Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Music-to-Score Temporal Alignment by Discriminative Graphical Models

Cyril Joder

TELECOM ParisTech

2011/09/29

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Context: Automatic Indexing of Multimedia Document

- Huge databases of available multimedia documents
- Meta-data are needed for accessing and browsing these databases
 - tags (keywords), links, thumbnails, summaries, ...
- Have to be created automatically

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Special Case of Musical Contents

• Possible useful meta-data for music:

- Scale, chord progressions
- Meter (rhythm)
- Main melody, pitches...

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases

- Many of these pieces of information can be easily derived from the score
- One can take advantage of score databases
- Needs music-to-score alignment.

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Music-to-Score Alignement

• Data: score and audio which match (same piece)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Music-to-Score Alignement

- Data: score and audio which match (same piece)
- Goal: find the correspondance between the positions in the score and the positions in the audio

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Possible Applications

- Use of score for music indexing [Garbers,2008]
- Score-based browsing of a recording [Fremerey,2007]
- Music education (error spotting) [Montecchio,2008]
- Score retrieval from audio query [Hu,2003]
- Score-informed source separation [Hennequin,2011]

With real-time constraint:

- Computer accompaniment [Dannenberg,1984], [Raphael,2001], [Cont,2010]
- Automatic page turning [Arzt,2008]

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

Two stages:

- Similarity matrix calculation: local matching measure
- Alignment: incorporation of structural constraints (transitions, durations)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

- Pitch extraction [Arifi ,2004]
 → error-prone
- Learning a generative model [Raphael,1999]→ intractable for polyphony
- Template-based [Orio,2001]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

- Pitch extraction [Arifi ,2004]
 → error-prone
- Learning a generative model [Raphael,1999]→ intractable for polyphony
- Template-based [Orio,2001]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

- Pitch extraction [Arifi ,2004]
 → error-prone
- Learning a generative model [Raphael,1999]→ intractable for polyphony
- Template-based [Orio,2001]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

- Pitch extraction [Arifi ,2004]
 → error-prone
- Learning a generative model [Raphael,1999]→ intractable for polyphony
- Template-based [Orio,2001]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

Alignment

- Sequence alignment (DTW) [Dannenberg,2003], [Dixon,2005], [Müller,2006]
- + simple and easy to implement
- difficult to control (implicit model)
- Statistical model (HMM) [Orio,2001], [Grubb,1997], [Raphael,2006]
- intuitive and flexible modeling, allows for parameter learning
- can be complex

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Overview of an Alignment System

Alignment

- Sequence alignment (DTW) [Dannenberg,2003], [Dixon,2005], [Müller,2006]
- + simple and easy to implement
- difficult to control (implicit model)
- Statistical model (HMM) [Orio,2001], [Grubb,1997], [Raphael,2006]
- intuitive and flexible modeling, allows for parameter learning
- can be complex

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Guidelines for our Audio-to-Score Alignment System

Constraints

- Polyphonic music
- Any instrument
- No real-time constraint

Design choices

- Template-based matching measure
- Alignment by statistical model

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Outline

- 2 Alignment by Statistical Model
- 3 Conditional Random Fields for Alignment
- 4 Modeling of Time
- Optimization of the Concurrency Templates

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Outline

Music-to-Score Alignment: Introduction

- 2 Alignment by Statistical Model
 - Definitions
 - A First Simple System
- 3 Conditional Random Fields for Alignment
- Modeling of Time

Optimization of the Concurrency Templates

6 Conclusion and Perspectives

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Problem Definition

Score Segmentation into concurrencies [Raphael,2006]

Statistical Model

- At each time n, random variable *X_n* representing the concurrency
- Goal: finding the most probable concurrency sequence

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Audio Parameterization: Pitch Content

Representations used for alignment

- Spectrogram: power spectrum in linear frequency scale (STFT) [Orio,2001]
- Semigram: power spectrum in logarithmic scale (semitones) [Montecchio,2009]
- Chromagram: "strength" of the 12 chromatic classes (wrapping of semigram on one octave) [Müller,2005]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Audio Parameterization: Pitch Content

Representations used for alignment

- Spectrogram: power spectrum in linear frequency scale (STFT) [Orio,2001]
- Semigram: power spectrum in logarithmic scale (semitones) [Montecchio,2009]
- Chromagram: "strength" of the 12 chromatic classes (wrapping of semigram on one octave) [Müller,2005]

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Audio Parameterization: Pitch Content

