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Abstract 

Software Defined Radio (SDR) and Cognitive Radio (CR) are entering mainstream. These high 

performance and high adaptability requiring devices with agile frequency operations hold promise to: 

1. address the inconsistency between hardware and software advancements, 

2. real time mode switching from one radio configuration to another and  

3. efficient spectrum management in under-utilized spectrum bands.  

Framed within this statement, in this thesis we have implemented a SDR waveform on 16 Processing 

Element (PE) Network on chip (NoC) based general purpose Multiprocessors System on chip 

(MPSoC), with access to four external DDR2 memory banks, which is implemented on a single chip 

Xilinx Virtex-4 FPGA. We shifted short term development of a waveform into software domain by 

designing an efficient parallelization and synchronization strategy for each waveform component, 

individually. We enhance our designed waveform functionality by proposing and implementing three 

Artificial Neural Networks Schemes: Self Organizing Maps, Linear Vector Quantization and Multi-

Layer Perceptrons as effective techniques for reconfiguring CR Transceiver after recognizing the 

specific standard based on input parameters, pertaining to different layers, extracted from the signal. 

Our proposed adaptive solution switches to appropriate Artificial Neural Network, based on the 

features of input signal sensed. We designed an efficient synchronization and parallelization strategy 

to implement the Artificial Neural Networks based CR Transceiver Algorithms on the aforementioned 

MPSoC chip. The speed up we obtained for our SDR waveform and CR Transceiver algorithms 

demonstrated that the general purpose MPSoC devices are the most efficient answer to the acquisition 

challenge for major organizations that invest or plan to invest in SDR and CR based devices, thereby 

allowing us to avoid expensive hardware accelerators. We address the case of a complex signal 

composed of many modulated carriers by dividing the PEs in individual groups, thus received signal 

with more than one Standard is processed efficiently. We add further functionality in our designed 

Multi-standard CR Transceiver possessing SDR Waveform by proposing a new approach for radio 

spectrum management, perhaps the most important aspect of CR. We make our designed waveform 

Spectrum efficient by modelling the primary user signal Radio Frequency features as a Non-linear 

Autoregressive Exogenous (NARX) time series, which is then given as input to Elman Recurrent 

Neural Network that predicts the evolution of Radio Frequency Time Series to decide if the secondary 

user can exploit the Spectrum band. We exploit the inherent cyclostationary in primary signals for 

NARX Time Series Modeling of Radio Frequency features, as predicting one RF feature needs the 

previous knowledge of other relevant RF features. We observe a similar trend between predicted and 

actual values.  

Ensemble, our designed Spectrum Efficient SDR waveform with a Universal Multi-standard 

Transceiver answers the SDR and CR performance requirements under resource constraints by 

efficient algorithm design and implementation using lateral thinking that seeks a greater cross-domain 

interaction. 

 

Key-words: SDR waveform, CR Multi-standard Transceiver, MPSoC, Artificial Neural Networks,  

Spectrum Evolution Prediction. 
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Abstract (in French) 
 

La Radio Logicielle (SDR : Software Defined Radio) et la Radio Cognitive (CR : Cognitive Radio) 

deviennent d'un usage courant car elles répondent à plusieurs enjeux technico-économiques majeurs 

dans le domaine des télécommunications. Ces systèmes radio permettent de combler l‟écart de 

développement technologique qui existe entre la partie matérielle et la partie logicielle des systèmes de 

communication, en permettant la gestion optimale des bandes de fréquences sous-utilisées par la 

commutation en temps réel d'une configuration radio à une autre. 

Dans ce cadre, cette thèse présente la mise en œuvre d‟une chaîne de traitements Radio Logicielle 

(appelé SDR waveform) dans un Système Multiprocesseurs sur Puce (MPSoC) à usage général 

(implémenté dans un FPGA de type Xilinx Virtex-4). Cette plate forme est basée autour d‟un Réseau 

sur Puce (NoC) interconnectant 16 processeurs élémentaires (appelés PE) disposant de quatre blocs-

mémoires externes DDR2. Nous avons proposé des implémentations temps réel et embarquées sur 

MPSoC de différentes briques de traitements d‟une chaîne SDR, en concevant une stratégie efficace de 

parallélisation et de synchronisation pour chaque composante élémentaire de la « waveform ». Nous 

avons amélioré la fonctionnalité de la chaîne de traitement Radio Logicielle, en intégrant un 

Transceiver  reconfigurable basé sur différents modèles de Réseaux de Neurones Artificiels (RNA) : 

les Cartes Auto-Organisatrices (SOM), les Réseaux de Neurones Compétitifs (LVQ) et  enfin les 

Réseau Multi-Couches de Perceptrons (MLP). Ces trois RNA permettent la reconnaissance de la 

norme spécifique basée sur les paramètres d'entrée extraits du signal et la reconfiguration du 

Transceiver de CR. La solution adaptative que nous avons proposée commute vers le RNA le plus 

approprié en fonction des caractéristiques du signal d'entrée détecté. Il est important de pourvoir 

prendre en compte des signaux complexes et multi-porteuses. Dans ce cadre, nous avons adressé le cas 

d‟un signal complexe composé de plusieurs porteuses, ainsi en divisant les PEs en différents groupes 

indépendants, nous affectons chaque groupe de PEs au traitement d‟une nouvelle porteuse. Nous 

avons conçu une stratégie efficace de synchronisation et de parallélisation de ces trois RNA pour CR 

Transceiver. Nous l‟avons appliquée, par la suite pour l‟implantation des nos algorithmes sur le 

MPSoC déjà cité. 

L'accélération que nous obtenons pour la SDR waveform et pour les algorithmes de Transceiver de CR 

démontre que les MPSoC à usage général sont une réponse pertinente, entre autres, aux contraintes de 

performances sur une telle plate forme. Le système que nous proposons apporte une réponse aux défis 

technico-économiques des grandes entreprises qui investissent ou prévoient d'investir dans des 

équipements basés sur des SDR ou des CR, puisqu‟il permet d'éviter de recourir à des équipements 

d'accélération coûteux. 

Nous avons, par la suite, ajouté d‟autres fonctionnalités à notre waveform avec un « CR Transceiver 

multinormes », en proposant une nouvelle approche pour la gestion du spectre radio. Ceci étant 

l‟aspect le plus important de CR. Nous rendons ainsi notre waveform  spectralement efficace en 

modélisant les caractéristiques radiofréquences (RF) du signal utilisateur primaire sous la forme d‟une 

série temporelle multi-variées. Cette série temporelle est ensuite fournie comme entrée dans un Réseau 

de Neurones Récurrent d‟Elman (ERNN) qui prédit l‟évolution de la série temporelle de RF pour 

déterminer si l‟utilisateur secondaire peut exploiter la bande de fréquences. Nous avons exploité la 

cyclo-stationnarité inhérente des signaux primaires pour la Modélisation Non-Linéaire Autorégressive 

Exogène (NARX : Non-linear AutoRegressive Exogenous) des séries temporelles des caractéristiques 

RF, car la prédiction d'une caractéristique RF demande d'abord de connaître les autres caractéristiques 

radios pertinentes. Nous avons observé une tendance similaire pour les valeurs prédites et observées. 

En résumé,  nous avons proposé des algorithmes pour SDR waveform à efficacité spectrale avec un 

Transceiver Universel, ainsi que leurs implantations parallèles sur MPSoC. Notre conception de 

waveform répond aux exigences en performances et aux contraintes de ressources embarquées des 

applications dans le domaine. 
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Chapter 1: 

 

 Motivation and Context. 

 

1.    Introduction: 

 

Future mobile networks offer new opportunities to access information in an anytime, anywhere 

paradigm. Next wireless terminals will have to integrate an increasing number of functionalities to 

allow an increased interactivity with the surrounding environment itself enhanced with the paradigm 

of “Ambient Intelligence”. In this respect, the trends taken by mobile communications towards 

Software Defined Radio (SDR), Reconfigurable Terminals and Cognitive Radio(CR) create not only 

new opportunities but also new constraints, in already constraint environment, in terms of platforms 

optimization answering requirements (criteria) of performance, energy consumption and chip area. 

The emergence of the concept of Software Defined Radio and Cognitive Radio is very attractive for 

future mobile communications since it naturally matches reconfigurability of wireless and multimodes 

of operations. This has a direct influence on the design of new solutions oriented towards FPGA based 

reconfigurable platforms.  

Software Defined Radio and Cognitive Radio Technologies are entering mainstream. This can be 

witnessed by observing a huge recent interest in Software Radio related wireless communications and 

different proposals to incorporate cognition in the software radio. A massive amount of literature has 

been published on the topic. The academia and industry both are eager to contribute to the research 

policy and regulation issues. Despite being introduced for the first time in 1991 by J.Mitola, this topic 

still happens to be very fresh and fascinating research interest as there are many technical questions 

still need to be answered, e.g. how to address the required high performance and high adaptability with 

respect to ITRS Roadmap Prediction? How to address the real time constraint mode switching from 

one radio configuration to another? How to configure the Cognitive Radio Transceiver? How to 

perform Spectrum Sensing based on previous learning experiences?  

This thesis answers all these technical challenges and questions associated with this SDR and CR 

concept. We contribute towards the development of this technology in three fold way: 

1. Efficient implementation of SDR based algorithms, comprising a complete SDR waveform, on 

embedded Network on chip based multiprocessor system on chip, together with appropriate 
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 middleware evaluation. 

2. Cognition incorporation in our designed Software Defined Radio waveform by Artificial Neural 

Networks based Multi-standard CR Transceiver design so as to enhance its functionality. This resulted 

in an Universal Transceiver capable of operating in different Standards.  

3. Incorporating radio resource (spectrum) efficiency by predicting the future occupancy status based 

on previous learnt experiences, using Artificial Neural Networks. This resulted in efficient cognitive 

user decision to exploit the available spectrum opportunity, thereby optimizing the most valuable 

resource (Spectrum) usage.    

We explain all these points hereafter: 

 

2.    First Contribution [183, 184, 185]: 

Due to the relatively complexity of applications related to software radio and if one wishes to exploit 

at best the dynamic behavior of those applications in order to optimize their implementations, it is 

necessary to rely on a rigorous and complete system level design methodology. Multiprocessor System 

on chip (MPSoC) are prime candidates for the implementation of next generation wireless systems due 

to their strong computational potential. Although front end analog part issues are essential and are 

being currently tackled, numerous issues in the digital part are emerging. In particular MPSoC requires 

efficient QoS based inter-processor interconnections which are implemented with Network on chip 

(NoC) at our targeted platform. These NoC adapt to workload variations in the operating wireless 

environments and make the utmost use of available resources. We explore the potentials of 

reconfigurable NoC technologies through eFPGA for SDR and CR. Hence the first objective of this 

thesis is to propose new design methodologies and new architectures for Network on chip based 

multiprocessor SoC which are efficient with regard to the above mentioned criteria for SDR. We 

started our work by the performance evaluation of the only open source C based SDR Open Source 

SCA Implementation:: Embedded (OSSIE) developed at Virginia Tech University in the USA. OSSIE 

implements the radio-communication algorithms under the name space of SigProc (Signal processing 

Library).We used Xilinx ML-403 platform based on Virtex-4 FPGA and the softcore Microblaze 

processor for identifying the functions that need to be optimized. We ported the following four classes 

of algorithms that were part of SigProc namespace: 

1. Filter Functions.  

2. Algebraic Functions.  

3. Modulation Functions.  

4. Demodulation Functions.  
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These four classes of algorithms constitute a basic SDR waveform and so by porting all these 

algorithms on Microblaze softcore processor, we evaluated the performance of SDR waveform 

components on embedded platform to meet good area performance tradeoffs. As a result of this 

mapping, the filter functions were identified to be strong candidates for optimization. We proposed the 

appropriate cache size for each filter function in question. We further went a step ahead by 

parallelizing these filter functions to address the prediction of International Technology Roadmap for 

Semiconductors (ITRS) that out to 2017, software design productivity will fall behind hardware design 

productivity. This prediction has a direct impact on SDR and CR based platforms as major 

investments has been made to impart intelligent software defined behavior in these agile frequency 

based operational devices. To address this ITRS prediction with respect to SDR, we ported the 

identified optimization requiring filter functions onto a sixteen processing element (PE) Network on 

chip based multi-core single chip platform, that is developed on a Xilinx FPGA Virtex-4 FX based 

chip. Each processing element happens to be the same Microblaze softcore processor that we chose for 

ML-403 board. Then we proceeded to include further components in the waveform to change its basic 

nature into more advanced form by parallelizing the following two functions on the same 16 PE 

platform: 

1. FFT. 

2. Viterbi Decoding. 

An advanced parallelization strategy was followed for these two waveform components this time. This 

is because of the inherent intercommunication nature of these two algorithms. Because of this very 

reason, the speed-up obtained was not linear this time, unlike our filter functions. We proposed 

enhancement methodologies to exploit our multiprocessor platform leading to further optimized 

results. So in our first contribution, we have ported and proposed to enhance all the components of a 

SDR waveform on our NoC based multiprocessor SoC architecture compised of 16 PE, each element 

being Microblaze. 

At the same time, we evaluated the five aspects of omniORB Object Request Broker, namely, 

Invovation Time, In Sequence, Out Sequence, Objects Registered and Multi-threading over a high 

speed network of multicore workstations. This contribution resulted in an efficient SDR waveform 

design on MPSoC to address efficiently, the high performance and high adaptability requirements of 

SDR.  

 

3.    Second Contribution [186, 187]:  

We target our efforts toward a Multi-standard Cognitive Radio Transceiver design for our Software 

Defined Radio waveform. CR systems are based on SDR technology and utilize intelligent software 
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packages that enrich their transceivers with the ability to adjust their operating parameters, observe the 

results and eventually take actions, that is to say, decide to operate in a specific radio configuration, 

expecting to move the radio towards some optimized operational state.  So, the aim of a CR is to self 

adapt to changing requirements from user‟s applications in order to provide QoS and self-management 

capability. Multimode reconfigurable devices that are able to adapt their behaviour to the environment, 

configuring themselves in an appropriate fashion are increasingly being adapted within the wireless 

industry. In this respect, future cognitive radio devices will have the capability to adjust their operating 

parameters to optimize the radio state after sensing the environment variables and estimating the 

channel state. This is visualized in cognition cycle. In this respect, we target our efforts in designing 

efficient algorithms that can address the multimode reconfigurable device requirements. We proposed 

Unsupervised Neural Networks, Self Organizing Maps (SOM) and Linear Vector Quantization (LVQ) 

and Supervised Neural Network, Multilayer Perceptron (MLP) to incorporate learning lessons from 

previous experiences, thereby recognizing a Standard amongst a predefined list of Standards, and in 

the case of huge data range, the estimated transmission power required, as well. We evaluated the 

feasibility of SOM, LVQ and MLP algorithms to address our cognitive needs in SDR and we obtained 

encouraging results and each standard in question was recognized by our proposed Neural Networks 

based cognition algorithms for CR, thereby enabling the radio to move in the recognized standard 

mode, and in the case of huge data range, estimating the transmission power required. This leads to 

optimize radio resource use (spectrum, battery, carrier frequency). The cognitive functionality is 

spread across the layers of communication architecture, resulting in coordination amongst the layers 

for an efficient use of available resources. The characteristics, to be identified, to switch the CR 

Transceiver in the desired Standard mode, pertain to different layers of a communication system, thus 

we optimize the cognitive transceiver across different layers. We propose to perform the Standard 

detection by the identification of parameters specific to a particular standard and these parameters 

pertain to different layers of communication architecture, thus we target at cross-layer optimization of 

the CR system. After evaluating SOM, LVQ and MLP for cognition incorporation in our radio 

waveform, we come up with an efficient parallelization strategy for implementation of SOM, LVQ 

and MLP and then implemented our algorithms using our designed strategy on our target 16 PE NoC 

based multi-core MPSoC chip, to again address the ITRS Roadmap Prediction. Putting all the 

discussion of our second contribution, together, in this part we contributed by:   

1. SOM, LVQ and MLP algorithms design to enhance our waveform‟s functionality. 

2. Parallelized Implementation of SOM, LVQ and MLP on NoC based multicore, single chip Xilinx 

Virtex-4 FPGA. 

This resulted in an efficient Cognitive Radio Transceiver design that recognized the standard based on 

parameters received as input to the Neural Network, moving the radio in the recognized standard mode 
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to make adequate decisions, thereby enhancing the waveform functionality addressed in the first 

contribution.  

4.    Third Contribution [188, 189]: 

Our third contribution targets at making our radio waveform resource efficient. The most important 

radio resource in today‟s spectrum constraint environment is Spectrum. WLAN 2.4 and 5 GHz bands 

are overpopulated as their capacity is small enough for a very high number of interested parties. 

Paradoxically, with a keen observation at any recent spectrum utilization measurement we will witness 

a gigantic asymmetry in spectrum usage. That is, even if the popular spectrum bands, like WLAN are 

highly overcrowded in many geographical areas, majority of spectrum bands, assigned to different 

systems are practically silent. They are not exploited at the fullest. This Underutilization is notably 

visible in the licensed bands. This is where the waveform spectrum efficiency comes into play, to 

overcome this paradox of spectrum allocation. In this contribution, we address this very spectrum 

scarcity issue, as only a small portion of the allocated spectrum is used everywhere and at all times. 

We propose an efficient methodology to alleviate this inefficient use of the spectrum. We exploit the 

cyclostationary feature detection to propose an efficient spectrum management algorithm using Elman 

Recurrent Neural Network (ERNN). We model the licensed signal Radio Frequency (RF) features as a 

NARX time series, which is then given as input to ERNN. The interdependence between different 

variables (RF features of primary user in our case) makes it more difficult to predict the time series 

with multiple variables. Therefore, majority of the modelling and predicting methods focus on the time 

series with a single variable. At the same time, single variable time series are known not to contain 

enough information to predict accurately the future instances. The prediction results are more reliable 

and accurate when there is adequate available information. Non-linear multivariate time series 

prediction is based on ample available information. Our motivation to choose NARX model of 

multivariate time series for Spectrum Evolution prediction comes from the fact that this time series 

model is known to have more information than its counterpart univariate time series models. It is 

because of this very reason that it is better to predict the primary user presence or absence using 

multivariate time series. With the ability to accurately predict any universal non-linear function, 

ERNN is a far better choice for non-linear modelling and prediction, than other available tools, such as 

ARMA, ARIMA and Markov Models. Thus, the requirement of avoiding interference to potential 

primary users in their vicinity is addressed in this contribution, using all this background. We have 

used the Non-linear Autoregressive Exogenous Time Series Model using ERNN to perform single step 

ahead prediction using second order cyclostationarity. We predict the presence of primary user based 

on the previous observations, which are modelled as RF time series. 

This resulted in a similar trend between predicted and observed values of primary user Spectrum 

usage, thereby enabling CR to exploit expected available spectrum opportunities, in near future. This 
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contribution added Spectrum efficient utilization, in the designed waveform of first and second 

contribution.  

 

5.    Conclusions and Thesis Organization: 

In this thesis, we address and propose solutions to the most important issues related to SDR and CR 

Technology that are thought to be the big bang of today‟s wireless communication industry. This 

Chapter described our motivation to pursue this challenging subject and introduced the important 

notions, together with summarizing our contributions towards the subject.  

This doctoral thesis is divided into six more Chapters (Chapter 2 to Chapter 7).  The rest of the thesis 

is organized as follows: Chapter 2 describes in detail the SDR concept and the motivation that leads 

towards this solution. We define the definitions and terminologies with which we stick throughout the 

thesis, notably the definition of SDR as defined by Wireless Innovation Forum.  The Chapter 

introduces the functionality of an ideal SDR and the key features: Portability, Reconfigurability, 

Seamless Mobility and Interoperability, that it should possess. We follow this up with the explanation 

of the practical version of Software Radio, called Software Defined Radio as it is not possible yet to 

sample directly from antenna. The key research issues that need to be addressed to make this 

technology viable together with the architecture evolution are reviewed. The first ever SDR project, in 

recent times, leading to Software Communication Architecture (SCA) definition is described, together 

with the Core Framework concept. Finally, we describe two academic SDR examples: SCARI and 

OSSIE, and one commercial product example: SDR-4000 that successfully employs this technology. 

Chapter 3 proceeds to the concept of Cognitive Radio (CR) with its fundamental entities, benefits and 

implications. We stick with the Wireless Innovation Forum‟s definition of CR throughout this thesis, 

so we define this very definition in this chapter. Theoretical research issues that need to realize this 

technology are divided into five groups and are reviewed in this Chapter. We give an overview of CR 

architecture evolution in terms of RF front-end design and implementation issues. Different machine 

learning techniques used for CR engineering are reviewed with a special emphasis on Artificial Neural 

Networks (ANN). We conclude this Chapter by having an overlook of important European research 

projects addressing the CR engineering.  

In Chapter 4, we describe our designed SDR waveform in detail. We begin with the important SDR 

Embedded Implementation efforts, then we describe in detail our target MPSoC platform and the 

Processing Element (PE) used. The OSSIE Signal Processing Library is studied in detail in this 

Chapter and cache size optimization for the considered Processing Element is addressed. We start by 

the OSSIE Signal Processing Functions (Filter, Algebraic, Modulation and Demodulation) embedded 

implementation to identify the Filter functions as parallelization requiring functions. We describe the 
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parallelization strategy to enhance the OSSIE SigProc functions (DesignRRCFilter, 

CalculateRRCFilterCoefficients and CalculateDerivativeFilterCoefficients) through parallelization on 

our target MPSoC. We conclude the Chapter 4 by describing the two additional functions (FFT and 

Viterbi Decoding) parallelization strategy to port them on the same MPSoC. The Speed-up, of all the 

parallelized functions that constitute a SDR waveform, is analyzed in detail to conclude the suitability 

of the General purpose MPSoC based solution for SDR.  

Chapter 5 describes the Universal Multi-standard CR Transceiver Design for our designed waveform 

explained in Chapter 4. We describe the architecture of the three Artificial Neural Networks: LVQ, 

SOM and MLP and then exploit them for the Standard recognition among a predefined list of 

Standards. We describe in detail our proposed Neural Networks algorithms for Universal Multi-

standard Transceiver Design and compare them with the other proposals. Our efforts to design a 

Multi-standard ANN based CR Transceiver answers the question of rapidly evolving new 

Telecommunication Standards with each day, thereby forcing us to rethink about the current 

transceiver architecture. In the last part of this Chapter, we design an efficient parallelization strategy 

to implement the three proposed Transceiver Algorithms: LVQ, SOM and MLP, on our target MPSoC 

and finally we conclude the Chapter with Speed-up Evaluation.  

Chapter 6 incorporates Radio Resource: Spectrum, efficiency by predicting Spectrum Evolution 

occupation in time. We begin this Chapter by recent spectrum utilization review in Europe. We give 

an overview of the existing Spectrum sensing methods, with an emphasis on Cyclostationary feature 

detection. We follow this up with Non-linear Autoregressive Exogenous Multivariate time series 

modeling using Neural Networks (Elman Recurrent Neural Network) and representation of the 

received signal using time series analysis. We explain our ERNN design and Levenberg-Marquardt 

Learning Algorithm used to predict the spectrum evolution in time. We conclude this Chapter by 

analyzing the experimental results. 

The last Chapter (Chapter 7) summarizes and concludes major achievements of this doctoral thesis. 

We stress the importance of lateral thinking to gain a greater cross domain interaction as we have done 

in this thesis. We also present multiple possible future research directions and open problems that still 

need to be addressed. Towards the end of thesis, we list the publications that we have done and finally,  

we give the bibliography. 
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Chapter 2:  

 

Software Defined Radio- State of the art. 

 

1.    Software Defined Radio-Definition: 

 

We are living in a rapid pace of communication technology, which makes the communication devices 

out-dated soon after their engineering. To go with this pace, communication systems require 

transparent insertion of the latest technological communication devices. With the insertion of latest 

technology in the communication devices, the upgraded modern device should be able to communicate 

with legacy devices as well. The Software Radio Technology allows one to add new functionality 

without hardware changes, even during a technological update. The ideal Software Radio, as defined 

by Wireless Innovation Forum [1] refers to the complete software control of the entire system. This 

means that analogue conversion should take place only at antenna, ensuring the support for a wide 

frequency range. These kinds of software radios will be obviously future proof as the whole radio 

system will be dependent on programmability, leading to the same hardware behaving differently at 

different instances. Furthermore, in the paradigm of Ambient Intelligence, these days even a simple 

workstation has the possibility of integrating a 2G/3G card. This trend is further evolving to 4G with 

higher QoS by means of improved channel equalization techniques, smarter antennas engineering and 

ever enhancing protection coding methods. The different types of applications and usages demand 

different standards in wireless communication systems. Although all these systems have almost 

similar components, the ways these components behave differ greatly from standard to standard. Also, 

while migrating from one generation to next, wireless network operators face problems as the newer 

handsets may not be compatible with newer generation network. In this regard, a reconfigurable or 

reprogrammable radio is required that can show different functionality with the same hardware. As 

defined above, the future proof Software Radio answers this requirement by sampling the antenna 

output directly, which is an impossible task as some RF front end, e.g. for amplifying and filtering, 

cannot be avoided to be performed at Analogue Front End. Nevertheless, this notion is different to the 

previous and traditional approach when the transceivers were hardware based. In that case, after the 

device engineering, it was exploitable only for the purpose for which it was designed. However, this 

approach was not able to answer the ever changing requirements of transceiver. The basic notion 
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behind Software Defined Radio, which is the realizable version of Software Radio, concept is the 

exact opposite of this very approach, i.e. as many functional blocks (ideally all: which is the definition 

of Software Radio) are software based as possible. This way, the functions that were carried out in 

hardware are performed by software, thus modifiable. Traditional Radios were built only for a 

particular frequency range, modulation type, and output power, which is in complete contrast to this 

SDR technology. This task is achieved by updating the software on the transceiver. The term was first 

coined in 1991 by J.Mitola [2]. 

The term Software Defined Radio (SDR) is the pragmatic version of the ideal Software Radio defined 

above. There are many different definitions of SDR, but we will stick to the definition of SDR Forum 

(Wireless Innovation Forum) [1] formed together with Institute of Electrical and Electronic Engineers 

(IEEE) P1900.1 group that says, 

“a radio in which some or all of the physical layer functions are software defined.” 

The physical layer functions refer to the specialized functional blocks that constitute the very 

functionality of SDR. This definition supports the notion of replacing as many hardware components 

as possible from traditional hardware based design to the software based SDR.  As pointed out by 

Mitola,  

“This term intends to signal the shift from digital radio to multiband multimode software-defined 

radios where "80%" of the functionality is provided in software, versus the "80%" hardware of the 

1990's. “ 

The very first definition covered only the range of operating frequencies from 2 MHz to 2 GHz. This 

first definition was meant for military applications as a single radio was desired to communicate with 

different radios that exploit different RF bands. With the commercial applications using this notion, 

this definition has evolved to a great extent with the passage of time. The ideal Software Radio places 

the A/D and D/A converters at the closest proximity of the antenna. This leads to signal processing 

functionality such as modulation at transmitter and tuning/detection of receiver signal and 

demodulation at the receiver being performed by different general purpose microprocessors and DSPs. 

Unfortunately, despite being the basic functional block of any SDR equipment, the performance 

advances in ADC and DAC are slower than other SDR functional blocks. This leads to the inability of 

ADCs and DACs to cope up with the high frequency signals. We have claimed the ADCs and DACs 

to be the basic functional block as they define the bandwidth and it is a well established fact that 

higher frequencies cause aliasing, leading to the requirement of anti-aliasing filter before ADC. It is 

because of this reason that the received signal is usually sampled at much higher sampling rates than 

required to relax the specifications of the anti-aliasing filter. The second implication of high 

bandwidth combined with dynamic range is the undesirable increase in power consumption. It has also 

been reported that the base stations and user terminals ask for more and more performance efficient 
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ADCs.  Thus, the Software Radio is declined to Software Defined Radio: the pragmatic form of 

Software Radio, by the reduction of the bandwidth that has to be digitized by ADC. This is where the 

idea of Intermediate Frequency (IF) comes into play. This IF does not exist in the ideal Software 

Radio. However, in SDR, we are obliged to select a limited bandwidth from the full band. This 

practise leads to practical version of Software Radio: SDR, by bifurcating the whole communication 

waveform into analogue and digital parts i.e. the software processing is done at IF level.  This is 

visualized in Figure 1. This also helps in overcoming the impossibility of wideband receiving antenna 

design that receives all multiband modes.  

 

 

 

 

 

 

Fig. 1. The practical SDR Block Diagram at receiver side  

We can see in Figure 1 that the functionality is divided into AFE and DFE.  The AFE is necessary to 

select a bandwidth and to shift it from RF to an Intermediate stage, IF. The DFE is the real notion 

where the software part of the radio is implemented, i.e. analogue functionality is replaced by digital 

functionality. At the receiver side, this functionality comprises of I/Q down conversion, sample rate 

conversion and channelization, as shown in Figure 1. The channel selection is necessary in SDR as 

compared to ideal Software Radio because of the bandwidth selection criteria, due to the absence of 

ADCs and DACs supporting the huge bandwidth covering all the communication services required by 

the popular Standards. It includes baseband conversion and channel filtering.  The most wireless 

standards cannot be implemented with 100 % software because of the reasons explained. The 

realization of ADCs with extremely high sample rates, with the ability to process in software the 

bandwidths of all ranges, immediately after the antenna will be a breakthrough in this technology. 

Also the absence of dealing with extreme dynamic range, which is the measure of the highest and 

lowest level signals present simultaneously in the radio, is another ADC/DAC related factor degrading 

the ideal Software Radio to Software Defined Radio.  It is because of this reason that ADC conversion 

is not practical immediately after the antenna. Also, the signal processing with respect to DFE 

including channelization cannot be performed at RF level.  However, in our opinion it will take several 

years to realize such ADCs with sufficient dynamic range, quantization and sampling frequency, that 

could support the bandwidths covering all the services provided by the terminal. We have already 

stated above that ADC engineering is less accelerated research area with respect to SDR engineering. 
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Software Engineering for SDR is a challenging task as it encounters the key software design concepts 

such as portability and reusability of the applications code. This challenge is further enhanced when 

seen in the framework of embedded systems, where very serious resource constraints are encountered. 

There has been an exponential growth in the ways and means of communication needs: data, video, 

voice command and control, emergency communication etc. – In this very paradigm modifying and 

updating the transceiver in a cost-efficient manner has become extremely important. SDR technology 

is promised to bring the desired flexibility, cost effectiveness and power to drive the radio engineering 

technology forward in the most technological efficient way. This technology efficiency refers to 

facilitating transition from dedicated to general-purpose hardware, thereby substituting hardware with 

software processing. The notion of SDR is an efficient combination of hardware and software in such 

a fashion that the physical layer functions are modifiable with the least possible changes in hardware. 

This task is accomplished by programmable processing technologies. This includes FPGA, DSP, GPP, 

Programmable SoC or other application specific processing entities. The discussion carried out so far 

can be summarized in three points: moving A/D as close to antenna as possible, replacing hardware 

with software processing using FPGAs, for example, and substituting dedicated hardware with flexible 

and general purpose components.  

Another aspect refers to the ever increasing traffic rate but decreasing amounts of Spectrum. The 

Cognitive Radio notion, based on SDR, addresses this issue. So, another usage of SDR can be seen in 

the CR engineering. This too requires more sophisticated implementation of signal processing 

algorithms to be mapped on the radio. The need of deploying multiple standards within a single device 

can be addressed in the most efficient way by this sophisticated algorithm implementation. In a 

software  radio, multiple waveforms can be implemented in a software, using the same hardware. This 

means that a single radio is meant to communicate with many others only with the change in software, 

whereas retaining the same hardware. This way interoperability is achieved within different 

communication needs defined above (data, video, voice command and control, emergency 

communication). This leads to the easy adaptation of new technologies at a reasonable cost. In order to 

engineer such radios, that are able to operate in many domains with the minimum or no change of 

hardware (ideally), there is a need of a standardized architecture. This architecture should help in 

achieving interoperability apart from reducing time to market by reducing the development time via 

component re-usage. The SDR provides a flexible radio architecture that allows changing the radio 

personality in time. This is referred to as Software Communication Architecture (SCA) [17]. The SCA 

is one of the key elements in the US military‟s Joint Tactical Radio System (JTRS), which is a SDR. 

We define SCA in detail in Section 4 of this Chapter. 

SDR has found uses in academia, industry, government and military applications. As we have seen 

that Software Defined Radio has no single, unified, globally recognized definition, thus its definition 

constitutes the features and issues. It is only by understanding these issues that we can come up with 
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an efficient solution that addresses the wide range of applications and standards. The Section 2 of this 

Chapter provides an overview of all these aspects.   

SDR is known to provide many opportunities in multiple domains, e.g. it replaces cellular base 

stations with Software Defined Multi-protocol base stations leading to the rapid introduction of the 

new Standards. At some point in time, it is also expected that SDR will provide a cheaper solution 

than conventional mobile terminals. Furthermore, it also gives an opportunity for anticipated wireless 

mobile users to personalize their units as Standards are upgraded. The concept of Cognitive Radio is 

also based on reconfigurability. In order to exploit the spectrum opportunities, CR needs platforms 

with faster reconfiguration capabilities. Chapter 3 is dedicated to the Cognitive Radio, however we 

need to make this a point that CR technology is based on SDR as well. In the long run, standardized 

open architectures are expected to become more popular. There are some disadvantages of SDR as 

well as in any real world entity. The security challenges are there as reconfigurable devices are more 

vulnerable to malicious attacks, e.g. during reconfigurability, there should be some mean to avoid the 

installation of malicious or altered code. The conventional security architectures are rigid enough to 

address this issue as they are known to be inherently less flexible. Also, the ideal Software Radio is 

still unrealizable as the non-practical goal of communication at any desired bandwidth, modulation 

and data rate is not achievable. Therefore, the researchers are working on the ADCs that will be 

capable of very high sampling rate with operating bandwidth of several GHz, greater quantization bits 

for dynamic range and low power consumption. When these goals will be achieved, a breakthrough 

can be expected in this technology. Nevertheless SDR has the potential to enhance the productivity of 

radio engineering by software.  

We have noticed that SDR is a general device that can be reprogrammed to operate in various models, 

unlike AM or FM radios. The first ever device to demonstrate a completely software programmable 

radio was SPEAKeasy1[3]. Although it was a 6 feet tall rack of equipment but it led to project 

SPEAKeasy 2 that was a complete radio packaged in a practical radio size. It was the first SDR to 

include programmable vocoder and sufficient analog and DSP resources to handle many different 

kinds of waveform. We will explain more details about the SDR Engineering efforts in Chapter 4. 

