

})
• Compute sigmoid parameters (at ,bt )
• Compute confidence levels γt

k = 1
1+exp(at g t (st

k )+bt )

• Set It = It−1 ∪k∗ where k∗ = argmaxk∈{1,...,K }\It−1 γ
t
k

End For
•Return the set {sK

k }k=1,...,K and the set of associated membership degrees {γK
k }k=1,...,K

7.4 Experiments and results

We conducted our tests on a database of 10 panchromatic QuickBird scenes with a
ground resolution of 61cm. The scenes represent overall views of Acapulco, Las Vegas,
Los Angeles, London and Ouagadougou and are of approximate size 30000 by 30000
pixels. We used a 4-level hierarchy with patches of size 200, 100, 50 and 25 pixels for
the finest level. We assessed our approach on ten object classes: roundabouts, store-
houses, tall buildings, marina, moving boats, gas holders, swimming pools, crossroads,
planes and baseball grounds. Some representative examples of these classes are given
in Fig. 7.4. The results are given in terms of the amount of calculation at each itera-
tion of the feedback loop, that is, the number of evaluations of the current SVM deci-
sion function multiplied by the number of support vectors defining the current SVM
model. We compare our method to the recent state of the art relevance feedback SVM
approach described in Ferecatu and Boujemaa [2007], working directly at the finest
level of the hierarchy. This method has been reported to produce good results for
satellite images and we refer to it as SVMbasel i ne in the following. We did not choose
for comparison the method proposed in Lechervy et al. [2010] since, in our case, the
dimension of the input space is very high (240), which would require a considerable
number of iterations in the active learning loop to build the boosting classifier.

The two methods are given the same starting point at different scales. For instance,
for the class “roundabout”, we initialize our method with a patch of size 200×200 cen-
tered on a roundabout and we initialize the baseline with a patch of size 25×25 cen-
tered on the same roundabout. To ensure equality of chances between the two meth-
ods, the user is forced at each active learning iteration to give a feedback on all images
which are presented to him on the display.
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Figure 7.4: Examples of elements of the ten target classes used for the experiments.
First row, from left to right: roundabouts, storehouses, tall buildings, marina and mov-
ing boats. Second row, from left to right: gas holders, swimming pools, crossroads,
planes and baseball grounds.

We see that using our method (blue curves), much less computations are needed
than using SVMbasel i ne (green curves): we observe on the figure 7.7(b) that there is a
difference of more than two orders of magnitude in average. The curves of the figures
7.7(c) and 7.7(d) show respectively the precision and the recall averaged over the ten
classes at each iteration of the feedback loop. For the precision and recall computation,
we consider that a sample x at level l is positively classified iff x ∈ T1 and f q1

l (x) ≥ 0. We
notice that, in average, our method performs a little better in terms of precision at the
end of the retrieval process while the recall is approximately the same. We observe that
after ten iterations of active learning, the recall does not improve anymore or in a very
insignificant way during the remaining iterations. This saturation can be explained
by the fact that we are using an active learning strategy which is oriented towards the
exploration of the database by trying to maximize the sparsity of the samples which are
presented to the user at each iteration of the active learning loop.

The curves of the figures 7.5 and 7.6 show the detail for the precision and the re-
call for each of the ten classes. The results are averaged each time over 20 runs of the
active learning process, each run being performed by the same real user. The “jumps”
we observe every ten iterations on the blue curves are due to the changes in scale and
the fact that we keep only a small percentage of the top-ranked elements when switch-
ing to the level below in the hierarchy: at level 200, we keep 35% of the top-ranked
elements, which yields an estimated recall of 90%. At level 100, 50 and 25, we retain
respectively 30%, 20% and 5% of the top-ranked elements to maintain an estimated
recall of 90% each time as well (see figure 7.7(a)).

The results obtained on the classes “roundabouts”, “marina”, “moving boats”, “gas
holders” and “crossroads” are quite good in terms of precision and recall for both our
method and the method we are comparing ourselves to. This can be explained by the
fact that these classes are visually consistent and that the objects they contain appear
in similar contexts (for instance, crossroads and roundabouts are situated most of the
time in a urban context, while marina and boats are generally located in water areas).
The underlying learning problem is thus much easier: the similarity of the contexts in
which the objects from a same class can be found as well as the visual coherence of
the objects within a class will indeed be repercuted at signal level, rendering the task
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of exploring the database and of delineating the targeted object class with an SVM sep-
arating surface much easier. The lack of visual consistence will explain the fact that
classes like “buildings” and “storehouses” will yield very poor results. There is indeed
a huge visual variability inside such classes. It shows some limitation of our method
to effectively bridge the semantic gap in such cases. Another problem comes from the
size of the patches in the top-down processing cascade. There is indeed also some
variability between the different classes and our method as well as the baseline would
benefit from an adjustment of the analysis window depending on the scale of the tar-
geted object. We see for instance that for the class “tall buildings”, a window of size
25× 25 pixels which is the patch size at the finest level of the used hierarchy is a lit-
tle under-dimensioned compared to the size of the object. The consequences can be
directly observed on the precision curve 7.5(c): during the iterations 20 → 40 which
corresponds to the two finest levels of the hierarchy and thus to an unadapted size of
the analysis window, the precision remains the same and even decreases at the end the
learning process. On the contrary, during the iteration 1 → 19, the precision increases
in a much more significant way. The opposite problem can be observed as well: for the
class “swimming pool”, the analysis window at the highest levels of the hierarchy will
be a little over-dimensioned and thus will capture to much of the englobing context,
yielding a descriptor which is not sufficiently discriminant for the characterization of
the class. It has a direct influence in terms of precision as well: on the curve 7.5(g),
we observe that the most effective part of the active learning process is situated be-
tween the iterations 30 → 40, which corresponds to the finest level of the hierarchy and
the precision does not improve much over the first 29 iterations which corresponds to
“coarser” levels. The same remark can be done about the class “moving boats” (see
7.5(e)). A suggestion for improving our method would thus be to design an adaptive
hierarchy in which the size of the analysis window at each stage is adjusted relatively
to the scale of the targeted object.

The detail of the amount of computations per class is not represented because
there isn’t enough visual difference between the ten classes due to the employed semi-
logarithmic scale. The difference of two orders in magnitude remains approximately
the same through all the classes, yielding the expected conclusion that our system
allows to considerably reduce the amount of computations regarding the evaluation
of the decision function, while maintaining approximately the same performance in
terms of precision and recall at the end of the retrieval process.

