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Abstract

English abstract

This thesis deals with numerical studies of the properties and applications of

spatio-temporally coupled pulses, conical wavepackets and laser filaments, in

strongly nonlinear processes, such as harmonic generation and pulse reshap-

ing. We study the energy redistribution inside these wavepackets propagating

in gases and condensed media, in the linear and nonlinear regime. The en-

ergy flux constitutes a diagnostic for space-time couplings that we applied to

actual experimental results. We analyze the spectral evolution of filaments

in gases and derive the conditions for the generation of ultrashort pulses in

the UV range. We study high harmonic generation in a gas from ultrashort

conical wavepackets. In particular, we show how their propagation proper-

ties influence the harmonic output. We also study the interference of different

electron trajectories. Finally, we derive the shape of stationary Airy beams

in the nonlinear regime. For each topic, we present experimental results that

motivated our works or were motivated by our simulations.

French abstract

Cette thèse traite de l’étude numérique des propriétés et des applications des

impulsions spatio-temporellement couplées, paquets d’ondes coniques et fila-

ments laser, dans les processus fortement non-linéaires, comme la génération

d’harmoniques d’ordre élevé. Nous étudions la redistribution de l’énergie

au sein de ces paquets d’ondes en propagation linéaire et non-linéaire. Le

flux d’énergie constitue un diagnostic des couplages spatio-temporels que

nous avons appliqué à des résultats expérimentaux réels. Nous analysons

l’évolution spectrale des filaments dans un gaz et nous obtenons les condi-

tions pour la génération d’impulsions de quelques cycles dans le spectre
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UV. Nous étudions la génération d’harmoniques d’ordre élevé par des ondes

coniques ultra-courtes. En particulier, nous montrons comment leurs pro-

priétés de propagation influencent le champ généré dans la région X-UV.

Nous étudions aussi l’interférence des différents chemins quantiques cor-

respondant aux trajectoires électroniques. Enfin, nous obtenons la forme des

faisceaux d’Airy stationnaires dans le régime non-linéaire. Pour chaque sujet,

nous présentons des résultats expérimentaux qui ont motivé nos travaux ou

ont été motivés par nos simulations.

Italian abstract

Questo lavoro di tesi tratta dello studio numerico delle proprietà di impulsi

con accoppiamento spazio-temporale, pacchetti d’onda conici e filamenti la-

ser, e di loro applicazioni a processi fortemente non lineari, come generazio-

ne di armoniche di ordine superiore o rimodulazione di impulsi. Studiamo la

ridistribuzione dell’energia all’interno dei pacchetti d’onda in propagazione

lineare e non lineare. Il flusso della densità di energia costituisce una dia-

gnostica per accoppiamenti spazio-temporali, che abbiamo applicato a reali

risultati sperimentali. Analizziamo l’evoluzione spettrale di filamenti in gas e

deriviamo le condizioni per la generazione di impulsi UV ultracorti. Studia-

mo la generazione di armoniche di ordine superiore in gas da impulsi conici.

In particolare, mostriamo come le loro proprietà propagative influenzino il

risultato. Studiamo inoltre l’interferenza tra diversi cammini elettronici. De-

riviamo infine il profilo di fasci di Airy stazionari in regime non lineare. Per

ogni argomento, presentiamo i risultati sperimentali che hanno motivato il

nostro lavoro, o basati sulle nostre simulazioni.
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Introduction

This thesis deals with investigations in the field of extreme nonlinear optics

and ultrafast science. In particular, we investigate the role of spatio-temporal-

ly coupled laser pulses of a particular class, namely conical wavepackets, in

strongly nonlinear processes, such as harmonic generation and pulse reshap-

ing, by means of a series of numerical works.

The starting point for these works is the fact that nonlinear processes are in-

fluenced by both the property of the medium (e.g. dispersion, or nonlinear

response to the optical field) and the property of the light itself (e.g. phase

and amplitude curvatures, or intensity localization). In fact, by properly tun-

ing temporal and spatial property of a light pulse, it is possible to tailor the

output of processes such as the generation of new frequencies, or the modifi-

cation of the optical properties of the medium.

Such optimization, obtained by tuning the properties of the incoming light

pulse, spans over a very wide range of applications; recent examples are the

use of accelerating beams for efficient ultraviolet and soft X-ray generation

[1], the use of conical Bessel beams for micro- and nano-machining [2] or the

generation of long plasma channels [3, 4], the use of ultrashort laser pulses

filaments for enhanced stimulated Raman conversion [5].

In particular, we concentrate our attention on the properties of conical

wavepackets and their influence on highly nonlinear processes, such as fre-

quency generation. The ultimate goal is enhancement and control of these

processes, as well as fine tuning of the output radiation for what concerns

frequency range, spatial (e.g. divergence angle) and temporal (e.g. duration)

properties.

We also investigate the regime of ultrashort laser pulse filamentation, as a

way of spontaneous spatio-temporal reshaping and conical wavepackets gen-

eration.

The core of this thesis work is numerical. However, our simulations were
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performed with the aim of predicting or interpreting a series of experimental

results that supported our research. We therefore briefly present these exper-

imental results that motivated our works or were motivated by our simula-

tions. The experiments were performed by different groups which are among

the leaders in their respective research fields.

In chapter 1 we present the equation describing the propagation of optical

pulses and the approximations they are based on, referring in particular to two

main models: a nonlinear envelope equation and a field propagation equation,

which are at the basis of our simulations. We also illustrate and model the

main nonlinear effects experienced by high intensity ultrashort pulses. The

final sections are devoted to the description of the process of high harmonic

generation (HHG), as one of the most promising strongly nonlinear effect for

applications [6–8].

Chapter 2 presents the main topics of this thesis work, namely conical

wavepackets and the filamentation regime.

Conical wavepackets are the polychromatic counterparts of Bessel beams and

may be viewed as a continuous superposition of plane waves at different fre-

quencies propagating along a cone with a characteristic frequency-dependent

aperture angle. These wavepackets are thus inherently space-time objects, in

the sense that it is not possible to separately factorize their spatial and tempo-

ral distributions.

The filamentation regime is characterized by a dynamical propagation of ul-

trashort optical pulses, in which these pulses remain tightly focused over ex-

tended distances (much larger than the typical diffraction length) without the

help of any external guiding. We describe the main nonlinear effects which

determine such propagation regime and we illustrate the main related phe-

nomena and features. In particular, we describe the X-wave model, which

interprets the main features of a filament as the spontaneous generation of

stationary conical wavepackets.

In chapter 3 we develop a numerical tool for visualizing the information

stored in the phase of optical pulses. This allows for calculating the energy

density flux which represents the energy redistribution inside the wavepackets

during propagation in gases or transparent condensed media. We concentrate

on and analyze in detail the characteristic features of conical wavepackets by

studying this energy density flux in the linear and nonlinear regime. In the

nonlinear case, we focus on the filamentation regime.

We apply this numerical tool to actual experimental results, both in the linear

and nonlinear case. In the latter case, we provide evidence of spontaneous
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generation of conical wavepackets in the filamentation regime.

In chapter 4, we continue our studies on the filamentation regime. We

numerically analyze the spectral evolution of filaments in gases at different

pressures, starting from a series of experimental measurements of the super-

continuum generated in the filaments. We derive the phase profile at the third

harmonic component in view of possible phase compensation and compres-

sion of the emitted light, for the generation of ultrashort pulse in the ultravi-

olet range.

In chapter 5, we consider HHG in a gas, as another source of femtosec-

ond-attosecond pulses in the ultraviolet or soft X-ray spectral region. We

consider the effect of pump pulses shaped as ultrashort conical wavepackets.

We show that the phase and envelope velocity properties of conical wave-

packets influence the harmonic output and in particular we show that they act

as a gating mechanism for phase-matched selection of quantum path contri-

butions.

Quantum trajectory contribution in HHG is also the main topic of chap-

ter 6. In particular, we present a second series of numerical simulations based

on actual experimental data. Their analysis shows the evidence of inter-

ference between different electron trajectories, which may lead to complex

spatio-temporal structures in the harmonic emission.

Finally, we present in chapter 7 a specific class of monochromatic accel-

erating beams sharing properties of conical wavepackets: the nonlinear Airy

beams. These beams have the remarkable characteristic of preserving their

intensity shape along propagation over an accelerated (parabolic) trajectory

[9, 10].

We analytically and numerically derive the shape of stationary Airy-like beams

in the nonlinear regime featured by optical Kerr effect and multiphoton ab-

sorption. We study the conditions for their generation, and we present exper-

imental results confirming the theoretical profiles.

All numerical codes presented in this dissertation were developed and

tested during the Ph.D. thesis and were used for simulations and data anal-

ysis of experiments carried on by the different groups we had the chance to

collaborate with.
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Chapter 1

Propagation equations and

physical effects

In this chapter we will derive the numerical models describing the propaga-

tion of ultrashort laser pulses on which the works of this thesis were based

on. In particular, we will refer to two main models: a nonlinear envelope

equation for a carrier-envelope formulation and a Forward Maxwell Equation

for field propagation.

We will also describe the main nonlinear effects and the relative numer-

ical counterparts involved in the propagation of ultrashort laser pulses. We

will briefly go into detail about the process of high harmonic generation.

1.1 Equation governing the nonlinear propagation of

laser pulses

Starting from Maxwell-Faraday and Maxwell-Ampère equations in a non-

magnetic dielectric medium:

{∇×E = −∂tB
∇×B = µ0 (J+ ∂tD)

(1.1)

(1.2)

where ∂t• = ∂ • /∂t, E and B are the electric and magnetic fields, D is the

electric displacement field, J the total current density, and µ0 the permeability

of free space. The electric displacement field is defined as:

D = ǫ0E+P (1.3)
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with ǫ0 the vacuum permittivity and P the polarization density.

The polarization density may be decomposed into the sum of a linear and

a nonlinear component. For weak electric field the nonlinear term may be

neglected, while it becomes more and more relevant as the electric field in-

tensity increases. It is useful to write this decomposition in the temporal

Fourier domain:

P̂(x, ω) = ǫ0χ
(1)(ω)Ê(x, ω) + P̂NL(x, ω) (1.4)

where χ(1)(ω) is the linear electric susceptibility at frequency (angular fre-

quency) ω of the medium, which is assumed to be homogeneous. From

Eq. (1.4) the electric displacement is rewritten as:

D̂ = ǫ0n
2(ω)Ê+ P̂NL (1.5)

where n(ω) = (1 + χ(1)(ω))1/2 is the frequency-dependent refractive index

of the medium.

Applying the curl operator to Eq. (1.1) and combining its temporal Fourier

counterpart with Eq. (1.2) and Eq. (1.5), we obtain:

∇2Ê−∇
(
∇ · Ê

)
+ k2(ω)Ê = µ0

(
−iωĴ− ω2P̂NL

)
(1.6)

where k(ω) = ωn(ω)/c is the modulus of the wavevector at frequency ω
and c = (µ0ǫ0)

−1/2 = 299792458 m/s the speed of light in vacuum. The

corresponding wavelength (in vacuum) is λ = 2πc/ω.

If the electric field and the fields describing the medium response are as-

sumed to be linearly polarized in a direction transverse to the propagation di-

rection z (Ê = Êex, Ĵ = Ĵex, P̂NL = P̂NLex), the term ∇
(
∇ · Ê

)
may be

neglected. This approximation is called the scalar wave approximation and

it holds for loosely focused linearly polarized electric fields. Equation (1.6)

becomes:

(
∂2zz +∇2

⊥

)
Ê + k2(ω)Ê = µ0

(
−iωĴ − ω2P̂NL

)
(1.7)

where ∂2zz = ∂2/∂z2 and ∇2
⊥
= ∂2xx + ∂2yy.

The real fields E, J and P may be written as the real parts of the complex

fields E , J and P . Moreover, it is possible to include the current contribution

in the nonlinear polarization term, by the formal consideration that in the

time domain the current term is equivalent to a time derivative of a proper
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nonlinear polarization term J → ∂tPcur, which becomes in the frequency

domain: Ĵ → −iωP̂cur. In the following the nonlinear polarization density

term will be considered as the sum of the actual polarization density term and

this effective polarization contribution.

1.2 Unidirectional Propagation and Forward Maxwell

Equation

By performing a Fourier transform over the x, y transverse coordinates of

Eq. (1.7) for the complex fields we obtain:

(
∂2zz + k2z

)
Ẽ(kx, ky, z, ω) = −µ0ω2P̃NL(kx, ky, z, ω) (1.8)

where kx, ky represent the transverse components and

kz =
[
k2(ω)− k2x − k2y

]1/2

the longitudinal component of the wavevector, respectively. In the linear case,

when the left hand side of Eq. (1.8) is 0, the general solution for Ẽ is a super-

position of two solutions which represent waves propagating in the forward

and backward direction:

Ẽ = Ẽ(+) + Ẽ(−) = C(+)(kx, ky, ω) e
ikzz + C(−)(kx, ky, ω) e

−ikzz (1.9)

Note that in the nonlinear case the polarization density term acts as a cou-

pling between the two forward- and backward-propagating components. We

consider problems in ultrashort nonlinear optics where we can safely neglect

the backward propagating component. We are interested in “long” propaga-

tion distances compared to the typical laser-matter interaction length. This

requires an additional approximation, the unidirectional propagation approx-

imation, which consists in considering in the nonlinear term only the contri-

bution given by the forward propagating electric field. This requires that the

intensity of the backward-propagating field is negligible with respect to the

forward-propagating one, i.e. |Ẽ(−)| ≪ |Ẽ(+)|. If we formally decompose

the operator in the left hand side of Eq. (1.8) into:

(∂z + ikz) (∂z − ikz) Ẽ(kx, ky, z, ω) = −µ0ω2P̃NL(kx, ky, z, ω) (1.10)

the unidirectional approximation implies that (∂z + ikz) = 2ikz , where Ẽ
represents now only the forward propagating component and we are assuming

P̃NL as a function of this forward component Ẽ only.
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Going back to Eq. (1.7) for the complex fields, we can apply a similar

procedure:

[∂z + ik(ω)] [∂z − ik(ω)] Ê = −∇2
⊥Ê − µ0ω

2P̂NL (1.11)

and we can retrieve an unidirectional propagation equation under the assump-

tion, as proposed in Ref. [11]: [∂z + ik(ω)] ∼ 2ik(ω).
This implies a further approximation: the paraxial approximation. If we

write Eq. (1.11) in the linear case in the (kx, ky, z, ω) space (by performing a

Fourier transform over the transverse coordinates), under this approximation

we obtain:

∂zẼ(kx, ky, z, ω) = i

[
k(ω)−

k2x + k2y
2k(ω)

]
Ê(kx, ky, z, ω) (1.12)

the propagation term inside the brackets in the right hand side is simply an

expansion of kz =
[
k2(ω)− k2x − k2y

]1/2
for small transverse components.

The paraxial approximation therefore implies (k2x + k2y) ≪ k(ω). This is

equivalent to having small transverse propagation angles. In the nonlinear

case we obtain the so-called Forward Maxwell Equation (FME) [12]:

∂zÊ = i

(
1

2k(ω)
∇2

⊥ + k(ω)

)
Ê + i

µ0ω
2

2k(ω)
P̂NL (1.13)

It is useful to follow the propagation of optical pulses by changing the

reference system to the one moving at the velocity of the pulse itself, which

for a Gaussian pulse is the group velocity vg = 1/k′0, with k′0 = ∂ωk(ω =
ω0). The new coordinates thus are:




ζ = z

τ = t− z

v

(1.14)

(1.15)

where v is the velocity at which this new reference system is moving. This

transformation implies ∂z = ∂ζ − (1/v)∂τ and ∂t = ∂τ . In the temporal

Fourier domain the reference system change is then:



∂τ = −iω
∂ζ = ∂z − i

ω

v

(1.16)

(1.17)

Equation (1.13) becomes:

∂ζ Ê = i

(
1

2k(ω)
∇2

⊥ + k(ω)− ω

v

)
Ê + i

µ0ω
2

2k(ω)
P̂NL (1.18)
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1.3 Envelope Equations

Starting from Eq. (1.7) for the complex fields, it can be written in the moving

reference frame, Eqs. (1.16) and (1.17):

(
∂2ζζ + 2i

ω

v
∂ζ + k2(ω)− ω2

v2

)
Ê = −∇2

⊥Ê − µ0ω
2P̂NL (1.19)

We may now decompose the complex electric field into carrier and en-

velope as

E(x, y, z, t) = A(x, y, z, t) exp (−iω0t+ ik0z)

where k0 = ω0n(ω0)/c is the modulus of the wavevector at ω0, which is as-

sumed to be the central frequency of the pulse. In terms of (ζ, τ) coordinates:

E(x, y, ζ, τ) = A(x, y, ζ, τ) exp [−iω0 (τ + ζ/v) + ik0ζ] (1.20)

While its temporal Fourier transform is (except for renormalization factors):

Ê(x, y, ζ, ω) =
[
Â(x, y, ζ, ω) ∗ δ(ω − ω0)

]
· exp

[
i
(
k0 −

ω0

v

)
ζ
]

(1.21)

= Â(x, y, ζ, ω = Ω) · exp
[
i
(
k0 −

ω0

v

)
ζ
]

(1.22)

where ∗ denotes the convolution operator and Ω = ω − ω0. The temporal

spectrum of the pulse, formerly centered at ω0, is now centered at 0.

Similarly, the complex polarization density may be written in terms of enve-

lope and carrier as

P̂NL(x, y, ζ, ω) = N̂(x, y, ζ, ω = Ω) exp [i (k0 − ω0/v) ζ]

For simplicity of notation, we will use the same notation for Â(x, y, ζ, ω)
and Â(x, y, ζ, ω = Ω), while one should remember to use the former or

the latter in the context of complex field or complex envelope, respectively,

remembering that this implies ∂τ ↔ −iω in the field context and ∂τ ↔ −iΩ
in the envelope context when performing a temporal Fourier transform.

By inserting Eq. (1.22) into Eq. (1.19) we obtain the envelope equation:

[
∂2ζζ + 2ik0Û∂ζ +∇2

⊥

]
Â+

(
k2 − k20Û

2
)
Â = −µ0(Ω + ω0)

2N̂ (1.23)

where we set v = vg = 1/k′0, assuming a reference system moving at the

Gaussian pulse group velocity, and Û(Ω) = 1+ k′0Ω/k0 is called space-time
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coupling operator.

Equation (1.23) may be rewritten as:

2ik0Û∂ζÂ = −∇2
⊥Â− 2k0Û

(
k − k0Û

)
Â +

−
[(
k − k0Û

)2
+ ∂2ζζ

]
Â− µ0(Ω + ω0)

2N̂ (1.24)

and k can be expanded as a function of Ω:

k =
+∞∑

j=1

k
(j)
0

j!
Ωj , with k

(j)
0 =

∂jk

∂ωj

∣∣∣∣
(ω=ω0)

(1.25)

We can neglect the third term of the right hand side of Eq. (1.24) with the

following assumptions:

• we consider a narrow spectral bandwidth, so that the O(Ω4) term (k −
k0Û)2 may be neglect with respect to theO(Ω2) term 2k0Û

(
k − k0Û

)
;

• we neglect the second order derivative ∂2ζζÂ with respect to the first

order term 2ik0Û∂ζÂ; this approximation, together with the first one,

implies |∂ζÂ| ≪ |k0Â|, which means that the envelope of the field

evolves over a propagation distance scale greater than k−1
0 = λ/(2πn0),

hence the name slowly evolving envelope approximation (SEEA) [13].

These assumptions in the nonlinear case are at the base of the slowly evolving

wave approximation (SEWA) [14].

By neglecting only the second derivative with respect to ζ we reduce to

an Extended Nonlinear Schrödinger model, which has proved a valid tool

for the simulation of ultrashort laser pulses and associated dynamics [15].

By performing the carrier-envelope expansion with the introduction of the

exp(ik0z) term, and by neglecting the second order derivative ∂2ζζÂ, we are

de facto assuming a unidirectional propagation and a paraxial approximation.

True non-paraxial model in the form of this equation may be implemented

only in the transverse coordinate Fourier domain.

By keeping only the highest order term in the Ω-expansion, i.e. by adopt-

ing the slowly varying envelope approximation (SVEA), we obtain the equa-

tion:

∂ζÂ = i
1

2k0
∇2

⊥Â+ i
k′′0
2
Ω2Â+ i

ω0

2ǫ0n0c
N̂ (1.26)
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which, in the temporal τ domain, becomes:

∂ζA = i
1

2k0
∇2

⊥A− i
k′′0
2
∂2ττA+ i

ω0

2ǫ0n0c
N (1.27)

In the case of Kerr nonlinearity, which will be discussed in section 1.5.1, this

equation with the additional Kerr term is usually referred to as the Nonlin-

ear Schrödinger Equation (NLS). This equation, although its approximations

(which in general are justified provided that the spectrum does not become

too broad), has broad applications for simulating the propagation of optical

pulses, see for example [16].

We will now introduce and discuss the linear and nonlinear effects and

relative equation terms involved in the propagation of ultrashort laser pulses.

1.4 Linear behavior

The linear behaviors for the field FME and the envelope NLS equation are:

∂ζ Ê = i
1

2k(ω)
∇2

⊥Ê + i
(
k(ω)− ω

v

)
Ê (1.28)

∂ζÂ = i
1

2k0
∇2

⊥Â+ i
k′′0
2
Ω2Â (1.29)

In particular, the first term in the right hand side represents diffraction,

while the second one represents dispersion of the medium through k = k(ω),
or the second order-only dispersion in the envelope NLS case. The main dif-

ference between the first terms of the two equations is the fact that in the

second one the approximation Û ∼ 1 was carried on. This operator repre-

sents the space-time focusing operator, i.e. the fact that wave components at

different frequencies exhibit different typical diffraction lengths.

For the monochromatic Gaussian case:

E = A0 exp(−(x2 + y2)/w2
0 + i(k0z − ω0t))

this typical length, called Rayleigh range, is indeed proportional to the wave-

vector at the beam frequency, and to the square of the beam width: LDIFF =
k0w

2
0/2.

Because of the dispersion relation, wavepackets centered at different fre-

quencies will exhibit different group velocities. Since the group velocity at

frequency ω is v = 1/k′(ω), this frequency-dependent variation of the group
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velocity mainly comes from the second derivative k′′0 . This effect is called

group velocity dispersion (GVD) and it is the responsible of a progressive

chirp of optical pulses during propagation. In particular, for normal GVD

dispersion (k′′0 > 0), during propagation an initially transform-limited pulse

gains a positive chirp, where lower frequencies concentrates in the leading

part and higher frequencies in the trailing part. For negative GVD dispersion

the pulse develops negative chirp, with opposite frequency distribution. For

a Gaussian pulse:

E = A0 exp(−t2/T 2
p + i(k0z − ω0t))

the typical length of GVD is proportional to the square of the pulse dura-

tion and inversely proportional to the second derivative of k(ω) at central

frequency ω0: LGVD = T 2
p /(2k

′′
0).

1.5 Nonlinear terms

We will now briefly report the most common case for the nonlinear terms we

may encounter in the propagation of optical pulses and their representation.

1.5.1 Kerr effect

The optical Kerr effect arises when the nonlinear polarization density is pro-

portional to the third power of the electric field. In particular, when the inten-

sity of the electric field is high enough that the medium response is no longer

linear, this third order term is the first to appear in materials with central

symmetry (the E2 term is forbidden for symmetry constraint).

The optical Kerr effect gives rise to two main effects:

• third harmonic generation;

• self-phase modulation and self-focusing.

Indeed, if we write the electric field in a carrier-envelope decomposition:

E = 1/2 · A exp [ik0z − iω0t] + C.C., the third order polarization PNL =
ǫ0χ

(3)E3 becomes:

PNL = ǫ0
χ(3)

8

[
A3ei3k0z−i3ω0t + 3|A|2Aeik0z−iω0t +C.C.

]
(1.30)

The first term of the right hand size of Eq. (1.30) describes a wave oscillat-

ing at 3ω0 and is responsible for third harmonic generation, while the second
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one may be interpreted as an effective linear polarization term in which the

refractive index is proportional to the intensity of the electric field.

This effect is usually written as (see for example [17]):

n(I) = n0 + n2I(r, t) (1.31)

where n2 is a coefficient which depends on the specific medium (in general it

is possible to consider n2 as a complex number; the following considerations

are for the real part of this coefficient, usually positive).

By writing Eq. (1.30) in terms of the complex polarization density and consid-

ering only the term oscillating at frequency ω0, by using the relation between

the squared modulus of the field and the light intensity I = ǫ0n0c|E|2/2, we

have PNL = (3/2)χ(3)IA/(cn0) = ǫ0ǫNL(I)A.

The refractive index is

nNL = (1 + χ(1)(ω0) + ǫNL(I))
1/2 ≃ n0 + ǫNL(I)/(2n0)

with n0 the (linear) refractive index at ω0, we thus obtain the relation: n2 =
3χ(3)/(4ǫ0cn

2
0).

By means of this relation is then possible, from the values for n2, to recon-

struct the relative value of χ(3), which can also be used in the field equation.

The Kerr term in the envelope equation is:

∂ζA = i
1

2k0
∇2

⊥A− i
k′′0
2
∂2ττA+ i

ω0

c
n2IA (1.32)

where the third harmonic contribution has been neglected.

This intensity-dependent variation of n occurs in a very short time (of

the order of the electronic cloud response time ∼10−16 s) and the light itself

is affected by this modification of the refractive index in the form of a self-

modulation of the temporal or spatial phase.

A plane wave traveling along the z axis for a length L suffers a phase

variation:

δϕ = δϕ0 +
ω0

c
n2IL

where δϕ0 is the phase variation in the absence of nonlinear effects.

The third-order nonlinearity thus determines a phase delay proportional to

the instantaneous intensity of the wave, that, in the most general case, has a

spatio-temporal distribution I = I(r, t). This determines the phenomena of

self-phase modulation and self-focusing.
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Self-phase modulation - In the case of a light pulse centered at frequency

ω0, it is possible to consider the instantaneous frequency along the pulse as

the first derivative of the phase ϕ(t) with respect to time. For a propagation

along a distance L the instantaneous frequency in the presence of the Kerr

nonlinearity is given by:

ωinst = ∂t(ω0t− δϕ) = ω0 −
ω0

c
n2L∂tI (1.33)

Since the intensity of a light pulse does exhibit a temporal profile, Eq. (1.33)

determines the generation of new frequencies: this process is called self-

phase modulation (SPM).

In particular, since n2 is usually positive, the leading part (∂tI > 0) generates

lower frequencies, while higher frequencies are generated in the trailing part

of the pulse.

Self-focusing - If one considers a Gaussian transverse intensity profile

inside Eq. (1.31) (n2 > 0), the refractive index in the center of the beam,

where the intensity is higher, is greater than the index seen by the tails of

the beam: the material acts as a focusing lens, with the difference that the

effect is cumulative in propagation. This spatial counterpart of the self-phase

modulation leads to the so-called self-focusing (SF) for n2 > 0 and self-

defocusing for n2 < 0.

The characteristic length for spatial self-phase modulation is defined as

the length over which the accumulated phase, measured by the B-integral

(B = (ω0/c)
∫ L
0 n2Idz), varies by a factor of one:

LSF =
c

n2ω0I0

with I0 the peak intensity.

An intense collimated beam traveling through a Kerr medium starts to

contract because of self-focusing; this determines an increase of the peak

intensity and the effect becomes stronger and stronger (the focal length of the

“effective” lens becomes smaller). Since the diameter of the beam decreases

also diffraction becomes stronger.

In the case of a continuous laser Gaussian beam, self-focusing overcomes

diffraction if the initial power Pin is greater than a critical threshold power:

Pthr =
3.77πn0
2k20n2
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In this case the beam collapses (for 2-dimensional spatial propagation) after

a distance given by the semi-empirical formula [18]:

LC(Pin) =
0.367LDIFF[(√

Pin/Pthr − 0.852
)2

− 0.0219

]1/2

where LDIFF = k0w
2
0/2 is the Rayleigh range associated to the central fre-

quency of the pulse.

1.5.2 Nonlinear absorption

The collapse predicted for the pure Kerr case is prevented in real experiments

by saturation mechanisms, which lower the total energy (and therefore limit

the intensity) of the beam and/or defocus the beam itself.

In particular, close to the collapse point, the intensity becomes high enough

to trigger ionization of the medium by means of nonlinear absorption. Mul-

tiphoton absorption is the process in which an electron absorbs two or more

photons and achieves an excited state (passing through a “virtual” state which

does not correspond to any electronic or vibrational state). If the energy ab-

sorbed is high enough to make it a free electron the process is called mul-

tiphoton ionization. The number of photons of frequency ω0 required for

ionization is K = ⌈Ui/~ω0⌉ (where ⌈· · · ⌉ is the ceiling function) with Ui the

ionization potential or band-gap for condensed media (for example, K = 8
for air at wavelength λ0 = 800 nm).

Nonlinear absorption is described by a current J such that the averaged

dissipated power corresponds to the one necessary for the optical field ion-

ization of the medium. In general, ionization is described by an intensity-

dependent ionization rate W (I).
Multiphoton ionization is just one particular case of ionization regime, with

rate W (I) = σKI
K , and σK the cross section for this process.

The energy conservation condition reads:

1

2
J · E∗ =W (I)K~ω0(ρ0 − ρ) (1.34)

where ρ0 is the initial density of neutral atoms and ρ is the free electron

density.

The current is therefore:

J =
W (I)

I
Kn0ǫ0c~ω0(ρ0 − ρ)E (1.35)
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Equation (1.35) for the multiphoton absorption case in the envelope formula-

tion is then:

Jenv = n0ǫ0cβ
(K)

(
1− ρ

ρ0

)
IK−1A (1.36)

where β(K) = σKK~ω0ρ0 is the multiphoton absorption cross section. The

corresponding term in the envelope equation, derived by means of the formal

identity Ĵ = iP̂NL/ω becomes:

∂ζA = i
1

2k0
∇2

⊥A− i
k′′0
2
∂2ττA− β(k)

2

(
1− ρ

ρ0

)
IK−1A (1.37)

1.5.3 Plasma effects

The plasma of free electrons generated by the high intensity peak contributes

to the arrest of the collapse by two main processes:

• it locally reduces the refractive index [19];

• it can be further accelerated by the electric field in an inverse Brems-

strahlung effect, therefore lowering the intensity by means of this ab-

sorption effect [20].