1.1    Features of SDR: 

The SDR transceiver at both ends (transmitter and receiver) is required to possess some key features 

so as to enable the SDR to handle all the various broadcast standards – including the future expected 

standards, in this ever changing and adapting industry. These features are a major motivation within 

the commercial communications market. We define these key features in this section: 
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1.1.1.   Portability:  

A waveform portability refers to its movement from one platform to another without or minimal 

change in its components. Waveform applications should be able to rebuilt on another platform 

without rewriting the whole application. The Software Communication Architecture (SCA) 

contributes to this very feature. We define it in detail in Section 4 of this Chapter. However, even if a 

waveform is SCA compliant, it is not a sufficient condition that it will meet all the aspects of 

portability. The various components of a waveform mapped on FPGAs and DSPs require a transport 

mechanism. SCA 2.2.2 specifications [17] prescribe adapters between components. These adapters are 

primary means of communications and are between CORBA and FPGA components. The portability 

also requires that the component is translated correctly on the new platform. This means that the 

compatibility issues of language and target processor functionality should be addressed.  

1.1.2.    Reconfigurability: 

This feature is related to the Portability that we have just defined. However, the only addition is that of 

dynamic reconfiguration of the waveform. The waveform should be reconfigured dynamically in such 

a way that the end user should not sense the internal change. However, different processing elements, 

in particular, different programmable processing technologies possess different features ultimately 

supporting different functionalities. Another important aspect is the trade-off between 

reconfigurability and energy efficiency in the embedded paradigm. The more energy efficient 

waveform component tends to be less reconfigurable and vice-versa. The interfacing of all the 

waveform components to constitute an application seems like a simple task, however it may lead to 

less reconfigurable waveform if not properly taken care of. The SDR should be able to process signals 

of all the Standards of specific application. This will enable the capability to change the functionality 

of radio during mission development or after the launch of mission.  

1.1.3.    Seamless Mobility:  

The multiple analog transceivers approach is the equivalent of this feature in traditional radio 

engineering. Although the cellular services possess the feature of all time connectivity, the seamless 

mobility has not been realized 100 % till date. As an example, the wireless hotspots for 802.11 are yet 

not figured out easily. Thus the feature of seamless mobility leading to ubiquitous connectivity still 

needs further work out. In this regard, we have designed a Transceiver that we will explain in Chapter 

5. The multiband solution is a way to achieve this seamless mobility. A multiband solution refers to a 

transceiver architecture that accommodates multiple bandwidths, signal levels and modulation types. 

We will explore all these issues in detail later in this thesis. A very simplistic approach to explain this 

ubiquitous connectivity is to opt one single Standard and attempt global regulation, thus providing an 
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idealistic vision.  However, due to obvious reasons, this over simplistic approach is not 

technologically possible.   

1.1.4.    Interoperability:  

The feature of interoperability has always been a challenge in public safety and military 

communications. It refers to the support of open architecture radio systems, e.g. Vanu Inc [4, 5] has 

demonstrated a multi-mode multi-band radio operating on a Compaq iPAQ platform. Robust methods 

for identifying incoming waveforms are the interoperability capabilities that are required for future 

SDRs. The SDR platform has an analog front end for signal transmission and a processing element to 

perform the modulation and demodulation functions in the radio. The modulation scheme used is 

normally known before hand.  Interoperability seeks to devise solutions to dynamically identify 

waveforms by their analog and digital characteristics. The detection would then allow multiple radio 

platforms to communicate autonomously with each other. Core Framework concept, that we will 

explore in Section 4 of this Chapter is the way to achieve Interoperability in SDR engineering design.  

Thus, SDR is a modern radio communication system with the addressed key-features that lead to 

software implementation of its components. The key features defined above make this a dominant 

technology in the long term. SDR has been deemed as the future of telecommunications, as most radio 

devices are expected to be SDRs in the near future. In this respect, this Section has started the Chapter 

2 with a detailed introduction and defining features of SDR which are essential to understand.  

2.    Issues in SDR: 

 

There are numerous issues and challenges that need to be addressed, so as to make this technology 100 

% viable. The fundamental challenge still remains the same as we have discussed in the SDR 

definition, i.e. processing the waveform applications with multiple components with reasonable 

computational capacity, in such a way that the need of IF stage should be eliminated, or mimimized to 

a great extent.  Also the discussed features in Section 1.1 should be incorporated. Starting from the 

very first reviews in this topic [6], there have been significant issues that have been bought to notice, 

such as issues in smart application engineering, computational requirements, analog to digital 

conversion, efficient and secure way to download software, processing elements choice, certification 

and standardization issues and smart antenna design. This Section defines all these issues. However, 

this list is, by no means, an exhaustive detail of all the research issues and challenges that need to be 

addressed.  
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2.1    Application Engineering: 

The wavefrom components engineering is a difficult and challenging issue. The difficulty is further 

added when the SCA compliant application needs to be developed. Learning and comprehending SCA 

may prove challenging and consume several months. We started our work by Open Source SCA 

Implementation:: Embedded (OSSIE) [7,8] which we define later in this Chapter. OSSIE is an open 

source implementation that can be useful for beginners. There are certain aspects that need to be well 

understood while defining SDR waveform components manually, notably: CORBA, Object Oriented 

Programming, Embedded Systems constraints. OSSIE reduces the learning curve and hence the 

application development efforts. The SCA specifications ask the use of CORBA as a middleware 

platform. CORBA is known to consume a lot of memory and other resources, which is further 

exacerbated by the embedded resource constraint environment. This calls for the need of another 

available middleware, given the fact that CORBA is not a popular tool any more due to its tedious 

learning curve and less throughput, which is already dependent on message size to be transferred. On 

the other hand, the feature of portability is compromised. There have been some Object Request 

Brokers (ORBs) developed for FPGAs in recent years [9]. This is a way to achieve portability as the 

CORBA communication between all the processing elements will be easier. However, still the 

processing elements will encounter the latency and throughput implications, for which the CORBA is 

known for. The Data Distribution Service (DDS) is recommended as a substitute middleware to 

CORBA in the SCA framework. Till date, there has been no replacement of CORBA in the SCA 

context with another middleware meant to be less complex and better performing. There are also 

efforts going on to make ORBs faster and less memory hungry.  In short, there exist ongoing 

Middleware activities because of which we can anticipate that soon there will be a clear path for 

middleware to make application engineering easier.  

2.2    Computational Capacity:  

A small hand held device is required to be multimode these days. In such multimode terminals, the 

basic issue is achieving the computational requirements in such a way that meet the power 

consumption, i.e. the power consumption should be below a certain threshold leading to the acceptable 

limits of battery discharge. At the same time, the temperature of the multimode handheld device 

should not be high enough to irritate the end user. SDR application engineering is addressed in the 

previous sub-section. This application performs signal processing at various stages for transmit and 

received signal, apart from other application control activities. We can divide the SDR waveform in 

waveform processing elements and administrative elements. Waveform processing elements have a 

defined algorithm. This is the reason that we can exploit the inherent parallelism in these components. 

This is an efficient way to address this issue of computational capacity. We delve into more details 
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about our efforts, in this regard, in Chapter 4. Administrative portion of the waveform has not that 

much level of inherent parallelism. The reason is that the administrative components are events driven, 

i.e. they are dependent on events to execute various administrative and control commands. In general 

the waveform components can be made to run in parallel. This can be explained by the distributed 

systems architecture support in SCA. The waveform processing elements require more computational 

capacity. It is because of this reason that we have addressed the waveform components parallelization 

strategy in Chapter 4 to address this issue.  

 

2.3    Analog to Digital and Digital to Analog Conversion: 

The issue of Analog to Digital Conversion is not only unique to SDR realization. However, it is meant 

to be one of the most important issues that can be used to significantly increase the flexibility of 

SDRs. The electronics converters are achieving more and more resolution together with faster 

conversion rates. The ideal case would be that the Analog to Digital Conversion should take place 

immediately at the Antenna. This will lead to the digital processing in software of all the radio 

communication functions, i.e. the need of any intermediate frequency stage will be eliminated. This 

task seems to be quite unrealistic at the moment, but research efforts are on their way in this very 

domain.  This realization will lead to sampling being done immediately after antenna, thereby 

facilitating the signal processing portion of the waveform. The more sophisticated signal processing 

components of a waveform are heavily dependent on advances in this issue.  The advances in SDR 

engineering is stimulated by ADC performance improvements, especially for sampling rates of 

approximately 100 million samples per second. The Nyquist Theorem states that the signals must be 

sampled at a rate of at least twice as that of highest frequency of the signal being sampled, leading to 

the accurate and faithful reproduction of the original signals from the samples. Echotek (a commercial 

SDR supplier) maintains an Analog to Digital Converter (ADC) or a Digital to Analog Converter 

(DAC) within a range of 0.5 dB of the specifications. The front ends are moving closer to the ADCs 

and the DACs are moving towards the transmitting portions, as the computation capacity issue is 

addressed.  The performance of an ADC can be characterized by four parameters: stated resolution, 

signal to noise ratio, power dissipation and actual dynamic range. The most important aspect amongst 

these parameters is the stated resolution, which means resolution in bits for a given sample rate. The 

timing and synchronization to tackle a huge data rate in the whole SDR waveform is a difficult design 

issue, as well. The reason is that the information integrity throughout the radio waveform is 

compromised, if this aspect is under-estimated. Another important synchronization aspect is the timing 

issues between different processing entities, while each processing entity works at its own clock speed. 

This requires exact timing synchronization for each processing entity that is executing the specific 

waveform component.  
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2.4    Software Download:  

The efficient methods for Software Download (load and install) are an essential requirement for the 

fully programmable implementation for multimode handheld devices. There are two methods, which 

can be used, namely: air interface download and smart card loading [6]. In the first method, an illegal 

intruder can obtain the software and alter it while in transport. This poses a serious security issue, 

especially in military and defense applications. This can be avoided by the use of efficient 

cryptographic algorithms. A Digital Certificate together with a public key is an efficient manner by 

which these kinds of malicious attacks can be avoided. There are many other authorization schemes 

that can be used to avoid any kind of illegal intrusion. In smart card loading, the software is 

downloaded by the insertion of a smart card in the terminal. This method has its own limitations, such 

as requirement of larger availability of sales points for such cards. Since the memory capacity has 

witnessed exponential growth, there is the possibility of having a priori information about all the 

existing standards that can be expected to be downloaded. Whenever the end user has the need of 

system change, the terminal only needs the proper identification of the new system, followed by the 

software download in a local fashion. The main objective of this issue is to find a reliable and real-

time software download method that does not require any modifications on the existing user 

equipment, in an ideal case.  There have been many propositions about an efficient software download 

strategy. However, still there is a need to address this issue as it has direct security implications, and is 

more vulnerable as compared to that of traditional radio.  

2.5    Processing Elements Choice: 

There has been a huge choice of processing element to be opted that could match with all the required 

features of a SDR. The static choice Application Specific Integrated Circuit (ASIC) is in contrast to 

the dynamic choice Reconfigurable Processing Element. There has been a very little effort for ASIC 

based processing element in the SDR waveform design due to the obvious reason of being non-

reconfigurable. However, it can be useful in the cases where there is a preference for an efficient 

method of computing over portability and reconfigurabilty. Another possibility is the specialized co-

processor design.  These co-processors are specially designed for a specific waveform component such 

as FFT or Filter Function.  These co-processors can be viewed as a compromise between ASIC and 

reconfigurable processing elements as they are not 100% rigid as ASICs, neither fully reconfigurable 

like the Microblaze nor other processing elements. They are given special parameters to change their 

behavior according to the specific waveform component that is required to be computed. The third 

option is the reconfigurable alternative to ASIC, FPGAs. To estimate the extent to which FPGAs can 

be reconfigured, we can see the compliers that have made it possible to generate FPGA code directly 

from MATLAB. However, this reconfigurabilty comes at the expense of power and area consumption. 

We can re-program the FPGA with the specific code needed for any waveform component with a 
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reconfiguration time as less as some fractions of second. This is extremely useful in the real time 

constraint environment where the end user requires ubiquitous connectivity. The other advantages of 

FPGAs include the rich tool sets and easily planned development tasks with moderate risks. 

Microprocessor systems also provide full real time programmability. Multiple core processors support 

to a great extent the parallelism required in SDR waveform components. There are two classifications 

of multi-core processors: Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple 

Data (MIMD). There is a single instruction stream in SIMD, i.e. each processor is constrained to 

execute the same instruction. It is useful in applications where each processor is required to operate on 

a different set of data. As an example of SIMD processing elements, we can quote SODA [10] and 

Sandbridge SB3011 [11]. In contrast to SIMD, MIMD have multiple instruction streams. This is the 

reason that separate programs can be executed over each other. It is considered as more flexible 

architecture than SIMD.  

We have seen in this summary that there exists a huge choice between processing elements.  The 

preference to a specific element is a personal choice which is geared by the priorities and trade-offs. 

The performance is not the sole criteria to measure a processing element. There are other features as 

well that need to be remembered, such as real time constraints, area and power constraints, cost and 

many such factors. An estimate of processing capacity of different processing elements can be done 

with the different measuring entities, such as MIPS and MFLOPS, but there is no single scale to have 

a 100 % correct estimate. We will give more details about our preference of processing element in 

Chapter 4 of this Thesis.   

 

2.6   Standardization and Certification:  

The basic standardization can be viewed in the framework of JTRS SCA specifications. Since 1996, 

Wireless Innovation Forum [1] comprising of academia and industry from all over the world has given 

a remarkable number of deliverables for commercial and defense sector. In Europe, The European 

Software Radio Architecture (ESRA) is an activity that aims at defining standards and certifications 

for SDR, in such a way that all the features are ensured in the waveform. A number of projects are 

aimed at this activity [12, 13]. The European Defense Agency has given an outline of the ESRA 

standardization activity [14].   The Wireless Innovation Forum and The European Software Radio 

Architecture are concerned with the standardization and certification of SDR. European 

Telecommunications Standards Institute (ETSI) [15] aims at defining the external interfaces between 

the base station and terminal.  In USA, another standardization and certification effort is that of IEEE 

1900.3[16].                                                                                                              
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2.7    Smart Antenna Design: 

An antenna choice is a critical issue in SDR design as it supports multiple bands. The Wireless 

Innovation Forum defines a smart antenna system as: A subsystem which includes the antenna that 

uses the spatial domain in combination with decision-based signal processing to improve link 

performance and enable other value added services [1]. The design requirements for a smart antenna 

design is a multi-objective problem. A multiband antenna should serve all the different groups of 

frequency bands of different communication systems, in an ideal condition. The engineering of hand 

held smart devices require an antenna design which is thinner and more beautiful. The design of such 

antennas with little space in a complicated communication environment of today is a non-trivial task. 

The Planar Inverted F Antenna (PIFA) and The Folded Inverted Conformal Antenna (FICA) are 

commonly used in hand held devices. The common five communication bands: GSM850, GSM900, 

DCS, PCS and UMTS inter-switching should be supported in multiband reconfigurable antenna, 

within real time constraints. However, a specific antenna design works in different modes to support 

all the communication standards. The cross layered design approach for MIMO systems, to ensure 

smart antenna design for terminals and base stations, should be considered, thereby exploiting 

multipath in the propagation environment. The common performance metrics for antenna design: gain, 

polarization is not sufficient enough if the nature and degree of multipath are not given enough 

considerations. If capacity, the link and Media Access Control (MAC) layer characteristics are also 

considered, then the throughput of communication link can also be considered as an important 

performance metric.  

In this Section, we gave an overview of the research issues that need to be addressed to make this 

technology 100 % viable. These research issues still need to be addressed and hence each one of them 

can be pursued as a separate Ph.D. topic. However, we have listed only the most important issues that 

are currently being tackled by the research community. These issues: smart application engineering, 

computational requirements, analog to digital conversion, efficient and secure way to download 

software, processing elements choice, certification and standardization issues and smart antenna 

design hold promise for improved performance, thus addressing the acquisition challenge which is 

posed by the realization of these devices.  

   

3.    SDR Architecture:  

 

The progression in the radio generation leads to an increase in design rule, e.g. the functionality of 

early radios was limited to the transmission or reception of basic FM and AM signals, which is in 

extreme contrast to today‟s hand held smart devices. Early FDM radios had no software for physical 
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layer functions. 1990s saw a rapid growth of embedded processors of 8-bit and 16 bit in radios. Today 

such radios can be easily expected to have 10 k Lines of code (LOC) in many physical layer related 

functions. The adaption of SDR Architecture by the industry demands that the SDR Architecture 

should be capable of many hardware substitutes so as to always be ready to cope up with the never 

stopping continuously evolving new Standards.  The organizations like Wireless Innovation Forum 

and European Telecommunications Standards Institute (ETSI) are on their way to define and develop 

reference architecture, e.g. in [15] there is a feasibility study that creates the ETSI SDR Reference 

Architecture Specifications for mobile devices, such as mobile phones as well as Reconfigurable Base 

Stations. The basic focus in the defined specification is on the flexibility to enable the device 

adaptation within its context. In this regard, the five basic mobile device requirements for SDR are 

considered in these specifications: Architectural, Capability, Operational, Interface and Miscellaneous.  

These requirements should be met to integrate the commercial consumer products like mobile phones 

and PDAs with radio platforms, containing some built-in radio functions, to give the architecture 

referred to as “radio computer”. This architectural proposition is meant to incorporate the highest level 

of flexibility in the SDR. Since a modular architecture supports radio applications from different 

providers, this is the very option in the architectural requirements. Also the key features of a SDR that 

we have discussed in Sub-section 1.1 are achieved by the modular architecture. A heterogeneous 

multi-processor architecture with inherent support for real time applications and that respects the 

defined power constraints is proposed. The architecture must support the dynamic reconfiguration of 

the radio platform that has to be integrated to form a radio computer.  Security issues for the radio 

computer, in both licensed and unlicensed frequency bands should be supported. In order to support 

the architectural requirements, the interfaces in the SDR reference architecture are defined. A multi-

radio SDR equipment should have such an architecture that may accommodate most of the available 

radio technologies, if not all, to satisfy the end user needs. The radio computer concept, in this regard, 

is important as it is actually an embedded system whose many parts are ASICs based, which are meant 

to control RF and DSP signal processing for baseband protocols, together with the relevant 

microprocessor running the relevant software. Radio Access Technology has advanced enough that 

SIMD and multi-core processors based architectures can be easily made to work with ASIC 

accelerators. ASICs, despite not being reconfigurable, are preferred in the waveform components 

where less power consumption is required, together with the functionality that has to be repeated over 

and over again. Thus, we can predict that the future SDR Architectures will be equipped with the 

qualities that will make them work more like a computer, where all the applications are software based 

and run on more general purpose computing elements. The most distinctive feature of such a radio 

computer will be the ability to change the running radio program and load new radio application 

software, even at run time, so that real time constraints are met. The modular architecture of the radio 

computer under discussion, as proposed by ETSI is shown in Figure 2. The services provided by the 

radio computer to its user application include positioning, connectivity and data transfer. The 
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administrative user has some additional privileged services such as installation and de-installation of 

new radio application programs. The responsibilities of the radio computer framework shown in 

Figure 2 are shown in Table 1.  Table 1 is based on the functions described by the ETSI SDR 

Reference Architecture for Mobile devices. The reconfigurable and flexible RF circuitry is also one of 

the key features for the modular radio computer based SDR. We know that the ultimate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Functional Architecture of ETSI‟s [15] SDR Radio Computer 

goal of an universal RF circuitry is unrealizable, but at the same time the radio computer providing 

several RF circuits for different radio technologies will be in a better position to reconfigure and reuse 

the hardware peripherals. Apart from the detailed Architecture proposed by ETSI, that we have 

explained in this Section, there are other reference architectures of SDR and the relevant activities. We 

have already referenced the Wireless Innovation Forum and its partners in academia and industry. 

There are other bodies as well that aim at defining the radio specifications and architectures for SDR, 
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e.g. Object Management Group (OMG), exploits the Software Communication Architecture (SCA) 

that we will explain in the next Section of this Chapter for SDR engineering. The SCA based solution 

for SDR known as “Core Framework”, relies on CORBA implementation. The OMG‟s set of 

specifications have the possibility to decouple the SDR reconfiguration model from the underlying 

CORBA implementation. 

Component Responsibility 

Configuration Manager Installation/deinstallation of radio applications 

into radio computer 

Management of radio paramaters 

Radio Connection Manager Deactivation of radio applications according to 

user requests 

Overall management of user data flows, 

including inter-application switching 

Flow Controller Exchange of user data packets 

Flow Control 

Multiradio Controller Request scheduling on spectrum issued by 

simultaneous radio applications in order to 

anticipate interoperability problems. 

Resource Manager Management of radio computer resources 

Share the resources according to application 

priority 

Meeting real time application resource requiring 

constraints 

 

Tab. 1. Radio Computer Framework Components and their functionalities  

 

4.  Software Communication Architecture: 

We have already discussed the key features of the SDR in Sub-section 1.1. of this Chapter. The Joint 

Tactical Radio Systems (JTRS) is aimed at incorporating these features in quick and cost effective 

manner. It dates back to 1997. It was the first time that the waveform was defined as: 

“Components of an Application that perform majority of the communications in a radio”[17] 

The components addressing the majority of the communications can be interpreted as the multi-

standard transceiver functionality. This functionality can be achieved by replacing existing separated 

systems with flexible architectures. These flexible architectures should be designed in such a way that 

they make the most of the existing common features of different Standards. In this respect, the ever 

varying communications platform challenges were meant to address by modular and scalable 

architecture. It must be noted that the ETSI SDR Reference Architecture shown in Figure 2 supports 

modular functionality as well. The Software Communication Architecture (SCA) is a common 

specification standard and component based software framework, built on JTRS, for SDR. It defines 

an Operating Environment (OE) being exploited by the JTRS radios to answer the portability and 
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interoperability features requirements for commercial and civilian standards together with military 

applications. The specifications for services and interfaces used by the applications are also provided. 

These interfaces are defined by Common Object Request Broker Architecture (CORBA) IDL. The 

graphical representation is done by using Unified Modelling Language (UML).The OE contains: the 

Core Framework (CF), the Domain Profile, the CORBA middleware, Application Environment 

Profile, the Device Drivers and the Real Time Operating System.  The Operating System is required to 

provide the necessary interfaces defined in Application Environment Profile of SCA. Component 

based development is a key feature of the SCA architecture.  This key feature is addressed by the 

“Core Framework (CF) concept”. This architectural concept is actually the core of SCA interfaces and 

profiles when it comes to managing, deploying, interconnecting and intercommunicating of software 

application components in distributed embedded environment. The SCA defines, in the CF, a set of 

interfaces that govern the deployment and management of waveforms and their components. The 

distributed environment uses CORBA for inter-communication. CORBA defines the interfaces and 

their operations in such a way that abstracts the underlying software layers from developer. These 

interfaces are grouped and defined as:  

1. Base Application Interfaces: It provides the management and control interfaces for all 

system software components.  It includes Port, LifeCycle, TestableObject, 

PortSupplier,PropertySet, Resource, ResourceFactory.  

2. Framework Control Interfaces: It controls the instantiation, management and 

destruction/removal of software from the system. It includes Application, ApplicationFactory, 

DomainManager, Device, LoadableDevice, ExecutableDevice, AggregateDevice and 

DeviceManager. 

3. Framework Services Interface: It is responsible for additional support functions and 

services. It includes File, SileSystem and FileManager.  

Figure 3 shows the Software Communication Architecture with all these Interfaces. These interfaces  

allow developers to focus on application design by defining low level architectural details. The 

Domain Profile, shown in Figure 4, is used to describe the components in the system by deploying the 

SCA compliant hardware device and software component implementation into the CF domain through 

defining the component properties and interconnections, i.e. the way a waveform expresses its 

deployment requirement. The three elements of the Domain Profile: Device Configuration Descriptor 

(DCD), DomainManager Configuration Descriptor (DMD) and Software Assembly Descriptor (SAD) 

are the root profiles that drive the SCA. This task is done in the form of XML files. These XML files 

define: individual components of an application, their interconnection, their properties and the 

properties of hardware device abstractions. The CORBA middleware can be seen as a software bus for 

all the OE CORBA-capable components. The communication between distributed waveform 

components is location transparent.  
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Fig. 3. Classes making up Software Communication Architecture( page 97 of Book at [181]) 

 

 

 

 

 

 

 

 

 

Fig. 4. The Domain Profile –XML Files 

The JTRS SCA specifications are recent and immature because of which they go through continuous 

debugging, since the first version SCA 1.0 was released, to support the JTRS Clusters.  SCA 3.0 was 

<<Interface>>

Device <<Interface>>

Application

<<Interface>>

DomainManager

inherits

from

uses

<<Interface>>

ApplicationFactory

<<Interface>>

DeviceManager

<<Interface>>

FileManager

deviceManagers

1..*

0..*

applicationFactories

fil
eM

gr1

applications

0..*

uses

<<Interface>>

File

fileSys

0..1

<<Interface>>

Resource
<<Interface>>

ResourceFactory

Core Framework Interface

Implemented by

Non-Core Applications

Core Framework Interface

Implemented as

Core Application Services

Legend

<<Interface>>

FileSystem

<<Interface>>

LoadableDevice 

<<Interface>>

ExecuteableDevice 

<<Interface>>

AggregateDevice  
0..*

devices

<<Interface>>

PropertySet

<<Interface>>

PropertySet
<<Interface>>

LifeCycle
<<Interface>>

TestableObject
<<Interface>>

PortSupplier
<<Interface>>

Port

 

 

 

 

Base Application Interfaces 

Framework Control 

Interfaces 

Framework Services 

Interfaces 

Device Configuration 

Descriptor 

(DCD) 

DomainManager 

Configuration Descriptor 

(DMD) 
Software Assembly 

Descriptor 

(SAD) 

Software Package 

Descriptor 

(SPD) Device Package 

Descriptor 

(DPD) 

Properties Descriptor 

(PRF) 

Software Component 

Descriptor 

(SCD) 



Chapter 2: Software Defined Radio – State of the art. 

 43 

released in 2004 but it is not supported on JTRS website. Also it required more work for an efficient 

implementation. It is a hunch in today‟s research community that the future SCA specification and 

core framework will evolve further. This may consist of smaller and simpler framework with less 

complexity and faster execution. Also the SCA should be re-structured to extend from current GPP 

environment to include the ORB usage in non-GPP processing elements. However, till date it remains 

the “de facto” software architecture for SDR Engineering, as it is considered the most widely used and 

referenced software architecture for SDR engineering as compared to its counterparts such as OMG‟s 

specification and GNU Radio Architecture. In future, it is anticipated that SCA will contribute a lot in 

increasing interoperability and reducing development cost. 

 

5. Academic SDR Reference Implementations: 

We have defined SCA in Section 4, which is implementation independent framework, thus subjected 

to numerous interpretations. However, for any framework, it is essential to be complemented by a 

Reference Implementation to define the behaviour of the specifications. A Reference Implementation 

is an open source implementation of any Standard designed by a trusted organization. The main 

objective is to make the Standard more comprehensible and encouraging the people to use it. Any 

wording in the Standard can be understood by the Reference Implementation of the source code. In 

this Section, we will examine the Reference Implementations of SCA. We examine the two academic 

JTRS-SCA containers below: 

5.1    SCARI [18]: 

The Software Communications Architecture Reference Implementation (SCARI) is a reference 

implementation of the JPEO SCA CF, developed by Communications Research Centre (CRC) Canada. 

Till date, it is treated as the de facto SCA CF. It is well documented and so more popular, as the most 

important goal of the Reference Implementation, clarity, is met. The full suite comprises of: SCARI 

++ and Application Toolset. SCARI++ has all the characteristics of CF that we defined in the previous 

Section. The Application Toolset assists in waveform development at all stages. Using it, we can 

produce waveform components and then assemble them to get a complete waveform. The SCARI 

suite makes it easier to develop a waveform by making different stages independent in SCA 

development lifecycle. The stages are: component modelling, component assembling and behaviour 

implementation in SCA environment, component deployment and finally execution. The components 

are created, assembled and then deployed. The functional requirements of the components are 

analyzed before creating them. This helps in preparing requirements specification. This specification is 

then used as input to determine the inner architecture of the components and the ports. We follow this 

http://en.wikipedia.org/wiki/Communications_Research_Centre
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up by modelling the components by adding properties, component type and component. The properties 

and ports are small. Now, the source code can be generated and any specific algorithm e.g. FM 

waveform treatment can be added. The last step in component creating is producing binary executable 

code. The relationship between different components is described by the complete waveform. The 

connection between any two components represents the data or control exchange. We construct the 

model of application waveform, which is a trivial task. The components created are selected which we 

want to be used by the waveform and connect them together. To find a component, CORBA 

namingservice is used. Finally, we export the executable file packages of the application that includes: 

domain profile and executables. These files are used by radio management in deploying. The 

AssemblyController is an essential part of all the waveforms. Finally, the waveform is deployed in a 

group of components in Assembly Descriptor, that describes component interaction. Each component 

is required to tell about its resource and capacity requirements which is checked by Radio 

Management. This components deployment task is performed by Radio Management that enforces a 

life cycle for all the deployed components.  

 

 
 

Fig. 5. SCARI example waveform.(taken from [18]) 

This flow is described in detail in SCARI Waveform Application Builder User‟s guide that can be 

downloaded from [18], together with other useful documentation. An example waveform is provided 

in this documentation that consists of eight components: An AudioDevice, An AudioEchoResource, 

An AudioChorusResource, An AudioEffectController, A ModulationFMResource, A 

DemodulationFMResource, A FMTransmitterReceiverAssemblyController and ALogImpl. The 

assembled waveform is shown in Figure 5.  
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5.2    OSSIE [7]: 

Open Source SCA Implementation::Embedded (OSSIE) [7] is an Object Oriented SCA Operating 

Environment, developed at Virginia Tech University, USA. It is intended to provide an open source 

SDR platform and is written in C++ using the omniORB CORBA ORB. This object-oriented SCA OE 

(Operating Environment) works on a Linux operating system. The software package includes a SDR 

Core Framework based on the JTRS SCA, tools along with signal processing components and 

waveforms (applications), device interface software and node configuration file for use with OSSIE. It 

runs on Intel and AMD based PCs and a release including enhanced support for embedded as well as 

PC-based applications has also been added. This project uses Xerces XML parser and is currently 

migrating to tinyXML. The tools autogenerate component source code and supporting files. OSSIE 

enables an easy transition from concepts to real implementation in SDR design for engineers who may 

or may not have a strong background in programming. The OSSIE project provides the software 

infrastructure mandated by the SCA and easy to use tools for application and component development. 

These tools help with application generation, to reduce the need for manual programming. There is a 

simple demonstration waveform called “ossie-demo” together with several lab exercises. The ossie-

demo waveform is a simple baseband simulation of a quadrature phase shift keying (QPSK) 

communications link. It has three components: The TxDemo which is a transmitter that repeatedly 

sends a test vector of 1024 bits. The signal from TxDemo is then processed in the ChannelDemo 

component, which adds white Gaussian noise and imposes phase shift on the signal. The RxDemo  

 

 

 

 

 

 

Fig. 6. OSSIE Block Diagram 

component demodulates the received signal and compares the demodulated data with known test 

vector to calculate a bit error rate. The Signal Processing Library of OSSIE implements Digital Signal 

Processing Algorithms commonly used within radio-communications to create different components. 

The components for transmitter/receiver are reconfigurable. Figure 6 illustrates the block diagram. The 

components are the radiocommuniation algorithms, whereas Domain Profile comprising of XML files 

is shown in Figure 4. We explain the functions forming these components in SigProc namespace 

explained in Chapter 4. 
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5.2.1.    Waveform Workshop – Tools of OSSIE [8]: 

The waveform workshop of OSSIE has a comprehensive set of tools meant for rapid development, 

testing and configuration of SDR waveforms and components. The OSSIE Waveform Developer 

(OWD) simplifies component development. It is even easier than SCARI to develop components and 

waveforms in this Reference implementation. OWD provides a graphical user interface allowing the 

developer to design new software components and interconnect existing components to create 

waveform applications. OWD uses a template based approach to code generation, which results in 

XML files. The component source code is automatically generated in C++, in such a way that the 

application developer does not need to worry about the SCA CF and CORBA. He only needs to add 

the desired signal processing functionality.  

ALF is application visualization and debugging tool that allows a developer to launch the waveform 

on target platform, display it in block diagram form and probe the components port. The capabilites 

were further enhanced by adding more plug-in tools and the capability to rapidly launch software 

components as applications. The interconnection between two applications running simultaneously is 

also possible by means of a connection tool. This allows adhoc applications to be built from 

independently runing components. The connection tool uses XML files to define producer and 

consumer applications, together with their installation methods. An improved user interface and other 

more desired features, such as code editing and debugging, support for collaborative development 

through interfaces with revision control systems were added by Eclipse. The OSSIE Eclipse Feature 

(OEF) makes it possible to develop components  and waveform applications, launch the domain 

manager and device managers, launch ALF and if desired the legacy OWD , all from Eclipse GUI. 

The Waveform Dashboard (WaveDash) exploits SCA functionality to provide an interactively 

customizable GUI that provides easy control of waveforms, while creating them. The property values 

of each component‟s instance can be set to interface specific defaults in waveforms developed using 

OEF, and can be set interactively at run time using WaveDash. The GUI allows to install and run 

waveforms, configure the component properties and choose the properties to display and the type of 

control to be used for each displayed property. This helps in reducing the Software programming 

errors.  In ossie-demo, by the help of WaveDash and ALF, the user can interactively vary the standard 

deviation of the noise and the phase shift imposed by the ChannelDemo component while observing 

the signal constellation.  

6.    Commercial SDR [19]: 

 

We have already given two examples of SDR from academic domain. The exploitation of SDR 

technology in actual commercial products has evolved more slowly than was expected some time ago. 

Nevertheless, today SDR commercial devices are most oftenly used in rugged and non-rugged military 
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and aerospace equipment, cell phones and wireless network cards, PCS Base Stations, Signal 

Intelligence Radar, Sonar Applications and Satellite Communications. Also, soon they are expected to 

be utilized extensively in user terminals. As an example of commercial available SDR products, we 

quote the SDR-4000 which is a product of Spectrum Signal Processing by Vecima, a part of Vecima 

Networks Inc. and is a leading developer of Software Defined Radio solutions for communications 

and intelligence gathering applications. We give below the product portfolio taken from [11] for the 

sake of completion as our discussion will not be complete if we don‟t give any commercial product 

employing this technology.  

 

6.1     SDR-4000 [19]: 

The SDR-4000 is engineered by Spectrum [19]. It is a small form factor transceiver that helps to 

develop and deploy wireless modem solutions for tactical military communication systems. The SDR-

4000 SCA option provides an SCA Board Support Package, SCA v.2.2 Core FrameWork. Spectrum‟s 

quicSpin design methodology is supported, enabling rapid optimization of size, weight, power 

consumption, cost and ruggedization based on specific program requirements. SDR-4000 cards are 

designed for harsh environments. It is because of this reason that they support conduction-cooling, 

extended temperature range, and increased shock and vibration immunity. The SDR-4000 comes with 

a standards-based software environment including Spectrum‟s quicComm
TM

 (software development 

library) hardware abstraction layer and software library. The quicComm software abstracts the 

underlying hardware. This feature provides users with basic transport level access and control of 

Spectrum‟s flexComm products. This in return accelerates user application development. The other 

features include a real-time operating system with an integrated development environment, a CORBA 

ORB, optional SCA Core Framework, SCA development tools, and for qualified customers, an early 

support package option for the JTRS MHAL APIs. The SDR-4000 product portfolio consists of a 

series of 3U cPCI-based carriers and XMC modules, software, development systems defined below: 

 PRO-4600: 

With the help of a high-speed communications fabric, a 3U cPCI SDR processing engine that supports  

a Xilinx Virtex-4 user FPGA, TI TMS320C6416T DSP, and Freescale MPC8541E General Purpose  

Processor (GPP) is integrated. 