7.5 Conclusion

In this chapter, we have presented a multiscale “coarse-to-fine” cascaded approach to
perform object retrieval in large satellite images. Unlike most techniques in the liter-
ature which rely on large training sets to build the retrieval model, ours is based on
an active learning process which allows the user to search for any object he might be
interested in without necessitating the building of an exhaustive training database of
objects (which might prove impossible due to the diversity of objects encountered in
satellite images) and a costly offline training phase. In our case, the “coarse-to-fine”
exploration of the database was performed by building SVM models working on de-
creasing size of patches, yielding a more and more spatially restrained definition of
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the target object class. We have proposed a multiple instance learning algorithm to
propagate the user-tagged examples from one level of the hierarchy to the other. The
presented MIL algorithm addresses a more general problem, which is to retrieve exact
locations of objects in training samples and thus could be used separately to solve var-
ious problems related to object recognition such as reducing training sets error rates,
which is quite a recurring problem. An active learning strategy was also introduced,
which ensures sparsity among the selected feedback examples without resorting to
costly clustering techniques.
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Figure 7.5: Precision as a function of the number of active learning iterations. The
blue curves represent the results given by our method and the green curves the results
given by SVMbasel i ne .
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Figure 7.6: Recall as a function of the number of active learning iterations. The blue
curves represent the results given by our method and the green curves the results given
by SVMbasel i ne .
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Figure 7.7: (a): Average recall as a function of the percentage of top-ranked elements
we keep in the whole database for four different sizes of patches. The ranking func-
tion is the decision function of SVMbasel i ne after ten iterations of feedback. (b) aver-
age amount of calculation at each iteration of the feedback loop. (c) and (d): average
precision and recall as a function of the number of active learning iterations. The blue
curves represent the results given by our method and the green curves the results given
by SVMbasel i ne .
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Chapter 8

Conclusions and perspectives

In this work, we proposed some solutions to the complex problem of mining high-
volume satellite image repositories using a few training examples. We envisaged this
problem both from the point of view of auto-annotations systems and of interactive
image/object category search engines. We also proposed a "unifying" concept show-
ing the complementarity of our three contributions when it comes to addressing the
aforementioned problem.

8.1 Conclusions

In the chapter 5, we proposed a semi-supervised algorithm to perform auto-annotation
of satellite image repositories and to discover "unknown" semantic structures among
these repositories. In a real case of study, the non-exhaustiveness of training data-
bases is indeed the rule rather than the exception so it is important to design methods
that take this fact into account, especially when using semi-supervised methods which
very often do the hypothesis that the distribution of unlabeled data follows that of un-
labeled data. By incorporating an unknown classes discovery feature, we avoid making
this assumption and we can plainly exploit the information contained inside the un-
labeled data without running the risk of perturbing the learning with "noisy" classes
in the unlabeled data not represented in the training database. We demonstrate suc-
cessfully our approach on a database of SPOT5 panchromatic satellite imagery, making
obvious the deficiency of state-of-the-art semi-supervised methods when it comes to
learning from non-exhaustive training datasets while trying to make the most out of
the unlabeled data. We can nevertheless point out some weaknesses of our method re-
garding the learning of the auto-annotating model which is done through a Maximum
Likelihood estimator obtained using an EM algorithm. This algorithm is indeed sub-
ject to convergence towards local minima, but we try to cope with this drawback in ap-
pendix B by proposing an "annealed" version of the preceding auto-annotation algo-
rithm. The statistical modeling isn’t of course discriminative enough to allow the learn-
ing of complex image classes but the results on moderately complex image classes are
very satisfying regarding the original goal which was to address the semi-supervised
learning problem in the presence of an incomplete training dataset and to point out
existing structures in the data that aren’t represented in it.

In the chapter 6, we proposed a semi-supervised active learning algorithm in the
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context of interactive image search engines whose goal is to speed up the learning of
the target category by exploiting the intrinsic structure of the data under the form of an
unsupervised mixture of Gaussians. As in the preceding case, the algorithm is designed
so as to avoid making the standard assumption of semi-supervised methods regarding
the distribution of labeled and unlabeled data. The proposed algorithm allows to work
at a lower granularity of space and consequently to position much quickly an approxi-
mation of the separating surface delineating the target category. The obtained approx-
imation can then be refined by bringing back the learning problem at the finest level
of granularity, that is, the level corresponding to the original data points in the input
space. The compromise between the accuracy and the quickness of the learning has to
be finely tuned through the adjustment of the number of mixture components in the
Gaussian mixture model. Too few mixture components will lead to a very quick learn-
ing phase (i.e., the number of iterations in the active learning loop will be small) since
the learning will amount in this case to position a surface separating a small number
mixture components while adjusting their convex hulls. The accuracy on the contrary
will be impaired because of the coarseness of the original model and the lack of con-
sistency of the mixture components which we consider as the training entities used
to build the classifier. On the opposite, too large a number of mixture components
will slow down the learning though increasing the accuracy. A compromise has thus
to be found which is not quite easy to do on an unknown dataset. Our method does
nevertheless bring noticeable improvements in terms of learning speed while achiev-
ing sensibly the same performance in terms of precision and recall (the test were per-
formed both on a database of high-resolution panchromatic optical QuickBird images
and on a generalist database of color images built from the Corel dataset which is one
of the most challenging datasets in machine learning as far as intraclass and interclass
variability are concerned).

Our last chapter of contributions is dedicated to the description of an object re-
trieval algorithm encapsulated within an active learning scheme. A major drawback
of standard active learning scheme is their time of response between two iterations of
the learning process in a context where fast exchanges between the system and the
user have to be favored. This is mainly due to the fact that most of these scheme rely
on complex classifiers to model complex classes (of objects) and thus lead to multiple
evaluations of complex decisions functions at each active learning iterations. This be-
comes quickly impracticable as the database grows up since it drastically slows down
the response of the system. We consequently propose a coarse-to-fine strategy still
allowing the use of complex classifier functions while avoiding the explosion of the
amount of computations which characterizes most state-of-the-art approaches when
confronted to the problem of learning complex image classes inside high-volume repos-
itories. Our strategy consists in considering several levels of patch sizes and of elimi-
nating most patches in the highest levels of the corresponding hierarchy (the higher
levels contain much less patches since we consider bigger patch sizes in the higher
levels so it is still envisageable to process all those patches or at least a great part of
them). Our results on a database of high-resolution panchromatic optical QuickBird
images are quite convincing since our method achieves a reduction of the number of
computations by two orders of magnitude in average while attaining quite the same
performance in terms of precision and recall. The number of active learning itera-
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tions at each stage of the hierarchy has still to be well adjusted to avoid "eliminating
too much" in the highest levels as well as keeping too many irrelevant elements in the
levels below.