The effect of plasma may be treated following the Drude model, in which

the plasma of free electrons is treated as a fluid. The corresponding current

obeys the equation:

∂tJ = −J
τc

+
q2e
me

ρE (1.38)

where τc is the electron collision time, ρ is the electron density, qe and me

are the electron charge and mass, respectively (in condensed media this me

is replaced by the reduced mass).

In the temporal Fourier space Eq. (1.38) gives:

Ĵ =
τcq

2
e

me

1 + iωτc
1 + ω2τ2c

ρ̂E (1.39)

The corresponding term in Eq. (1.18) is:

− ω

2k(ω)ǫ0c2
Ĵ = −σ(ω)

2
ρ̂E (1.40)
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with

σ(ω) =
ω0

n(ω)cρc

ω0τc (1 + iωτc)

1 + ω2τ2c
(1.41)

and ρc = ǫ0meω
2
0/q

2
e the critical plasma density above which the plasma be-

comes opaque to the laser beam at the reference frequency ω0.

The real and imaginary part of σ(ω), Eq. (1.41), account for plasma ab-

sorption (real part), and plasma defocusing and phase modulation (imaginary

part).

When ω0τc ≫ 1, for example in gases where at λ0 = 800 nm, τc ∼
200 fs, we can approximately consider only the imaginary term of Eq. (1.41).

In the approximation ω ≃ ω0, this leads to a local change of the refractive

index:

n ≃ n0 −
ρ(r, t)

2n0ρc
(1.42)

Since the density of free electrons is higher in the central part of the beam

(where intensity is higher), the overall effect is that plasma acts as a defocus-

ing lens. This process involves especially the trailing part of the pulse [21]

where the plasma density is higher.

The generation of plasma also contributes to spectral broadening and shift

toward higher frequencies, since the instantaneous frequency may be written

as:

ωinst = ∂tϕ = ω0 +
ω0L

2n0cρc
∂tρ (1.43)

The free electron density evolves according to the rate equation:

∂tρ =Wofi(I) (ρ0 − ρ) +Wava(I)ρ (1.44)

where the first term in the right hand side represents optical field ioniza-

tion, described in the previous section, while the second one accounts for

avalanche ionization,Wava(I) = ℜ{σ(ω0)} I/Ui, in which ℜ{σ(ω0)} is the

cross section for inverse Bremsstrahlung at the central frequency ω0, given by

Eq. (1.41), and Ui is the ionization potential. In this case recombination of

the electrons was neglected.

1.5.4 Raman effect

The optical Kerr effect has two contributions: an electronic response with

a typical time response below 1 fs, described in section 1.5.1, and a slower

response (∼ ps or hundreds of ps) due to the excitation of rotational and/or
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vibrational levels of the molecules. This delayed component is called Raman

effect. Because of the response time scale, this effect is weak for shorter

pulses, while it becomes more important for long pulses (& 1 ps).

Despite having a different origin with respect to the actual Kerr effect, the

Raman contribution appears as a third order term in the polarization density,

thus making it difficult to distinguish from the former effect in the case of

relatively long pulses.

The Raman response is effectively described as a term:

PNL ∝ QR(t)E (1.45)

with the Raman response function QR obeying an equation of forced and

damped oscillator:

∂2ttQR + 2Γ∂tQR +
(
ω2
R + Γ2

)
QR =

(
ω2
R + Γ2

)
|E|2 (1.46)

where Γ is a phenomenological damping rate and ωR the fundamental ro-

tational frequency. We also require QR, ∂tQR → 0 for t → −∞ (i.e. no

Raman response before the interaction of the medium with the light pulse).

Equation (1.46) has solution:

QR(t) =

∫ t

−∞

R(t− ϑ) |E(x, y, z, ϑ)|2 dϑ (1.47)

with

R(t) =
ω2
R + Γ2

ωR
exp (−Γt) sin (ωRt)

The nonlinear polarization for the Kerr and Raman term therefore reads as:

i
ω0

2ǫ0n0c
N = i

ω0

c
n2

[
(1− α)I(x, y, ζ, τ) +

+ α

∫ τ

−∞

R(τ − ϑ)I(x, y, ζ, ϑ) dϑ

]
A (1.48)

where 0 ≤ α ≤ 1 is a phenomenological parameter which describes the

fraction of third order nonlinearity pertaining to the Raman effect.

1.5.5 Self-steepening

The process of self-steepening occurs because of the intensity-dependent re-

fractive index: this implies that the velocity of the intensity peak of the pulse
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is smaller than the velocity of the wings, which determines a steep edge in

the trailing edge since the back part of the pulse catches up the peak [22]. A

shock front is formed in correspondence of this edge and self-phase modula-

tion brings an increase in the generation of bluer frequency.

The self-steepening effect is mathematically described by the frequency-

dependence of the prefactor of the nonlinear term in Eqs. (1.18) and (1.24). If

we keep all the dispersion order, and the first order Ω factors in the envelope

equation, we obtain an extended nonlinear envelope equation, widely used

for simulating the filamentation regime [15]:





Û∂ζÂ =
i

2k0
∇2

⊥Â+
ik0
2

(
k2(ω)

k20
− Û2

)
Â+ N̂(A)

N(A) = i
ω0n2
c

T 2

[
(1− α)I + α

∫ τ

−∞

R(τ − ϑ)I(ϑ) dϑ

]
A +

− T
β(K)

2

(
1− ρ

ρ0

)
IK−1A− σ(ω0)

2
ρA

(1.49)

(1.50)

where the operators Û(Ω) = 1 + (k′0Ω/k0) and T̂ (Ω) = 1 + (Ω/ω0), with

corresponding expressions in the direct space U = 1 + i(k′0/k0)∂τ and T =
1+(i/ω0)∂τ , represent space-time focusing and self-steepening, respectively.

1.5.6 Optical field ionization

As already mentioned in section 1.5.2, multiphoton absorption is only a par-

ticular process by which ionization may happen. For example, for intense

electric fields the ionization is usually regarded to happen through a tunnel-

ing process.

In general, when the intensity of light interacting with matter is high enough,

the strength of the electric field of the light may become comparable with the

atomic electric field, so that the contribution from the incoming light to the to-

tal potential experienced by the electron V (r, t) = −q2e/(4πǫ0r)+E(t) ·r (r
radial coordinate and r position with respect to the atomic nucleus) severely

distorts the Coulomb potential. A potential barrier is created (see Fig. 1.1 for

a schematic representation) and the electron can escape the binding potential

by mean of a tunneling effect.

A theoretical description of ionization rates for such a process was first

proposed by Keldysh [23] in the quasi-static limit, i.e. when the time scale
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Figure 1.1: Schematic representations of three ionization regimes. a) multiphoton ion-

ization, when γ ≫ 1. b) tunnel regime, when the incoming field is strong enough to

significantly modify the Coulomb potential and the laser frequency is low enough such that

the electron can respond to this changing potential, γ ≪ 1; in this case ionization can

be understood as the tunneling through a static potential wall. c) above-barrier ionization,

when the field is high enough to suppress the potential barrier.

for ionization is much faster than the period of the incoming laser light. In

particular, within this framework, one may identify two different regimes,

depending on the Keldysh parameter:

γ =

√
Ui

2Up
Up =

q2eE
2
0

4meω2
0

(1.51)

where Up is the ponderomotive energy, depending on the amplitude E0 and

frequency ω0 of the electric field.

When γ ≫ 1 the ionization occurs mainly due to multiphoton absorption,

while in the opposite case γ ≪ 1 tunneling ionization is the dominant pro-

cess. Indeed, for very low light intensities the Coulomb potential is essen-

tially not affected by the incoming electric field, while for high oscillation

frequencies the quasi-static treatment does not hold and the motion of the

electron will be governed by a cycled-average of the laser field rather than

tunneling in a single cycle. In the limit case in which the field of the laser

is high enough to suppress the barrier [Fig. 1.1(c)], the electron is classically

“ripped off” the atom in an above-barrier ionization [24].

The original Keldysh formulation for the hydrogen atom was then gener-

alized in the works of Perelomov, Popov and Terent’ev (PPT) [25–27], while

the tunnel limit was investigated and a general formula for arbitrary atoms

and initial electronic states was obtained by Ammosov, Delone and Krainov

(ADK) [28].

The cycled averaged ADK tunnel ionization rates for a sinusoidal electric

field E(t) = E0 cos(ω0t) read as, with all quantities expressed in atomic
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units (~ = me = qe = 1):

WADK(E0) =

(
3e

π

)3/2 Z2

n∗9/2

(
4eZ3

n∗4E0

)2n∗−
3

2

exp

(
− 2Z3

3n∗3E0

)

(1.52)

where e = 2.7182818 . . . is Euler’s number (or Napier’s constant), Z is the

charge of the resulting ion, n∗ = Z/(2Ui)
1/2 is the effective principal quan-

tum number. The instantaneous rate WADK is linked to the averaged rate,

WADK , by substituting E0 with |E(t)| and (in atomic units):

WADK(E(t)) =

(
3 |E(t)|
π(2Ui)3/2

)−1/2

WADK(E(t)) (1.53)

In general the ionization rates do not depend on the relative sign of the

electric field, therefore we will write indiscriminately WADK(E(t)) or

WADK(E2(t)).
By mean of the ADK expression of W (E2), or the more general Keldysh-

PPT rate revised by Ilkov, Decker and Chin [29], it is possible to evaluate non-

linear absorption and plasma density evolution from Eqs. (1.35) and (1.44),

by considering the instantaneous field (in proper units) instead of the cycled-

averaged intensity in the rate expression. It is worth noting that the ADK

formulation has been shown to remain valid close to the limit γ ≪ 1, and to

be still valid up to γ . 0.5 [29].

Figure 1.2 shows the ionization rates for oxygen and argon computed

from the full Keldysh-PPT formulation (in the O2 case with a prefactor for di-

atomic molecules from Ref. [30]), for λ0 = 800 nm. Ionization rates from the

complete Keldysh-PPT formulation are shown by the continuous curve for

oxygen and by the dash-dotted curve for argon. The figure clearly shows that

the multiphoton ionization rates ∝ IK for oxygen (blue dotted line, K = 8
at λ0 = 800 nm) are a good approximation of the full rates for intensities

lower than ∼ 5×1012 W/cm2, while the ADK rates (green dashed line) over-

lap with the Keldysh-PPT formulation for intensities above 4× 1013 W/cm2.

The Keldysh-PPT curve for argon is similar, with a behavior dominated by

multiphoton absorption (K = 11) at lower intensities and a tunnel regime

described by the ADK rates for higher intensities.

The Keldysh parameter γ = 1 corresponds to I = 1.3× 1014 W/cm2 for the

argon case and 1.1× 1014 W/cm2 for the oxygen case.
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Figure 1.2: Cycled-averaged ionization rates for oxygen (continuous curve) and argon

(dash-dotted curve) as a function of laser intensity at λ0 = 800 nm. By comparison, the

blue dotted line and the green dashed line show the multiphoton ionization rate and the

ADK rate for oxygen, respectively. In brackets the relative multiphoton order approximat-

ing the behavior before entering the tunnel regime.

1.6 High harmonic generation

High harmonic generation (HHG) is a highly nonlinear process in which laser

light at frequency ω0, usually in the near infrared region, generates a series

of integer odd-multiples of ω0 during the interaction with a medium, with a

final spectrum in the shape of a frequency comb [Fig. 1.3(a)] spanning from

the visible range to the extreme ultraviolet (XUV), or even soft X-rays [31].

HHG in gas was first reported in the late 1980s [32, 33]. A striking feature

in this process was the fact that, instead of a rapid decrease in efficiency

with increasing harmonic order, the spectrum exhibited an initial decrease in

agreement with a perturbative approach, then a relatively flat plateau, i.e. an

extended spectral region with equally intense harmonics spanning over many

orders, and finally an abrupt cut-off, as shown in Fig. 1.3(b) and 1.3(c).

A first, semi-classical approach which explained this experimentally found

behavior was proposed in 1993 by Corkum [34] and Kulander, Schafer, Krause

[35], known as the three-step model.
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Figure 1.3: Typical examples of harmonic spectra, from [33]. a) HHG from a 10 Torr Xe

gas jet, showing the frequency comb of odd harmonics between the 9th and the 21st. b)

Relative intensity of the harmonics generated in Kr at a laser intensity of ∼ 3×1013 W/cm2

and c) for Ar gas. The arrows indicate the highest harmonic orders observed in the two

cases. The red dashed lines approximatively highlight the initial perturbative region (rapid

intensity decrease), the plateau of almost equally intense harmonics and the cutoff region.

1.6.1 The three-step model

The three-step model, as the name suggests, describes the process of HHG as

a sequence of three main steps: ionization, acceleration in the electric field

and recollision.

Ionization. This step has already been discussed in section 1.5.6. In par-

ticular, when the intensity of the incoming light is high enough, the electron

can escape the binding potential through a tunnel ionization process. The

electron is then treated as a free particle. In fact, this process is more likely

to happen when the absolute electric field of the laser light is close to its peak

during the optical cycle.

Acceleration. After the electron has been ionized, it can be approximately

treated as a free particle subject to the electric field of the laser light. In

the classical treatment, the electron can be considered as a classical particle

subject to the (scalar) electric field E(t) = E0 cos(ω0t + φ), where φ is

the phase of the electric field when the electron is ionized; if the electron is

supposed to appear in the continuum at x = 0 with zero initial drift velocity,
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its velocity and position are governed by the equations:





v(t) =

∫ t

0
−qeE(τ)

me
dτ =

= − qeE0

meω0
[sin(ω0t+ φ)− sin(φ)]

x(t) =

∫ t

0
v(τ) dτ =

=
qeE0

meω2
0

[cos(ω0t+ φ)− cos(φ) + ω0t sin(φ)]

(1.54)

(1.55)

The amplitude of position oscillation x0 = qeE0/(meω
2
0) (ponderomotive ra-

dius) for typical laser intensities ∼ 1014 W/cm2 is of the order of the nanome-

ter, larger than typical atomic radius, thus confirming the validity of the ap-

proximation of the electron as a free particle inside the laser field.

From Eq. (1.54) it is easily seen that the ponderomotive energy Up is the aver-

age kinetic energy acquired by the electron for φ = 0, i.e. when it is ionized

in correspondence of the peak of the electric field. The time-independent term

in Eq. (1.54) is a drift velocity, which can prevent the trajectory to come back

to the initial position x = 0, as shown in Fig. 1.4(a), where the electron can

recombine with the parent ion and emit, in the third step of the HHG process,

the energy acquired under the influence of the field plus the ionization poten-

tial Ui. Only the first two encounters of the electron with the ion actually lead

to significant photon emission; this is due to the quantum-mechanical nature

of the electron, whose wavepacket undergoes diffraction during propagation

(and the overlap with the atom becomes smaller).

Recollision. As already said, when electron during its trajectory encoun-

ters again the ion, it can recombine and emit the kinetic energy Ekin it ac-

quired during propagation together with the ionization potential as a photon

of frequency ωH :

~ωH = Ekin + Ui (1.56)

By combining Eqs. (1.54) and (1.55) it is possible to evaluate the kinetic

energy at the first recombination time (i.e. when x(t) = 0), as shown in

Fig. 1.4(b). In particular, the kinetic energy reaches a maximum ≃ 3.17Up

corresponding to the initial electric field phase φ ≃ 0.31333 rad (φ ≃ 18◦).

The maximum emitted photon energy is thus:

~ωH = 3.17Up + Ui (1.57)



1. Propagation equations and physical effects 25

Figure 1.4: a) Trajectories of a classical electron subject to an oscillating electric field:

distance (normalized to the amplitude of oscillations x0) versus time (normalized by ω0),

for different initial phase φ of the electric field. Only some of the trajectories re-encounter

the atom at the initial position x = 0 (underlined by the yellow circles). b) Kinetic energy

[proportional to the square of the slope values of curve a)] at the first re-encounter points

[intersection points with x = 0] for the classical trajectories, as a function of the initial

phase of the field. A maximum of ∼ 3.17Up is reached at φ ≃ 0.31333 rad ≃ 18◦.

This corresponds to the maximum photon frequency emitted and therefore it

describes the cut-off. This cut-off prediction is in very good agreement with

the experiments [34]. Equation (1.57) is thus called cut-off law and it was

empirically derived before its theoretical demonstration [36].

Since the three-step process and the associated photon emission happens

every half-cycle of the laser field (the maximum ionization occurs around the

maxima of the absolute value of the field), the output signal will comprise a

series of light bursts separated by roughly half an optical period. The output

spectrum will thus consist in a series of discrete peaks with separation 2ω0.

These will be odd multiples of ω0 because of inversion symmetry.

Another implication of the three-step model is that HHG may occur only

for linearly polarized electric field. Under an elliptically polarized field in-

deed the classical electron is no more able to return to its initial position,

therefore “missing” the parent ion. From a quantum-mechanical point of

view this corresponds to a reduced overlap of the electron wavepacket with

the atom. This effect has been observed experimentally, demonstrating a

rapid decrease of harmonics intensity for increasing ellipticity [37, 38].

1.6.2 Quantum-mechanical model

A fully quantum-mechanical treatment of the classical three-step model was

introduced by Lewenstein et al. in 1994 [39], and a derivation for elliptical
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polarization by Antoine et al. in 1996 [40].

This quantum model is called strong field approximation (SFA). It eval-

uates the atomic dipole response µ(t) for one single electron wavefunction

(single-active electron approximation), and the associated nonlinear polar-

ization is then PNL = [ρ0 − ρ(t)]µ(t), with [ρ0 − ρ(t)] the density of neutral

atoms.

The model is based upon the following approximations:

• the contribution to the evolution of the system mainly comes from |0〉,
the ground state of the atom;

• the depletion of the ground state can be neglected;

• after ionization, in the continuum the electron is treated as a free parti-

cle (neglecting the Coulomb potential).

The Schrödinger equation for the electron wavefunction |ψ〉 is, in atomic

units:

i∂t|ψ(r, t)〉 =
[
−1

2
∇2 + VC(r)− E0 cos(ω0t)x

]
|ψ(r, t)〉 (1.58)

where VC(r) is the atomic Coulomb potential, and the light electric field is

linearly polarized along x-direction.

Under the previous assumptions, the time-dependent wavefunction can

be expanded as

|ψ(t)〉 = exp(iUit)

(
a(t)|0〉+

∫
d3vb(v, t)|v〉

)
(1.59)

where a(t) is the amplitude of the ground state, which is assumed to be a(t) ≃
1 since the depletion is neglected; b(v, t) is the amplitude of the continuum

state |v〉 characterized by momentum v. Free oscillations of the ground state

were factored out.

Following Ref. [39], the x-component of the dipole moment µ(t) =
〈ψ(t)| − x|ψ(t)〉 reads:

µ(t) = i

∫ t

0
dt′
∫

d3p E0 cos(ω0t
′) × dx(p−A(t′))︸ ︷︷ ︸

(a)

×

× exp
(
−iS(p, t, t′)

)
︸ ︷︷ ︸

(b)

× d∗x(p−A(t))︸ ︷︷ ︸
(c)

+ C.C. (1.60)
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where A(t) = −
∫ t
−∞

dt′ E(t′) is the vector potential of the laser field, p =
v +A(t) is the canonical momentum; dx(v) is the x-component (parallel to

the polarization axis) of the atomic dipole matrix element for the bound-free

transition d(v) = 〈v|r|0〉. S is the so-called quasi-classical action:

S(p, t, t′) =

∫ t

t′
dt′′

(
[p−A(t′′)]2

2
+ Ui

)
(1.61)

which represents the phase advance of the electron during the time it spends in

the continuum. The equation can be generalized by substituting the sinusoidal

field E0 cos(ω0t
′) with the electric field E(t′).

Equation (1.60) has a physical interpretation as a sum over the possible

quantum paths of the probability amplitudes corresponding to three main pro-

cesses:

(a) ionization: transition from the ground state at time t′ to the continuum

state with canonical momentum p;

(b) propagation in the continuum between t′ and t; the electron is treated

as a free particle and the effect of the binding potential is retained only

through the dependence on Ui;

(c) recombination to the ground state at time t.

Therefore, the quantum treatment closely resembles the three-step model.

The main contribution to the momentum integral in Eq. (1.60) comes

from the stationary points of the semi-classical action:

∇pS(p, t, t
′) = 0 (1.62)

This requirement can be interpreted in the three-step model context by con-

sidering that ∇pS(p, t, t
′) = r(t)− r(t′), so that the stationary points corre-

spond to electron trajectories that return at time t to the same position where

they were ionized at time t′, i.e. the main contribution comes from electrons

which tunnel away from the nucleus and then re-encounter it while oscillat-

ing in the laser field.

Equation (1.60) thus becomes

µ(t) = 2ℜ
{
i

∫ t

−∞

dt′
(

π

ǫ+ i(t− t′)/2

)3/2

d∗x(pst(t, t
′)−A(t))×

× E(t′)× dx(pst(t, t
′)−A(t′))× exp[−iSst(t, t′)]

}
(1.63)
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The stationary values of the x-component of the momentum pst(t, t
′) and

action integral along the trajectory Sst(t, t
′) are

pst(t, t
′) =

1

t− t′

∫ t

t′
Ax(t

′′) dt′′ (1.64)

Sst(t, t
′) = (t− t′)

(
Ui −

p2st
2

)
+

1

2

∫ t

t′
A2

x(t
′′) dt′′ (1.65)

where Ax is the non-zero component of the vector potential for the electric

field linearly polarized along x.

The first term of Eq. (1.63), with ǫ an infinitesimal positive regularization

constant, arises from the regularized Gaussian integration over p, and repre-

sents the quantum diffusion, i.e. the spread of the electronic wavepacket in

the continuum. This term cuts the contribution from trajectories with large

recombination times, that is large (t− t′).
For hydrogen-like atoms the dipole matrix element takes the form [41]:

d(p) = i
27/2(2Ui)

5/4

π
· p

(p2 + 2Ui)3
(1.66)

Figure 1.5: Plot of the correction function G(Ui/Up) for the cut-off law in the quantum-

mechanical model, from [39]. For Ui ≪ Up (γ ≪ 1, tunnel regime) this function is

∼ 1.32.

The quantum-mechanical model also yields the classical cut-off law equa-

tion, Eq. (1.57) up to a small correction. By Fourier transforming the dipole

moment, the cut-off frequency is found to be:

~ωH ≃ 3.17Up + G
(
Ui

Up

)
Ui (1.67)
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where G(Ui/Up), shown in Fig. 1.5 is a slowly varying function of the order

of 1. This correction is related to the tunneling effect: since the electron

must tunnel out, it cannot appear at the origin x = 0 and, when returning to

the position x1 where it appeared, it can acquire an additional kinetic energy

approximatively equal to the work of the electric field in the interval [x1, 0].
The spreading of the wavefunction then tends to average and decrease this

additional kinetic energy gain for larger Ui.

Figure 1.6: a) From the classical three-step model: times at which the electron appears in

the continuum (ionization) and recombination times, superimposed to the amplitude (nor-

malized) of the electric field. The red circle correspond to the trajectory which achieves

the maximum kinetic energy. Red-yellow lines correspond to short trajectories; blue-cyan

lines to long trajectories. b) Kinetic energy for the classical model as a function of the ini-

tial field phase [equivalent to the ionization time of figure a), in units ω0t]. The red-yellow

line correspond to the kinetic energy for the short trajectories; blue-cyan line to the kinetic

energy for the long trajectories. The red circle is the cut-off energy.

Different electron trajectories inside the integral of the dipole equation,

Eq. (1.60), acquire different phases during the time they spend in the con-

tinuum. These phase shifts are usually referred to as atomic dipole phases.

Upon recombination, the final electronic wavepacket will be featured by the

interference between these different quantum paths. In particular, referring

to the classical three-step model, for a given final kinetic energy value in the

plateau region (thus below the cut-off energy) there exist two different ini-

tial field phase values, corresponding to two different electron trajectories,

see Fig. 1.6(b). Therefore, for a particular harmonic frequency there exist

two main electron trajectories. Figure 1.6(a) shows the time at which the

electron appears in the continuum (ionization time) and the time at which it

recombines to the atom: the time corresponding to the cut-off energy (ab-

solute phase ≃ 18◦) divides the quantum trajectories into two families: one
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in which the electron appears into the continuum after the absolute phase

φ ≃ 18◦ and recombines before the recombination time corresponding to the

cut-off energy [red-yellow lines in Fig. 1.6(a)], and one in which the electron

appears before the phase corresponding to the cut-off and recombines after

the recombining time of the cut-off trajectory [blue-cyan lines in Fig. 1.6(a)].

One family is therefore characterized by return times shorter than approx-

imately half a period of the laser field, while the other one presents return

times close to a full period [42].

The quantum trajectories are thus divided into short and long trajectories (or

quantum paths) depending on whether they belong to the first or the second

family, respectively.

Such trajectories will interfere constructively or destructively, depending

on their relative dipole phase. This dipole phase depends on the electric field.

It has been shown [42–44] that the dipole phase is linearly proportional to the

laser intensity I , with different coefficients for short and long paths, in atomic

units: ϕ
(s,l)
at ≃ −τ (s,l)Up, where ϕat is the atomic dipole phase for short ϕ

(s)
at

and long ϕ
(l)
at trajectories, with return times τ (s) ≃ 0 and τ (l) ≃ 2π/ω0,

respectively. Since Up is proportional to the laser intensity, the dipole phase

may be rewritten (in International System units) as:

ϕ
(s,l)
at ≃ −α(s,l)I (1.68)

For example, for the 15th harmonic in argon, these coefficients are of the

order α(s) ≃ 10−14 cm2/W and α(l) ≃ 27× 10−14 cm2/W.

This intensity-dependent nonlinear phase gives rise to modifications of

the spectral line shape of high harmonics [45, 46] and it originates an almost

linear chirp in the harmonic field [43, 47]. Moreover, it introduces a curvature

of phase fronts, originating different divergence properties [45, 48, 49].

1.6.3 Phase matching

An important effect to be considered in the process of HHG is how the har-

monic field generated sums up coherently during propagation along ζ [50].

The harmonic field at each propagation distance may be understood as a light

source with a phase closely related to the pump phase, which sums with the

previously generated field; the resulting field intensity will then grow if the

phase fronts of the newly generated field match with the propagating field,
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i.e. they interfere constructively.

In general, there will be an effective distance over which the interference is

constructive. This distance is called coherence length and it is tightly related

to the phase mismatch ∆k between the source and the harmonic field:

Lc =
π

|∆k| (1.69)

it represents the distance over which the relative phase between the harmonic

field and its source change by π rad.

The phase mismatch, which depends on the harmonic frequency under

consideration, may be decomposed into a series of different contributions:

∆k = ∆kdisp +∆kplasma +∆kgeom +∆katomic (1.70)

namely dispersion, plasma effect, geometrical factor, atomic dipole phase.

The dispersion term comes from the frequency-dependent refractive in-

dex n(ω). For the generation of the qth-harmonic, the dispersion contribution

(for simplicity of notation in scalar form) reads:

∆kdisp = k(ωq)− qk(ω0) = q
ω0

c
(n(ωq)− n0) (1.71)

where k(ωq) is the wavevector at the harmonic frequency. This term depends

only on the difference between the refractive index values at the pump and

harmonic frequency. In general, the refractive index is larger than 1 for fre-

quencies in the visible and near-infrared range, while it is smaller than 1 in

the XUV, i.e. in the typical range of high order harmonics. The dispersion

term is thus usually negative.

The ∆kplasma term comes from the effect of the free electron plasma

generated during the ionization of the medium, see section 1.5.6. Indeed,

only a very small part of electrons actually recombine to emit a harmonic

photon.

The plasma locally modifies the refractive index, as shown in Eq. (1.42). In

particular, in HHG experiments plasma densities are usually much smaller

than the critical density ρc of the infrared laser radiation (λ0 = 800 nm);

moreover, for high harmonics the correction term is even smaller since the

critical density is higher (for example, for the 10th harmonic this quantity is

100 times the critical density at the fundamental frequency). The plasma term
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thus read:

∆kplasma = kplasma(ωq)− qkplasma(ω0) ≃

≃ ω0ρ

2cρc

(
q − 1

q

)
≃ qω0ρ

2cρc
(1.72)

where in this case ρc is the critical plasma density at frequency ω0 (we con-

sidered n ≃ 1 for both the pump and the harmonic field in the evaluation).

This term is then usually positive.

The geometric term arises from the spatial properties of the beam in-

volved in the HHG process. In particular, this term represents the phase dif-

ference with respect to a plane wave. Similarly to the concept of instanta-

neous frequency, the local wavevector is defined as the spatial gradient of the

phase ϕ(x, y, ζ) of the beam:

kinst = ∇ϕ(x, y, ζ) (1.73)

For a Gaussian beam geometry, on axis (r = 0), the beam exhibits an addi-

tional longitudinal phase shift called Gouy phase shift:

ϕGouy = arctan

(
ζ

LDIFF

)
(1.74)

where LDIFF is the Rayleigh range of the Gaussian beam, with beam waist

(or position of the focus) at ζ = 0 . In particular, the Gouy phase shift is

responsible for an additional π phase change in the propagation through the

focus (beam waist position). The local wavevector on axis is then positive

with a maximum at the beam waist position:

kinst =
1

LDIFF
· 1

1 + (ζ/LDIFF )
2 (1.75)

This thus gives a negative contribution in the phase mismatch term.

In the case of a guided geometry [51–54], the pump beam is focused on

and propagates inside a capillary filled with gas. Because of the dispersion

property of the modes inside the waveguide [55], for the fundamental mode

the longitudinal wavevector is:

kcapillary(ω) ≃
ω

c
− (2.4048)2c

2a20ω
(1.76)
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with 2.4048 the first zero of the Bessel function J0, c the speed of light in

vacuum and a0 the capillary inner radius. This expression has been derived

by assuming that the refractive index inside the hollow waveguide is 1 and

ωa0/c ≫ 2.4048ncap, with ncap the refractive index of the medium con-

stituting the capillary itself, i.e. the capillary is much larger than the wave-

length of light. In particular, the wavevector may be written as kcapillary =
ω cos θeff/c, where θeff ≪ 1 is an effective propagation angle which in gen-

eral depends on the frequency. Since the effective longitudinal wavevector is

shortened by this effect, the geometrical term in this case is positive.

A similar geometrical term is experienced in the case of self-guided geometry

[56, 57] or Bessel beams [58–61].

