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2 Chapter 0. Introduction

Brain and neocortex

The brain coordinates perceptions and behaviors of animals through its

interactions with the spinal chord and the peripheral nervous system. From

the first animals 600 million years ago, the brain has significantly developed

and specialized in different parts. Its structure is very complicated and varies

greatly with the different species. We are still very far away from understand-

ing the brain of even one particular animal. Therefore, we focus only on one

of its parts: the neocortex.

The neocortex is a part of the mammals’ brain which is responsible for

high-level cognitive tasks from sensory perceptions and generation of conscious

motor commands to language and conscious thoughts. It does not mean non-

mammals can not have such high-level processes since they have other brain

parts that have the same functional roles [Butler and Hodos 1996]. It has been

known from the seminal work of Brodmann [Brodmann 1909] that the neocor-

tex is spatially organized in different parts called areas. Each area is devoted

to a different kind of information processing, e.g. vision, touch, language,

social interactions and even religious faith [Azari et al. 2001]. Anatomically

these areas are similar and their specialization is thought to come from their

wiring with the rest of the brain. Thus, at first order, the neocortex is more

complex and less complicated than the brain. More complex because it pro-

cess a lot of different types of information with roughly the same architecture.

Less complicated because it is not made of anatomically different modules and

it is a part of the brain.

The neocortex appeared with the first mammals 200 million years ago.

It developed more particularly along the human phylogenetic branch. It can

be said that the main feature which makes us different from animals from a

neuroanatomical perspective is our large neocortex. The size of the human

brain has kept increasing for millions of years (mainly due to an expansion

of the neocortex) with a sharp increase 200 thousand years ago when we

were homo habilis, see [Lee and Wolpoff 2003]. Our exceptional intellectual

and cognitive skills are mainly due to our neocortex: we are comparatively

very good at understanding, predicting, communicating and (most probably)

thinking. Therefore, our “intelligence” or “humanity” as opposed to animality

appeared in the blink of an eye on the timescale of evolution.



3

A focus on learning / plasticity

The brain and the neocortex have a purpose: give the animal a behavior

adapted to its environment. It is a striking fact that the brain, in particular

the neocortex, can adapt to so many different situations. Having the ability

to learn during their lifetime is a crucial quality for animals.

It is generally believed that learning corresponds to a modification of the

connections between neurons [Dayan and Abbott 2001]. Indeed, the neurons

in the cortex are densely interconnected with approximately ten thousand

connections per neuron. These connections are weighted: if the connection

from neuron A to neuron B is strong then the excitation of neuron A will easily

propagate to B. Changing the pattern of interconnections of the neurons

changes the way information flows in the network: this is learning.

Through learning neurons specialize in some task. Therefore, each neuron

in the neocortex is devoted to processing a certain kind of information which

is defined by the way it is connected to its neighbors. Hubel and Wiesel

won the Nobel prize in 1981 for showing that many neurons in the visual

part of the neocortex were selective to small oriented edges in the visual field

[Hubel and Wiesel 1962]. These neurons were very excited when an edge of a

particular orientation and at a certain position was in the visual field and they

were quiet if not. Without going into the details of terminology, it can be said

that the emergence of meaningful concepts is related to this specialization. In

a way learning can be seen as devoting several neurons to process information

about the thing or concept being learned. Thus the specialized neurons might

be thought to embody the meaning of the learned concept. This vision leads to

the intuitive (and rigorously wrong) vision of neurons coding for a particular

concept.

An interesting fact is that the specialization of neurons can change through

time. The boundaries between cortical maps are not fixed and a neuron

formerly devoted to vision can become associated with audition. This often

happens when a young person becomes blind and his visual cortex becomes

useless. For instance, it may be reused for audition through learning. A

famous experiment on ferrets in [Sur et al. 1999], showed that rewiring the

visual information path to the auditory cortex lead to the development of

visual features in the auditory cortex. This suggests the animals learned to

see through their auditory cortex. Another striking example is the product
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developed by the company Brainport technology: by plugging the output of a

camera to a tactile stimulator to be put on the tongue, blind people roughly

learned to see!

This suggests there is a universal learning mechanism that leads to under-

standing the cortical stimuli whatever they are. There are already a few candi-

date for the learning rules operating in the brain, see [Caporale and Dan 2008].

These learning rules modify the connections between two neurons solely based

on the activity of both neurons. It is not clear how such local rules can lead

to a global understanding of the stimuli. This thesis is devoted to looking for

this universal mechanism.

A mathematical approach to understand the brain

Historically, the study of the nervous system was a branch of biology. Bi-

ologists have been focusing on understanding the mechanisms at the basis

of the functioning of the nervous system. For instance, the first (and proba-

bly most important) principle of functioning is that information is carried and

processed by hundreds of billions of neurons that form the computational sub-

strate of the brain. With such complexity, it was difficult for biologists to go

beyond the qualitative description of mechanisms. Recently, there has been

two major developments in neuroscience which dragged the field to a more

interdisciplinary framework: (i) imaging methods have brought new ways to

observe the brain activity, e.g. EEG, MEG, fMRI, optical imaging (ii) compu-

tational models have made it possible to have another experimental approach:

after experimenting in vivo or in vitro its is now possible to experiment in

silico. These two scientific revolutions are in fact extensions of the biological

approach and seem appropriate to analyze phenomena at larger scales.

The application of mathematics to neuroscience is another recent axis of

research to which this thesis intends to contribute. In a rigorous sense, math-

ematics can be seen as a language. It consists in building propositions from

initial hypotheses following a rigorous grammar. In a practical sense, the

mathematical approach may not be exclusively rigorous: a relevant simplifi-

cation or computer simulation can also shed light onto the conclusions of a

mathematical reasoning. The essence of mathematics is the process of draw-

ing (ideally dramatic) conclusions from (ideally weak) hypotheses, yet there

may be different tools to do it. The hope of using mathematics to deal with

the brain is that it is its natural language, as in physics. In the last century,
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mathematics have proved to be so relevant in physics that the Nobel prize Eu-

gene Wigner talked about the the unreasonable effectiveness of mathematics

in the natural sciences (where he meant physics). Indeed, modern physics is

based on a very deep and abstract mathematical theory that proved its value

by suggesting new experiments and predicting their results. Almost nobody

doubts the deep mathematical nature of physics and it had become a strong

belief that mathematics will explain biology someday. Yet, it is still a belief.

So far, there is no real evidence of an unreasonable effectiveness of math-

ematics in neuroscience. Although the brain and more generally all living

organisms are ultimately physical objects, we do not have a satisfying math-

ematical understanding of them so far. Is it just a question of time? Is it

due to fundamental difference between living and non-living objects which

can not be bridged by the mathematic language? These are open questions

which drive most of current research in mathematical biology. It is gener-

ally considered that the main (and sometimes only) success of mathematics

in neuroscience so far dates back to the Nobel prize of Hodgkin and Huxley

in 1963. In [Hodgkin and Huxley 1952], they designed a 4-dimensional non-

linear differential system which reproduced accurately the functioning of a

neuron. This is qualitatively similar to Newton’s discovery about the laws

of motion. Would we say this is mathematics? It seems more appropriate

to consider the Hogkin-Huxley model as a definition of neuron in the mathe-

matical language. Indeed, their work had a biological purpose: describing the

mechanisms governing the behavior of neurons, in mathematical terms. In a

way, they defined the hypotheses needed to begin the mathematical work.

What would be a successful mathematical work in neuroscience? First, a

success may correspond to the conclusion of a mathematical reasoning saying

something true (and unexpected) about the real brain (not the mathemati-

cal object). To check the truth of a mathematical claim, it would have to

be testable. In this perspective, a good work in mathematical neuroscience

would lead to testable predictions as in physics. This approach is descriptive,

predictive and well-suited for addressing medical questions for instance.

Second, there may be an intrinsic value in the mathematical objects or propo-

sitions derived from biologically inspired hypotheses. Let alone the mathemat-

ical beauty of a theory, these objects might reveal a principle of functioning

of the brain. This principle might be only said in the mathematical language

(as opposed to our current anatomical language). In this approach, there may
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be no way back to biology yet there would be a lot of meaning in the theory.

Put it bluntly, if a mathematical theory leads to the definition of a new kind

of (artificial) intelligence then this would be a success. This approach is gen-

erative, theoretical and well-suited for addressing questions in data-analysis

and/or robotics for instance.

This thesis mainly takes the second approach: we model and mathemati-

cally analyze learning neural networks to show how they can understand their

environment. Although we relate our work to some experiments, we face the

experimental impossibility to measure the strength of the connections between

neurons on a large scale (which is the focus of this thesis).

Problematic and organization of the thesis

It is a common idea that the neocortex builds itself a model of the envi-

ronment through learning. Actually, it is not more than a reformulation of

the notion of understanding: we understand a phenomenon when we are no

longer surprised by the way it might evolve. To do this we must have sampled

the different possibilities so that we have a global knowledge of what is likely

to happen next. In a way, we have built ourself a model of the phenomenon.

This is the focus of this thesis and the problematic could be formulated as

follow:

Give a mathematical sense to the claim:

the neocortex builds itself a model of the world.

This question is too ambitious to be answered rigorously, yet we think our

approach is relevant and we propose an interesting perspective to address this

issue.

This thesis is divided in three chapters and organized as follow

In the first chapter, we address the modeling of large population of in-

terconnected neurons with learning. This implies having a look at biology

and choosing or designing appropriate mathematical models for the building

blocks of a learning neural network, e.g. neurons and synapses. This leads

to defining a huge differential system which is too difficult to analyze mainly

because of the intrinsic non-linearity of the neurons. Therefore, we propose

a new method of spatial averaging to go from this large network of spiking

neurons to a rate-based network of populations of neurons. In other words,
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we assume the neurons are so numerous that we can consider their mean to

define a mean-field equation between populations of neurons. The goal is to

have a simpler, i.e. more linear, model of a learning neural network.

In the second chapter, we analyze the dynamics of the previously aver-

aged network for different learning rules. We make good use of the slowness

of learning compared to the activity of the network. Indeed, considering the

learning neural network as a slow/fast system makes it possible to apply tem-

poral averaging tools to reduce it. In some cases, this reduce system appears

to derive from an energy so that it always converge to an equilibrium con-

nectivity. This equilibrium connectivity corresponds to the entire knowledge

of the network about the external world. We show how it can be explicitly

related to the stimuli.

In the third chapter, we claim that the network post-learning is a model

of its environment. While former research established that learning in feed-

forward networks may lead to the extraction of the principal components of

the stimuli, we focus on the recurrent connectivity post-learning and study

the way it processes and link these objects together. It mainly consists in

transforming the equilibrium connectivity into a rich description of the stimuli.

In particular, we address the dynamics of spontaneous activity, see how it

relates to the stimuli.

In all chapters, there is both background and original work. The back-

ground is always in the beginning of the chapter (sections 1.1, 1.2.1, 2.1, 2.2,

3.1 and 3.2), whereas the original work is at the end (sections 1.2.2, 1.2.3, 2.3,

2.4, 3.3, 3.4).





Chapter 1

From spiking neurons to

rate-based networks

Overview

This chapter has two goals: first, introducing some background biology to

model spiking learning neural networks and, second, developing an original

method to average these spiking networks into a rate-based equation.

The necessary biological background mainly consists in describing the

building blocks of neural networks: neurons and synapses. Then, we mo-

tivate the choice of certain models and gather all these elements in a single

system which is the starting point of our analysis. This is a spiking system.

After having introduced the usual motivations to consider rate-based equa-

tions, we propose a new method to get a mean-field description of this spiking

network. Considering that the neurons belong to populations, the number of

neurons per populations tends to infinity and averaging over the neurons in

each population, we finally get an equation describing the smooth evolution

of the averaged firing-rate in each population. This is a rate-based system

derived from the initial spiking network.

In this chapter sections 1.1 and 1.2.1 are background, whereas sections

1.2.2 and 1.2.3 are original.

Résumé

Ce chapitre a deux buts: permièrement, il introduit les connaissances de bases

pour modéliser les réseaux de neurones à potentiel d’action et, deuxièment, il

présente une méthode originale pour moyeniser ces réseaux à potentiel d’action

afin d’obtenir des réseaux à taux de décharge.

Les connaissances de bases en biologie nécessaires portent sur les différentes

briques de bases des réseaux neurones: les neurones et les synapses. Parmis la

diversité de modèles décrivant ces éléments nous en choisissons certains pour
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les rassembler dans un unique système qui est le point de départ de la thèse.

Ce système est un réseau de neurones à potentiel d’action.

Après avoir motivé l’utilisation de modèles à taux de décharge, nous pro-

posons une nouvelle méthode pour obtenir une decription en champ moyen du

réseau de neurone à potentiel d’action. Pour ce faire nous supposons que les

neurones sont rassemblés en populations dont le nombre de neurones tend vers

l’infini. En moyenant les variables dans chaque population, nous obtenons une

equation décrivant lévolution du taux de décharge moyen dans chaque popu-

lation. Ce système est réseau de neurones à taux de décharge dérivé du réseau

initial à potentiel d’action.

Dans ce chapitre les sections 1.1 et 1.2.1 sont issues de la littérature, alors

que les sections 1.2.2 et 1.2.3 sont originales.

Collaborations, publications and ackowledgements

This part originates from numerous discussions with Jonathan Touboul, Ge-

offroy Hermann and Olivier Faugeras who are focusing on a rigorous develop-

ment of a mean field approach. In particular, the mean field analysis we

develop in part 1.2.2 is based on the main theorem of the recent papers

[Touboul 2011, Baladron et al. 2011]. It will be extended to more general

neurons in collaboration with Jonathan Touboul and submitted after the the-

sis.
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1.1 From biology to microscopic models

There are few biological facts that we need to mention before modeling a

cortical network. The purpose of this section is to give a big picture of the

biological substrate and to introduce the assumptions that are necessary to

get tractable models.

After a few general fact about the neocortex (which we call cortex for

simplicity), we introduce the neurons and their models. Then, we focus on the

synapse as a signal transmitter but also as the location where some learning

mechanisms occur. Finally, we gather all these microscopic models into a large

network equation which will be the starting point of the subsequent analysis.

1.1.1 Cortex

The cortex is a thin sheet of neural tissue located all around the mammalian

brain. It corresponds to the folded shape we see in most brain illustrations.

It is said to be the locus of most of the high-level processes taking place in the

brain linked for instance with awareness, language, thought, senses, actions.

Most of the cortex is made up of six density layers which are labeled from I to

VI. It is not well understood yet what kind of processing is happening between

these layers. For simplicity, we will not take them into account. With this

considerable assumptions, the cortex can be seen as a 2-dimensional sheet of

neural tissue.

The cortex is mainly made of 2 different kind of cells: neurons and glial

cells. There are a very large number of these cells: an order of magnitude

of 1010 neurons and 4 times as much glial cells. The former are said to be

the principal vectors of information. The latter are generally though to be

responsible for providing energy to neurons. This is why glial cells are almost

always neglected in models of neural tissue. Being interested in the way the

cortex processes information, we will completely neglect them too.

Neurons have the interesting property to be able to send signals over long

distances to a huge number of other neurons (approximately 105 per neuron).

Information is sent in an electrical form from the neuron’s cell-body called

soma, through its axon, to a synapse where the electrical signal is turned into

a chemical one. Then, the signal is transmitted to a dendrite which carries

an electrical signal to the soma of another neuron. Therefore, there are two



1.1. From biology to microscopic models 13

building blocks in the design of simple neural networks: neurons and synapses.

Neurons and synapses come in many different shape and size. Even there

functional behavior may vary from one to the other. In this work, we com-

pletely neglect these disparities and focus on large networks of similar neu-

rons and synapses. We consider that the neurons can be excitatory and/or

inhibitory at the same time. In particular, we do not restrict our approach to

networks of excitatory neurons coupled with inhibitory neurons.

In conclusion, the brain (and even the cortex) is an extraordinarily com-

plicated system which is well beyond our current mathematical techniques.

To use the mathematical language, we must step away from biology to de-

fine simplistic objects whose biological relevance is weak. This is clearly a

drawback of the use of mathematics to get biological insight.

1.1.2 Neurons

1.1.2.1 What is a neuron?

Biological mechanisms The main biological mechanisms involved in the

neurons’ behavior are well-understood and comprehensively discussed in [Hille 1992].

A pedagogical introduction for theoretical people is [Izhikevich 2007]. Ac-

tually, a neuron is a particular type of cell, endowed with a nucleus, whose

membrane is excitable and which transmits information electrically or through

synaptic realease. The neuron lies in a solution where there are ions of dif-

ferent types (e.g. K+, Na+ and Ca2+). The neuron’s membrane is porous

and the pores are called ion-channels; they are selective to the ions type. The

ions concentrations are different on the inside and the outside of a neuron.

As shown in figure 1.1, this leads to two opposed forces that drive the ions

through the membrane channels: electric potential gradient and diffusion gra-

dient. The electric potential difference between the inside of the neuron and

the outside is called the membrane potential. Without external perturba-

tion, the neuron reaches an equilibrium called the resting state (where resting

membrane potential is −70 mV or so for vertebrate brains).

The proportions of opened ion-channels non-linearly depend on the mem-

brane potential, such that a sufficiently strong perturbation of the membrane

potential (e.g. due to another neuron) may dramatically but temporarily

change the value of the system variables. This corresponds to the generation

of spike. A simple view is that neurons have a spike initiation threshold which
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Figure 1.1: This represents the forces participating to the functioning of a

potassium ion channel. Figure a shows that a neuron has a larger concen-

tration of ions K+ and A− (a generic name for a negatively charged ion).

Therefore, this induces a diffusion forces that tend to push potassium ions

outside. Figure b shows the emergence of an electric potential because the

outside becomes more positively charged than the inside. Eventually this leads

to an equilibrium where the forces cancel out as shown in figure c. Taken from

[Izhikevich 2007].

has to be exceeded for a spike to be generated.

Functional description A neuron exhibits a spiking behavior, i.e. a small

perturbation can generate a transient non-linear amplification of the mem-

brane potential. These spikes or action potentials have a particular shape,

as shown in figure 1.2 which is robustly reproduced for each stimulation. In-

deed, neurons process information in an all-or-nothing fashion (almost digi-

tal). Therefore, the strength of the stimulation can be seen in the intensity

(would it be high frequency or precise timing) of the spike trains only. Yet,

the neurons can not spike infinitely fast because a spike is always followed by

a refractory period which is of fixed duration. The spiking frequency saturates

at an order of magnitude of 103 Hz.

Mathematical description In this thesis, a neuron is defined by a dynamical

system whose main variable is the membrane potential v. There might be
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Figure 1.2: Typical shape of an action potential. Taken from Wikipedia.

other variables to describe its internal state (e.g. proportion of open ion-

channels) and its dynamics is non-linear.

This is a different approach to the input-output vision of the neurons

usually shared in the field of artificial Neural Networks.

1.1.2.2 Neuron models

There are many different models of neurons. Some of them only focus on

reproducing the functional behavior while others care about the the biological

representativity of the variables. Other models can be continuous or analogous

(even linear in some cases) and have no spikes; we argue in the following that

they are to be considered as neurons’ population models.

Functional models are numerous and are not in the scope of this the-

sis, therefore we will just briefly review this part of the field. The sim-

plest of these models is the integrate and fire neurons where the dynamics

of the neuron is linear and stimulated by some inputs which increase the

excitation of the neuron. When the neuron’s membrane potential reaches

a certain threshold, it is considered that the neuron initiates a spike and

is then reseted to a resting value. This the basic mechanism of a hybrid

neuron. Recently, a lot of work has been devoted to designing computa-

tionally efficient hybrid neurons that would mimic real neurons at best, e.g.

[Brette and Gerstner 2005, Izhikevich 2003, Touboul 2009]. Although, not di-

rectly linked with biology, they prove to be relatively efficient in reproduc-
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ing the behavior of a single neuron. However, the mathematical analysis

of networks of such neurons is quite difficult [Tsodyks and Sejnowski 1995,

Hansel et al. 1995, Gerstner 1995, Brunel 2000]. We believe the hybrid for-

malism is computationally easy but mathematically very hard to handle.

This is why, we will focus on other models which are built upon biological

mechanisms. They are called conductance based models. They are intrin-

sically non-linear but their dynamics is continuous, bounded and does not

require to be artificially reseted. Bifurcation theory seems to be a good lan-

guage to address their dynamics which is well understood for isolated neurons.

Yet, these models still pose significant mathematical difficulties when coupled

together.

We start by sketching very briefly the mechanisms involved in the neuron’s

functioning and then introduce one the most complete and probably the most

famous neuron model: the Hodgkin-Huxley model. We will gradually simplify

the complexity of this mathematically intractable system trying to keep the

main ingredients to stay close to the qualitative behavior of the neurons. We

will end this partial review of neuron models by introducing the McKean

model which is quite simple and will be the building block of large networks

we consider in the rest of the chapter. The following description is based on

[Ermentrout and Terman 2010] and [Izhikevich 2007].

Hodgkin-Huxley model [Hodgkin and Huxley 1952]

This model implements the preceding biological mechanisms into a differential

system. The approach of Hodgkin and Huxley, which won them the Nobel

prize for physiology and medicine, consisted in using new experimental meth-

ods on giant squid neurons to derive a mathematical system explaining the

spikes generation and the dynamical features of the real neuron. This model

corresponds to neurons with potassium and sodium channels and with a leak

current. It describes the evolution of the membrane potential v together with

3 (in)activation variables n, m and h, such that n4 (resp. m3h) is the propor-

tion of opened channels for the ions K+ (resp. Na+). This conductance based

models can be written



Cv̇ = I − ḡKn
4(v − EK) − ḡNa

m3h(v − ENa
) − ḡL(v − EL)

ṅ = n∞(v)−n
τn(v)

ṁ = m∞(v)−m
τm(v)

ḣ = h∞(v)−h
τh(v)

(1.1)
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where the membrane capacitance is C = 1 µF/cm2, the (shifted) Nernst

potentials are EK = −12 mV , ENa
= 120 mV and EL = 10.6 mV . The

values of the maximal conductance are ḡK = 36 mS/cm2, ḡNa
= 120 mS/cm2

and ḡL = 0.3 mS/cm2. I is the external current in µA/cm2. The profiles of

the functions n∞, m∞, h∞, τn, τm and τh are shown in figure 1.3.

Figure 1.3: (left) Steady state (in)activation functions. (right) Voltage-

dependent time constants for the Hodgkin-Huxley model. Illustration taken

from [Izhikevich 2007].

This model’s main drawback is its level of complication. Therefore, it is

natural to attempt to reduce the Hodgkin-Huxley model to a 2-variable model.

This would make possible to have a qualitative and geometric approach of the

dynamics through the phase plane of the system. First, observe that τm is

much smaller that both τn and τh. Therefore, it can be assumed that m(t)

immediately converges to its equilibrium value m∞
(
v(t)

)
. Replacing m(t)

by m∞(v) in system (1.1) reduces the model by one dimension. Second, to

rule out another variable we need to be able to compare them. Therefore,

we change variable and for x = n, h define vx such that x = x∞(vx). vx is

called the equivalent potential of the (in)activation variable x. Numerically,

we can observe that vh and vn are actually very close to each other. Therefore,

although arbitrary, it sounds reasonable to set n = n∞(vh) which eliminates

the variable vn and lead to the following reduced model
{
Cv̇ = I − ḡKn

4
∞(vh)(V − EK) − ḡNa

m3
∞(v)h∞(vh)(v − ENa

) − gL(v − EL)

v̇h = h∞(v)−h∞(vh)
τh(v)h′∞(vh)

(1.2)

We can geometrically analyze the dynamics by drawing the phase plane of

this system as shown in figure 1.4.a. A convenient aspect of the equivalent

potential method is that the vh-nullcline is v = vh. The cubic shape of the V
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nullcline is responsible for the spiking behavior of the neuron and is common to

most (non-hybrid) spiking neuron models. In fact, it is the qualitative feature

we are going to extract to build a simpler but mathematically tractable model.

