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For to strange sores strangely they strain the cure.

Much ado about nothing,
William Shakespeare

A des maux étranges on applique d'étranges remèdes.

Beaucoup de bruit pour rien,
William Shakespeare
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Abstract

Noise in images often limits visual and automatic interpretation of the scene. Speckle in
synthetic aperture radar (SAR) imagery and shot noise in photon-limited imagery are two
examples of strong corruptions that require the use of denoising techniques. Patches are small
image parts that capture both textures and local structures. Though being crude low-level
features (compared to higher level descriptors), they have led to very powerful image processing
approaches by exploiting the natural redundancy of images. Patch-based methods achieve
state-of-the-art denoising performance.

The classical patch-based denoising technique � non-local (NL) means � is designed for
images corrupted by an additive Gaussian noise (i.e., �uctuations being symmetrical, signal-
independent without outliers). NL means cannot be applied directly on images corrupted by
a non-Gaussian process especially with non-symmetrical distribution, signal-dependence and
heavy-tail such as speckle and shot noise.

The goal of this thesis is to bridge the gap between patch-based denoising methods restricted
to Gaussian noise and techniques dedicated to SAR despeckling. After reviewing image
denoising techniques for Gaussian noise and for non-Gaussian noise, we propose an extension of
the NL means that adapts to a given noise distribution.

Besides the problem of image denoising, we study the problem of patch comparison under
non-Gaussian conditions. Many tasks in computer vision require matching image parts. We
introduce a similarity criterion grounded on the generalized likelihood ratio test and illustrate
its e�ectiveness on di�erent applications including detection, stereo-vision and motion-tracking.

This criterion is at the heart of the proposed patch-based estimator. An iterative scheme
is proposed to deal with strong noise corruptions and we develop an unsupervised method for
parameter setting. Our approach leads to state-of-the-art denoising results in SAR imagery for
amplitude images, as well as interferometric or polarimetric data. The proposed technique is
applied successfully to one of the latest aerial SAR sensor: F-SAR from the German Aerospace
Center (DLR).

Images with strong contrasts su�er from denoising artefacts known as noise halo due to the
absence of similar patches in the vicinity of some structures. This residual noise can be reduced
by considering patches with shapes of various scales and orientations. Local selection of relevant
shapes leads to an improved denoising quality, especially close to edges.
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Synthèse des travaux de thèse

Le débruitage d'images est un problème important en traitement d'images puisque
le bruit limite souvent l'interprétation visuelle et automatique de la scène. Il est alors
nécessaire de pré-traiter les images avec une méthode de restauration appropriée avant
de passer à leur analyse. La restauration est une étape clé dans beaucoup de cas, par
exemple : l'imagerie à faible �ux, les capteurs à faible coût dans les systèmes embarqués, et
aussi l'échographie, le sonar et l'imagerie radar. Le débruitage d'images reste un problème
di�cile et très actuel.

1 Contexte

J'ai réalisé une thèse (�nancement MENRT) à Télécom ParisTech au laboratoire
LTCI (dans l'équipe Traitement et Interprétation des Images), du 1er octobre 2008 au 31
octobre 2011, sous la direction de Florence Tupin (Télécom ParisTech) et de Loïc Denis
(Télécom Saint-Etienne). Le sujet de cette thèse a porté sur le débruitage des images
sous conditions de bruits non-gaussiens. En particulier, nous nous sommes intéressé aux
méthodes dites à patchs, à leurs applications à l'imagerie radar et à l'imagerie à faible
luminosité. Le but de cette thèse était de combler le fossé méthodologique entre les
progrès récents des techniques de débruitage à base de patchs, limitées au cas du bruit
gaussien, et les méthodes dédiées au cas du chatoiement (ou �speckle�) développées dans
la communauté de l'imagerie radar.

Dans les années 80�90, la plupart des techniques de débruitage d'images étaient fon-
dées soit sur des méthodes de régularisation soit sur des décompositions parcimonieuses
en ondelettes. En 2005, Buades et al. (2005) ont introduit le �ltre à moyennes non-locales
qui marqua un tournant dans l'histoire du débruitage d'images. L'idée de base � chercher
des motifs similaires et combiner la valeur de leurs pixels � a mené à des résultats
impressionnants. Toutes les techniques récentes en débruitage d'images reposent sur les
concepts de non-localité et de patchs. Parmi eux, le K-SVD (Aharon et al., 2006), le
BM3D (Dabov et al., 2007) et le NLSM (Mairal et al., 2009) sont généralement considérés
comme les �ltres de l'état-de-l'art.

Parallèlement, l'imagerie à synthèse d'ouverture (RSO) est entrée dans un nouvel
âge d'or. Depuis 2006, plusieurs nouveaux capteurs sont apparus avec des con�gurations
polarimétriques et/ou interférométriques et de très hautes résolutions. Parmi eux,
TanDEM-X est le satellite radar de l'agence aérospatiale allemand (DLR), lancé en
2010 et fonctionnant conjointement avec son homologue TerraSAR-X (voir Fig. 1(a)).
La multiplication des capteurs a fortement accru la quantité de données polarimétriques
et interférométriques disponibles. Leur analyse reste une tâche di�cile qui demande
de prendre en compte la géométrie, la hauteur, la rugosité et l'humidité des objets.
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(a) TanDEM-X et TerraSAR-X ( c©2010 DLR) (b) Subsidence à Mexico

(c) Fonte du glacier d'Ar-
gentière

(d) Reconstruction 3D d'une zone urbaine

Figure 1 � Illustration de l'engouement récent porté à l'imagerie radar avec le lancement
de TanDEM-X en 2010 (a) qui ouvre une multitude d'applications comme l'étude de
la subsidence de terrain (López-Quiroz et al., 2009) (b), le suivi de la fonte de glaciers
(c), ou encore la reconstruction tridimensionnelle d'une zone urbaine (Sportouche et al.,
2009). La présence d'un fort bruit de speckle dans toutes ces images impose l'utilisation
de méthodes de traitement de l'images basées sur des modèles de débruitage.

Une des di�cultés en imagerie RSO est la présence de speckle multiplicatif : un grain
indésirable qui apparaît dans les systèmes d'imagerie cohérente (incluant aussi le sonar,
l'échographie, et l'imagerie laser). Des techniques automatiques sont alors nécessaires
pour traiter ces vastes bases de données avant de procéder à leur analyse, par exemple
pour le suivi d'objets, la détection de changements, la classi�cation, la reconstruction
3D et l'estimation de l'évolution de la biomasse des forêts (voir Fig. 1). C'est dans ce
contexte que mes travaux de thèse se sont positionnés.

La motivation initiale de cette thèse était d'étendre les méthodes de �ltrage non-local
à base de patchs pour réduire le speckle qui corrompt les images RSO. Parallèlement, les
images optiques sou�rent aussi de �uctuations indésirables attribuées au bruit thermique

et au bruit de grenaille (�shot noise�). Nous avons donc également considéré le problème
plus général de restauration des images bruitées, ou comment guérir les images du bruit.
Au delà du traitement des images RSO, le sujet de cette thèse est devenu plus généralement
celui du débruitage des images.
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(a) Image optique (b) Amplitude mono-vue

(c) Phase interférométrique multi-vue (d) Amplitude multi-vue

Figure 2 � (a) Une image optique, (b) l'amplitude RSO mono-vue et (c-d) l'amplitude
RSO multi-vue et la phase RSO interférométrique multi-vue (obtenue par une moyenne
dans une fenêtre glissante 7×7) d'une zone urbaine de Toulouse (France). L'image optique
a été acquise par le satellite Quickbird ( c©DigitalGlobe) et l'image RSO par le capteur
aéroporté RAMSES ( c©ONERA). L'image d'amplitude mono-vue présente de fortes �uc-
tuations tandis que l'image multi-vue présente de plus faibles �uctuations au prix d'une
perte de résolution. En moyenne, l'amplitude est faible dans les zones lisses comme les
rues, plus forte dans les zones rugueuses telles que l'herbe ou la végétation, et extrême-
ment forte autour des structures urbaines, des véhicules ou encore au pied des arbres où
les échos radar sont les plus forts. La phase interférométrique est liée à la hauteur de
la scène à des erreurs près apparaissant dans les régions de faible cohérence. Le �ltrage
multi-vue réduit ces erreurs au prix d'une perte de résolution.
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2 Pourquoi débruiter ?

Si le débruitage peut être considéré comme une étape essentielle de pré-traitement
pour l'interprétation haut-niveau des images naturelles, il est aussi possible de concevoir
des techniques de haut-niveau robustes et directement adaptées aux données bruitées.
Par exemple, le modèle de segmentation de Mumford and Shah (1989) considère que le
processus d'acquisition d'une image conduit toujours à une approximation corrompue
et bruitée de la vraie image. E�ectivement, il est parfois plus simple de prendre en
compte les données bruitées qu'une version débruitée puisque les statistiques des données
bruitées sont souvent bien connues tandis que les statistiques des données traitées sont
généralement très complexes quand des traitements non-linéaires sont impliqués. Si de
tels modèles prennent le bruit en compte, il n'est plus nécessaire de débruiter l'image
dans une étape de pré-traitement. La chaîne de traitement est alors simpli�ée avec moins
de paramètres et, par conséquence, avec un meilleur contrôle sur la production des
résultats �naux.

Il n'est cependant pas toujours aisé de prendre en compte le bruit dans les techniques
de haut-niveau. Par exemple, nous ne connaissons pas d'extension performante du célèbre
descripteur SIFT de Lowe (2004) pour faire face à di�érentes statistiques de bruit.

Le débruitage n'est pas limité à un pré-traitement destiné à améliorer la robustesse
des traitements suivants. Il peut servir à enrichir méthodologiquement d'autres tâches.
Ainsi, dans le cadre de la segmentation, il a été établi par Mumford and Shah (1989)
que leur modèle de segmentation était étroitement lié à la fonctionnelle proposée par
Geman and Geman (1984) dans le cadre de la restauration des images. Ainsi, l'élaboration
d'algorithmes de débruitage n'est pas nécessairement une �n, mais peut être un moyen
pour l'enrichissement de modèles utilisés pour d'autres tâches. Dans le cadre de cette
thèse, nous avons ainsi montré que la méthodologie de comparaison de patchs bruités
pouvait fournir de nouveaux critères de similarités utiles pour des applications telles que
la détection, la vision stéréoscopique ou le suivi d'objet.

3 Problématiques liées à l'imagerie RSO

L'intensité des images RSO sou�re de �uctuations multiplicatives appelées speckle

(voir Fig. 2). Le speckle est souvent réduit par une moyenne spatiale des pixels d'un même
voisinage au prix d'une perte de résolution. Inspiré par les travaux de Buades et al. (2005),
notre point de départ fut d'utiliser une approche non-locale pour réduire e�cacement le
speckle dans l'image tout en évitant la perte de résolution. Pour étendre les moyennes non-
locales aux images RSO, un critère de similarité doit être conçu pour trouver les patchs

ressemblants dans une image RSO. Dans les moyennes non-locales, la similarité entre
patchs est exprimée comme une di�érence quadratique entre les valeurs de pixels. Pour les
images RSO, les �uctuations du bruit dépendent du niveau du signal et cette di�érence
quadratique n'est pas adaptée. Puisque le bruit est multiplicatif, un critère fondé sur
le rapport des intensités semble intuitivement plus adapté qu'un critère sur les di�érences.

Les images RSO interférométriques et polarimétriques fournissent en chaque pixel une
information vectorielle à valeurs complexes, formée par concaténation des amplitudes et
déphasages mesurées dans chaque canal (voir Fig. 3). La di�érence de phase entre chaque
canal apparaît comme une quantité cruciale qui sou�re d'un bruit de décorrélation (perte
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(a) Image optique (b) Image RSO polarimétrique

Figure 3 � (a) Une image optique, (b) l'information mono-vue d'une image RSO polari-
métrique acquise sur une zone urbaine à Kaufbeuren (Allemagne). L'image optique a été
acquise par Quickbird ( c©DigitalGlobe) et l'image RSO par F-SAR ( c©DLR). L'image
RSO polarimétrique est représentée en utilisant une décomposition rouge-vert-bleu clas-
sique (représentation de la polarisation dans la base de Pauli).

de cohérence). Notre extension des moyennes non-locales doit réduire conjointement le
speckle dans l'intensité et le bruit de décorrélation dans les di�érences de phases en consi-
dérant la similarité entre patchs à valeurs vectorielles complexes. La di�érence quadratique
ne peut pas prendre en compte l'enroulement des di�érences de phase. Nous avons consi-
déré un cadre statistiques basé sur la distribution jointe de l'intensité et de la di�érence
de phase pour tenir compte de statistique du bruit et de l'enroulement de la phase.

4 Un aperçu de l'état de l'art en débruitage

Le débruitage consiste à estimer une image non-bruitée à partir de son observation
bruitée. De nombreuses techniques de débruitage ont été proposées dans la littérature
du traitement d'image, principalement pour le cas d'un bruit additif gaussien. Le but
du débruitage est de trouver une méthode puissante pour réduire le bruit tout en
préservant les structures d'intérêt tels que les contours et les textures, sans introduire
de structures arti�cielles (artefacts). L'estimation de l'image non-bruitée à partir d'une
unique observation bruitée ne peut être réalisée qu'en introduisant des connaissances a

priori sur l'image (c'est à dire, un modèle statistique des images naturelles). La �gure 4
donne un aperçu des grandes familles d'approches de débruitage.
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Transf. parcimonieuses
(ondelettes, dictionnaires)

Approches variationnelles
et markoviennes

Méthodes
à patchs

Non-localité
et parcimonie

Variation totale
non-locale

[Geman and Geman, 1984]
[Perona and Malik, 1990]

[Rudin et al., 1992]
[Donoho and Johnstone, 1994]

[Portilla et al., 2003]

[Buades et al., 2005]
[Awate and Whitaker, 2006]

[Aharon et al., 2006]
[Dabov et al., 2007]
[Mairal et al., 2009]
[Chatterjee et al., 2011]

[Gilboa and Osher, 2007]
[Peyré et al., 2008]

BLS-GSM Diffusion anisotropique

BM3D Moyennes non-locales

Figure 4 � Schéma présentant les grandes familles d'approches de débruitage : les ap-
proches variationnelles et markoviennes généralement orientée sur la préservation des
contours ; les transformations parcimonieuses fondée sur des dictionnaires adaptés aux
images ; les méthodes à patchs reposant sur l'hypothèse d'auto-similarité des images ; des
approches récentes s'appuyant sur des modèles hybrides.

La richesse des modèles d'images joue un rôle important sur la qualité du débruitage,
et en particulier sur le compromis biais-variance. Un modèle trop restrictif, non-adapté
aux images traitées, peut conduire à une réduction de bruit signi�cative (faible variance)
au prix d'une mauvaise restitution (en général un e�et de �ou) des objets d'intérêt (fort
biais). À l'opposé, un modèle trop �exible laissera souvent trop de bruit dans l'image
(forte variance) mais préservera mieux les structures d'intérêt (faible biais).

4.1 Filtrage orienté �contours� pour les images régulières

Une première approche est de modéliser les images comme étant régulières avec des
discontinuités, par exemple, une image constante par morceaux (on parle de modèle �car-
toon�). Ces méthodes sont intrinsèquement adaptatives puisque la force du lissage doit
être nuancée selon le contenu local de l'image. Par exemple, les �ltres anisotropes, tel
que le modèle de di�usion de Perona and Malik (1990), lissent l'image dans une direc-
tion privilégiée généralement orthogonale aux contours de l'image. Dans le même esprit,
l'adaptation locale peut être obtenue en considérant un lissage au sein de fenêtres adap-
tatives en modi�ant la taille, l'orientation ou plus généralement le support de la fenêtre
(Lee, 1981; Park et al., 1999; Takeda et al., 2007; Katkovnik et al., 2002, 2004; Vasile
et al., 2006). La variation totale (TV) est un exemple d'a priori qui force le lissage tout
en préservant les contours (Rudin et al., 1992). La principale limite de ces �ltres est qu'ils
ne peuvent restaurer à la fois de grandes régions homogènes et des cibles ponctuelles, des
motifs hautes fréquences et des textures complexes.
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Figure 5 � Illustration de la propriété d'auto-similarité des images naturelles. Les mo-
tifs contenus dans des petites fenêtres centrées, nommées �patchs�, se répètent plusieurs
fois dans l'image. Les modèles récents de traitement d'image prennent en compte cette
redondance d'information présente dans un grand nombre de modalités d'images.

4.2 Filtrage par dictionnaire pour les images parcimonieuses

Les approches par dictionnaire visent à restaurer l'image en utilisant un dictionnaire
dont les atomes encodent les structures d'intérêt que l'on cherche à préserver. Si le diction-
naire est bien choisi, l'image peut être décrite à l'aide de peu de mots du dictionnaire. On
dit alors que l'image est parcimonieuse à travers le dictionnaire : elle est la combinaison
linéaire d'un nombre limité d'atomes (on parle de synthèse parcimonieuse) ou elle est cor-
rélée à peu d'atomes du dictionnaire (on parle d'analyse parcimonieuse). Les dictionnaires
d'ondelettes sont parmi les plus populaires en représentation des images naturelles (voir,
par exemple, Mallat, 2009b). Pour les tâches de reconstruction, les bases d'ondelettes
redondantes (en particulier non-décimées) permettent d'améliorer les résultats (Coifman
and Donoho, 1995). La prise en compte des dépendances entre coe�cients voisins permet
aussi d'améliorer la qualité du débruitage (Portilla et al., 2003). Beaucoup de travaux
récents s'intéressent à l'apprentissage de dictionnaires redondants. Aharon et al. (2006)
ont ainsi proposé d'apprendre des dictionnaires de patchs qui conjointement à l'utilisa-
tion de parcimonie structurée (Mairal et al., 2009) mènent à des résultats état-de-l'art.
La représentation des images par une collection de patchs est au c÷ur des techniques de
débruitage les plus récentes.

4.3 Filtrage par patchs pour les images auto-similaires

L'idée commune du �ltre UINTA (Awate and Whitaker, 2005, 2006) et du �ltre à
moyennes non-locales (Buades et al., 2005) est de remplacer la valeur bruitée d'un pixel
par une moyenne pondérée des valeurs des pixels situés dans un même contexte. Le
contexte d'un pixel est caractérisé par une petite fenêtre centrée nommée �patch�. Par
rapport aux approches locales qui considèrent les relations spatiales entre les pixels (par
exemple leur proximité dans l'image), seule la similarité des patchs est prise en compte.
De telles approches sont alors dites non-locales puisque les valeurs de pixels éloignés
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peuvent potentiellement être combinées ensemble.

Dans leur article original, Buades et al. (2005) dé�nissent les poids à partir de la
distance entre les valeurs bruitées des patchs Px et Px′ (c-à-d., des fenêtres carrées de
taille p× p recouvrant respectivement le pixel d'intérêt x et le pixel candidat x′). Si l'on
note u(x) et v(x) les valeurs respectives de l'image non-bruitée et de l'image bruitée au
pixel x, le �ltre à moyennes non-locales s'exprime par :

û(x) =

∑
x′ w(x, x

′)v(x′)∑
x′ w(x, x

′)
avec la pondération w(x, x′) = ϕ

(
‖v(Px′)− v(Px)‖2

2

)
(1)

où ϕ est une fonction noyau décroissante R+ → [0, 1] qui contrôle la force du �ltrage.
Notons qu'en pratique, pour des raisons de temps de calcul, la recherche du pixel candidat
x′ est limitée à une grande fenêtre de recherche Wx centrée sur x. La fonction noyau
dépend généralement de paramètres qui contrôlent la force du �ltrage, par exemple, via la
largeur de bande h qui intervient dans le noyau exponentiel décroissant ϕ(·) = exp

(
− ·

2h2

)
.

Les moyennes non-locales recherchent donc des motifs redondants dans l'image et tirent
parti de cette redondance pour réaliser un débruitage performant. Le modèle sous-jacent
est celui de l'auto-similarité des images, c-à-d., que les motifs contenus dans ces patchs
se répètent plusieurs fois dans l'image (voir Fig. 5). D'un point de vue statistique cela
revient à estimer l'image non plus à l'aide d'une seule observation de la scène, mais à
augmenter arti�ciellement le nombre de vues en recherchant les motifs similaires. Plus le
nombre de vues est grand plus la réduction du bruit est importante. En contrepartie, si
des motifs di�érents sont mis en correspondance, un biais est introduit dans la moyenne.
Cette hypothèse d'auto-similarité semble bien appropriée à un grand nombre de modalités
d'images, mais les outils d'estimation et de détection de motifs utilisés ne sont quant à
eux adaptés qu'au bruit blanc gaussien additif.

5 Contributions

Ces travaux de thèse traitent essentiellement du problème de détection de motifs re-
dondants. D'une part, nous avons approfondi la question du choix du critère de mise en
correspondance lorsque le bruit est non-gaussien. Nous avons, d'autre part, proposé une
solution e�cace pour favoriser la redondance en adaptant localement la taille et la forme
des patchs. Finalement, nous avons mis en ÷uvre des algorithmes de débruitage perfor-
mants, s'appuyant sur ces outils, et nous les avons appliqués avec succès sur des données
issues de systèmes d'acquisition réels.

5.1 Similarité entre patchs bruités

Une contribution majeure de cette thèse est d'avoir dé�ni un critère de similarité entre
patchs adaptable à une distribution de bruit donnée. Plutôt que de dé�nir la similarité à
partir de la distance euclidienne entre patchs bruités, nous avons proposé de dé�nir cette
similarité à partir du test d'hypothèses :

H0 : u1 = u2 ≡ u12 (hypothèse nulle), (2)

H1 : u1 6= u2 (hypothèse alternative). (3)
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Figure 6 � (gauche) Dictionnaire de patchs. (centre) Performance de détection (courbe
ROC) obtenue en présence de bruit gamma et (droite) courbe ROC obtenue en présence
d'un bruit de Poisson. Dans les deux expériences, le rapport signal à bruit sur l'ensemble
du dictionnaire est d'environ 1 dB.

où u1 = u(Px1) et u2 = u(Px2) sont les deux patchs non-bruités considérés, et u12 est un
potentiel patch commun. Comme les valeurs de u1 et de u2 sont inconnues, il est impossible
de réaliser ce test directement, par exemple, en utilisant un rapport de vraisemblance. On
se trouve dans le cadre de tests dits composites, pour lesquels on peut utiliser plutôt le
rapport de vraisemblance généralisé :

LG(v1,v2) =
supt p(v1,v2|u12 = t,H0)

supt1,t2 p(v1,v2|u1 = t1,u2 = t2,H1)
. (4)

où v1 = v(Px1) et v2 = v(Px2) sont les deux patchs bruités observés et p(A|B) dénote la
vraisemblance d'un évènement B lors de l'observation d'un évènement A. Le rapport de
vraisemblance généralisé remplace les paramètres inconnus u1, u2, u12 par leur estimation
au sens du maximum de vraisemblance. Comparé à sept autres critères extraits de la
littérature du traitement d'images, de la théorie de la détection et de l'apprentissage
automatique, nous avons montré que ce rapport est celui véri�ant le plus grand nombre
de propriétés requises. Nous avons également évalué numériquement ces performances
sur une tâche de discrimination de patchs extraits d'une image naturelle et bruités
synthétiquement. Comparé à ces sept critères, le rapport de vraisemblance généralisé
o�re les meilleures performances en terme de taux de détections en fonction du taux de
fausses alarmes (voir les courbes sur la Fig. 6).

Ce critère est au c÷ur de l'estimateur à patchs proposé (Deledalle et al., 2009b). Notons
qu'au-delà du problème de débruitage, nous avons utilisé ce critère pour des tâches de
détections de motifs, de stéréo-vision et de suivi de mouvement entre deux images radar.
Cette thématique a fait l'objet d'un article de journal (en révision mineure) (Deledalle
et al., 2012) et un article de conférence internationale (Deledalle et al., 2011e).
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Figure 7 � (a) Une réalisation bruitée obtenue en appliquant un bruit gamma à l'image
non-bruitée (b). Les estimés (c) obtenus par maximum de vraisemblance pondérée pour
di�érentes dé�nitions de similarités entre patchs 1×1. Espérance (d), carte de biais relatif
à l'image vraie (e) et carte de réduction de variance (f) estimée à partir de 100 réalisations
bruitées (f). Le critère du rapport de vraisemblance généralisé que nous avons proposé
donne les meilleurs performances.
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5.2 Méthodologie de débruitage dans le cas non-gaussien

Adaptation de l'estimateur aux bruits non-gaussiens

Nous avons étendu le �ltre à moyenne non-locales pour prendre en compte n'importe
quel type de bruit non-corrélé dès lors que le modèle statistique de description du
bruit est fourni. En e�et le bruit est généralement bien modélisé par des distributions
paramétriques et débruiter revient alors à estimer les valeurs de ces paramètres en tout
point de l'image.

Nous avons considéré l'estimateur au sens du maximum de vraisemblance pondérée
dé�ni par :

û(x) = argmax
t

∑
x′

w(x, x′) log p(v(x)|t). (5)

Cet estimateur est connu pour réduire l'erreur quadratique moyenne en réduisant la
variance de l'estimation au prix d'un biais introduit par les échantillons qui suivent une
distribution avec un paramètre u(x′) di�érent de u(x) (Fan et al., 1998). Cet estimateur
a déjà été appliqué dans le cadre du débruitage des images (Polzehl and Spokoiny,
2006a) mais nous avons proposé de l'utiliser avec des poids basés sur une similarité entre
patchs. Notons que dans le cas du bruit gaussien, l'estimateur au sens du maximum de
vraisemblance pondérée correspond à la moyenne pondérée utilisée dans l'algorithme
original des moyennes non-locales, voir Éq. (1).

Comme mentionné par Polzehl and Spokoiny (2006a), la dé�nition des poids w(x, x′)
est le point critique des estimateurs au sens du maximum de vraisemblance pondérée.

Adaptation des poids aux bruits non-gaussiens

A�n d'adapter les poids aux bruits non-gaussiens, nous avons proposé d'utiliser l'esti-
mateur au sens du maximum de vraisemblance pondérée dans le cadre des estimateurs à
patchs. Il est nécessaire d'une part de s'assurer que le critère de similarité utilisé engendre
un même taux de �ltrage sans introduire de biais dans toutes les zones homogènes
de l'image. D'autre part, il est nécessaire de s'assurer que dans les zones hétérogènes
(contours et textures), ce critère soit su�samment discriminant pour éviter le lissage
engendré par la combinaison d'informations de natures di�érentes. Lorsque le bruit est
non-gaussien, par exemple poissonnien, la distance euclidienne intervenant dans l'Éq. (1)
ne véri�e aucune de ces propriétés.

Plutôt que de dé�nir les poids à partir de la distance euclidienne entre patchs bruités,
nous avons proposé de dé�nir les poids à partir du critère de dissimilarité entre patchs
bruités présenté précédemment, c-à-d., le rapport de vraisemblance généralisé donné en
Éq. (4). Les poids sont alors obtenus par la relation w(x1, x2) = ϕ (− logLG(v1,v2)).
L'étude théorique menée sur ce critère de dissimilarité prédit ainsi le bon comportement
du �ltrage associé. En particulier, asymptotiquement au niveau de bruit, il mène à un
�ltre non-biaisé qui maintient un même niveau de �ltrage dans les zones homogènes tout
en maximisant les probabilités de détection, c-à-d., il est celui qui préserve le mieux les
contours et les textures. Numériquement, nous avons véri�é sur des simulations dans le
cas du bruit gamma que le rapport de vraisemblance généralisé, comparé à trois autres
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Figure 8 � Illustration de l'in�uence des paramètres α et β sur la solution de notre
extension des moyennes non-locales. Lorsque α et β sont trop petits, la redondance est
minimale et le bruit est peu réduit. À l'opposé, lorsque α et β sont trop forts, la redondance
est maximale et l'image résultante est �oue. Une con�ance trop importante en la pré-
estimation produit des artefacts. Le meilleur compromis α-β (au centre) correspond à
celui qui minimise l'erreur quadratique moyenne (EQM).

dé�nitions de poids proposées dans la littérature, est le seul qui mène à des résultats
non-biaisés, où la variance est réduite identiquement dans les régions homogènes tout en
préservant correctement les contours, voir Fig. 7. Finalement, remarquons que dans le cas
gaussien, ce critère coïncide avec la distance euclidienne et o�re donc un cadre cohérent
d'extension des moyennes non-locales aux bruits non-gaussiens.

Ra�nement des poids et schéma itératif pour les niveaux de bruit élevés

Lorsque le niveau de bruit est élevé, il peut être intéressant de ra�ner les poids en
les guidant par une image pré-�ltrée conjointement à l'image bruitée elle-même. Nous
avons montré que le critère de similarité utilisé pour comparer des patchs non-bruités
doit lui aussi prendre en compte la distribution du bruit a�n de sélectionner les pixels
dont les réalisations bruitées suivent une distribution similaire au pixel d'intérêt. Cela
nous a conduit au schéma de ra�nement suivant :

w(x1, x2) = ϕ [(1− λ)f (− logLG(v1,v2)) + λg (DKL(û1, û2))] (6)

où DKL est la divergence de Kullback-Leibler qui nous permet de sélectionner des
échantillons presque identiquement distribués (voir aussi Polzehl and Spokoiny, 2006a).
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Figure 9 � Illustration des améliorations apportées par le ra�nement des poids. Lorsque
le niveau de bruit est élevé, la similarité entre patchs bruités (donnée par le rapport de
vraisemblance généralisé) n'est pas su�samment discriminante. Lorsque les poids sont raf-
�nés en utilisant la similarité entre patchs pré-�ltrés (donnée par la divergence symétrisée
de Kullback-Leibler), le niveau de bruit peut être réduit tout en préservant les contours
de l'image.

Le paramètre λ ∈ [0, 1] contrôle la con�ance portée sur l'image pré-�ltrée û et f et g sont
deux transformations a�nes choisies tel que les deux termes répondent avec une même
dynamique.

La procédure de ra�nement des poids peut se faire soit en deux étapes, soit itérati-
vement. Dans la stratégie en deux étapes, l'image û est tout d'abord estimée à partir
de l'image bruitée (par exemple, en utilisant un �ltre moyenneur). Le résultat dépend
de la qualité de l'image pré-�ltrée en fonction du niveau de bruit. Dans une straté-
gie itérative, l'estimé û obtenu à l'itération i−1 fournit le pré-estimé utilisé à l'itération i.

Notons que l'Éq. (6) est sur-paramétrée et, dans le cas du noyau exponentiel décrois-
sant, le nombre de paramètres peut être réduit à deux paramètres α > 0 et β > 0 :

w(x1, x2) = exp

(
−− logLG(v1,v2)

α
− DKL(û1, û2)

β

)
. (7)

L'avantage de l'Éq. (6) est qu'elle o�re une bonne interprétation du comportement de
chaque paramètre, tandis que dans l'Éq. (7), les deux paramètres α et β in�uencent
conjointement la con�ance portée au pré-estimé et la force du �ltrage (voir Fig. 8),
et sont donc plus di�ciles à régler manuellement. Le schéma de la Fig. 9 donne une
illustration de l'algorithme que nous avons proposé.

Ces travaux ont mené à un article de journal (Deledalle et al., 2009b) et un article de
conférence nationale (Deledalle et al., 2009a).
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Réglage non-supervisé des paramètres de �ltrage

Les paramètres des techniques de débruitage d'un �ltre h peuvent être réglés de ma-
nière non-supervisée en retenant ceux qui permettent de minimiser l'erreur quadratique
moyenne (EQM) :

E
[
‖u− û‖2

]
= ‖u‖2 + E‖h(v)‖2 − 2E 〈u|h(v)〉 . (8)

où û = h(v). L'EQM requiert la connaissance de l'image sans bruit u mais peut être
parfois estimée à partir de l'image v seulement. Puisque le premier terme u2 dans (8)
est indépendant de h, il peut être omis lors de la minimisation de l'EQM. L'estimateur
non-biaisé du risque introduit par Stein (SURE) est un estimateur de l'EQM sous
l'hypothèse de bruit gaussien (Stein, 1981a). Il est basé sur un estimateur de E 〈u|h(v)〉
qui ne requiert pas la connaissance de u. SURE a déjà été utilisé avec succès pour des
images dégradées par du bruit gaussien en �ltrage par ondelettes (Donoho and Johnstone,
1995) ainsi qu'en �ltrage non-local (Van De Ville and Kocher, 2009). Le résultat principal
dans (Van De Ville and Kocher, 2009) est que SURE peut être exprimé sous forme
analytique dans le cadre des moyennes non-locales.

Supposons que l'on dispose d'un tel estimateur R(h(v)), nous informant sur l'erreur
moyenne commise lors du débruitage d'une image dégradée par un modèle de bruit
donné. Van De Ville and Kocher (2009) recherchent exhaustivement les paramètres
optimaux au sens de cet estimateur alors que dans (Donoho and Johnstone, 1995) une
descente de gradient est réalisée pour la mise à zéro des coe�cients d'ondelettes. Nous
avons proposé de suivre une stratégie d'optimisation pour minimiser R(h(v)) dans le
cas de notre estimation non-locale en utilisant la méthode de Newton conjointement sur
les deux paramètres de régularisation α et β intervenant dans l'Éq. (7). Nous avons par
ailleurs exprimé sous forme analytique l'expression de l'estimateur du risque dans le cas
du bruit de Poisson (PURE, cf. Luisier et al., 2010) ainsi que ses variations au premier
et au second ordre par rapport à α et β nécessaires pour utiliser la méthode de Newton.

La �gure 10 montre le risque et ses variations au premier et second ordre en fonction
de α et β. Ces courbes ont été calculées en appliquant la méthode proposée sur une image
de taille 150 × 150 pour di�érentes valeurs des paramètres. L'EQM et ses variations ont
été obtenues à des �ns de comparaison à partir de l'image non-bruitée et d'un calcul de
di�érences �nies. Les estimations du risque et de ses variations sont en accord avec les
estimations fournies par l'oracle (calculées à partir de l'image sans bruit).

La méthode de Newton trouve ainsi en quelques itérations une pondération cor-
respondant au meilleur compromis entre l'information apportée par l'image bruitée
et par l'image pré-�ltrée. Par exemple, β prendra une forte valeur lorsque l'image
pré-�ltrée aura une faible qualité, résultant en des poids déterminés par l'image bruitée
seulement. Réciproquement, α prendra une forte valeur lorsque l'image pré-�ltrée sera de
très bonne qualité : les poids seront alors déterminés principalement par l'image pré-�ltrée.

Ces travaux ont été présentés dans une conférence internationale (Deledalle et al.,
2010c) et m'ont valu le prix du meilleur article étudiant.
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Figure 10 � Le risque (EQM et PURE) et leurs variations au premier et au second ordre
(de haut en bas) en fonction des paramètres α (gauche) et β (droite).

Adaptation de la taille et de la forme des patchs

De même que pour le réglage automatique des paramètres α et β, on peut utiliser
SURE pour l'adaptation de la forme et de la taille des patchs. A la di�érence des
paramètres de �ltrage, cette adaptation n'a réellement de sens que si elle est locale dans
l'image. Par exemple, les images avec de forts contrastes sou�rent d'un artefact de débrui-
tage connu comme un halo de bruit dû à l'absence de patchs similaires dans les environs
de certaines structures (voir Fig. 11). Ce bruit résiduel peut être réduit en considérant
des patchs d'échelle et d'orientation variées. La sélection locale des formes de patchs
pertinentes conduit à l'amélioration de la qualité du débruitage, surtout près des contours.

Pour réduire l'espace de recherche, nous avons considéré quinze patchs pré-dé�nis
(cinq formes dont quatre orientées, et trois niveaux d'échelle). Nous avons proposé un
algorithme e�cace, basé sur la transformée de Fourier rapide, pour calculer à la fois
la solution des moyennes non-locales associée à chacun de ces patchs et le SURE local
correspondant. Une di�culté est que l'estimation locale du SURE présente une forte
variabilité qui nous a demandé de mettre en ÷uvre un algorithme de lissage dédié pour
réduire sa variance. Le choix local revient alors à un problème d'agrégation parmi les
quinze estimées obtenues. Guidés par les travaux de Leung and Barron (2006), nous
avons proposé d'utiliser une moyenne pondérée exponentielle fondée sur la mesure de
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(a) Image bruitée (b) Résultat avec des patchs carrés (c) Résultat avec des patchs adapta-
tifs

(d) Taille des patchs sélectionnés (e) Orientation des patchs sélectionnés

Figure 11 � (a) Image bruitée, (b) résultat des moyennes non-locales obtenus avec des
patchs carrés de taille �xe et (c) résultat de l'agrégation locale des quinze estimations
obtenues avec des tailles et des formes de patchs di�érentes. La taille et l'orientation
moyenne des patchs sélectionnés en tout point sont représentées respectivement en (d) et
(e).

con�ance qui nous est fournie par SURE sur les estimées locales associées à chacun des
patchs.

Ces travaux ont été réalisés parallèlement à mes travaux de thèse en collaboration avec
Vincent Duval (à cette époque à Télécom ParisTech) et Joseph Salmon (à cette époque à
l'Université Paris Diderot). Cette approche à fait l'objet d'un article de journal (Deledalle
et al., 2011c) et de deux articles de conférence (dont une internationale) (Deledalle et al.,
2011b; Salmon et al., 2011).
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Figure 12 � (De haut en bas) Une image RSO interférométrique et di�érentes estimations
obtenues par le �ltre de Lee et al. (2003), par le �ltre IDAN (Vasile et al., 2006) et
par la méthodologie proposée. L'image a été acquise par RAMSES ( c©ONERA) et sont
a�chés indépendemment l'amplitude, la di�érence de phase (phase interférométrique) et
le produit hermitien normalisé (cohérence interférométrique).
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(c) Image RSO polarimétrique (d) Résultat du �ltrage

Figure 13 � (a) Une image RSO polarimétrique et (b) le résultat du �ltrage proposé.
(haut) La ville de San Francico et (bas) une zone urbaine à Kaufbeuren (Allemagne).
L'image de San Francisco a été acquise par AIRSAR ( c©NASA-JPL-Caltech) et l'image
de Kaufbeuren par F-SAR ( c©DLR). Ces images sont a�chées via une représentation en
fausses couleurs rouge-vert-bleu.
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5.3 Applications à l'imagerie radar

La méthodologie proposée a mené à des résultats de débruitage état-de-l'art pour les
images radar d'amplitude, ainsi que pour les données interférométriques ou polarimé-
triques RSO. La technique proposée a été appliquée avec succès sur l'un des derniers
capteurs aérien radar : F-SAR de l'agence aérospatiale allemande (DLR). J'ai e�ectué un
séjour d'un mois au DLR sous la supervision d'Andreas Reigber et de Marc Jäger pour
tester et valider mon approche sur ces données RSO. Un logiciel libre a émergé de ces
travaux et est sur le point d'être intégré dans la chaîne de traitement du DLR.

La �gure 12 montre plusieurs résultats de �ltrage obtenus sur une image RSO in-
terférométrique (c-à-d., à deux canaux complexes). L'approche proposée o�re une plus
forte réduction du bruit et une meilleure préservation des objets de la scène. La �gure 13
montre un résultat de �ltrage sur une image RSO polarimétrique (c-à-d., à trois canaux
complexes) de très haute résolution. Ces travaux m'ont aussi permis de réaliser plusieurs
collaborations : dans le cadre du projet ANR EFIDIR sur des problèmes de suivi de la
fonte de glaciers alpins (Deledalle et al., 2010a) ; avec Antoine Lucas (Caltech, USA) sur
l'étude de la surface de Titan (Lucas et al., 2011a) ; et avec l'URISA (SUPCOM, Tunis)
sur des problèmes d'analyse de séquences d'images multi-temporelles (Benzid et al., 2010;
Hachicha et al., 2011). Ces applications ont mené à un article de journal (Deledalle et al.,
2011a) et trois autres articles de conférences internationales (Deledalle et al., 2010b,d;
Cao et al., 2011).

6 Conclusion et perspectives

Il y a un engouement croissant pour l'analyse des images radar à haute résolution.
Cependant, la présence d'un fort bruit de speckle qui corrompt ces images rend leur
interprétation particulièrement di�cile. Le speckle di�ère signi�cativement du bruit
gaussien additif et nécessite ainsi d'adapter les méthodes de débruitage. Le point de
départ de cette thèse était de combler le fossé entre les méthodes de débruitage restreintes
au bruit additif et les techniques de réduction de speckle pour l'imagerie RSO. Pour
préserver au mieux la haute résolution des images RSO, nous avons conçu une méthode
de sélection adaptative de voisinage appropriée. Étant donné l'importance du niveau de
bruit, l'utilisation de patchs est nécessaire pour que cette sélection soit robuste. Ceci
nous a conduit à la question de comment comparer e�cacement des patchs bruités.

Similarité entre patchs : Inspirés par la théorie de la détection, nous avons étudié
plusieurs critères de similarité qui ont été proposés dans la littérature pour traiter
du problème de comparaison de patchs sous condition de bruit non-gaussien. Nous
avons introduit un nouveau critère de similarité fondé sur le rapport de vraisemblance
généralisé. Nous avons montré la supériorité de ce critère, à la fois du point de vue de
ses propriétés théoriques et par sa performance pratique sur des tâches de vision par
ordinateur.

Sélection guidée par les données : Lorsque le bruit s'éloigne de la distribution gaussienne,
une attention particulière doit être portée sur le biais introduit par la procédure de
sélection. La sélection de pixels avec des valeurs similaires peut mettre de côté des
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échantillons d'intérêt et ainsi biaiser ultérieurement l'estimation au sens du maxi-
mum de vraisemblance. Le rapport de vraisemblance généralisé fournit une règle
de sélection menant à un estimateur non-biaisé ayant le même taux de réduction de
variance dans les zones homogènes : la dynamique et le contraste des objets sont préservés.

Dans les zones hétérogènes, une étude s'appuyant sur un oracle montre que l'esti-
mation doit plutôt introduire un biais. Ce biais résultant en un e�et de �ou peut être
contrôlé e�cacement grâce aux bonnes propriétés du rapport de vraisemblance généralisé.
Les paramètres de débruitage peuvent être choisis pour maintenir un même e�et de
lissage dans les zones homogènes (indépendemment du signal sous-jacent) et minimiser
le �ou dans les zones hétérogènes : les contours, les textures et les cibles ponctuelles sont
préservées.

Sélection en deux étapes ou itérative : Lorsque le niveau du bruit est élevé, il est impor-
tant de guider la sélection en fonction de deux images : l'image bruitée elle-même et
une image pré-�ltrée (potentiellement obtenue itérativement), la similarité entre patchs
de l'image bruitée n'étant pas su�samment discriminante (forte variance). Notre étude
montre alors que la divergence de Kullback-Leibler peut être utilisée pour améliorer la
qualité de l'estimation de la similarité. Lorsqu'une estimation de l'erreur quadratique
moyenne est disponible, on peut l'utiliser pour choisir automatiquement le compromis
entre la �délité aux deux images et aboutir ainsi à une méthode de débruitage non

supervisée.

Le �ltrage RSO non-local (NL-SAR) : La méthodologie proposée améliore signi�cati-
vement l'état de l'art en débruitage de l'amplitude des images RSO. Notre résultat a
fait la première de couverture d'IEEE GRSL Newsletter de mars 2011 (voir Fig. 14).
Cette illustration fournit une validation intéressante de notre technique de débruitage.
Elle compare notre méthode de débruitage appliquée à une image bruitée décimée
(1m de résolution au sol) avec une image 100-vues (c-à-d., pour laquelle chaque pixel
de 1m × 1m est obtenu en moyennant 100 valeurs d'une image très haute résolution
10cm × 10cm). L'image 100-vues peut être considérée comme une vérité terrain, dans
le sens où le speckle résiduel est extrêmement faible. Notons cependant que, à cause de
l'anisotropie de certaines cibles, certaines di�érences se sont pas imputables au speckle (et
ne peuvent donc pas être restaurées à partir de l'image décimée).La �gure montre que les
détails �ns sont mieux préservés par notre approche. Pour les images d'amplitude RSO,
notre méthodologie a permis des progrès en réduction de speckle et ont inspiré d'autres
méthodes (Parrilli et al., 2010; Teuber and Lang, 2011; Feng et al., 2011; Zhong et al.,
2011). Pour les images d'interférométrie et de polarimétrie RSO, notre �ltre peut être
considéré comme représentant l'état-de-l'art actuel. Dans cette thèse, il a été appliqué au
plus récent système radar aérien du DLR, F-SAR, et son potentiel a été validé sur de
telles données RSO très haute résolution.

Poisson Non-local : La même méthodologie a mené à des résultats séduisants en imagerie
à faible �ux tel qu'en microscopie confocale à �uorescence et en imagerie d'astronomie.
J'ai été récompensé pour ce travail par le prix du meilleur article étudiant à la conférence
internationale ICIP'2010. Cette approche a également été mentionnée comme la technique
de l'état-de-l'art dans (Lee et al., 2011), même si je considère que les �ltres BM3D et



xxix

Cumulative Issue #158   March 2011   ISSN 0274-6338

http://www.grss-ieee.org/menu.taf?menu=Publications&detail=newsletter	 	Editor: Lorenzo Bruzzone

(a) IEEE GRSL Newsletter de mars 2011 (b) Image RSO mono-vue

(c) Image RSO 100-vues (d) Résultat de NL-SAR

Figure 14 � (a) La première de couverture de l'IEEE GRSL Newsletter de mars 2011
illustrant les performances de NL-SAR en comparaison avec les images (b), (c) et (d).
(b) Une image mono-vue de résolution 1m× 1m (acquise par l'ONERA puis décimée par
le CNES, c©ONERA CNES). (c) Une image 100-vues obtenues par le �ltrage multi-vue
d'une image à très haute résolution de la même zone urbaine. Cette image peut être
considérée comme une vérité terrain. (d) La version débruitée de l'image mono-vue.
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(a) Décomp. en �quadtree� (b) 16 premiers axes (zone 1) (c) 16 premiers axes (zone 2)

Figure 15 � Une image et ses 16 premiers patchs principaux obtenus à partir de deux piles
extraites respectivement dans deux feuilles de la décomposition en �quadtree� de l'image.
Les quatre principaux patchs sous gardés à chaque niveau du �quadtree� et trois niveaux
de décomposition sont utilisés. Les dictionnaires résultants décrivent des structures de
plus en plus locales.

SAFIR utilisant la transformée inverse optimale d'Anscombe fournissent des résultats au
moins aussi bons (Dabov et al., 2007; Boulanger et al., 2008; Mäkitalo and Foi, 2011).

Moyennes non-locales avec des patchs à forme adaptative (NLM-SAP) : Parallèlement,
nous avons aussi proposé une adaptation locale de l'échelle et de l'orientation des patchs
pour prendre en compte la géométrie locale des images. Ce travail a été réalisé en
collaboration avec Vincent Duval et Joseph Salmon. Cette technique est fondée sur un
algorithme rapide de calcul de la solution des moyennes non-locales pour des patchs de
forme arbitraire. La disponibilité de plusieurs estimées des moyennes non-locales pour
di�érentes formes nous a conduit au problème d'agrégation. Nous avons proposé d'utiliser
localement l'estimateur non-biaisé du risque de Stein pour combiner les meilleures
échelles et formes de patchs. Le �ltre résultant mène à des résultats de qualité supérieure
aux autres améliorations des moyennes non-locales.

Problèmes restants et perspectives

Structures rares : vers l'utilisation de dictionnaires

Lorsque l'on utilise des techniques de débruitage, il faut être attentif aux signaux qui
ne respectent pas les hypothèses sous-jacentes. Nous avons vu que sur des images aux
forts contrastes, telles que les images à très forte dynamique, la présence de structures
�rares� viole l'hypothèse d'auto-similarité. L'utilisation de patchs avec des tailles et des
formes adaptatives nous permet d'explorer la redondance directionnelle et multi-échelle
de certaines structures. Cependant, des structures uniques peuvent tout de même
être présentes même en considérant une dé�nition géométriquement adaptative de la
redondance. Doit-on forcer dans ce cas la réduction du bruit au prix d'un biais, ou,
doit-on laisser des zones bruitées dans l'image ? Bien entendu cela dépend de l'application
ciblée.
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(a) Image bruitée (b) Dictionnaire (c) Image �ltrée

Figure 16 � (a) Une image RSO mono-vue (acquise par RAMSES c©ONERA CNES), (b)
un dictionnaire appris sur l'image bruitée et (c) l'image �ltrée reconstruite en utilisant un
dictionnaire appris à partir des données.

Dans le cas des images RSO polarimétriques, une cible brillante (généralement un
fort rétro-di�useur) peut très bien n'avoir aucune réplique dans la zone de recherche, en
particulier si sa signature polarimétrique est peu commune. Il est vain de restaurer une
telle structure en exploitant le contenu de l'image et le mieux que l'on puisse faire est de
laisser cette cible inchangée. Cependant, pour analyser sa signature polarimétrique, il est
nécessaire de trouver au moins trois répliques de la cible (pour éviter des problèmes de
singularité dans l'estimation de la matrice de covariance). L'approche non-locale doit donc
nécessairement introduire un biais pour que l'analyse de l'information polarimétrique
soit possible.

Si des structures n'ont aucune réplique dans le contenu de l'image, nous pourrions en-
visager de rechercher une réplique dans une base de donnée externe. Une idée simple serait
d'explorer une large collection d'images de la même nature. Bien-sûr, pour des raisons de
temps de calcul, la recherche doit être limitée à un dictionnaire résumant les motifs perti-
nents et incluant les structures �rares�. La construction d'un tel dictionnaire est encore un
problème ouvert qui a été brièvement explorée dans cette thèse. Récemment, Jospeh Sal-
mon, Arnak Dalalyan et moi-même avons conçu une technique de débruitage basée sur un
dictionnaire obtenu par une analyse en composante principale adaptative que nous avons
présentée à la conférence internationale BMVC'2011 (la �gure 15 extraite de Deledalle
et al., 2011d, donne une illustration de cette idée). Suivant l'esprit de cette thèse et les
améliorations récentes en modélisation d'image, nous pourrions considérer l'apprentissage
de dictionnaire contenant des structures multi-échelles et anisotropes et/ou des conditions
de bruits non-gaussiens. Au delà du problème de débruitage, l'apprentissage de structures
de bas-niveaux en imagerie polarimétrique pourrait représenter un intérêt particulier. Un
travail préliminaire fondé sur cette idée a déjà fourni des résultats séduisants pour la
reconstruction d'images RSO en amplitude (voir Fig. 16).
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(a) Image bruitée (b) Estimation non-locale (c) Estimation non-locale avec régu-
larisation

Figure 17 � (a) Une image bruitée avec du bruit gaussien, (b) son estimation obtenue
par moyennes non-locales qui sou�re d'un e�et de halo bruité. (c) L'estimation non-locale
contrainte par un terme de régularité permet de diminuer ce halo e�cacement.

Estimer la similarité entre patchs plutôt que tester leur égalité

Nous avons proposé un critère de similarité robuste et non limité au cas gaussien qui
teste l'hypothèse que deux patchs bruités soient deux réalisations d'un même patch non
bruité. Notre test d'hypothèse considère l'égalité entre les patchs non-bruités sous-jacents,
ou dans l'hypothèse alternative, leur non égalité.

Lorsque deux ou plusieurs images di�érentes sont disponibles, par exemple, en
détection de changement, en traitement vidéo, en stéréo-vision ou en recalage d'images,
chaque image peut avoir subi un changement d'illumination di�érent. Il faudrait dans ce
cas considérer l'hypothèse que les patchs sans bruit sont égaux à une transformation près.
Le même problème se pose en apprentissage de dictionnaire à partir de données bruitées.
En e�et, on cherche à apprendre la géométrie de structures atomiques plutôt que leurs
intensités. Notre dé�nition de similarité utilisant le rapport de vraisemblance généralisé
pourrait être appliquée pour de telles applications en adaptant le test d'hypothèse (c-à-d.,
en introduisant des paramètres de nuisance additionnels).

Sous l'hypothèse de bruit gaussien, la di�érence quadratique entre valeurs bruitées
est un estimateur de la di�érence quadratique entre valeurs non-bruitées. Cette propriété
n'est pas véri�ée par le rapport de vraisemblance généralisé. Notre méthodologie est donc
d'autant plus pertinente que le niveau de bruit est élevé, tandis que la di�érence quadra-
tique reste concurrentielle pour les niveaux de bruit plus faibles. Nous pensons qu'un bon
critère de similarité devrait approcher la di�érence quadratique pour des faible niveaux de
bruits. Le rapport de vraisemblance généralisé pourrait être étendu en ce sens en testant
la proximité des patchs non-bruités au lieu de leur égalité.
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Réduction de bruit ou régularité : vers une approche conjointe

Les �ltres fondés sur la sélection d'échantillons réduisent la variance locale tout en
évitant d'introduire du biais. De tels �ltres produisent des images avec de plus faibles
�uctuations, d'où le nom de �réduction de bruit�. Certaines techniques d'analyse d'images
ou certains interprètes d'images pourraient s'attendre à ce que les zones homogènes
apparaissent à un même niveau constant sans aucune �uctuation. Par exemple, en recons-
truction tridimensionnelle obtenue à partir d'une paire d'images RSO interférométriques,
nous pourrions nous attendre à ce que le toits d'un bâtiment soient ou plats ou en pente.
De même, dans les régions non-cohérentes (par exemple les ombres ou la végétation)
la phase interférométrique est non-informative et devrait être régularisée/extrapolée à
partir des zones cohérentes (comme le sol et les structures urbaines).

La régularité est parfois dé�nie dans le domaine des patchs (par exemple en utilisant
des graphes non-locaux) avec un terme d'attache aux données dé�ni dans le domaine
spatial. Dans des travaux préliminaires, nous avons obtenu des résultats prometteurs en
considérant une régularité spatiale et une attache aux données dé�nie dans le domaine
des patchs. Ce modèle qui maximise une vraisemblance pondérée pénalisée par un terme
de régularité permet à la fois d'améliorer les résultats des moyennes non-locales dans un
cadre de bruit additif gaussien (voir la Fig. 17) et permet aussi de régulariser la phase
interférométrique (voir Fig. 18). Il pourrait être étendu au problème de déroulement de
phase.
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(a) Amplitude, phase et cohérence empirique en interférométrie RSO

(b) Estimation conjointe sans régularisation de la phase interférométrique

(c) Estimation conjointe avec régularisation de la phase interférométrique

Figure 18 � (a) De gauche à droite, l'amplitude, la di�érence de phase et la cohérence
empirique d'un couple interférométrique d'images RSO mono-vue d'un barrage hydrau-
lique à Serre-Ponçon acquise par TerraSAR-X (image utilisée avec l'aimable autorisation
d'Astrium). (b) L'estimation non-locale conjointe de la ré�ectivité, la di�érence de phase
vraie et la cohérence vraie. (c) L'estimation non-locale conjointe avec régularisation de la
phase interférométrique.
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Chapter 1

Introduction

In the 80s�90s, most image denoising techniques were based either on regulariza-
tion/variational methods or sparse wavelet decompositions. In 2005, Buades et al. introduced
the non-local means �lter which marked a turning point in the story of image denoising. The
basic idea � to search for similar patterns and combine their pixel values � has led to impressive
results. All recent techniques in image denoising rely on the concepts of non-locality and patches.
Among them, the K-SVD (Aharon et al., 2006), the BM3D (Dabov et al., 2007) and the NLSM
(Mairal et al., 2009) are generally considered as the current state-of-the-art �lters.

Concurrently, synthetic aperture radar (SAR) imagery entered into a new golden age. Since
2006, several new sensors have appeared with polarimetric and/or interferometric con�gurations
and very high range resolutions:

� 2006 � ALOS-2 (a Japanese L-band polarimetric spaceborne sensor),
� 2007 � TerraSAR-X (a German X-band spaceborne sensor),
� 2007 � Cosmo-SkyMed (an Italian constellation of four X-band spaceborne sensors),
� 2007 � RadarSAT-2 (a Canadian polarimetric spaceborne sensor),
� 2008 � Sethi (a French airborne polarimetric and interferometric sensor),
� 2010 � TanDEM-X (a replica of TerraSAR-X used jointly in interferometric mode),
� 2011 � F-SAR (a German polarimetric airborne sensor with multi-frequencies).

Due to the multiplication of sensors, the quantity of polarimetric and interferometric data is
increasing quickly. In spite of the widest availability of SAR images, their analysis remains a
di�cult task that requires taking into account the geometry, height, roughness and moisture of
the objects. Automatic techniques are then required to process these wide data-sets for tasks
such as target tracking, change detection, classi�cation, 3D reconstruction and estimation of the
forest biomass evolution.

In this context, the initial motivation of this thesis was to adapt the idea of patch-based
non-local �ltering to reduce speckle that corrupts SAR images. Speckle is an undesirable grain
that appears in coherent imaging systems (including SAR, sonar, ultrasound and laser imagery).
Concurrently, optical images also su�er from undesirable �uctuations ascribed to the thermal

noise and the shot noise. Our curiosity led us to study the more general restoration problem of
noisy images or how to heal the images from noise. Beyond SAR image processing, the topic of
this thesis became more generally the problem of image denoising.

Image denoising is an important problem in image processing since noise often limits visual
and automatic interpretation of the scene. It is often necessary to pre-process images with
a suitable method of noise reduction before analyzing them. Image denoising is a key pre-
processing step in many cases, e.g., low-light or high-speed imaging, low-cost sensor usage in
embedded systems, and also ultrasound, sonar and radar coherent imagery.
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(a) Mitochondrion in confocal microscopy (b) Supernova in X-ray imagery

(c) Fetus using ultrasound imagery (d) Plane wreckage in SONAR imagery

(e) Urban area using SAR imagery (f) Urban area using polarimetric SAR imagery

Figure 1.1: (a) A mitochondrion observed in �uorescence confocal microscopy (image courtesy
of Y. Tourneur) and (b) a supernova observed with X-ray imagery (image courtesy of Chandra
X-ray Observatory � data identi�er: ADS/ Sa.CXO]Contrib/ ChandraDeepField). Images (a)
and (b) su�er from shot noise. (c) A fetus obtained by ultrasound imagery (image courtesy
of Elise Nicolas), (d) a plane wreckages in SONAR imagery (acquired by Shadows system, im-
age courtesy of IXsea), (c) a single building observed by SAR imagery (acquired by RAMSES
c©ONERA CNES) and (f) an urban area observed by polarimetric SAR imagery (acquired by
F-SAR c©DLR). Images (c-f) su�er from speckle.
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1.1 Approach followed in this thesis

1.1.1 Sources and models of degradation

Images are multi-dimensional signals that can represent di�erent kinds of information such
as pictures, drawings, logos, etc. According to the speci�city of the scene, the sensor and/or the
digital storage of an image, di�erent types of degradation can occur:

Inherent degradations: There are many types of degradation which are inherent to the nature of
the signal emitted in the direction of the sensor. The received signal is a projection of a three
dimensional scene to two dimensions. This leads to geometric deformations, masking e�ects and
mixtures of sources. Moreover, if objects are moving during the exposure, this leads to motion
blur. A shorter exposure time should then be used, providing only a limited number of photons
in low light conditions. The signal then has high �uctuations known as shot noise (see Fig. 1.1).
The atmosphere can also introduce blurring and geometric perturbations. In coherent imagery,
the interferences of many elementary scatterers produce high �uctuations referred to as speckle
(see Fig. 1.1).

Degradations assigned to the sensor: The stability, sensibility and exposure time are other factors
that play an simportant role in the resulting image quality. Shot noise and motion blur are
characterized by the parameters of the sensor. Undesired blurring can also arise from the internal
impulse response of the system characterized by its point spread function. Moreover, sensors
generally su�er from internal �uctuations referred to as thermal noise. Color cameras measure
the signal on a mosaic of red, blue and green sensors (Bayer matrix). The reconstruction of a
color image from this mosaic is called the demosaicing problem. This process can introduce false
colors, chromatic aliasing, zippering and purple fringing. Moreover, damages on this mosaic can
lead to missing pixels.

Degradations ascribed to digitizing and storage: The analog signal is next sampled and quan-
tized. The sampling of a continuous signal to a discrete signal can lead to aliasing e�ects (under-
sampling with respect to the sampling rate given by Niquist-Shanon theorem). The discretization
of continuous values into a �nite number of levels leads to quantization distortions, also called
the quantization noise. Due to the large size of images, their storage often requires resorting to
lossy compression, hence, leading to compression artifacts (e.g., JPEG artifacts). Sometimes the
transmission of this digital information towards a storage unit can lead to a loss of information
resulting, for instance, in missing or aberrant pixels (i.e., impulse or salt-and-pepper noise).

In this thesis we only focus on the problem of denoising. However, deblurring, demosaicing,
in-painting, compression, inverse half-toning and super-resolution are examples of other tasks
that are closely related to our problem.

1.1.2 Di�erent manifestations of noise in images

Most denoising techniques are designed for additive white Gaussian noise (AWGN). The
success of this model is due to its e�ciency to represent noise �uctuations in many situations
as well as its simplicity. However, in many situations, the AWGN model is known to be limited
and non-realistic to properly describe noise �uctuations. Figure 1.1 gives an illustration of
di�erent manifestation of noise in images. Many solutions have been designed for particular
applications under non-Gaussian noise (often the speckle or the shot noise). They provide a �rst
approximation of the real (more di�cult) noise structure. Few provide a general methodology
that can be applied to di�erent kinds of noise models.

In several situations, noise is correlated. Noise correlation may have di�erent causes. When
noise is signal-dependant, as is the case of Poisson or Gamma noise due to shot noise or speckle,
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noise is correlated to the noise-free signal which is itself spatially correlated. By accounting for
the (non-Gaussian) distribution of observed values, such correlations will be correctly handled by
the denoising approach described in this thesis. Due to a transformation of the noisy data such
as upsampling or local averaging, noise may exhibit a stationary covariance. A whitening process
can then be applied 1 to decorrelate noise. In the most general case, noise is non Gaussian and
the correlations are non-stationary, such as �blocky� JPEG compression artefacts. Statistical
modeling of such noises is highly challenging and dependant on the underlying noise-free signal.
The robustness of the denoising technique designed for uncorrelated noise can in some cases
extend its applicability to such noises.

This thesis essentially focuses on extending denoising approaches to non-Gaussian noise when
noise is modeled by a random process that is independent from one pixel to another. Speckle

and shot noise will particularly retain our attention with several examples and illustrations given
throughout the di�erent chapters. The application of the proposed methodology to synthetic
aperture radar images will be the topic of a dedicated chapter.

1.1.3 Why image denoising?

Noise is usually considered as undesired �uctuations corrupting a signal or an image. Noise is
often non-informative and visually unpleasant: it is a pathology of images which then need to be
healed. However, noise is not always non-informonative or ascribed to errors. In coherent imagery,
the �uctuations of speckle are fully determined by the random organization or disposition of
punctual scatterers and are then inherent to the imaged scene. Among others, these �uctuations
characterize the surface roughness or the scattering material (Sprague, 1972; McKinney et al.,
2000). The painting presented in Fig. 1.2 also presents high �uctuations placed purposely by the
artist (a technique known as pointillism) and are then part of the work. It is legitimate to ask
why we should denoise such images.

Image interpretation and pipeline of image processing

Let us consider the two previous examples. Speckle can be informative, however, one might
not be interested on this overload of information. For instance, synthetic aperture radar imagery
can be used to observe a street in an urban area. Speckle provides information on the random
disposition of scatterers inside each pixel of the road (more precisely inside the resolution cells).
Why should we be interested in this information? In practice, we would rather be interested in
a summary of this information: the local average rate of �uctuations re�ecting the roughness
of the street, i.e., a speckle-free image. In remote sensing, automatic classi�cation into streets,
buildings, vegetation or water areas are usually based on such a summary of information instead
of speckle directly.

In the second example, from an artistic point of view, one would not want to modify the work
of the artist. However, imagine that you want to automatically extract the features such as: the
number of people, the presence of a river or the colors of the umbrellas. This could be of interest
for indexing the works of a museum and then be able to retrieve a painting with simple queries.
In this case, the suppression of the �uctuations is a necessary pre-processing step in order to use
standard image processing algorithms to extract such high level features.

In both examples, the deterministic �uctuations will still be considered as noise since they
would defeat standard algorithms of image processing. The estimation of a noise-free image
from a noisy image is paramount to scene interpretation or low-level processing tasks such as
segmentation, classi�cation and 3D reconstruction.

1. this inversion procedure requires special care due to ill-conditioning issues that may arise
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Figure 1.2: Un dimanche après-midi sur l'île de la Grande Jatte (Georges Seurat)

An end or a methodological enrichment?

If denoising can be used as a pre-processing step for higher level interpretations of natural
images, it is also possible to design high-level techniques that are robust and directly adapted
to the noisy data. For instance, the segmentation model of Mumford and Shah (1989) considers
that the measurement of an image �always produces a corrupted, noisy approximation of the
true image�. It is actually sometimes easier to take into account the noisy data rather than a
denoised version since the statistics of the noisy data are usually well-known while the statistics
of the processed data are generally not available when non-linear processing are involved. If such
models take noise into account, it is no longer required to denoise the image in a pre-processing
step. The resulting pipeline is then simpler with fewer parameters and, as a consequence, with
better control on the production of the �nal results.

Of course, it is not always straightforward to take noise into account in high-level techniques.
For instance, to the best of our knowledge, there is no powerful extension of the famous descriptors
of Lowe (2004), known as shift-invariant feature transform (SIFT), to deal with di�erent statistics
of noise.

Denoising does not aim only to improve the robustness of such tools. Indeed, as stated
by Mumford and Shah (1989) themselves, their segmentation model is closely related to the
functional proposed by Geman and Geman (1984) for image restoration purposes. Hence, the
elaboration of denoising algorithms is not necessarily the �nal objective but rather it allows us to
�nd means, methodologies or even concepts in order to improve solutions for other tasks. This is
an important point of this thesis, since the methodology that we propose for denoising in Chap. 5
has led to the de�nition of similarity criteria (see Chap. 4) relevant for other applications such
as detection, stereo-vision or object-tracking.
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Link to image restoration: similarities, di�erences and competition

As we have just mentioned, solutions proposed for di�erent tasks can lead to mutual enrich-
ments. According to the multiple sources of degradations, a multiplicity of problems emerge with
more or less satisfying solutions. Denoising is a problem often linked to the more general problem
of image restoration. Image restoration aims to retrieve a signal of interest from measurements
su�ering from deformations (e.g., blur, sub-sampling or missing-pixels) and errors (i.e., noise).
It usually involves the inversion of an operator. However, noise a�ecting the measurements leads
to strong aberrations when directly inverting the operator from the noisy observations. The in-
version leads to solve an ill-conditioned system of equations explaining the poor stability of such
approaches. More generally, inverse problems are said to be ill-posed. To solve such problems,
it is then required to add extra assumptions or constraints, for instance, on the regularity of the
solution. Such assumptions form the prior model of the solution.