8.2 Perspectives

Several interesting axes of study arise from this work some of them are exposed in the
following.

8.2.1 Semi-Supervised Annotation and Unknown Semantic Structures
Discovery in Satellite Image Repositories

An important issue related to this part is the use of “atomic” concepts to annotate im-
ages, that is, according to our definition of those, the use of concepts which lead to
the smallest possible intraclass variability on visual properties. To effectively bridge
the semantic gap, we may need in some situations to introduce higher-level semantic
concepts such as user-defined ones. Starting from this observation, an interesting per-
spective would be to extend our system so it can learn user-specific taxonomies (that
is hierarchical representations of concepts) [Talavera and Béjar, 2001]. In this scenario,
we would trace back each high-level concept to its unigram representation in terms of
“atomic” concepts which in our definition would be the concepts situated at the lowest
level of the taxonomy. Since our model can produce unigram models for each image, a
similarity measure between unigrams such as the Earth Mover Distance [Rubner et al.,
1998] could be employed to retrieve similar images.

8.2.2 Active Learning Using the Data Distribution for Interactive Im-
age Classification and Retrieval

A possible extension of this part of our work would be to investigate how the notion
of distance could be modified in order to better suit the user request. The interactions
with the user could indeed be used as well to learn which descriptor is the most ap-
propriate given the user request. We observe indeed some limitations due to some
descriptor masking an other: for instance, when looking for small objects like power
pylons in very textured images such as desert, the texture descriptor corresponding to
the background tends to mask an other descriptor which might better characterize the
object we are looking for. The result is that the system does not understand the user’s
request and thus will only retrieve desert images.

Another very important aspect in satellite imagery is the notion of low spatial vari-
ability. That is, the label attributed to a patch will be strongly conditioned on the labels
of the neighboring patches. Such an information could be exploited to reduce misclas-
sification, especially when combined with a priori knowledge on the possible neigh-
borings (for instance, patches containing beach areas are likely to be close to patches
"containing" sea).
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8.2.3 Cascaded Active Learning for Object Retrieval using Multiscale
Coarse-to-fine Analysis

We are currently investigating a way of estimating the false negative rate at each it-
eration of the active learning strategy. This is a recurring problem of active learning
methods where it is always problematic to estimate the percentage of “top-classified”
elements to keep to ensure a good tradeoff between precision and recall. This problem
is directly linked to that of tuning the number of active learning iterations necessary
at each stage of the cascaded active learning process to achieve a good identification
of the targeted object class. We are also planning to extend our framework to more
specific object recognition problems like face detection.

8.2.4 Other perspectives

The use of database technologies as well as that of space-partitioning data structures
would provide very interesting perspectives in terms of optimization and concrete im-
plementation of the proposed procedures. Even if our methods are oriented towards
mining from large image repositories, we do no provide any hint on a concrete imple-
mentations of these methods inside a geographical information system operating on
thousands of terabytes of data. This problem was of course far beyond the scope of this
thesis and besides more an engineering problem than a problem of machine learning
research, that is why, we did not address it as such but it would certainly open very in-
teresting perspectives in the direct continuation of this study. To take an example, we
could think in our second contribution of a space-partitioning data structure imple-
menting the structuring of the input space under the form of a mixture of Gaussians.
The idea of convex hulls could be transcribed as well directly inside a data structure.
Regarding our coarse-to-fine scheme for object retrieval, there exists structures such as
quadtrees which concretely implement the idea of hierarchy based on the patch size,
and, thus, which could greatly improve the efficiency of our algorithms.

Another perspective concerns the use of visual data mining techniques to speed
up the learning of the target class in interactive image search engines. Dimensionality
reduction techniques such as manifold learning provides very interesting representa-
tions of image databases allowing the user to visualize all at once the content of the
databases. We could for instance imagine a querying process where the user selects
coherent image groups in the low-dimensional representation obtained using mani-
fold learning algorithms. This might bring significant improvements to the standard
scheme consisting in performing a query with a single image. We could imagine an
active learning algorithm based on a query-point-movement-like strategy, the modi-
fication of the query being directly performed in the spectral space obtained through
the help of manifold learning techniques such as Laplacian Eigenmaps.
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Appendix A

Estimation of the auto-annotation
model parameters (5.2): details of the
computations

In this appendix, we provide the details of the computations to obtain the update for-
mulas in the M steps of the EM algorithms used to estimate the parameters of the auto-
annotation models presented in the figures 5.6 and 5.7. We start with the case of no
explicit associations between image concepts and feature vectors (5.2.1) and then, we
derive the formulas in the case where the associations in the training datasets are ex-
plicit (5.2.2). The notations are the same than those used in the sections 5.2.1 and 5.2.2.

A.1 Case 1: no explicit associations between feature vec-
tors and “atomic” concepts 5.2.1)

In this case, the maximization step of the EM algorithm consists in maximizing the
quantity QD (θ|θt ) with respect to θ:

θt+1 = argmax
θ

QD (θ|θt ) (A.1)

where

QD (θ|θt ) =
K∑

k=1

L∑
l=1

p(H k
l = 1|dk ,θt ) · log

[
p(dk |cl ,θ) ·p(cl )

]
and

p(H k
l = 1|dk ,θt ) = p(H k

l = 1,dk |θt )

p(dk |θt )
= p(H k

l = 1|θt )p(dk |H k
l = 1,θt )∑L

i=1 p(H k
i = 1|θt )p(dk |H k

i = 1,θt )
= p(cl )p(dk |cl ,θt )∑L

i=1 p(ci )p(dk |ci ,θt )

In the following, we use the notations: p(cl ) = πl , γk
l = p(H k

l = 1|dk ,θt ) and p l
i =

p(ai |cl ).
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COMPUTATIONS

The Lagrangian of the objective QD (θ|θt ) with normalization constraints can be
written as:

L(θ) =
K∑

k=1

L∑
l=1

γk
l · log

[
p(dk |cl ,θ) ·πl

]−λ0

(
L∑

l=1
(πl −1)

)

−λ1

(
I∑

i=1
(p1

i −1)

)
− . . .−λL

(
I∑

i=1
(pL

i −1)

)
(A.2)

We have (see formula 5.2): p(dk |cl ,θt ) =
[∏|V k |

j=1 p(vk
j |cl )