The atomic dipole term, as shown in the previous section, arises from the

quantum ionization-propagation-recombination process. In particular, since

the phase contribution from the quantum process depends on the intensity,

the local wavevector will be proportional to the gradient of the intensity. In

particular, the longitudinal component of the wavevector will be:

k
(ζ)
atomic = −α(s,l)∂ζI (1.77)

where the (positive) coefficient α(s,l) depends on the particular quantum tra-

jectory (short or long) under consideration. The atomic dipole phase mis-

match term thus has the same sign as that of the intensity gradient. In general,

for a given intensity gradient, the absolute value of the long path wavevector

contribution will be larger than the corresponding short path.

Because of the different values this coefficient assumes for the different quan-

tum paths, it is possible to enhance one trajectory contribution with respect

to the other by properly placing the medium (gas jet) before or after the focus

of a Gaussian beam pump [46]. This affects not only the spectral profile, but

also the spatial distribution of harmonic intensity.

1.6.4 Absorption

Beside the phase mismatch, a further factor limiting the yield of high har-

monic frequencies is reabsorption in the medium itself. The high-harmonic

photon frequencies are indeed typically in the XUV or soft X-ray spectral

region, where light is well absorbed by matter. The absorption length Labs

may be defined as the distance over which the intensity of light (at a given

frequency) drops by a factor 1/e.
During propagation, the pump laser pulse continuously generates har-

monic light which adds to the previously generated harmonic radiation. The
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Figure 1.7: Effect of absorption in HHG, from [62], when the driving pulse intensity is

supposed not to change during propagation. In the case of perfect phase matching (Lc →

+∞) the harmonic yield grows quadratically over interaction distance if Labs = 0. For

finite absorption length, there is a limit asymptotic value, which depends on the coherence

length (it decreases for smaller coherence lengths).

latter is however attenuated by absorption of the medium. Even in the perfect

phase-matching case (Lc → +∞), the total amount of harmonic field is thus

limited by absorption and the total harmonic yield does not build up indefi-

nitely for infinite interaction length, as shown in Fig. 1.7. In the case of this

upper limit in harmonic generation the process is called absorption-limited

HHG [62, 63].

Another effect which limits the harmonic generation occurs when the

medium reaches the condition of full ionization, because HHG relies on the

availability of non-ionized (bounded) electrons. Since the process involves

high intensities, the requirements of both low plasma density and high inten-

sity may be achieved with the use of very short driving pulses, so that the

medium does not have enough time to become fully ionized.



Chapter 2

Conical waves and

filamentation regime

In this chapter we will introduce a family of space-time coupled non-Gaussian

pulses which are (weakly) localized spatial stationary solutions of the linear

propagation equation in cylindrical geometry, the conical wavepackets. In

particular, we will describe the main features of these space-time coupled

wavepackets, such as the possibility of independently tuning phase velocity

and envelope velocity, i.e. the velocity at which phase and envelope fronts

propagate on axis. These wavepackets and their distinguishing features will

be at the basis of the numerical works described in this thesis.

We will also discuss the possibility of finite-energy experimental realizations

of such wavepackets, and we will devote the final sections to the description

of the filamentation regime, a dynamical regime in the evolution of ultrashort

laser pulses in which a particular kind of spatio-temporal stationary conical

wavepackets, X-waves, have been observed to be spontaneously generated.

This regime will be a further topic of this thesis work.

2.1 Propagation equation

The starting point for the derivation of the nearfield and spectral features

of conical wavepackets is the wave equation Eq. (1.7) for a complex scalar

wavepacket E propagating in a dispersive medium in the linear case J ,P =
0, when the wavepacket is assumed to be symmetric for rotations around the

propagation axis (cylindrical symmetry).
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We assume to describe such a wavepacket by a complex envelope Ψ(r, τ =
t − z/v, z) (where r is the transverse radial coordinate) propagating in the

forward direction at velocity v, possibly different from vg = 1/k′0, and a

carrier wave exp(iβz− iω0t) where the carrier wavevector β may differ from

k0; τ denotes the local time in this envelope reference frame.

The propagation equation governing this complex envelope in the tempo-

ral Fourier domain reads as

[
∂2zz + 2i

(
β +

Ω

v

)
∂z +∇2

⊥ + k2⊥(Ω)

]
Ψ̂(r,Ω, z) = 0 (2.1)

where

k2⊥(Ω) = k2(ω)− (β +Ω/v)2 (2.2)

and Ω ≡ ω − ω0 denotes the frequency departure from the carrier frequency.

The longitudinal wavevector β is thus linked to the angular aperture θ0 of the

beam at the carrier frequency ω0 as β = k0 cos θ0.

The general solution to Eq. (2.1) propagating in the forward direction with

revolution symmetry reads as

Ψ =
1

2π

∫ +∞

−∞

dΩ

∫ +∞

0
dK K Ψ̃(K,Ω) J0(Kr)× exp(iκz− iΩτ) (2.3)

where K represents the transverse component of the wavevector, Ψ̃(K,Ω)
denotes an arbitrary function which represents the complex angular spectrum

of the wavepacket at z = 0 and the longitudinal wavenumber associated with

the envelope reads

κ =
√
k2(ω)−K2 −

(
β +

Ω

v

)
. (2.4)

Conical wavepackets (CWPs) correspond to the specific choices of the

angular spectrum:

Ψ̃(K,Ω) = f̂(Ω) · δ [K − k(ω) sin θ(Ω)] (2.5)

where f̂(Ω) is a weight function.

The simplest example of CWP is the monochromatic Bessel beam [64].
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2.2 Monochromatic Bessel Beam

In the monochromatic case f̂(Ω) = δ(Ω).
The general solution, Eq. (2.3), under the conical wave transverse wavevector

relation, Eq. (2.5), and the monochromatic relation, reduces to

Ψ(r, z) =
√
I0J0(rk0 sin θ0)

where J0(x) is the 0th-order Bessel function of the first kind and I0 repre-

sents the intensity of the wavepacket.

This solution has thus an amplitude which does not depend upon the propa-

gation distance z. In other words, it is a stationary solution of the propagation

equation, and its spatial profile overcomes the natural diffraction of the local-

ized intensity peak, as first experimentally demonstrated in 1987 by Durnin,

Miceli, Eberly [65].

By using the integral form of the Bessel function we obtain:

E(z, r, t) =
√
I0J0(rk0 sin θ0) exp (izk0 cos θ0 − iω0t) =

=

√
I0

2π

∫ 2π

0
dφ exp {i [zk0 cos θ0 + r(cosϕ)k0 sin θ0 cosφ+

+r(sinϕ)k0 sin θ0 sinφ− ω0t]} =

=

√
I0

2π

∫ 2π

0
dφ exp {i(q · r− ω0t)}

where r = (x, y, z) = (r cosϕ, r sinϕ, z) represents the position vector, and

the wavevector q = (k0 sin θ0 cosφ, k0 sin θ0 sinφ, k0 cos θ0) intersects the

z axis at an angle θ0. The Bessel beam may thus be viewed as a continuous

superposition of plane waves with wavevectors q of modulus k0 and arranged

along a conical surface, hence the name conical wavepacket.

The Bessel beam exhibits a central high intensity core and oscillating tails

which decay to 0 as r → +∞. However, the ideal non-diffracting Bessel

beam contains infinite energy, since the decay of the Bessel tail (|E|2 ∼ r−1)

is not fast enough. In order to overcome this problem for practical realiza-

tions, it is possible to apodize the Bessel profile with a proper rapidly decay-

ing function, as in the case of the Bessel-Gauss Beams [66]. The wavepacket

is thus no more stationary in the strict sense, but for a finite propagation

distance, called Bessel zone [67], the profile may be effectively described

as an ideal Bessel beam, i.e. it exhibits a central narrow interference peak

surrounded by a series of concentric lower intensity rings, which propagates
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without diffraction. Usually this non-diffracting propagation is much larger

than the typical diffraction length associated to a Gaussian Beam with the

same width as that of the central Bessel lobe [65].

Since the Bessel beam may be considered as a superposition of plane

waves propagating on a cone, it exhibits a self-reconstruction (or self-healing)

property [64, 68, 69]: the central core of the beam is reconstructed in propa-

gation after it is blocked by an obstacle. This is explained by the fact that its

constituents are propagating from a lateral direction, so that after a “shadow”

zone they superimpose again and the Bessel profile is reconstructed. This

property is appealing for applications such as particle trapping [70] and mi-

croscopy [71].

The phase velocity for the Bessel beam is vp = c/(n0 cos θ0). In vac-

uum (or for sufficiently high propagation angles) this velocity is larger than

c; this is simply due to the geometrical effect because of the plane waves

constituents propagating at an angle with respect to the z axis.

The farfield (spectral) distribution of the Bessel beam is a ring of infinites-

imal thickness and radius given by the cone angle θ0. In the general case of

apodized beams, the spectral distribution is the convolution of the infinitely

narrow (delta) ring with the spatial Fourier transform of the apodizing distri-

bution, i.e. it is an annulus of width inversely proportional to the apodizing

function width.

2.3 Polychromatic CWPs

By looking back at Eq. (2.3), CWPs in general may be viewed as a superposi-

tion of monochromatic Bessel beams, i.e. a continuous superposition of plane

waves with frequency-dependent wavevectors k(ω) distributed over cones of,

in general, frequency-dependent angle θ(Ω) with respect to the propagation

direction z [72, 73].

The first polychromatic conical waves as superpositions of Bessel beams at

different frequencies were derived in the field of acoustics by Lu and Green-

leaf [74, 75]. Ref. [76] extended their solution to the field of electromag-

netism.

Similarly to the Bessel beam case, CWPs present a central intense core

and weakly decaying tails for r → +∞, and contain infinite energy, but

practical realizations approaching ideal CWPs can be produced by finite en-

ergy beams sent through finite apertures. This finite-energy realizations ef-

fectively behave like the ideal infinite-energy solutions over a propagation
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region (Bessel zone) which depends on the spatial apodization of the pro-

file. Moreover, they also exhibit the self-healing property of monochromatic

Bessel beams.

Since CWPs are the polychromatic counterpart of Bessel beams, they ex-

hibit not only a narrow peak in space, but also a temporal peak, depending

on the temporal-frequency spectral distribution. However, CWPs are not in

general stationary solutions of the propagation equation, because of their tem-

poral (longitudinal) behavior.

The specific angle-wavelength (or analogously wavevector-frequency) rela-

tion θ(Ω) determines the characteristics of the CWP, such as phase and enve-

lope velocities, or effective dispersion [72].

2.3.1 Pulsed Bessel beams and Bessel X-pulses

Two representatives of the CWP family are the pulsed Bessel beam (PBB)

and the Bessel X-pulse (BXP). By assuming a description as a superposition

of plane-wave constituents, these particular wavepackets have the following

characteristic features:

• PBB [77]: constant transverse component of the wavevector for each

frequency, K(Ω) = K0. This corresponds to a frequency-dependent

propagation angle θ(Ω) = arcsin [K0/k(ω)];

• BXP [78]: constant propagation angle for each frequency, θ(Ω) = θ0,

and corresponding wavevector K(Ω) = k(ω) sin θ0.

The PBB is generated by means of a circular diffraction grating and may

be regarded as the product of a Bessel beam (in space) and a Gaussian pulse

(in time). The BXP is similar to the pulse generated by sending a Gaussian

beam through an axicon (i.e. a conically shaped lens) and exhibits a two-

winged (X-shaped) structure resulting from the superposition of an inward

and an outward beam [72, 79, 80].

PBBs and BXPs are particular cases of the axisymmetric counterparts of

tilted pulses. Tilted pulses are pulses in which the pulse envelope (ampli-

tude) fronts are inclined (tilted) with respect to the propagation direction of

the beam [81]: therefore, amplitude fronts and phase fronts are not parallel

to each other [82, 83]. In general, as a first order approximation, every CWP

may be represented by one of this rotationally symmetric wavepackets.

As schematically represented in Fig. 2.1, it is possible to independently tune
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Figure 2.1: Schematic propagation of a CWP: the gray dashed lines represent phase fronts

and the red areas amplitude fronts. θ0 and δ are the propagation and tilt angles, respectively.

The quantities vp and v refer to the main intensity peak of the pulse, represented in the

figure by the blue Gaussian profile. On the right there is a schematic representation of the

PBB and BXP cases.

phase (vp) and envelope (v) velocities of the main intensity peak of a rotation-

ally symmetric tilted pulse, and therefore, in general, of a CWP by properly

adjusting the propagation angle and angular dispersion. In particular, these

velocities read [72] 



vp =
ω0

k0 cos θ0

v =
cos δ

k′0 cos (θ0 + δ)

(2.6)

(2.7)

with θ0 = θ(ω = ω0) the mean cone angle, and δ = arctan(θ′0k0/k
′
0)

the mean tilt angle of the amplitude fronts (θ′0 = ∂ωθ|ω=ω0
). The phase

velocity is then equal to phase velocity of the corresponding monochromatic

Bessel beam. The phase and the envelope velocities refer to the main intensity

peak of the pulse; in particular, v should not be confused with the group

velocity at which each amplitude front propagates. By properly adjusting the

propagation and the tilt angles the envelope velocity may become larger than

c [84] or even negative [85]

Within this framework, the PBB case corresponds to δ = −θ0, while the

BXP case to δ = 0. In the PBB case the envelope velocity is v = vg cos θ0,

while in the BXP case this velocity is v = vg/ cos θ0, where vg = 1/k′0.

The phase velocity in the PBB case is larger than the envelope velocity, while,

in the case of negligible dispersion (n ≃ n0), for the BXP case we have

v ≃ vp.

The velocity at which the energy of the pulse propagates along the z axis is

vg cos θ0. For small angles this velocity is roughly vg.
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2.3.2 Stationary CWPs

The specific frequency-angle relation of CWPs introduce an additional dis-

persive effect, given by the angular chromatic dispersion (which characterizes

also tilted pulses). This effective group velocity dispersion reads:

k′′eff =
(
k′′0 − k0(θ

′
0)

2
)
cos θ0 −

(
k0θ

′′
0 + 2k′0θ

′
0

)
sin θ0 (2.8)

In the BXP case, for example, this becomes k′′(BXP ) = k′′0 cos θ0, so that

BXPs propagating in vacuum do not undergo effective chromatic dispersion,

since k′′0 = 0. In the PBB case, however, this effective dispersion reads

k′′(PBB) =
k0k

′′
0 − sin2 θ0

(
(k′0)

2 + k0k
′′
0

)

k0 cos3 θ0

so that it becomes k′′(PBB) = − tan2 θ0/(ω0c cos θ0) in vacuum (k′′0 = 0 and

k′0 = 1/c). In particular, this means that PBBs, and CWPs in general, exhibit

chromatic dispersion even when propagating in a non-dispersive medium,

due only to the relation between propagation angles and frequencies.

By properly tuning the spectral feature of a CWP, however, it is possi-

ble to use this effective dispersion to compensate for the dispersion of the

medium.

The resulting CWP will then be a stationary wavepacket in the full (r, τ)
space, i.e. its spatio-temporal intensity distribution will not depend on the

propagation distance z.

This behavior is obtained when the longitudinal component of the wave-

vector varies linearly with frequency: kz(Ω) = k0 cos θ0 + Ω/v. In this case

the envelope of the wavepacket is stationary in the reference frame moving

at velocity v. This corresponds to the spectral constraint: Ψ̃(K,Ω) = f̂(Ω) ·
δ [K − k⊥(Ω)], with k⊥(Ω) given by Eq. (2.2).

Such stationary CWPs have been obtained by Porras and Di Trapani [86] and

Longhi [87] in the context of the paraxial envelope propagation equation in

the linear case [Eq. (1.27) with N = 0] and more recently studied in a non-

paraxial framework by Malaguti and Trillo [88].

Under the angular spectrum choice Ψ̃(K,Ω) = f̂(Ω) · δ [K − k⊥(Ω)],
the envelope reads:

Ψ(r, τ) =

∫

k⊥(Ω)∈R
f̂(Ω)J0 [k⊥(Ω)r] exp(−iΩτ)dΩ (2.9)
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where integration is performed over frequencies for which k⊥(Ω) is real, so

that these wavepackets can be viewed as a continuous superposition of mo-

nochromatic Bessel beams following the specific angle-frequency spectral

relation of Eq. (2.2).

After a small Ω-expansion of the dispersion relation up to second order,

k(ω) ≃ k0 + k′0Ω+ k′′0Ω
2/2, we have

k2⊥(Ω) = α2Ω
2 + 2α1Ω+ α0, (2.10)

where α2 = k0k
′′
0 + (k′0)

2 − 1/v2, α1 = k0k
′
0 − β/v and α0 = k20 − β2.

Referring to the notation of Ref. [88], stationary CWPs are character-

ized by two parameters: the angular aperture θ0, related to the longitudinal

wavevector at the central frequency β = k0 cos θ0, and the velocity v of the

CWP. Figure 2.2 shows the different types of stationary conical waves in the

plane (θ0, v) in the case of water at λ0 = 527 nm (k0 = 15.924 µm−1,

k′′0 = 0.056 fs2/µm, vg = 0.7366 · c). This classification is based on a second

order approximation of medium dispersion, but spectral features remain qual-

itatively similar even if the full dispersion relation of the medium is retained,

provided that the bandwidth is not too large. A single exception exists when

the spectrum of the wavepacket is centered around a zero of the GVD.

Roughly speaking, depending on the sign of the coefficient k′′0 for second

order GVD the spatio-temporal spectral shape given by Eq. (2.2) may be

divided in two main families: hyperbolic and elliptic profiles. The former

case refers to the normal GVD case (k′′0 > 0) and the corresponding CWPs

are called X-waves; the latter case, called O-wave case, refers to negative

(anomalous) GVD [72, 86, 87].

In correspondence to a central frequency close to a zero in the GVD, the

spatio-temporal spectra present features common to both normal and anoma-

lous GVD cases; this case is called “fish wave”, since the corresponding spec-

tral shape exhibits an elliptic core and an hyperbolic tail.

The authors of Ref. [88] found elliptic solutions also in the normal GVD

case, when v is very different from vg; this is due to the negative sign of the

effective GVD coefficient. In Fig. 2.2, the line Γc is defined by α2 = 0. The

region above this line corresponds to X-wave solutions (α2 > 0), i.e. hyper-

bolic shaped solutions. In particular, regions A± (α2
1−α2α0 < 0) correspond

to hyperbolic solutions of Eq. (2.10) with wavevector (angle) gap, while re-

gions B± (α2
1 − α2α0 > 0, shaded areas) correspond to hyperbolic solutions

with frequency (wavelength) gap. The insets show the typical spectral pro-

files corresponding to such wavepackets.



2. Conical waves and filamentation regime 43

Figure 2.2: Parameter space (θ0, v) for stationary CWPs in water and at a central wave-

length of 527 nm. The different sectors labeled A,B,D are bounded by the dashed curves

given by α2

1 = α2α0, and line Γc (α2 = 0), on which the shape of the angular spectrum

k⊥(Ω) changes. A: X-waves (hyperbolic) with angle gap. B: X-waves (hyperbolic) with

frequency gap. D: O-waves (elliptic). The ± labels indicate that the central frequency of

the k⊥(Ω) curve is upshifted (+) or downshifted (−) with respect to ω0. The curves Γa

(v = vg cos θ0) and Γb (v = vg/ cos θ0) determine loci around which stationary CWPs

with sufficiently narrow bandwidth share the features of PBBs or BXPs, respectively. The

insets show the qualitative shape of the dispersion curve Eq. (2.10) for the cases B−, A−,

D−(k⊥ in µm−1, Ω in rad/fs).

The region below line Γc corresponds to O-wave like solutions (α2 < 0),

which present elliptic k⊥(Ω) profiles and are analogous to the solutions found

in the case of anomalous GVD.

The curves Γa and Γb determine loci around which stationary CWPs with

sufficiently narrow bandwidth share the features of PBBs or BXPs, i.e. en-

velope velocity v = vg cos θ0 and v = vg/ cos θ0, respectively. In particular,

along line Γa, the spectral k⊥(Ω) curves are symmetrical with respect to the

central frequency ω0 (Ω = 0).
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2.4 Experimental realization

As already said, ideal CWPs carry infinite energy due to their weakly de-

caying tails. Any experimental realization would necessarily imply the use

of their apodized, finite-energy counterparts, which effectively approach the

ideal wavepackets only over a limited propagation distance called Bessel

zone.

Usually in experimental realizations CWPs are generated by sending an

input Gaussian beam over a series of optical elements. In particular, one

of the most efficient method to generate Bessel-like pulses is the use of a

refractive conical lens: the axicon [89, 90].

The propagation angle at frequency ω for a beam impinging on an axicon

made of a material with refractive index nax(ω), with cone base angle αax is:

θ(ω) = arcsin

(
nax(ω)

n(ω)
sinαax

)
− αax (2.11)

where n(ω) is the frequency-dependent refractive index of the medium sur-

rounding the axicon. In general, if both the chromatic dispersions of the

axicon and the surrounding medium may be neglected, this angle [Eq. (2.11)]

is approximatively constant for each frequency, so that the pulse may be ef-

fectively treated as a BXP. If the BXP-like pulse is generated in a weakly

dispersive medium (as a gas n(ω) ∼ 1), then the main departure from the

ideal spectral features of the BXP will be due to the axicon medium disper-

sion.

Another similar method for generating BXP-like pulses is the use of an

amplitude mask in the form of an annular aperture [65, 78]. The light passing

the ring is then focused by a converging lens, so that in the focal plane of

the lens the spatial Fourier transform of the ring structure (a Bessel beam) is

generated. In this case the departure from the ideal BXP is mainly due to the

dispersion of the lens.

CWPs may also be generated by means of diffractive axicons, that is by

cylindrical transmission gratings [91–93]. In this case the envelope fronts

will be parallel to the grating itself, while the phase fronts (for wavelength λ)

will be bent at angle θ(λ) satisfying (first diffraction order):

sin θ(λ) =
λ

n(λ)d
(2.12)
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where d is the grating period. The transverse wavevector will then be:

K(λ) =
2πn(λ)

λ
sin θ(λ) =

2π

d
(2.13)

The resulting profile is thus a PBB.

Another possible method for generating a PBB is the use of a hollow

core fiber. The propagation modes inside a capillary are indeed PBBs with

sharp edges [55]. On exiting the capillary, the wavepacket will be a highly

apodized PBB: for the fundamental mode, for example, in the case in which

the capillary is much larger than the wavelength of light, the spatial function

will roughly be nil outside the first Bessel zero.

In general both axicon and holographic methods do not allow for very

high energy beam in order not to damage the optical elements. Moreover,

in the holographic case a significant part of the input energy is lost in the

other diffraction order. To overcome these limitations it is possible to employ

different (more complicated) geometries and reflective axicons.

A recent study [94] has shown the possibility of generating and amplify-

ing a PBB by mean of a χ(2) (second-order nonlinearity) parametric amplifi-

cation by exploiting the phase-matching curves of the nonlinear crystal.

Apodized versions of stationary CWPs have been shown to spontaneously

appear during the filamentation of ultrashort laser pulses [95–99]. The instan-

taneous refractive index change from the high intensity filamentation regime

may also be exploited to exert a spatio-temporal reshaping on a weak seed

pulse [100]. In conjunction with other nonlinear processes, such as Raman

resonances, this reshaping may also lead to amplification of the seed pulse

[101].

2.5 Filamentation of femtosecond laser pulses

The phenomenon of ultrashort laser pulse filamentation in air was first re-

ported by Braun et al. in 1995 [102] by launching intense infrared femtosec-

ond laser pulses in the atmosphere. They observed a shrinking of the beam

waist, which remained focused for a distance of over 20 m.

In condensed media short-range filamentation was a phenomenon known

since the sixties [103–105]. However, the propagation was limited by the

optical breakdown of the medium. The advent of ultrashort (femtosecond)

laser pulses allowed long-range filamentation regime also in condensed me-

dia [106].
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Filamentation, as defined in Ref. [15], is a dynamic optical pulse structure

with an intense core that is able to propagate over extended distances much

larger than the typical diffraction length (Rayleigh range) while keeping a

narrow beam size without the help of any external guiding mechanism.

It is now well understood that this regime arises from a dynamic compe-

tition between self-focusing and a series of saturating or defocusing mecha-

nisms. This involves a series of successive focusing-defocusing cycles that

give the overall impression of a stationary-like propagation.

The main effect responsible for the filamentation regime is indeed the optical

Kerr effect, see section 1.5.1, which leads to an intensity-dependent refractive

index, thus inducing beam self-focusing. On the other hand peak-intensity

reduction (thus preventing a catastrophic collapse) due to nonlinear absorp-

tion and temporal dispersion, and defocusing due to the free electron plasma,

generated by the high intensities involved, counterbalance the focusing effect.

During propagation, the filament will continuously lose energy until it dies

out and a linear propagation regime is resumed.

2.6 Properties of light filaments

Although light filaments appear in a great variety of materials, they usually

present a series of typical characteristics and related phenomena, common to

all media, input pulse wavelengths and durations (within the ultrashort pulse

regime), which are briefly summarized in the following sections.

2.6.1 Spatial robustness

The intensity peak associated to the filament is highly localized in space.

Typical diameters are of the order of ∼ 100 µm in air and 10 − 40 µm in

condensed media. This tightly localized peak is surrounded by a large back-

ground that acts as an energy reservoir continuously refilling the central core.

Such a feature is at the basis of the filament robustness to spatial perturba-

tions, the self-healing property.

A filament spontaneously regenerates shortly after a stopper which blocks

its central high intensity core [107–109]. The energy reservoir around the

central spot manages to regenerate the core. Moreover, experiments in water

(Fig. 2.3) have demonstrated that the clipping of this background reservoir

brings a fast extinction of the central peak [110].



2. Conical waves and filamentation regime 47

Figure 2.3: Fluence profiles in the cases of (a) clipped, (b) stopped and (c) free filaments

in water (input peak power Pin = 13Pthr), from [110]. In the clipped case the central core

quickly decreases, while just after the stopper the central peak is reconstructed until it is

indistinguishable from the free case.

Experiments in air give the same results: filaments can survive interac-

tions with droplets stopping the central core and their propagation proceeds

substantially unperturbed even through clouds [111] and fog [112].

2.6.2 Spectral broadening and continuum generation

Filamentation is accompanied by a strong broadening of the initial spectrum

of the pulse, called super-continuum emission. The physical mechanism for

super-continuum emission largely follows the phenomena identified in fibers,
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see e.g. Ref. [113].

For example, a pulse centered in the near infrared (800 nm) generates during

filamentation a coherent emission with a low angular divergence which cov-

ers the whole visible range. The continuum may span more than 1 octave. On

the low frequency side, continuum generation has been observed up to 5 µm

in infrared [114]. This frequency conversion can involve an appreciable frac-

tion of the initial energy.

The continuum of frequency generated by the filament may be subse-

quently compressed with a proper chirped mirror setup to obtain few-cycle

optical pulses [115, 116] for highly nonlinear application, such as HHG. The

filamentation thus constitutes an alternative to the use of self-phase modula-

tion via propagation inside a gas-filled hollow capillary, with the advantage of

being much less sensitive to experimental conditions such as beam alignment,

input pulse duration or gas pressure.

Recent works [117, 118] have highlighted that the statistical properties of

the extremes of the spectral super-continuum from the filamentation regime

in a series of measurements affected by shot-to-shot fluctuations exhibit a

long-tailed “L-shaped” distribution. This statistical distribution is associated

to the physics of extreme events, or rogue waves [119]. In particular, these

events may be described in terms of optical rogue waves [120, 121].

2.6.3 Conical emission (CE)

The white light beam generated during filamentation generally consists of a

white central core surrounded by a structure of colored rings (Fig. 2.4).

The propagation angle increases with the frequency shift with respect to the

central frequency of the pump pulse.

This phenomenon depicts a strong space-time coupling dynamics during

the process of filamentation because every new generated frequency corre-

sponds to a specific emission angle.

This mechanisms may be explained as the spontaneous evolution towards

stationary X-waves profiles [96, 122], as discussed below.

2.6.4 Temporal splitting of the pulse

The filamentation process determines a strong reshaping of the pulse both

from a spatial and a temporal point of view. In particular, during filamentation

one or more temporal splittings of the initial pulse are observed.
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Figure 2.4: Images of conical emission in the case of filamentation. a) from [123]: after

a propagation distance ∼ 25 m; b) from [124]: at a distance of 30 m from the onset of

filamentation. In the right figure, the diameter of the outer (green) ring ∼ 10 cm.

Usually a first splitting is observed at the onset of the filament (nonlinear

focus) and the two daughter pulses tend to separate from each other traveling

at different peak velocities and are temporally much shorter than the input

pulse. As an example, a 1 ps pump pulse filament in fused silica will split

into two pulses with durations of the order of 10-20 fs.

If the pulse energy is high enough, the intensity in the central part may

grow again due to Kerr self-focusing, leading to another subsequent split-

ting process. This process may be repeated several times provided that there

is enough energy.

Propagation effects such as absorption or defocusing and a consequent

refocusing stage may lead to the isolation and survival of a single, temporally

compressed, intense pulse [125, 126].

2.6.5 Intensity clamping

The peak intensity of the input pulse may increase by several orders of magni-

tude during the initial self-focusing stage, until it reaches an almost constant

value in the filament regime, which depends on the material characteristics.

In gaseous media, with peak intensities of the order of tens of TW/cm2, the

main limiting mechanisms for intensity clamping are plasma defocusing and

nonlinear losses. In condensed media, with maximum intensities of the or-

der of 1 TW/cm2, the main limiting mechanisms are multiphoton absorption

and GVD. In both gaseous and condensed media the filament will reach a

maximum “clamped” intensity level due to these saturating mechanisms.
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2.6.6 Pulse mode self-cleaning

It has been observed that the farfield profile of the conical emission origi-

nating from the filament exhibits an extremely high beam quality, while the

remnant of the incident pulse, which does not couple into the filament, ex-

hibits a poorer beam quality [127].

2.6.7 Plasma channel

The high intensities associated with the filamentation process generate a chan-

nel of free electrons due to multiphoton ionization. This narrow channel of

plasma contributes to the arrest of the collapse and the consequent onset of the

filamentation regime. The plasma channel is regarded as a central mechanism

for a lot of applications, such as guiding of electrical discharges [128, 129],

virtual antenna applications [130] and THz generation [131–133].

2.7 Models for filamentation

The first model proposed to explain the filamentation of long pulses was

the self-trapping model, in which diffraction manages to balance the self-

focusing of the beam. It has been demonstrated the existence of a particular

profile ensuring a perfect balance between diffraction and self-focusing: the

Townes profile [134], that is however unstable, both structurally and under

perturbations in more than one dimension [135]. This led to the development

of different models. The moving focus model was one of these early models.