Unlike denoising, the di�culty of image restoration is the inversion of a possibly unknown
operator that may be spatially varying. However, as we will see, like image restoration, image
denoising requires having a prior model of the solution (i.e., the underlying noise-free image).
The choice of this image model is the key to the success of image restoration and image denoising
methods. Several models have then been proposed for both tasks, and, not surprisingly, better
models for image restoration lead to better models for image denoising and vice-versa. Among the
approaches many were originally proposed for other purposes, such as, deblurring, demosaicing,
in-painting, compression, inverse half-toning and super-resolution.

1.2 Issues considered and main contributions

1.2.1 The initial problem: accounting for the statistics of SAR images

SAR intensity images su�er from multiplicative �uctuations called speckle. Speckle is usually
reduced by spatially averaging neighbor pixels at the expense of a loss of resolution. Inspired by
the work of Buades et al. (2005), our starting point was to use a non-local approach to e�ciently
reduce speckle in the image and prevent this loss of resolution. To extend the non-local means
(NL means) to SAR data, a similarity criterion had to be designed to �nd resembling patches

in a SAR image. In the NL means the patch similarity is expressed as the square di�erence
between pixel values. For SAR images, this square di�erence does not adapt to the signal-
dependent �uctuations of multiplicative noise. Since noise is multiplicative, a naive idea could
be to consider a criterion based on the ratio of the intensities rather than a criterion based on
the di�erences.

Interferometric and polarimetric SAR images have a multi-dimensional content. The pixels
contain a complex vector formed by stacking di�erent co-registered SAR images. The phase
di�erence between each channel appears as a crucial quantity that su�ers from a decorrelation

noise. Our extension of the NL means had to jointly reduce the speckle in the intensity and
the decorrelation noise in the phase di�erences by considering the similarity between patches

of complex vectors. The square di�erence cannot take into account the wrapping of the phase
di�erences. Simple heuristics could have been used to take into account this wrapping. A naive
joint criterion with a weighted combination of the ratio of intensities and a heuristics criterion
between the phase di�erences could have been proposed. We considered instead a statistical
framework based on the joint distribution of the intensities and phase di�erences.

Contribution 1 (NL-SAR): We designed a similarity criterion that takes into account the joint
statistical model of speckle and decorrelation noise (e.g., the Gamma, the circular complex Gaus-
sian or the Wishart distribution). This idea has been fruitful leading to the non-local SAR �lter
(in short NL-SAR) or also denoted as the probabilistic patch-based (PPB) �lter. It has been the
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topic of two journal papers: in the IEEE Transactions on Image Processing for speckle reduction
on SAR amplitude images (Deledalle et al., 2009b) and in the IEEE Transactions on Geoscience
and Remote Sensing for the estimation of SAR interferometric parameters (Deledalle et al.,
2011a). At the same time, NL-SAR has been presented at GRETSI'2009 and IGARSS'2010
(Deledalle et al., 2009a, 2010b,d). This work has inspired other teams for designing new non-
local �lters for SAR images (Parrilli et al., 2010; Teuber and Lang, 2011; Feng et al., 2011;
Zhong et al., 2011), for the extraction of high quality information from the fusion of optical and
radar data (Palubinskas et al., 2011) and for the reduction of disturbing e�ects like layover and
shadowing in InSAR data (Schmitt et al., 2011).

Speckle reduction is a critical task since it strongly in�uences the global performances of
SAR processing pipelines. To evaluate the performance of NL-SAR, we needed the evaluation
by experts on such aforementioned processing pipelines, from the elaboration of sensors to the
interpretation of high-level features. I spent one month at the German Aerospace Center (DLR)
under the supervision of Andreas Reigber and Marc Jäger to test and validate the applicability
of NL-SAR to high-resolution polarimetric SAR images sensed by their latest aerial SAR sensor:
F-SAR. The work done during my stay con�rmed the usefulness of our SAR denoising method
on real data. NL-SAR is on the road to be integrated into the processing pipeline of DLR and be
used routinely to ease the interpretation of polarimetric and interferometric SAR images. The
source code of NL-SAR has been released in open source as described in Appendix A.

Contribution 2 (Remote sensing applications): Under our supervision, Sami Benzid (from
URISA, SUPCOM, Tunis) successfully used the NL-SAR for change detection in multi-temporal
series of SAR images (Benzid et al., 2010). It has also led to joint works with So�ène
Hachicha (from URISA, SUPCOM, Tunis) and Fang Cao (from Telecom ParisTech, Paris)
on multi-temporal SAR classi�cation and polarimetric SAR classi�cation, respectively. These
two joint works have been respectively presented at IGARSS'2010 (Hachicha et al., 2011) and
IGARSS'2011 (Cao et al., 2011). I have also collaborated with Antoine Lucas (from Caltech,
California) using NL-SAR for the analysis of SAR images of Titan. This joint work was presented
at the Titan science meeting (Lucas et al., 2011a) and the Titan surface workshop (Lucas et al.,
2011b).

1.2.2 Towards a general methodology: a variety of applications

Our extension of the NL means to SAR data has led to a general methodology that can be
applied to data of arbitrary nature when a statistical model of the undesirable �uctuations is
provided. To assess the validity of this general methodology, we applied it also on images of
other natures with non-Gaussian �uctuations.

Contribution 3 (Poisson NL means): Our framework has been used for photon-limited images
that appear under low-light conditions, for instance, in �uorescence microscopy or astronomical
imagery. These images su�er from a shot noise that can be modeled by a Poisson distribution.
We proposed an unsupervised setting of the denoising parameters driven by the Stein unbiased
risk estimate. It led to the Poisson NL means �lter that we presented at ICIP'2010 (Deledalle
et al., 2010c). For this paper, I received the ICIP'2010 best student paper award. Poisson NL
means recently inspired the work of Lee et al. (2011).

Contribution 4 (GLR-based criterion): The design of this general methodology led us to study
several similarity criteria under non-Gaussian noise conditions. We considered several de�nitions
from a dense literature on this topic extracted from the communities of image processing, detec-
tion theory and machine learning. We enumerated the basic properties that they should ful�ll
and evaluated their performance on di�erent tasks. From this study, we recommended using the
generalized likelihood ratio test (GLR) to de�ne patch similarity. The performance of GLR has
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been studied in a task of estimation of the glacier velocity with a pair of SAR images. This was
a joint project with Renaud Fallourd (from Université de Savoie, Chambéry) that was presented
in IGARSS'2010 (Deledalle et al., 2010a). We recently presented a deeper comparative study
of similarity criteria under non-Gaussian noise at ICIP'2011 (Deledalle et al., 2011e) and we
submitted a journal version currently under review (Deledalle et al., 2012).

1.2.3 Signal-adaptivity in non-local �ltering

While our general methodology has proven e�ective for SAR images and photon-limited
images, we were confronted by an inherent problem of the NL means: the rare patch e�ect.
Some features are (almost) unique (i.e., not found elsewhere inside the image). Due to the lack
of redundancy for such features, noise cannot be reduced and the resulting image would present
a persistent residual noise. We noticed that this rare patch e�ect is all the more important when
the data are vectorial such as in interferometric or polarimetric SAR data. Concurrently, Vincent
Duval (from Telecom ParisTech) and Joseph Salmon (from Université Paris Diderot) have also
been focussing on spatial adaptation in non-local �ltering.

Contribution 5 (NLM-SAP): Together, we proposed a solution to solve the problem of the rare
patch e�ect that arises around edges with high contrast. Such a phenomenon essentially appears
in imagery with high dynamic ranges and produces a residual noise that we refer to as a noise

halo. In this joint work, we proposed to use patches with locally adaptive shapes and sizes in
order to favor the redundancy of �rare� features. This yielded an anisotropic version of the NL
means that we coined NLM-SAP for non-local method with spatial adaptive patches. It was
published in Journal of Mathematical Imaging and Vision (Deledalle et al., 2011c) and presented
at the Journées des Statistiques (Salmon et al., 2011) and SSVM'2011 (Deledalle et al., 2011b).

1.3 Organization of the manuscript

Chapter 2 introduces the problem of image denoising and reviews the main approaches used
under the AWGN model. After highlighting the necessity to adapt denoising techniques when
noise departs from the AWGN model, we review in Chap. 3 di�erent approaches. Among them,
we focus on selection-based �lters which include the NL means. We motivate the need of a proper
de�nition of patch similarity and we introduce a similarity criterion based on the generalized
likelihood ratio test. We draw up in Chap. 4 a comparative study of similarity criteria under non-
Gaussian noise. Theoretical properties and task-based evaluations are in favor of our proposed
criterion. Based on this criterion, we then present a general methodology to extend the NL means
to images damaged by non-Gaussian noise in Chap. 5. An iterative scheme is also proposed to
deal with high noise corruptions and we develop an unsupervised setting of the parameters. The
application of the proposed method to SAR imagery is given in Chap. 6. The e�ciency of the
proposed technique is, among others, illustrated in recent airborne F-SAR data. The application
of non-local approaches to SAR data emphasizes the problem of the rare patch e�ect. The
spatial adaptation of patches is presented in Chap. 7. Conclusions and perspectives are discussed
in Chap. 8.
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Chapter 2

The problem of image denoising

A large number of denoising methods have been proposed for image denoising. Their di�er-
ences lie in the assumptions made on the property of the underlying scene or signal (e.g., the
regularity, sharpness or repetitions) and the nature of the noise (e.g., additive or multiplicative).
The quality of denoising depends on the adequacy of these assumptions on the processed images.
As a consequence, the best denoising methods are based on �exible models applying e�ciently
to a large variety of images.

The most powerful methods are currently based on the concept of non-locality and the de-
composition of images as a collection of patches (Katkovnik et al., 2010; Chatterjee and Milanfar,
2010). We speak about patch decomposition, patch model, patch representation or �ltering in
the patch space. The �rst authors to propose such an approach were Awate and Whitaker (2005,
2006) and Buades et al. (2005) with, respectively, the unsupervised information-theoretic adap-
tive (UINTA) �lter and the non-local (NL) means �lter. State-of-the art denoising techniques all
rely on patches, either for dictionary learning (Elad and Aharon, 2006), collaborative denoising
of blocks of similar patches (Dabov et al., 2007) or non-local sparse models (Mairal et al., 2009).
Regularization with non-local patch-based weights have shown to improve on classical regular-
ization involving only local neighborhoods (Gilboa and Osher, 2007; Peyré et al., 2008; Zhang
et al., 2010b).

Organization of the chapter� In this chapter, we �rst introduce the framework and notations
that we will use to describe the problem of denoising in Sec. 2.1. In particular we will see that
denoising should adapt to the nature of the underlying signal and we will propose criteria to
evaluate denoising performance. Section 2.2 describes �lters designed for smooth regular images,
Sec. 2.3 for piece-wise constant images, Sec. 2.4 for images with sparse decomposition on a
dictionary and Sec. 2.5 for self-similar images. Since such models are generally valid only locally,
we will focus in Sec. 2.6 on aggregation �lters that combine estimates resulting from di�erent
assumptions on the signal. Besides the problem of modeling the underlying image, we will see
in Sec. 2.7 the in�uence of the noise model on the denoising performance.

2.1 Introduction to image denoising

Denoising amounts to estimating the underlying spatial information, or noise-free image u,
that a noisy image v contains. Numerous denoising techniques have been proposed in the image
processing literature. The majority of them consider a Gaussian noise model. The goal of
denoising is to �nd a powerful method for noise reduction and the preservation of structures of
interest such as edges or textures without introducing undesired artifacts.



10 2. The problem of image denoising

2.1.1 Statistical framework and notations

The methodology presented in this thesis generalizes well to multi-dimensional data (3D,
video, . . . ). In the following, for notational simplicity, we consider the case of images that are a
collection of N observations placed on a two dimensional regular grid Ω ⊂ Z2 (with N = |Ω|).
Each element of the grid (or pixel) is identi�ed with a unique index k ∈ [1, N ], its position
is denoted as xk ∈ Ω and its associated value vk. At each pixel, the observation vk may be
D−dimensional, e.g., D = 1 for gray-level images, D = 3 for RGB color images or D = 256
for hyper-spectral images. In this thesis, we are not only considering gray-level images or color
images, but a variety of di�erent modalities where vk can be a matrix or even a tensor with real,
integer or complex values. An image will be modeled as the function v, de�ned from Ω to the
observation space, such that for all pixel index k:

vk = v(xk). (2.1)

Since there is a bijection between the pixel index k and the position xk, an image can also be
viewed as the vector of the observations such that v = (vk)k∈[1,N ] is an N -dimensional vector
obtained by stacking the observations of each pixel of the image. The notations v and v will
be used respectively to denote an image either in its functional representation or in its vectorial
representation.

As we have mentioned previous chapter, the observed image v su�ers from many sources
of degradation. We are not so interested in the image v itself but in the underlying spatially
varying information that it contains. This underlying information, free of degradations, will be
modeled with an image of M pixels and denoted by u. This underlying image u contains the
set of information allowing to explain or understand the observation v. A classical image model
is to link the noisy observation v ∈ RN and u ∈ RM with the following relation:

v = Φu+ σε (2.2)

where ε ∈ RN models measuring errors or noise �uctuations, σ > 0 controls/ampli�es the
noise level and Φ ∈ MN,M (R) is a linear operator modeling, for instance, blur, sub-sampling or
missing pixels. To retrieve u from v is a particular case of an image restoration problem which
requires the inversion of an operator through noisy perturbations. In this thesis, we focus only
on noisy data, i.e., Φ is the identity matrix. Furthermore, we consider non-additive noise and the
underlying values uk can be of a di�erent nature from the observed values vk (several examples
are given in the next chapter). While v lies in the observation space, we say that u takes its
values from a parameter space, since uk acts as parameters of a generative process producing
the observations vk. Here, other non-spatially varying parameters Θ of this generative process
which are not of main interest (i.e., the nuisance parameters) are assumed to be known (e.g., the
factor σ in Eq. (2.2)).

In this thesis, we focus only on the case of noisy images such that the observed image
corresponds to the underlying noise-free image viewed through noise �uctuations. Hence, the
noisy image and the noise-free image share the same de�nition domain Ω (hence,M = N) and the
noisy values are directly statistically linked to the noise-free values. Noise can generally be well
modeled with parametric distributions, either grounded on physical or empirical considerations.
We assume that the noisy image is modeled by a given distribution so that v is a realization
of an N -dimensional random variable V described by the probability density function (pdf)
pV (v | u,Θ) (or a probability mass function for discrete observations) such that:

P(V ∈ A | u,Θ) =

∫
A
pV (v | u,Θ) dv (2.3)
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for any subset A of the observation space. Since nuisance parameters Θ are assumed to be
known and for the sake of notational simplicity, this pdf will be written as p(v|u).

For example, an image v damaged by additive white Gaussian noise (in short AWGN or
Gaussian noise) with standard deviation σ can be modeled by:

v = u+ σε (2.4)

where u is the noise-free image and ε is the realization of a normalized zero-mean Gaussian
random vector. It is straightforward to see that V |u follows a Gaussian distribution with mean
u and standard deviation σ. While such decompositions also exist for other distributions (e.g.,
the gamma distribution involves a multiplicative decomposition), there is not necessarily a de-
composition of v in terms of u and an independent noise component (for example, in the case of
Poisson noise). In general, when noise departs from additive Gaussian noise, the link between v
and u is described by its likelihood function p(v|u).

2.1.2 Denoising as a bias-variance trade-o�

One would want to search for an estimator h such that û = h(v) minimizes the square error
with the noise-free image u:

‖û− u‖22 = ‖h(v)− u‖22 (2.5)

where û results from the application of a given estimator h on the noisy image v. However,
since the noise-free image u is unknown, direct minimization of Eq. (2.5) is not possible. In fact,
the optimal solution canceling the square error is the estimator h producing the noise-free image
itself: h(v) = u. The design of such an estimator for any noise-free image u is unfeasible since:

1. two di�erent noisy images can share the same noise-free image, and

2. two identical noisy images can arise from two di�erent noise-free images.

This optimal estimator is therefore not a deterministic function associating the same entry to
the same estimate. The elaboration of the optimal function h seems impossible.

An alternative is to model the noisy image v as a realization of a random vector V . Since there
is usually a bijection between the random vector V (understand its pdf) and the parameter of
interest u, hopefully one could design a robust estimator solving the denoising problem. Instead
of minimizing Eq. (2.5), denoising techniques are usually expressed as the research of an estimator
h such that Û = h(V ) is a random vector lying in a narrow neighborhood of u. This leads to
the minimization of the mean square error (MSE):

E
[
‖Û − u‖22

]
=

∫
‖h(v)− u‖22 p(v|u) dv . (2.6)

where the expectation is taken over the random vector V . Note that this expectation is math-
ematically the conditional expectation of ‖Û − u‖22 knowing u. For the sake of notations and
because u is considered as deterministic, we simply refer to the expectation when there is no
ambiguity. The minimization of the MSE rewrites as the research of an optimal bias-variance
trade-o�:

E
[
‖Û − u‖22

]
= ‖E [h(V )]− u‖22︸ ︷︷ ︸

bias

+E
[
‖h(V )‖22

]
− ‖E [h(V )]‖22︸ ︷︷ ︸

variance

. (2.7)

where the bias term penalizes the non-preservation of structures or the introduction of systematic
artifacts and the variance term penalizes the residual �uctuations of the estimator.
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If the image u is also modeled as the realization of a random vector U , the minimization of
the MSE is known as the Bayesian least square (BLS) problem, whose solution is given by the
posterior expectation or conditional mean:

h(v) =

∫
u p(u|v) du =

∫
u p(v|u)p(u) du∫
p(v|u)p(u) du

. (2.8)

In this Bayesian formulation, the distribution p(u) models in a statistical way the a priori

con�guration that can occur. The term p(v|u) is the likelihood of u given V = v, which is
fully described by the given noise distribution model. With perfect knowledge of prior pdf
p(u), Eq. (2.8) leads to optimal performance. Despite its theoretical performance, this approach
requires the computation of an integral over a huge state space which, depending on the distribu-
tions, may not be known in closed-form and therefore is time-consuming to evaluate numerically.
An alternative solution to avoid integration issues is to search for the noise-free image u that
maximizes the a posteriori (MAP) pdf:

h(v) = arg max
u

p(u|v) = arg max
u

p(v|u)p(u) (2.9)

since the evidence p(v) is constant with respect to u. Instead of minimizing the mean square
error, MAP is known to minimize the probability of errors in the estimation. The optimiza-
tion problem (2.9) should be solved by algorithms robust to local extrema since the posterior
distribution p(u|v) is usually multi-modal. Both approaches require the knowledge of the prior
pdf. The prior is usually a (potentially di�cult) choice left to the statistician/practitioner or it
can sometimes be estimated, but is often unknown. Moreover, the Bayesian approach is usually
criticized since it models noise-free data as random variables while they are fully deterministic.
However, both estimators indicate that to perform e�cient image denoising, it is necessary to
introduce assumptions on both the nature of the noise-free image and the statistics of the noise.

The accuracy of models on noise-free images acts on the bias-variance trade-o� of the solution.
An overly restrictive model, non-adapted to the majority of processed images, will reduce the
variance signi�cantly while introducing a bias in the estimation. At the opposite, an overly
�exible model will usually leave too much noise in the solution and have a small bias. Let us
illustrate this in�uence by referring to two toy examples, using MAP estimation, where v is a
real image damaged by Gaussian noise:

The case of a constant noise-free image: Consider a prior modeling a constant image u, such
that, for all pixel position x, u(x) = a where a is an unknown real value. Under Gaussian noise
assumption, denoising, i.e., estimation of MAP value a, is obtained thanks to the sample mean
of noisy realizations:

â =
1

N

N∑
l=1

vl . (2.10)

Suppose that our image model is wrong and u can instead take any possible real value. In this
case it is straightforward to show that the variance at each position index k is small:

Var[Ûk] =
σ2

N
(2.11)

while the bias can be arbitrarily large:

E[Ûk]− uk =
1

N

∑
l 6=k

(ul − uk) . (2.12)
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The case of the prior -less model: Without any prior model on the noise-free image u, the MAP
estimation boils down to the maximum likelihood (ML) estimation. Under Gaussian assumption,
ML estimation provides at each pixel k the estimated value given by:

ûk = arg max
u

p(vk|u) = vk . (2.13)

In this case it is straightforward to show that the variance at each position index k is maximal:

Var[Ûk] = σ2 (2.14)

while the bias is null:

E[Ûk]− uk = 0 . (2.15)

The parameterization of noise-free models acts as the parameterization of machine learning
algorithms used, for instance, for statistical inference. In the �rst example, we restricted the
model to one degree of freedom leading to a prediction with poor quality but with low variance.
In the second example, we let the model be excessively complex leading to an over-�tting of the
solution on the noisy input data.

Figures 2.1 and 2.2 show, on two di�erent images, the in�uence of two image models that we
will present in the following. When the assumption �ts the processed image well, the performance
is good, whereas when the assumption is violated, the results are of poor quality.

2.1.3 Evaluation of denoising techniques

The most common approach to measure the performance of a given estimator h is based on
the evaluation of the square error (2.5) or of an estimation of the MSE (2.6) using Monte-Carlo
simulations on a large data set of noise-free images u. Optimal performance is reached for a
MSE of zero and the smaller the MSE, the better the estimator. Due to the law of large numbers
and the large size of images, one or few simulations are usually enough to approach the MSE.

The MSE is, by de�nition, a quadratic criterion which varies on a large range of values. For
better quality assessment, the MSE is usually mapped on a logarithmic decibel scale. This leads
for instance to the peak signal-to-noise ratio (PSNR) criterion which has been introduced to
measure denoising quality of 8-bit coded images:

PSNR(û,u) = 10 log10

2552

1
N ‖û− u‖

2
2

. (2.16)

The higher the PSNR, the better the estimator. Estimates of good quality have a PSNR bigger
than 30 dB. For images with unbounded values or with a high dynamic range, the signal-to-noise
ratio (SNR) criterion can be used instead:

SNR(û,u) = 10 log10

Var(u)
1
N ‖û− u‖

2
2

(2.17)

where Var(u) denotes the empirical variance of the set of variables {uk}. Typical values of SNR
for images of good quality are around 20 dB or higher.

MSE-based criteria are only based on the di�erence of pixel values between the noisy image
and the noise-free image. The preservation of high-level structures is not taken into account by
such criteria. Wang et al. (2004) introduce the structural similarity (SSIM) to measure the visual
quality of compressed images. The SSIM is based on the average of local statistics performed on
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Figure 2.1: First row: (a) the noisy input image and (b-c) two estimates resulting from the
respective assumptions of a piece-wise constant image (obtained by the minimization of the
total-variation) and the assumption of a smooth image (obtained by a moving average �lter).
Second row: expectations estimated over 100 noise realizations. Third to �fth rows: visual
criteria using the local bias image, the local relative variance image and the method noise. Only
the estimate lying on the good assumption provides a satisfying result. The corresponding PSNR
are (b) 28.42 and (c) 43.74. The corresponding SSIM are (b) 0.790 and (c) 0.991.
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Figure 2.2: First row: (a) the noisy input image and (b-c) two estimates resulting from the
respective assumptions of a piece-wise constant image (obtained by the minimization of the
total-variation) and the assumption of a smooth image (obtained by a moving average �lter).
Second row: expectations estimated over 100 noise realizations. Third to �fth rows: visual
criteria using the local bias image, the local relative variance image and the method noise. Only
the estimate lying on the good assumption provides a satisfying result. The corresponding PSNR
are (b) 46.07 and (c) 17.52. The corresponding SSIM are (b) 0.999 and (c) 0.746.
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a N ×N sliding window. It provides a number between 0 and 1 measuring the mean distortion
of the estimation compared to the true underlying image. Optimal quality is reached at 1. The
SSIM has proven to be e�cient for discriminating typical artifacts arising from compression such
as the block artifacts inherent in JPEG-like compressions. Denoising methods lead instead to
punctual artifacts or localized persistence of noise which are then not re�ected well by the SSIM.

Such numerical criteria measure the average quality of an estimator. Due to this average, it
does not provide relevant information on the restoration of small rare features or the introduction
of small artifacts. For instance, an estimator can leave a residual variance everywhere in the image
without introducing undesired artifacts while another estimator can reduce signi�cantly the noise
variance but it can introduce a single large undesired artifact in the image. As a consequence,
our visual system as well as vision algorithms can prefer one estimator to another while having
a lower PSNR.

Even if the relative performance between two estimators can be evaluated on a dataset of
noise-free images, it may not be stated that one of them will be more e�cient in any given
situation. What is important is to choose the estimator for which we know and we can localize
the features preserved, the features lost and the artifacts introduced.

When the noise-free image is not available, denoising quality can be evaluated by studying
the residues v(x) − û(x) referred to as the method noise by Buades et al. (2008). Method
noise is a visual criterion, designed for AWGN, and evaluating the information removed by the
estimator. An ideal denoising procedure would give a method noise consisting of pure noise
without any structure (i.e., uncorrelated), and following the noise statistics. If object structures
are present in the method noise, that means that the related objects are not well restored in the
denoised image. When the noise-free image is available, we suggest instead using Monte-Carlo
simulations at the cost of a time-consuming simulation.

Proposed criteria: We suggest evaluating the preservation or introduction of information by com-

paring the expectation of the estimator E[Û ] with the true image u using the image of square
bias, i.e., (E[Û(x)] − u(x))2. When this image is zero the estimator is said to be unbiased. Of
course the estimator should also reduce the noise level. This reduction can be locally measured by
studying the relative (residual) variance, i.e., the ratio Var[Û(x)]/Var[V (x)]. When this ratio is
constant everywhere in the image the estimator is said to have a stationary relative variance (the
same smoothing e�ect appears everywhere in the image). This study can be performed directly
by measuring the local square bias and the local relative variance using Monte-Carlo simulations
where the expectations are obtained by averaging over the di�erent simulations. Usually, the
noise variance Var[V (x)] is either constant and equal to σ2 or signal-dependent, i.e., connected
to the underlying value u(x). Note that when the noise variance is constant, minimizing jointly
the square bias and the variance is equivalent to minimize the MSE. This is no longer relevant
when noise variance is signal-dependent.

Such statistics evaluate the bias-variance trade-o� at each position of a given image. The
residual noise and the variations of the introduced artifacts can be directly observed and localized
thanks to the image of local variance. The elimination of structures and the introduction of
systematic artifacts can then rather be observed and localized thanks to the image of local bias.
While the method noise has the advantage of not requiring knowledge of the noise-free image,
it is however limited to measuring correctly small bias or errors under strong noise level. These
estimated local errors can provide better clues. Since statistics are local, the limitation of this
approach is the necessity to perform Monte-Carlo simulations on many samples, which could
potentially be time consuming.

Figures 2.1 and 2.2 illustrate the aforementioned evaluation principle with visual and nu-
merical criteria on two di�erent images with two di�erent algorithms that we will present in the
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Figure 2.3: Example of an extremely smooth image: The Blue Epoch (Yves Klein, 1962)

following. The performance of the two estimators are well re�ected by all criteria on these toy
examples.

2.2 Filtering of smooth regular images

The basic denoising approaches model noise-free images as smooth and regular functions.
Typically, they assume that we can control the variations of the function, for instance, using the
Hölder condition (Tsybakov, 2008):

∃C > 0, α > 0 ∀x, x′, |u(x)− u(x′)| < C‖x− x′‖α . (2.18)

Figure 2.3 presents an example of an extremely (almost constant) smooth regular image. A less
extreme case was given in Fig. 2.1 where the noise-free signal evolves slowly in space without
abrupt discontinuities.

2.2.1 Linear-based �ltering, moving average or boxcar �lters

The crudest denoising approach is the direct application of the spatial coherence principle
or ergodicity assumption. It considers noisy samples in a neighborhood on a given pixel as all
following the distribution of that pixel. The ergodicity assumption leads to the moving average
(boxcar �lter). The estimated image is constructed by replacing each noisy value by a local
average computed with a sliding window. It thus results from the convolution of the noisy image
with a given kernel function modeling the size and the shape of the window. Moving average
�lters are then linear �lters:

û = Av (2.19)

where A is a N × N matrix. This method lies on the following observation: the average of
K independent random variables with variance σ2 has a residual variance of σ2/K. Thus, the
moving average �lter decreases the noise variance with a factor proportional to the number of
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pixels present inside the window. While the sliding window is usually chosen as being square,
the isotropy of the �lter can be improved by considering a weighted average with a circular
symmetric kernel such as a Gaussian kernel of given bandwidth h:

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
(2.20)

using w(x, x′) = exp

(
−‖x

′ − x‖2

2h2

)
.

This �lter is coined the linear Gaussian �lter.
Note that linear �lters minimize the Bayesian risk, i.e., they are the solution of the following

optimization problem:

û(x) = arg min
u

∑
x′

w(x, x′)(u− v(x′))2 (2.21)

where (u − v(x′))2 is called the quadratic cost. Compared to Eq. (2.6), it appears that linear
�lters decrease the mean square error as soon as the weights model the likelihood p(v|u) with
unknown parameter u.

Since their implementations are easy and the statistical results of these models are well
known, such �lters are commonly used by taking care to limit the size of the window to reach
satisfying bias-variance trade-o�: problem of local adaptivity to variable smoothness discussed
in (Kervrann and Boulanger, 2008).

2.2.2 Heat equation based models

Smooth and regular solutions u can be expressed as the solution of the heat equation given
by the following partial di�erential equation (PDE):

∂u(x)

∂t
= div (∇u(x)) . (2.22)

where ∇u(x) is the gradient vector of u at location x. The numerical solution of (2.22) can be
obtained by iterative scheme using �nite di�erence methods. One step of this scheme realizes an
isotropic di�usion of the noisy pixel values: it corresponds to the linear Gaussian �lter given in
Eq. (2.20).

2.2.3 Local polynomial approximation

As we have seen, linear �lters can be interpreted as the minimizers of Bayesian risk (2.21).
Such an optimization problem leads to locally approximating the image by a zero-order polyno-
mial function. In regression theory, this estimator is known as the Nadaraya-Watson estimator
which estimates the conditional expectation E[V (x)|u(x)]. Under the assumption of smooth regu-
lar images, Katkovnik et al. (2006) suggest rather searching for a local polynomial approximation
(LPA) with higher order (idea introduced for density estimation in Silverman, 1986; Scott, 1992;
Fan and Gijbels, 1996). For each pixel position x, the best polynomial approximation Q̂x is
obtained by solving the following optimization problem:

Q̂x = arg min
Qx

∑
x′

w(x, x′)(Qx(x′)− v(x′))2 . (2.23)

Once the coe�cients of the polynomial Q̂x are obtained, the estimated noise-free value at position
x is given by û(x) = Q̂x(x). This idea linked with spatially-adaptive windows (see next section)
is at the heart of recent phase unwrapping methods dealing with noisy data (Katkovnik et al.,
2008; Bioucas-Dias et al., 2008).
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Figure 2.4: Example of a cartoon image: the Flinstones

2.2.4 Common limitation: the loss of resolution

If an image presents sharp discontinuities, violating the regularity assumption, the resulting
image will su�er from a resolution loss, since the same smoothing e�ect will be applied equally to
homogeneous regions and to edges. Linear �lters are low-pass �lters eliminating high frequencies
which encode, among others, the edges of the image. Edge preserving �ltering aims at limiting
this problem.

2.3 Edge preserving �ltering of piece-wise constant images

Edge preserving �lters try to model the noise-free image u as a regular image with disconti-
nuities, i.e, as a piece-wise constant image. As shown on Fig. 2.4, cartoon-like images are good
examples of piece-wise constant images sometimes referred to as the cartoon model. Unlike for
smooth regular images, the same smoothing cannot be performed equally everywhere in the im-
age but should rather adapt to the local content of the image: we speak about adaptive �ltering.
They assume that the regularity assumption only holds true in certain direction or anisotropic
neighborhood.

2.3.1 Anisotropic di�usion: Perona and Malik model

Linear �lters realize an isotropic di�usion where the noise values of each side of an edge are
mixed together leading to a blur. To avoid such an undesired e�ect, the information should
instead be di�used separately on each side of the edges without mixing di�erent populations.
This is the principle of anisotropic di�usion. Perona and Malik (1990) adopted the heat equation
with spatially varying coe�cients:{

∂u(x,t)
∂t = div (g(|∇u(x, t)|)∇u(x, t))

u(x, 0) = v(x)
. (2.24)

where g is a decreasing function, for instance, g(.) = exp(−.2/κ2) or g(.) = 1
1+.2/κ2 . In this latter

case, the parameter κ controls the anisotropy of the di�usion (the larger κ, the more isotropic
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the di�usion). This function adapts the di�usion as a function of the image content. In the
direction where the gradient is large, e.g., in the orthogonal direction of an edge, the di�usion
is null. When the gradient is low in all directions, e.g., in homogeneous areas, this �lter acts as
the isotropic di�usion.

2.3.2 Filtering with adaptive windows

In the same vein as the anisotropic di�usion, local adaptivity can be reached by considering
shape-adaptive windows instead of a predetermined neighborhood. Re�ned Lee's �lter (Lee,
1981) selects at each pixel one among eight oriented windows (Fig. 2.5(a)). Here windows are
of �xed size and only their orientations are spatially varying. In homogeneous areas it can be
preferable to use larger windows while around �ne details smaller windows would be selected
to preserve the resolution. Adaptive window sizes or spatially variable bandwidth selection
can be used to reach this goal (Park et al., 1999; Takeda et al., 2007) (Fig. 2.5(b)). Of course
better performance can be obtained by using shape and size adaptive windows. Katkovnik
et al. (2002) suggest independently adapting the size of the four quadrants around the pixel of
interest (Fig. 2.5(c)). This idea has been extended in (Katkovnik et al., 2004) where the scale of
many directional windows is adapted. Vasile et al. (2006) proposed to build an intensity driven
adaptive neighborhood (IDAN) thanks to a two-step region growing algorithm (Fig. 2.5(d)).

These approaches can require a high computation load depending on the model complexity:
selection of a window among a given set of windows usually leads to faster algorithms than
techniques de�ning locally windows of arbitrary shape. All these methods are based on local
analysis of the image content, such as, the gradient orientation, the statistics inside the selected
window and/or the analysis of the con�dence or the risk of the estimation. Such approaches are
then linked to aggregation-based �ltering since in general multiple estimates are provided by the
di�erent possible neighborhoods (see Sec. 2.6).

2.3.3 Total-variation minimization and Markov random �elds

Total-variation (TV) is an example of a prior that enforces smoothness while preserving
edges. Rudin et al. (1992) introduce a variational formulation acting as a compromise between
the regularity of the solution and the �delity of the solution with the noisy data. The Rudin-
Osher-Fatemi (ROF) model describes the noise-free image u as the solution of the following
optimization problem:

û = arg min
u

‖v − u‖22 + λ
∑
x

|∇u(x)| (2.25)

where λ is a Lagrangian multiplier controlling the regularity of the solution. When λ = 0, the
solution is the noisy image itself and when λ → ∞, the solution is a constant image. The `2
norm measures the consistency of the solution with the observation v. The total variation, i.e.,∑

x |∇u(x)|, penalizes the variations or transitions present in the solution (it sums the size of each
transition). In practice, the �rst term is directly evaluated by the pair of pixel value di�erence
while the second term is evaluated using �nite di�erence on a graph formed from the grid Ω
and a local connectivity system such as the 4 or 8 connectivity. The ROF model provides good
results on cartoon images and more generally on regular images in the sense of Besov spaces.
However, it leads to stronger attenuation of several small disconnected regions than that of a
single region (Strong and Chan, 2003). When used on non-cartoon images, TV minimization
leads to the stair-casing e�ect (Nikolova, 2000) (see the e�ect of TV minimization on a smooth
image in Fig. 2.1).
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(a) (b) (c) (d)

Figure 2.5: Examples of selected local windows by adapting (a) the orientation, (b) the size (c)
the sizes of the four quadrants and (d) an adaptive neighborhood obtained by a region growing
algorithm.

As we will see in Chap. 3, the ROF model can be interpreted in a Bayesian setting as the
maximization of the a posteriori probability, i.e., û = arg max

u
p(u|v), under the Gaussian noise

assumption on a Markov random �eld.
Note that other �delity terms can be used. In particular the use of the `1 norm leads to the

so-called TV-L1 model �rst introduced by (Alliney, 1992):

û = arg min
u

‖v − u‖1 + λ
∑
x

|∇u(x)| . (2.26)

Nikolova (2003) shows that non-smooth �delity terms are more robust to outliers than smooth
�delity terms. Compared to the ROF model, the TV-L1 model does not include loss of contrast
in the solution but remove small objects instead (Chan and Esedo	glu, 2005; Duval et al., 2009).
Note that the relation between the ROF and the TV-L1 model is the same as the relation
between the average or the median �lter, since, the average minimizes the `2 norm while the
median minimizes the `1 norm.

Other norms on the prior term can also be used to model piece-wise constant images. For
instance, the Potts model penalizes transitions whatever the size of the step (Wu, 1982). It
corresponds to the `0 pseudo-norm of the gradient counting the number of non-null transitions.
The Potts model sums the length of the perimeter of each object in the image. Variational
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problems using the Potts model lead to solve non-polynomial (NP) hard problems. Tikhonov
regularization

∑
x |∇u(x)|2 is a convex prior leading to regular solutions unadapted to model

sharp transitions but easy to be solved numerically.

All these approaches are in�uenced by one or more �ltering parameters that control the
amount of discontinuities present in the image. The limitation of edge preserving �lters is that
they cannot restore large homogeneous regions as well as punctual targets and high frequency
patterns or textures. Dictionary-based �ltering aims at restoring these features thanks to a
dictionary or a code-book encoding punctual targets, edges, textures or homogeneous areas.

2.4 Dictionary-based �ltering: sparse decompositions

The above methods de�ne denoising directly in the image domain. It has been shown by
Donoho and Johnstone (1994) that spatial adaptation of the smoothing can instead be obtained
by using sparse decompositions of images on a well-chosen alternative space described by a
collection of atoms or code-book. This collection is referred as the dictionary. The dictionary is
all the more relevant that the image can be represented with few words.

Dictionary-based �lters model an image as a linear combination of a family of K atoms dk of
dimension N . The N×K matrixD, whose columns are the atoms dk is called the dictionary. In
such approaches, a noise-free image is assumed to be sparse meaning that it can be decomposed
as the product Dα where the K-dimensional vector α is said to be sparse (i.e., only a few of
its coe�cients are non-null). Dictionary-based �lters look for a sparse decomposition of u �tting
the observation v:

min
D,α
‖Dα− v‖22 subject to ‖α‖0 < ε (2.27)

where ε > 0 controls the amount of sparsity in the solution and ‖α‖0 is the `0 pseudo-norm of
α, i.e., the number of non-zero entries. Eq. (2.27) searches for a sparse vector α and a dictionary
D that can synthesize the image u. Such a minimization is said to rely on a sparsity synthesis

prior. By opposition, a sparsity analysis prior leads to the minimization of:

min
D,u
‖u− v‖22 subject to ‖Dtu‖0 < ε . (2.28)

This approach rather searches for an image u and a dictionary D such that u can be analyzed
as sparse through the dictionary D. When D is orthogonal the two approaches are equivalent.

Without restriction on D, Davis et al. (1997) show that the minimization of Eq. (2.27) can
lead to non-polynomial (NP) hard problems (since it is combinatorial). To relax the problem, the
`0 pseudo-norm is often substituted by other norms. The typical choice is the `1 norm, leading
to the following relaxation:

min
D,α
‖Dα− v‖22 subject to ‖α‖1 < ε . (2.29)

When the dictionary is �xed in advance, Eq. (2.29) is known as the LASSO (least absolute
shrinkage and selection operator) regularization which also favors solutions with fewer nonzero
entries (Tibshirani, 1996). The substitution of the `0 norm by the `2 norm leads to the Tikhonov
regularization known to provide smooth and non-sparse estimates even when the input signal is
sharp and sparse: it does not preserve sparsity.

To solve the optimization problems (2.27) and (2.29), some restrictions have to be made with
respect to the nature of the dictionary. It can be �xed in advance (e.g., considering a basis
formed of sinusoids, wavelets, . . . ), pre-determined from the noisy data (e.g., using a principal
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(a) Noisy-image coe�cients (b) Soft thresholding

√

(c) Denoised result

Figure 2.6: Examples of soft-thresholding on (top) the DCT and (bottom) the Daubechies-DWT.
The absolute values of the coe�cients are displayed in (a) and (b) such as low values are dark
and high values are bright. It appears clearly the the DWT provides a sparser representation of
the image resulting in a better smoothing e�ect and preservation of sharp feature. However, the
soft-thresholding of DWT leads to oscillations around edges known as Gibbs phenomena.

component analysis), chosen arbitrarily (e.g., in compressed sensing) or it can be obtained by
iteratively solving the optimization problem (e.g., Aharon et al., 2006). The dictionary can
constitute either an orthogonal basis of the image space or an over-complete family (e.g., an
undecimated wavelet family).

2.4.1 Orthonormal decomposition

We consider here that the dictionary is a given orthonormal basis D, hence, K = N . In this
case, each coe�cient αk of the decomposition is obtained by projecting v on each atom dk:

αk = 〈v|dk〉 (2.30)

where 〈v|dk〉 denotes the scalar product of v on dk. For instance cosine and wavelet bases are
known to be able to capture most of a signal or image in few coe�cients. This property is
exploited by compression techniques such as JPEG and JPEG2000.

The discrete cosine transform (DCT) uses a dictionary formed of N orthogonal sinusoidal
discrete functions:

dn(f) = cos
( π

2N
(2n+ 1)f

)
(2.31)
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where n = [0, N − 1] and f = [0, N − 1]. The DCT represents then any signal as a sum of
sinusoids. A similar decomposition is obtained by the discrete Fourier transform (DFT) which
encodes a signal on the basis of complex exponential functions. The �rst main limit of these
approaches is that it does not provide a sparse decomposition of sharp features. For instance, an
edge has a wideband spectrum. The separability of the signal and noise from the DCT is then
a di�cult task. Another di�culty by using the DCT is that atoms are not localized in space
(see Fig. 2.6). A solution would be to compute the DCT or the DFT on a sliding window, but
such representations are redundant and do not constitute an orthonormal decomposition of the
image.

While the DCT captures only the frequencies of the signal, the discrete wavelet transform
(DWT) captures instead spatial and scale properties of the image. The DWT is said to be
localized in both time and frequency. The DWT uses a dictionary derived from a mother wavelet
ψ(t) and its daughter wavelets arising from dyadic translations and dilatation of ψ:

dj,k(t) =
√

2
j
ψ
(
2jt− k

)
(2.32)

where j and k are two integers. Unlike sinusoidal functions, the mother wavelet ψ(t) is chosen
such that it can easily represent sharp discontinuities, orientations and/or smooth information.
Note that speci�c conditions are required on the chosen mother wavelet to achieve perfect recon-
struction. Haar, Daubechies and Gabor wavelets are typical choices verifying these conditions
(Daubechies, 1992; Lee, 1996). The 2D DCT and the 2D DWT are obtained by the direct ex-
tension of the 1D DCT and 1D DWT localized in time and frequency in both directions. The
2D DWT represents the feature of images in a pyramid of sub-bands corresponding to the di�er-
ent scales and orientations (see Fig. 2.6). Ridgelets (Candès, 1998; Candès and Donoho, 1999),
curvelets (Candes and Donoho, 2000; Starck et al., 2002), bandelets (Le Pennec and Mallat,
2005; Mallat and Peyré, 2007), contourlets (Do and Vetterli, 2005), grouplets (Mallat, 2009a) or
random basis (i.e., compressed sensing, see Donoho, 2006) are other �xed dictionaries of images
(potentially redundant) based on the same ideas. See (Mallat, 2009b) for more details about
such representations.

For denoising applications, orthogonal transforms like the wavelet or discrete cosine trans-
forms lead to a separation of signal and noise. Let β be the noisy version of the noise-free
transformed image α. Noise can then be strongly suppressed by zeroing the least signi�cant
coe�cients. Indeed, in this case, the minimization of (2.27) leads to hard-thresholding (HT)
(Mallat, 2009b):

û = Dα̂HT where α̂HTk = βk if |βk| > λ and 0 otherwise (2.33)

where the threshold λ acts on the sparsity of the solution. In the same vein, the minimization
of (2.29) leads to soft-thresholding (ST) (Donoho and Johnstone, 1994, 1995):

û = Dα̂ST where α̂STk = sign(βk) ·max(0, |βk| − λ) . (2.34)

The threshold λ is usually chosen as λ = σ
√

2 logN known as the universal threshold (Donoho
and Johnstone, 1994). However, Donoho and Johnstone (1995) show that spatial adaptation of
this threshold can improve the overall quality. Their method, called SureShrink, is based on the
SURE methodology presented in Sec. 2.6.4. Chang et al. (2000) show next, with BayesShrink,
that adaptive thresholds can be obtained in a Bayesian framework by modeling the distribution of
noise-free coe�cients with a generalized Gaussian (or generalized Laplace) distribution (following
the idea of Mallat, 1989). All these works are based on the Gaussian noise assumption.

Another solution consists of using the Wiener �lter (also referred to as Bayes' �lter in the
statistical literature) as proposed by Muresan and Parks (2003) and Zhang et al. (2010a). Wiener
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�lter searches at each pixel the linear transform of the coe�cient minimizing the mean square
error. Under the Gaussian noise assumption, the linearity of orthogonal transforms maps v =
u+ε to the coe�cients β = α+ξ where α is the transform of u, β is the transform of v and ξ is
the transform of ε. Under independence assumptions, the minimization arg min

w
E
[
(wαk − βk)2

]
leads to the following solution:

û = Dα̂Wiener where α̂Wiener
k =

σ2
αk

σ2
αk

+ σ2
ξk

βk . (2.35)

where σαk and σξk are respectively the standard deviations of αk and ξk (Scharf and Demeure,
1991). This solution is then a linear rescaling of the input coe�cients. Eq. (2.35) is actually a
solution of Tikhonov's regularization resulting from the `2 constraint.

Note that a multitude of thresholding strategies have been proposed depending of the problem
at hand. For instance, Abramovich et al. (1998) suggest using the posterior median in a Bayesian
context for non-parametric regression.

The above approaches assume that coe�cients are statistically independent. Wegmann and
Zetzsche (1990); Simoncelli (1997); Buccigrossi and Simoncelli (1999) show that nearby coe�-
cients present high dependencies (see for instance Fig. 2.6). Portilla et al. (2003) suggest modeling
the dependencies between neighbor wavelet coe�cients in the pyramid of sub-bands at di�erent
scales and orientations based on a Gaussian scale mixture (GSM). This approach combined with
Bayesian least square (BLS) estimation has led to the BLS-GSM approach considered as one of
the most powerful wavelet approaches for image denoising.

Orthonormal basis may not form a suitable dictionary to represent images. In such basis, the
thresholding of coe�cients leads to the introduction of visual artifacts such as Gibbs phenomena
(i.e., large oscillations around edges, see Fig. 2.6). Some artifacts can be attributed to the non-
shift invariance of such basis: the coe�cients of a shifted image are not a shifted version of those
of the original image. Shift-invariance can be reached by using redundant decompositions such
as the cycle-spinning decomposition or the undecimated wavelet transform (see Shensa, 1992;
Mallat and Zhang, 1993; Coifman and Donoho, 1995; Pesquet et al., 1996). By combining such
shift-invariant decompositions with the idea of statistical aggregation (see Sec. 2.6), the solution
of Guleryuz (2007) outperforms the BLS-GSM �lter.

2.4.2 Redundant or over-complete decomposition

Sparse decompositions with redundant or over-complete or learned dictionaries has been the
topic of several works including (Olshausen and Field, 1996; Starck et al., 2002; Aharon et al.,
2006; Mairal et al., 2010).

When the dictionaryD is redundant, the optimization of the sparsity problem with `0 pseudo-
norm (2.27) leads to a non-polynomial hard problem (Davis et al., 1997). Local-optima can be
obtained by greedy algorithms such as the matching pursuit algorithm introduced by Mallat
and Zhang (1993). Matching pursuit iteratively projects the residual noisy image on the atom
minimizing the mean square error. At iteration i, the matching pursuit provides the following
linear expansion of the redundant atoms:

ûi =
i∑

j=1

〈
Rj |dk∗

〉
dk∗ (2.36)

where k∗ = arg max
k

∣∣〈Rj |dk〉∣∣ , (2.37)

where Rj is the residual image at iteration j, i.e., Rj = v− ûj−1 if j > 1 and Rj = v otherwise.
The number of performed iterations controls the sparsity of the solution. Extensions of the
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matching pursuit have led, for instance, to the orthogonal matching pursuit introduced by Pati
et al. (1993). In the same spirit, Chen et al. (1999) introduces the basis pursuit under the `1
constraint.

When redundant and/or over-complete dictionaries are considered, one can be interested in
the learning of a dictionary from a collection of noisy data. As mentioned by many authors, the
research of a dictionary for sparse representation is intrinsically related to clustering or vector
quantization. Vector quantization is an extreme sparse representation where each input vector is
represented by only one prede�ned vector: the centroïd of its cluster. Any clustering algorithm
can then be used for the learning of redundant and over-complete dictionaries, for instance, the
K-means algorithm. Aharon et al. (2006) introduce a generalization of the K-Means to minimize
the sparsity problem with `0 pseudo-norm (see Eq. (2.27)). It is an iterative two stage algorithm:

1. the sparse coding stage uses a pursuit algorithm to obtain the sparse coe�cients of each
noisy sample on the �xed dictionary D and,

2. the codebook update stage adapts the dictionary D by sequentially updating each column
dk by performing K single value decompositions (K-SVD) to minimize the error on the
group of noisy samples whose sparse decomposition have a non-null coe�cient αk.

Learning a dictionary of images would be a very di�cult task due to the high dimension and
the high variability of natural images. Instead, the K-SVD uses such decompositions on the
collection of the 8× 8 small sub-images extracted from the noisy image itself. Due to their small
dimensions, such sub-images, called patches, present a smaller variability and can be organized
in several clusters representing the redundant patterns that occur in the image. An interesting
approach to consider a dictionary which encodes spatial relations, called epitome, has been
recently proposed by (Benoît et al., 2011). The patch representation of images is at the heart of
the most recent denoising techniques.

2.5 Patch-based �ltering: self-similar images

Patch-based �lters model images as a collection of patches (i.e., small windows extracted
at di�erent positions) and assume that this collection presents redundancy or clusters. This
assumption relies on the self-similarity property of images: the same content can be observed
at di�erent positions, thus, most of the patterns occur several times. For instance, consider
patches extracted from the same homogeneous area, along edges or on a repetitive texture (see
Fig. 2.7). Such models seem to �t well for several natural images and have inspired many
image processing approaches including texture synthesis (Efros and Freeman, 2001; Liang et al.,
2001; Kwatra et al., 2003), texture classi�cation (Varma and Zisserman, 2003), super-resolution
(Freeman et al., 2002), inpainting (Criminisi et al., 2004) and image editing (Cho et al., 2009).

Such approaches represent a noise-free image u as the following ensemble:

{(x, u(Px)) | x ∈ Ω} where Px ⊂ Ω and u(Px) = (uk)xk∈Px . (2.38)

For a �xed (odd) width p, the subset Px usually contains the locations of pixels x′ located in the
p× p square window centered on x:

Px =

{
x′ = x+ τ

∣∣∣∣∣ τ ∈
s
−p− 1

2
,
p− 1

2

{2
}

(2.39)

where Jn1, n2K = {n1, n1 + 1, . . . , n2}. The patch Px can also have a non-square shape, be
non spatially-connected, have space-varying shapes and/or space-varying sizes (see Dabov et al.,
2009, and Chap. 7). Based on this representation, redundancy of patches can be expressed as:

∀x, #
{
x′ | u(Px) ' u(Px′)

}
� 1 (2.40)
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Figure 2.7: Illustration of the self-similarity property of natural images.

where #E is the cardinal of the set E and u(Px) ' u(Px′) denotes that u(Px) and u(Px′) are
similar in the sense of a given similarity criterion.

From the image u we can build an image of patches such that its content at position x is
the vector u(Px). The image is then a function from Ω to the patch space of dimension |P | and
de�ned as:

∀x, u(x) = u(Px) . (2.41)

Note that this representation is redundant due to the patch overlap. The problem of reconstruct-
ing a 2D image from this image is called the reprojection problem presented in Sec. 2.5.4.

Simultaneously, Awate and Whitaker (2005, 2006) and Buades et al. (2005), respectively
with the UINTA �lter and the NL means �lter, introduce the patch-based model for denoising
purposes. This approach based on the self-similarity property of images takes inspiration from
the patch-based approach proposed for texture synthesis by Efros and Leung (1999).

2.5.1 Non-local means (NL means) �lter

The common idea of the UINTA �lter and the NL means �lter is to combine the information
shared by redundant patches to decrease the noise level (i.e., to select a large set of similar
pixels to combine). Compared to local �lters, at the expense of spatial relationships, only patch
similarities are taken into account. Such approaches are then considered as non-local as pixel
values far apart can be combined together. The idea is to replace the noisy value at each pixel
position x by the weighted average of the noisy values v(x′) with patches v(x′) similar to v(x).
In kernel regression, such a solution is called the Nadaraya-Watson estimator known to estimate
the conditional expectation E[V (x)|u(x)]. In their seminal paper, Buades et al. (2005) de�ne
weights by the distance between the noisy values observed in the two p× p square patches u(Px)
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Figure 2.8: (top) χ2 distribution of the Euclidean distance when the two compared patches share
a common noise-free patch. The quantiles of the χ2 distribution associate to each threshold a
probability of false alarm: here 0.20 and 0.05. (middle) According to this probability of false
alarm, we can set the bandwidth parameter h of the exponential kernel or (bottom) the two
parameters of the trapezoidal kernel.

and u(Px′) (i.e., the patches surrounding the pixel of interest and the candidate pixel):

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
(2.42)

where w(x, x′) = ϕ

(
d2(v(Px′), v(Px))

2|P |h2

)
(2.43)

where ϕ is a kernel decay function R+ → [0, 1], d a distance or a dissimilarity criterion taking
its values in R+, |P| = p× p is the size of the patches and h > 0 controls the amount of �ltering.
Note in practice that for computational issues, the research of the pixel candidates x′ are limited
to a large search window Wx centered on x.

Let us now brie�y recall the in�uence of each parameter (see Duval et al., 2011, for a more
extensive discussion on this subject):

The search window size |W|: the summation de�ned in Eq. (2.42) is usually restricted to a search
window around the pixel of interest: it is by convention an `× ` square window. De�ning W =
J− `−1

2 , `−1
2 K2, the search window centered on each pixel x is then Wx = x+W. Such a restriction

was proposed in the seminal work of Buades et al. (2005) for computational acceleration. Though,
some authors have also noticed that locally choosing the best search windows (Kervrann and
Boulanger, 2006) or restricting the average over small ones (see the work of Salmon (2010) and
Duval et al. (2011) for more details) could bene�t the NL means procedure (see also Fig. 2.9).

The patch size |P|: this parameter is generally chosen to be equal to 5, 7 or 9. Using a width
p = 1 leads to a method close to the Yaroslavsky �lter (Yaroslavsky, 1985). This parameter
is intrinsically linked to the resolution or the scale of the objects in the image. It controls the
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redundancy assumption de�ned in Eq. (2.40). A size too small leads to a wrong selection of
candidate pixels leading either to a noise reduction that is too small or a blurring e�ect with
respect to the bandwidth h. A size too large leads instead to the rare patch e�ect (see Chap. 7):
the noise is not reduced enough in regions where such large patches have no similar replica. See
for instance Fig. 2.9. The scale of images is inherently space-varying. In most papers the patch
width is a global �xed parameter. Few works have tried to handle the di�cult task of using
several sizes of patches for a single image. To our knowledge, the �rst attempt was proposed in
the context of learning patches by Mairal et al. (2008), using Support Vector Machines (SVM).
Another approach using variance control was also considered in (Salmon and Strozecki, 2010).
We consider in Chap. 7, a local adaptivity of the shape and the size of the patches.

The bandwidth h: this parameter has a smoothing e�ect and plays the same role as the band-
width for kernel methods in statistics (see Wasserman, 2007, for more details). With our pa-
rameterization, the larger the bandwidth, the smoother the image becomes. When h → 0, the
solution tends toward the noisy image and when h→∞, the �lter tends to the moving average
�lter (see Fig. 2.9). Choosing this parameter is a di�cult task and many solutions have been
proposed in the literature. The simplest and most common one is to set a single h for the whole
image, whose value is determined by cross validation on a small dataset of images. In (Polzehl
and Spokoiny, 2006b; Kervrann and Boulanger, 2006), the authors set this parameter according
to the quantiles of a χ2 distribution, due to the particular metric they consider to compare pixels
(or patches) (see Fig. 2.8). Van De Ville and Kocher (2009) calculate an unbiased risk estimate of
the NL means to globally select the bandwidth h. Pursuing this idea, Doré and Cheriet (2009);
Duval et al. (2011) consider a method based on the same approach but to locally select the
bandwidth parameter (see Sec. 2.6).

The kernel ϕ: the function ϕ was chosen by Buades et al. (2005) as t 7→ exp(−t), but other
choices may be considered, such as compactly supported smooth functions. It was noticed by
some authors (Goossens et al., 2008) that weights with compact support yield better results.
Recent progress in non-local denoising have shown that �at kernels or trapezoidal kernels provide
satisfying and competitive results with a lower computing cost than exponential kernels (Buades
et al., 2009; Salmon and Strozecki, 2010). In this thesis we have conducted our experiments
with the classical exponential kernel and with the trapezoidal kernel as de�ned in (Buades et al.,
2009) (see Fig. 2.8).

The dissimilarity criterion d: this criterion was initially chosen by Buades et al. (2005) as a
weighted Euclidean distance between the noisy patches d(v(Px′), v(Px)) = ‖v(Px′) − v(Px)‖2,a.
This corresponds to the Euclidean norm convolved by a Gaussian kernel of bandwidth a > 0.
The parameter a controls the concentration of the kernel around the central pixel. When a→ 0,
only the central pixel is taken into account while when a → ∞, all pixel values have the same
in�uence on the Euclidean norm. In this thesis as in many other papers, we consider that the
NL means �lter uses a standard Euclidean norm leading to several simpli�cations and to one less
parameter.

When the noise level is high, many authors show that results can be signi�cantly improved
by re�ning weights thanks to the similarity between pre-�ltered patches or patches extracted
from a pre-�ltered image. This idea is at the heart of iterative weighted estimation (Polzehl
and Spokoiny, 2006a) or the iterative NL means proposed in (Brox et al., 2008; Goossens et al.,
2008). In a �rst step, Dabov et al. (2007) select patches according to the Euclidean distance
between their thresholded wavelet coe�cients (i.e., between smoothed patches) and, in a second
step, between the patches extracted from the estimation obtained in the �rst step. In (Azzabou
et al., 2007a; Tasdizen, 2008; Orchard et al., 2008; Van De Ville and Kocher, 2011), the authors
suggest, for acceleration purpose, computing the Euclidean distance between the projection of



30 2. The problem of image denoising
G
o
o
d
p
ar
am

et
er
s

(a) Noise-free image (b) Noisy image (c) Good parameters

T
o
o
lo
w
p
ar
am

et
er
s

T
o
o
h
ig
h
p
ar
am

et
er
s

(d) Search window size |W| (e) Patch size |P| (f) Bandwidth h

Figure 2.9: In�uence of the three main parameters of the NL means on the solution.

the patches on their �rst principal axes (in the sense of the principal component analysis or
PCA). If noise is assumed to leave in the span of the axes of small variations, this is equivalent
to compare �ltered version of the patches. Finally, Louchet and Moisan (2011) compute the
Euclidean distance between patches regularized by an adaptive total-variation minimization.

Few authors suggest using the non-Euclidean distance between noisy or pre-�ltered patches.
After studying a few adaptations of the NL means to non-Gaussian noise in Chap. 3, dissimilarity
criteria to compare noisy or pre-�ltered patches in the case of non-Gaussian noise will be the
main topic of Chap. 4 and 5.

Central weight correction: By using Eq. (2.43), the weight attributed to the pixel candidate
x′ = x is pre-dominant compared to the other weights in the search window. This would lead to
a strong residual noise in the resulting image. To cope with this di�culty, Buades et al. (2009)
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Figure 2.10: The NL means �lter combines for each pixel x the noisy value of pixels x′ according
to the similarity between two patches Px and Px′ centered respectively around the sites x and
x′. For complexity reason, the pixels x′ are limited to a search window Wx centered around the
pixel x.

suggest replacing the weight attributed to the pixel of interest by the maximal weight in the
search window:

w(x, x) = max
x′∈Wx

w(x, x′) . (2.44)

While the noise realizations between pairs of pixel values in v(Px′) and v(Px) are assumed to
be decorrelated, it is no more the case when x = x′. Doré and Cheriet (2009) and Salmon
(2010) suggest then considering that the two patches are two independent noisy realizations
v(Px) and v′(Px) obtained from the same noise-free patch. Under Gaussian noise assumption,
the expectation of this Euclidean distance is E

[
‖V (Px)− V ′(Px)‖22

]
= 2|P|σ2, leading to the

following weight rede�nition:

w(x, x) = ϕ

(
σ2

h2

)
. (2.45)

Doré and Cheriet (2009) propose a solution lying between both solutions and given by:

w(x, x) = max

[
max
x′∈Wx

w(x, x′), ϕ

(
σ2

h2

)]
. (2.46)

In the following, we use the solution (2.45) since it leads to a simpler implementation. Moreover,
with this solution, if ϕ is di�erentiable almost everywhere, the resulting estimator is also di�er-
entiable almost everywhere which will be a property of interest in the following. However, when
noise departs form Gaussian noise, the solution (2.45) does not hold anymore. For some noise
distributions and similarity criteria d, the same methodology can be applied. In other cases, we
will use the solution (2.44).

Figure 2.10 illustrates the procedure. At each pixel x, the pixels x′ are inspected sequentially
to produce a weight by comparing the two noisy patches Px and Px′ . Once all weights w(x, x′) are
computed, an estimate is obtained by the weighted average. Note that for complexity reasons,
the pixels x′ are restricted to a large window Wx centered around the pixel x.

Related approaches: Although the non-locality principle is intimately related to patch-models, it
has been used previously for denoising purposes before the introduction of the patch concept (Lee,
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1983; Yaroslavsky, 1985; Smith and Brady, 1997; Tomasi and Manduchi, 1998). The sigma �lter
and the Yaroslavsky �lter (Lee, 1983; Yaroslavsky, 1985) can be interpreted as a degenerated
version of the NL means where weights are expressed from the comparison of noisy values instead
of noisy patches, i.e., the patches are restricted to a single pixel: p = 1 and Px = {x}. These
approaches already preserve sharp information well. However, under high levels of noise, the
comparison of noisy values becomes non robust leading to weights with high variations and to
a �ltered image with high residual noise (see Fig. 2.9 for a low patch size). If such a non-local
model leads to an estimator with high variance, it is probably because its underlying assumption
is too �exible: noise-free images are only assumed to be composed of many redundant values.
The SUSAN �lter (Smith and Brady, 1997) and the bilateral �lter (Tomasi and Manduchi, 1998)
suggest then restricting the average to similar values with close spatial positions:

w(x, x′) = exp

(
−‖x

′ − x‖2

2h2
1

)
exp

(
−(v(x′)− v(x))2

2h2
2

)
(2.47)

where h1 and h2 are two bandwidth parameters controlling respectively the in�uence of both
terms. By exploiting the patch redundancy, the NL means �lter outperforms all these previous
approaches.

2.5.2 Non-linear �ltering in the patch space

The NL means �lter is considered as non-local since pixels far apart in the spatial domain
can be possibly combined together. However, as noted by Tschumperlé and Brun (2011), if these
selected pixels are far apart in the spatial domain, they are neighbors in the patch domain. One
can rather proceed to linear denoising in the patch domain instead of in the spatial domain.
Such an extension was already proposed in the seminal paper of the NL means by Buades et al.
(2005) and referred to as the blockwise NL means. It simply consists of estimating noise-free
patches instead of noise-free values:

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
(2.48)

where û(x) is an estimate of u(x), v(x) is the noisy patch extracted at location x and w(x, x′) are
the weights de�ned in Eq. (2.43). Compared to Eq. (2.20), it clearly appears that the blockwise
NL means �lter is a linear Gaussian �lter acting in the patch space. Since linear �ltering is
known to damage sharp discontinuities, many authors suggest performing non-linear �ltering in
the patch space to preserve the structure of the underlying manifold. Let us mention three of
these approaches:

Anisotropic di�usion PDE' in the patch space: Based on the initial work of (Tschumperlé and
Deriche, 2005), Tschumperlé and Brun (2011) propose to extend the blockwise NL means with
anisotropic di�usion PDE expressed in the patch space:

∂u(x)

∂t
= trace (D(x)H(x)) (2.49)

where H(x) is the Hessian matrix at site x and D is a spatially variant �eld of di�usion tensors
de�ned in the patch space.

Non-local graphs based on patch similarities: Non-linear regularization can be performed inside
the patch space. Unlike total-variation formulation (see Sec. 2.3.3), such approaches penalize
the variations or the transitions in the patch space instead of in the image domain. Variations
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are measured in the neighborhood of patches (i.e., in the non-local neighborhood) rather than in
spatial neighborhoods. Kindermann et al. (2005) �rst introduce a non-local regularization term
based on the similarity of noisy patches and de�ned as:

∑
x

∑
x′∈Wx

(
1− exp

(
−‖u(x)− u(x′)‖2

h2

))
. (2.50)

Intuitively, the minimization of this variational problem leads to solutions verifying (2.40). Next,
Gilboa and Osher (2007) propose a similar but convex formulation with quadratic penalty based
on a weighted graph able to model, among others, the non-local interactions. Instead of minimiz-
ing a quadratic penalty, the solution proposed by Peyré et al. (2008) minimizes the total-variation
on a non-local graph leading to the following formulation based on discrete derivatives using the
graph gradient operator:

∑
x

|∇wu(x)| where |∇wu(x)| =
√∑

x′

w(x, x′)(u(x)− u(x′))2 , (2.51)

where w(x, x′) follows the patch-based weights de�nition of the NL means (see Eq. (2.43)). Other
energies based on the concept of non-local regularization have been proposed, for instance, in
(Mignotte, 2008; Elmoataz et al., 2008; Bougleux et al., 2009; Zhang et al., 2010b). These
approaches are especially interesting for image restoration purposes.