Morris-Lecar model [Morris and Lecar 1981]

This is a simple model of spike production based on a neuron with potassium

and calcium channel with a leak current. In this model, the calcium current

depends instantaneously on the voltage. This system also belongs to the class

of the conductance based models and can be written

{
Cv̇ = I − ḡKn(v − EK) − ḡCa

m∞(V )(v − ECa
) − gL(v − EL)

ṅ = φn∞(v)−n
τn(v)

(1.3)

where the functions m∞, n∞ and τn have the same shape as in figure 1.3. The

parameters, controlling for instance the offset of the steepness of the sigmoidal

functions m∞ and n∞, have to be tuned with experiments depending on the

particular neuron to be modeled.

The phase plane of this model is shown in figure 1.4.b. It is made of a cubic

nullcline and a strictly increasing nullcline as in the reduced Hodgkin-Huxley

model.

Fitzhugh-Nagumo model [Fitzhugh 1961, Nagumo et al. 1962]

This is an idealized model based on the previous observations that both the

reduced Hodgkin-Huxley and the Morris-Lecar models have a cubic nullcline

and a strictly increasing nullcline. It is made of two variable: v is to be seen

as the membrane potential, w is called the adaptation variable. It has the

form {
v̇ = I + f(v) − w

ẇ = εw(v − bw)
(1.4)

where f is a polynomial of the third degree, e.g. f(v) = v−v3, and εw, b ∈ R+.

It is often assumed that εw ≪ 1. The phase plane of this system is shown in

figure 1.4.c.

It is a famous model in the study of excitability and it has been applied

to many different systems from neurons to heart. Actually, it is very close the

van der Pol oscillator where the monotonic nullcline becomes a vertical line.
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Figure 1.4: These figures represent the phase planes of four different neuron

models. In all cases, the input acts as a vertical shifting of the cubic green

curves. Therefore, it can be seen as a bifurcation parameter that can generate

oscillations (spikes). Figures a and c correspond to a weak input that does not

change the stability of the resting state. In figures b and d, the input is large

enough to that the equilibrium point is unstable and there is a stable limit

cycle. a) The reduced Hodgkin-Huxley model, see (1.2), for I = 0 and the

parameters specified above. Adapted from [Ermentrout and Terman 2010].

b) The Morris-Lecar model, see (1.3) for I = 100. The other parameters

are chosen so that the neuron is close to a Hopf bifurcation, see table 3.1

of [Ermentrout and Terman 2010] from which this figure is adapted. c) The

Fitzhugh-Nagumo model, see (1.4). The input is below the neuron’s thresh-

old. d) The McKean model, see (1.5). The input is larger than the natural

threshold. All these neuron’s models share the same qualitative dynamics.
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McKean model [McKean 1970, Tonnelier 2007]

This is a caricature of the Fitzhugh-Nagumo model. Actually, it keeps the

notion of cubic shape for the nullcline of the membrane potential and ap-

proximates this shape by a piecewise linear function as shown in figure 1.4.d.

Therefore, it is not better nor worse than the Fitzhugh-Nagumo model which

is related to the conductance-based models in the same heuristic fashion. It

is governed by system (1.4) with

f(v) =





−lv − (l + c)a if v ≤ −a
cv if a < v < a

−lv + (l + c)a if a ≤ v

(1.5)

with l, c, a ∈ R+. To get oscillatory behaviors, we must set bc < 1.

This neuron model is mathematically much more simple to handle than

the previous ones and it keeps the main feature of its dynamics. This why we

choose it and later analyze its interaction with others.

1.1.2.3 A relaxation oscillator in a noisy environment

As shown in figure 1.4, these four neuron models share the same qualitative

dynamics: they are relaxation oscillators or excitable systems. Indeed, the

strength of the external input I, which corresponds to vertically translating

the cubic curve, determines the dynamical regime of the neurons. If it small

enough for the v-nullcline (in blue) to cut the cubic curve on its decreasing

negative part then there is a stable fixed point represented by a plain orange

disk in figures 1.4.a and 1.4.c. If the two nullclines intersect when the v-

nullcline is increasing then the fixed point is unstable and there is a limit cycle

along the branches of the cubic curve as shown in figures 1.4.b and 1.4.d. If

it is so large that the nullclines intersect in the decreasing positive part of the

cubic then there is also a stable fixed point. However, this last situation is

not relevant to the normal functioning of a biological neural network.

It is usually assumed that the adaptation variable is slow compared to the

membrane potential. This implies that the horizontal part of the vector field

in the phase planes figure 1.4 is larger than the vertical part. In other words,

in the oscillatory regime the neuron virtually “jumps” from one slow branch

to the other giving the membrane potential evolution really sharp transitions

from an up state to a down (or resting) state and reciprocally.
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The time spent on each slow branch depends on its distance to the v-

nullcline (in blue): the closer to the blue curve the slower. It means that,

in the setting of equation (1.4), having a positive external input I leads to

longer up-states than down-states as opposed to the behavior of a usual spike

as shown in figure 1.2. Therefore, this regime is nor biologically plausible. And

it makes sense to consider the absence of stimulation to the neuron corresponds

to a negative input −I0. A stimulation would correspond to a (still negative

input) of I − I0.

It is not clear what the value of I0 and the range of I should be. In the

deterministic case and for McKean’s neuron, it seems reasonable to choose

I0 ≤ I∗ = −(1 − c)a so that a neuron without stimulation would be in a

resting state. The maximal stimulation should be larger than I∗ − I0 so that

the neuron is not always quiet. In a noisy environment the picture is a big

more complicated.

Indeed, we choose to add noise only on the fast variable which corresponds

to assuming that synaptic noise, which acts on the fast variable, is much

stronger than the channel noise, which acts on the adaptation variable. This

is also mathematically useful. Together with the previous remarks this leads

to a new system with a stochastic part

{
dv =

(
I − I0 + f(v) − w

)
dt+ σdB(t)

ẇ = εw(v − bw)
(1.6)

where σ ∈ R+ and B(t) is Brownian motion.

This system is a slow/fast excitable system with additive noise on the fast

variable. This corresponds exactly to the framework of [Muratov et al. 2005].

In this paper, Muratov and colleagues suggest that when the time scale τw =
1

εw
is very large the effect of the noise can induce periodic behavior of an

excitable system even if the noise is asymptotically small and the deterministic

system is a priori on a stable equilibrium point. This is called ”self induced

stochastic resonance”. Indeed, the barrier of potential to escape the slow

manifold for a constant input such that I − I0 < −(1 − c)a, i.e. in the

stable resting state, is ∆(I) =
1+ l

c

1+l

(
− I − (1 − c)a

)
. When the barrier is

equal to σln(τw) (in other words e−
∆(x∗α)

σ ∼ εw), the noise has enough time to

sample most of its distribution so that it almost always overcome the potential

difference. Therefore, we define Muratov’s critical input I∗ corresponding to
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a probability one of spiking (even though −I0 < −(1 − c)a). It is

I∗ = −(1 − c)a− 1 + l

1 + l
c

σln(τw) (1.7)

When the effective input I − I0 is below this critical value the neuron rarely

spikes. It is also shown in [Muratov et al. 2005] that the spike times follow a

Poisson distribution which is a common observation for resting cortical tissues.

However, when the effective input is equal or larger than this critical value,

the neuron fires almost periodically even if the nullclines of the deterministic

system intersect on a stable equilibrium point. This behaviors are illustrated

in figure 1.5.

With noise, excitable systems show new regimes that were not present in

the deterministic case. As a consequence the choice of I0 and the range of I

may be very different than in the deterministic case. Indeed, I − I0 can be

always smaller than the deterministic critical value −(1− c)a and the system

would still exhibit a periodic behavior. In these systems noise has a important

functional impact on the dynamics.

1.1.3 Synapses

Synapses link neurons together. They are parts of neurons that have special-

ized into transmitting chemical signals from the axon of pre-synaptic neuron

to a dendrite of the post-synaptic neuron. They are of crucial importance in

the network functioning since it is widely believed that the learning mecha-

nisms occurring in the brain mostly affect the synapses’ strength. However,

the learning mechanisms (being central in our approach) will be described in

the next section. This section is devoted to analyzing the synapse as a signal

transmitter.

First, we introduce the synapse from a biological, functional but also math-

ematical point of view. Then we focus on modeling the transformation of the

signal through this chemical channel. This part is also significantly based on

[Ermentrout and Terman 2010].

1.1.3.1 What is a synapse?

Biological mechanisms A synapse is the connection from one pre-synaptic

neuron to a post-synaptic neuron. In this thesis we focus on the most common
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Figure 1.5: These figures correspond to the trajectories of a single noise-

driven McKean neuron with inputs of increasing strength. The left column

corresponds to the trajectories on the phase plane. The right column corre-

spond to the time course of the membrane potential. The parameters used

for these simulations are a = b = l = 1, c = 0.5, σ = 0.1, and εw = 0.01.

a) I − I0 = −1 < I∗. Below Muratov’s critical input their membrane po-

tential is almost always close to its resting state. b) I − I0 = −0.7. The

neuron fires in an irregular fashion. It is suggested in [Muratov et al. 2005]

that this corresponds to a Poisson spike train. c) I − I0 = −0.6. The neuron

seems to be periodically spiking although the deterministic part of the system

would converge to a stable equilibrium. The noise induces periodic oscilla-

tions far from a bifurcation. This is “self induced stochastic resonance”. d)

I − I0 = −0.4 > −(1 − c)a. The neuron is regularly spiking. Even the deter-

ministic part of the system would lead to oscillations. This regime may been

thought of as a bursting regime.
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type of synapse: chemical synapses. Chemical synapses are made of a pre-

synaptic axon terminal and the closest part of the post-synaptic dendrite.

These two parts are separated by a synaptic cleft. Figure 1.6 illustrates the

activation of a synapse.

Synaptic

vesicle

Neurotransmitter

Reuptake pump

Receptor

Voltage gated 

calcium channel

Postsynaptic

density

Pre−synaptic 

axon terminal

Synaptic cleft

Post−synaptic 

dendrite

Figure 1.6: Drawing of a synapse with its difference elements. Taken from

Wikipedia.

There are several steps which lead to the activation of a synapse. First,

an action potential reaches the axon terminal of the pre-synaptic neuron.

There are voltage-gated calcium channels which therefore release calcium in

the axon. Then, the calcium activates some proteins which are located at the

surface of vesicles full of neurotransmitters (the chemical messengers). These

proteins change shape allowing the vesicle to fuse with the membrane of the

axon, so that the neurotransmitters are dumped in the synaptic cleft. Some

of them are then captured by the dendrite receptors, which activates them.

This has the effect of opening ion-channels in the post-synaptic membrane

which cause the injection of a positive or negative current depending on the

nature of the neurotransmitter. Naturally, the more the receptors the stronger

the connection between the two neurons. The neurotransmitters are then

reabsorbed by the pre-synaptic cell or they may drift away by thermal shaking

to be eventually metabolically broken down.

Actually, there are a lot of different transmitters, even on a single synapse,

which have very different roles. The main transmitters associated with cor-

tical neurons are glutamate and c-aminobutyric acid (GABA), which can be
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thought of as excitatory and inhibitory messengers, respectively. There are

different kind of receptors (even for the same neurotransmitter). Besides, the

generation of a post-synaptic potential, performed by the post-synaptic den-

sity, is complicated and varies significantly. For instance the glutamate may

be captured by AMPA/Kainate receptors which are very fast or by NMDA

receptors which have long lasting effects. Similarly, GABA receptors can be

fast (e.g. GABAA) or slow and long-lasting (e.g. GABAB).

There are also non-linear effects in the release of neurotransmitters. In-

deed, if the synapse is constantly excited, the amount of vesicles ready to

be dumped in the synaptic cleft may decrease significantly before recovering.

This mechanism, weakening the signal transmission, is called synaptic depres-

sion. On the contrary, pre-synaptic stimulation can lead to more vesicles being

docked to the membrane. Therefore, the next pre-synaptic spike might release

an unusually large amount of neurotransmitters. This is called facilitation.

These two mechanisms are referred to as short-term plasticity because they

impact the strength of the synapse on a short term.

Functional description Synapses propagate the excitation of a neuron to the

others. In chemical synapses, the electrical signal is temporarily converted to

a chemical signal before it is converted back to an electrical signal in the post-

synaptic neuron. This chemical transformation increases the inertia of the

synapse which is slower than the spike propagation. Besides, the release of

neurotransmitters is probabilistic and occurs in discrete amounts. This gives

the synapse a noisy behavior.

Actually, there are three different time scales in the mechanisms described

above. The first one is the time scale of the axon propagation which is faster

than the others. Second, there is the time scale of signal propagation through

the synapse. Third, there is the time scale of depletion or facilitation which

is slower than the two previous ones.

Mathematical description Synapses can be finely modeled by writing a

differential system describing the evolution of the different quantities involved

in the synapse activation. The different time scales can be directly translated

in the dynamical system formalism: the synapse synapse can be seen as a

singularly perturbed system. For simplicity, the synapse is often considered

to be a linear time-delayed filter which converts an incoming spike into a
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(smoother) post-synaptic potential.

As discussed in the section 1.1.4, this is often modeled together with slower

differential equations governing the strength of the connections (due to long

term plasticity).

1.1.3.2 Synaptic dynamics

Although the synapse is a crucial element of the signal processing, there are

less papers about synapse models than about neuron models [Tsodyks et al. 1998,

Destexhe et al. 1998, Ermentrout and Terman 2010]. We present two models:

the first one is partly based on biology and leads to a complicated system, the

second, is a simple functional model which is widely used.

A non-linear dynamical system [Chapeau-Blondeau and Chambet 1995]

We now present a model partly based on the biological mechanism of the

synapse. Indeed, we can model the synaptic currents to the post-synaptic

neuron as the product of a conductance with a voltage difference:

Isyn = g(t)(vpost − vrest)

where g(t) = ḡs(t) where s(t) is the fraction of open-channels and ḡ ∈ R (its

sign depends on the nature of the neurotransmitter). If [T ] is the concentration

of neurotransmitter in the synaptic cleft, one can write an idealized equation

for the evolution of s:

ṡ = ar[T ](1 − s) − ads

where ar, ad ∈ R+. This equation is to be coupled with a model of the evo-

lution of [T ] depending on the pre-synaptic excitations. There are different

possibilities but as suggested in [Destexhe et al. 1998] (where they fit the pa-

rameters to data) this can be

[T ](vpre) =
Tmax

1 + e
− vpre−vT

Kp

This model is very simple compared to the biological mechanisms but already

mathematically difficult. Therefore, we focus on a simpler one.

Linear functional model Synapse are often modeled as simple linear trans-

forms of the pre-synaptic spike trains. The idea is to observe the temporal
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evolution of a post-synaptic potential after a spike hit the pre-synaptic axon

terminal. The spike being close to a Dirac function it corresponds to consid-

ering the synapse as a input-output filter and measuring its impulse response.

Actually, this function is close to

hτ : t 7→ 1

τ
e−

t
τH(t) (1.8)

where τ ∈ R+ and H is the Heaviside function. This means the input current

could be written

Isyn(t) = ḡ
(
(vpre − vrest) ∗ hτ

)
(t) (1.9)

where ḡ is the strength of the synapse, vrest is the value of the resting mem-

brane potential and ∗ is the convolution. This formula holds even in the case

of vpre being a spike train.

If τ ≪ 1 then the synapse is almost instantaneous, i.e. (hτ ∗ v)(t) ≃ v(t).

On the contrary, if τ is large then the synapse has a long memory and it has the

effect of smoothing the incoming spike train into a more regular post-synaptic

potential.

1.1.3.3 Evolution of the synapse strength

Most synapse models involve a term evaluating the strength of the synapse

(ḡ in the models above). Actually, the strength of the synapses is the (multi-

dimensional) variable which stores memories. Thus, it is a primordial variable

and we will intensely focus on it later. For now, we just mention the fact that

it is activity dependent and evolves on three different time scales.

First, the short term plasticity of the synapse (facilitation of depletion) al-

ters the synapse at the scale of the spike trains duration. We already have an

interesting insight about its functional role [Varela et al. 1997, Pfister et al. 2010]

but there dynamical role is less understood. Actually, these mechanisms in-

volve non-linearities which makes them difficult to mathematically understand

in large networks. Therefore, we will not take them into account in the rest

of the thesis.

Second, there are learning mechanisms which change the synaptic strength

on long time scales (several minutes or more). Indeed, it is widely believed

that there are local learning rules which increase (potentiation) or decrease

(depression) based on the activity of the network, which makes it possible to

encode memories. These learning rules will be reviewed in parts 1.1.4.
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Finally, there is even another mechanism called synaptic tagging which

would alter the connectivity on even longer time scale, ([Frey and Morris 1997,

Redondo and Morris 2010]). Indeed, long term plasticity (which is the focus

of this thesis) does not last for many hours. Therefore, there is a need for

another mechanism which would freeze the memories when they are judged

valuable. The hypothesis is that there are external and global markers that

are emitted only when the network has been exposed to a meaningful event.

These markers, when spread in the network’s medium, would consolidate the

changes brought by functional learning and make them last longer. Therefore,

the synaptic strength changes which are not followed by the arrival of these

markers would eventually vanish. This kind of plasticity is tightly linked with

the notion of reinforcement learning. The study of these mechanisms is beyond

the scope of this thesis.

1.1.4 Learning for spiking networks

Learning and memory are generally though to be mediated by activity-dependent

synapse modifications. The literature about learning rules is abundant and is

better adapted to rate-based neural networks which are studied in the next

chapter. Therefore, we only focus in this section on the learning mechanisms

for spiking neurons. We will review these rate-based learning rules once the

rate-based models are properly introduced.

1.1.4.1 What is spike timing dependent plasticity (STDP)?

There are two ways to identify the learning mechanisms occurring at the

synapse level. Either one considers the neuron as a black box and injects

various inputs to see how the connection from the pre-synaptic neuron to the

post-synaptic neuron evolves. This methods leads to identifying functional

learning rules. Or one could analyze the cellular mechanisms underlying such

functional plasticity. However, it is so complicated that it is still a challenge

in neuroscience. We briefly review these approaches in the following based on

the review articles [Caporale and Dan 2008, Sjöström and Gerstner 2010].

Functional description It has been known for a long time that high-frequency

stimulation of the pre-synaptic neuron leads to long-term potentiation, i.e. an
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increase in the synapse strength. Another way to induce long-term potentia-

tion is by pairing low-frequency stimulation of the pre-synaptic neuron with

large post-synaptic depolarization. On the contrary, long-term depression,

i.e. a decrease in the synapse strength, can be induced by low-frequency

stimulation of the pre-synaptic neuron, either alone or paired with a small

post-synaptic depolarization. Together, these mechanisms allow a balanced

modification of the network connectivity. Beyond this static view, numer-

ous recent papers have established the importance of the relative timing of

the pre-synaptic and post-synaptic spikes (among them [Bi and Poo 1998]).

This leads to the definition of the canonical spike timing dependent plastic-

ity (STDP): if a pre-synaptic spike reaches the the synapse shortly before

the post-synaptic neuron fire a spike, then the synapse is potentiated. On

the contrary, if a pre-synaptic spike reaches the the synapse shortly after the

post-synaptic neuron fire a spike, then the synapse is depressed. The modifi-

cation profiles are shown in figure 1.7. Actually, the canonical STDP captures

the importance of causality in determining the direction of synaptic plastic-

ity. This behavior has been robustly observed for many different synapses

in different parts of the brain from insects to humans. However, some other

temporal profiles where also observed as shown in figure 1.8.

In this thesis, we only focus on the canonical STDP which is always implied

when we use the acronym STDP.

Biological mechanisms It is not completely clear yet what are the cellular

mechanisms responsible for the functional observations above. It seems both

potentiation and depression depend on the post-synaptic intracellular calcium

transients. Brief and large calcium events lead to potentiation of the synapse,

whereas longer and smaller calcium events lead to depression of the synapse.

This known as the calcium hypothesis.

For glutamatergic (excitatory) synapses, the NMDA receptor is though

to serve as a coincidence detector. When the pre-synaptic axon terminal re-

leases glutamate and the post-synaptic neuron is also depolarized, this causes

removal of the Mg2+ blocks which where blocking the NMDA receptor. Then,

some calcium ions Ca2+ can go into the post-synaptic neuron through the

open NMDA receptors.

Actually, the synapse is rarely close to the soma of the post-synaptic neu-

ron. Therefore, there are back-propagating action potentials which goes up
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Figure 1.7: Spike-Timing Dependent Plasticity: The STDP function shows

the change of synaptic connections as a function of the relative timing

of pre- and post-synaptic spikes after 60 spike pairings. Taken from

[Sjöström and Gerstner 2010], originally adapted from [Bi and Poo 1998].

the dendrite when the neuron fires so that the coincidence of pre and post-

synaptic spikes can be detected.

Of course, this is a simplistic picture of the real mechanisms which can be

very diverse. Yet, cellular mechanisms are not the topic of this thesis. Thus,

we will not go beyond this description.

1.1.4.2 Models of STDP

Recently, many papers have been devoted to model and analyze the role of

STDP [Van Rossum et al. 2000, Song et al. 2000, Gerstner and Kistler 2002a,

Izhikevich and Desai 2003, Masquelier et al. 2009]. Because, it is a learning

rule based on the time of the spikes and also because some popular neuron

models are hybrid, many papers start with a formulation of STDP which ex-
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Figure 1.8: Diversity of temporal windows for STDP. Temporal axes in mil-

liseconds. Taken from [Caporale and Dan 2008].

plicitly uses the times of the spikes. Although, we briefly recall what a model

of STDP is in this framework, we will take a very different approach in this

thesis. We will not define the times of the spikes and derive a continuous

learning rule which implements STDP, whatever the neurons’ dynamics.

Spike times models Consider the connection from neuron j to neuron i,

which we write Jij. Assume that neuron i fires at times tmi for m = 1, 2, ..

(and similarly for j). Therefore, the modification of the connectivity ∆Jij is

∆Jij =
∑

m

∑

n

W (tmi − tnj ) (1.10)
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where W defines the learning window as illustrated in figure 1.7. We can

model it by

W (x) = a+e
− x

τ+ if x > 0

W (x) = −a−e
x

τ− if x < 0
(1.11)

with a±, τ± ∈ R+ and a± may depend on the value of Jij.

Continuous models Assume that the membrane potential of neuron i (resp.

j) is vi (resp. vj). First, we assume that the evolution of the membrane

potential is governed by a model which generates pure train spikes, i.e. sums

of Dirac functions. In this framework the following system equation is exactly

similar to (1.10)

∆Jij(t) = a+v̄i(t)(v̄j ∗ hτ+)(t) − a−(v̄i ∗ hτ−)(t)v̄j(t) (1.12)

where v̄i = vi − vrest and hτ±(t) = e
− t

τ±H(t) with H the Heaviside function.

Indeed, if the neuron has a pure spiking behavior, then the term a+v̄i(t)(v̄j ∗
hτ+)(t) is non-null when the post-synaptic neuron i is spiking at time t, and

then, via the factor v̄j ∗ hτ+ , it counts the number of previous spikes from

the pre-synaptic neuron j that might have caused the post-synaptic spike.

This calculus is weighted by an exponentially decaying function h+. This

accounts for the left part of figure 1.7. The last term −a−(v̄i ∗ hτ−)(t)v̄j(t)

takes the opposite perspective. It is non-null when the pre-synaptic neuron

j is spiking and counts he number of previous spikes from the post-synaptic

neuron i that are not likely to have been caused by the pre-synaptic neuron.