 XMC-3321: 

The XMC-3321 supports an onboard Xilinx Virtex-4 user FPGA for wideband processing. It is a dual  

channel trasceiver XMC module that supports IF-to-digital conversion via two 14-bit A/D converters 

sampling at up to105 MSPS and digital-to-IF conversion via two 14-bit D/A converters upto 300 

MSPS in a single-width XMC form factor. This way the industry standards 10.7, 21.4 and 70 MHz IF 

frequencies are supported . It is optimized to operate in two modes: with the PRO-4600 for Tactical 

http://www.vecimanetworks.com/
http://www.vecimanetworks.com/
http://www.vecimanetworks.com/
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MILCOM applications or as a stand-alone XMC module on other industry standard XMC-compliant 

cards. The XMC-3321 has also the capability of operating on Spectrum‟s ePMC carrier cards by 

exploiting Spectrum‟s Solano high speed communication technology.  

 Integrated Development Systems:  

An air-cooled system that integrates the PRO-4600 and the XMC-3321 in a single chassis is provided. 

A development PC hosts the quiComm software that abstracts the underlying hardware and all of the 

tools necessary to quickly start the development on the SDR-4000 platform. 

 SCA and ORB: 

This is an optional specification and meant for systems requiring SCA compliance. In that case, an 

operational SCA core framework and the toolkit associated with it is preloaded on the SDR-4000. 

 The quicSpin Architecture for Rapid Optimization: 

The SDR-4000‟s unique design supports Spectrum‟s quicSpin architecture which is based on 

Spectrum‟s tactical MILCOM reference designs. The architecture of two cards, PRO-4600 and XMC-

3321, uses a modular hardware and software design. This enables quick optimization of size, weight, 

power, cost and/or ruggedization characteristics to meet the specific requirements of fielded 

applications.  

 Pro-4600 and XMC-3321 Black-side Processing Subsystem: 

The SDR-4000 Tactical MILCOM black-side processing subsystem supports the modem, link and 

network layer processing of a SDR. The two cards, PRO-4600 SDR and XMC 3321 operate together 

to support up to two IF channels simultaneously within a single 3U cPCI slot. Based on Spectrum‟s 

MILCOM reference designs, the PRO-4600 and XMC-3321 have been architected to support the 

black-side digitization and processing of complex waveforms. This includes waveforms that require 

low latency deterministic operation necessary to maintain synchronization on the frequency-hopped 

Tactical MILCOM network. 

 Hardware and Software: 

The PRO-4600 is a 3U cPCI heterogeneous processing engine, employing a combination of Xilinx 

Virtex-4 FPGA, TMS320C6416T DSP and MPC8541E GPP to support the black-side processing 

requirements of size, weight and power limited SDR applications. 

 Software Operating Environment: 

SDR-4000 features a standards based software operating environment. The code portability is 

provided by the software stack of the operating environment (OE), by providing a choice with respect 

to the component usage in an application. The operating systems supported are designed for use in 

embedded systems that require maximum reliability. The two supported operating systems are the 

Green Hills INTEGRITY real-time operating system (RTOS) and the Wind River VxWorks RTOS. 
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 FPGA Tool Flow: 

The SDR-4000 is designed to support the Xilinx ISE Foundation tool flow. ISE is an integrated 

programmable logic design environment that includes schematic capture, power analysis tools, 

physical synthesis for FPGAs, advanced Place and Route Algorithms, and COREgenerator, a 

graphical interactive design entry tool that is used to create high-level modules. Apart from Xilinx 

ISE, there is a possibility of usage of other tool sets, as well.  

  Software Communication Architecture: 

The SDR-4000 supports the widely adopted SCA Core Framework from CRC Canada, the SCARI 

Core Framework that we have already explained in Section 5.1.  

The Block Diagram of SDR-4000 is shown in Figure 7. 

                

Fig. 7. SDR-400 Block Diagram. (taken from[19]) 

There are many other commercial SDR based products available, however we chose to study in detail 

SDR-4000 of Spectrum Signal Processing as an example of commercial product.  

The detailed study of the notion, SDR, that we have done in this Chapter shows that this technology 

has left the experimentation phase and different aspects of this technology are efficiently being 

addressed by the research community. We gave an overview of these aspects, together with the key-

feature definitions defining this concept. We carried out a detailed study of SDR especially 

emphasizing the recent times effort to address the implementation issues.  

 

7.    Conclusion: 

Starting from the notion of ideal Software Radio and its degradation to Software Defined Radio, this 

chapter threw light on the important features and research issues in SDR, which clearly show that this 

technology has many positive signs, especially the SDR based projects and products entering the 

academia and commercial market. Although, the technology has evolved at a slower pace than 
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expected some years ago [20], it has clearly left the theoretical and experimentation phase started by 

military and communication systems and is now, fielded in hand held devices. A fundamental 

challenge for SDR products is that of providing the essential features that we discussed in this 

Chapter. A modern SDR Architecture has been described, based on the concept of Radio Computer 

that supports modular design. The US military‟s SDR, JTRS based on SCA and CF concept is 

explained. Some SDR examples in both, academic and commercial market are studied. As academic 

SDR, CRC‟s SCARI and Virginia Tech‟s OSSIE have been studied deeply. The Commercial SDR 

studied was that of Spectrum Signal‟s SDR-4000.  

We saw in this Chapter that the ability to reprogram a system facilitates hardware reuse even when a 

new generation of hardware platforms is available. This phenomenon is likely to be experienced by 

mobile terminals in near future. Chapter 3 explains the concept of Cognitive Radio and different 

machine learning techniques applied to realize this technology, together with an overview of relevant 

projects. 
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Chapter 3: 

 

Cognitive Radio - State of the art: 

 

1. Introduction: 

 

Having defined SDR in Chapter 2, we proceed in this Chapter to understand the notion of Cognitive 

Radio (CR) that adds intelligence to SDR, by cognition incorporation. Before proceeding any further, 

we would like to define the terms intelligence and cognition, as per the literature [22, 23, 181].  

 Intelligence is the capacity to think rationally and act purposefully in order to deal effectively 

with the environment. This capacity can be natural (pertaining to an individual) or artificial 

(pertaining to an agent or machine).  

 The intelligent process of gaining comprehension by awareness, perception, reasoning and 

judgment is called Cognition and the machine employing this gained comprehension for 

problem solving in referred to as Cognitive.             

CR is linked with the idea of SDR as it can be perceived as a kind of SDR with some intelligent 

functionality. This intelligent functionality is meant to sense the changes in environment and then 

react smartly according to the changes, apart from predicting the future expected trend based on “Past 

predicts the Future”.   There are many factors that demonstrate the need for CRs. For example, the 

Spectrum has proved to be extremely precious resource in today‟s resource competitive environment. 

For hundreds of years, the Spectrum was present everywhere and was abundant irrespective of place 

or time, on the earth. There was no need of license and neither existed any license granting authority. 

The exploitation of Spectrum was based on static principles, i.e.  a certain portion of the radio 

spectrum is licensed to a specific party in a specific region  on long term basis. This static approach 

provides interference free solution for the licensed party. However, the sporadic use of the precious 

resource of Spectrum leads to gross inefficiencies, forcing us to reconsider the principles based on 

static allocation. The sporadic use of Spectrum can be witnessed in the spectrum from 6 KHz to 300 

GHz, which is fully allocated, at any given time, but most of it remains un-utilized. Furthermore, new 

wireless systems: radio, television, mobile phone, wireless internet connectivity have strong 

dependence on ever improving and dynamic technologies. This demands communication devices 

which are able to communicate with heterogeneous systems. This is where the concept of dynamic 
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spectrum allocation comes into play. This dynamic allocation is one of the most important 

functionalities of CR. This will enable to increase the total system capacity by looking into different 

techniques of using CR to exploit the local unused spectrum. The trend in this evolution towards the 

new era of communication is undoubtedly the novel approach to radio resource management, based on 

Dynamic Spectrum Access (DSA) or opportunistic access to underutilized and free frequency bands. 

As a part of this evolution and the growing convergence of wireless communication systems, it is 

necessary to review different concepts and architectures of radio transceivers and their components, 

taking into account the key factors such as reconfigurability and adaptation to space-time spectrum 

availability and the actual user‟s transmission request. These are the main attributes of the concept 

called “Cognitive Radio” (CR). This technology holds the promise to solve the radio spectrum scarcity 

and aims to provide heterogeneous connections in future wireless communication networks. We 

address our efforts in this DSA scenario in Chapter 6, using Artificial Neural Networks.   

Another aspect is the Multi-standard Transceiver Design. The modern commercial multi-standard 

mobile devices employ multiple transceivers, where each one is dedicated to an individual 

communication standard, e.g. Global System for Mobile Communication (GSM), Universal Mobile 

Telecommunication System (UMTS), Bluetooth, Wi-Fi 802.11 a/b/g/n, Worldwide Interoperability for 

Microwave Access (WiMAX) 802.16e, Long term Evolution (LTE) and other wireless systems. The 

approach of separate transceiver engineering for individual modes of operation is straight-forward and 

it provides the best performance for each node, but on the other hand, this approach significantly 

penalizes the overall circuit complexity and hence the power consumption and implementation costs 

are increased. To accommodate CR technology, a versatile multi-radio transceiver, capable of 

generating and processing any required waveform according to the given conditions, becomes the 

ultimate goal. These requirements for a Multi-Standard CR Transceiver call for a high degree of 

reconfigurability and adaptability at each and every stage of Cognitive Radio design. At the same 

time, the requirements of low power and implementation costs should be assured. We address our 

contribution in this aspect of Transceiver Design in Chapter 5, using Artificial Neural Network 

Techniques. There are many challenging research topics that are currently dealing with the cognition 

incorporation in the radios, notably design of a Multi-standard Universal Transceiver that takes into 

account all features of all the layers and adding efficient Spectrum management techniques. The CR 

portion of this thesis addresses both of these issues by proposing different Artificial Neural Networks 

based solutions.    

The cognition cycle state diagram modified by Haykin [23] is shown in Figure 8 that consists of three 

states. The cognition cycle starts with the passive sensing of RF stimuli and terminates with action. 

The three states shown in Figure 8 are: 

1. Radio-scene analysis, which encompasses the estimation of interference temperature of the radio 

environment and detection of spectrum holes. 
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2. Channel Identification which encompasses the estimation of channel-state information and 

prediction of channel capacity for use by the transmitter. 

3. Transmit-power control and dynamic spectrum management. 

Dynamic Spectrum Management is not the only functionality of CR. A radio in which the 

environmental awareness is limited to only dynamic spectrum management can be seen as a subset of 

cognitive radio. This opportunistic radio [24] limits the environmental awareness to spectrum 

management sensors. In fact cognition cycle of Figure 8 is a modified version by Haykin, stressing the 

spectrum sensing. The original cognition cycle diagram, introduced by Mitola [22,25,30] talks of an 

environment aware general sensor, autonomous for decisions regarding optimized interfaces to 

surrounding systems. This original cognition cycle has a much wider definition and functionality 

(including spectrum sensing), as compared to the modified cognition cycle whose main focus remais 

spectrum related sensors. We will delve into other sensor details in Section 1.1 after giving the formal 

definition of Cognitive Radio. Nevertheless, FCC has recommended that significantly greater spectral 

efficiency could be realized by deploying wireless devices that can coexist with the primary users. In 

this respect, equipping the device with CR capabilities is meant to achieve efficient spectrum 

management.  

Figure 8, the state transition diagram of CR, is meant to show that CR based systems behave and 

predict the future in a proactive manner, i.e. based on external stimuli and previous observations, apart  

from being governed by their goals, principles, capabilities, experience and knowledge. Haykin‟s 

cognition cycle presented in Figure 8 is meant to describe this very cognition behavior.  

 

 

 

 

 

 

       

 

 

 

 

 

Fig. 8. Cognition Cycle [23] 
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1.1    Definition: 

CR was first described in [22, 25, 30] as a decision making layer covering many sensors across all the 

seven layers. Mitola was not only the creator of SDR notion, but the terminology of Cognitive Radio 

was also coined by him. Another important definition was given by Haykin [23] as:  A CR is defined 

as inclusive of SDR to promote efficient use of spectrum by exploiting the existence of spectrum holes.  

The cognition cycle state diagram is based on this definition. This definition restricts the cognition in 

the radio to a single sensing functionality: Spectrum. However, as Mitola defined, Spectrum sensing is 

only one of the functionalities of CR. The definition mostly quoted by the researchers is that of 

Wireless Innovation Forum. In this thesis, we stick with this definition, which says: 

A radio that can sense, be aware of and learn from its environment in order to adapt its operating 

parameters accordingly, leading to optimize radio resource use. [1] 

This definition tells that future Cognitive Radio devices will have the capability to optimize their state,  

thereby adjusting their operating parameters accordingly, after sensing the environment variables. 

Thus the discrepancy or paradox between spectrum allocation and spectrum use could be overcome by 

allowing more flexible usage of spectrum. However, we would like to distinguish between CR and 

DSA as the scope of CR is much broader than just exploiting the spectrum holes. The cognitive 

functionality may be spread across the layers of the communication architecture. This results in 

coordination amongst the layers for a more efficient use of radio resources. The power spectral density 

is a measure of average power distribution as a function of frequency, therefore it is used as a sensor to 

determine the channel bandwidth. The sensor to distinguish between direct sequence and frequency 

hopping as addressed in [129] uses time frequency analysis. In the same way, Guard Interval detection 

may be used as a sensor to distinguish between single and multicarrier systems as done by Hachemani 

in [126]. We have already given the example of spectrum sensor in the beginning of this Chapter. We 

will explain more about the sensors used to sense the vacant or occupied band, in Chapter 6. 

Cyclostationary feature sensing is another sensor that tells about the considered frequency band status. 

The related sensors to cyclostationary process are cyclic frequency, carrier and symbol frequency and 

positioning and localization characteristics (in the frequency domain, for example) that can be used to 

sense different aspects of the received signal. Another important physical layer sensor talks of 

modulation type recognition to sense the RAT. The other sensors, related to physical layer, known to 

manage the system behavior intelligently, talk of coding methodologies, handover mechanisms and 

channel estimation. Likewise, QoS can serve as an application layer sensor by considering speed, 

video quality, price and other such user oriented personal parameters. Thus, even in today‟s spectrum 

constraint environment, dynamic spectrum access and sensing occupies a vital importance in CR 

Engineering, the cognition cycle continues to envision cognitive radio which is much more than just 
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spectrum sensing. One of the key factors that we need to underline is that the CR behaves according to 

its previous observations, or we can say that it learns some lessons with the passage of time, that it 

applies in the future. In this respect, a general scheme of the CR reconfiguration cycle is shown in 

Figure 9 that emphasizes on its learning character. First of all, the actual transmission request is 

evaluated and spectrum sensing and signal waveform determination functions are employed in order to 

find proper transmission resources (unused or underutilized radio resources referred to as spectrum 

holes or white spaces). This function may be based on real-time spectrum scanning by individual CR 

terminals or by CR nodes, and moreover, the information on spectrum availability in a given region 

can be obtained from local databases (e.g. a regional frequency allocation database and actual 

utilization statistics downloaded directly from a CR node). Next, the best course of action upon 

spectrum findings and spectrum availability is taken. This action includes a new allocation of 

resources and process initiation. Finally, the reconfigurable cognitive transceiver is adjusted 

accordingly. This whole process is dynamic and has to be updated regularly, according to the space-

time spectrum availability and the actual transmission request such as voice vs. data service, data rate, 

Bit Error Rate (BER), latency, etc. The Chapter 5 is dedicated to the notion of reconfigurable cognitive 

transceiver. Here, we need to make a point that the regular updating, discussed above is based on the 

lessons learnt from the past. Artificial Neural Networks are the techniques that employ the learning 

mechanism to solve different problems.  
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Fig. 9. Reconfigurable Cognitive Radio Cycle. 

 

2.    Theoretical Research Issues:  

There are numerous research issues as CRs pose challenge at all levels of abstraction and has proved 

to be an extremely interdisciplinary topic. It is because of this reason that it is difficult, rather not 

possible, to provide an exhaustive analysis of all research works available on Cognitive Radio 

communications. The purpose of this Section is, therefore, to realize the obstacles in the way of 

recognizing the communication environment and independently adapting the parameters accordingly  
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to maximize the quality of service (QoS) in such a way that optimizes the different radio resources: 

spectrum, battery, carrier frequency usage. The issues discussed in this section are open and currently 

a question of research. These issues have a direct impact on the feasibility of CR.  

2.1     Sensing: 

The ability of an opportunistic system to sense the existence of other systems, be it another 

opportunistic system or the priority user, is a vital issue in CR domain. It is one of the defining 

functions and the most important issue as the ability to sense the radio channel in order to find 

opportunities in spectrum and adapt the radio parameters is perhaps the most important task of CR.  

Recent measurements have shown that the spectrum usage is concentrated on certain portions of the 

spectrum while a significant amount of the spectrum remains unused. Spectrum sensing has been 

identified as a key, enabling CR to not interfere with primary users, by reliably detecting primary user 

signals. Therefore, sensing requirements are based on primary user modulation type, frequency and 

temporal parameters. Spectrum sensing is often considered as a detection problem. The performance 

of any sensing algorithm can be characterized by variables, such as detection probability and false 

alarm probability. An improved detection probability can lead to a higher protection level to primary 

users, while a lower false alarm probability offers better opportunistic access to secondary cognitive 

nodes. Many sensing techniques are available in order to detect the holes in spectrum band, e.g. 

Energy Detection, Matched Filter Detection, Waveform based Sensing and Cyclostationary Feature 

Detection. We will further explore these techniques and exploit Cyclostationary Feature Detection to 

propose a neural network based algorithm to sense the spectrum beforehand, later in this thesis. 

Cyclostationary models have been shown in recent years to offer many advantages over stationary 

models. Cognitive Radios should decide on the best spectrum band to meet the Quality of Service 

requirements over all available spectrum bands, therefore spectrum management functions, followed 

by Sensing techniques are required for Cognitive Radios. We deal with this Spectrum management 

problem by predicting the future spectrum occupancy status based on previous observations. The 

significantly greater spectral efficiency is realized by Sensing and we address this problem in detail in 

Chapter 6. 

2.2    Decision making process: 

Cognitive Radio has to decide to operate in a specific configuration. The decision has to be based on 

appropriate reasoning. It is because of this reason that a reasoning algorithm (also called as Reasoning 

Engine) that applies the knowledge to the current state of the system and reaches one or more 

conclusions is a necessary part of all the Cognitive Radio Architectures. The decision process should 

be based upon a reliable and smart reasoning algorithm. The algorithm should be capable of modifying 

the system operation based on applications of knowledge to the combined state. The reasoning should 

be efficient enough so that the existing set of knowledge is applied to a current situation to result in the 

http://en.wikipedia.org/wiki/Quality_of_service
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identification of a course action. At the same time, this experience should be used together with the 

previous knowledge to predict the future expected situation and prepare in advance to act. This 

intelligent behavior is what makes a radio cognitive.   A CR should intelligently adapt its operational 

behavior by acting efficiently to external and internal stimuli. However, such a system has a critical 

limiting factor: the system can adapt based upon solely predefined behaviors, stored as previous 

applied inputs in the knowledge database. Thus, even though the radio responds intelligently to 

external stimuli or change in environment and internal state changes, it can adapt its behavior only 

within the limits of previously defined knowledge. Thus, it cannot adapt to new and unexpected 

situations. The next issue learning deals with such a behavior.  

2.3    Learning Process: 

In order to adapt to new and unexpected situations, as in previous Sub-section, a learning process is 

required. Learning is a process of perception, observations and actions. The Haykin‟s cognition cycle 

is a constant learning mechanism, during which it adjusts its operating parameters, observes the results 

and eventually takes actions, that is to say, decides to operate in a specific radio configuration, 

expecting to move the radio towards some optimized operational state. The learning mechanisms used 

to train the cognition cycle should be capable of exploiting measurements sensed from the 

environment, gathered experiences and stored knowledge. We have used Artificial Neural Networks 

with different learning mechanisms (Back-propagation, Levenberg-Marquardt, Self-Organization) 

which can be roughly classified in two categories: (1) Supervised Learning   (2) Un-supervised 

Learning. Depending on the information availability, different learning solutions can be applied. Apart 

from ANN based learning algorithms, other machine learning techniques also possess some kind of 

learning phenomenon, e.g. the existing learning in games theory literature provides a broad spectrum 

of analytical and practical results on learning algorithms and under-lying game structures for a variety 

of competitive interaction scenarios. However, when selecting any learning solution for wireless 

networks, the specific constraints and features of the network and the radio are needed to be 

considered. As an example, the learning algorithm that should be deployed by a user in a wireless 

environment strongly depends on what information a secondary user can observe about the other 

secondary users, given the spectrum regulation rules. We will explain the learning mechanisms using 

Artificial Neural Networks in detail for CR Transceiver Engineering and Spectrum Prediction in 

Chapters 5 and 6, respectively. It must be noted that each adapted learning mechanism suits the 

specific requirement that we will explore.    

2.4     Architecture Implementation: 

While the OODA (Observe-Orient-Decide-Act) Model proposed by Mitola has centered on Decision 

making and learning issues, within a cognitive architecture, it has proved to be a reactive architecture 

and not a proactive one. This means that it is designed to wait until an event occurs, before changing 
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the configuration. To encounter this, there exists a proactive architecture proposal CECA (Critique-

Explore-Compare-Act) [26] that studies the broader aspect of making changes before they are needed. 

CECA is an expansion of OODA. However, there have not been many efforts in this area especially in 

exploiting the prediction algorithms used in Artificial Intelligence domain. The biological models such 

as ant colony optimization, particle swarm optimization, artificial neural networks together with the 

mathematical models such as hidden markov models, branch prediction from computer science and 

grey system theory prediction algorithms have required potential to enhance the reactive CR 

architecture into a proactive one. There exists other architectural proposals as well, making it more 

difficult to decide for a specific architecture that supports CR and related design.  

2.5    Equipment Test Procedures and Certifications: 

In Sub-section 2.6, of Chapter 2, we discussed the certification issues for SDR. In CR paradigm, the 

radio with cognition capabilities, poses difficulties with respect to standardization and certification 

procedures. The operational limits are difficult to be estimated and in a way contrary to the concept of 

flexibility required in a CR design. The testing procedures to detect the interference of a cognitive 

device with primary user of a given frequency slot should be known to the vendor. Also while SDR 

platforms are not a strict requirement for creating a CR, the architecture flexibility of a SDR is one 

motivation for pursuing the SDR based implementations of CR.  The standardization and certification 

process should compare and analyze different CR architecture implementations and clearly test for the 

incorporated intelligence quantification, in terms of making the device proactive above a given 

threshold.   

2.6    Interaction with all Layers of Protocol Stack: 

Different layer parameters need to be considered to optimize the cognitive decision, e.g. application 

layer parameters such as localization and positioning characteristics, a part from physical layer and 

transport layer features of a signal. Each layer has its own design criteria and different constraints. 

Therefore, formalizing the different objectives from different layers together and putting them onto a 

common mathematical platform is a difficult task.   

2.7       RF Design: 

A CR design, by definition is different as the RF frequency and the bandwidth is not known in 

advance. This is in contrast to a conventional radio system. In a traditional radio system, we assume 

about the interferers keeping in mind the worst interference possible and keeping this consideration in 

mind, the design specifications with respect to RF are determined. To this effect, the traditional radio 

systems use a pre-select filter at the receiver side to limit the interferers. As we said that, in a CR we 

have no estimation about these parameters, making the traditional approach less pragmatic, which 

exacerbates the RF design issues. The RF designers are meant to make the CR as flexible as possible 
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with respect to radio frequency choice. Thus the design is susceptible to interference as pre-select 

filters are required to be removed. Also the fact that all RF specifications cannot be mapped on the 

circuit blocks without the information on interferer scenarios is another problem for RF design 

engineers. There exist methods of receiver design and frequency planning that lead to excessive circuit 

block requirements, knowing that there is no pre-select filter at the receiver side. However, it results in 

an increase of the requirements of circuit block. The defining cognition capabilities of a CR should be 

exploited to deal with these strict design requirements. The interference related information in a CR 

should be used to select the RF frequency, which should not be limited to the spectrum occupancy but 

also on the suitability of a given frequency for communication. It will eventually help in avoiding the 

circuit block requirements to become over demanding and at the same time will not limit the 

capabilities of a CR.  

2.8       SoC Implementation: 

The System on Chip design is an important research issue as it constitutes the question of searching 

for a compromising spot between hardware and software processing. The memory needs for different 

functional units are high as it is a frequency agile system. A deep understanding of different 

algorithms implemented in software is needed. There are many options for a specific algorithm and 

hence a huge design space. The next aspect is integrating different algorithms together to work as a 

waveform. This is a challenging task as the integration has to respond the real time constraints. High 

level of flexibility and high processing power is needed, when the power consumption is a critical 

issue. The integration phase has some other important principles, e.g. the I/O bandwidth is a 

significant issue. The distinction between system level and pure processing level should be explicitly 

made. The software programming of such an architecture where the compromising distinction between 

hardware and software has to be made is a non-trivial task, which requires several dedicated tools. 

This reconfigurable computing is important because it allows the computational capacity of the 

machine to be highly customized to application needs and to be reused in time. In [27], such a 

reconfigurable heterogeneous hardware and its reconfigurable architecture is discussed, in which the 

SoC contains a general purpose processor, FPGA and a coarse-grained reconfigurable part. The 

implemented SoC is claimed to yield a combination of performance, flexibility and energy efficiency.  

2.9     Accurate and Secure Primary User Detection: 

CR exploits the un-utilized bands after sensing the spectrum. The secondary user is permitted to 

operate in a licensed band, provided that it does not cause any interference. Apart from that, the 

secondary user is required to watch for the existence of primary user signals in the operating band or 

future expected band. In case, when a secondary user detects the primary user presence in the band, it 

must vacate the band immediately or switch to another available opportunity. At the same time, if the 

secondary user detects the presence of another opportunity seeker, it should invoke a co-existence 
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mechanism to share spectrum resource. In this respect, primary user emulation attack is defined in [28] 

as an attack in which a malicious secondary user attempts to gain priority over other prioritized users 

by transmitting signals that emulate the characteristics of a primary user. There should be some way to 

avoid this emulation attack. Energy detection is one of the simplest methods to secure primary user 

detection. Other spectrum sensing approaches, feature detection exploiting cyclostationary features or 

matched filter detection are used to detect the specific properties of primary user. The accurate and 

secure primary user detection is a challenging problem and is defined as the most important aspect of a 

CR by which it is made necessary for secondary user to vacate the opportunity as soon as it detects the 

primary user.  

2.10    Interoperability: 

Interoperability, in CR scenario, refers to sharing of radio resources between multiple operators. This 

sharing may be opportunistic or managed. The basic research focus for interoperability issues is to 

maximize the radio resource usage with co-existence and co-operation with each other. One of the 

major radio resource sharing, i.e. Spectrum is the major attribute of CR networks. A CR should 

incorporate interoperability so that it may be capable of automatically configuring itself to 

communicate between incompatible radios. The detection of presence of spectrum opportunity in the 

vicinity, followed by opening up lines of communication in real time constraints between two different 

radio groups is the basic notion behind the interoperability issues. Different machine learning 

techniques can be applied to achieve this interoperability between two incompatible radios.   

2.11    Security: 

The misuse of CRs should be avoided at all costs by incorporating some robust security 

measurements. The CR software has unique properties that make it different from conventional 

software. These special properties make the CR more vulnerable to attacks. These attacks may cause 

harmful effects, for example transmitting at higher power than allowed, launching attacks against 

primary user networks or unauthorized changes to CR operating parameters such as power, frequency 

and modulation. At the same time, the rigid real time requirements of radio systems prohibit the use of 

encryption techniques. Guarantee of secure and functionally correct embedded software is critical to 

the success of its deployment on CR. Even a slight error in the software can make the radio design 

vulnerable to attacks that may crash the system or produce misleadingly erroneous results, such as 

unwanted transmission in bands that are critical for defense applications. It is, therefore, important to 

ensure the security and reliability of CR by identifying and fixing the vulnerabilities by secure 

protocol design for different cognitive functions, such as spectrum access by secondary user.  Despite 

the fact that several researchers have begun working on security implications [29], this  research area 

is still in its initial phases.  
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In this Section, we described the research issues that need to be addressed to make the CR technology 

100% viable. We can divide the research issues addressed in the five main categories: Computation-

related problems, Architecture related problems, Implementation related problems, Physical layer 

related problems and Protocol related problems [182]. Each problem‟s sub-classes are formed and 

described in detail. We have seen that CR Engineering is a multi-disciplinary topic and hence to 

address the problems, one needs to develop a vast knowledge about different aspects of multiple 

disciplines. We will delve into further details about this in the future Chapters. (Chapters 5 and 6).  

 

3.    Cognitive Radio Architecture: 

The cognition cycle presented by Mitola and modified by Haykin, identifies the processing structures 

for the integration of sensing and perception into radio. The CR Architecture articulates the functions, 

components and design rules of next-generation cognitive radios. Thus, CR Architecture can be 

perceived as a framework that helps the evolving components to integrate into an ever evolving 

sequence of designs specified by engineer within specified constraints [31].  A powerful cognitive 

architecture should facilitate a product which has three features:  rapid, cost effectiveness and service 

evolution. In that respect, the radio architecture can be classified in two categories: an open 

architecture that is available to the public, while a proprietary architecture which is the private 

intellectual property of an organization, government entity, or non-public consortium. Mitola‟s 

proposed OODA Architecture (Sub-section 2.4 of this Chapter) is an open architecture that 

incorporates the spectrum and network sensing. An extension to this OODA Architecture is The 

Virginia Tech„s Case Based Reasoning Cognitive Engine [26], which  is developed for 802.22 

Standard where secondary users are obliged to quit the band for a primary user. A Multi-objective 

optimizer takes care of flexibility requirements between different aspects of a CR. OODA Architecture 

is further modified into CECA to answer the today‟s commercial evolution in RF chip sets. Today‟s 

commercial RF channel sets have typically four chip sets (GSM 900, GSM 1800, CDMA and Blue 

Tooth), and it is expected that in near future, it will evolve to a dozen band-mode combinations with 

ever smarter MIMO emerging  antennas[32]. Thus CECA Architecture proposes to make the 

configuration changes even before they are required. Also, a channel set may include a cable interface 

to the public switched telephone network as well as a radio access point. It is possible that any 

function may be null in any realization. This eliminates the related components and interfaces from a 

given product, for product tailoring and incremental evolution. The Moore‟s law is continuously 

progressing. This is resulting in increasing large fractions of  functionality which are synthesized in 

chipsets with software defined parameters; in the FPGAs; in DSPs and increasingly on single-chip 

arrays of general purpose processors like IMEC Belgium‟s SIMD4 [33]. 

Today‟s CRs  and SDR based CRs are usually engineered from reusable code bases of millions of  
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lines of code, the deployment, management, and maintenance of which poses very serious 

configuration challenges. In SDR Architecture based CR, the SDR software typically is organized as 

radio applications objects layered upon standard infrastructure software objects for distributed 

processing such as the Wireless Innovation Forum‟s Software Communications Architecture, 

explained in previous Chapter, which originally was based primarily on CORBA. The Object 

Management Group‟s evolved SCA has a platform independent model with platform specific models 

for software-based communications.  

As illustrated in Figure 8, Haykin‟s Dynamic Spectrum Allocation Model analyzes the radio scene to 

perform three architectural related tasks: to avoid interference, to look for spectrum holes and to 

provide channel state information to enhance the transmission. This analysis emphasizes on the need 

of a CR architecture that is well-aware of the occupants of radio environment. The protocol stack 

implies that the integration of cognitive nodes into cognitive networks via the universal control 

channel for centralized control is supplemented by group control channels. This means that cognitive 

functionality has to be implemented in individual nodes as well apart from having centralized control 

architecture. Spectrum sensing feature is emerging in this architecture as the key feature that enables 

the greater frequency agility in the spectrum usage for the best possible QoS. Such an architecture 

should quantify channel occupancy and recognize opportunities which can be helpful in choosing RF 

chip set, signal selection in space transmission control and other high performance spectrum 

management characteristics of the physical layer, for example MIMO operation. CR architecture 

provides evolving frameworks for research, development and product deployment. There are many 

challenges and issues in cognitive radio architecture and its engineering, for example, many spectrum 

measurements reported in the literature do not fully accept or support the feasibility of spectrum 

sharing. Measurements mentioned in [31] show that 5% occupied spectrum usually do not consider the 

navigation aids and GPS as it is not detectable via spectrum scanning, but through cross-correlation 

receivers. Other measurements do not account for the duty cycles of the radar bands where pulsed 

radar listens for most of its duty cycle, contributing 0.1% to spectrum occupancy but 100 % to airport 

surveillance. It is because of this reason that Pulsed radar spectrum cannot be shared in an exploitable 

way. Also usually radar bands are included in the spectrum scan statistics without clear caveats. High 

gain receiving antennas required by space communications are some 60 feet. Another fact is that the 

signals from the spacecraft are not detected in the spectrum scans either. The adhoc networking in the 

seemingly unoccupied downlink band can be disastrous for space applications. The examples of 

underestimation of spectrum occupancy criteria can be witnessed in the spectrum sensing efforts of 

Tuttlebee‟s Virtual Center of Excellence (VCE) conducted by Beach‟s group at the University of 

Bristol , UK [34].  The unmethodical spectrum sensing results of the mentioned effort was also 

confirmed by the data sets of the Crawdad site. Analog AM voice is audible 6 dB below the 0 dB 

tangential noise floor because of the sinusoidal nature of voice. It is an established fact that radio 
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propagation is extremely ragged, even in the easier spectrum range starting from 300 MHz until 3 

GHz. The reasons for this ragged radio propagation are multipath, knife edge diffraction, fresnel 

zones, and other such well known occurrences due to well established facts. The potential 

contributions of the researchers pursuing cognitive radios architecture with respect to space-time 

constraints of the radio spectrum may not be fully realized until the Cognitive Radio Architectures 

include high-performance spatial knowledge. At present, there is no technical architecture deployed 

for real time small space time RF spectrum access CR.  

 

4.    Machine Learning: 

The research efforts in machine learning techniques have grown tremendously in the past decade, with 

a significant amount of progress along several research paths. Before choosing the Artificial Neural 

Networks based solution for CR design, we carried out a feasibility study of many machine learning 

techniques available in literature. There are multiple strategies that exist to implement any machine 

learning technique for CR modelling, each with some degree of benefits as well as drawbacks in the 

context of a cognitive radio system. This section addresses common learning approaches and provides 

some analysis of their applicability to cognitive radio systems.  