Patch dictionary learning with grouped-sparsity: Aharon et al. (2006) suggest using a sparse de-
composition with a learned redundant dictionary of patches, leading to the following minimization
problem:

min
D,A

∑
x

‖DA(x)− v(x)‖22 subject to
∑
x

‖A(x)‖0 < ε . (2.52)

whereD is a |P|×K dictionary ofK patches and A is aK×N matrix in which each column A(x)
is the sparse representation of the patch located at pixel position x. Such decomposition can be
obtained by an iterative two stage algorithm similar to the K-Means (see Sec. 2.4.2). Mairal et al.
(2009) noticed that �this procedure implicitly assumes that the patches are independent from each
other, which is questionable since they overlap�. As a consequence, this leads to the following
paradox: it is possible that similar patches can have very di�erent sparse representations. As
a consequence, the resulting estimator presents high variabilities. The non-local sparse model
(NLSM) of Mairal et al. (2009) is an extension of this model using an `p,q structural pseudo-norm
instead of the `0 pseudo-norm. The `p,q structural pseudo-norm is de�ned by:

‖A‖p,q =
∑
k

‖Ak‖pq (2.53)

where Ak are the rows of the matrix A. This structural norm imposes a grouped-sparsity of
the patches. For instance, the `0,∞ pseudo-norm counts the number of rows with at least one
non-zero entry. The NLSM minimizes Eq. (2.52) with the structural norm (2.53) on the set of
similar patches following the idea of Buades et al. (2005). Hence, by exploiting the self-similarity
property of natural images, such penalties force similar patches to be decomposed on the same
atoms solving then the above paradox. By mixing di�erent structural-norms for learning and
reconstruction and by using the concept of collaborative �ltering introduced by Dabov et al.
(2007), the NLMS achieves state-of-the-art performance.
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Figure 2.11: Illustration of collaborative �ltering compared to the concept of the NL means and
the blockwise NL means. The NL means �lter averages the central pixel values of similar patches,
while the blockwise NL means �lter averages all the patches. The collaborative �ltering does not
average patches, but realizes instead a joint �ltering of the selected patches leading to a denoised
3D block.

2.5.3 Collaborative �ltering

Collaborative �ltering is the main idea of the block matching and 3D collaborative (BM3D)
�lter introduced by Dabov et al. (2007). At each pixel x, the authors suggest constructing a
stack Sx of the most similar patches:

Sx = {x′ ∈ Ω | v(Px′) ' v(Px)} (2.54)

where v(Px) ' v(Px′) denotes that v(Px) and v(Px′) are similar in the sense of a given similarity
criterion. By ordering this stack by degree of similarity, it constitutes a 3D block denoted
as vSx and presenting strong redundancy. In this 3D block, such content may be described
by an extremely sparse representation. Unlike the blockwise NL means, the patches are not
averaged together to produce a single denoised patch but they are decomposed on a 3D cosine
basis to provide a denoised 3D block ûSx after Wiener thresholding of the 3D coe�cients (see
Sec. 2.4.1). Thanks to a two pass strategy and a few heuristics, this method has led to the
BM3D �lter known as one of the most powerful denoising methods. Recent techniques all rely
on collaborative �ltering either using a stack of local similar patches or by denoising clusters of
patches obtained by a pre-classi�cation or segmentation step (e.g., Mairal et al., 2009; Chatterjee
and Milanfar, 2011).

The good performance reached by BM3D is essentially due to the collaborative �ltering step
which provides several estimates for each pixel of the image. Figure 2.11 illustrates the procedure:
while the NL means �lter averages the central pixel values of similar patches and the blockwise
NL means �lter averages all the patches, collaborative �ltering does not average patches, but
realizes instead a joint �ltering of the selected patches leading to a denoised 3D block. As a
consequence, since the 3D block processed at location x contains the selected patches located
at location x′: each patch is denoised several times with respect to its degree of redundancy.
The combination of these estimates to produce a �nal image leads to an impressive bias-variance
trade-o�: this is the concept of reprojection.
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Figure 2.12: Illustration of the reprojection in the case of the NL means, the blockwise NL means
and collaborative �ltering. For each pixel x, the NL means �lter provides one estimate for the
pixel x only, the blockwise NL means �lter provides an estimate for all pixels included in the
patch of interest and collaborative �ltering provides an estimate for all pixels included in patches
similar to the patch of interest.

2.5.4 From the patch domain to the image domain: the reprojection

After denoising in the patch space, a collection of denoised patches is available. By construc-
tion, the patches inherently overlap. As a consequence, there are |P| estimates available for each
pixel value u(x): in each of the denoised patches located at positions x′ such that x′ ∈ Px. More-
over, when collaborative �ltering is used, an estimate is also available each time x appears in a
patch Px′ selected in a 3D block located at a position x′′, i.e., when x ∈ Px′ and x

′ ∈ Sx′′ . The
construction of an image û from this set of denoised version is called the reprojection of patches
in the image domain. Figure 2.12 gives an illustration of the di�erent strategies of reprojection
performed by the NL means, the blockwise NL means and after collaborative �ltering.

The naïve and simple reprojection performed by the blockwise NL means consists of uniformly
averaging all available estimates for each pixel x. Dabov et al. (2007) and Salmon and Strozecki
(2010) suggest instead combining these estimates using a weighted average driven by the variance
associated with each estimator. Reprojection can be seen as a more general problem of combining
several estimators. The next section describes several aggregation-based �lters used in the general
context of image denoising, essentially, for adaptive window or patch-based denoising.

2.6 Aggregation-based �ltering: a combination of priors

The aggregation of the responses of several pre-estimates in order to provide an improved
response is a typical topic of statistics. The underlying assumption is that among the available
pre-estimates, one was built on the suitable prior. Usually, the veracity of a prior is space varying
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and then a pre-estimate can be preferable in one region of the image while another pre-estimate
should be selected in another region. Aggregation procedures are mostly designed to take local
decisions. Among K pre-estimates uk of an unknown information u, such methods try to locally
select the most relevant one or a combination of them to produce an optimal solution û.

Aggregations aim at minimizing the bias-variance trade-o�, i.e., the mean square error (also
called the quadratic risk or, in short, the risk in this context). Selective aggregation locally
selects the pre-estimate minimizing the risk:

û(x) = arg min
uk(x)

R[Uk(x)] (2.55)

where R[Uk(x)] = E‖Uk(x)− u(x)‖22 . (2.56)

This strategy leads to brutal transitions in the resulting image due to the change of decisions
between neighboring pixels. To limit this e�ect, a more elaborate solution is to locally search for
a linear aggregation:

û(x) =
∑
k

βk(x)uk(x) where (β1(x), . . . , βK(x)) = arg min
(β1(x),...,βK(x))

R

[∑
k

βk(x)Uk(x)

]
.

(2.57)

Di�erent ways of combining the estimators may depend on the theoretical aggregation problem
we aim to solve as described by Nemirovski (2000) and Tsybakov (2003). In all cases, the MSE
requires the knowledge of the noise-free image u but can still be estimated, for large classes
of noise distributions, from the noisy image v alone (or up to an additive constant). In the
following, we will present di�erent strategies minimizing an estimation of the mean square error
or searching for a bias-variance trade-o� from the noisy image v and the pre-estimates uk only.

2.6.1 Maximum selection or variance minimization

Let us consider that we have several pre-estimates uk with a known local residual variance.
The crudest approach for the aggregation of these estimators is to select the pre-estimate mini-
mizing the local variance:

û(x) = arg min
uk(x)

Var[Uk(x)] . (2.58)

This is equivalent to selecting the pre-estimate that minimizes the MSE by assuming that all the
pre-estimates are unbiased, i.e., R[Uk(x)] = Var[Uk(x)]. When estimates come from a weighted
average, the residual local variance is given by:

Var[Uk(x)] =

∑
wk(x, x

′)2 Var[V (x′)]

[
∑
wk(x, x′)]

2 , (2.59)

assuming that weights are independent of the data. Moreover, if the candidate pixel values are
independent and identically distributed (i.i.d.) and the weights are binary, it results in:

Var[U(x)] =
Var[V (x)]

L
(2.60)

where L is the number of non-zero weights in the search window. Such approaches choose the
estimator which selects the maximum of candidate pixels.
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Figure 2.13: Example of the ICI rule (or Lepski method) and the rule selection proposed by
Kervrann and Boulanger (2006). The estimates are ordered by their variance. The four �rst
estimates are included in the con�dence interval of their predecessor. The �rst �ve con�dence
intervals have non-null intersections. The rule of Kervrann and Boulanger (2006) selects the �fth
estimate since it is outside the con�dence interval of its predecessor. The ICI rule selects the
sixth con�dence interval since it does not overlap with all previous intervals.

The extension of this approach to linear selection is to �nd the convex combination minimizing
the variance, i.e., the MSE under the assumption that the pre-estimates uk(x) are unbiased and
decorrelated:

û(x) = min
β1(x),...,βK(x)

Var

[∑
k

βk(x)Uk(x)

]
. (2.61)

Salmon and Strozecki (2010) showed that for any uncorrelated noise, using the constraint that∑
k βk(x) = 1, the �rst order condition of the dual Lagrangian problem gives us the following

solution:

βk(x) =
Var[Uk(x)]−1∑
lVar[U l(x)]−1

. (2.62)

This last strategy leads to smoother aggregation. This solution has been used in (Dabov et al.,
2007; Salmon and Strozecki, 2010) for the reprojection of denoised patches. When pre-estimates
are biased, the violation of the underlying assumption leads to a bias in the solution. Better
strategies can be designed by considering the bias of each estimator.

2.6.2 Nested estimators and the ICI rule

The applications of Lepski's method (Lepski et al., 1997) to kernel smoothing are also known
to perform well for denoising and is known in signal processing as the ICI (Intersection of Con-
�dence Intervals) rule (see for instance Katkovnik, 1999; Katkovnik et al., 2002). Assume that
we have at each pixel position x a family of K nested pre-estimates uk(x), i.e., so that we can
order them by their expected variance:

Var(U1(x)) > Var(U2(x)) > . . . > Var(UK(x)) . (2.63)
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The ICI rule starts by building con�dence intervals Ik(x) of the form:

Ik(x) =

[
uk(x)− γ

√
Var[Uk(x)], uk(x) + γ

√
Var[Uk(x)]

]
(2.64)

where γ is the threshold of the con�dence intervals. Under particular assumptions on u, for
instance, if the residual noise in u is Gaussian with known variance, the value of γ controls the
probability that u(x) ∈ Ik(x).

Given a value of γ, the ICI rule selects at each pixel position x the estimate with the smaller
variance belonging to all previous con�dence intervals:

û(x) = uk∗(x) such that k∗ = sup{k = 1, . . . ,K | ∀l < k ,
⋃
l≤k
Il(x) 6= ∅} . (2.65)

Kervrann and Boulanger (2006) suggest using a slightly di�erent selection rule given by:

û(x) = uk∗(x) such that k∗ = sup{k = 1, . . . ,K | uk(x) ∈ Il(x)} . (2.66)

Since the bias of the pre-estimates usually increases when the variance decreases, such selection
procedures lead to minimize the mean square error. Figure 2.13 gives an illustration of the
ICI rule. The estimates are ordered by their variance. The �rst four estimates are included
in the con�dence interval of their predecessor. The �rst �ve con�dence intervals have non-null
intersections. The �fth estimate is outside the con�dence interval of its predecessor and the sixth
con�dence interval does not overlap with all previous intervals.

In practice, such rules have successfully been applied to image denoising with adaptive weights
smoothing (Polzehl and Spokoiny, 2000), shape adaptive windows (Katkovnik et al., 2004), adap-
tive selection of window sizes (Bioucas-Dias et al., 2008) or non-local �ltering with spatially vary-
ing search windows (Kervrann and Boulanger, 2006). All these methods assume that the choice
of weights/windows are independent of the data, and thus rely on the de�nition of the residual
local variance given by Eq. (2.59). The drawback of such approaches is that the resulting image
presents a residual noise looking like a small impulse noise.

2.6.3 Mallows' Cp statistic

The application of Mallows' Cp statistic to image denoising (Mallows, 1973) leads to esti-
mating the mean square error at the pixel position x using an estimate of the local bias and the
local variance in x. This estimate of the risk is de�ned as follows:

R̂[u(x)] = σ2Cp(u(x)) , ‖v(x)− u(x)‖22 −Dσ2 + 2p where p = Var[U(x)] . (2.67)

where D is the dimension of the data. Under the Gaussian noise assumption, the value p
corresponds to the number of regressors averaged together to estimate u(x), i.e., the degree
of freedom in the regression. Moreover if the estimates u(xp) are independent of the noisy
data v(xp), Mallows' Cp statistic provides an unbiased estimate of the risk, i.e., E[σ2Cp(x)] =
E‖v(x)− u(x)‖22. The variance of such an estimator is better as the data dimension D is large.

In the context of the NL means, Doré and Cheriet (2009) use Mallows' Cp statistic in order
to select the best bandwidth parameter h. Since grey scale images have a dimension D = 1,
they estimate the bias between the noisy values and the estimated values located inside the
patch Px surrounding the pixel of interest x. This allows us to decrease the variance of the MSE
estimation. As noted by the author, the use of Mallows' Cp statistic requires great care due to
the underlying independence assumption. In the case of the NL means, that requires eliminating
the pixel of interest from the set of pixel candidates, i.e., the central pixel is removed from the
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Figure 2.14: Estimation of the MSE of the NL means with respect to the bandwidth parameter
h using (a) Mallows' Cp statistic and (b) SURE. First row: the pixel of interest is excluded from
the search window. Second row: the pixel of interest is included to the search window. When
the pixel of interest is included the denoising performance reaches a lower MSE well estimated
by SURE while underestimated by Mallows' Cp statistic.

search window. This modi�cation necessarily leads to a loss of punctual targets. The authors
estimate the residual local noise variance by using Eq. (2.59) under the assumption that weights
are independent of the data. In the case of the Gaussian noise assumption, the resulting Mallows'
Cp statistic is given by:

R̂[u(x)] = ‖v(Px)− u(Px)‖22 − |P|Dσ2 + 2σ2

∑
w(x, x′)2

[
∑
w(x, x′)]2

. (2.68)

In the next section, we will introduce the Stein unbiased risk estimator (SURE) which, as well as
Mallows' Cp statistic, is an estimator of the risk. However, unlike Mallows' Cp statistic, in the
case of image denoising, SURE does not rely on a potentially biased estimator of the variance
nor does it require that the estimates are uncorrelated to the noisy data.
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2.6.4 Stein unbiased risk estimator (SURE)

Stein unbiased risk estimator (SURE) is an estimator of the mean square error which does
not require the knowledge of u. Let h(.) be an estimator of the noise-free image from a given
noisy image, such that u = h(v). Under Gaussian noise assumption, SURE provides, for all
pixels x, an estimator of the MSE (Stein, 1973, 1981b) de�ned by:

R̂[u(x)] = ‖v(x)− u(x)‖22 −Dσ2 + 2Dσ2 ∂u(x)

∂v(x)

∣∣∣∣
v(x)

(2.69)

Compared to Mallows' Cp statistic, such an estimate only requires satisfying the following rea-
sonable relations:

i) lim|z|→∞h(u(x) + z)e−
z2

2σ2 = 0 , (2.70)

ii) E(h(V (x))2) < +∞ , and (2.71)

iii) E|h′(V (x))| < +∞ . (2.72)

where h′(V (x)) = ∂h(v(x))
∂v(x)

∣∣∣
V (x)

. Like Mallows' Cp statistic, the variance of such an estimator is

also as good as the data dimension D is large.
Applications of SURE emerged for choosing the smoothing parameter in families of linear

estimates (Li, 1985) such as for model selection, ridge regression, smoothing splines, etc. It was
then widely used in the wavelet community after the introduction of the SURE-Shrink algorithm
(Donoho and Johnstone, 1995). Solo (1996) gave a general form of SURE for an estimator de�ned
as a minimizer of regular energy, especially for least square regression regularized by a Sobolev
norm or the total-variation. More recently, Benazza-Benyahia and Pesquet (2005) use Stein's
principle for the denoising of multichannel images. Linear combinations of estimates based on
SURE were considered (Blu and Luisier, 2007) instead of the selection of a single one. Moreover,
Ramani et al. (2008) have described a Monte Carlo approach to evaluate SURE when a closed-
form expression is not available or too computer-intensive. In the context of the NL means, Van
De Ville and Kocher (2009); Van De Ville and Kocher (2011) search for the global bandwidth
parameter minimizing the MSE of the resulting image. In this case, due to the law of large
numbers, the global SURE approximates well the global MSE. Duval et al. (2011) extended this
approach to estimate the local risk in view of setting a local bandwidth parameter.

The limitation of Mallows' Cp statistic and SURE is that they have an extremely large local
variance inversely proportional to the dimension D of the image. This variance arises from the
term of the square residue (i.e., the square of the method noise): ‖v(x)−u(x)‖22. Under Gaussian
noise assumption, this term has a variance of the same order as σ4. To decrease its variance,
we have seen that Doré and Cheriet (2009) evaluate this term on patches. Duval et al. (2011)
suggest instead convolving the risk map assuming ergodicity of the risk.

In Figure 2.15, we have compared the local selective aggregations based on ICI rule, Mallows'
Cp statistic and SURE. For the two last strategies, the aggregation is based on the convolution
of the local risk map as done in (Duval et al., 2011). In this case, SURE provides the best
aggregation result.

2.6.5 Exponential weighted aggregation (EWA)

Mallows' Cp statistic and SURE aim to solve the selective aggregation problem given in
Eq. (2.55). However, we have mentioned that it might be better to combine several estimators
rather than just selecting one. In particular, it happens to be e�ective if the best estimators (in
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(a) Noise-free image (b) Noisy image (PSNR 22.11) (c) NL means (PSNR 28.95)

(d) ICI rule (PSNR 29.23) (e) Conv. Cp (PSNR 29.84) (f) Conv. SURE (PSNR 29.85)

Figure 2.15: Selective aggregation between di�erent results of the NL means using nine di�erent
sizes for the search window. We consider a local selection based on the ICI rule, the convolution
of the map of Mallows' Cp statistic and the convolution SURE map. The aggregation based on
SURE provides the best result in this case.

term of evaluated risk) are diversi�ed enough or if the risk was wrongly estimated. When an
estimate of the risk map is available, a convex aggregation can be obtained using the statistical
method of exponentially weighted aggregation (EWA) as introduced by Leung and Barron (2006).
This method has been theoretically studied in (Dalalyan and Tsybakov, 2008) and adapted
for patch-based denoising in (Salmon and Le Pennec, 2009). It consists in aggregating the
estimators by performing a weighted average with weights based on the con�dence attributed to
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Figure 2.16: Application of the ROF model on images damaged from (top to bottom) Gaussian,
gamma and impulse noise. (a) The noisy image, (b) the �ltered image, (c) the local resulting
bias and (d) the local relative variance. The ROF model only applies well for Gaussian noise:
the bias tends towards zero and the variance is equally reduced in all homogeneous areas.

each estimator, measured in term of the risk. More precisely:

û(x) =

K∑
k=1

βkuk(x) , (2.73)

with βk =
exp(−R̂[uk(x)]/T )∑K
l=1 exp(−R̂[ul(x)]/T )

.

The temperature parameter T > 0 is a smoothing parameter that controls the con�dence at-
tributed to the risk estimates. If T →∞, then the EWA is simply the average of the pre-estimate.
Conversely, when T → 0, then the EWA selects the pre-estimate minimizing the risk as discussed
before. Most theoretical works about EWA (see Leung and Barron, 2006; Dalalyan and Tsybakov,
2008) recommend a large temperature parameter T = 4σ2 under a few assumptions (like inde-
pendence) on the estimators u1(x), · · · , uK(x). In practice, since assumptions on the estimators
family may not be satis�ed, a smaller value is used, such as T = 0.4σ2. Results combining EWA
and SURE will be given in Chap. 7.

The current state-of-the-art techniques so far consist of a combination of the ideas of similar
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patches selection with that of sparsi�cation by transforms or learned dictionaries or regulariza-
tion followed by an aggregation step. We refer the reader to the recent survey by Katkovnik
et al. (2010); Milanfar (2011) for a deeper analysis of the connections and evolutions of most of
the denoising approaches we mentioned here. All these approaches rely on the Gaussian noise
assumption. When noise departs from Gaussian noise, the direct application of these methods
can lead to aberrations and results with poor quality.

2.7 In�uence of the noise model on the denoising performance

One could think that when noise departs from the Gaussian distribution, the performance
of the previously presented denoising techniques are not a�ected. In Figure 2.16, we use the
ROF model 1 (see Sec. 2.3.3) on an image corrupted by Gaussian, gamma and impulse noise.
The denoised images, the local bias and the local relative variance are given to assess the quality
of the denoising (see Sec. 2.1.3). Under Gaussian noise, the �ltered image presents the same
smoothing e�ect everywhere in the image: the bias tends towards zero and the variance is
equally well reduced in all homogeneous areas. However, under gamma noise, if the solution
is still unbiased, the level of noise reduction is higher in bright areas than in dark areas. The
�ltering does not adapt to the signal-dependent nature of gamma noise. As a consequence, the
�ltering image present many bright residual pixels most of all in bright areas: the model does
not take into account that the heavy tail of the gamma distributions is proportional to the signal
itself. In the case of impulse noise, bright areas are biased towards lower values while dark areas
are biased toward higher values. Visually, the resulting image su�ers from a residual impulse
noise with high variance.

2.8 Conclusion

We have reviewed several methods to solve the problem of noise reduction. These solutions
are based on di�erent models of the underlying signal and the assumption of AWGN. Among
them, patch-based �lters assume that the image is constituted of several redundant patterns.
This prior appears as particularly e�cient to model natural images and has then led to the
state-of-the-art techniques. Such a prior is parameterized by the patch size the size of the search
window and the way to compare patches. The objects in images have by nature di�erent scales
and orientations. By using di�erent parameters, aggregation-based �lters can be used to combine
di�erent priors and then adapt to the local content of the scene. Next, we have seen that the
direct application of the classical algorithms on images damaged by non-Gaussian noise leads
to visual aberrations: the estimation of the noise-free values can be biased and the amount of
noise reduction does not adapt to the signal-dependent nature of the noise at hand. Classical
approaches have then to be adapted or extended to the statistics of the noise that corrupts a
given image. In the case of non-local �ltering, non-Gaussian assumptions require us to rede�ne
the combination of noisy samples that have to be selected by a proper similarity criterion. The
next chapter focuses on these di�erent aspects.

1. we use anisotropic TV corresponding to the sum of the `1 norm of the gradient so that minimization problem
can be solved by graph-cuts
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Chapter 3

Image denoising beyond Gaussian noise

Image denoising under the classical additive white Gaussian noise (AWGN) assumption has
led to multiple algorithms that have been reviewed in Chap. 2. We have seen that when noise
departs from the Gaussian distribution, the quality of such algorithms can lead to a poor perfor-
mance. Speckle and shot noise are common non-Gaussian phenomena that a�ect images. Unlike
the Gaussian noise, the di�culty emerging is that such noises are signal-dependent: the level
of the �uctuations spatially varies inside the images according to the intensity of the underly-
ing noise-free image. When the variance depends on the expectation, we say that the noise is
heteroscedastic (by opposition to the term homoscedastic when the variance is constant).

Most of approaches designed for non-Gaussian noise are based on the variance stabilization
approach. This approach transforms the input noisy data in a way that the resulting output
appears with a noise component approximatively Gaussian and with constant variance. In other
words, it maps a hetereoscedastic to a homoscedastic noise. Hence, it is no necessary to design
new algorithms: a common denoising algorithm designed for Gaussian noise can be used instead.
If this approach is relevant to deal with multiplicative noise or Poisson noise, it can hardly be
generalized to multi-modal or multi-variate distributions (e.g., is it possible to transform the
multi-modal distribution of the interferometric phase to approach a Gaussian distribution?).
Moreover, such transformations lead to distortions of the underlying signal which can be unde-
sirable for speci�c algorithms. Finally, if in practice these methods can prove to be powerful,
in a theoretical point of view, they are only based on heuristics. To our knowledge, their is no
result stating that denoising after a variance stabilization is necessary and optimal to deal with
non-Gaussian noise. Hence, in a methodological framework following the discussion in 1.1.3, it
is relevant and legitimate to design denoising techniques that directly deal with images su�ering
from non-Gaussian noise.

Among the standard denoising techniques that we have enumerated in Chap. 2, we have
found extensions to non-Gaussian noise for almost all of them. Sometimes, these extensions
focus on a given noise distribution or on a family of noise distributions (usually the distributions
of the exponential family) or they are general enough to cope with any distributions. Also, it
is common that some authors directly propose an original methodology to deal with a given
noise distribution without being the direct extension of a previously existing approach. All these
methods are based on one or many concepts grounded on the properties of the noise distribution.

Our contributions� This chapter reviews a large number of concepts drawn for the design
of denoising algorithms under non-Gaussian noise. We extract from a rich literature on this
topic, the main approaches and concepts used for this purpose. We conduct original numerical
experiments to show the performance or the drawbacks of some proposed techniques. We also
extend methods designed for a speci�c kind of noise (in particular for speckle) to a more general
framework based on the understanding of the underlying concepts. Among others: we provide
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an example of minimization of the total-variation where the variance stabilization approach is
non-optimal and we compare di�erent common estimators under impulse noise. We also applies
the common SURE-based extensions of non-Gaussian noise to moving average �lters. We show
in particular that such extensions fail in the case of gamma noise.

The main contribution of this chapter, is the comparative study of selection rules for di�erent
spatially adaptive local �lters and non-local �lters. In the sight of the proposed evaluation criteria
in Sec. 2.1.3, we measure their performance in terms of their bias and their relative variance.
We introduce a new selection rule based on the generalized likelihood ratio. This selection rule
provides the best performance, and as a consequence, it will be at the heart of next chapters.

Organization of the chapter� We �rst provide in Sec. 3.1 a non-exhaustive enumeration of non-
Gaussian noise models that can appear in imagery. Next, we describe in Sec. 3.2, the details of
the variance stabilization principle and discuss its limitations and drawbacks. We next mention
and organize several concepts extracted from di�erent approaches (sometimes proposed by di�er-
ent communities) and show their links and their di�erences. Section 3.3 focuses on the extension
of moving average �lters based on the ergodicity assumption. We present in Sec. 3.4, anisotropic
�lters for non-Gaussian noise based on edge detectors robust to the noise distribution. We next
study extensions of variational models including the total-variation minimization and the sparse
decompositions in Sec. 3.5. They rely on a Bayesian framework where the noise distribution is
taken into account to de�ne a suitable data �delity term. In Sec. 3.6, we review some exten-
sions of aggregation-based �lters. They are directly based on statistical properties of the noise
distribution model at hand. In Sec. 3.7, we present the Bayesian NL means and its variants as
extensions of the NL means �lter and the UINTA �lter for arbitrary noise distributions. They
estimate the posterior mean by averaging the values of a pre-�ltered image where weights are
linked to the likelihood model. In Sec. 3.8, we study and compare selection-based �lters that
average noisy values and we propose a new one in Sec. 3.9.

3.1 The common noise models in imagery

In this section, we describe the most common models used in the image processing literature.
We will see that some of them are just for academic purposes while others are used to model
realistic data, such as astronomical images and ultrasound images. The common point of these
models is that the noise is considered as spatially uncorrelated so that the pdf of V is the product
over the image of the pdf of each random variable Vk modeling the observation vk:

p(v|u) =

N∏
k=1

p(vk|uk) . (3.1)

3.1.1 Gaussian noise

In optical imagery, one of the most common models is the additive white Gaussian noise (in
short AWGN or Gaussian noise) model. Given a noise level modeling σ > 0, and the underlying
real value u, a Gaussian random variable V is a real random variable following the pdf:

p(v|u) =
1√
2πσ

exp

[
−(v − u)2

2σ2

]
, (3.2)

with expectation E[V ] = u and variance Var[V ] = σ2. Figure 3.1 gives an illustration of
Gaussian distributions. Gaussian �uctuations are additive, therefore it is straightforward to
show that v can be decomposed as u + σε with ε being a realization of a zero mean Gaussian
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Figure 3.1: Two distributions modeling symmetrical and additive noises. (a) Gaussian distri-
butions centered on u = 0 with three scale parameters σ. It can represent errors of types ±ε
and it usually describes the thermal noise. (b) Cauchy distributions centered on u = 0 with
three di�erent scale parameters γ. Due to its heavy tails, this distribution can represent large
abberations as it occurs in spectroscopy.

random variable with unit standard-deviation decorrelated from u. Gaussian noise model is
suitable for describing symmetrical uncertainties such as when u is known through v at ±ε with
probability p. Such uncertainties are relevant to model the thermal noise of digital systems.

Gaussian models are easy to extend to mutli-dimensional real data, for instance, for color
images where each observation u is a 3-dimensional vector. By channel, we denote an entry of
this vector. If noise is correlated between channels, a D-dimensional Gaussian random vector V
follows the following pdf:

p(v|u) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(v − u)tΣ−1(v − u)

]
, (3.3)

where u is the D-dimensional real vector representing the noise-free information and Σ is a D×D
covariance matrix. Multi-dimensional Gaussian verify the same property mentioned above for
mono-dimensional Gaussian distributions.

3.1.2 Cauchy noise

Given a noise level modeling by γ > 0, a Cauchy random variable V is a real random variable
described by the following pdf:

p(v|u) =
1

πγ

[
1 +

(
v−u
γ

)2
] (3.4)

where u ∈ R is the location of the mode and γ de�nes the scale of the distribution. Figure
3.1 gives an illustration of Cauchy distributions. Cauchy �uctuations are also symmetric and
additive, therefore it is straightforward to show that V can be decomposed as u+γε with ε being
a Cauchy random variable with a mode at 0 and an unit scale parameter. Unlike the Gaussian
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Figure 3.2: Two distributions de�ned on the interval [1..L] modeling errors corrupting a noise-
free value u and occuring with a given probability P . Here u = 6, L = 16 and P = 0.7. (a)
Impulse errors a�ect to a pixel an arbitrary value with probability P . (b) Salt-and-pepper errors
saturate a pixel value to 1 or L with probability P .

distribution, the particularity of the Cauchy distribution is its very heavy tails. A consequence
is that its expectation and variance do not exist: the sample mean and the sample variance do
not converge with respect to the number of observations. This kind of noise then defeats all
methods based on the average of pixel values.

As far as we know, there is no imaging system delivering images with Cauchy noise. Cauchy
distribution are used in spectroscopy. It can be useful to describe an impulse-like noise with
unbounded and continuous values.

3.1.3 Impulse noise

Impulse noise can model random uniform aberrations of imaging systems measuring a discrete
information quanti�ed on the interval [1..L]. Imaging systems delivering images with such noise
�uctuations are relatively uncommon. It can appears in remote applications where bits are
corrupted during the transmition of the image. It also constitutes a denoising problem that is
particularly di�cult and challenging for academic purposes. Such images present two types of
pixels: either the pixel has the same value as the noise-free value, or it has a value uniformly
distributed on the interval [1..L]. The degradation rate is given by the parameter P ∈ [0, 1].
Impulse noise is modeled by the probability mass function:

p(v|u) =

{
P/L+ 1− P if v = u
P/L otherwise

. (3.5)

Figure 3.2 gives an illustration of such a discrete distribution.

3.1.4 Salt-and-pepper noise

Salt-and-pepper noise can be used in any imaging system measuring a discrete information
quanti�ed on the interval [1..L]. Salt-and-pepper noise models random saturations that occur
in physical measurements. Given a parameter P ∈ [0, 1], modeling the percentage of corrupted
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Figure 3.3: Two distributions modeling speckle noise. (a) The gamma distribution describes
the speckle observed in intensity images. It is de�ned on positive real values and it describes an
hetereoscedastic noise since its shape is linked to its mean. Its heavy right-tail explains the highly
bright pixels that are present in such images. (b) The Fisher-Tippett distribution describes the
speckle observed in the logarithm image. Unlike the Gaussian or the Cauchy distribution, this
distribution describes an asymmetrical additive noise. Due to its heavy left-tail, this distribution
models an image presenting several dark pixels.

pixels, salt-and-pepper noise is modeled by the probability mass function:

p(v|u) =



P/2 + (1− P ) if v = 1 and u = 1
P/2 + (1− P ) if v = L and u = L
P/2 if v = 1 and u 6= 1
P/2 if v = L and u 6= L
(1− P ) if v = u and u /∈ {1, L}
0 otherwise

. (3.6)

Figure 3.2 gives an illustration of such a discrete distribution. With probability P , any pixel
value is either a�ected to the value zero (usually representing black color) or to the value L
(usually representing white color). The resulting image is composed of several saturated pixels
with white or black colors as if salt-and-pepper have been sprinkled on the image. Like impulse-
noise, imaging systems delivering images with such noise �uctuations are relatively uncommon.
Such noise can be reduced e�ciently if treated as an impainting problem where saturated values
are rather considered as missing values.

3.1.5 Speckle noise

The case of intensity: In coherent imagery (e.g., radar images, sonar or ultrasound), when mea-
suring the intensity of backscattered wave echo, the interferences of many punctual back-
scatterers, located in the same resolution cell, lead to speckle. Speckle produces �uctuations
with a distribution depending on the organization inside the resolution cell. As a consequence,
speckle is signal-dependent since the intensity of �uctuations vary with the underlying informa-
tion. Given the positive integer L ∈ N∗, called shape parameter and acting on the noise level,
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speckle is usually modeled by a gamma real random variable V described by the following pdf:

p(v|u) =
LLvL−1e−L

v
u

Γ(L)uL
, (3.7)

where u is a real value modeling the average variations of the punctual back-scatterers. Figure
3.3 gives an illustration of gamma distributions. Its expectation is E[V ] = u and variance

Var[V ] = u2

L . The relation Var[V ] ∝ E[V ]2 indicates an heteroscedastic noise which has moreover
a multiplicative behavior. Indeed, it is straightforward to show that V can be decomposed as
u×S with S being a gamma random variable of parameter uS = 1. We then call it multiplicative
noise. When L = 1, the gamma distribution boils down to the exponential distribution known
to have a heavy right-tail and a heavy left-head. Hence the resulting image appears as a dark
image with highly bright pixels.

The intensity image v usually has a high dynamic range (mostly when the shape parameter L
is small). To decrease the dynamic of such images, for visualization or post-processing purposes,
it is common to perform a change of variable.

The case of amplitude: It is common to transform the intensity images to the amplitude format
thanks to the square root transform: ṽ =

√
v. In this case, the resulting distribution is called a

Nakagami-Rayleigh distribution de�ned by:

p(ṽ|ũ) =
2LLṽ2L−1e−L

ṽ2

ũ2

Γ(L)ũ2L
, (3.8)

where ũ =
√
u. Its expectation is E[Ṽ ] = Γ(L+0.5)√

LΓ(L)
ũ and variance Var[Ṽ ] =

[
1−

(
Γ(L+0.5)√
Lγ(L)

)2
]
ũ2.

Again, the relation Var[Ṽ ] ∝ E[Ṽ ]2 indicates a multiplicative behavior. Indeed, it is straightfor-
ward to show that Ṽ can be decomposed as ũ × S with S being a Nakagami-Rayleigh random
variable of parameter ũS = 1. Like the gamma distribution, the Nakagami-Rayleigh has a heavy
right-tail.

The case of logarithm transform: Another solution is to use a logarithm transform ṽ = log v.
In this case, the resulting distribution is called a Fisher-Tippett distribution (or sometimes, a
double exponential distribution) de�ned by:

p(ṽ|ũ) =
LL exp(Lṽ)e

−L exp ṽ
exp ũ

Γ(L) exp(Lũ)
, (3.9)

where ũ = log u. Figure 3.3 gives an illustration of Fisher-Tippett distributions. Its expectation
is E[Ṽ ] = ũ + Ψ(L) − logL and variance Var[Ṽ ] = Ψ(1, L) where Ψ(1, L) is the �rst-order
polygamma function of degree L (e.g. Xie et al., 2002b). The relation E[Ṽ ] = ũ + C with a
variance independent of ũ indicates an additive behavior: the log-transform of a signal-dependent
multiplicative noise results in a signal-independent additive noise. Unlike the previous distribu-
tion, the Fisher-Tippet has a heavy left-tail, the resulting image presents then several dark pixels.

If square root or logarithm transforms seem attractive to display or analyze such images, we
suggest instead treating noise �uctuations in the intensity format. The statistics of the gamma
distribution have simpler expressions than the ones of Nakagami-Rayleigh or Fisher-Tippett
distributions. The sum of gamma random variables is a gamma random variable while the sum
of Nakagami-Rayleigh random variables is not known in closed-form. Finally unlike Nakagami-
Rayleigh or Fisher-Tippett random variables, the sample mean corresponds to the maximum
likelihood estimator for gamma distribution.
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Figure 3.4: Two distributions modeling shot noises. Both distributions model an hetereoscedastic

noise since their scale is directly linked to their mean. (a) The Poisson distribution describes the
�uctuations arising when counting the number of emited photons received during the exposure
time. Because it models the number of photons, the values are discrete and positive. (b) The
Poisson-Gaussian distribution models a mixture of �uctuations due to counting and thermal

noise. It is obtained by convolving a discrete Poisson distribution by a continuous Gaussian
distribution with a scale parameter σ. The values are then real and can take negative values.
For small level of thermal noise, Poisson-Gaussian noise is highly multi-modal.

3.1.6 Shot noise or Poisson noise

Shot noise appears in low-light conditions when the number of collected photons is small,
such as in �uorescence microscopy or astronomy. Shot noise is usually modeled by a Poisson
random variable V described by the following probability mass function:

p(v|u) =
uve−u

v!
. (3.10)

where u is a real value modeling the light intensity. Figure 3.4(a) gives an illustration of Poisson
distributions. Its expectation is E[V ] = u and variance Var[V ] = u. The Poisson noise is then
heteroscedastic. Note that the relation Var[V ] = E[V ] is non-homogeneous, which is challenging,
since, V cannot be related to u through additive or multiplicative decomposition.

3.1.7 Poisson-Gaussian noise

Optical systems can su�er from two sources of noise: shot noise and thermal noise. They
are then described by the sum of two random variables following, respectively, a Poisson and a
Gaussian noise distribution. The resulting real random value is modeled by the following pdf
obtained by convolving a Poisson distribution by a Gaussian distribution:

p(v|u) =
1√
2πσ

∞∑
k=0

exp

(
−(v − k)2

2σ2

)
uke−u

k!
(3.11)

where σ > 0 models the uncertainty due to thermal �uctuations. Figure 3.4(b) gives an illustra-
tion of Poisson-Gaussian distributions. Its expectation is E[V ] = u and variance Var[V ] = u+σ2.
It models then an heteroscedastic noise.
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Poisson-Gaussian noise results from the sum of a discrete random variable taking its values
in N and a continuous random variable taking its values in R. As a consequence, for small values
of σ Poisson-Gaussian noise is not mono-modal (see Fig. 3.4(b)). The estimation of u using
the maximum likelihood estimator cannot be obtained in closed-form and requires the use of
consuming iterative methods prone to fall in local minima such as the split gradient method of
Lanteri and Theys (2005).

Since optical sensors provide non-negative discrete values, we suggest that the contribution of
shot noise and thermal noise should be modeled as the sum of two non-negative discrete random
variables. While more realistic, such a model should lead to mono-modal distributions which is
more suitable to be used with optimization methods. The performance of such approach highly
depend on our knownledge about the sources of degradations. A Gaussian distribution with a
variance linearly dependent of u can be preferable to model the combination of a shot noise with
a thermal noise when we do not control all sources of degradations.

The enumeration of uncorrelated noise models described above is not exhaustive and we can
�nd many other noise distribution models. In Chap. 6, in the context of coherent images, we
will introduce the multi-variate complex circular Gaussian distribution and the complex Wishart
distribution modeling the interferences (or correlations) between several backscattered waves.

3.2 Back to the Gaussian world: the variance stabilization

3.2.1 Description and motivations

As described in Chap. 2, Gaussian noise leads to simple formulations and simpli�cations eas-
ing the elaboration of noise reduction techniques. Many algorithms for image denoising are then
designed for Gaussian noise only. A classical (cost-less) approach to extend the applicability of
�lters designed for Gaussian noise to some non-Gaussian noise is to apply a transformation to
the noisy data. The transformation is chosen so that the transformed data follows a (close to)
Gaussian distribution with constant variance (hence their name: variance-stabilization trans-
forms). These approaches are popular and frequently used, e.g., for density estimation (Brown
et al., 2010), wavelet denoising (e.g. Xie et al., 2002a; Achim et al., 2003; Bhuiyan et al., 2007).
and patch-based denoising (e.g. Mäkitalo et al., 2010; Boulanger et al., 2010; Mäkitalo and Foi,
2011).

Given an invertible application s which stabilizes the variance for a speci�c noise pdf and a
�lter h designed for Gaussian noise, the stabilization-based �ltering is given by:

û = (s−1 ◦ h ◦ s)(v) . (3.12)

The case of gamma noise: This leads for instance to the homomorphic approach which maps,
thanks to a logarithm transform, multiplicative noise to additive noise with stationary variance
(see Jain, 1989). For instance, in the case of gamma noise:

s(V ) = log V ⇒ Var[s(V )] = Var[log V ] = Ψ(1, L) (3.13)

where Ψ(1, L) is the �rst-order polygamma function of degree L (e.g., Xie et al., 2002b).

The case of Poisson noise: This is also the principle of Anscombe's transform (and its variants)
used for Poisson noise:

s(V ) = 2

√
V +

3

8
⇒ (u� 0⇒ Var[s(V )] = 1) . (3.14)
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Figure 3.5: Variance of Anscombe's transform of Poisson random variables with respect to pa-
rameter u. For u high enough, the variance is independent of u and equal to 1.

Such variance-stabilization transform is only asymptotic and applies well as soon as u > 4.
Figure 3.5 describes the relationship between u and the variance of Anscombe's transform.

Usually s is non-linear and Eq. (3.12) introduces a bias in the estimation since E[V |u] 6=
s−1[E[s(V )|u]]. A post-precessing step to unbias the estimation is then required.

3.2.2 Post-processing step to unbias the estimation

Equation (3.12) tends to introduce a bias in the estimation. This bias can be estimated and
then used to apply a bias correction to û. This correction is not universal: it depends on the
given noise distribution and its stabilization function. Debiasing can be achieved by studying
the functional link f between the biased estimate and the noise-free data E[s(V )|u] = f(u). If f
is invertible, this leads to the unbiased stabilization approach given by:

û = (f−1 ◦ h ◦ s)(v) . (3.15)

The case of gamma noise: The mean of the log transform of a gamma random variable is given
by (e.g. Xie et al., 2002b):

E[s(V )|u] = lnu+ ψ(L)− logL . (3.16)

Bias correction can be achieved directly by what Xie et al. (2002a) call the �adjust mean� step:

û(debiased) =
L

expψ(L)
û(biased) . (3.17)

The case of Poisson noise: The mean of Anscombe's transform of a Poisson random variable is
given by:

E[s(V )|u] = 2
∞∑
v=0

√
v + 3/8

uveu

v!
. (3.18)

Mäkitalo and Foi (2011) suggest inverting Eq. (3.18) by evaluating numerically the summation
for di�erent values of u and using linear interpolation for arbitrary values of u.
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(a) Noise-free image (b) Gamma noise

×
(c) Logarithm + ROF

√

(d) (Shi and Osher, 2008)

Figure 3.6: (a) Noise-free image, (b) noisy image corrupted by gamma noise and denoised images
using (c) the ROF model applied after a logarithm transform, and (d) the adapted solution of
(Shi and Osher, 2008) for gamma noise.

3.2.3 Drawbacks and limitations of variance stabilization approaches

Variance stabilization approaches have two signi�cant advantages: they are simple to design;
and they provide a competitive performance due to the important joint e�ort made by the com-
munity to elaborate e�cient techniques to deal with Gaussian noise. For instance, state-of-the-art
approaches for Poisson noise are obtained with three tools: Anscombe's transform, a powerful
algorithm designed for Gaussian noise, and an optimal inversion of Anscombe's transform (see
for instance Mäkitalo et al., 2010; Boulanger et al., 2010).

A �rst limitation is the assumption that stabilizing the variance leads to Gaussian noise. In
the case of multiplicative gamma noise, we have seen in Sec. 3.1.5 that the logarithm-transform
leads to an image corrupted instead by a Fisher-Tippett distribution. This distribution is asymp-
totically Gaussian when L tends to in�nity (due to the law of large numbers). However, for small
values of L, this distribution is asymmetric and has a heavy left-tail.

Figure 3.6 compares two approaches based on the minimization of the total-variation 1 (see
Sec. 2.3.3) using either the logarithm-transform or a suitable adaptation to the gamma noise
that we will present in Sec. 3.5. Since the method based on the logarithm-transform does not
take into account the left-tail of the Fisher-Tippett distribution, it leads to the presence of many
dark residual pixels while the suitable adaptation does not su�er from this undesirable e�ect.

Another important limitation lies in the non-linear distortion of noise-free data introduced
by s. For instance, in the homomorphic approach, the logarithm transforms the contrast of
noise-free patches. Prior on the noise-free image are then a�ected accordingly. For instance,
a sparse decomposition on the logarithm transform of an image corrupted by a multiplicative
noise is equivalent to considering that the noise-free image can be decomposed as the product of
a few atoms of the dictionary. A more fundamental limitation is the nonexistence of a variance
stabilizing transform s for some distributions.

3.3 Moving average �lters and maximum likelihood estimation

When noise departs from Gaussian noise, moving average �lters presented in Sec. 2.2.1 can
lead to bias or wrong estimation of the underlying smoothed regular noise-free image. For
instance, Fig. 3.7 illustrates the result of the moving average �lter on an image corrupted by
impulse noise. The result is clearly unsatisfactory. It is well-known that for impulse noise,

1. we use anisotropic TV corresponding to the sum of the `1 norm of the gradient so that minimization problem
can be solved by graph-cuts
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Figure 3.7: (a) A smooth image (a) corrupted by impulse noise with two di�erent degradation
rates (top) P = 0.3 and (bottom) P = 0.7. Denoising results obtained by (b) the moving average
�lter, (c) the moving median �lter and (d) the moving MLE. When P = 0.3 the moving median
�lter and (d) the moving MLE provide unbiased values, while when P = 0.7 only the MLE �lter
is unbiased.

the median �lter (which replaces the value of interest by the median of the values in a moving
window) is more robust in dealing with the presence of outliers (see again Fig. 3.7). Why is there
such di�erence of behavior?

Intuition: Assuming local ergodicity, moving average �lters correspond to the least square esti-
mate (LSE):

û(x) =
1

|W |
∑
x′∈Wx

v(x′) = arg min
u

∑
x′∈Wx

(v(x′)− u)2

︸ ︷︷ ︸
LSE

. (3.19)

This solution is known to be optimal when the errors (understand noise) have zero mean, are
uncorrelated and have equal variance (cf. Gauss-Markov theorem). Therefore, moving average
�lters are optimal for Gaussian noise. In the case of impulse noise, the LSE is strongly in�uenced
by the aberrant values or outliers (due to the quadratic penalty). A strategy to decrease the
in�uence of outliers is to consider the `1 penalty instead of the quadratic `2 norm. It is known
that the minimization of the `1 norm, also referred to as the absolute norm of deviation, leads
to the moving median �lter:

û(x) = Median
(
{v(x′)|x′ ∈Wx}

)
= arg min

u

∑
x′∈Wx

|v(x′)− u|︸ ︷︷ ︸
`1-norm

. (3.20)

Explanation: The moving average �lter is also the maximum likelihood estimate (MLE) of inde-
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Figure 3.8: Estimation of the underlying value u = 10 under impulse noise de�ned on the range
[1, 100] for di�erent degradation rates P . When P ≤ 0.5, the median �lter is the MLE, but,
when P > 0.5, the median �lter departs from the MLE. The average estimator gives poor results
in all situations.

pendent and identically distributed (i.i.d.) Gaussian random variables:

û(x) =
1

|W |
∑
x′∈Wx

v(x′) = arg max
u

∑
x′∈Wx

log p(v(x′)|u)︸ ︷︷ ︸
MLE

(3.21)

Under Gaussian noise assumption, the optimality of the moving average �lter is then ascribed
to the consistency and the e�ciency of the MLE.

Under impulse noise, the MLE cannot be obtained in closed-form. The MLE can, however,
be obtained numerically by exhaustive search. Figure 3.8 compares the asymptotic estimates
obtained by the average, the median and the MLE for di�erent degradation rates P . It appears
that the bias of the average �lter increases with the degradation rate P , the median �lter becomes
biased for a degradation rate P > 0.5 and the MLE is unsurprisingly unbiased. The good behavior
of the median �lter is then due to the fact that it acts as the MLE for low values of P . Indeed,
Fig. 3.7 shows that, for a small value of P , the moving median �lter and the moving MLE provide
good results compared with the moving average �lter. For a high value of P , only the moving
MLE provides a good result.

3.4 Anisotropic di�usion and edge detection

The anisotropic di�usion of Perona and Malik (1990) described in Sec. 2.3.1 can lead to aber-
rant results when noise departs from Gaussian noise. In the case of speckle, Yu and Acton (2002)
mentioned that �anisotropic di�usion will actually enhance the speckle, instead of eliminating
the corruption�. Few attempts try to extend this approach to non-Gaussian noise. The speckle
reduction anisotropic di�usion (SRAD) �lter of Yu and Acton (2002) uses the following partial
di�erential equation: {

∂u(x,t)
∂t = div (c(q(x, t))∇u(x, t))

u(x, 0) = v(x)
(3.22)
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where c is a decreasing function of the instantaneous coe�cient of variation q(x, t) =

√
Var[u(x,t)]

E[u(x,t)] .
The instantaneous coe�cient of variation is estimated with local statistics which, as a conse-
quence, acts as an edge detector with a constant answer in the homogeneous areas (since speckle
is multiplicative). The function c is then chosen such that the di�usion is maximal when the
local estimate of the coe�cient of variation �uctuates around this constant. At the opposite end,
the function c gives low answers for high values of the local estimate since it probably indicates
the presence of an edge. This idea has been extended in (Aja-Fernández and Alberola-López,
2006; Krissian et al., 2007).

A similar approach could be used for Poisson noise, using the local estimation of Var[u(x,t)]
E[u(x,t)]

as an edge detector with a constant answer in the homogeneous areas. Nevertheless, note that
di�usions realize, in essence, an average. Hence, such an extension should only work for noise
distributions whose MLE is the empirical average. To our knowledge, no solution has been
proposed thus far to extend the anisotropic di�usion to arbitrary types of noise.

3.5 Variational-based �ltering and the Bayesian approach

The minimization of the total-variation (TV) presented in Sec. 2.3.3 and the research of
sparse decompositions presented in Sec. 2.4, are two examples of variational-based �lters. They
relie on the minimization of an energetic (objective) function expressed by two terms:

U(u) = Udata(v,u) + λUregularity(u) (3.23)

where Udata(v,u) is usually a quadratic penalty ‖v−u‖22 measuring the �delity of the explanation
u to the noisy data v and Uregularity(u) an energetic term modeling the regularity or sparsity
of the solution. The Lagrangian multiplier λ > 0 acts as a trade-o� between data �delity and
regularity.

Such a formulation �nds its justi�cation in a Bayesian framework. In Sec. 2.1.2 we have seen
that denoising can be achieved by maximum a posteriori (MAP) estimation:

û = arg max
u

p(u|v) = arg max
u

p(v|u)p(u) (3.24)

since the evidence p(v) is constant with respect to u. In this Bayesian formulation, the noise-
free image u is modeled as the realization of a random vector, following a distribution p(u),
and modeling in a statistical way the a priori con�guration that can occur. The term p(v|u) is
the likelihood of u given V = v, which is fully described by the given noise distribution model.
The minimization of Eq. (3.23) is equivalent to the MAP estimation, thanks to the following
identi�cations:

p(u|v) = exp (−U(u)) ,

p(v|u) = exp (−Udata(v,u)) ,

p(u) = exp (−λUregularity(u)) (3.25)

provided that the probability density function does not cancel. Under the Gaussian noise as-
sumption, Udata(u,v) = − log p(v|u) corresponds to the quadratic penalty. For non-Gaussian
noise, we will see, through several examples, that the application of Bayes formula has been used
successfully in many approaches in order to derive relevant data �delity terms.
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3.5.1 Maximum a posteriori on Markov random �elds

Geman and Geman (1984) suggest modeling the local contextual information of noise-free
images using a Markov random �eld (MRF). The MRF approach introduces a local prior model
of the noise-free image and searches for a compromise between that prior and the noisy data.
Markovian priors describe punctual conditional probabilities at position x as depending only on
the local context in the spatial neighborhood V(x):

p(u(x)|u(Ω/{x})) = p(u(x)|u(V(x)) . (3.26)

where u(Ω/{x}) denotes the set of all noise-free values except the one at position x. Hammersley
and Cli�ord (1971) show that if all con�gurations are possible, i.e., ∀u, p(u) > 0, the prior
distribution is necessarily a Gibbs �eld de�ned as follows:

p(u) =
exp

(
−
∑

c∈C Uc(u)
)

Z
(3.27)

where C is the clique system associated to the neighborhood system V, i.e., the set of tuples such
that each pair of elements of the same tuple are neighboors with respect to V. The number of
elements k of a given clique is called the order of the clique. The energy Uc > 0 is the local
energy associated to a given clique c and Z is a normalization constant. In this context, the
MAP estimation on an MRF writes as:

û = arg min
u

− log p(v|u) +
∑
c∈C

Uc(u) . (3.28)

It is crucial for these techniques to de�ne a suitable prior that guarantees both the smoothness
of the denoised image and the preservation of its structures. A common prior is to consider only
clique of order 2, with the following associated energy:

Uc=(x,x′)(u) = λ|u(x)− u(x′)| (3.29)

which penalizes large transitions (proportionally to λ > 0) and favors constant regions. Such
priors however tend to bias the denoised image, especially when high noise levels are consid-
ered. Markovian priors are local in essence, and lead to stronger attenuation of several small
disconnected regions rather than that of a single region (Strong and Chan, 2003). In practice,
an edge-preserving MRF model generally leads to minimization problems with non-smoothness
and/or non-convexity issues.

With a clique energy of second-order, Eq. (3.29) can be interpreted as the discrete approxi-
mation of the local gradient norm |∇u(x)|. Hence, the MAP estimation on an MRF leads to the
derivation of total-variation models:

The case of Gaussian noise: The regularization model of Rudin et al. (1992) matches with the
MAP estimation on a MRF using Eq. (3.29):

û = arg min
u

‖u− v‖22 + λ
∑
x

|∇u(x)| . (3.30)

The parallel between the ROF model and the MAP estimation on a MRF allows us to extend
the ROF model to other distributions.

The case of gamma noise: Aubert and Aujol (2008) suggest minimizing the following functional:

û = arg min
u

∑
x

(
log u(x) +

v(x)

u(x)

)
+ λ

∑
x

|∇u(x)| (3.31)
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Figure 3.9: Denoising results obtained on an image corrupted by (a) gamma noise, (b) Poisson
noise and (c) impulse noise. The results are obtained by our implementation of the variational
approach based on suitable data �delity term as suggested respectively by (Shi and Osher, 2008),
Le et al. (2007) and (Darbon and Sigelle, 2006).

where the data �delity term corresponds, up to a constant, to the negative log likelihood of the
gamma distribution. Denis et al. (2009) suggest using an equivalent data �delity term but with
the total-variation prior de�ned on the square root of the image (i.e., the amplitude format),
whereas, in (Shi and Osher, 2008; Bioucas-Dias and Figueiredo, 2010), the authors use the total-
variation prior de�ned on the logarithm of the image ũ = logu. This model has then been
extended in (Huang et al., 2009) by adding a quadratic penalty to simplify the optimization
procedure. In (Durand et al., 2010), the authors use the total-variation prior on the logarithm
transform and an `1 data-�tting term on the curvelet coe�cients. Further details about the
di�erent data �delity terms and prior terms that can be used for multiplicative noise reduction
can be found in (Steidl and Teuber, 2010). More recently, Xiao et al. (2010); Huang et al. (2010)
have introduced another variational model mixing the ideas of Aubert and Aujol (2008) and

Shi and Osher (2008) where the term |∇ log u(x)| =
∣∣∣∇u(x)
u(x)

∣∣∣ is interpreted as the psychological

Weber's law known to re�ect humans' perceptual sensitivity (see also Shen, 2003).

The case of Poisson noise: Le et al. (2007); Bardsley and Luttman (2009); Figueiredo and
Bioucas-Dias (2009); Willett et al. (2010) suggest minimizing the following functional:

û = arg min
u

∑
x

(u(x)− v(x) log u(x)) + λ
∑
x

|∇u(x)| (3.32)

where the data �delity term corresponds, up to a constant, to the negative log likelihood of
Poisson distribution. The �delity term used in Eq. (3.32) has also been justi�ed in the context of
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entropy maximization under Poisson noise. Steidl and Teuber (2010) mention that it corresponds,
up to a constant, to the generalized Kullback-Leibler divergence.

The case of impulse noise: As mentioned in Sec. 3.3, the median �lter is an unbiased estimator
for low degradation rates P . Median �lters result from the minimization of local `1 penalty. The
TV-L1 model can then be interpreted as an extension of the ROF model relevant for impulse
noise. When the degradation rate P increases, the direct application of the MAP estimation on
a MRF leads to a non-convex minimization problem solved by graph-cut in (Darbon and Sigelle,
2006).

Figure 3.9 shows that the Bayesian extension of the ROF model 2 applies well for the three
kinds of noise we have considered. All results appear as piece-constant images without intro-
ducing statistical artifacts. The results present a similar smoothing strenght everywhere in the
image in dark and bright areas. This method is then e�cient to adapt to signal-dependent noises.

3.5.2 Thresholding as MAP �ltering in the sparse domain

We have seen that hard-thresholding, soft-thresholding and Wiener linear rescaling can be
interpreted as the minimization of the data �delity under respectively the `0, `1 and `2 regularity
constraints. Thanks to Eq. (3.25), these strategies can be expressed as the MAP estimates where
the �delity term models the distribution of noisy wavelet coe�cients and the constraint encodes
the a priori statistical model of the coe�cients of noise-free images:

û = Dα̂ where α̂ = arg max
α

p(β|α)p(α) (3.33)

where α is the transformed image of u and β is the transformed image of v.

The choice of the prior term p(α): In the case of Gaussian noise, the noisy wavelet coe�cients
also follow a Gaussian distribution. In this case, Simoncelli (1999) shows that the standard
thresholding approaches (see Sec. 2.4.1) can be interpreted in a Bayesian manner under the
assumption that noise-free coe�cients are independent and follow the generalized Gaussian dis-
tribution de�ned by:

p(α) =
∏
k

p(αk) =
exp (−

∑
k |αk/s|p)

Z(s, p)
(3.34)

where the normalization constant Z(s, p) = 2 spΓ
(
s
p

)
. The hard, soft and Wiener approaches

resemble the MAP estimation using a generalized Gaussian distribution for prior density with
respective parameters p = 0, 1 and 2. Hence, the `1 norm encodes coe�cients following a Laplace
distribution while the `2 norm encodes a Gaussian distribution. The underlying idea is to choose
the sparsity constraint according to the distribution of the coe�cients of noise-free images α.
This was the motivation of Mallat (1989); Simoncelli and Adelson (1996); Chang et al. (2000)
who �rst introduced the generalized Gaussian distribution to model the coe�cients of optical
images. Spatial adaptation of the parameters of Gaussian and generalized Gaussian models
have been used next to describe the local distribution of the coe�cient of speckle-free synthetic
aperture radar (SAR) images (Argenti and Alparone, 2002; Argenti et al., 2006; Bianchi et al.,
2008). Xie et al. (2002a); Achim et al. (2003); Bhuiyan et al. (2007) suggest instead to model
the logarithm transform of speckle-free SAR images respectively with a bi-Gaussian distribution,
an α-stable distribution and a Cauchy distribution.

2. we use anisotropic TV corresponding to the sum of the `1 norm of the gradient so that minimization problem
can be solved by graph-cuts
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The choice of the likelihood term p(β|α): The nature of AWGN is preserved by any projection
of v on an orthonormal basis D. The quadratic term is then a consistent �delity penalty
independent of the choice of the orthonormal image dictionary (cf. Parseval's identity):

‖v − u‖22 = ‖β −α‖22 . (3.35)

When noise departs from Gaussian noise, this property does not hold anymore. The extension of
thresholding wavelet coe�cients for non-Gaussian noise has to consider the suitable distributions
for both the noisy wavelet coe�cients and the noise-free wavelet coe�cients.

For simplicity reasons, most approaches designed for non-Gaussian noise still model noisy
coe�cients with a Gaussian distribution. Wavelet models for speckle reduction use either a
spatially-varying Gaussian distribution (Argenti and Alparone, 2002) or a single Gaussian dis-
tribution after applying a variance-stabilization technique (Xie et al., 2002a; Achim et al., 2003;
Bhuiyan et al., 2007) that Durand et al. (2010) justi�ed by the central limit theorem. To our
knowledge, only Argenti et al. (2006) attempt to model the noisy coe�cients with an adapted
spatially-varying generalized Gaussian distribution. However, as indicated by the authors, this
model is only heuristic.

Another strategy is to use a data �delity term in the space domain, for which the likelihood
model is known, and a sparsity constraint in the transformed domain. This results in the following
optimization problem:

û = Dα̂ where α̂ = arg max
α

p(v|Dα)p(α) . (3.36)

This idea is used by Harmany et al. (2009); Raginsky et al. (2010) for the adaptation of com-
pressed sensing methods to images corrupted by Poisson noise. If such a model seems relevant,
it leads to non-trivial optimization problems which are not as simple as coe�cient thresholding,
involving methods such as Douglas-Rachford splitting algorithms.

3.6 Aggregation-based �ltering and non-Gaussian noises

In this section, we are interested in the extensions of aggregation-based �lters as described
in Sec. 2.6. Among K pre-estimates uk of the noise-free image u obtained from a noisy image v,
such methods try to locally select the most relevant one or to combine the K estimates together
to produce an optimal solution û.

3.6.1 Extension of the variance minimization approach

When the pre-estimate results from the weighted average of noisy values, the aggregation
rule proposed by Salmon and Strozecki (2010) and based on the minimization of the residual
variance can be used directly for non-Gaussian noise:

û(x) =
∑
k

βk(x)uk(x) where βk(x) =
Var[Uk(x)]−1∑
lVar[U l(x)]−1

. (3.37)

However, since the variance Var[Ûk] can be signal dependent, i.e., linked to the unknown input
signal uk, Eq. (3.37) cannot be evaluated directly. One can assume that all estimators result
from the average of i.i.d. values, hence:

Var[Uk(x)] = Var[V (x)]

∑
wk(x, x

′)2

[
∑
wk(x, x′)]

2 . (3.38)



62 3. Image denoising beyond Gaussian noise

In this case, Eq. (3.37) simpli�es as:

βk(x) =
1

Z

[
∑
wk(x, x

′)]2∑
wk(x, x′)2

(3.39)

where Z is a normalization constant such that
∑

k βk(x) = 1.

3.6.2 Extension of the ICI rule for non-Gaussian noise

Towards a conceptual extension: The ICI rule is based on the fact that if the pre-estimates Uk(x)

are random values with Gaussian distributions centered on uk(x) with variance Var[Uk(x)], hence,
for all estimator k, the probabilities:

P
{
u(x) ∈

[
Uk(x)− γ

√
Var[Uk(x)], Uk(x) + γ

√
Var[Uk(x)]

]}
(3.40)

are equal. Hence, by selecting the estimator with the smallest variance, Uk(x) uniformly tends
towards u(x) with known probability (cf. the sandwich theorem). The extension of the ICI rule
for non-Gaussian noise should be based on the construction of intervals Ik(x) such that

∀k, l P [u(x) ∈ Ik(x)] = P [u(x) ∈ Il(x)] (3.41)

and Ik(x) tends uniformly towards the singleton {u(x)} when Var[Uk(x)] tends towards zero. In
practice, the di�culty of such an approach lies on the estimation of Var[Uk(x)]. In (Katkovnik
et al., 2008; Kervrann and Boulanger, 2008), the authors use Eq. (3.38) as an estimator of
the residual variance. In their case, the noise is homoscedastic, hence the input noise variance
Var[V (x)] = σ2 is independent of x and can be estimated globally from the noisy image. For
heteroscedastic noise, the noise variance Var[V (x)] depends on the unknown parameter u(x)
which hence interferes with the design of such aggregation rules. As far as we know, direct
extensions of the ICI rule for heteroscedastic noise have not been proposed so far and could be
the topic of future works.

The �tted local likelihood (FLL) solution: Katkovnik and Spokoiny (2008) noticed that the ICI
rule in Eq. (2.65) can be rewritten as:

û(x) = uk∗(x) such that k∗ = sup

k = 1, . . . ,K | ∀l < k ,
|uk(x)− ul(x)|√

Var[Uk(x)] +
√
Var[U l(x)]

< γ

 .

(3.42)

The authors suggest extending this rule for estimates based on the weighted maximum likelihood
estimation (WMLE, see Sec. 5.1) under noise of the exponential family. Such estimates boil down
to a weighted average, i.e.:

uk(x) = arg max
t

∑
x′

wk(x, x
′) log p(v(x′)|t)︸ ︷︷ ︸
Lk(x,t)

=

∑
x′ wk(x, x

′)v(x′)∑
x′ wk(x, x

′)
(3.43)

where wk(x, x
′) are the weights that the k-th estimator attributes to the noisy value v(x′) and

Lk(x, t) is called the local likelihood of t in x. The �tted local likelihood (FLL) selection rule is
given by:

û(x) = uk∗(x) such that k∗ = sup {k = 1, . . . ,K | ∀l < k , Ll(x, ul(x))− Ll(x, uk(x)) < ε} .
(3.44)

The advantage of such a selection rule, is that it does not require the estimation of the residual
variance of each pre-estimate.
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Figure 3.10: (a) Noisy data corrupted by (top) gamma noise and (bottom) Poisson noise. (b)
Solutions of the Gaussian �lter using the bandwidth parameter h minimizing an estimation of
the risk. (c) Solutions of the Gaussian �lter using the bandwidth parameter h minimizing the
true risk. (d-e) Evolutions of the risk and its estimate for di�erent values of h respectively under
gamma and Poisson noise. In the case of gamma noise, the risk is either expressed on transformed
data or on the original observation space.
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3.6.3 Extension of Stein's unbiased risk estimation

Stein's unbiased risk estimation (SURE) can also be extended to other noise distributions.
Let h(.) be an estimator of the noise-free image from a given noisy image v, such that û = h(v),
and denote by h(v)|x the estimated value û(x). Other unbiased risk estimates, i.e., such that

E
[
R(Û)

]
= E

[
1
N ‖u− Û‖

2
2

]
, are given by the following expressions:

The case of gamma noise: In (Eldar, 2009), the author claims that extensions of SURE for
gamma noise can be obtained by a more general extension of SURE for distributions of the
exponential family, i.e., of the form p(v|u) = q(v) exp (uv − g(u)) where q is a function of the
observation only and g is a function of the parameter only. In this case, SURE extends as follows
(Hudson, 1978; Raphan and Simoncelli, 2007; Eldar, 2009):

R(û) =
∑
x

u(x)2 + û(x)2 + 2
∂û(x)

∂v(x)

∣∣∣∣
v(x)

+ 2û(x)
∂ log q(v(x))

∂v(x)

∣∣∣∣
v(x)

. (3.45)

Note that the true image u is unknown but since it is constant when minimizing R(û) it can be
omitted in practice. Note also that SURE is independent on g(ũ). With the change of variable

ũ(x) = −L
u (x), the gamma distribution belongs to the exponential family with q(v) = vL−1

Γ(L) and

g(ũ) = L log ũ, leading to:

R(ˆ̃u) =
∑
x

ũ(x)2 + ˆ̃u(x)2 + 2
∂ ˆ̃u(x)

∂v(x)

∣∣∣∣∣
v(x)

+ 2(L− 1)
ˆ̃u(x)

v(x)
. (3.46)

However, in this case, the risk is de�ned on ũ instead of u, therefore minimizing SURE is
not equivalent to minimizing the MSE but another objective function de�ned on the energetic
landscape of ũ. We will see that the minimization of this energy leads to poor results.