The computation is also weighted by the opposite of an exponentially decaying

function −h−. This accounts for the right part of figure 1.7.

Actually, we can relax the assumption about the pure spike trains and this

formula still makes sense and implements the STDP rule, provided the neuron

has a spiking behavior. This rule is interesting, first, because it can be easily

coupled with any neuron model (we do not need to known the times of the

spikes). Second, because it has been observed that the STDP is in fact more

dependent on the voltage rather than the exact times of the spike. In a way,

it is more natural than the previous definition.

In this thesis, we assume that hτ = hτ+ = hτ− , and that the terms a± do

not depend on the current value Jij and we add a simple linear decay term

which says that without excitation the strength of the synapse goes to zero.
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This reads

J̇ij = a+v̄i(v̄j ∗ hτ ) − a−(v̄i ∗ hτ )v̄j − κJij (1.13)

with κ ∈ R+.

1.1.5 Recurrent networks

Now, we can build networks from the different models described above. We

could combine any model together as long as they have a variable for the mem-

brane potential (which is the case for all those we introduced). Yet, we are

going to focus on a simple network model which we are able to analyze after-

wards. We choose the Mc Kean neuron model together with linear functional

synapses and continuous STDP modeling.

Therefore, we consider a network of n ∈ N∗ identical McKean neurons.

Each neuron is described by the membrane potential vi and its adaptation

variable wi. Thus, the network is characterized by its field of membrane

potential v ∈ Rn and its field of adaptation w ∈ Rn. The adaptation variable

is generally considered to be slow compared to the activity variable. Therefore,

we assume εw ≪ 1 in (1.6).

The neurons are connected with synapses which differ only by their strength,

i.e. their impulse responses have the same shape. This makes it possible to

consider that each pair of neurons is connected via a single effective synapse

whose strength is the mean of all real synapses linking the pair. Therefore,

we can define the connectivity matrix J ∈ Rn×n of the network such that the

strength of the synapse between neuron i and j is Jij. A common assump-

tion, it to consider that the contribution of the different synapse coming to a

neuron are summed at the neuron’s soma. Together with the assumption of

linear synapses (with time constant τs ∈ R+), this leads to considering that

the communication term for neuron i is
∑n

j=1 Jij(v̄j ∗ hτs
) = {J · (v̄ ∗ hτs

)}i

where v̄i = vi − vrest. Later we will be analyzing the behavior of such a

network when the number of neurons n tends to infinity. Therefore, we need

to scale the communication term by 1
n

such that adding neurons does not

increase the global excitation.

The learning mechanisms are embodied by another differential equation on

the connectivity variable J. It corresponds to equation (1.13). We choose the

decay time of the learning window to be τl ∈ R+. It turns out the time scale

of learning is much smaller than that of the activity variables. Therefore, we
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introduce a small parameter εJ ≪ 1 which is pre-multiplying the right hand

side of (1.13).

We assume that the external inputs interact with the neurons in the form

of an additive current u(t) ∈ Rn.

Some uncorrelated additive noise is added to the membrane potential to

take into account neglected microscopic fluctuations for instance. For bio-

logical relevance (if any), the adaptation variable w is to be considered slow

compared to the membrane potential v. This why we do not add noise on

this variable: we assume it has been averaged over time.

Here, we neglect the propagation of the action potential along the axon.

It is assumed that the neurons are punctual and the signals propagate at an

infinite speed. This is a strong assumption since the action potential travel

at different speed in the cortex which may correspond to a functional role

of delays in information propagation. In particular, the dynamics of a neu-

ral network is modified by adding delays, see [Veltz and Faugeras 2011] for

instance. Yet, these propagation delays significantly increase the complexity

of the subsequent mathematical analysis and we could not take them into

account. However, we believe the delays in the propagation will not change

significantly the slow dynamics of learning which is the focus of this thesis.

After rescaling the time twice to express the system in the learning time-

scale, this leads to the following system



εJεw dvi =
(
f(vi) − wi + 1

n

∑n
i=1 Jij(v̄j ∗ hτs

) + ui(t) − I0

)
dt+ σdBi(t)

εJ ẇi = vi − bwi

J̇ij = a+v̄i(v̄j ∗ hτl
) − a−(v̄i ∗ hτl

)v̄j − κJij

(1.14)

where B(t) is a n-dimensional Brownian noise, v̄i = vi − vrest, hτ (t) =
1
τ
e−

t
τH(t) (where H(t) is the Heaviside function) and f is defined in (1.5).

We recall εJ , εw, l, c, a, τl, τs, I0, σ, b, κ ∈ R+ with εJ , εw ≪ 1 and a± ∈ R.

We can rewrite this equation in a vector form by observing that v̄i(v̄j ∗
hτ ) = {v̄⊗ (v̄ ∗ hτ )}ij where ⊗ is the tensor (or Kronecker) product. Indeed,




εJεw dv =
(
f(v) − w + 1

n
J · (v̄ ∗ hτs

) + u(t) − I0

)
dt+ σdB(t)

εJ ẇ = v − bw

J̇ = a+v̄ ⊗ (v̄ ∗ hτl
) − a−(v̄ ∗ hτl

) ⊗ v̄ − κJ

(1.15)

This system is the starting point of our analysis. It is a high-dimensional,

non-autonomous, non-linear, delayed, stochastic, integro-differential system.
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In the following, we briefly come back to some background information

before working on this system to get its mean field equation.
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1.2 Networks of populations: rate-based approach

There is a fundamental gap between networks of spiking neurons and networks

of rate-based neurons. The former were discussed in the previous section: they

are relatively close to biology but very difficult to analyze mathematically.

The latter are models of networks where the building blocks do not have a

spiking behavior. On the contrary, they tend to have a smooth “analogous“

profile. They are designed to represent the average behavior of populations of

neurons. This is why they are also called population models. Note that their

physical meaning may not be the actual firing rate of a neuron, but something

close to it.

There are many reason to use firing rate models, first for computation

complexity reasons, second for their direct relation with macroscopic mea-

surements of the brain (EEG, MEG and Optical imaging) which average over

numerous neurons and third because the biological structure of the network

seems to define such coherent groups called cortical columns.

A central issue in mathematical neuroscience is to establish links between

these two kinds of models. Of course the complex behavior of spiking networks

can not be totally represented by a rate-based network but it is generally

thought that rate-based models could be a good approximation of the average

behavior of populations of spiking neurons. In this section, we propose a

method and a rate-based equation to approximate the evolution of populations

of neurons described by system (1.15).

First, we will briefly explain how the firing rate of a neuron can be com-

puted in a simple case. We will also show how this helps deriving rate-based

equations such as the Hopfield or Wilson-Cowan equations. Second, we will

develop our own method to derive another rate-based equation from first prin-

ciples (corresponding to system (1.15)).

In this entire part, we neglect the learning equation: we assume it is

occurring on such a slow timescale that the connectivity can be considered

constant. Finally, we will summarize the results and argue to extend this

rate-based approach to a learning neural network.

1.2.1 Usual derivation
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1.2.1.1 Computing the firing rate of leaky integrate and fire neuron

Here, we first define a very simple neuron characterized only by its membrane

potential v and suggest how to find an analytical expression for its firing

rate ν. This popular approach was initiated in [Ricciardi and Smith 1977]

and is widely used in recent papers. For precise references and a pedagogical

introduction see chapter 15 of [Feng 2004] written by Renart, Brunel and

Wang. Here, we closely follow this reference.

Consider a leaky integrate an fire neuron driven by a constant input I and

some white noise:

τmdv =
(
− v + vss

)
dt+ σ

√
τmdB(t)

with σ, τm ∈ R+. The constant vss is the sum of a a leak and an external in-

put. Besides define a threshold vth ∈ R. When the former Ornstein-Uhlenbeck

process crosses this threshold, it is considered that the neuron emits a spike.

The membrane potential is therefore reset to vr ∈ R. To compute the fir-

ing of such a neuron, it is necessary to compute the Fokker-Planck equation

associated with this process which governs the time evolution of the density

probability of the random variable V (t). To mimic the reset mechanism de-

fine an absorbing barrier corresponding to the threshold vth and inject an

extra probability current at vr. As shown in chapter 15 of [Feng 2004], it is

possible to compute the stationary probability density function of the neuron

model ρ(v). Taking into account the fraction ντref of neurons in a refractory

state, the steady state firing rate can be found by the normalization condition∫ vth

−∞ ρ(x)dx+ ντref = 1. This leads to the analytical expression

ν =
(
τref + τm

√
π

∫ vth−vss
σ

vr−vss
σ

ex2(
1 + erf(x)

)
dx
)−1

(1.16)

where erf(x) = 2√
π

∫ x

0
e−u2

du. Because, vss = I + vl, it is possible to plot the

dependence of the firing rate on the constant input I as shown in figure 1.9.

The complexity of formula (1.16) makes it difficult to use in networks of

neurons. However, Brunel and colleagues [Amit and Brunel 1997, Brunel 2000,

Fourcaud-Trocmé et al. 2003] have managed to get interesting insights in the

modeling of networks based on this formula. Yet, our approach will be dif-

ferent and we only needed to highlight the existence of a simple functional

dependence of a neuron’s firing rate on its inputs , shown in figure 1.9.
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Figure 1.9: This shows the function ν(I) for the leaky integrate and fire

neuron. The three curves correspond to different level of noise with 0 <

σsolid < σdashed < σdot-dashed. Adapted from chapter 15 of [Feng 2004]

where the numerical values can be found.

1.2.1.2 Deriving Hopfield and Wilson-Cowan equations

The present part consist in a heuristic derivation of a system describing the

evolution of a network of rate-based based on the assumption that there exists

a function S such that ν = S(I).

This derivation was advocated in early works of Jack Cowan and later for-

malized in [Ermentrout and Cowan 1980]. A nice introduction can be found

in chapter 11 of Ermentrout’s book [Ermentrout and Terman 2010]. It is an

interesting derivation since the Hopfield or Wilson-Cowan equations are es-

sentially the underlying ”biology“ in the popular theory of neural networks,

even if the link with biology is rather tenuous.

Let us highlight the intrinsic assumptions needed to use this method.

Assumptions

• The synapses correspond to the linear filters described above. Only the

strength of the synapse Jij is supposed to vary among synapses: the

transfer functions of the synapses are proportional.

• The synapses are slow compared to the duration of a spike.

• As suggested in the previous part, the firing rate νi of each neuron i can

be written νi(t) = S
(
vi(t)

)
where S is a positive sigmoid.
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There are several assumptions that we add to make the analysis easier. They

are not fundamentally necessary and dropping them leads to similar results.

First, we assume the spikes are Dirac functions produced by a neuron model

which is not specified. This replaces the second assumption. Second, we as-

sume the spikes propagate infinitely fast. Third, we assume the finite impulse

response of the synapse is proportional to hτl
(t) = 1

τl
e
− t

τlH(t).

First, we observe that under these assumptions the total potential that

neuron i receives from neuron j is Φij(t) =
∑

m hτl
(t− tmj ), where tmj are the

times of the spikes emitted by neuron j. Then, on can say that the firing rate

νi(t) determines the instantaneous number of spikes to a emitted by neuron

i. Therefore, νi(t)dt can be seen as the probability of a spike being emitted

in the time interval ]t, t+ dt[. Thus the total potential brought to i by j is

Φij(t) =

∫ t

t0

hτl
(t− s)νj(s)ds =

∫ t

t0

hτl
(t− s)S

(
vj(s)

)
ds

If the contributions of the different pre-synaptic neurons and the external

input u sum at the post-synaptic soma, the membrane potential of neuron i

becomes

vi(t) =

∫ t

t0

hτl
(t− s)

( n∑

j=1

JijS
(
vj(s)

)
+ ui(s)

)
ds

This is the solution of the differential equation

τlv̇i = −vi +
n∑

j=1

JijS
(
vj

)
+ ui(t) (1.17)

which can be rewritten in a vector form

τlv̇ = −v + J · S
(
v
)

+ u(t) (1.18)

This equation is a well-know rate-based equation, sometimes called the contin-

uous Hopfield equation ([Hopfield 2007]). The neurons rates are not exactly

v but S(v).

Remark 1.

• It is interesting to observe that the non-linearity intrinsically charac-

terizing the dynamics of the neurons only is now in the communication

term. Actually, this model has mixed the dynamics of the different build-

ing blocks.
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• In fact, there is no need to define populations of neurons in this deriva-

tion.

• It is also possible to derive (with the same method) an equation for the

synaptic drive of the neurons defined by zi =
∫ t

t0
h1(t− s)νi(s)ds. This

equation is

τlż = −z + S
(
J · z + u(t)

)
(1.19)

Although not directly linked to the firing rate, it is often preferred to the

voltage-based equation (1.18). Separating excitatory and inhibitory neu-

rons leads to the famous Wilson-Cowan equations, ([Wilson and Cowan 1972,

Wilson and Cowan 1973]).

• A space continuous version of these equations with a fixed convolutional

connectivity is called a neural field ([Coombes 2005]).

These equations are highly based on the arbitrary assumption that νi(t) =

S
(
vi(t)

)
. The shape of the sigmoid S is only suggested by figure 1.9 and

conflicts the modeling choice of having neurons emitting Dirac spike trains.

Besides, these rate-based equations are not explicitely related to a underlying

microscopic spiking network and therefore, it is not possible to compare these

equations to a spiking network to assess the accuracy of the averaging. In

the following, we derive another rate-based equation which avoids these three

drawbacks.

1.2.2 Derivation of a rate model averaging a network of

McKean neurons

This part is entirely original. It corresponds to recent research and therefore

is not completely formalized.

The purpose of this section is to derive a rate-based equation which approx-

imates the average behavior of populations of McKean neurons. Therefore,

we consider a network of p populations (labeled with Greek letters) with a

total of pn neurons. Thus, we intend to derive a system of p equations which

approximates the average behavior of a spiking system of np equations. For

each neuron i, we define p(i) = 1, .., p the population it belongs to. Besides, for

each population β and i = 1, .., n, β(i) design the ith neuron of the population.
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Assume that the connectivity J is constant, i.e. εJ = 0. Besides, assume

b = 1 for simplicity. In a first time, assume that I0 = 0; the case I0 6= 0 will be

studied in part 1.2.2.6. Together with the notations above, we rewrite system

(1.15)





dvi =
(
f(vi) − wi + 1

p

p∑

β=1

1

n

n∑

j=1

Jiβ(j)(v̄β(j) ∗ hτs
) + up(i)(t)

)
dt+ σdBi(t)

ẇi = εw(vi − wi)

(1.20)

with f cubic piecewise linear function given by (1.5) and v̄i = vi − vrest

1.2.2.1 Spatial averaging

Now, we apply spatial averaging methods to get a system describing the evo-

lution of the neural network in the limit n → +∞. We have identified two

kinds of averaging methods which have not been merged yet. Both of them

ask for several hypotheses. For instance, we will assume that the inputs com-

ing to a population α is the same for all the neurons in the population, i.e.

ui(t) = up(i)(t). There are additional hypotheses on the connectivity matrix

J which depend on the method chosen. Breaking these assumptions will be

numerically studied in part 1.2.2.5.

1. The McKean-Vlasov equation reviewed and studied in [Dawson and Gartner 1987,

Sznitman 1991] and precisely formalized by [Touboul 2011, Baladron et al. 2011]

in the case of neural networks. The main assumption is that all the

connections from population α to population β are the same, with

α, β = 1, .., p. This reads Jij = Jp(i)p(j). It can also be considered

that there is a dynamic noise, e.g. a centered Ornstein-Uhlenbeck pro-

cess, added to the connection between each pair of neurons. Under these

assumptions it can be rigorously proved (see the references above) that,

asymptotically, the neurons of population α are stochastic processes fol-

lowing the same law written vα and governed by system (1.21) below.

Besides, if the neurons’ initial conditions of all the neurons are inde-

pendent then any finite number of neurons will remain independent to

any other finite group of neuron during the system’s evolution. This is

called propagation of chaos.
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



dvα =
(
f(vα) − wα + 1

p

p∑

β=1

Jαβ

(
E(v̄β) ∗ hτs

)
+ uα(t)

)
dt+ σdBi(t)

ẇα = εw(vα − wα)

(1.21)

where Jαβ ∈ R is a component of matrix (abusively written) J ∈ Rp×p

linking the populations together. The main difficulty in this system is

the presence of the term E(v̄β) which the expectation of the random

variable v̄β(t): this system in integro-differential.

2. The Ben Arous equation inspired by [Arous and Guionnet 1995] and

applied to a rate based neural network in [Faugeras et al. 2009a]. The

main assumption here is that the distribution of the connection neuron

j in population β to neuron i in population α is

Jij ∼ N
(Jαβ

n
,
Λ2

αβ

n

)

where Λ ∈ R
p×p
+ . This corresponds to frozen noise. The case Λ = 0

corresponds to the McKean-Vlasov method (without dynamic noise).

The results proven in the two reference above tend to show that a neuron

of population α would have its law governed by the following equation





dvα =
(
f(vα) − wα + 1

p

p∑

β=1

U
v̄∗hτs (t)
αβ + uα(t)

)
dt+ σdBi(t)

ẇα = εw(vα − wα)

(1.22)

where UV (t) ∈ Rp×p is the effective interaction process, a Gaussian

process of parameters




E
[
UX

αβ(t)
]

= JαβE[Xβ(t)];

Cov(UX
αβ(t),UX

αβ(s)) = Λ2
αβE

[
Xβ(t)Xβ(s)

]
;

Cov(UX
αβ(t),UX

γδ(s)) = 0 if α 6= γ or β 6= δ.

(1.23)

The proof of this is not rigorous and would need some work to be

made reliable. Yet, it seams reasonable at first sight and many authors

([Amari et al. 1977, Sompolinsky et al. 1988, Samuelides and Cessac 2007])have

used this heuristic in a similar way.
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Observe that the two averaged systems (1.21) and (1.22) are very similar: the

expectation of vα is governed by the same system.

The second variable of both system is simply linked to the first: it can be

written wi = vi∗hτw
where τw = 1

εw
and hτ (t)e

− t
τH(t). This makes it possible

to remove the the second equation by adding a delayed term in the first.

In the following, we need to assume we are in the McKean-Vlasov case if

we want to be rigorous. However, we believe the results extend to mixture of

frozen and dynamical noises. Actually, the simulations in part 1.2.2.5 tend to

confirm this idea.

Actually, systems (1.21) and (1.22) are very complicated and there is no

satisfying formalism to analyze their solutions. Indeed, they look like clas-

sical stochastic differential systems but the right hand side includes a term

depending on the law of the process, e.g. the expectation of vα for system

(1.21). They are fundamentally very different and more complicated than

usual differential systems. Besides, usual Monte-Carlo methods do not work

to numerically compute the time-evolving law of the solutions. Indeed, if one

wants to compute one trajectory of the system, one needs to already know

the law of the solution. Therefore, it is way beyond the scope of this thesis to

analyze rigorously the solutions of such a system.

However, we show in the following it is possible to derive a simple system

describing the firing rate of each population starting from systems (1.21) or

(1.22).

1.2.2.2 Firing rate

We need to define what we mean by firing rate of a population. An instanta-

neous firing rate measurement could correspond to counting the spikes emitted

by neurons in a population at time t. However, for spiking trains, this variable

would be almost binary which does not correspond to the smooth variable we

wish to build. It is therefore natural to count the number of spikes emitted

during a fixed time window centered at time t. Therefore, the firing rate im-

plies two integrations: the first is spatial, the second is temporal. Counting

the number of spikes may not be an easy task for the continuous neurons

we have chosen. However, we can use the fact that the spikes approximately

have the same shape: integrating the value of the membrane potential during

a time window and dividing by the area under a spike gives the number of
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emitted spikes.

Therefore, we define the firing rate να of population α as the spatial and

temporal mean of the vα over the neurons in the populations and over a time

window of width θ larger than the duration of the spikes. Note that this is

not exactly the firing rate of a population but, because the spikes have always

the same shape, we claim it is highly correlated to firing rate. Therefore, we

will abusively refer to it as the firing rate although it might be better to call

it spatio-temporal running average of the membrane potential. Observe that

we have to make sure τw ≪ θ. We choose to use a Gaussian time window,

i.e. g(s) = 1
K
e−

t2

σ2 . We choose σ so that Kg(θ/2) = 0.01 and K so that∫
R
g(s)ds = 1. This means the variable να is only proportional to the real

firing rate.

The mean over all the neurons in population α can be replaced by the

expectation of the stochastic process vα when the number of neurons is large

enough.

This leads to the definitions

να(t)
def
=
(
E(vα) ∗ g

)
(t)

ν̄α(t)
def
=
(
E(vα − vrest) ∗ g

)
(t) = να(t) − vrest

(1.24)

Besides, because the convolution is commutative we can derive the follow-

ing from equation (1.21)

ν̇α = E
(
f(vα)

)
∗ g − να ∗ hτw

+
1

p

p∑

β=1

Jαβ

(
ν̄β ∗ hτs

)
+ (uα ∗ g)(t) (1.25)

In fact, the only unknown term in the formula above is E
(
f(vα)

)
∗ g. If we

manage to express it in terms of να, then the system would be closed and we

would have built a rigorous rate-based model from a spiking network.

1.2.2.3 Finding the sigmoids

So far the derivation was rigorous but it is now necessary to find a good

approximation of the term E
(
f(vα)

)
∗ g in equation (1.25). We show it leads

to the computation of sigmoidal functions.

First, we get back to system (1.21) and define the effective input

xα =
1

p

p∑

β=1

Jαβ

(
E(v̄β) ∗ hτs

)
+ uα(t)
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This leads to the system

{
dvα =

(
f(vα) − wα + xα(t)

)
dt+ σdBi(t)

ẇα = εw(vα − wα)

If xα is constant then we have a 2-dimensional isolated neuron model that

we discussed in part 1.1.2.3. Its dynamics can be summarized by the phase

space shown in figure 1.10. Actually, this is not a usual phase plane since xα

depends on time. Therefore, the green curve in figure 1.10 is moving vertically

when the xα changes.

Figure 1.10: Phase place of the deterministic part of system (1.21) where

xa is supposed to be a negative constant. If εw ≪ 1 (which is assumed for

this figure) then the horizontal part of the system trajectory (in orange with

doubled arrows) goes much faster that the two others slow parts.

The first assumption is that εw ≪ 1, or equivalently 1 ≪ τw , so that

the neurons in population α, whose law is described by (1.21), keep jumping

from the two slow branches represented in the phase plane 1.10. This reads

f(vα) = −lvα±(l+c)a+xα such that E
(
f(vα)

)
= −lE(vα)+E(±)(l+c)a+xα

with E(±) =
∫
vα>0

dvα(t)−
∫
vα<0

dvα(t) = P(vα > 0)−P(vα < 0). Therefore,

E
(
f(vα)

)
∗ g = −lνα + (l + c)a

(
P(vα > 0) − P(vα < 0)

)
∗ g

The second assumption consists is assuming that the inputs and the timescale

of the synapses are slow compared to the duration of the temporal integration

window θ: in particular, θ ≪ τs. Therefore, over a time window of size θ, xα

can be considered constant so that system (1.21) reduces to a single isolated

neuron as in equation (1.6) for which the computation of the term above is

much easier. Indeed, a McKean neuron with a constant input I has a behav-

ior such that the function t 7→
((

P(vα > 0) − P(vα < 0)
)
∗ g
)
(t) converges
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to a fixed value which we write Sσ

(
I
)
∈ R (provided θ is sufficiently large).

Therefore, we can write
((

P(vα > 0) − P(vα < 0)
)
∗ g
)
(t) ≃ Sσ

(
xα(t)

)
(1.26)

To compute the sigmoid we need to compute P(v ≷ 0)∗g, for v the membrane

potential of a noisy McKean neuron with a constant input I. This amounts

to computing the proportion of time system a McKean neuron spends on (or

close to) the slow manifolds w = −lv ± (l + c)a+ I.