2.7.1 Moving focus model

In the moving focus model [135, 136] the initial pulse is considered as a se-

ries of thin time slices which propagate independently from each other at the

group velocity of the pulse. Every slice contains a specific power. Those

with higher power will undergo Kerr self-focusing at shorter distances than

the ones with lower power. The slices with power below Pthr will diffract.

The filament will thus be the collection of the nonlinear foci corresponding to

the different slices. In the case of a converging beam all the nonlinear foci lie

before the linear focus. This is in contradiction with many experimental re-

sults with filaments extending much further than the linear focus. Therefore

a possible correction to this model has been proposed with the considera-
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tion that delayed Kerr effect and plasma defocusing induce a strong coupling

between the temporal slices of the pulse [137].

2.7.2 Self-guiding model

The self-guiding model [102, 124] is similar to the self-trapping model: it pro-

poses a local balance between self-focusing on one side and diffraction and

defocusing from the self-generated plasma on the other one. Self-focusing

forms a leading peak which generates a channel of plasma; the trailing part

of the pulse is then defocused while the leading peak suffers multiphoton ab-

sorption and becomes less intense. This determines a lower production of

plasma and self-focusing becomes stronger; if the power is high enough then

other focusing-defocusing cycles may happen until the pulse power becomes

insufficient for further focusing.

2.8 Conical X- and O-waves

The spontaneous formation of X-waves (described in section 2.3.2) in the

presence of nonlinearity was first demonstrated in a second-order nonlinear

crystal [122] and afterwards in Kerr media [95, 138, 139]. The concept of

X-waves was then used to explain the properties of the propagation of laser

pulse filaments in transparent media.

The interpretation is that, regardless the way of its formation, the evolu-

tion of the filament is governed by the interactions of one or more station-

ary non-diffractive and non-dispersive spatio-temporal profiles in the form of

CWPs, so that the central high intensity core is the result of an interference ef-

fect, continuously refilled by the surrounding low-intensity energy reservoir.

Kolesik et al. demonstrated by means of numerical simulations [95] that fila-

mentation in condensed media may be interpreted as a dynamical interaction

of these spontaneously-formed nonlinear X-waves.

Linear X-waves are not stationary solutions in the presence of nonlin-

ear terms such as Kerr effect, nonlinear losses or plasma action. However,

(apodized) conical solutions may be regarded as stationary solutions both in

the linear and in the nonlinear case. Starting from the envelope equation

Eq. (1.27), it is possible to determine the form of the stationary profiles by

means of numerical integrations even in the presence of nonlinear terms such

as the Kerr effect and multiphoton absorption (nonlinear losses); stationary

profiles for nonlinear X-waves supporting plasma generation have not yet
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been found. If one or more terms in this equation may be neglected, station-

ary modes assume the following forms:

• Monochromatic case: the GVD term is neglected:

1. if all nonlinear terms may be neglected, the stationary solution is

a Bessel beam;

2. in the case of (instantaneous) Kerr effect alone, and Kerr effect

plus nonlinear losses, the solution is the family of the nonlin-

ear unbalanced Bessel beams [140]. These are Bessel beam-like

profiles in which, in the multiphoton absorption case, the inward

energy flux is greater than the outward one in order to sustain the

nonlinear losses in the central core;

3. if nonlinear losses may be neglected, one stationary non-conical

solution is the Townes profile;

• Case with dispersion term:

1. the linear case: the family of linear X-waves (O-waves in the

case of anomalous dispersion), described by the spectral relation

Eq. (2.2);

2. in the case with Kerr effect and Kerr effect plus multiphoton ab-

sorption, the solution is a generalization of linear X-waves [141].

These Nonlinear X- and O-waves [142] are qualitatively similar

to the linear case and, similarly to the unbalanced Bessel beam

case, in presence of nonlinear losses exhibit unbalanced profiles

between inward and outward energy flux to sustain nonlinear ab-

sorption.

The X-wave model therefore considers these non-diffractive and non-dis-

persive solutions as attractors for the filamentation process and the filament

itself may be interpreted and effectively described as an X-wave, justifying

most of the properties of the filamentation regime common to CWPs.

Each of the daughter peaks generated during the filamentation regime is

then regarded as corresponding to an effective X-wave solution. In particular,

these X-wave profiles related to the leading and the trailing peak exhibit an

envelope velocity larger and smaller than the group velocity of the initial

Gaussian pulse, respectively. This interpretation is supported by experimental

spectra and numerical simulations.



2. Conical waves and filamentation regime 53

Figure 2.5: Farfield (λ, θ) spectra from filamentation regimes of 800 nm laser pulses: a)

in sapphire, b) in air. The spectra were recorded with a modified (in order to record also

part of the infrared region) professional camera. The propagation angles in the sapphire

case correspond to external angles (i.e. measured in air). Superimposed to the spectra, best

fitting curves with the X-wave spectral relation, Eq. (2.2), for v < vg (continuous light

green curve) and v > vg (dashed dark green curves).

Typical experimental filamentation spectra are shown in Fig. 2.5, with the

corresponding fit with the X-wave spectral relation, Eq. 2.2, for the cases: a)

filamentation in sapphire (the angles in the figure are external angles, mea-

sured in air) and b) filamentation in air. In both cases the initial laser pulse

was centered at 800 nm. The fitting curves correspond to frequency-gap X-

waves. In Fig. 2.5(a) two curves are visible: one corresponding to the X-wave

with envelope velocity v < vg (continuous light green curve) and one with

velocity v > vg (dashed dark green curve). In Fig. 2.5(b) only the curve with

v > vg is visible.
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Chapter 3

Energy density flux

In this chapter we will define and introduce the energy density flux vector as a

characterization tool for representing and interpreting the information stored

in the phase of optical pulses. In particular, by applying this tool to strongly

space-time coupled pulses, such as CWPs, see section 2.3, we will show how

the use of this analysis tool enables a better understanding of the propagation

dynamics of such pulses in their local reference frame. We will extend the

definition of this vector to the case of nonlinear propagation in Kerr media

with nonlinear losses. By means of recently developed intensity and phase

retrieval techniques, we will apply this theoretical tool to real experimental

data, in particular to the regime of ultrashort laser pulse filamentation to reach

a better outlook on the dynamical processes involved. In the last section we

will present a possible use of this tool as a phase retrieval instrument.

3.1 Definitions of energy density flux

We consider an optical pulse of central frequency ω0 propagating in the for-

ward direction in a dispersive medium. The equation governing the prop-

agation of the envelope A of the complex electric field E(x, y, z, t) in the

reference frame moving at velocity vg = 1/k′0, is Eq. (1.27):

∂ζA = i
1

2k0
∇2

⊥A− i
k′′0
2
∂2ττA+ i

ω0

2ǫ0n0c
N (3.1)

which relies on several approximations, as seen in chapter 1:

1. scalar approximation: the pulse is assumed to be linearly polarized in

a direction transverse to the propagation direction;
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2. paraxial approximation: the transverse component of the wavevector

is small (small propagation angles) |∆k⊥|/k ≪ 1;

3. slowly evolving envelope approximation: the envelope shape evolves

over a scale typically much larger than the wavelength λ0;

4. narrow bandwidth: |Ω|/ω0 ≪ 1 which justifies a second order expan-

sion of the dispersive terms k(ω).

For convenience, A is rescaled so that |A|2 = I represents the local in-

tensity of the pulse.

This quantity also represents the pulse energy density in the (x, y, τ) space,

since the magnetic part of the electromagnetic energy is negligible and the to-

tal pulse energy is thus given by integration of intensity over the entire space.

In the linear case, Eq. (1.29),
∫
V
|A|2dxdydτ represents the total energy car-

ried by the pulse inside the volume V in the (x, y, τ) space. The energy

satisfies a conservation equation obtained by multiplying Eq. (3.1) by A∗,

summing the result with its complex conjugate and performing the volume

integration (in the linear case, with N = 0).

Locally, this energy conservation equation takes a form analogous to the

divergence theorem

∂ζ |A|2 = −d̃ivF (3.2)

where the divergence operator is defined in the (x, y, τ) space as

d̃ivF = ∇⊥ · F⊥ + ∂τFτ

with ∇⊥ = (∂x, ∂y).
This allows for an identification of vector F as the flux of energy density

through the surface S enclosing volume V :




F⊥ =
1

2ik0
[A∗∇⊥A−A∇⊥A

∗]

Fτ = −k
′′
0

2i
[A∗∂τA−A∂τA

∗]

(3.3)

(3.4)

In particular, the longitudinal component defined by Eq. (3.4) entails in-

formation on the relative redistribution of energy along the temporal (longi-

tudinal) τ coordinate during propagation. It is therefore associated to GVD.

It is worth underlining that the expressions of Eqs. (3.3) and (3.4) are analo-

gous to the one describing the probability current in the formally equivalent

quantum-mechanics formulation based on the Schrödinger equation.
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In the laboratory frame, z = ζ and t = τ + k′0ζ; therefore the expression

for the transverse component of F remains unchanged, while the longitudinal

component includes an additional contribution associated with the propaga-

tion of the pulse at velocity vg = 1/k′0:

Ft = k′0|A|2 −
k′′0
2i

[A∗∂tA−A∂tA
∗] (3.5)

If the complex envelope is written in terms of amplitude and phase A =
|A| exp(iφ), each of the energy flux components is shown to be proportional

to the intensity and to the phase gradient along the corresponding direction:

F =
1

k0
|A|2

[
∇⊥φ

−k0k′′0∂τφ

]
(3.6)

Therefore, if it is possible to have access experimentally to the inten-

sity and phase distributions of an optical pulse as recently shown, e.g. in

Refs. [79, 143–146], the longitudinal and transverse components of the en-

ergy density flux vector F are fully determined [144].

Equation (3.6) also shows that the flux is proportional to the intensity

distribution, indicating that features of a space-time coupled wavepacket may

be undetectable when an (x, y, τ) intensity distribution is measured, but may

become more visible in the flux distribution. For instance, the weighting

effect introduced by the phase gradient may enhance the contrast in the weak

tails [139, 144].

3.2 Link to the Poynting vector

In classical electromagnetism, the energy density is defined as w = ℜ{E ·
D

∗ +B ·H∗}/2, where D, B, H denote the complex electric displacement

(vector) field, magnetic induction and magnetic field, respectively. The evo-

lution of the energy density is governed by the conservation equation:

∂w

∂t
= −divS (3.7)

where S ≡ ℜ{E × H
∗}/2 denotes the Poynting vector and the divergence

operator follows here the standard definition: divS = ∇⊥ · S⊥ + ∂zSz .

By considering the electric field as mainly directed along x-axis and with

zero y-component (|E | ≃ Ex), from Maxwell equations in the absence of free

charges we have:

divD = 0 (3.8)
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and in the temporal Fourier domain:

D̂(ω) = ǫ0n
2(ω)Ê(ω)

Eq. (3.8) is thus written as:

n2∂xÊx + ∂z(n
2Êz) = 0 (3.9)

By treating perturbatively this equation, with a carrier-envelope decomposi-

tion E = A exp[ik0z − iω0t], we obtain the vector electric field envelope (in

International system units), considering only the dominant terms:

A =

{
Ax; 0; − 1

ik0
∂xAx

}
(3.10)

The magnetic induction field is obtained with a perturbative approach

from Maxwell equation ∂tB = −∇ × E and a similar carrier-envelope de-

composition B = M exp[ik0z − iω0t]:

M =

{
0;

k0
ω0
Ax − i

k0
ω2
0

∂tAx −
i

ω0
∂zAx;

i

ω0
∂yAx

}
(3.11)

From the definition of the Poynting vector and the previous expressions:





Sx =
1

2µ0
ℜ
[
− i

ω0
Ax

∗∂xAx

]

Sy =
1

2µ0
ℜ
[
+
i

ω0
Ax∂yAx

∗

]

Sz =
1

2µ0
ℜ
[
k0
ω0

|Ax|2 +
ik0
ω2
0

Ax∂tAx
∗ +

i

ω0
Ax∂zAx

∗

]

(3.12)

(3.13)

(3.14)

By recalling that the light intensity is I = ǫ0n0c|Ax|2/2, we can properly

rescale the electric field in order to have |Ax|2 = I . By means of this rescal-

ing, the previous equations become:





Sx = ℜ
[
− i

k0
Ax

∗∂xAx

]

Sy = ℜ
[
+
i

k0
Ax∂yAx

∗

]

Sz = ℜ
[
|Ax|2 +

i

ω0
Ax∂tAx

∗ +
i

k0
Ax∂zAx

∗

]

(3.15)

(3.16)

(3.17)
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These equations show that the transverse components of the energy flux

vector F, defined in this context starting from the paraxial propagation equa-

tion, coincide with the transverse components of the Poynting vector S, thus

S⊥ = F⊥, as shown in Refs. [147–151].

The longitudinal component Sz , however, must be interpreted differently

from the local longitudinal energy flux Jτ . The density of electromagnetic

energy indeed includes an electric (we) and a magnetic (wm) contribution

and the Poynting vector represents the energy density flux for both contribu-

tions, in the laboratory frame. In contrast, the energy density flux F accounts

for the electric part only.

By mean of the continuity equations Eqs. (3.7) and (3.2), written in the lab-

oratory frame, and the identification F⊥ = S⊥ within the approximations

involved, we obtain a link between the two longitudinal components:

∂tFt = ∂z(Sz − |Ax|2) + ∂t(we + wm) (3.18)

Since experimentally we usually have access to intensity and, with proper

techniques, phases of the electric field only, we can evaluate the energy re-

distribution by mean of vector F as defined by Eqs. (3.3) and (3.4). On the

other hand, theoretical studies in which one has direct access to E and H

permit the use of the usual definition of the energy density flux based on the

Poynting vector S.

Equation (3.7) can be written as:

∂zSz + ∂tw = −∇⊥ · S⊥ (3.19)

Under the change of reference frame ζ = z, τ = t−z/c, Eq. (3.19) becomes:

∂ζSz = −∇⊥ · S⊥ − ∂τ (w − Sz/c) (3.20)

This is the generalization of the energy conservation equation, without enve-

lope approximation. The left hand side describes the evolution of the longitu-

dinal component of the Poynting vector Sz with respect to the local evolution

variable ζ; it may be regarded as the energy density in the (x, y, τ) space,

since it represents the intensity of the optical field. The right hand side is the

divergence (d̃ivV = ∇⊥ · V⊥ + ∂τVτ ) of the flux vector with components

(S⊥, w − Sz/c) in the transverse x, y and longitudinal τ directions, respec-

tively. The longitudinal flux component (τ -component) is then proportional

to the difference between the usual density of electromagnetic energy w and

the longitudinal component of the Poynting vector. The transverse compo-

nent of the flux is the same as that of the Poynting vector S⊥, whether the
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envelope approximation is made or not. These flux components do not de-

pend on the choice of a carrier frequency or wavenumber.

This more general form, Eq. (3.20), which is expected to depend on the dis-

persive properties of the medium since w depends on the dielectric permit-

tivity, is analogous to the continuity equation Eq. (3.2), which was derived in

a dispersive medium under the envelope approximation and was adopted for

the definition of vector F.

3.3 Nonlinearity and absorption

In the case of nonlinear propagation, the expressions for the flux density de-

termined in the linear case, Eqs. (3.3) and (3.4), remain valid.

As an example, we consider the nonlinear terms which describe the prop-

agation of wavepackets such as those spontaneously formed during the fil-

amentation of ultrashort laser pulses, section 2.5. These include the opti-

cal Kerr effect with instantaneous and delayed (Raman effect) contributions,

multiphoton absorption, plasma effects (absorption and defocusing) follow-

ing ionization of the medium [97, 152], summarized in Eq. (1.50):

N(A) = i
ω0n2
c

T 2

[
(1− α)I + α

∫ τ

−∞

R(τ − ϑ)I(ϑ) dϑ

]
A +

− T
β(K)

2

(
1− ρ

ρ0

)
IK−1A− σ(ω0)

2
ρA (3.21)

By performing the further approximation T ≃ 1, which is linked to the nar-

row bandwidth approximation |Ω|/ω0 ≪ 1, and introducing N(A) from

Eq. (3.21) into Eq. (3.1), we obtain the nonlinear counterpart of the conti-

nuity equation Eq. (3.2):

∂ζ |A|2 + d̃ivF = −β(K)

(
1− ρ

ρ0

)
IK −ℜ{σ(ω0)} ρI (3.22)

The terms on the right hand side of Eq. (3.22), as described in chapter 1,

represent the density of energy losses by multiphoton absorption of order K
and plasma absorption by inverse Bremsstrahlung, respectively [153]. Linear

absorption can be treated similarly (for example by adding an absorption term

with K = 1).
These additional terms represent the amount of energy transferred from the

optical pulse to the medium.



3. Energy density flux 61

3.4 Non-paraxial framework

Since non-paraxial ζ-evolution unidirectional propagation equations can only

be solved in the full space-time (k, ω) spectral domain, a non-paraxial gen-

eralization of F, defined in the (x, y, τ) nearfield space, is difficult to derive.

However, an easy generalization may be done in the case of wavepackets

propagating under cylindrical symmetry around a main propagation angle θ0,

such as CWPs.

By starting from Eq. (2.1), within a second order expansion of k(ω) and

a slowly varying envelope approximation (∂2zz ≪ β∂z , with β = k0 cos θ0 the

longitudinal wavevector), the propagation equation for the envelope Ψ(r, τ, z)
in the linear case can be put in the form of Eq. (3.1):

2iβ∂zΨ+∇2
⊥Ψ− α2 ∂

2
ττΨ+ 2iα1 ∂τΨ+ α0Ψ = 0. (3.23)

where α2 = k0k
′′
0 + (k′0)

2 − 1/v2, α1 = k0k
′
0 − β/v, α0 = k20 − β2, and v

is the envelope velocity of the wavepacket.

The associated energy flux density components are expressed as:





Fr =
1

2iβ
[Ψ∗∇⊥Ψ−Ψ∇⊥Ψ

∗]

Fτ = − α2

2iβ
[Ψ∗∂τΨ−Ψ∂τΨ

∗] +
α1

β
|Ψ|2

(3.24)

(3.25)

where Fr is the component of F along the transverse radial coordinate r (the

action of ∇⊥ on a cylindrically symmetrical function gives a vector with only

an r-component).

For v ≃ vg and in the limit θ0 → 0 these expressions reduce to the ones

[Eqs. (3.3) and (3.4)] derived within the framework of the paraxial propaga-

tion equation Eq. (3.1).

3.5 Monochromatic vs polychromatic energy density

flux

3.5.1 Time integrated flux - monochromatic case

After having defined the framework of the energy density flux, in these sec-

tions we will show the importance of such a tool in the study and understand-

ing of complex pulses.



62 3.5 Monochromatic vs polychromatic energy density flux

In particular, the energy density flux given by Eqs. (3.3) and (3.4) is partic-

ularly well suited to characterize polychromatic wavepackets which exhibit

space time coupling and/or angular dispersion, such as CWPs.

In most cases studied in the literature, optical wavepackets are supposed

to be describable in terms of separated variables with uncoupled beam (spa-

tial) and pulse (temporal) dynamics. When experimental characterization

deals with the spatial dynamics only, the temporal dynamics is assumed to

be frozen and the pulse is considered as quasi monochromatic. In this case,

a characterization in terms of energy flux amounts to considering the trans-

verse component of the flux only. As shown by Eq. (3.6), F⊥ is proportional

to the intensity of the wavepacket and to the transverse gradient of the phase.

If the gradient of the phase is assumed to depend very weakly on time, the

time integrated flux F⊥ can be approximated as:

F⊥(x, y, ζ) =

∫
F⊥(x, y, ζ, τ)dτ ≃ 1

k0
F(x, y, ζ)∇⊥φ(x, y, ζ) (3.26)

where F(x, y, ζ) =
∫
|A(x, y, ζ, τ)|2dτ denotes the fluence of the beam,

which is an experimentally accessible quantity.

In contrast to the time integrated quantity F⊥(x, y, ζ), the transverse en-

ergy flux F⊥(x, y, ζ, τ) at each propagation distance ζ gives information both

on the spatial and temporal reorganization of energy within the wavepacket,

which therefore applies for polychromatic cases as well.

For the Gaussian pulse (GP) obtained by focusing a laser beam with a

lens of focal length f in a dispersive medium, the linear propagation may be

described in terms of the beam and pulse parameters solely depending on the

propagation distance, with the origin (ζ = 0) at the focus of the lens [16]:

A(r, ζ, τ) = A0
w0T

1/2
0

w(ζ)T 1/2(ζ)
exp

(
− r2

w2(ζ)
− τ2

T 2(ζ)

)
×

× exp

(
ik0

r2

2R(ζ)
− iΘ(ζ)− i

τ2

2k′′0L(ζ)

)
(3.27)

where the beam waist w(ζ), beam curvature R(ζ), Gouy phase shift Θ(ζ),
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pulse duration T (ζ) and pulse chirp L(ζ) are respectively given by:

w(ζ) = w0

(
1 +

ζ2

L2
DIFF

)1/2

R(ζ) = ζ

(
1 +

L2
DIFF

ζ2

)

Θ(ζ) = arctan

(
ζ

LDIFF

)
T (ζ) = Tp

(
1 +

(ζ + d)2

L2
GVD

)1/2

L(ζ) = (ζ + d)

(
1 +

L2
GVD

(ζ + d)2

)

The beam is cylindrically symmetric and r is the transverse radial coordinate.

Flat temporal phase was assumed at the beginning of propagation ζ = −d,

defined by f = −d−L2
DIFF /d. The quantity LDIFF = k0w

2
0/2 denotes the

Rayleigh length and LGVD = T 2
p /2k

′′
0 the dispersion length. The pulse du-

ration at the focus T0 is linked to the initial pulse duration Tp by the relation

T0 = Tp(1 + d2/L2
GVD)

1/2.

In Eq. (3.27) the variables are separated: the temporal (longitudinal) and the

spatial (transverse) dynamics remain completely uncoupled within the ap-

proximation used to derive this equation.

The components of F can be calculated directly from Eq. (3.27):





Fr = |A(r, ζ, τ)|2 r

R(ζ)

Fτ = |A(r, ζ, τ)|2 τ

L(z)

(3.28)

(3.29)

where Fr is the radial component. The temporally integrated (“monochroma-

tic”) flux is:

F⊥ =

∫
Fr dτ = F(r, ζ)

r

R(ζ)
(3.30)

The sign of the transverse component is determined by the sign of R(ζ):
before the focus of the lens, ζ < 0, Fr (and consequently the integrated

quantity) is negative, i.e. directed toward the central axis r = 0, while after

the focus this component is positive and directed outwards.

We can compare this behavior to the one associated to spatio-temporal

coupled pulses such as CWPs. In particular, we can compare it to the behav-

ior of a PBB and a BXP. PBB and BXP are ideally infinite-energy beams due

to the low decay rate of their tails along the radial coordinate r. Thus we con-

sider apodized version of the ideal PBB and BXP, so that in the center of the
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Bessel zone the wavepacket may be understood as the product of a Gaussian

beam (apodizer) and a CWP. In particular, to mimic the experimental genera-

tion of such CWPs, we superimposed to a Gaussian beam the phase effect (in

the temporal Fourier space) due to an ideal circularly symmetric diffraction

grating (PBB) or an ideal axicon (BXP).

We numerically evaluated the flux in these three cases (GP, PBB, BXP)

by considering propagation in water for central wavelength λ0 = 800 nm.

The GP parameters are: w0 = 0.03 cm, Tp = 80 fs and f = 4 cm.

The PBB and BXP have the same propagation angle θ0 = 2◦, temporal dura-

tion Tp = 80 fs, and Gaussian apodization with w0 = 0.1 cm.

Figure 3.1: Time integrated transverse flux F⊥ profiles as a function of radial coordinate

and propagation distance for a) a focused GP - b) a PBB - c) a BXP. Red color indicates

outward flux (F⊥ > 0) with respect to the propagation axis. Blue indicates flux towards

the axis (F⊥ < 0).

Figure 3.1 shows the time integrated transverse flux F⊥(r, ζ) (radial com-

ponent) as a function of the propagation distance ζ (evolution parameter) and

radial coordinate for the three cases under examination. The focused GP

case, Fig. 3.1(a), presents inward directed (negative) flux before the beam

waist position at ζ = 0, and outward directed (positive) beyond the focus,

due to linear diffraction, as expected from Eq. (3.30).

As shown in Figs. 3.1(b) and 3.1(c), the PBB and BXP cases cannot be dis-

tinguished by their characterization in terms of time integrated flux. Both

exhibit an integrated flux qualitatively similar to that of the GP, with an initial

inward-directed flux, followed by a region (corresponding approximatively

to the center of the Bessel zone) in which the flux vanishes and finally an out-

ward directed flux. This behavior is strictly connected to the spatial apodiza-

tion, as discussed in the next sections. For longer propagation distances, the

flux becomes ring-shaped in the transverse (x, y) plane, which corresponds

to the farfield of a PBB or a BXP, since their spectrum is a ring with peak

intensity centered around angle θ0.
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3.5.2 Energy flux in the polychromatic case

The representation at fixed ζ of Fr in the nearfield (r, τ) domain allows us

to discriminate between the three cases examined in the previous section.

Figure 3.2 shows the change in the transverse flux distribution for the GP,

PBB and BXP cases as a function of the propagation distance.

The wavepackets, before the focus of the GP, or at the very beginning of

the Bessel zone, are depicted in Figs. 3.2(a)–3.2(c). The GP transverse flux

does not present any particular feature in the (r, τ) domain, and the pulse as

a whole is focusing, since Fr < 0. The PBB and the BXP present an inward-

directed energy flux, featured by the intensity distribution of the wavepacket

itself. Even if the intensity distribution is almost identical for the GP and the

PBB (the difference is only due to the different beam width of the GP and the

Gaussian apodization), the distribution of the energy density flux is different

because it takes into account also the phases of the wavepackets.

Figures 3.2(d)–3.2(f) show the three cases at the beam waist, or at the

center of the Bessel zone. The GP transverse flux [Fig. 3.2(d)] is consider-

ably smaller with respect to the previous case, since the spatial phase is flat

in correspondence of the beam waist. As seen in the temporally integrated

quantity, Fig. 3.1(a), the flux density reaches a minimum and a maximum

just before and just after the beam waist [located at ζ = 0 in Fig. 3.1(a)],

respectively.

The BXP flux, Fig. 3.2(f), presents two wings: one in the leading part of the

pulse with inward flux and one in the trailing part with outward-directed flux.

The PBB can be regarded as a degenerate BXP, since propagation angle θ0
and pulse tilt angle δ are opposite, so that the inward-flux and outward-flux

wings spatially overlap [see Fig. 3.2(e)], as schematically represented in the

previous chapter in Fig. 2.1.

Figures 3.2(g)–3.2(i) show the flux characterizing the GP, PBB and BXP

at a larger propagation distance. The energy flux is directed outward for

all the three wavepackets and exhibits characteristic features of the intensity

distribution in the farfield region, which corresponds to a diverging Gaussian

beam for the GP and a diverging ring for the PBB and the BXP.

Since the reference system is moving at velocity vg, the GP remains cen-

tered around τ = 0, the PBB (v = vg cos θ0 < vg) for increasing propagation

distance moves towards positive τ , and the BXP (v = vg/ cos θ0 > vg) moves

towards negative τ .
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Figure 3.2: Transverse flux Fr for three different wavepackets at different propagation

distances ζ. a),d),g) refer to the GP 4 cm before the focus, at the focus and 4 cm after that

point, respectively. b),e),h) refer to the apodized PBB, obtained by multiplying a Gaussian

profile by a radially-dependent phase, at the beginning of propagation, near the center of

the Bessel zone and towards the end of this zone, respectively. c),f),i) refer to the same

situation as b),e),h) for the BXP wavepacket profile. Color scale of Fr in arbitrary units.

The black contour plots show the intensity distributions over 2 decades.

3.6 Stationary envelope waves

3.6.1 Normal GVD case: X-waves

As introduced in section 2.3.2, stationary CWPs satisfy a particular spectral

relation, Eq. (2.2). In this section we will show the flux of stationary CWPs
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with asymmetric frequency spectral weight, evaluated by means of Eq. (2.9).

We used a full dispersion relation k(ω) for the definition of these wavepack-

ets by mean of Eq. (2.2): the expression for the flux, derived in the second

order approximation, gives in this case the main contribution, since higher

order terms are expected to become more important in spectral regions cor-

responding to zero GVD (k′′0 = 0). The k(ω) relation was extrapolated from

the data of Ref. [154].

Figure 3.3: Transverse flux Fr for stationary CWP in normal GVD case (X-wave), for dif-

ferent propagation velocities of the envelope peak. a) v = 0.9995vg and b) v = 1.0005vg .

The gray contour plots show the intensity over 4 decades. The insets show the correspond-

ing spectral (λ, k⊥) features. Color scale in arbitrary units.

Figures 3.3(a) and 3.3(b) show the transverse flux Fr for X-waves cor-

responding to hyperbolic spectral profiles with frequency gap [region B of

Fig. 2.2], central wavelength λ0 = 527 nm, reference angle θ0 = 0 rad,

Gaussian temporal frequency weight [f̂(Ω) in Eq. (2.9)] corresponding to a

pulse duration Tp = 80 fs, and Gaussian spatial apodization (w0 = 0.5 mm),

propagating in water for two different envelope velocities: v = 0.9995vg
[Fig. 3.3(a)] and v = 1.0005vg [Fig. 3.3(b)], respectively smaller and larger

than the group velocity vg = 1/k′0 = 2.20720 × 108 m/s. The flux profile is

similar to the BXP case: it exhibits two characteristic tails, one in the leading

and one in the trailing part of the pulse.

The inward-directed flux wing appears either in the leading or the trailing

part of the pulse, according to the fact that the envelope velocity is v > vg
or v < vg. This behavior is not in contradiction with the fact that the overall

pulse is moving in the forward direction. It may be simply understood by

considering that the propagation of the central peak is the result of the cylin-

drically symmetric superposition of tilted pulses [72], as schematically rep-
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resented in Fig. 2.1, so that exchanging the inward- and outward-propagating

wings changes the relative position of the velocity of the axial temporal peak

with respect to the group velocity vg (in particular, with respect to the energy

velocity: v = vg cos θ0 ≃ vg for small angles).

Spatial apodization limits the propagation range in which the wavepacket

is effectively stationary: the behavior is qualitatively similar to the BXP case.