Eldar (2009) also suggests that this result can be used for Poisson noise. However, Pois-
son distributions belong to the exponential family but are not continuous distributions. Since
Eq. (3.45) requires us to evaluate the variations of the estimator according to the in�nitesimal
variation of the noise component, another unbiased risk estimator has to be used for the case of
Poisson noise.

The case of Poisson noise: The Poisson unbiased risk estimator (PURE) is an estimator of the
MSE under Poisson noise (Hudson, 1974; Chen, 1975) de�ned by:

R(û) =
∑
x

u(x)2 + û(x)2 − 2v(x)û(x) (3.47)

where u is the unknown true image (which is constant when minimizing R(û) it can be omitted
in practice), v is the input noisy image, û is the estimate of u and û(x) = h(vx)|x refers to
the denoised value obtained by the application of the NL means on the noisy image de�ned by

vx(x′) =

{
v(x′) if x′ 6= x
v(x)− 1 otherwise

.

The case of Poisson-Gaussian noise: By using (Hudson, 1974; Chen, 1975) and following (Hud-
son, 1978; Tsui and Press, 1982), Luisier et al. (2010) extended PURE to the case of Poisson-
Gaussian noise, which is given by:

R(û) =
∑
w

û(x)− 2v(x)û(x) + v(x)v(x) + 2σ2 ∂u(x)

∂v(x)

∣∣∣∣
v(x)

− σ2 . (3.48)
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Examples with moving average �lters

Here, we suggest �nding the best global bandwidth h of the Gaussian kernel of the moving
Gaussian �lter (see Sec.2.2.1) in the case of images corrupted by gamma and Poisson noise using
the previous proposed SURE extensions. Recall that the Gaussian �lter is de�ned by:

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
(3.49)

using w(x, x′) = exp

(
−‖x

′ − x‖2

2h2

)
.

Estimates of the MSE are then obtained as follows:

The case of gamma noise: Following the idea of Eldar (2009), the optimal parameter h is obtained
by minimizing:

R(ˆ̃u) =
∑
w

ũ(x)2 + ˆ̃u(x)2 + 2L
w(x, x)

ˆ̃u(x)
+ 2(L− 1)

ˆ̃u(x)

v(x)
. (3.50)

Figure 3.10 shows that this objective function is an unbiased estimate of the MSE expressed on
the transformed data ũ. Unfortunately, its minimum is not reached for the same value h as the
minimum of the MSE. Minimizing Eq. (3.50) leads to non-optimal results.

The case of Poisson noise: The optimal value of h is obtained by minimizing the following ob-
jective function:

R(û) =
∑
x

u(x)2 + û(x)2 − 2(v(x)û(x)− w(x, x)) (3.51)

where u is the unknown true image (which is constant when minimizing R(û) it can be omited
in practice), v is the input noisy image, û is the estimate of u. Figure 3.10 shows that this
objective function is an unbiased estimate of the MSE, its minimum is reached for the same
value h as the minimum of the MSE. Minimizing Eq. (3.51) leads to optimal results.

Extensions of SURE for non-Gaussian noise is a di�cult task, and the solutions proposed so
far do not apply easily to all situations, in particular in the case of gamma noise. Under Poisson
noise, PURE provides appealing performance. The authors of (Luisier et al., 2010) recently
suggested using PURE in the context of wavelet denoising. Based on PURE, we will propose in
Chap. 5 an automatic setting of the parameters of the NL means (following the idea of Van De
Ville and Kocher (2009)) that applies successfully for Poisson noise.

3.7 The Bayesian non-local means �lter

Kervrann et al. (2007) propose an extension of the NL means designed to cope with arbitrary
uncorrelated noise. The Bayesian NL means �lter aims at minimizing the Bayesian risk for each
patch Px:

E
[
‖u(x)− û(x)‖22

]
=

∫
‖u(x)− û(x)‖22 p(u(x)|v(x)) du(x) . (3.52)

The minimization of Eq. (3.52) leads to the posterior mean estimator given by:

û(x) =

∫
p(u(x)|v(x))u(x)du(x) . (3.53)
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The posterior distribution p(u(x)|v(x)) being unknown and having only one image at hand,
Kervrann et al. (2007) suggest approaching Eq. (3.53) by the following selection-based estimator:

û(x) =

∑
x′ p(v(x)|u(x′))u(x′)∑

x′ p(v(x)|u(x′))
. (3.54)

where the prior p(u(x′)) is considered uniform. The underlying value u being unknown, the
authors propose in a �rst step to substitute u(x′) by v(x′) in Eq. (3.54). This �rst step then
relies on the strong assumption that v(x′) is a good estimate of u(x′). This �rst-obtained pre-
estimate u is next used in a second iteration as a re�nement of u(x′). This yields the following
estimator:

û(x) =

∑
x′ p(v(x)|u(x′))1/hu(x′)∑

x′ p(v(x)|u(x′))1/h
(3.55)

where h acts as the �ltering parameter of the NL means and its introduction is justi�ed to
counterbalance the invalidity of the patch independence assumption.

In the case of Gaussian noise, the �rst step boils down to the original blockwise NL means
(Buades et al., 2005) and then it can be viewed as an extension of the NL means for non-
Gaussian noise. The second step follows in the same spirit as the UINTA �lter (Awate and
Whitaker, 2005), where pre-estimated values are averaged and known to minimize an entropy-
based criterion. Coupé et al. (2008) use the Bayesian NL means in the case of speckle modeled by
an image-dependent Gaussian distribution with mean u(x) and variance u(x)σ2. More recently,
Zhong et al. (2011) propose to use this approach for speckle described by a gamma distribution.
However, due to the strong assumption of the �rst step, the authors suggest using another pre-
estimation step based on the improved sigma �lter that we will present in the next section. The
authors show that their method leads to the state-of-the-art performance for speckle reduction.

In general, when noise departs from the Gaussian distribution, the performance of the
Bayesian NL means decreases due to the poor estimate provided in the �rst step. Indeed, when
the average is performed on the noisy values v(x), the posterior mean should be replaced by the
MLE (following the discussion in Sec. 3.3). Moreover, we will see that even if the sample mean
is the solution of the MLE (e.g., for Poisson and gamma distributions), the Bayesian weights
given in the �rst step by p(v(x)|v(x′))1/h lead to strong artifacts. We call a �lter that combines
selected or weighted noisy values a selection-based �lter. We will show in the next section that
in this case the Bayesian weights behave poorly and that other selection rules should be used
instead.

3.8 Selection-based �ltering and non-Gaussian noises

Filtering with adaptive windows presented in Sec. 2.3.2 and non-local approaches presented
in Sec. 2.5.1 are two examples of selection-based �lters. Selection-based �lters try to collect as
many samples as possible in the image such that the combination of these samples reduce the
noise level while preserving the information of interest (i.e., minimize the bias-variance trade-o�).
There are then two ingredients in selection-based �lters: the selection rule and the combination
strategy. Under Gaussian noise, adaptive �lters usually select samples according to their Eu-
clidean distance and combine samples using a weighted average. If selected samples are assumed
to be i.i.d., then a combination rule relevant for non-Gaussian noise can be based on the maxi-
mum likelihood estimation (MLE) as presented in Sec. 3.3. A weighted version of the MLE will
be also discussed in Chap. 5. In the following, we will �rst see why the Euclidean distance leads
to a good selection rule under Gaussian noise. Next, we will give examples of di�erent proposed
attempts including our own solution to select noisy samples for a given noise distribution.
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3.8.1 Selection with Gaussian noise: why does it work?

In this section, we will try to interpret why the Euclidean distance is a good selection rule
under the Gaussian noise assumption. Then, we will explain the relative performance of the
sigma �lter, the Yaroslavsky �lter and the NL means �lters.

The sigma �lter

To estimate the pixel value u = u(x), the sigma �lter of Lee (1983) selects the pixels at
location x′ having a noisy value v′ = v(x′) in the neighborhood of the value v = v(x), i.e., such
that:

v′ ∈ [v − γσ, v + γσ] (3.56)

where σ refers to the standard-deviation of the noise and γ > 0 controls the amount of �ltering.
It is straightforward to show that the selection rule in Eq. (3.56) is equivalent to selecting noisy
candidate values with respect to the Euclidean distance with the noisy value of interest, i.e.:

(v′ − v)2

σ2
≤ γ2 ⇔ |v′ − v|

σ
≤ γ . (3.57)

This relation explains why selection rules are usually driven by the Euclidean distance between
noisy values. Note that under the Gaussian noise assumption, the interval I(v) = [v − γσ, v + γσ]
is a con�dence interval, i.e., we can control the probability that u ∈ I(v). When γ = 2, this
probability is given by P(u ∈ I(v)) = 0.95%. This selection rule is appealing under the Gaussian
noise assumption since it veri�es two properties related to the evaluation criteria introduced in
Sec. 2.1.3:

1. It leads to an unbiased estimator. Assume that the sigma �lter �nds candidate pixels x′

verifying (3.56) such that V ′ = V (x′) are i.i.d. with V = V (x) (i.e., u(x) = u(x′) = u).
The �nal estimate û is then unbiased:

E[Û ] =

∫ ∞
−∞

∫ v+γσ

v−γσ
v′p(v′|u) dv′ p(v|u) dv∫ ∞

−∞

∫ v+γσ

v−γσ
p(v′|u) dv′ p(v|u) dv

= u (3.58)

whatever the value of γ. In practice, the number of samples is limited and the samples
are not necessarily i.i.d. Hence, the smaller the value of γ, the fewer number of samples
selected and the higher the resulting variance of the sigma �lter. One would choose a high
value for γ. However, this could lead to mix samples arising from di�erent populations
leading to bias. The parameter γ acts on the bias-variance trade-o�.

2. It leads to an estimator with a stationary relative variance. Assume that we have N
i.i.d. samples of same variance, the resulting variance is reduced by a factor independent
of u:

Var[V ]

Var[Û ]
= N

∫ ∞
−∞

∫ v+γσ

v−γσ
p(v′|u) dv′ p(v|u) dv︸ ︷︷ ︸

Percentage of noise reduction ε

= N

∫ γ2

2

0
χ2

1 (t) dt (3.59)

where χ2
1 is the chi-square distribution with 1 degree of freedom. When γ → ∞, all

candidate values are averaged and the variance is reduced by a factor N . When γ = 0,
none of the candidate values are selected and the variance reduction is null. Hence, ε lies
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in the interval [0, 1] and represents the percentage of variance reduction compared to the
maximal possible variance reduction. Note that Eq. (3.59) shows that the level of variance
reduction decreases when γ increases. Since the level of the noise reduction is independent
of u, the estimator have a stationary relative variance: for a given value of γ the same level
of noise reduction can be maintained everywhere in the image. This result is well known
in detection theory and usually ascribed to the distribution of the Euclidean distance in
(3.57). The level of variance reduction is then linked to the false-alarm rate of the similarity
criterion (see Chap. 4).

Yaroslavsky's �lter and the NL means

Instead of using a binary selection, the Yaroslavsky �lter combines noisy values thanks to
data-driven weights based on the Euclidean distance between noisy pixel values (Yaroslavsky,
1985):

w(x′, x) = φ

(
(v(x′)− v(x))2

2h2

)
(3.60)

where h > 0 controls the amount of �ltering in the same vein as γ for the sigma �lter. See
Sec. 2.5.1 for more details about this �lter. Under the Gaussian noise assumption, as soon as the
weights are symmetric, the resulting estimator is unbiased and maintains the same level of noise
reduction (this last property is straightforward to prove using the changes of variables v → v−u
and v′ → v′ −u). Hence, the e�ciency of the Yaroslavsky �lter can be also ascribed to the fact
that it is unbiased with a stationary relative variance. The same properties can be shown for
the NL means algorithm. The main di�erence is that the NL means will be able to maintain a
higher level of noise reduction for the same value of h. As a consequence, the NL means �lter
is more robust when samples are no longer i.i.d. but rather come from a mixture of populations
(see Sec. 5.3 for more details on this aspect).

When noise departs from Gaussian noise, Eq. (3.58) and (3.59) no longer hold true. The choice
of a suitable selection rule for non-Gaussian noise is a di�cult task that has been explored in
several works. We will enumerate few of them in the next sections and highlight their advantages
and drawbacks.

3.8.2 Selection rules under non-Gaussian noise

In the following we focus on the di�erent selection rules that have been proposed for non-
Gaussian noise. They have been introduced for sigma �ltering, the NL means �ltering or �ltering
with adaptive windows. However, all of them are grounded on the comparison of a candidate
value v′ with a value of interest v, or equivalently, on the fact that v′ lies in a neighborhood I(v)
of v:

v′ ∈ I(v) . (3.61)

In order to have a fair comparison of these selection rules, we will study their behaviors in the
case of gamma noise and Poisson noise. Note that in these two cases the average is the MLE. In
the sight of the evaluation criteria proposed in Sec. 2.1.3, we suggest evaluating selection rules
by studying the expectation of the resulting estimator:

E[Û ] =

∫∫
I(v)

v′p(v′|u) dv′ p(v|u) dv∫∫
I(v)

p(v′|u) dv′ p(v|u) dv
should be equal to u (3.62)



69

and its percentage of noise reduction:

ε =

∫∫
I(v)

p(v′|u) dv′ p(v|u) dv should be independent of u . (3.63)

Let us �rst present three selection procedures based on an oracle providing the unknown true
value u. We will see that even in this case the design of a selection rule leading to an unbiased
estimate which maintains the same level of noise reduction is not trivial.

Direct extension of the sigma �lter

Given the variance Var[V ] provided by the oracle, the direct extension of Eq. (3.57) for an
arbitrary noise distribution would lead to the following selection rule:

|v′ − v|√
Var[V ]

≤ γ . (3.64)

This rule selects pixel candidates whose noisy values lie in the following neighborhood of v:

I(v) =
[
v − γ

√
Var[V ], v + γ

√
Var[V ]

]
. (3.65)

The case of gamma noise: Assume a gamma distribution with a shape parameter L = 1 (cf.
Sec. 3.1.5). In this case, the variance is given by Var[V ] = u2 resulting in the following selection
rule:

I(v) = [v − γu, v + γu] . (3.66)

The case of Poisson noise: Assume a Poisson distribution. In this case, the variance is given by
Var[V ] = u resulting in the following selection rule:

I(v) =
[
v − γ

√
u, v + γ

√
u
]
. (3.67)

This selection rule seems relevant for symmetric distributions. However, when the distribution
is not symmetric, Figure 3.11 shows (thanks to numerical integrations of Eq. (3.62)) that the
estimation of u is signi�cantly underestimated under gamma and Poisson noise. This rule leads
to an estimator with a stationary relative variance for gamma noise, whereas for Poisson noise,
the percentage of noise reduction varies with u. Note that, the transitions in this percentage are
due to the discrete nature of Poisson noise: the number of integer values inside the interval I(v)
abruptly changes with respect to u.

Intensity driven adaptive neighborhood (IDAN)

The intensity driven adaptive neighborhood (IDAN) �lter is a �ltering method originally
proposed for images damaged by gamma noise (Vasile et al., 2006). Unlike the previous solution,
IDAN does not select pixel values v′ = v(x′) with similar values as v = v(x), but, with similar
values as u = u(x):

|v′ − u|√
Var[V ]

< γ ⇔ I(v) =
[
u− γ

√
Var[V ], u+ γ

√
Var[V ]

]
. (3.68)
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Figure 3.11: (top) The expectation E[Û ] compared to the underlying value u as a function of the
percentage of variance reduction ε. In (a) u = 1 and in (b) u = 10. (bottom) The percentage of
variance reduction ε as a function of the underlying value u. The curves are given in (a) under a
gamma noise and (b) under a Poisson noise. The selection rules are those of the direct extension
of the sigma �lter, the IDAN �lter and the improved Lee's �lter, all using an oracle providing
the unknown value u.

The case of gamma noise: Assume a gamma distribution with a shape parameter L = 1 (cf.
Sec. 3.1.5). In this case, the variance is given by Var[V ] = u2 resulting in the following selection
rule:

I(v) = [u(1− γ), u(1 + γ)] . (3.69)

When γ = 2/
√
L, this selection rule has a probability of false alarm (or, equivalently, a percentage

of noise reduction) of 95%.

The case of Poisson noise: Assume a Poisson distribution. In this case, the variance is given by
Var[V ] = u resulting in the following selection rule:

I(v) =
[
u− γ

√
u, u+ γ

√
u
]
. (3.70)

Surprisingly, as illustrated in Fig. 3.11, the IDAN �lter is also biased towards lower values.
Under gamma noise, this rule leads to an estimator with a stationary relative variance, while
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under Poisson noise, the level of noise reduction varies with u. Again, the transitions in the
percentage of noise reduction in the case of Poisson noise are due to its discrete nature: the
number of integer values inside the interval I(v) abruptly changes with respect to u.

Improved sigma �lter

Recently, Lee et al. (2009) suggested improving their sigma �lter for speckle by calculating
the bound of an interval [uζ1, uζ2] such that the estimate û converges towards the true value u,
i.e.:

E[Û ] =

∫ uζ2

uζ1

v′p(v′|u) dv′∫ uζ2

uζ1

p(v′|u) dv′
= u . (3.71)

Unfortunately, it is not possible to solve Eq. (3.71) directly, i.e., to get a closed-form expression
for ζ1 and ζ2. However, a numerical search technique can be used with an iterative algorithm
to estimate ζ1 and ζ2 for di�erent levels of false-alarms. Note that in the case of the gamma
distribution, the use of the improved sigma �lter to replace the �rst step of the Bayesian �lter
(see Sec. 3.7) has led to appealing results (Zhong et al., 2011).

Under the gamma noise assumption, this method relies on the fact that thanks to the multi-
plicative behavior of gamma distribution, the bounds of the optimal interval are proportional to
the underlying true value u. In the case of Poisson noise, this relation does not hold anymore,
and, one should compute these bounds for all possible values of u and levels of false alarms. For
this reason, we have only implemented the case of the gamma distribution. Fig. 3.11 shows that,
in this case, this improved sigma �lter gives an unbiased estimate with a constant level of noise
reduction.

Of course, in the three last scenarios, we are in a favorable condition where the unknown
noise-free value u is provided by an oracle in order to perform the selection rule. Lee et al.
(2009) suggest replacing the unknown u by the estimate obtained thanks to a 3×3 boxcar �lter.
Vasile et al. (2006) use rather a region growing algorithm driven by the selection rule where u is
substituted by its estimation inside the current region of connected pixels (see also Sec. 2.3.2).
However, the substitution of u by a pre-estimate u can introduce bias or artifacts due to its
possible poor quality. From a statistical point of view, this substitution also prevents us from
properly studying the behavior of such approaches. In the following, we focus only on selection
rules, or equivalently on similarity criteria, that do not depend on the unknown value u or an
estimate u of this parameter.

Misled selection driven by the noisy data

We have studied the previous methods by substituting the unknown value u by its noisy
realization v. The numerical simulations given in Fig. 3.12 show that this substitution introduces
an important bias for all these approaches including the improved sigma �lter. Under gamma
noise, all these approaches still maintain the same level of noise reduction. Under Poisson noise,
the IDAN extension succeeds in maintaining the same level of noise reduction as soon as u > 4.
Note that the value 4 corresponds also to the threshold after which the Anscombe transform
succeeds to stabilize the variance (see Sec. 3.2).
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Figure 3.12: (top) The expectation E[Û ] compared to the underlying value u as a function of
the percentage of variance reduction ε. In (a) u = 1 and in (b) u = 10. (bottom) The percentage
of variance reduction ε as a function of the underlying value u. The curves are given in (a) under
a gamma noise and (b) under a Poisson noise. The selection rules are those of the IDAN �lter,
the improved sigma �lter the bayesian sigma �lter and the GLR based �lter when only noisy
observations are available.

First step selection of the Bayesian NL means

The �rst step of the Bayesian NL means presented in Sec. 3.7 can be viewed as a selection-
based �lter averaging noisy values. In order to compare this approach to other selection rules,
let us simplify it with a binary selection and a selection based on the comparison of noisy pixel
values instead of noisy patches. In other words, we simplify the Bayesian NL means to a �Bayesian
sigma �lter�. This yields a selection rule that selects pixel values according to the negative log-
likelihood − log p(v|v′) rather than the Euclidean distance |v − v′|. The resulting selection rules
for gamma noise and Poisson noise are given as follows:

The case of gamma noise: The application of the Bayesian methodology leads to the following
selection rule (see also Zhong et al., 2011):

−L− 1

L
log v + log v′ +

v

v′
< γ (3.72)
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Note that in this case the corresponding interval I(v) cannot be obtained in closed-form. Con-
trary to all other selection rules that we have mentioned so far, this selection rule is not invariant
up to a multiplicative constant. If v′ is selected when observing v, it does not mean that αv′

will be selected when observing αv. Gamma noise being multiplicative, this phenomenon sounds
counter-intuitive and can explain the bad performance of such a selection rule.

The case of Poisson noise: The application of the Bayesian methodology leads to the following
selection rule:

−v log v′ + v′ + log v! < γ . (3.73)

Note that in this case the corresponding interval I(v) cannot be obtained in closed-form.

The numerical simulations presented in Fig. 3.12 show that this approach su�ers from an im-
portant bias, which is, moreover non-linearly dependent of the underlying value u. Worse, this
rule does not lead to an estimator with a stationary relative variance neither for gamma noise
nor Poisson noise.

3.9 A new selection rule based on the generalized likelihood ratio

With the idea of comparing noisy values directly instead of a noisy value against a (pre-
estimated) noise-free value, we derive in Chap. 4 a similarity criterion grounded on the generalized
likelihood ratio (GLR) and resulting in the following statistical selection rule:

− log
supu p(v|u)p(v′|u)

(supu p(v
′|u)) (supu p(v|u))

< γ . (3.74)

This selection rule aims at selecting candidate noisy values v′ coming from the same population
as the value of interest v. In Chap. 4, we will see that the underlying similarity criterion is
asymptotically a constant false-alarm rate detector, meaning that asymptotically to the dimen-
sion D of the input data, it ensures to maintain the same level of noise reduction whatever the
distribution at hand.

The case of gamma noise: The application of GLR for the case of gamma distributions leads to
the following selection rule:

log

(√
v

v′
+

√
v′

v

)
< γ ⇔ I(v) =

v(η −√η2 − 4

2

)2

, v

(
η +

√
η2 − 4

2

)2
 (3.75)

where η = exp(γ). Unlike Eq. (3.72), this rule is invariant up to a multiplicative constant
a�ecting both v and v′. In the context of non-local �ltering, we have �rst derived Eq. (3.75) in
(Deledalle et al., 2009b) as the Bayesian joint likelihood rather than the GLR (see Chap. 4 for
details). After this publication, this selection rule has been successfully applied for the extension
of the BM3D procedure in (Parrilli et al., 2010) and for the estimation of polarimetric data in
(Chen et al., 2011). Teuber and Lang (2011) have also derived other extensions of our work in
the Bayesian joint likelihood framework.

The case of Poisson noise: The application of GLR for the case of Poisson distributions leads to
the following selection rule:

v log v + v′ log v′ − (v + v′) log

(
v + v′

2

)
< γ . (3.76)
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Figure 3.13: (a) Noisy realizations of a gamma noise corrupting (b) a noise-free image. (c) The
estimates obtained by the four studied selection rules. (d) The expectation E[Û ], (e) the relative
square bias, i.e., (E[Û ] − u)2/u2 and (f) the relative variance, i.e., Var[Û ]/u2 estimated over
100 noisy realizations.
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Note that in this case the corresponding interval I(v) cannot be obtained in closed-form.

Figure 3.12 shows that GLR outperforms all other selection rules driven by the noisy data. The
bias is null for gamma noise while it tends to zero for Poisson noise. The level of variance
reduction is maintained in the case of gamma noise. Under the Poisson noise assumption, this
level is constant as soon as u > 4. It seems that the value 4 is an inherent lower bound of Poisson
noise below which denoising is much more di�cult.

Note that this result is in contradiction with those of (Zhong et al., 2011) where they show
that our �lter is biased towards higher values. We assume that the authors used on an intensity
image our online implementation designed for data in amplitude format. We can indeed prove
that such a misuse of our methodology leads to a result biased towards higher values.

Figure 3.13 compares the performance of the selection-based �lters using the four aforemen-
tioned selection rules on an image corrupted by gamma noise. All of them consist of averaging
the selected noisy pixels in a sliding window according to the given selection rule. The �ltering
parameter γ has been chosen such that all methods reduce the noise variance by 80% in average.
With such a level of noise reduction, as predicted by the study in Fig. 3.12, the IDAN �lter and
the improved Lee �lter are biased towards lower values, the Bayesian sigma �lter is biased towards
higher values and the GLR selection leads to an unbiased result in homogeneous areas. The bias
factor of the IDAN �lter and the improved �lter is the same in the di�erent homogeneous areas
of the image (even if the underlying noise-free values are di�erent). Hence, in the same vein as
the post-processing step performed in the context of the variance stabilization (see Sec. 3.2), a
debiasing post-processing step could be performed by a simple rescaling of the estimated values
by a multiplicative constant. This simple strategy could not be used for the Bayesian sigma
�lter whose bias factor depends non-linearly on the underlying noise-free value. Also predicted
by the study in Fig. 3.12, the IDAN �lter, the improved Lee �lter and the GLR-based �lter have
a stationary relative variance (same level, here 80% of noise reduction in homogeneous areas)
while the Bayesian sigma �lter has clearly a non-stationary relative variance.

3.10 Conclusion

In this chapter we have reviewed many extensions of standard denoising approaches to deal
with non-Gaussian noises. After having illustrated that the simple stabilization approach can
lead to non-optimal solutions, we have showed through several examples that good solutions can
be obtained if the statistics of the noise are taken into account. According to the given �lter, its
extension considering the noise statistics can be more or less simple. For instance, the moving
average and the ROF models extend easily to non-Gaussian noise while suitable unbiased risk
estimates are more complicated to derive when noise departs from Gaussian noise.

Next, we have studied the behavior of selection rules based on the comparisons of punctual
values under non-Gaussian noise. As performance criteria, we studied the bias of the estimates
and the stationarity of their relative variance (the ability to maintain the same level of noise
reduction in homogeneous areas) of di�erent selection rules under the assumption that samples
are i.i.d. We have proven that most proposed solutions are biased especially with Poisson noises.
We have quanti�ed their bias as a function of the level of noise reduction. We have then proposed
a new selection rule based on the GLR test. This solution has an appealing behavior in terms of
both bias and relative variance in homogeneous areas. We have not studied the behavior of such
criteria in non-homogneneous areas. Maximizing the probability of detection of similarity criteria
is essential to avoid bias when samples are no longer i.i.d. We will see in Chap. 4 that GLR also
provides good probabilities of detection. We will explain in Chap. 4 and 5 how selections based



76 3. Image denoising beyond Gaussian noise

on the comparisons of patches and suitable similarity criteria improve the robustness of selection
rules under non-Gaussian noise.
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Chapter 4

Robust patch-similarity under

non-Gaussian noise

Estimated patch-similarity (or patch-dissimilarity) is at the heart of numerous image
processing methods, e.g., region-based methods for image registration (Zitova and Flusser,
2003), matching in stereo-vision (Scharstein and Szeliski, 2002) or block selection for denoising
(Buades et al., 2005). Similarity between pixel values has been de�ned in many di�erent
ways in the literature, depending on the vision problem at hand, the noise model and the
prior knowledge. While the shape and size of patches should adapt to the multi-scale and
anisotropic behaviour of natural images (Dabov et al., 2008; Deledalle et al., 2011c), the
choice of the similarity criterion is rather a problem related to the nature of noise. When com-
paring noisy patches, adaptation to noise distribution is essential for robust similarity evaluation.

A fundamental di�culty when comparing two patches from �real� data is to decide whether
the di�erences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption
leads to the classical de�nition of patch similarity based on the square di�erences of intensities.
For the case where noise departs from the Gaussian distribution, several similarity criteria have
been proposed in the literature of image processing, detection theory and machine learning.

We focus in the following on how to compare noisy values, and how similarity criteria can
be derived from a given noise distribution. The comparison of noise-free patches (design of a
suitable metric in noise-free patches space) and the similarity between a noise-free and a noisy
version of a patch (template matching) are out of the scope of this thesis.

There have been few attempts to de�ne a methodology for the derivation of patch-similarity
criteria adapted to given noise distributions. In the context of image block matching, Alter
et al. (2006) were among the �rst to address this problem. They have shown that their criterion,
based on maximum likelihood estimation, improves over the classical Euclidean-distance. This
criterion has later been re�ned by Matsushita and Lin (2007) to avoid the maximum likelihood
estimation step and to better take into account the shape of the likelihood distributions. This
corresponds also to the approach considered in our previous work on patch-based denoising with
non-Gaussian noise, for multiplicative noise (Deledalle et al., 2009b), impulsive noise (Deledalle
et al., 2009a) and multi-dimensional complex data with circular complex Gaussian likelihood
(Deledalle et al., 2011a).

Matsushita's approach has, however, several limitations: the criterion is hard to derive in
closed-form, it requires de�ning a prior model and its performance depends heavily on the choice
of the representation domain of the observations. The latter limitation has recently been pointed
out by Teuber and Lang (Teuber and Lang, 2011) who showed that the criterion we proposed
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for multiplicative noise in (Deledalle et al., 2009b) leads to di�erent expressions whether it is
derived for squared data or log-transformed data. Depending on the transformation choice, such
criteria can lead to the following paradox: two di�erent values can be more similar than two
identical values. It appears that this result has been known since 1995 in the community of
pattern recognition and information theory. Indeed, Matsushita's criterion can be traced back
to the stochastic equivalence predicate introduced by Yianilos (1995) on metric learning where
the above paradox is referred to as the self-recognition paradox.

At the end of the 90s, Minka (2000) exhibited an equivalence between canonical distance

measures, developed in (Baxter, 1995; Baxter and Bartlett, 1998), and the work of Yianilos,
thanks to a Bayesian formulation based on prior distributions. He referred to his criterion as the
evidence ratio and linked it to mutual information (Minka, 1998). Concurrently, in the context of
machine learning, Seeger (2002) introduced the mutual information kernel as an inner product in
a high dimensional space. As he stated himself, his kernel can be also interpreted as a Bayesian
extension of Yianilos' criterion. Compared to (Yianilos, 1995; Alter et al., 2006; Matsushita
and Lin, 2007), their methodology provides criteria with unchanged expression whatever the
representation of the observations, and, as we show in Sec. 4.2, Seeger's criterion solves the self-
recognition paradox. A common limitation to all these approaches is the introduction of a prior

model on the distribution of the underlying noise-free values.
Recently, we have introduced another criterion used in the case of Poisson noise in (Deledalle

et al., 2010c) which can be viewed as a combination or uni�cation of (Minka, 2000; Seeger, 2002;
Alter et al., 2006). Independently, Chen et al. (2011) proposed a similar de�nition for complex
Wishart distributions. This methodology is prior -less, independent of the representation of
the observations and solves the self-recognition paradox under reasonable assumptions. In this
chapter, we show that it corresponds to the generalized likelihood ratio test.

Our contributions� We address the problem of de�ning patch similarity under non-Gaussian
noise. We �rst propose to express formally patch dissimilarity as a statistical test. In the light
of this test, we describe several similarity criteria proposed in the literature and discuss their
theoretical grounding. The de�nition of patch dissimilarity as a statistical test provides a new
point of view on these criteria driven by many years of research on detection theory.

We consider the properties that a satisfying similarity criterion should ful�ll and discuss which
properties each criterion ful�lls. This provides arguments in favour of well-behaved criteria.

We then turn to a task-based evaluation of the criteria. We compare the ability of each
criterion to discriminate patches from a dictionary learnt on a natural image. The performance
of each criterion is assessed for non-local denoising under Poisson and gamma noises. We illustrate
the use of non-quadratic matching costs in stereo matching when the stereo pair is corrupted by
non-Gaussian noise. In a motion-tracking problem for glacier monitoring, we show the superiority
of a similarity criterion designed for the multiplicative speckle noise that occurs in synthetic
aperture radar (SAR) images.

We advocate that generalized likelihood ratio o�ers a �exible yet powerful way to generalize
patch similarity to non-Gaussian noises. Beyond dissimilarity detection, task-speci�c weighting
of the similarity criterion is required to reach optimal performance. For low to moderate noise
levels, quadratic di�erence computed on stabilized-variance data proves preferable to unweighted
use of other criteria.

Organization of the chapter� In Sec. 4.1, we introduce seven criteria by expressing patch
(dis)similarity as a detection test under a given noise model. Some desirable properties of similar-
ity criteria necessary for comparing patches are then discussed in Sec. 4.2. Task-based evaluation
of the criteria is performed in Sec. 4.3, using four di�erent tasks: patch discrimination, image de-
noising, stereo-matching and motion-tracking under gamma and Poisson noises. The generalized
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likelihood ratio is shown to be both easy to derive and powerful in these diverse applications. We
discuss the importance of adapting patch similarity to noise models in Sec. 4.4 and draw some
conclusions from our comparisons of similarity criteria.

4.1 Patch similarity criteria

In this section, we propose to express the similarity between noisy patches based on the
detection of dissimilarity. Noisy patches are modeled in a probabilistic way in order to take into
account the noise statistics. The notations are given as well as the fundamental concepts of
detection theory. Seven criteria, extracted from the �elds of image processing, detection theory
and machine learning, are studied. Their concepts, origins and motivations are given. Their
theoretical performance and limitations to solve our detection problem are then discussed.

By v we denote a patch, i.e., a collection of N observations (pixel values) extracted in the
same local neighborhood. We do not specify here a shape for the patch but consider that the
values in vector v are ordered so that when two patches v1 and v2 are compared, values with
identical index are in (spatial) correspondence.

We assume that noise is modeled by a given distribution so that a noisy patch v is a realization
of an N -dimensional random vector V characterized by the probability density function (pdf)
p(v|u). The vector of parameters u of that pdf is referred in the following to as the noise-free
patch 1.

Detecting dissimilarity: a pair of (noisy) patches (v1,v2) is considered similar (i.e., in-match)
when v1 and v2 are realizations of independent random variables V1 and V2 following the same
parametric distribution of common parameter u12 (i.e., the underlying noise-free patch). The
evaluation of the similarity between noisy patches can then be rephrased as the following hy-
pothesis test (i.e., a parameter test):

H0 : u1 = u2 ≡ u12 (null hypothesis), (4.1)

H1 : u1 6= u2 (alternative hypothesis). (4.2)

A similarity criterion CV1,V2 (written C in short) de�nes a mapping from a pair of noisy patches
(v1,v2) to a real value. The larger the value of C (x1,x2), the more similar x1 and x2 are
considered to be. For a given similarity criterion C , the probability of false alarm (to decide H1

under H0) and the probability of detection (to decide H1 under H1) are de�ned as:

PC
FA(τ) = P(C (V1,V2) < τ |u12,H0), (4.3)

PC
D (τ) = P(C (V1,V2) < τ |u1,u2,H1). (4.4)

where τ is a real threshold value. Note that the inequality symbols are reversed compared to
usual de�nitions since we consider detecting dissimilarity based on similarity measure C .

According to the Neyman-Pearson theorem, the optimal criterion, i.e., the criterion which
maximizes PD for any given PFA, is the likelihood ratio test (see Kay, 1998):

L(v1,v2) =
p(v1,v2|u12,H0)

p(v1,v2|u1,u2,H1)
. (4.5)

The application of the likelihood ratio test requires the knowledge of the parameters u1, u2 and
u12 (the noise-free patches) which are, in practice, unavailable. The problem is thus a composite

hypothesis problem.

1. the vector of parameters u may have a di�erent number of dimensions than noisy patches v
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Kendall and Stuart (1979) showed that there is no uniformly most powerful (UMP) detector
for such composite hypothesis problem, i.e, any criterion C can be defeated by another criterion
C ′ at a speci�c false alarm rate:

∀C , ∃C ′, τ, τ ′ such that PC
FA(τ) = PC ′

FA(τ ′) and PC
D (τ) < PC ′

D (τ ′) . (4.6)

The research of a universal similarity criterion is then futile. We review in the following seven
similarity criteria in the light of dissimilarity detection. We then turn to task-based evaluation
of the criteria on natural images.

4.1.1 Euclidean distance and Gaussian kernel

The usual way to measure the similarity between two noisy patches is to consider their
Euclidean distance:

D(v1,v2) = ‖v1 − v2‖22. (4.7)

D is minimal when the two patches v1 and v2 are identical. It is common to use an exponential
kernel of bandwidth h > 0, leading to the following similarity criterion:

G(v1,v2) = exp
(
− 1
h‖v1 − v2‖22

)
, (4.8)

or if noise is correlated with covariance matrix Γ, by substituting D with the Mahalanobis
distance:

G(v1,v2) = exp
[
− 1
h(v1 − v2)tΓ−1(v1 − v2)

]
. (4.9)

Under the assumption of Gaussian noise, all the similarity criteria we consider in the following
boil down to this same expression. There is then more than one way to justify or interpret the
expression of the similarity criterion G in that case. For this reason and its link with Gaussian
kernels, G will be referred as the Gaussian kernel.

Under Gaussian noise assumption, the distribution 2 of G can be used to choose a threshold
τ with a given PFA value. It is a constant false alarm rate detector (CFAR), which means that
a constant PFA can be maintained with a given τ independently of the underlying noise-free
patches.

The performance of this criterion however drops when noise departs from a Gaussian distri-
bution. While parameter h in Eq. (4.8) could be set globally from the noise variance, di�culties
arise when the variance is signal-dependent, and therefore varies between and inside patches.
A classical approach to extend the applicability of Euclidean distance to some non-Gaussian
noise distributions is to stabilize the variance with a suitable mapping of the input noisy data
(see Sec. 3.2). This approach has been used for patch selection (i.e., block-matching) in many
denoising algorithms (e.g. Mäkitalo et al., 2010; Boulanger et al., 2010; Mäkitalo and Foi, 2011).

Given an invertible application s which stabilizes the variance for a speci�c noise pdf, the
similarity is computed from the transformed patches:

S(v1,v2) = G(s(v1), s(v2)). (4.10)

An important limitation lies in the non-linear distortion of noise-free patches introduced by s.
For instance, in the homomorphic approach, the logarithm transforms the contrast of noise-free
patches; the performance is a�ected accordingly. A more fundamental limit is the nonexistence
of a variance stabilizing transform s for some distributions. See Sec. 3.2 for a discussion on the
limits of the stabilization-transform approaches.

2. log(G) follows a Chi square distribution
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4.1.2 Likelihood ratio extensions

Motivated by optimality guarantees of the likelihood ratio test L given in Eq. (4.5), similarity
criteria can be de�ned from statistical tests designed for composite hypothesis problems.

The Bayesian likelihood ratio LB considers noise-free patches as realizations of random vectors
with known prior pdf:

LB(v1,v2) =
p(v1,v2|H0)

p(v1,v2|H1)
=

∫
p(v1|u12 =t)p(v2|u12 =t)p(u12 =t) dt∫

p(v1|u1 =t1)p(u1 =t1)dt1
∫
p(v2|u2 =t2)p(u2 =t2)dt2

. (4.11)

With perfect knowledge of prior pdf p(u1), p(u2) and p(u12), Eq. (4.11) leads to an optimal
Neyman-Pearson detector (see Kay, 1998).

This criterion has been used in the context of classi�cation: Minka (2000) exhibits a relation-
ship between LB and the canonical distance measure minimizing errors in nearest neighborhood
classi�ers. He also relates LB to mutual information: the more additional knowledge is brought
by v2 compared to the observation of v1 alone, the more dissimilar the underlying parameters
are (Minka, 1998).

Despite its theoretical performance, this approach su�ers from two drawbacks in practice.
First, it requires computation of integrals which, depending on the distributions, may not be
known in closed-form and therefore are time-consuming to evaluate numerically. Second, it
requires knowledge of the prior pdf. In the absence of a statistical model of noise-free patches, a
non-informative prior can be used. Je�reys' prior is independent upon the choice of the noise-
free patch representation (e.g., testing that two gamma random values share identical standard
deviations u12 = σ or identical variances u12 = σ2 leads to the same expression of LB when
Je�reys' prior are used).

Rather than modeling noise-free patches as random variables, the generalized likelihood ratio
LG replaces u1, u2 and u12 in Eq. (4.5) by their maximum likelihood estimates (MLE) under
each hypothesis:

LG(v1,v2) =
supt p(v1,v2|u12 = t,H0)

supt1,t2 p(v1,v2|u1 = t1,u2 = t2,H1)
=
p(v1|u1 = t̂12)p(v2|u2 = t̂12)

p(v1|u1 = t̂1)p(v2|u2 = t̂2)
. (4.12)

For low levels of noise, the MLE is very close to the true value and LG approaches L. As
a consequence, the distribution of LG is asymptotically known for low noise levels. It results
that PFA values associated to any given threshold τ are known: LG is asymptotically CFAR
(asymptotically to vanishing levels of noise). LG is also asymptotically UMP among all invariant
tests (see Sec. 4.2 and Lehmann, 1959).

This criterion has been introduced in Chap. 3 in the context of selection-based �ltering. It
appeared that it leads to an unbiased estimator with stationary relative variance in homogeneous
areas. Stability is a behaviour directly related to the CFAR property of GLR. Now, with the
asymptotical UMP property of GLR, we can also claim that this estimator performs the best
bias-variance trade-o� for any given level of noise reduction.

Compared to the Bayesian likelihood ratio LB, the generalized likelihood ratio LG is easier to
implement, since it requires only the computation of the MLE (generally known in closed-form,
or estimated in few iterations), and does not require (nor rely on) the de�nition of a prior model.

The main drawback of LG lies in the lack of theoretical guarantees on how it behaves in low
signal-to-noise ratio (SNR) conditions (i.e., for too small patches according to the noise level).
It is known that, for low SNR and speci�c applications, LG can be defeated by other invariant
detectors (Kim and Hero III, 2001). This limitation is due to its dependency on MLE which
behaves poorly for low SNR (e.g., the LG that two random Gaussian vectors share an identical
covariance matrix u12 is unde�ned since MLE of u1 from v1 only would not be positive de�nite).
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Max. self sim. Eq. self sim. Id. of indiscernible Invariance Asym. CFAR Asym. UMPI
QB × × × × × ×
QG × × × × × ×
LB × × ×

√
× ×

LG
√ √ √ (†) √ √ √

KB
√ √ √ (‡) √

× ×
G

√ √ √
× × ×

S
√ (?) √ (?) √ (?) √ (?) √ (?) ×

Table 4.1: Properties of the di�erent studied criteria. Legend: (
√
) the criterion holds, (×) the

criterion does not hold. Holds only if the observations are statistically identi�able (†) through
their MLE or (‡) through their likelihood (such assumptions are frequently true). (?) Holds only
for an exact variance stabilizing transform s(·) (such an assumption is usually wrong). A sketch
of the proofs of all these properties is given in Appendix A.

4.1.3 Joint likelihood criteria

Other criteria use the joint likelihood of observations under H0 to evaluate similarities be-
tween noisy data. This leads to the Bayesian joint likelihood criteria (Yianilos, 1995; Seeger,
2002; Matsushita and Lin, 2007; Deledalle et al., 2009b):

QB(v1,v2) = p(v1,v2|H0) =

∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t) dt (4.13)

or, following the simpli�cation of the generalized likelihood ratio, the maximum joint likelihood
(Alter et al., 2006):

QG(v1,v2) = sup
t
p(v1,v2|u12 = t,H0) = p(v1|u1 = t̂12)p(v2|u2 = t̂12) . (4.14)

Such criteria have been designed to measure the likelihood of sharing a common parameter.
However, the likelihood provides relative information compared to the likelihoods of other hy-
potheses. The evaluation of the joint likelihood under H0 cannot provide information if it is not
confronted against the alternative hypothesis H1. This leads to non-invariance issues and to the
violation of the maximal self-similarity property (Property 2, Sec. 4.2) as pointed out recently in
(Teuber and Lang, 2011). Yianilos (1995) already referred to this problem as the self-recognition
paradox: �there are queries which do not recognize themselves, i.e., even if the query is in the
database, some other element may be preferred.�.

However, QB o�ers a useful property: it corresponds to an inner product in the space of
functions u 7→ R, the feature of v being (p(v|u = t))t (Seeger, 2002). The �mutual information�
kernel follows this interpretation.

4.1.4 Mutual information kernel

Given the Bayesian joint distribution QB(v1,v2), Seeger (2002) de�nes a covariance kernel
related to the sample mutual information between v1 and v2:

KB(v1,v2) =
QB(v1,v2)√

QB(v1,v1)QB(v2,v2)
. (4.15)

Since QB can be seen as an inner product in the feature space, KB corresponds to a cosine in

the feature space KB(v1,v2) =
〈v1|v2〉
‖v1‖‖v2‖

. Seeger shows that it is a kernel covariance matrix

and coins it the mutual information kernel. Algorithms can be adapted to the noise pdf using
the so-called kernel tricks, i.e., by considering higher dimensional space while never mapping
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the data in practice. This leads for instance to non-linear support vector machines or non-linear
principal component analysis. Note that a prior -less extension using MLE would lead to the
generalized likelihood ratio LG. Compared to LG, the main limitation of the mutual information
kernel is its dependency on the prior pdf and the lack of asymptotic results.

Among criteria involving probability densities, LB, LG and KB have no dimension thanks to
their de�nitions as ratios of likelihoods (in terms of dimensional analysis), which is not the case
for QB and QG. We show in Sec. 4.2 that similarity criteria that are not adimensional lack some
important properties. For this reason, we will refer to LB, LG and KB as normalized criteria
and QB and QG as unnormalized criteria.

4.2 Desirable properties for similarity criteria

Beyond the theoretical grounding of each of the criteria described in the previous section,
there are some desirable properties that are necessary to compare together the given similarity
criteria.

It is natural to require that the similarity between two patches does not depend on the order
in which the patches are compared:

Property 1 (Symmetry). The similarity between patch v1 and patch v2 is equal to the similarity

between patch v2 and patch v1:

C (v1,v2) = C (v2,v1).

All previously considered criteria are symmetrical.

For some criteria, it may occur that a distinct pair (v1,v2) is more similar than the pair
formed by repeating observation v1: (v1,v1). This phenomenon is called the self-recognition

paradox (Yianilos, 1995). It is desirable to ask for maximal self-similarity:

Property 2 (Maximal self-similarity). No distinct pair (v1,v2) can be more similar than the

observed patch v1 is similar to itself:

∀v1,v2, C (v1,v2) ≤ C (v1,v1).

Joint likelihood criteria do not verify property 2:
Consider a noise distribution with a variance depending on the signal level, like gamma distribu-
tion that models speckle noise. For the pixel-based comparison, we have (Tab. 4.2 with L = 1):
QB(v1, v2) = (v1 + v2)−2. Choose observation v1 to be v1 = 2v2. Since QB(v1, v2) = (3 v2)−2 is
larger than QB(v1, v1) = (4 v2)−2, property 2 is violated. �

Most criteria with a normalization like generalized likelihood ratio LG and mutual information
kernel KB ful�ll property 2 (see Tab. 4.1).

Property 2 does not guarantee that a pair (v1,v2) of distinct patches is always less similar
than a pair formed by the repetition of a third observation (v3,v3). A supplementary property
is needed:

Property 3 (Equal self-similarities). Two pairs of identical patches always have equal similarity:

∀v1,v2, C (v1,v1) = C (v2,v2).
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Criteria LG and KB verify both property 2 and 3 and their self-similarities are always equal
to one (see Tab. 4.1).

Additionally, one may ask that the criterion is maximal only in case of strict patch equality,
and for every comparison between identical patches:

Property 4 (Identity of the indiscernibles). The similarity reaches its maximum if and only if

the compared patches are identical:

∀v1,v2, C (v1,v2) = max
v

C (v,v) iif v1 = v2.

Note that this condition involves the noisy patches themselves (not the noiseless patches u1

and u2).

For likelihood based criteria, it is clear that property 4 cannot be veri�ed if two di�erent observa-
tions lead to the same likelihoods. We need then to require that the observations be statistically
identi�able through their likelihood:

∀u, p(v1|u) = p(v2|u) iif v1 =v2 . (4.16)

Provided that observations are statistically identi�able through their likelihood, property 4 is
ful�lled by the mutual information kernel KB. For LG we require that the observations are
statistically identi�able through their MLE, i.e., that the likelihood has a unique maximum and:

arg max
u

p(v1|u)=arg max
u

p(v2|u) iif v1 =v2 . (4.17)

The statistical answer of a similarity criterion should not depend on the choice of a speci�c
noisy patch representation:

Property 5 (Invariance). Let g be an invertible and di�erentiable function mapping random

vectors V1 and V2 to random vectors V ′1 = g(V1) and V ′2 = g(V2). Let CV1,V2 and CV ′1 ,V ′2 be,

respectively, the similarity criteria derived from the family of parametric distributions followed

by V1 and V2 (resp. V ′1 and V ′2 ). An invariant similarity criterion leads to the same similarity

whether it is evaluated with CV1,V2 on (v1,v2) or with CV ′1 ,V ′2 on (g(v1), g(v2)):

∀v1,v2, CV1,V2(v1,v2) = CV ′1 ,V ′2 (g(v1), g(v2)).

Due to their unnormalization, joint likelihood criteria QB and QG typically do not have the
invariance property. Transforming the patches by, for example, taking their squared value leads
to modi�ed probability densities with di�erent dimensions. The change of variables leads to a
similarity criterion with a di�erent scaling from the original one. Normalized criteria, de�ned as
a ratio of probability densities, are the only ones to ful�l property 5.

Deciding for dissimilarity is done by thresholding the similarity: patches v1 and v2 are
considered dissimilar if C (v1,v2) < τ . The associated probability of false alarm PC

FA is the
probability that C (v1,v2) < τ although u1 = u2 (= u12), i.e., that the detected dissimilarity is
only due to noise.

Property 6 (Constant false alarm rate). For all threshold τ , the probability of false alarm PC
FA

of similarity criterion C is independent on the noise-free patch u12:

∀τ, PC
FA(τ) does not depend on u12.
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name pdf QB QG LB LG KB S G

Gaussian e
− (x−u)2

2σ2√
2πσ

e−(v1−v2)2

Gamma LLxL−1e
−Lx
u

Γ(L)uL
1

v1v2

(
v1v2

(v1+v2)2

)L
v1v2

(v1+v2)2
e
−
(
log

v1
v2

)2

Poisson uxe−u

x!
Γ′(v1+v2)

2v1+v2v1!v2!

(v1+v2)v1+v2

(2e)v1+v2v1!v2!

Γ′(v1+v2)

2v1+v2Γ′(v1)Γ′(v2)

(v1+v2)v1+v2

2v1+v2v
v1
1 v

v2
2

Γ′(v1+v2)√
Γ′(2v1)Γ′(2v2)

e−(
√
v1+a−

√
v2+a)2

Table 4.2: Instances of the seven criteria for Gaussian, gamma and Poisson noise (parameters σ
and L are �xed and known). All Bayesian criteria are obtained with Je�reys' priors (resp. 1/σ,√
L/u,

√
1/u). All constant terms which do not a�ect the detection performance are omitted.

For clarity reason, we de�ne Γ′(x) = Γ(x+ 0.5) and the Anscombe constant a = 3/8.

The Gaussian kernel G is an example of a criterion which does not guarantee property 6. For
instance in case of two Poisson noisy values v1 and v2, E

[
‖v1 − v2‖22 |H0

]
= 2u12, hence, the

distribution of P GFA is clearly dependent on u12. Due to the e�ciency of MLE with respect to
the noise level, LG is asymptotically CFAR (see Kay, 1998).

Based on the properties presented so-far, a proper similarity criterion can be selected. How-
ever, it is also important to compare the relative performance of similarity criteria. While we
mentioned in Sec. 4.1 that there is no UMP detector for the considered composite hypothesis

problem, the optimality can be studied on a subset of similarity criteria.

Property 7 (Uniformly Most Powerful Invariant). A similarity criterion C is said to be the

uniformly most powerful invariant (UMPI) if it is an invariant criterion (property 5) and its

probability of detection is larger than that of all other criteria for any given false-alarm rate:

∀C ′, τ, τ ′ PC
FA(τ) = PC ′

FA(τ ′)⇒ PC
D (τ) ≥ PC ′

D (τ ′) . (4.18)

Asymptotically to the noise level, LG is UMPI (see Lehmann, 1959). All other invariant
criteria are then asymptotically defeated by LG.

Table 4.1 summarizes the properties of each of the seven considered criteria. The unnormal-
ized criteria QB and QG ful�l none of the properties while the generalized likelihood ratio LG
ful�l all of them. Note that some properties require that observations are statistically identi�-
able. Such assumptions are generally true, except, e.g., for multi-modal distributions or when
two di�erent observations lead to the same likelihood function (e.g., a Gaussian distribution with
zero mean and unknown variance leads to the same likelihood function for the observation of v
or −v). Finally, note that S veri�es most of these properties when the function s exists, which
is generally not the case, e.g., there is no exact variance stabilization for the Poisson distribution
or the Cauchy distribution.

4.3 Evaluation of similarity criteria

All criteria have been derived 3 in the case of gamma or Poisson noise (Tab. 4.2). In prac-
tice, Bayesian criteria are more di�cult to obtain due to integrations over the noise-free patch
space. While all criteria are equivalent for Gaussian noise, there are four di�erent expressions for
gamma noise and they are all di�erent for Poisson noise. The distinction seems to emerge with
the �complexity� induced by the noise distribution (by considering that gamma noise is more
challenging than Gaussian noise, and that Poisson noise is even more challenging).

3. the complete derivations are available in Appendix A
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Figure 4.1: (left) Patch dictionary. (center) ROC curve obtained under gamma noise and (right)
ROC curve obtained under Poisson noise. In both experiments, the SNR over the whole dictio-
nary is about 1 dB.

4.3.1 Performance for patch discrimination

We evaluate the relative performance of the seven aforementioned criteria on a dictionary
composed of 196 noise-free patches of size N=8×8. The noise-free patches have been obtained
using the k-means on patches extracted from the classical 512×512 Barbara image. The noisy
patches are noisy realizations of the noise-free patches under gamma or Poisson noise with an
overall SNR of about 1 dB. All criteria are evaluated for all pairs of noisy patches. The process
is repeated 200 times with independent noise realizations.

Numerically, the performance of the similarity criteria is given in term of their receiver oper-
ating characteristic (ROC) curve, i.e., the curve of PD with respect to PFA. Results are given in
Fig. 4.1. For small PFA, the generalized likelihood ratio (GLR) is the most powerful followed by
the mutual information kernel, the Bayesian likelihood ratio and the variance stabilization crite-
ria. Other criteria behave poorly for such a low SNR. Such behaviors agree with the theoretical
predictions. The poor performance of the joint likelihood based criteria (worse than a detector
that would not make use of the data) can arise from their non-invariance and the induced self-
similarity paradox. The low performance of G is certainly due to its non-adaptivity to either the
target noise or the target noise variance. The variance stabilization criteria are always defeated
by GLR, due to the distortions of the noise-free patches as well as the consideration of the noise
variance only, instead of the full noise pdf. The worse performance of Bayesian criteria compared
to criteria that use MLE may be due to the low quality of the prior pdf (non-informative Je�reys'
prior have been used).

4.3.2 Application to image denoising

As we have seen in Chap. 2, patch correspondence is at the heart of most recent image
denoising approaches since the introduction of the NL means (Buades et al., 2005; Dabov et al.,
2007; Mairal et al., 2009). Most attempts to adapt such approaches for non-Gaussian noise relies
on variance stabilization (e.g. Mäkitalo et al., 2010; Boulanger et al., 2010; Mäkitalo and Foi,
2011). Few authors try to extend the NL means by directly considering non-Gaussian noise
distributions (Kervrann et al., 2007; Deledalle et al., 2009b, see also Sec. 3).

While local �lters lead to biases and resolution loss, non-local techniques are known to ef-
�ciently reduce noise and preserve structures. Instead of combining neighboring pixels, the
non-local means average similar pixels. Let v(x) be the observed noisy patch at pixel x ∈ Ω
and u(x) its underlying noise-free version. The NL means �lter de�nes the estimate û(x) as a



87

Noisy QG LG S G
Gamma

S
tr
o
n
g
n
o
is
e
le
v
el
s

barbara 5.86 20.25 20.97 20.90 20.33
boat 5.32 20.90 21.47 21.42 20.97
bridge 6.09 18.44 19.21 19.16 18.49
cameraman 5.54 18.56 20.88 20.87 7.48
couple 5.98 20.93 21.54 21.51 20.99
�ngerprint 4.60 15.34 16.30 16.22 15.57
hill 6.35 20.18 20.68 20.61 20.20
house 4.84 20.54 21.20 21.13 20.64
lena 5.64 22.14 22.89 22.83 22.23
man 6.47 21.56 22.16 22.10 21.64
mandril 5.52 20.22 20.44 20.41 20.27
peppers 5.56 18.59 20.44 20.43 18.65

M
ed
iu
m

n
o
is
e
le
v
el
s

barbara 14.34 22.61 25.66 25.67 23.83
boat 13.78 23.40 25.50 25.50 24.06
bridge 14.58 20.17 22.36 22.36 21.01
cameraman 13.96 23.88 25.04 25.01 14.93
couple 14.37 23.19 25.08 25.06 23.68
�ngerprint 13.00 18.37 21.88 21.89 20.27
hill 14.80 21.46 24.24 24.24 22.47
house 13.35 22.52 26.33 26.34 24.36
lena 14.09 24.61 27.71 27.72 25.61
man 14.88 23.49 26.00 26.01 24.50
mandril 14.02 21.61 23.20 23.20 22.22
peppers 14.02 22.95 25.54 25.51 23.41

Noisy QB QG LB LG KB S G
Poisson

5.68 20.25 20.25 20.52 20.68 20.65 20.59 20.42
5.23 20.90 20.90 21.11 21.21 21.19 21.15 21.04
5.83 18.36 18.36 18.65 18.81 18.78 18.72 18.53
5.59 18.61 18.61 19.17 19.56 19.49 19.37 19.01
5.55 20.91 20.91 21.11 21.20 21.18 21.15 21.04
4.87 15.48 15.48 16.18 16.41 16.38 16.30 15.96
5.88 20.13 20.13 20.41 20.54 20.52 20.47 20.31
4.94 20.48 20.49 20.81 20.97 20.94 20.88 20.67
5.44 22.14 22.15 22.44 22.59 22.56 22.49 22.30
5.89 21.55 21.55 21.77 21.89 21.87 21.82 21.69
5.31 20.23 20.23 20.34 20.38 20.37 20.36 20.30
5.46 18.55 18.56 19.09 19.46 19.38 19.25 18.88
14.43 23.59 23.57 25.43 25.40 25.41 25.44 24.79
13.99 24.00 23.98 25.28 25.26 25.27 25.29 24.74
14.58 21.06 21.04 22.30 22.29 22.30 22.31 21.84
14.33 23.63 23.57 25.01 25.02 25.02 25.03 24.22
14.31 23.54 23.52 24.88 24.85 24.86 24.88 24.29
13.62 20.59 20.58 22.03 21.99 22.00 22.04 21.60
14.62 22.49 22.48 23.98 23.96 23.97 23.98 23.36
13.73 24.36 24.34 26.58 26.57 26.57 26.58 25.76
14.20 25.57 25.55 27.40 27.37 27.38 27.40 26.58
14.64 24.08 24.06 25.66 25.65 25.66 25.67 25.09
14.03 22.18 22.17 23.03 23.01 23.02 23.04 22.68
14.20 23.38 23.35 25.45 25.41 25.43 25.45 24.41

Table 4.3: PSNR values obtained by the NL means denoising using di�erent similarity criteria on
13 standard images corrupted by gamma noise and Poisson noise with (top) strong noise levels
and (bottom) medium noise levels.

weighted average:

û(x) =

∑
x C (v(x),v(x′))1/hv(x′)∑

x C (v(x),v(x′))1/h
(4.19)

where x′ is a pixel index located in a search window centered on x, and h > 0 is a �ltering
parameter. The similarity criterion C (v(x),v(x′)), through the power function (.)1/h, plays
the role of a data-driven weight depending on the similarity between two patches centered
around pixels of indices x and x′ respectively. While patch-similarity is originally de�ned by
the Gaussian kernel G, we suggest comparing the denoising performance of the NL means when
substituting the similarity criterion by one of the seven aforementioned criteria.

We evaluate �rst the denoising performance of the NL means obtained using each of the 7
similarity criteria on 13 standard images synthetically damaged by gamma or Poisson noise. The
NL means is used with a 21× 21 search window and 7× 7 patches. The �ltering parameter h as
well as the central weight C (v(x),v(x)) should be selected from the statistics of the similarity
criterion C under H0 (Kervrann and Boulanger, 2008; Salmon, 2010). Unfortunately, such
solutions cannot be investigated here since some of the studied criteria are not CFAR: the
statistics vary locally with respect to u(x). The central weight should rather be replaced with
the maximum of the weights in the search window, following the solution proposed in (Buades
et al., 2009). Here, since our motivation is to compare patch similarity criteria, we have decided
to use the true noise-free image u to select the best value of h for each criteria. In practice,
we apply a gradient descent on h to optimize the mean square error ‖u − û‖22. This allows us
to compare similarity criteria in the most favorable case when each denoiser reaches its optimal
performance.

Denoising performance is given in terms of the peak signal to noise ratio (PSNR) de�ned in
Sec. 2.1.3. Table 4.3 displays the obtained PSNR values. Two levels of noise are considered, the
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(a) Noisy image (b) Gaussian kernel (c) Generalized likelihood ratio

Figure 4.2: Results of the NL means on (a) noisy images using (b) the Gaussian kernel (G) and
(c) the generalized likelihood ratio (LG). The images are (top) a SAR image of two buildings
su�ering from gamma noise ( c©ONERA, CNES) and (bottom) an X-ray image of a supernova
explosion in the Milky Way of the supernova remnant G1.9+0.3 su�ering from Poisson noise
(with a colormap varying smoothly from black through shades of red, orange, and yellow, to
white) (image courtesy to Chandra X-ray Observatory � data identi�er: ADS/ Sa.CXO]Contrib/
ChandraDeepField).

�rst one, very strong, leads to a noisy image with a PSNR around 5dB, and the second one,
medium, provides a PSNR around 14dB. For strong noise levels, the generalized likelihood ratio
LG outperforms all other similarity criteria while for medium noise levels, the criterion based
on variance stabilization works generally better. In medium/low level of noise, the variance
stabilization based criterion S can outperform LG. When the noise level is low, the problem
of weight de�nition is less a problem of detecting identical patches under noise than a matter
of selecting patches with �close� noise-free patches (the noise component becomes negligible).
Compared to LG, the properties provided by Euclidean distances can then be preferable in this
context, since it de�nes a reasonable metric on the space of noiseless patches. A generalized
likelihood ratio testing that u1 is close to u2 could be more adapted to the denoising problem,
i.e.: H0 : ‖u1 − u2‖22 < ε, where ε is a real positive value. This di�erent de�nition of similarity
could be the topic for future work.

Figure 4.2 provides a visual comparison of the use of the Gaussian kernel G and the generalized
likelihood ratio LG on real data. The �rst one is a synthetic aperture radar (SAR) image of two
buildings. SAR data su�ers from speckle noise modeled by a gamma distribution. The second one
is an X-ray image of a supernova explosion in the Milky Way of the supernova remnant G1.9+0.3.
Due to low-light conditions, such images su�er from Poisson noise. Without knowledge of u,
the methodology of Van De Ville and Kocher (2009) has been used to automatically select the
value of h that maximizes an estimate of the mean square error. We will propose in Chap. 5 an
extension of this approach for Poisson noise (initially proposed in (Deledalle et al., 2010c)) in the



89

(a) Noisy image

G
am

m
a

(b) Gaussian kernel G (1.78) (c) Gen. lik. ratio LG (1.34)

(d) Ground truth

P
oi
ss
on

(e) Gaussian kernel G (1.50) (f) Gen. lik. ratio LG (1.37)

Figure 4.3: Results of a stereo vision approach on a standard pair of noisy stereo views. (a)
One of the noisy input images, (d) the ground truth (i.e. the target disparity map) and the
estimated disparity maps obtained on the pair damaged by (b-c) gamma and (e-f) Poisson noise.
The method is based on energy minimization using either (b,e) the Gaussian kernel G or (c,f)
the generalized likelihood ratio LG. The minimum mean square error (RMSE) according to the
regularization parameter is given in brackets.

same vein following (Hudson, 1978). In both cases G blurs dark areas and leaves noise in bright
areas, GLR allows to reduce the noise level everywhere in the image with a similar amount of
smoothing.

Note that the results provided here could be improved by re�ning weights using the similarity
between pre-estimated patches as proposed in Chap. 5. Chapter 6 gives a deep analysis for the
spetial case of the non-local denoising for (multi-variate complex) SAR data. Our motivation
here is only to provide a fair comparison between similarity criteria, and therefore we have
chosen not to re�ne weights to avoid interferences with pre-estimation procedures. Note that
the performance of GLR for denoising SAR images has also been demonstrated in collaborative
�ltering (Parrilli et al., 2010).

4.3.3 Application to stereo-vision

Stereo-vision is one of the tasks in computer vision which extensively uses patches. Given
two images of the same scene, the purpose is to estimate the depth of the image parts. Using
epipolar geometry, each pixel x ∈ Ω of one image has a corresponding pixel x′ at the same line in
the other image (omitting the occlusion issues). The horizontal shift between these two pixels is
called the disparity. The initial problem is then reduced to the estimation of a disparity map d
(see Hartley and Zisserman, 2000). Given the disparity map, each patch v1(x) should be similar

to the patch v2(x+ d(x)
−→
h ) and

−→
h is a unit vector directed on the horizontal orientation.