Representations used for alignment

- Spectrogram: power spectrum in linear frequency scale (STFT) [Orio,2001]
- Semigram: power spectrum in logarithmic scale (semitones) [Montecchio,2009]
- Chromagram: "strength" of the 12 chromatic classes (wrapping of semigram on one octave) [Müller,2005]

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Audio Parameterization: Pitch Content

Representations used for alignment

- Spectrogram: power spectrum in linear frequency scale (STFT) [Orio,2001]
- Semigram: power spectrum in logarithmic scale (semitones) [Montecchio,2009]
- Chromagram: "strength" of the 12 chromatic classes (wrapping of semigram on one octave) [Müller,2005]

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Similarity Matrix Calculation

Concurrency:

symbolic representation

Χ

Audio Observation:

time-frequency representation

У

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Similarity Matrix Calculation

Concurrency: symbolic representation Template: audio domain

Audio Observation:

time-frequency representation

Χ

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Similarity Matrix Calculation

Concurrency: symbolic representation Template: audio domain

Audio Observation:

time-frequency representation

Χ

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction

- Mapping from symbolic to audio domain
- Generally set by ad hoc rules
- Depends on the audio representation

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction: a Unified Framework

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction: a Unified Framework

• Templates for isolated notes

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction: a Unified Framework

• Templates for isolated notes

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction: a Unified Framework

• Templates for isolated notes

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

Template Construction: a Unified Framework

• Templates for isolated notes

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definitions

- Templates for isolated notes
- Superposition of one-note templates
- Advantage: only a few templates to set

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

A First Simple System

First Alignment System

Similarity matrix calculation (chosen after [1])

- Chromagram representation
- Kullback-Leibler divergence

Alignment strategy

- Structural constaint: no concurrency skipping
- Hidden Markov Model:

[1] C. Joder, S. Essid & G. Richard: A comparative study of tonal acoustic features for a symbolic level music-to-score alignment. ICASSP 2010

TELECOM ParisTech

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

A First Simple System

Database

Two corpora

- MAPS [Emiya,2010]: 49 classical piano pieces (~4h15)
 - Ground-truth: aligned MIDI files
 - Scores: tempo modified to be constant
- RWC-pop [Goto,2002]: 90 pop songs (≈6h)
 - Ground-truth: aligned MIDI files
 - Scores: random tempo changes (piecewise constant)

Learning and Test Databases

- Learning: 50 pieces (20 from MAPS & 30 from RWC)
- Test: remaining 99 pieces

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

A First Simple System

Results

Evaluation Measure

• Alignment rate: proportion of onsets recognized inside a tolerance window of θ around ground truth.

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

A First Simple System

Evaluation Measure Alignment rate: proportion of onset

 Alignment rate: proportion of onsets recognized inside a tolerance window of θ around ground truth.

Results

Alignment Rates for $\theta = 300$ ms:

	())	())
N	87.8%	72.4%
())	MAPS corpus	RWC corpus

- Globally follows the important changes
- Poor fine-level alignment when numerous notes overlap
 - Noisy observations (drums, reverberation...)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

A First Simple System

Limitation of the Current Approach

- Need: more robust similarity matrix
- Idea: use neighboring observations
- However: conditional independance of the observations in HMM

• Requires a more flexible statistical framework

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Outline

1 Music-to-Score Alignment: Introduction

- Alignment by Statistical Model
- 3 Conditional Random Fields for Alignment
 - Definition
 - Exploiting Neighboring Observations
 - Fusion of Several Descriptors
 - Experiments

Modeling of Time

5 Optimization of the Concurrency Templates

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definition

Conditional Random Fields

Discriminative undirected graphical model

- Conditioned on the observations:
 - no independance hypothesis
 - "local match" can depend on any observations
- No need for proper conditional probabilities
 - flexible penalty functions
 - weights of different features can be adjusted
- Allows for discriminative learning
- Same decoding complexity as HMM (Viterbi algorithm)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definition

Conditional Random Fields

Probability of a label sequence $X_{1:N}$, given the observation sequence $Y_{1:N}$:

$$P(\mathbf{X}_{1:N}|\mathbf{Y}_{1:N}) = \frac{1}{Z}\phi(X_1,\mathbf{Y}_{1:N})\prod_{n=2}^N\psi(X_n,X_{n-1})\phi(X_n,\mathbf{Y}_{1:N})$$

- ϕ : observation function \rightarrow local match
- ψ : transition function \rightarrow structural constraints
- Z: normalization factor