After propagation, towards the end of the Bessel zone, the dominant wing is

the residual outward-directed flux tail, which appears in the trailing or leading

part of the pulse, depending on the envelope velocity.

In Ref. [88] closed-form analytical solutions for stationary CWPs with

specific spectral weight functions f̂(Ω), see Eq. (2.9), were given. All these

analytical solutions with velocity equal to the energy velocity vg cos θ0 and

corresponding to symmetrically distributed spectral weight turn out to have

both transverse and longitudinal flux components equal to 0. The case of

an asymmetric spectral weight leads to analytical solutions featuring a single

branch of an X-wave with frequency gap in region B of Fig. 2.2, similar to

the case treated in this section.

3.6.2 Anomalous GVD case: O-waves

Stationary CWPs in media with anomalous dispersion typically feature el-

liptical spectral k⊥(Ω) profiles called O-waves [86, 155]. Similar stationary

CWPs are also obtained in the case of normal dispersion [88] in region D

of Fig. 2.2; however, these profiles are highly non-paraxial. By choosing a

proper spectral distribution f̂(Ω) around the region where the spectral curve

intersects the k⊥ = 0 axis, to limit the wavepacket to a paraxial framework,

such CWPs become almost identical to a single branch X-wave profile, ex-

amined in the previous section.

In this section we will thus study the O-wave case within the paraxial

approximation by considering the propagation in a medium with anomalous

GVD (k′′0 < 0). As for the previous section, we will consider the full disper-

sion relation in the definition of the wavepacket, and an asymmetrical spectral

weight.

Figure 3.4 shows the transverse flux Fr for O-wave wavepackets propa-

gating in water at central wavelength λ0 = 1300 nm (k′′(λ) = 0 in water at

λ ≃ 1000 nm) and angle θ0 = 0.005 rad, Gaussian spectral weight corre-

sponding to Tp = 40 fs, Gaussian spatial apodization (w0 = 0.6 mm), and

peak velocity a) v = 0.9995vg and b) v = 1.0005vg, smaller or larger than

vg = 2.22930 × 108 m/s, respectively. Although the nearfield profiles of
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these wavepackets are definitely different from the X-wave cases, since they

exhibit a characteristic elliptical structure, the flux profiles are analogous to

the X-wave cases and, as before, the position of the inward-directed energy

wing is still linked to the value of the envelope velocity v with respect to the

energy velocity vg cos θ0 (in the previous case this coincided with vg since

the main propagation angle was chosen as θ0 = 0).

Figure 3.4: Transverse flux Fr for stationary CWP of the O-wave type in anomalous

GVD regime (k′′

0 < 0), for different propagation velocities of the envelope peak. a)

v = 0.9995vg and b) v = 1.0005vg . The contour plots show the intensity over 4 decades.

The insets show the corresponding spectral (λ, k⊥) features. Color scale in arbitrary units.

3.7 Longitudinal component

In the previous sections we considered only the transverse component of the

energy flux F, which coincides with the transverse component of the Poynt-

ing vector and whose definition does not depend on the velocity of the wave-

packet under examination. In this section, we will show that the longitudinal

component of the energy flux also constitutes an important source of infor-

mation. Monitoring this component in the frame moving at the velocity of

the envelope peak allows us to diagnose the energy redistribution occurring

within the wavepacket.

3.7.1 Longitudinal component of the energy flux

In the frame moving at vg = 1/k′0, the longitudinal flux component Fτ is re-

lated to the chromatic dispersion of the pulse, as underlined by Eq. (3.4). In

both cases of normal and anomalous GVD, a Gaussian pulse with initial flat
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phase develops during propagation a longitudinal flux component featured by

two side lobes in the leading and in the trailing part of the pulse: the leading

lobe is directed toward negative times and the trailing lobe toward positive

times [Fig. 3.5(a)]. This indicates that the pulse is broadening along the tem-

poral coordinate during propagation because of GVD.

In contrast, if the pulse has an initial negative chirp and propagates in a nor-

mally dispersive medium (k′′0 > 0), each side lobe corresponds to a longitudi-

nal flux with opposite sign, indicating pulse compression during propagation

as expected in this case from the action of normal GVD.

Figure 3.5: Longitudinal flux Fτ for a GP propagating in different regimes. a) linear

propagation with normal GVD. b) Nonlinear propagation (high intensity) with anomalous

GVD (λ0 = 1300 nm in water). c) Nonlinear propagation with anomalous GVD at lower

intensity with respect to case b). The color scale of Fτ indicates flux towards positive (resp.

negative) τ values in red (resp. blue). The gray contour plots show normalized intensity

contours over 2 decades, i.e. for I/Imax = 10−1 and 10−2.

The case of nonlinear propagation in a Kerr medium with anomalous dis-

persion (k′′0 < 0) is particularly instructive. As shown in section 3.3, the

expression for F also holds for nonlinear propagation.

Self-phase modulation induced by the optical Kerr effect generates new fre-

quencies in the regions of the pulse with the strongest intensity gradients

[see 1.5.1]. In particular, a focusing Kerr nonlinearity generates upshifted

or downshifted frequencies with respect to the central frequency ω0 in the

decreasing or growing part of the pulse, respectively, i.e. in the trailing and

leading edge of the pulse. In conjunction with anomalous GVD, this effect is

responsible for pulse shortening during propagation, since self-phase modu-

lation frequency generation determines an effective negative chirp.

Figure 3.5(b) illustrates the longitudinal flux obtained in this situation: each

lobe of Fτ exhibits an opposite sign with respect to the linear propagation

case. As a comparison, Fig. 3.5(c) depicts the longitudinal flux associated

with the nonlinear propagation of a GP with lower energy and pulse inten-
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sity than that of Fig. 3.5(b). Self-phase modulation is in this case weaker

and the newly generated frequencies are not able to overcome linear disper-

sion over the whole pulse, but only in the central region where the intensity

is higher. Nonlinear effects thus dominate in the central high intensity core

and the flux points inwards thus leading to a local temporal compression,

while the surrounding low intensity regions behave almost linearly with an

outward-directed flux. Such a behavior leads to the progressive distortion of

the pulse.

3.7.2 Radially averaged longitudinal flux

In analogy with the evolution of the temporally averaged transverse flux de-

picted in Figs. 3.1(a)–(c), the evolution of the radially averaged longitudinal

flux Fτ may be a relevant quantity for a system in which the evolution along

the transverse spatial coordinates is negligible or fixed by the geometry of the

system, such as the case of a pulse propagating inside an optical fiber.

Figures 3.6(a) and 3.6(b) show the power (spatially integrated intensity) and

the longitudinal flux Fτ , respectively, versus propagation distance ζ, for the

linear propagation of a pulse with an initially Gaussian spectral distribution

and strong quadratic and cubic phase chirp. The pulse spectra is therefore in

the form:

Â(Ω) ∝ exp(−Ω2T 2
p /4 + iC1Ω

2 + iC2Ω
3)

The dispersion parameters correspond to propagation in water at a central

wavelength of λ0 = 527 nm. Diffraction was neglected.

The intensity pattern depicts an intense temporal peak whose instanta-

neous velocity v varies during propagation, following the relation 1/v =
1/vg + dτ/dζ. In the local frame moving at vg, the instantaneous velocity

of this peak is given by the first derivative of the (τ, ζ) intensity distribution

curve. The curvature of this intensity distribution thus represents the peak

acceleration: in Fig. 3.6(a), the peak exhibits a constant deceleration (since

velocities larger than vg correspond to a relative motion towards negative τ ).

The peak velocity is larger than vg for the first ∼ 20 cm and smaller af-

terwards. This behavior is governed by the cubic chirp, while the distance ζ
at which the peak travels at vg (i.e. the z position for which dτ/dz = 0, or

the vertex of the parabola described by the intensity curve) is determined by

the quadratic chirp.A cubic chirp of opposite sign would lead to a constant

acceleration, due to the change of the curvature sign.

The longitudinal component of F shown in Fig. 3.6(b) underlines the decel-
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eration property: in correspondence of the main peak a net flux is directed

towards negative times in the region v > vg, and in the opposite direction

in the region v < vg. However, the overall pulse presents a broad series of

secondary intensity peaks associated with a flux of opposite sign. This indi-

cates, as expected, that the center of mass of the entire pulse energy does not

change during propagation in spite of the peak deceleration. Furthermore, for

large propagation distances (final part of Fig. 3.6(b), for ζ & 45 cm) the flux

pattern becomes similar to the one obtained for a GP subject to normal GVD

(e.g. Fig. 3.5(a)).

This acceleration property given by a third order spectral phase compo-

nent is at the basis of the behavior of the self-accelerating finite-energy Airy

Beam [9, 10].

Figure 3.6: a) Linear scale of the intensity plot, and b) longitudinal flux Fτ as a function

of propagation distance z and temporal longitudinal coordinate τ for a GP with strong

quadratic and cubic spectral frequency chirp. For both figures, the temporal axis refer to

the local frame moving at vg = 1/k′

0. The color scale of Fτ indicates flux towards positive

(respectively negative) τ values in red (respectively blue).

3.8 Nonlinearity and absorption

As previously shown, section 3.3, F represents the energy density flux also

in the case of absorptions, provided that the continuity equation Eq. (3.22)

includes the “sink” term associated to these effects.

Nonlinear CWP profiles which maintain an intensity-invariant shape in

the presence of nonlinear losses (multiphoton absorption) have been derived

[140, 142] starting from the envelope equation, Eq. (1.27).

Numerical solutions called unbalanced nonlinear Bessel beams (UBB) have
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been found for the monochromatic case and unbalanced nonlinear O-waves

(UBO) for the polychromatic case in the regime of anomalous GVD.

Following the procedure of Ref. [142], we numerically evaluated the

nearfield profiles of UBB and UBO and the associated energy flux.

Figure 3.7: Vector plot of the energy flux F for the main intensity peak of an unbalanced

nonlinear O-Wave (UBO) with stationary envelope propagating at vg = 1/k′

0, superim-

posed to the intensity distribution of the UBO plotted over 4 decades. In the inset, the

intensity plot over 4 decades of the UBO profile over a larger scale.

Figure 3.7 shows the vector representation of F for an UBO. The param-

eters were chosen to represent dispersion and nonlinear losses for water at

λ0 = 1300 nm (anomalous GVD).

The energy flux is directed towards the center of the pulse, corresponding to

the peak of the intensity distribution, where the main amount of multiphoton

absorption takes place. In the ideal case of a linear stationary O-wave mov-

ing at velocity vg, within the framework of Ref. [142], the net flux is 0 since

the incoming energy stream is exactly compensated by the outcoming one,

analogously to the ideal PBB case. From a mathematical point of view, this

corresponds to flat spatio-temporal phase for the complex envelope A.

In the unbalanced case, however, the central core, i.e. the most intense

part of the wave, is continuously replenished since the amount of inward en-

ergy is larger than the outward stream (hence the name “unbalanced”). This
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surplus energy flux carried by the conical tail is exactly compensated by the

amount of losses in the central core, thus sustaining the stationary propaga-

tion.

3.9 Experimental characterization

The energy flux analysis, as described in the previous sections, requires the

knowledge of both intensity and phase information of an ultrashort pulse in

the full spatio-temporal domain at given propagation distance.

The development of spatio-temporal intensity and phase retrieval techniques

opens thus the possibility of applying this numerical tool to an experimental

environment, to gain a deeper understanding of the pulse dynamics.

As an example, we used the energy density flux in two different experi-

mental frameworks: the linear propagation of a BXP and the highly nonlinear

propagation regime arising from the filamentation of ultrashort laser pulses.

3.9.1 The “Shackled” FROG

The reconstruction of the electric field complex envelope in the linear case

was performed by mean of a combination of the Frequency-Resolved-Optical-

Gating (FROG) technique [156] for the retrieval of the temporal profile of the

pulse with a spatial nearfield measurement with an Hartmann-Shack (H-S)

sensor [157]. This technique was thus called “Shackled” FROG [79, 158].

The temporal profile of the pulse at a single radial position was character-

ized by a standard Second Harmonic Generation (SHG) FROG measurement,

while the spatial characterization was performed with a home-made H-S sen-

sor. The H-S sensor consisted of a regular array of transmissive Fresnel zone

plates, that play the same role of the lenses in the standard H-S sensor.

Each portion of the spatial profile of the beam is focused by the grid of lenses;

the displacement ∆(x, y) of the focused spots from each lenslet with respect

to the projection of the center of the respective Fresnel zone plate on the

detector, will give the spatial phase derivative of the pulse. By a simple inte-

gration the wavefront in terms of relative displacement (with respect to a flat

wavefront) is retrieved, and the adimensional phase is obtained by multiply-

ing such quantity by 2π/λ.

The spatial phase retrieved at each wavelength is uncorrelated with respect

to the others. The link along the temporal axis between each spatial phase

profile is performed by mean of a single FROG measurement at a given coor-
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dinate (x, y), with the constraint that all frequencies are present at this spatial

position. In the case under examination, the couple x, y = 0 was chosen.

This procedure is easily applicable to the BXP case, since the propaga-

tion angle is the same for each frequency. In a different case, the procedure

requires a series of measurements with the H-S for each different frequency,

which can be achieved by the use of a set of interferential filters [159], or an

imaging interferometer configuration [158].

As described in Ref. [79], this technique was applied to an apodized BXP

propagating in air, generated by sending a 790 nm, 33 fs, 4 mm FWHM

diameter GP through a fused silica axicon with a base angle of α = 2.5◦.

Under the condition that the dispersion of the axicon material is negligible,

θ(ω) = θ0, so that only a single spatial measurement was performed. This

allowed the retrieval of the spatial phase for each wavelength. The experi-

ments and the intensity and phase retrieval were carried on by F. Bonaretti,

D. Faccio and M. Clerici of the Ultrafast Nonlinear Optics group of Prof. P.

Di Trapani, Università degli Studi dell’Insubria, Como, Italy, at the Institut de

Ciències Fotòniques (ICFO), Castelldefels (Barcelona), Spain, with the help

of the Attoscience and Ultrafast Optics group of Prof. J. Biegert.

Figure 3.8: Setup for the H-S measurements; d is the focal distance of the Fresnel zone

plates H-S sensor. The measurements were performed scanning the evolution of the pulse

along the propagation direction ζ. Courtesy of F. Bonaretti.

The spatial measurements were performed with a CCD placed in the focal

plane of the H-S sensor, as represented in Fig. 3.8; the whole set was moved

at different propagating positions along the Bessel zone to scan the evolution

of the spatio-temporal profile. The temporal profile of the pulse was mea-

sured independently by using a standard SHG FROG technique on the r = 0
coordinate of the input GP before the axicon, assuming that no changes occur

in the temporal characteristics of the pulse along the direction of propagation.

We applied the energy density flux tool to the experimental data.
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Figure 3.9 shows the transverse y-component of vector F. It experimentally

verifies the numerical evaluation of Fig. 3.2. Red (blue) color in this case

means flux directed toward positive (negative) values of the vertical (spatial)

axis. In particular, at the very beginning of the Bessel zone [Fig. 3.9(a)],

the flux is directed toward the central axis y = 0 for both wings above and

below the axis, i.e. it is negative for the wing above the axis and positive

for the one below y = 0. At the center of the Bessel zone [Fig. 3.9(b)], the

pulse exhibits the typical X-shaped structure of BXP with wings of inward-

and outward-directed energy. After the Bessel zone [Fig. 3.9(c)], the pulse

is reshaped into a diverging ring (spatial farfield of a BXP), as underlined by

the outward-directed (with respect to the central axis) energy flux.

Figure 3.9: Experimentally evaluated Cartesian component Fy of the transverse flux F⊥

for a BXP at different propagation distances. The local reference system travels at the

velocity of the main central peak of the wavepacket. a) refers to the very beginning of the

Bessel zone. b) refers to the center of the Bessel zone. c) refers to the pulse after the end

of the Bessel zone. Fy is renormalized to its maximum value for every image. The contour

plots show the intensity over 2 decades. The vertical axes are spatial y-axes, not radial

r-axes as in Fig. 3.2. Red, respectively blue, color thus represent flux directed toward the

positive, respectively negative, direction of the vertical axis.

3.9.2 The Gerchberg-Saxton technique

The energy flux technique was also used on a dynamical highly nonlinear pro-

file such as the one generated during the filamentation process of ultrashort

laser pulses.

As explained in section 2.5, high power laser pulses undergo self-focusing

in nonlinear Kerr media: the collapse is eventually arrested by multiphoton

absorption or higher order nonlinear processes and the pulse reshapes into a

tightly localized intensity peak that propagates sub-diffractively over many

diffraction lengths. This peak is surrounded by a larger energy reservoir and

the interaction between the core and the reservoir sustains the long-range
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nonlinear propagation. This allows to foresee applications based on long dis-

tance nonlinear interaction or on the transport of high intensities over long

paths [15].

The filament was generated by focusing (f = 50 cm) a 160 fs, 800 nm,

3.3 µJ laser pulse in a water cell [144].

In order to retrieve the pulse amplitude and phase, a technique based on

a near- (r, t) and farfield (θ, λ) intensity measurement and the Gerchberg-

Saxton iterative error-reduction algorithm was introduced.

The characterization of the laser pulse filament was thus based on two sepa-

rate measurements:

• The first was a 3D tomographic mapping [160] of the pulse space-time

intensity profile obtained by overlapping the pulse under study with a

flat-top, 5 mm diameter (FWHM), 720 nm, 20 fs gate pulse, generated

by a commercial noncollinear optical parametric amplifier (NOPA), on

a second order nonlinear crystal (BBO crystal), Fig. 3.10(a). The sum-

frequency signal generated by the nonlinear BBO crystal, recorded

with a CCD camera, reproduces the pulse spatial profile within the tem-

poral window of the gate pulse. Changing the relative delay between

the gate and the laser pulse reconstructs the full space-time intensity

profile of the laser pulse itself, Fig. 3.10(b).

• The second measurement was a measure of the angularly resolved (θ, λ)
spectrum, Fig. 3.10(d). This was obtained by sending the spatial farfield

of the filament, i.e. the intensity distribution in the focal plane of a lens,

onto the input slit of an imaging spectrometer, and the output (θ, λ)
spectrum was recorded with a CCD camera [138], Fig. 3.10(c). From

this measurement, the (k⊥, ω) intensity spectrum was obtained.

The experiments were carried on by D. Faccio, A. Matijošius and F. Bragheri

at the Department of Quantum Electronics, Vilnius University, Vilnius, Lithua-

nia, with the help of the Group of Ultrashort Pulse Optics of Prof. A. Dubietis.

Since the (r, t) and (k⊥, ω) measurements form a Fourier transform pair,

we used a generalization to the space-time domain of the Gerchberg-Saxton,

or error-reduction, algorithm [161], usually employed in the field of spatial

wave-front reconstruction.

In particular, phase retrieval was obtained via an iterative algorithm in which

the complex envelope is Fourier-transformed back and forth, each time sub-

stituting the corresponding measured (r, t) or (k⊥, ω) amplitude profile, start-

ing from an initial phase guess. The algorithm was run using measured data
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Figure 3.10: Setup for the Gerchberg-Saxton technique measurements. (a) Experimental

setup for the 3D tomographic technique based on second-order sum frequency generation.

(b) The intensity profiles at different temporal delays between the pulse under examination

and the gate, recorded by a CCD camera, are used to reconstruct a three-dimensional image

of the wavepacket in the space (x, y, τ). (c) Experimental setup for the farfield (θ, λ)
measurements: an imaging spectrometer is placed in the focal plane of a converging lens,

so that the components at different wavelengths are spatially displaced at the exit of the

instrument. The spectral distributions are then recorded by a CCD camera. (d) Farfield

spectrum of the filamentation regime in real colors, taken with a color Nikon digital camera.

for a total of 400 iterations with an initial quadratic guess function for the

phase profile. By varying the input phase curvature, the algorithm converged

to results similar to the ones represented in Fig. 3.11.

The Gerchberg-Saxton algorithm is afflicted by an ambiguity in the sign of

the retrieved phase, e.g. it cannot discriminate between a focusing or a de-

focusing Gaussian beam. This ambiguity can be removed if the sign of the

phase is actually known a priori. This was indeed the case for the input pulse

(ζ = 0 cm) as it was focused into the medium with a positive lens.

From the amplitude and phase information retrieved by the algorithm, we

calculated the space-time energy-density flux in the reference frame moving

at vg. Figures 3.11(a) and 3.11(b) show the transverse flux Fy and the longi-

tudinal Fτ for the input focusing GP, respectively. The grey curves show the

contours of the pulse space-time intensity profile in logarithmic scale over 2

decades. Blue (red) regions indicate a flux directed towards negative (posi-

tive) values of the (spatial) vertical or (temporal) horizontal axis.

The transverse flux clearly shows an inward flow toward the center of

the pulse (r = 0) as expected for a linearly focusing GP. The longitudinal
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Figure 3.11: Experimentally retrieved energy density flux profiles for a laser pulse un-

dergoing filamentation in water. Blue indicates a negative (opposite to the axis direction),

Red indicates a positive (same as the axis direction) flux. (a), (c), (e) and (g) show the

normalized (y, t) distribution of transverse flux for the input focused pulse, for the pulse

after 10 mm, 20 mm and 40 mm of nonlinear propagation, respectively. (b), (d), (f) and

(h), under the same conditions, show the longitudinal fluxes. The gray contour plots show

the intensity profile over 2 decades (0.4 decade spacing between each contour line). In

(e), L, T and W mark the leading peak, the trailing peak and the central (reservoir) wings,

respectively.

flux shows two components, both flowing outward with respect to the center

(τ = 0) of the pulse. This flux, as explained in the previous sections, is

related to linear dispersion. These figures are qualitatively equivalent to the

numerical cases of Figs. 3.2(a) and 3.5(a), respectively.

Figures 3.11(c) and 3.11(d) show the fluxes after 1 cm of propagation.

Nonlinear effects on the pulse are clearly visible: Fy shows an inward flow

toward the center due to linear focusing and self-focusing in correspondence

of the leading region and the outer regions, while the trailing part exhibits a

flux with opposite direction (i.e. outward directed). This defocusing behavior

of the energy flux, associated with a horn-shaped profile of the intensity may

be a signature of defocusing arising from the generated plasma [15].

Figures 3.11(e)–3.11(f) and 3.11(g)–3.11(h) show the energy flux compo-

nents for the fully formed filament. The pulse is split into two daughter pulses

(pulse splitting) and the leading pulse (“L” in the figure) shows a marked X-

shaped structure in the transverse flux distribution. The X-shaped pattern

underlines the presence of a conical energy flux that is bringing energy from

the surrounding reservoir into the central intensity peak. The trailing pulse
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(“T” in the figure) is still affected by plasma defocusing and shows a marked

outward flux. We note the presence of an off-axis ring (“W” in the figure)

that is focusing toward the pulse axis. The conical X-shaped transverse-flux

is still clearly visible after 40 mm propagation [Figs. 3.11(g) and 3.11(h)]:

the energy has recombined toward the pulse center and another pulse splitting

event has occurred after the one of Figs. 3.11(e) and 3.11(f).

These results strongly support the presence inside the filamentation regime

of spontaneously formed CWPs [97, 122, 162]. Indeed, the transverse flux

profiles closely resemble the patterns seen in the BXP or X-wave cases,

Figs. 3.2(f) and 3.3(b). Moreover, the inward-directed wing is in the front

part of the leading pulse intensity peak, similarly to the examples of CWPs

with velocity v > vg.

The interpretation of the longitudinal flux in the fully-formed filament is more

complicated.

We performed numerical simulation of the filamentation regime by mean

of Eqs. 1.49 and 1.50, for both condensed [153] and gaseous media [98] and

applied the energy density flux analysis. The results are very close to the

experimental measurements.

Figure 3.12: Transverse (a) and longitudinal (b) energy density flux for a numerically sim-

ulated laser filament pulse in water. The input power and focusing conditions were chosen

to match the experiment. The gray contour plots show the intensity profile over 4 decades

(0.8 decade spacing between each contour line). L, T and W indicate the leading peak,

the trailing peak and the central wings, respectively. The main experimental features are

reproduced, in particular the marked X-shaped flux associated to the main leading intensity

peak

In Fig. 3.12 we show a numerically simulated laser filament intensity

with its transverse and longitudinal flux distribution using input conditions

which reproduce the experimental measurements. Each feature retrieved in
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the experimental figures may be also recognized in the numerical figure. In

particular, Fig. 3.12(a) exhibits an X-shaped flux structure associated to the

leading peak L, resembling the X-wave (or BXP) behavior, while the trail-

ing peak T is characterized by a mainly outward directed flux. The inward

ring W from the energy reservoir is also clearly visible, in agreement with

the experimental measurement and the explanation of the filament process

continuously sustained by the surrounding background.

3.10 Conclusions and perspectives

In summary, in this chapter we defined the vector of energy density flux,

starting from the envelope paraxial propagation equation. We showed that

this quantity, linked to the Poynting vector, represents the redistribution of

energy inside a wavepacket in its local reference frame, related to diffrac-

tion, dispersion and nonlinear effects, such as Kerr effect and multiphoton

absorption.

We performed a series of numerical investigations based on the analysis

of the instantaneous features and evolution along propagation distance of the

energy density flux vector. We showed this as a valuable instrument for the

investigation of spatio-temporally coupled wavepackets, such as CWPs, and

in particular as a tool for retrieving information about the nature of the pulse

and its propagation properties.

We finally reported two applications of this analysis tool. Indeed, the

fact that it relies on the knowledge of intensity and phase of the electric field

makes it a diagnostic tool also in an experimental context, thanks to the de-

velopment of spatio-temporal intensity and phase retrieval techniques. By a

close collaboration with experimental groups, we applied an energy density

flux analysis to a linear BXP case, confirming the numerical results.

In the nonlinear case, we collaborated in the development of a novel retrieval

technique based on a generalization of known algorithms, and we concen-

trated on the filamentation of ultrashort laser pulses. In this nonlinear fila-

mentation case, the energy density flux analysis brought more information

about the role of the energy reservoir in bringing energy toward the intense

peak thereby sustaining the interaction over large distances.

As a final remark, in the next section, we propose the use of vector F as

a possible alternative method for the complete phase retrieval of ultrashort

pulses in the spatio-temporal domain.
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3.10.1 Perspectives: phase retrieval

As previously shown, the energy density flux is proportional to both intensity

and phase gradient, see Eq. (3.6).

On the other hand, starting from the continuity equation for the field intensity,

Eq. (3.2), the knowledge of A(r, τ, ζ) and ∂ζA(r, τ, ζ) at a given point ζ in

propagation allows the reconstruction of the components of F.

It is thus possible to reconstruct the (r, τ) distribution of the phase gra-

dient at given ζ position by retrieving the components of F, if A(r, τ, ζ)
and ∂ζA(r, τ, ζ) are known quantities. This in particular requires the mea-

surement of the full spatio-temporal distribution at two (or more) neigh-

bour ζ points, provided that the evolution is sufficiently slow (so that the ζ-

derivative may be approximated by a finite difference). This may be achieved

by a set of measurements of the space-time resolved intensity with the three-

dimensional mapping technique [160] described in the previous section. More-

over, an estimate of the nonlinear absorption terms of the nonlinear continu-

ity equation, Eq. (3.22), which are intensity-dependent, could enable such a

phase retrieval procedure also in the nonlinear case (e.g. in the filamentation

regime).

This approach should be distinguished in two different cases, depending

on the sign of GVD dispersion.

By assuming cylindrical symmetry and renormalizing the temporal coordi-

nate as ϑ = τ/
√
k0 |k′′0 |, the flux components become:





Fr =
1

k0
I∂rφ

Fϑ = ∓ 1

k0
I∂ϑφ for k′′0 ≷ 0

(3.31)

(3.32)

where I is the field intensity |A|2 and φ the phase of the complex envelope.

For the normal GVD case (k′′0 > 0), the continuity equation [Eq. (3.2)]

and the additional condition:

∂ϑFr + ∂rFϑ = (∂ϑ ln I) · Fr + (∂r ln I) · Fϑ

reduces to a system of two first order coupled differential equation for the

longitudinal and transverse components of F:



∂ru− ∂ϑv = −u

r
+ Z

∂ϑu− ∂rv = Gu− Lv

(3.33)

(3.34)
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where u = Fr and v = −Fϑ are the unknown functions to be retrieved, and

Z = −∂ζI , G = ∂ϑ(ln I), L = ∂r(ln I) are known quantities.

The retrieval procedure may be implemented for example by mean of a leap-

frog scheme [163] and considering proper boundary and initial conditions

(such as Fr, Fϑ = 0 sufficiently far from the pulse, i.e. for r → +∞ and

ϑ→ ±∞, and Fr = 0 exactly on axis r = 0).

For the anomalous GVD case (k′′0 < 0), Eq. (3.2) becomes a non homo-

geneous Poisson-like problem for the phase of the complex envelope:

Z = ∂2rrφ+ ∂2ϑϑφ+
1

r
∂rφ+ L · ∂rφ+G · ∂ϑφ (3.35)

where Z = −k0∂ζ(ln I), G = ∂ϑ(ln I), L = ∂r(ln I) are known quantities.

By adding a further evolution dimension η to the problem, the equation is

rewritten as a diffusion equation:

∂ηφ = ∂2rrφ+ ∂2ϑϑφ+
1

r
∂rφ+ L · ∂rφ+G · ∂ϑφ−Z (3.36)

By starting with a random initial condition at η = 0 and letting the sys-

tem evolve along the evolution parameter η, under properly chosen boundary

conditions, the solution of Eq. (3.35) is obtained in the limit η → +∞. The

evolution of the system may be carried on by means of standard techniques

such as the relaxation, or successive over-relaxation methods [163].

Preliminary numerical investigations demonstrate that this retrieval tech-

nique is able to retrieve the phase gradient profiles, and it appears to work

better for the anomalous GVD case.

However, they also underline that the dynamic range for the spatio-temporal

intensity data critically affects the accuracy of the retrieval or even the con-

vergence of the algorithm itself. This may be explained by considering the

fact that, in the underlying equations, numerical derivatives of the logarithm

of the intensity are involved.
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Chapter 4

Third harmonic generation

within a filament

In this chapter we will study the process of third harmonic generation in the

filamentation regime. In particular, starting from a series of experimental

results of the spectral evolution of the third harmonic component along prop-

agation distance, performed by the Ultrafast Laser Optics group at Leibniz

Universität, Hannover, we will numerically simulate the experiment, repro-

duce and interpret the measurements. The simulations will allow for a pre-

diction of the evolution of the pulse temporal profile and its duration. We

will determine the relative contributions of self-phase modulation and third

harmonic generation in the formation of the third harmonic pulse.