]
·
[∏|Ak |

i=1 p(ak
i |cl )

]
and p(vk

j |cl ) =
N (vk

j ;µl ,Σl ) = 1
(2π)d/2|Σl |1/2 exp

(
−1

2 (vk
j −µl )TΣ−1

l (vk
j −µl )

)
. Thus:

L(θ) =
(

K∑
k=1

L∑
l=1

γk
l

|V k |∑
j=1

[
−d

2
ln(2π)− 1

2
ln(|Σl |)−

1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

− ln(p l
i k )+ ln(πl )

])
−λ0

(
L∑

l=1
(πl −1)

)
−λ1

(
I∑

i=1
(p1

i −1)

)
− . . .−λL

(
I∑

i=1
(pL

i −1)

)
(A.3)

To obtain the new estimate θt+1 of the model parameters, we look for the point θ
such as L(θ)

∂θ = 0. Thus, for the mean, we have:

∂L(θ)

∂µl
=

K∑
k=1

γk
l

|V k |∑
j=1

− ∂

∂µl

(
1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

)

=
K∑

k=1

|V k |∑
j=1

γk
l

(
Σ−1

l (vk
j −µl )

)
= 0 (A.4)

A.4 =⇒ ∑K
k=1

∑|V k |
j=1 γ

k
l Σ

−1
l vk

j =
∑K

k=1

∑|V k |
j=1 γ

k
l Σ

−1
l µl

=⇒µl =
∑K

k=1γ
k
l

∑|V k |
j=1 vk

j∑K
k=1γ

k
l |V k | (A.5)

Taking the derivative with respect to the covariance matrices yields:

∂L(θ)

∂Σl
=

K∑
k=1

γk
l

|V k |∑
j=1

− ∂

∂Σl

(
1

2
ln(|Σl |)−

1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

)

=
K∑

k=1

|V k |∑
j=1

γk
l

(
−1

2
Σ−T

l + 1

2
Σ−T

l (vk
j −µl )(vk

j −µl )TΣ−T
l

)
= 0 (A.6)

A.6 =⇒ ∑K
k=1

∑|V k |
j=1 γ

k
l Σ

−1
l =∑K

k=1

∑|V k |
j=1 γ

k
l Σ

−1
l (vk

j −µl )(vk
j −µl )TΣ−1

l

=⇒Σl =
∑K

k=1γ
k
l

∑|V k |
j=1 (vk

j −µl )(vk
j −µl )T∑K

k=1γ
k
l |V k | (A.7)
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For πl , we obtain:

∂L(θ)

∂πl
=

(
K∑

k=1
γk

l

|V k |∑
j=1

∂ lnπl

∂πl

)
−λ0

∂πl

∂πl

=
K∑

k=1

|V k |∑
j=1

γk
l

(
1

πl

)
−λ0 = 0 (A.8)

A.8 =⇒ πl = 1
λ0

∑K
k=1

∑|V k |
j=1 γ

k
l = 1

λ0

∑K
k=1γ

k
l |V k |. Using the normalization constraint∑L

i=1πi = 1, we obtain: λ0 =∑L
i=1

∑K
k=1γ

k
i |V k | and finally:

πl =
∑K

k=1γ
k
l |V k |∑L

i=1

∑K
k=1γ

k
i |V k | (A.9)

And last, for p l
i :

∂L(θ)

∂p l
i

=
K∑

k=1
γk

l

|V k |∑
j=1

∂ ln p l
i k

∂p l
i

−λl

(
I∑

i=1

∂p l
i

∂p l
i

)

=
(

K∑
k=1

γk
l

|V k |∑
j=1

δ
ak

j
ai

1

p l
i

)
−λl = 0 (A.10)

A.10 =⇒ p l
i = 1

λl

∑K
k=1

[
γk

l

∑|V k |
j=1 δ

ak
j

ai

]
= 1

λl

∑K
k=1γ

k
l N k

ai
. Using the normalization con-

straint
∑I

j=1 p l
j = 1, we obtain: λl =

∑I
j=1

∑K
k=1γ

k
l N k

a j
and finally:

p l
i =

∑K
k=1γ

k
l N k

ai∑I
j=1

∑K
k=1γ

k
l N k

a j

(A.11)

A.2 Case 2: explicit associations between feature vectors
and “atomic” concepts 5.2.2)

In this case, the conditional expected log-likelihood writes itself as:

QD (θ|θt ) =
K∑

k=1

∑
(ak

i ,vk
j )

L∑
l=1

γk
i j l (t ) · log

[
p(ak

i , vk
j |cl ,θ) ·πk

]
(A.12)

where γk
i j l (t ) = p(H k

i j l = 1|ak
i , vk

j ,θt ). We use a Lagrangian function of the same form
as the one in A.14:
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L(θ) =
K∑

k=1

∑
(ak

i ,vk
j )

L∑
l=1

γk
i j l (t ) · log

[
p(ak

i , vk
j |cl ,θ) ·πk

]

−λ0

(
L∑

l=1
(πl −1)

)
−λ1

(
I∑

i=1
(p1

i −1)

)
− . . .−λL

(
I∑

i=1
(pL

i −1)

)
(A.13)

By expanding the expression above, we obtain:

L(θ) =
K∑

k=1

∑
(ak

i ,vk
j )

L∑
l=1

γk
i j l (t ) · log

[
p(ak

i |cl ,θ) ·p(vk
j |cl ,θ) ·πk

]

=
K∑

k=1

∑
(ak

i ,vk
j )

L∑
l=1

γk
i j l (t ) ·

[
d

2
ln(2π)− 1

2
ln(|Σl |)−

1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

− ln(p l
i k )+ ln(πl )

]
(A.14)

Thus, we obtain:

∂L(θ)

∂µl
=

K∑
k=1

∑
(ak

i ,vk
j )

γk
i j l (t )

∂

∂µl

(
−1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

)

=
K∑

k=1

∑
(ak

i ,vk
j )

γk
i j l (t )

(
Σ−1

l (vk
j −µl )

)
= 0 (A.15)

A.15 =⇒ ∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )Σ−1

l vk
j =

∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )Σ−1

l µl

=⇒µl =
∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )vk

j∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )

(A.16)

∂L(θ)

∂Σl
=

K∑
k=1

∑
(ak

i ,vk
j )

γk
i j l (t )

∂

∂Σl

(
−1

2
ln(|Σl |)−

1

2
(vk

j −µl )TΣ−1
l (vk

j −µl )

)

=
K∑

k=1

∑
(ak

i ,vk
j )