The de�nition of patch similarity is then central to stereo-vision. Note however that two
patches v1(x) and v2(x′) can be similar while p and q are not corresponding pixels (e.g. in
homogeneous regions or on repetitive patterns). As a consequence, many works introduce a
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prior knowledge on the solution to regularize the disparity map. Boykov et al. (1998) suggest
that disparity maps are piece-wise constant. An estimate of the disparity map can then be
obtained by solving the following optimization problem:

d̂ = arg max
d

∑
x

− log C (v1(x),v2(x+ d(x)
−→
h ))− λ

∑
x∼x′

δ(d(x)− d(x′)). (4.20)

where x ∼ x′ denotes two neighboring pixels, δ(.) is the Dirac delta function and the Lagrangian
multiplier λ > 0 acts as a regularization parameter. Thanks to the patch similarity criteria C ,
the �rst term measures the data �delity of the solution. The second term assesses the regularity
of the solution: it corresponds to the Potts model which penalizes transitions in d. Satisfying
solutions of such discrete optimization problems can be iteratively obtained by graph cuts with
the α-β swap strategy described in (Boykov et al., 2001).

While the patch-similarity is usually de�ned by the Gaussian kernel G, or equivalently by
the Euclidean distance usually referred to as the sum of square di�erences (SSD), we suggest
comparing stereo-vision performance of the model of Eq. (4.20) when the similarity criterion is
replaced by the generalized likelihood ratio LG.

Figure 4.3 shows the visual comparison on a standard pair of stereo views damaged by gamma
or Poisson noise. In both cases, the use of SSD leads to a disparity map over-regularized in dark
areas and under-regularized in bright areas: there is no global regularization parameter λ o�ering
the same amount of smoothing everywhere in the image. Since GLR is CFAR, we get the same
level of regularization both in dark and bright areas for a global regularization parameter λ. As
a numerical performance criterion, we have also computed the root mean square error (RMSE),
de�ned by

RMSE(d̂,d) =

√
1

|Ω|
‖d− d̂‖22 (4.21)

for the results obtained by the use of both similarity criteria. For the same reason as with the
image denoising task, we have decided to use the true disparity map d to select the best possible
value of λ for each criterion. In practice, an exhaustive research has been done. This allows
comparing similarity criteria in the most favorable case when each estimator reaches its optimal
performance. The minimum root mean square error is in favour of GLR.

4.3.4 Application to motion tracking

Motion tracking, object tracking or optical �ow estimation are classical problems involving the
matching of image parts (e.g. Horn and Schunck, 1981; Lowe, 1992; Comaniciu et al., 2003). Here,
we focus on the velocity estimation problem of a �owing Alpine glacier using a pair of synthetic
aperture radar (SAR) images. SAR images provide scattering information which can be used
under any weather conditions for glacier monitoring. Such images present a multiplicative speckle
noise commonly modeled by gamma distributions (Goodman, 1976). The use of a similarity
criterion robust to the statistics of the SAR intensity is then essential for the estimation of the
displacement �eld.

Given two registered images of the same glacier sensed at di�erent dates, the purpose is to
estimate a displacement �eld characterizing at each position the local velocity of the glacier.
Assuming that the movement is collinear to the glacier orientation, we only have to estimate
the magnitude of the velocity. This quantity can be estimated by researching the patches of one
acquisition which are similar to those present in the other acquisition along the glacier movement
direction.
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(a) Noisy image (b) Gaussian kernel G (c) Generalized lik. ratio LG

Figure 4.4: Results of motion tracking on a pair of SAR images of the glacier of Argentière
(acquired by TerraSAR-X c©DLR). (a) One of the noisy input images and (b-c) the estimated
magnitudes of the vector �eld. The method is based on energy minimization using either (b)
the Gaussian kernel G or (c) the generalized likelihood ratio LG. The estimated speeds have an
average over the surface of 12.27 cm/day and a maximum of 41.12 cm/day in the breaking slope
(called �serac falls�) for the estimation with the generalized likelihood ratio compared to 20.7
cm/day with a maximum of 67.2 cm/day for the Gaussian kernel G.

For the same reasons as in the stereo-vision problem, the solution has to be regularized.
Since glacier movement is assumed to be smooth, we propose here to use the total-variation
(TV) model 4 whose penalization depends on the height of the transitions. This leads to the
following optimization problem:

d̂ = arg max
d

∑
x

− log C ( v1(x), v2(x+ d(x)−→o ) )

+λ
∑
x∼x′
|d(x)− d(x′)| (4.22)

where p ∼ q denotes two neighboring pixels, the Lagrangian multiplier λ > 0 acts as a reg-
ularization parameter and −→o is a unit vector directed along the glacier orientation. Optimal
solutions of such discrete optimization problems can be obtained by graph cuts using the graph
construction described in (Ishikawa, 2003).

We suggest now comparing the quality of the estimated displacement �elds obtained by
solving (4.22), when using either the Gaussian kernel G or the generalized likelihood ratio LG.

Figure 4.4 shows the estimated magnitude of the displacement �eld obtained on two SAR
images of the lower part of the glacier of Argentière (French Alps) sensed by TerraSAR-X on
September 29th, 2008 and October 21th, 2008 respectively. The two SAR images have been
previously co-registered on static areas. They have a resolution cell of 1.36×2.04 meters in line of
sight and azimuth directions respectively. The displacement along the orientation −→o is searched

4. we use anisotropic TV corresponding to the sum of the `1 norm of the gradient of d so that minimization
problem (4.22) can be solved by graph-cuts
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in a range of magnitude from 0 to 10 pixels. This corresponds to a maximum displacement of
about 111 cm/day. Patches of size 3×3 were chosen, i.e. about 4 m and 6 m in ground geometry.
A binary mask was provided to localize the glacier surface. Only corresponding pixels which are
both on the glacier surface are used in patch comparisons. At each position is represented the
magnitude of the local displacement estimated by both similarity criteria. According to experts
and GPS measurements, the estimated velocities obtained with the generalized likelihood ratio
LG better re�ects the ground truth with an average over the surface of 15.4 cm/day and a
maximum of 53.8 cm/day in the breaking slope (called �serac falls�) compared to 20.7 cm/day
with a maximum of 67.2 cm/day for the Gaussian kernel G. The use of G leads to a vector �eld
over-regularized in dark areas and under-regularized in bright areas: there is no regularization
parameter λ o�ering the same amount of smoothing everywhere in the vector �eld. Once again,
since the generalized likelihood ratio LG is CFAR, we get the same amount of regularization of
the �eld map both in dark and bright areas for a global regularization parameter λ.

Finally let us mention that no criterion is optimal for this task due to illumination variations
between the two observations. Correlation-based criteria could then be more adapted for such
a task or a generalized likelihood ratio testing that u1 is within an a�ne transform of u2, i.e.:
H0 : u1 = αu2 + β, where α and β are unknown real values considered as nuisance parameters.
Such an extension of the de�nition of similarity could be the topic of future work.

4.4 Conclusion

We have presented and compared seven similarity criteria taken from di�erent research �elds.
Their theoretical grounding has been discussed as well as the di�erent properties that they ful�l.
In particular, it has been shown that some criteria are not invariant to the choice of the data
space, and should thus be discarded. Others require signal-adaptive thresholds which restricts
their usability in image processing applications. It has then been shown on patches extracted
from a natural image that, under high levels of gamma or Poisson noise, the similarity criterion
based on generalized likelihood ratio (GLR) is the most powerful. It also leads to the best
denoising performance when used as the criterion for patch similarity in the NL means �ltering,
as assessed on a denoising benchmark made of twelve standard images synthetically damaged with
strong gamma or Poisson noise. While GLR clearly outperforms techniques based on variance
stabilization (such as the homomorphic approach or Anscombe transform) for low SNR images,
our experiments show that variance stabilization is preferable for better SNR. With high SNR,
patch comparison probably requires further modeling of noiseless patch distances. In the absence
of such a model, the Euclidean distance used after variance stabilization is probably the best
choice.

We have illustrated the improvements brought by a suitable similarity criterion to denoise
real-world images: a synthetic aperture radar image corrupted by multiplicative speckle noise,
and an X-ray image of a supernova explosion with Poisson noise. With a similarity criterion
adapted to the noise distribution, noise is smoothed out equally well in dark and bright regions.
We then illustrated the wide applicability of the proposed similarity criterion in vision by con-
sidering a stereo-vision reconstruction problem and the estimation of displacement of a glacier
with remote sensing.

Based on this study, we recommend a broader use of GLR for measuring patch similarity in
computer vision. This criterion is both easy to implement and theoretically well grounded. With
its very general de�nition based on hypothesis testing, this criterion is �exible and can easily be
adapted to other problems of matching image parts. Two extensions could be derived in future
work. Similarity criteria invariant to some transforms of the noise-free patch (e.g., change of
illumination) could be derived, which would increase robustness in application such as motion
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tracking, stereo vision or �ickering reduction. The modeling of a metric in the space of noise-free
patches could also improve denoising performance, as our experiments with high SNR suggest.

Although GLR appears as the best similarity criterion to compare noisy patches, denoising
performance can be improved by considering also the similarity of pre-�ltered patches. The idea
is to re�ne the evaluation of the hypothesis test when such extra information is available. The
de�nition of similarity between noisy and noise-free patches linked to the problem of weighted
combination under non Gaussian noise will be at the heart of the next chapter. In this context,
we will de�ne a general methodology to extend e�ciently non-local approaches to any given
statistical model of an uncorrelated noise.
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Chapter 5

Selection-based �ltering under

non-Gaussian noise

An extension of the non-local (NL) means is proposed for images damaged by an uncorrelated
noise described by a given pdf. The proposed method is guided by the noisy image and a pre-
�ltered image and is adapted to the statistics of the noise model. The main ingredient of the
proposed approach is the use of the weighted maximum likelihood estimator where weights are
de�ned from the generalized likelihood ratio based criterion between patches extracted from
the noisy image (as given in Chap. 4) and the Kullback-Leibler divergence between patches
extracted from a pre-�ltered image. The in�uence of both images can be tuned using two
�ltering parameters. We propose an automatic setting to select these parameters based on the
minimization of the estimated risk (mean square error). This selection uses an estimator of the
MSE for NL means and Newton's method to �nd the optimal parameters in few iterations.

The adaptation of selection-based �lters for non-Gaussian noise has been the topic of several
works. Most of them are designed for a particular noise model: Lee's �lter and the intensity-
driven adaptive-neighborhood �lter try to adapt to the multiplicative nature of gamma noise (Lee,
1981; Vasile et al., 2006); He and Greenshields (2009) propose an ad hoc solution for magnetic
resonance images (MRI); and the SAFIR and BM3D �lters stabilize the variance of Poisson noise
before �ltering (Boulanger et al., 2008; Mäkitalo and Foi, 2011). The Bayesian NL means �lter
of Kervrann et al. (2007) is a more general approach which has been used for Gaussian noise,
ultra-sound speckle reduction in (Coupé et al., 2008) and SAR speckle reduction in (Zhong et al.,
2011). However, we have seen that such a generalization can fail in some particular situations
(see Sec. 3.7). On the contrary, other approaches are too general since they assume an unknown
noise model (Awate and Whitaker, 2006; Brox et al., 2008; Azzabou et al., 2007b) and, as a
consequence, they do not take the greatest advantage of the noise model when it is available.

Our contributions� This chapter presents a new approach for image denoising in the case of
an uncorrelated noise described by a given pdf. The proposed �lter is an extension of the NL
means algorithm introduced by Buades et al. (2005), which performs a weighted average of the
values of similar pixels. Pixel similarity is de�ned in the NL means as the Euclidean distance
between patches (rectangular windows centered on each two pixels). Following the study in
Chap. 4, we suggest replacing the Euclidean distance by the generalized likelihood ratio (GLR)
which is statistically well grounded and general to cope with any noise distribution model. The
denoising process is expressed as a weighted maximum likelihood estimation problem where the
weights are derived in a data-driven way. These weights can be re�ned based on both the
similarity between noisy patches (with GLR) and the similarity of patches extracted from the
previous estimate (using the Kullback-Leibler divergence). The in�uence of both images can be
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tuned using the di�erent �ltering parameters. We propose an unsupervised strategy to select
these parameters. We show that this re�nement strategy noticeably improves the denoising
performance, especially in the case of low signal-to-noise ratio images. Numerical experiments
illustrate that this technique can be successfully applied not only to the classical case of additive
Gaussian noise but also to cases such as multiplicative speckle noise or Poisson noise. The
proposed denoising technique seems to challenge on the state-of-the-art performance in these
latter cases.

Organization of the chapter� We give in Sec. 5.1 an interpretation of our selection-based �lters
in the framework of weighted maximum likelihood. In Sec. 5.2, performance of oracle-based
selection is studied when bias is introduced. This allows us to interpret, in Sec. 5.3, the NL
means as an estimator of the oracle-based selection under Gaussian noise. Our approach based
on detection theory will allow us to de�ne weights able to deal with non-Gaussian noise in
Sec. 5.4. Drawing from Chap. 4 and a study of optimal oracle-based weights, an hypothesis test
will be used to de�ne weights based on the joint similarity between noisy and noise-free patches,
leading to a two step or iterative �lter with two important �ltering parameters. We then suggest
setting these parameters with an unsupervised approach in Sec. 5.5. Section 5.6 provides results
compared with the state-of-the-art techniques on images damaged with Gaussian, gamma and
Poisson noise.

5.1 Weighted maximum likelihood estimation (WMLE)

This section introduces the proposed denoising method in the framework of weighted maxi-
mum likelihood estimation (WMLE) as investigated in (Polzehl and Spokoiny, 2006a).

As discussed in Chap. 2, a denoised image is an estimate û of an unknown noise-free image
u from its noisy observed version v. The images are de�ned over a discrete regular grid Ω of N
pixels and we denote by vk = v(xk) a pixel value located at xk ∈ Ω. We consider an uncorrelated
noise model de�ned by a parametric noise distribution, such that p(v|u) =

∏
k p(vk|uk), where

the noise-free image u plays the role of a space-varying unknown parameter. Denoising an image
is then equivalent to �nd the best estimate û of u.

At each location x, the maximum likelihood estimator (MLE) de�nes an estimate û(x) of the
underlying parameter u(x) from the set Su(x) of independent and identically distributed random
variables present in the image:

û(x) = arg max
t

∑
x′∈Su(x)

log p(v(x′)|t) (5.1)

= arg max
t

∑
x′

δSu(x)
(x′) log p(v(x′)|t), (5.2)

with δSu(x)
being the indicator function of Su(x) (i.e., δSu(x)

(x′) = 1 if u(x′) = u(x), 0 otherwise).
The MLE is unbiased and asymptotically e�cient with respect to |Su(x)|. In practice, the sets
Su(x) for each x ∈ Ω are unknown since it requires the knowledge of the underlying image u.
Hence, we only approximate δSu(x)

(x′) by data-driven weights w(x, x′) ≥ 0. This leads to the
weighted maximum likelihood estimation (WMLE) given by:

û(x) = arg max
t

∑
x′

w(x, x′) log p(v(x′)|t). (5.3)

WMLE is known to reduce the mean square error by reducing the variance of the estimate at the
cost of a bias introduced by samples that follow a distribution with a parameter u(x′) di�erent to
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u(x) (Fan et al., 1998). The WMLE framework was �rst applied to image denoising by Polzehl
and Spokoiny (2006a).

In the particular case of the additive white Gaussian noise model, the corresponding WMLE
estimate is de�ned by the weighted average:

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
. (5.4)

This is consistent with the numerous denoising methods existing in image processing based on
weighted averages, such as moving average �lters, the Yaroslavsky �lter and the NL means �lter.
Hence WMLE can be seen as a generalization of the weighted average for non-Gaussian noise.

Note that the Bayesian NL means �lter of Kervrann et al. (2007), minimizes a Bayesian risk
driven by the noisy data instead of maximizing the weighted likelihood (see Sec. 3.7). In the
particular case of Gaussian noise, the same solution (5.4) is obtained by WMLE and Bayesian
risk minimization driven by the noisy data.

The de�nition of the weights w(x, x′) is the main problem addressed in this chapter. As
noted in (Polzehl and Spokoiny, 2006a), a well-chosen de�nition of the weights constitutes the
key to the success of WMLE �lters.

5.2 Oracle-based selection: a bias-variance trade-o�

The weights used to approximate the indicator function can be seen as membership values
over a fuzzy set version of Su(x) (with proper weight normalization). The optimal unknown
fuzzy set introduces a bias in the estimation since similar noisy values coming from di�erent
distributions are incorporated. However, this drawback is counterbalanced by a decrease in the
variance of the estimation (Fan et al., 1998). In fact, more pixel values are included in the
fuzzy set which decreases the variance of the estimation (note that for pixel values de�ned on
a continuum, the probability measure of the event u(x′) = u(x) is zero, which means that we
almost never �nd two pixels following the same distribution, thus we do not average pixel values
therefore leaving the noisy image unchanged).

According to this bias-variance trade-o�, WMLE can outperform MLE for well-chosen
weights. Here, we suggest comparing the results obtained by MLE and WMLE both using
an oracle based selection, i.e., the pixel values to average are chosen using the knowledge of the
true image u. Using this information, we have implemented both Oracle-MLE (Eq. (5.1)) and
Oracle-WMLE (Eq. (5.3)). For both, the candidate pixels x′ have been restricted to a limited
circular search window W centered on x. While MLE averages only pixels with the same noise-
free values u(x′) = u(x), we have chosen that the WMLE averages all pixels with the following
weights:

w(x′, x) = exp

(
−(u(x′)− u(x))2

2h2

)
(5.5)

where h > 0 controls the width of the fuzzy set. This weight de�nition is designed such that
when h→ 0, WMLE tends towards MLE and when h→∞, WMLE tends to a moving average
�lter.

Both �lters have been used on a gray level image where the true values uk are integers
between 0 and 255 while the noisy values vk are real values resulting from the application of
a white Gaussian noise on u with standard deviation σ = 20. Figure 5.1 shows these images
with the resulting images obtained by MLE and WMLE. It appears clearly that MLE su�ers
from a residual noise (i.e., the estimator as a high variance) while the underlying information
seems to have been preserved (i.e., the estimator is unbiased). In contrast to MLE, WMLE has
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(a) Noisy image (b) Noise-free image used by the oracle

(c) Oracle-MLE �lter (d) Oracle-WMLE �lter

Figure 5.1: Denoising results obtained by (c) MLE and (d) WMLE on (a) a noisy image damaged
by additive white Gaussian noise by using an oracle knowing (b) the underlying noise-free image.
The result obtained by MLE su�ers from residual noise while the underlying information seems
to have been preserved. In contrast to MLE, WMLE has no residual noise but seems to be
over-smoothed: the underlying information has been lost.

no residual noise but seems to be over-smoothed (e.g., look at the background texture): the
underlying information has been lost (i.e., the estimator is biased).

To measure the bias-variance trade-o� of both methods, we have computed the images of
the local bias, the local relative variance and the local mean square error using Monte-Carlo
simulations with 100 noise realizations (see Sec. 2.1.3 for a description of such an evaluation
technique). The results are given on Fig. 5.2 where it appears clearly that MLE is unbiased
(non-zero values are only ascribed to the Monte-Carlo simulations) but has a very high variance,
while WMLE is biased but has a smaller variance. The resulting mean square error is then in
favor of the WMLE. Note that the bias corresponds to a resolution loss (di�erent populations
of noisy values have been mixed) and the variance corresponds to a residual noise (too few
candidates with similar noise-free values have been found).

In conclusion, even with the knowledge of the noise-free image, it is preferable to mix samples
coming from di�erent populations. Selection-based �lters necessarily mix di�erent populations
in order to reduce enough the noise variance and usually to introduce a bias (except for the
ultimate oracle-LMMSE, see Sec. 5.4.2). In the next section, we will study weight de�nitions
driven only by noisy data in the case of Gaussian noise. This study will guide us in adapting this
weight de�nition to the noise model. Next, we will show that the oracle-WMLE using Eq. (5.5)
is not optimal and in particular it does not adapt to the noise distribution. This indicates that
even for comparing noise-free values it is important to take into account the noise distribution
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(a) Bias2 (b) Relative variance (c) Mean square error

Figure 5.2: Bias-variance trade-o� of (top) MLE versus (bottom) WMLE. (a) The square bias,
(b) the relative variance and (c) the mean square error obtained on Monte-Carlo simulations
with 100 noise realizations. In all images, dark colors correspond to small values (zero is black)
and bright colors correspond to high values (white is reached at 50). MLE is unbiased but has
a very high variance, while WMLE is biased but has a smaller variance. The resulting mean
square error is then in favor of the WMLE.

in selection-based �ltering. Finally, it will be helpful to introduce a weight re�nement based on
the similarity of pre-estimated images.

5.3 Patch-based weights with Gaussian noise

We have seen that weights should select pixels with identical or similar noise-free values.
This information being latent or hidden behind a noise component, we have to �nd a robust
method allowing us to select pixels with almost identical noise-free values. In this section, we
will study the Yaroslavsky �lter and the NL means �lter as special cases of WMLE �lters under
the Gaussian noise assumption. We will statistically study their weight de�nition and the oracle
weights given in Eq. (5.5) under Gaussian noise assumption. We will also show that patches
allow us to obtain weights robust to noise �uctuations.

5.3.1 Statistical study of the Yaroslavsky �lter

Instead of de�ning w(x, x′) in the spatial domain as done by moving average �lters, we can
use data-driven weights based on the comparisons of noisy pixel values. The Yaroslavsky �lter
(described in Sec. 2.5.1) increases the weight w(x, x′) when the noisy values v(x) and v(x′)
become more similar (Yaroslavsky, 1985).

The Yaroslavsky �lter is a WMLE-based �lter where the weights w(x′, x) are de�ned from
the similarity of the noisy values v(x′) and v(x). It assumes that if two noisy values are similar,
their average is consistent: they probably come from the same population. The formulation of
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(a) Oracle-WMLE �lter (b) Yaroslavsky �lter (c) NL means �lter

Figure 5.3: Denoising results obtained by (a) the oralce-WMLE, (b) the Yaroslavsky �lter and
(c) the NL means �lter on a noisy image damaged by additive white Gaussian noise. The result
obtained by the Yaroslavsky su�ers from a strong residual noise which has been reduced properly
by NL means. The NL means �lter reaches performance challenging the oracle-WMLE.
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(a) Bias2 (b) Relative variance (c) Mean square error

Figure 5.4: Bias-variance trade-o� of (top) the Yaroslavsky �lter versus (bottom) the NL means
�lter. (a) The square bias, (b) the relative variance and (c) the mean square error obtained on
Monte-Carlo simulations with 100 noise realizations.

the weights is given as follows:

w(x′, x) = exp

(
−(v(x′)− v(x))2

2h2

)
(5.6)

where h > 0 controls the amount of �ltering. This expression is similar to Eq. (5.5) where the un-
known noise-free information u has been substituted by the available noisy information v. If, fur-
thermore, we overload the weights attributed to the pixel of interest by w(x, x) = exp

(
−σ2/h2

)
,

following (Doré and Cheriet, 2009; Salmon, 2010), we can show that Eq. (5.6) is actually an
estimate of Eq. (5.5) under the Gaussian noise assumption. Indeed, it is straightforward to show
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Figure 5.5: Two dimensional histogram of the Euclidean distance between noise-free patches
with respect to the Euclidean distance between noisy values. The underlying assumption of
patch-based denoising is that all the points are located on the white line.

that in this case:

E[(V (x′)− V (x))2] = (u(x′)− u(x))2 + 2σ2 (5.7)

where V is the random vector describing the observed image v. This estimator has, however, a
large variance given by:

Var[(V (x′)− V (x))2] = 8σ2(u(x′)− u(x))2 + 8σ4 . (5.8)

This high variance produces weights with high �uctuations. To decrease this large residual noise,
a high value of h has to be used, but it results in introducing a large bias. These two e�ects are
illustrated in Fig. 5.3 and Fig. 5.4.

5.3.2 The NL means: towards patch based weights

The main limitation of the Yaroslavsky �lter is its large variance resulting from the compar-
ison of noisy values. In order to decrease this variance, i.e. to be robust to noise �uctuations,
Buades et al. (2005) suggest comparing instead the two small square windows (i.e. the patches)
surrounding the two pixels of interest. This leads to the NL means described in Sec. 2.5.1, and
relies on the self similarity property of natural image. The weights are de�ned from the Euclidean
distance between noisy patches according to:

w(x′, x) = ϕ

(
‖v(Px′)− v(Px)‖22

2|P |h2

)
(5.9)

where ϕ is a kernel decay function and Px ∈ Ω de�nes the subset of pixel positions belonging
to the patch extracted at the position x and |P | denotes the number of pixels in a patch (see
Sec. 2.5.1). Under the Gaussian noise assumption, this substitution involves rather an estimator
of the Euclidean distance between noise-free patches:

E
[

1

|P |
‖V (Px′)− V (Px)‖22

]
=

1

|P |
‖u(Px′)− u(Px)‖22 + 2σ2 . (5.10)
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Contrary to the Yaroslavsky �lter, this estimator has a smaller variance depending on the size
of the patch:

Var

[
1

|P |
‖V (Px′)− V (Px)‖22

]
=

1

|P |

[
8σ2 1

|P |
‖u(Px′)− u(Px)‖22 + 8σ4

]
. (5.11)

According to Eq. (5.11), the larger the patch, the smaller the weight �uctuations. This allows
us to drastically decrease the large residual noise present in the Yaroslavsky solution such that
a smaller value of h can be used to limit the blurring e�ects. This is also illustrated on Fig. 5.3
and Fig. 5.4.

Note that with this substitution, the NL means approach the WMLE solution as soon as
the distance between the patches u(Px′) and u(Px) is linked to the distance between the pixel
values u(x′) and u(x). We experimentally measure the validity of this assumption on a natural
image (a similar study can be found in Duval et al., 2011). For each pair of pixels (x, x′) we
calculate the Euclidean distance between the pixel values |u(x′)−u(x)| and the Euclidean distance
between patches 1

N ‖u(Px′) − u(Px)‖2. We then construct a two dimensional histogram using
the Parzen�Rosenblatt window method. The histogram is given on Fig. 5.5. It appears that the
assumption is well veri�ed with a tendency that 1

N ‖u(Px′)−u(Px)‖2 underestimates |u(x′)−u(x)|:
noise-free patches are more similar than noise-free pixel values. This tendency implies that NL
means will generally introduce more bias than the Yaroslavsky �lter. For instance, punctual
features will be blurred by the NL means while the Yaroslavsky �lter will better preserve them
for the same value of h. The less frequent and opposite e�ect is when 1

N ‖u(Px′) − u(Px)‖2
overestimates |u(x′)−u(x)|: noise-free patches are less similar than noise-free pixel values. In that
case, for the same value of h, the NL means will leave more residual noise than the Yaroslavsky
�lter (it appears for example around edges with high contrast, see for instance the problem of
noise halos discussed in Chap. 7).

5.4 Patch-based weights with non-Gaussian noise

We have seen that the Euclidean distance between noisy patches allows to obtain a good
approximation of the oracle-WMLE under the Gaussian noise assumption. When noise departs
from Gaussian noise, the expected square di�erence is given by the following relation:

E
[

1

|P |
‖V (Px′)− V (Px)‖22

]
=

1

|P |
‖E[V (Px′)]− E[V (Px)]‖22

+
1

|P |
‖Var[V (Px′)]‖1 +

1

|P |
‖Var[V (Px)]‖1 . (5.12)

According to (5.12), as soon as the expectation of noisy values does not converge to the noise-free
value or when the variance is signal-dependent, the distance between noisy patches is no longer
an estimate of the distance between noise-free patches. The interpretation of the NL means as
an approximation of the oracle-WMLE does not hold anymore and in practice results can be of
poor quality.

Rather than de�ning weights based on the Euclidean distance between noisy patches to
estimate the distance between noise-free patches to approach Eq. (5.5), let us come back to the
original problem. According to the previous comments, the weights can be seen as a membership
value over the fuzzy set version of Su(x) = {x′|u(x′) = u(x)}. The membership value can then
be interpreted as a statistical hypothesis test measuring the validity that x′ belongs to Su(x).
Due to noise �uctuations, we follow the same idea as that of the NL means and assume equal
values for the central pixel of two statistically close image patches. The hypothesis test is then
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performed on patches:

H0 : u(Px′) = u(Px) (null hypothesis),

H1 : u(Px′) 6= u(Px) (alternative hypothesis). (5.13)

The Bayesian NL means �lter of Kervrann et al. (2007) substitutes instead the Euclidean dis-
tance based by the conditional probability p (v(Px)|u(Px) = v(Px′)). This approach assumes
that v(Px′) provides a good approximation on the true parameter u(Px). Since the Bayesian NL
means �lter makes this strong assumption, the authors proposed a two step algorithm to re�ne
the weights (see Sec. 3.7). We suggest that the weights based on (5.13) should be more suitable
since they do not make such a strong assumption.

Similarity criteria based on the hypothesis test (5.13) have been presented in Chap. 4. This
will allow us to directly propose a �rst extension of non-local �lters for non-Gaussian noise
based on the similarity of noisy patches using the generalized likelihood ratio presented in
Chap. 4. Next, we will come back to an oracle study in order to re�ne the weights in the case
of low signal-to-noise ratio images. This will lead to a second extension based on the similarity
of noise-free patches.

5.4.1 Similarity between noisy patches

In Chap. 3, it has been shown that a selection rules based on the generalized likelihood ratio
leads to an unbiased estimator with stationary relative varariance. In Chap. 4, it was moreover
concluded that the evaluation of GLR between the noisy patches v(Px′) and v(Px) provides good
detection performance for the hypothesis test in Eq. (5.13) and it can be succesfully applied in
several computer vision tasks. Based on these arguments, we suggest extending the NL means
for non-Gaussian noise by using a WMLE �lter where weights are based on the GLR between
noisy-patches. Another argument is that, under the Gaussian noise assumption, WMLE and
GLR boil down respectively to the weighted average and to the Gaussian kernel (i.e., Eq. (5.9)):
the NL means appears then as a special case of the proposed extension.

We suggest expressing the weights from the generalized likelihood ratio when the two noisy
patches share identical noise-free values. This leads to the following weight de�nition:

w(x, x′) = ϕ [− logLG(v(Px), v(Px′)] (5.14)

where LG(v1,v2) =
supt [p(v1|u1 = t)p(v2|u2 = t)]

[supt p(v1|u1 = t)] [supt p(v2|u2 = t)]
(5.15)

where ϕ is the same kernel decay function as the one of the NL means presented in Sec. 2.5.1.
Its shape or scale is controlled respectively by one or two parameters which are usually set
according to the distribution of the Euclidean distance (Polzehl and Spokoiny, 2006a; Kervrann
and Boulanger, 2006), or, in our context, the distribution of GLR under H0 (i.e. according to
the probabilities of false alarm). This method based on probabilities of false alarm requires that
GLR has a constant false alarm rate (CFAR) which is not always the case for patches with a
�nite size (e.g., for Poisson noise).

We have derived in closed-form expressions the weights between noisy patches for Gaussian,
gamma and Poisson noise. These expressions are directly obtained from the expressions given in
Table 4.2:

The case of Gaussian noise: Noise is additive and GLR is linked to the square di�erence of the
noisy patches. It corresponds to the Gaussian kernel presented in Sec. 4.1 and it leads to weights
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Figure 5.6: Illustration of GLR in the point of view of fuzzy aggregation, under (from top to
bottom) Gaussian noise, gamma noise and Poisson noise.

de�ned from the Euclidean distance:

w(x, x′) = ϕ

(
‖v(Px)− v(Px′)‖22

4σ2

)
. (5.16)

The case of gamma noise: Noise is multiplicative and GLR is linked to the ratio of the noisy
patches:

w(x, x′) = ϕ

[
2L
∑
τ∈P

log

(√
v(x+ τ)

v(x′ + τ)
+

√
v(x′ + τ)

v(x+ τ)

)
− 2L|P | log 2

]
. (5.17)
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Note that if we consider the log-transform ṽ = log v, whose noise component is additive, GLR
rewrites as the di�erence of the log-transform of the noise-free patches as follow:

w(x, x′) = ϕ

[
2L
∑
τ∈P

log cosh

(
ṽ(x+ τ)− ṽ(x′ + τ)

2

)]
. (5.18)

The case of Poisson noise: Noise is neither additive nor multiplicative and GLR provides the
following weight de�nition:

w(x, x′) = ϕ

[
2
∑
τ∈P

(
g(v(x+ τ)) + g(v(x′ + τ))

2
− g

(
v(x+ τ) + v(x′ + τ)

2

))]
(5.19)

where g(x) = x log x if x > 0 and g(0) = 0.

In Chap. 4, we give an interpretation of GLR based on detection theory. Here, we suggest
reinterpreting Eq. (5.14) in a point of view based on the theory of fuzzy sets and possibilities
(Zadeh, 1965; Dubois and Prade, 1988). GLR can be seen as a degree of possibility on the
hypothesis u(Px′) = u(Px). Indeed, consider the quantities:

π1(t) =
p(v1|u1 = t)

supt p(v1|u1 = t)
π2(t) =

p(v2|u2 = t)

supt p(v2|u2 = t)
. (5.20)

Since π1(t) and π2(t) are two functions de�ned from the noise-free space to [0, 1], they can be
interpreted as the respective possibility distributions of u1 and u2, or, as the fuzzy number
versions of u1 and u2. They model the uncertainty we have on these unknown values. The
product π1(t)π2(t) is called a triangular norm and is known to model the intersection of the
two fuzzy sets associated to u1 and u2. In some way, it models the fuzzy set of the assumed
shared value u12. By taking the maximum value LG(v1,v2) = supt π1(t)π2(t), GLR evaluates
the possibility measure that v1 and v2 share the same noise-free patch u12. Fig. 5.6 gives an
illustration of this fuzzy interpretation of GLR between two noisy values v1 and v2 when noise
follows either a Gaussian, gamma or Poisson distribution. It appears clearly that not only
the closeness of the noisy values impact on the possibility measure that their underlying noise-
free values are identical, but also the shape of the possibility distributions π1(t) and π2(t). In
Chap. 4, we mentioned that GLR is a prior-less version of the Bayesian likelihood ratio. In
this framework, this prior ignorance on the noise-free patches could be modeled by a possibility
distribution πprior(t) = 1. From the possibility measure provided by GLR, the function ϕ de�nes
the membership function to the fuzzy set version of Su(x) which is our original motivation.

In previous sections, we have seen that to obtain the best performance, selection-based �lters
should introduce bias in order to signi�cantly decrease the noise level. However, GLR tries to
select only pixels with identical values. In practice, weights based on GLR will also introduce
bias. In a detection point of view, this is due to the fact that GLR has a non-zero probability
of false-alarm. In a fuzzy point of view, this results from the uncertainty modeled by π1(t)
and π2(t). The shape and the scale of the kernel function ϕ play also an important role in the
bias-variance trade-o�. For instance, the setting of the bandwidth h of the exponential decay
function is a crucial parameter controlling the quality of the result. Based on this property, we
will propose an unsupervised setting of this parameter in Sec. 5.5.

In the case of images with low signal to noise ratio (i.e., with a high level of noise), GLR still
has a high variance resulting in weights with high �uctuations. In a detection point of view, this
is due to the fact that, for the same probability of false alarm, the probability of detection of
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GLR decreases when the noise level increases. Based on the non-local approaches proposed in
(Kervrann and Boulanger, 2006; Polzehl and Spokoiny, 2006a; Brox et al., 2008; Dabov et al.,
2007; Goossens et al., 2008; Louchet, 2008), in the next section, we suggest re�ning the weights
in this case by using the information provided by a pre-estimate of the noise-free image.

5.4.2 Similarity between noise-free patches

This section presents a re�nement of the weights based on the evaluation of the hypothesis test
(5.13) using a pre-estimate of the noise-free image. This re�nement seems to be the more relevant
on images with low signal to noise ratio. In (Kervrann and Boulanger, 2006; Brox et al., 2008;
Dabov et al., 2007; Goossens et al., 2008; Louchet, 2008), the authors show that weights based
on the Euclidean distance between �ltered noise-free patches improve the denoising performance
for such strong noise levels. Based on an oracle study, we will see in this section that even
for comparing noise-free patches, the Euclidean distance has to be substituted by a similarity
criterion adapted to the noise distribution. Then based on Polzehl and Spokoiny (2006a), we
will propose instead to use the Kullback-Leibler divergence between �ltered noise-free values.
According to the con�dence we have in our pre-estimate, we will show that it can be preferable
to use jointly a similarity criterion based on noisy patches (using GLR) and noise-free patches
(using the Kullback-Leibler divergence). A Bayesian interpretation will be given to this joint
criterion.

Oracle-LMMSE: the ultimate weights

We considered in Sec. 5.2 an oracle that use the true image u to de�ne weights of the form
(5.5). We now relax this constraint and consider linear minimum mean square error (LMMSE)
denoising for a given true image u. Consider x to be �xed and de�ne u = u(x) and w being the
vector such that wk = w(x, xk). The oracle-LMMSE weights are implicitly de�ned as:

w(LMMSE) = arg min
w

E
[
(wtv − u)2

]
, (5.21)

i.e., we consider the linear combination of noisy values wtv that leads to the best estimate of
u, in the sense of expected quadratic loss. Note that our problem is slightly di�erent from the
LMMSE approach of Chatterjee and Milanfar (2011). They consider minimizing the MSE in the
patch domain knowing only the patch v(x) and the �rst and second order statistics of the patch
u(x) under AWGN. We consider rather minimizing the MSE in the image domain knowing all
pixel values v(xk) and all true values u(xk) whatever the noise model.

Let the noisy image v be modeled by its mean E[v] = u and its covariance matrix E[(v−u)(v−
u)t] = Γ (e.g., Gaussian, gamma and Poisson noise). The MSE can be expanded as follows:

E
[
(wtv − u)2

]
= wtE

[
vvt
]
w − 2uwtE [v] + u2 (5.22)

= wt(Γ + uut)w − 2uwtu+ u2. (5.23)

The optimum weights are obtained by setting the gradient of (5.23) with respect to w equal to
zero:

w(LMMSE) = u(Γ + uut)−1u. (5.24)

This expression involves inverting the sum of a covariance matrix plus a rank-one matrix. If
noise is not correlated, covariance matrix Γ is diagonal and straightforward to invert. By use of
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Sherman-Morisson formula, we get the following expression which requires only the inversion of
Γ:

w(LMMSE) = u

(
Γ−1 − Γ−1uutΓ−1

1 + utΓ−1u

)
u (5.25)

=
u

1 + utΓ−1u
Γ−1u. (5.26)

For a diagonal covariance matrix Γ = diag(γ2
1 , . . . , γ

2
N ), the kth weight is written as:

w
(LMMSE)
k =

uuk/γ
2
k

1 +
∑

l u
2
l /γ

2
l

. (5.27)

Note that when N = 1, Eq. (5.27) boils down to the Wiener shrinkage presented in Sec. 2.4.1:

w
(Wiener)
k =

u2

γ2
k + u2

. (5.28)

The expression of the obtained weights is interesting because it corresponds to the optimal
weights (independent of the noisy data) for a given true image. The oracle-LMMSE we just
derived provides ultimate performance, i.e., a lower bound on the achievable MSE for a given
search window of size N (see Fig. 5.8). The oracle considered is largely favored compared to
a real denoising scenario. It can indeed combine samples vk in such a way that their biases
cancel. The drawback is that if we have only a pre-estimate instead of the true image, the use of
weights de�ned in Eq. (5.26) will provide a result too close to the pre-estimate (there will be no
improvement compared to the pre-estimate itself, see Fig. 5.9). Moreover, the oracle-LMMSE
does not provide a linear combination where coe�cients are normalized and then it is not a
WMLE-based �lter. The expression (5.27) is not a good candidate to de�ne similarity between
pre-estimates of the noise-free patches but it sheds light on why the similarity should adapt to
the noise distribution.

Optimal normalized weights with oracle-similarity

We now consider a more realistic situation in which the oracle selects normalized weights, i.e.,∑
k wk = 1 (note that a similar problem is derived in (Lee et al., 2011) where they consider an

empirical MSE driven by patch similarities rather than the true MSE). While the oracle-LMMSE,
provides the best selection-based �lter, this normalized �lter will be the best WMLE-based �lter.
In this case, the bias wtu− u of estimator wtv can be expressed with respect to d:

wtu− u = wt(u− u1) = wtd, (5.29)

where d is the vector of all di�erences (or bias): dk = (uk − u). The MSE can be rewritten as
follows:

E
[
(wtv − u)2

]
= wtΓw︸ ︷︷ ︸

variance

+
(
wtu− u

)2︸ ︷︷ ︸
square bias

= wtΓw + (wtd)2. (5.30)

Based on the vector d, the normalized LMMSE (NLMMSE) is implicitly de�ned as the solution
of:

w(NLMMSE) = arg min
w

wtΓw + (wtd)2 s.t. 1tw = 1 (5.31)

The Lagrangian function for problem (5.31) is:

L(w, λ) = wtΓw + (wtd)2 − λ (1tw − 1) (5.32)
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where λ is a Lagrange multiplier (i.e., dual variable). The �rst-order optimality conditions
(Lagrange conditions) for w(NLMMSE) to be a solution of (5.31) are:

∇w L(w, λ) = 0 (stationarity) (5.33)

1tw = 1 (primal feasibility). (5.34)

Stationarity condition (5.33) applied to the Lagrangian (5.31) gives:

∇w L(w, λ) = Γw + ddtw − λ1 = 0 (5.35)

so

w(NLMMSE) = λ
(
Γ + ddt

)−1
1. (5.36)

Lagrange multiplier λ is obtained from primal feasibility condition (5.34):

λ =
1

1t (Γ + ddt)−1
1
. (5.37)

The optimal weights are then, from (5.36) and (5.37):

w(NLMMSE) =

(
Γ + ddt

)−1
1

1t (Γ + ddt)−1
1
. (5.38)

As done in the previous paragraph, Sherman-Morisson formula can be applied to compute the
matrix inversion in (5.38). For a diagonal covariance matrix Γ = diag(γ2

1 , . . . , γ
2
N ), the kth weight

writes:

w
(NLMMSE)
k = λ

 1

γ2
k

−
(uk−u)
γ2
k

∑
l

(ul−u)
γ2
l

1 +
∑

l
(ul−u)2

γ2
l

 , (5.39)

with Lagrange multiplier λ computed by imposing normalization constraint (5.34).

In order to have a better understanding of Eq. (5.39), let us consider the simple case of two
pixels x1 and x2 (i.e., N = 2). Assume that we want to estimate u = u1 = u(x1) using the best
combination (1 − ρ)v(x1) + ρv(x2). In this case, the optimal solution given by (5.39) simpli�es
to the following expression:

ρ =
γ2

1

γ2
1 + γ2

2 + (u1 − u2)2
(5.40)

In this simple case, the optimal weights depend on the distance between noise-free values and
the noise variance at pixel with index 1 and 2. We have derived in closed-form expressions the
optimal weights between two noise-free values when averaging two noisy values damaged by
Gaussian, gamma and Poisson noise. These expressions are directly obtained from Eq. (5.40):

The case of Gaussian noise: Noise is additive and the optimal weights depend on the Euclidean
distance between noise-free values and the noise level σ:

ρ =
σ2

2σ2 + (u1 − u2)2
. (5.41)

using the fact that γ1 = γ2 = σ2.
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The case of gamma noise: Noise is multiplicative and the optimal weights depend on the ratio of
noise-free values:

ρ =
1/2

1 +
u2

2

u2
1
− u2

u1

. (5.42)

using the fact that γ1 = u2
1 and γ2 = u2

2.

The case of Poisson noise: Noise is neither additive nor multiplicative and the optimal weights
provides the following weight de�nition:

ρ =
1

1 + u2
u1
− (u1−u2)2

u1

. (5.43)

using the fact that γ1 = u1 and γ2 = u2.

The expression (5.39) is interesting because it corresponds to the optimal WMLE �lter
(independent of the noisy data) for a given true image. Its expression only depends on the
di�erences uk − u and the variance γ2

k , and is then dependent on the noise model. As well
as the oracle-LMMSE, the oracle-NLMMSE provides remarkable performance. Since we did not
impose the weights to be positive, oracle-NLMMSE is also able to cancel the bias by taking a
non-convex combination of samples vk (see Fig. 5.8). Again, this �lter will provide a result too
close to the pre-estimate (see Fig. 5.9).

In conclusion, the optimal weights de�ned only from the noise-free patches adapt to the noise
distribution. The underlying idea is that to minimize the bias-variance trade-o� we have to select
noisy samples whose average is an estimate of the noise-free value. If we have two close noise-free
values modeling two very di�erent noisy populations, mixing these populations will lead to a
poor estimate (see Fig. 5.7). In the framework of WMLE, we want to select noisy samples v(x′)
whose distributions are close to the pdf p(.|u(x)). Weights should use the knowledge provided
by pre-estimates to measure the similarity of the noisy realizations that they describe.

Oracle with Kullback-Leibler based weights

We have seen that, providing a pre-estimate of the noise-free images, weights can be re�ned
if, when measuring the similarity between the patches extracted form this pre-estimate, the
noise distribution is considered. Instead of selecting pixels with similar noise-free values, weights
should select pixels whose noisy realizations follow a similar distribution. Figure 5.7 gives an
illustration with Rayleigh noise that when considering similarity between noise-free values from
the Euclidean distance, we select a mixture of populations whose resulting distribution can be
far from the target distribution.

Polzehl and Spokoiny (2006a) used the symmetrical Kullback-Leibler divergence between the
estimates 1 as a statistical measure of our hypothesis test (5.13). For simplicity, we will in the
following speak about the Kullback-Leibler (KL) divergence to denote the symmetrical Kullback-
Leibler divergence. The KL divergence is a measure between distributions and, as a consequence,
allows us to select almost identically distributed noisy samples. The KL divergence between two
noise-free patches u1 and u2 is given by:

DKL(u1,u2) =

∫
(p(v|u1)− p(v|u2)) log

p(v|u1)

p(v|u2)
dv . (5.44)

1. in their work noise, they considered distributions from the exponential family
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Figure 5.7: Distribution of the mixture of the populations following a Rayleigh distribution.
When the mixture is located in a neighborhood such that (top) the populations have noise-free
values u2 close to u1: (u1 − u2)2 < ζ, and (bottom) the populations are statistically closed:
DKL(u1‖u2) < η. (a) For a given noise-free value u1 = 2, the thresholds ζ and η have been
tuned such that the mixture of the populations follows almost the same distribution as the one
of v1, but (b) by using the same thresholds when u1 = 0.5, only the selection based on Kullback-
Leibler succeeds to select the good populations. (In red the true distribution for u1 = 2 and
u1 = 0.5, in gray the histogram of the distribution of the values selected in the neighborhood
de�ned by the Euclidean distance or the KL divergence � dashed lines �).

When noise is uncorrelated, the KL divergence decomposes as DKL(u1,u2) =
∑
DKL(u1,k, u2,k).

There are several examples where the Euclidean distance between noise-free patches cannot
be used. For instance, in the case where the noise-free data are non-scalar entities composed
of several parameters of di�erent nature. In this case, the Euclidean distance needs to take
into account the dynamics of the di�erent channels introducing useless parameters. Wrapped
phase, impulse noise and salt-and-pepper noise are other examples where the use of the Euclidean
distance is a non-sense. The use of the KL divergence allows us to avoid such di�culties since
the KL divergence is de�ned on the parameter space.

The KL divergence is de�ned from the parameter space to R+. It cancels if and only if the
two distributions are equal, i.e., u1 = u2. The larger the KL divergence the more dissimilar the
underlying distributions. Since weights should take their values in [0, 1], we suggest using the
following weight de�nition:

w(x, x′) = ϕ [DKL(u(Px), u(Px′))] (5.45)
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Figure 5.8: Comparisons of oracle-based �ltering driven by the true image on a noisy version
of the lena image damaged by synthetic Poisson noise. The oracle-LMMSE �lter provides the
best result with a quasi zero bias and a quasi optimal variance reduction (the factor of reduction
is directly linked to the size of the search window). The oracle-NLMMSE �lter provides the
optimal WMLE performance while oracle-KL �lter has a lower performance in terms of bias-
variance trade-o�.

where ϕ is the kernel decay function R+ → [0, 1] as de�ned in Sec. 5.4.1. This de�nition matches
with the KL divergence based kernel proposed in (Moreno et al., 2004) for machine learning.
Following (Moreno et al., 2004; Polzehl and Spokoiny, 2006a), we have chosen to use the KL
divergence. The Bhattacharyya could have also been considered following (Goudail et al., 2004).

We have derived, in closed-form expressions, the weights between two noise-free patches for
Gaussian, gamma and Poisson noise. From Eq. (5.45), the following expressions have been
obtained:

The case of Gaussian noise: Noise is additive and the KL divergence is linked to the di�erence
between the pre-�ltered patches. It corresponds to the Gaussian kernel leading to weights de�ned
from the Euclidean distance:

w(x, x′) = ϕ

(
‖u(Px)− u(Px′)‖22

σ2

)
. (5.46)

The case of gamma noise: Noise is multiplicative and the KL divergence is linked to the ratio of
the noisy patches:

w(x, x′) = ϕ

[
L
∑
τ∈P

(
u(x+ τ)

u(x′ + τ)
+
u(x′ + τ)

u(x+ τ)
− 2

)]
. (5.47)
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Figure 5.9: Comparisons of assisted-based �ltering driven by a pre-estimate on a noisy version
of the lena image damaged by synthetic Poisson noise. The assisted-KL �lter provides the best
result in terms of bias-variance trade-o�. Assisted-LMMSE or NLMMSE �lters give too much
con�dence on the pre-estimate and there is no improvement compared to the pre-estimate itself.

Note that if we consider the log transform ṽ = log v, whose noise component is additive, and if
we perform the same transform on the noise-free image ũ = logu, KL rewrites as the di�erence
between the log-transform of the noise-free patches:

w(x, x′) = ϕ

[
2L
∑
τ∈P

(
cosh(ũ(x+ τ)− ũ(x′ + τ))− 1

)]
. (5.48)

The case of Poisson noise: Noise is neither additive nor multiplicative and the KL divergence
provides the following weight de�nition:

w(x, x′) = ϕ

[∑
τ∈P

(u(x+ τ)− u(x′ + τ)) log
u(x+ τ)

u(x′ + τ)

]
. (5.49)

Compared to the optimal weights de�nitions given in Eq. (5.26) and (5.39), these expressions
are easier to evaluate. Unlike the two other oracles, the oracle-KL �lter is a WMLE with positive
weights. Compared to oracle-LMMSE or NLMMSE, the Kullback-Leibler divergence does not
give too much con�dence in u such that an estimate û can be used instead to drive the WMLE-
based �ltering (see Fig. 5.9).
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Figure 5.10: Illustration of the improvements obtained by re�ning the weights. Under a high
noise level, the similarity between noisy patches (given by the generalized likelihood ratio) is not
robust enough. When the weights are re�ned using the similarity between pre-�ltered patches
(given by the symmetrical Kullback-Leibler divergence), we can decrease the noise more while
preserving the edges.

5.4.3 Joint similarity between noisy and noise-free patches

According to the noise level or to the quality of the pre-estimate, one can de�ne weights from
the similarity between noisy patches or from the similarity between the pre-estimated patches.
In an intermediate case, for instance, under a low noise level with a good pre-estimate or under
a high noise level with a bad pre-estimate, we could take advantage of both similarity criteria.
Taking a convex combination of both would lead to the following de�nition:

w(x, x′) = ϕ [(1− λ)f (− logLG(v(Px), v(Px′))) + λg (DKL(û(Px), û(Px′)))] (5.50)

where the parameter λ ∈ [0, 1] controls the con�dence we have in the pre-estimate and f and g are
two increasing a�ne transforms chosen such that both criteria answer with the same dynamic.
The amount of �ltering is controlled by ϕ, for instance, by the bandwidth parameter h used in
the exponential decay kernel. Note that Eq. (5.50) is over-parameterized here and, in the case
of the exponential decay kernel, the number of parameters can be reduced to two parameters
α > 0 and β > 0:

w(x, x′) = exp

(
−− logLG(v(Px), v(Px′))

α
− DKL(û(Px), û(Px′))

β

)
. (5.51)

The advantage of Eq. (5.50) is the better control and interpretation on the behavior of each
parameters while in Eq. (5.51), the two parameters α and β jointly in�uence on both the con�-
dence we have in the pre-estimate and the amount of �ltering (then, they are harder to set in a
supervised way). However, Eq. (5.51) involves only two parameters that we will be able to set
automatically (see Sec. 5.5)

Weights de�ned from the sum of these two terms can be interpreted in a Bayesian framework.
If we consider our original hypothesis test (5.13), we can consider the following a posteriori test:

p(H0|v1,v2)

p(H1|v1,v2)
=

p(v1,v2|H0)

p(v1,v2|H1)︸ ︷︷ ︸
Likelihood ratio

× p(H0)

p(H1)︸ ︷︷ ︸
Extra information

. (5.52)
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Figure 5.11: Scheme of the iterative �ltering. The weights w(x, x′) are computed using the noisy
image v and the estimate ûi−1. The WMLE computes the new parameters ûi by using the
weights w(x, x′) and the noisy image v. The procedure is repeated until there is no longer any
change between two consecutive estimates.

The likelihood ratio term corresponds to the noisy data �delity measured in our case by GLR.
The second term gives an a priori knowledge brought by an extra information. For instance,
bilateral �lters can be explained by Eq. (5.52) with the extra information that close pixels usually
have similar noise-free values. In our case the extra information is the available pre-�ltered image:
noisy values following similar pre-estimated distribution, in the sense of the KL divergence, can
be used together to estimate the noise-free value.

Figure 5.10 illustrates the improvements obtained by re�ning the weights. The maps of the
weights obtained in the same search window are compared with and without weight re�nement.
The resuling images are also given. When the weights are re�ned using the similarity between
pre-�ltered patches, we can decrease the noise more while preserving the edges.

5.4.4 Two step or iterative �ltering

This re�ning procedure of the weights can be done either in two steps or iteratively. In a
two step strategy, the image û is estimated �rst from the noisy image v (e.g., using a moving
average �lter). The result depends on the quality of the pre-�ltering with respect to the noise
level. In an iterative strategy, at iteration i− 1, the estimate û provides the estimate ûi−1 used
at iteration i. Since all the pixels in ûi−1 are updated before moving to the next iteration, this
corresponds to a synchronous local iterative method (see Bratsolis and Sigelle, 2003). This kind
of algorithm converges to a solution depending on the initialization û1.

Figure 5.11 illustrates the iterative procedure:

1. �rst, the weights w(x, x′) are estimated by using patches extracted from the noisy image
v and by using patches extracted from the pre-estimated image ûi−1 (see Eq. (5.50));

2. next, the WMLE provides the new image ûi by using the weights w(x, x′) and the noisy
image v (see Eq. (5.3));

3. steps 1 and 2 are repeated until there is no longer any change between two consecutive
estimates.

In this iterative �ltering, the weights are de�ned by two terms. The �rst one, the data �delity
term, depends on the original noisy image and considers its pixel values as a realization of the
noise generative model. The second term is calculated from the previously estimated image and
considers its pixel values as the �true� parameters of the noise generative model. This idea is
di�erent from the iterative NL means versions de�ned in (Awate and Whitaker, 2006; Kervrann
and Boulanger, 2008; Brox et al., 2008; Goossens et al., 2008), where only previously estimated
parameters are used to compute the similarity criterion (a large con�dence is attributed to the
previous iterations). Moreover, in (Awate and Whitaker, 2006; Goossens et al., 2008) a weighted
average is performed on the previously estimated image instead of the noisy image: they do not
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�t the WMLE de�nition. Averaging noisy values and keeping weights driven by the noisy image
seems to be a better strategy to stay closer to the noise-free image.

This iterative scheme can be related to the Expectation-Maximization (EM) procedure of
Dempster et al. (1977). The EM algorithm is a two step iterative algorithm which converges to
a local optimum depending on the initial estimate. The �rst step (E-Step) evaluates a complete-
data likelihood expectation by computing su�cient parameters using a previous estimate, while
we evaluate a weighted likelihood by computing similarity probabilities using the previous esti-
mate ûi−1. The second step (M-Step) maximizes the complete-data likelihood expectation, while
we maximize the weighted likelihood. As in the EM procedure, the �lter also considers the previ-
ous estimate as �true� parameters. According to our experiments, this consideration involves the
model stability over the di�erent iterations and provides the convergence of our method. Nev-
ertheless, our function is not related to a complete-data likelihood expectation over our latent
variable δSu(x)

(x′). The similarity between two patches is a good indication that their central
values are close (as demonstrated by the performance of the NL means). Dissimilar patches
however do not provide any clue on the di�erence or closeness between the central values. The
complete-data likelihood expectation that should be computed in a normal E-Step is therefore
less relevant in our context. Finally, our latent variable de�nition makes the algorithm locally
de�ned for all pixels x. Thus, the �lter is a synchronous local iterative method whereas an EM
algorithm would try to solve iteratively the problem directly on the global image.

5.5 Unsupervised setting of the parameters

The setting of the parameters in the case of non-Gaussian noise is maybe a more critical
problem than in the Gaussian case. In (Buades et al., 2005; Polzehl and Spokoiny, 2006a;
Kervrann and Boulanger, 2006), the authors propose to de�ne the parameters according to the
variance or the quantiles of the similarity criterion when it is subject to identical and independent
distributed random variables (see Sec. 2.5.1). Unfortunately, for some distributions such as
Poisson noise, these quantities depend on the unknown image u since GLR is not CFAR in
this case. Van De Ville and Kocher (2009) propose a risk minimization approach for Gaussian
noise. Their method selects the parameters minimizing an unbiased estimate of the quadratic
risk (without any speci�c assumption on the underlying image u). This kind of approach seems
relevant in the case of non-Gaussian noise as long as one can provide a relevant estimate of the
quadratic risk.

The parameters of the denoising technique can be selected as those that minimize the expected
mean square error (MSE):

E
[

1

N
‖u− Û‖22

]
=

1

N

∑
k

(
u2
k + E

[
Û2
k

]
− 2E

[
ukÛk

])
(5.53)

where N is the image size. Searching the estimator which minimizes the MSE enables us to
�nd the trade-o� between bias and variance reduction. Since the MSE requires the knowledge
of u, unbiased estimators R[û] of the MSE can be used instead, such that, Stein's unbiased risk
estimator (SURE), the generalized SURE or the Poisson unbiased risk estimator (PURE) (see
Sec. 2.6.4 and 3.6.3).

5.5.1 Risk minimization for our extension of the NL means

Selecting parameters that minimize an estimator of the risk gives parameters close to that
minimizing the MSE. In the case of the classical NL means, the authors of (Van De Ville and
Kocher, 2009; Duval et al., 2011; Luisier et al., 2010; Van De Ville and Kocher, 2011) compute the
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Figure 5.12: Illustration of the in�uence of the parameters α and β on the solution of our
extension of the NL means. When α and β are too small, the redundancy is minimal and the
noise is not reduced. At the opposite, when α and β are too big, the redundancy is maximal and
the resulting image is blurry. Too much con�dence on the pre-estimate will introduce artifacts.
The best α-β trade-o� (at the center) is the one which minimizes the mean square error (MSE).

optimal parameters by exhaustive search on a prede�ned grid. Optimization techniques can be
applied to reach the optimal parameters in few iterations. In (Zhang and Luo, 1999), a gradient
descent is performed to optimize SURE for wavelet shrinkage, while Doré and Cheriet (2009) use
Newton's method to select the bandwidth parameter of the NL means minimizing Mallow's Cp
statistics. We follow such a strategy here to optimize R(û) for our extension of the NL means
using the joint similarity between noisy and noise-free patches as de�ned in Eq. (5.51). We apply
Newton's method on the joint �ltering parameters α and β. Newton's method iteratively re�nes
α and β with the update:(

α(n+1)

β(n+1)

)
=

(
α(n)

β(n)

)
−H(R)−1∇R (5.54)

with H(R)−1∇R =

(
∂2R(û(n))

∂α2
∂2R(û(n))
∂α∂β

∂2R(û(n))
∂β∂α

∂2R(û(n))
∂β2

)−1(
∂R(û(n))

∂α
∂R(û(n))

∂β

)

where n is the current iteration index, H(R) the hessian of the risk R and ∇R the gradiant of
the risk. To perform the optimization procedure in (5.54), the closed-form expressions of the
�rst and second order di�erentials are required.
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Newton's method �nds in few iterations the best trade-o� between the information brought
by the noisy image and the pre-estimated image to de�ne the weights. For instance, β will get a
high value when the pre-estimated image has a poor quality, resulting in weights determined only
from the noisy image. Reciprocally, α will get a high value when the pre-estimated image has
a high quality: the weights will be determined only from the well pre-estimated image. Figure
5.12 illustrates the in�uence of the parameters α and β on the solution of our extension of the
NL means.

The main result in (Van De Ville and Kocher, 2009) is that SURE for the NL means can be
obtained in closed-form. From its closed-form expression, the �rst and second order di�erentials
can be obtained and Newton's method (5.54) can be performed for images damaged by Gaussian
noise. Next, we will consider the case of Poisson noise, and provide the corresponding closed-form
expressions.

5.5.2 Application of the methodology for Poisson noise

Let us consider the case of our extension of the NL means given by:

û(xk) =

∑
l wk,lvl∑
l wk,l

(5.55)

with wk,l = w(xk, xl) = exp

(
−
Fk,l
α
−
Gk,l
β

)
,

Fk,l =
∑
τ

f(v(xk + τ), v(xl + τ)),

and Gk,l =
∑
τ

g(û(xk + τ), û(xl + τ))

where f(v1, v2) = − logLG(v1, v2) and g(û1, û2) = DKL(û1, û2). Here, we restrict our study to
the case of Poisson noise. Note however that the same methodology could be used for Gaussian
noise, gamma noise or for any noise model for which we have an estimate of the risk. The closed-
form expression of the risk estimator for Poisson noise, i.e., PURE, on our extension of the NL
means (5.55) is given by Eq. (3.47) that can rewrite as:

R(û) =
∑
x

u(x)2 + û(x)2 − 2v(x)û(x) (5.56)

with û(xk) =

∑
l wk,lvl∑
l wk,l

, (5.57)

wk,l = w(xk, xl) = exp

(
−
F k,l
α
−
Gk,l
β

)
,

F k,l =
∑
τ

f(v(xk + τ), v(xl + τ)) .

Note that (5.57) holds by assuming that Gk,l (i.e the pre-estimate û) does not depend on the
noise component of v. To satisfy this assumption, the noise variance in û has to be reduced
signi�cantly. This assumption simpli�es drastically the expression of u.

In terms of time complexity, we note as in (Van De Ville and Kocher, 2009) that the compu-
tation time is unchanged since the computation of PURE can be incorporated within the core
of the NL means. Moreover, the scan of the patches of v can be avoided thanks to the following
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Figure 5.13: The risk (MSE and PURE) and their two �rst order variations (from top to bottom)
with respect to the parameters α (left) and β (right).

relation:

F k,l = Fk,l +
f(vk, vk)− f(vk, vk), if xk = xl,
f(vk, vl)− f(vk, vl)

+f(v(2xk − xl), vk)− f(v(2xk − xl), vk), if xk ∈ Pxl ,
f(vk, vl)− f(vk, vl), otherwise.

Newton's method can then be performed using the following expressions given by substituting
µ and ν by α or β in the following equations:

∂R(û)

∂µ
=

2

N

∑
k

ûk
∂ûk
∂µ
− 2

N

∑
k

vk
∂ûk
∂µ

,

∂2R(û)

∂µ∂ν
=

2

N

∑
k

ûk
∂2ûk
∂µ∂ν

+
2

N

∑
k

(
∂ûk
∂µ

)(
∂ûk
∂ν

)
− 2

N

∑
k

vk
∂2ûk
∂µ∂ν

,

(5.58)

with: ∂ûk
∂µ

=

∑
Xk,lwk,l(kt − ûk)
µ2
∑
wk,l

,

∂2ûk
∂µ2

=

∑
X2
k,lwk,l(kt − ûk)
µ4
∑
wk,l

− 2
∂ûk
∂µ

∑
(Xk,l + µ)wk,l
µ2
∑
wk,l

,

∂2ûk
∂µ∂ν

=

∑
Xk,lYk,lwk,l(kt − ûk)
µ2ν2

∑
wk,l

− ∂ûk
∂µ

∑
Yk,lwk,l

ν2
∑
wk,l

− ∂ûk
∂ν

∑
Xk,lwk,l

µ2
∑
wk,l

where X = F (resp. Y = F ) when µ = α (resp. ν = α) and X = G (resp. Y = G) when µ = β
(resp. ν = β). The di�erentials for u are the same with respect to k, w and F . The resulting
�lter has been coined Poisson NL means.
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Gaussian noise σ=60 σ=40 σ=20 σ=10

Barbara

Noisy image 0.04 3.09 8.80 14.73
K-SVD 09.29 13.01 17.43 21.02
BM3D 12.14 14.59 18.38 21.48
NL means 10.24 12.85 16.97 19.85
Our �lter (25×) 10.99 13.49 15.96 18.69

Boat

Noisy image -1.49 1.63 7.42 13.41
K-SVD 9.04 11.78 15.62 18.87
BM3D 10.55 12.83 16.09 19.09
NL means 8.96 11.06 14.63 17.59
Our �lter (25×) 9.50 11.63 14.51 17.19

House

Noisy image -1.62 1.45 7.26 13.27
K-SVD 10.22 14.36 18.31 21.15
BM3D 13.28 15.78 18.94 21.77
NL means 10.40 13.33 17.55 20.25
Our �lter (25×) 11.57 14.20 17.03 19.59

Lena

Noisy image -1.25 1.81 7.60 13.59
K-SVD 11.09 14.18 17.81 20.93
BM3D 13.05 15.33 18.42 21.27
NL means 11.33 13.66 17.10 20.12
Our �lter (25×) 11.99 14.20 16.90 19.50

Gamma noise L=1 L=2 L=4 L=16

Barbara

Noisy image -1.09 1.69 4.61 10.57
WIN-SAR 8.82 10.48 12.04 15.82
MAP-UWD-S 9.65 11.44 13.28 16.93
Our �lter (1×) 9.79 11.88 14.05 17.83
Our �lter (25×) 10.58 12.51 13.98 16.59

Boat

Noisy image -2.99 -0.18 2.70 8.67
WIN-SAR 8.57 10.65 12.14 15.17
MAP-UWD-S 9.26 10.68 12.31 15.71
Our �lter (1×) 8.71 10.49 12.22 15.33
Our �lter (25×) 9.43 10.91 12.25 15.10

House

Noisy image -3.55 -0.76 2.11 8.10
WIN-SAR 8.69 11.42 13.15 16.24
MAP-UWD-S 10.34 11.97 13.72 17.24
Our �lter (1×) 9.06 11.61 14.29 18.27
Our �lter (25×) 10.46 12.98 14.50 17.42

Lena

Noisy image -2.45 0.34 3.25 9.19
WIN-SAR 10.35 13.00 14.72 17.90
MAP-UWD-S 11.87 13.53 15.14 18.65
Our �lter (1×) 11.05 13.20 15.18 18.61
Our �lter (25×) 12.16 13.95 15.25 18.10

Table 5.1: SNR values of estimated images using di�erent denoising methods for images cor-
rupted by Gaussian noise with di�erent standard deviations and by gamma noise with di�erent
equivalent numbers of looks.