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Definition

Conditional Random Fields

Probability of a label sequence $X_{1:N}$, given the observation sequence $Y_{1:N}$:

$$P(\mathbf{X}_{1:N}|\mathbf{Y}_{1:N}) = \frac{1}{Z}\phi(X_1,\mathbf{Y}_{1:N})\prod_{n=2}^N\psi(X_n,X_{n-1})\phi(X_n,\mathbf{Y}_{1:N})$$

 ϕ : observation function \rightarrow local match

$$\phi(X_n, \mathbf{Y}_{1:N}) = \exp\sum_i \mu_i f_i(X_n, \mathbf{Y}_{1:N})$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

B _A		1000
General Antonio and Antonio	a financia di seconda d	
C	and the second second	

Score Templates (time in beat)

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) \rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) \rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi(X_n, \mathbf{y}) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \| u_{n+k})$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) \rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi(X_n, \mathbf{y}) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \| u_{n+k})$$

Cyril Joder (TELECOM ParisTech)

Music-to-Score Alignment by CRFs

ELECON

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) \rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi(X_n, \mathbf{y}) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \| u_{n+k})$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Pitch Feature: Neighborhood Integration

Audio Observations (time in s)

Score Templates (time in beat)

Hypothesis: locally constant tempo T_n (in the label variable X_n) \rightarrow template sequence $u_{n-\nu}, \ldots, u_{n+\nu}$

$$\phi(X_n, \mathbf{y}) = \exp \sum_{k=-\nu}^{\nu} -\mu_k D(y_{n+k} \| u_{n+k})$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Exploiting Neighboring Observations

Effect on the Similarity Matrix

"Instantaneous" match:

Neighborhood integration:

- "Smoothing" of the similarity matrix
- Enhances paths conforming to score

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Fusion of Several Descriptors

Using Diverse Sources of Information

• Reminder: observation function can be decomposed into several features

$$\phi(X_n, \mathbf{Y}_{1:N}) = \exp \sum_i \mu_i f_i(X_n, \mathbf{Y}_{1:N})$$

- Neighborhood integration; exploiting pitch information from different time positions
- Also possible to exploit different descriptors, characterizing different aspect of the signal
 - Onset detection
 - Tempo

1

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Fusion of Several Descriptors

Onset Feature

Based on spectral flux [Alonso,2005]: s_{1:N}

• Characterize the phase (attack or sustain) of concurrency

$$f_{a}(X_{n},\mathbf{Y}_{1:N}) = \begin{cases} s_{n} & \text{if attack} \\ 0 & \text{if sustain} \end{cases}$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Fusion of Several Descriptors

Tempo Feature

Cyclic tempogram [Grosche,2010]: g_{1:N}(t)

• Characterize the tempo T_n

$$f_{\mathrm{t}}(X_n,\mathbf{Y}_{1:N})=g_n(T_n)$$

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment 0000000

Modeling of Time

Template Optimization

Conclusion

Experiments

Markovian CRF (MCRF): Alignment Results

Three types of features:

- pitch (integrated)
- onset
- tempo
- Alignment Rates ($\theta = 300 \text{ ms}$):

	MAPS corpus	RWC corpus	
Baseline	87.8%	72.4%	()
MCRF	94.9%	87.9%	()

- Significant improvement
- Still far from perfect
- Need to exploit other kinds of information on the music

Cvril Joder (TELECOM ParisTech)

Music-to-Score Alignment by CRFs

Statistical Model

CRF for Alignment ○○○○○○● Modeling of Time

Template Optimization

Conclusion

Experiments

Markovian CRF (MCRF): Alignment Results

Three types of features:

- pitch (integrated)
- onset
- tempo
- Alignment Rates ($\theta = 300 \text{ ms}$):

	MAPS corpus	RWC corpus
Baseline	87.8%	72.4%
MCRF	94.9%	87.9%

- Significant improvement
- Still far from perfect
- Need to exploit other kinds of information on the music
- Temporal structure

Cyril Joder (TELECOM ParisTech)

Music-to-Score Alignment by CRFs

●测 ●测

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Outline

- Music-to-Score Alignment: Introduction
- 2 Alignment by Statistical Model
- 3 Conditional Random Fields for Alignment

4 Modeling of Time

- Introducing Duration Constraints
- Modeling Tempo Variations

5 Optimization of the Concurrency Templates

6 Conclusion and Perspectives

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Exploiting the Temporal Structure