There are two types of learning: Supervised and Unsupervised. The most important aspect of any 

learning mechanism is whether the learning required is supervised or unsupervised. In a supervised 

learning system, as the name suggests, learning is performed through a set of pre-determined 

conditions, and the system (Cognitive Radio/Cognitive Engine in our case) is trained to come up with 

the correct output that matches with the expected output. To this effect, the learning mechanism learns 

to associate a particular set of input stimuli with a learned response or output. Thus with a similar 

input, the system knows how to react and what to do. In the case of a cognitive radio system, any of 

the two techniques may be opted for, as the radio‟s method of learning. The sole purpose of the 

learning mechanism is to make the CR remember lessons learnt in the past and act quickly in the 

future. The key words that we have used to define a CR in the first section of this Chapter are: 

awareness, perception, reasoning and judgment. However, nowhere the keyword of learning is used. In 

supervised learning, the desired output is known and the learning mechanism forces the technique 

used to converge to that known output. Therefore, supervised learning may take the form of a dialog 

between the user and the radio, in which the radio may develop some new assertion or operational 

behavior model based on the learning mechanism within the radio and then ask for confirmation from 

the operator if its concluded results are correct. We will delve into more details about supervised and 

unsupervised learning using Artificial Neural Networks in Chapter 5. 

Conversely, the radio system may extend its knowledge through the learning algorithm and simply add 

the new knowledge to its existing base of knowledge assertions and behaviors. In operational radio 
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systems, there is some level of protection that limits the degree of behavioral modifications that a 

cognitive radio may incorporate without external verification and validation. Till date, generic 

learning-based CR is an area in which not much principles and rules have been applied. There are 

various proposals that have used techniques as genetic algorithms, fuzzy logic, markov-based channel 

prediction algorithm and swarm intelligence to optimize the radio performance by optimizing the 

parameters. The basic notion of using these techniques remains the same: capacity maximization and 

dynamic spectrum access. The reasoning engine in CR is modeled using these techniques. We must 

note that the reasoning engine is known as an expert system in the Artificial Intelligence domain [35].  

At any time instance, the cognitive engine/expert system gives the conclusions that are based upon 

some information defined in the knowledge base, from the previous experiences. These conclusions 

are extrapolated and are based on “learning”. As these lessons are learnt, the learning engine stores 

them in the knowledge base for future reference by the cognitive engine. In this section, the learning 

mechanisms, such as reinforcement and temporal difference are discussed. We delve into learning 

mechanisms for cognitive radio using Artificial Neural Networks in Chapters 5 and 6. In this section, 

we describe the important machine learning techniques that are candidates for CR design.  

4.1    Memorization:  

One of the most fundamental and basic learning mechanisms is memorization. This approach captures 

a sequence of steps or a response to a specific set of conditions and then, when the same task is again 

encountered, the previously memorized responses are applied. This can only be an effective method of 

learning if the range of situations encountered by the radio system is limited and well defined. An 

example of memorization, in CR context, would be the selection of a particular waveform or specific 

adjustments to the operating parameters of a waveform in response to measured interference. Although 

the memorization would allow for multiple response sequence, each associated with a specific 

interface value, each sequence of actions would be explicitly tied to the measured values. 

Memorization does not allow for generalization of responses based on similar responses to different 

measured values. 

4.2    Swarm Intelligence: 

Swarm Intelligence (SI) is a biologically inspired metaheuristic that deals with the study of collective 

behavior in self organized systems. To this effect, a cognition system - Observe-Orient-Decide-Act-  is 

treated as a self organized system, making this metaheuristic a very promising candidate for intelligent 

wireless communication systems. Swarm Intelligence is defined as: The emergent collection 

intelligence of groups of simple agents [116]. Although this technique has disadvantage that there is no 

centralized control structure dictating the behavior of individual agents, the local interactions between 

such agents often lead to the emergence of a globally accepted behavior of system. Ant colonies, bird 

flocking and fish schooling are the natural examples of this technique. This heuristic, despite its 
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drawback mentioned above is useful in cognitive wireless communication as it has the required 

properties of learning to some extent. As an example, in the popular Ant path finding example, the 

ants finally are able to select the shortest path to reach the food, without any external control and help 

and only remembering their previous experiences.  

4.3    Genetic Algorithms: 

Genetic Algorithms (GA) [36] work on the principle of exploiting the best solution and exploring the 

search space in multiple directions simultaneously. This feature makes them a viable choice as 

compared to the other counterpart optimization techniques, such as Hill Climbing and Simulated 

Annealing.  GA uses a vector that represents a given condition. Depending on the success of action 

taken, the vector is modified using three operators, defined below. However, the vector may undergo 

alteration, or genetic mutation, in a random fashion. Even though this may introduce potentially large 

vector sets, GAs may introduce new solutions through the random mutation process. This enables a 

system to generate new knowledge and evaluate its effectiveness by using empirical data collected 

through the operational environment.  Implementation of GAs has continued to evolve to include the 

use of a vector of multivalued data items. In effect, each item in the sequence is represented as a 

discrete variable that can be modified as part of the process. GAs work on the principle of exploiting 

the best solution and exploring the search space in multiple directions simultaneously. The three 

operators that it uses are defined as under: 

 Selection:  

This operator selects chromosomes in the population for reproduction. The fitter the chromosome, the 

more times it is likely to be selected to reproduce. 

 Cross-over:  

It combines features of two parent chromosomes. This operator randomly chooses a locus and 

exchanges the subsequences before and after that locus between two chromosomes to create two 

offsprings. For example, the strings 10000100 and 11111111 could be crossed over after the third 

locus in each to produce the two offspring 10011111 and 11100100. The crossover operator roughly 

mimics biological recombination between two single chromosome organisms. 

 Mutation:  

This operator randomly flips some of the bits in a chromosome. For example, the string 00000100 

might be mutated in its second position to yield 01000100. Mutation can occur at each bit position in a 

string with some probability, usually very small (e.g. 0.001). 

All these operations are being performed on Fitness Function defined as the objective function to be  
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optimized which provides the mechanism for evaluating each string (optimization can be meant to 

maximize or minimize). Chromosomes are the main carriers of heredity information and are made of 

units called genes and each gene controls the inheritance of one or several characters. Each 

chromosome represents a potential solution and different chromosomes, each representing a solution 

are collectively termed as Population. The three operators defined above are shown in a design of a 

Genetic Algorithm used to allocate power and bits simultaneously in a MB-OFDM system [36].  

 

 

 

Fig. 10. Genetic Algorithm Structure [36]. 

 

4.4    Fuzzy Logic:  

Fuzzy Logic based architectures are modular in nature (one of the key aspects of CR Architecture). It 

is because of this reason that Fuzzy Logic has also emerged as a candidate for CR Architecture design. 

Fuzzy Set Theory differs with Traditional Set Theory in that partial membership is allowed to all the 

members for all the sets. This leads to fuzzy logic interface where predicates are treated as partially 

true/false. Hence a Fuzzy Controller based knowledge database is established which is actually the 

process of translating the rigid [0,1]measurements into their fuzzy representation. The degree of partial 

truth is based on fuzzification which means that for each input variable at every control cycle the 

degree of truth of the input is verified. To this effect, fuzzy controllers are claimed to be the natural 
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 choice for CR modular cross design.  

4.5    Other Methods: 

There are several other methods with their own sets of advantages and drawbacks which have been 

reported in the literature to address the different design requirements of CR. Each method is better 

suited for a given category of problems. At times, the combination of multiple approaches within the 

same algorithm yield better or faster results. The user requirements and most importantly user 

priorities have to be considered while opting for any solution, e.g. the Genetic Algorithm based 

solution may not be useful for some emergency situations where a quick convergence is required. At 

the same time, when there are no real time requirements Genetic Algorithms may be the right choice 

to go for. The best possible solution can be achieved by a technique that has inherent properties of 

learning, while characterizing the system performance with data obtained from observations 

performed by the system – CR. A brief description of the solutions used is provided in this Sub-

section.  

Reinforcement-Based Learning: It is represented as a directed graph, where the degree of success is 

attained in achieving the system short term and long term goals. Based on degree of success, the action 

causing success is assigned a reward weight to keep a track in case if similar inputs are encountered 

again.  

Temporal Difference: It builts the state representation on the fly and does not require the back-

propagation used in the reinforcement learning.  

Simulated Annealing: The search space is explored by one solution at a time. It is inspired by 

physics. Another such single solution at a time based approach is Hill Climbing. 

Collective Intelligence: We have already given the example of Swarm Intelligence and Ant Colonies 

of this biologically inspired approach. 

Graph Algorithms: A network of graph is used to find the best possible graph that could solve the 

problem. 

Markov-Decision Algorithms: The previous steps are considered to come up with the best solution in 

the next step. The previous steps‟ actions and the results to those actions are taken into account. Thus, 

we can say that this approach has inherent learning mechanism to some extent. 

Game Theory Simulations: The basic modeling notion is a game, which includes: a set of players, 

actions for each of the players, principles for determining outcome of actions chosen by players, 

preference for the players and finally the rules. The players adapt their strategy and choose the actions 

in an attempt to maximize their outputs. This approach is gaining more and more popularity in the CR 

domain.  
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Till now, we have reviewed several methods that can be used to incorporate learning in the CRs. We 

have seen from the basic methods to highly advanced meta-heuristic based methods that there is no 

single approach to learning that will address all aspects of CR, e.g. computational efficient resources 

have timing constraints and vice-versa.  

We decided in the favor of Artificial Neural Networks (ANN). We define the structural architecture 

and the working principle in this Sub-section. The specific neural networks that we have used, their 

architecture and the reason to pursue them as solution are addressed in Chapters 5 and 6.  

 

4.6     Artificial Neural Networks: 

Artificial Neural Networks, to some extent like GAs, also rely on the reinforcement of a decision or 

selection based on the actual result or outcome of a decision. A typical Neural Network has an input 

vector and an output vector. The middle layer, called as hidden layer, links the input and output values 

by processing them according to some rule. It propagates the input vector from input layer to output 

layer through a set of connections across different neurons of different layers. Suppose that each node 

in the neural network accepts an input vector, A, and applies a weight vector, W, to perform the 

propagation of the input value along the link to the adjacent layer in the network. This propagation is 

typically tempered by a constant or bias value, b. This bias value is controlled by the user, so that a 

known input vector may produce the desired output value. Thus, for an individual node, the 

propagation output, A, of a given node, j, can be expressed as shown in equation (3.1).   
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When the output value Aj is greater than some threshold value, Ti, the value is propagated along the 

output, as illustrated in Figure 11. Learning, within the context, of a cognitive radio, involves the 

adjustment of the threshold value, the bias value, or the weight associated with a node. This 

adjustment depends on the purpose for which the neural network is used for.  

A neural network is actually a collection of individual nodes which are organized together in a 

multilayer fashion, as illustrated in Figure 12. The neural network has a set of input points. The values 

sensed or input through these points is propagated forward, through the middle layer (also referred to 

as hidden layer), to a set of output points. The output points activated by the forward-propagation are 

then compared with the actual value (i.e. anticipated versus actual). If there is a match, the path 

followed to arrive at the output point is followed through back-propagation, and the intervening nodes 

and paths are reinforced for that particular output joint.  

Learning within a neural network requires feedback that allows the network to compare the expected 

output value associated with a set of input data against the conclusion reached by the neural network. 

(3.1) 
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This forms the back-propagation. As the vectors of input values are applied to the system, the data 

propagates through the intermediate layers to the output. The expected output is mapped onto the 

output vectors. Those elements in an output vector whose value matches the applied expected value 

are reinforced by back-propagation. Thus, the intermediate layers that contributed to the propagation 

of data resulting in the correct (i.e. expected) output values are reinforced. Reinforcement may be 

performed through increasing weights, of the nodes involved in the propagation from the input data to 

the correct output or conclusion.  

 

 

 

 

 

 

 

 

Fig. 11. Neural Network node illustration. Shown are the input vector A (with elements a0… an); 

weight matrix W (with elements w0j….wnj); bias value, b; and output.  

 

 

Fig. 12. Artificial Neural Network 

This reinforcement of neural links increases the probability that the same input values will result in the 

same propagation to the correct output values. Those output values that did not match the expected 

output value are weakened, thereby decreasing the probability that they would be applied again given 

the same set of conditions.  
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We propose the learning schemes based on Artificial Neural Networks for the two purposes: 

1. Recognizing a Standard in multi-standard CR Transceiver. 

2. Spectrum Evolution Prediction enabling the SU to exploit the future available opportunity. 

 

5.     Major Cognitive Radio Projects and Achievements: 

The main objective of this section is to have a review of important projects recently completed that 

concentrate on Cognitive Radio Engineering for new wireless communication paradigms. We have 

selected the following three projects, however there are numerous other projects as well that have 

contributed to this domain. 

5.1     IDROMeL [37]: 

IDROMeL is French acronym for an open platform for prototyping of Advanced Software Defined 

Radio and Cognitive Radio techniques. The target of this three year project (2006-2009) was to design 

an FPGA- based prototype of a multimodal MIMO open platform, to explore the CR scenario. The 

seamless mobility in a heterogeneous network was the aim so as to incorporate the ubiquitous 

connectivity. This was achieved by making two different Radio Access Technologies (RATs) to 

communicate with each other.  The example RATs were UMTS and WiMAX to stress on the fact of 

different QoS, frequency bands and bandwidths. The communication in different bands and different 

waveforms are supported. The RF capabilities objectives (200 MHz – 7.5 GHz) allow the support for 

Standards: 802.11, UMTS, MC-CDMA, GSM, DVB-T, GPS, etc. The maximum bandwidth supported 

is 20 MHz. At the same time, each RAT was reconfigurable, in terms of its physical layer parameters. 

The handover between the two waveforms observes no degradation. This is achieved by sending the 

data flows from and to the terminal through two radio interfaces, simultaneously. The second 

waveform is installed on the terminal, while the first one is already running. After the communication 

flow starts operating on the second waveform, the first one is removed from the terminal. The platform 

components are: flexible baseband processing, MAC design running on Linux RTAI host PC to 

support the handover described above, a MAGALI (originally FAUST chip) Network on chip 

implemented in a 65nm technology from ST Microelectronics and partially reconfigured FPGA. The 

MAGALI chip has heterogeneous hardware blocks with both: generic and specialized functions. The 

features of the platform are extended by the partial reconfiguration of FPGA, which brings the highest 

flexibility to the hardware domain. The block diagram showing the components is shown in Figure 13. 

The reconfiguration of FPGA leads to few microseconds to change an IP, meeting the real time 

constraints of this technology. The transmitted power is comparable to existing GSM terminals (+21 

dBm). The noise at the receiver side has the range of 8 to 12 dB. The baseband unit has seven 

processing units which are interconnected through an Advanced VCI crossbar interconnect. On  
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Fig. 13. Hardware Architecture of IDROMeL [37]  

 

   

Fig. 14. Baseband Processor Architecture of IDROMeL (taken from [37]) 

transmission side, the D/A converters provide 14-bits resolution with sampling rates up to 128 Ms/s. 

On receiver side, the A/D converters provide 12 bits of resolution with sampling rates up to 64 Ms/s 

and usable analog bandwidths up to 100 MHz for IF sampling. The Base-band architecture and 

components interconnection is shown in Figure 14. The different processing units and their 

functionalities are:  

A pre-processor that embeds a quadrature offset compensation unit, a DCO and programmable input-

output FIFOs for synchronization.  

A front-end processor implementing FFT. 

A generic mapper and detector for different modulation schemes.  

A generic channel coder that implements convolutional or cyclic codes. 

A generic channel decoder for Viterbi Decoding. 
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A generic interleaver with rate matching, repeating and puncturing capabilities.  

5.2     GRACE [38]: 

The GRACE (Gestion du Spectre et Radio Cognitive) was a French national project spanned over 

three years (2006 -2009) concentrating on the definition, the evaluation and the demonstration of 

techniques of exploration of the spectrum in order to improve spectrum management. The project 

consisted of following four phases: 

 Scenarios, Decision and Context:  

This task defined the scenario comprising of radio and physical layer aspects apart from network and 

user management aspects. 

 Sensing and agility: 

This portion was about the study of algorithms and systems that consider the following three 

functionalities: 

1.  Sensing of RF environment. 

2. Waveform generation in RF context. 

3. Evaluation of interference caused by cognitive terminal to other active users. 

 Opportunistic Terminal Architecture: 

This part was meant for the consideration of the implementation constraints in terms of evaluating the 

integration complexity with respect to various spectrum management scenarios of an opportunistic 

terminal. With this knowledge, new architectural solutions for cognitive terminals were intended to 

propose followed by transmitter architectures for filter banks that led to concrete results. Finally, this 

phase identified the technical limitations that are needed to overcome. 

 Demonstration: 

This phase provided a feasibility of proposed solutions and suggested confrontations with the reasons.  

Unprocessed signals were provided to other parts of the project, for analysis, by this phase. The 

demonstration was carried out on current standards, e.g. IEEE 802.22 in order to exploit such 

standards to make the frequency usage more flexible.  

5.3     End to End Reconfigurability (E2R) [39]: 

The basic aim of this project was seamless reconfiguration. This project consisted of three phases with 

the first phase started in 2004.  It had 32 partners that included CEA and Supélec. In this project, the 

spectrum and radio resource efficiency is increased by ambient intelligence vision. This ambient 

intelligence was realized by cross-disciplinary algorithms, inspired by physics (Simulated Annealing), 
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biology (Genetic Algorithms), demographic studies (Swarm Intelligence), Gaming Theory and 

Markov Decision process. The important achievements were the development of flexible guard bands, 

Joint Radio Resource Management (JRRM) Manager, Spectrum Efficiency Concepts, Cognitive Pilot 

Channel (CPC), development of Configuration Management Module (CCM) and the Execution 

Environment (EE). The objective of all these achievements was to device an architectural design of a 

communication system that can offer a heterogeneous choice to user with respect to application and 

service providers, operators, manufacturers and regulators. The following key challenges were 

addressed with the help of eight technical work packages, in this project:         

Design generic system mechanism that implements seamless experience management. These 

mechanisms build on, and are compatible with, legacy system management solutions in a multi-access 

situation. 

Evolve the equipment management methods to include them as part of E2R architecture building 

on, and compatible with, legacy management solutions. 

Develop cognition-based mechanisms by efficient spectrum, radio/equipment resource 

utilization, thereby facilitating efficient access to resources where there are multiple owner situations. 

There was a very close association with the regulation authorities, which enabled development of 

technologies for flexible spectrum resources and their associated usage, equipment circulation and 

security issues. The outcome to the regulatory discussions was intended to lead to a simplified 

framework that could allow flexible assignment and facilitating the spectrum use through techniques 

implementing an optimized usage. The objective to facilitate simpler and more market aware flexible 

spectrum management was exploited to operate where users will access unlicensed spectrum. 

 

6.    Conclusions:  

This chapter defined and explained the Cognitive Radio notion and reviewed the important research 

challenges in its realization. Furthermore, the efforts to address these identified important research 

challenges are reviewed. We also give a brief overview of different candidate machine learning 

techniques for cognition incorporation in radios. Important research projects and their achievements 

are summarized so as to paint a better picture of the current scenario of Cognitive Radio. A brief 

summary of architecture evolution of cognitive radio is also included. This chapter shows that the 

potential for cognitive radio to make a significant difference to wireless communications is immense. 

We showed with the help of different projects that CR is an emerging research area that requires 

interdisciplinary collaboration and an overhaul of wireless systems design, performance evaluation, 

network operation and regulation.  

The next Chapter treats the SDR waveform components design on a general purpose platform. As we 
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 have introduced The International Technology Roadmap for Semiconductors (ITRS) prediction that 

out to 2017, software design productivity will fall behind hardware design productivity, in Chapters 1 

and 2, we explain in detail our methodology to address this very challenge in the Chapter 4.  
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Chapter 4:  

 

Embedded System Implementation and 

Optimization of SDR. 

 

1.    Introduction: 

 

A challenge of Software Defined Radio lies in the implementation on embedded platform. 

Performance requirements under resource constraints make SDR the most difficult task. As the notion 

of SDR refers to a radio that can be reprogrammed via software, it guarantees a longer service life time 

in applications where changing waveforms on already acquired SDR equipment is required. Followed 

by the first working SDR effort, SPEAKeasy [3], a remarkable milestone in recent times is the first 

ever open source software Vanu Software Radio [5] engineering. Today SDR is given a more 

pragmatic interpretation which means that large and considerable parts of waveform are defined in 

software. This leads to the flexibility to change the waveform within certain bounds as given by the 

actual system. A rapid evolvement of communication standards makes it important to replace the base 

stations at regular intervals. SDR based embedded solution replaces this costly replacement by 

software upgrades, which is more cost effective. Although SDR adoption is not that widespread as it 

was predicted back in 2002: By 2006 the adoption of SDR in commercial mobile terminals would have 

widespread adoption and movement to SDR as baseline design [20], there have been many success 

stories that tell us that we are moving closer to the wide adaptation of SDR based solutions in 

commercial products such as smart hand held devices. The Vanu Software Radio [5] Anywave Base 

Station can be quoted as the most significant example, as it is the first ever FCC-approved Software 

Radio [40]. In the case of applications requiring high volume, the preference goes to hardware based 

traditional radio architecture. At the same time the interoperability critical conditions are not met by 

these traditional implementations. This calls for an embedded solution based on general purpose 

processors. At the same time, the case when the lifetime of a product exceeds than the device with 

which the communication link has to be established and most importantly for wireless development 

issues, we need to switch to a general purpose based software design radio solution. This can be 

justified by seeing the latest trends in an increase in processing performance and power efficiency. 
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In such cases, general purpose processors based software radios are more capable than their 

competitive counterparts. In many other applications, such as SDR based CR solution, data acquisition 

in fields including magnetic resonance force microscopy, aeronautical applications, etc.. the success 

key for SDR based solution is reconfigurability, which is achieved in the highest degree in the general 

purpose processors. Furthermore, the on the fly optimization is also addressed in the most efficient 

way, together with being cost effective.  

With this background, in this Chapter we set out to demonstrate the capability of general purpose 

solution as in terms of enabling portable communication offering a superior flexibility and advanced 

functionality.  

 

2. SDR Embedded Implementation Efforts: 

 

Since Reed [41] and Cummings [42] described the transition of FPGAs from Application Specific 

Integrated Circuits (ASIC) prototyping to embedded products, there have been some amount of 

research work that addresses SDR implementation on embedded platform with FPGA. Fifield [43] 

created an standalone FPGA design implementing a general purpose Orthogonal Frequency Division 

Multiplexing (OFDM) transmitter for software defined radio that supports basic 802.11 a/g 

transmission and allows OFDM parameters to be changed dynamically. Revé [44] discussed 

implementation of a Middleware, especially designed for SDR applications, called Platform and 

Hardware Abstraction Layer (P-HAL) when applied to hardware devices. Minden [45] presented the 

Kansas University Agile Radio (KUAR) platform and claimed it to be a low cost, flexible RF, small 

form factor SDR implementation that is both portable and computationally powerful. Schelle[46], 

using Xilinx‟s ISE and EDK 8.2 tools, showed the results of partitioning and placement of a SDR 

transmitter onto a Network on chip (NOC) architecture using a FPGA, thus exploiting reconfigurable 

hardware. In [47] Dikmese has implemented adaptive antenna array software radio beam formers on 

Virtex II Pro FG456 Protoboard after converting the VHDL code into a bit file using Xilinx ISE 7.1. 

The goal of multimode systems is realized by The Center for SDR Aalborg University, Denmark [48] 

by implementing a bi-standard (UMTS and WLAN) SDR receiver using Xilinx FPGA Virtex- 4. 

Myler [49] configured the hardware platform and software platform for cognitive radio equipments. In 

[50] NASA defines an open hardware architecture, Space Telecommunications Radio Systems 

(STRS), that abstracts functionality away from specific hardware devices through the hardware and 

software interfaces enabling greater use of design. Tachwali in [51] presents a BPSK Transceiver 

centered at 400 MHz that provides a framework for designing an adaptive digital transceiver on hybrid 

SDR platforms. Rakhshanfar [52] carried out a demonstration test bed implementation of Global 

System for Mobile Communications (GSM) receiver based on the idea of a flexible real-time software 
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radio using a personal computer (PC) and single FPGA. Recently, the latency, CPU load and memory 

utilization of OSSIE are estimated in [53] by G.Abgrall. Y.Lin in [54] presents a design study for a 

performance and power efficient programmable architecture; four processor core Signal-processing 

On-Demand Architecture (SODA) and demonstrates the flexibility by evaluating different high-end 

wireless protocols (W-CDMA and 802.11a). In [10], J. Glossner discusses the trends in inherently 

convergent platforms by presenting the Sandbridge state-of-the-art platform that is capable of : 

1. Executing DSP, embedded control and Java code in a single compound instruction set 

optimized for handset radio applications. 

2. Implementing multiple communication systems on a single SDR chip. 

He further explains in [11] the Sandbridge SB3011 platform architecture that tells the implementation 

details of low power architecture that comprises of micro-architecture, logic and circuit design and 

software tools. He provides results for UMTS, DVB-H, WiMAX, WiFi and NTSC video decoding. 

B.Bougard in [55] presents the design of a hybrid Coarse-Grained Array Single Instruction Multiple 

Data (CGA-SIMD) baseband processor for SDR that achieves a clock frequency of 400 MHz in worst 

case conditions and occupies 5.79 mm². As an application case study, the processor is shown to be 

able to execute 20 MHz 2 x 2 SDM-OFDM baseband processing, achieving 100 Mbps + throughput, 

consuming 220 mW. In [56] Ng demonstrates a practical use of a complete Electronic System Level 

(ESL) design flow from high level virtual platform modeling to HW/SW co-verification of a large 

scale SDR SoC design. He co-emulates the design in two independent tool vendors, CoWare‟s 

SystemC and the mentor‟s emulator simulation environment. Addressing the relatively less researched 

topic of protocol processors executing upper layer protocols, H.Lee in [57] proposes a dual-processor 

platform with two GPPs: a conventional main processor, OPENRISC1200, and a simple low power 

supplemental processor, Microchip‟s 16F84. This platform successfully addresses the trade-off 

between flexibility and scheduling and thus maintains programmability at low power, apart from 

meeting real time deadlines of a SDR terminal. Y.Lin in [58] has designed a SPIR, a hierarchical 

dataflow programming model, to model SDR application. He has presented a coarse-grained dataflow 

compilation strategy that assigns SDR protocol‟s DSP kernels onto multiprocessors to determine an 

execution schedule that meets a prescribed throughput. As a case study, W-CDMA wireless protocol is 

used. Schiphorst in [59] describes a SDR testbed for wireless LAN standards. He implements the 

physical layer of HiperLAN/2 standard in real time software and baseband experiments have verified 

his system. However, the most demanding parts i.e. FEC coding/decoding have not been implemented.  

This all review of related work shows that there have been significant efforts meant for SDR 

embedded implementation. However, technological advances in the coming years will push 

communications hardware into obsolescence at an even quicker pace. As a proof, The International 

Technology Roadmap for Semiconductors (ITRS) predicts that out to 2017, software design 
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productivity will fall behind hardware design productivity, due to inconsistency between software and 

hardware advancements [60]. Thus a challenge lies in the inconsistency between software and 

hardware advancement. For example, multi-core processor architectures and embedded 

multiprocessors-system-on-a-chip (MPSOC) are fueling significant improvements in performance 

while continuingly reducing their size and resource requirements. Unfortunately software is not 

keeping pace as indicated in Figure 15. This directly limits the capabilities of software applications, 

such as SDR, where functionality is kept in hardware, thereby prolonging the exposure to rapid 

hardware obsolescence. This chapter will discuss our approach to address this challenge.  

 

 

Fig. 15. ITRS Roadmap 

 

3. MPSoC and FPGA Technology: 

 

MPSoC have been designed to satisfy the requirements of embedded applications. They are actually 

the result of an aggregation of System on chip and traditional multiprocessors. The three most 

important features that these embedded applications possess are: high performance, real-time and low 

power. Higher performances are always required by consumers. This encourages the research and 

development of high-performance platforms that can meet new requirements and new standards. 

Higher performance means more computations and more complex algorithms that cannot be realized 

by simple hardware or single processor SoCs. MPSoCs have been designed with this background [61]. 

Real time computing is not only high performance computing. In the usual commonplace 

programming, we have to consider the speed and execution requirements, but the deadlines are not 

taken that seriously. However, in embedded systems environment, we have not only to cope up with 
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performance requirements, but have to meet the already decided deadlines. In this respect, MPSoC 

architectures have to be predictable to some extent, in the sense that applications should be facilitated 

to run with some predictable performance form the MPSoC architecture. 

Another important constraint is the power consumption in the design of any MPSoC. Power 

constraints are more rigid in an MPSoC environment as compared to traditional supercomputer system 

or desktop computer system. Lower power consumption can extend the life of the battery in the case 

of battery operated MPSoC, apart from limiting the energy provided by battery required MPSoC 

design. Another possibly is the reduction in energy usage. In non-battery operated devices, low power 

requirement is there for chip heat and cost considerations. It is because of these constraints that 

MPSoC‟s power and energy constraints are required to be tackled at all the levels of abstraction. 

The next section describes the target multi-core single chip platform meant for embedded 

implementation of SDR algorithms. The cognitive algorithms that we will describe in Chapter 5 are 

also implemented on the same target multi-core chip.   

 

4.   The Multiprocessor Platform: 

 

The multicore implementations can be divided in two categories (1) general purpose, (2) application 

specific. ARM ARM11MPcore[62], the MIPS MIPS32 1004 Core [63] and the Renesas/Hitachi SH-

X3[64] belong to the first category. Texas Instruments TMS320C6474/TMS320VC5441DSP [65-67], 

Freescale QorIQ P4080[68] and the ToshibaVenezia multicore [69] are in the second category. Our 

target 16 Processing Elements (PE) MPSoC with four DDR memory banks that we will describe in 

this Section falls in the first general purpose category. The motivation for general purpose MPSoC 

solution for SDR embedded waveform implementation comes from the fact that these general purpose 

MPSoCs have become the standard for implementing high adaptability agile frequency operation 

devices such as SDR and CR. Another motivation to choose a general purpose reconfigurable solution 

lies in the fact that apart from our SDR waveform resources: FFT, Viterbi Decoding, Filter, Algebraic, 

Modulation and Demodulation Functions, our  Artificial Neural Networks based cognition algorithms: 

LVQ, SOM and MLP,  may benefit equally from the reconfigurability offered by such general purpose 

platforms. We will explain these cognitive algorithms in detail in Chapters 5 and 6.  

The SDR waveform components that we will define later in this chapter are mapped on our target 

general purpose multiprocessor embedded system realized on Xilinx FPGA Virtex-4 FX-140 FPGA 

chip shown in Figure 16, using Xilinx EDA tools [61] using our designed parallelization strategy. All 

the Processing Elements and memory controllers are connected with a scalable On-Chip Network 

(OCN) developed with Arteris Danube library [70]. We describe the design and technology 
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Fig. 16. FPGA board 

constraints and how it affects the architecture of the target MPSoC designed for Cognitive SDR 

waveform. 

4.1    External Constraints: 

The external pin connection constraints of FPGA chip shown in Figure 16 reduce the possible number 

of external DDR modules to 4, as shown in Figure 17.  

 

 

 

 

 

 

 

Fig. 17. MPSoC Target External Connections [61] 

With the shown constraint of 4 external DDR, the designed MPSoC architecture [61] is organized 

around classical dance hall architecture in contrast to other available architectures.  The memory banks 

are on one side and processors on the other side of the Data NoC, as shown in Figure 18. A NoC is 

essential in this case as 16 implemented processors are connected on the communication medium. As 

shown in Figure 18, Data NoC is connected to four DDR controllers, which in turn connect to four off-

chip 256 MBytes  DDR memory (totally 1 GBytes). PE tiles are connected to Data-NoC and 

Synchronization NoC through OCP-IP interfaces.  

One 64 KBytes shared on-chip memory is attached to the synchronization NoC, which establishes a 
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Fig. 18. Block Diagram of designed MPSoC Architecture [61] 

synchronization media for the 16 PE tiles. 

The execution frequencies of Data NoC and Synchronization NoC are different due to different 

pipeline strategies, arbitration settings and configuration of input, output numbers. Data NoC runs at 

200 MHz whereas Synchronization NoC runs at 250 MHz.  The frequency of the processor used is 130 

MHz. 

4.2    MPSoC Architecture: 

 The Virtex-4 architecture adds an additional feature described in Figure 19.   

 

 

 

 

 

 

 

 

Fig. 19. Virtex-4 Internal Architecture 

The Digital Clock Managers (DCM) for clock tree and IOs are placed in the center of the chip by the 

central column. Any IP not accessing should then be placed at the periphery of the layout. This is the 

case of processor IPs when they are accessing IOs such as DDR controllers, so should be placed in the 

center. Therefore, we can justify the choice of MPSoC architecture shown in Figure 18. 
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4.3   Processing Element: 

The processors used on FX-140 chip are Xilinx Microblaze [71]. Each Processing Element (PE) can 

independently run its own program code and operating system. These Micoblaze processor based PEs 

are connected to switches through Open Core Protocol to NoC Transaction and Transport Protocol 

(OCP-to-NTTP) Network Interface Units (NI). The OCP-to-NTTP NI or Master NI translates OCP to 

the OCN protocol: Arteris NoC Transaction and Transport protocol (NTTP). This switching system 

has connection to four NTTP-to-OCP NIs (Slave NI), which in turn has connection to the respective 

DDR2 memory controller. Each DDR2 controller controls an off-chip DDR2 memory bank (256 

Mbytes). The block diagrams of the implemented PE are shown in Figures 20 and 21. 

In order to enhance the compatibility and to make the architecture re-utilizable, the OCP-IP standard is 

used for the connection of PEs and OCN. Having the benefit from the OCP standard, any processor 

possessing OCP interface can be easily connected to the system.  The Xilinx processing soft-core 

Micorblaze v.7.00 based computing system that is integrated as a PE in the FPGA design, is a 32 bit 

reduced instruction set computer (RISC) optimized for implementation in Xilinx FPGA, and the IPs of 

Microblaze processor and the memory connection are provided in the library of the FPGA design 

environment: Xilinx Embedded Development Kit (EDK). 