Figure 5.13 shows the risk and its two �rst order di�erentials with respect to α and β. These
curves have been computed by applying the proposed method on a 150 × 150 noisy image for
di�erent values of the parameters. The MSE and its di�erentials have been computed from the
noise-free image and �nite di�erences. All estimates seem to �t the ground truth well.

5.6 Experiments and results

5.6.1 Simulations

This section presents visual and numerical results obtained on three synthetic images cor-
rupted by Gaussian noise, gamma noise and Poisson noise. The corrupted images are obtained
from three classical noise-free images: Barbara, Boat and House. On all noisy images, our exten-
sion of the NL means has been applied (iteratively for Gaussian and gamma noise and in a two
step strategy with unsupervised setting for Poisson noise). A search window of size |W | = 21×21
px2 and patches of size |P| = 7× 7 px2 have been used. The iterative �ltering is initialized with
the result of our extension of the NL means using the similarity between noisy patches only. The
two pass �ltering used a pre-estimate provided by a moving average �lter with a convolution
disk of radius 5 px. Denoising parameters α and β have been determined in a supervised way
using the quantile method for Gaussian and gamma noise (in this case GLR is CFAR). Since
GLR is not CFAR for Poisson noise, we used instead the unsupervised setting based on risk min-
imization. Some comparison with the latest state-of-the-art �lters are provided. For Gaussian
noise, the comparisons have been performed with the original NL means (Buades et al., 2005),
the K-singular value decomposition (K-SVD) (Aharon et al., 2006) and the block-matching and
3D collaborative �ltering (BM3D) (Dabov et al., 2007). Note that the NL means �lter corre-
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Poisson noise p = 5 p = 10 p = 20 p = 150

Barbara

Noisy image -2.82 0.13 3.16 11.88
P-HaarTI 9.08 9.75 10.56 15.64
P-BM3D 11.30 13.23 15.17 19.86
P-SAFIR 9.14 11.05 13.03 17.46
Our �lter (2×) 9.97 11.72 13.65 18.63

Boat

Noisy image -4.81 -1.80 1.20 9.95
Haar 9.20 10.45 11.72 15.82
P-BM3D 9.97 11.58 13.04 17.40
P-SAFIR 8.76 9.91 11.68 16.04
Our �lter (2×) 9.20 10.57 12.06 16.21

House

Noisy image -4.95 -1.93 1.09 9.84
P-HaarTI 10.62 12.10 13.74 17.80
P-BM3D 11.92 13.94 15.87 19.97
P-SAFIR 9.24 10.93 13.14 18.10
Our �lter (2×) 10.96 12.57 14.50 19.09

Lena

Noisy image -4.23 -1.23 1.75 10.52
P-HaarTI 11.57 13.06 14.51 18.49
P-BM3D 12.16 14.02 15.74 20.02
P-SAFIR 10.39 11.61 13.67 18.45
Our �lter (2×) 11.73 13.22 14.89 19.28

Table 5.2: SNR values of estimated images using di�erent denoising methods for images corrupted
by Poisson noise with di�erent maximum peak values.

sponds here to a non-iterative version of our �lter. For gamma noise, the comparisons have been
performed with the wavelet-based image-denoising non-linear SAR (WIN-SAR) �lter (Achim
et al., 2003) and the MAP �lter based on undecimated wavelet decomposition and image seg-
mentation (MAP-UWD-S) (Bianchi et al., 2008). For Poisson noise, the comparisons have been
performed with an approach based on translation invariant Haar-wavelet transform for Poisson
noise (P-HaarTi) (Willett and Nowak, 2004), the BM3D �lter using the optimal inversion of
Anscombe transform (P-BM3D) (Mäkitalo and Foi, 2011) and the SAFIR �lter using also the
optimal inversion of Anscombe transform (P-SAFIR) (Boulanger et al., 2008).

Figures 5.14, 5.15 and 5.16 present the obtained denoised images for the images corrupted
respectively by Gaussian noise with a standard deviation σ = 40, by gamma with an equivalent
number of L = 3 looks and by Poisson noise with a maximum peak of 20 photons. Note that
these three noise levels have been chosen because they provide comparable levels of signal-to-
noise ratio (SNR, de�nition given in Sec. 2.1.3). Note that for synthetic SAR images the square
roots of the images are displayed for a better visual assessment.

In the case of Gaussian noise, the images obtained with our �lter seem to be well smoothed
with better edge and shape preservation than the NL means; re�ning weights is necessary for
high level of noise. The images denoised by the K-SVD and the BM3D �lters present some
artifacts while our �lter provides smoother regions with comparable edge preservation. However,
our �lter seems to attenuate the image contrast and thin and dark structures such as the mouth
of Lena, the eyes of Barbara and the ropes of the Boat, while the BM3D �lter preserves these
structures. This phenomenon can in part be explained by the high values of α-quantile chosen
to get a (qualitatively satisfying) low variance in homogeneous regions. It could also be reduced
by considering smaller search windows, at the cost of larger remaining noise variance.

In the case of gamma noise, the images denoised by the WIN-SAR and the MAP-UWD-S
�lters are less smoothed than the images obtained by our �lter. Moreover, the WIN-SAR �lter
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(a) Noisy image (b) K-SVD (c) BM3D (d) NL means (e) Our �lter ×25

Figure 5.14: (a) From top to bottom, corrupted images of Barbara, Boat and House by Gaussian
noise with standard deviation σ = 40. Denoised images using (b) the K-SVD �lter, (c) the
BM3D �lter, (d) the NL means �lter and (e) 25 iterations of our �lter.

blurs the edges and the MAP-UWD-S �lter introduces some artifacts in the neighborhood of
the edges. The gain of using pre-estimate, i.e., a joint similarity criteria, is similar in the gamma
case as in the Gaussian case. In the case of Poisson noise, P-BM3D provides the best visual
result. Our approach better reduces the residual noise than HaarTI and SAFIR but the result
is maybe too smooth.

To quantify the denoising qualities, Table 5.1 and 5.2 presents numerical results for images
corrupted by Gaussian noise with standard deviations σ = 10, 20, 40 and 60, gamma noise
with equivalent number of looks L = 1, 2, 4 and 16 and Poisson noise with a maximum
peak of p = 5, 10, 20 and 150 photons. The performance criterion used is the signal to noise
ratio (SNR) de�ned in Sec. 2.1.3. We observe that iterative �lters improve non-iterative �lters
for low SNR images. High SNR images (standard deviation σ ≤ 30 or equivalent number
of looks L ≥ 4) do not require iterative re�nement of the weights. In the case of Gaussian
noise, our approach is better than the K-SVD �lter for low SNR images, but is out-performed
by the BM3D �lter at all SNR values. In the case of gamma noise, our �lter out-performs
all the state-of-the-art �lters considered for low SNR images. Nevertheless, the PPB �lter
provides comparative results to the MAP-UWD-S �lter for high SNR images (i.e., with a
large equivalent number of looks L). The iterative �lter is then more relevant since images
damaged by gamma noise are generally provided for a low equivalent number of looks such as
L = 1, 2, 3 or 4 (e.g. radar or sonar images). In the case of Poisson noise, our approach is out-
performed by P-BM3D for all values of maximum peak, but improves on P-HaarTI and P-SAFIR.

Finally, note that our purpose is not to provide the best denoising algorithm, but to �nd a
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(a) Noisy image (b) WinSAR (c) MAP-UWD-S (d) Our �lter ×1 (e) Our �lter ×25

Figure 5.15: (a) From top to bottom, corrupted images of Barbara, Boat and House by gamma
noise with equivalent number of looks L = 3. Denoised images using (b) the WIN-SAR �lter,
(c) the MAP-UWD-S �lter, (d) our non-iterative �lter and (e) 25 iterations of our �lter.

rigorous methodology to adapt non-local �ltering to an uncorrelated noise described by a given
pdf. Our �lter seems to be working equally well for Gaussian, gamma and Poisson noise when
the noise levels are similar, whereas, most of the other �lters are specially designed to cope with
a �xed noise model. Thus, our �lter seems to be an e�cient extension of the NL means �lter to
take into account di�erent noise degradation models.

5.6.2 Results on real data

This section presents di�erent results obtained on real data damaged by gamma or Poisson
noise. We use the same state-of-the-art �lters as the ones used above and our �lter. In all
experiments, the algorithms are executed with the same parameters described in the previous
section.

Figure 5.17 presents two single-look SAR acquisitions identi�ed as Bayard and Cheminot

from Saint-Pol-sur-Mer (France), sensed in 1996 by RAMSES of ONERA, and one single-look
SAR acquisition identi�ed as Toulouse of CNES in Toulouse (France) sensed also by RAMSES
and provided by CNES. All these images are assumed to follow the gamma noise model. The
obtained denoised images for the di�erent real SAR images and the di�erent denoising �lters are
given. The results obtained with our iterative �lter seem to be well smoothed with a better edge
and shape preservation than other �lters. The speckle e�ect is strongly reduced and the spatial
resolution seems to be well preserved: buildings, sidewalks, streets and �elds are well restored.
Moreover, the bright scatterers (numerous in urban areas) are well restored. Unfortunately, our
�lter seems to attenuate thin and dark structures existing in the SAR image, such as the thin
streets in Cheminot and Toulouse.
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(a) Noisy image (b) P-HaarTI (c) P-BM3D (d) P-SAFIR (e) Our �lter ×2

Figure 5.16: (a) From top to bottom, corrupted images of Barbara, Boat and House by Poisson
noise with a maximum peak of 20 photons. Denoised images using (b) the P-HaarTI �lter, (c)
the P-BM3D �lter, (d) the P-SAFIR �lter and (e) our two step �lter.

Figure 5.18 presents an image 2 of a mitochondrion sensed in low-light conditions by confocal
�uorescence microscopy (Pelloux et al., 2006), and an X-ray image of a supernova explosion in the
Milky Way of the supernova remnant G1.9+0.3. Both images are assumed to follow the Poisson
noise model. The obtained denoised images for these di�erent images and the di�erent denoising
�lters are also given. The visual results of our �lter challenge the state-of-the-art results.

5.7 Conclusion

An extension of the NL means was proposed for image denoising when noise is non-Gaussian
and the noise distributions is known. Our extension is a weighted maximum likelihood estimator
where weights are determined by a joint similarity criterion. It is based on a statistical test used
to compare noisy patches and patches of a pre-estimated image. The use of a pre-estimated
image to re�ne weights is proposed to enhance the denoising quality in the case of low signal to
noise ratio images and its e�ciency has been shown on Gaussian noise, gamma noise and Poisson
noise. Thanks to oracle studies, we have shown the relevance of the proposed joint similarity
criterion. It provides a new framework for image denoising when the uncorrelated noise model
is known. A risk estimator for the NL means has been derived for Poisson noise. This risk
estimator is used in an optimization method to automatically select the �ltering parameters in
few iterations. Numerical results as well as visual results support the e�ciency of this extended
method.

2. image courtesy of Y. Tourneur
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(a) Noisy image (b) WinSAR (c) MAP-UWD-S (d) Our �lter ×1 (e) Our �lter ×25

Figure 5.17: (a) From top to bottom, SAR images of Bayard (France) c©DGA c©ONERA,
Cheminot (France) c©DGA c©ONERA and Toulouse (France) c©DGA c©ONERA. Denoised
images using (b) the WIN-SAR �lter, (c) the MAP-UWD-S �lter, (d) our non-iterative �lter and
(e) 25 iterations of our �lter.

(a) Noisy image (b) P-HaarTI (c) P-BM3D (d) P-SAFIR (e) Our �lter ×2

Figure 5.18: (a) From top to bottom, an image of a mitochondrion sensed in low-light conditions
by confocal �uorescence microscopy (Pelloux et al., 2006), an X-ray image of a supernova explo-
sion in the Milky Way of the supernova remnant G1.9+0.3 (image courtesy to Chandra X-ray
Observatory � data identi�er: ADS/ Sa.CXO]Contrib/ ChandraDeepField). Denoised images
using (b) the P-HaarTI �lter, (c) the P-BM3D �lter, (d) the P-SAFIR �lter and (e) our two step
�lter.
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Chapter 6

Applications of non-local approaches to

SAR images

Synthetic aperture radar (SAR) images are increasingly used in remote sensing, for a broad
variety of applications ranging from crisis management to biomass study. Several new high reso-
lution airborne and spaceborne sensors with full polarimetric and/or interferometric capabilities
are now operating (F-SAR, TerraSAR-X, . . . ).

Prior to their analysis, SAR images generally undergo processing steps that degrade their
resolution. Due to strong speckle in SAR images, local smoothing is performed to mitigate the
�uctuations in homogeneous regions. Furthermore, the computation of the interferometric and
polarimetric signature of a radar scene requires estimating local covariance matrices. Though a
speckle reduction step is unavoidable in many applications, special care must be taken to limit
blurring of signi�cant structures in SAR images.

The crudest approach to speckle reduction and covariance estimation, referred to as multi-

looking in radar community, computes a simple moving average with a (typically rectangular)
window (see Sec. 2.2.1). A satisfying smoothing of homogeneous regions comes at the cost of a
resolution loss.

Several improvements to multi-looking have been proposed in the radar literature. The com-
mon underlying idea is to adapt the selection of pixels used in each covariance matrix estimation
in order to prevent mixing pixels belonging to di�erent structures (e.g., blurring edges and strong
scatterers by averaging them with their surrounding background). Several approaches for adap-
tive selection have been considered:

� Lee et al. (1999, 2003) suggested locally selecting the best window among a few pre-de�ned
windows (a rectangular window and 8 edge-aligned oriented windows, see Sec. 2.3.2 and
Fig. 2.5). Window selection is based on the gradient of the intensity image. This leads
to good preservation of straight edges. However, abrupt change in the decision (from one
window to another) at neighboring pixels creates artifacts. The limited number of pre-
de�ned windows considered restricts the adaptation to complex structures or textures, and
thus the ability to correctly restore them.

� Vasile et al. (2006) proposed to build locally by region-growing an adaptive neighborhood
restricted to similar pixels. Adjacent pixels are aggregated incrementally based on their in-
tensity (hence the name �IDAN�: intensity-driven adaptive-neighborhood). This approach
is therefore more �exible than the use of pre-de�ned windows, and leads to better res-
olution preservation, for a given amount of smoothing, than the previous methods. By
construction, adaptive neighborhoods are necessarily a set of connected pixels, and all val-
ues are given the same weight in the estimation. The method is known to su�er from a
selection bias. We show in Sec. 3.8.2 that due to speckle, intensities follow a heavy-tailed
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distribution; the selection of pixels with similar intensity however discards large values
which biases the subsequent maximum likelihood estimation (see Sec. 3.8).

� The approach for pixel selection can be further generalized by considering extended non-
local (i.e., non connected) neighborhoods, and by weighting the relative importance of
pixels. This is the idea considered in previous chapter. Independently, Lee et al. (2009)
designed an extension of its (non-local) sigma �lter (see Sec. 3.8.2) while we proposed
a �rst adaptation of the NL means in (Deledalle et al., 2009b), both of these methods
aim at reducing speckle in amplitude SAR images. We then extended our methodology
to interferometric SAR (Deledalle et al., 2011a) and polarimetric SAR (Deledalle et al.,
2010d). At the same time, a similar approach was independently described in (Chen et al.,
2011) for polarimetric SAR images. Our proposed methodology inspired Parrilli et al.
(2010) to adapt the BM3D �lter of Dabov et al. (2007) to amplitude denoising and Teuber
and Lang (2011) to derive extensions of our work. Recently, Zhong et al. (2011) mixed
the ideas of Lee et al. (2009) and Kervrann et al. (2007) and showed the e�ciency of their
methods to reduce speckle in intensity images.

Our contributions� In this chapter, we describe a uni�ed framework, NL-SAR, for non-local
denoising of amplitude (SAR), interferometric (InSAR), polarimetric (PolSAR) or polarimetric
and interferometric (PolInSAR) radar images. We address several issues that are crucial in
practice for resolution-preserving denoising:

1. Polarimetric or interferometric images are either processed after multi-looking (Chen et al.,
2011), or with �lters driven by the (span) intensity only (Vasile et al., 2006; Lee et al., 2003).
Following the general methodology of Chap. 5, we describe a non-local �lter for SAR data
(NL-SAR) driven by similarities jointly estimated on all channels and preserving resolution
by processing directly single-look images.

2. We discuss the bene�ts of iterative denoising with re�ned similarities.

3. The issue of correlated data is addressed by adapting the kernel used to de�ne the weights.

4. A semi-supervised approach for setting the �ltering parameter is described.

5. The method is validated on RAMSES (ONERA), AIRSAR (NASA/JPL-Caltech) and re-
cent aerial (F-SAR) data from the German Aerospace Center (DLR).

Together with this method, we release under public license the source code of NL-SAR. The
technical documentation of NL-SAR is given in Appendix B.

Organization of the chapter� Section 6.1 gives an overview of SAR technologies from the physical
aspects to the mathematical representations of SAR amplitude, InSAR, PolSAR and PolInSAR
images. The statistics of SAR images are detailed in Sec. 6.2 under the fully developed speckle

assumption. Based on these distributions, Sec. 6.3 reviews the basic estimators proposed to
retrieve the underlying SAR parameters. In Sec. 6.4, the methodology proposed in Chap. 5 is
used to derive a non-local �lter (NL-SAR) relevant for speckle described by a complex Wishart
distribution. We see that the application of this methodology requires special attention to deal
with the multi-channel complex SAR data especially when the equivalent number of looks is
low. Experiments and results in Sec. 6.5 show the e�ciency of the proposed approach in SAR
interferometry and SAR polarimetry.
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Figure 6.1: (a) Principle of line construction in a radar image. Thanks to the use of a non-null
incidence angle θ, objects located at di�erent positions on the ground in the range direction will
be projected at di�erent positions on the line of sight. (b) Principle of column construction in a
radar image. The radar sensor acquires the di�erent lines by moving in the azimuthal direction.

6.1 The di�erent modalities of synthetic aperture radar images

6.1.1 Synthetic aperture radar (SAR) imagery

Radar (radio detection and ranging) technology consists of emitting an electromagnetic wave
characterized by its wavelength and of measuring the echo of the backscattered wave. When
the wave meets the ground the wave is di�used in multiple directions. The amplitude and the
phase of the electromagnetic wave are then a�ected according to the nature of the ground (up
to attenuations). The main factors are the roughness, the soil moisture, the ground permittivity
and the local slope. The backscattered wave, i.e., the part of the wave remitted in the direction
of the emission, is then acquired by the sensor.

The time delay between the emission and the reception is linked to the distance between
the object and the sensor. The wave is emitted with a non-null incidence angle in a direction
called the range direction (see Fig. 6.1). The echos of two objects located at di�erent positions
in the range direction will be received at di�erent times. Based on this principle, a radar imaging
system sends an impulsional wave considered as plane with respect to the observed scene. It
collects a set of measurements separated by a time step δt and then located at di�erent positions
in the range direction. The relation between time and distance allows us to build one line of
the image. Having moved forward in the orthogonal direction, called the azimuthal direction,
the sensor acquires a new line. The set of lines forms the radar image. Figure 6.1 illustrates the
formation of a radar image in range and azimuth.

According to Fig. 6.1, the resolution in range is linked to the time step δt: in order to
distinguish two objects, we should be able to dissociate them in the temporal signal. In
azimuth, the resolution is linked to the wavelength, the distance from the sensor to the object
and the length of the antenna. To reach a good trade-o� in terms of ground permittivity and
surface roughness, the wavelengths are usually chosen in bands L, C or X, i.e., on the order of
centimeters. The distance R can range from 2 km for airborne sensors to 800 km for spaceborne
sensors. To reach a resolution below the order of meters, the length of the antenna should be on
the order of several kilometers which is impossible in practice. Synthetic aperture radar (SAR)
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(a) Optical image (b) Single-look amplitude image (c) 7× 7-look amplitude image

Figure 6.2: (a) An optical image, (b) the single-look amplitude and (c) the multi-look amplitude
of a SAR image of the same urban area of Toulouse (France). The optical image has been sensed
by Quickbird ( c©DigitalGlobe) and the SAR image by RAMSES ( c©ONERA). The single-look
amplitude image presents high �uctuations while the multi-look amplitude image presents smaller
�uctuations but with blurry features. In average, the amplitude is low in smooth areas such as
streets, it is higher in rough areas such as grass or vegetation and is extremely high around
man-made structures, vehicles or tree trunks.

imagery is a technique based on the coherent emission along track to synthesize a large virtual
antenna while in practice using an antenna on the order of few meters.

A SAR imaging system provides images such that each pixel corresponds to an area on
the ground, called �resolution cell�, whose dimensions depend on the resolution in range and
azimuth. A pixel contains the amplitude and the phase of the backscattered wave observed for
the corresponding resolution cell. For this reason, a SAR image is a complex image whose pixel
values can be decomposed as z = Aejϕ where j is the imaginary number such that j2 = −1.
We denote such an image as a single-look complex (SLC) image. The modulus A = |z| is the
amplitude and the quantity I = A2 is the intensity. The argument ϕ = arg z is the phase and,
without extra information, it is meaningless since its values are uniformly distributed in the
range ]− π, π] and uncorrelated.

For a given resolution cell, the observed backscattered echo results from the interferences
between many elementary scatterers. Due to these interferences, SLC SAR images su�er from
high �uctuations inherent to the random organization of the elementary scatterers inside the
resolution cell (see Sec. 6.2.1). These �uctuations are referred to as speckle. Due to the high
variability caused by speckle, SAR images have long been spatially averaged at the price of a
loss of resolution. Under the ergodicity assumption, such techniques rely on the fact that each
sample in the local neighborhood can be interpreted as another look, i.e., a realization of the
pixel value of interest. By averaging all these samples, the noise can be reduced signi�cantly (see
also Section 2.2.1). Multi-look images result from the computation of the mean intensity of L
scattering complex values zi over a sliding window:

I =
1

L

L∑
i=1

|zi|2, (6.1)

where L is referred to as the equivalent number of looks. The multi-look amplitude image is
obtained by taking the square root of the multi-look intensity image: A =

√
I.
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Figure 6.2 gives an example of a SAR image compared to an optical image. The average
amplitude is low in smooth areas such as streets, higher in rough areas such as grass or vegetation
and extremely high around man-made structures, vehicles or tree trunks. The high �uctuations
due to speckle strongly corrupt the signal of interest. The multi-look amplitude image presents
smaller �uctuations but with a loss of resolution: the edges of objects appear blurry.

6.1.2 Interferometric SAR (InSAR) imagery

The phase ϕ can be decomposed in two terms as follows:

ϕ = ϕproper + ϕtopographic . (6.2)

The topographic phase ϕtopographic is linked to the propagation time of the wave from the target
to the sensor and is equal to:

ϕtopographic =
4π

λ
R (6.3)

where λ is the wavelength and R the distance between the target and the sensor. The proper
phase ϕproper depends on the coherent summation of complex signals backscattered by many
elementary scatterers located in the same resolution cell. The proper phase ϕproper is then
ascribed to speckle which is stable for di�erent acquisitions under the assumption that the nature
of the surface has not changed. The phase is then deterministic but the con�guration of the
resolution cell is unpredictable. Hence, the phase appears as random with a uniform distribution
in ]− π, π].

Because of the random behavior of the proper phase, the observed phase ϕ seems to be
non-exploitable. In a stereo-vision framework, Graham (1974) suggests using two SAR images
of the same area sensed with quasi-identical conditions and a slightly di�erent incidence angle.
As a consequence, the term ϕproper is unchanged and only ϕtopographic di�ers between the two
acquisitions. The phase di�erence � the interferometric phase � between two images z1 and z2

acquired in close locations gives the path delay between the two waves and is then independent
on the proper phase:

φ = ϕ1 − ϕ2 = ϕtopographic,1 − ϕtopographic,2 . (6.4)

Under reasonable geometrical assumptions, Massonnet and Rabaute (1993) show that the height
z can be linked to the interferometric phase φ as follows:

z =

(√
X2 +H2

bx
tan θ

)
(R1 −R2) =

(
λ

4π

√
X2 +H2

bx
tan θ

)
φ (6.5)

where the di�erent involved quantities are de�ned in Fig. 6.3. There is proportionality between
the height z and the interferometric phase φ. Note that under other geometrical assumptions,
other relations can be used to link the height z of the scene with the interferometric phase φ
(Prati and Rocca, 1990; Lin et al., 1992). Depending on the system, the phase can be measured
with a precision from 2 to 5% of the wavelength. Since the wavelengths are chosen on the order
of centimeters, interferometry leads to a precision on the order of meters.

A �rst problem in InSAR is that the interferometric phase φ is known modulo 2π. This
results in the presence of fringes in the interferometric phase image. In order to use Eq. (6.5),
it is then necessary to unwrap the phase to retrieve the underlying height. Phase unwrapping
is a di�cult task addressed by several authors, see for instance (Goldstein et al., 1988; Ghiglia
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1 2

Ground

Flat earth

Figure 6.3: Principle of interferometric SAR imagery. Using two acquisitions separated by a
baseline bx. The height z of a point P can be retrieved from geometrical considerations where
R1 and R2 to are the distance of P to the two respective sensors, X is its location on the ground
and H the altitude of the sensor.

and Romero, 1989; Pascazio and Schirinzi, 2001; Bioucas-Dias and Valadão, 2007; Bioucas-Dias
et al., 2008). The phase unwrapping problem is out of the scope of this thesis.

A second problem in InSAR is that the interferometric phase contains an orbital component
due to the �at earth assumption (see Fig. 6.3). The orbital phase produces a linear phase
ramp resulting in orbital fringes. In some cases, when the sensor parameters are well-chosen
and with reasonable assumptions, pre-processing methods can e�ciently suppress these orbital
fringes (Rosen et al., 2000). In the following, this component is considered to be removed by a
pre-processing step, so that an horizontal area always appears with a constant interferometric
phase, up to �uctuations due to noise.

Due to temporal and spatial variations, the speckle components between the two acquisitions
(i.e., the underlying scattering processes) can present a decorrelation which a�ects the inter-
ferometric phase (Hanssen, 2001). The interferometric phase φ and the empirical coherence d
are, respectively, the phase and the magnitude of the normalized complex hermitian product
between the two acquisitions z1 and z2. To reduce errors, interferograms are also commonly
built by averaging L samples over a sliding window:

dejφ =

∑L
i=1 z1,iz

∗
2,i√∑L

i=1 |z1,i|2
∑L

i=1 |z2,i|2
. (6.6)

The empirical coherence d appears as a crucial indicator of the reliability of the observed inter-
ferometric phase φ. The empirical coherence is comprised between 0 and 1. When it is close to 1,
the two acquisitions are coherent and the phase di�erence φ is directly related to the path delay
(modulo an uncertainty due to the phase wrapping). When d is close to 0, the two acquisitions
are decorrelated and the phase φ does not contain any information. The level of noise in the
interferometric phase φ increases when the empirical coherence d decreases.

Fig. 6.4 gives an example of an interferogram built on an urban area acquired with two
simultaneous acquisitions (no temporal decorrelation). In this con�guration (very small baseline),
the phase is inside one fringe, then no unwrapping step is necessary. The ground has a uniform
height while buildings, vegetation and hills appear at higher levels. Phase errors can be observed
in the single-look interferogram. They are all the more important when the coherence is low. The
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(a) Single-look interferogram (b) 7× 7-look interferogram (c) 7× 7-look emp. coherence

Figure 6.4: (a) Single-look interferogram, (b) multi-look interferogram and multi-look empirical
coherence obtained from a pair of co-registered SAR images. The SAR images have been sensed
by RAMSES ( c©ONERA). The phase is linked to the height of the scene up to errors arising in
region with low coherence. The multi-look interferogram present smaller errors at the expense
of a resolution loss.

multi-look interferogram presents smaller errors at the expense of a resolution loss. Note that
without multi-looking, the empirical coherence would always be maximum: d = 1 when using
L = 1 in Eq. (6.6). In order to properly estimate the level of coherence between two acquisitions,
one needs to proceed to multi-looking. The level of coherence is then always measured with a
loss of resolution.

6.1.3 Polarimetric SAR (PolSAR) imagery

Polarimetric SAR images are obtained by sensing the horizontal and vertical polarization
components of the back-scattered wave, when a wave with vertical or horizontal polarization
is emitted. A common representation, called the lexicographic representation, is to build a
scattering vector as k = (zhh, zvv,

√
2zhv)

t where zhh, zvv and zhv are the backscattered returns
from respectively horizontal emission and horizontal reception, vertical emission and vertical
reception, and horizontal emission and vertical reception. Note that the element zvh is omitted
since, using mono-static polarimetry, it can be assumed that zvh = zvh (cf. the target reciprocity
assumption). The factor

√
2 is then introduced to preserve the norm of the vector. Polarimetric

SAR images inform us on both the intensities of the di�erent polarizations and the complex
hermitian product between each pair of di�erent polarizations. These quantities are respectively
given by the diagonal elements and the o�-diagonal elements of the empirical complex covariance
matrix C of the scattering vector k. Multi-looking can also be performed to decrease speckle

such that:

C =
1

L

L∑
i=1

kik
†
i (6.7)

where † indicates the hermitian transpose. The complex cross correlations between the polarimet-
ric channels (i.e., the phase di�erences and the empirical coherences) depend on the polarimetric
nature of the scene, e.g., the kind of bounce, the heterogeneity of the back scatterers or the wave
incidence angle. Several works aim at extracting the semantics of these parameters to provide
a physical description of the scattering process (Huynen, 1970; Krogager, 1990; Cameron and
Leung, 1990; Freeman and Durden, 1998; Touzi, 2004).
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Figure 6.5: Principle of polarimetry SAR imagery. The information brought by the use of
di�erent polarimetric waves informs us on the kinds of bounces. The echos measured on a
smooth surface, a man-made structure or the forest canopy results respectively from a single
bounce, double bounce and multiples bounces.

A common way to emphasize the physical phenomena of wave scattering is to consider the
Pauli basis to represent the scattering vectors (Cloude and Pottier, 1995). The scattering vector
becomes:

k(Pauli) =
1√
2

 zhh + zvv
zhh − zvv

2zhv

 =
zhh√

2

 1
1
0


︸ ︷︷ ︸
−→v 1

+
zvv√

2

 1
−1
0


︸ ︷︷ ︸
−→v 2

+
2zhv√

2

 0
0√
2


︸ ︷︷ ︸
−→v 3

, (6.8)

and the empirical covariance matrix C(Pauli) is de�ned by substituting k by k(Pauli) in Eq. (6.7).
The relations between the lexical and the Pauli representation are given by:

k(Pauli) =
1√
2

 1 1 0
1 −1 0

0 0
√

2

k , (6.9)

C(Pauli) =
1

2

 1 1 0
1 −1 0

0 0
√

2

C
 1 1 0

1 −1 0

0 0
√

2

 . (6.10)

This representation relies on the fact that we have an interpretation of the scattering mechanisms
described by −→v 1,

−→v 2 and −→v 3. The vector
−→v 1 describes single or odd bounces (e.g., the ocean

surface). The vector −→v 2 describes the double or even bounces (e.g., urban areas and man-made
structures). The vector −→v 3 describes scatters returning the orthogonal polarization (e.g., the
forest canopy). Figure 6.5 illustrates these di�erent types of bounces. Such a representation is
used to visualize PolSAR images with an RGB colorization built such that the red is linked to
−→v 1, the green to −→v 3 and the blue to −→v 2. In Fig. 6.6, the ocean appears in blue, forest in green
and urban areas in red.

Another solution to ease the interpretation of the scattering phenomena is to consider a
decomposition of C invariant of the chosen basis. Inspired by the work of Huynen (1970), Cloude
and Pottier (1996) suggest diagonalizing the covariance matrix in terms of its eigenvectors and
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(a) Optical image (b) Polarimetric SAR image

(c) Multi-look PolSAR (d) Entropy (e) Anisotropy (f) Alpha angle

Figure 6.6: (a) An optical image and (b) the single-look, (c) multi-look, (d) entropy, (e)
anisotropy and (f) alpha angle of a polarimetric SAR image of San Francisco (California, USA).
The optical image has been sensed by Quickbird ( c©DigitalGlobe) and the SAR image by Air-
SAR ( c©NASA/JPL). The polarimetric SAR image is displayed using an RGB representation
based on the Pauli basis. The red color is representative of urban areas, the green of vegetation
areas and the blue of the ocean surface.

eigenvalues such that:

C = U

 λ1 0 0
0 λ2 0
0 0 λ3

U−1 where U = (−→e 1
−→e 2
−→e 3) (6.11)

and λ1 ≥ λ2 ≥ λ3 ≥ 0 are the eigenvalues and −→e 1,
−→e 2 and −→e 3 the respective eigenvectors.

Each eigenvector encodes a scattering mechanism and the associated eigenvalue its contribution.
Since the eigenvectors are unitary vectors, they can be decomposed as follows:

−→e i =

 cosαi e
jζi

sinαi cosβi e
jζi

sinαi sinβi e
jγi

 . (6.12)

Based on these decompositions, Cloude and Pottier (1997); Cloude et al. (2001); Hajnsek et al.
(2003) extract three important physical features describing the underlying physical phenomena:



134 6. Applications of non-local approaches to SAR images

(a) Optical image (b) Polarimetric SAR image

(c) Multi-look PolSAR (d) Entropy (e) Anisotropy (f) Alpha angle

Figure 6.7: (a) An optical image, (b) the single-look, (c) multi-look, (d) entropy, (e) anisotropy
and (f) alpha angle of a polarimetric SAR image of an urban area in Kaufbeuren (Germany).
The optical image has been sensed by Quickbird ( c©DigitalGlobe) and the SAR image by F-SAR
( c©DLR). The polarimetric SAR image is displayed using an RGB representation based on the
Pauli basis.

� The entropy H ∈ [0, 1] (de�ned in the Von Neumann sense):

H = −
3∑
i=1

pi log3 pi where pi =
λi∑3
i=1 λi

(6.13)

and pi are referred to as the scattering probabilities. The entropy measures the randomness
of the scattering process (the statistical disorder of the scene). When H = 0, there is only
one single mechanism involved since λ2 = λ3 = 0. It corresponds to a pure target, for
instance, a smooth surface such as a sea ice surface or an ocean surface. When H = 1,
three pure random mechanisms are involved since λ1 = λ2 = λ3. We say that we have a
distributed target, depolarized for which no information can be extracted. For other values
of H, we have a combination of three random mechanisms whose contributions are given
by the eigenvalues.
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� The anisotropy A ∈ [0, 1]:

A =
λ2 − λ3

λ2 + λ3
(6.14)

provides complementary information to the entropy. When the entropy is non-zero, typ-
ically H > 0.7, the anisotropy indicates if either two pure or several mechanisms are
involved. When A = 1, there are two pure targets since λ3 = 0. When A = 0, there are
three pure targets since λ2 = λ3.

� The mean scattering angle α ∈]− π, π]:

α = p1α1 + p2α2 + p3α3 (6.15)

is a direct measure of the underlying scattering process. When α = 0, it corresponds to
a single bounce scattering produced by a rough surface. When α = π/4, it corresponds
to volume scattering. When α = π/2, it corresponds to double bounce scattering. This
parameter is also in�uenced by the moisture of the surface.

Figure 6.6 and 6.7 give two examples of polarimetric images. The �rst one is an image of San
Francisco in 1988 sensed by L-band AIRSAR (NASA/JPL-Caltech) with a low resolution of about
10 meters/pixel in range and azimuth. The second one is an image of Kaufbeuren (Germany) in
June 2011 sensed by S-band F-SAR (DLR) with a high resolution of 0.5 meter/pixel in azimuth
and 0.64 meter/pixel in range. For each image, we display their entropy, anisotropy and mean
scattering angle. Note that without multi-looking, these quantities cannot be estimated since
they require that the empirical covariance matrix C is non-singular. A minimum of 3 equivalent
number of looks is then required.

6.1.4 Polarimetric Interferometric SAR (PolInSAR) imagery

When two polarimetric images are acquired in an interferometric con�guration, the resulting
6-dimensional scattering vector k is referred to as the polarimetric interferometric SAR
(PolInSAR) vector (two acquisitions of three di�erent polarizations). The empirical covariance
matrix informs us on both path delays and polarimetric characteristics. PolInSAR is getting
much attention, for two related reasons: the increasing availability of PolInSAR data and the
appealing richness of information it captures in particular for biomass applications.

In all these di�erent modalities SAR images su�er from a strong speckle e�ect and decorre-

lation errors. The use of multi-looking allows us to decrease the noise level at the expense of a
resolution loss. In the next section, we will see that, under Goodman's assumptions, all these
images can be described by a common model that can be considered to perform noise reduction
with resolution preservation.

6.2 Statistics of SAR images

6.2.1 Goodman's model of SLC images

Due to interferences between the elementary scatterers inside the same resolution cell, SLC
SAR images su�er from �uctuations inherent to the complex geometrical organization of the
elementary scatterers. As illustrated in Fig. 6.8, the observed complex value results from the
coherent summation of these elementary scatterers. Goodman (1963) assumes that each punctual
target can be modeled as a complex value such that:
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Figure 6.8: (a) An illustration of the coherent summation of the several elementary scatterers
located in the same resolution cell. (b) According to Goodman's model, the distribution of the
observed complex echo follows a circular complex Gaussian distribution.

1. its real and its imaginary parts are independent and identically distributed random vari-
ables,

2. it is independent on other punctual targets,

3. its phase is uniformly distributed and independent of the amplitude.

SAR images having a low resolution compared to the scale of the punctual targets, the number
of elementary scatterers inside each resolution cell can be assumed to be large. The application
of the central limit theorem under Goodman's assumptions leads to model the resulting complex
value z as following a zero-mean complex circular Gaussian distribution de�ned as:

p(z|σ2) , p(Re[z], Im[z]|σ2) =
1

πσ2
exp

(
−|z|

2

σ2

)
(6.16)

where σ2 = E[|z|2] is a quantity linked to the backscattering coe�cient and thus to the radar
cross section per unit volume (Bamler and Hartl, 1998). It characterizes the surface roughness,
the surface moisture and the scattering material perceived at location x (Sprague, 1972; McK-
inney et al., 2000). In the following, we call the unknown parameter of interest σ2 the surface
re�ectivity. Note that Eq. (6.16) is deduced from the multi-variate Gaussian distribution pre-
sented in Eq. (3.3) by using Re[z] and Im[z] as independent random variables with a zero-mean
Gaussian distribution of variance σ2/2. This model is referred to as the fully developed speckle

model which has been shown to be valid for di�erent modalities of SAR images (Sarabandi,
1992).

Note that Eq. (6.16) is independent on the phase ϕ. The phase is thus as predicted uniformly
distributed, and only the modulus |z|, the amplitude, is informative. By the change of variable
(Re[z], Im[z]) 7→ (I = |z|2, ϕ = arg z) in Eq. (6.16) followed by integration over ϕ, it results in the
intensity I = |z|2 being distributed according to an exponential law of parameter σ2, and hence,
its amplitude A = |z| follows a Rayleigh distribution of parameter σ (see Sec. 3.1.5). These
distributions describe the multiplicative �uctuations of speckle observed in SAR images.

6.2.2 Multi-variate model of a collection of SLC SAR images

When K co-registered SAR images are available (e.g., K = 2 in InSAR, K = 3 in PolSAR or
K = 6 in PolInSAR imagery), we can form a K-dimensional scattering vector k = (z1, . . . , zK)
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at each pixel x, with entries corresponding to the complex values of the di�erent acquisitions at
the same location x. Under Goodman's model, the scattering vector k follows a K-dimensional
circular complex Gaussian distribution:

p(k|Σ) =
1

πK |Σ|
exp

(
−k†Σ−1k

)
(6.17)

where Σ = E{kk†} is aK×K complex covariance matrix and † indicates the hermitian transpose.
The matrix Σ can be decomposed as follows:

Σ =


σ2

1 · · · σ1σkρ1,k · · · σ1σKρ1,K
...

. . .
...

...
σkσ1ρ

∗
1,k · · · σ2

k · · · σkσKρk,K
...

...
. . .

...
σKσ1ρ

∗
1,K · · · σKσkρ

∗
k,K · · · σ2

K

 (6.18)

where σ2
k = E[|zk|2] and ρk,l =

E[zkz
∗
l ]√

E[|zk|2]E[|zl|2]
. (6.19)

The diagonal elements σ2
k are the surface re�ectivities. The o�-diagonal elements ρk,l = Dk,le

jβk,l

de�ne the complex correlation between each pair of channels. The quantity Dk,l < 1 quanti�es
the degree of coherence between the di�erent acquisitions/channels and is an indicator of the
reliability of how the noisy phase φk,l = arg zkz

∗
l is close to the true phase βk,l = arg ρk,l. In

general, decorrelations occur from temporal variations (the scene changed between the di�erent
acquisitions), the use of di�erent incidence angles (baseline variation), the use of di�erent polar-
izations and also atmospherical perturbations, registration errors or imperfections in the sensor
trajectories.

When K = 1, Eq. (6.17) boils down to Eq. (6.16). When K = 2, the distribution of k
depends only on the amplitudes A1, A2 and the phase di�erence φ = ϕ1 − ϕ2. With a suite of
changes of variables and integrations, Goodman (1984, 2006) derives from Eq. (6.17) the joint
distribution of the triplet (A1, A2, φ) given by:

p(A1, A2, φ|σ2
1, σ

2
2, β,D) =

2A1A2

πσ1σ2(1−D2)
exp

(
−A

2
1

σ2
1

+
A2

2

σ2
2

− 2DA1A2 cos(φ− β)

σ1σ2(1−D2)

)
. (6.20)

6.2.3 Multi-look SAR images

Multi-look SAR images result from the computation of the K ×K sample covariance matrix
of L scattering vectors ki extracted from a spatial neighborhood:

C =
1

L

L∑
i=1

kik
†
i , (6.21)

where L is the equivalent number of looks. The matrix C provides the multi-look intensity
image, the multi-look phase image and the empirical coherence image given by:

Ik = A2
k =

1

L

L∑
i=1

|zi,k|2 and dk,le
jφk,l =

∑L
i=1 zi,kz

∗
i,l√∑L

i=1 |zi,k|2
∑L

i=1 |zi,l|2
. (6.22)
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Figure 6.9: Two distributions modeling speckle. (a) The gamma distribution describes the speckle
observed in intensity images. (b) The Nakagami-Rayleigh distribution describes the speckle

observed in amplitude images. Both distributions have a heavy right-tail explaining the highly
bright pixels that are present in such images. Their shape becomes Gaussian when the equivalent
number of looks L increases.

Note that under the ergodicity assumption (see Sec. 2.2.1), the empirical matrix C, the intensity
Ik, the phase di�erence φk,l and the empirical coherences dk,l are the respective sample estimates
of the covariance matrix Σ, the re�ectivity σ2

k, the true phase di�erence βk and the coherence
Dk,l. We will show in Sec. 6.3 that these sample estimates correspond to the maximum likelihood
estimates.

When L ≥ K, the distribution of the multi-look data is described by a complex Wishart
distribution given by:

p(C|Σ, L) =
LLK |C|L−K

ΓK(L)|Σ|L
exp

(
−L tr(Σ−1C)

)
(6.23)

where tr(·) is the matrix trace. The equivalent number of looks L acts as the shape parameter
of the Wishart distribution.

When K = 1, the matrix C simpli�es to the multi-look intensity I = A2 and Σ simpli�es to
the re�ectivity σ2. As a consequence, Eq. (6.23) simpli�es to the gamma distribution with a scale
parameter σ2 and a shape parameter L (see Sec. 3.1.5). The square root of the intensity, i.e.,
the amplitude, follows a Nakagami-Rayleigh distribution (see Sec. 3.1.5). Figure 6.9 illustrates
these distributions according to the equivalent number of looks L.

When L < K, the complex covariance matrix C is singular and Eq. (6.23) is no longer
de�ned. Such a matrix cannot be modeled by a pdf de�ned on the cone of semi-positive hermitian
matrices. The matrix C is said to have a degenerate distribution since we cannot have a complete
description of the joint statistics of its elements. Its elements can only be described term by
term by a pdf, referred to as an incomplete distribution of C. A common situation is the single-
look empirical covariance matrix de�ned by C = kk† (Eq. (6.21) with L = 1). It provides a
matrix representation of the SLC data without loss of resolution and without loss of meaningful
information. This matrix is singular and always provides a maximal empirical coherence d = 1.
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Figure 6.10: Two distributions modeling the errors in measuring phase di�erences. (a) The phase
has a symmetric distribution de�ned on ] − π, π]. It is uniform when the coherence D is zero
and becomes narrow around the true phase β when the coherence D or the equivalent number
of looks L increases. (b) The empirical coherence d has a distribution de�ned on [0, 1]. Its shape
is all the more sharper when the equivalent number of looks L is large. Its location depends on
the true coherence D but its mean and mode are neither one nor the other centered on D.
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Figure 6.11: Two �rst-order statistics of the empirical coherence. (a) The expectation E[d] of the
empirical coherence. The coherence d overestimates the true coherence D especially for small
values of D. This bias decreases when the equivalent number of looks L increases. (b) The
variance of the empirical coherence d. The variance non-linearly evolves with the true coherence
D and starts to decrease from a given value. When the coherence D = 1, the empirical coherence
is also equal to d = 1 and its variance is null.
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K L Modality Model
1 {1} Single-look SAR Exponential distribution

[2,∞[ Multi-look SAR Gamma distribution
2 {1} Single-look InSAR Circular complex Gaussian
2 [2,∞[ Multi-look InSAR Complex Wishart
3 {1} Single-look PolSAR Circular complex Gaussian

{2} Two-look PolSAR Degenerate distribution
[3,∞[ Multi-look Full PolSAR Complex Wishart

6 {1} Single-look PolInSAR Circular complex Gaussian
[2, 5] Multi-look PolInSAR Degenerate distribution
[6,∞[ Multi-look PolInSAR Complex Wishart

Table 6.1: Statistical models of di�erent modalities of SAR images

6.2.4 Incomplete statistics of SAR images

The phase di�erence φ follows a distribution de�ned on ]− π, π] given by (Just and Bamler,
1994; Lee et al., 1994):

p(φ|β,D,L) =
Γ(L+ 1/2)(1−D2)L∆

2
√
πΓ(L)(1−∆2)L+1/2

+
(1−D2)L

2π
2F1(L, 1; 1/2; ∆2)

where ∆ = D cos(φ− β) (6.24)

and 2F1 is the hypergeometric function. When L = 1, Eq. (6.24) boils down to the following
expression:

p(φ|β,D) =
1−D2

2π

1

1−∆2

(
1 +

D arccos(−∆)√
1−∆2

)
. (6.25)

As illustrated in Fig. 6.10, this distribution is symmetric, 2π periodic and centered on β (when
D > 0). Its scale depends only on the coherence D: the distribution is uniform when D = 0 and
tends towards a Dirac centered on β when D → 1. The �uctuations are additive modulo 2π,
i.e., the noisy phase di�erence φ can be decomposed as φ = β + ε [mod 2π] where ε is a random
variable centered on 0 and independent on β. Bamler and Hartl (1998) show that when L = 1:

E[φ] = β , (6.26)

Var[φ] =
π2

3
− π arcsin(D) + arcsin2(D) +

Li2(D)

2
(6.27)

where Li2 is Euler's dilogarithm. The variance of the phase di�erence depends on the coherence
D: the noise is then heteroscedastic. In particular, when D = 0.935, the standard deviation is
close to 0.5 and when D = 0.7, the standard deviation is close to 1. The SAR images are often
composed of several regions of constant coherence D. The interferometric phase appears then as
homoscedastic inside each of these regions.

The distribution of the empirical coherence d ∈ [0, 1] depends only on the true coherence D
and the number of looks L and is given by (Touzi and Lopes, 1996):

p(d|D,L) = 2(L− 1)(1−D2)Ld(1− d2)L−2
2F1(L,L; 1;D2d2) . (6.28)

As mentioned before, single-look complex images always provide a maximal empirical coherence
d = 1. Equation (6.28) is then de�ned as soon as L > 1. This distribution is given in Fig. 6.10
with three di�erent sets of parameters. This distribution is non-symmetric, its shape varies with
D and, unlike previous distributions, its mode is not reached for d = D. Touzi and Lopes (1996);
Touzi et al. (1999) deduced from Eq. (6.28) the moments of order k of the empirical coherence
d:

mk = (1−D2)L
Γ(L)Γ(1 + k/2)

Γ(L+ k/2)
3F2(1 + k/2, L, L;L+ k/2, 1;D2) (6.29)
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where 3F2 is the generalized hypergeometric function. The expectation and the variance of d are
then respectively given by:

E[d] = m1 (6.30)

Var[d] = m2 −m2
1 . (6.31)

Figure 6.11 illustrates how the expectation and variance of the empirical coherence d vary as
a function of the true coherence D and the equivalent number of looks L. It appears clearly
that the empirical coherence d overestimates the coherence for low values of D and tends to the
true coherence D when the number of looks L becomes large. The variance of d is also highly
dependent on D. For low values of D and L, the empirical coherence d su�ers from both bias
and heteroscedastic noise.

Table 6.1 gives a non-exhaustive overview of the statistical models used in SAR imagery.

6.3 Estimation of the SAR parameters

6.3.1 Maximum likelihood estimation from i.i.d. samples

Assume that we have M independent and identically distributed (i.i.d.) K-dimensional
scattering vectors ki, i = 1, . . . ,M , the maximum likelihood estimate (MLE) is derived from
Eq. (6.17) as:

Σ̂ = arg max
Σ

M∑
i=1

log p(ki|Σ) =
1

M

M∑
i=1

kik
†
i . (6.32)

By term identi�cations, it results that:

σ̂2
k =

1

M

M∑
i=1

|zk,i|2 and D̂k,le
jβ̂k,l

∑M
i=1 zk,iz

∗
l,i√∑M

i=1 |zk,i|2
∑M

i=1 |zl,i|2
. (6.33)

The MLE boils down to the sample estimate of the complex covariance matrix. Note that multi-
look images are then built from the application of the MLE in a local neighborhood with the
underlying ergodicity assumption (following Sec. 3.3). The statistics of these estimates can be
deduced from the ones of the multi-look SAR images.

Assume now that we have M i.i.d. observed empirical complex covariance matrices Ci built
with the same equivalent number of looks L, the MLE is derived from Eq. (6.23) as:

Σ̂ = arg max
Σ

M∑
i=1

log p(Ci|Σ) =
1

M

M∑
i=1

Ci . (6.34)

As soon as LM ≥ K, the estimated complex covariance matrix Σ̂ follows a Wishart distribution
with a shape parameter LM .

The MLE is consistent and e�cient meaning that it is asymptotically unbiased with respect
to the number of samples M and its variance reaches the Cramer-Rao bound. For low values of
M , the estimates of the re�ectivities σ̂2

k and the phase di�erences β̂k,l are also unbiased. However,

the estimated coherence D̂k,l tends to be overestimated. Touzi et al. (1999) suggest inverting the
functional link f between the biased estimate and the true coherence given by Eq. (6.29):

f(d,M) = (1−D2)M
Γ(M)Γ(1 + 1/2)

Γ(M + 1/2)
3F2(1 + 1/2,M,M ;M + 1/2, 1;D2) . (6.35)

The function f cannot be inverted in closed-form. In (Touzi et al., 1999), the authors numerically
compute the values f−1(d;M) for several values of d and M .
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6.3.2 The case of SAR interferometry

When an interferometric pair is considered, it seems reasonable to consider equal the (true)
re�ectivities of each pair of corresponding pixels, i.e., σ2

1 = σ2
2 = σ2. The covariance matrix

simpli�es as follows:

Σ = σ2

(
1 Dejβ

De−jβ 1

)
. (6.36)

This hypothesis is naturally veri�ed in regions with good coherence. By reducing the number
of degrees of freedom (from 4 to 3 unknowns), the estimation variance is improved. Denoising
techniques must trade-o� variance reduction and resolution preservation. As the sample size is
restricted by resolution preservation considerations, it is desirable to reduce the variance with
such a hypothesis. Seymour and Cumming (1994) derive the MLE under this interferometric
assumption. It leads to:

σ̂2 =

∑M
i=1 |z1,i|2 +

∑M
i=1 |z2,i|2

2M
and D̂ejβ̂ =

2
∑M

i=1 z1,iz
∗
2,i∑M

i=1 |z1,i|2 +
∑M

i=1 |z2,i|2
. (6.37)

Equation (6.37) de�nes the same estimator of the phase as the sample estimator. The coherence
estimator di�ers in the denominator. In this case, Σ̂ no longer follows a Wishart distribution.
When the assumption σ2

1 = σ2
2 holds, Seymour and Cumming (1994) show that their estimator is

more e�cient than the classical sample estimate. For instance, an estimate of the coherence can
be obtained without averaging in a local neighborhood whereas the sample estimator requires
averaging at least two pixels to de�ne a coherence. The single-look empirical coherence depends
only on the amplitudes and is de�ned by D̂ = 2|z1||z2|

|z1|2+|z2|2 . Note that this de�nition of the

empirical coherence is like the generalized likelihood ratio between two observed intensity values
(see Chap. 4). As well as the generalized likelihood ratio, the coherence can be interpreted in
this case as a measure of the assumption that σ2

1 = σ2
2.

6.3.3 Estimation with mixed populations: the LLMMSE approach

In order to limit the resolution loss of multi-looking, Lee (1980) suggests taking into account
that samples in a local neighborhood can arise from di�erent populations. The idea, generalized
in Lee et al. (1999) for polarimetric data, is to combine at each pixel position x the multi-look
empirical covariance matrix C with the single-look empirical covariance matrix kk†:

Σ̂ = (1− α)C + αkk† (6.38)

where α depends on the spatial con�guration. Ideally, α should be null in homogeneous areas
and equal to one in heterogeneous areas (e.g., around edges). The authors suggest �nding
the parameter α by minimizing locally the mean square error (MSE). This �lter referred to as
the local linear minimum mean square estimator (LLMMSE) is an aggregation-based �lter as
presented in Sec. 2.6.

To deal with multi-dimensional SAR data, the MSE is expressed on the mean re�ectivity
σ2 = tr(Σ) also called the span of the matrix Σ. The risk associated to the estimate Σ̂ is then
given by:

R[Σ̂(x)] = E
[(

tr(Σ̂)− tr(Σ)
)2
]

= E
[(

(1− α(x))IL + αI − σ2
)2]

(6.39)
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where IL = tr(C) is the multi-look span intensity, and I = tr(kk†) is the single-look span
intensity. The minimization of Eq. (6.39) under reasonable assumptions leads to the following
weight de�nition (Lee, 1980):

α = max

(
0,

Var[IL]− I2
Lη

2

Var[IL](1 + η2)

)
(6.40)

where Var[IL] is the local estimation of the span variance calculated in the local neighborhood
and η2 is a �xed parameter linked to the variance of the normalized speckle in the span intensity,
i.e., Var[I/σ2]. Under the ergodicity assumption, the estimated variance Var[IL] should be
approximately σ2η2 and IL be σ2. The resulting weight α should then be close to zero. When
the samples in the local neighborhood arise from di�erent populations, the estimated variance
Var[IL] should increase and the weight α tends to one. When the channels are independent, the
normalized speckle has a variance η2 = 1/LK. However, due to the correlation between channels
and also the correlation of speckle in the local neighborhood the value η2 should be reduced (see
Lee et al., 1999).

To improve the estimation quality and prevent resolution loss, rather than considering a
�xed sliding window, this approach can be used with a spatially-adaptive window as described
in Sec. 2.3.2 and proposed in (Lee, 1981; Lee et al., 1999; Vasile et al., 2006). Otherwise one can
select a neighborhood that prevent mixing di�erent populations. Following this idea, we suggest
in the next section using non-local neighborhoods.

6.4 Non-local estimation of the SAR parameters

6.4.1 Weighted maximum likelihood estimation

Rather than combining neighboring pixels (i.e., spatially close), we suggest using non-local
neighborhoods to estimate properly the covariance matrix Σ and avoid mixing di�erent popula-
tions. As we have suggested in Sec. 5.1, the extension of the non-local means of Buades et al.
(2005) should rely on the weighted maximum likelihood estimation (WMLE). From Eq. (6.17),
the WMLE can be derived as the weighted average of the empirical covariance matrices:

Σ̂(x) = arg max
Σ

∑
x′

w(x, x′) log p(C(x′)|Σ) =

∑
x′ w(x, x′)C(x′)∑

x′ w(x, x′)
(6.41)

where x′ is a pixel located in a search window around x and w(x, x′) > 0 is the data-driven
weight depending on the statistical similarity between pixels x and x′. If we further assume
equal re�ectivities (for instance in interferometric conditions), the WMLE would be given by
substituting the sums by weighted sums in Eq. (6.37).

Eq. (6.41) provides unbiased estimates as soon as the weights w(x, x′) select enough candidate
pixels x′ i.i.d. with the pixel of interest x. As we have seen in Chap. 5, the determining of weights
can be seen as a detection problem: two pixels can be combined if they are in match. Given the
low signal-to-noise ratio of SAR images, this statistical test is performed by comparing together
the two patches Px and Px′ centered respectively on x and x′. In this framework, the weight
can be considered as the membership value that C(x′) belongs to the set of random variables
i.i.d. with C(x).

6.4.2 Weight derivation: multi-channel patch similarity

Patch similarity between empirical covariance matrices

Following the general methodology of Chap. 5, we de�ne patch similarity as a measure of
how likely the two patches could be considered as two noisy realizations of the same noiseless
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Figure 6.12: Negative logarithm of GLR between two matrices C1 and C2 di�ering only in the
amplitude A1 (resp. A2) and the phase di�erence φ1 (resp. φ2) (see text). The curve shows the
evolution of GLR with respect to A1 and φ1 for given values of A2 and φ2.

patch. The evaluation of the similarity between two noisy covariance matrices C1 and C2 can
then be rephrased as the following hypothesis test (i.e., a parameter test):

H0 : Σ1 = Σ2 ≡ Σ12 (null hypothesis), (6.42)

H1 : Σ1 6= Σ2 (alternative hypothesis). (6.43)

According to the Neyman-Pearson theorem, the optimal criterion for the hypothesis test is given
by the likelihood ratio (Kay, 1998):

L(C1,C2) =
p(C1,C2|Σ12,H0)

p(C1,C2|Σ1,Σ2,H1)
. (6.44)

The application of the likelihood ratio test requires the knowledge of the matrices Σ1, Σ2 and
Σ12 (the noise-free patches) which are, in practice, unavailable. The problem is thus a composite

hypothesis problem. The generalized likelihood ratio (GLR) replaces these unknown matrices by
their maximum likelihood estimates. Given the complex Wishart distribution of SAR images
(see Eq. (6.23)), GLR is given by:

LG(C1,C2) =
supΣ12

p(C1,C2|H0,Σ12)

supΣ1,Σ2
p(C1,C2|H1,Σ1,Σ2)

=

(
2K
√
|C1||C2|

|C1 +C2|

)2L

. (6.45)

GLR provides a similarity measure between C1 and C2. Note that this similarity measure has
been proposed recently and independently in (Chen et al., 2011) for the comparison of polarimet-
ric SAR data. Given the independence assumption (i.e., noise is considered uncorrelated), patch
similarity can be computed pixelwise. Following the model in Sec. 5.4.1, the weights between
the two patches Px and Px′ are then de�ned as:

w(x, x′) = ϕ [− logLG(C(Px),C(Px′)] (6.46)

= ϕ

[
2L
∑
τ∈P

log

(
|C(x+ τ) +C(x′ + τ)|√
|C(x+ τ)||C(x′ + τ)|

)
− 2LK|P | log 2

]
(6.47)

where ϕ is the kernel decay function as de�ned in Sec. 2.5.1. Note that when K = 1, the
Wishart distribution boils down to the gamma distribution, and Eq. (6.46) corresponds to the
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Figure 6.13: Symmetrical Kullback-Leibler divergence between Σ1 and Σ2 by varying (a) σ
2
1 and

β1 for the given values of σ2
2, β2 with D1 = D2 = 0.7, and (b) D1 and β1 for the given values of

β2, D2 with σ2
1 = σ2

2.

expression given in Eq. (5.17) derived in the case of gamma noise.

Figure 6.12 represents the negative logarithm of GLR between two matrices C1 and C2. The
matrices C1 and C2 are built from the same set of scattering vectors k except to modi�cations:
the amplitude of the �rst channel is A1 for C1 (resp. A2 for C2), and the phase di�erence
between the two �rst channels is φ1 for C1 (resp. φ2 for C2). The curve shows the evolution
of GLR with respect to A1 and φ1 for given values of A2 and φ2. The criterion is minimum
when observed data are identical: A1 = A2 and φ1 = φ2. Moreover, this criterion manages well
with the phase wrapping without creating discontinuities when φ1 jumps from −π to π due to
wrapping. For a given value of A1, the criterion is minimum when φ1 and φ2 are in-phase, and
maximum when they are out-of-phase.

Patch similarity between speckle-free covariance matrices

In an oracle setting, we have shown in Sec. 5.4.2 that weights can instead be de�ned by
comparing the noise-free patches extracted from the unknown image Σ. The symmetrical
Kullback-Leibler divergence between patches extracted from Σ provides a statistical test for
Eq. (6.42) based on the comparison of noise-free patches. It aims at selecting a maximum of al-
most i.i.d. samples in C in order to reach an optimal trade-o� between bias and noise reduction.
The weights in the WMLE are de�ned as:

w(x, x′) = ϕ [DKL(Σ(Px),Σ(Px′))]

= ϕ

[
L
∑
τ∈P

(
tr
(
Σ−1(x+ τ)Σ(x′ + τ) + Σ−1(x′ + τ)Σ(x+ τ)

)
− 2K

)]
. (6.48)

Note that when K = 1, the Wishart distribution boils down to the gamma distribution, and
Eq. (6.48) corresponds to the expression given in Eq. (5.47) derived in the case of gamma noise.

Figure 6.13 represents the symmetrical Kullback-Leibler divergence between Σ1 and Σ2. In
6.13(a), the variations are given with respect to the values of σ2

1 and β1, for given values of σ2
2

and β2 with D1 = D2 = 0.7. In 6.13(b), the variations are given with respect to the values of β1
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Figure 6.14: (top) Distribution of GLR when the two compared noisy patches share a common
noise-free patch. (center) Distribution of the symmetrical Kullback-Leibler divergence when the
two compared pre-�ltered patches share a common noise-free patch. (bottom) According to this
probability of false alarm, we can de�ne the shape of a trapezoidal kernel function to control the
amount of smoothing.

and D1, for given values of β2 and D2 with σ
2
1 = σ2

2. The criterion decreases when all parameters
at pixel 1 get closer to the parameters at pixel 2 and becomes null when the parameters are equal.
Moreover, this criterion manages well with the phase wrapping, without creating discontinuities
when β1 moves from −π to π. For a given value of σ2

1, the criterion is minimum when β1 and
β2 are in-phase and maximum when they are out-of-phase. Note the satisfying behavior of the
similarity criterion: the better the coherence (i.e., closer to 1) the larger the phase similarity,
since phases are then more reliable.

Joint similarity driven by patches of empirical and speckle-free covariance matrices

Because of the high level of noise in SAR images, weights provided by the similarity between
noisy patches should be re�ned iteratively by using the similarity between previous estimated
patches (see. Sec. 5.4.3). Theoretically, this re�nement can be interpreted as the Bayesian test
for Eq. (6.42) which decomposes using Bayes' rule as:

p(H0|C1,C2)

p(H1|C1,C2)
=
p(C1,C2|H0)

p(C1,C2|H1)︸ ︷︷ ︸
Likelihood ratio

× p(H0)

p(H1)︸ ︷︷ ︸
Extra information

. (6.49)

This re�nement can be achieved by taking a convex combination of both criteria leading to the
following de�nition:

w(x, x′) = ϕ
[
(1− λ)f (− logLG(C(Px),C(Px′))) + λg

(
DKL(Σ̂(Px), Σ̂(Px′))

)]
(6.50)

where the parameter λ ∈ [0, 1] controls the con�dence we have in the pre-estimate and f and g are
two increasing a�ne transforms chosen such that both criteria answer with the same dynamic.
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(a) (b)

Figure 6.15: (a) The amplitude, noisy phase and single-look empirical coherence in (top-left cor-
ner) an homogeneous area extracted from an interferometric pair of SAR images and (bottom-
right corner) a simulated homogeneous area in interferometric conditions. (b) Pauli-based vi-
sualization of (top-left corner) an homogeneous area extracted from a polarimetric SAR image
and (bottom-right corner) a simulated homogeneous area in polarimetric conditions. In both ex-
amples, true SAR data present a high spatially correlated speckle compared to the uncorrelated
simulated ones.

The scale of the functions f and g should be chosen by controlling the desired amount of
noise reduction. Assume the kernel function ϕ is a trapezoidal kernel de�ned as:

ϕ(t) =


1 if t ≤ 1
2− t if 1 < t ≤ 2
0 otherwise

. (6.51)

We want to control the level of noise reduction, i.e., the percentage of samples in an homogeneous
area having a weight equal to 1, a non-null weight or a null weight. To reach good noise reduction
in homogeneous areas and avoid blurring around edges, a reasonable choice illustrated in Fig. 6.14
is to select 80% of samples with a weight equal to one, 15% with a non-null weight and 5% with
a null weight. To obtain such statistical selection and according to Eq. (6.51), the similarity
criterion should have an answer t such that:

P(t < 1|Σ12,H0) = 0.80 (6.52)

P(t < 2|Σ12,H0) = 0.95 (6.53)

whatever the underlying unknown matrix Σ12.
The scale of the function f then relies on the probabilities of false-alarms associated to GLR,

or equivalently to the distribution of GLR under the assumption H0. When K = L = |P | = 1,
the distribution of the answer t of GLR under H0 is given by:

p(t|H0) =
et/2√
et − 1

( et/2 −
√
et − 1

1 + (et/2 −
√
et − 1)2

)2

+

(
et/2 +

√
et − 1

1 + (et/2 +
√
et − 1)2

)2
 (6.54)

which is, up to a change of variable, a Fisher distribution. Our experiments show that this

distribution is well approximated by χ2
1

(
t

2−2 log 2

)
where χ2

1 is the chi-square distribution with
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Figure 6.16: Illustration of the selected samples that are used to reach an equivalent number
of looks L′ ≥ K. When L ≥ K only the pixel of interest is selected leading to L′ = L. When
K/5 ≤ L ≤ K, the 5 neighbor pixels on the diagonal directions are selected. When L < K/5,
the 9 neighbor pixels are selected.

1 degree of freedom. This distribution is then independent on Σ12 meaning that the use of
GLR leads to an estimator with stationary relative variance estimator: the same level of noise
reduction can be maintained everywhere in the image (this supports the conclusion in Sec. 3.8).
When K > 1 and the levels of coherence in Σ12 vary spatially in the image, we cannot ensure
such a stationarity. However, we have seen in Chap. 4 that GLR asymptotically has a constant
false-alarm rate (CFAR) with respect to the patch size |P |. Under reasonable patch sizes, we
can always �nd a scale for the function f such that the above probabilities (almost) hold true
for any value of Σ12.