Without noise σ = 0

In this case, it is possible to compute explicitly S0(I).

If I ≤ −(1 − c)a (resp. I ≥ (1 − c)a), then the system has a single stable

fixed point on the negative (resp. positive) slow manifold. In figure 1.10, this

corresponds to the blue curve crossing the green piecewise cubic where the

latter is decreasing. In this case, S0(I) = −1 (resp. S(I) = 1).

If −(1−c)a < I < (1−c)a, then the system is oscillating on a deterministic

limit cycle. In this case, S0(I) =
T+
0 (I)−T−

0 (I)

T+
0 (I)+T−

0 (I)
where T−

0 (I) (resp. T+
0 (I)) is the

duration it takes for the system to go along the negative (resp. positive) part of

the slow manifold. As shown in [Coombes 2001], it is simple to compute these

values . Indeed, assume the fast membrane potential immediately goes to one

of the slow nullclines. This gives the equation: −lva ± (l+ c)a−wα + I = 0.

Injecting this in the slow equation and integrating along the orange path in

figure 1.10 leads to

T+
0 (I) = l

∫ ca+I

−ca+I

dw

−(1 + l)w + (l + c)a+ I
=

l

1 + l
ln
((1 + 2c/l + c)a− I

(1 − c)a− I

)

Similarly,

T−
0 (I) =

l

1 + l
ln
((1 + 2c/l + c)a+ I

(1 − c)a+ I

)

Therefore, for I ∈] − (1 − c)a, (1 − c)a[

S0(I) =

ln

((
(1+2c/l+c)a−I

)(
(1−c)a+I

)
(
(1−c)a−I

)(
(1+2c/l+c)a+I

)
)

ln

((
(1+2c/l+c)a−I

)(
(1+2c/l+c)a+I

)
(
(1−c)a−I

)(
(1−c)a+I

)
) (1.27)

This function is shown in figure 1.11. It is a non-smooth sigmoidal function

with vertical tangents at −(1 − c)a and (1 − c)a. This corresponds to the

transition from a fixed point to the oscillatory pattern.
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Figure 1.11: This is the representation of the function S0 whose explicit ex-

pression is (1.27).

With noise σ > 0

In this case, it does not seem possible to compute explicitly Sσ(I). However,

we can numerically compute Sσ(I) by simulating a single neuron, whose law is

given by (1.21), over a long time period with a constant effective input I and a

fixed σ. From the history of its membrane potential it is possible to compute

Sσ(I) = T+
σ (I)−T−

σ (I)

T+
σ (I)+T−

σ (I)
. From a mathematical perspective, the objects T±

σ (I) are

the expectation of a hitting time to a non-linear boundary. Concretely, we

compute them as the mean of the time spent of each decreasing branch of teh

cubic. We have reported the results in figures 1.12 and 1.13.

We see that the global slope of the sigmoids decreases when the noise

increases. The negative part of the sigmoids is in accordance with the classical

results reviewed in part 1.2.1.1 and shown in figure 1.9. These results link

this approach to the fully formed sigmoids which are commonly chosen for

the usual rate equations described in part 1.2.1.2.

In accordance with part 1.1.2.3, the presence of noise makes it possible

for the system to generate spikes even though the deterministic system driven

by the same input would only have a stable equilibrium point. Following the

lines of [Muratov et al. 2005], it is possible to define a critical input value (see

equation (1.7)) which is the largest value for which the sigmoid is equal to

−1. The value of these critical values is the red line in figure 1.13.

1.2.2.4 A model for the populations firing rate

We are now in position to define an averaged model describing the evolution

of the populations firing rate. Deriving this system is the main achievement

of this chapter. It takes the form of a self consistent non autonomous, delayed
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Figure 1.12: These are numerical computations of the functions Sσ(I) with

the parameters for these simulations are a = l = 1, c = 1
2
, τw = 100. The

profile of the sigmoids are shown for σ ∈ {0.01, 0.1, 0.5, 1.}. The noisy aspect

is due to the computing of the the ratio T+
σ (I)−T−

σ (I)

T+
σ (I)+T−

σ (I)
over fixed a fixed time

interval which is not always a multiple of the spike duration. We see that the

first value of I for which the sigmoid is not null decreases with σ.

differential system.

Indeed, putting back all the pieces leads to defining an averaged system.

˙̄να = −ν̄α ∗ (lδ + hτw
) + S̃σ

(1

p

p∑

β=1

Jαβ

(
ν̄β ∗ hτs

)
+ (uα ∗ g)(t)

)
(1.28)

In a vector form this is

˙̄ν = −ν̄ ∗ (lδ + hτw
) + S̃σ

(1

p
J · (ν̄ ∗ hτs

) + u ∗ g
)

(1.29)

where δ is the Dirac function and S̃σ is a function from Rp to Rp (with S̃(ν̄)α =

S̃(ν̄α)) and

S̃σ = Id + (l + c)aSσ − (1 + l)vrest (1.30)

1.2.2.5 Numerical simulations

In this part, we show the result of several simulations to evaluate the accuracy

of the averaging process and to test the robustness of the approximation to
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Figure 1.13: Surface representing the sigmoids for a noise amplitude ranging

from 0 to 1. The surface was smoothed by a convolution with Gaussian kernel

to avoid noise induced artifacts as in figure 1.12. The red line corresponds to

the location of Muratov criticality points defined by (1.7). We see it accurately

corresponds to the take off locus of the sigmoids.

the variation of different parameters. In this goal, we simulate both the exact

system 1.20 and the averaged system 1.29. A posteriori , we compute the

firing rate evolution of each population for the solutions of the exact system

thanks to the definition 1.24. We then plot it together with the solutions

of the averaged system to see that the curves match. We define the error

between the solutions νexact : t ∈ [0, T [ 7→ νexact(t) ∈ Rp and νaveraged :

t ∈ [0, T [7→ νaveraged(t) ∈ Rp of the two systems by

error(νexact,νaveraged) =
1

Tp

∫ T

0

p∑

i=1

∣∣νexacti(t) − νaveragedi
(t)
∣∣dt

• The default parameters we used in the following simulations are:

a = b = l = 1, c = 1
2
, εw = 0.01, εs = 0.001, θ = 1001, σ = 0.1, n = 200,

p = 5. The simulations are run in the fast time scale with a stochastic

Euler method with a time-step of dt = 1. and with a number of iteration

of T = 20000.
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• The default inputs are defined by p = 5 functions from [0, T [ to R.

u1(t) = 0.1 sin(2πmt
T

) − I0

u2(t) = 0.1 cos(4πmt
T

) − I0

u3(t) = 0.2
(

T
2
− |t− T

2
|
)
− 0.1 − I0

u4(t) = 0.1 − I0

u5(t) = −0.1 − I0

where m is the number of oscillations of u1 and is set to m = 2 by

default. The default value of I0 is set to Muratov’s critical value given

in 1.7.

• The default connections between the populations are randomly drawn

according to a normal distribution N (0, 0.04). According to the hy-

potheses for the McKean-Vlasov method all the neurons between two

population are connected with a link of the strength Jαβ.

Figure 1.14 is the first numerical simulation which corresponds to two

different values for the noise parameter σ. It shows the necessity of temporal

integration (i.e. the convolution with g) to go from the fast oscillations (at the

spike time scale) to the smoother plain colored curves which are well matched

by the averaged solutions in dashed, black. A better proof of the accuracy of

the averaged equations is the top picture of figure 1.15 which corresponds to

a lot more neurons in each population.

Number of neurons per population The definition of the firing rate of a

population according to 1.24 involves the expectation of the process vα. This

approximation of the real firing rate is even better if the number of neurons

is larger. We test the impact of the number of neurons in figure 1.15. As

expected the larger the number of neurons per population the better is the

approximation.

In figure 1.15, we also check the accuracy of the method when the number

of populations varies. It seems the number of populations does not change

significantly the accuracy of the averaged system.

Frozen noise The underlying hypothesis in McKean-Vlasov’s method is that

all the neurons between two populations are connected with the same connec-

tivity strength. Here we relax this hypothesis and add some frozen noise to
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Figure 1.14: Comparison of the exact and averaged systems for different values

of σ: (left) σ = 0, (right) σ = 0.1. The other parameters have their default

value. In both figure, the fast oscillating green curves correspond to the value

of the instantaneous firing rate for the first population only of the exact system

1.20, i.e. equation 1.24 without the convolution with g. The smooth, plain

colored curves correspond to the temporally averaged firing rate of the exact

system, i.e. equation 1.24. The red oscillations are border effects due to the

fact that the time window of size θ may not match the period of oscillations.

The evolution of the populations firing rate according to the averaged model

1.29 are plotted in black, dashed curves. The deterministic system shows large

oscillations in the instantaneous firing rate because the neurons are perfectly

synchronized. Adding some noise obviously reduces this synchrony and lead

to a much smaller oscillations as can be seen in the right figure.

the connections in the spirit of Ben Arous’ method. More precisely, we assume

that the connection from neuron j in population β to neuron i in population

α is

Jij ∼ Jαβ

(
1 + N (0, σ2

J)
)

Similarly, we add some frozen noise to the inputs such that the input to a

neuron i in population α is

ui ∼ uα

(
1 + N (0, σ2

u)
)

In figure 1.16 we evaluate the accuracy of the averaged equation when these

two parameters vary. It appears the frozen noise on the connections has little

to no impact on the accuracy whereas the frozen noise on the inputs sig-

nificantly reduces the accuracy of the averaged system. This can be partly
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Figure 1.15: Comparison of the exact and averaged systems when the number

of neurons in the network vary. (top) Time evolution of the populations

firing rates of the exact (plain colored curves) and averaged (dashed black)

system with the default parameters except from the number of neurons per

population which is set to n = 1000. (bottom) Error between the 2 models

when the number of neuron per population n and the number of populations

p vary. The inputs where chosen to be constant with and equal to 0.8 I∗.

explained by the fact that the noise on the connectivity is averaged in the com-

munication term which is a sum of the contribution of all the other neurons.
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Figure 1.16: Comparison of the exact and averaged systems when the frozen

noise on the connectivity and the inputs vary. (left) Time evolution of the pop-

ulations firing rates of the exact (plain colored curves) and averaged (dashed

black) system with the default parameters. Some frozen noise was added to

the connectivity and inputs: (top left) σJ = 0.5, σu = 0 (bottom left) σJ = 0,

σu = 0.5. (right) Error between the two models when the frozen noise on

the connectivity and the inputs vary. Adding noise on the inputs makes the

approximation worse than adding noise on the connectivity. In particular, it

seems the population number 4 that receives the ”positive” constant input is

very affected by the noise on the inputs.

Speed of the effective inputs The semi-analytic derivation of the averaged

equation was based on the fact that the effective input xα was slow. Here,

we try to see if the results extend to faster inputs and/or faster synapses by

varying the number of oscillations of the inputs m and the time scale of the

synapses. The results are shown in figure 1.17. Actually, the speed of the

synapse does not impact on the accuracy in a monotonic way suggesting our

averaged system might be valid even where the synapse are fast.

The top picture in figure 1.17 shows that the averaged system has difficul-

ties following the fast evolution of the exact system. Indeed, in this regime

the approximation (1.26) breaks down and the averaged system become less

accurate.

When the number of oscillation in the inputs m goes beyond 10 then the

second input period is larger than the size of the time window θ. Therefore,
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these oscillations are averaged out in both systems and the accuracy improves

as shown in the bottom picture of figure 1.17. There seems to be a similar

effect for the speed of the synapses: beyond a critical value of the synapse time

constant ε∗w = 10−2 the fast variations are averaged in both system thanks to

the convolution window of size θ = 1001.

1.2.2.6 Biological regime of McKean’s neuron

As said in part 1.1.2.3, an important drawback of McKean’s neuron is that the

spikes look like square functions when the effective input xα is larger than 0.

This problem can be avoided if the inputs and the connectivity are assumed

small enough. In particular, the choice of I0 and the range of the inputs

are important parameters that control the proximity of the model to biology.

Yet, we do not know exactly which values to choose for the parameters and

a further study based on experimental data would be needed to assess the

biological relevance of this result.

In this part, we show that in a certain regime the average system is close

to be linear in the sense that the saturating parts of the sigmoid Sσ may not

be involved in the neural computation. Indeed, in certain cases it is possible

to compute the histogram of the effective inputs value for the exact system.

It turns out this histogram may not span the entire sigmoid as shown in the

right column of figure 1.18. Actually, the sigmoid may even be approximated

by a linear function on the effective value of xα.

Figure 1.18 shows two different choices for I0 and the range of the inputs

that can make this linear approximation valid (right column) or false (left

column). We do not pretend that the biological reality corresponds more to

the linear case than the sigmoidal case. Yet, we believe it is a reasonable

motivation to study the linear system defined by system (1.29) with Sσ being

a linear function.

In this section we have assumed so far that the connectivity was constant,

we break this assumption and try to generalize the approach to learning neural

networks in the following.

1.2.3 A tentative to average a learning network

Unlike the previous section, we assume here that the connectivity is being

learned according to the STDP learning rule (1.13). We intend to derive an
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Figure 1.17: Comparison of the exact and averaged systems when the speed

of the synapse and the speed of the connectivity vary. (top) Time evolution of

the populations firing rates of the exact (plain colored curves) and averaged

(dashed black) system with the default parameters except that the number of

oscillations of the inputs is m = 10 and εw = 0.05. (bottom) Error between

the two models when the speed of the effective inputs varies. There are two

way it can vary: the inputs speed varies and/or the time scale of the synapses

varies.

averaged equation in the same spirit as in the previous part for system (1.15)

where the membrane potential and the connectivity are coupled. Unfortu-

nately, we had not enough time to formalize this approach precisely so we will
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Figure 1.18: Comparison of the exact, averaged and linear system for two

kinds of inputs: (left column) Default input with I0 = I∗ (see equation (1.7)).

(right column) The input has a smaller range and is centered above Muratov’s

critical input: we choose the default input divided by 10 with I0 = 6. (top

row) Histograms of the effective input xα in the exact system. (middle row)

The effective sigmoid Sσ is shown in blue for the values corresponding to

the histogram above. In green we have plotted a linear approximation of

the effective sigmoid on the histogram interval. (bottom row) Comparison of

the solutions of the exact (plain colored curves), averaged (dot-dashed black

curves) and linear (dashed color curves) systems. The parameters have their

default value.

only sketch the main arguments that may lead to a solution.

There are two links we need to investigate to incorporate learning to the

previous approach: the role of the evolving connectivity on the averaging of

the activity and, reciprocally, the modification of the connectivity under the

influence of the activity. Under the assumption that learning occurs on a much

slower scale than the activity, i.e. εJ ≪ 1, the first link is trivial. Indeed,
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at the scale of the activity the connectivity can be though of as a constant

so that the derivation of the previous part holds. Therefore, we only need to

understand the way the connectivity is averaged under the influence of the

activity to close the loop.

Therefore, the question is: Is it possible to express the evolution of Jαβ,

the averaged connection between the population α and β, as a function of

the firing rate of population α and β only? Indeed, if it is true this would

close the average learning system and our goal would be reached. We believe

this question is very important since it corresponds to knowing whether the

learning mechanisms intrinsically depend on the timing of the spikes or if a

firing rate approach might capture the essence of learning. Note that the latter

does not discard the fact that the information processing in the brain may

be based on the times of the spikes. It only suggests that the modification

of the synaptic strength might be understood at the rate level. Of course,

it contradicts the terminology itself since the learning rule we introduced in

part 1.1.4 is called “spike timing depend plasticity”. But it is not absurd since

the firing rates might gather enough information about the spike timing to be

considered as the exclusive information vector for learning.

We start by recalling the microscopic learning equation between two neu-

rons i and j in populations α and β respectively:

J̇ij = a+v̄i(v̄j ∗ hτl
) − a−(v̄i ∗ hτl

)v̄j − κJij

where v̄i = vi − vrest hτl
(t) = 1

τl
e
− t

τlH(t) with H the Heaviside function.

Because εJ ≪ 1 it is clear that Jαβ can be approximated by

Jαβ(t) ≃
( 1

n2

∑

i∈α, j∈β

Jij

)
∗ g (1.31)

When n→ +∞ this leads to

J̇αβ = a+

(
E(v̄α)

(
E(v̄β) ∗ hτl

))
∗ g − a−

((
E(v̄α) ∗ hτl

)
E(v̄β)

)
∗ g − κJαβ

We might as well replace h by h̃ = hτl
∗ g in the previous equation. Indeed,

this does not significantly change the profile of the learning because g is a

symmetric function (typically a Gaussian or a step function).

To close the equation as a function of ν̄, the main problem consists in

showing that
(
E(v̄α)

(
E(v̄β) ∗ h̃τl

))
∗ g ≃

(
E(v̄α) ∗ g

)(
E(v̄β) ∗ h̃τl

)
(1.32)
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• First tentative:

Actually, the previously relation is rigorously true if E(v̄β) ∗ h̃τl
is a

constant function. Therefore, we can observe that h̃τl
= hτl

∗ g is slower

than g, so that it can be considered that E(v̄β) ∗ h̃τl
is almost constant

on [t− θ
2
, t+ θ

2
] for all t ∈ R+. Therefore, it seems reasonable to consider

that (1.32) holds.

• Second tentative:

Here, we assume that the neurons have a pure spiking behavior, i.e.

v̄i(t) =
∑

k

δ(t− t
(i)
k )

where the t
(i)
k are the times of the spikes of neuron i. Of course, this

assumption only captures the spiking behavior of the neurons in a car-

icatural (and rigorously wrong) way. Yet, we think it is a interesting

first step to extend the spatial averaging methods to learning neural

networks.

Under this assumption, observe that

v̄i(t)
(
v̄j∗h̃

)
(t) =

∑

k

δ(t−t(i)k )
∑

q

h̃(t−t(j)q ) =
∑

k,q

δ(t−t(i)k )h̃(t
(i)
k −t(j)q )

=
∑

k

(∑

q

h̃(t
(i)
k − t(j)q )

)
δ(t− t

(i)
k )

Because, we are interested by the value of v̄i

(
v̄j ∗ h̃

)
∗ g at time t and g

is supported on ]− θ
2
, θ

2
[, we naturally focus on the spikes emitted during

the time interval [t− θ
2
, t+ θ

2
], so that we can write

v̄i(t)
(
v̄j ∗ h̃

)
(t) =

∑

t
(i)
k

∈[t− θ
2
,t+ θ

2
]

(∑

q

h̃(t
(i)
k − t(j)q )

)
δ(t− t

(i)
k )

Such that

(
t 7→ v̄i(t)

(
v̄j∗h̃

)
(t)
)
∗g =

∑

t
(i)
k

∈[t− θ
2
,t+ θ

2
]

(∑

q

h̃(t
(i)
k −t(j)q )

)[(
t 7→ δ(t−t(i)k )

)
∗g
]

We now claim that the sum
∑

q h̃(t
(i)
k − t

(j)
q ) does not really depend on

t
(i)
k ∈ [t− θ

2
, t+ θ

2
] so that, for t

(i)
k ∈ [t− θ

2
, t+ θ

2
]

∑

q

h̃(t
(i)
k − t(j)q ) ≃

∑

q

h̃(t− t(j)q )
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This assumption is supported by several arguments: (i) during the time

interval neither the input nor the connectivity change significantly sug-

gesting that the spike times may be considered stationary (ii) any pair

of neurons i and j is independent (propagation of chaos), excluding cau-

sation effects between i and j (iii) the function h̃ is almost constant

on the interval. If the previous approximation is considered to be valid

then summing over all the neurons in population α = p(i) and β = p(j)

scaling by 1
n2 leads to approximation (1.32).

Such that it seems reasonable to have

J̇αβ = a+ν̄α

(
ν̄β ∗ hτl

)
− a−

(
ν̄α ∗ hτl

)
ν̄β − κJαβ (1.33)

A numerical simulation to assess the accuracy of approximating the learn-

ing rule. Figure 1.19 shows equilibrium connectivities for a learning neural net-

work in the default parameters, inputs and connections (except T = 10000).

We alos chose the following values for the learning related parameters: τl = 1,

κ = 1, a+ = 2 and a− = 1. It compares the connectivity between the popu-

lations of neurons in two cases: (left) the connections of the exact system of

5× 200 = 100 neurons are averaged a posteriori and (middle) the connections

between the populations of the averaged system of 5 populations. Actually,

we computed these matrices using the entire history of the activity which was

simulated with a constant connectivity. This is an approximation which is

based on the fact that learning is very slow.

We observe that the difference on each link is less than 4% which is an

encouraging result which would need to be developped as a perspective. There

are two sources of errors that prevent the comparison to be perfect: (i) the

exact an averaged system are slightly different as shown in the previous sim-

ulation in section 1.2.2.5. (ii) the averaging of the learning rule itself is not

perfect and induces some small errors.

1.2.4 Summary, conclusions and immediate extensions

In this section we have derived an averaged system (1.29) approximating the

evolution of the firing rate of coupled populations of McKean neurons de-

scribed by (1.15). The derivation was semi-analytic and was mainly based on

an assumption of slow synapses. We have numerically explored the limits of
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Figure 1.19: (left) equilibrium connectivity (averaged) between each popu-

lation of the exact system according to the learning rule (1.2.3) . (middle)

equilibrium connectivity between each unit of the averaged system according

to the learning rule (1.33). (right) This is the error in percent between the

two equilibirum connectivities shown in the left and right pictures.

the approximation and we believe we have shown it is accurate and robust to

the variation of parameters.

We have also suggested that it is possible to extend this approach to a

slowly learning neural network. This means we have defined an approximate

equation for the evolution of the averaged connectivity between populations

starting from the canonical STDP learning. It turns out the structure of the

macroscopic learning rule is the same as the microscopic case.

This final averaged system is

˙̄ν = −ν̄ ∗ (lδ + hτw
) + S̃σ

(
1
p
J · (ν̄ ∗ hτs

) + u ∗ g
)

J̇ = a+ν̄ ⊗
(
ν̄ ∗ hτl

)
− a−

(
ν̄ ∗ hτl

)
⊗ ν̄ − κJ

(1.34)

1.2.4.1 Links with previous results

Many authors have introduced derivations from spiking to rate-based equa-

tions, see [Amit and Tsodyks 1991, Rinzel and Frankel 1992, Shriki et al. 2003,

Camera et al. 2004, Ostojic et al. 2009] based on methods quite similar to

the material in part 1.2.1.1. Our approach is closer to Ermentrout’s work

in [Ermentrout 1994], in the sense that we relate two dynamical systems: the

exact and the averaged, which makes it possible to compare them dynamically.
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We believe it gives a generic way to address the averaging of spiking neurons

whatever their model (although we only applied it on McKean neurons) and

we leave this task as a persepctive.

The derivation involved the computation of a sigmoidal function parametrized

by the level of noise in the network of neurons. In the same spirit as tradi-

tional results briefly reviewed in part 1.2.1.1, we have observed that the noise

has the effect of smoothing the non-linearity. For appropriate inputs, we show

that the averaged equation could be considered linear. However, we leave as

an open question the biological relevance of this linear approximation.

We believe our approach is more based on biology and needs less hypothe-

ses than the heuristic derivation motivating the Hopfield and Wilson-Cowan

equations. In particular, we do not assume a priori that there is a sigmoidal

relationship between the frequency and the total input to a neuron: this rela-

tion emerges from the computations. Eventually, we define an average system

(1.29), which is quite similar to the usual synaptic-drive equation (1.19). Un-

like Wilson-Cowan equations systems (1.29) parameters relate to the initial

spiking neurons’ parameters.