Microblaze processor is implemented with Harvard memory architecture: instruction and data accesses 

 

 

 

 

 

Fig. 20. Microblaze based Processing Element [61] 

 

are done in separate address spaces and it is highly reconfigurable. It is a 32 bit either 3 stage (area 

optimization enabled) or 5 stage (area optimization disabled) architecture. It is provided as a part of 

Xilinx embedded design tool kit to fit into Xilinx FPGA and has an orthogonal and flexible reduced 

instruction set architecture (RISC). It has thirty-two 32 bit general purpose registers (numbered R0 

through R31) and up to eighteen 32-bit special purpose registers (depending on configured options). It 

uses memory mapped I/O and instruction and the data cache can be configured to use 4 (software for a 

random access pattern) or 8 (software for a sequential access pattern) word cache lines. A set of other 

parameters can also be configured at design time to fit design requirements, such as number of 
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Fig. 21. Microblaze Core Block Diagram 

pipeline stages, cache size, interfaces and execution units like: selectable Barrel Shifter (BS), Floating 

Point Unit (FPU), hardware divider (HWD), hardware multiplier (HWM), memory management unit 

(MMU). The configurability allows the user to trade-off features for size, in order to achieve the 

necessary performance for the target application at the lowest possible cost point. The performance 

and maximum execution frequency vary depending on processor configuration. For its communication 

purposes, Microblaze v7.00 offers a Processor Local Bus (PLB) interface and up to 16 Fast Simplex 

Link (FSL) interfaces which is a point to point FIFO-based communication channel. Highlights of 

PLB protocol include synchronous architecture, independent read/write data paths and split transaction 

address/data buses. The frequency of each PE tile is 130 MHz. Two memory controllers control 32 

Kbyte BRAM based local on-chip memory. As OCP interface is not provided by Microblaze, an OCP 

adapter, which can translate FSL to OCP interface, is integrated in PE subsystem for the connection 

with OCN as shown in Figure 20. OPB and PLB devices can communicate by way of an OPB-to-PLB 

Bridge or a PLB-to-OPB Bridge. Device Control Register (DCR) bus is used for accessing control and 

status registers in various devices. It allows for register access to various devices without overloading 

the OPB and PLB interfaces. Because DCR devices are generally accessed infrequently and do not 

have high performance requirements, they are used throughout the reference design for functions, such 

as error status registers, interrupt controllers and device initialization logic.  

4.4    OCN: 

The On-chip Network connection system has been developed with the Packet Transport Units (PTU) 

from the Arteris Danube Library. The packet transport portion is built by these PTUs for the NoC, 

comprising of a request network and a response network. The three-layered approach consisting of 

comprising transaction, transport and physical layers called as NoC Transaction and Transport 

protocol (NTTP) is adopted by all the PTUs. The conversion of OCP 2.2 protocol to NTTP protocol is 

done by OCP-to-NTTP NIs. Our OCN supports locked synchronization. ReadExcursive (ReadEX) and 
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Write or WriteNonpost commands are used by OCP initiator. This is done to do an atomic transaction: 

read-modify-write. It is used by NI that sends a Lock request packet after receiving the ReadEX 

command, which locks the path from master to the slave. During this whole locked period, the other 

Masters are prohibited to access the locked slave until the Master requesting ReadEX sends a Write or 

WriteNonPost command which ultimately unlocks the path. 

The chip area consumed for different resources on our Xilinx Virtex-4 FX140 FPGA based chip is 

shown in Figure 22. 

 

5.  OSSIE Core Framework: 

We have defined in detail, OSSIE open source software in Chapter 2. The software package includes a 

SDR Core Framework based on the JTRS SCA, tools along with signal processing components and 

waveforms (applications), device interface software and node configuration file for use with OSSIE. It 

runs on Intel and AMD based PCs and a later release including enhanced support for embedded as 

well as PC-based applications is also added. An explanation of OSSIE core framework and signal 

processing library follows:  

 

 

 

 

 

 

 

 

 

Fig. 22. Resource use in percentage.[61] 

 

The OSSIE Core Framework defines the essential „core‟ set of open software interfaces and profiles 

that provide for the deployment, management, interconnection and intercommunication of software 

application components in an embedded, distributed computing communication system. The OSSIE 
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Core Framework consists of the three interfaces as defined in Chapter 2, and a detailed list of classes 

in each interface can be found at [7]. 

 

5.1      OSSIE Signal Processing Library: 

The Signal Processing Library (SigProc) is intended to provide a library of DSP algorithms commonly 

used within radio-communications. There is only one name-space SigProc. A brief description of 

important methods is necessary in order to understand the library. The file Filter.cpp implements the 

Polyphase Filter bank [72] and the filters supported are Square-root raised-cosine and Derivative. The 

pointer to character type _type determines the type of filter. A brief description of the functions is 

given in Table 2. The input parameters for DesignRRCFilter are k (samples per symbol), m (sample 

delay) and β (excess bandwidth or roll-off factor such that 0 < β < 1). The function returns h (a pointer 

to filter coefficients) as well as an integer value describing the length of the filter. The length of a filter 

is given by equation (4.1) as, 

12  kmhlen                        (4.1) 

The filter coefficients themselves are derived from the equation (4.2) as shown below, 
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The function compensates for the two cases where h[n] might be undefined in the above equation. 

TransposeCoefficientMatrix( ) transposes H (filter bank coefficient matrix). 

CalculateDerivativeFilterCoefficients( ) calculates derivate filter coefficients. The derivative of the 

template filter is approximated by (4.3). 

Depending upon _type, the constructor of FIRPolyphaseFilterBank( ) calls the appropriate methods to 

calculate the filter coefficients for different filter types. Npfb determines the number of filters in filter 

bank. Filter coefficients are stored in two dimensional matrix, referred to as buffer. The matrix is of 

dimension Nbfp * hlen. Modem.cpp comprises of modulation and demodulation definitions shown in 

Table 2.The levels for each modulation/demodulation scheme are defined in SigProc.h. The method 

rotate( ) referenced by DemodulateQPSK( ) and Demodulate8PSK( ) that rotates a complex signal 
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counter-clockwise by θ is defined in class file utility.cpp. Also the dot_product definition is included 

in utlility.cpp that calculates dot products between the length of a filter and the output sample; and is 

referenced by ComputeOutput( ). Randf( ) is a uniform random generator whereas Randnf( ) is a 

gaussain number generator. The other important classes include scaling.cpp and sources.cpp. 

We started our work by the performance evaluation of SigProc on embedded platform that we describe 

in Section 6. The functions defined above can be classified in four classes: 

1. Filter Functions. 

2. Algebraic Functions. 

3. Modulation Functions. 

4. Demodulate Functions. 

We show the important functions of these four categories of SigProc namespace in Table 2. 

 

6.    Performance Evaluation of OSSIE SigProc on Embedded Platform     

    ML-403 Board: 

 

The ML403platform [73] provides an environment for developing embedded designs based on Virtex-

4 FX FPGA. It has a 100 MHz Oscillator with 2 clock sockets, 64 MB DDR SDRAM,  64 Mb Flash is 

also included apart from 8Mb SRAM and 4kb EEPROM. It has a display of 16*2 characters LCD and 

connectors and interfaces include 4 SMA connectors, 2 PS/2 connectors, 2 audio(In/Out, 

Microphone/Headphone), 3 USB ports and other general purpose I/Os (LEDs and Buttons). Figure 23 

is the block diagram of ML403 and Figures 24 and 25 show the components on the board. Microblaze 

processor, the most important part of the system is already explained in detail in Section 4.3. 

 

(4.3) 
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Functions Description Description 

Filter 

Functions 

DesignRRCFilter  Calculates the length of filter and returns a pointer to the 

filter coefficients 

CalculateRRCFilterCoefficient Calculates root-raised cosine filter coefficients 

CalculateDerivativeFilterCoefficients Calculates derivative filter coefficients 

Algebraic 

Functions 

TransposeCoefficientMatrix  Transposes the filter bank coefficient matrix 

Dot_product Calculates dot product between two floating point 

integer arrays 

Modulation 

Functions 

Modulation. ModulateBPSK, ModulateQPSK,ModulateQAM4, 

Modulate8PSK, Modulate16QAM and Modulate4PAM 

respectively  modulates a symbol into an I/Q pair for 

Binary Phase Shift Keying, QUadrature Phase Shift 

Keying, Quadrature Amplitude Shift Keying, 8-ary phase 

shift keying, 16 point Quadrature Ampliture Modulation 

and 4-ary Pulse Amplitude Modulation. 

Demodulate 

Functions 

Do_work  Detects the phase of the signal to be demodulated.  

Demodulation DemodulateBPSK, DemodulateQPSK, 

DemodulateQAM4,Demodulate8PSK, 

Demodulate16QAM and Demodulate4PAM respectively 

demodulates the I/Q pair to get the BPSK, 

QPSK,QAM4, 8PSK, 16QAM and 4PAM symbol. 

 

Tab. 2. Important Functions of SigProc namespace 

ML403 Board is used to evaluate the execution time of SigProc defined in Section 5.1. The number of 

clock cycles for the radio-communication functions shown in Table 2 are calculated and shown in 

Table 3. Worst case execution time is taken into consideration while selecting input from set of all 

possible inputs. 

Table 3 shows that as a result of this mapping, the filter functions are identified to be strong candidates 

for optimization so as to make them more performance efficient. One of the challenges in optimization 

is how best to customize the cache subsystem for improved performance with the algorithms. Our next 

step is to organize the cache size to maximize the performance of the OSSIE SigProc functions.  

Studies have found that embedded processors power usage has been reduced by as much as 50% 

through cache optimization [74]. So, there has been significant work done for the hardware 

optimization including cache for the SDR software to be mapped on embedded platform. S. Kannan 
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Fig. 23. Block Diagram of ML403 

 

Fig. 24. Detailed Description of Virtex-4 ML403 Evaluation Platform Components (Front View) 

 

Fig. 25. Detailed Description of Virtex-4 ML403 Evaluation Platform Components (Back View) 
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Functions Input Clock cycles (worst case) 

Filter Functions DesignRRCFilter(k=10,m=1.5,β=0.3) 

CalculateDerivativeFilterCoefficients(h_len=30,NPfb

=38,N=30*38) 

CalculateRRCFilterCoefficients(k=10,m=1.5, 

β=0.3,Npfb=38) 

DesignRRCFilter=928204 

CalculateDerivateFilterCoefficients= 

35116101 

CalculateRRCFilterCoefficients= 

40320 

Algebraic 

Functions 

TransposeCoefficientMatrix(No parametrs) 

Dot_product(N=100) 

TransposeCoefficientMatrix=564 

Dot_product=146609 

Modulation 

Functions 

ModulateBPSK(symbol_in=1), 

ModulateQPSK(symbol_in=3) 

ModulateQAM4(symbol_in=3),  

Modulate8PSK(symbol_in=7), 

Modulate16QAM(symbol_in=15) 

Modulate4PAM(symbol_in=3) 

ModulateBPSK=56,ModulateQPSK= 

72, 

ModulateQAM4=96,Modulate8PSK= 

78, 

Modulate16QAM=80,Modulate4PAM 

= 69 

Demodulation 

Functions 

Do_work(I_in=9487,Q_in=3162), 

DemodulateBPSK(I_in=-10000, Q_in=0) 

DemodulateQPSK((I-in=-10000,Q_in=0) 

DemodulateQAM4(I_in=7071,Q_in=7071 

Demodulate8PSK(I_in=7071,Q_in=7071 

Demodulate16QAM5(I_in=-3162,Q_in=3162 

Demodulate4PAM(I_in=-13416,Q_in=0) 

Do_work=2455, 

DemodulateBPSK=45 

DemodulateQPSK=23507 

DemodulateQAM4=70 

Demodulate8PSK=24483 

Demodulate16QAM=135 

Demodulate4PAM=69 

 

Tab. 3. Worst case execution time of SigProc Functions 

proves in [75] that Write Through Data Cache Strategy is 30% more efficient than Write Back in the 

case of GSM/GPRS/EDGE algorithms implemented on hardware. He uses the AD6532 device, from 

the MSP500 digital baseband platform family. It must be noted that that the Microblaze implements 

Write through Data Cache Policy as well. In [76] Kim developed a reconfigurable module that 

performs as a function unit and a cache simultaneously, at the cost of 60 % area overhead. In the next 

sub-section, we propose the optimized cache size leading to minimum degradation of OSSIE radio-

communication functions.  
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6.1    Microblaze cache: 

Microblaze can be used with an optional cache for improved performance. The data cache has the 

following features: 

 Direct mapped (1-way associative) 

 Write- Through 

 User selectable cacheable memory addresses range. 

 Configurable cache size and tag. 

 Option to use 4 or 8 word cache-lines. 

  Implies Least Recently Use (LRU) replacement policy. 

We have used the data cache by splitting the memory into two segments: a cacheable segment and a 

non-cacheable segment. The cacheable area is determined by two parameters: 

C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses within this range 

correspond to the cacheable address space. In this step of SigProc Filter Functions optimization, the 

cacheable address space is changed over and over again to get the least possible clock cycles. Rest all 

addresses are non-cacheable. The Microblaze data cache is configurable from 64 bytes to 64 kB. The 

data cache organization for Microblaze is shown in Figure 26.  

 

Fig. 26. Data Cache Organization for Microblaze 

A load from an address situated in the cacheable range starts a check that determines if the required 

data is currently in cache. In case of a cache hit, the data is retrieved, otherwise if a cache miss occurs 

the required data is asked to be fetched at data CacheLink (DXCL), and the processor pipeline stalls 

till the associated cache line to the required address is returned from external memory controller. The 

Microblaze, in the created project, is configured to cache data over dedicated Xilinx CacheLink 

Interface. 
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The Cache is enabled using the appropriate functions by adding the header file mb_interface.h. The 

Cache Line length is chosen to be 4 throughout the experiments, whereas the BRAM is 64 kB 

throughout the project. The Data Cache is considered whereas the Instruction Cache is not considered. 

The most important design parameter is Cache Size as Cache memory has cost and space constraints, 

so the decision of how large a cache to implement in a system is critical. We have changed the Cache 

memory size for each filter function and the performance is evaluated in terms of clock cycles. The 

results for each cache size are shown in Table 4. The cache sizes are varied from 1 kB to 16 kB and for 

each cache size a new project is created to calculate the clock cycles so as to obtain performance 

evaluation. The Filter functions of SigProc are chosen as we had already identified them that they are 

more likely to be effected by the change in cache organization.  

 

Cache 

Size 

Clock Cycles  for 

CalculateDerivativeFilterCoefficients 

Clock Cycles  for 

DesignRRCFilter 

Clock Cycles for 

CalculateRRCFilterCoefficients 

1 kB 9275 802864 35105096 

2 kB 2864 802789 34100102 

4 kB 2792 64514 34071389 

8 kB 2544 58012 19535696 

16 kB 2455 58012 9867848 

 

Tab. 4. Filter Functions Performance Comparison for different Cache sizes.  

The experimental results shown in Table 4 indicate that with the increase in cache size the 

performance is improved but after reaching a certain cache size, the law of diminishing returns comes 

into play and the performance improvement is not that significant. Keeping in consideration the 

inherent cost and space constraints of cache in an embedded environment and based on the results 

shown in Table 4, we propose the following cache size configuration for each filter function that will 

help in optimal utilization of SRAM. 

Filter Function Our proposed Cache Size 

CalculateDerivativeFilterCoefficients 2 kB 

DesignRRCFilter 4 kB 

CalculateRRCFilterCoefficients 2 kB 

 

Tab. 5. Our Proposed Cache Size for each Filter Function 
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7.    OSSIE Signal Processing Function Performance Enhancements 

   through Parallelization: 

 

Addressing the ITRS Roadmap Prediction, our next step is to map the filter functions onto our 

multiprocessor embedded system that we defined in detail in Section 4. There has been some work on 

parallelizing applications on multi-processor SDR platform, e.g. the baseband processing in a space 

division multiplexing (SDM)-orthogonal frequency division multiplexing (OFDM) has been 

parallelized in [77] on a platform called ADRES [78]. P.J. Balister [79] tells about processor usage by 

porting the waveform in Figure 27 and getting the component processor usage to conclude the same 

result as ours.  

 

 

 

Fig. 27. Block Diagram for Random Data Transceiver 

The results obtained for each component of the waveform shown in Figure 27 are shown in Table 6. 

P.J.Balister uses OMAP as target embedded system to port OSSIE.  

Component % Processor Usuage 

PulseShaping 50.3 

USRP 3.8 

RandomBits 2.0 

Modulator 1.9 

omniNames 0.1 

                                                     

Tab. 6. Component Processor usage 

In Table 6, PulseShaping contains a FIR filter used for raised cosine pulse shaping. The chip we have 

used integrates sixteen Microblaze-based processing-element tiles that are connected through a 

Network-on-chip (NoC) configuration, as we have explained in detail in Section 4.   

We visualize in detail our parallelization strategy for OSSIE Filter functions in Figure 28. The master 

processor executes various control tasks for multiprocessor environment. In our case, for each filter 

function (see Table 3) being parallelized, this master processor gives the launch signal to other 

processors via synchronized memory, by starting a timer. The slave processors, upon receiving 
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Fig. 28. Parallelization Strategy for OSSIE Filter Functions  

 

the master processor start signal, begin calculating their respective filter coefficients. These processors 

accomplish this by splitting the loop calculating coefficients into N chains with N being the number of 

involved processors. Once all coefficients and the filter length for each respective function is 

calculated within each processor, the slave writes a flag into the synchronized memory to signal that it 

has finished its job. Once all slave processors have finished their tasks, the master processor captures 

the number of clock cycles. In the following subsections, we define the parallelization primitives and 

their usage to accomplish the designed strategy.  

 

7.1     The Parallelization Primitives: 

The parallelization objective is achieved with the help of following designed primitives: 

• Syn_start_work( ) 

Give slaves  the command to start to calculate the respective coefficients. 

•   Syn_work_finished( ) 

 Check if slaves have finished calculating their share of coefficients. 

 

Syn_wait_for_start ( ) 

        for (n=id;n<h_len;n+=N_PROCESSOR)  {    

                           ..................  

             z = (float)(n)/(float)(k)-(float)(m); 

             t1 = cosf((1+beta)*M_PI*z); 

             t2 = sinf((1-beta)*M_PI*z); 

if     ......    h[n] = t4*( 1 + (1-beta)*M_PI/(4*beta) ); 

else ......    h[n] = t4*( t1 + (t2*t3) ) 

                         .................. 

} 

barrier ( ) 

                    

One Master Processor 

Control and  memory initialization 

Syn_start_work( ) 

Return filter length 

Syn_work_finished( ) 

Synchronization 

N Slave Processors 
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•   Syn_wait_for_start ( )  

Each slave waits for master to give this signal before starting and followed by this signal, it starts its 

assigned calculations. 

•   barrier ( ) 

Once each slave is finished its assigned filter coefficient calculation, it uses this function to tell master 

that slaves have finished their assigned tasks. After all the slaves finish executing this function, then 

master captures the number of clock cycles.  

 

7.2    Parallelization Description: 

In this Sub-section, we describe the algorithm design of the three OSSIE Filter Functions, in the 

SigProc Library. We have already explained all the SigProc functions in detail in Section 5.1 of this 

Chapter. In this Section, we deal with the changes in the Algorithm Design made by us, so as to map 

them efficiently on our MPSoC. The important variables of these functions, together with our newly 

introduced variables for efficient parallelization of these functions are: 

 h_len:  Filter length = 2km+1. 

 k: samples per symbol. 

 m: sample delay. 

 id: identity of the specific processor that will carry out the task. 

 N_PROCESSOR: Total Number of Processors (16 in our case). 

 h_len_p: (2k . Npfb . m)+1. 

 Npfb: Number of Filters in Filterbank. 

 N: Number of filterbank coefficients. 

We change the loops of the functions in such a way that leads to efficient load-balancing across all the 

Processing Elements. As an example, in DesignRRCFilter function, the loopto calculate the filter 

length:  for (n = 0; n < h_len ; n++) is changed to for(n=id ; n < h_len ; n+= N_PROCESSOR). The 

variables used in the loops are already defined above.  

We give the enhanced algorithm design and experimental results for achieved speed up in this Sub-

section for: 

1. DesignRRCFilter. 

2. CalculateRRCFilterCoefficients. 

3. CalculateDerivativeFilterCoefficients.  
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Fig. 29. CalculateRRCFilterCoefficients Parallelized Algorithm Design 

 

1. CalculateRRCFilterCoefficientsParallel( 

2.        unsigned int id,  

3.        unsigned int k,      // samples per symbol 

4.        unsigned int Npfb, 

5.        float m,                // delay 

6.       float beta,            // rolloff factor ( 0 < beta <= 1 ) 

7.      float * h   )         // pointer to filter coefficients 

8. { 

9. unsigned int kp; 

10. unsigned int h_len_p; 

11. float h_scale = (float)(k); 

12. unsigned int n; 

13.  float z, t1, t2, t3, t4          /*T(1.0f)*/; 

14. float T=1.0f; 

                     // Create over-sampled pulse 

15. unsigned h_len = 2*k*m*Npfb+1; 

16.  kp=Npfb*k; 

17.  h_len_p = 2*kp*m+1; 

                   // Calculate filter coefficients 

18.                 for (n=id; n<h_len_p; n+=N_PROCESSOR)  

19.                       { 

20.                           z = (float)(n)/(float)(kp)-(float)(m); 

21.                           t1 = cosf((1+beta)*M_PI*z); 

22.                           t2 = sinf((1-beta)*M_PI*z); 

                  // Check for special condition where z equals zero 

23.                               if ( n == kp*m ) { 

24.                                    t4 = 4*beta/(M_PI*sqrtf(T)*(1-(16*beta*beta*z*z))); 

25.                                     h[n] = t4*( 1 + (1-beta)*M_PI/(4*beta) ); 

26.                                                          } else { 

27.                                                                        t3 = 1/((4*beta*z)); 

28.                                                                        float g = 1-16*beta*beta*z*z; 

29.                                                                        g *= g; 

                  // Check for special condition where 16*beta^2*z^2 equals 1 

30.                                                                       if ( g < 1e-3 ) { 

31.                                                                         float g1, g2, g3, g4; 

32.                                                                         g1 = -(1+beta)*M_PI*sin((1+beta)*M_PI/(4*beta)); 

33.                                                                         g2 = cos((1-beta)*M_PI/(4*beta))*(1-beta)*M_PI; 

34.                                                                         g3 = -sin((1-beta)*M_PI/(4*beta))*4*beta; 

35.                                                                         g4 = -2*M_PI; 

36.                                                                         h[n] = (g1+g2+g3)/g4; 

37.                                                                      } else { 

38.                                                                                 t4 = 4*beta/(M_PI*sqrtf(T)*(1-(16*beta*beta*z*z))); 

39.                                                                                 h[n] = t4*( t1 + (t2*t3) ); 

40.                                                                                 } 

41.                                                                         h[n] /= h_scale; 

42.                          } 

43.   } 
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Fig. 30. DesignRRCFilter Parallelized Algorithm Design 

 

1. int DesignRRCFilterParallel( 

2.      unsigned int id,  

3.      unsigned int k,      // samples per symbol 

4.      float m,            // delay 

5.      float beta,        // rolloff factor ( 0 < beta <= 1 ) 

6.      float * h )       // pointer to filter coefficients 

7.           { 

8.              unsigned int h_len; 

9.              unsigned int n; 

10.        float z, t1, t2, t3, t4 ;     /*T(1.0f)*/ 

11.        float T=1.0f; 

12.        h_len = 2*k*m+1; 

           // Calculate filter coefficients 

13.     for (n=id; n<h_len; n+=N_PROCESSOR)  

14.        { 

15.         z = (float)(n)/(float)(k)-(float)(m); 

16.         t1 = cosf((1+beta)*M_PI*z); 

17.         t2 = sinf((1-beta)*M_PI*z);  

          // Check for special condition where z equals zero 

18.            if ( n == k*m ) { 

19.               t4 = 4*beta/(M_PI*sqrtf(T)*(1-(16*beta*beta*z*z))); 

20.               h[n] = t4*( 1 + (1-beta)*M_PI/(4*beta) ); 

21.                            } else { 

22.                                    t3 = 1/((4*beta*z)); 

23.                                    float g = 1-16*beta*beta*z*z; 

24.                                    g *= g; 

         // Check for special condition where 16*beta^2*z^2 equals 1 

25.        if ( g < 1e-3 ) { 

26.                 float g1, g2, g3, g4; 

27.                 g1 = -(1+beta)*M_PI*sin((1+beta)*M_PI/(4*beta)); 

28.                 g2 = cos((1-beta)*M_PI/(4*beta))*(1-beta)*M_PI; 

29.                 g3 = -sin((1-beta)*M_PI/(4*beta))*4*beta; 

30.                 g4 = -2*M_PI; 

31.                 h[n] = (g1+g2+g3)/g4; 

32.                         } else { 

33.         t4 = 4*beta/(M_PI*sqrtf(T)*(1-(16*beta*beta*z*z))); 

34.         h[n] = t4*( t1 + (t2*t3) ); 

35.                                } 

36.                                    } 

37.      } 

38. return h_len; 

39.    } 
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Fig. 31. CalculateDerivativeFilterCoefficients Parallelized Algorithm Design. 

These three algorithms are parallelized with the shown strategy using the designed parallelization 

primitives explained in Sub-section 7.1. The results of using these parallelization primitives on OSSIE 

Filter Functions using our designed parallelization strategy are shown in Table 7. 

 
Filter Function Single processor Time Speed up with 16 processors 

DesignRRCFilter 928,204 14.39 

CalculateRRCFilterCoefficients 35,116,101 15.23 

CalculateDerivativeFilterCoefficients 40320 6.56 

 

Tab. 7. Speed up of OSSIE Filter Functions using Multi-processor platform 

 

8.   Additional Functionality in SDR waveform: 

The reconfigurability offered by the general purpose platform defined in Section 4 makes it highly 

exploitable for all the SDR waveform components embedded implementation, irrespective of their 

algorithmic structure. In this Section, we partition the two SDR waveform resources: FFT and Viterbi 

1. CalculateDerivativeFilterCoefficientsParallel ( ) 

2.          { 

3.                  unsigned int h_len=8; 

4.                  unsigned int Npfb=8; 

5.                  unsigned int N = h_len*Npfb; 

6.           float * dH = (float*)malloc (N * sizeof(float)); 

7.           float * H =(float*) malloc (h_len*sizeof(float)); 

8.           unsigned int i; 

9.               for (i=id; i<N; i+=N_Processor)  

10.                       { 

11.                            if ( i==0 ) { 

                                                           dH[0] = H[1] - H[N-1]; 

12.                                              }  

13.                           else if ( i==N-1 ) { 

14.                                                         dH[N-1] = H[0] - H[N-2]; 

15.                                                        }  

16.                           else { 

17.                                     dH[i] = H[i+1] - H[i-1]; 

18.                                   } 

19.                 dH[i] /= 2.0f; 

20.                       } 

21.           free(dH); 

22.           free(H); 

23.          } 
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decoding on MPSoC. These two algorithms constitute the second class of SDR waveform components 

as they require considerable amount of intercommunication, while computing. These both algorithms 

are different from each other in the way they intercommunicate, using the designed data and 

synchronization NoC.  

The parallelization efforts of FFT and Viterbi Decoding have been done by simulations [80,81] which 

do not take into account the memory synchronization. The automatic parallelization extraction tools 

for embedded architecture [82] penalize the performance by poor resource utilization. The specialized 

coprocessor approach [83, 84] is also in contrast to our proposal as we target a general purpose 

MPSoC.  Since we target our efforts towards the SDR waveform reconfigurable components design, 

we feel that it is important to site the concept of Parameterization, which leads to a single procedure 

for all the common aspects of multiple Standards. This is accomplished by functions that are 

modifiable via parameter adjustment. There are two techniques of parameterization: top-down or 

Common Function (CF) [85] and bottom-up or Common Operator (CO) [86]. CO identifies the 

components, so as to reuse them throughout the waveform by adjusting their parameters. Palicot‟s CO 

Technique [86] demonstrated the replication of FFT in different transceiver components (Filter, 

Channel estimation, RAKE equalization, OFDM Modulation, Channelization), thereby making it 

exploitable by most of the functions of all the Standards. This notion is in contrast to CF Technique 

[85] where the components (Channel Coding, Modulation, Interleaving etc.) had to be Standards 

dependent in some way, by aggregation, for example. The CO can be determined by using any 

machine learning technique defined in Chapter 3. As an example, Simulated Annealing has been used 

to determine common operators in a multi-standard design scenario [87,88]. The Standards considered 

are WiFi (operating in three modes), WiMAX and UMTS.  This Simulated Annealing based method is 

referred to as a Theoretical Approach in contrast to a two-fold Pragmatic Approach which is presented 

in [89], by Alaus. This pragmatic approach is applied to Reconfigurable Linear Feedback Shift 

Register (R-LFSR) and FFT, to find the common operators in Pseudo Random Sequences, Scrambling 

and Convolutional Encoder, in addition to components mentioned in [86]. These operations are 

dependent on a specific set of parameters [90]. Ghouwayel [91] investigates a 256 point FFT 

implemented on STRATIX-II, in a multistandard context, leading to another CO example. Naoues in 

[92] studies Viterbi Trellis and FFT Butterfly to decompose the two algorithms in different stages, 

eventually coming up with common operator architecture that reduces the complexity to 5% for both 

the algorithms under specific conditions. The Theoritical Approach for parameterization technique for 

CO method is further enhanced in [93] by Wang, where a radix-4 1024 point FFT architecture using 

R-LFSR based CORDIC operator is proposed. Thus, parameterization (using CO approach) is an 

important concept in the reconfigurable waveform component design, as it is an effort towards the 

same direction of multi-standard transceiver design, using reconfigurability. This work exploits the 

potential of actual NoC based MPSoC for FFT and Viterbi Decoding to add further functionality to 
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our designed SDR waveform. We target the inherent tedious intercommunication of the 

aforementioned algorithms and challenging memory synchronization tasks on the multicore that is 

implemented on a single chip.  

 

8.1     FFT Parallelization Strategy:  

Fast Fourier Transform is used for multi-resolution spectrum sensing in SDR applications. We have 

selected the radix-2 decimation in time (DIT) FFT algorithm as it is the easiest to exploit with respect 

to parallelization and thus implementation on our designed multiprocessor platform. Suppose p is the 

number of PEs over which we have parallelized and n is the number of transformed points of Discrete 

Fourier Transform (DFT). We have kept the value of n constant, 1024 and p is changed each time to 

get the number of clock cycles for different number of PEs.  

The sequence of n points is divided into p consecutive subsequences, each of size n/p. Each 

subsequence is fed into individual PE, MicroBlaze. Our FFT algorithm consists of log (n) =10 steps, 

with each step to do butterfly computation with respective index difference. The algorithm is divided 

in two phases. For first phase (step 0 to step log (n/p)-1), there is no communication between pair of 

processors. The master processor, responsible for execution of various control tasks in our 

multiprocessor environment, gives the launch signal to other processors via synchronized memory. 

The slave processors, upon receiving the master processor start signal, begin calculating their 

respective FFT coefficients in parallel and independently, until the end of first phase. Each slave  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. Phase 1 of FFT Algorithm: Iterative Computation for each PE without communication 

Each PE Computation for FFT 

 

1. Input: c= ),....,(
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q
 

6.               for (k=0 to n/p-1) 

7.                  { 

8.                     if(i*n/p+k)mod l=(i*n/p+k)mod 2l 

9.                         {   

10.                            m=(i*n/p+k)mod l 

11.                            c[k]=c[k]+c[k+l] *  z
m
 

12.                            c[k+1]=c[k]-c[k+l] * z
m
 

13.                         } 

14.                  } 

15.    } 
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Fig. 33. Phase 2 of FFT algorithm: Communication between pairs of processors 

writes a flag into the synchronized memory to signal that it has finished its job.  During the second 

phase (step log (n/p) to step log (n-1)), each processor communicates with another processor with the 

same communication primitives. At each step, in the second phase, there are p/2 processors computing 

in parallel after their communication with their corresponding other p/2 processors. Each processor 

computes 2n/p points. Communication between processors, being an overhead, occurs only during the 

last log (p) steps. At each of these steps, there is one data exchange between pairs of processors. Once 

the log (n-1)th step is finished by the pair of processors calculating the respective FFT points, the 

master PE captures the number of clock cycles. The two phases are shown in Figures 32 and 

33,respectively. 

 

8.2     Viterbi Decoding Parallelization Strategy: 

Viterbi Decoding Algorithm for Convolution or Bose - Chaudhuri-Hocquenghem (BCH) codes is an 

error correcting code that allows the channel capacity to approach that of Shannon‟s limit, leading to 

efficient bandwidth utilization. It is frequently   applied to   maximum likelihood trellis decoding of 

linear codes, e.g. convolution codes. We treat the Viterbi algorithm in terms of the famous path cost 

Communication between each pair for FFT  
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       for each pair of PE 

7.          if (i mod t =i mod 2t)  

       Receive data from tt-th processor and store into DDR 

8.                 {                       

9.                   tt=i+p/v 

10.                   c[n/v]-c[n/v+(n/p)-1] 

11.                       for( k=0 to n/p-1) 

12.                          { 

13.                             m=(i*n/p+k) mod l 

14.                            c[k]=c[k]+c[k+n/v]* mz  

15.                           c[k+n/v]=c[k]-c[k+n/v]*
mz  

16.                         } 

                    Send the transformed data stored in DDR to tt-th processor   

17.                } 

18.   } 
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minimization problem that is closely related to matrix multiplication [94]. The algorithm is then 

parallelized by the row-wise partitioning of this matrix. n – k bits are added to a message of k bits, so 

that each code word is n bits long. Suppose p is the number of PEs and the code parameters (n , k, dmin) 

are of the form,  n =2
m-1

,  n – k ≤ mt, and the minimum Hamming distance is dmin≤ 2t +1. The state of 

the Viterbi trellis is represented by a weight vector,


w , each element, ws, of which gives the Hamming 

weight of the current path in state s. For the objective of decoding, it is easier to represent the state 

transition table as a matrix S in which the elements  sij =1, if   state i can be arrived at from state j, 

otherwise  sij =0.  Our parallelization strategy is to distribute row- wise the S matrix, resulting in a two 

processor solution if the matrix is cut in two halves, for each half the matrix vector reduction is 

performed independently of the other half, although each processor requires the entire weight vector.  

The size or the number of states for code that we considered is 2
16

 for a code (255,239,5). Channel 

output, co[32p],is input to algorithm, whereas decoded output, do[p], is the output where p is the 

number of processors.  If the above explained dichotomy of the S matrix is continued, it will result in 

the generation of more complex task graphs, in which each processor represents a single state. Thus 

the parallel Viterbi decoding algorithm for a (n, k, dmin) code comprises of n matrix multiplications,  

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 34. Processing done by each PE for Viterbi Decoding Algorithm 

Each PE Computation for Viterbi Decoding 

 

1. Input: co [32p]  

2. Output: do [p] 

 

3. for (state=0 to p) 

4.    { 

                    for each PE 

5.       prev-state0=(state<<1) 

6.    m0=partial_metrics[prev_state0%p]+w[ccodedot11_table[prev_state0]] 

7.      prev_state1=(1+(state<<1)) 

8.     m1=partial_metrics[prev_state1%p]+w[ccodedot11_table[prev_state1]] 

9.         if (m0>m1) 

10.          { 

11.            partial_metrics_new[state]=m0 

12.           survivors[state][position]=prev_state0%p 

13.           inputs[state][position]=(state>31)?1:0 

14.                 if(m0>max_metric) 

15.                       max_metric=m0 

16.          } 

17.         else 

18.          {  

19.            partial_metrics_new[state]=m1 

20.           survivors[state][position]=prev_state1%p 

21.            inputs[state][position]=(state>31)?1:0 

22.                if (m1>max_metric) 

23.                     max_metric=m1; 

24.          } 

25.    } 
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each multiplication taking time proportional to n/p. After all processors have finished their assigned 

tasks, the total numbers of clock cycles are captured by master processor. The computation made by 

each PE is shown in Figure 34. 