In practice, it is frequently observed that the speckle in SAR images present a spatial correla-
tion which is not taken into account by the model considered in Sec. 6.2.1 since SAR images are
often upsampled (see Fig. 6.15). When speckle is spatially correlated, two patches extracted in
the same homogeneous area will appear dissimilar since they will present di�erent patterns due
to the blur applied on the speckle. Equation (6.54) can no longer be used to select the scale of f
which should be increased to reach the same level of false alarm (i.e., the level of noise reduction)
at the expense of the probability of detection (i.e., the level of blurring e�ect). A �rst solution is
to downsample the data so that the speckle appears as uncorrelated. In this case Eq. (6.54) can
be used successfully at the expense of a loss of resolution. That was the solution in (Deledalle
et al., 2009b, 2011a). Another solution is to choose another scale for the function f from study-
ing empirical statistics of the answers of GLR computed on two homogeneous areas manually
extracted from the image to process. Note that in this case, when the independence assumption
is violated, trapezoidal kernels appear to be signi�cantly more robust than exponential kernels
(as used for instance in (Chen et al., 2011)).

The scale of the function g can be chosen in the same vein from the empirical statistics of the
answers of the symmetrical Kullback-Leibler divergence computed on two homogeneous areas
extracted from the pre-estimated image at hand.

6.4.3 The case of degenerate distributions

We have mentioned in Section 6.2 that when the equivalent number of looks is smaller than
the data dimension, i.e., L < K, the distribution of C is degenerate. As a consequence, our
de�nition of weights based on likelihood cannot be used: when C is singular the expression of
GLR in Eq. (6.45) is unde�ned. Our attempts to regularize C using diagonal loading methods
did not provide satisfying results. In (Deledalle et al., 2010d), we had suggested to cancel o�-
diagonal elements to ensure C to be diagonal. Good performances were already obtained, even
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(a) Noisy image (b) Lmin = K = 3 (c) Lmin = 9

Figure 6.17: (a) A PolSAR image. (b) Illustration of the noise halo spread during iterations
due to the rare patch e�ect. (c) The redistribution of weights to enforce a minimum of noise
reduction limits this undesirable e�ect.

if theoretically this allows GLR to put in correspondence matrices with di�erent polarimetric
signatures.

Another solution consists in comparing two sets of L′ observations S1 and S2 instead of only
two observations C1 and C2. Assuming that all matrices in S1 (resp. S2) share a common
underlying covariance Σ1 (resp. Σ2), the GLR is given by:

LG(S1,S2) =

(
2K
√
|C ′1||C ′2|

|C ′1 +C ′2|

)2L′

(6.55)

where C ′1 (resp. C ′2) denotes the sample mean performed on S1 (resp. S2). In other words,
GLR relies on a multi-looked image ensuring a minimum equivalent number of looks L′ ≥ K.
Note that this multi-looking is only performed to select the suitable samples to combine while
the WMLE in Eq. (6.41) is still expressed on single-look data. We denote C ′ as the image of
adherence since it drives GLR to select the suitable noisy observations. Bright targets yield a
higher spatial correlation in the horizontal and vertical directions than in diagonal directions.
For this reason, we suggest using samples located in the diagonal directions. Figure 6.16 indicates
the selected samples and the resulting number of looks L′ according to L and K.

6.4.4 Enforcing a minimum amount of smoothing

In an image, some patches are (almost) unique (i.e., not found elsewhere inside the search
window). The direct application of the algorithm would produce highly noisy estimates for
the central value of these patches since the weighted maximum likelihood estimate would be
computed over too few samples. This problem is referred to as the rare patch e�ect. In Chap. 5
this was not an issue for the denoising of the intensity of SAR images. With multi-dimensional
SAR data this results in two important problems:

1. The pre-estimate Σ̂ of Σ can be singular if the number of combined samples is smaller
than the data dimension K. In the proposed iterative scheme, we have assumed that
the substitution of Σ by the pre-estimate Σ̂ in Eq. (6.23) allows us to de�ne the Wishart
distribution ofC. As a consequence, when Σ̂ is singular, the weights based on the Kullback-
Leibler divergence in Eq. (6.48) would be unde�ned since they require the inversion of
Σ̂. The pre-estimate Σ̂ should result from the combination of at least K samples to be
considered as a proper estimate of Σ and then to be used to properly re�ne the weights.



150 6. Applications of non-local approaches to SAR images

2. When considering an iterative joint estimation of K co-registered channels, the high vari-
ance of the estimator for �rare� patches leads to a decrease in the similarity between pre-
estimated patches with the iterations. At the algorithm end, the resulting denoised image
contains regions of high residual variance. Since the lack of repetitive patterns is all the
more important around high contrasted edges and bright targets, this high residual noise
is referred to as noise halo. It is then desirable to enforce a minimum amount of smoothing
(i.e. variance reduction) to consider Σ̂ as a proper estimate of Σ.

To guarantee a minimum amount of smoothing, and therefore limit the variance of the esti-
mation, we propose to estimate the equivalent number of looks of the denoised pixels. Due to
our non-local (data driven) approach, the equivalent number of looks varies from one pixel to
another. It depends on the number of similar patches found in the search window, and can be
approximated, for each pixel x, by:

L̂(x) =
(
∑

x′ w(x, x′))2∑
x′ w(x, x′)2

(6.56)

according to the variance reduction of a weighted average (see Sec. 3.6). To enforce a minimum
amount of smoothing, we suggest rede�ning the weights w(x, x′) in the cases where the equivalent
number of looks L̂(x) falls below a given threshold Lmin. One option is to redistribute equally the
weights of the Lmin most similar patches whenever L̂(x) < Lmin. �Rare� patches often contain
a bright scatterer. To prevent biasing the estimation, we propose restricting the selection of the
Lmin patches to those whose central value is not too bright nor too dark compared to that of
the reference patch, following the ideas of (Lee, 1983; Yaroslavsky, 1985; Tomasi and Manduchi,
1998). The correction of the weights can be performed as follows:

� Compute L̂(x) for each pixel x,
� If L̂(x) < Lmin, redistribute the Lmin highest weights:
� Create a vector w containing all the weights w(x, x′) such that:

tr(C(x))/4 < tr C(x′) < 4 tr(C(x)) , (6.57)

� Sort the vector w in descending order,
� Redistribute equally the weights of the Lmin most similar pixels:

wk ←
1

Lmin

Lmin∑
l=1

wl ∀k ∈ 1..Lmin . (6.58)

Note that Eq. (6.57) is the selection rule associated to GLR (see Sec. 3.8).

Fig. 6.17 illustrates on a PolSAR image the rare patch e�ect and two solutions obtained by
ensuring a minimum equivalent number of looks of 3 and 9. For the smallest minimum amount
of smoothing Lmin = K = 3, the noise halo spreads during the iterations. When Lmin = 9, our
redistribution rule limits this undesirable e�ect. We will see in Chap. 7 that the problem of the
rare patch e�ect can be solved using patches with variable shape and size. This approach has not
been considered here for two reasons. First, it increases the computing time. Due to the large
size of SAR images, SAR �lters must be as fast as possible to be applied on large databases. The
choice of the size and the shape of patches is based on an aggregation-based �lter which requires
an unbiased estimator of the risk. We have seen in Sec. 3.6 that to our knowledge there is no
suitable risk estimator for data damaged by a gamma distribution and therefore neither for a
Wishart distribution.
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Algorithm Non Local SAR (NL-SAR)

Input: noisy image C, image of adherence C ′ and pre-estimate Σ̂i−1

Output: estimate Σ̂i

for all pixel positions x in the image do
Initialize Σ̂i(x) and N to zero
for all pixel positions x′ in W (x) do

t← 0
for all translation vectors τ ∈ P do

Compute − logLG(C ′(x+ τ),C ′(x′ + τ)) . use Eq. (6.46)
Compute DKL(Σ̂i−1(x+ τ), Σ̂i−1(x′ + τ)) . use Eq. (6.48)
t← t+ (1− λ)f (− logLG(C ′(x+ τ),C ′(x′ + τ)))

+λg
(
DKL(Σ̂i−1(x+ τ), Σ̂i−1(x′ + τ))

)
end for
Σ̂i(x)← Σ̂i(x) + ϕ(t)C(x′)
N ← N + ϕ(t)

end for
Enforce a minimum noise reduction . see Sec. 6.4.4
Σ̂i(x)← Σ̂i(x)/N

end for
return Σ̂i

Figure 6.18: Pseudo-code of the non local InSAR algorithm. The procedure has to be repeated
iteratively. At iteration i the pre-estimated covariance matrix Σ̂i−1 is used to re�ne the estimates.
In practice, the �rst pre-estimates can be chosen as a constant image, and four iterations are
enough to reach a good estimate.

6.4.5 Algorithm and implementation

This section describes the whole procedure used in NL-SAR. At each site x, the pixels x′

present in the search window Wx are inspected sequentially to produce a weight by comparing
two surrounding patches Px and Px′ . For each corresponding pixels x + τ and x′ + τ in Px
and Px′ , the similarity is computed by comparing the values of adherence C ′(x + τ) and
C ′(x′ + τ) using Eq. (6.46) and Eq. (6.55) and the pre-estimated parameters Σ̂(x + τ) and
Σ̂(x + τ) using Eq. (6.48). These similarities are combined to produce the weights w(x, x′)
(see Eq. (6.50)). In practice, the logarithm of the weights is computed to limit numerical
errors. Once all weights are obtained for each pixel x, the minimum noise reduction procedure
is performed (Section 6.4.4) before computing the new parameters Σ̂ (6.41). The procedure
is performed iteratively. At the end of the iteration i − 1, the estimated parameters provide
the pre-estimated matrix Σ̂i−1 used at iteration i. The procedure is repeated until there
is no more change between two consecutive estimates. In practice, the �rst pre-estimates
can be chosen as the identity matrix, i.e., with unit re�ectivity and null coherence. Accord-
ing to Eq. (6.48), this is equivalent to performing the �rst iteration of NL-SAR with weights
based only on the likelihood term. Finally, four iterations are performed to reach good estimates.

The pseudo-code of NL-SAR is given in Fig. 6.18 and the global scheme is illustrated in
Fig. 6.19. The algorithm complexity is O(|Ω||W||P|) where |Ω|, |W| and |P| are respectively
the image size, the search window size and the similarity patch-size. Several optimizations of
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Image of
adherence     

Noisy image

Pre-estimation

GLR KL

Average

Ensure a minimum
of noise reduction

Ensure a minimum
number of looks

Spatial
averaging

Weights
redistribution

Figure 6.19: Scheme of the NL-SAR procedure. The estimated covariance matrix Σ is iteratively
re�ned by combining noisy observation selected according to the similarities evaluated on the
image of adherence and a pre-�ltered image. Ensuring an equivalent number of looks L′ > K in
the adherence image and a minimum of noise reduction L̂ > Lmin in the pre-estimate is necessary
to evaluate similarity and reduce the rare patch e�ect.

the non-local means have been proposed in (Buades et al., 2005; Coupe et al., 2006; Goossens
et al., 2008). We have extended the solution proposed by Darbon et al. (2008) for the NL-SAR
algorithm with a time complexity given by O(4|Ω||W |). Finally, with a C implementation, the
computation time of our method is of about 10 seconds per iteration for a polarimetric image
of size |Ω| = 512 × 512 and windows of size |W| = 15 × 15 and |P| = 5 × 5 using an Intel Core
2 Duo 3.00GHz. Thanks to a parallel implementation of Darbon's optimization using OpenMP,
NL-SAR can perform one iteration in about 30 seconds using 16 Intel Core 2 Duo Xeon 2.27GHz
on a |Ω| = 4096× 4096 polarimetric image. Our implementation is released under public license.
The technical documentation of NL-SAR is given in Appendix B.

6.5 Experiments and results

6.5.1 Description and setting of the compared methods

In our experiments, comparisons will be performed with the classical boxcar �lter on a 7× 7
sliding window, the re�ned Lee estimator (Lee et al., 2003) on a 7 × 7 sliding window, and the
IDAN �lter with an adaptive neighborhood of maximum size 50 pixels (Vasile et al., 2006). For
these three �lters, we use the implementation provided by the PolSARPro project of ESA/IETR.
These �lters will be compared to a non-iterative version of NL-SAR using weights based only on
the comparisons of noisy data. The iterative NL-SAR �lter will be applied with a search window
of size |W| = 15 × 15 and a similarity window of size |P| = 5 × 5. A minimum noise reduction
of level Lmin = 9 will be maintained. We use 4 iterations of the iterative NL-SAR �lter to reach
satisfying estimates.

6.5.2 Comparisons on simulated SAR data

Given the true images of re�ectivities, phase di�erences and coherences, K single-look com-
plex (SLC) images can be generated according to the complex circular Gaussian distribution
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Figure 6.20: (a) Re�ectivity, (b) phase di�erence and (c) coherence of a simulated rectangular
function. The statistical answers are given from top to bottom by the boxcar estimator, Lee's
estimator, the IDAN estimator, the non-iterative NL-SAR estimator and the (iterative) NL-SAR
estimator.
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Figure 6.21: (a) Re�ectivity, (b) phase di�erence and (c) coherence of a resolution test pattern
obtained from top to bottom by the ground truth, the SLC images (maximum likelihood estima-
tor of (Seymour and Cumming, 1994)), the re�ned Lee estimator (Lee et al., 2003), the IDAN
estimator (Vasile et al., 2006) and the NL-SAR estimator. A colorbar of the range value is shown
for each channel with pointers to indicate the true underlying values.
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model given in Eq. (6.16). The simulation procedure is given in (Lee et al., 2003), as follows:
� Compute a matrix L such that Σ = LL∗. For example, in the interferometric case, the
lower triangle matrix L in the Cholesky decomposition is a good candidate:

L =
√
R

(
1 0

De−jβ
√

1−D2

)
, (6.59)

� Generate a vector k0 of K independent complex random variables with independent real
and imaginary parts following a Gaussian distribution of variance σ2/2,

� Finally, the scattering complex vector k is given by multiplying the matrix L by k0

k = Lk0. (6.60)

Gallager (2008) shows that any circular complex random vector can be generated by this process,
and this process can only generate circular complex random vectors. There is equivalence
between this generative model and Eq. (6.16). Next, multi-look data can be simulated by
computing the empirical covariance matrix from L independent scattering vectors k generated
as described above.

Figure 6.20 shows the statistical answer of the �ve estimators on a cut through a line of width
10. The statistics have been measured on denoised images of over 10 000 noisy generated images.
The ground truth, the mean and an interval of variation (about 70% of the estimates) are
represented on the graphics for the three estimated components. We can notice that the boxcar
�lter is unbiased with a low variance in homogeneous areas but presents a strong spatial bias
around the edges of the rectangular function. This spatial bias produces large underestimates
of the coherence around edges which is denoted in (Lee et al., 2003) as the dark ring e�ect. The
re�ned Lee estimator presents less spatial bias but has a higher variance. This is due in part
to the edge-aligned windows containing less samples to reduce the variance, but also, to the
window selection process which presents high variations. IDAN provides a good restoration of
the edges but unfortunately a bias is introduced even in homogeneous areas. This is due to the
selection rule used during the growing region which tends to lower re�ectivity and coherence
values (see Chap. 3). Moreover, the bias increases on the line since the adaptive neighborhood
selects samples out of the line. As a result the variance is bigger than for the boxcar �lter even
if there are as many values to estimate the cross-correlation. We assume this phenomenon could
be reduced by using a more suitable similarity criterion to de�ne the region growing. NL-SAR
provides the best bias-variance trade-o�. Indeed, compared to the boxcar �lter, the re�ned Lee
estimator and IDAN, (iterative) NL-SAR is neither biased in homogeneous areas nor around
edges. Moreover, its variance is equivalent to the one of the boxcar �lter in homogeneous areas.
NL-SAR has a larger variance around edges than in homogeneous areas since these regions
present less redundant patterns. The non-iterative NL-SAR provides a trade-o� between the
boxcar �lter and the iterative NL-SAR.

Figure 6.21 presents the obtained estimated images for two generated single-look complex
images representing a 600× 464 resolution test pattern. On the original resolution test pattern,
the contrasts between the lowest value and highest value, for all channels, are the same as on
the line cut of Figure 6.20. The images obtained with the NL-SAR estimator seem to be well
smoothed with a better edge and shape preservation. The images obtained by the boxcar and the
IDAN estimators are more noisy than the images obtained by the NL-SAR �lter (the remaining
variance is larger). Moreover, the boxcar estimator blurs the edges resulting in a loss of resolution
and large underestimations of the coherence around edges. The IDAN �lter preserves the shapes
but the noise variance remains essentially large in the coherence image, and small details are
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(a) Noisy image (b) Re�ned Lee (c) IDAN (d) NL-SAR

Figure 6.22: Visual evaluation of the target preservation from (a) a PolSAR and a SAR image
using (b) the re�ned Lee �lter, (c) the IDAN �lter and (d) our NL-SAR �lter.

essentially lost in the phase di�erence image. Finally, our NL-SAR estimator seems to work
e�ciently by preserving small structures with satisfying noise reduction.

6.5.3 Overview of results on di�erent SAR data

This section presents an overview of results obtained on real co-registered SLC SAR images.
The SAR images are assumed to follow Goodman's model presented in Sec. 6.2.1.

The experiments are performed on three data sets:

� an interferometric pair of images acquired simultaneously (mono-pass) over a single building
of complex shape in Toulouse (France) by RAMSES (aerial sensor). They are in X-band
(wavelengths ranging from 2 to 5 cm) with a resolution under one meter in azimuth and
slant range.

� a polarimetric image acquired over a wide area of San Francisco (USA) by AIRSAR (aerial
sensor). It is in L-band (wavelengths ranging from 15 to 30 cm) with a resolution of about
ten meters in azimuth and slant range.

� a polarimetric image acquired over a small urban area of Kaufbeuren (Germany) by F-SAR
(aerial sensor). It is in S-band (wavelengths ranging from 7 to 15 cm) with a resolution of
0.5 meter/pixel in azimuth and 0.64 meter/pixel in range.

Figure 6.22 compares the performance of denoising approaches to preserve the bright scat-
terers numerous in SAR images. The IDAN �lter tends to oversmooth and di�use the bright
scatterers of the image resulting in a blur e�ect. While the re�ned Lee �lter preserves well the
bright scatterers, the NL-SAR �lter can also restore targets of lower amplitudes, preserve edges
and signi�cantly reduce the level of noise. In both examples, on an image of amplitude and a
polarimetric image, our NL-SAR �lter seems to produce the best trade-o� in terms of target
preservation and noise reduction. Note that NL-SAR preserves well the three bright lines on the
left of the building whereas the two other �lters blur them. This attests the e�ciency of the
patch-based approach: the three lines act as a rail on which the similarity patch slides in order
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to combine all pixels parallel to the bright lines.
Figures 6.23, 6.24 and 6.25 present the obtained results for the di�erent �lters to estimate

the interferometric parameters. Figures 6.26 and 6.27 present the obtained estimates of the
polarimetric parameters for the di�erent denoising �lters. For all these images, the range is on
the horizontal axis and the azimuth on the vertical axis. The results obtained with our NL-SAR
estimator seem to be well smoothed with a better edge and shape preservation than other �lters.
As mentioned in Chap. 3, IDAN underestimates the intensities whereas the re�ned Lee �lter and
the NL-SAR �lter preserve this information. As predicted by Fig. 6.20, the coherence is slightly
overestimated by the re�ned Lee �lter and underestimated by the IDAN �lter. The NL-SAR
provides a lower coherence since it is able to select a larger number of i.i.d. samples. With NL-
SAR, the speckle e�ect is strongly reduced and the spatial resolution seems to be well preserved:
buildings, streets and homogeneous areas are well restored.

Figure 6.28 and 6.29 shows the entropy/anisoptropy/alpha angle decomposition obtained
from the three estimators on the two polarimetric data used above. In both cases, the parame-
ters extracted from the NL-SAR estimate appear smoother with better edge preservation. The
entropy, usually overestimated by the two other �lters, is lower using NL-SAR.

6.6 Conclusion

A new approach was proposed for the estimation of the SAR parameters. This method is
based on the non-local means �lter (Buades et al., 2005) whose originality rests on the weighted
combination of pixel values which can be far apart. We apply the general iterative methodology
proposed in Chap. 5 to select suitable pixels by evaluating patch-based similarity considering the
noisy amplitudes, the complex cross-correlations and previous estimates. Finally, the re�ectivity,
the phase di�erences and the coherence between the di�erent channels are jointly estimated. The
proposed estimator out-performs state-of-the-art estimators in terms of both noise reduction and
edge preservation. The noise, present in the input images, is well smoothed in the homogeneous
regions and the object contours are well restored (preservation of the resolution). Moreover we
can consider from our experiments that the re�ectivity, the actual interferometric phase and the
coherence are well recovered, without introducing strong undesired artifacts and with a good
restoration of bright scatterers.
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(a) Noisy (b) Re�ned Lee

(c) IDAN (d) NL-SAR

Figure 6.23: (a) The intensity of a SAR image of an urban area in Toulouse (France) sensed by
RAMSES c©ONERA. The re�ectivity images estimated jointly on a pair of interferometric SAR
images using (b) the re�ned Lee estimator (Lee et al., 2003), (c) the IDAN estimator (Vasile
et al., 2006) (d) and the NL-SAR estimator.
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(a) Noisy (b) Re�ned Lee

(c) IDAN (d) NL-SAR

Figure 6.24: (a) The interferometric phase between a pair of SAR images of a urban area in
Toulouse (France), sensed by RAMSES c©ONERA with a mono-pass. Interferometric phase
images estimated jointly on the pair of interferometric SAR images using (b) the re�ned Lee
estimator (Lee et al., 2003), (c) the IDAN estimator (Vasile et al., 2006) (d) and the NL-SAR
estimator.
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(a) Noisy (b) Re�ned Lee

(c) IDAN (d) NL-SAR

Figure 6.25: (a) The coherence between a pair of SAR images of a urban area in Toulouse
(France), sensed by RAMSES c©ONERA with a mono-pass (maximum likelihood estimation of
Seymour and Cumming (1994)). Coherence images estimated jointly on the pair of interferomet-
ric SAR images (b) the re�ned Lee estimator (Lee et al., 2003), (c) the IDAN estimator (Vasile
et al., 2006) (d) and the NL-SAR estimator.
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(a) Noisy (b) Re�ned Lee

(c) IDAN (d) NL-SAR

Figure 6.26: (a) The polarimetric image of San Francisco (USA), sensed by L-band AIRSAR
c©NASA-JPL-Caltech displayed using an RGB representation based on the Pauli basis. Polari-
metric images estimated using (b) the re�ned Lee estimator (Lee et al., 2003), (c) the IDAN
estimator (Vasile et al., 2006) (d) and the NL-SAR estimator.
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(a) Noisy (b) Re�ned Lee

(c) IDAN (d) NL-SAR

Figure 6.27: (a) The polarimetric image of Kaufbeuren (Germany), sensed by S-band F-SAR
c©DLR displayed using an RGB representation based on the Pauli basis. Polarimetric images
estimated using (b) the re�ned Lee estimator (Lee et al., 2003), (c) the IDAN estimator (Vasile
et al., 2006) (d) and the NL-SAR estimator.
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Figure 6.28: Polarimetric information extracted from the polarimetric images of San Francisco
(USA), L-band AIRSAR c©NASA-JPL-Caltech, obtained from top to bottom by the re�ned Lee
estimator (Lee et al., 2003), the IDAN estimator (Vasile et al., 2006) and the NL-SAR estimator.
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Figure 6.29: Polarimetric information extracted from the polarimetric images of Kaufbeuren
(Germany), S-band F-SAR c©DLR, obtained from top to bottom by the re�ned Lee estimator
(Lee et al., 2003), the IDAN estimator (Vasile et al., 2006) and the NL-SAR estimator.
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Chapter 7

Spatially adaptive patches

This chapter relates a joint work with Vincent Duval and Joseph Salmon.

We propose in this chapter an extension of the non-local means (NL means) denoising al-
gorithm where the usual square patches used to compare pixel neighborhoods are replaced by
various shapes that can take advantage of the local geometry of the image. We provide a fast
algorithm to compute the NL means with arbitrary shapes thanks to the Fast Fourier Transform.
We then consider local combinations of the estimators associated with various shapes by using
Stein's Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improves
the standard NL means performance and is close to state-of-the-art methods, both in terms of
visual quality and numerical results. Moreover, common visual artifacts usually observed by
denoising with NL means are reduced or suppressed thanks to our approach.

Patch-based methods are already quite e�cient at dealing with smooth regions and textures.
However, since they use patches with a �xed square shape and a �xed scale over the whole image,
their performances may be limited for dealing with edges, mostly for edges with high contrast.
Indeed, edges with high contrast present few redundancies and their denoised version su�er from
a persistence of residual noise: this is named the noise halo. In order to overcome this drawback,
more directional priors may be considered, using locally chosen scales and orientations of shapes.
Few attempts have been made to use several patch sizes (see Mairal et al., 2008) for learning
with patches or (Salmon and Strozecki, 2010) for the NL means.

As far as we know, the only work trying to handle variable shapes rather than simple square
has recently been proposed by Dabov et al. (2009) as a way to improve the BM3D algorithm.
The authors propose to adapt the shapes used by the algorithm: they locally select a shape by
applying Lepski's method, and then perform the same steps of the BM3D algorithm with these
shapes rather than with common square blocks (i.e., patches).

Recently, spatial-adaptive methods for selecting the parameters of NL means have been pro-
posed in (Doré and Cheriet, 2009; Duval et al., 2011). Both methods locally select the parameters
which minimize a local estimate of the risk (i.e., the Mean Square Error, MSE) by considering
respectively Stein's Unbiased Risk Estimate (SURE) (Stein, 1973, 1981b) or the Cp criterion
(Mallows, 1973). The use of SURE for NL means was originally proposed in order to select the
best bandwidth parameter (Van De Ville and Kocher, 2009). Applications of SURE emerged for
choosing the smoothing parameter in families of linear estimates (Li, 1985) such as for model
selection, ridge regression, smoothing splines, etc. It was then widely used in the wavelet commu-
nity after the introduction of the SURE-Shrink algorithm (Donoho and Johnstone, 1995). Solo
(1996) gave a general form of SURE for an estimator de�ned as a minimizer of a regular energy,
especially for least square regression regularized by a Sobolev norm or the Total Variation. More
recently, linear combinations of estimates based on SURE were considered (Blu and Luisier,
2007) instead of the selection of a single one. Moreover, Ramani et al. (2008) have described a



166 7. Spatially adaptive patches

Figure 7.1: Illustration of the noise halo appearing around edges with high contrast on images
denoised by NL means. The input noisy images was corrupted version of the noise-free images
presented on Fig. 7.6 damaged by AWGN with standard deviation σ = 20. Noise halo arises
from an abrupt lack of redundancy around edges sometimes referred as the rare patch e�ect.

Monte Carlo approach to evaluate SURE when a closed-form expression is not available or too
computer-intensive. The proposed approach is in the same vein as (Van De Ville and Kocher,
2009; Duval et al., 2011) and proposes to locally select or aggregate the best shapes.

Our contributions� The aim of this chapter is to highlight the potential bene�t of replacing
the simple square patches with more general shapes, in the classical NL means �lter. To this
end, we propose a fast algorithm, based on the fast Fourier transform, which allows to compute
the solution of the NL means for arbitrary patch shapes. Then we explain how to combine
the estimators associated with each shape in a suitable way. We select or combine locally the
shape-based estimates by measuring the performance of their associated denoisers with SURE.
We coin such type of algorithms Non-Local Means with Shape-Adaptive Patches (NLM-SAP).

The main advantage of using adaptive patch shapes in the context of the NL means is to
reduce the noise halo produced around edges with high contrast. Our method is an improvement
of the NL means taking into account the anisotropy of natural images. It is all the more relevant
when the images to denoise present edges with high contrast for which the classical NL means
fails. The di�erence with (Dabov et al., 2009) is that we use a previously �xed family of shapes
instead of learning them while processing the image.

Organization of the chapter� We introduce in Sec. 7.1 a more general framework using general
shapes instead of square patches to measure the similarity between pixels. This leads in Sec. 7.2 to
the natural problem of locally selecting or combining the best shapes in our NLM-SAP algorithm.
Section 7.3 illustrates numerically, and above all visually, the gain in aggregating various shape-
based estimates in a proper manner.

7.1 From patches to shapes: beyond the rare patch e�ect

In practice, we have seen that the original algorithm su�ers from a noise halo around edges,
due to an abrupt lack of redundancy of the image. This phenomenon is sometimes referred to
as the rare patch e�ect (Fig. 7.1). Statistically, it leads to an NL means estimator with large
variance around edges. Several solutions have already been proposed to handle this drawback
(Salmon and Strozecki, 2010; Duval et al., 2011; Louchet and Moisan, 2011). Here, we generalize
these approaches by considering general shapes rather than simple square patches (cf. Fig. 7.2).

In order to deal with patches of arbitrary shapes, we reformulate the way the distance between
two pixels is measured in terms of patches. The weighted Euclidean distance used in the NL
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means (see Sec. 2.5) can be generalized for any patch shape by using the following expression:

û(x) =

∑
x′ w(x, x′)v(x′)∑

x′ w(x, x′)
(7.1)

where w(x, x′) = ϕ

(
d2
S(v(Px′), v(Px))

2|P |h2

)
(7.2)

and d2
S(v(Px′), v(Px)) =

∑
τ∈Ω

S (τ) (v(x+ τ)− v(x′ + τ))2 , (7.3)

where S encodes the shape of a patch P. With this notation we can easily rewrite the original
NL means with a simple S by choosing:

S (τ) =


1, if ‖τ‖∞ ≤

p−1
2 ,

0, otherwise,

(7.4)

where p is the half-width of the square patch.
One of our contributions is to provide an e�cient algorithm, based on the Fast Fourier

Transform (FFT), to compute the distances in Eq. (7.3). Our implementation is independent
of the shape, and can thus be applied with di�erent shapes. As soon as we consider the use of
anisotropic shapes, and not just squares or disks centered on the pixel of interest, two questions
emerge. The �rst one is how to choose the collection of shapes to consider. The second issue is
to propose a way to combine the estimators provided by each shape.

The collection of shapes should be composed of more than one shape to locally take into
account the geometrical properties of natural images. Consider for instance the use of a single
vertically elongated patch. This could be interesting to handle vertical features, but eventually we
would not optimally deal with horizontal details with only one oriented shape. So, the collection
should be diversi�ed and numerous enough to identify directional features (see Fig. 7.8 for a
visual illustration). At the same time, it should remain small enough so that the algorithm is
not computationally intensive.

7.1.1 Fast algorithm to handle shapes

In this section, we present a fast way to compute the NL means weights for general shapes,
based on the 2D-FFT. It is inspired from works initiated in (Wang et al., 2006) and (Darbon
et al., 2008) to speed up the NL means algorithm. However, contrary to these approaches, ours
can deal with non-square and/or non-binary patches, i.e., with general shapes S. Like them, our
method is independent of the shape size. Let us also mention that other fast implementations of
the NL means have been proposed in (Mahmoudi and Sapiro, 2005; Bilcu and Vehvilainen, 2008;
Pang et al., 2009): such methods use a pre-selection of the patches based either on statistical
tests or gradients comparisons. We should however emphasize that the �nal estimates with those
approaches are approximate solutions of the original NL means. Our method does not rely on
such tricks and computes the exact NL means in the case of a square shape in Eq. (7.3).

Wang et al. (2006) and Darbon et al. (2008) propose to compute the Euclidean distances
using �Summed Area Tables" introduced by Crow (1984) (also called �Integral Images" by Viola
and Jones (2001)). This allows them to reduce the computational cost of the NL means from
O(|W | · |Ω| · |P|) to O(|W | · |Ω|), where |W | is the number of pixels in the search window, |Ω| is the
image domain size and |P| is the patch size (we refer to (Darbon et al., 2008) for more details).
To compute these integral images, the authors change the original algorithm by swapping the
two �for� loops: instead of considering all the shifts for each pixel, they consider all the pixels
for each shift.
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Disk F1 Half-pies F2

Quarter-pies F3

Bands F4

(a) (b)

Figure 7.2: (a) Examples of shapes considered. The �central� pixel is shown in red, dark pixels
illustrate high weights. Shapes are grouped in four categories: F1. the isotropic disk family, F2.
the half-pies family, F3. the quarter-pies family and F4. the bands family. (b) Parametrization
of the pie slices and bands.

We use basically the same swapping trick. Notice that Eq. (7.3) can be reformulated for any
translation parameter δ (i.e., taking x′ = x+ δ) as a discrete convolution:

d2
S(v(Px), v(Px+δ)) =

∑
τ∈Ω

S (τ) (v(x+ τ)− v(x+ δ + τ))2 = (Š ?∆δ)(x) , (7.5)

where Š(τ) = S (−τ), ∆δ(x) = (v(x) − v(x + δ))2 and ? is the convolution operator. This
term can be interpreted as the correlation between the shape S and the square di�erence of
the observed image and the δ-shifted version. The convolution Š ?∆δ can be computed quickly
thanks to the following relation:

Š ?∆δ = F−1(F(Š)F(∆δ)) = F−1(F(S)∗F(∆δ)) , (7.6)

where F is the 2D discrete Fourier transform (2D-FFT) and F−1 is its inverse transform. Ac-
cording to Eq. (7.6), and given a translation δ, we only need to perform one term by term
multiplication in Fourier domain and two 2D-FFT (note that F(S) can be computed o�-line).
The repetition of this procedure for every translation δ covering the search window, leads to an
algorithm (whose pseudo-code is detailed in Fig. 7.3) with a complexity of O(|W | · |Ω| · log(|Ω|)).
A similar algorithm using recursive �lters was recently described by Condat (2010).

7.1.2 Families of shapes

The main purpose of this chapter is to show that the use of di�erent shapes allows to reduce
the rare patch e�ect. This point of view is a generalization of the NL means based on square
patches with the reprojection studied by Salmon and Strozecki (2010), since each translated
patch can be regarded as a decentered shape. Here, h is �xed and the challenge is to �nd shapes
with enough similar candidates in the search window to reduce the noise.
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Algorithm 2D-FFT NL means for an arbitrary shape

Inputs: noisy image v, 2D-FFT of the shape F(S)
Parameters: search window W , bandwidth h
Output: estimated image û

Initialize accumulator images A and B to zero
for all shift vector δ in the search window W do

Compute the square di�erence image ∆δ

∆δ(x) := (v(x)− v(x+ δ))2 for all pixels x in Ω

Compute the 2D-FFT F(∆δ)
Perform the convolution of ∆δ by the shape Š

d2
S(v(P·), v(P·+δ))←

(
F−1 (F(S)∗F(∆δ))

)
(·)

. O(|Ω| · log |Ω|) operations using 2D-FFT

for all pixels x in Ω do
Compute the weights

w(x, x+ δ) = ϕ

(
d2
S(v(Px), v(Px+δ))

2h2

)
Update the accumulators

A(x)← A(x) + w(x, x+ δ)v(x+ δ)

B(x)← B(x) + w(x, x+ δ)

end for
end for
Final (normalized) estimator û(x) = A(x)

B(x) for all pixel x

Note: the central pixel (δ = 0) is treated as a special case
. see Sec. 7.3 for details

Figure 7.3: NL means pseudo-code for an arbitrary patch shape S. Pre-computations (based on
2D-FFT) of distances between shapes from the noisy image and shapes from its shifted version
leads to a smaller complexity of O(|W | · |Ω| · log |Ω|), independent of the shape S.

We now present several types of families we have considered. The �rst collections consist of
classical squares and disks shapes. Then, we propose more directional shapes such as pie slices

and bands displayed in Fig. 7.2.

Squares: To begin with, we apply our framework to the most commonly used shapes, i.e., the
square shapes of odd length (so the squares have centers we can consider). For instance, choosing:

S (τ) =


1, if ‖τ‖∞ ≤

p−1
2 ,

0, otherwise,

(7.7)
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leads to the classical (simpli�ed) NL means de�nition with square patches of size p × p and
distance between patches measured by the Euclidean norm.

Gaussian: The original, but less common choice, is to set:

S (τ) =


exp(−(τ2

1 + τ2
2 )/2a2), if ‖τ‖∞ ≤

p−1
2 ,

0, otherwise.

(7.8)

Equation (7.8) means that the norm ‖·‖2,a is used to measure the distance between patches.
This limits the in�uence of square patches corners and leads to a more isotropic comparison
between patches.

Disks: Disk shapes are de�ned in the same way, using the Euclidean norm instead:

S (τ) =


1, if ‖τ‖2 ≤

p−1
2 ,

0, otherwise.

(7.9)

A non-binary version may also be de�ned for pixels crossed by the boundary.

Pie slices: We study a family of shapes, denoted as �pie�, whose elements are de�ned with
three parameters: two angles and a radius. These shapes represent a portion of a disk delimited
by two lines and surrounding the discrete central pixel.

Bands: This family of shapes is simply composed of rectangles, potentially rotated and
decentered with respect to the pixel of interest.

7.1.3 Connection with previous work

One of our main concern is to address the rare patch e�ect of the NL means algorithm.
Di�erent methods have been designed to limit this drawback or to improve the NL means in
terms of quality or speed. The �rst attempt was proposed to speed-up the algorithm. The idea
is to denoise patch by patch rather than pixel by pixel. Taking into account patches overlaps, a
fast implementation of the NL means is reached by using a sub-sampled grid of pixels (Buades
et al., 2005; Kervrann et al., 2007). Quality improvement can also be obtained by properly
using overlapping patches. Indeed, we get |P| estimates for each pixel (where |P| is the number
of elements in a patch). Some authors (Buades et al., 2005; Kervrann and Boulanger, 2006)
simply propose to uniformly average those |P| estimates while a weighted average is performed
in (Salmon and Strozecki, 2010). In our framework, these blockwise approaches are equivalent
to use |P|, possibly decentered, square shapes (cf. Fig. 7.4).

Other methods have been introduced to reduce the noise halo. Louchet and Moisan (2011)
use a total variation-based pre-�ltering of the image and set locally its parameter so that the
NL means �nd enough similar patches. Duval et al. (2011) aim to select locally the bandwidth
parameter h using SURE (introduced in details in Sec. 7.2.1) to select enough patches according
to a bias-variance trade-o�.

7.2 Aggregation of shape-based estimates

In this section, we investigate a way to aggregate the NL means estimators based on di�erent
shapes of �patches�. We have extended the standard square shape to other shapes such as disks,
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(a) Square patch and its neighborhood

(b) Suitable shape and its neighborhood

Figure 7.4: Examples of neighborhood associated with a square patch or a suitable shape. If
the patch is square (a) fewer similar patches candidates are found than with the shape (b). The
pixel of interest is in red and the selected pixels obtained by the two methods to denoise the red
pixel are in black.

pies or bands (see Sec. 7.1.2). Thus, the new goal in this context is to determine how to locally
take the most of each proposed denoiser.

For any pixel x in the image, we have built a collection of K pre-estimates u1(x), · · · , uK(x)
based on the di�erent shapes. We �rst suggest using the weighted variance minimization (WAV)
presented in Sec. 2.6.1. The application of the WAV methodology of Salmon and Strozecki (2010)
to general shapes de�ne the weights as inversely proportional to the (approximate) variance of
the corresponding estimator. In the context of the NL means, this approximate variance can be
obtained in closed-form in the same way as in (Kervrann and Boulanger, 2006), assuming that
the coe�cients w(x, x′) in Eq. (7.1) can be treated as deterministic. Measuring the performance
of the estimators in term of variance is well justi�ed since the halo e�ect results in the high
variance of our estimators around the edges (see Salmon and Strozecki, 2010). However, it tends
to over-smooth the edges and the thin details since it does not consider the bias of each estimator.

7.2.1 SURE and the exponential weighted aggregation

A way to take the bias into account is to consider a risk estimate rather than the variance to
locally attribute more weight to the estimators with small risks. We suggest to estimate this risk
by using the Stein unbiased risk estimator (SURE) as presented in Sec. 2.6.4. Van De Ville and
Kocher (2009) give a closed-form expression of SURE for the NL means. They aim at selecting
globally the best bandwidth for a given image. Here, our approach is di�erent, despite the use
of the same tool. Indeed, our choice of shape is done locally (i.e., for each pixel), since it is very
unlikely that a single shape should be optimal for a whole natural image. Our method is closer
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to the one proposed by Duval et al. (2011). The authors rely on SURE to locally determine the
parameters: the bandwidth h and the patch size p. They have shown that a local choice of h
reduces the visual artifacts, especially the rare patch e�ect. Let us now rephrase Stein's Lemma
(Stein, 1973, 1981b) in our NLM-SAP framework.

SURE provides an estimate of the risk for the K shape-based denoised values uk(x) at each
pixel x de�ned by:

R̂[uk(x)] = (uk(x)− v(x))2 + 2σ2∂uk(x)

∂v(x)
− σ2 . (7.10)

As seen in Sec. 2.6.4, Eq. (7.10) is unbiased: E(R̂[uk(x)]) = E|uk(x) − u(x)|2. The main con-
tribution of (Van De Ville and Kocher, 2009; Duval et al., 2011) is that they give a closed-form

expression of ∂uk(x)
∂v(x) for NL means. Indeed, thanks to Eq. (7.1), its expression can be recast in

the following form:

∂uk(x)

∂v(x)
=
ϕ(0)

Cx
+

1

Cx

∑
x′

v(x′)
∂w(x, x′)

∂v(x)
−

(
1

Cx

∑
x′

v(x′)w(x, x′)

)(
1

Cx

∑
x′′

∂w(x, x′′)

∂v(x)

)
(7.11)

where Cx =
∑

x′ w(x, x′) is a normalization constant. In our NLM-SAP framework, our shape-
based norm de�ned in Eq. (7.3) leads to the following expression of the derivative of the weights
w(x, x′):

∂w(x, x′)

∂v(x)
=

1

h2
ϕ′
(
d2
S(v(Px), v(Px′))

2h2

)(
S (0)

[
v(x)− v(x′)

]
+ S

(
x− x′

) [
v(x)− v(2x− x′)

])
(7.12)

where S encodes the shape of our k-th shape-based estimator. Finally, combining equations
(7.10), (7.11) and (7.12) leads to an unbiased estimate of the risk of our NLM-SAP denoiser.

Given the risk associated to each estimator, we suggest to use the exponential weighted ag-
gregation (EWA) presented in Sec. 2.6.5. In the same spirit as the WAV approach, it considers
that it might be better to combine several estimates rather than just selecting one. The aggre-
gating of the estimators is performed by a weighted average with weights based on the con�dence
attributed to each estimator and measured in term of the risk:

û(x) =
K∑
k=1

βkvk(x) , (7.13)

with βk =
exp(−R̂[uk(x)]/T )∑K

l=1 exp(−R̂[ul(x)](x)/T )
.

The temperature parameter T > 0 is a smoothing parameter, that controls the con�dence at-
tributed to the risk estimates. If T →∞, then the EWA is simply the average of the pre-estimate.
Conversely, when T → 0, then EWA selects the pre-estimate minimizing the risk as discussed
before. Most theoretical work about EWA (see Leung and Barron, 2006; Dalalyan and Tsybakov,
2008) recommend a large temperature parameter T = 4σ2 under a few assumptions (like inde-
pendence) on the estimators u1(x), · · · , uK(x). In practice, since assumptions on the estimators
family may not be satis�ed, a smaller value is used, such as T = 0.4σ2.

As discussed in Sec. 2.6.4, a remaining problem with SURE is that it has an extremely large
local variance. To take a local decision for each pixel x is di�cult since this estimator has large
oscillations (see for instance Fig. 7.5). In the next paragraph, we present how to regularize the
risk maps, i.e., the �images� r̂k = R̂[uk].
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Figure 7.5: Maps of the risk associated to a circular shape: (�rst line) the oracle risk map, (second
line) the SURE map without regularization and (third line) the SURE map with Yaroslavsky
regularization. Second and third rows correspond to the decomposition (7.10).

7.2.2 Regularizing the risk maps

In practice, the estimation of the risk given by (7.10) is too noisy to guide a local choice of
the shape (see Fig. 7.5). To make it more robust, it is necessary to locally regularize the risk
maps, so as to approximate at each pixel the expectations used in Eq. (7.10): our aim is to �nd
estimates r̂k(x) close to the true risks E[(uk(x)− u(x))2]. These true risks will be referred to as
the oracle risks since in our simulations we will compute them using the true image.

In (Duval et al., 2011), the convolution of the risk map is an e�cient way to estimate the local
risk in view of setting h since on both sides of an edge a large value of h should be used. Here,
the anisotropy of the shapes implies that on one side of an edge the risk may be low whereas it
may be very high on the other side. Since the convolution di�uses the risks on both sides of the
edges, any comparison of the risks associated with each shape becomes unstable.

In order to average the risks on each side of edges separately, we have adopted a variant of
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(a) Cameraman (b) City (c) Lake (d) Windmill

Figure 7.6: Chosen 256×256 noise-free images for our experiments, from left to right: cameraman,
city, lake and windmill. These images present edges with high contrast for which the classical
NL means su�er from the rare patch e�ect.

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.456 22.13/0.385

Patch shape area of 12.5 px2 29.59/0.822 28.11/0.873 28.68/0.849 30.91/0.879
Patch shape area of 25 px2 29.38/0.828 27.94/0.880 28.46/0.855 30.72/0.895
Patch shape area of 50 px2 29.06/0.825 27.59/0.879 28.33/0.857 30.35/0.899

Combination of these three scales 29.58/0.844 28.32/0.897 28.93/0.878 31.08/0.912

Table 7.1: Gain by using multi-scale isotropic shapes in terms of PSNR and SSIM values
(PSNR/SSIM). Circular patch shapes respectively with area of 12.5, 25 and 50 px2 are used
and their results are compared to the one obtained when using a combination of these three
scales of patches.

the Yaroslavsky �lter (Yaroslavsky, 1985). Up to a constant, the estimator of the risk (7.10)
can be decomposed in two terms: the square of the method noise (Buades et al., 2005), and a

divergence term Dk(x) = 2σ2 ∂ûk(x)
∂v(x) . This divergence term has little variance compared to the

noisy image and to the method noise (see Fig. 7.5) and contains all the needed information to
guide the averaging process: it is uniformly high in the regions where the halo e�ect is likely to
appear, whereas it is low in smooth regions.

As a consequence, better results are obtained by guiding the Yaroslavsky �lter with the
self-similarity of the divergence instead of the risk itself:

r̂k(x) =
1

C(x)

∑
x′

1{|Dk(x)−Dk(x′)|≤κ} r̂k(x
′), (7.14)

where the sum is taken over a small neighborhood of x, C(x) is a normalizing constant and κ
is a bandwidth parameter. Fig. 7.5 shows that this regularization procedure provides smooth
risk maps, following edges of the underlying noise-free image, better than without regularization.
We have displayed the oracle risk map and the estimated risk map provided by SURE and the
Yaroslavsky regularization. For illustration purpose, we also show the decomposition of SURE
as the sum of the square of the method noise and the divergence term.

Other attempts to regularize the risk map were performed (median �lter, variants of Perona-
Malik di�usion and NL means). Yaroslavsky regularization provides the best trade-o� between
computing time, visual and numerical results, and we have thus adopted this approach.
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Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456

Disk shapes (family F1) 29.58/0.844 28.32/0.897 28.93/0.878 31.08/0.912

Half-pie shapes (family F2) 29.72/0.843 28.48/0.896 29.00/0.877 31.29/0.912
Quarter-pie shapes (family F3) 29.64/0.842 28.27/0.891 28.89/0.875 31.24/0.912
Band shapes (family F4) 29.72/0.841 28.45/0.894 28.98/0.875 31.36/0.912

Combination of F1 and F2 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.913
Combination of F1, F2, F3 and F4 29.75/0.842 28.49/0.895 29.02/0.876 31.40/0.913

Table 7.2: Gain by using anisotropic or mixture of isotropic and anisotropic shapes in terms of
PSNR and SSIM values (PSNR/SSIM). The studied patch shapes are the isotropic disks, the
half-pies, the quarter-pies, the bands and some combination of them (see Fig. 7.2.a).

7.3 Numerical and Visual Results

This section presents quantitative and qualitative results obtained on four images syntheti-
cally corrupted by AWGN. Unless otherwise speci�ed, the corrupted images are obtained from
four 256 × 256 noise-free images presented on Fig. 7.6: the famous cameraman image and city,
lake and windmill 1. These images are particularly interesting in the study of our proposed
Non-Local Means with Adaptive Patch Shapes (NLM-SAP) since they present edges with high
contrast for which the classical NL means su�er from the rare patch e�ect (see Fig. 7.1).

In all the experiments, unless otherwise speci�ed, the NLM-SAP is used with the following
default parameters:

� search window: width ` = 11 px,
� shape family: 15 shapes from families F1 and F2 on Fig. 7.2.a with shape areas of 12.5, 25
and 50 px2,

� aggregation: EWA with T = 0.4σ2,
� risk regularization: Yaroslavsky regularization with search window of size 11× 11 px2 and
κ is proportional to the estimated standard deviation of the divergence map.

As soon as we consider shapes of di�erent areas, the parameter h has to adapt to the sizes of the
shapes. Since we use a trapezoidal kernel, we set the bandwidth parameter to h2 = 2

√
8σ4/|S|

as suggested in (Buades et al., 2009) where |S| is the equivalent size of the shape |S| = (
∑
S(τ))2∑
S(τ)2 .

The main limitation in computing time is due to the number K of shapes required by our
NLM-SAP algorithm. We need to perform K times an NL means like algorithm, i.e., one for each
shape. Thanks to our FFT acceleration, the computing time required for one shape, whatever
the shape, is of about 2s for a 256×256 image with a Matlab implementation on an Intel Pentium
64-bit, 3.00 GHz. By comparison, the naive Matlab implementation of NL means takes about
100s, for square patches of area 7 × 7 px2. The computation of one local SURE map, using
Yaroslavsky �ltering, takes about 0.2s per shape. Finally, NLM-SAP 2 using 15 shapes leads to
a computing time of about 32s which is still less than the naive Matlab implementation of NL
means.

Visual results are given to assess the denoising qualities relative to the di�erent settings of
NLM-SAP and to compare NLM-SAP with other denoising approaches (see Fig. 7.12). Numerical
criteria support our claims: the Peak Signal to Noise Ratio (PSNR) and the Structural SIMilarity
(SSIM) de�ned by Wang et al. (2004) (see Sec. 2.1.3).

1. three sub-images extracted from Laurent Condat's database: http://www.greyc.ensicaen.fr/~lcondat/
2. our Matlab implementation is available online

http://www.greyc.ensicaen.fr/~lcondat/
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(a) Area 12.5 px2 (b) Area 50 px2 (c) Combination

Figure 7.7: Results obtained with circular shapes of di�erent scales (12.5 px2, 50 px2, combination
of 12.5, 25 and 50 px2). The smallest patch size provide best PSNR but has more artifacts in
smooth regions, whereas larger ones su�er from the noise halo. Combination of scales limits
those two issues.

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456

Weighted Avg. based on Var. (WAV) 29.64/0.841 28.15/0.887 28.69/0.868 31.10/0.910
Exp. Weighted Average (EWA) 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.912

Table 7.3: Comparisons of di�erent aggregation procedures in terms of PSNR and SSIM values
(PSNR/SSIM). The compared aggregation types are WAV and EWA.

7.3.1 Behavior of NLM-SAP

In this section, we study the behavior of NLM-SAP according to some parameters such as
the type of family, the type of aggregation and the type of risk regularization. Each noisy image
is corrupted by AWGN with standard deviation σ = 20.

Table 7.1 and Figure 7.7 illustrate the gain of performance to use multi-scale patch shapes
instead of using only one �xed size. In this experiment, we consider three circular shapes of areas:
12.5, 25 and 50 px2. Comparatively, for the original version of NL means, the authors suggest to
use square patches of �xed size 7× 7 = 49 px2. Surprisingly, using the smallest shapes provides
always the best PSNR. It means that the bias and the noise halos introduced by using large
patches are actually more penalizing than the remaining noise left by the use of small patches.
The aggregation of these three scales of shapes with our NLM-SAP methods improves slightly
the PSNR. Visually speaking, using only small isotropic patches already decreases the rare patch
e�ect while using too large isotropic shapes produces a strong noise halo e�ect. However, the
level of noise is much more decreased by using large shapes than small ones in homogeneous
areas. Finally, combining di�erent scales of isotropic patch shapes leads to a diminution of both
the level of noise and the halo e�ect. This is well re�ected in Tab. 7.1 by the gain in term of the
SSIM criterion which provides quality measurements closer to our perception system. We will
see in the following that the results can be further improved by considering both multi-scale and
anisotropic patch shapes.

Table 7.2 gives numerical results obtained by using di�erent families. The compared families
are the ones presented on Fig. 7.2.a, i.e., the disks, the half-pies, the quarter-pies and the bands.
Combination of these families are also studied. Our experiments show that most suitable shape
families, both in terms of PSNR and SSIM, have to contain isotropic shapes, directional shapes
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Figure 7.8: Eight denoised images obtained for di�erent oriented patch shapes. The proposed
�nal aggregate is in the center. Each denoiser provides good performance in a speci�c target
direction but su�ers from noise halos in the other directions. The �nal (central) aggregate takes
advantage of every oriented-denoiser to provide high quality restored edges. The patch shape
used is indicated in white.

and various scales of shapes. Increasing the number of shapes does not necessarily improve the
denoising quality. Using 15 shapes from families F1 and F2 with the three di�erent scales, seems
to be a good trade-o� between computing time and denoising quality. Figure 7.8 illustrates
why using directional shapes is important to reduce the rare patch e�ect. Indeed, each oriented
patch shape enables the restoration of edges in the target direction but is inappropriate in the
other directions. Then a �ne aggregation of them leads to high quality restoration of edges in
all directions. Figure 7.9 displays weight maps induced by using patches with only one �xed
square shape (i.e., NL means) compared to patches with adaptive scales and orientations (i.e.,
NLM-SAP). For NL means, all the weights are concentrated around the target pixel: this is
the rare patch e�ect. For NLM-SAP, the weights are more spread, and other similar pixels are
detected thanks to multi-scale and anisotropic patch shapes. It is clear that the limitation of the
rare patch e�ect around edges with high contrast leads to a good reduction of the noise halo.
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(a) Target pixel (b) Neighborhood for NLM (c) Neigh. for NLM-SAP (d) Avg. shape

Figure 7.9: Illustration of the diminution of the rare patch e�ect. (a) The noisy image with an
highlighted target pixel and its neighborhood. (b) The associated maps of weights obtained by
using only square patches of �xed size (i.e., NL means). (c) The associated maps of weights
with multi-scale and anisotropic patch shapes (i.e., NLM-SAP with F1 and F2). (d) Weighted
average of the shapes combined by NLM-SAP.

Cameraman City Lake Windmill

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.456 22.13/0.385

Noisy risk maps (SURE maps) 29.13/0.817 27.41/0.865 28.38/0.846 30.15/0.872
Convolved risk maps 29.71/0.845 28.49/0.898 29.13/0.881 31.26/0.912
Yaroslavsky risk maps 29.74/0.844 28.53/0.897 29.04/0.878 31.32/0.912

True risk maps 32.09/0.880 32.31/0.938 32.27/0.922 34.43/0.935

Table 7.4: Comparisons of regularization procedures of the risk maps in terms of PSNR and
SSIM values (PSNR/SSIM). The compared regularization procedures are the ones using the
noisy risk maps directly (i.e., SURE maps), the convolved risk maps and the risk maps obtained
by Yaroslavsky regularization.

Table 7.3 presents the numerical performance associated with the WAV and the EWA ag-
gregation procedures. As expected, EWA provides best results, in terms of PSNR and SSIM,
since compared to the other three it combines estimates with the best bias-variance trade-o�.
The local behaviors of NLM-SAP for WAV and EWA are presented on Fig. 7.10. The average
areas and the average orientations of the selected shapes are given for the cameraman image. It
summarizes for all pixels the information of the average shape as given in Fig. 7.9.d. In smooth
regions, anisotropic shapes are not necessarily worse than isotropic ones (like disks or squares).
In fact all shapes with the same size should perform equally: weights provided by WAV and EWA
are close to uniform distributions. The selected patch shapes clearly adapt to the local scale and
orientation of the image geometry. The chosen sizes of the shapes are smaller around edges
and textured areas than in homogeneous areas. The chosen orientation follows the orthogonal
orientation of the shapes which is consistent with the remarks given in Sec. 7.1.

Finally, we have studied the in�uence of the regularization of the risk maps on the aggregation
results. Three methodologies are compared: aggregation using the noisy risk maps (i.e., SURE
maps), the convolved risk maps (using a disk kernel of radius 4) and the risk maps obtained
by Yaroslavsky regularization. Table 7.4 gives the corresponding numerical performance and
Fig. 7.11 illustrates the behavior of each type of risk map regularization. The risk maps based on
convolution and Yaroslavky of SURE maps provide the best results in terms of PSNR and SSIM.
However, the choice of the local sizes and orientations of the patch shapes is more relevant in
the maps obtained by Yaroslavsky regularization, in terms of scale adaptivity, feature directions
and spatial coherency. Using Yaroslavsky �ltering, the NLM-SAP acts as expected by selecting
big sizes of shapes, even around edges, since the shape orientations have been chosen properly to
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Figure 7.10: (a) Average areas and (b) average orientations of selected shapes for di�erent ag-
gregation procedures on a noisy realization of the cameraman image. (c) The �nal aggegate
using (top) the WAV aggregation and (bottom) the EWA aggregations. The average areas and
the average orientations are represented using colors whose legends are given on the top right
corners.

reduce the rare patch e�ect. By comparison, the convolution forces the size of shapes to be small
around edges since it cannot select properly the suitable orientations. This slight di�erences
of behaviors can be noticed around the camera (cf. Fig. 7.11). Other regularization strategies
have been investigated (median �lter, NL means,anisotropic di�usion) but we have not found
striking improvements. However, Tab. 7.4 shows that there is still a gap of numerical performance
between regularizations of the risk maps and an �oracle risk map� de�ned as the image of local
square errors associated to each shape: (uk(x)− u(x))2.

7.3.2 Comparisons with state-of-the-art methods

In this section, the proposed NLM-SAP approach is compared to state-of-the-art denoising
methods on a large dataset of standard images at di�erent noise levels σ. Comparisons have
been performed with the classical (pixelwise) NL means, the blockwise NL means with and
without WAV reprojection (with square patches of a single scale) the pixelwise NL means using
SURE-based adaptive bandwidth selection (Duval et al., 2011), a re�nement of the NL means by
Goossens et al. (Goossens et al., 2008), the Block-Matching and 3D �ltering (BM3D) denoiser
(Dabov et al., 2007), and our proposed NLM-SAP approach.

Table 7.5 shows that NLM-SAP brings a gain of PSNR of about 1 dB compared to the
classical NL means (for σ ≤ 20). The SSIM is also usually increased. The BM3D approach leads
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(a) Noisy risk (b) Convolved risk (c) Yaroslavsky

Figure 7.11: (top) Average areas and (middle line) average orientations of selected shapes for
di�erent risk maps on a noisy realization of the cameraman image. (bottom) Corresponding
results focused on the cameraman's neck. From left to right, results using the noisy risk maps (i.e.,
SURE maps), the convolved risk maps and the risk maps obtained by Yaroslavsky regularization.
The average areas and the average orientations are represented using colors whose legends are
given on the top right corners.

to better numerical results than all Non Local based approaches. Figure 7.12 gives the visual
results. While the blockwise NL means and the re�nement of the NL means (Goossens et al.,
2008) illustrate the rare patch e�ect by the presence of noise halos, BM3D and NLM-SAP have
reduced a lot this phenomenon. Our NLM-SAP provides smooth results with accurate details,
such as the cameraman's head, the house windows, the windmill blades, the tree-trunk and the
car. Visually, the quality of images obtained with NLM-SAP challenges those obtained with
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NL means Block-NLM WAV NLM Duval et al. INLM BM3D NLM-SAP

σ = 10

barbara 32.23/0.969 32.61/0.971 32.89/0.970 33.85/0.970 34.29/0.973 34.90/0.977 33.69/0.970
boat 32.00/0.956 32.41/0.958 32.61/0.955 32.77/0.955 33.21/0.962 33.85/0.967 32.99/0.953
bridge 29.08/0.884 29.23/0.889 29.40/0.891 29.70/0.887 30.46/0.904 30.66/0.906 30.03/0.896
cameraman 32.13/0.909 32.47/0.913 32.85/0.921 33.11/0.920 33.52/0.926 34.05/0.930 33.50/0.923
city 30.60/0.922 31.00/0.926 31.49/0.941 32.07/0.948 32.01/0.943 33.14/0.955 32.73/0.952
couple 31.99/0.952 32.41/0.954 32.67/0.952 32.81/0.955 33.25/0.959 33.93/0.967 33.07/0.948
�ngerprint 28.77/0.988 28.83/0.988 28.95/0.988 30.66/0.986 32.14/0.990 32.41/0.990 30.44/0.988
�instones 30.33/0.976 30.71/0.978 31.07/0.977 31.50/0.977 31.68/0.978 32.40/0.980 31.85/0.978
hill 30.32/0.859 30.66/0.869 30.96/0.871 30.93/0.863 31.43/0.877 31.85/0.883 31.49/0.871
lake 31.64/0.919 32.10/0.924 32.42/0.936 32.56/0.936 32.95/0.940 33.62/0.949 33.22/0.943
lena 34.08/0.962 34.47/0.964 34.65/0.962 34.81/0.961 35.34/0.965 35.79/0.969 35.00/0.959
man 32.14/0.953 32.53/0.955 32.75/0.951 32.87/0.951 33.34/0.958 33.90/0.963 33.20/0.949
mandril 30.11/0.954 30.26/0.955 30.39/0.952 31.29/0.950 32.73/0.960 33.09/0.966 31.11/0.948
windmill 33.00/0.938 33.48/0.941 34.06/0.953 35.05/0.957 34.62/0.958 35.81/0.966 35.24/0.958

σ = 20

barbara 29.87/0.936 30.30/0.939 30.31/0.937 30.62/0.939 30.95/0.946 31.76/0.953 30.41/0.930
boat 29.29/0.892 29.63/0.893 29.55/0.886 29.59/0.897 29.92/0.902 30.81/0.927 29.67/0.877
bridge 25.68/0.739 26.11/0.756 26.17/0.743 25.89/0.738 26.20/0.761 26.76/0.775 26.24/0.728
cameraman 28.59/0.823 29.01/0.831 29.23/0.838 29.58/0.856 29.49/0.852 30.34/0.871 29.74/0.844
city 26.58/0.863 27.07/0.868 27.30/0.877 27.85/0.893 28.00/0.893 29.06/0.912 28.53/0.897
couple 29.03/0.892 29.42/0.895 29.41/0.889 29.25/0.893 29.82/0.903 30.67/0.927 29.37/0.877
�ngerprint 26.48/0.958 26.94/0.960 27.16/0.958 27.20/0.957 27.75/0.965 28.80/0.972 27.45/0.951
�instones 27.19/0.958 27.70/0.959 28.03/0.955 28.92/0.961 28.54/0.962 29.55/0.966 29.04/0.960
hill 27.50/0.733 27.86/0.745 27.78/0.735 27.62/0.741 27.99/0.756 28.51/0.779 27.83/0.724
lake 27.78/0.854 28.23/0.861 28.18/0.865 28.48/0.872 28.82/0.881 29.38/0.894 29.04/0.878
lena 31.61/0.926 31.99/0.928 31.95/0.924 31.67/0.922 32.37/0.932 32.98/0.940 31.92/0.918
man 29.34/0.886 29.64/0.887 29.54/0.880 29.55/0.889 29.81/0.895 30.52/0.915 29.62/0.872
mandril 27.02/0.869 27.31/0.872 27.35/0.864 27.33/0.867 28.22/0.884 29.04/0.910 27.45/0.846
windmill 29.36/0.883 29.94/0.890 30.18/0.901 31.44/0.917 30.85/0.917 32.06/0.935 31.32/0.912

σ = 40

barbara 26.65/0.855 26.78/0.858 26.67/0.856 26.86/0.866 27.49/0.879 28.04/0.896 26.04/0.831
boat 26.26/0.781 26.38/0.784 26.21/0.779 26.27/0.789 26.74/0.800 27.64/0.848 26.06/0.762
bridge 23.01/0.529 23.14/0.540 23.02/0.533 23.16/0.568 23.15/0.552 23.98/0.615 22.91/0.511
cameraman 25.89/0.707 26.11/0.724 25.88/0.724 26.29/0.768 26.62/0.766 27.26/0.801 26.28/0.749
city 23.50/0.733 23.75/0.746 23.42/0.736 23.77/0.766 24.04/0.779 25.25/0.829 23.70/0.747
couple 25.73/0.769 25.87/0.772 25.75/0.767 25.67/0.775 26.33/0.792 27.43/0.849 25.39/0.737
�ngerprint 23.45/0.855 23.78/0.859 23.72/0.856 23.93/0.885 24.08/0.878 25.27/0.926 23.07/0.817
�instones 24.76/0.903 24.86/0.898 24.63/0.890 25.29/0.915 25.35/0.916 26.07/0.933 25.02/0.888
hill 24.57/0.555 24.73/0.568 24.67/0.564 24.63/0.583 24.97/0.590 25.87/0.659 24.43/0.540
lake 24.71/0.715 24.88/0.732 24.67/0.727 24.99/0.759 25.25/0.774 25.86/0.805 24.79/0.742
lena 28.31/0.846 28.51/0.850 28.42/0.848 28.37/0.853 29.14/0.868 29.77/0.883 28.22/0.839
man 26.42/0.779 26.52/0.781 26.45/0.778 26.46/0.785 26.83/0.792 27.57/0.833 26.30/0.761
mandril 23.75/0.678 23.83/0.677 23.74/0.671 23.98/0.707 24.16/0.705 25.22/0.789 23.39/0.633
windmill 26.41/0.769 26.59/0.787 26.36/0.789 27.46/0.837 27.23/0.839 28.04/0.878 26.65/0.815

Table 7.5: Comparisons of denoising approaches for di�erent degradation levels in terms of PSNR
and SSIM values (PSNR/SSIM). The compared methods are the classical (pixelwise) NL means
(Buades et al., 2005), the blockwise NL means for square patches, the blockwise NL means
using WAV reprojection for square patches, the pixelwise NL means using SURE-based adaptive
bandwidth selection (Duval et al., 2011), the Improved NL means (INLM) (Goossens et al., 2008)
the BM3D denoiser (Dabov et al., 2007), and our proposed NLM-SAP approach.