Music is highly structured

Strong priors/dependencies for concurrency durations

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Exploiting the Temporal Structure

Music is highly structured

- Strong priors/dependencies for concurrency durations
- Incorporate temporal constaints into the model
- State of the art in alignment:
 - Hidden Semi-Markov Models [Orio,2002]
 - Hidden Tempo Models [Raphael,2006]

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Exploiting the Temporal Structure

Music is highly structured

- Strong priors/dependencies for concurrency durations
- Incorporate temporal constaints into the model
- State of the art in alignment:
 - Hidden Semi-Markov Models [Orio,2002]
 - Hidden Tempo Models [Raphael,2006]
- Can be done with CRFs
- Dealt with by the transition function

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Transition Function

Reminder: probability of a label sequence X_{1:N}, given the observation sequence Y_{1:N}:

$$P(\mathbf{X}_{1:N}|\mathbf{Y}_{1:N}) = \frac{1}{Z}\phi(X_1,\mathbf{Y}_{1:N})\prod_{n=2}^N\psi(X_n,X_{n-1})\phi(X_n,\mathbf{Y}_{1:N})$$

- $\psi(X_n, X_{n-1})$: potential given to transition between labels
- MCRF: no duration constraint → uniform transition potentials between concurrencies

Cyril Joder (TELECOM ParisTech)
Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the "current duration" of the concurrency

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the "current duration" of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the "current duration" of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty
 - Exiting concurrency: ρ_d

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Incorporating Duration Constraints

- Introduction of occupation variable D
 - describes the "current duration" of the concurrency

- Transition potentials:
 - Inside concurrency: no penalty
 - Exiting concurrency: ρ_d
- Explicit duration penalty

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length ℓ indicated in the score

$$\rho_{\boldsymbol{d}} = \boldsymbol{e}^{-\gamma_1 |\boldsymbol{d} - \ell|^2}$$

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length ℓ indicated in the score

$$\rho_{\boldsymbol{d}} = \boldsymbol{e}^{-\gamma_1 |\boldsymbol{d} - \ell|^2}$$

Model Limitation

- Duration constraint is absolute
- Does not consider tempo variations

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Introducing Duration Constraints

Semi-Markov CRF (SMCRF)

Concurrency Duration Constraint

- Gaussian penalty
- Mean: length ℓ indicated in the score

$$\rho_{\boldsymbol{d}} = \boldsymbol{e}^{-\gamma_1 |\boldsymbol{d} - \ell|^2}$$

Model Limitation

- Duration constraint is absolute
- Does not consider tempo variations

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

Modeling Tempo

- Several tempo possibilities
- Duration penalty depends on tempo hypothesis:

$$\rho_{d,t} = e^{-\gamma_2 \left|\frac{d-\ell(t)}{\ell(t)}\right|^2}$$

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

Modeling Tempo

- Several tempo possibilities
- Duration penalty depends on tempo hypothesis:

$$\rho_{d,t} = e^{-\gamma_2 \left| \frac{d - \ell(t)}{\ell(t)} \right|^2}$$

• Tempo variation penalty at concurrency:

$$\tau_{t_1,t_2} = \boldsymbol{e}^{-\gamma_3 \left|\log \frac{t_1}{t_2}\right|^2}$$

 Hidden Tempo CRF (HTCRF) system

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

Experimental Results

• Alignment Rates ($\theta = 300 \text{ ms}$):

	MAPS corpus	RWC corpus
Baseline	87.8%	72.4%
MCRF	94.9%	87.9%
SMCRF	97.8%	93.9%
HTCRF	99.3%	99.2%
	())	())

- More complex systems lead to better results
- HTCRF: accurate temporal model \rightarrow very high precision, even with noisy observation (RWC)

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

- Enhancement of the similarity matrix
- Exploitation of the temporal structure

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

- Enhancement of the similarity matrix
- Exploitation of the temporal structure

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

- Enhancement of the similarity matrix
- Exploitation of the temporal structure

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Modeling Tempo Variations

- Enhancement of the similarity matrix
- Exploitation of the temporal structure
- Template construction?