 

9.   Experimental Results for FFT and Viterbi decoding Parallelization: 

The number of clock cycles and speed up for each of these two algorithms is shown in Tables 8 and 9 

respectively. Speed up is the ratio between number of clock cycles needed for computation on a single 

PE and number of clock cycles needed for computation on multiple PEs. Each of these two algorithms 

is ported four times changing the number of PEs each time to judge the effects of NoC characterized 

by bandwidth and latency. Each time we have configured our platform architecture to include 1, 4, 8 

and 16 PEs respectively. The corresponding speed up for each of these configurations for both the 

algorithms as shown in Tables 8 and 9 is excellent. However, we observe that speed-up begins to 

diminish with the addition of more processors after the PE count is increased from eight. This is in 

contrast to the other algorithms (OSSIE Filter Functions) that we mapped on the same platform. In the 

case of FFT, the required communication overhead increases with the increase in the number of PEs 

because each processor communicates with its peer for synchronization. In the case of Viterbi 

decoding, the speed is solely the effect of communication cost between PEs to communicate the most 

feasible path. Also the task graph for Viterbi decoding changes with the number of PEs deployed to 

parallelize, and it tends to become more complex with the addition of processors more than 8. The 

speed-up for both the algorithms for different PEs is shown in Figure 35. We propose to further 

enhance performance efficiency by exploiting the fact that each PE, MicroBlaze, has the capability to 

execute its assigned tasks independent of the other fifteen PEs. We can divide the 16 PEs in further     

Fast Fourier Transform 

Test Mode Number of clock cycles Speed up 

Single processor 2,087,142 - 

4 processors 668956 3.12 

8 processors 348438 5.99 

16 processors 187,693 11.12 

 

Tab. 8. FFT Speed up for different number of PEs. 

 

Viterbi Decoding 

Test Mode Number of clock cycles Speed up 

Single processor 1667911 - 

4 processors 483452 3.45 

8 processors 277522 6.01 

16 processors 145287 11.48 

 

Tab. 9. Viterbi decoding Speed up for different number of PEs. 
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independent groups, e.g. in three groups of 8, 4 and 4 PEs, followed by the porting of FFT on the first 

group of 8 PEs and two Viterbi Decoding Algorithms, independent of each other,  on the second and 

third group of 4 PEs, each. The total number of clock cycles, instead of being the sum of clock cycles 

for all three ported algorithms, 1,315,342, will be the clock cycles to execute the algorithm requiring 

the most number of clock cycles, 4,83,452 that correspond to Viterbi Decoding in this case. Thus the 

execution time is reduced to 63%. This means that we can even increase the number of PEs from 16 

and can port other SDR resources such as Filter, Algebraic, Modulation and Demodulation Functions 

that constitute a complete SDR waveform. This way the complete SDR waveform can be mapped on 

the same chip exploiting the parallelism to address the area performance trade-offs for efficient SDR 

waveform embedded implementation. 
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Fig. 35. Speed-up versus PEs for FFT and Viterbi Decoding 

 

10.     Other Functions to be realized: 

We have addressed the parallel implementation of the most important functions and the other 

identified functions from OSSIE SigProc have been implemented on the embedded processor, 

Microblaze.  There are many efforts that talk of more functionality in the baseband. In this regard, we 

have already cited the IDROMeL [37] project in Chapter 3. We have already defined the processing 

units: FFT, generic mapper for modulation detection, generic modulator, generic interleaver with rate 

matching, convolutional and cyclic encoder and viterbi decoder, addressed for two standards 

communication: UMTS and WiMAX. A single chip software defined IEEE 802.11.a and IEEE 

802.11.b based communication task is achieved in [95], by implementing accelerators: FFT/IFFT, 

viterbi decoder, scrambler/descrambler, CRC, convolution encoder and FIR filter. The WINLAB 

network centric cognitive radio (WiNC2R) [96] is another CR platform whose baseband 

functionalities (FFT, viterbi decoding, Reed-Solomon coding) are implemented to deal with multiple 
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Standards. The dynamic switching between a number of OFDM and DSSS modems is the highlight of 

this effort. The Viterbi decoder portion of baseband functionality is implemented as ASIC in the 

project of Annabelle [97, 98], that deals with OFDM based standards. These efforts correspond to all 

the basic functions needed to implement this technology. We can compare these efforts to 

microprocessor development that started with the basic instruction processing general purpose 

computation engine, that we call microprocessor today, which has the capability to solve all the 

problems in the framework of the basic instructions: LOAD, STORE, IF JUMPS and CALL functions. 

The overall baseband functionality (at receiver side of the transceiver) that has to be software defined 

consists of a number of steps.  The signal from antenna is selected for the frequency regions of the 

specific Standard by means of a preselection filter. This is followed by amplification, band limitation, 

A/D conversion, low pass filtering. The base band portion takes care of equalization, demodulation, 

decoding and despreading, if necessary. The equalization, that addresses the multi-path impairment in 

wireless channels, has been shown to be achieved by FFT in [86]. The other method to implement an 

equalizer is via finite impulse response (FIR) filter. Before the baseband processing, the Inphase and 

Quadrature components are generated. This complex mixing and filtering can be merged as addressed 

in [93]. In the context of a Multi-standard Transceiver design components, if we assume a transceiver 

design that takes into account the features of all the existing Standards: allocated frequency, signal 

power level, the essential signal to noise ratio, then it does not hinder in the addition of future expected 

standards, as the functionality remains the same with the adjustment of parameters. However, the 

differences and similarities between different Standards should be carefully explored. We can quote 

the example of Common Operators Parameterization approach that we have cited in Section 8 of this 

Chapter. The transmission functions are the counterpart of the functions that we have described so far, 

i.e. channel coding, modulation, spreading (in the case of CDMA, for example) and pulse forming. We 

must note that pulse shaping is usually a root-raised cosine rolloff filter addressed in equation (4.2) of 

this Chapter. The Inphase and Quadrature components are D/A converted and filtered by a filter 

tunable to different Standards.  Before transmission, the signal is amplified and band pass filtered. As 

we have mentioned the exploration efforts of similarities between different Standard functions, we feel 

that it is important to illustrate it with an example. If we consider GSM, then the baseband function of 

channel coding is accomplished by convolutional encoder and interleaver. If we implement the 

convolutional encoder in such a way that it can adapt to perform a recursive systematic encoding, with 

multiple iterations, we can change the functionality from convolutional to turbo coding, which are a 

special kind of convolutional codes. Another modern type of channel coding is based on Reed 

Solomon (RS) codes that are a type of cyclic codes, known to correct burst-type errors in wireless and 

mobile communication units and satellite links. These promising codes are adopted by many wireless 

Standards, like WiFi and WiMAX.  The Turbo decoding of UMTS is addressed in [99]. The third 

generation mobile systems use both: convolutional and turbo coding.  The convolutional codes have 

proved to be a better choice for speech transmission, whereas turbo codes are employed to permit data 
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rates up to 2 Mbit/s in the case of bit error rates of less than 10
-6

 for particular applications. We also 

observe that the same signal processing function may be implemented either in same way or different 

way for different Standards, e.g. a trellis-based equalization scheme is implemented for GSM, whereas 

RAKE receiver for UMTS in [100]. At the same time, both Standards use the same channel estimation 

scheme. The baseband functions of different Standards: channel encoding, modulation, spreading, 

have been studied in detail to find the similarities between the same functional block for different 

Standards [101]. Source encoding and encryption are important components of a communication 

chain. We have addressed the FFT implementation and have already cited its use as a CO in Section 8, 

which is presented in [86, 91]. The tasks include filter functioning, channelization, channel estimation, 

correlation and spreading/despreading. The authors [89] present the idea of different blocks: pseudo 

random sequence generators, scramblers, convolutional coder, cyclic redundancy check and block 

channel coding, implemented by Reconfigurable Linear Feedback Shift Register. Furthermore, the 

functions of scrambling, CRC and convolutional coding are replaced by different LFSR operators for 

different Standards. Delahaye [102] groups the baseband functions comprising a multi-standard 

functionality into three functional classes: coding, data handling and modulation. The coding class 

includes functions like cyclic coding, convolutional and turbo coding. Data handling class manipulates 

data packets by concatenation, segmentation and multiplexing functions. Modulation class includes 

RRC Filtering, mapping, scrambling and spreading. 

Thus, in this Section, we gave a brief overview of the other building blocks needed to realize an 

efficient Multi-standard Transceiver. Although we have addressed the most important functions 

needed by all the Standards, the parallelization of many building blocks to map them efficiently on the 

addressed MPSOC, discussed in this Section remain a future perspective to add further functionality, 

with respect to the treatment of all the Standards, in the designed waveform.  

11.     Conclusions: 

This chapter showed that significant progress has been made towards making portable software radios 

commercially viable. We described in detail our efforts that contribute to this endeavour. We 

described our target 16 Processing Element Network on chip based general purpose Multiprocessors 

System on chip (MPSoC), implemented on a single chip Xilinx Virtex-4 FPGA. This general purpose 

¨MPSoC is used to port the SDR waveform components after designing an efficient parallel 

implementation strategy. We started with the Signal Processing Library of OSSIE that implements 

DSP algorithms. We studied SigProc in detail and identified the functions requiring optimization and 

then implemented them in an optimized fashion after deciding the appropriate cache size needed for 

each function. We parallelized the optimization requiring functions and ported them on our MPSoC, 

gaining significant speed up. We moved one step further by optimized parallel implementation of two 

SDR resources, FFT and Viterbi Decoding, after designing an efficient parallelization strategy on the 
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same platform and obtained excellent speed-up. We showed that we can benefit from the capabilities 

of multiprocessor platforms to enhance the performance of computationally intensive SDR waveform 

algorithms while keeping the flexibility that such platforms allow, in particular by shifting short term 

development into software domain. However we are reminded of the limitations and problems that can 

occur when adding more processors. We addressed this limitation by partitioning the PEs for different 

waveform components and thus achieving optimized platform utilization.  In the last Section, for the 

sake of completion, we give a list of functions that have been implemented by researchers – and not 

parallelized by us – to realize Multi-Standard Transceiver design.  

The next Chapter sheds light on our efforts to enhance our designed SDR waveform by cognition 

incorporation, so as to change it into a cognitive waveform. We have already introduced the idea of a 

Universal Transceiver capable of operating in different Standards mode and switching to the 

appropriate configuration, in Chapter 3. In this framework, the next Chapter explains our strategy to 

engineer such a Multi-Standard Universal transceiver using machine learning technique of Artificial 

Neural Networks. It addresses our motivation to choose this very machine learning technique amongst 

 the available techniques that we described in Chapter 3.  
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Chapter 5:  

 

Standard Recognizing Artificial Neural 

Networks Based Reconfigurable Cognitive 

Radio Transceiver and its Embedded 

Implementation. 

 

1.    Introduction: 

We have already defined a Cognitive Radio as a radio that has awareness of changes in its 

environment and in response to these changes adapts its operating characteristics in some way to 

improve its performance or to minimize loss in performance. This adaptation of characteristics in some 

way is where the Artificial Intelligence (AI) techniques come into play. Being aware of the existing 

operators in the environment, CR should choose the best available option based on performance for 

each application. The potential for cognition incorporation in a radio has also been found by IEEE that 

can be witnessed by IEEE 802.22 protocol specifications that aim at design of a new cognitive radio 

interface. The choice of decision algorithm to adapt the radio characteristics accordingly is a 

challenging topic, since several optimization schemes are available in literature. We will analyse all 

these strategies in this chapter, justifying our choice of Neural Networks Selection.   

Cognitive Radio Systems have transceivers with the ability to adjust their operating parameters after 

observing the results in order to decide to operate in a specific radio configuration, expecting to move 

the radio towards some optimized operational state. Furthermore, CR system design has to be based on 

single chip multiprocessors as the mode switching from one radio configuration to another is a real 

time constraint and only single chip multiprocessors address such high performance and flexibility 

requirements. Framed within these two statements, this chapter proposes and implements three Neural 

Networks (NN) Schemes: Self Organizing Maps (SOM), Linear Vector Quantization (LVQ) and 

Multi-Layer Perceptrons (MLP) as effective techniques for reconfiguring transceivers after 
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recognizing the specific standard based on input parameters extracted from the signal. We exploit the 

inherent property of SOM, Tonotopy [107], to recognize the standard in our proposed multi-standard 

cognitive transceiver. In the case of MLP, we have used Mean Square Error (MSE) as a metric for 

measuring the MLP‟s performance. We implement our proposed multi-standard CR Transceiver based 

on aforementioned three Neural Networks, on 16 Processing Element (PE) Network on chip (NoC) 

based general purpose Multiprocessors System on chip (MPSoC), implemented on a Xilinx Virtex-4 

FPGA, in order to meet the challenge of the ITRS Roadmap prediction [60] that directly limits the 

capabilities of agile frequency operations of CR. Each MPSoC resource has different execution 

frequency according to its requirement. We obtained speed-up greater than 13 for all three algorithms, 

designed to recognize the standard based on received signal parameters, that verifies our approach of 

Neural Networks based Cognitive Transceiver implementation on general purpose MPSoC. We target 

this work at cognition incorporation in our designed Software Defined Radio (SDR) waveform.  

Multimode reconfigurable devices adapt their behaviour to the changes in environment. As an 

example, second and third generation cellular radio access technologies and 802 wireless standards 

can be quoted. In this respect, future CR devices, candidates for 4G radio interface networks, will have 

the capability to optimize their state thereby adjusting their operating parameters accordingly, after 

sensing the environment variables. This is explained in cognition cycle [23]. One such example of 

moving the radio in an optimized state after sensing the parameters is that of an universal transceiver 

that is capable of operating in many transmission systems and that can be made to operate in a desired 

standard, by intelligence incorporation.  In this work, we deal with such intelligence incorporation 

techniques in the transceiver. We address the problem of intelligent detection of a wireless standard 

among a predefined list of standards to address the challenge of multimode reconfigurable devices. We 

target at the identification of characteristics of a signal, pertaining to different layers of a 

communication system, thus cross-optimizing cognitive transceiver. We propose to identify the 

parameters specific to a particular standard using Unsupervised Neural Networks called Self-

Organizing Maps (SOM) and Linear Vector Quantization (LVQ) [104] and Supervised Neural Neural 

Technique, MultiLayer Perceptron (MLP) [105].  The difference between Supervised and 

Unsupervised NNs is the existence or non-existence of desired output during learning. Multi-Layer 

Feed Forward NN (MFNN) and Multi-Layer Perceptron are the most common examples of Supervised 

NN. Unsupervised NN Techniques are more suitable in building CRs that require minimal pre-

configuration. MLP, being a Supervised Neural Network, is exploited to have an estimate of 

transmission power needed in the case of huge data range, as in the case of IEEE 802.22 cognition 

incorporation standard [106]. We explore in detail the decision between the three Neural Networks, 

based on signal features detected in Section 4.  The motivation to use SOM and LVQ for our standard 

recognition problem comes from their inherent property of Tonotopy [107] explained in our problem 

context in Section 4.2. 
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Another reason to choose LVQ, SOM and MLP based cognition incorporation algorithms is their 

inherent tendency towards parallelism that facilitates to address the gap between software and 

hardware design productivity. Since future generation System on chip (SoC) will experience an 

exponential increase in the number of processing engines and processors, we have exploited the 

inherent Neural Network parallelism in the framework of CR embedded implementation on our multi-

core chip. Also MPSoC have many advantages, such as reduced short term deployment cycles because 

of which newer versions and new functionality, such as a new parameter to be detected in the received 

signal by CR, can be added through software development. This makes MPSoC, together with NN 

Techniques, a strong candidate for efficient CR multi-standard transceiver embedded implementation. 

There has been some proposals about reconfigurable radio platform, e.g. Q.Zhang [97, 98] proposed a 

heterogeneous System-on-chip consisting of General Purpose Processor (GPP), Domain Specific 

Reconfigurable Hardware (DSRH), DSP, FPGA and ASIC tiles, connected by router based NoC. 

However, the basic limitation lies in unused tiles, when an application is mapped on appropriate tiles. 

This limitation results in inefficient resource utilization. We overcome this limitation by an efficient 

load balancing across all 16 Processing Elements (PE). The speed-up we obtained for our cognitive 

NN algorithms demonstrate LVQ, SOM and MLP as potential solution to the standard recognizing 

multi-standard CR transceiver embedded implementation. In the next section, we go through a brief 

review of Neural Networks and their applications.  

 

2. Neural Networks Review: 

Artificial Neural Networks (ANN or simply NN) are made up of artificial neurons interconnected to 

each other to form a programming structure that mimics the behaviour and neural processing 

(organization and learning) of biological neurons in human brain. NNs try to mimic the biological 

neurons to solve the problems with cognitive or associative tinge. It is because of this reason that 

neural networks have extensive and huge applications. They are known to have applied successfully to 

speech recognition, image processing, time series prediction, function approximation, classification, 

recognition, adaptive control and many other areas. The architecture of NNs has three types of 

computing units or neurons: input neurons that deal with the external stimuli by accepting the data to 

be processed from the external environment, which are organized in the so called input layer, output 

neurons that send the data to the external environment comprising of output layer, and hidden neurons 

which are the processing units composed of one or more hidden layer(s). The input and output signal 

of hidden layer (layers) neurons remains inside the network.   

Irrespective of any application, a NN is required to be configured in such a way that a specific set of 

inputs from any application gives the desired output. This task is accomplished by proper adjustment 

of connections among neurons of different layers. This connection between any two neurons of  
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different layers is called weight. The adjustment of weights in such a way that a known input produces 

the desired output is called learning. To this effect, NNs work in two modes: Learning and Testing. 

Before putting a NN into operational phase, it is required to learn about the features of a specific 

application. This learning task can be of two types: Supervised and Unsupervised. Supervised 

Learning is applied in cases when the desired output is known well ahead in time. During learning 

phase, the NN is given with the teaching patterns of input so that it modifies its weights to converge to 

the desired output according to some learning algorithm. This weight modification leads to the match 

of actual output with the desired known output. The Unsupervised Learning is applied in the cases 

where the desired output is not known in advance. The NN, in Unsupervised Learning, makes use of 

statistical techniques to learn about the remarkable features of the applied input patterns. This way, 

NN classifies itself to adjust its weights accordingly till the right output iteration is achieved. The way 

NN operates is similar to human brain operations. The general principle of connection of neurons is 

also inspired by human brain in such a way that the transmission activity of a group of neurons to 

another group of neurons via connections, transfers the information to reach the correct output. There 

are many models and topologies of Artificial Neural Networks, inspired from the rules and principles 

of biological neurons. All topologies provide the following functions:  

 Knowledge is acquired through a process of training. 

 Each connection is provided with an adaptive weight. 

 The training is done by modification of connections. 

The neuronal approach is opposed to the symbolic system approach that is based on assumption where 

the reasoning modelling is a combination of symbols being subject to the logical rules. Thus Neural 

Network approach has the privilege of the following advantages. 

 Parallel real time activity. 

 The distributed representation of knowledge. 

 The training by modification of connections. 

However, there are certain limitations of Artificial Neural Networks, such as, 

 There is no systematic rule to determine the network architecture. 

 There is no analytical solution so as to where to use the iteration. 

 They take rather long time for training and optimization. 

 Various initial conditions of the weight values can lead to various solutions that have different 

performances. 

 Difficulty of interpretation without expert testimonies. 
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We can overcome these limitations if we select the appropriate learning method followed by 

appropriate algorithm. Normally, a supervised learning algorithm is known to overcome these 

inconveniences. However, this is not a hard and fast rule. There are many applications which are 

inherently suitable for unsupervised learning. The proper readjustment of the probability distribution 

at the output side will make it possible to adapt the NN according to our application needs. We 

describe the structure and architecture of three neural networks LVQ, SOM and MLP that we have 

used in this chapter. 

 

2.1  Structure and Architecture of Artificial Neural Networks: LVQ,  

SOM and MLP: 

In this Chapter we have used three neural network models: LVQ, SOM and MLP. The majority of 

these classifiers consist of multi-layer networks of neurons. These kind of networks have the 

advantage of solving the problems of data classification, non-linearly separable. In SOM, the neurons 

can learn how to classify input vectors in a way that the same group of neurons are grouped in a space. 

This differs from other neural networks where the neurons and their neighbors learn how to recognize 

grouping within the entry space. There is a layer of competitive neurons that consists of an input 

vector with N elements connected by weights to m neurons. The output of competition layer consists 

of Euclidean distance calculated for each neuron. The neuron having the minimal distance is declared 

to be the winning neuron. For the training, the rule of evolution of the weights of the neurons follows 

the Kohonen except that instead of activating the single winning neuron (minimal distance), all 

neurons being in vicinity (lower than a distance D, for example), will also be activated. The 

mathematical rules for update and neighbourhood function will be explored further, later in this 

chapter. 

The architecture of competitive layer for SOM and LVQ is made up of two layers: an input layer with 

N entries and an output layer made up of k=p*q neurons. This enables us to present the second layer 

known as the class separation for the SOM and classification for the LVQ as being common to both 

Neural Networks.  The characteristics of model that belong to this category lies in the fact that relevant 

information will be extracted only from the organization of the data presented to the input.  

The MLP is characterized by the presence of one or several hidden layers, whose corresponding 

calculation nodes are called hidden neurons or hidden units. The hidden layer interposes between the 

entry and exit of the network. The role of hidden layer is to carry out a pre-treatment signal received 

by the input layer coming from the external medium, and to transmit the results corresponding to the 

output layer where the final output of the network will be given, before it is transmitted to the external 

medium. The entries of the neurons of a particular layer come from the exit of the preceding adjacent 
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layer. The activation function used for the neurons is derivable. The functions used generally are 

threshold, semi-linear or sigmoid.  We will delve in detail of our used activation function later in this 

chapter.  

3. Related Work: 

There have been some proposals describing cognition incorporation within a radio. Traditional CR 

proposals rely on a priori characterization of the radio states, which are often derived from analytical 

models, e.g. in [109] analytical models of bit error rate (BER) performance of different schemes are 

used to derive three objective functions, BER, throughput and power consumption. These objectives 

are then evaluated in the process of optimizing the chosen physical (PHY) layer configuration. Van 

[110] describes a generic framework for cross layer optimization of multimedia communications in 

which analytical models are used to define modulation and channel coding schemes for PHY layer, 

different packetization, automatic repeat request (ARQ), scheduling and forward error correction 

(FEC) mechanisms for MAC layer and then propose cross layer optimization strategy for these 

objective functions of different layers. These analytical models are not always practical due to the 

limitation of modelling assumptions and non-ideal behaviour in real life scenarios. In order to 

overcome this limitation, there are more pragmatic approaches, that talk of Genetic Algorithms [111, 

112] and Fuzzy Logic [113]. However, the common drawback of both the approaches is that they do 

not provide any means of learning from past experiences, thus failing to exhibit one of the key 

properties of CR. Also the convergence in Multi-Objective Genetic Algorithms is slower and that 

makes this solution less viable in real time scenario of CR parameter detection [114]. In [115] 

Markov-based Channel Prediction Algorithm (MCPA) is presented for dynamic spectrum allocation in 

cognitive radio networks. However Hidden Markov Models, in general, can not be considered for 

performance modelling in CRs, primarily due to the difficulty of representing the type of input/output 

relationship needed for orientation, as explained in cognition cycle. Another proposal talks of Swarm 

Intelligence [116]. All these CR proposals have a common drawback, i.e. if any new parameter has to 

be added in the system input, these models have to be re-designed from scratch.  

The motivation towards neural network based solutions to the standard recognition problem in CR 

scenario comes from all these observations. Cognitive Radio can effectively learn as we train the 

neural network characterizing system performance with data obtained from observations performed by 

the CR itself. There has been some work based on intelligence incorporation using neural networks in 

CR. Zhang [117] simulates an Error Back propagation (BP) Neural Network in MATLAB that 

considers changeable and unchangeable parameters of Cognitive Radio. A.F. Cattoni [118] presents 

Mode Identification and Spectrum Monitoring (MISM) process that uses the features extracted from 

incoming radio signal, which are fed to a three layered Neural Network that uses MSE on training set 

as a cost function. Clancy [119] simulates SOM for false signal detection of primary user based on 
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feature detection. He used MATLAB Neural Network Tool Box, that, unlike our choice, SOM Tool 

Box does not provide with all the features of SOM.   Tsagkaris [120] uses a set of 3000 training data 

input values to predict the anticipated capabilities taking into account recent information sensed. 

However, his work is oriented towards data rate prediction only, rather than standard identification. 

Baldo [121,122] presents MFNN to predict the throughput performance of an infrastructured 802.11 

cell, leading to dynamic channel selection. Ustundab [123, 124] uses MATLAB to simulate MLP 

Neural network based decoding receiver, which uses frequency and amplitude to distinguish between 

signal patterns leading to an efficient communication bandwidth. MLP and MFNN are supervised 

learning schemes that make them less pragmatic for our application as we want to recognize the 

transmission system in use without any prior knowledge about the signal at the receiver, i.e. desired 

outputs do not exist during learning procedure. Bixio [125] distinguishes between two transmission 

standards based on their extracted features using Simplified Fuzzy ARTMAP (SFAM) neural network 

ensembles. In a similar effort to ours, Hachemani [126] proposes the idea of a standard recognizing 

sensor, although his proposal is limited to physical layer features pertaining to a standard. The 

implementation details of such a sensor are not addressed. For each standard to be recognized the 

features to be tested are different, thus leading to some a priori knowledge regarding the standard to be 

recognized. 

This overview shows that there has not been any effort in considering the parameters pertaining to 

different layers to recognize a standard. We consider application layer parameters such as localization 

and positioning characteristics as well, a part from physical layer and transport layer features of a 

signal that makes our work unique. Our work is also different from all these proposed approaches as it 

uses an adaptable solution that exploits two unsupervised NNs and one supervised NN to recognize 

different standards and in the case of huge data range, the estimated transmission power level required, 

thereby allowing CR to switch in the specific standard mode, optimizing the radio configuration to 

give the best Quality of Service (QoS) and self management capability. Our solution is adaptive as it 

switches to appropriate Neural Network either, SOM, LVQ or MLP based on the features of input 

signal sensed. We can also add further more parameters from different layers to increase the 

performance of our CR.  

 

4. Our proposed Approach: 

We analyse the received signal which may be the result of the summation of many standards, each 

standard itself the summation of several modulated carriers. Analysis of this received signal provides 

important information needed by the receiver. The analysis of the received signal to extract features is 

followed by the choice between LVQ, SOM and MLP. This choice is decided upon by these extracted 
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features while analysing the received signal. Hence in this work, we have used three different data 

sets, each corresponding to the selection of a unique Neural Network. These data sets are actually the  

detected features of our received signal. This scenario is visualized in Figure 36.  

 

 

 

 

 

Fig. 36. Neural Networks Selection based on received signal extracted parameters. 

We describe in detail the scenario shown in Figure 36 in Sub-section 4.1. Subsection 4.2 explains our 

implementation of LVQ and SOM Unsupervised NN in our problem context. We explain our MLP 

Supervised NN implementation in Sub-section 4.3 and we conclude this Section by presenting and 

explaining our Standard recognition experimental results in Sub-section 4.4.  

4.1    SOM, LVQ and MLP for CR Standard Identification: 

The predefined list of Standards to be recognized is divided in three categories as shown in Table 10. 

The choice between three Neural Networks: SOM, LVQ and MLP is decided upon by the detected 

features of the received signal. Then the identified features are fed as input to the identified trained 

NN, resulting in the identification of Standard, and in the case of huge data rate, the identification of 

transmission power needed as well. After recognizing the Standard, the receiver switches to that 

specific standard mode to detect the right demodulation software or download the appropriate 

software. The first category comprises of fifteen Standards. Each Standard in this category is 

recognized on the basis of one single parameter: channel bandwidth, shown in Table 11. As LVQ 

follows winner takes all strategy, it is the natural solution for standard recognition for this category of 

standards. An earlier effort to recognize these 15 standards attempted the use of Supervised Radial 

Basis Function Neural Network [127]. We propose LVQ because of their easy adaptability to SOM to 

recognize a number of more Standards by just removing neighborhood function. We explore our used 

neighborhood function in Sub-section 4.2. The second category of ten standards with the identification 

parameters is shown in Table 12. These Standards are identified by the help of four parameters: 

channel bandwidth, frequency band, data range and data rate. Every Standard needs a neighborhood 

function, as it is probable that the next signal may be of another closely related standard making SOM 

a natural choice in this case. We have chosen LVQ and SOM for Table 11 and Table 12 standards as 

they inherently suit our problem, because of their property of Tonotopy (equation (5.5)). The third 

category comprises of 802.22 Standard (802.22.1 and 802.22.2) being developed for Wireless 
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Standards Channel Bandwidth 

PDC 25 kHz 

ADC (D-AMPS) 30 kHz 

CT2 100 kHz 

GSM 200 kHz 

PHS 300 kHz 

Bluetooth 1 MHz 

IS95, Global Star 1. 25 MHz 

DAB 1.712 MHz 

DECT 1.728 MHz 

UMTS (FDD) 5 MHz 

DVB-T, LMDS 7-8 MHz 

Hiperlan 1 20 MHz 

DVB-S 32-36 MHz 

LMDS 32-36 MHz 

Hiperlan 2 50 MHz 

 

 

 

 

 

Regional Area Network (WRAN) using white spaces in the TV frequency spectrum. The data range is 

huge in this category of standards and thus we need the estimated transmission power level required. 

As shown in Table 13, 802.22 requires the power level of 4 watts to achieve the data range of 33 km at 

the channel bandwidth of 6 MHz, whereas the data rate is 18-24 Kbps. In such a scenario when we 

know the data rate and bandwidth and are aware of huge range, we are in need of power level 

estimation. In this work, the data range greater than 30 km is defined as huge data range and the 

Standard available to address the huge data range requirements in our predefined list of standards is 

802.22, whose transmission power needs to be known in advance and hence the supervised NN, MLP, 

justifies our need to estimate the desired power level. In the NN Selection phase illustrated in Figure  

 

 

 

 

 

 

 

 

 

 

 

Tab. 10. Standards identified by respective Neural Network Techniques. 

 

 

 

 

 

 

 

 

 

Tab. 11. Parameters of Standards recognized using LVQ 
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802.11.g 

802.15.4 
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802.16.d 

802.16.e 
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Standards Channel 

Bandwidth 

Frequency Band Range Data Rate 

IEEE 802.11g 20 MHz 2.4 GHz 140m 54Mbps 

IEEE 802.15.4 2 MHz 915 MHz 75m 40 kbps or 250 kbps 

IEEE 802.11b 1 or 25 MHz 2.4 GHz 100m 11 Mbps 

IEEE 802.15.1 1 MHz 2.4 GHz 10 m 3Mbps 

IEEE 802.11 a 20 MHz 5.4 GHz 120m 54Mbps 

IEEE 802.11n 20 MHz 2.4/5GHz 250m 248Mbps 

IEEE 802.11h 20 MHz 5 GHz 100m - 

IEEE 802.11j 20 MHz 2.4 GHz 120m 54Mbps 

IEEE 802.16d 20 MHz 2 to 11 GHz 7 km 75 Mbps 

IEEE 802.16e 20 MHz 2 to 6 GHz 3.5 km 30 Mbps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36, if the data range is huge enough to require considerable amount of transmission power, the 

selected NN is MLP, and hence the estimated transmission power for the detected data range has to be 

matched with target transmission power. 

As shown in Figure 37, these distinguishing parameters for each standard are the inputs to the first 

state of cognition cycle. This information is passed to the Configuration Selection state of the cycle 

and this is where our proposed Neural Network based solution comes into play. We focus on the data 

Configuration Selection phase of the cognition cycle using LVQ, SOM and MLP. We construct the 

data by taking samples of each Standard. Each Standard corresponds to 50 signals. Each row 

represents specific Standard and each column represents a specific parameter of all signals of all 

 

 

 

 

 

 

 

 

Tab. 12. Parameters of Standards recognised using SOM 

 

 

 

Tab. 13. Parameters of Standard recognized using MLP 

standards. Then we normalize this data so that the data range of each parameter is given equal 

importance, e.g. if the channel bandwidth is 20 MHz and data rate is 2 Mbps, then without 

normalization, the channel bandwidth will almost completely dominate the output grid, which is not 

desirable. We avoid this by normalizing the variance of all the parameters to unity and its mean to 

zero, thus giving all parameters equal weight in Euclidean distance calculation.  Then we first choose 

the output grid size, based on our data, followed by initializing the map using linear initialization and 

finally we use batch algorithm to train the map. The batch algorithm uses all the standard samples to 

present it to the map before any adjustments are made. Once all samples are presented to SOM, our 

proposed iterative structure of the algorithm starts calculating the Best Matching Unit (BMU), using 

the designed algorithm we define in next Sub-sections. Each map unit has two sets of co-ordinates, the 

prototype vectors in the input space and position on the map in the output space. In the case of SOM, 

Standard IEEE  802.22 Identification parameters: 

Power Level  Data Range  Channel 

bandwidth 

Data rate 

4 watts 33 km 6 MHz 18-24 Kbps 
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the training is done in two phases: first with large neighbourhood radius, and then fine tune with small 

radius. By using a large neighbourhood radius, the property of Tonotopy is exploited.  The 

implementation of each of these NN is explained in Subsections 4.2 and 4.3. 

 

4.2   SOM and LVQ Implementation: 

We have used the MATLAB SOM toolbox [128] to implement the SOM and LVQ explained in this 

section. Each row in the MATLAB „struct‟ represents specific standard and each column represents a 

specific parameter of all signals of all standards. We have named the „struct‟ as Standard. The labels 

 

 

 

 

 

 

 

 

 

Fig. 37. SOM and LVQ and MLP based Cognition Cycle Receiver. 

field represent the specific standard that is formed by the combination of all four variables.  SOM has 

properties of vector quantization that makes it suitable for easy LVQ adaptation with minor 

modifications. If prototype vectors are positioned on a regular grid in an ordered fashion,  three 

execution phases are to be considered. The first phase consists of computing the distances dj(j=1,2,..k) 

between the input vectors and weights of various neurons using Minkowski distance function (L2 

norm) shown in equation (5.1). 
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  where n is the number of network‟s input features and W  R
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, where k is the number of 

neurons. For p=2, it represents Euclidean distance function which is referred to as L2 norm and gives 

better precision than L1 norm (Manhattan distance function). During the second phase, the winning 

neuron called Best Matching Unit (BMU) is determined by comparing these distances. In the third 
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phase, the weight of BMU, Wc is updated using Subtractive method of weight updates, using  equation 

(5.2). 

    )()()()()1( tWtXthtWtW ijiciijj         (5.2) 

If  LVQ is used, then only winning neuron‟s weight is updated, which means that there does not exist 

any neighborhood function. However, in the case of SOM, weights of neighboring neurons are 

updated as well. The neighborhood defines the region of influence that the input sample has on SOM. 