γk
i j l (t )

(
−1

2
Σ−T

l + 1

2
Σ−T

l (vk
j −µl )(vk

j −µl )TΣ−T
l

)
= 0 (A.17)

A.17 =⇒ ∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )Σ−1

l =∑K
k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )Σ−1

l (vk
j −µl )(vk

j −µl )TΣ−1
l

=⇒Σl =
∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )(vk

j −µl )(vk
j −µl )T∑K

k=1

∑
(ak

i ,vk
j )γ

k
i j l (t )

(A.18)
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Appendix B

Appendices of chapter 5: A
Deterministic Annealing Approach for
Learning Finite Mixture Model
Parameters

In this appendix, we discuss an extension of the mass-constrained clustering algorithm
([Rose et al., 1993]) to perform maximum likelihood estimation of the parameters of fi-
nite mixture models. As argued in section 4.2, the DAEM algorithm [Ueda and Nakano,
1998] is indeed not the better way to apply annealing in the case of finite mixture mod-
els.

Besides the description of the algorithm itself, we also point out that it provides a
natural framework for estimating the number of mixture components which is one of
the most challenging task in unsupervised/supervised mixture modeling. We conclude
this appendix by showing how the proposed algorithm can be reformulated to estimate
the parameters of the hierarchical Bayesian model presented in section 5.2.1.

B.1 Modification of the mass-constrained algorithm to per-
form ML-estimation

In this section, we consider the problem of estimating the parameters of a mixture of
Gaussians: p(ν) =∑K

k=1αk ·p(ν|ck ) =∑K
k=1αk ·N (ν;µk ,Σk ). We propose in the follow-

ing a modification of the mass-constrained algorithm to perform maximum likelihood
estimation of the model parameters. It has been mentioned in the paragraph 4.2 that
the DAEM and the mass-constrained algorithm seek to minimize objective functions
of the same form: F = Di st −T H where Di st is the total distortion, T a temperature
parameter and H the entropy (see paragraph 4.2 for a definition of these terms in the
case of the DAEM algorithm). All we have to do to perform ML-estimation is to modify
the distortion measure used in the mass-constrained algorithm and add an update step
for covariance matrices in the M-step of the inner loop (step 3) of this algorithm. The
conditions for cluster splitting will also be different: for the squared error distance and
in the case where just the cluster means are updated, it can be shown that the critical
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temperatures are equal to twice the largest eigenvalue of the cluster covariance matri-

ces. It means that a cluster c j will be split when T becomes inferior to 2λ j
max where

λ
j
max is the largest eigenvalue of the covariance matrix Σ j =

∑N
i=1 p(ck |νi )(νi−µk )(νi−µk )T

N ·αk
.

This result can be obtained by looking at the hessian of F∗(θ): when the hessian is
no longer positive definite, it means that the current estimate of model parameters θ
is no longer a global minimum of the free energy for the new temperature. To find
critical temperatures, we thus have to find the upper limit Tc where the hessian is
still non negative. The condition we obtain for the squared error distance is the one
mentioned above. In the following, we continue to note dML the distance we use for
ML-estimation: dML(νi ,ck ) = − log(αk p(νi |θk )). If we use this distance in the mass-
constrained algorithm along with an update step for covariance matrices, it becomes
much more difficult to derive critical temperatures for cluster splitting: the hessian
will indeed not only depend on the cluster means but also on the covariance matri-
ces, which makes it very difficult to compute (we would have to compute the following

second derivatives: ∂2F∗
∂µi∂µ j

, ∂2F∗
∂µi∂Σ j

and ∂2F∗
∂Σi∂Σ j

). Even if we succeed in computing the

hessian, there is still the problem of extracting a splitting condition per cluster: this
implies writing H as a sum of two symmetric matrices, H1 + H2, where H1 is a block
diagonal matrix with each block corresponding to the sub-hessian associated with one
cluster, and proving that the positive definiteness of H is equivalent to the positive
definiteness of H1. Instead of trying to extract an analytical condition by looking at
the hessian, we can think of a very simple heuristic criterion which has proved to work
very well in practice: we maintain permanently two centroids per cluster. When we de-
crease the temperature, we add a small perturbation to the centroid of one of the two
clusters. When the critical temperature is reached, that is, when cluster splits occur,
the two centroids will simply drift apart. On the contrary, between phase transitions,
the two centroids will be stuck together again after the convergence of the inner loop.
In the following, a cluster ck is a couple {c1

k , c2
k } where c1

k is the true cluster and c2
k its

perturbed version. We denote by p(zk,l
i = 1|νi ,θ) the probability that the element νi

originates from the mixture component c l
k (l ∈ {1,2}). We obtain the following algo-

rithm:

1. Set maximum number of clusters Kmax and minimum temperature Tmi n .

2. Choose T > 2λmax , K = 1, µ1
1 = µ2

1 = 1
N

∑N
i=1νi , α1

1 = α2
1 = 1/2, Σ1

1 = Σ2
1 = Σi ni t =

1
N

∑N
i=1(νi −µ1

1)(νi −µ1
1)T .

3. For k = 1, · · · ,K , perturb cluster c2
k : {α2

k , µ2
k , Σ2

k } = {α1
k , µ1

k +δk , Σ1
k }.

4. Iterate the following two steps until convergence criterion is met:

• E-step: Compute association probabilities

p(zk,l
i = 1|νi ,θ) = (αl

k p(νi |θl
k ))β∑K

l=1

[
(α1

l p(νi |θ1
l ))β+(α2

l p(νi |θ2
l ))β

]
• M-step: Update mixing proportions, means and covariance matrices ac-

cording to: αl
k =

∑N
i=1 p(zk,l

i =1|νi ,θ)
N , µl

k =
∑N

i=1 p(zk,l
i =1|νi ,θ)νi∑N

i=1 p(zk,l
i =1|νi ,θ)
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and Σl
k =

∑N
i=1 p(zk,l

i =1|νi ,θ)(νi−µl
k )(νi−µl

k )T∑N
i=1 p(zk,l

i =1|νi ,θ)

5. If T < Tmi n , stop.

6. Cooling step: decrease T .

7. If K < Kmax , check condition for phase transition (i.e cluster splitting) for k =
1, · · · ,K . If condition is met for cluster j , add a new cluster cK+1 = {c1

K+1,c2
K+1}.

Set µ1
K+1 = µ2

K+1 = µ2
j , Σ1

K+1 = Σ2
K+1 = Σ2

j , α1
K+1 = α2

K+1 = α2
j /2 and α1

j = α1
j /2.