Finally, we will analyze the phase profile of the generated third harmonic

field, with the goal of guiding experiments for obtaining very short pulses

with duration ≤ 5 fs by a proper phase compensation.

4.1 Experiments

The set of experimental measurements were performed by the Ultrafast Laser

Optics group of Prof. Milutin Kovačev and Prof. Uwe Morgner at the Institute

of Quantum Optics, Leibniz Universität, Hannover, Germany. 1.4 mJ pulses

at central wavelength 782 nm with Fourier limit duration 27 fs were delivered

by a Ti:Sa chirped pulse amplifier system (Dragon, KMLabs), operating at

3 KHz.

The pulses were then focused by a concave mirror f = 2 m into a gas cell
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Figure 4.1: Experimental setup for the third harmonic measurements. a) Layout of the

system of two chambers at different pressures. FM1 is the focus mirror; P1 is the pinhole

(extraction pinhole) between the two cells. b) Setup for the spectral measurements, after

propagation inside the low pressure chamber. Courtesy of D. S. Steingrube and E. Schulz.

filled with argon or air at given pressure. This first 1 m long high pressure cell

was ended by a laser-drilled pinhole (diameter about 200 − 800 µm) which

connected the first chamber to a vacuum cell at pressure of ∼ 4 − 14 mbar,

as represented in Fig. 4.1(a).

The pulse energy after the entrance window was 0.675 mJ. After 1.25 m of

propagation in the low pressure chamber, where nonlinear effects are strongly

suppressed, the output beam was spatially dispersed by a set of two prisms:

the fundamental beam was blocked by a razor blade and the remaining ra-

diation was coupled into a spectrometer (AvaSpec-2048-SPU, Avantes), for

spectral measurements, see Fig. 4.1(b).

The distance between the focusing mirror and the high pressure cell could

be adjusted in a 30 cm range by mean of a translator stage. The beam under-

went filamentation in the high pressure chamber and the translation stage al-
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lowed to longitudinally move the filament position at the extraction pinhole,

where the regime abruptly stops in the low pressure cell. In this way, the

filamentation process can be analyzed at different propagation distances.

Figure 4.2: Experimental measurements of the evolution of the third harmonic signal (log-

arithmic plot over 4 decades) recorded by the spectrometer as a function of the distance L
between the focusing mirror and the extraction pinhole. Three different pressure cases: a)

600 mbar, b) 800 mbar and c) 1000 mbar. Courtesy of D. Steingrube and E. Schulz.

Figure 4.2 shows the spectra of the third harmonic signal at different dis-

tances L between the focusing mirror and the pinhole between the gas cham-

ber and the low pressure cell, for three different pressure of argon: 600 mbar

[Fig. 4.2(a)], 800 mbar [Fig. 4.2(b)] and 1000 mbar [Fig. 4.2(c)]. Varying the

distance L between the focusing mirror and the extraction pinhole is equiva-

lent to performing a scan over propagation distance of the filament.

At 230 cm after the mirror, the filament is truncated at the very beginning,

while for increasing distance it could propagate further in the cell before trun-

cation. The third harmonic signal (λ = 261 nm) present since the first stages

is due to third harmonic generation by Kerr effect. Further in the filamenta-

tion regime, the self-phase modulation broadens the spectrum of the infrared

pulse into a white-light continuum which extends up to the ultra-violet region

overlapping with the initial third harmonic signal.

At lower pressure, the nonlinearity is weaker and the filament onset (non-

linear focus) is shifted to longer propagation distances.

At 600 mbar [Fig. 4.2(a)], the third harmonic shows small spectral broaden-

ing. At 1000 mbar the intensity of the third harmonic signal diminishes for

large propagation distances, therefore the 800 mbar case just after the non-

linear focus seems the most promising for the synthesis of the shortest pulses

by phase compensation of the spectral signal.

Figure 4.3 shows the calculated Fourier-limited pulse durations from the

spectra of Fig. 4.2. The smallest Fourier-limit is 1.08 fs at 800 mbar, and

1.09 fs at 1000 mbar. By filtering this ultra-violet component and compen-
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Figure 4.3: a) Fourier-limited pulse duration calculated from the spectra shown in Fig. 4.2

for the 800 and 1000 mbar cases. b) Zoom of figure a), which shows the minimum Fourier-

limited duration reached in the two cases.

sating for the frequency chirp in order to have flat spectral phases, one could

thus obtain pulses with duration close to the optical cycle duration for the

third harmonic component. However, this would require the knowledge of

the spectral phase of the generated field.

4.2 Numerical results

The simulations were performed by a field-resolving code based on the for-

ward Maxwell equation, Eq. (1.18).

The propagation equations are written in the frame of the local time τ =
t − z/vg with t the time in the laboratory frame and vg = 1/k′0 the group

velocity of the pulse.

The material parameters correspond to the argon gas, with dispersion re-

lation given by a Sellmeier formulation [164] and ionization potential Ui =
15.76 eV.

The optical Kerr effect is described by the nonlinear polarization

PNL(r, ζ, ω) = ǫ0χ
(3)E3(r, ζ, ω)

where the third-order susceptibility is deduced from the measurements of

Ref. [165], and corresponds to a nonlinear Kerr index coefficient n2 = 1.74×
10−19 cm2/W at p = 1 atm gas pressure [166].

The nonlinear polarization comprises, as current terms, other two contri-

butions: nonlinear losses associated with optical field ionization and plasma-

induced defocusing and absorption. The electron plasma density is described

by the evolution equation Eq. (1.44), with τc = 190 fs the collision time of
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argon, and neglecting the avalanche contribution.

The field-dependent ionization rates W (|E|) are computer with the Keldysh-

PPT formulation, presented in section 1.5.6.

When changing the pressure, the refractive index is corrected by mean of

the approximated Lorentz-Lorenz equation:

n2 − 1 ≃ 3A(mol)p

RT
(4.1)

where A(mol) is the molar refractivity, R ≃ 8.3144621 J/(mol·K) the molar

gas constant, p the gas pressure and T the absolute temperature. In this case

we write: n(ω, p) ≃
√
p(n2(ω)− 1) + 1, with n(ω) the refractive index at

1 atm and p the pressure in atm. Analogously, the nonlinear Kerr index is

corrected as n2(p) = p · n2 and the collision time as τc = τc/p, where p is

expressed in atm.

The propagation equation is solved as detailed in Refs. [50, 99] by cal-

culating the nonlinear polarization and currents in the direct domain (r, τ) at

each step along the propagation axis ζ, then by temporal Fourier transform-

ing these sources to the frequency domain and using them to propagate the

frequency components of the laser pulse field to the next step by mean of

a Crank-Nicolson scheme [163] along the radial coordinate, before the laser

field is Fourier transformed back to the temporal domain. Dispersion is added

in the frequency domain before the nonlinear propagation step.

The calculations start with a 35 fs (FWHM), 782 nm Gaussian laser pulse.

The peak electric field corresponds to an initial energy of 0.675 mJ. To repro-

duce the experimental conditions, the pulse is positively chirped such that the

Fourier limited pulse duration is 27 fs. The focusing conditions taking into

account the divergence of the experimental beam, correspond to the initial

distance ζ = 170 cm from the focusing mirror, where this initial propagation

of the pulse is evaluated with a spectral propagator.

At given ζ propagation distances inside the filament zone, the field is

extracted and multiplied by a super-Gaussian function (order 6) to mimic

the effect of the extraction pinhole between the high pressure and the low

pressure chamber. The field is then linearly propagated in vacuum for further

125 cm and the resulting spectrum is spatially integrated over a radius of

5 mm.

This second step of propagation is based on the following approximations:

• abrupt transition between gas and vacuum;
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• negligible dispersion and nonlinear effects in the low pressure stage,

which is treated as vacuum.

The propagation in this case is performed by mean of a spectral code which

solves Eq. (1.28) in the spectral (k⊥, ω) domain, where k⊥ is the transverse

component of the wavevector in cylindrical coordinates.

Figure 4.4: Numerical the evolution of the third harmonic signal (logarithmic plot over

4 decades) as a function of propagation distance ζ. Three different pressure cases: a)

600 mbar, b) 800 mbar and c) 1000 mbar. The green dashed lines delimit the region where

the spectra are qualitatively similar to the experiments, Fig. 4.2.

Figure 4.4 shows the numerical radially integrated spectra for three dif-

ferent pressures of argon: 600 mbar [Fig. 4.4(a)], 800 mbar [Fig. 4.4(b)] and

1000 mbar [Fig. 4.4(c)].

By considering the initial ζ = 170 cm, the nonlinear focus position roughly

corresponds to the experimental position.

The green dashed lines in the figures delimit the zone where the numerical

spectral profiles are qualitatively similar to the measured ones. In partic-

ular, the numerics confirm the shift of the nonlinear focus towards longer

distances because of lower nonlinear effects. However, while the cases at

600 and 800 mbar are well reproduced, the 1000 mbar case departs from the

experimental spectra at larger propagation distances (or larger distances L
between the mirror and the extracting pinhole). In particular, the decrease of

the third harmonic signal is not as pronounced as in experimental data.

The Fourier limit duration obtained by considering the wavelength inter-

val 220 nm < λ < 480 nm is displayed in Fig. 4.5. The results are qual-

itatively in agreement with the experimental data: the minimum transform-

limited duration is 1.06 fs, similar to the 1.08−1.09 fs from the experimental

measurements. The numerics also show the trend towards larger Fourier-

limited durations (∼ 1.2 fs) for larger propagation distance, corresponding to

the diminishing third harmonic signal. However, this increase of the Fourier-
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Figure 4.5: Fourier-limited pulse duration calculated from the numerical spectra of

Fig. 4.4. The green dashed lines delimit the region where the spectra are qualitatively

similar to the experiments, Fig. 4.2.

limited duration is more pronounced in the experimental data [up to ∼ 2.5 fs

in the 1000 mbar case, see Fig. 4.3(b)].

The numerics allow for a diagnostic of the nearfield (r, τ) distributions of

the third harmonic field and the evaluation of the spectral phase of the field,

so that, after a proper compensation, the pulse could be compressed to the

transform-limited duration.

Figure 4.6: Intensity (red continuous curve) and instantaneous wavelength (blue dotted

curve) for the axial component of the field after spectral filtering (considered wavelength

interval: 220 nm < λ < 480 nm). The intensity (arb. units) is renormalized. Cases: a)

ζ = 73.2 cm at p = 1000 mbar, b) ζ = 84 cm at p = 800 mbar. A and B mark the

contributions of the leading and trailing daughter peaks, respectively.

Figure 4.6(a) and 4.6(b) show the axial (r = 0) intensity temporal profile

and instantaneous wavelength for the field when considering only the interval

220 nm < λ < 480 nm, for the case: ζ = 73.2 cm at p = 1000 mbar

[Fig. 4.6(a)] and ζ = 84 cm at p = 800 mbar [Fig. 4.6(b)]. The field is
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considered after the 125 cm linear propagation in vacuum.

The field in both cases is composed of two main contributions related to

the daughter pulses originating in the filamentation regime: one corresponds

to the leading pulse (A) and one to the trailing pulse (B), temporally delayed

with respect to the first. Because of the generation of a trailing shock front

[22, 167], the contribution from B is strongly blue-shifted and the instanta-

neous frequency reaches the third harmonic frequency.

Figure 4.7: Intensity (red continuous curve) and phase (blue dotted curve; the linear com-

ponent was subtracted) for the temporal spectral profile of the axial component of the field.

The intensity (arb. units) is renormalized. Cases: a) ζ = 73.2 cm at p = 1000 mbar, b)

ζ = 84 cm at p = 800 mbar. The green dashed curves and the black dotted curves are the

best fit of the phase profiles with a 2nd order and a 4th order power laws, respectively.

Figure 4.7(a) and 4.7(b) show the corresponding spectral intensity and

phase on axis. The green dashed curves and the black dotted curves are the fit

of the phase profile with a 2nd order and 4th order power laws, respectively.

The linear component of the spectral phase (related to a translation along the

temporal τ axis) was subtracted in all the cases.

These fit, within a 95% confidence level, read:

φ
(2)
1000(ω) =

(
3.49± 0.23 fs2

)
ω2

φ
(4)
1000(ω) =

(
0.186± 0.035 fs4

)
ω4 −

(
4.23± 0.92 fs3

)
ω3+

+
(
37.0± 9.0 fs2

)
ω2

for the 1000 mbar case, and

φ
(2)
800(ω) =

(
1.62± 0.10 fs2

)
ω2

φ
(4)
800(ω) =

(
0.133± 0.022 fs4

)
ω4 −

(
2.97± 0.57 fs3

)
ω3+

+
(
25.5± 5.5 fs2

)
ω2

for the 800 mbar case.

By multiplying the complex Fourier transform of the field by the phase

term exp[−iφ(ω)] and back transforming to the temporal coordinate, Fig. 4.8
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is obtained, for the 1000 mbar case: 2nd order [4.8(a)] and 4th order [4.8(b)]

phase profiles, and 800 mbar case: 2nd order [4.8(c)] and 4th order [4.8(d)]

phase profiles. The figures show the normalized field intensity (red continu-

ous curve) and the instantaneous wavelength (blue dotted curve).

Figure 4.8: Intensity (red continuous curve; arb. units, renormalized) and instantaneous

wavelength (blue dotted curve) for the temporal profiles obtained by spectral phase com-

pensation. For case ζ = 73.2 cm at p = 1000 mbar, a) 2nd order spectral phase, b) 4th

order spectral phase. For case ζ = 84 cm at p = 800 mbar, c) 2nd order spectral phase, d)

4th order spectral phase.

The compressed nearfield profiles exhibit a duration of 2.85 fs (2nd order)

full width at half maximum (FWHM) and 1.6 fs FWHM (4th order) for the

1000 mbar case, and 2.07 fs FWHM (2nd order) and 1.37 fs (4th order) for

the 800 mbar cases. As expected, the phase compensation with a 4th order

function gives a shorter pulse. Moreover, the pulse obtained from the second

order compensation exhibits a clear trailing tail of satellite peaks due to a

third order spectral phase term. This suggests the possibility of a pulse with

temporal Airy-like behavior, see chapter 7.

However, all the temporal profiles exhibit a precursor peak 25–30 fs before

the main peak. This spurious peak is strongly suppressed for the 4th order

correction, in particular for the 800 mbar case.

It is worth noting that the level of temporal compression critically depends
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on relative variations between the fit coefficients.

For the 1000 mbar case at ζ = 73.2 cm, the total energy of the pulse

after the extraction pinhole is 125.7 µJ and the energy in the selected range

of frequency is 8.3 µJ. For the 800 mbar case at ζ = 84 cm, the total energy

of the pulse after the extraction pinhole is 156.5 µJ and the energy in the

selected range of frequency is 10.4 µJ. The initial energy for both cases is

0.675 mJ

In all the different cases a FWHM pulse with duration ≤ 3 fs is obtained,

which becomes shorter than 2 fs for higher order compensation.

Experimental realizations would require the additional compensation of the

phase term given by the spectral filter used to isolate the desired frequency

interval.

4.3 Conclusions

In this chapter we analyzed the spectral evolution and the corresponding tem-

poral profiles of the third harmonic component during filamentation in argon

at various pressures. In particular, we numerically reproduced a series of

experimental results obtained with cutting edge technologies.

We analyzed the temporal and spectral profiles of the ultraviolet compo-

nent of the super-continuum and verified the possibility for a temporal com-

pression of the pulses. In particular, we studied the cases with a second-order

and a fourth-order phase compensation.

We verified the possibility for compression to durations shorter than 3 fs.

The development of ultrashort pulses in the deep ultraviolet (λ < 300 nm)

region has for example applications in time-domain studies of the electron dy-

namics in the valence shell of molecules and solids, in processes of chemical

and biological interest [168–171].

Ultrashort pulses in the deep ultraviolet have been generated by spectral

broadening and compression of ultraviolet pulses [172], direct third harmonic

generation from multi-cycle [173] or few-cycle [174, 175] infrared pulses,

and optical parametric amplification in gas-filled capillary waveguides [176]

or in a filament [177].

The ultraviolet component of the super-continuum from a filament in ar-

gon generated by a 12 fs pump pulse in the infrared (obtained with an ini-

tial stage of spectral broadening by self-phase modulation and compression)

has been demonstrated to be compressed to sub-30-fs [178] or sub-10-fs

[179] pulses. Theoretical and experimental work on short-range filamenta-
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tion (. 3 mm) form near single-cycle infrared pulses in gas at high pressure

have shown the possibility of compression to sub-fs ultraviolet pulses [180].

The preliminary experimental results and the numerical work presented in

this chapter pave the way for the generation of ultrashort pulses in the ul-

traviolet region with a similar procedure, but avoiding a first initial stage of

12-3 fs infrared pulse generation by the control of focusing conditions and

the tuning of the gas pressure. Indeed, these results show that appreciable

spectral broadening up to the third harmonic is possible with longer pulses.

Furthermore, long-scale filaments permit the use of relatively low gas pres-

sure.

Future development of this work will involve the experimental temporal

characterization of the third harmonic component and possibly the compres-

sion of this ultraviolet component by phase compensation. Because of the

strong spatio-temporal coupling arising from the filamentation process, dif-

ferent spectral phase compensations along the radial coordinate may be re-

quired, as shown for the generation of ultrashort pulses from the continuum

in the near infrared-visible region [181]. This topic will deserve further in-

vestigation both from the experimental and the numerical point of view.
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Chapter 5

High harmonic generation and

carrier-envelope shearing

In this chapter we will perform a numerical study of the strongly nonlinear

phenomenon of high harmonic generation (HHG) by spatio-temporally cou-

pled wavepackets: conical wavepackets (CWPs), described in section 2.3.

We will show that, due to the characteristic features of CWPs, the process of

HHG, for very short pulses, is strongly influenced by envelope velocity re-

lated effects. In particular, we will perform a deep numerical analysis on the

selection of different quantum path contributions associated to the generation

of isolated attosecond pulses. We will show the importance in this case of the

instantaneous variation of the local intensity of the pump field, i.e. the vari-

ation of the carrier-to-envelope phase in propagation due to different phase

and envelope velocities.

The analysis of the main effects and the interpretation of the numeri-

cal results presented in this chapter were performed in collaboration with

Prof. Mette B. Gaarde of the Department of Physics and Astronomy, Louisi-

ana State University, Baton Rouge, Louisiana (U.S.A.).

5.1 Numerical model

The simulations were performed by means of Eq. (1.18), in cylindrical sym-

metry, considering argon as the propagation medium and an input pulse cen-

tered at wavelength λ0 = 800 nm. The electric field was divided into two

components: pump and harmonic field, depending on whether ω < 10ω0 or
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ω > 10ω0, and accordingly modeling the nonlinear polarization.

For the pump laser pulse the nonlinear polarization comprised the optical

Kerr effect and plasma effects, modeled as a current term.

The Kerr response was included through the complex counterpart of the non-

linear polarization PKerr = ǫ0χ
(3)E3(r, ζ, τ), with a third-order suscep-

tibility χ(3) value deduced from the measurements of Ref. [165], namely

n2 = 1.74× 10−19 cm2/W, at 1 atm pressure.

The plasma current comprised two parts: nonlinear losses (see section 1.5.2)

and plasma induced defocusing and dispersion (see section 1.5.3).

Nonlinear losses were accounted for by the complex current:

J =
W (|E|2)
|E|2

Uin0ǫ0c(ρ0 − ρ)E

where W (|E|2) is the field-dependent ionization rate and Ui the ionization

potential. Ionization was described by an evolution equation for the density

of neutral argon atoms

∂τ [ρ0 − ρ(r, ζ, τ)] = −W (|E|2) [ρ0 − ρ(r, ζ, τ)]

in which ρ represents the density of electrons generated by optical field ion-

ization.

Defocusing and dispersion from the generated plasma were accounted for

by mean of Eq. (1.40), with σ(ω) ≃ iℑ{σ(ω)} (plasma absorption was ne-

glected, ω0τc ≫ 1).

The ionization rates were derived by mean of the Keldysh-PPT formulation,

as described in section 1.5.6.

Dispersion of the pump field was calculated with the formula of Ref. [164].

The Kerr coefficient, the collision time, the neutral density and the material

dispersion were corrected to take into account the pressure p of the gas, as

described in the previous chapter.

For the harmonic field, the nonlinear polarization was obtained from the

time-dependent dipole moment, calculated using the strong field approxima-

tion (SFA, section 1.6.2) multiplied by the density of neutral atoms. Its im-

plementation strictly followed Ref. [50].

Dispersion and linear absorption were computed from the interpolation of the

values taken from the database of the Lawrence Berkeley National Labora-

tory’s Center for X-Ray Optics (CXRO), [182]. The CXRO website gives

the atomic scattering factor f1, f2 as a function of wavelength for the desired
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material; the corresponding complex refractive index (where the imaginary

part corresponds to absorption) is:

n = 1− 2πc2

ω2
ρ0re [f1(ω) + if2(ω)] (5.1)

where re = e2/(4πǫ0mec
2) ≃ 2.817940× 10−13 cm is the classical electron

radius.

5.2 Numerical simulations

A series of simulations were launched by assuming initial pump pulses in the

shape of finite-energy conical wavepackets (CWPs) (see section 2.3).

The temporal profiles were Gaussian profiles with 5 fs full width at half

maximum (FWHM) duration and peak electric field corresponding to an ini-

tial cycle-averaged intensity of I0 = 2.7 × 1014 W/cm2. The CWPs were

apodized by a spatial Gaussian function, with w0 = 0.68 mm.

Three particular cases of CWPs were considered, corresponding to three

different values of the tilt angle δ for a given propagation angle θ0: a pulsed

Bessel beam (PBB), a Bessel X-pulse (BXP) and a third CWP featuring

δ = +θ0. In particular, as described in detail in section 2.3, the plane-wave

constituents of the PBB exhibit equal transverse k-vector (tilt angle δ = −θ0)

[66, 72], whilst in the BXP case equal propagation angle for each frequency

(δ = 0) [78].

From Eqs. (2.6) and (2.7), the PBB thus exhibits an envelope velocity smaller

than its phase velocity v < vp. In the BXP case, since the gas at low pressure

is very weakly dispersive, these velocities are almost equal, v ≃ vp. The third

CWP case featured δ = +θ0, in order to have a conical wavepacket with en-

velope velocity larger than the corresponding phase velocity v > vp; in such

sense we called this wavepacket “superluminal” pulse (SLP).

All the three CWPs present the same phase velocity vp = ω0/(k0 cos θ0),
since the same cone angle θ0 = 0.44◦ was used. This angle was chosen by

scanning over different angle values to optimize the effects described in the

following sections.

The propagation was simulated in a 1.3 cm cell filled with argon at pres-

sure p = 100 mbar. The starting position ζ = 0 was the center of the Bessel

zone for the CWPs.

To date, SLP-like pulses have never been experimentally generated, but

CWPs with peak velocity larger than their phase velocity have been shown
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to appear spontaneously during the filamentation of ultrashort pulses in Kerr

media [96] (see section 2.5).

HHG by mean of PBBs may be obtained in an appropriate hollow-core

fiber [58]. The modes of these fibers are precisely PBBs, as shown in sec-

tion 1.6.3, and the fundamental-mode cone angle is related to the fiber inner

radius a0 by a0 = 2.4048c/(ω0 sin θ0) [55]. A 0.44◦ cone angle may thus

be obtained with an 80 µm diameter fiber. In this case, however, calculations

should be corrected by taking into account the modifications induced by the

fiber geometry with respect to the free-space geometry, such as a slightly

modified v, linear losses and dispersion.

5.3 Carrier-envelope shearing

A dominant factor in determining the temporal profile of the generated har-

monic field for the case of very short laser pulses is the initial carrier-to-

envelope phase (CEP), i.e. the relative shift between the maximum of the real

electric field and that of the envelope, because the HHG process is highly

sensitive to the phase of the pump field.

The initial CEP is thus expected to play a relevant role in the HHG pro-

cess, for both the temporal profile of the generated field and its spectral con-

tent, in particular for pulses in which phase and group velocity are very close

to each other (as the Gaussian pulse case).

Since for a BXP the CEP varies little during propagation (v ≃ vp), such con-

sideration, i.e. a strong dependence of the emitted field on the initial CEP, is

expected to be valid also in this case.

Figures 5.1(a) and 5.1(b) show the evolution of the temporal intensity pro-

file for the axial component (r = 0) of the harmonic field as a function of the

propagation distance, for two different values of the initial CEP, φ = π/2 rad

and φ = 0 rad, respectively, in the BXP case.

The solid blue curves mark the temporal evolution of the envelope peak of the

driving pulse; its slope is thus given by 1/v(ζ)− 1/vg, since the simulations

were performed in the reference system moving at the Gaussian pulse group

velocity vg = 1/k′0. The red dashed curves of slope 1/vp(ζ)−1/vg mark the

peaks of the driving field (maxima and minima), which travel at the phase ve-

locity vp(ζ). In general envelope and phase velocity will not be constant as in

the ideal infinite-energy BXP case, because of effects related to plasma gen-

eration, such as the defocusing of the trailing portion of the pulse therefore

shifting the position of the center of mass of the envelope, and small correc-



5. High harmonic generation and carrier-envelope shearing 101

Figure 5.1: Axial temporal profile (linear scale) of the intensity of the harmonic field versus

propagation distance ζ for the BXP case. Initial CEP: (a) φ = π/2 rad and (b) φ = 0 rad.

The harmonic field was synthesized with no further spectral filtering other than a high-pass

filter ω > 10ω0. The solid blue curves and the dashed red curves show the propagation of

the center of mass (envelope peak) and the positions of squared field maxima for the pump

infrared pulse, respectively. The vertical green dashed-dotted lines mark the ζ positions

chosen for the analysis of Fig. 5.3.

tions related to the Gaussian apodization [183]. Notwithstanding these small

corrections, the slopes of dashed and continuous curves are in agreement with

the BXP property v ≃ vp.

The figures show a series of distinct extrema for the harmonic field in-

tensity along the temporal coordinate with durations of a few hundreds of

as, which follow with almost constant temporal delay the peaks of the pump

field during propagation. Each of these extrema corresponds to an harmonic

burst approximatively centered around the return time position of the cut-off

trajectory [section 1.6.2].

These harmonic bursts exhibit intensity oscillations along the propagation

distance ζ, which are related to phase matching properties for the HHG pro-

cess [section 1.6.3]. Indeed, a given phase mismatch ∆k implies an intensity

modulation along propagation distance of the harmonic field, with periodicity

inversely proportional to the value of ∆k.

The harmonic field was not further filtered other than the ω > 10ω0 high-

pass filter.

An almost isolated temporal peak in the harmonic field is generated for

the φ = π/2 case, and the ratio between the second most intense peak and

this main peak reaches the lowest value of 25% at ζ = 0.56 cm, with a cor-

responding FWHM duration of 340 as.
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This isolated peak generation may be explained in terms of ionization gat-

ing, which in this case works mainly through the space- and time-dependent

plasma dispersion term.

The plasma refractive index causes a reshaping of the laser beam by advanc-

ing the peak of the laser pulse on axis, which effectively shortens the intense

part of the pulse [184]. More importantly, the plasma contribution to the

phase mismatch is time-dependent which means that the phase matching con-

ditions change from one half-cycle of the laser field to the next [185, 186].

This leads, in the φ = π/2 case, to good phase matching predominantly dur-

ing one half-cycle of the driving field, whereas in the φ = 0 case there are two

half-cycles in which the harmonic radiation is phase matched, which leads

to two attosecond bursts. These two bursts exhibit different time-frequency

characteristics both in terms of their cut-off energy and in terms of the domi-

nant quantum path contributions [see Fig. 5.3(a) in the next section], consis-

tent with a rapidly changing phase mismatch [186].

The PBB and SLP may be expected to be different from the BXP case,

since in these two cases v 6= vp. In particular, the harmonic profiles may

be expected not to crucially depend on the initial CEP of the pulse, since

the CEP of these pulses varies along the propagation distance ζ. Therefore,

at a certain distance ζ in propagation, the optimal CEP for isolated pulse

generation will then be encountered, even when starting from a non-optimal

initial pump phase.

Figures 5.2(a) and 5.2(b) show the (ζ, τ)-evolution of the intensity profile

for the axial component (r = 0) of the harmonic field, analogous to Fig. 5.1,

for the PBB and SLP cases, respectively. The initial CEP was 0 rad for both

cases.

As in the BXP case, the slopes of the dashed and continuous curves (related

to the pump field local phase and envelope velocities, respectively) are in

agreement with the predictions of Eqs. (2.6) and (2.7) for the propagation

of linear, non-apodized CWPs. In particular, the figures clearly show that

although the phase velocity is the same for the BXP and these two cases,

the envelope velocity (represented by the continuous blue curve) is larger or

smaller than vp for the SLP and PBB, respectively.

The mismatch between phase and envelope velocities determines during

propagation a shift of the position of the envelope maximum, which effec-

tively moves with respect to the carrier-wave propagation.

This effect gradually modifies the intensities of the field maxima and accord-

ingly the related HHG process. The harmonic field is still generated along
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Figure 5.2: Axial temporal profile (linear scale) of the intensity of the harmonic field

versus propagation distance ζ for the (a) PBB and (b) SLP cases. The harmonic field were

synthesized with all the frequency contributions ω > 10ω0. The solid blue curves and the

dashed curves mark the propagation of the center of mass (envelope peak) of the driving

infrared pulse and the positions of its squared field maxima, respectively. The vertical

green dashed-dotted lines mark the ζ positions of best contrast between the main peak and

the second most intense one. (c) and (d) show the nearfield (r, τ) intensity profile of the

harmonic field (linear scale) for the PBB and the SLP case at the distance marked by the

green dashed-dotted lines of (a) and (b), respectively.

iso-phase curves of the pump field in the (ζ, τ) space, as in the BXP case

[Fig. 5.1(a) and 5.1(b)]. The shift of the pump envelope induces a “shear” in

the harmonic peak, which is negative (delayed, towards more positive times)

for the PBB case and positive (advanced, towards more negative times) for the

SLP. The harmonic field still exhibits intensity oscillations along ζ, but these

are displaced following the effective motion of the pump envelope velocity.

In the BXP case this phenomenon cannot be observed because of (almost)

equal phase and envelope velocities.