1.2.4.2 Perspectives

This approach raises many questions and would need a significant amount of

additional work to be made reliable enough to be taken as a starting point by

other scientists. Here, we highlight some directions to develop this result in

the future.

Are synapses slow enough? The derivation of the averaged system (1.29)

is based on different assumptions which need to be biologically checked. For

instance, is the hypothesis of slow synapses broken by fast AMPA receptors?

Is it possible to improve the derivation to get a more complicated but more

relevant system?

Non homogeneity of the network In this derivation, we have assumed

that all the neurons and synapses were the same. Is it possible to break this

assumption and consider populations made of several types of neurons? Can

we model the diversity of neurons and synapses observed experimentally with

this approach?
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Dynamical properties of such equations The study of the dynamics of

Wilson-Cowan equations has been a hot topic of research (see [Coombes 2005]

for a review). Since the averaged system (1.29) is slightly different from these

equations, it seems necessary to develop a rigorous and systematic analysis of

its dynamical properties. The difference between our model and the synaptic-

drive equation (1.19) is essentially the presence of terms with (exponential)

delays. Does it change significantly the dynamical behavior of the equations?

We believe it does not, yet it would be necessary to check this rigorously.

Including learning to the derivation In section 1.2.3, we have tried to ex-

tend the derivation of an averaged system to a learning neural network. How-

ever, we are not satisfied yet with the derivation and we think it would be

necessary to find a more rigorous path. We think this point has to be studied

deeply since it addresses the question of the usefulness of spikes for learning.

Are they a fundamental mechanism which cannot be neglected in the study

of learning. Or can we grab the essence of learning in a formalism without

spiking neurons? Actually, we believe the latter hypothesis is the best and

we have tried to convince the reader in section 1.2.3. Besides, there is a huge

field of research devoted to learning rules in rate-models, which we try to con-

tribute to in the rest of the thesis. Therefore, it is a crucial question which

needs to be rigorously addressed to build a theory of neural systems from first

principles.



Chapter 2

The slow dynamics of learning

in fast rate-based models

Overview

This chapter is devoted to studying the dynamics of rate-based learning neural

networks under the assumption that learning is very slow compared to the

activity. After having introduced the appropriate framework and the different

learning rules, we use various temporal averaging methods to get a reduced

system asymptotically governing the behavior of the connectivity. Finally, we

prove it always converges to an equilibrium point under some assumptions.

In a case of linear activity, we can even compute explicitly an expansion for

the equilibrium connectivity.

In this chapter sections 2.1 and 2.2 are background, whereas sections 2.3

and 2.4 are original.

Résumé

Ce chapitre porte sur l’étude de la dynamique de réseaux de neurones à

taux de décharge couplés à un mécanisme d’apprentissage. L’hypothèse de

base dans ce chapitre est que l’apprentissage est beaucoup plus lent que

l’activité des neurones. Après avoir revu les différentes règles d’apprentissage

et avoir introduit le cadre mathématique approprié, nous utilisons plusieurs

méthodes de moyennisation temporelle pour obtenir un système réduit gouver-

nant l’évolution de la connectivité. Finalement nous prouvons que ce système

converge toujours vers un unique point d’équilibre sous certaines conditions

techniques. Dans le cas où l’activité du réseau est linéaire nous fournissons

une formulation explicite de la connectivité d’equilibre.

Dans ce chapitre les sections 2.1 et 2.2 sont issues de la littérature, alors

que les sections 2.3 et 2.4 sont originales.
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Collaborations, publications and ackowledgements

This part is mainly based on collaborations with Paul Bressloff for section 2.3

(which lead to a paper in Neural Computation) and Gilles Wainrib for section

2.4 (lead to a paper in the journal SIAM mutliscale modeling). In particular,

my contribution was to use a theorem for generic non-autonomous systems

derived in [Wainrib 2011] and presented in appendix B in the case of learning

neural networks. To do so, I have developed a mathematical result which

was general enough to be published as an autonomous paper in the Comptes

rendus de l’académie des sciences, it is attached in appendix E.
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Rate-based models of populations of neurons are widespread because of

their dynamical simplicity. In these models, the evolution of the network’s

activity is smooth as opposed to spiking neural networks. In the previous

chapter, we have shown how rate-based and spiking networks can be related:

rate based models are spatial averages of populations of spiking neurons. How-

ever, it is habitual refer to the building blocks of rate-based models not as

populations of neurons but simply as neurons.

There exists a formal way to define a neuron as a function. This is quali-

tatively different from the dynamical models considered in this thesis since it

gives a input-output aspect of neurons and therefore mainly applies to feed-

forward networks. Yet, the intrinsic mechanism of propagation of information

through a weighted network can still be taken into account in this formalism.

Indeed, the activity of a readout neuron written y ∈ R, over a layer of multi-

ple neurons, whose activity is x ∈ Rn, may be described by y = S(
∑n

i=1 jixi)

where S is a nonlinear function, typically a Heaviside with offset or a sig-

moid, and j ∈ Rn is the vector of connections of the bottom layer to the

readout neuron. This approach is at the heart of the traditional research

in neural networks which belongs to the field of computer science and was

originated by [McCulloch and Pitts 1943]. It is widely used for supervised

learning in hierarchical networks which are out of the scope of this thesis.

However, this also an assumption in early works about unsupervised learn-

ing in hierarchical structure [Oja 1982, Bienenstock et al. 1982, Földiák 1991,

Miller and MacKay 1994, Wallis and Baddeley 1997] which are extensively re-

viewed in [Hertz et al. 1991].

There are two canonical dynamical rate-based models: the Hopfield or

voltage-based model and the Wilson-Cowan or synaptic-drive-based. The

first was introduced in [Amari 1977, Hopfield 1982, Hopfield 1984] and is of

the form v̇i = −vi +
∑n

i=1 JijS(vj) + ui. The second was introduced in

[Wilson and Cowan 1972] and is of the form żi = −zi + S(
∑n

i=1 Jijzj) + ui.

Their heuristic derivation was detailed in 1.2.1.2. We show in the following

that they are identical after change of variable. It is sometimes considered

that the inputs are not a dynamical forcing but only a specification of the

initial conditions. This corresponds to the denomination attractor neural

networks. We do not consider these kind of networks since the inputs are

introduced as a non homogeneous term, yet the mathematical structure of

our problem is quite similar. The study of learning rules in this framework
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has also a been a topic of interest mainly in the wake of Hopfield’s works

([Dong and Hopfield 1992, Hopfield 2007]).

The dynamical study of these spatially extended networks, without learn-

ing, has been very rich starting from the contributions of Wilson and Cowan

([Wilson and Cowan 1973]). It is often assumed that the neurons are con-

tinuously located on a given geometrical shape, e.g. the plane R2, so that

the connectivity can be defined to be convolutional. These continuous mod-

els are called neural fields. In this new framework the tools from Fourier

theory, in particular, have led to substantial results of to characterize the

solutions of such equations and their stability, [Pinto and Ermentrout 2001,

Laing et al. 2002, Folias and Bressloff 2004, Faugeras et al. 2009b, Veltz and Faugeras 2009]

and see [Coombes 2005] for a review. A few papers have dealt with learn-

ing the feed-forward connectivity to a recurrent neural field without learning

[Takeuchi and Amari 1979, Bressloff 2005].

There have been different approaches to unsupervised learning in neu-

ral networks. Some of them were based on the reduction of redundancy

[Barlow 1989, Barlow 2001], or on the maximization of mutual information

[Linkser 1988, Linkser 1992, Atick and Redlich 1990] or the maximization of

sparseness [Olshausen and Field 1996]. Most of these approaches are based on

a functional principle but may be partially implemented with explicit learning

rules tuning the connectivity. Another important approach to unsupervised

learning, which is quite close to the approach we develop in the following,

is the Boltzmann-machine approach [Ackley et al. 1985, Amari et al. 2002].

They show that in an idealized network close to the Hopfield equations a cer-

tain learning rule corresponds to the opposite of the gradient of the Kullback-

Leibler divergence between the law of the inputs and that generated by the

network spontaneous activity. This is a mathematically dramatic result al-

though it implies huge computations to compute the learning rule. We were

really inspired by the philosophy of this result which shows that the network

copies the inputs. Chapters 2 and 3 present a similar approach where we start

from biological learning rules instead.

The topic of this chapter is the study of dynamical unsupervised learning

according to correlation or causation based learning rules inspired from biology

in recurrent rate-based networks and reviewed in [Dayan and Abbott 2001,

Gerstner and Kistler 2002b, Gerstner and Kistler 2002a, Chen et al. 2007].

This chapter consists in a mathematically rigorous analysis of the dynamics
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of rate-based learning networks. A priori, the main functional question that

we may ask ourself is: does learning lead to a fixed understanding of the

world? We believe a good learning rule should converge to a single equilibrium

connectivity and should not oscillate or diverge. We will see that in our

non-autonomous framework (the inputs is constantly moving) the notion of

equilibrium point is not trivial. Basically, we rely on the slow-fast dynamics

of learning neural networks to go around this problem.

The first section consists in defining and reviewing the possible models for

rate-based learning neural networks significantly influenced by the references

[Dayan and Abbott 2001, Gerstner and Kistler 2002b, Gerstner and Kistler 2002a].

The second part is a first step toward the slow-fast treatment of the problem

where the inputs are assumed to be slow. The third section generalizes this

approach to fast inputs and noisy neurons and for different learning rules.
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2.1 Rate-based learning neural networks

We now introduce a large class of rate-based stochastic neuronal networks

with learning models. They are defined as coupled systems describing the

simultaneous evolution of the activity of n ∈ N neurons and the connectivity

between them. We define v(t) ∈ Rn the activity field of the network and

J(t) ∈ Rn×n the connectivity matrix at time t ∈ R+.

2.1.1 Activity field

The activity field is assumed to evolve according to

dvi =

(
F(vi) + S

( n∑

j=1

JijH(vj) + ui(t)
))

dt+
n∑

j=1

Σij(v,J)dBj(t)

where the function F characterizes the intrinsic dynamical behavior of the

neurons. In this rate-based approach it is often considered to be linear with

a negative leak constant (and possibly with time delays). Functions S and

H characterize the non-linear communication term. In the most general case,

these three functions are more than functions from R → R. In fact, their

argument might be the entire history of the variable (not only its value at

time t). This makes it possible to take into account functional or time-delayed

problems. Mathematically speaking, they are functionals from C1(R−,Rn)

to Rn. It turns out this formalism does not pose substantial problems and

allows a useful generalization of traditional models. Actually, these three

functions may depend on the neurons and therefore should be indexed by

i ∈ N, however, we choose not to write them for simplicity. The noise-related

matrix Σ is linked to the spatial correlations of the white noise. It this general

framework, it may depend on v and J.

Abusively redefining F , S and H as vector valued operators corresponding

to the element-wise application of their real counterpart leads to the following

vector valued system.

dv =
(
F(v) + S

(
J.H(v) + u(t)

))
dt+ Σ(v,J).dB(t) (2.1)

where the “.′′ operator is a matrix-vector multiplication. This system is a non-

autonomous, stochastic, possibly time-delayed, non-linear, slow-fast system.
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Voltage-based or synaptic-drive-based equations In the previous chapter,

we introduced in part 1.2.1 two types of rate-based models called the voltage-

based (or Hopfield) model in (1.18) and the synaptic-drive-based (or Wilson-

Cowan) model in (1.19). After a change of time, they are

voltage-based v̇ = −v + J · S
(
v
)

+ u(t)

synaptic-drive-based ż = −z + S
(
J · z + u(t)

)

where S is traditionally chosen to be a positive sigmoidal function.

In the formalism of (2.1), they correspond to the choices F = −Id, S = Id,

H = S and F = −Id, S = S, H = Id respectively.

When the (invertible) connectivity and the inputs are constant, the change

of variable v = J.z + u makes it possible to go from one to the other and

reciprocally. It is just a choice of modelisation to select one or the other.

Frequency based system from averaging In the previous chapter, we also

derived an averaged equation of the behavior of populations of mcKean neu-

rons, see 1.2.2. It leads to system (1.34), which can be written as follows

without learning where we simplified slightly the notations (ν̄ is replaced by

ν, 1
p
J is replaced by J, u ∗ g is replaced by u, and S̃σ is replaced by S̃).

frequency-based ν̇ = −ν ∗ (lδ + hτw
) + S̃

(
J · (ν ∗ hτs

) + u
)

This corresponds to F(v) = −v∗ (lδ+hτw
), H(v) = v∗hτs

, S = S̃ defined

in equation (1.30) and Σ = 0.

This system looks like the synaptic-drive-based equation and we would

like to find the associated (pseudo) voltage-based equation. Therefore, we

assume the connectivity is fixed and invertible and define a = J · (ν ∗ hτs
) +

u. To invert this relation observe that ν ∗ hτs
= J−1.(a − u(t)). We recall

hτs
(t) = 1

τs
e−

t
τsH(t) whose Fourier transform is ĥτs

(ξ) = 1
1+2iπτsξ

, so that the

convolution of ν ∗ hτs
with the inverse Fourier transform of ξ 7→ 1 + 2iπτsξ

(which we write h
(−1)
τs ) is ν. This leads to ν = J−1.

(
a − u

)
∗ h(−1)

τs .
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This leads to ȧ = J.
(
− ν ∗ (lδ + hτw

) + S̃(a)
)
∗ hτs

+ u̇, i.e.

pseudo voltage-based ȧ = −a ∗ (lδ + hτw
) + J.S̃(a) ∗ hτs

+ (u + u̇)

Note that we have not supposed that the inputs were fixed in this deriva-

tion. The link between voltage-based and synaptic-drive-based with evolving

inputs would give the same result i.e. replace u by u + u̇ when going from

the synaptic-drive-based to the voltage-based.

We have also assumed a fixed connection which might look irrelevant to

our learning framework, however, the learning will be assumed so small that

this equivalence will hold.

In the previous chapter, we motivated the definition of such rate-based

models to account for the evolution of population of neurons. In a framework

when the number of neurons tended to infinity, the averaged equations where

deterministic. In the formalism we have just introduced there is some addi-

tional noise. Actually this noise could come from finite size effects. Indeed,

if the number of neurons in the populations in not infinite but large then the

evolution of the network may be described by a noisy version of the averaged

equation for an infinity of neurons. This area of research is in great devel-

opment [Bressloff 2009, Buice et al. 2010]. Although the “shape” of the noise

could be tuned to represent better these finite size effects, we won’t go in

this level of detail and mainly deal with simple additive noise with a constant

matrix Σ.

2.1.2 Connectivity matrix

The connectivity matrix is assumed to evolve according to a slow unsupervised

learning rule. This reads

dJ = ε χ ⊙G(v,J) dt (2.2)

where ε is very small. The matrix χ ∈ Rn×n is made of binary coefficients, i.e.

χij ∈ {0, 1}. It represents the physical connectivity of the network. Indeed,

there might by no physical axons going from one neuron to another. Therefore,
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the learning rule cannot change this non-existing link. The component χij is

1 if there is a link from j to i and it is 0 if there is no link. Besides, the initial

connectivity of non physically connected neurons is assumed to be null.

The operator ⊙ is the Hadamard or element-wise product:

Rn×n × Rn×n → Rn×n

X,Y 7→ X ⊙ Y such that {X ⊙ Y}ij = XijYij

In the part 2.2, we review the traditional possibilities for the choice of the

learning rule G.

2.1.3 Existence and Uniqueness of the solution

The first question that arises when considering the coupled system of equations

(2.1) and (2.2) is about the well posedness of the system. Is there a unique

solution to the coupled system? What is the maximal interval of definition of

the solutions?

Actually the system must be set as an initial value problem or Cauchy-

problem to address these questions. In this thesis, we assume that the initial

time is 0 and the value of the variables on R− is also null. Therefore, we

rigorously define the system

{
dX = f(t,X)dt+ Σ̃(X)dB(t)

X(R−) = 0

where X = (v,J), Σ̃ = (Σ, 0) and f :
(
t, (v,J)

)
∈ R × (Rn × Rn×n) 7→(

F(v) + S
(
J.H(v) + u(t)

)
, ε χ ⊙G(v,J)

)
∈ Rn × Rn×n.

Although, the formalism is rather general (non-linear, stochastic and time-

delayed) the main requirement for the system to be well posed is the Lips-

chitzianity of the functions (see chap 2 of [Hale and Lunel 1993], [Mao 1997]

and [Da Prato and Zabczyk 1992]).

Uniqueness If f is locally Lipschitz (i.e. Lipschitz on any compact subset of

R × Rn × Rn×n), there exists a unique solution to the Cauchy system above.

This means F , S, H, Σ and G have to be locally Lipschitz which will be

verified in all the situations we are treating in this thesis.
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Global existence The only remaining pathological behavior is the explosion

in finite time. Actually, we cannot prevent this from happening in the most

general case because Hebbian learning rules (detailed below) are quadratic

rules. In particular, if F = −Id, S = Id, H = Id, and G(v) = v⊗v then the

system explodes in finite time. Adding a strong linear decay to the learning

rule may prevent this problematic behavior from happening, as shown in part

2.4. This implies a systematic dynamic analysis of the different learning rules

which will shed light on their biological plausibility: a diverging rule is not

biologically plausible and should be excluded from our analysis.

2.1.4 A word about the dynamics

This chapter addresses the dynamical behavior of such learning neural net-

works. But, what kind of dynamics do we expect to find?

From a functional point of view, we are interested in the statistical infor-

mation the network has managed to extract from the inputs. Therefore, we

need to assume that the inputs are evolving in time: a single frozen input in

a learning system is irrelevant.

Besides, the network is expected to extract the regularities in these inputs.

Therefore, they must be structured in some way and it makes no sense study-

ing the system with random inputs. The easiest way to impose the existence

of recurrent patterns in the inputs in a generic way is to assume they are peri-

odic. A more general framework would include inputs evolving stochastically

in a bounded energetic landscape.

In any case, the system is forced by time-evolving inputs. Therefore, talk-

ing about equilibrium points makes no sense. However, we expect the sys-

tem to converge to a fixed “understanding” of the inputs, a final statistical

knowledge about inputs. Therefore, we expect the connectivity (which is the

variable for learning) to converge through the learning process.

The main ingredient to have a converging connectivity coupled with a

input-driven activity is the separation of time-scales between the two variables.

The activity is considered to be much faster than the connectivity. Therefore

in sections 2.3 and 2.4, we will apply reduction methods for slow-fast systems

before analyzing the dynamics.
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2.2 A guided tour of learning rules

Over the last 60 years, the fields of experimental and theoretical neuroscience

have been significantly influenced by Hebb’s postulate:

When an axon of cell A is near enough to excite cell B or re-

peatedly or persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased. [Hebb 1949]

All the rules below implement with certain subtleties Hebb’s postulate. This

is why this class of correlation/causation based rules are sometimes called

Hebbian learning rules.

However, there is also a precise rule which is also called Hebbian learning.

It corresponds to the simplest learning rule of the class, i.e. particular form

of G, which only takes into account the correlation effects implied by Hebb’s

words above. Actually, Hebb quotation also introduced a notion of causality

between the neurons. This causality link is at the heart of the STDP learning

rule which we detail later.

In this thesis, we choose to call Hebbian learning rule the simplest learning

rule presented above. We call correlation-based learning rules the class of

rules built upon the Hebbian learning rule which only track the correlations

between neurons. And we call causation-based learning rules those which take

into account the causality links between neurons.

Appart from Hebbian learning, most of these rules were originally intro-

duced in a feed-forward formalism. One of the main interest of this part is to

extend these definitions to recurrent neural networks which is the framework

of this entire thesis.

Before starting we need to introduce properties these learning rules may

have which are qualitatively very important to classify them: (i) the locality

of the rule (ii) the stability of the rule.

1. A learning rule is said to be local if the evolution of the connection

from neuron j to neuron i only depends on the value of the connec-

tion and the activities of neurons i and j. Mathematically, this reads

Gij(v,J) = Gij(vi,vj,Jij). This property is necessary for biological

plausibility because it seems unlikely the synapse from neuron j to neu-

ron i is influenced by the activity of other neurons (though the proximity
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of synapse might lead to such behavior which is irrelevant to the under-

lying population approach we take here).

2. A learning rule is said to be diverging if it leads to the explosion of the

connectivity variable. This description gathers the cases of explosion

in finite and infinite time. Obviously, these rules are not biologically

plausible.

The most common learning rules are often diverging whereas plausible

learning rules should maintain homeostasis in the brain. Therefore, some-

thing more is needed to prevent the network from diverging: synaptic scaling

[Abbott et al. 2000, Turrigiano and Nelson 2004]. As explained in this pa-

pers, different mechanisms correspon to the notion of synaptic scaling from

artifically bounding the synaptic weights and adding an energetical constraint

to the wieghts strength growth to heterosynaptic constraints or temporal nor-

malizations. Although, we review some of these mechanisms in the following

we will chose as simple linear decay embodying energetical constraints on the

connections between population of neurons in the rest of the thesis.

In the following, we present three types of learning mechanisms. A learning

rule can be a combination of these mechanisms.

2.2.1 Correlation-based and Hebbian rules

• The Hebbian learning rule was introduced in the context of linear

networks, i.e. when the nonlinearity F , S and H in equation (2.1) are

the identity. It corresponds to choosing Gij(v,J) = vivj or

G(v) = v ⊗ v

in a vector form (where ⊗ the tensor product). This rule is obviously

local. However, it is diverging because the common activation of two

neurons lead to the strengthening of their connection which increase

their activity and so on: the connectivity explodes. Besides, this is only

a mechanism for the increase of the synapse strength.

• Anti-Hebbian learning simply corresponds to inserting a minus in front

of the Hebbian rule. It has an opposed functional effect to the Hebbian

case.
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• The first idea to upgrade the Hebbian learning rule is to consider a rule

made of the tensor product of two functions of the activity, i.e.,

G(v) = φ1(v) ⊗ φ2(v)

where the functions φk : Rn → Rn correspond to the element-wise appli-

cation of a function (which we abusively write φk), i.e. φ1(v)i = φ1(vi).

In Hebb’s philosophy and to support the experiments on long term po-

tentiation (see 1.1.4), φ1(vi) should be a function the firing rate of neu-

ron i. We detail below three examples for the choice of the φi:

1. When the activity is voltage-based, we would expect φ1 = φ2 = S

since S(vi) is assumed to be the firing rate of i see 1.2.1.2.

2. Rules with gating make it possible for the synaptic strength to

decrease. Post-synaptic gating G(v,J) = (v − θ) ⊗ v, and pre-

synaptic gating G(v,J) = v⊗ (v− θ), involve the choice of a fixed

threshold θ, which is often chosen somewhat arbitrarily. Sliding

threshold rules (see part 2.2.3) go one step further and consider

that this threshold is a function of the state and its past. This rule

is local but does not prevent the system from exploding in certain

cases.

3. Bienenstock et al. improved the rules with gating to include satura-

tion as well. In [Bienenstock et al. 1982], they proposed to choose

G(v,J) = φ(v) ⊗ v (2.3)

where φi(v) = arctan
(
vi(vi − θ)

)
, as shown in figure 2.1. The

BCM learning rule has more interesting features and part 2.2.3

deals with one of them. This rule is local. It is not clear yet what

kind of dynamics it leads to.

• To prevent the Hebbian learning rule from diverging, a simple and ef-

fective idea is to add an elastic negative feedback to the connectivity

strength increment. This rule is referred as the Hebbian learning

rule with linear decay, or M0. It is written as follows

G(v,J) = −κJ + v ⊗ v (2.4)

where κ ∈ R+. This rule is local and not diverging if κ is sufficiently

large (see part 2.4).
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Figure 2.1: The function φ introduced by Bienenstock et al.

[Bienenstock et al. 1982].