Increment K . Go to step 3.

K refers to the number of effective clusters. For each of the K effective clusters, we de-
note {α1

k ,µ1
k ,Σ1

k } the parameters of c1
k and {α2

k ,µ2
k ,Σ2

k } the parameters of the perturbed
version c2

k . Checking condition for phase transition consists here in looking if a cluster
and its perturbed version have moved apart or are still stuck together after conver-
gence of the inner loop. We could simply use an Euclidean distance between cluster
centers but the change in scale during the annealing process makes it difficult to keep
a static threshold on such a measure: very large clusters such as can be seen at the
beginning of the annealing process can have centers quite far away from each other
but can nevertheless have a strong overlapping. On the contrary, clusters with very
localized influence such as can be seen at the end of the annealing process can have
their centers very close from each other but still be well separated. We need conse-
quently a notion of distance which includes the idea of separation (distinct clusters).
In the case of GMMs, we use a Mahalanobis like distance between clusters: d(ci ,c j ) =
αiα j

(αi+α j )2 (µi −µ j )T P−1
i j (µi −µ j ) with Pi j = αi

αi+α j
Σi + α j

αi+α j
Σ j + αiα j

(αi+α j )2 (µi −µ j )(µi −µ j )T .

We can show easily that d(ci ,c j ) = tr (P−1
i j Wi j ) where Wi j = αiα j

(αi+α j )2 (µi −µ j )(µi −µ j )T .

Wi j corresponds to the “loss” in within-components covariance which results when we
merge the two components of a two-component mixture. The multiplication by P−1

i j
acts like a normalization factor (we have thus 0 ≤ d(ci ,c j ) ≤ 1) and makes the dissim-
ilarity measure invariant under linear transformations. To decide wether two clusters
have drifted apart or are still stuck together, we set a static thresholdΩ on this measure.
The splitting condition for cluster ck can thus be written: d(c1

k ,c2
k ) >Ω.

In the next section, we show that the modified version of the mass-constrained
algorithm described above provides a natural framework for estimating the number of
Gaussian mixture components, which is one of the most challenging task in clustering.

B.2 Estimation of the number of mixture components

Deterministic annealing has a strong connection to Rate-Distortion (RD) theory [Rose,
1994]. The aim of RD theory is to give theoretical bounds for how much compression
can be achieved without exceeding a given distortion between the input and the out-
put of a compression system. RD is usually used to characterize the performances of
lossy source compression methods, the best method being the one which for a given
distortion achieves the highest compression rate. It is quite common to introduce RD-
related notions in clustering problems since clustering can be easily reinterpreted as
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a lossy source compression problem. The mathematical formulation for the function
which relates the rate to distortion is the following:

R(D0) = min
p(y |x), D≤D0

I (X ,Y ) (B.1)

where D = ∑
x
∑

y p(x, y)d(x, y) is the achieved distortion, I (X ,Y ) is the mutual infor-
mation between input variable X and output variable Y . d is an arbitrary distortion
measure (we can take for instance the squared error distance). Since I (X ,Y ) = H(X )−
H(X |Y ) and H(X ) is constant, the above minimization problem can be rewritten as:
R(D0) = maxp(y |x), D≤D0 H(X |Y ). Introducing a Lagrange multiplierβ, we can show that
there exists a value of β, β0, for which: R(D0) = maxp(y |x)

[
H(X |Y )−β0 · (D −D0)

] =
maxp(y |x)

[
H(X |Y )−β0 ·D

]
. By noting T0 = 1

β0
, we have:

R(D0) = min
p(y |x)

[D −T0 ·H(X |Y )] (B.2)

which is exactly the objective function we seek to minimize in the mass-constrained
algorithm. It can be shown [Cover et al., 1991] that the parameter β is related to the
slope of the rate-distortion curve R(D) by the following expression: β = 1

T = − ∂R
∂D . So,

when we perform annealing, we simply climb up the rate-distortion curve. The posi-
tion on the curve is determined by the temperature parameter T which is the inverse
of the slope β. This equivalence between the annealing process and the computa-
tion of the rate-distortion curve proves that the number of clusters which is found at
each temperature is optimal on the point of view of rate-distortion theory: the increase
in the number of effective clusters (during phase transitions) can indeed be seen as
a way to maintain an optimal trade-off between rate and distortion. To stay on the
rate-distortion curve as we increase the temperature, we have to compensate for the
increase in rate by a decrease in distortion (the rate-distortion curve is monotonically
decreasing), which is achieved by updating the mapping probabilities p(y |x) that con-
dition the effective number of clusters. Therefore, on condition that the maximum
number of clusters Kmax is not to low, the number of effective clusters found at the
end of the annealing process is optimal.

B.3 ML-estimation of the parameters of a hierarchical Ba-
yesian model

In this section, we test the performance of the algorithm described in section B.1 on
learning the parameters of the auto-annotation model introduced in 5.2.1. This algo-
rithm is indeed not limited to estimating the parameters of a finite Gaussian mixture:
we can apply it to all kinds of finite mixture models. The only changes will be in the
M-step which is the only part of the algorithm to be model-specific: the M-step is in-
deed where model parameters are estimated, so it is logical that the update equations
we obtain in this part depend specifically on the parametric family associated with the
finite mixture (there is still an exception regarding mixing proportions which remain
model-independent [Ueda and Nakano, 1998]). As mentioned above, the E-step re-
mains unchanged: the expression of the association probabilities p(zk

i = 1|νi ,θ) can



207

indeed be derived without assuming a particular pdf (parametric family) over the mix-
ture.