This concept is related to the inherent property of SOM, Tonotopy, which is the special arrangement 

of close data sets extracted from the signal. The neighborhood function around the BMU is Gaussian 

and is defined by hci(t) which is a non-increasing function around the BMU and is given by equation 

(5.3), where rc and ri are the distances of winning neuron and neighboring candidate neuron 

respectively, σ(t) is the neighborhood radius at time t and α(t)  [0,1] is the leaning rate for each epoch 

and is a decreasing function of time. The neighborhood radius used is σ(t)=2. 
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The neighborhood shown in above equation is a non-increasing function of time and of the distance i, 

from the winner neuron c. It is because of this neighborhood, that after finding the BMU, not only 

BMU‟s weight is updated, but also the weight vectors of the neighbours are moved closer to the input 

vector. The whole procedure of the algorithm is depicted in Figure 38.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 38. SOM Algorithm for BMU (Standard) determination and weight update. 

The description of the algorithm shown in Figure 38 is summarized in the following steps: 

Inputs: W, X, Ef, Ep, hci, valmax 

Results: WG, EG 

Initialization: dmin = valmax, EG = Epi = 1 

 

1. For j = 1 to k do 

2.     For i = 1 to n do 

3.           
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4.                 )]()((t)[)()1( tWtXhtWtW ijiciijj         

5.                 )]()()[()()1( tWtXthtWtW ijiciijj       

6.       End For 

7.       If (dj < dmin)            Then EG = EPj 

8.                                                                           dmin = dj 

9.                                                If (EPj = Ef)   Then  WG = Wj
+
 

10.                                                                      Else    WG = Wj
-
 

11.                                                End if 

12.        End if 

13. End for 
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1. Initialization: the iteration number T, and the initial weights matrix W. let t=0. 

2. For each input vector X and current W: 

     i. Select the nearest prototype to the input vector X 

  kjWXC jj ,...2,1,minarg        (5.4) 

     ii. Calculate the updating weights Wc vectors 

  )()()()()1( tWtXttWtW ccc         if class X= class Wc 

  )()()()()1( tWtXttWtW ccc         if class X≠ class Wc.         

3.   If t < T, t=t+1, go to step 2. 

4. Output updated W. 

The above summarized four steps are meant for LVQ as only the winning neuron‟s weight is updated, 

which means that there does not exist any neighborhood function. However, in the case of SOM, 

weights of neighboring neurons are updated as well.  

Inputs to algorithm are: 

 W  (a matrix with n x k elements). 

 X   (an input vector with n elements). 

 Ef  (reference label). 

 Ep (k expert‟s label). 

 hci  (neighborhood function) for SOM, or α (learning parameter) for LVQ, depending on 

extracted features of signal. 

The algorithm gives the following results: 

 WG (weight of the winning neuron). 

 EG  (label of the winning neuron). 

The following two principles are followed while calculating new weight vectors: 

1. Competitive Learning: The proto-type vector most similar to a data vector is modified so that 

it is even more similar to it, called positive weight calculation. This way map learns the 

position of the data cloud. 
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2. Co-operative Learning: Apart from the most similar prototype vector, its neighbours are also 

moved towards the data vector. This way the map self-organizes. 

Also, the negative weights are calculated to increase the distance between input vector and weight, in 

case of least similar vectors. In the case of LVQ, hci is replaced with α. In Figure 38, after 

initialization, the algorithm calculates in two overlapping loops (loop 1, line 1– 13 and loop 2, line 2 – 

6) the distances, the positive and negative weights, weight update of winning neuron and its label 

assignment. 

We have chosen SOM and LVQ as they inherently suit our problem, because of their property of 

Tonotopy. Since our proposed transceiver recognizes the specific Standard based on the clusters at the 

output grid, it is our inherent requirement that any two spatially close data sets with respect to their 

parameters should be mapped onto two topographically close cells. We achieve this requirement by 

this very property of Tonotopy. The word Tonotopy is derived from Greek word “Tono” , which 

means space. Kohonen illustrates how self organizing maps approximate various vector sets in spatial 

orderly fashion [104]. He shows that because of this property, the prototype vectors are positioned on 

a regular low dimensional grid in an ordered fashion. Furthermore, this property has been exploited by 

many researchers for grouping and visualizing different data sets in different applications [107]. This 

property states, in our problem context, that the spatial location of a specific standard corresponds to a 

particular feature of input patterns, so that all the signals from a particular standard are plotted at the 

same place at the output grid, thus forming a cluster. Mathematically, let P (a,b,c,d) be the four 

distinguishing parameters, namely channel bandwidth, frequency band, range and data rate considered 

for a signal. We quantize this set of four parameters using a 2-D map, M, organized in a hexagonal 

grid, so the mapping K is defined as, 

)(),,,(,: pKPdcbapMPK          (5.5) 

K(p) is the cell holding the scalar value closest to the input vector parameters, p. It has been shown 

that in order for this property to hold, map should be less than or equal to the input dimensions of the 

neural network. The grid defines the spatial similarities and discontinuities for each Standard, by 

cluster formation. It is because of this inherent property of SOM that map organizes in such a way that 

any two extracted data sets close according to their spatial components are mapped onto the same cell, 

and with a little difference on the neighbouring cell. These parameters are extracted after analysing the 

received signal which may be the result of the summation of many standards, each standard itself the 

summation of several modulated carriers. The neighborhood function defined in equation (5.3) is the 

further exploitation of this property in our multi-standard transceiver design framework. The choice 

between SOM and LVQ is decided upon by extracted features. Then, the features identified are fed as 

input to trained NN, resulting in the identification of standard because of their spatial location at 

output grid and the property of Tonotopy.  
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After recognizing the standard, the receiver switches to that specific standard mode to detect the right 

demodulation software or download the software in a self organized manner. 

Figure 37 illustrated our approach showing the architecture of our NNs, SOM, LVQ and MLP which 

includes: 

1. The input layer representing the space of inputs X of dimension n. 

2. The hidden layer models the competition space of inputs. 

3. The linear layer of decisions.  

 

4.3    MLP Implementation: 

MLP Supervised NN is used when the desired output is known. As shown in Table 13, the huge data 

range (> 30 km) requires an estimation of power level, so in the case of huge data range MLP is 

selected to switch the CR Transceiver in IEEE 802.22 mode. The process of MLP algorithm is defined 

as follows: 

1. Initialize the weights by small random values. 

2. Propagate the input in the hidden layer and calculate the corresponding output as, 
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where m is the number of inputs coming from input layer, which are 23 in our case and X is the 

input vector.  

3. Propagate the input in the output layer and calculate the corresponding output as, 
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where n is the number of inputs coming from hidden layer, which are 10 in our case and y is the 

vector coming from hidden layer.  

4. Calculate output layer error as, 
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5. Calculate hidden layer error as, 
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6. Adjust the weights by back propagating the observed error. 

7. Repeat steps from 2 to 6 until the error becomes inferior to a certain threshold. We opt for sigmoid 

threshold function. 

This procedure defined above is further simplified using the delta rule for output layer and the chain 

rule for partial derivatives as the error observed is calculated using gradient method. Thus, the 

simplified procedure is depicted in Figure 39. The implementation parameters for our designed  MLP 

algorithm shown in Figure 39 are chosen after a careful analysis using trial and error, e.g. to avoid the 

undesirable situation of overfitting apart from meeting the real time constraints of our platform while 

parallelizing and mapping the algorithm on it. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 39. Iterative MLP Algorithm for Standard and transmission power determination and weight 

update.  

Our algorithm design consists of i input entries (1 to m), j hidden layer neurons (1 to n) and k output 

layer neurons (1 to p). Each layer has its own weight matrix: Wji for hidden layer and W‟ji for output 

layer. The first designated index is the neuron of the layer, while the second specifies the number of 

entry. ej represents output of each neuron of hidden and output layer. L represents the number of 

hidden layers. The sigmoid threshold function is used as it provides a bounded output and is 

differentiable and real-valued. 

Inputs: W, X, W‟, a, b 

Results: Yn
‟
, w, w‟ 

Initialization: a=0.25, b=0.5, j=1, i=1, K=1, L=1, n=10, m=23, p=8 
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In our designed algorithm in Figure 39, from lines 2 to 6, the loop calculates the error Ej of each 

neuron of hidden layer as well as new weight matrix. From lines 7 to 11, the loop calculates the error 

Ek
‟
 of each neuron of output layer as well as new weight matrix. The parameters of the above designed 

 algorithm are: 

 W (weight matrix of hidden layer formed by n x m elements). 

 X (input vector to our MLP Algorithm) which are actually the parameters detected from the 

received signal. 

 W‟ (weight matrix of output layer formed by p x n elements). 

 Yn
‟
 (desired output of each neuron at output layer). 

For hidden layer and output layer neurons, the parameters shown in Figure 39 are, 

 n (designated to the current data vector being treated). 

 Indexes i and j (designates respectively a neuron of previous layer and neuron of current 

layer). 

 Index k (serves to designate a neuron in the next or following layer). 

MLP is different from SOM and LVQ as it is a Supervised NN scheme and so there has to be some 

metric that can tell about the convergence of the algorithm to stabilize, addressing the local minima 

problem. We have used Mean Square Error, E(W), as the cost function to measure the difference 

between desired output and observed output. This metric has been used successfully for classification 

problems using MLP in many CR applications [124]. E(W) for a single presentation is defined as, 
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where y
d
(k) is the desired vector, y(k) is the obtained output value and t is the number of training 

examples. 

4.4    Standard Recognition Experimentation Results: 

This section analyses the experimental results. The training data to act as input to our NNs is  based on 

Exponential Moving Average Algorithm, used in several modern wireless applications [120]. We have 

chosen hexagonal lattice of the SOM grid, Standard, with a size of   11 x 6, which is shown in Figure 

40 for standards mentioned in Table 12. We can see in Figure 40 that clusters are formed which 

comprise of different standards, e.g. the first two rows form a cluster of all the signals that correspond 

to 802.11.g standard. This means that each time a signal is encountered that translates to 802.11.g 
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standard, it will always be ported to this formed cluster. Each standard‟s cluster formation depends on 

the parameter values of a specific signal shown in Tables 11 and 12. The clusters are formed due to the 

weight vector densities across the lattice. The weight vectors having similar densities tend to occupy 

neighboring positions, forming a specific standard‟s cluster. Each cluster is identified as a  

 

Fig. 40. Output grid showing different standards forming a cluster. 

distinguishing standard, with the only exception of IEEE 802.15.1 and IEEE 802.11.b, which appear to 

be slightly mixed up. This can be explained because of the superimposition of the two standards at the 

same bandwidth of 2.4 GHz.  The Final Tonotopy Error for mapping at 11 x 6 grid is 0.0133, which is 

an excellent result. Tonotopy error is a data dependent measure of cluster formation at the grid. It 

measures the input vectors for their adjacency, with respect to BMUs being neighbours. It tells the 

numerical deviation, at output grid, between the two BMUs of input vector.  However, by solving this 

particular problem with respect to these two standards, we can further reduce this error value. This can 

be done by the addition of more parameters in Tables, e.g. the use of Wigner-Ville Transform as 

suggested in [129] can further discriminate in the two standards. The fact that each input signal to our 
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proposed SOM will map at a specific location of the output grid verifies our approach of standard 

recognition using the property of Tonotopy. Each location forming a cluster represents a standard and 

thus the cognitive radio can identify the standard based on its position at output grid. Then it can 

switch its operating parameters respectively to move its state to an optimized form. The visualization 

of the SOM standards Lattice with respect to distance between input vector and weight vector is 

shown in Figure 41. This U-matrix shows the distance “between” map-units as well, apart from 

distance “at” the map-units. As an example, the initial rows of U-matrix form a cluster that 

corresponds to all the signals with distances between and at map units 

 

Fig. 41. U-matrix for normalized parameters for all Standards. 

from 802.11.g. High values on the U-matrix mean large distance between neighboring  map-units and  

thus  indicate cluster borders, that are shown as uniform areas of low values. The colour bar at the 

right shows which colour means high values. Figure 42 shows a magnified view of map units in U-

matrix. The three map units are IEEE 802.11.g and the same colour between the map units depicts that 

the distance between all three map units is constant. This constant distance between any two map-units 

of same standard leads to cluster formation of a particular standard. 

 

Fig. 42. U-matrix row showing equal distance between three map units of a cluster comprising of 

802.11.g Standard. 
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The same cluster formation is observed for the standards mentioned in Table 11. We chose to have the 

same dimensions of output grid (11 x 6) and so each Standard is recognized with the help of its 

location at the output grid. The only difference is the absence of the neighborhood function, as we 

have used LVQ and not SOM. Thus, for each new signal received, the map can be used to classify it. 

In the NN decision phase explained earlier in Figure 36, if the data range is greater than 30 km, then 

the decision is in the favour of MLP. The estimated amount of transmission power needs to be 

matched with the target transmission power and hence the optimization of cost function explained in 

equation (5.10) needs to be done. We have used the Error Back Propagation algorithm for training 

purpose of MLP and our algorithm tends to be stable after 700 epochs. An epoch is a single  

             

 

Fig. 43. MSE after 200 training epochs 

                                                      

 

Fig. 44. MSE after 700 training epochs 
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presentation through the process of providing the network with an input and updating the network‟s 

weights. Like SOM and LVQ, the training data is based on Exponential Moving Average Algorithm. 

MSE measured for standard recognition and transmission power estimation in the case of 802.22 at the 

MLP network outputs after 200 and 800 training epochs is shown in Figures 43 and 44, respectively. 

Thus, in the case of huge data range, the standard is identified as 802.22 and its expected transmission 

power is matched with the observed value of transmission power after 700 epochs. The MSE observed 

is 0.02 which is again a very encouraging result. Thus in this section, we have proved that our 

designed NN algorithms: LVQ, SOM and MLP are the most efficient standard recognition solutions 

for multi-standard CR Transceiver, which outperforms the counterpart NN Techniques [124,120, 122, 

127] used for cognition incorporation in radios. A comparison is done in Table 14 that shows the error 

values for the best cases by using different NN techniques.  

 
Researcher Neural Network 

Technique 

Cognition purpose Error 

Value 

Orcay[124] Multi Layer Perceptron Distinguish between Signal patterns 

 

0.0625 

Tsagkaris[120] Focused Time Delay Data rate prediction to choose best RAT 

 

0.0637 

Baldo[122] Multi-Layer Feed Forward Throughput prediction of 802.11 cell to 

dynamically select channel 

 

0.8 

Roland[127] Radial Basis Function Distinguish between two standards 

 

0.021 

Our approach SOM and LVQ Recognizing specific standard amongst a list of 

pre-defined Standards 

0.0133 

MLP 0.02 

 

Tab. 14. Comparison with other NN based CR proposals 

Table 14 clearly shows that our designed NN algorithms give much better results than other NN 

techniques proposed for cognition incorporation in SDRs. 

Our proposed standard recognition approach is also different as it uses an adaptable solution that 

exploits three Neural Networks to recognize different standards, thereby allowing CR to switch in the 

specific standard mode, optimizing the radio configuration to give the best Quality of Service (QoS). 

We have also seen in this Section that CR Transceivers require both, high performance and high 

adaptability. However technological advancements in the coming years will push communications 

hardware into obsolescence at an ever quicker pace which poses an acquisition challenge for CR 

hardware device. This makes CR Transceiver algorithms implementation on embedded systems a hot 

issue for the rapidly developing wireless communication networks. The adaptability to varying 

situations and unknown systems illustrate the value of CR Transceiver algorithms on general purpose 

hardware against the better performing but less flexible dedicated hardware. Optimization for QoS 

means little if the hardware is incapable of supporting the resulting waveforms. So, there has been 

some efforts in this direction. M.E.Sahin [130] focuses on sensing and adaptation aspects and 
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performs simulations and analysis regarding the practical implementation of CR communications. 

These are related to the transmission of spectrum sensing via USB, enabling CR to detect a licensed 

system. Kim [131] presents a two step Genetic Algorithms based Software Testbed to optimize the 

parameters such as carrier frequency, bandwidth, transmit power and modulation type. N. Muhammad 

describes a flexible yet efficient hardware design for Front End processing (FEP) that includes FFT, 

product/division and Dot Product of SDR [132]. M.A.Cavuslu [133] used MATLAB simulations to 

show parallel hardware implementation of Neural Network FPGAs. Hardware/Software Co-design for 

embedded implementation of Neural Networks on reconfigurable devices is discussed in [134] using a 

software called NNetWARE-Builder. A.D. Rast [135] introduces SpiNNaker, a dedicated neural chip 

multiprocessor that combines an array of general purpose processors with a configurable asynchronous 

interconnect and memory fabric to achieve on and off chip parallelism, universal network architecture 

support and programmable temporal dynamics. 

After identifying the efficient NN based cognitive algorithms, Section 5 describes our parallel 

implementation strategy of Cognitive Neural Networks based algorithms on the platform described in 

detail in Section 4 of Chapter 4.  

5.    Parallelization and Implementation Strategy: 

Since our target platform contains 16 PEs, in order to map the cognition incorporated algorithms, 

explained in Section 4, on our target platform, explained in Chapter 4, we designed a parallelization 

strategy and then implemented our algorithms using our designed strategy on our target chip. As 

explained earlier, the three designed algorithms are inherently parallel because of their biological 

origin and thus highly suitable for mapping on our target platform, changing our SDR waveform into 

Cognitive waveform. This Section explains our parallelization strategy in terms of efficient load 

balancing and the implementation of the NN based cognition algorithms exploiting our designed 

strategy.  

5.1    SOM and LVQ Parallel Implementation: 

Since LVQ and SOM have a very similar algorithm design, we describe our designed parallelization 

strategy for LVQ. The SOM implementation follows the exact strategy with additional computation of 

the neighborhood function and corresponding weight updates. Our parallelization strategy for LVQ 

starts with the Master PE executing various control tasks for the slave PEs. Each PE has a unique 

identity called as id.  

If the total number of PEs is p, we divide the n neurons computation amongst p PEs. We have ported 

the LVQ (and SOM) four times changing the number of PEs each time to judge the effects of NoC 
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characterized by bandwidth and latency. Each time, we have configured our platform architecture to 

include 1, 4, 8 and 16 PEs respectively. The number of neurons remains 23 each time. We have chosen 

n to be 23 after a careful analysis using trial and error method to avoid the undesirable situations of 

overfitting and network overload. In the first case, when there is a single PE, all the neurons are 

handled by the same PE in a sequential loop, one after the other. However, for the other three cases, 

we have designed special primitives that we explain hereafter: After control and memory initialization, 

the Master PE gives a start command to the slaves using Syn_start_work( ). Slave processors, on 

receiving the Master PE command, who were in waiting state using Syn_wait_for_start( ), start their 

computation for their respective Euclidean distances, then the positive and negative weights 

respectively. Each slave, after finishing, puts the results in DDR accessible to it via Data NoC, and 

writes a flag in synchronization memory using barrier( ). Using Synchronization NoC, Master PE 

checks if all slaves have finished their computation by  checking the flag value using 

Syn_work_finished( ). Once the flag indicates the end of all slave computations, Master PE determines 

the winning neuron, updates its weight and assigns it the label. 

Several neurons are handled by the same processor in a sequential loop as the number of processors 

are less than the number of neurons (p<n) in all four cases. Following the single PE case, where all the  

 

 

 

 

 

 

 

 

 

 

Fig. 45. LVQ and SOM parallelized Algorithm 

computation is performed sequentially, we have divided load evenly amongst all the PEs, i.e. each PE 

simulates n/p neurons if n is perfectly divisible by p, otherwise the remainder is distributed again 

amongst some of the PEs. In the case of SOM, the only difference is the weight updating and 

assignment of label to the neighboring neurons as well, defined in the vicinity of the winning neuron 

by the help of Gaussian neighborhood function defined in equation (5.3). We illustrate the changes 

that we made in our algorithm in Figure 45. N_Processor is the number of PEs configured to compute. 
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5.2    MLP Parallel implementation: 

We have already observed in the MLP algorithm in Figure 39 that it does not offer that high degree of 

internal parallelism. Furthermore this algorithm performs quite an extensive communication between 

the neurons after each iteration. So, the parallelism of MLP is a bit tricky as the well known problem 

of stucking at local minima is encountered if careful load balancing is not done. Like LVQ and SOM, 

we have ported the MLP four times on our target platform, changing the number of PEs to 1, 4 , 8 and 

16, respectively.  For the number of PEs 4, 8 and 16, we have parallelized the MLP in two steps: The 

first step deals with hidden layer neurons and the second with output layer neurons. In the first phase, 

the Master PE gives a start command to the slaves using Syn_start_work ( ). The equal load balancing 

between all the processors is done by changing the loop primitives according to the number of PEs 

configured to compute, where id is identity of the specific processor that will carry out the task, k is  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 46. MLP Parallelized Algorithm 

the number of neurons and N_Processor  is the number of PEs used for the computation. The slave 

processors start their computation for error Ej as well as new weight matrix. Once this is done, all PEs 

put the result in DDR and a flag is written in the synchronization memory. The end of the first phase is 

determined by the flag indication of the end of all slave computations. Before the start of the second 

phase, we have to manually reset the flag variable in synchronization memory accessible via 

Synchronization.h. This is meant to tell the Master PE about the start of the second phase.  

In the second phase, the error Ek‟ of the output layer neurons and weight matrix is calculated. After 
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 receiving the Master PE command, all slave PEs start their respective computations as in the first step 

and then put the results in external DDR memory using the same primitives.  

The two phases are closed in a loop that tends to repeat all the above defined procedures until the 

desired threshold of MSE, explained in equation (5.10) and Figures 43 and 44 is not obtained. Like 

SOM and LVQ, we have ported MLP four times to judge the effects of NoC characterized by 

bandwidth and latency. The illustration of changes made in our algorithm is depicted in Figure 46, 

with both the phases.  

The parallelization strategy for our designed algorithms: LVQ, SOM and MLP meant to recognize the 

Standard in our CR multi-standard Transceiver, together with the parallelization primitives designed 

for the MPSoC general purpose platform is illustrated in detail in Figure 47. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 47. Parallelization illustration with the primitives. 

6. Speed up Results: 

 

This section evaluates the performance, in terms of speed up, of our Neural Networks based CR 

Standard recognizing algorithms on our designed platform. Speed up is the ratio between the number 

of clock cycles needed for computation on a single PE and number of clock cycles needed for 

computation on multiple PEs. The number of clock cycles and speed up for each of the three 

algorithms: LVQ, SOM and MLP exploited in the framework of standard recognition in a CR context 

to engineer an universal transceiver is shown in Table 15.  

DDR B3 DDR B0 DDR B2 DDR B1 
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Cognition 

Algorithm 

Single PE clock 

cycles 

Speed up with 4 

PEs 

Speed up with 8 

PEs 

Speed up with 16 

PEs 

LVQ 1,486,899 3.72 7.68 14.39 

SOM 1,667,911 3.45 7.18 14.13 

MLP 2,087,142 3.12 7.01 13.79 

 

Tab. 15. Speed-up of ANN Cognitive Algorithms using Multiprocessor platform. 

As explained in Section 5 and shown in Table 15, each of these three algorithms is ported four times 

changing the number of parallel PEs, each time. Table 15 shows that LVQ, SOM and MLP have 

respected speed ups of 14.39, 14.13 and 13.79 if we exploit 100 % resources of the designed chip, i.e. 

when all 16 PEs are configured to perform their respective computations. However, we observe that 

the speed-up diminishes slightly with the addition of more processors. This can be attributed to the 

communication load characterized by data throughput and latency to establish a connection between 

two processor nodes for data exchange. Since the received signal may be summation of many 

standards and each PE in our chip has the capability to execute its assigned tasks independently of the 

other fifteen PEs, we can overcome the limitations that can occur when adding more processors by 

dividing the 16 PEs in further independent groups. Each group can work on a different standard and 

thus a received signal with more than one standard can be processed. This way the performance 

efficiency  of our proposed CR Transceiver can be further exploited and a complex signal composed 

of many modulated carriers can be processed, e.g. we can divide 16 PEs in three independent groups 

of 8, 4 and 4 PEs, followed by the porting of MLP on the first group of 8 PEs and porting SOM and 

LVQ respectively on the remaining two groups of 4 PEs, each. This means that we can even increase 

the number of PEs from 16 and can port other SDR resources as well, to constitute a complete 

Cognitive SDR waveform. Thus, the area performance trade-offs for efficient design of Cognitive 

Radio waveform is addressed in the most efficient way possible. 

There is little difference between the obtained speed up of LVQ and SOM, which can be attributed to 

the fact that LVQ needs to update only the distance of winning neuron in contrast to SOM that 

requires additional computation to update the distance of all neighboring neurons apart from 

calculating the neighborhood function. In the MLP algorithm, the speed up shown is the aggregate 

speed up obtained after the execution of both the phases on the designed chip. The speed up obtained 

from all three algorithms is visualized in Figure 48. We have seen in Table 15 that applying our 

original solution of Neural Networks based Cognition Incorporation Algorithms on our designed 

general purpose MPSoC provides significant speed up, thereby allowing us to avoid expensive 

hardware accelerators. Furthermore, our proposals to divide the number of available PEs into 

independent sub-groups to treat multi-standard signals can be implemented according to end user 

requirements and the specific application needs. 
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Fig. 48. Speed-up obtained for all three Neural Networks based cognition algorithms. 

 

7.    Conclusions: 

The future of wireless communications will be characterized by highly varying environments with 

multiple diverse features. In such an unfamiliar scenario, CRs need some efficient information 

processing algorithms. Artificial Neural Networks are widely different from conventional information 

processing as they have the ability to learn from given examples thus being able to perform in 

cognitive tasks by exhibiting the basic instinct of CR, explained in Cognition Cycle. In this respect, we 

proposed a multi-standard CR Transceiver based on three NN Techniques: LVQ, SOM and MLP, 

which are widely different from conventional information processing. Using LVQ, SOM and MLP, 

our proposed CR Transceiver recognized the standard based on parameters received as input to NN, 

moving the radio in the recognized standard mode to make adequate decisions. This leads to optimize 

radio resource use (spectrum, battery, carrier frequency). The experimental results clearly show that 

our proposed solution outperforms other proposals, as shown in Table 14.  

At the same time, we also exploit the inherent parallelism in mentioned Neural Networks Techniques 

to answer the high adaptability requirements of CR embedded implementation by mapping the 

proposed CR Transceiver Algorithms on the designed MPSoC. Table 15 reminds us the speed up 

limitations that can occur while adding more PEs. We address such limitations by partitioning the PEs 

into different groups, each group dedicated to identify a different standard of received signal, which 

may be the result of summation of many standards, and thus further optimizing the resource utilisation 

of the designed MPSoC based CR Transceiver.  

Thus, we proposed and implemented an efficient solution to cognition incorporation in our SDR  

Number of Processing Elements 

S
p

ee
d

 u
p
 



Chapter 5: Standard Recognizing ANN Based Cognitive Radio Transceiver and its Embedded Implementation. 

 134 

designed waveform. After identification of specific standards to optimize the radio resource usage, our 

future work will address the prediction of future occupancy trends of the radio resource (Spectrum), 

using Neural Network Techniques, that we address in Chapter 6. In today‟s Spectrum constraint 

environment, it is essential to undergo a radical rethinking, that could enable an optimized spectrum 

usage. Chapter 6 explains our strategy to address this optimized Spectrum usage.  
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Chapter 6: 

 

Cognitive Radio Spectrum Evolution Prediction 

using Artificial Neural Networks based Time 

Series Modeling. 

 

1.    Introduction: 

CR as defined in Chapter 3 is an efficient answer to spectrum scarcity as it can sense the spectrum 

steadily based on previous information about the spectrum evolution in time, thus predicting the future 

occupancy status. Framed within this statement, this Chapter proposes a new methodology for 

spectrum prediction by modelling licensed signal Radio Frequency (RF) features as a multivariate 

chaotic time series, which is then given as input to Artificial Neural Network, that predicts the 

evolution of RF time series to decide if the unlicensed user can exploit the spectrum band. We exploit 

the inherent cyclostationarity in primary signals for Non-linear Autoregressive Exogenous (NARX) 

Time Series Modelling of RF features, which is an extremely challenging task due to interdependence 

of different RF features.  

Dynamic and opportunistic spectrum access is not a new idea and is probably as old as radio 

communications itself. The idea of shared spectrum or radio resources dates back to 1920‟s, when the 

band of 2 KHz was used as an emergency communication meant for ships communications. In 1970‟s 

Federal Communications Commission (FCC) authorized the shared communication at the civil band of 

27 MHz [182]. However, it was required that the maximum transmit power limits for the civil band 

should be respected. Then the beginning of wireless technology and data communication saw smarter 

ways of spectrum management. Today, Spectrum resource is seen as, an inexhaustible but limited in 

its usage, natural radio resource. In order to make sure that this resource is being used in an 

economical and fair way, national and international controlling entities such as Pakistan 

Telecommunication Authority (PTA), International Telecommunication Union (ITU) and Federal 

Communications Commission (FCC) manage the commercial and public radio spectrum in their 

respective geographical areas. Their task is to ensure the interference free operations by making sure 
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that the spectrum users are abiding by their radio regulations.  Actual wireless communication systems 

exploit the static radio resource  
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Fig. 49. Recent Spectrum Utilization in Percentage in Europe (taken from [136]). 

allocation, i.e. a certain portion of the radio spectrum resource covering a large geographical area is 

licensed to a specific party for a long term. This is a beneficial approach in the sense that it gives an 

extreme protection from harmful interferences in any specific allocated radio band. However, there are 

many recent measurement studies [136,137] that reveal that this fixed RF allocation leads into 

significant underutilization of this precious resource as there is very limited exploitation in different 

geographical regions in different time intervals.  This underutilization is depicted in Figure 49. CR 

addresses this paradox of spectrum scarcity by detecting and occupying spectrum holes intermittently. 

However, regulators need to insure that secondary users (non-licensed holders) will not interfere with 

the primary user (license holder) of the considered spectrum band. In this Chapter, we target such 

interference avoidance by predicting the future spectrum occupancy pattern of primary user on the 

basis of previous occupancy observations.  

Mathematically, if H0 and H1  correspond to primary user signal absence and presence respectively, 

then the goal is to distinguish between following two dynamic hypothesis, on the basis of previous 

observations, at a given instance t: 
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where T denotes the observation time, n(t) is the Additive White Gaussian Noise (AWGN) with zero 

mean. x(t) is the received signal, s(t) is the deterministic complex transmitted signal whose mean and 

autocorrelation exhibit periodicity. 

In order to decide between the two hypotheses, we model the primary user spectrum occupancy 

evolution as a NARX RF time series [138].  However, the cyclostationary features of a deterministic 

(6.1) 
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signal (different variables of a NARX RF time series) affect each other which makes it difficult to 

attain global minima [139]. We overcome this problem by Artificial Neural Networks which have the 

potential to predict the spectrum occupancy dynamic evolution by accepting primary user RF features 

modelled as a chaotic NARX time series as input and giving the future expected spectrum evolution as 

output. We propose to predict the spectrum occupancy by modelling RF time series using Elman 

Recurrent Neural Network (ERNN) [140].  The only difference between Recurrent NN and Feed-

forward NN is the presence or absence of feedback connections that extend from output of neurons to 

previous layer input neurons. Multi-layer Perceptron [105] is the most common example of Feed-

forward NN. We opt for Recurrent NN as they preserve a sense of history which means that previous 

state RF features form a part of current state inputs. The motivation to use ERNN for our RF time 

series modelling to predict the spectrum evolution in time comes from their inherent sigmoid hidden 

layer neurons, explained in our problem context in detail in Section 5 of this Chapter.  

There has not been any effort in spectrum prediction using Recurrent NN modelling of RF NARX 

time series. The work presented in this Chapter is different as we predict the spectrum evolution by 

exploiting the cyclostationary signal features to construct a RF NARX time series that contain more 

information than the univariate time series [141]. This is in contrast to most of the modelling 

methodologies which focus on the univariate time series prediction [142]. The opportunistic spectrum 

access by cognitive users is visualized in Figure 50.  

 

        

 

        

 

        

 

 

 

Fig. 50. Opportunistic Spectrum access by cognitive users.  
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2.    Spectrum Opportunity Sensing Methods:   

The spectrum opportunity concept is the notion of secondary users recognizing unused frequency 

bands by primary or licensed users and exploiting those bands as an available opportunity. The 

exploitation refers the transmission over the recognized unused frequency bands until the licensed user 

becomes active. The unused frequency band or channel is referred to as a spectrum opportunity 

[143,144,145]. This concept is formally defined in literature as: A channel is an opportunity to a 

secondary transmitter A and secondary receiver B if they can communicate successfully over this 

channel while limiting the interference to primary users below a prescribed level determined by the 

regulatory policy. The essential requirement is that the secondary users should vacate the opportunity 

at the earliest, after the primary user appears. Also, to ensure low interference at the primary receiver 

side, the detection sensitivity of the cognitive user has to be reasonably high.   

In the following Sub-sections, an overview of spectrum sensing methods proposed in the literature is 

presented. Moreover, we explain our motivation to exploit cyclostationary feature detection technique. 

The spectrum sensing algorithms proposed in the literature may be broadly divided to following 

categories defined in this section. 

 

2.1   Matched Filter:  

Matched Filter [146] is the optimal way for detecting a known signal in the presence of additive 

Gaussian noise. The reason for this feature is its characteristics that maximize the SNR. It is matched 

to some periodically repeated but unknown component of a signal, hence called matched or coherent 

detector.  It is the linear filter, whose output is given by, 





1

n

H xsy  

where x is the observation vector, s is the known deterministic signal to be detected and 
n

is the 

noise covariance matrix.  

If, the noise is Gaussian, then the output „y‟ in equation (6.2) is Gaussian as well. The reason is that it 

is the linear transformation of a Gaussian random vector. The output‟s (y) mean is zero under H0. The 

implementation of this technique is constraint by the waveform‟s prior information, such as, pilot 

signals and preambles. This fact is also evident from equation (6.2), as we can see that it requires the 

knowledge of the transmitted signal s and the noise covariance matrix
n

 .In addition, the 

synchronization errors may degrade the performance severely. The only advantage is its easy design 

and general applicability. 

(6.2) 
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2.2  Energy Detection: 

Energy detector [147] based approaches are also known as radiometry or periodogram. In this method, 

the received energy of the signal is compared with a threshold.  The energy detector is explained by: 

2
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M nx
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y  

where x(n) is the received complex valued discrete time signal, N0 is the noise power and M is the 

number of observations. Factor 2 explains the fact that complex noise power is equally bifurcated 

between the real and imaginary parts, under circularity assumption. Figure 51 depicts the block 

diagram of the energy detector.  

 

                            

Fig. 51. Block diagram of (a) the basic energy detector and (b) an energy detector in frequency 

domain.  

 

In energy detection based algorithms, the threshold used is dependent on the noise variance. Therefore, 

threshold determination is very important. A large threshold may lead to overlook an activity and 

small threshold may result in false alarms due to background noise.  This method is called as optimum 

detection method because of two reasons. (1) It has low computational and implementation 
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complexities. (2) The sensing time is faster. The generic design of this method does not require any 

information about primary users. The optimum detection properties make the optimum detection of 

random uncorrelated Gaussian signal [152].  However, there are some disadvantages associated with 

this method. Some prior reliable estimate about noise power is required, otherwise significant 

performance loss is observed. Also, this method is unable to distingish between interference, primary 

user and secondary user.  The third inconvenice is addressed above that talks of the importance of 

threshold determination. Another known fact is the performance degradation under Rayleigh fading. 