2.2.2 Heterosynaptic constraints

We introduce now other rules that are non-local and implement a notion of

competition between synapses, [Malsburg and Cowan 1982, Oja 1982, Miller 1996],

which we call heterosynapty, see section 1.5 of [Rolls and Deco 2002] for de-

tails. They implement mechanisms of spatial averaging of the synapses’

strength. It corresponds to the fact that two neurons sending their axon

to a third one may have an influence on each other. For instance, if the first

one is very active and excites the target neuron, while the second is quiet, it

is likely that the strength of the connection of the second neuron to the target

neuron decreases.

These heterosynaptic learning rules are modifications of the Hebbian paradigm

by subtracting a global term from function G which has the effect of project-

ing the connectivity onto a subspace of Rn×n, see figure 2.2. The impact of

these constraints was successfully analyzed in [Miller and MacKay 1994] in

the case of a linear perceptron (simplest feed-forward network). We follow

the nomenclature introduced in [Miller and MacKay 1994]

1. Subtractive normalization (S1) It consists in subtracting from the

Hebbian learning rule the spatial mean of the incoming connection:

Gij(v,J,χ) = vivj −
vi

∑n
k=1 χikvk∑n
k=1 χik

(2.5)

With this rule the vector a{1} ∈ Rn such that a
{1}
i =

∑n
k=1 Jik is kept
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W1

W2

W1

W2

W1

W2

W1

W2

Figure 2.2: Shows the role of different constraints in a geometric way on

two dimensions. Actually, these constraints correspond to n projections of

subspaces of Rn, one for each row of the connectivity matrix. The pictures

above correspond to one of these projections. The learning rule M0 is a

linear decay term. The learning rules S1, M1, M2 correspond to projection on

invariant subspaces in red.

constant during learning. Indeed,

d

dt
a
{1}
i =

n∑

k=1

(
χikvivk −

χikvi

∑n
p=1 χipvp∑n

p=1 χip

)

= vi

( n∑

k=1

χikvk −
∑n

k=1 χik∑n
p=1 χip

n∑

p=1

χipvp

)
= 0

In other words for the rule S1, the sum of the incoming synaptic weights

to a neural mass remains constant. Therefore, if the Hebbian learning

mechanism makes only one synapse increase then the other will necessar-

ily decrease. In fact, as shown in the bottom left picture of figure 2.2 it
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corresponds to the orthogonal projection of Hebbian learning on an affine

subspace. However, this does not prevent the system from diverging be-

cause, the affine subspace is not bounded. Therefore, the rule is often

used with artificial bounds on the connectivity and it is observed that all

the synapses tend to saturate eventually, see [Miller and MacKay 1994].

2. Multiplicative normalization of the first kind (M1) To prevent

the system from diverging it is useful to weight the subtractive term by

Jij. Therefore, the learning rule is

Gij(v,J,χ) = vivj −
vi

∑n
k=1 χikvk∑n
k=1 Jik

Jij (2.6)

This rule also conserves a{1} ∈ Rn. Indeed,

d

dt
a
{1}
i =

n∑

k=1

(
χikvivk −

χikJikvi

∑n
p=1 χipvp∑n

p=1 Jip

)

= vi

( n∑

k=1

χikvk −
∑n

k=1 χikJik∑n
p=1 Jip

n∑

p=1

χipvp

)
= 0

because Jik = χikJik. The main difference with the previous rule is that

the rule is no more diverging. In fact, the multiplication by Jij forces

the projection to be non-orthogonal and inward pointing as shown in

figure 2.2. Actually, [Gütig et al. 2003] have studied the intermediary

case when Jij is raised to the fractional power µ ∈]0, 1[.

3. Multiplicative normalization of the second kind (M2) Instead of

projecting the connectivity on an affine subspace, this constraint project

it on the sphere. It turns out it corresponds to a simple modification of

the previous rule:

Gij(v,J,χ) = vivj −
vi

∑n
k=1 χikJikvk∑n

k=1 J2
ik

Jij (2.7)

This rule correspond to keeping a{2} ∈ Rn constant along the trajecto-

ries, where a
{2}
i =

∑k
j=1 J2

ik. Indeed,

1

2

d

dt
a
{2}
i =

n∑

k=1

(
χikJikvivk −

χikJ
2
ikvi

∑n
p=1 χipJipvp∑n

p=1 J2
ip

)

= vi

( n∑

k=1

χikJikvk −
∑n

k=1 χikJ
2
ik∑n

p=1 J2
ip

n∑

p=1

χipJipvp

)
= 0
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This rule corresponds to the orthogonal projection of each row of the

connectivity on the centered sphere of radius a
{2}
i as shown in the top

right picture of figure 2.2. It is often called the Oja learning rule in

reference to the work of [Oja 1982] which will be detailed in part 3.1.2.2.

In the asymptotic limit of slow learning, it can be shown that this rule

is the first order of

Gij(v,J,χ) =
Jij + εvivj∑n
j=1 Jij + εvivj

Remark: In the rules S1, M1, M2 the averaging is done with respect to the

pre-synaptic neurons. It is straightforward to build equivalent rules by aver-

aging with respect to the post-synaptic neurons or even over all the neurons

(post and pres-synaptic).

2.2.3 History dependent rules

So far, we have been considering time instantaneous rules, where G was only

depending on the value of v at time t. However, there are evidences that time

averaging may be included in some way in the learning process, see part 1.1.4.

These learning rules are all local.

1. Trace learning introduced by [Földiák 1991] is a functional learning

rule directly derived from the Hebbian learning rule. Roughly speaking,

it averages (though it is more a geometric weighting) the mean firing

rates of neural mass over running temporal windows, instead of consid-

ering the instantaneous firing rate of the post-synaptic neuron. With

gτ : t 7→ 1
τ
e−

t
τH(t) where H is the Heaviside function, this reads

G(v,J) = (v ∗ gτ ) ⊗ v

This rule is local but there is no reason it might converge since it has

not corrected the inherent problem of Hebbian learning, i.e. the fact

that there is no mechanism for decreasing the synapse’s strength.

2. There are functional implementations of the learning rules with gating.

For instance, the threshold θ might be a running mean of the activity

variable. This gives

G(v,J) =
(
v ∗ (δ − gτ )

)
⊗ v
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where δ is a Dirac function. It is similar to the covariance learning intro-

duced in [Sejnowski et al. 1977]. One of the main features of this rule is

that it subtracts a running average to the post-synaptic term. Therefore,

the rule implements differential learning and not ”absolute“ learning.

3. We go back to the BCM learning rule [Bienenstock et al. 1982, Intrator and Cooper 1992

Castellani et al. 1999, Blais and Cooper 2008] because it includes a mech-

anism of temporal averaging. In their original article Bienenstock, Cooper

and Munro considered the learning rule (2.3) where the choice of θ is

crucial. Actually, they were in a formalism of n inputs being periodically

shown to the network, so that they could choose θ a sort of average of

the v over the m inputs. Actually, we are not ready yet to deal with

this ensemble averaging formalism. So we will define a temporal version

of BCM learning rule which is

Gij(v,J) = φ(vi, θi)vj

θ ∈ Rn such that θi =
(

vi∗gτ

c

)2

vi ∗ gτ

(2.8)

where c ∈ R∗
+. This is another example of differential learning.

Actually, this elarning rule was introduced in an ensemble averaging

framework which does not clearly corresponds to the functionning of a

biological network. Actually, this is through temporal averaging of time

delayed learning rule that the ensemble averaging can be performed as

shown in part 2.4. This is why we prefer to consider this learning rule

as a time delayed one as a starting point.

Some recent works have shown that this learning rules shares similari-

ties with the STPD rule for spiking neurons [Izhikevich and Desai 2003,

Pfister and Gerstner 2006]. They have not proven a rigorous equilavence

but qualitive similarities.

4. In part 1.1.4, we have shortly reviewed some recent results about the

causation-based learning rule called spike timing dependent plastic-

ity (STDP). In particular, we have derived a learning rule which does

not depend on the spiking behavior of the neurons. In 1.2.3, we have

pleaded that this rule may be extended to rate-based networks. Indeed,

let us define the STDP learning rule as

G(v,J) = a+v ⊗ (v ∗ gτ ) − a−(v ∗ gτ ) ⊗ v
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Note that changing gτ in both terms (to possible different functions)

makes it possible for this last equation to take into account the simple

Hebbian learning rule and the first two example above: trace learning

and differential learning. Actually, this rule is quite generic and most

functional rules would fit in this formalism.
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2.3 Dynamics of Hebbian learning with slow in-

puts

This section is devoted to studying the dynamics of the connectivity when

the network is circularly exposed to m ∈ N inputs (with m > 1). Indeed,

we assume here that the input signal u : R → Rn is a piecewise constant

function switching between m constant points of Rn which can be though of

as pictures. This will provide a link with most methods of machine learning

which aim at a better statistical description of a cloud of m points.

A significant assumption we make here is that these pictures are exposed

slowly so that we can neglect the transient effects due to the switching. For

each picture, the network will be assumed to converge to the corresponding

equilibrium state (this will be proved to be true later).

In a first time, we assume the network activity is voltage-based and de-

terministic. We will discuss the extension to other models at the end of the

section.

Therefore we assume the activity of the networks is governed by

v̇ = −v + J · S
(
v
)

+ u(t)

where S : Rn → Rn is a positive sigmoidal function which saturates at sm ∈
R+ and whose derivative maximum is s′m ∈ R+. Typically, it can be considered

to be the element-wise application of S(v)i = S(vi) = sm

1+e−4s′m(vi−ϑ)
where

ϑ ∈ R∗
+ is the threshold of the sigmoid.

The synaptic weights are assumed to evolve according to the Hebbian

learning rule with decay of the form

J̇ = ε(S(v) ⊗ S(v) − κJ)

where ε is the learning rate. In this section we assume that there is a physical

connection between all the neurons, i.e. χij = 1. We can then rewrite the

combined voltage and weight dynamics as the following non–autonomous (due

to time–dependent inputs) dynamical system:

Σ :

{
v̇ = −v + J · S(v) + u(t)

J̇ = ε
(
S(v) ⊗ S(v) − κJ

)
.

(2.9)
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Existence and uniqueness of the solutions As said before, we need to check

the solutions are not exploding in finite time. In this case, there is no explosion

because the solutions are bounded. Indeed, boundedness of S and u implies

boundedness of the system Σ. To prove this, note that the right hand side

of the equation for J is the sum of a bounded term and a linear decay term

in J. Therefore, J is bounded and hence the term J · S(v) is also bounded.

The same reasoning applies to v. S being Lipschitz continuous implies that

the right hand side of the system is globally Lipschitz. This is sufficient to

prove existence and uniqueness of the solution on R+ by applying the Cauchy-

Lipschitz theorem. In the following, we will derive an averaged autonomous

dynamical system Σ′, which will be well-defined for the same reasons.

2.3.1 Averaging the system

We will show that system Σ can be approximated by an autonomous Cauchy

problem which will be much more convenient to handle. This averaging

method makes the most of multiple time–scales in the system. First, it is

natural to consider that learning occurs on a much slower time-scale than the

evolution of the membrane potentials, i.e.

ε≪ 1. (2.10)

Second, an additional time-scale arises from the rate at which the inputs are

sampled by the network. That is, the network cycles periodically through m

fixed inputs, with the period of cycling given by τ . It follows that u is τ–

periodic, piecewise constant. We assume that the sampling rate is also much

slower than the evolution of the membrane potentials,

m

τ
≪ 1. (2.11)

Finally, we assume that the period τ is small compared to the time-scale of

the learning dynamics,

ε≪ 1

τ
. (2.12)

We can now simplify the system Σ by applying Tikhonov’s theorem for slow/fast

systems, and then classical averaging methods for periodic systems.
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2.3.1.1 Tikhonov’s theorem

Tikhonov’s theorem ([Tikhonov 1952] and [Verhulst 2007] for a clear intro-

duction) deals with slow/fast systems. It says the following:

Theorem 2.3.1. Consider the initial value problem

ẋ = f(x,y, t), x(0) = x0, x ∈ Rp, t ∈ R+

εẏ = g(x,y, t), y(0) = y0, y ∈ Rq

Assume that:

1. A unique solution of the initial value problem exists and we suppose, this

holds also for the reduced problem

ẋ = f(x,y, t), x(0) = x0

0 = g(x,y, t)

with solutions x̄(t), ȳ(t).

2. The equation 0 = g(x,y, t) is solved by ȳ(t) = φ(x, t), where φ(x, t)

is a continuous function and an isolated root. Also suppose that ȳ(t) =

φ(x, t) is an asymptotically stable solution of the equation dy
dτ

= g(x,y, τ)

that is uniform in the parameters x ∈ Rp and t ∈ R+.

3. y(0) is contained in an interior subset of the domain of attraction of ȳ.

Then we have
limε→0 xε(t) = x̄(t), 0 ≤ t ≤ r

limε→0 yε(t) = ȳ(t), 0 ≤ d ≤ t ≤ r

with d and r constants independent of ε.

In order to apply Tikhonov’s theorem directly to the system Σ, we first

need to rescale time according to t→ εt. This gives

εv̇ = −v + J · S(v) + u

J̇ = S(v) ⊗ S(v) − κJ.

Tikhonov’s theorem then implies that solutions of Σ are close to solutions of

the reduced system (in the unscaled time variable)

{
v(t) = J · S

(
v(t)

)
+ u(t)

J̇ = ε
(
S(v) ⊗ S(v) − κJ

)
,

(2.13)
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provided that the dynamical systems Σ in equation (6), and equation (2.13)

are well defined. It is easy to show that both systems are Lipschitz because

of the properties of S. Following [Faugeras et al. 2008], we know that if

s′m‖J‖ < 1, (2.14)

then there exists an isolated root v̄ : R+ → Rn of the equation v = J ·
S(v) + u and v̄ is asymptotically stable. Equation (2.14) corresponds to the

weakly connected case. Moreover, the initial condition belongs to the basin

of attraction of this single fixed point.

Note that we require m
τ
≪ 1 so that the membrane potentials have suffi-

cient time to approach the equilibrium associated with a given input before

the next input is presented to the network. In fact, this assumption makes

it reasonable to neglect the transient activity dynamics due to the switching

between inputs.

2.3.1.2 Periodic averaging

The system given by equation (2.13) corresponds to a differential equation for

J with τ -periodic forcing due to the presence of v on the right-hand side. Since

τ << ε−1, we can use classical averaging methods (see [Sanders et al. 2007]) to

show that solutions of (2.13) are close to solutions of the following autonomous

system on the time-interval [0, 1
ε
] (which we suppose large because ε << 1)

Σ0 :





v(t) = J · S(v(t)) + u(t)

J̇ = ε
(1

τ

∫ τ

0

S(v(s)) ⊗ S(v(s))ds− κJ(t)
)
.

It follows that solutions of Σ are also close to solutions of Σ0. Finding the

explicit solution v(t) for each input u(t) is difficult and requires fixed points

methods, e.g. a Picard algorithm. Therefore, we will consider yet another

system Σ′ whose solutions are also close to Σ0 and hence Σ. In order to

construct Σ′ we need to introduce some additional notation.

Let us label the m inputs by u(a), a = 1, . . . ,m and denote by v(a) the fixed

point solution of the equation v(a) = J · S(v(a)) + u(a). Given the periodic

sampling of the inputs, we can rewrite the system Σ0 above as

v(a) = J · S(v(a)) + u(a)

J̇ = ε
( 1

m

m∑

a=1

S(v(a)) ⊗ S(v(a)) − κJ(t)
)
.

(2.15)
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If we now introduce the n×m matrices V and U with components Via = v
(a)
i

and Uia = u
(a)
i , then we can eliminate the tensor product and simply write

(2.15) in the matrix form

V = J · S(V) + U

J̇ = ε
( 1

m
S(V) · S(V)′ − κJ(t)

)
,

(2.16)

where S(V) ∈ Rn×m such that [S(V)]ia = s(v
(a)
i ). A second application of

Tikhonov’s theorem (in the reverse direction) then establishes that solutions

of the system Σ0 (written in the matrix form (2.16)) are close to solutions of

the matrix system

Σ′ :





V̇ = −V + J · S
(
V
)

+ U

J̇ = ε
( 1

m
S(V) · S(V)′ − κJ(t)

) (2.17)

In the remainder of the section, we will focus on the system Σ′ whose

solutions are close to those of the original system Σ provided condition (2.14)

is satisfied, i.e. the network is weakly connected. Clearly, the fixed points

(v∗,J∗) of system Σ satisfy ‖J∗‖ ≤ s2
m

κ
. Therefore, equation (2.14) says that

if s2
ms′m
κ

< 1 then Tikhonov’s theorem can be applied and systems Σ and

Σ′ can be reasonably considered as good approximations of each other. The

advantage of the averaged system Σ′ is that it is given by autonomous ordinary

differential equations. Moreover, since it is Lipschitz continuous, it leads to a

well-posed Cauchy problem.

2.3.1.3 Simulations

To illustrate the above approximation, we simulate a simple network with both

exact, i.e. Σ, and averaged ,i.e. Σ′, evolution equations. For these simulations,

the network consists of n = 10 fully-connected neurons and is presented with

m = 10 different random inputs taken uniformly in the intervals [0, 1]n. For

this simulation we use s(x) = 1
1+e−4(x−1) , and κ = 10. Figure 2.3. shows the

percentage of error between final connectivities for different values of ε and

τ/m. Figure 2.4 shows the temporal evolution of the norm of the connectivity

for both the exact and averaged system for τ = 103 and ε = 10−3.

2.3.2 Stability
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Figure 2.3: Percentage of error between final connectivities for the exact and

averaged system.
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Figure 2.4: Temporal evolution of the norm of the connectivities of the exact

system Σ and averaged system Σ′.

2.3.2.1 Lyapunov function

In the case of a single fixed input (m = 1), the systems Σ and Σ′ are equiv-

alent and reduce to the neural network with adapting synapses previously

analyzed by [Dong and Hopfield 1992]. Under the additional constraint that

the weights are symmetric (Jij = Jji), these authors showed that the simulta-

neous evolution of the neuronal activity variables and the synaptic weights can

be re-expressed as a gradient dynamical system that minimizes a Lyapunov

or energy function of state. We can generalize their analysis to the case of
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multiple inputs (m > 1) and non-symmetric weights using the averaged sys-

tem Σ′. That is, following along similar lines to [Dong and Hopfield 1992], we

introduce the energy function

E(X,J) = −1

2
〈X,J · X〉 − 〈U,X〉 + 〈1, S−1

(
X
)
〉 +

mκ

2
‖J‖2 (2.18)

where X = S(V), ‖J‖2 = 〈J,J〉 =
∑

i,j J2
ij,

〈X,J · X〉 =
m∑

a=1

n∑

i=1

U
(a)
i JijU

(a)
j , 〈U,X〉 =

m∑

a=1

n∑

i=1

u
(a)
i U

(a)
i (2.19)

and

〈1, S−1
(
X
)
〉 =

m∑

a=1

n∑

i=1

∫ U
(a)
i

0

S−1(ξ)dξ. (2.20)

In contrast to [Dong and Hopfield 1992], we do not require a priori that the

weight matrix is symmetric. However, it can be shown that the system always

converges to a symmetric connectivity pattern.

More precisely,

Proposition 2.3.2.The connectivity becomes symmetric through Hebbian learn-

ing with linear decay.

A =
{

(V,J) ∈ Rn×m × Rn×n : J = J′
}

is an attractor of system Σ′

Proof. We need to prove the 2 points: (i) A is an invariant set, and (ii)

for all
(
V(0),J(0)

)
∈ Rn×m × Rn×n,

(
V(t),J(t)

)
converges to A as t→ +∞.

Since Rn×n is the direct sum of the set of symmetric connectivities and the

set of anti-symmetric connectivities, we write J(t) = JS(t) + JA(t), ∀t ∈ R+,

where JS is symmetric and JA is anti-symmetric.

(i) In (2.17), the right hand side of the equation for J̇ is symmetric. There-

fore, if ∃t1 ∈ R+ such that JA(t1) = 0, then J remains in A for t ≥ t1.

(ii) Projecting the expression for J̇ in equation (2.17) on to the anti-

symmetric component leads to

dJA

dt
= −εκJA(t) (2.21)

whose solution is JA(t) = JA(0) exp(−εκt),∀t ∈ R+. Therefore, lim
t→+∞

JA(t) =

0. The system converges exponentially to A. �
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It can then be shown that on A (symmetric weights), E is a Lyapunov

function of the dynamical system Σ′, that is,

dE

dt
≤ 0, and

dE

dt
= 0 =⇒ dY

dt
= 0, Y = (V,J)′.

The boundedness of E and the Krasovskii-LaSalle invariance principle then

implies that the system converges to an equilibrium [Khalil and Grizzle 1996].

We thus have

Theorem 2.3.3.The initial value problem for the system Σ′ with
(
V(0),J(0)

)
∈

H, converges to an equilibrium state.

Proof. See appendix C.1.1 �

It follows that neither oscillatory nor chaotic attractor dynamics can occur.

2.3.2.2 Linear stability

Although we have shown that there are stable fixed points, not all of the

fixed points are stable. However, we can apply a linear stability analysis on

the system Σ′ to derive a simple sufficient condition for a fixed point to be

stable. The method we use in the proof could be extended to more complex

rules. The proof reveals the significant role played by the Kronecker product

in Hebbian learning.

Theorem 2.3.4.The equilibria of system Σ′ satisfy:
{

V∗ = 1
κm
S(V∗) · S(V∗)′ · S(V∗) + U

J∗ = 1
κm
S(V∗) · S(V∗)′

(2.22)

and a sufficient condition for stability is

3s′m‖J∗‖ < 1 (2.23)

provided 1 > εκ which is most probably the case since ε << 1.

Proof. See appendix C.1.2 �

This condition is strikingly similar to that derived in [Faugeras et al. 2008].

In fact, condition (2.23) is stronger than the contracting condition (2.14). It

says the network may converge to a weakly connected situation. It justifies

the averaging method by saying that we remain in the domain of validity of

the averaging method. It also says that the dynamics of V is likely (because

the condition is only sufficient) to be contracting and therefore subject to

no bifurcations: a fully recurrent learning neural network is likely to have a

“simple” dynamics.
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2.3.3 Summary, conclusions and immediate extensions

Analyzing the dynamics of the connectivity J in a network slowly exposed to

a finite number of pictures was achieved in two steps: (i) the derivation of a

matrix-valued system Σ′ from a vector-valued system Σ through a slow-fast

reduction and periodic averaging and (ii) the proof that the averaged system

Σ′ derived from an energy.

Generalizing this approach is possible for the first point yet derivation from

an energy corresponds to deep dynamical relationship between the communi-

cation term (basically a dot product) and Hebbian learning rule (basically a

Kronecker product).

• The first point is easily generalizable to more general systems of the form

(2.1) and (2.2). The main underlying assumption is that the activity

should converge to a single equilibrium state for each picture. If this

is verified then it is possible to apply Tikhonov theorem to show the

proximity of the respective connectivities of system Σ and Σ′. If it

is not verified then Σ and Σ′ have different behaviors. We have just

shown this assumption hold for a voltage-based activity with a small

connectivity. Therefore, it extends to synaptic-drive-based because of

the change of variable linking the two. The case of frequency-based is

very similar and seems to hold (at least numerically), transferring the

property to the pseudo voltage-based. Then any kind of learning rule

can be applied as long as it keeps the connectivity small enough for

inequation (2.14) to hold.

Short time delays in the learning rule can be averaged out in the pro-

cess. Indeed, a system with delays has identical equilibrium points as a

constant input as the same system without delays (yet it might change

their stability, see [Veltz and Faugeras 2011]). But there might be a

problem at the transition between several inputs. In fact, system Σ′

does not take delays with an order of magnitude smaller than τ
m

into

account. Given that we have assumed the input is so slow that we can

neglect the transients, the learning window will almost never overlap

the transition between two pictures. The reasoning above can therefore

be extend to multiple inputs. So this means the frequency-based and

synaptic-drive-based have the same associated system Σ′ if the delays

are short enough.