The DA approach is justified here by the fact that the pdf of documents given model
parameters is that of a finite mixture:

p(dk |θ) =
L∑

l=1
p(dk ,cl |θ) =

L∑
l=1

p(cl |θ)p(dk |cl ,θ) =
L∑

l=1
πl ·p(dk |θl ) (B.3)

So, all the results mentioned above can be applied to our problem. In particular, the
modified DA mass-constrained algorithm we have presented in section 3 can be reused
to perform maximum likelihood estimation of model parameters. We have seen in the
introduction of this section that the only model-specific part of the algorithm is the M-
step. An other slight modification has still to be done: documents dk live indeed in a
space which is partly continuous (feature space) and partly discrete (semantic concept
space). So, in the perturbation step of our modified mass-constrained algorithm (step
3), we cannot define a perturbation on the centroid of a “cluster” of documents since
here the notion of “cluster” is not well-defined (because of the existence of two-spaces
of very different nature). Instead, we can think of exploiting the probabilistic clustering
induced by the underlying pdf of data in the feature space, which is a finite Gaussian
mixture. Thus, cluster splits will be provoked by perturbations in the feature space
and the same condition as the one used for GMMs can be used to determine wether
two clusters have drifted apart or are still stuck together. In particular, we can reuse
the distance measure introduced in B.1. The algorithm we obtain is not very different
from the one exposed in section B.1:

1. Set maximum number of clusters Lmax and minimum temperature Tmi n .

2. Choose T > 2λmax , L = 1, µ1
1 = µ2

1 =
∑K

k=1

∑
j vk

j∑K
k=1 |Vk | , π1

1 = π2
1 = 1/2, Σ1

1 = Σ2
1 = Σi ni t =∑K

k=1

∑
j (vk

j −µ1
1)(vk

j −µ1
1)T∑K

k=1 |Vk | .

3. For l = 1, · · · ,L, perturb cluster c2
l :{

π2
l , µ2

l , Σ2
l , {p(ai |c2

l )}i=1,··· ,I } = {π1
l , µ1

l +δl , Σ1
l , {p(ai |c1

l )}i=1,··· ,I
}
.

4. Iterate the following two steps until convergence criterion is met:

• E-step: Compute association probabilities

p(hl ,m
k = 1|dk ,θ) = (πm

l p(dk |θm
l ))β∑L

l=1

[
(π1

l p(dk |θ1
l ))β+(π2

l p(dk |θ2
l ))β

]
• M-step: Update mixing proportions, means and covariance matrices ac-

cording to: πm
l =

∑K
k=1 p(hl ,m

k =1|dk ,θ)

K , µm
l =

∑K
k=1

[
p(hl ,m

k =1|dk ,θ)
∑

j vk
j

]
∑K

k=1 p(hl ,m
k =1|dk ,θ)·|Vk |

,

Σm
l =

∑K
k=1

[
p(hl ,m

k =1|dk ,θ)
∑

j (vk
j −µm

l )(vk
j −µm

l )T
]

∑K
k=1 p(hl ,m

k =1|dk ,θ)·|Vk |

and p(ai |cm
l ) =

∑K
k=1 p(hl ,m

k =1|dk ,θ)·N k
ai∑I

q=1
∑K

k=1 p(hl ,m
k =1|dk ,θ)·N k

aq
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5. If T < Tmi n , stop.

6. Cooling step: decrease T .

7. If L < Lmax , check condition for phase transition (i.e cluster splitting) for l =
1, · · · ,L. If condition is met for cluster j , add a new cluster cL+1 = {c1

L+1,c2
L+1}.

Set µ1
L+1 = µ2

L+1 = µ2
j , Σ1

L+1 = Σ2
L+1 = Σ2

j , π1
L+1 = π2

L+1 = π2
j /2, π1

j = π1
j /2 and

{p(ai |c1
L+1)}i=1,··· ,I = {p(ai |c2

L+1)}i=1,··· ,I = {p(ai |c2
j )}i=1,··· ,I . Increment L. Go to

step 3.
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Appendix C

Appendices of chapter 6

C.1 Proof of convergence of the linear component-based
SVM

Proof of convergence in norm of w : We show that the margin (i.e. the ratio 1/‖w‖)
decreases at each iteration of the alternating optimization scheme. For this, it suffices
to note that the training set at iteration t , At is included in the training set at itera-
tion t +1, At+1. The parameter C of SVM remaining unchanged from one iteration to
another, the margin at iteration t + 1 is necessarily smaller (or equal) than the mar-
gin at iteration t . The sequence 1/‖wt‖ being decreasing and lower-bounded (linearly
separable case), it converges to a value 1/‖w‖∗. One can also prove that this value is
reached (and therefore that it is a minimum) but we will not do it here for lack of space.
Heuristically, the choice of critical points to increase the training set can be explained
by the fact that before convergence, critical points are systematically located within the
margin of the current classifier. The margin of the classifier obtained at the next itera-
tion is therefore smaller since we add the new critical points to the training set that is
used to learn this classifier.

Proof of convergence of Ct = (wt ,bt ): We denote by Ct the classifier obtained with
the training set At and PCt the set of critical points computed from Ct . We have of
course: At+1 = At ∪ PCt . We can start by observing that if there is a classifier Ct f

such that the points PCt f
are all outside (in a non-strict sense) the margin of Ct f , then

Ct f +1 = Ct f , which ensures the convergence of the alternating scheme. It remains to
show that such a classifier exists. Let’s suppose this is not the case. Let t f be the iter-
ation for which 1/‖wt f ‖ = 1/‖w‖∗. Because of the hypothesis we made above, at least
one of the points of the set PCt f

is necessarily within (in a strict sense) the margin of

the classifier Ct f . The classifier Ct f +1 trained with the set At f +1 = At f ∪PCt f
then nec-

essarily possesses a margin which is strictly smaller than 1/‖w‖∗ 1 which contradicts
the fact that the sequence 1/‖wt‖ has converged and reached its minimum at iteration
t f . This completes the proof that the sequence Ct = (wt ,bt ) is convergent.

1If it had the same margin, it would mean that there is a classifier other than Ct f which also separates
the points of At f with a margin 1/‖w‖∗, which contradicts the fact that the SVM problem has a unique
global minimum
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We can also prove that the obtained optimum (w∗,b∗) is global and unique. In-
deed, given two classifiers C 1 and C 2 such that the points of PC 1 and PC 2 are all located
outside the respective margins of C 1 and C 2 (see definition of convergence above), then
the classifier trained with the set B12 = A1∪A2 is equal to C 1. Indeed, by definition, the
points of PC 1 being the closest to C 1 and being still outside the margin of C 1, the points
of A2 a fortiori are also located outside the margin of C 1 and therefore will not have any
influence during the learning if we add them to the set A1. Using a similar reasoning,
we can show that the classifier trained with the set B21 = A2 ∪ A1 is equal to C 2. Since
B12 = B21, we then have C 1 = C 2, which proves that the obtained optimum is global
and unique.

C.2 Determination of the critical points

The critical point associated with a Gaussian mixture component is the point of the
associated convex hull which is the closest to the separating hyperplane (w,b). In the
case where the separating hyperplane intersects the convex hull, the critical point is
the point of the convex hull which is the farthest from the separating hyperplane but
on the other side of it (see Fig. C.1). For a component c whose convex hull is given
by the equation (ν−µ)TΣ−1(ν−µ) = constant and whose label is yc , the critical point
associated with the component is the solution of the problem: min

ν
yc · (w ·φ(ν)+b)

under the constraint (ν−µ)TΣ−1(ν−µ) = constant.