The coexistance of UWB and WiMAX has been addressed by energy detection of WiMAX systems in 

[149]. The authors in [150] identify the idle slots in GSM signal, using energy level measurement, for 

further exploitation.  

 

2.3    Other approaches:   

There have been some more methods proposed for spectrum sensing such as waveform based sensing 

[151], classic likelihood ratio test [152], Eigenvalue based sensing and Covariance based sensing 

[106]. The likelihood ratio test method requires both source signal and noise power information. 

Wavelet based sensing methods require only noise power information (semi-blind detection), whereas  

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 16. Spectrum Sensing methods and their limitations. 

  Spectrum Sensing Methods Limitations 

Energy Detection Poor performance under 

low SNR 

Inefficient for spread 

spectrum signal detection 

Sensing performance is 

degraded due to noise 

uncertainty 

Matched Filter Detection Huge power consumption 

Implementation complexity 

Requires primary user 

perfect prior knowledge. 

Waveform based sensing Susceptible to 

synchronization errors 

Signal power estimation is 

difficult 

Classic Likelihood ratio test Requires source signal and 

noise power detailed 

information 

Newly Emerging Methods  

(a) Eigenvalue based sensing 

(b)Covariance based sensing                          

Does not consider periodic 

features of a signal 

 

 

 

                 

 



Chapter 6: Cognitive Radio Spectrum Sensing and Prediction Techniques. 

 141 

newly emerging methods such as eigenvalue based sensing and covariance based sensing require no 

information on source signal or noise power (totally blind detection). All the methods discussed until 

now are summarized with their limitations in Table 16.  

There is another method called Cyclostationary Detection [148, 153] which is based on stationary 

process statistics over some period τ that we have exploited. This method overcomes the limitations 

mentioned in Table 16 due to robustness in noise power and propagation channel.  We explain in 

detail this method and our motivation to exploit it in detail in the following Sub-section.  

 

2.4      Cyclostationary Detection:  

The modulated signals have some special features which cause them to exhibit periodicity related to 

symbol periods, cyclic prefixes, hopping rates and other such features. These non-random components 

make the practical communication signals look like a stationary process as the statistical 

characteristics of the modulated signals: mean and autocorrelation exhibit cyclic or periodic features. 

Therefore, they are characterized as cyclostationary feature possessing signals, which interprets that 

their above mentioned statistical parameters vary periodically in time. For a cyclostationary signal, the 

Spectral-correlation density (SCD) function is known to take nonzero values and nonzero cyclic 

frequencies. At the same time, noise does not possess these statistical features, which means that its 

SCD is always zero at all nonzero cyclic frequencies. Thus, the signal can be easily distinguished from 

noise by SCD analysis. In addition to that, we can distinguish the signal type as different signals have 

different non-zero cyclic frequencies. Cyclostationary detection can also differentiate between 

different modulation schemes as each scheme exhibit different SCD. In the following, we list cyclic 

frequencies for some signals that can be of potential interest. We have taken these cyclic frequencies 

from [154]    

1. Analog TV signal: It has cyclic frequencies at multiples of the TV-signal horizontal  line-scan 

                         rate. (15.6 KHz in Europe). 

2. AM signal:  02)()(   tfCostatx c . It has cyclic frequencies at ±2fc.  

3. PM and FM signal:  )(2)( ttfCostx c   . It has cyclic frequencies at ±2fc.The characteristics 

                                of the SCD function at cyclic frequency ±2fc depend on φ(t). 

4. Digital Modulated Signals: 

i. Amplitude Shift Keying: 

 )2()()( 00  
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It has cyclic frequencies at k/Δs , k ≠ 0 and  ±2fc+k/Δs, k = 0, ±1, ±2,… 

ii. Phase Shift Keying: 

 













 



n

snc tntpatfCostx )(2)( 0 .      

   ii(a). BPSK has cyclic frequencies at k/Δs , k ≠ 0  and ±2fc+k/Δs, k=0, ±1, ±2,… 

   ii(b). QPSK has cyclic frequencies at k/Δs , k ≠ 0.    

 

When source signal x(t) passes through a wireless channel, the received signal is impaired by the 

unknown propagation channel. In general, the received signal can be written as, 

)()()( thtxty   

where  denotes the convolution, and h(t) denotes the channel response. It can be shown that the SCD 

function of y(t) is 

)(
2

*
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Where * denotes the conjugate, α denotes the cyclic frequency for x(t), H(f) is the Fourier transform of 

the channel h(t), and Sx(f) is the SCD function of x(t). Thus, at certain cyclic frequencies, the unknown 

channel could have major impacts on the SCD strength.  

If we compare the cyclostationary feature detection with other methods described above, we will see 

that this method provides the best performance in sensing situations where characteristics of signal, 

channel and noise are known before hand. Another important advantage is the robustness to 

uncertainty in noise power and propagation channel as it offers the best performance under low SNR. 

Despite the advantages, there are certain inconveniences associated with this method. It is highly 

susceptible to ADC sampling clock offsets, so the sampling time could affect the cyclic frequencies. If 

we try to overcome this problem by using oversampling, it will introduce another drawback of high 

sampling rate requirement. Besides, the computation of SCD function is a computationally complex 

issue.   

Cyclostationary feature detection inherently suits our econometric technique of primary signal RF 

features modelling using NARX time series. This is explained by the fact that noise does not have any 

cyclostationarity in contrast to primary user signal that has special detectable statistical or 

cyclostationary features. Consequently, in order to predict one feature at a future time instance, to 

determine the presence of primary user, we need to consider other relevant previously observed RF 

features. This combined modelling notion is known as Non-linear Autoregressive Exogenous Model in 

time series literature [155].   

(6.4) 

(6.5) 



Chapter 6: Cognitive Radio Spectrum Sensing and Prediction Techniques. 

 143 

3.    Multivariate Time Series Prediction and Neural Networks:  

Time Series Prediction has proved to be one of the most important problems in many computing 

applications because of its wide ranging applications. In our context, we apply time series prediction 

to optimize the spectrum usage. In any case, the prediction results are based on knowledge of some 

aspects of previous observations of the system. The prediction model to be implemented is determined 

by the complexity of time series or by the problem to be modeled as time series. The traditional 

prediction methods: such as Auto-Regressive Moving Average (ARMA) and Auto-Regressive 

Integrated Moving Average (ARIMA) [156] are the statistical approaches to model time series. 

Markov Models have also been used to perform time series prediction [157]. The most powerful 

method known to predict time series is Artificial Neural Networks. The Artificial Neural Networks 

can be classified into two classes with respect to their topologies: Feed-forward and Recurrent. The 

dynamic systems such as Spectrum Evolution in time, are composed of many states and the spectrum 

evolution evolves according to many non-linear relationships between RF features, represented by 

equations. Such dynamic systems are well-represented by The Recurrent Neural Networks. The 

equations help to keep a record of the previous history and predict the future expected trend because of 

this knowledge. It is because of this reason that Recurrent Neural Networks are more suitable in 

prediction requiring problems. In recent years, many recurrent neural networks such as, Simple 

Recurrent Network (SRN) and Simple Recurrent Network with Shortcut Connections (SRNSC) have 

been investigated to address the single step ahead prediction problem. The recurrent inputs of the SRN 

architecture are connected to hidden neurons, which is the kind of network that we have exploited for 

solving our problem (Elman Recurrent Neural Network). The recurrent links (connection between the 

hidden layer) help to keep a history of previous occurred events, therefore, this model suits our 

application as we want to predict the Spectrum Evolution in future based on previous observations. 

The SRNSC architecture is also a class of SRN model. However, the connections are between input 

and output neurons. Many Recurrent Neural Networks architectures such as the Nonlinear 

Autoregressive with Exogenous Input (NARX) model [158, 159] and a dynamic recurrent network are 

presented by Parlos [160] for the multi-step ahead prediction. He proposed a novel recurrent 

multilayer perceptron architecture based on a modified learning algorithm. The connections in any 

dynamic recurrent neural network consist of mainly three kinds of links: feed forward links, recurrent 

links and cross-talk links. Recurrent links are the connection between the neurons of  hidden layer and 

the input layer, whereas cross-talk links are the connection between neurons of the output and hidden 

layer. In order to improve prediction performance, many efforts have been done to propose novel 

architectures for neural network based prediction. As an example, Owens [161] compared the Feed 

Forward Nonlinear Autoregressive Model, the fully recurrent architecture and many other NN 

architectures for determining the best prediction results. In [162], the authors present a novel algorithm 

to train the neural network that identifies chaotic dynamics from a single measured time series. The 
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work presented in [163] defines a neural network with flexible features that deals with the complexity 

of the tested time series for its prediction. In [164], the article talks of real world applications, by 

presenting a locally recurrent multilayer network to cope up with the complexity of the time series and 

to improve performance of the neural network model.  The Radial Basis Function Network (RBFN) in 

[165] has been exploited to construct an adaptive fuzzy system based identification and prediction, 

whereas in [166], Leung has used the RBFN for the implementation of an optimal single-step ahead 

predictor for chaotic time series. Many other neural network architectures have been exploited in the 

framework of nonlinear system prediction: for example SOM [104]. However, there has been a little 

effort in implying Feed-forward topologies for time series prediction. As an example, the work in 

[167] talks of a local linear-modeling scheme based on SOM – Feed-forward topology. This scheme is 

composed of three steps of treatment. In the first step, the time series is embedded in space, the second 

step is performed by the SOM which associates input vector of the time series to a single local linear 

model. In the third step, the prediction is performed by selected local linear predictor.  

We have already seen in Chapter 3 that research efforts combining machine learning techniques with 

CR technology do not provide any means of an efficient learning from past experiences, thus failing to 

exhibit one of the key properties of CR. Our work is different as we predict the spectrum evolution by 

exploiting the second order cyclostationary signal features detection, which is based on autocorrelation 

function, to construct a RF multivariate time series that contain more information than the univariate 

time series. The very challenging problem of Neural Networks based prediction of RF time series is 

approached in this Chapter by evaluating ERNN architecture in the paradigm of NARX time series. 

 

4.    Multivariate Time Series representation of received signal: 

We have modelled the underlying process behind primary user feature detection leading to spectrum 

prediction, using time series, by defining a threshold and applying it to the consecutive observation 

results of the underlying process. We estimate the hypothesis shown in (6.1) by analyzing the received 

signal for peak value based on the previous observations and this estimation is compared to a 

predetermined threshold, which is again based on previous primary signal detection observations. If no 

periodicity is found, it means that there is no signal in the detected band. Otherwise, the band is used 

by primary user. The threshold is actually the optimized cost function of our designed ERNN. This 

primary user presence/absence predicate decision process is summarized in Figure 52. The effects of 

sampling scheme are out of scope of our work. Since ERNN well-represent the type of input/output 

relationship needed to model time series, they fit in our CR spectrum prediction scenario. We estimate 

the peak value at a given instance by modelling the previous observed values as RF NARX time series 

using ERNN. 
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Fig. 52. Block Diagram of Spectrum Sensing predicate decision. 

In this section, we formalize the RF time series in connection with the spectrum occupancy problem. 

The formulation of primary user presence prediction performed at t
th
  instance is given by, 

11 /  tt HH F             (6.6) 

F t-1 is the generated NARX time series modelling sets regarding the RF data: cyclic prefix length, 

symbol period and preambles known from beginning to instance t-1, (where N=t-1). The correlation 

among these RF variables in our generated time series makes spectrum evolution prediction a difficult 

task. These modelling sets are formally represented as:  

x1(1), x1(2), x1(3)…..... x1(N); 

x2(1), x2(2), x2(3)……..x2(N); 

 

 

xn(1), xn(2), xn(3)……….xn(N). 

where, n is the number of variables considered in NARX time series and N is the length of input vector 

of the predictor p, which is actually the number of previous observations with respect to predicate Ht, 

shown in (6.1). This time series is generated using Exponential Moving Average Algorithm, used in 

several modern wireless applications [120]. Each member of the data sets shown in (6.7) differs with 

its adjacent member with a time delay of τ as each data set represents a single variable of 

cyclostationary process whose mean and autocorrelation exhibit periodicity. 

We estimate the primary user presence/absence predicate at instance t, based on previous N 

observations. Assuming, for the moment, that we are using linear regression, we have the following 

formal representation,  




 

N
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E is the expected operator showing that the mean function of x(t) is also periodical leading to the 
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 characteristic of cyclostationary. βk denotes the model parameters that control the associated RF 

features effect on the predicted value. Having the past N observations in memory, our proposed CR 

strives to obtain a time series model which represents the previous occupancy status and allows one to 

establish near field predictions. This leads to the prediction results based on knowledge of previous RF 

data relevant to the licensed user. However, since Ht is a binary predicate, we can not apply any linear 

model directly to equation (6.8) as the expected value for a binary process is in the interval [0,1]. To 

overcome this limitation, we apply a sigmoid link function for appropriate transformation. Sigmoid 

function provides a bounded output regardless of its input and is differentiable and real-valued, which 

is the reason to prefer it over other available link functions [168]. After applying the Sigmoid (tansig) 

function on our generated NARX time series set, our hypothesis definition becomes,  

)(1

1
txt

e
H


      (6.9) 

The L.H.S. of Equation (6.9) can be expressed in following two ways: 

i.  Single Step ahead prediction: 

Nttttt HHHHHH  ,....,,/ 3211       (6.10) 

ii. Multi (n) Step ahead prediction: 

Nntntntntnt HHHHHH   ,.....,,/ 3211      (6.11) 

Where Ht+n is the (t+n)
th
 time series estimated value, e.g. for n=0, equation (6.11) changes to single 

step ahead prediction case, shown in equation (6.10), which is the focus in this work. x(t) in equation 

(6.9), is autoregression, defined in [138] as,   




 

N
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ktk tnHAatx

1

0 )()()(  (6.12) 

where Ak is the coefficient matrices, n(t) is the error vector, N is the model order, indicating the 

number of previous data points used for modelling and a0 is the intercept. We predict the cyclic prefix 

length at time instance t, using all the generated RF modelling sets until instance t-1. We have already 

elucidated the suitability of this time series model construction to our problem in Section 2.4 of this 

Chapter. 

 

5.    ERNN Implementation: 

In this section, we explore and justify our Neural Network choice. ERNN, despite being 

computationally expensive, well-project the dynamic properties needed to predict the chaotic time 

series. We have already explained in Section 4 the need of Sigmoid function for appropriate 

transformation. ERNN has inherent Sigmoid (tansig) neurons in its hidden layer and thus it inherently 

suits out problem of primary signal cyclostationary modelling using multi-variate time series. 
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Furthermore, they overcome the problem of attaining global minima in the most efficient way. If Es(t) 

is optimization objective, the aim is to train the NN to minimize the Es(t) by adapting the weight of the 

network. If S is the number of training samples of the net, then mathematically, the minimization 

objective is, 

2

1

)(
ˆ

)(
2

1
)( 





S

t

s tYtYtE


       (6.13) 

 

 

 

 

 

 

 

 

 

Fig. 53. Elman Recurrent Neural Network. 
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 are the observed value and the predicted value of the neural network, respectively. We 

have to train the neural network iteratively until Es(t) tends to be stable, with an acceptable value.  

We have visualized our implemented ERNN in Figure 53, composed of three-layers with feedback 

from the hidden layer output to the selected neurons of first layer input. Rj is the j
th
 recurrent neuron 

that causes the delay for j time steps, thereby taking into account the previous j Spectrum occupancy 

observations.  Sigmoid neurons in hidden layer are also highlighted. The output layer of our ERNN 

contains purelin neurons.  

It is obvious from Figure 53 that the ERNN is different from traditional three-layer networks, as the 

hidden layer has a recurrent link with defined delays. This defined delay in the said connection is used 

to save the previous time instance values, which are exploited in the current time step. Furthemore, 

they are saved for the future time instances because of these recurrent links.  The input to the network 

is our generated RF NARX time series modelling sets up to instance  t-1. The output is the cyclic 

prefix length at instance t that decides for predicate Ht. This prediction based on previous observations 

leads to an intelligent cognitive user decision to exploit expected spectrum opportunities, thereby 

leading to optimized spectrum usage and interference avoidance.  
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At a specific (till a single instance before prediction) time instance (t-1), the previous activation of the 

hidden layer (until time t-2) and current inputs (at time t-1) are used as inputs to the network. At this 

stage, the network starts acting as a feed-forward topology by propagating these inputs forward for 

processing to produce the output. Once this step has been started, the activations of the hidden layer at 

time (t-1) are sent back through the recurrent links to the recurrent layer and the information is stored 

for the next training step t. The external input to the network at time (t-1) is H(t-1) and the network 

output is H(k+T), where k=(t-1) and T decides the prediction steps (T=1 in our case). The inputs and 

outputs of different layer neurons of an ERNN in terms of k are explained hereafter: The input to i
th
 

hidden neuron is vi(k), which is defined in equation (6.14). 
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The output of j
th
 recurrent neuron is Pj

R
(k) as defined in equation (6.15).  

)()( jkPkP j
R
j         (6.15) 

The output of i
th
 hidden neuron is defined in equation (6.16). 

)()( ii vfkP       (6.16) 

The output of the net is given in equation (6.17).  
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If i ,j=1,2,…n, then the link weightings between different layers is given by:  wi
H(k)

(.): input neurons 

and hidden neurons, wi,j
P
(.) : recurrent neurons and the hidden neurons and wi

H
k
(k+T),

 
 
: hidden neurons 

and the output neurons. The real valued and differentiable Sigmoid activation function is denoted by 

f(.). The objective of our designed ERNN is to minimize the squared error function shown in equation 

(6.13), to make the prediction more accurate.  This Spectrum Evolution prediction method is evaluated 

by the criteria of Root-Mean-Square Error, ERMSE, as shown in equation (6.18). This evaluation 

criterion is used to determine the acceptable threshold value, explained in equation (6.13). 

2

1

1

2][
1

1

















 



n

t

iiRMSE OP
S

E                (6.18) 

ERMSE reflects the absolute deviation between the predicted value and the target value. In equation 

(6.18) Oi is the target value and Pi is the predicted value. For impartial evaluation of the prediction 

performance of our approach, RF data for different time instances are used in the training (modelling) 

and testing (prediction) phases.  The training of ERNN is recognized as a very delicate procedure and 

hence in the training phase, we should choose a learning algorithm that could facilitate us with this 
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task. The Numerical Methods based learning method, Levenberg-Marquardt (LM) training algorithm 

[169,170] is known to calculate the exact approximations by extrapolating the Hessian matrix. Hence, 

we have opted this learning method to train our NARX time series based ERNN. We explain briefly 

this training algorithm, allowing single step ahead prediction.  

Equation (6.13) shows that the problem to be minimized is nonlinear least square minimization, 

provided that  S > the dimension of time series. With the knowledge of numerical methods, we know 

that simple gradient descent and Gauss-Newton iteration are complementary in the advantages they 

provide. LM algorithm is based on this observation. The first derivatives of Es , our minimization 

objective, can be written using the Jacobian matrix J of Y , defined as 

 StSj
t

Y
tJ

i

j





 1,1,)(      (6.19) 

The distinctive property of least-squares problem is that given the Jacobian matrix J, we can avoid the 

complexity of calculating Hessian matrix and it can be estimated as 

JJH T     (6.20) 

The gradient is computed as 

eJg T     (6.21) 

where e is the vector of network errors. Thus, the LM algorithm uses the approximations of equations 

(6.20) and (6.21) to calculate the next step weight update as 

eJIJJxx TT
kk

1
1 ][ 
        (6.22) 

We depict the two phases (training and testing) of our designed ERNN based spectrum prediction 

algorithm to process the cyclostationary RF time series data in Figure 54. This algorithm is designed 

for single step prediction, explained in equation (6.10). 

 

6.    Experimental Results: 

This section analyses the experimental results obtained by our approach explained in Sections 4 and 5. 

As an example of licensed spectrum user, we have considered the UMTS frequency band whose usage 

is only 11.1% in Paris [136]. However, all other deterministic primary user signals can be exploited in 

the same way due to cyclostationarity. After generating the UMTS based RF time series modelling 

sets using Exponential Moving Average Algorithm, we train the first 300 state points of the 330 state 

points. The remaining 30 state points are taken as testing samples. The implementation parameters for 

our designed algorithm are listed in Table 17.  
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Fig. 54. Our designed ERNN and LM based Algorithm for Spectrum prediction in form of time series. 

Implementation Parameters 

Number of input layer neurons 15 

Number of hidden layer neurons 10 

Number of output layer neurons 1 

Training samples 300 

Testing samples 30 

Prediction steps 1 

Variables in UMTS RF time series 3 

Input dimension of Neural Network 30 

Transfer Function Sigmoid 

 Training Algorithm LM 

 

Tab. 17. Algorithm Parameters. 

We have chosen these parameters after a careful analysis using trial and error, e.g. we analysed that 

hidden layer neurons   greater than 10   lead to   undesirable   situation of overfitting. Using fewer NN 

parameters, than mentioned in Table 17, resulted in inadequate modelling, whereas more input  
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parameters excessively complicated our model, reminding us the computational complexity of ERNN.  

The input to the ERNN, in both testing and learning phase, is trivariate RF time series formulated in 

Section 4. In each testing point, the input to NN consists of the three RF variables based time series of 

previous 30 time instances before time t, i.e. from instances (t-30) to (t-1). These instances are actually 

short duration observations. Mathematically, 

 








 TTT XXXNxxNxxNxx 321332211 ,,)(),...1(),(),...1(),(),...1(  

The neural network‟s output is the predicted cyclic prefix length time series value at the instance t, 

thus deciding for the presence/absence of primary user signal based on previous 30 observations. We 

compare this predicted time series with the actual observed time series of our generated trivariate time 

series set to determine the prediction error that tells about our designed algorithm performance. We 

generate the initial weights randomly.  

The primary user presence/absence prediction performance for testing samples is shown in Figures 55 

and 56.  In Figure 55 the red solid curve represents the predicted values during the 30 testing samples, 

whereas the dashed blue curve represents the observed values. The error between the predicted and 

observed values, called the prediction error, is shown in Figure 56. These Figures clearly demonstrate 

that the prediction is accurate as the predicted values have a similar trend as the observed values, 

leading to a slight prediction error.  This prediction accuracy is attributed to our chosen Non-linear 

Autoregressive Exogenous Time Series Model, as it contains three times as many observations as are 

available for each independent modelling. 

The ERMSE is 0.0416 which outperforms the counterpart NN Techniques used for cognition 

incorporation in radios. Thus the primary user presence or absence predicate is predicted in the most 

efficient way. However, this efficiency is achieved at the cost of more complicated algorithm design 

because of the following two facts: 

 The three considered RF features of the signal (variables of our trivariate time series) 

modelled by ERNN are interdependent. 

 The inherent design complexity of ERNN. 

The CR, thus, based on the previous observed features of the primary signal effectively predicts the 

presence or absence of primary user at a given near future instance. This leads to an efficient decision 

of cognitive user in terms of occupying or vacating a specific spectrum chunk at a specific time 

instance, thereby optimizing spectrum, the most valuable radio resource, usage. 

 

(6.23) 
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Fig. 55. Observed and Predicted values of time series over testing samples. 

 

 

Fig. 56. Prediction error between predicted and observed time series. 

 

7.    Comparison with other Prediction Techniques: 

This Section aims at comparing our experimental results shown in Figures 55 and 56 with that of other 

available prediction techniques available in literature. We have already cited a number of techniques, 

with an emphasis on ANN, that have been employed to predict time series in Section 3 of this Chapter. 

This Section compares different proposals for spectrum prediction, available in literature. The notion 

of predicting spectrum access was introduced by Clancy in [171]. He very briefly examined the hidden 

markov models for spectrum prediction. Wang [172,173] applies statistical method of ARIMA for 

time series prediction to model the GSM radio spectrum occupancy. Akaike‟s Information Corrected 

Criterion (AIC) was used to compare the performance with ARMA method to conclude that ARIMA 

gives better prediction results that ARMA. Figure 4 of [172] shows that the observed and predicted 

values are in good agreement, but the prediction is less accurate than our proposed neural networks 
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based method. Also, the statistical methods of ARMA and ARIMA have a very serious restriction with 

respect to CR that they require a priori knowledge of the underlying distributions of the observed 

process.  The non-linear processes are known to give inaccurate prediction results when modeled 

using ARIMA [141]. It is important to mention that it has been proven experimentally that ANN are 

the most efficient techniques for prediction, e.g. in [174] authors group the statistical techniques and 

compare them with neural networks based prediction methods only to conclude that neural networks 

based predictors give better prediction performance than their statistical counterparts. Chen [175] 

proposes a three-order Hidden Markov Model to predict the spectrum by employing Wi-Fi as the 

primary user. The average error rate is used as performance measuring criteria to show that the 

complexity and memory space required for the higher order hidden markov model increases sharply 

with an increase in the number of orders. This is again in contrast to our ERNN based prediction 

method. Another hidden markov model based channel status predictor was proposed in [176] that is 

impractical for real scenarios as it only addressed deterministic traffic scenario.  The details of model 

such as transition and output probabilities and number of states, in the case of hidden markov models 

are not provided, thus making it difficult to numerically compare it with our ERNN based model. 

However, it is an established fact [178] that neural networks offer better prediction performance than 

markov models and also overcome the huge memory space requirement. Furthermore, the continuous 

parameter update in hidden markov models is replaced by training in neural networks, which is not a 

continuous process, making it a pragmatic choice in the CR real time scenario. Yarkan [177] predicts 

the spectrum using binary time series; however, the results are degraded as the problem of attaining 

global minima is not addressed. The neural networks based predictors are known to address this 

problem, which is the reason of our superior prediction results as compared to [177].   The prediction 

efforts using neural networks, in the context of cognitive radios to predict data rate [120] and 

throughput [122] do not use the time series modeling. This can be attributed to the error values of 

0.0637 and 0.8 respectively, again proving that our numerical result value of 0.0416 is better. In a 

similar effort to ours, Tumuluru [178] uses MLP neural networks to predict future expected spectrum 

holes and claims that 60% improvement in spectrum utilization is achieved by MLP neural networks 

based prediction methods. However, MLP is a feed forward topology and hence feedback connections 

extending from output of neurons to previous layer input neurons are absent. In our prediction context, 

we need to preserve the history of previous RF features and hence, we need the feedback links. This 

explains our ERNN choice as compared to MLP.  

We have observed that different spectrum prediction techniques have different error evaluation criteria 

pertinent to that specific technique. However, we observed the specific characteristics and prediction 

results of the different techniques to come up with the comparison done in this Section.  
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8.    Conclusions: 

Today, spectrum policy is undergoing radical rethinking, which motivates us to seek a greater cross-

domain interaction. In this respect, we proposed a novel approach to solve the spectrum scarcity 

paradox. We designed an algorithm, using Nonlinear Autoregressive Exogenous Model that exploits 

the inherent cyclostationary features of a primary user signal to predict the future spectrum evolution. 

Our ERNN based algorithm accepts trivariate UMTS RF features time series to predict the future 

presence/absence of primary user. The obtained results are very promising and clearly demonstrate the 

superior performance of the proposed approach that gives a very slight prediction error, thus 

outperforming other NN based cognition incorporation solutions. The successful primary user 

presence/absence prediction enables CR to exploit available spectrum opportunities. This leads to 

 optimized spectrum usage.
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Chapter 7: 

 

Final Word and Perspectives.  

 

Lateral thinking is perhaps the most important state of mind one can possess, because it can bring a 

brand new start to a specific domain, simply by watching and observing the phenomena and reasoning 

from other disciplines and creating a link by a tighter coupling with our domain. As an example, 

lateral thinking has helped in developing several meta-heuristics which are inspired from nature, 

biology, economics, physics, engineering or different disciplines. There are several phenomena that 

we don‟t understand in nature, but which are already working efficiently. This thesis emphasized on 

gaining a greater cross-domain interaction by getting inspiration from natural systems, thereby 

answering the ITRS Roadmap Prediction. We combined artificial intelligence, parallel processing, 

statistics, and physics to engineer a Resource Efficient Universal Multi-standard Transceiver Software 

Defined Radio Waveform. The main focus of this thesis was to answer the different adaptability and 

reconfigurability aspects required to realize the SDR and CR technology. Our designed waveform 

efficiently addresses the following three most important aspects of SDR and CR: 

1.  The inconsistency between hardware and software advancements, thereby preventing to push the 

communications hardware into obsolescence in upcoming years, by designing an efficient 

parallelization technique for each of the SDR waveform component.  

2.  A single Multi-standard adaptive Transceiver capable of detecting multiple communication 

standards, based on three ANN techniques and switches to appropriate ANN for appropriate standard 

detection and operation. 

3.  A spectrum reuse opportunity in underutilized radio spectrum is predicted, based on previous 

cyclostationary features of primary user, thereby giving the secondary user an opportunity to exploit 

the spectrum holes in the near future. ANN is used for prediction of cyclostationary RF features, 

modeled by time series, of primary signal.  

The above three aspects of our waveform can lead to the development of smarter devices that are 

capable of adaptability requirements of SDR and CR embedded implementation and that these agile 

frequency requiring devices may be seen as an evolution towards intelligent and high speed ubiquitous 

wireless communications that uses and re-uses radio resources effectively. We have justified by 
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proven evidences, observations and logical deductions the above mentioned three aspects of our 

designed waveform. After reviewing the important research projects and machine learning techniques 

that can be applied to this domain, the first portion of the thesis showed that by shifting short term 

development of a radio waveform into software domain, we can benefit from the capabilities of 

multiprocessor platforms to enhance the performance of the computationally intensive SDR waveform 

components. We contributed to better parallel programming techniques through accurate and real time 

NoC monitoring. We further optimized the resource utilization by partitioning the PEs for different 

waveform components and thus further optimized the multicore chip utilization. It remains that despite 

considerable research, there are very few existing implementations of actual MPSoC. There is a need 

to design and build MPSoC platforms with a significant number of processors as experimental tool to 

feedback the target MPSoC for SDR waveform.  

It can be interesting, in future, to exploit Moore‟s Law by engineering a CORBA based  distributed 

SDR waveform comprising of the same resources as addressed in this thesis to analyze the CORBA 

delays in further detail. In this respect, we have already provided a performance analysis by collecting 

performance metrics on modern high speed network of multi-core workstations using OmniORB 

CORBA implementation as the target ORB. We measured the five aspects namely, Invocation Time, 

In Sequence, Out Sequence, Objects Registered and Multithreading. Since modern high speed multi-

core systems and efficient light weight and modern implementations of CORBA such as omniORB 

have made it possible to address the issues of CORBA delays in a Software Defined Radio, in case if 

the resources of a waveform are in different address spaces, therefore our benchmarking results can 

serve for an efficient SDR distributed waveform, which is a possible future research direction.  

The highly varying environments characterizing the future of wireless communications is the focus on 

the second part of this thesis. We exploit the inherent parallelism in three ANNs: LVQ, SOM and 

MLP, for answering the high adaptability requirements of CR embedded implementation by mapping 

the three algorithms on the aforementioned MPSoC. These three algorithms constitute the second 

aspect of the thesis. We propose a multistandard CR Transceiver based on these three ANN 

techniques, which are widely different from conventional information processing as they have the 

ability to learn from previous examples, thus exhibit the most basic instinct of CR. We exploit the 

inherent property of SOM, Tonotopy, to recognize the standard in our proposed multi-standard CR 

Transceiver. In the case of MLP, we have used Mean Square Error as a metric for measuring MLP‟s 

performance. The ANN based algorithms, apart from possessing the basic instinct of CR, learning, are 

inherently parallel in nature. We exploited this inherent parallelism.Our designed synchronization and 

parallelization strategy for the Multi-standard Universal Transceiver gave excellent speed-up. An 

efficient load-balancing across all the 16 PEs is done in the case of a received signal, which may be 

the result of summation of many standards. However, it appears to us that something important is 

missing in our understanding of the electromagnetic waves which has led us to build “dumb 
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transceivers”. In this respect, this contribution is a first step in the expected technological 

breakthrough that will eventually replace the dumb transceivers with smarter cognitive multi-standard 

transceivers.  

All the wireless applications use spectrum to work and are subjected to spectrum reuse constraints to 

avoid radio interference. Our third contribution is towards the efficient spectrum management, a 

concept that is often seen as the defining notion for CR. We solved the spectrum scarcity paradox by 

Nonlinear Autoregressive Exogenous Time Series Modeling of UMTS RF features. This time series is 

given as input to ERNN that predicts the future spectrum evolution in time, thus allowing cognitive 

user to exploit the available spectrum opportunity. Error evaluation criteria Root-Mean-Square Error 

for ERNN is used. We observed a similar trend between predicted and observed values, giving us a 

slight prediction error. So, in this contribution, we proposed an ERNN based solution to detect the 

future possible spectrum holes. This intelligent algorithm that accepts RF multivariate time series as 

input makes the best use of a spectrum part, which leads to a new way of spectrum allocation and 

exploitation. The cognitive radio concept is often seen as the solution for the spectrum scarcity 

problem, however, we have shown that there are hurdles to overcome on the way towards fully 

flexible cognitive radios. We have addressed these hurdles that include mainly hardware constraints 

that result from the need for high degree of reconfigurability and adaptability to any given air 

interface. We have also presented and discussed the currently ongoing research activities related to 

Software Defined Radio and Cognitive Radio. High performance SDR embedded applications based 

on single processing will increasingly be moved to embedded multiprocessors.  In this respect, 

combining all the three aspects, this doctoral thesis has introduced solutions to the most important 

questions related to SDR and CR engineering. As discussed previously, the main advantage of the 

proposed algorithms for Spectrum efficient Universal Transceiver possessing SDR waveform is high 

degree of reconfigurability and adaptability. Also, the general purpose embedded solution has become 

the standard for implementing high adaptability requiring devices as compared to their counterpart 

application specific solutions. Thus this doctoral thesis shows the adaptability to varying situations and 

unknown systems illustrating the value of SDR and CR algorithms suitability on general purpose 

hardware against the better performing but less flexible dedicated hardware.  

As ANN is a meta-heuristic approach, it can be used to solve the other problems from cognitive world, 

e.g. a possible future access of research to contribute to our third contribution could be the exploration 

of handover strategies between different Standards. We can extend our work by constructing another 

multivariate time series based on the features of WiMAX and then use the ANN to explore the inter-

standard handover strategies. This will enable to have an acting mobile terminal for WiMAX and 

UMTS, at the same time. The intersystem handover performance using ANN can be analyzed to 

explore the mobility of the two networks. However, for this task we need to design a specialized ANN 

that has the qualities of SOM to recognize a standard on the basis of input parameters followed by the 
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recurrent features of the ERNN to model the multivariate time series of the respective norm. The usage 

of real date instead of generated data for time can be another improvement.  

Thus, there are multiple future directions that can be pursued in the framework of the problems  

addressed in this thesis.  
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