92
Chapter 2. The slow dynamics of learning in fast rate-based

models

If the delays are long enough, then there might be a sort of ensem-

ble averaging. All the inputs may be taken into account in the delay

window and this can sum to an average over the m pictures. In partic-

ular, in the case of differential learning, this might turn to a learning

rule made of the difference of the instantaneous activity for one input

and the average activity for all the inputs: when this is the ath input

then Gij(v) =
(
v

(a)
i − 1

m

∑m
b=1 v

(b)
i

)
vj. While spatial constraint (see sec-

tion 2.2.2) subtract a spatial average of the neurons activity, differential

learning may subtract a temporal average over all the inputs.

• However, the second point is very specific to Hebbian learning with linear

decay. The stability analysis should be carried with ad hoc methods

for each different case. For the particular setting we chose to expose,

the fact that system Σ′ in (2.17) derives from an energy (see theorem

2.3.3) means there is a deep mathematical link between the dot product

due the communication in the activity variable and the tensor product

inherent to Hebbian learning. Indeed, these two terms are the only

coupling terms in system Σ′ and it is exceptional that they derive from

the same energy: 〈V,J ·V〉. There is unusual mathematical singularity

and simplicity in the relationship between Hebbian learning and network

communication.
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2.4 Generalization to fast inputs and intrinsic noise

In this section, we address the more general case of noisy learning neural net-

works exposed to arbitrarily fast inputs. We still want to study the dynamics

of the connectivity through learning in this more general framework.

To study fast inputs, we have developed mathematical tools to go beyond

Tikhonov theorem 2.3.1. In this new framework, we take into account the

transient trajectories of the noisy activity variable. These new methods for

temporal averaging are pedagogically exposed in appendix B. They lead to a

reduced differential equation for the connectivity which gives an approximate

solution of the initial slow-fast system.

This formula is complicated and we have not found a way to use it in a

generic non-linear case. However, based on a new representation of the solu-

tions of non-autonomous, linear, functional and stochastic differential equa-

tions, developed in appendix E, we are able to use it in the linear case. As

in the previous section, we are able to prove the convergence to a single equi-

librium point in a weakly connected regime. Besides, this approach makes it

possible to have an explicit expansion for the equilibrium points of the con-

nectivity.

Let us consider a generic learning neural network as described by equations

(2.1) and (2.2), i.e.

{
dv = 1

ε1

(
F(v) + S

(
Jε.H(v) + u( t

ε2
)
))
dt+ 1√

ε1
Σ(v,Jε).dB(t)

dJε = G(v,Jε) dt

(2.24)

for simplicity we have assumed that the matrix of physical connection between

the neurons χ is full, i.e. χij = 1 for all i, j, as in the previous section. The

notation Jε corresponds to finite but non-null ε1 and ε2.

Note that we have added a small parameter ε2 in the input function. The

value of this parameter controls the speed of the inputs. The fact that we

assume that ε2 is small says that the input evolves on a much faster scale

than the connectivity. In fact, by controlling the ratio ε1

ε2
we can also compare

the speed of the inputs to the speed of the activity variable. We develop tools

to work in the asymptotic regime where both ε1 and ε2 tend to zero (which

we write ε→ 0) keeping the ratio constant. This motivates the definition of

µ := lim
ε→0

ε1

ε2
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For the same reasons as in section 2.3, we assume the inputs are τ -periodic.

We will discuss later the extension of the results to stochastic inputs with

enough ergodicity to sample sufficiently their probability distribution in a

time τ .

2.4.1 Averaging principles : theory

2.4.1.1 General result

Following, the lines of appendix B, we have the following result

Theorem 2.4.1.Definition and distance to an averaged system.

Assuming the following hypotheses are verified:

• The functions F ,S,H,Σ and G are locally Lipschitz continuous.

• System (2.24) has a globally attracting subspace centered on 0. In other

words, there exists a constant R > 0 such that the right hand side of

system (2.24) applied at (v,J), such that ‖(v,J)‖ > R, is pointing in-

ward.

• The diffusion matrix Σ is bounded, i.e. ∃MΣ > 0 such that ∀(v,J), ‖Σ(v,J)‖ <
MΣ, and uniformly non-degenerate, i.e. ∃η0 > 0 such that ∀x,v ∈
Rn and J ∈ Rn×n, < Σ(v,J).Σ(v,J)′.x,x >≥ η0||x||2.

• For a constant input, the activity has a unique equilibrium point which

turns out to be stable. In a time-dependent input framework, it can

be written ∃r0 < 0 such that for all t ≥ 0 and for all v,x ∈ Rn and

J,W ∈ Rn×n :

〈
∇x,WF (v,J, t), (v,J)

〉
≤ r0||x||2

where F is the right hand side of the activity equation (2.1).

Let µ ∈ [0,∞]. If Jε is the solution of system (2.24) and J̄ is solution of

dJ̄

dt
= Ḡµ(J̄) with J̄(0) = Jε(0)

where Ḡµ : Rn×n → Rn×n is defined as

Ḡµ(J̄) :=

(
τ

µ

)−1 ∫ τ
µ

0

∫

v∈Rn

G(v, J̄)νJ̄
µ(t, dv)dt (2.25)
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where νJ0
µ (t, dv) is the τ

µ
-periodic evolution system of measures corresponding

to the rescaled time-inhomogeneous frozen process

dv = F (v,J0, µt)dt+ Σ(v,J0)dB(t) (2.26)

Then the following convergence result holds, for all T > 0 and δ > 0:

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|Jε(t) − J̄(t)|2 > δ

]
= 0

Proof. See [Wainrib 2011] for a rigorous proof or appendix B for a sketch

of the proof. �

Remark 2.The last hypothesis is the strongest. As in Tikhonov theorem

2.3.1, it corresponds to asking the fast variable to be roughly converging to

a single equilibrium point. For instance, spiking neurons do not verify this

hypothesis. However, traditional rate-based models fulfill this assumption when

the slope of the sigmoid is not too sharp.

2.4.1.2 Periodic measure for linear activity

In concrete situations, it is difficult to compute the measure νJ
µ(t, dv). It

corresponds to finding the time-dependent measure associated to the fast ac-

tivity equation (2.26) with a frozen connectivity J. Computing explicitly this

measure in a non-linear framework is out of the scope of this thesis. Here, as

suggested by section 1.2.2.6, we will narrow our study to linear activities with

additive noise:

dv =
(
(J − L).v(t) + u(µt)

)
dt+ Σ.dB(t)

where L ∈ Rn×n is proportional to the identity, i.e. L = lId with l > 0. L

accounts for the intrinsic dynamics of the neurons. In this case, it is possible

to compute νJ
µ(t, dv) explicitly. It is a Gaussian measure centered on the τ

µ

periodic solution of

ẋ = (J − L).x(t) + u(µt)

with covariance Q where

(J − L).Q + Q.(J − L)′ + Σ.Σ′ = 0 (2.27)

This reads,

νJ
µ(t, dv) = Nx(t),Q(dv)
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2.4.1.3 Asymptotic well-posedness for linear activities

When the activity is assumed to be linear there is a risk the solution explodes

in finite time. Indeed, if the real part of the eigenvalues of the evolving

connectivity grow larger than l then the fast activity diverges exponentially.

As a consequence, the learning rule would explode increasing again the activity

and a the retroactive action from one to the other would lead to explosion of

the solutions.

Therefore, we need to consider learning rules for which the connectiv-

ity never grows larger than L. For simplicity, we call the subspace of well-

posedness, the set of matrices of Rn×n whose eigenvalues have real part smaller

than l. For instance, we always remain in the subspace of well-posedness for

the Hebbian learning rule with linear decay, i.e. G(v,J) = −κJ+v⊗v, when

κ is large enough. In that case, we show in the following that the connectivity

cannot cross the critical value L and the system is globally well-posed (in a

deterministic framework).

However, if we add some noise to the system, it may push the solution out

of subspace of well-posedness and therefore, the system would diverge. Actu-

ally, this will always be the case on a long time-scale. Note that this is only

due to the linear framework (a saturation would prevent this from happening).

Yet, we can ask the learning rule to keep the connectivity sufficiently far away

from subspace of well-posedness border so that it takes a very long time for

the system to be stochastically pushed to diverge. To analyze this rigorously

let us introduce the definition of an asymptotically well-posed system (driven

by a perturbation of amplitude ε)

Definition 2.4.2. A stochastic differential equation with a given initial condi-

tion is asymptotically well-posed in probability if for the given initial condition:

1. a unique solution exists until a time τε

2. for all T > 0,

lim
ε→0

P [τε ≥ T ] = 1

We now need to introduce a proposition which will prove the learning

neural networks with linear activity we are considering are asymptotically

well-posed. It is

Proposition 2.4.3. If there exists a subset E of Rn×n such that:
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1. The functions F ,S,H, G,Σ satisfy the assumptions of theorem 2.4.1

restricted on Rn × E.

2. For all J0 ∈ E, the solutions of (2.26) are bounded.

3. E is invariant under the flow of Ḡµ, as defined in (2.25)

Then for any initial condition J0 ∈ E system (2.24) is asymptotically well-

posed in probability and Jε satisfies the conclusion of theorem 2.4.1.

Proof. See appendix B.6. �

Remark 3.In the case of linear activity, the second hypothesis means E ⊂
{J ∈ Rn×n : J < L}.

Therefore, to prove well posedness of a learning neural network with linear

activity, it is sufficient to prove that the subspace of well-posedness is invariant

under the averaged learning rule Ḡµ.

2.4.2 Symmetric Hebbian learning

One of the simplest, yet non-trivial, stochastic learning model is obtained

when considering:

• a linear model for neuronal activity, namely F(vi) = (−L.v)i = −l vi

with l a positive constant.

• a linear model for the synaptic transmission, namely S(vi) = vi and

H(vi) = vi.

• a constant diffusion matrix Σ (additive noise) proportional to the iden-

tity Σ = σId (spatially uncorrelated noise).

• a Hebbian learning rule with linear decay, namely Gij(J,v) = −κJij +

vivj. Actually, it corresponds to the tensor product: {v ⊗ v}ij = vivj.

This model can be written as follows:
{
dv = 1

ε1

(
− L.v + Jε.v + u( t

ε2
)
)
dt+ σ√

ε1
dB(t)

dJε

dt
= −κJε + v ⊗ v

(2.28)

where neurons are assumed to have the same decay constant: L = lId; u is

a periodic continuous input; σ, ε1, ε2, κ ∈ R+ with ε1, ε2 ≪ 1 and B(t) is a

n-dimensional Brownian noise.
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The first question that arises is about the well-posedness of the system:

what is the definition interval of the solutions of system (2.28)? Do they

explode in finite time? At first sight, it seems there may be a runaway of the

solution if the largest real part among the eigenvalues of J grows bigger than

l. In fact, it turns out this scenario can be avoided if the following assumption

linking the parameters of the system is satisfied.

Assumptions 2.4.4.

There exists p ∈]0, 1[ , such that
( σ2l

2p(1 − p)
+

u2
m

p(1 − p)2

)
< κl3

where um = supt∈R+
‖u(t)‖2.

It corresponds to making sure the external (i.e. um) or internal (i.e. σ)

excitations are not too large compared to the decay mechanism (represented

by κ and l). Note that if p ∈]0, 1[, um and d are fixed it is sufficient to increase

κ or l for this assumption to be satisfied.

A space of well-posed defined before can be defined in the following. It is

written Ep and indexed by p ∈]0, 1[ verifying assumption 2.4.4

Ep =
{
J ∈ Rn×n : J is symmetric, J ≥ 0 and J < pL

}

is invariant by the flow of the averaged system Ḡ. Therefore, the averaged

system is defined and bounded on R+. The slow/fast system being asymptot-

ically close to the averaged system, it is therefore asymptotically well-defined

in probability. This summarized is in the following

Theorem 2.4.5. If assumption 2.4.4 is verified for p ∈]0, 1[, then system

(2.28) is asymptotically well-posed in probability and the connectivity matrix

Jε solution of system (2.28) converges to J̄, in the sense that for all δ, T > 0,

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|Jε
t − J̄t|2 > δ

]
= 0

where J̄ is the deterministic solution of:

dJ̄ij

dt
= Ḡ(J̄)ij = −κJ̄ij︸ ︷︷ ︸

decay

+
µ

τ

∫ τ
µ

0

vi(s)vj(s) ds

︸ ︷︷ ︸
correlation

+
σ2

2
(L − J̄)−1

ij
︸ ︷︷ ︸

noise

(2.29)

where v(t) is the τ
µ
-periodic attractor of dv

dt
= (J̄ − L).v + u(µt), where J ∈

Rn×n is supposed to be fixed.
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Proof. It consists in applying formally the temporal averaging tools pre-

sented in appendix B. It is to be be checked that Ep verifies the hypotheses

of proposition 2.4.3 to asymptotic well-posedness of the solutions.

See theorem C.2.1 in appendix C.2.2 for details. �

In the following, we focus on the averaged system described by (2.29). Its

right hand side is made of three terms: a linear and homogeneous decay, a

correlation term and a noise term. It is exceptional that correlations and noise

decouple in the averaged system. This is due to the structure of the system:

a linear activity and a quadratic learning rule (without non-linearities φi).

These 2 terms are made explicit in the following

2.4.2.1 Noise term

As seen in section 2.4.1 in the linear case, the noise term Q is the unique

solution of the Lyapunov equation (2.27) with Σ = σId. Because the noise

is completely uncorrelated and identical for each neuron and also because the

connectivity is symmetric observe that Q = σ2

2
(L− J̄)−1 is the unique solution

of the system.

In more complicated cases, the computation of this term appears to be

much more difficult as we will see in part 2.4.4.

2.4.2.2 Correlation term

This term corresponds to the autocorrelation of the neuronal activity. It is

only implicitly defined, thus, this part is devoted to find an explicit form

depending only on the parameters l, µ, τ , the connectivity J and the inputs

u.

The autocorrelation term of a τ
µ
-periodic function can be rewritten as

{v.v′}ij =

∫ τ
µ

0

vi(s)vj(s) ds

With this notation, it is simple to think of v as a “semi-continuous matrix” of

R
n×[0, τ

µ
[. Hence, the operator “.“ can be though of as a matrix multiplication.

Similarly the transpose operator turns a matrix v ∈ R
n×[0, τ

µ
[ into a matrix

v′ ∈ R
[0, τ

µ
[×n. See part A for details about the notations.

It is common knowledge, see [Gerstner and Kistler 2002a] for instance,

that this term gathers information about the correlation of the inputs. Indeed,
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if we assume that the input is sufficiently slow, then v has enough time to

converge to u(t) for all t ∈ [0,+∞[. Therefore, in the first order v(t) ≃
(J−L)−1.u(t). This leads to v.v′ ≃ (J−L)−1.u.u′.(J′ −L)−1. In the weakly

connected regime one can assume that J − L ≃ −L leading to v.v′ ≃ 1
l2
u.u′

which is the autocorrelation of the inputs. Actually, without the assumption

of a slow input, the lagged correlations of the input appear in the averaged

system.

Before giving the expression of these temporal correlations, we need to

introduce some notations. First, define the convolution filter gµ/l : t 7→
l
µ
e−

l
µ

tH(t). This family of functions is displayed for different values of l
µ

in figure 2.8.a. It appears that gµ/l → δ0 when µ
l
→ 0, where δ0 is the Dirac

distribution centered at the origin. In this asymptotic regime, the convolution

filter and its iterates gµ/l ∗ .. ∗ gµ/l are equal to the identity.

We also define the filtered correlation of the inputs Ck,p ∈ Rn×n by

Ck,q def
=

1

u2
mτ

(
u ∗ g(k+1)

µ/l

)
.
(
u ∗ g(q+1)

µ/l

)′

where g
(k+1)
µ/l = gµ/l ∗ ... ∗ gµ/l is the kth convolution of gµ/l with itself and

um = supt∈R+
‖u(t)‖2. This is the correlation matrix of the inputs filtered by

two different functions. It is easy to show that this is similar to computing the

cross-correlation of the inputs with the inputs filtered by a another function:

Ck,q =
1

u2
mτ

(
u ∗
(
g

(k+1)
µ/l ∗ g(q+1)

µ/l

′))
.u′ =

1

u2
mτ

u.
(
u ∗
(
g

(q+1)
µ/l ∗ g(k+1)

µ/l

′))′
(2.30)

which motivates the definition of the (k, p)-temporal profile g
(k+1)
µ/l ∗ g′µ/l

(q+1),

where (g′µ/l)
(k)(t) = (g

(k)
µ/l)

′(t) = g
(k)
µ/l(−t). This notation is deliberately similar

to that of the transpose operator we use in the proofs. These functions are

integrable on R and infinitely differentiable, therefore, they tend to zero for

t→ ±∞. Actually, they are bell-shaped functions as shown in figure 2.5. We

have not found a way to make them explicit yet, therefore, the next remarks

are simply based on numerical illustrations. When k = q the temporal profiles

are centered. The larger the difference k− q, the larger the center of the bell.

The larger the sum k + q, the larger the standard deviation. This motivates

the idea that Ck,p can be thought of as the k − q lagged correlation of the

inputs. One can also say that C10,10 is more blurred than C0,0 in the sense

that the inputs are temporally integrated over a ”wider“ window in the first

case.
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0.000

0.010

0.025

Figure 2.5: This shows the (k, q)−temporal profiles with µ
l

= 1, i.e. the

functions g
(k+1)
1 ∗ g′1(q+1), for q = 0 and k ranging from 0 to 6. For k = q = 0,

the temporal profile is even and this also occurs to be true for any k = q. When

k > q the function reaches its maximum for strictly positive values that grow

with the difference k − q. Besides, the temporal profiles are flattened when

k + q increases.

Observe that g
(k+1)
µ/l (t) = lk+1

µk+1k!
tke−

l
µ

tH(t). Therefore, ‖g(k+1)
µ/l ‖1 = Γ(k+1)

k!
=

1. Thanks to Young’s inequality for convolutions, which says that ‖u∗g(k)
µ/l‖2 ≤

‖u‖2‖g(k)
µ/l‖1, it can be proved that ‖Ck,q‖2 ≤ 1.

We intend to express the correlation term v.v′ as an infinite converging

sum involving these filtered correlations. In this perspective, we use a new

technical result we have proved for this purpose (and published in a sepa-

rate paper) to write the solution of a general class of non-autonomous linear

systems (e.g. dv
dt

= (J − L).v + u(t)) as an infinite sum, in the case µ = 1:

Lemma 2.4.6.If v is the solution of dv
dt

= (J−L).v + u(t) it can be written

by the sum below which converges if J is in Ep for p ∈]0, 1[.

v =
+∞∑

k=0

Jk

lk+1
· u ∗ g(k+1)

1/l

where g1/l : t 7→ le−ltH(t).

Proof. See appendix E �

This is a decomposition of the solution of linear differential system on a
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basis of operators where the spatial and temporal part are decoupled. It is

the main result of a technical and more general result which can be found in

appendix E. This important step in the detailed study of the averaged equation

cannot be achieved easily in models with non-linear activity. Everything is

now set up to introduce the explicit expansion of the correlation we are using

in the following. Indeed, we use the previous result to rewrite the correlation

term as follow

Proposition 2.4.7.The correlation term can be written

µ

τ
v.v′ =

u2
m

l2

+∞∑

k,q=0

Jk

lk
· Ck,q · J′q

lq

Proof. See proposition C.2.3 in appendix C.2.2 for details. �

The speed of the inputs characterized by µ only appears in the temporal

profiles g
(k)
µ/l ∗g′µ/l

(q). In particular, if the inputs are much slower than neuronal

activity time-scale , i.e. µ = 0, then g+∞ = δ0 and u ∗ g+∞ = u. Therefore,

Ck,q = C0,0 and the sums in the formula of proposition 2.4.7 are separable,

leading to v.v′ = (L−J)−1.u.u′.(L−J′)−1 which corresponds to the heuristic

result previously explained.

Therefore, the averaged equation can be explicitly rewritten

dJ

dt
= Ḡ(J) = −κJ +

u2
m

l2

+∞∑

k,q=0

Jk

lk
· Ck,q · J′q

lq
+
σ2

2
(L − J)−1 (2.31)

In figure 2.6, we illustrate this result by comparing, for different ε, the

stochastic system and its averaged version. The above decomposition has been

used as a basis to numerically compute trajectories of the averaged system.

2.4.2.3 Global stability of the equilibrium point

Now that we have found an explicit formulation for the averaged system, it

is natural to study its dynamics. Actually, we prove in the following that

if the connectivity is kept smaller than l
3
, i.e. assumption 2.4.4 is verified

with p ≤ 3, then the dynamics is trivial: the systems converges to a single

equilibrium point. Indeed, under the previous assumption, the system can

be written Ḡ(J) = −κJ + F (J), where F is a contraction operator on E 1
3
.

Therefore, one can prove the uniqueness of the fixed point with the Banach

fixed point argument and exhibit an energy function for the system.
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a) b) c)

Figure 2.6: The first two figures, a) and b), represent the evolution of the

connectivity for the original stochastic system (2.28), superimposed with the

averaged system (2.29), for two different values of ε: respectively ε = 0.01

and ε = 0.001. Each color correspond to the weight of an edge in a network

made of n = 3 neurons. As expected, it seems that the smaller ε the better

the approximation. This can be seen in picture c) where we have plotted the

precision on the y-axis and ε on the x-axis. The parameters used here are

l = 12., µ = 1., κ = 100, σ = 0.05. The inputs have a random (but frozen)

spatial structure and evolve according to a sinusoidal function.

Theorem 2.4.8.If assumption 2.4.4 is verified for p ≤ 1
3

then there is a

unique equilibrium point in the invariant subset Ep which is globally, asymp-

totically stable.

Proof. See theorem C.2.4 in appendix C.2.2 for details. �

2.4.2.4 Explicit expansion of the equilibrium point

When the network is weakly connected, the high order terms in expansion

(2.31) may be neglected. In this part, we follow this idea and find an ex-

plicit expansion for the equilibrium connectivity where the strength of the

connectivity is the small parameter enabling the expansion. The weaker the

connectivity the larger the number of negligible terms in the expansion.

In fact, it is not natural to speak about a weakly connected learning net-

work since the connectivity is a variable. However, we are able to identify a

weak connectivity index which controls the strength of the connectivity. We

say the connectivity is weak when it is negligible compared to the intrinsic leak

term, i.e. |||J||
l

is small. We show in the appendix that this weak connectivity
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index depends only on the parameters of the network and can be written

p̃ =
u2

m

κl3
+

σ2

2κl2

In the asymptotic regime p̃→ 0 we have J
p̃l

= O(1). This index is the “small”

parameter needed to perform the expansion.

We also define λ = σ2l
2u2

m
, which has information about the way p̃ is con-

verging to zero. In fact, it is the ratio of the two terms of p̃.

With these, we can prove that the equilibrium connectivity J∗ has the

following asymptotic expansion in p̃:

Theorem 2.4.9.

J∗ =
p̃l

1 + λ
(λ+ C0,0)

+
p̃2l

(1 + λ)2

(
λ2 + λ(C0,0 + C1,0 + C0,1) + C0,0.C1,0 + C0,1.C0,0)

)

+ O(p̃3)

Proof. See theorem C.2.5 in appendix C.2.2 for details. �

At first order, the final connectivity is C0,0, the filtered correlation of the

inputs convolved with a bell-shaped centered temporal profile. In the case of

figure 2.7, this is a good approximation of the final connectivity.