 

Cluster 1 

Cluster 2 

S 

S 

*

2
ν

*

1
ν

Figure C.1: Determination of the critical points.

linear separator: we show that the critical point ν∗l associated with the l -th mixture
component is given by:

ν∗l =µl − (2δS
l −1)

√
ρl

1 ·
Σl ·w√
w TΣl w

(C.1)

nonlinear separator (using a Gaussian kernel): given an approximation of the kernel
with a Taylor expansion of order 1, we show that the critical point ν∗l is given by the
formula:

ν∗l =µl − (2δS
l −1)

√
ρl

1 ·
Σl ·u√
uTΣl u

(C.2)
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with u = ∑L
j=1α j yγ j ∇νk(ν,γ j )|ν=µl where the α j are the Lagrange multipliers in the

dual problem whose solution yields the classifier (w,b). The γ j are the points that
were used to train the classifier. k(., .) refers to the Gaussian kernel.

C.3 Sub-programs used by the Algorithm 5

Algorithm 7 SampleGibbs

%Sample K components according to a Gibbs distribution with temperature param-
eter T
%D is an array containing the distances of non-tagged components to the current
SVM separating surface
Input D,K ,T
W = {

w1, . . . , wCard(D)
}

with wi = 1
ZC

· exp(−dmax−D(i )
T ) where dmax = maxi D(i ) and

ZC =∑
i D(i )

{i1, . . . , iK } ∼U (w ′
1, . . . , w ′

Card(D)) %sample K indices according to the normalized im-

portance weights
{

w ′
1, . . . , w ′

Card(D)

}

Algorithm 8 ComputeComponentMembership
%Compute the membership degree τl of a component cl depending on the current
SVM model f . T S is the training set used to train f
Input cl ,T S, f
If cl ∈ S̄ then
τl = 1

Else
(a,b) = Platt(T S, f ) %compute sigmoid parameters using Platt’s algorithm
τl = 1∑

ν∈V N (ν;µl ,Σl )

∑
ν∈V

1
1+exp(−a· f (ν)+b) ·N (ν;µl ,Σl )

End If

In a real implementation of the algorithm 8, we do not perform a summation over
all the elements ν ∈ V but on the elements ν such that N (ν;µl ,Σl ) > N (γ(3);µl ,Σl )
(see Sec. 6.4.2.1 for an explanation about the function γ).

We have to notice here that the positively-labeled points in the set A0 are all situ-
ated within the current convex hulls of positively-labeled mixture components. So it
is possible to assign to them the membership degrees associated with the component
corresponding to the cluster they belong to.
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Algorithm 9 ComponentBasedFuzzySVM
%Solve the fuzzy component-based SVM problem on the set of labeled clusters
C l ust using component membership degrees Mb and initializing the algorithm with
the set of labeled points A0

Input C l ust , Mb, A0

Using a probabilistic SVM, train C0 with A0 and memberships contained in Mb
While At+1 6= At do

Determine the critical points ν∗1 , . . . ,ν∗Card(C l ust ) associated with the current classi-
fier Ct

Using a probabilistic SVM, train Ct+1 with the training set At+1 and the mem-
berships Mb, where At+1 is built from At by adding the points ν∗i such that
minν j∈At ‖ν∗i −ν j‖ > ε

End While
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Appendix D

Appendices of chapter 7

D.1 Algorithmic description of the overall CALOR process

In the algorithm 10, P l
f and N l

f refer respectively to the set of positive and negative

examples which are used to train the current classifier at the level l of the hierarchy.
The user feedback at the i -th iteration of the active learning loop at level l is denoted
by

{
p f l

i ,n f l
i

}
, p f l

i being the set of elements on which the user feedback is positive

and n f l
i the set of elements on which the user feedback is negative. The membership

degrees associated with the elements of the set P l
f are referred to as µl

P . The values{
ql

}
l=1,...,L are the number of iterations in the active learning loop at each stage of the

hierarchy. The function Inter(n, x) computes the degree of intersection between the
patches n and x as the percentage of the area of the patch n which is covered by the
patch x. thr esh is a threshold which is fixed to 0.5 (50 %) for all stages of the hierar-

chy. The thresholds ζl are calculated so that the ratio

∣∣∣{νi1
l ,ν

i2
l ,...∈Tl

∣∣∣ f (ν
i1
l )≥ f (ν

i2
l )≥...≥ζl

}∣∣∣
|Tl | re-

spects the proportions fixed above for the percentage of top-ranked elements we keep
when switching to the level below in the hierarchy. The other notations are introduced
in the chapter 7.
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Algorithm 10 Algorithmic description of the CALOR procedure

Input The user is asked to point a patch νi0
L of size tL centered on an example of the

targeted object
Initialization
• Set TL = EL , P L

f =
{
ν

i0
L

}
and µL

P = {1}

• Select D random patches of size tL inside the set TL to display to the user
%Coarse-to-fine loop
For l = L,L−1, . . . ,1 do

%Active learning loop to build the classifier Cl

For i = 1, . . . , ql do
• Update P l

f and N l
f with the user feedback

{
p f l

i ,n f l
i

}
:

P l
f ← P l

f ∪p f l
i and N l

f ← N l
f ∪n f l

i

• Update µl
P : µl

P ←µl
P ∪ 1|p f l

i |

• f i
l ← PROB_SVM

({
P L

f ∪N l
f , µl

P ∪ 1|N l
f | , 1|P l

f |∪−1|N l
f |

})
• Display D examples {i1, . . . , iD } to the user using the strategy proposed
in 7.2.2: {i1, . . . , iD } = argmaxi1,...,iD∈Sl min( j1, j2)∈{i1,...,iD }

with j1< j2

d(ν j1 ,ν j2 ) and Sl ={
νi

l ∈ Tl
∖{

P l
f ∪N l

f

} ∣∣∣ f i
l (νi

l ) < ε
}

End For
• Set Tl−1 = {n ∈ El |∃x ∈ Tl such as n ∩x 6= ; and f ql

l (x) > ζl
}

• Set
{

P l−1
f ,µl−1

P

}
= IMSVM(P l

f ,µl
P ) and N l−1

f ={
n ∈ El−1|∃x ∈ N l

f such as Inter(n, x) ≥ thr esh
}

End For
• Return T1 and f q1

1
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