BM3D.
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Figure 7.12: Comparisons of the visual denoising performance of the proposed NLM-SAP ap-
proach and other state-of-the-art methodologies (σ = 20). From top to bottom, the input noisy
images, the results obtained by the classical (pixelwise) NL means (Buades et al., 2005), the
blockwise NL means for square patches the BM3D denoiser (Dabov et al., 2007), and our pro-
posed NLM-SAP approach.
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7.3.3 Conclusions on the experiments

The best results were obtained by using the NLM-SAP with the default parameters given in
the previous section. Let us also mention that another version of the algorithm could be appealing
to users particularly interested in fast and simple implementation. It consists in replacing the
EWA aggregation with a WAV aggregation using only three scales of isotropic shapes. The simple
scheme is then 5 times faster than the more elaborated version using 15 shapes at the price of a
slight decrease of the PSNR. Note also that the WAV aggregation scheme is parameter-free.

7.4 Conclusion

In this chapter, we have addressed the problem of the rare patch e�ect arising in the NL means
procedure and responsible for the noisy halos created around edges with high contrast. The
proposed solution consists of substituting the square patches of �xed size by spatially adaptive
patch shapes. A fast implementation of NL means, based on FFT calculations, has been proposed
in this context to handle any kind of patch shape with arbitrary scale. Thanks to this acceleration,
di�erent estimates are obtained by using di�erent patch shapes, typically one isotropic patch
shape and four edge oriented patch shapes, all of them with three di�erent scales. We have
extended SURE-based approaches to aggregate properly these di�erent shape-based estimates
in a spatially adaptive way. To get an e�cient locally adaptive �lter, we have shown that the
SURE-based risk maps require to be regularized and that Yaroslavsky regularization can be used
to this purpose. Simulations have shown that exponentially weighted aggregation based on the
regularized risk maps of the di�erent shape-based estimates could lead to both numerical and
visual improvements (the noise halo is suppressed around edges). Visually, our method challenges
other NL means improvements we have considered in our comparisons. It is still out-performed
by BM3D in terms of PSNR and SSIM.

Future work could be to reduce computation time of the algorithm by choosing more conve-
nient shapes or parallel implementations. Another extension might be to apply our framework
to more general kinds of noise, by adapting results given in Chap. 5.
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Chapter 8

Conclusion and perspectives

Conclusion

There is an ever increasing interest for high resolution radar images. However, strong speckle
that corrupts these images make their interpretation very di�cult. Speckle di�ers signi�cantly
from additive Gaussian noise and thus requires adapted denoising methods. The starting point
of this thesis has been to bridge the gap between cutting edge denoising methods restricted to
Gaussian noise and SAR despeckling techniques. To best preserve the high resolution of SAR
images, adaptive selection of neighborhoods must be designed. Given the strong noise level, the
use of patches is necessary for robust selection. This raised the question of how to compare noisy
patches.

Patch similarity: In the light of detection theory, we studied several similarity criteria that have
been proposed in the literature to deal with the problem of patch comparisons in non-Gaussian
noise conditions. We introduced a new similarity criterion based on the generalized likelihood
ratio test. The properties and the performance on a task-based evaluation were in favor of the
proposed criterion.

Data driven selection: When noise departs from the Gaussian distribution, particular attention
should be paid to the bias introduced by the selection procedure. The selection of pixels with
similar values can discard samples of interest which biases the subsequent maximum likelihood
estimation. The generalized likelihood ratio provides a selection-rule leading to an unbiased
estimator with an equal variance reduction in the homogeneous areas: the dynamic and contrast
of objects are preserved.

In the heterogeneous areas, an oracle study shows that the estimation should rather intro-
duce a small bias. This bias resulting in blur e�ects can be controled e�ciently thanks to the
good properties of the generalized likelihood ratio. The smoothing parameters can be chosen to
maintain the same smoothing e�ect in the homogeneous areas (independently of the underly-
ing signal) and minimize the blur in the heterogeneous areas: the edges, textures and punctual
targets are preserved.

Two-step or iterative selection: When the signal intensity is low compared to the noise intensity,
it is important to drive the selection according to two images: the noisy one and a pre-�ltered
one (possibly obtained iteratively). An oracle study shows that the Kullback-Leibler divergence
can be used e�ciently to re�ne the detection performance of the generalized likelihood ratio test.
When an estimate of the mean square error is available, one should use it to automatically choose
the trade-o� between the �delities to both images.

Non-local SAR (NL-SAR): The proposed methodology has retained a lot of attention for the de-
noising of amplitude SAR images. Our results have made the cover of the IEEE GRSL Newsletter
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(a) IEEE GRSL Newsletter of March 2011 (b) Single-look image

(c) 100-look SAR image (d) Result of NL-SAR

Figure 8.1: (a) The cover of the IEEE GRSL Newsletter of March 2011 illustrating the per-
formance of NL-SAR by comparing the images in (b), (c) and (d). (b) A single-look image of
resolution 1m × 1m (acquired by ONERA, multi-looked by CNES, c©ONERA CNES). (c) A
100-look image obtained by multi-looking a very high resolution image of the same urban area.
This image can be considered as a ground truth. (d) The denoised version of the single-look
image.

of March 2011 (see Fig. 8.1). This illustration provides an interesting validation of our denoising
technique. It compares our denoising result obtained from a decimated single-look noisy image
(1m ground resolution) with a 100-look image (i.e., at each 1m × 1m pixel, 100 values from a
10cm×10cm image are averaged).The 100-look image can be considered as a ground truth, in the
sense that the remaining speckle noise is extremely low. Note however that, due to anisotropy of
some targets, there are some di�erences which are not due to speckle only. The �gure illustrates
that �ne details are well preserved by our approach. For amplitude SAR images, our method-
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(a) Quadtree decomposition (b) 16 �rst axes in part 1 (c) 16 �rst axes in part 2

Figure 8.2: An image and its 16 �rst principal patches obtained over two stacks extracted
respectively in two di�erent leaves of the quadtree decomposition. Here, the four main patches
are kept at each node of the quadtree and three level of decomposition is used. The resulting
dictionaries seem to describe more and more local features.

ology has led to advancements in speckle reduction and inspired other methods (Parrilli et al.,
2010; Teuber and Lang, 2011; Feng et al., 2011; Zhong et al., 2011). For interferometric and
polarimetric SAR images, our �lter can be considered as the current state-of-the-art method. In
this thesis, it has been applied to the latest aerial radar system of the DLR, F-SAR, and its
potential has been illustrated on such high-resolution SAR data.

Poisson NL means: The same methodology has led to appealing results in photon-limited imagery
such as �uorescence microscopy and astronomy. I have been awarded for this work the best
student paper award at ICIP'2010. This approach has also been mentioned as the state-of-the-
art technique in (Lee et al., 2011) even if I consider that the BM3D and the SAFIR approaches
with optimal inverse Anscombe transform still provides at least as good results (Dabov et al.,
2007; Boulanger et al., 2008; Mäkitalo and Foi, 2011).

NL means with shape adaptive patches (NLM-SAP): Concurrently, we also proposed a spatial
adaptation of the scale and the orientation of patches to take into account the local geometry of
images. This was a joint work with Vincent Duval and Joseph Salmon. This technique relied on
a fast algorithm to compute the solution of the NL means for arbitrary shapes of patches. The
availability of many estimates of the NL means for di�erent shapes pointed us to the problem
of aggregation. We proposed to use a local estimation of the Stein unbiased risk estimator to
locally combine the best scales and shapes of patches. The resulting �lter has led to results of
good quality challenging other NL means improvements.

Remaining issues and perspectives

Rare features: towards the use of dictionary

When using denoising techniques, one should care when their inherent assumptions are vio-
lated. We have seen that on images with high contrast, such as in high dynamic range images,
the presence of �rare� features defeats the patch redundancy assumption. The use of patches
with adaptive sizes and shapes allowed us to exploit the redundancy of directional and multi-
scale features. However, there can still be unique features even when considering a geometrical
adaptive de�nition of the redundancy. I remember a passionate discussion with Vincent Duval
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(a) Noisy image (b) Dictionary (c) Filtered image

Figure 8.3: (a) A SLC SAR image (acquired by RAMSES c©ONERA CNES), (b) a dictio-
nary learned on the noisy image and (c) the �ltered image reconstructed by using the learned
dictionary.

and Joseph Salmon on what denoising techniques should do in this case. Should we enforce
reducing the noise at the cost of a bias, or, should we leave some noisy parts in the image? Of
course it depends on the application at hand.

In the case of polarimetric SAR images, a punctual target (often a bright scatterer) may
very well have no replica in the search window, especially if it has a non-common polarimetric
signature. It is vain to restore such a feature by exploiting the image content thus one could
leave this target unchanged. However to analyze its polarimetric signature, one should �nd at
least three replicas (to prevent singularity issues). We then suggested enforcing a minimum of
noise reduction to properly estimate the polarimetric information but if there is no replica we
will necessarily bias such punctual targets. Again, what is preferable?

If features have no replica in the image content, one could instead search in an extra database.
A simple idea could be to exploit a large collection of images of the same nature. Of course, to
prevent high running time, we should search in a dictionary providing a summary of relevant
patterns and including �rare� features. The construction of such dictionary is still an open prob-
lem that has been brie�y reviewed in this thesis. Recently, Jospeh Salmon, Arnak Dalalyan and
I have designed a denoising technique based on a dictionary obtained by an adaptive principal
component analysis that we presented at BMVC'2011 (Fig. 8.2 extracted from Deledalle et al.,
2011d, gives an illustration of the idea). Following the spirit of this thesis and the recent im-
provements in image modeling, one could consider the learning of a dictionary with multi-scale
and anisotropic features and/or under non-Gaussian noise conditions. Beyond the problem of
denoising, the learning of crude low-level features in polarimetric imagery could be of partic-
ular interest. An early work following this idea has already provided appealing results on an
amplitude SAR image (see Fig. 8.3).

Testing patch equality vs patch similarity

In this thesis we considered robust similarity criteria evaluating that two noisy patches share
the same noise-free patch under non-Gaussian conditions. Our hypothesis test is expressed as
an equality between the underlying noise-free patches.

When two di�erent images are available, e.g., in change detection, �ickering reduction, stereo-
vision or image registration, a change of illumination may have occured between the two acquisi-
tions. One should rather be interested in �nding if two noisy patches are identical up to an a�ne
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(a) Amplitude, phase and empirical coherence in SAR interferometry

(b) Joint non-local estimation without regularization of the interferometric phase

(c) Joint non-local estimation with regularization of the interferometric phase

Figure 8.4: (a) From left to right, the amplitude, the phase di�erence and the empirical coher-
ence of an interferometric pair of two SLC SAR images of an hypdrolic dam in Serre-Ponçon
sensed by TerraSAR-X (image courtesy of Astrium). (b) The non-local joint estimation of the
re�ectivity, the true phase di�erence and the true coherence. (c) The non-local joint estimation
with regularization of the interferometric phase.

transform. The same probleme arises in dictionary learning from noisy data. One wants to learn
the geometry of atomic features rather than their intensities. Our de�nition of similarity using
the generalized likelihood ratio could be applied for such applications by adapting the de�nition
of the hypothesis test (i.e., introducing additional nuisance parameters).
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Under the Gaussian noise assumption, the square di�erence between noisy values estimates
the square di�erence between noise-free values. This no longer holds true with the generalized
likelihood ratio. We have seen that the performance of our methodology are all the more relevant
for strong noises, whereas the square di�erences are challenging with lower noise levels. We
believe that the similarity criterion should approach the square di�erence at low noise levels.
Our de�nition of similarity using the generalized likelihood ratio could be derived in this sense
by testing the proximity of noise-free patches rather than their equality.

Noise reduction versus regularity: towards a joint approach

Selection-based �lters reduce the local variance while avoiding the introduction of bias. Such
�lters produce an image with smaller �uctuations, hence the name of �noise reduction�. Some
image analysis techniques or image interprets should expect the homogeneous areas to appear
at a constant level without �uctuations. For instance, in a 3D reconstruction obtained from a
pair of interferometric SAR images, one expects that the roof of a building is �at or planar.
Also, in non-coherent regions (for instance shadows or the vegetation) the interferometric phase
is non-informative and one should instead regularize/extrapolate the phase based on coherent
areas (for instance the ground or man-made structures).

Several works de�ned the regularity in the patch domain with a data-�delity term in the
spatial domain (for instance using non-local graphs). In an early work, we obtained promising
results by considering a spatial regularity of the interferometric phase with a data-�delity term
de�ned in the patch domain (see Fig. 8.4). This model could be extended to phase unwrapping.

The limit of joint �ltering

In this thesis, we considered jointly estimating the di�erent channels of multi-variate images.
In SAR polarimetry, the joint estimation is preferable to preserve the polarimetric characteristics
and prevent cross-talk between channels. We have also chosen to drive our �lter by considering
the joint information brought by all channels while it is usually driven only by the intensity. In
interferometric SAR �ltering, the denoising is then driven by the phases and the amplitudes,
preventing from mixing regions of di�erent heights with the same re�ectivity and vice-versa.
However, during my stay at DLR, Andreas Reigber pointed out that the �ltering of the amplitude
and the phase would be more e�cient if performed independently. Indeed, we could reduce the
variance more in both channels by independently mixing the amplitudes of the same re�ectivity
and the noisy phases of the same height. But at the same time, we would lose the robustness
of the similarity brought by the joint comparison of the di�erent channels. It sounds that a
compromise must be made.
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Appendix A

Patch-similarity: closed-form

expressions and sketch of proofs

This document is a supplementary material of the paper How to compare noisy patches?

Patch similarity beyond Gaussian noise (Deledalle et al., 2012). The derivation of the closed-
form expressions of seven similarity criteria for Gaussian, gamma, Poisson and Cauchy noise is
given in a �rst part. Proof sketches of some useful properties for similarity criteria described in
(Deledalle et al., 2012), are given in a second part.

A.1 Derivation of closed-form expressions of similarity criteria

We derive in this section the closed-form expression of the 7 di�erent similarity criteria
between patches v1 and v2 considered in (Deledalle et al., 2012):

� G, the usual similarity criterion based on square di�erences: G(v1,v2) =
exp

(
−‖v1 − v2‖22/h

)
,

� S, based on variance stabilizing transform s: S(v1,v2) = G(s(v1), s(v2)),

� LB, the Bayesian likelihood ratio: LB(v1,v2) =
∫
p(v1|u12=t)p(v2|u12=t)p(u12=t) dt∫

p(v1|u1=t1)p(u1=t1)dt1
∫
p(v2|u2=t2)p(u2=t2)dt2

,

� LG, the generalized likelihood ratio: LG(v1,v2) = supt p(v1,v2|u12=t,H0)
supt1,t2

p(v1,v2|u1=t1,u2=t2,H1) ,

� QB, the Bayesian joint likelihood: QB(v1,v2) =
∫
p(v1|u1 = t) p(v2|u2 = t) p(u12 = t) dt,

� QG, the maximum joint likelihood: QG(v1,v2) = p(v1|u1 = t̂12) p(v2|u2 = t̂12),

� KB, the mutual information kernel: KB(v1,v2) = QB(v1,v2)/
√
QB(v1,v1)QB(v2,v2).

where, v denotes the available (i.e., noisy) data, while u are the parameters of interest that are
to be recovered.

We consider uncorrelated noise, so that patch similarity is the product over the patch of
similarity between pixels. We study �rst Gaussian noise, then Gamma noise, Poisson noise, and
�nally Cauchy-distributed noise.

A.1.1 Gaussian noise case

Given σ ∈ R+
∗ , a Gaussian random variable V follows the probability density function (pdf):

p(v|u) =
1√
2πσ

exp

[
−(v − u)2

2σ2

]
, (A.1)
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with expectation E[V ] = u and variance Var[V ] = σ2. Gaussian �uctuations are additive, it
is straightforward to show that V can be decomposed as u + N with N a zero mean Gaussian
random variable.

Fisher information

Fisher information associated with a Gaussian pdf is given by:

I(u) , EV

[(
∂

∂u
log p(v|u)

)2
]

=

∫ (
∂

∂u
log p(v|u)

)2

p(v|u) dv (A.2)

=

∫ (
v − u
σ2

)2 e−
(v−u)2

2σ2

√
2πσ

dv =
1

σ4

∫
(v − u)2 e

− (v−u)2

2σ2

√
2πσ

dv =
σ2

σ4︸ ︷︷ ︸
by de�nition of variance

=
1

σ2
. (A.3)

Je�reys' prior

Je�reys' prior follows from Fisher information:

p(u) ,
√
|I(u)| = 1

σ
. (A.4)

Bayesian joint likelihood

With Je�reys' prior, we can derive the Bayesian joint likelihood as follows:

QB(v1, v2) =

∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t)dt =

∫ e− (v1−t)
2

2σ2

√
2πσ

e− (v2−t)
2

2σ2

√
2πσ

( 1

σ

)
dt

(A.5)

=
1

2πσ3

∫
e−

(v1−t)
2

2σ2 e−
(v2−t)

2

2σ2 dt =
e−

(v1−v2)2

4σ2

2πσ3︸ ︷︷ ︸
by convolution of two Gaussian functions

. (A.6)

Bayesian likelihood ratio

Let DB be the denominator term appearing in the Bayesian likelihood ratio and expressed
as:

DB(v) =

∫
p(v|u = t)p(u = t)dt =

∫ e− (v−t)2

2σ2

√
2πσ

( 1

σ

)
dt =

1

σ
. (A.7)

Using the expression of QB(v1, v2) and DB(v), it results that the Bayesian likelihood ratio is
given by:

LB(v1, v2) =
QB(v1, v2)

DB(v1)DB(v2)
=

e
− (v1−v2)2

4σ2

2πσ3

1
σ

1
σ

=
e−

(v1−v2)2

4σ2

2πσ
. (A.8)
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Mutual information kernel

Using the expression of QB(v1, v2) and QB(v, v), it comes that the mutual information kernel
is:

KB(v1, v2) =
QB(v1, v2)√

QB(v1, v1)QB(v2, v2)
=

e
− (v1−v2)2

4σ2

2πσ3√
e0

2πσ3
e0

2πσ3

= e−
(v1−v2)2

4σ2 . (A.9)

Maximum joint likelihood

The priorless extension ofQB(v1, v2), i.e. the maximum joint likelihood is obtained as follows:

QG(v1, v2) = sup
t
p(v1|u1 = t)p(v2|u2 = t) =

e− (v1−
v1+v2

2 )2

2σ2

√
2πσ


e− (v2−

v1+v2
2 )2

2σ2

√
2πσ

 (A.10)

=
1

2πσ2
e−

(v1−v2)2

8σ2 e−
(v−v2)2

8σ2 =
e−

(v1−v2)2

4σ2

2πσ2
. (A.11)

since under Gaussian noise the maximum likelihood estimator (MLE) is the mean.

Generalized likelihood ratio

Let DG be the denominator term appearing in the generalized likelihood ratio and expressed
as:

DG(v) = sup
t
p(v|u = t) =

e0

√
2πσ

=
1√
2πσ

. (A.12)

Using the expression of QG(v1, v2) and DG(v), it results that the generalized likelihood ratio is
given by:

LG(v1, v2) =
QG(v1, v2)

DG(v1)DG(v2)
=

e
− (v1−v2)2

4σ2

2πσ2

1√
2πσ

1√
2πσ

= e−
(v1−v2)2

4σ2 . (A.13)

A.1.2 Gamma noise case

Given the positive integer L ∈ N∗, a Gamma random variable V can be described by the
following pdf:

p(v|u) =
LLvL−1e−

Lv
u

Γ(L)uL
. (A.14)

Its expectation is E[V ] = u and variance Var[V ] = u2

L . The relation Var[V ] ∝ E[V ]2 indicates
a multiplicative behaviour. Indeed, it is straightforward to show that V can be decomposed as
u× S with S a Gamma random variable of parameter uS = 1.
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Fisher information

Fisher information associated with a Gamma pdf is given by:

I(u) = E

[(
∂

∂u
log p(v|u)

)2

|u

]
=

∫ (
Lv

u2
− L

u

)2 LLvL−1e−
Lv
u

Γ(L)uL
dv (A.15)

=
L2

u4

∫
(v − u)2 L

LvL−1e−
Lv
u

Γ(L)uL
dv =

L2

u4

u2

L︸ ︷︷ ︸
by de�nition of variance

=
L

u2
. (A.16)

Je�reys' prior

Fisher information allows to de�ne Je�reys' prior as:

p(u) ,
√
|I(u)| =

√
L

u
(A.17)

Bayesian joint likelihood

With Je�reys prior, we can derive the Bayesian joint likelihood as follows:

QB(v1, v2) =

∫
p(v1|t1 = t)p(v2|t2 = t)p(t12 = t)dt =

∫ (
LLvL−1

1 e−
Lv1
t

Γ(L)tL

)(
LLvL−1

2 e−
Lv2
t

Γ(L)tL

)(√
L

t

)
dt

(A.18)

=
L2L+1/2vL−1

1 vL−1
2

Γ(L)2

∫
e−

L(v1+v2)
t

t2L+1
dt =

L2L+1/2vL−1
1 vL−1

2

Γ(L)2

Γ(2L)

(L(v1 + v2))2L
(A.19)

=

√
LΓ(2L)

Γ(L)2

(
1

v1v2

(
v1v2

(v1 + v2)2

)L)
(A.20)

by using ∫
e−

A
t

tN
dt =

Γ(N − 1)

AN−1
. (A.21)

Bayesian likelihood ratio

Let DB be the denominator term appearing in the Bayesian likelihood ratio and expressed
as:

DB(v) =

∫
p(v|u = t)p(u = t)dt =

∫ (
LLvL−1e−

Lv
t

Γ(L)tL

)(√
L

t

)
dt (A.22)

=
LL+1/2vL−1

Γ(L)

∫
e−

Lv
t

tL+1
dt =

LL+1/2vL−1

Γ(L)

Γ(L)

(Lv)L
=

√
L

v
. (A.23)

Using the expression of QB(v1, v2) and DB(v), it comes that the Bayesian likelihood ratio is
given by:

LB =
QB(v1, v2)

DB(v1)DB(v2)
=

√
LΓ(2L)
Γ(L)2

vL−1
1 vL−1

2

(v1+v2)2L

√
L
v

√
L
v

=
Γ(2L)√
LΓ(L)2

(
v1v2

(v1 + v2)2

)L
. (A.24)
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Mutual information kernel

Using the expression of QB(v1, v2) and QB(v, v), it results that the mutual information kernel
is given by:

KB(v1, v2) =
QB(v1, v2)√

QB(v1, v1)QB(v2, v2)
=

√
LΓ(2L)
Γ(L)2

vL−1
1 vL−1

2

(v1+v2)2L√√
LΓ(2L)
Γ(L)2

v2L−2
1

(2v1)2L

√
LΓ(2L)
Γ(L)2

v2L−2
2

(2v2)2L

= 22L

(
v1v2

(v1 + v2)2

)L
.

(A.25)

Maximal joint likelihood

The priorless extension ofQB(v1, v2), i.e. the maximum joint likelihood is obtained as follows:

QG(v1, v2) =

∫
sup
t
p(v1|t1 = t)p(v2|t2 = t)dt =

2LLLvL−1
1 e

− 2Lv1
v1+v2

Γ(L)(v1 + v2)L

2LLLvL−1
2 e

− 2Lv2
v1+v2

Γ(L)(v1 + v2)L


(A.26)

=
22LL2LvL−1

1 vL−1
2 e−2L

Γ(L)2(v1 + v2)2L
=

22LL2Le−2L

Γ(L)2

(
1

v1v2

(
v1v2

(v1 + v2)2

)L)
. (A.27)

since under Gamma noise the MLE is the mean.

Generalized likelihood ratio

Let DG be the denominator term appearing in the generalized likelihood ratio and expressed
as:

DG(v) = sup
t
p(v|u = t) =

LLe−L

Γ(L)v
. (A.28)

Using the expression of QG(v1, v2) and DG(v), it results that the generalized likelihood ratio is
given by:

LG =
QG(v1, v2)

DG(v1)DG(v2)
=

22LL2Le−2L

Γ(L)
vL−1
1 vL−1

2

(v1+v2)2L

LLe−L

Γ(L)v
LLe−L

Γ(L)v

= 22L

(
v1v2

(v1 + v2)2

)L
. (A.29)

Variance stabilization criterion

Variance stabilization of Gamma random values can be performed using a log transform:

s(V ) = log V ⇒ Var[s(V )] = Var[log V ] = Ψ(1, L) (A.30)

where Ψ(1, L) is the �rst-order Polygamma function of L (e.g. Xie et al., 2002b). The resulting
similarity criterion is then given by:

S(v1, v2) = exp

[
−
(

log
v1

v2

)2
]
. (A.31)
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A.1.3 Poisson noise case

A Poisson random variable V can be described by the following pdf:

p(v|u) =
uve−u

v!
. (A.32)

Its expectation is E[v] = u and variance Var[V ] = u. Note that the relation Var[V ] = E[v]
is non-homogeneous, which is challenging, since, as a consequence, V cannot be related to u
through additive or multiplicative decomposition.

Fisher information

Fisher information associated with a Poissonian pdf is given by:

I(u) = E

[(
∂

∂u
log p(v|u)

)2

|u

]
=

∫ (
∂

∂u
log p(v|u)

)2

p(v|u)dv (A.33)

=

∫ (v
u
− 1
)2 uve−u

v!
dv =

1

u2

∫
(v − u)2 u

ve−u

v!
dv =

u

u2︸ ︷︷ ︸
by de�nition of variance

=
1

u
. (A.34)

Je�reys' prior

The corresponding Je�reys' prior is:

p(u) ,
√
|I(u)| = 1√

u
. (A.35)

Bayesian joint likelihood

With Je�reys' prior, we can derive the Bayesian joint likelihood as follow:

QB(v1, v2) =

∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t)dt =

∫ (
tv1e−t

v1!

)(
tv2e−t

v2!

)(
1√
t

)
dt

(A.36)

=
1

v1!v2!

∫
tv1+v2−1/2e−2tdt =

1√
2

Γ(v1 + v2 + 1/2)

2v1+v2v1!v2!
(A.37)

by using ∫
tNe−Atdt =

∫
e−

A
t

tN+2
dt =

Γ(N + 1)

AN+1
. (A.38)

Bayesian likelihood ratio

Let DB be the denominator term appearing in the Bayesian likelihood ratio and expressed
as:

DB(v) =

∫
p(v|u = t)p(u = t)dt =

∫ (
tve−t

v!

)(
1√
t

)
dt =

1

v!

∫
tv−1/2e−tdt (A.39)

=
Γ(v + 1/2)

v!
. (A.40)



199

Using the expression of QB(v1, v2) and DB(v), it results that the Bayesian likelihood ratio is
given by:

LB =
QB(v1, v2)

DB(v1)DB(v2)
=

1√
2

Γ(v1+v2+1/2)
2v1+v2v1!v2!

Γ(v1+1/2)
v1!

Γ(v2+1/2)
v2!

=
1√
2

Γ(v1 + v2 + 1/2)

2v1+v2Γ(v1 + 1/2)Γ(v2 + 1/2)
. (A.41)

Mutual information kernel

Using the expression ofQB(v1, v2) andQB(v, v), the mutual information kernel can be written
as:

KB(v1, v2) =
QB(v1, v2)√

QB(v1, v1)QB(v2, v2)
=

1√
2

Γ(v1+v2+1/2)
2v1+v2v1!v2!√

1√
2

Γ(2v1+1/2)
22v1v1!2

1√
2

Γ(2v2+1/2)
22v2v2!2

=
Γ(v1 + v2 + 1/2)√

Γ(2v1 + 1/2)Γ(2v2 + 1/2)
.

(A.42)

Maximal joint likelihood

The priorless extension ofQB(v1, v2), i.e. the maximum joint likelihood is obtained as follows:

QG(v1, v2) =

∫
sup
t
p(v1|t1 = t)p(v2|t2 = t)dt =

(
(v1+v2)v1

2v1 e−
v1+v2

2

v1!

)(
(v1+v2)v2

2v2 e−
v1+v2

2

v2!

)
(A.43)

=
(v1 + v2)v1+v2

(2e)v1+v2v1!v2!
. (A.44)

since once again, the MLE for Poisson noise is the mean.

Generalized likelihood ratio

Let DG be the denominator term appearing in the generalized likelihood ratio and expressed
as:

DG(v) = sup
t
p(v|u = t) =

vxe−v

v!
. (A.45)

Using the expression of QG(v1, v2) and DG(v), it comes that the generalized likelihood ratio is:

LG =
QG(v1, v2)

DG(v1)DG(v2)
=

(v1+v2)v1+v2

(2e)v1+v2v1!v2!

v
v1
1 e−v1

v1!
v
v2
2 e−v2

v2!

=
(v1 + v2)v1+v2

2v1+v2vv1
1 v

v2
2

. (A.46)

Variance stabilization criterion

Approximated variance stabilization of Poisson random values can be performed using
Anscombe transform:

s(V ) = 2

√
V +

3

8
⇒ (u� 0⇒ Var[s(V )] = 1) . (A.47)

The resulting similarity criterion is then given by:

S(v1, v2) = exp

−4

(√
v1 +

3

8
−
√
v2 +

3

8

)2
 . (A.48)
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A.1.4 Cauchy noise case

A Cauchy random variable V can be described by the following pdf:

p(v|u) =
1

πγ

[
1 +

(
v−u
γ

)2
] . (A.49)

where u is the mode and γ is a shape parameter. Cauchy �uctuations are additive, it is straight-
forward to show that V can be decomposed as u + N with N a Cauchy random variable with
a mode in 0 and the scale parameter γ. The particularity of Cauchy random variables is that
their expectation and variance do not exist. A consequence is that the sample mean and the
sample variance do not converge wrt the number of observations. Surprisingly, all criteria are
still de�ned in this case, except the variance stabilization criterion since we have not found a
transformation g such as g(V ) has a �nite and constant variance whatever u.

Fisher information

Fisher information associated with a Cauchy pdf is given by:

I(u) = E

[(
∂

∂u
log p(v|u)

)2

|u

]
=

∫ (
∂

∂u
log p(v|u)

)2

p(v|u)dv (A.50)

=

∫  2(v − u)

γ2

[
1 +

(
v−u
γ

)2
]


2

1

πγ

[
1 +

(
v−u
γ

)2
]dv =

1

2γ2
. (derived with Maple)

(A.51)

Je�reys' prior

Fisher information gives Je�reys' prior as:

p(u) ,
√
|I(u)| = 1√

2γ
. (A.52)

Bayesian joint likelihood

With Je�reys' prior, we can derive the Bayesian joint likelihood as follows:

QB(v1, v2) =

∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t)dt (A.53)

=

∫  1

πγ

[
1 +

(
v1−t
γ

)2
]

 1

πγ

[
1 +

(
v2−t
γ

)2
]
( 1√

2γ

)
dt (A.54)

=

√
2

πγ2

[
4 +

(
v1−v2
γ

)2
] . (A.55)
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Bayesian likelihood ratio

Let DB be the denominator term appearing in the Bayesian likelihood ratio and expressed
as:

DB(v) =

∫
p(v|u = t)p(u = t)dt =

∫  1

πγ

[
1 +

(
v−t
γ

)2
]
( 1√

2γ

)
dt =

1√
2γ

. (A.56)

Using the expression of QB(v1, v2) and DB(v), it results that the Bayesian likelihood ratio is
given by:

LB =
QB(v1, v2)

DB(v1)DB(v2)
=

√
2

πγ2
[
4+
(
v1−v2
γ

)]
1√
2γ

1√
2γ

=
2
√

2

π

[
4 +

(
v1−v2
γ

)2
] . (A.57)

Mutual information kernel

Using the expression of QB(v1, v2) and QB(v, v), it results that the mutual information kernel
is given by:

KB(v1, v2) =
QB(v1, v2)√

QB(v1, v1)QB(v2, v2)
=

√
2

πγ2

[
4+
(
v1−v2
γ

)2
]

√ √
2

πγ2

[
4+
(
v1−v1
γ

)2
] √

2

πγ2

[
4+
(
v2−v2
γ

)2
] =

1

1 +
(
v1−v2

2γ

)2

(A.58)

Maximal joint likelihood

The priorless extension ofQB(v1, v2), i.e. the maximum joint likelihood is obtained as follows:

QG(v1, v2) =

∫
sup
t
p(v1|t1 = t)p(v2|t2 = t)dt =

1

πγ

[
1 +

(
v1− v1+v2

2
γ

)2
] 1

πγ

[
1 +

(
v1− v1+v2

2
γ

)2
]

(A.59)

=
1

π2γ2

[
1 +

(
v1−v2

2γ

)2
]2 (A.60)

(A.61)

since for a dataset of one or two elements the mean is the MLE (note that it is no longer the
case for larger datasets).

Generalized likelihood ratio

Let DG be the denominator term appearing in the generalized likelihood ratio and expressed
as:

DG(v) = sup
t
p(v|u = t) =

1

πγ

[
1 +

(
v−v
γ

)2
] =

1

πγ
. (A.62)
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Using the expression of QG(v1, v2) and DG(v), it results that the generalized likelihood ratio is
given by:

LG =
QG(v1, v2)

DG(v1)DG(v2)
=

1

π2γ2

[
1+
(
v1−v2

2γ

)2
]2

1
πγ

1
πγ

=
1[

1 +
(
v1−v2

2γ

)2
]2 . (A.63)

Variance stabilization criterion

Cauchy random variables have neither expectation nor variance. Our attempts to transform
Cauchy r.v. into random variables with constant variance did not succeed.

A.2 Proof sketches for similarity criteria properties

A.2.1 Bayesian joint likelihood

× Max. self-similarity: Assume V is Gamma distributed with L = 1 and v1 = 2v2:

QB(v1, v2) =
1

(v1 + v2)2
=

1

9v2
2

>
1

16v2
2

=
1

(2v2 + 2v2)2
=

1

(v1 + v1)2
= QB(v1, v1)

(A.64)

which breaks the property of max. self-similarity.
× Eq. self-similarity: Assume V is Gamma distributed with L = 1 and v1 = 2v2:

QB(v1, v1) =
1

(v1 + v1)2
=

1

(2v2 + 2v2)2
=

1

16v2
2

<
1

4v2
2

=
1

(v2 + v2)2
= QB(v2, v2)

(A.65)

which breaks the property of eq. self-similarity.

× Id. of indiscernible: It requires the eq. self-similarity property.
× Invariance: Assume V is Gamma distributed with L = 1 and consider V ′ =

√
V , i.e.,

the mapping function g(.) =
√
., then:

QBV1,V2
(v1, v2) =

1

(v1 + v1)2
(A.66)

QBV ′1 ,V ′2 (
√
v1,
√
v2) =

∫
p(
√
v1|u1 = t)p(

√
v2|u2 = t)p(u12 = t)dt (A.67)

=

∣∣∣∣d√v1

dv1

∣∣∣∣−1 ∣∣∣∣d√v2

dv2

∣∣∣∣−1 ∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t)dt (A.68)

= 4
√
v1v2QBV1,V2

(v1, v2) . (A.69)

The equality does not hold for any value v1 > 0 or v2 > 0.
× Asymp. CFAR: The closed-from expression of QB obtained for Gamma distribution
is clearly not asymptotically CFAR, since the expectation of the similarity criterion is
inversely proportional to the underlying parameters.
× Asymp. UMPI: LG being UMPI, it defeats S.

A.2.2 Maximum joint likelihood

Since QG corresponds to QB in the Gamma case, we can use the same counter-examples as
above.
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A.2.3 Bayesian likelihood ratio

× Max. self-similarity: Assume V to take values in {v1, v2, v3} and u ∈ {a, b, c}. Assume
the distribution of V to be de�ned by:

p(v1|a) = 5/8 p(v1|b) = 2/8 p(v1|c) = 1/8 (A.70)

p(v2|a) = 2/8 p(v2|b) = 4/8 p(v2|c) = 3/8 (A.71)

p(v3|a) = 1/8 p(v3|b) = 2/8 p(v3|c) = 4/8 . (A.72)

Note that the observations are statistically identi�able through their likelihood and their
MLE. Assume p(u) to be described by

p(u = a) = 0/2 (A.73)

p(u = b) = 1/2 (A.74)

p(u = c) = 1/2 . (A.75)

The self Bayesian likelihood ratio for v2 is given by

LB(v2, v2) =
p(v2|a)2p(a) + p(v2|b)2p(b) + p(v2|c)2p(c)

(p(v2|a)p(a) + p(v2|b)p(b) + p(v2|c)p(c))2
=

2×2×0
8×8×2 + 4×4×1

8×8×2 + 3×3×1
8×8×2

(2×0
8×2 + 4×1

8×2 + 3×1
8×2)2

=
50

49
.

(A.76)

The Bayesian likelihood ratio between v1 and v2 is given by

LB(v1, v2) =
(p(v1|a)p(v2|a)p(a) + p(v1|b)p(v2|b)p(b) + p(v1|c)p(v2|c)p(c))

(p(v1|a)p(a) + p(v1|b)p(b) + p(v1|c)p(c))(p(v2|a)p(a) + p(v2|b)p(b) + p(v2|c)p(c))
(A.77)

=
5×2×0
8×8×2 + 2×4×1

8×8×2 + 1×3×1
8×8×2

(5×0
8×2 + 2×1

8×2 + 1×1
8×2)(2×0

8×2 + 4×1
8×2 + 3×1

8×2)
=

22

21
. (A.78)

Since 50/49 < 22/21 then LB(v2, v2) < LB(v1, v2). The max. self-similarity does not hold.

Open question: what are the su�cient and necessary conditions on the likelihood p to ensure
the max. self similarity of LB?

× Eq. self-similarity: Consider the case of Poisson noise, the eq. self similarity is given
by:

LB(v, v) =
1√
2

Γ(v + v + 1/2)

2v+vΓ(v + 1/2)Γ(v + 1/2)
=

1√
2

Γ(2v + 1/2)

22vΓ(v + 1/2)2
(A.79)

which depends, as illustrated on Figure A.1, on the value of v.
× Id. of indiscernible: It requires the eq. self-similarity property.√

Invariance: Let g be an invertible and di�erentiable mapping function of the rv V to V ′,
then:

LBV ′1 ,V ′2 (g(v1), g(v2)) =

∫
p(g(v1)|u12 = t)p(g(v2)|u12 = t)p(u12 = t) dt∫

p(g(v1)|u1 = t)p(u1 = t) dt
∫
p(g(v2)|u2 = t)p(u2 = t) dt

(A.80)

=

∣∣∣dg(v1)
dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1 ∫
p(v1|u12 = t)p(v2|u12 = t)p(u12 = t) dt∣∣∣dg(v1)

dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1 ∫
p(v1|u1 = t)p(u1 = t) dt

∫
p(v2|u2 = t)p(u2 = t) dt

(A.81)

= LBV1,V2
(v1, v2) (A.82)
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Figure A.1: Self Bayesian likelihood ratio LB(v, x) with respect to the value v in the case of
Poisson noise.

The Bayesian likelihood ratio ful�ls the invariance property.
× Asymp. CFAR: We can always choose a prior on the underlying parameters, favouring
the similarity for a range of underlying parameters, implying that LB would not be CFAR.
× Asymp. UMPI: LG being UMPI, it defeats S.

A.2.4 Generalized likelihood ratio
√

Eq. self-similarity: The self generalized likelihood ratio is always equal to one:

LG(v, v) =
supt p(v|u = t)2

(supt p(v|u = t))2 = 1 (A.83)

since the superior bound is reached at the same value(s) t for p(v|u = t) and p(v|u = t)2.√
Max. self-similarity: The superior bound of a product is always inferior to the product
of the superior bounds, then:

LG(v1, v2) =
supt p(v1|u1 = t)p(v2|u2 = t)

supt p(v1|u1 = t) supt p(v2|u2 = t)
≤ 1 . (A.84)

√ 1 Id. of indiscernible: Assume the observations are statistically identi�able through
their MLE. Let two observations v1 6= v2. Let t̂1 and t̂2 be respectively the maximum
likelihood estimates of v1 and v2, and t̂12 be the maximum likelihood estimator of {v1, v2}.
Since v1 6= v2 and observations are statistically identi�able through their MLE, t̂1 6= t̂2.
Since the MLE is unique, then, either:

p(v1|u1 = t̂1) ≥ p(v1|u1 = t̂12) > 0 (A.85)

p(v2|u2 = t̂2) > p(v2|u2 = t̂12) > 0 (A.86)

1. Holds true under the assumption that the observations are statistically identi�able through their MLE.
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or

p(v1|u1 = t̂1) > p(v1|u1 = t̂12) > 0 (A.87)

p(v2|u2 = t̂2) ≥ p(v2|u2 = t̂12) > 0 (A.88)

Then, in any case, p(v1|u1 = t̂1)p(v2|u2 = t̂1) > p(v1|u1 = t̂12)p(v2|u2 = t̂12), i.e., v1 6=
v2 ⇒ LG(v1, v2) < 1.√
Invariance: Let g be an invertible and di�erentiable mapping function of the rv V to V ′,
then:

LGV ′1 ,V ′2 (g(v1), g(v2)) =
supt p(g(v1)|u1 = t)p(g(v2)|u2 = t)

supt p(g(v1)|u1 = t) supt p(g(v2)|u2 = t)
(A.89)

=

∣∣∣dg(v1)
dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1
supt p(v1|u1 = t)p(v2|u2 = t)∣∣∣dg(v1)

dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1
supt p(v1|u1 = t) supt p(v2|u2 = t)

(A.90)

= LGV1,V2
(v1, v2) (A.91)

The generalized likelihood ratio ful�ls the invariance property (see also Kay and Gabriel,
2003)).√
Asymp. CFAR: According to (Kay, 1998).√
Asymp. UMPI: Due to its convergence to the likelihood ratio L, which is Neyman-
Pearson optimal, LG is UMPI (Lehmann, 1959).

A.2.5 Mutual information kernel
√

Eq. self-similarity: The self mutual information kernel is always equal to one:

KB(v, v) =
QB(v, v)√

QB(v, v)QB(v, v)
= 1 . (A.92)

√
Max. self-similarity: This property derived directly from the Cauchy-Schwartz inequal-
ity.√ 2 Id. of indiscernible: Assume the observations are statistically identi�able through
their likelihood. See u as a random variable with distribution p(u). Let P1 = p(v1|u) and
P2 = p(v2|u) be the two r.v. resulting of the evaluation of the likelihood of the r.v. u. We
can rewrite the mutual information kernel as the correlation between P1 and P2:

KB(v, v) =
E[P1P2]√
E[P 2

1 ]E[P 2
2 ]

(A.93)

We get that the mutual information is maximal if the correlation between P1 and P2 is
equal to one:

KB(v, v) = 1⇒ E[P1P2]√
E[P 2

1 ]E[P 2
2 ]

= 1 (A.94)

i.e., for all u, p(v1|u) = a p(v2|u) with a > 0 since a pdf is a positive function. Under
normalization constraint and since the observations are statistically identi�able through
their likelihood, v1 = v2.

2. Holds true under the assumption that the observations are statistically identi�able through their likelihood.
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√
Invariance: Let g be an invertible and di�erentiable mapping function of the rv V to V ′,
then:

QGV ′1 ,V ′2 (g(v1), g(v2)) =

∫
p(g(v1)|u1 = t)p(g(v2)|u2 = t)p(u12 = t)dt√∫

p(g(v1)|u1 = t)2p(u12 = t)dt
∫
p(g(v2)|u2 = t)2p(u12 = t)dt

(A.95)

=

∣∣∣dg(v1)
dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1 ∫
p(v1|u1 = t)p(v2|u2 = t)p(u12 = t)dt∣∣∣dg(v1)

dv1

∣∣∣−1 ∣∣∣dg(v2)
dv2

∣∣∣−1√∫
p(v1|u1 = t)2p(u12 = t)dt

∫
p(v2|u2 = t)2p(u12 = t)dt

(A.96)

= QGV1,V2
(v1, v2) (A.97)

The mutual information kernel ful�ls the invariance property.
× Asymp. CFAR: We can always choose a prior on the underlying parameters, favouring
the similarity for a range of underlying parameters, implying that QG would not be CFAR.
× Asymp. UMPI: LG being UMPI, it defeats S.

A.2.6 Variance stabilization criterion

It is important to note that all properties below require that a variance stabilizer s exists.√
Eq. self-similarity: Thanks to the Gaussian kernel, the self similarity of S is always
equal to one:

S(v, v) = exp

(
‖s(v)− s(v)‖22

h

)
= 1 . (A.98)

√
Max. self-similarity: This property follows from the property of the Euclidean distance:

‖s(v1)− s(v2)‖22 ≥ 0 (A.99)

⇔ ‖s(v1)− s(v2)‖22 ≥ ‖s(v1)− s(v1)‖22 (A.100)

⇔ exp

(
−‖s(v1)− s(v2)‖22

h

)
≤ exp

(
−‖s(v1)− s(v1)‖22

h

)
(A.101)

⇔ S(v1, v2) ≤ S(v1, v1) . (A.102)
√

Id. of indiscernible: This property is obtained as follows:

S(v1, v2) = 1 (A.103)

⇒ exp

(
−‖s(v1)− s(v2)‖22

h

)
= 1 (A.104)

⇒ ‖s(v1)− s(v2)‖22 = 0 (A.105)

⇒ s(v1) = s(v2) (A.106)

⇒ v1 = v2 since s is invertible . (A.107)
√

Invariance: If s stabilizes the variance of V then s ◦ g−1 stabilizes the variance of g(V ).
Hence:

SV ′1 ,V ′2 (g(V1), g(V2)) = N ((s ◦ g−1)(g(V1)), (s ◦ g−1)(g(V2))) = N (s(V1), s(V2)) = SV1,V2(V1, V2) .

(A.108)
√

Asymp. CFAR: If s stabilizes the variance of V , and given that E[‖s(V ) − s(V )‖22] =
2Var[s(V )], then S is asymptotically CFAR.
× Asymp. UMPI: LG being UMPI, it defeats S.
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Appendix B

NL-SAR: an open-source software for

speckle reduction

NL-SAR is originally designed to denoise multi-modalities of SAR images with non-local
�ltering. However, NL-SAR is also a �exible suite of tools to manipulate SAR images. There
are 3 ways to interract with NL-SAR: in command line, with IDL and with Matlab.

Two other interfaces should be available soon: using dynamic or static library, and using
PolSARPro.

So far, the command line version is the most stable one while others can crash, for instance,
if you do not provide the good input in arguments. Feel free to �x such bugs or contribute to
NL-SAR as you wish under the term of the license (see Section B.1).

B.1 License

This software is a computer program whose purpose is to provide a suite of tools to
manipulate SAR images.

This software is governed by the CeCILL license under French law and abiding by the rules
of distribution of free software. You can use, modify and/ or redistribute the software under
the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and rights to copy, modify and redistribute
granted by the license, users are provided only with a limited warranty and the software's
author, the holder of the economic rights, and the successive licensors have only limited liability.

In this respect, the user's attention is drawn to the risks associated with loading, using,
modifying and/or developing or reproducing the software by the user in light of its speci�c
status of free software, that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced professionals having in-depth
computer knowledge. Users are therefore encouraged to load and test the software's suitability
as regards their requirements in conditions enabling the security of their systems and/or data
to be ensured and, more generally, to use and operate it in the same conditions as regards security.
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The fact that you are presently reading this means that you have had knowledge of the
CeCILL license and that you accept its terms.

B.2 Installation

B.2.1 Dependencies

First check the following dependencies:

software feature status

gcc to compile the project required
gcc version > 4.2 to enable parallelization with OpenMP optional
lapack to enable non-local �ltering with covariance matrices higher than 3 x 3 optional
blas to enable non-local �ltering with covariance matrices higher than 3 x 3 optional
gsl to enable non-Wishart distribution [exerimental] optional
gslcblas to enable non-Wishart distribution [exerimental] optional
�tw3 to enable non-local �ltering with �t implementation and car �lters optional
�tw3f to enable non-local �ltering with �t implementation and car �lters optional
idl to enable IDL interface optional
matlab to enable Matlab interface optional
pd�atex to create the documentation optional

The above pieces of software have to be present in your environement variable PATH (for binaries)
or LD_LIBRARY_PATH (for libraries) otherwise their associated feature will be disabled.

Once you have checked your dependencies, you can compile and install NL-SAR in two ways:
as a super user or as a non super user.

B.2.2 Installation for super users

Fist con�gure and compile NL-SAR by typing in a shell prompt:

> ./configure

> make

> sudo make install

This will install NL-SAR's in /usr/local/, NL-SAR's IDL interface <IDL_PATH>/lib/nlsar/

and NL-SAR's Matlab interface in <MATLAB_PATH>/toolbox/nlsar/.

B.2.3 Installation for non super users

Fist con�gure and compile NL-SAR by typing in a shell prompt:

> ./configure --prefix=<PREFIX> --prefix-idl=<IDL_PATH> --prefix-matlab=<MATLAB_PATH>

> make

> make install

This will install NL-SAR's in <PREFIX>, NL-SAR's IDL interface <IDL_PATH>/lib/nlsar/ and
NL-SAR's Matlab interface in <MATLAB_PATH>/toolbox/nlsar/.

You will need to update your environement paths variables. Make sure you are placed in the
NL-SAR's directory and type the followings:

> echo export PATH=<PREFIX>/bin:'$PATH' >> $HOME/.bashrc

> echo export LD_LIBRARY_PATH=<PREFIX>/lib:'$LD_LIBRARY_PATH' >> $HOME/.bashrc

> source $HOME/.bashrc
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B.2.4 Update IDL environment

If you are using IDL, update the IDL environment as follows:

> echo "PREF_SET, 'IDL_PATH', '<IDL_PATH>/lib/nlsar/:<IDL_DEFAULT>', /COMMIT" | idl

> echo export LD_LIBRARY_PATH=<IDL_PATH>/lib/nlsar/:'$LD_LIBRARY_PATH' >> $HOME/.bashrc

> source $HOME/.bashrc

B.2.5 Update Matlab environment

If you using Matlab, update the Matlab environment as follows:

> echo export MATLABPATH=<PREFIX_MATLAB>/toolbox/nlsar/:'$MATLABPATH' >> $HOME/.bashrc

> source $HOME/.bashrc

B.3 Images formats and input/output commands

Supported formats:

� RAT format,
� PolSARPro format.
� XIMA format (read only)

Note that NL-SAR deals only with images of intensity or of covariance matrices. Other inputs
will not produce what you want. If you have amplitude or complex images, use the program
sarjoin which build an intensity image or an image of covariance matrices from amplitude or
complex images (see Section B.3.7).

B.3.1 RAT format

� A RAT �le is assumed to be an image of complex covariance matrices. A RAT �le contain-
ing vectorial data will produce an error message. Only the arrays of the following types
are implemented so far:
� �oat (var = 4)
� �oat complex (var = 6)
� double complex (var = 9)
RAT �les with other types will produce an error message. Fell free to contact me to extend
to other modalities.

B.3.2 PolSARPro format

A PolSARPRo data is a directory containing binary �les (with extensions .bin) and a
config.txt �le, You can �nd more details about this format there: http://earth.eo.esa.

int/polsarpro/Manuals/PolSARpro_DataFormat.pdf So far, only complex covariance matrix
data formats are implemented.

B.3.3 XIMA format

An XIMA data is a binary �le without header wich comes with a �le with same name
and extension .dim. You can �nd more details about this format there: http://perso.

telecom-paristech.fr/~nicolas/XIMA/index.html. So far, only cxf (complex �oat) data for-
mats are implemented.

http://earth.eo.esa.int/polsarpro/Manuals/PolSARpro_DataFormat.pdf
http://earth.eo.esa.int/polsarpro/Manuals/PolSARpro_DataFormat.pdf
http://perso.telecom-paristech.fr/~nicolas/XIMA/index.html
http://perso.telecom-paristech.fr/~nicolas/XIMA/index.html
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B.3.4 Reading information

� From command line:

> sarinfo infile

dimensions:

M = 512

N = 256

D = 3

� From IDL:

> PRINT, sarinfo('infile')

512 256 3

� From Matlab:

> [M, N, D] = sarinfo('../test/mire3.rat')

M =

512

N =

256

D =

3

B.3.5 Reading data

The following commands import a SAR image from disk to memory

� From IDL:

> sarimage = sarread('infile')

Look at the matrix dimensions:

> PRINT, size(sarimage, /DIMENSIONS)

3 3 256 512

� From Matlab:

> sarimage = sarread('infile');

Look at the matrix dimensions:

> size(sarimage)

ans =

3 3 256 512

Note that a command line version would be meaningless.

B.3.6 Writing data

The following commands export a SAR image from memory to disk.

� From IDL:

> sarwrite, sarimage, 'outfile'

� From Matlab:

> sarwrite(sarimage, 'outfile');

Note that a command line version would be meaningless.
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B.3.7 Join

The following commands creates an intensity image or a covariance matrix from an amplitude
image or a complex image:

� From command line:

> sarjoin infile1 [infile2 ... infileN] outfile

Note that it is the only command of NL-SAR which deals with single look complex data as
input. If you have only one �le in input, this function basically computes the intensity image
from an amplitude or complex image.

B.3.8 Conversion

The following example converts a RAT �le to PolSARPro format:

� From command line

> sarconvert infile.rat outdir

� From IDL:

> sarimage = sarread('infile.rat')

> sarwrite, sarimage, 'outdir'

� From Matlab:

> sarimage = sarread('infile.rat');

> sarwrite(sarimage, 'outdir');

B.3.9 Extraction

The following commands extract a subarea from position (x, y) to position (x+width−1, y+
height− 1) with a decimation step:

� From command line

> sarextract infile outfile x y width height step

� From IDL:

> sarout = sarin[*, *, y:(y+height-1):step, x:(x+width-1):step]

� From Matlab:

> sarout = sarin(:, :, y + (1:step:height)), x + (1:step:width));

B.3.10 RGB export

� From command line:

> sar2png infile rgbexport.png [alpha]

where alpha is an optional parameter to enhance contrast (default 3)
� From IDL:

> rgbexport = sar2rgb(sarimage [, alpha])

The argument alpha is the same as for the command line version.
Look at the matrix dimensions:
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> PRINT, SIZE(sarimage, /DIMENSIONS)

3 3 256 512

> PRINT, SIZE(rgbexport, /DIMENSIONS)

3 256 512

� From Matlab:

> rgbexport = sar2rgb(sarimage [, alpha]);

The argument alpha is the same as for the command line version.
Look at the matrix dimension:

> size(sarimage)

ans =

3 3 256 512

> size(rgbexport)

ans =

512 256 3

The storing convension for the RGB image is reversed compared to our usual convention
to ensure compatibility with the Matlab Image Toolbox.

B.3.11 Viewer

� From command line:

> sarshow infile [alpha]

The argument alpha is the same as for the RGB export.
The �rst time, you yill probably have the following message:

Please set your environment variable NLSAR_VIEWER

You need to de�ne an environment variable NLSAR_VIEWER pointing to your favourite image
viewer. For instance, if you like Eye Of Gnome, type the following:

> echo export NLSAR_VIEWER=eog >> $HOME/.bashrc

> source $HOME/.bashrc

Or, if you prefer Konqueror

> echo export NLSAR_VIEWER=konqueror >> $HOME/.bashrc

> source $HOME/.bashrc

� Form IDL:

> sarshow, sarimage [, alpha]

The argument alpha is the same as for the RGB export.

� Form Matlab:

> sarshow(sarimage [, alpha]);

The argument alpha is the same as for the RGB export.
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B.4 Image �ltering

B.4.1 Boxcar �lter

Description

Estimate the complex covariance matrice as:

Σ̂(x) =
∑

x′∈BoxhW (x)

C(x′) (B.1)

where BoxhW (x) is a square search window centered on x of width (2hW + 1), we call hW the
half-width.

Howto

� From command line:

> sarboxcar infile outfile [hW]

where hW is the half-width of the box (default 1).
� From IDL:

> sarout = sarboxcar(sarin [, hW])

The arguments are the same as for the command line version.
� From Matlab:

> sarout = sarboxcar(sarin [, hW]);

The arguments are the same as for the command line version.

B.4.2 Diskcar �lter

Same as the box car �lter, just replace BoxhW (x) by DiskhW (x), i.e. a disk centered on x
with half-width (i.e. radius) of hW .

B.4.3 Iterative Non-local Means �lter

Description

Estimate iteratively Σ(x) using:

Σ̂t(x) =



∑
x′∈DiskhW (x)

w(x, x′)C(x′)∑
x′∈DiskhW (x))

w(x, x′)
if L̂res ≥ Lmin

∑
x′∈BestLmin

(x)C(x′) otherwise

(B.2)

where L̂res is an estimate of the resulting equivalent number of looks:

L̂res =

 ∑
x′∈DiskhW (x)

w(x, x′)

2

∑
x′∈DiskhW (x)

w(x, x′)2
(B.3)
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BestLmin(x) refers to the Lmin candidates x′ having the highest weights w(x, x′). The non-local
�lter computes a weighted average of candidates covariance matrices and forces the resulting
equivalent number of looks to be higher than a threshold Lmin.

The weights are de�ned as:

w(x, x′) = ψ

[
(1− λ) × φGLR

 ∑
τ∈BoxhP (0)

− logGLR(C ′(x+ τ), C ′(x′ + τ))

+ (B.4)

λ × φKL

 ∑
τ∈BoxhP (0)

KL(Σ̂t−1(x+ τ), Σ̂t−1(x′ + τ))

] (B.5)

where φGLR (resp. φKL) is a linear function scaling the values q1,GLR and q2,GLR (resp. the
values q1,KL and q2,KL) to the values 1 and 2:

φX(x) =
x+ q2,X − 2q1,X

q2,X − q1,X
(B.6)

and, ψ is a trapezoidal kernel de�ned as:

ψ(x) =


1 if x ≤ 1
2− x if 1 < x ≤ 2
0 otherwise

(B.7)

Finally, we can list 10 parameters inherent to the method:

� model: the model used to derive GLR and KL (so far, it is only �wishart�)
� T : the number of iterations
� hW : half-width of the circular search window
� hP : half-width of the square patches
� Lmin: the minimum equivalent number of looks to ensure
� λ: the trade-o� between your con�dence on GLR versus KL. (set 0 if you do not trust KL
or 1 if you do not trust GLR, otherwise 0.5 sounds good).

� q1,GLR, q2,GLR: two quantiles of the distribution of GLR in homogeneous noisy areas
If you choose q1,GLR as the 0.8-quantile and q2,GLR as the 0.95-quantile, it means that
in homogeneous area you will average at least 80% of the candidates, reject 1% of the
candidates and attribute a weight betwwen 0 and 1 for the remaining candidates.

� q1,KL, q2,KL: two quantiles of the distribution of KL in pre-�ltered homogeneous noisy
areas (typically choose q1,KL as the 0.8-quantile and q2,KL as the 0.95-quantile).

And a last parameter inherent to the algorithm used for calculating (B.2):

� naive: the naive version of NL means (complexity O(NMD2(2hW + 1)2(2hP + 1)2))
� issd: the version of Darbon et al. using integrate sum square di�erence (complexity
O(NMD2(2hW + 1)2))

NB: this implementation is protected by a U.S. patent. For this reason, this implementation
is not included by default in the NL-SAR package. If the patent does not hold in your
country, feel free to download this implementation online.

� �t: the naive version of NL means (complexity O(NMD2(2hW + 1)2 log2(NMD2)))

Howto

� From command line:
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> sarnl filein fileout L [verbose implem model T hW hP Lmin \

lambda q1glr q2glr q1kl q2kl]

where L is the equivalent number of looks of the input noisy image. If verbose = 1, steps
and progressing bars are displayed on the standard output. A description of the other
arguments is given in the previous section. Type sarnl to see the default values of the
optional parameters.

� From IDL:

> sarout = sarnl(sarin, L [,verbose ,implem, model, T, hW, hP, Lmin, $

lambda, q1glr, q2glr, q1kl, q2kl])

The arguments are the same as for the command line version.
� From Matlab:

> sarout = sarnl(sarin, L [,verbose ,implem, model, T, hW, hP, Lmin, ...

lambda, q1glr, q2glr, q1kl, q2kl]);

The arguments are the same as for the command line version.

Note that the verbose mode for IDL and Matlab might not work properly.

B.4.4 Semi-supervised INLM �lter

Description

The iterative non-local �lter lies on 10 parameters whose 4 parameters depends on the distri-
bution of GLR and KL on respectively an homogenous noisy area and on a pre�ltered homoge-
neous area. Instead of providing in input the values of the quantiles (that you need to estimate)
you can provide also a noisy area and ask to estimate for you the desired alpha-quantiles on this
area. Note that if you have a large set of data but sensed in the same condition you need to
extract only one noisy are for the whole dataset: the semi supervision is very lazy.

Howto

� From command line:

> sarnlcal filein filenoise fileout L [verbose implem model T hW hP Lmin \

lambda alpha-q1 alpha-q2]

If verbose = 1, steps and progressing bars are displayed on the standard output. A
description of the other arguments is given in the previous sections. Type sarnlcal to see
the default values of the optional parameters.

� From IDL:

> sarout = sarnlcal(sarin, sarnoise, L [,verbose ,implem, model, T, hW, hP, Lmin, $

lambda, alpha-q1, alpha-q2])

The arguments are the same as for the command line version.
� From Matlab:

> sarout = sarnlcal(sarin, sarnoise, L [,verbose ,implem, model, T, hW, hP, Lmin, ...

lambda, alpha-q1, alpha-q2]);

The arguments are the same as for the command line version.
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B.5 Examples

B.5.1 InSAR image without orbital components

The following example has been run on a SLC RAMSES image of resolution about 1 × 1
m2 with computer with 16 Intel Core 2 Duo Xeon CPU 2.27GHz. With high resolution data
and correlated spekcle noise (due to zero padding and windowing in the Fourier domain) large
windows need to be used. We choose a search window of radius 10 pixels. It means that the
maximum noise reduction is of about 314 looks, and patches of width 9 (half-width hP = 4). A
minimum equivalent number of 9 looks is required. We have chosen the 0.80 and 0.95-quantile,
implying that in average the resulting equivalent number of looks in homogeneous noisy area
would be around 250 looks.

> ls

filein_hh.cxf filein_hh.dim filein_bb.cxf filein_bb.dim

> sarjoin filein_hh.cxf filein_bb.cxf filein_2x2.rat

> ls

filein_2x2.rat filein_hh.cxf filein_hh.dim filein_bb.cxf filein_bb.dim

> sarinfo filein_2x2

dimensions:

M = 512

N = 512

D = 2

> sarshow filein_2x2.rat 1.5

Figure B.1: The 512× 512 image

> sarextract filein_2x2.rat rat noise.rat 0 340 200 100

> ls

filein_2x2.rat filein_hh.cxf filein_hh.dim filein_bb.cxf filein_bb.dim noise.rat

> sarshow noise.rat

Figure B.2: A noisy area extracted from the input noisy data
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> time sarnlcal filein_2x2.rat noise.rat fileout_1it.rat 1 1 issd wishart 1 10 4 9 \

0.5 0.80 0.95

Estimation of GLR quantiles

0.80-quantile = 1.5287

0.95-quantile = 1.70116

Estimation of KL quantiles

|==================================================| 100%

|==================================================| 100%

0.80-quantile = 0.106519

0.95-quantile = 0.270247

Process to the 1 iterations

|==================================================| 100%

|==================================================| 100%

real 0m3.303s

user 0m50.515s

sys 0m4.584s

> ls

filein_2x2.rat filein_hh.cxf filein_hh.dim

filein_bb.cxf filein_bb.dim fileout_1it.rat

> sarshow fileout_1it.rat 1.5

Figure B.3: Result after 1 iteration

> time sarnlcal filein_2x2.rat noise.rat fileout_1it.rat 1 1 issd wishart 4 10 4 9 \

0.5 0.80 0.95

Estimation of GLR quantiles

0.80-quantile = 1.5287

0.95-quantile = 1.70116

Estimation of KL quantiles

|==================================================| 100%

|==================================================| 100%

0.80-quantile = 0.106519

0.95-quantile = 0.270247

Process to the 1 iterations

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%
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real 0m27.648s

user 8m28.092s

sys 1m58.539s

> ls

filein_2x2.rat filein_hh.cxf filein_hh.dim

filein_bb.cxf filein_bb.dim fileout_1it.rat

> sarshow fileout_1it.rat 1.5

Figure B.4: Result after 4 iterations

B.5.2 PolSAR image with high resolution

The following example has been run on a SLC X-Band F-SAR image of resolution 20 × 20
cm2 with computer with 16 Intel Core 2 Duo Xeon CPU 2.27GHz. With high resolution data
and correlated spekcle noise (due to zero padding and windowing in the Fourier domain) large
windows need to be used. We choose a search window of radius 10 pixels. It means that the
maximum noise reduction is of about 314 looks, and patches of width 9 (half-width hP = 4). A
minimum equivalent number of 9 looks is required. We have chosen the 0.80 and 0.95-quantile,
implying that in average the resulting equivalent number of looks in homogeneous noisy area
would be around 250 looks.

> ls

filein_Xhh.rat filein_Xhv.rat filein_Xvv.rat

> sarjoin filein_Xhh.rat filein_Xvv.rat filein_Xhv.rat filein_3x3.rat

> ls

filein_3x3.rat filein_Xhh.rat filein_Xhv.rat filein_Xvv.rat

> sarinfo filein_3x3

dimensions:

M = 4096

N = 4096

D = 3

> sarshow filein_3x3.rat

> sarextract filein_3x3.rat rat noise.rat 0 2048 256 256

> ls

filein_3x3.rat filein_Xhh.rat filein_Xhv.rat filein_Xvv.rat noise.rat

> sarshow noise.rat

> time sarnlcal filein_3x3.rat noise.rat fileout_1it.rat 1 1 issd wishart 1 10 4 9 \

0.5 0.80 0.95

Estimation of GLR quantiles
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Figure B.5: Zoom on 1/8 of the 4096× 4096 image

Figure B.6: A noisy area extracted (and rescale) from the input noisy data

0.80-quantile = 3.77725

0.95-quantile = 4.05229

Estimation of KL quantiles

|==================================================| 100%

|==================================================| 100%

0.80-quantile = 0.087599

0.95-quantile = 0.189808

Process to the 1 iterations

|==================================================| 100%

|==================================================| 100%

real 2m58.006s

user 35m47.210s

sys 3m44.646s

> ls

filein_3x3.rat filein_Xhh.rat filein_Xhv.rat filein_Xvv.rat fileout_1it.rat

noise.rat

> sarshow fileout_1it.rat

> time sarnlcal filein_3x3.rat noise.rat fileout_4it.rat 1 1 issd wishart 4 10 4 9 \

0.5 0.80 0.95

Estimation of GLR quantiles
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Figure B.7: Result after 1 iteration

0.80-quantile = 3.77725

0.95-quantile = 4.05229

Estimation of KL quantiles

|==================================================| 100%

|==================================================| 100%

0.80-quantile = 0.087599

0.95-quantile = 0.189808

Process to the 4 iterations

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

|==================================================| 100%

real 13m31.742s

user 212m43.354s

sys 32m29.862s

> ls

filein_3x3.rat filein_Xhh.rat filein_Xhv.rat filein_Xvv.rat fileout_1it.rat

fileout_4it.rat noise.rat

> sarshow fileout_4it.rat
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Figure B.8: Result after 4 iterations
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