This shearing effect continuously modifies the CEP of the pump wave-

packet. At a certain ζ position, different for the two cases, it reduces to the
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optimal parameter for the generation of an almost isolated temporal peak in

the harmonic field, similarly to Fig. 5.1(a).

In particular, from the simulations a 350–400 as (FWHM) pulse for the PBB

case is observed between ζ = 0.9 cm and ζ = 1.2 cm. The ratio of the second

highest peak to the intensity of the main peak is below 35% and the minimum

ratio is 16% around ζ = 1 cm, with a corresponding duration (FWHM) of

350 as. As in the BXP case, this result was obtained without any spectral fil-

tering on the harmonic field except for the high-pass filter at 10ω0, mimicking

the action of an Aluminum filter, frequently used in experiments to separate

the laser light from the harmonic light.

A 300–320 as pulse is obtained for the SLP case between ζ = 0.65 cm and

ζ = 0.9 cm, with contrast below 35%, which reaches a minimum of 13.5%
at ζ = 0.74 cm, with a corresponding duration of 300 as.

The radial profiles of the harmonic field intensity in the PBB and SLP cases

are shown in Figs. 5.2(c) and 5.2(d), respectively, highlighting the smooth

spatio-temporal profiles of the harmonic pulses that are spatially confined on

axis within a 20 µm radius, roughly corresponding to the most intense part of

the pump field.

The total attosecond pulse energies [obtained by integration over the whole

(r, τ) space] are 23 pJ and 8 pJ for the PBB and SLP cases, respectively.

5.4 Quantum trajectory contributions

To further investigate the role of this effective shearing effect on HHG and the

related phase matching properties, the time-frequency dependence [187] of

the harmonic field at the point of best contrast was evaluated for the different

cases.

Figure 5.3 shows (in logarithmic scale over 2 decades) the frequency-resolved

spectral analysis (FROG) [156] for the axial (r = 0) harmonic field in the

cases: (a) BXP with initial CEP φ = 0 rad, (b) BXP with φ = π/2 rad, (c)

PBB, and (d) SLP, at the ζ positions marked by the dashed-dotted lines in

Figs. 5.1 and 5.2. The dashed curves represent the axial intensity profiles of

the harmonic field.

The FROG analysis were performed by numerically gating the harmonic

field with a very short Gaussian function of duration Tp = 0.2 fs and per-

forming a Fourier transform of the resulting field.

Figure 5.3 shows the typical characteristics of harmonic emission. The

harmonic burst is chirped; in particular, as represented by the semi-classical
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Figure 5.3: Temporal gated spectral analysis of the axial component of the harmonic field

(logarithmic scale over two decades) at given propagation distance: (a) BXP (φ = 0 rad)

at ζ = 0.64 cm, (b) BXP (φ = π/2 rad) at ζ = 0.56 cm, (c) PBB at ζ = 1 cm, (d) SLP at

ζ = 0.74 cm. The dashed curves represent the temporal intensity profile of the harmonic

field.

model, it exhibits chirp of two opposite signs, corresponding to the two main

quantum paths: short and long trajectories.

Indeed, the same harmonic frequency is present at two different temporal po-

sitions according to the different recombination times of the two trajectories

(see section 1.6.2). The time-gated spectral analysis thus shows a spectral

intensity in the form of a downside-up “V”. The “vertex” corresponds to the

cut-off frequency; the front tail (rising tail) is the short path contribution,

while the trailing tail (descending tail) is the long trajectory contribution.

The shearing effect not only affects the temporal profile of the harmonic
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field, but also acts as a gating mechanism in the spectral domain.

In particular, in the BXP case [Fig. 5.3(a) and 5.3(b)] the main portion of the

spectrum associated to the temporal intensity peaks falls in the region around

the cut-off frequency (the vertex of the “V”). These regions come from both

short- and long-path contributions [50].

In the PBB and SLP case [Fig. 5.3(c) and 5.3(d), respectively] the main con-

tributions come from regions near the cut-off, which can be identified as cor-

responding to long quantum trajectories for the PBB case and short trajecto-

ries for the SLP case.

Figure 5.4: Temporal gated spectral analysis of the axial component of the nonlinear po-

larization (logarithmic scale over two decades) for the cases: (a) PBB at ζ = 1 cm, (b) SLP

at ζ = 0.74 cm.

This effect is a propagation effect. Indeed, Fig. 5.4(a) and 5.4(b) show the

FROG analysis (logarithmic scale over 2 decades) of the axial component of

the nonlinear polarization, evaluated with the SFA, at the same propagation

distances of Figs. 5.3(c) and 5.3(d) for the PBB and SLP cases, respectively.

The nonlinear polarization is the source term in the generation of the har-

monic field. The instantaneous component of the harmonic field which co-

herently sums with the previously generated field is proportional to this term.

In both cases, the main contribution is related to short trajectories and lower

frequencies. The effect of Fig. 5.3 is therefore a propagation effect related to

phase matching.

The selection of the quantum trajectories contributions may be qualita-

tively explained by considering the evolution along propagation ζ of the in-

stantaneous intensity (squared electric field) maxima of the driving field in

the different cases, shown in Fig. 5.5.
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In particular, for the SLP case around ζ = 0.74 cm, the intensity of the pump

field carrier peak corresponding to the harmonic burst associated to the iso-

lated pulse is increasing versus propagation distance ζ (blue dashed curve).

In the PBB case, around ζ = 1 cm, the value of the field peak is locally

decreasing (black continuous curve).

Figure 5.5: Evolution along propagation distance ζ of the instantaneous value of the

squared electric field peak of the pump corresponding to the harmonic burst associated to

the isolated pulse. Black continuous curve: PBB case. Blue dashed curve: SLP case. The

vertical dashed-dotted lines mark the propagation distances under examination (ζ = 1 cm

for the PBB; ζ = 0.74 cm for the SLP).

This effect determines different signs for the dipole phase contribution

term in the two cases [188], since this term linearly depends on the field in-

tensity [section 1.6.3].

By adopting the sign convention of [50], each contribution to the phase match-

ing for the harmonic field generation may be isolated.

• The geometric term is always positive for both PBB and SLP, since

the effective pump wavevector on axis is shortened in CWPs, see sec-

tion 1.6.3 and Refs. [59, 60, 189].

• The plasma contribution is positive and similar for both cases, as shown

in Fig. 5.6 by the temporal profiles of the axial (r = 0) plasma density.

• The dipole term depends on the gradient along ζ of the instantaneous

intensity and thus it is negative for the PBB and positive for the SLP

pulses, Fig. 5.5.

In both cases, the absolute value of the dipole contribution will be small and

close to zero for short trajectories and large for the long trajectories [42, 190].

Therefore, the large positive ∆k contribution from the first terms in the PBB
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case may be compensated or partially compensated for by the large negative

dipole contribution from the long trajectories.

On the other hand, in the SLP case, all the contributions are positive and the

minimum ∆k is obtained for the smallest possible dipole term, i.e. the short

trajectory term.

Figure 5.6: Blue dashed curve: electric field of the pump (normalized; left axis); red

continuous curve: intensity of the harmonic field (normalized; left axis); black dashed-

dotted curve: plasma density (right axis), at r = 0 versus local time τ for (a) PBB at

ζ = 1 cm and (b) SLP at ζ = 0.74 cm. The yellow areas represent the departure (dep.) and

recollision (rec.) times for the electrons in the two cases assuming the classical approach,

for long (a) and short (b) trajectories. The vertical green dashed-dotted lines refer to the

trajectories with return energy corresponding to the cut-off.

Moreover, Fig. 5.6 confirms, by mean of the classical approach, the main

contribution of long trajectories for the PBB case since the typical recollision

times for this quantum path contribution [rec. yellow area in Fig. 5.6(a)]

correspond to the harmonic intensity peaks. Analogous considerations can

be drawn for the short trajectories contributions in the SLP case [rec. yellow

area in Fig. 5.6(b)].

5.5 Conclusions

In this chapter, we have studied HHG with ultrashort CWPs. In particular,

we investigated the role of the envelope velocity in the temporal and spec-

tral content of the emitted harmonic radiation. For very short pulses (5 fs

wavepackets), we identified two main results:
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• A shearing effect in the temporal domain: harmonic bursts are related

to the phase of the pump field, thus their emission follows iso-phase

curves; on the other hand, the CEP constantly varies, determining a

later shift of the peak envelope of harmonic maxima (related to phase

matching) along the propagation direction. This locally leads to the

selection of almost isolated attosecond pulses.

• The selection of different quantum path contributions: the variation of

the local intensity due to the difference between phase and envelope

velocities determines different phase matching contributions. In par-

ticular, the cases v < vp and v > vp determine an enhancement of the

contribution from long or short quantum trajectories around the cutoff,

respectively.

These effects are most evident for very short pulses (less than 3 optical

cycles) due to the fact that they rely on the instantaneous variation of the local

intensity of the pump field, i.e. on the variation of the CEP in propagation.

Given the phase-matching nature of the process, for a given gas and gas pres-

sure, there is an optimal value of the Bessel cone-angle that achieves isolated

pulse generation, which was found by scanning over different angle values.

In an experimental framework it would be easier to scan over the gas pressure.

The selection of the quantum path contribution enables a tuning of the

temporal and spatial characteristics of the emitted harmonic field [45, 46, 48].

Possible experimental realization of the numerics presented in this chap-

ter may rely on the fact that hollow-core fiber modes are truncated PBBs.

However, this would require corrections due to the modifications induced by

the fiber geometry with respect to the free-space geometry (slightly different

envelope velocity v, linear losses and dispersion).

CWPs from a filament may also be regarded as candidates for experimental

realizations. Indeed, HHG directly from a filament has been demonstrated

both from theoretical and experimental results [57, 191–193]. The peak en-

velope velocities of the daughter pulses may be tuned by changing the pump

pulse initial parameters. Numerical simulations can be performed to define

the best scenario for HHG in filamentation, by controlling the temporal shape

and propagation properties of these daughter peaks.

Ultraviolet and soft X-ray attosecond pulses from HHG are used as probes

for time-resolved studies of ultrafast dynamics of electronic wavepackets

in various physical systems [7, 8], such as molecular orbital reconstruction

[194], real time observation of valence electrons motions [195], atomic inner-
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shell spectroscopy [196], measuring photoelectron ejection from surfaces

[197].



Chapter 6

Quantum trajectories

interference in HHG

In this chapter we will study the spatio-temporal profile of low-order harmon-

ics generated in gas in a semi-infinite gas-cell configuration with a Gaussian

pulse.

In particular, we will numerically reproduce a series of experimental results

of HHG obtained by the Attoscience and Ultrafast Optics group at the In-

stitut de Ciències Fotòniques of Barcelona. These measurements show the

generation of a ring structure in the spatio-temporal farfield (wavelength and

propagation angles) intensity distribution of low order harmonics from HHG

in argon. Based on the numerical results, this pattern will be interpreted

as the interference between different quantum trajectory contributions. The

quantum path interferences, first observed in 2008 [198–200], offer insight

into the interplay between the microscopic and macroscopic (related to phase

matching properties) responses of the HHG process.

We will show that in this particular case, contrary to the case described in the

previous chapter, the process is dominated by the instantaneous response of

the medium because of the high absorption corresponding to the wavelength

under examination.

6.1 Measurements

The experimental measurements were performed by the Attoscience and Ul-

trafast Optics group of Prof. Jens Biegert at the Institut de Ciències Fotòniques
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(ICFO), Castelldefels (Barcelona), Spain.

Figure 6.1: Representation of the experimental setup, described in the text. Courtesy of S.

M. Teichmann.

The setup is represented in Fig. 6.1. The input laser beam was a 30 fs

pulse (not shot-to-shot CEP stabilized) at wavelength 800 nm, 5 KHz repeti-

tion rate, delivered by an amplified Ti:Sapphire system (Red Dragon Laser,

KM Labs, Boulder, Colorado, USA). The pump beam was focused by a

f = 100 cm focusing mirror into a 1 m long cell filled with argon at 75 mbar

pressure, terminating with a 100 µm diameter pinhole which separates the

gas chamber from the vacuum chambers. The focal position of the beam was

about 1 cm from the pinhole.

The field passed through the pinhole and, after an Aluminum filter which

blocked the infrared radiation, propagated into the (spatial) farfield finally

impinging onto a vertical slit and a reflective grating (1000 lines/mm, Hi-

tachi), which spatially separated the different frequency components.

The resulting intensity distributions, featuring propagation angles along the

vertical coordinate and temporal frequencies along the horizontal, was then

recorded by the combination of a micro-channel plate (MCP, Hamamatsu)

with a fluorescent back screen and a CCD camera.

Figure 6.2(a), 6.2(b) and 6.2(c) show the spectral angle-harmonic order

intensity distributions for the generated field for three different energy cases:

400 µJ, 600 µJ and 1000 µJ. As predicted by the cut-off law, Eq. (1.57), the

highest measured harmonic order increases with the intensity of the field.

In particular, in Fig. 6.2(b), the 13th harmonic exhibits a clear ring struc-

ture around a central peak. With increasing energy, Fig. 6.2(c), the spectra

becomes asymmetric and the ring shape is lost.

Similarly to the spectral distribution, the nearfield (r, τ) intensity distribu-

tion for the 13th harmonic of case (b) is expected to feature a concentric ring

structure.

This behavior may be understood in terms of quantum path interference
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Figure 6.2: Spectrally resolved (propagation angle and harmonic order) HHG measure-

ments in argon at 75 mbar for three pulse energy cases: (a) 400 µJ, (b) 600 µJ, and (c)

1 mJ. The 13th harmonic signal in case (b) clearly exhibits a ring structure around a central

core.

[198, 200].

As explained in section 1.6.2, the main contribution at a given frequency ωq

in the harmonic spectrum comes from two different electron trajectory con-

tributions, namely short and long quantum trajectories.

The phase of this quantum contributions is directly proportional to the inten-

sity of the wavepacket, with different coefficients for the two quantum paths.

In particular, the phase associated to the long trajectories varies faster than

the one associated to the short trajectories.

The superposition of these two contributions, when their relative ampli-

tudes are similar, is expected to generate an interference pattern along both

the temporal and the spatial domain. At given propagation distance ζ, the

intensity of the pump field changes along the temporal and the transverse

spatial coordinate: the locally generated harmonic field will then exhibit a

ring pattern corresponding to the interference of short and long contributions

along both coordinates.

The locally generated interference is expected to be observed in the out-

put field if the absorption length is shorter than the coherence length for the

harmonic field at a given frequency, so that the contribution from the previ-

ously generated field is strongly suppressed.

The asymmetry in the structures measured at higher energy is due to the

increase of the free electron plasma density [201], which mainly affects the

trailing part of the pulse.

Usually, HHG experiments are performed by focusing the laser beam on

a gas jet and this interference pattern is difficult to observe since the spatial

and temporal dependence of the harmonic phase smears out the interferences

in the macroscopic response, and other effects, such as, for example, the shot-
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to-shot change of laser focus position because of pointing instability, tend to

wash out the interference pattern when averaging the intensity profiles.

In order to observe quantum path interference, a series of technical steps are

usually taken to minimize the smearing effect: for example, a farfield spectral

filtering is used to isolate a portion of the emitted harmonic field. Since long

trajectories have a stronger divergence, an off-axis window is able to stop

most of the short trajectories component so that in the measured field both

quantum path terms have approximatively the same weight and the interfer-

ence pattern is enhanced [198, 202].

The experiments show that in this particular case quantum trajectories inter-

ference could be observed even without the need of spatial filtering.

6.2 Numerical simulations

We performed a series of numerical simulations to interpret the experimental

results.

The numerical model and code were the same as that used for the sim-

ulations of chapter 5. In particular, the pump at central frequency ω0 and

the harmonic field were propagated by a carrier-resolving code in cylindrical

symmetry. The component of the field at frequencies 0.25 < (ω/ω0) < 7
were chosen as the pump field, while the harmonic field was considered for

ω > 10ω0.

The nonlinear polarization included:

• Kerr response, nonlinear losses based on Keldysh-PPT ionization rates,

and plasma-induced defocusing, for the pump field;

• the time-dependent dipole moment computed by means of the SFA, for

the harmonic field.

The medium was modeled as argon at 75 mbar pressure, see chapter 5 for

medium parameters. The dispersion was given by a Sellmeier formulation for

the pump and dispersion and absorption from the interpolation of the atomic

scattering factors [182] for the harmonic field.

The input beam was chosen to reproduce the experimental setup, i.e. 30 fs

FWHM duration. However, to reduce the nonlinear propagation length, the

focal length was reduced by a factor ∼ 2 and consequently the Gaussian beam

width was adjusted in order to reach in the focus the same intensity as in the

experiment. The initial stage of propagation was performed by assuming
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linear propagation and using analytical formulas for Gaussian optics. The

energy was 170 µJ, the initial beam width w0 = 150 µm and the initial beam

curvature f = 3.2 cm, so that the focus position is located at ζ = 2.8 cm.

Figure 6.3: Spectrally resolved (propagation angle and harmonic order) HHG in argon

at 75 mbar at three propagation distances: (a) ζ = 2 cm, (b) ζ = 2.8 cm (focus of the

beam), and (c) ζ = 3.48 cm. The intensity plots are in linear scale. The insets show the

renormalized spectral intensity of the 13th harmonic, corresponding to the spectral region

delimited by the dashed red lines.

Figure 6.3(a), 6.3(b) and 6.3(c) show the harmonic spectra at three differ-

ent propagation distances: 0.8 cm before the focus, at the focus and 0.68 cm

after the focus, respectively. The experimental features are well reproduced.

In particular, in Fig. 6.3(c) a ring structure around a central core is formed in

correspondence of the 13th harmonic, as shown in the inset.

The 13th harmonic spectrum exhibits a ring structure also in the case before

the focus [inset of Fig. 6.3(a)], although the overall divergence is smaller (the

ring is smaller along the propagation angle coordinate). In correspondence

of the focus the emission is mainly in the axial direction; a very faint ring

structure is observed in this case at −3 decades, extending up to an angular

aperture of ∼ 8 mrad.

By considering the spectral region 12 < (ω/ω0) < 14, the actual near-

fields corresponding to the harmonic field at the 13th harmonic are retrieved

by inverse Fourier transform of this spectral region. The results are shown in

Fig. 6.4. A Bessel-like and a clear ring structure do appear in the nearfield

for the two cases before and after the focus. Also at the focus position the

spatio-temporal structure takes a Bessel-like shape, due to the very weak ring

structure previously described.

A temporal gated spectrally resolved analysis was performed on the nu-

merical results on axis (r = 0), by means of a Gaussian gate function of
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Figure 6.4: Nearfield of the 13th harmonic signal, evaluated by spectral filtering the region

12 < (ω/ω0) < 14. Propagation distances: (a) ζ = 2 cm, (b) ζ = 2.8 cm (focus of the

beam), and (c) ζ = 3.48 cm. Intensity plots in linear scale.

Figure 6.5: Time-gated spectral analysis (logarithmic plot over 2 decades) of the axial

component (r = 0) of the harmonic field at propagation distances: (a) ζ = 2 cm, (b)

ζ = 2.8 cm (focus of the beam), and (c) ζ = 3.48 cm.

duration Tp = 0.2 fs. Figure 6.5 shows the results of this analysis in the

region around τ = 0 (center of the pump pulse), for the three propagation

distances.

By looking at the harmonic contribution at low frequencies, Fig. 6.5(c) clearly

show the simultaneous contribution from both short and long quantum tra-

jectories, represented by the rising and falling slopes of the arc patterns (as

described in the previous chapter). In particular, the intensities for these two

components are comparable. This therefore supports the interpretation of the

ring structure as interference between quantum trajectory contributions.

However, similar considerations do not apply to the other two cases, since in

Fig. 6.5(a) and 6.5(b) this analysis tool does not give a clear indication as in

the ζ = 3.84 cm (after the focus) case.

A second set of simulations were thus launched, with absorption coeffi-
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cients multiplied by a factor 1/100, i.e. with an absorption length 100 times

longer than in the previous simulations, in order to verify if this interfer-

ence effect may be ascribed to propagation phase-matching effects or instan-

taneous effect. In particular, quantum path interference is an “instantaneous”

effect, i.e. interference pattern are created when considering a single prop-

agation distance. Other effects, such as Maker fringes [203–205], emerge

because of phase matching effects, since they require propagation and inter-

ference with the field generated at previous positions.

Figure 6.6: Evolution along propagation distance as a function of harmonic frequency

(around ω = 13ω0) of the spectral intensity (logarithmic plot over 3.5 decades) of the har-

monic output at propagation angle θ = 0. Cases: (a) with normal absorption coefficients,

(b) with reduced absorption coefficients. Case (c) is the spectral intensity for the instanta-

neous nonlinear polarization, evaluated with the SFA. The vertical dashed lines represent

the propagation distances considered in the previous analysis.

Figure 6.7: Evolution along propagation distance as a function of the propagation angle

θ of the spectral intensity (logarithmic plot over 3.5 decades) of the harmonic output at

frequency ω = 13ω0. Cases: (a) with normal absorption coefficients, (b) with reduced

absorption coefficients. Case (c) is the spectral intensity for the instantaneous nonlinear

polarization, evaluated with the SFA. The vertical dashed lines represent the propagation

distances considered in the previous analysis.



118 6.2 Numerical simulations

Figures 6.6 and 6.7 show the spectral intensity evolution along propaga-

tion distance ζ at propagation angle θ = 0◦ for the frequency range around

the 13th harmonic [Fig. 6.6], and at frequency ω = 13ω0 as a function of

propagation angles θ [Fig. 6.7]. The different cases correspond to: a) normal

absorption coefficients, b) reduced absorption, and c) the instantaneous non-

linear polarization, evaluated with the SFA.

The figures show that in the particular case under examination the process

is dominated by the instantaneous response of the atomic polarization, since

cases a) and c) are almost identical. This is due to the very short absorption

length corresponding to low harmonic orders: the dynamics is dominated by

the instantaneous contribution given by the nonlinear polarization, which, on

the other hand, depends on the instantaneous pump field. These results thus

exclude that this interference pattern is a build-up effect.

The case with reduced absorption is similar to the profiles given by the

analysis of the nonlinear polarization (i.e. instantaneous effect) for the initial

propagation distances, even if the spectral intensity modulations are smeared

out. The intensity of the pump field and the intensity of the locally generated

field are increasing, so the importance of previous contributions is dimin-

ished.

On the other hand, this high intensity field generated in the region before

and in correspondence of the focus is not absorbed in propagation because

of the reduced absorption and it interferes with the field generated at succes-

sive propagation distances thus covering the structures originating from the

nonlinear polarization in this after-focus region.

The ζ-varying size of the spectral modulation patterns may also be qual-

itatively understood in terms of quantum trajectories interference. The rel-

ative phase between the two contributions at given harmonic frequency is

∆α(s−l)I(r, τ), where ∆α = |α(s) − α(l)|. When intensity increases, the

instantaneous relative phase varies more rapidly along the spatial and tempo-

ral coordinates, determining a more dense fringe pattern in both directions (if

we consider comparable contributions). This translates in the farfield (θ, ω)
to a wider ring structure, if no particular phase profiles are assumed (or if the

converging/diverging phase profile for the given frequency varies little along

propagation distance).
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6.3 Conclusions

In this chapter we analyzed the local interference between quantum trajectory

contribution in HHG. In particular, starting from experimental measurements

from a group of experts in this field, we reproduced and studied the results.

We found that in the particular regime under examination a ring is observed in

the spatio-temporal farfield of the harmonic radiation at a low harmonic order

order. The simulations showed that in this case the instantaneous harmonic

contribution dominates with respect to phase-matching related effects, and

we therefore interpreted the ring structure as the instantaneous interference

pattern between short and long quantum trajectory contributions.

Possible future work on this field may involve a scan over propagation

distances of the output harmonic field, in order to verify the numerical find-

ings of Figs. 6.6 and 6.7, i.e. a variation of the interference pattern peri-

odicity depending on the relative position with respect to the focal position.

This could be performed by means of a ζ-scan in an experimental setup sim-

ilar to the one shown in chapter 4, with the particular technical solutions of

Ref. [191] for handling high harmonic propagation in vacuum.
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Chapter 7

Nonlinear Airy Beams

This final chapter will deal with a particular class of monochromatic beams,

the Airy beams [9, 10, 206]. These beams are (weakly) localized infinite-

energy solution of the linear propagation equation which are stationary, i.e.

their intensity shape profiles do not change in propagation, in an accelerating

reference system. Contrary to conical wavepackets, Airy beams may be de-

fined also in a 1-dimensional environment. They are characterized by a main

intensity lobe that decays exponentially to zero on one side and decays with

damped oscillations on the other. Finite energy realizations, in the shape of

apodized Airy beams, preserve, for a finite propagation distance, the char-

acteristic property that the main intensity lobe propagates free of diffraction

whilst bending in the transverse direction, in the case of spatial Airy, or accel-

erating along the propagation direction, in the case of temporal Airy profile

[207]. The ballistic properties of Airy beams [208] lead them to particular

applications such as optically mediated particle clearing [209] or generation

of curved plasma filaments [210].

In this chapter we will derive by means of analytical calculations and nu-

merical integration the shape of stationary Airy-like solutions in the case of

Kerr nonlinearity and nonlinear absorption. We will also present numeri-

cal and results to verify the possible generation of such nonlinear Airy-like

beams. Finally, we will describe a series of experimental results confirming

the numerical findings. These measurements were performed by the Ultra-

short Non-linear Interactions and Sources group at the Foundation for Re-

search and Technology Hellas (FORTH) of Heraklion, Greece.
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7.1 Theoretical calculations

The propagation of the complex envelope of a monochromatic beam of fre-

quency ω0 in one spatial dimension can be described in the nonlinear case

by a nonlinear Schrödinger equation, derived from Eq. (1.27), with Kerr

[Eq. (1.32)] and multiphoton absorption [Eq. (1.37)] terms:

∂zA =
i

2k0
∂2xxA+ ik0

n2
n0

|A|2A− β(K)

2
|A|2K−2A (7.1)

where for simplicity A is rescaled such that |A|2 = I represents the intensity

of the electric field, and the coefficient describing the depletion of neutral

atoms (1−ρ/ρ0) is neglected in the nonlinear absorption term. K and β(K) ≥
0 are the order and the coefficient of multiphoton absorption, respectively,

see section 1.5.2. The nonlinear Kerr modification of the refractive index is

δn = n2|A|2, see section 1.5.1.

Contrary to Eq. (1.27), only one transverse spatial dimension is considered

in this case, and we are assuming the beam to be monochromatic, such that

A = A(x, z). Therefore, the change of reference frame given by Eq. (1.19) is

not needed, and z is the propagation distance. Equation (7.1) is still derived

assuming that the second order derivative ∂2zzA is negligible with respect to

the first order term 2ik0∂zA.

In the linear case, Eq. (7.1) admits the Airy beam solution [206]:

A = Ai(y) exp

[
i

(
y
ζ

2
+
ζ3

24

)]
(7.2)

whose intensity profile is in the shape of a squared Airy function Ai(y) [211],

and it is invariant in the uniformly accelerated reference system defined by the

normalized coordinates:




ζ =
z

k0w2
0

y =
x

w0
− z2

4k20w
4
0

(7.3)

(7.4)

with w0 a typical length scale so that the acceleration, or curvature, in the

(x, z) plane is given by 1/2k20w
3
0.

Provided that Airy beams are stationary solutions in the accelerated ref-

erence system in the pure linear case, we are interested in finding stationary
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solutions in Airy-like shape also in the nonlinear case, Eq. (7.1). In particular,

stationarity in this case means that the intensity profiles of the solutions do

not change along propagation in the uniformly accelerated reference system.

Moreover, we are searching for the nonlinear solutions that reduce to the Airy

beams case in the absence of nonlinearity.

We thus expect that in the regions in which intensity is lower and thus non-

linear effects become less relevant, namely for y → ±∞, the modulus of the

solution would approach the asymptotic approximations of the Airy function

[211]:





Ai(y) ∼ |y|−1/4

π1/2
sin

(
2

3
|y|3/2 + π

4

)
for y → −∞

Ai(y) ∼ y−1/4

2π1/2
exp

(
−2

3
y3/2

)
for y → +∞

(7.5)

(7.6)

We therefore impose the constraints of a weakly localized tail (damped oscil-

lating behavior) toward y → −∞ and an exponentially decaying tail toward

y → +∞.

Equation (7.1) is rewritten in normalized units in the accelerated refer-

ence frame as:

∂ζA− 1

2
ζ∂yA =

i

2
∂2yyA+ iγ|A|2A− αNL|A|2K−2A (7.7)

where the nonlinear parameters read as:

γ = k20n2w
2
0/n0 and αNL = β(K)k0w

2
0/2

By following the procedure of Ref. [140], we consider modulus and phase

of the complex envelope A = A(y, ζ) exp [iφ(y, ζ)], with A = |A|. Substi-

tuting into Eq. (7.7) and gathering real and imaginary terms, the following

system of equations is obtained:





∂ζA2 − ζA∂yA = −2A∂yA∂yφ−A2∂2yyφ− 2αNLA2K

A∂ζφ− 1

2
ζA∂yφ =

1

2
∂2yyA+ γA3 − A

2

(
∂yφ

)2
(7.8)

(7.9)

The condition that the intensity A2 of the solution does not vary along ζ
reverts to the constrain ∂ζA2 = 0. Moreover, since we want the solutions to
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approach the linear Airy beam behavior of Eq. (7.2) for decreasing intensity

or vanishing nonlinear terms, we assume for the phase the form:

φ(y, ζ) =
ζ

2
y + ψ(y) +

ζ3

24
(7.10)

where ψ(y) represents the additional phase term due to the nonlinear behav-

ior.

Equations (7.8) and (7.9) with these assumptions become:





∂y
(
A2∂yψ

)
= −2αNLA2K

Ay
2
− 1

2
∂2yyA+

A
2

(
∂yψ

)2 − γA3 = 0

(7.11)

(7.12)

Equation (7.11) may be rewritten as:

Ny = A2∂yψ = 2αNL

∫ +∞

y
A2K dy (7.13)

In particular, Ny represents the net power flux per unit propagation length

through a y-boundary of a semi infinite domain [y,+∞) in the accelerating

reference frame, which compensates for the power lost by nonlinear losses

within this domain. Equation (7.11) is thus analogous to the continuity equa-

tion in presence of losses Eq. (3.22).

In the linear case αNL = 0, which implies Ny = 0; the term ψ(y) is thus a

constant and Eq (7.10) reverts to the phase term corresponding to the linear

Airy beam [9, 206].

