.. Deux-applications-du-théorème-de-simulation, 77 3.2.1 Ordres sur les langages de motifs et son équivalent sur les décalages, p.78

. L. Remarque, algorithme proposé par Seidl [Sei89] pour vérifier que le degré d'ambiguïté d'un automate d'arbres est fini possède une complexité du même ordre

M. Bibliographie-[-ab09-]-nathalie-aubrun and . Béal, Decidability of conjugacy of tree-shifts of finite type, ICALP '09 : Proceedings of the 36th International Colloquium on Automata, Languages and Programming, pp.132-143, 2009.

[. Aubrun and M. Béal, Sofic and Almost of Finite Type Tree-Shifts, CSR 2010 : 5th International Computer Science Symposium in Russia, pp.12-24, 2010.
DOI : 10.1007/978-3-642-13182-0_2

URL : https://hal.archives-ouvertes.fr/hal-00620400

N. Aubrun and M. Béal, A decomposition theorem for tree-shifts. Pré-publication, 2011.

[. Aubrun and M. Béal, On AFT tree-shifts. Prépublication, 2011.

[. Aubrun and M. Béal, Tree algebra of sofic tree languages, RAIRO - Theoretical Informatics and Applications, vol.48, issue.4, 2011.
DOI : 10.1051/ita/2014018

[. Aubrun and M. Sablik, An order on sets of tilings corresponding to an order on languages, STACS 2009 : Proceedings of the 26th Annual Symposium on the Theoretical Aspects of Computer Science IBFI Schloss Dag- stuhl, pp.99-110, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00359625

[. Aubrun and M. Sablik, Simulation of effective subshifts by two-dimensional subshifts of finite type. Soumis Multidimensional effective s-adic systems are sofic, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01275179

[. Béal and J. Berstel, Søren Eilers et Dominique Perrin : Symbolic dynamics, 1006.

[. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, vol.0, issue.66, 1966.
DOI : 10.1090/memo/0066

A. Ballier, Computing (or not) quasi-periodicity functions of tilings, Second symposium on Cellular Automata, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542498

[. Boja?czyk, Effective characterizations of tree logics, Proceedings of the twenty-seventh ACM SIGMOD-SIGACT- SIGART symposium on Principles of database systems, PODS '08, pp.53-66, 2008.

[. Bojanczyk, Algebra for Tree Languages, CSL, p.1, 2009.
DOI : 10.1007/978-3-642-04027-6_1

[. Boja?czyk and I. Walukiewicz, Characterizing EF and EX Tree Logics, Theoretical Computer Science, vol.2, issue.1, pp.255-272, 2006.
DOI : 10.1007/3-540-49116-3_3

[. Collins, A simple presentation of a group with unsolvable word problem, Illinois Journal of Mathematics, vol.30, pp.230-234, 1986.

[. Coornaert and A. Papadopoulos, Symbolic dynamics and hyperbolic groups, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00126288

[. Ceccherini-silberstein and M. Coornaert, Cellular Automata and Groups, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00527516

[. Diestel, Graph Theory (Graduate Texts in Mathematics, 2005.

[. Durand, L. Levin, and A. Shen, Complex tilings, STOC '01 : Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp.732-739, 2001.
DOI : 10.1145/380752.380880

[. Durand, A. Romashchenko, and A. Shen, 1D Effectively Closed Subshifts and 2D Tilings, Second Symposium on Cellular Automata (JAC), pp.2-7, 2010.
DOI : 10.1007/978-3-642-15025-8_12

URL : http://arxiv.org/abs/1003.3103

[. Durand, A. Romashchenko, and A. Shen, Effective Closed Subshifts in 1D Can Be Implemented in 2D, Andreas Blass, Nachum Dershowitz et Wolfgang Reisig Ergodic Theory and Dynamical Systems, pp.208-2261061, 2000.
DOI : 10.1002/j.1538-7305.1961.tb03975.x

[. Fiorenzi, Cellular automata and finitely generated groups, Thèse de doctorat, 2000.

[. Fischer, Sofic systems and graphs, Monatshefte für Mathematik, pp.179-186, 1975.
DOI : 10.1007/BF01319913

M. H. Garzon, Cayley automata, Theoretical Computer Science, vol.108, issue.1, pp.83-102, 1993.
DOI : 10.1016/0304-3975(93)90231-H

[. Gajardo and J. Mazoyer, One Head Machines from a symbolic approach, GS98] Chaim Goodman-Strauss : Matching rules and substitution tilings, pp.34-47181, 1998.
DOI : 10.1016/j.tcs.2006.10.004

[. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory, vol.18, issue.4, pp.320-337, 1969.
DOI : 10.1007/BF01691062

[. Hedlund and M. Morse, Symbolic dynamics, American Journal of Mathematics, vol.60, issue.4, pp.815-866, 1938.

[. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics, vol.171, issue.3, pp.2011-2038, 2010.
DOI : 10.4007/annals.2010.171.2011

D. Kuske and M. Lohrey, Logical aspects of Cayley-graphs: the group case, Annals of Pure and Applied Logic, vol.131, issue.1-3, pp.263-286, 2005.
DOI : 10.1016/j.apal.2004.06.002

[. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, 1995.
DOI : 10.1017/CBO9780511626302

[. Marcus, Sofic systems and encoding data, IEEE Transactions on Information Theory, vol.31, issue.3, pp.366-377, 1985.
DOI : 10.1109/TIT.1985.1057037

[. Marcus and R. Karabed, Sliding-block coding for input-restricted channels, IEEE Transactions on Information Theory, vol.34, pp.2-26, 1988.

E. David, P. E. Muller, and . Schupp, The theory of ends, pushdown automata, and second-order logic, Theoretical Computer Science, vol.37, pp.51-75, 1985.

[. Nasu, Textile systems for endomorphisms and automorphisms of the shift. Memoirs of the, 1995.

[. Pansiot, Complexit?? des facteurs des mots infinis engendr??s par morphismes it??r??s, In Automata, languages and programming Lecture Notes in Computer Science, vol.172, pp.380-389, 1984.
DOI : 10.1007/3-540-13345-3_34

R. Pavlov and M. Schraudner, Classification of sofic projective subdynamics of multidimensional shifts of finite type, Transactions of the American Mathematical Society, vol.367, issue.5, 2010.
DOI : 10.1090/S0002-9947-2014-06259-4

[. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae, vol.40, issue.3, pp.177-209, 1971.
DOI : 10.1007/BF01418780

[. Rogers, Theory of Recursive Functions and Effective Computability, 1987.

J. Rotman, An Introduction to the Theory of Groups, 1994.
DOI : 10.1007/978-1-4612-4176-8

[. Sakarovitch, Elements of Automata Theory, 2009.
DOI : 10.1017/CBO9781139195218

[. Seidl, On the finite degree of ambiguity of finite tree automata, Fundamentals of computation theory, pp.395-404, 1989.
DOI : 10.1007/3-540-51498-8_38

H. Wang, Proving Theorems by Pattern Recognition - II, Bell System Technical Journal, vol.40, issue.1, pp.1-41, 1961.
DOI : 10.1002/j.1538-7305.1961.tb03975.x

[. Weiss, Subshifts of finite type and sofic systems, Monatshefte f???r Mathematik, vol.76, issue.5, pp.462-474, 1973.
DOI : 10.1007/BF01295322

]. R. Wil73 and . Williams, Classification of subshifts of finite type, Annals of Mathematics, vol.98, pp.120-153, 1973.