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Outline

- 1 Music-to-Score Alignment: Introduction
- 2 Alignment by Statistical Model
- Conditional Random Fields for Alignment
- 4 Modeling of Time
- Optimization of the Concurrency Templates
 - Formalization of the Symbolic to Audio Mapping
 - Learning the Mapping Matrix
 - Alignment Experiments

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Template Construction: Reminder

- Templates for isolated notes
- Superposition of one-note templates
- Only few templates must be set

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Template Construction: Reminder

- Templates for isolated notes
 - \rightarrow Set by heuristic
- Superposition of one-note templates
- Only few templates must be set

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Template Construction: Reminder

- Templates for isolated notes
- Superposition of one-note templates
- Only few templates must be set
- Learn them from data!

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Pitch Vector Representation

- Vectorial representation of concurrency
- One component per pitch

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

111111111

Conclusion

Symbolic to Audio Mapping

Pitch Vector Representation

- Vectorial representation of concurrency
- One component per pitch
- Values: number of notes

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Symbolic-to-Audio Mapping as a Linear Transformation

- Concurrency c
- Pitch Vector h_c

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Symbolic to Audio Mapping

Symbolic-to-Audio Mapping as a Linear Transformation

- Concurrency c
- Pitch Vector h_c

- Mapping Matrix W
- Template *u_c*

Statistical Model

CRF for Alignment

Modeling of Time

Symbolic to Audio Mapping

Mapping Matrix W

- Contains the one-note templates (in columns)
- Matrix of dimension $I \times J$
 - I: audio representation
 - J: number of pitches
- Example: heuristic matrix for spectrogram

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Learning the Mapping Matrix

Learning the Mapping Matrix

Supervized Learning:

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Learning the Mapping Matrix

Two Learning Strategies

Method	Minimum Divergence	Maximum Likelihood
Strategy	best-fit	discriminative
type		
Objective	matching measure	CRF probability
function		
Use of		
structural	no	MCRF (no integration)
constrains		
Optimization	convex	non convex
problem		

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Learning the Mapping Matrix

Learned Matrices Example: Semigram Representation

- Minimum Divergence: capture the energy distribution of each pitch
- Maximum Likelihood: only learns discriminant information

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Alignment Experiments

Experiments

- Application to our alignment models
- No neighborhood integration
- Comparison of learning methods and audio representations

Cyril Joder (TELECOM ParisTech)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization ○○○○○○● Conclusion

Alignment Experiments

Results Alignment Rates with $\theta = 100 \text{ ms}$

- Improved precision
- Influence decrease with accurate temporal model
- Behaviors of learning methods depend on representation
- Winner: semigram with ML learning

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Contributions

- Introduction of the CRF framework for audio-to-score alignment
 - allows for flexible features
 - exploits structural constraints
- Optimization of the observation function
 - unified formalization (linear mapping)
 - automatic learning of the mapping matrix
- Miscellaneous ajustments for real-world applications
 - complexity reduction algorithm (hierarchical pruning)
 - musical structure change

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

Perspectives

• Comprehensive study of the symbolic-to-audio mapping

- consider neighborhood integration
- instrument-specific mappings
- mapping adaptation
- non-linear mapping
- Considering other observation/transition features
 - superposition of several representations/divergences
 - self-similarity features (change points)
 - multi-modal features (video, motion capture)

Statistical Model

CRF for Alignment

Modeling of Time

Template Optimization

Conclusion

The End

Thank you!

Publications

- C. Joder, S. Essid & G. Richard: A Conditional Random Field Framework for Robust and Scalable Audio-to-Score Matching. IEEE TASLP, November 2011
- C. Joder, S. Essid & G. Richard: *Optimizing the Mapping from a Symbolic to an Audio Representation for Music-to-Score Alignment*. WASPAA, 2011
- C. Joder, S. Essid & G. Richard: *Hidden Discrete Tempo Model: a Tempo-aware Timing Model for Audio-to-Score Alignment.* ICASSP, 2011
- C. Joder, S. Essid & G. Richard: A Conditional Random Field Viewpoint of Symbolic Audio-to-Score Matching. ACM Multimedia, 2010
- C. Joder, S. Essid & G. Richard: An Improved Hierarchical Approach for Music-to-Symbolic Score Alignment. ISMIR, 2010
- C. Joder, S. Essid & G. Richard: A comparative study of tonal acoustic features for a symbolic level music-to-score alignment. ICASSP, 2010

Other Perspectives

- Refined model structures
 - allow several concurrencies for each score position (reverberation)
 - continuous tempo set
- Other learning or decoding criteria
 - maximum margin learning
 - minimum segmentation error decoding
- Further complexity reduction
 - particle filtering
- Application to other problems
 - rhythm analysis (beat detection) with HTCRF
 - gesture alignment from motion capture...