Assuming total nonlinear losses to be finite, Ny increases from N+∞ = 0

at y → +∞ to N−∞ = 2αNL

∫ +∞

−∞
A2K dy at y → −∞, thereby establish-

ing an additional curvature of the phase front in the weakly decaying tail of

the beam, since ∂yψ → N−∞/A2, whereas the exponentially decaying tail

has the curvature of the Airy beam. From the asymptotic behavior, we infer

that finite nonlinear losses requires K > 2.

By introducing the new spatial coordinate ̺ = sgn(y)|y|3/2, where sgn(x)
is the sign function, andB(̺) = A(y)|̺|1/6, we rewrite Eq. (7.12) in the limit

y, ̺→ ±∞:





∂2̺̺B =
4

9
B for ̺→ +∞

∂2̺̺B = −4

9
B +

4

9

N 2
−∞

B3
for ̺→ −∞

(7.14)

(7.15)
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Equation (7.14) admits exponentially decaying solutions

B ∝ exp[−(2/3)̺],

as expected, while in the ̺ → −∞ case Eq. (7.15) admits solutions in the

form:

B2(̺) = B2
−∞

[
1 + C sin

(
4

3
|̺|
)]

(7.16)

These exhibit oscillations of finite amplitude around the mean value B−∞

with contrast

C =

(
1− N 2

−∞

B4
−∞

)1/2

decreasing as the amount of total losses increases. In the absence of nonlinear

absorption (N−∞ → 0), Eq. (7.16) with maximum contrast C = 1 reduces

to the asymptotics of Eq. (7.5). The contrast vanishes for B2
−∞ = N−∞,

showing that no solution exists above a certain threshold of total losses.

In analogy with the physics of nonlinear Bessel beams [140], nonlinear

Airy solutions can be described as Airy beams reshaped by nonlinear absorp-

tion and Kerr effect, the former being responsible for the power flux from

the weakly decaying tail toward the intense lobes where nonlinear absorption

occurs and the latter of a nonlinear phase shift [212]. This may be expressed

by considering the expansion of the Airy function as the superposition of two

linearly independent Hankel functions [211]:

Ai(y) =
1

2

√
|y|
3

2∑

l=1

al exp
[
i
π

6
(−1)l+1

]
H

(l)
1/3

(
2

3
|y|3/2

)
for y < 0

(7.17)

where a1 = a2 = 1. Each of these Hankel profiles may be interpreted as

carrying energy in the direction of, or opposite to the main lobe. In presence

of absorptions, the amplitudes al are expected to be different from each other,

thus originating a net power flux compensating for the losses. This is the

origin of the lowering of the contrast in the oscillating tail.

7.2 Nonlinear solutions

Numerically integrating Eqs. (7.11) and (7.12) from +∞ to −∞ starting from

the linear asymptotic behavior, we retrieve the intensity and phase profiles of

the nonlinear solutions.
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Figure 7.1: Nonlinear solutions compared to the linear one (black solid curve). Intensities

are normalized to their maximum value and peak positions are shifted in order to over-

lap to the peak of the linear solution. (a) Pure Kerr solutions (αNL = 0) in the positive

(n2 > 0, green dotted curve) and negative (n2 < 0, magenta dashed curve) Kerr nonlin-

earity case. (b) Solutions in presence of multiphoton absorption with K = 5, in the pure

absorption case (γ = 0, red dashed curve) and positive Kerr and absorption (blue dotted

curve). Thanks to rescaling properties of normalized units, these profiles apply to different

media with the given multiphoton absorption order.

Figure 7.1(a) shows the normalized intensity profiles in the pure Kerr

case, i.e. αNL = 0, in the positive and negative γ coefficient cases, corre-

sponding to focusing (n2 > 0) and defocusing (n2 < 0) Kerr nonlinearity,

respectively. The profiles were shifted along the y-axis to overlap to the max-

imum intensity peak of the linear case. In general, starting from the same

initial conditions in the y > 0 semi-axis, the main intensity peak is shifted

toward y > 0 for positive γ and in the opposite direction for negative γ, with

respect to the linear case.

The width of the main lobe is narrower or wider depending on the sign

(positive and negative, respectively) of the nonlinear coefficient. Since the

reference system is the one referring to the linear case, the nonlinear solution

still preserve the acceleration property of the linear Airy beam, although the

relation between the width of the main lobe and the peak acceleration does

no longer hold, due to the nonlinear behavior.

The solutions in the pure Kerr case were first derived in the context of the

nonlinear Schrödinger equation in Ref. [213] and have recently been deeply

investigated in Ref. [214]. These profiles have the form of Painlevé transcen-

dents of second type.

The effect of multiphoton absorption, Fig. 7.1(b) (red dashed curve) for

multiphoton order K = 5 and γ = 0, as explained in the previous section, is

the reduction of the contrast C of the decaying oscillations. Increasing non-
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Figure 7.2: Domain of existence (shaded region) of nonlinear Airy-like solution. (a) and

(b) as a function of normalized quantities, where I0 is the maximum intensity at the peak

of the profile [in (a) the horizontal axis is in logarithmic scale]. (c) is the existence domain

in the case of water at λ0 = 800 nm (see the text for parameter values) as a function of

maximum intensity I0 and width w0 of the corresponding linear solution.

linear absorption reduces the contrast of oscillations.

The simultaneous presence of both Kerr nonlinearity and multiphoton ab-

sorption determines features characteristic of each regime, Fig. 7.1(b) blue

dotted curve, namely the narrowing of the central peak and the reduction of

contrast.

We performed a scan in the parameters space to derive the region of ex-

istence of the stationary nonlinear solutions. The results, for K = 5, are

shown in Fig. 7.2. The region of existence depends on a set of parameters,

namely αNL, γ and I0, where I0 is the maximum intensity of the nonlinear

profile (i.e. the intensity of the main peak). Proper renormalization enables

the plot to be performed as a function of two independent parameters. Fig-

ures 7.2(a) [with independent parameters αNL/|γ|K−1 and γI0] and 7.2(b)

[with independent parameters γ/α
1/(K−1)
NL and I0α

1/(K−1)
NL ] refer to these

normalized units [a third possible choice of independent parameters could be

αNLI
(K−1)
0 and γI0]; by properly renormalizing the figure axis, Fig. 7.2(a)

can be transformed into Fig. 7.2(b), and vice versa (except for the points in

which αNL = 0 or γ = 0).

The shaded areas are the areas of existence of nonlinear solution. In partic-

ular, as previously shown, at fixed γ and given I0 the solutions exist up to a

certain maximum value of αNL. For the pure Kerr case (αNL = 0), solu-

tions exist ∀n2 > 0. In the Kerr defocusing case, solutions have been shown

[213, 214] to exist for −M2 < γI
(linear)
0 < 0, where I

(linear)
0 is the maximum

intensity of the corresponding linear solution (i.e. the linear solution numer-

ically obtained by starting from the same initial condition at y → +∞), and
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M = max {Ai(y)} for y ∈ R. However, the actual maximum intensity I0
of the nonlinear profile is not limited, since it growths towards +∞ as the

(negative) quantity γI
(linear)
0 approaches the lower limit value.

Figure 7.2(c) shows the existence domain in the (I0, w0) space in the case

of water at λ0 = 800 nm, with n2 = 2.6× 10−16 cm2/W [152], n0 = 1.3286
and β(5) = 8.3 × 10−50 cm7/W4 (K = 5 as before); w0 is the width of the

corresponding linear solution, which represents the acceleration 1/2k20w
3
0.

The figure shows that within this choice of parameters, for a given accelera-

tion of the profile (i.e. given w0) nonlinear solutions exist up to a maximum

intensity value.

7.3 Numerical and experimental verification

A relevant question is whether it is actually possible to excite or experimen-

tally observe stationary nonlinear Airy beams. A series of problems may

affect the experimental realization.

Firstly, these solutions carry infinite energy. In practical realizations of

the beams one would resort to finite energy realizations that cannot guaran-

tee perfect stationarity. However, as in the linear case in which finite energy

Airy beams still exhibit the main stationary features over a limited distance

[10], analogous to the Bessel zone for the propagation of finite energy Bessel

beams, we may expect the nonlinear Airy to emerge during propagation in

the nonlinear regime in a limited region along propagation distance. The ra-

tionale behind this reasoning is also based on the observation that stationary

waveforms have been shown to act as attractor states for the dynamical evo-

lution of laser beams and pulses in the nonlinear regime, for example dynam-

ically evolving X-waves during ultrashort laser pulse filamentation [95, 96],

and nonlinear unbalanced Bessel beams during the evolution of high intensity

Bessel beams [140, 212].

Secondly, the shaded regions of Fig. 7.2 represent the parameter area in

which stationary nonlinear solutions exist, but a stability analysis of the solu-

tions has not been performed yet. In particular, even if the theoretical solution

does exist for a certain set of parameters, if such a solution falls inside an un-

stable zone, small perturbations will be amplified and the beam itself will

evolve towards different profiles. On the base of the similarity with the non-

linear unbalanced Bessel beams, we may expect that nonlinear losses could

determine a stabilizing factor for the solution. It is worth underlining that also

unstable solutions may be locally obtained during the dynamical evolution of
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laser beams, such as the spatial Townes profile [134], observed close to the

nonlinear focus of a self-focusing intense Gaussian beam [215].

Thirdly, the solutions were found in the pure one-dimensional case (i.e.

no temporal evolution, no second transverse spatial coordinate). For what

concerns two-dimensional solutions, in the linear case the existence of factor-

ized solutions in the form of the product of two perpendicular one-dimensional

Airy beams has been verified [9], but in general factorizability does not hold

in the nonlinear case. Furthermore, the additional temporal coordinate may

give rise to a series of instabilities which in an experimental framework could

prevent the observation of nonlinear Airy solutions. For example, filamenta-

tion-like instabilities [216] could prevent or mask nonlinear Airy profiles.

We performed a series of numerical simulations, solving Eq. (7.1) for the

same material parameters as in Fig. 7.2(c), i.e. in water at λ0 = 800 nm input

wavelength, for various increasing input intensities. The Airy beam was gen-

erated by applying a cubic phase mask to a Gaussian beam (FWHM=2.4 mm)

followed by a focusing lens with focal length f = 10 cm after a linear prop-

agation of distance f , to mimic a possible experimental setup. The Fourier

transform of the input beam is then obtained in the focal plane of the lens [10].

This layout is schematically represented in the top-right corner of Fig. 7.3.

The width of the corresponding linear Airy beam in the focal plane of the lens

will be w0 = C1/3f/k0, where C is the cubic phase coefficient ϕ = iCx3/3.

The acceleration of the linear profile is 1/2k20w
3
0 = k0/(2Cf3). A strong

acceleration thus requires a short focal length f or a weak initial cubic phase

coefficient C. However, it also requires a large initial Gaussian apodization

(corresponding to a broad spectral band) such that the Airy behavior is not

completely masked by the Gaussian propagation.

The numerical results are shown as intensity plot versus transverse co-

ordinate x and propagation coordinate z in Figs. 7.3(a), 7.3(b) and 7.3(c).

Figure 7.3(a) shows the linear propagation of the finite-energy Airy beam for

reference; at the focus position z = 20 cm the intensity profile, black curve

of Fig. 7.3(d), is an apodized Airy profile. Figures 7.3(b) and 7.3(c) show the

propagation for two high power cases: (b) for initial power 0.8 GW and (c)

for 4.7 GW. The maximum intensities reached during propagation are: (b)

0.2 TW/cm2 and (c) 1.2 TW/cm2.

A remarkable feature of these profiles is the formation of a slight asymmetry

in the parabolic trajectory, barely visible in Fig. 7.3(b) and more evident in

Fig. 7.3(c). This asymmetry is related to Kerr-induced self-focusing effect.

This effect induces an effective focusing lens and, indeed, by slightly adjust-
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Figure 7.3: Numerical results: propagation in water with focal length f = 10 cm. The

optical layout used to transform an input Gaussian beam with a spatial third order chirp

into an Airy beam is shown in the top-right corner. Intensity evolution of (a) linear Airy

with w0 = 30.3 µm, (b) Nonlinear Airy with peak intensity I0 = 0.2 TW/cm2, (c) Non-

linear Airy with peak intensity I0 = 1.2 TW/cm2. Intensity profile for case (b) is shown

(red curve) in (d) compared to the linear one (black curve), both normalized. (f) Intensity

evolution in the nonlinear case with artificially increased absorption coefficients, and (e)

intensity profile (red curve) compared to the linear case, both normalized. The profiles of

(d) and (e) are shown in the focal plane (z = 20 cm) of lens f .

ing the position of the initial focusing lens f it is possible to partially com-

pensate for this phase distortion. Complete compensation cannot be achieved

at large distortions (i.e. at high peak intensities) due to the distributed nature

and varying effective focal length of the Kerr lens.

The higher peak intensity generates also “tangential” emissions that prop-

agate in straight lines at an angle from the main parabolic trajectory of the

Airy main lobe. Similar tangential emission has already been experimen-

tally observed [216]. This seems to indicate an instability in the nonlinear

Airy profile which incurs as the parameters approach the border of the area

of stationary-solution values, Fig. 7.2(c). In Ref. [214] this instability was

found to emerge when, in the pure Kerr case, the width of the main lobe is

wider than twice the width of the soliton (shape-invariant hyperbolic secant

solution of the nonlinear Schrödinger equation, see e.g. Ref. [217]) associ-

ated to the maximum peak intensity.

Figure 7.3(d) show a line-out of the beam profile of the (b)-case (red
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curve) at z = 20 cm, i.e. in the focal plane of the lens, compared to the linear

case (black curve). The contraction of the main lobe, which also affects the

periodicity of the side lobes, is clearly evident, whilst the effect of nonlinear

losses, i.e. loss of contrast in the side-lobe oscillations, is hardly discernible.

We therefore performed an additional simulation, Fig. 7.3(f), with an ini-

tial power mid-way between cases (b) and (c), in the same medium with an

increased nonlinear absorption coefficient, β(5) = 8.3×10−45 cm7/W4. Fig-

ure 7.3(e) shows the intensity profile at the focus for this artificial case com-

pared to the linear case: the strong reduction in the contrast of the Airy beam

oscillations is now clear, indicating the presence of an inward flux that is

stabilizing the energy loss in the main lobe.

7.4 Experimental results

A series of experiments were performed to verify the generation of nonlinear

Airy profiles. The experiments were performed by the Ultrashort Non-linear

Interactions and Sources (UNIS) group of Prof. Stelios Tzortzakis at the In-

stitute of Electronic Structure and Laser at the Foundation for Research and

Technology Hellas (IESL-FORTH), Heraklion, Greece.

One-dimensional Airy beams with increasing input energy were launched

into two different nonlinear media: a 2 cm thick cuvette filled with water and

a 2.5 cm thick sample of Polymethyl-methacrylate polymer (PMMA).

The experimental setup, shown in Fig. 7.4(a), comprised a spatial light mod-

ulator (SLM, Hamamatsu LCOS), which impressed onto a Gaussian shaped

beam delivered by an amplified Ti:Sapph laser (35 fs pulse duration, 800 nm

wavelength) a cubic spatial phase, together with a quadratic one correspond-

ing to a cylindrical Fourier lens (one-dimensional counterpart of the setup of

Ref. [218]). The beam then propagated through the nonlinear sample and the

beam profile at the exit surface was imaged onto a CCD camera.

Figure 7.4(b) shows the nonlinear Airy spatial fluence profiles in loga-

rithmic scale for three different input energies, 25 nJ (corresponding to linear

propagation, blue dotted curve), 350 µJ (red curve) , and 530 µJ (black dashed

curve), for an input cubic phase profile such that the linear Airy main lobe

full width at half maximum (FWHM) is 159 µm. The main lobe undergoes

an evident contraction that increases with increasing energy, in agreement

with the theoretical prediction [Fig. 7.1(a)] for the Kerr-dominated nonlinear

Airy beam. In this regime the Airy propagation dynamics thus appear to be
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Figure 7.4: Experimental results: (a) experimental layout. Output fluence profiles in log-

arithmic scale for water: three input energies 25 nJ (blue dotted curve), 350 µJ (red solid

curve), and 530 µJ (black dashed curve), for an input Airy with linear main lobe FWHM of

(b) 159 µm and (c) 182 µm. Output fluence profiles in logarithmic scale for PMMA: en-

ergies 25 nJ (blue dotted curve), 78 µJ (red solid curve), and 246 µJ (black dashed curve),

for an input Airy with linear main lobe FWHM of (d) 78 µm and (e) 136 µm.

dominated by Kerr nonlinear effects.

Figure 7.4(c) shows the results for the same energies as in Fig. 7.4(b), starting

from a different initial cubic phase term, corresponding to a wider FWHM of

the linear Airy lobe: 182 µm. The reduced density of the Airy peaks and the

correspondingly lower spatial intensity gradients imply that now both self-

focusing effects and the energy flux within the beam are weaker. Indeed,
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Kerr self-focusing effects are nearly absent. On the other hand, even if in

both Figs. 7.4(b) and 7.4(c) the decrease of contrast due to nonlinear absorp-

tions [see Fig. 7.1(b)] is hardly noticeable, it is more marked in this wider

Airy lobe case.

A second set of measurements was performed in PMMA, with higher

losses, due to the lower multiphoton absorption photon number, K = 3. As

for the case of water, two different Airy widths were tested, namely 78 µm

[Fig. 7.4(d)] and 136 µm [Fig. 7.4(e)] at three different energies 25 nJ (linear

propagation, blue dotted curve), 78 µJ (red curve) and 246 µJ (black dashed

curve). The dynamics are similar as in water: we observe a narrowing of the

main lobe, and the larger Airy main peak case leading to increased nonlinear

losses effects.

Although lacking the same resolution and dynamic range of the numerics, the

experiments qualitatively show the predicted trends for the stationary nonlin-

ear Airy beam.

7.5 Conclusions

In this chapter we demonstrated the existence of Airy-like solutions which

preserve their intensity shape in an accelerating reference frame, in presence

of Kerr nonlinearity and nonlinear losses. We numerically derived their typi-

cal features and linked them to the nonlinear effects of the medium.

We also performed a series of numerical simulations to mimic real exper-

iments to verify the spontaneous generation of such beams over finite propa-

gation distance in the finite-energy case. The simulations confirmed the theo-

retical findings, and we identified a regime of tangent-like instability, already

observed [216] and discussed [214].

We presented a series of experiments qualitatively confirming the shape

of nonlinear Airy solution in high intensity propagation in Kerr media.

Stationary nonlinear Airy beams could find practical applications in a

similar fashion to stationary Bessel beams in technical improvements in the

field of optical material micromachining [2, 219, 220].

Possible future development may be the study of the existence of Airy-

shaped and nonlinear stationary solutions in a 2- or 3-dimensional environ-

ment. Moreover, following the development of light beams accelerating over

arbitrary convex trajectories [221, 222], a study may be performed on their

behavior in the nonlinear (Kerr and nonlinear losses) regime. An intrigu-
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ing possibility could be the existence of nonlinear solutions accelerating over

arbitrary trajectories.



Conclusions

In this thesis we investigated the role of conical wavepackets and laser pulse

filamentation in potential applications at the frontier of nonlinear optics and

high-field physics, such as high harmonic generation.

In particular, we developed a series of numerical codes and analysis tools to

simulate and interpret the propagation of ultrashort laser pulses in nonlinear

regimes, and the generation and co-propagation of high harmonics.

We concentrated our attention on the analysis of the spatio-temporal fea-

tures of conical wavepackets, such as the property of independent tuning of

phase and peak envelope velocity.

We developed a numerical tool for the analysis of the energy redistribution

in the local frame of optical pulses, that we called energy density flux. By

means of the energy density flux, we could interpret the specific properties

of conical wavepackets from a simple geometrical perspective, and we found

flux features characterizing the behavior of apodized conical wavepackets.

These results in the linear case were verified by experimental measurements

performed at the Institut de Ciències Fotòniques (ICFO) of Barcelona.

Moreover, we extended the energy flux investigation to the nonlinear case

and, by means of a generalization of an existing phase retrieval technique,

we analyzed a series of real data concerning the regime of ultrashort pulse

filamentation. We were able to retrieve the typical energy flux signature of

conical wavepacket in the experimental measurements of the filament, which

was confirmed by numerical simulations.

The filamentation regime was also addressed from a different point of

view: we studied the evolution along propagation distance of the ultraviolet

spectral component around the third harmonic of the pump pulse. By means

of a series of numerical simulations, we derived the temporal profiles of this

spectral frequency range and the corresponding phase, and verified the pos-

sibility of pulse compression for the generation of few-cycle pulses (duration
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≤ 3 fs) in the near and deep ultraviolet. This work was performed in tight

collaboration with the experimental Ultrafast Laser Optics group at the Leib-

niz Universität of Hannover, that provided the set of measurements which

constituted the starting point for this investigation.

Ultrashort pulses in the ultraviolet and soft X-ray region can also be gen-

erated in a different nonlinear process, namely high harmonic generation

(HHG). We analyzed the influence of the peculiar carrier-envelope features

of conical wavepackets in harmonic temporal and spectral output from HHG

with very short pulses in argon. We found that the relative shift of the enve-

lope with respect to the carrier wave (related to the difference between phase

and envelope velocities on axis) determined in our case two main effects.

The first one was the local (along propagation distance) generation of almost

isolated pulses of 300-350 as duration.

The second one was the selection of quantum trajectory contribution (and

therefore associated temporal chirp and divergence) via a phase matching ef-

fect related to the instantaneous intensity of the field peaks. In the particular

case under examination, we found an enhancement of the long trajectory con-

tribution for a peak envelope velocity v smaller than the phase velocity, and

an enhancement of the short trajectory contribution for the opposite case.

The effect of the simultaneous presence of different quantum trajectory

contributions in HHG was also analyzed in the case of loosely focused Gaus-

sian pulses. The numerical studies started from a series of experimental re-

sults performed by the Attoscience and Ultrafast Optics group at the ICFO

of Barcelona. These measurements exhibited a clear ring-shaped structure

in the spatio-temporal farfield (i.e. wavelength and propagation angles) of

low order harmonics. We performed a set of numerical simulations, which

revealed that this effect is mainly related to the instantaneous nonlinear po-

larization. We could therefore exclude phase matching processes. We thus

described the complex spectral pattern as due to an interference between the

two main quantum trajectory contributions, and we investigated its evolution

along propagation distance in correspondence of the focus of the Gaussian

beam.

Finally, we presented our results concerning a particular kind of mono-

chromatic wavepackets: Airy beams. We found and described stationary

nonlinear Airy-like solutions in presence of instantaneous Kerr effect and

nonlinear losses. These profiles, in particular, present features similar to the

unbalanced Bessel beam case [140], namely a reduction of oscillation con-

trast which determines a net energy flux towards the main peak of the beam,
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where absorption takes place. We numerically investigated and verified the

generation of such stationary profiles, in view of possible experimental real-

izations.

These experiments were performed by the Ultrashort Non-linear Interactions

and Sources group at the Foundation for Research and Technology Hellas

in Heraklion, Greece. The experimental results are in agreement with our

theoretical predictions.

In conclusion, we underline possible future work along the research lines

developed during this thesis.

In the field of the energy flux density studies we proposed a phase re-

trieval technique derived from the mathematics at the base of this numerical

tool. We presented a series of very preliminary results at the end of chapter 3.

These initial studies can be brought into more depth and eventually applied

to an actual experimental framework.

A parallel future perspective is the application of the energy flux tool for

the study and the comprehension of other optical systems based on the same

evolution equation (nonlinear Schrödinger equation), such as nonlinear prop-

agation in optical fibers [16].

The work on the spectral evolution along the filament and the subsequent

ultraviolet component isolation and compression is still a topic under devel-

opment. In particular, experimental measurements of the temporal profile of

the third harmonic component are already scheduled in the following months.

These in turn will determine the needs for a set of parallel numerical simula-

tions for parameter optimization.

HHG by conical wavepackets has been studied in this thesis only from

a numerical point of view. Therefore a future perspective of these studies

is their experimental realizations with very short laser pulses. We proposed

possible experimental scenarı̂, such as the generation of pulsed Bessel beams

in hollow core fibers; however, these will require further simulations to take

into account propagation features possibly different from the numerical case

presented in chapter 5.

The work on quantum trajectory interference deserves further inspection.

In particular a scan of the evolution of these interference patterns along prop-

agation distance would bring a great help in understanding the phenomenon,

for the fine tuning of the harmonic output.

Finally, the work on stationary nonlinear Airy is linked to possible appli-

cations such as material machining. Possible future development of this work

may be the study in the 2- and 3- dimensional case. In particular, a review
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of all the possible instability channels could help all nonlinear applications

related to laterally or temporally accelerating pulses.

An intriguing development of the 1-dimensional case is the study of possible

stationary nonlinear beams accelerating along arbitrary convex trajectories.
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filaments without self-channeling, Phys. Rev. Lett. 92(25), 253903

(2004). [doi:10.1103/PhysRevLett.92.253903].

[111] F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu,
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scendent in nonlinear optics, Phys. Lett. A 141(8–9), 417–419

(1989). [doi:10.1016/0375-9601(89)90860-8].

http://dx.doi.org/10.1103/PhysRevLett.90.193901
http://dx.doi.org/10.1103/PhysRevLett.107.033903
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1364/OL.33.000207
http://dx.doi.org/10.1038/nphoton.2008.201
http://dx.doi.org/10.1126/science.1169544
http://dx.doi.org/10.1103/PhysRevE.73.056612
http://dx.doi.org/10.1016/0375-9601(89)90860-8


168 Bibliography

[214] I. Kaminer, M. Segev, D. N. Christodoulides, Self-Accelerating Self-

Trapped Optical Beams, Phys. Rev. Lett. 106(21), 213903 (2011).

[doi:10.1103/PhysRevLett.106.213903].

[215] K. D. Moll, A. L. Gaeta, G. Fibich, Self-Similar Optical Wave Col-

lapse: Observation of the Townes Profile, Phys. Rev. Lett. 90(20),

203902 (2003). [doi:10.1103/PhysRevLett.90.203902].

[216] P. Polynkin, M. Kolesik, J. Moloney, Filamentation of Femtosecond

Laser Airy Beams in Water, Phys. Rev. Lett. 103(12), 123902 (2009).

[doi:10.1103/PhysRevLett.103.123902].

[217] N. N. Akhmediev, A. Ankiewicz, Solitons, Nonlinear Pulses and

Beams (Chapman and Hall, London, England, 1997).

[218] D. G. Papazoglou, S. Suntsov, D. Abdollahpour, S. Tzortza-

kis, Tunable intense Airy beams and tailored femtosec-

ond laser filaments, Phys. Rev. A 81(6), 061807 (2010).

[doi:10.1103/PhysRevA.81.061807].

[219] F. Courvoisier, P.-A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Fur-

faro, J. M. Dudley, Surface nanoprocessing with nondiffracting

femtosecond Bessel beams, Opt. Lett. 34(20), 3163–3165 (2009).

[doi:10.1364/OL.34.003163].

[220] M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Fur-

faro, M. J. Withford, J. M. Dudley, High aspect ratio taper-free mi-

crochannel fabrication using femtosecond Bessel beams, Opt. Ex-

press 18(2), 566–574 (2010). [doi:10.1364/OE.18.000566].

[221] E. Greenfield, M. Segev, W. Walasik, O. Raz, Accelerating Light

Beams along Arbitrary Convex Trajectories, Phys. Rev. Lett.

106(21), 213902 (2011). [doi:10.1103/PhysRevLett.106.213902].

[222] L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust,

P. A. Lacourt, J. M. Dudley, Arbitrary accelerating micron-scale

caustic beams in two and three dimensions, Opt. Express 19(17),

16455–16465 (2011). [doi:10.1364/OE.19.016455].

http://dx.doi.org/10.1103/PhysRevLett.106.213903
http://dx.doi.org/10.1103/PhysRevLett.90.203902
http://dx.doi.org/10.1103/PhysRevLett.103.123902
http://dx.doi.org/10.1103/PhysRevA.81.061807
http://dx.doi.org/10.1364/OL.34.003163
http://dx.doi.org/10.1364/OE.18.000566
http://dx.doi.org/10.1103/PhysRevLett.106.213902
http://dx.doi.org/10.1364/OE.19.016455

	List of Figures
	Introduction
	Propagation equations and physical effects
	Equation governing the nonlinear propagation of laser pulses
	Unidirectional Propagation and Forward Maxwell Equation
	Envelope Equations
	Linear behavior
	Nonlinear terms
	Kerr effect
	Nonlinear absorption
	Plasma effects
	Raman effect
	Self-steepening
	Optical field ionization

	High harmonic generation
	The three-step model
	Quantum-mechanical model
	Phase matching
	Absorption


	Conical waves and filamentation regime
	Propagation equation
	Monochromatic Bessel Beam
	Polychromatic CWPs
	Pulsed Bessel beams and Bessel X-pulses
	Stationary CWPs

	Experimental realization
	Filamentation of femtosecond laser pulses
	Properties of light filaments
	Spatial robustness
	Spectral broadening and continuum generation
	Conical emission (CE)
	Temporal splitting of the pulse
	Intensity clamping
	Pulse mode self-cleaning
	Plasma channel

	Models for filamentation
	Moving focus model
	Self-guiding model

	Conical X- and O-waves

	Energy density flux
	Definitions of energy density flux
	Link to the Poynting vector
	Nonlinearity and absorption
	Non-paraxial framework
	Monochromatic vs polychromatic energy density flux
	Time integrated flux - monochromatic case
	Energy flux in the polychromatic case

	Stationary envelope waves
	Normal GVD case: X-waves
	Anomalous GVD case: O-waves

	Longitudinal component
	Longitudinal component of the energy flux
	Radially averaged longitudinal flux

	Nonlinearity and absorption
	Experimental characterization
	The ``Shackled'' FROG
	The Gerchberg-Saxton technique

	Conclusions and perspectives
	Perspectives: phase retrieval


	Third harmonic generation within a filament
	Experiments
	Numerical results
	Conclusions

	High harmonic generation and carrier-envelope shearing
	Numerical model
	Numerical simulations
	Carrier-envelope shearing
	Quantum trajectory contributions
	Conclusions

	Quantum trajectories interference in HHG
	Measurements
	Numerical simulations
	Conclusions

	Nonlinear Airy Beams
	Theoretical calculations
	Nonlinear solutions
	Numerical and experimental verification
	Experimental results
	Conclusions

	Conclusions
	Publications and presentations
	Publications
	Contributions at international conferences

	Bibliography