Not only the spatial correlation are encoded in the weights but there is

also some information about the temporal correlation, i.e. two successive but

orthogonal events occurring in the inputs will be wired in the connectivity

although they do not appear in the spatial correlations, see figure 2.7 for an

example.

2.4.3 Trace learning: Band-pass filter effect

In this section, we study an improvement of the learning model by adding

temporal delays in the system and explain the way it changes the results of

the previous section. In biological terms, this corresponds to several specific

features:

• Trace learning:

It is likely that a biological learning rule will integrate the activity over
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Figure 2.7: Figure a) shows the temporal evolution of the input to a n = 8

neurons network. It is made of two spatially random patterns that are shown

alternatively. Figure b) shows the correlation matrix of the inputs. The off-

diagonal terms are null because the two patterns are spatially orthogonal. The

figures c), d) and e) represent the first order of theorem 2.4.9 expansion for

different µ. Actually, this approximation is quite good since the percentage of

error between the averaged system and the first order, computed by error =
‖J̄−order 1‖1

‖J̄‖1
, are 1.92 × 10−4% for the three figures. These figures make it

possible to observe the role of µ. If µ is small, i.e. the inputs are slow, then

the transient can be neglected and the learned connectivity is roughly the

correlation of the inputs, see figure a). If µ increases, i.e. the inputs are faster,

then the connectivity starts to encode a link between the two patterns that

were flashed circularly and elicited responses that did not fade away when the

other pattern appeared. The temporal structure of the inputs is also learned

when µ is large. The parameters used in this figure are ε = 0.001, l = 12,

κ = 100, σ = 0.02.
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a short time. As Földiàk suggested in [Földiák 1991], it makes sense to

consider the learning equation as being

dJ

dt
= −κJ + (v ∗ g1) ⊗ (v ∗ g1)

where ∗ is the convolution and g1 : t ∈ R 7→ β1e
−β1tH(t). Rolls nu-

merically shows in chap 8 of [Rolls and Deco 2002] that the temporal

convolution, leading to a spatio-temporal learning, makes it possible to

perform invariant object recognition. Besides, trace learning appears

to be the symmetric part of the biological STDP rule that we detail in

section 2.4.4.

• Damped oscillatory neurons:

Many neurons have an oscillatory behavior. Although we can not take

this into account in a linear model, we can model a neuron by a damped

oscillator, which also introduces a new important time-scale in the sys-

tem. Adding adaptation to neuronal dynamics is an elementary way

to implement this idea. The neurons, or populations of neurons, of the

final averaged system (1.34) of chapter 1 have such a damped oscillatory

behavior which motivates this choice.

This corresponds to modeling a single neuron without inputs by the

equivalent formulations
{

dv
dt

= −lz
dz
dt

= β2(v − z)
⇔
{

dv
dt

= −lv ∗ g2

where g2(t) = β2e
−β2tH(t)

• Dynamic synapses:

The electro-chemical process of synaptic communication is very com-

plicated and non-linear. Yet, one of the features of synaptic communi-

cation we can take into account in a linear model is the shape of the

post-synaptic potentials. In this section, we consider that each synapse

is a linear filter whose finite impulse response (i.e. the post-synaptic

potential) has the shape g3(t) = β3e
−β3tH(t). This is a common as-

sumption which, for instance, is at the basis of traditional rate based

models, see section 1.2.1.

For mathematical tractability, we assume in the following that β = β1 =

β2 = β3 ∈ R+ such that g1/β = g1 = g2 = g3, i.e. the time scales of the
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neurons, those of the synapses and those of the learning windows are the

same. Actually, there is a large variety of the temporal scales of the neurons,

synapses, and learning windows, which makes this assumption not absurd.

Yet, investigating the impact of breaking this assumption would be necessary

to model better biological networks. This leads to the following system

{
dv = 1

ε1

(
(Jε − L).v ∗ g1/β + u( t

ε2
)
)
dt+ σ√

ε1
dB(t)

dJε

dt
= −κJε + (v ∗ g1/β) ⊗ (v ∗ g1/β)

(2.32)

where the notations are the same as in section 2.4.2. In fact, the behavior of a

single neuron will be oscillatory damped if ∆ =
√

1 − 4 l
β

is a pure imaginary

number, i.e. 4l > β. This is the regime on which we focus. Actually, the

Hebbian linear case of section 2.4.2 corresponds to β = +∞ in this delayed

system.

It turns out most of the results of section 2.4.2 remain true for system (2.32)

as detailed in the following. The existence of the solution on R+ is proved

in theorem C.2.6. The computations show that, in the averaged system, the

noise term remains identical, whereas the correlation term is to be replaced

by µ
τ
(v∗g1/β).(v∗g1/β)′. Besides, lemma 2.4.6 can be extended to our delayed

system by changing only the temporal filters, see appendix E. This helps

proving the following (see C.2.8 and C.3.3 for details).

µ

τ
(v ∗ g1/β).(v ∗ g1/β)′ =

u2
m‖v‖2

1

l2

+∞∑

k,q=0

Jk

(l/‖v‖1)k
· C̃k,q · J′q

(l/‖v‖1)q

where

C̃k,q =
1

u2
mτ‖v‖k+q+2

1

(u ∗ v(k+1)) · (u ∗ v(q+1))′

where v : t → l
µ∆

(
e−

β
2µ

(1−∆)t − e−
β
2µ

(1+∆)t
)
H(t). Observe that applying

Young’s inequality for convolutions leads to ‖C̃k,q‖2 ≤ 1. Actually, lemma

C.3.3 shows that v(k) = vk : t 7→
√

πβ
k!
e−

β
2
t
(

t
|∆|

)k+ 1
2
Jk+ 1

2

(
β|∆|

2
t
)
H(t) where

Jn(z) is the Bessel function of the first kind. The value of the L1 norm of

v is computed in appendix C.3.3, it leads to ‖v‖1 = coth
(

π
2∆

)
if ∆ is a pure

imaginary number and ‖v‖1 = 1 else.

Therefore, the averaged system can be rewritten

dJ

dt
= Ḡ(J) = −κJ +

u2
m‖v‖2

1

l2

+∞∑

k,q=0

Jk

(l/‖v‖1)k
· C̃k,q · J′q

(l/‖v‖1)q
+
σ2

2
(L − J)−1
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As before the existence and uniqueness of a globally attractive equilibrium

point is guaranteed if assumption 2.4.4 is verified for p ≤ 1
3
, see theorem C.2.9.

Besides, the weakly connected expansion of the equilibrium point we did

in part 2.4.2.4 can be derived in this case (see theorem C.2.10). At first order,

this leads to the equilibrium connectivity

J∗ =
p̃l

1 + λ
(λ+ ‖v‖2

1C̃
0,0) + O(p̃2‖v‖1)

The second order is given in the appendix C.2.10. The only difference with

the Hebbian linear case is the shape of the temporal filters. Actually the

temporal filters have an oscillatory damped behavior if ∆ is purely imaginary.

These two cases are compared in figure 2.8.

a) b)

Figure 2.8: These represent the temporal filter v : t 7→ v(t) for different

parameters. a) When β = +∞, we are in the Hebbian linear case of section

C.2.2. The temporal filters are just decaying exponentials which averaged the

signal over a past window. b) When the dynamics of the neurons and synapse

are oscillatory damped, some oscillations appear in the temporal filters. The

number of oscillations depends on ∆. If ∆ is real, then there are no oscillations

as in the previous case. However, when ∆ becomes a pure imaginary number

it creates a few oscillations which are even more numerous if |∆| increases.

These oscillatory damped filters have the effect of amplifying a particular

frequency of the input signal. As shown in figure 2.9, if ∆ is a pure imaginary

number then C̃0,0 is the cross-correlation of the band-pass filtered inputs with

themselves. This band-pass filter effect can also be observed in the higher

order terms of the weakly connected expansion. This suggests that the bio-

physical oscillatory behavior of neurons and synapses leads to selecting the
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Figure 2.9: This is the spectral profile |v̂ ∗ v′|(ξ) for β = 1 and l ∈]0, 2]. When

4l < β the filter reach its maximum for the null frequency, but if l increases

beyond β
4

the filter becomes of band-pass filter with long tails in 1
ξ2 .

corresponding frequency of the inputs and performing the same computation

as for the Hebbian linear case of the previous section.

2.4.4 Asymmetric STDP learning with correlated noise

Here, we extend the results to temporally asymmetric learning rules and spa-

tially correlated noise. We consider a learning rule that is similar to the Spike

Timing Dependent Plasticity (STDP) which is closer to biological experiments

than the previous Hebbian rules, see part 1.1.4 for details. It has been observed

that the strength of the connection between two neurons depends mainly on

the difference between the time of the spikes emitted by each neuron as shown

in figure 2.10, see [Caporale and Dan 2008]. Note that our approach is valid

for any value of a+, a− ∈ R+, in particular we will not need to have a stronger

depression than facilitation to prove stability of the system. As suggested by

section 1.2.3, we consider here that this learning rule also apply to rate based

models.

This leads to the coupled system

{
dv = 1

ε1

(
− L.v + Jε.v + u( t

ε2
)
)
dt+ 1√

ε1
Σ.dB(t)

dJε

dt
= −κJε + a+v ⊗ (v ∗ g1/γ) − a−(v ∗ g1/γ) ⊗ v

(2.33)
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Relative time of a
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Date of the the

postsynaptic spike
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modificatio

Figure 2.10: This figure represents the synapse strength modification when the

post-synaptic neuron emits a spike. The y-axis corresponds to an additive or

multiplicative update of the connectivity. For instance, in [Bi and Poo 1998],

this is
∆Jij

Jij
. However, we assume an additive update in this thesis. The x-axis

is the time at which a pre-synaptic spike reaches the synapse, relatively to the

time of post-synaptic time chosen to be 0.

In this framework, the method exposed in section C.2.2 holds with small

changes. First, the well-posedness assumption becomes

Assumptions 2.4.10.

There exists p ∈]0, 1[, such that
|a+| + |a−|
p(1 − p)

( s2γ

2(1 + γ/l − p)
+

u2
m

(1 − p)

)
< κl3

where s2 is the maximal eigenvalue of Σ.Σ′.

Under this assumption the system is asymptotically well-posed in proba-

bility (theorem C.2.12). And we show the averaged system is

dJ

dt
= Ḡ(J) = −κJ +

u2
m

(
|a+| + |a−|

)

l2

+∞∑

k,q=0

Jk

lk
· Dk,q · J′q

lq
+ Q (2.34)

where we have used theorem C.2.13 to expand the correlation term. The noise

term Q is equal to Q11.(L+ γ−J′)−1 where Q11 is the unique solution of the

Lyapunov equation (J − L).Q11 + Q11.(J
′ − L) + Σ.Σ′ = 0. Lemma D.3.2

gives a solution for this equation which leads to Q = γ
∑+∞

k=0 Jk.Σ.Σ′.(2L −
J′)−(k+1).(L + γ − J′)−1. In equation (2.34), the correlation matrices Dk,q are

given by

Dk,q =
1

u2
mτ
(
|a+| + |a−|

)
(
u ∗ g(k+1)

µ/l ∗
(
a+g

′
1/γ − a−g1/γ

))
· (u ∗ g(q+1)

µ/l )′
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According to theorem C.2.14, The system is also globally asymptotically

convergent to a single equilibrium which we study in the following.

We perform a weakly connected expansion of the equilibrium connectivity

of system (2.34). As shown in theorem C.2.15, the first order of the expansion

is

J∗ =
p̃l

1 + λ

(
λ(α+ − α−)

Σ.Σ′

d
+ D0,0

)
+ O(p̃2)

Writing D0,0 = S + A, where S is symmetric and A is skew-symmetric,

leads to

S = a+−a−
2τ

u ∗ gµ/l ∗
(
g′1/γ + g1/γ

)
· (u ∗ gµ/l)

′

A = a++a−
2τ

u ∗ gµ/l ∗
(
g′1/γ − g1/γ

)
· (u ∗ gµ/l)

′

According to lemma C.3.1, the symmetric part is very similar to trace learning

in section 2.4.3. Applying lemma C.3.2 leads to

S = a+−a−
τ

(
u ∗ gµ/l ∗ g1/γ

)
·
(
u ∗ gµ/l ∗ g1/γ

)′

A = a++a−
γτ

(
du
dt

∗ gµ/l ∗ g1/γ

)
·
(
u ∗ gµ/l ∗ g1/γ

)′ (2.35)

Therefore, the STDP learning rule simply adds an antisymmetric part to

the final connectivity keeping the symmetric part as the Hebbian case. Be-

sides, the antisymmetric part corresponds to computing the cross-correlation

of the inputs with its derivative. For high order terms this remains true al-

though the temporal profiles are different from the first order. This results are

in line with previous works underlying the similarity between STDP learning

and differential Hebbian learning, whereG(v) ∼ v̇⊗v, see [Xie and Seung 2000].

2.4.5 Summary, conclusions and immediate extensions

We have applied temporal averaging methods on slow/fast systems modeling

learning mechanisms occurring in linear stochastic neural networks. When

we make sure the connectivity remains small, the dynamics of the averaged

system appears to be simple: the connectivity always converges to a unique

equilibrium point. Then we performed a weakly connected expansion of this

final connectivity to get explicit approximations. The terms in the expansion

are combinations of the noise covariance and the lagged correlations of the

inputs: the first order term is simply the sum of the noise covariance and the

correlation of the inputs.
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• As opposed to the former Input/Output vision of the neurons, we have

considered the membrane potential v to be the solution of a dynamical

system. The consequence of this modeling choice is that not only the

spatial correlations are learned but also the temporal correlations. Due

to the fact we take the transients into account, the activity never con-

verges but it lives between the representation of the inputs. Therefore,

it links concepts together.

The parameter µ is the ratio of the timescales between the inputs and

the activity variable. If µ = 0 the inputs are infinitely slow and the

activity variable has enough time to converges towards its equilibrium

point. When µ grows, the dynamics becomes more and more transient, it

has no time to converge. Therefore, if the inputs are extremely slow the

networks only learns the spatial correlation of the inputs. If the inputs

are fast, it also learns the temporal correlations. This is illustrated in

figure 2.7.

This suggests that learning associations between concepts, for instance

learning a words in two different languages, may be optimized by pre-

senting the two words to be associated circularly with a certain fre-

quency. Indeed, increasing the frequency (with a fixed duration of ex-

position to each word) amounts to increasing µ. Therefore, the networks

learns better the temporal correlations of the inputs and thus strength-

ens the link between these 2 concepts.

• Section 2.4.3 suggests that neurons and synapses with a preferred fre-

quency of oscillation will preferably extract the correlation of the inputs

filtered by a band pass filter centered on the intrinsic frequency of the

neurons.

Actually, it has been observed that the auditory cortex is tonotopically

organized, i.e. the neurons are arranged by frequency [Romani et al. 1982].

It is traditionally thought that this is achieved thanks to a particular

connectivity between the neurons. We exhibit here another mechanism

to select this frequency which is solely based on the parameters of the

neurons: a network with a lot of different neurons whose intrinsic fre-

quencies are uniformly spread is likely to perform a Fourier-like opera-

tion: decomposing the signal by frequency.
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In particular, this emphasizes the fact that the network does not treat

space and time similarly. Roughly speaking, associating several pic-

tures or several sounds are therefore two different tasks which involves

mechanisms of two different kinds.

• In this section, the original hierarchy of the network has been neglected:

the network is made of neurons which receives external inputs. A natural

way to include a hierarchical structure (with layers for instance), without

changing the setup of the section, is therefore to remove the external

input to some neurons. However, according to theorem 2.4.9 (and its

extensions C.2.10 and C.2.15), one can see that these neurons will be

disconnected from the others at first order (if the noise is uncorrelated).

Linear activities imply that the high level neurons disconnect from the

others, which is a problem. In fact, one can observe that the second

order term in 2.4.9 is not null if the noise matrix Σ is not diagonal. In

fact, this is the noise between neurons which will recruit the high level

neurons to build connections from and to them.

It is likely that a significant part of the noise in the brain is locally

induced, e.g. local perturbations due to blood vessels or local hormonal

signals. In a way, the neurons close to each other share their noise and it

seems reasonable to choose the matrix Σ so that it reflects the biological

proximity between neurons. In fact, Σ specifies the original structure

of the network and makes it possible for close neurons to recruit each

other.

• It is also interesting to observe that most of the noise contribution to

the equilibrium connectivity for STDP learning (see C.2.15) vanishes

if the learning is purely skew-symmetric, i.e. a+ = a−. The analysis

proves that it is only the symmetric part of learning, i.e. the Hebbian

mechanism, which writes the noise in the connectivity. Indeed, the role

of a stationary noise in a purely antisymmetric network would be null as

far as learning is concerned. Indeed, noise will be integrated equally on

both negative and positive sides of the learning window. Because, these

two parts of the windows are of opposite sign (in the antisymmetric

case) then the integration of the noise cancels out.

• We have shown that there is a natural analogue of the STDP learn-



114
Chapter 2. The slow dynamics of learning in fast rate-based

models

ing for spiking neurons in our case of linear neurons. This asymmetric

rule converges to a final connectivity which can be decomposed into

symmetric and skew-symmetric parts. The first one is similar to the

symmetric Hebbian learning case, emphasizing that the STDP is in fact

an asymmetric Hebbian-like learning rule. The skew-symmetric part of

the final connectivity is the cross correlation between the inputs and

their derivative. In the next part we explore the functional implications

of this statement.



Chapter 3

Neural networks post-learning

as models of their environment

Overview

This chapter is devoted to understanding the dynamics of the network post-

learning and compare it to the inputs. We first review the notion of hierarchy,

which we lack in our fully recurrent formalism. Second, we introduce cortical

maps and various models for their emergence. Then we start our analysis of

the equilibrium connectivity. We claim that interpreting its symmetric part as

a distance matrix leads to giving a position to the neurons which corresponds

to the underlying geometrical structure of the inputs. We then show how it

may relate to cortical maps. Finally, we study the anti-symmetric part of the

connectivity and show it can be seen as a vector field which corresponds to

that of the dynamical system defining the inputs. In a way the network sees

the inputs as the solution of a dynamical system and learn the structure of

the dynamical system. It can then be a predictor of the inputs.

In this chapter sections 3.1 and 3.2 are mainly background, whereas sec-

tions 3.3 and 3.4 are original

Résumé

Ce chapitre porte sur la dynamique d’un réseau de neurones post-apprentissage

et la compare aux entrées externes présentées lors de l’apprentissage. Dans un

premier temps nous faisons une revue de la notion de hierarchie qui n’est pas

bien prise en compte dans notre cadre de travail complètement récurrent. En-

suite nous introduisons les cartes corticales et les différents modèles décrivrant

leur émergence. Après ces deux revues, nous sommes en position pour anal-

yser la connectivité à l’equilibre résultat du chapitre précédent. Nous pro-

posons que la partie symmétrique de cette matrice peut être vue comme une

matrice de distance ce qui correspond à donner une position aux neurones.

Nous suggérons que les positions des neurones correspondent à la structure
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géométrique sous-jacente des entrées. En particulier nous montrons comment

ceci peut être relié aux cartes corticales. Enfin nous étudions la partie anti-

symmétrique de la connectivité à l’équilibre et montrons comment elle peut

être interprétée comme un champ de vecteur qui correspond au système dy-

namique décrivant les entrées. Ceci suggère que le réseau voit les entrées

comme la solution d’un système dynamique et apprend la structure de ce

système. En fait le réseau devient un prédicteur des entrées.

Dans ce chapitre les sections 3.1 et 3.2 sont principalement issues de la

littérature, alors que les sections 3.3 et 3.4 sont originales.

Collaborations, publications and ackowledgements

Section 3.3 was written in collaboration with Paul Bressloff and Olivier Faugeras

when I visited Paul in Oxford for a semester and lead to the publication of

an article in neural computation. Section 3.4 is work in progress and will be

submitted after the thesis.

.
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What kind of information is learned from the stimuli? How is it stored in

the network? How is it used to process new inputs? How does it discrimi-

nate between inputs belonging to the training set or original stimuli? We still

lack a coherent and satisfying answer to these simple questions. The previ-

ous chapter may bring some elements to understand the role of learning in

recurrent neural networks. Indeed, it was assumed that learning corresponds

to the slow modification of the connectivity of a neural network. Therefore,

the global knowledge about the environment is gathered in the equilibrium

connectivity only. More precisely, it was shown that the equilibrium connec-

tivity of a STDP learning rule is made of two parts: (i) a symmetric part

corresponding to the spatio-temporal auto-correlation of the inputs (without

time-lag), (ii) an antisymmetric part corresponding to the spatio-temporal

cross-correlation between the inputs and their derivative. This may sound as

a satisfying answer to the initial questions, yet, we believe it is possible and

necessary to go further.

A key idea is to consider the inputs as a solution of a dynamical sys-

tem. Indeed, because we want to give a mathematical sense to the claim:

”a learning neural network builds a model of its environment“, we are look-

ing for a relevant way to compare the inputs to a neural network, in order

to show that learning corresponds to a convergence of the neural network

to the inputs. If we assume that the inputs are generated by a single dy-

namical system, then the entire information about the inputs is contained

in the dynamical system which is defined by a vector-field upon a mani-

fold. The right hand side of the dynamical system at a certain point on

the manifold is the value of the vector field at this position. Therefore, the

entire knowledge of the inputs is gathered in a vector field on a manifold

which both define the dynamical system generating the inputs. Our goal is

to show that these two mathematical objects, the manifold and the vector

field associated to the inputs, are eventually embedded in the connectivity

of the neural network. In other words, the thesis of this chapter is the fol-

lowing: through slow learning the spontaneous activity becomes statistically

and dynamically identical to the inputs. We believe the spontaneous activ-

ity post-learning is the solution to a differential system with a very similar

manifold and vector field. There are three main reasons to support this ap-

proach: (i) both the inputs and the spontaneous activity can be seen as the

solution of a dynamical system, making them two objects of the same na-
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ture and therefore comparable (ii) its has been rigorously shown that any

dynamical system (in particular the system that generates the inputs) can be

approximated by a recurrent neural network [Funahashi and Nakamura 1993]

(iii) the statistical features of spontaneous activity seem to reproduce that

of the inputs, suggesting that the spontaneous activity replays the inputs

[Kenet et al. 2003, Han et al. 2008, Berkes et al. 2011]. Actually, these pa-

pers tend to show that the spontaneous activity is similar to the attractors

evoked by natural inputs and no the inputs themselves because the latter link

is impossible to measure. Yet, with our semi-analytical approach we can com-

pare the spontaneous activity to the inputs which will be the approach in the

following.

Unfortunately, the rigorous proof of the problematic of this thesis is beyond

our capabilities and we have had to simplify the problem significantly. In

particular, the cortex is processing information at multiple scales which we

are not yet able to take into account. Understanding the interactions of these

different temporal and spatial scales is a current topic of research1. It is

generally though that the hierarchical organization of the cortex is responsible

for this multi-scale processing. Although most studies on the development of

cortical structures were done in such a hierarchical context, this thesis focuses

on completely recurrent network (without hierarchy).

We use a semi-analytic, semi-computational approach to show the network

learns to extract the underlying geometry (i.e. manifold) and dynamics (i.e.

vector field) of the inputs on some examples. This chapter is therefore noth-

ing more than a proof of concept. We present some inputs with an explicit

geometry and/or dynamics, then we show the network can retrieve them. It

has been suggested in [Swindale 1996] that the geometry of the inputs may

be embedded in the experimentally observed spatial cortical patterns called

cortical maps. We show how our approach can reduce to the development of

cortical maps and qualitatively match the experiments.

This chapter is divided in four parts, first we shortly talk about the role of

hierarchy which seems to be responsible for the multi-scale processing reported

above in section 3.1. The functional role of learning was originally addressed

in the framework of feed-forward network which we shortly review before

1for instance the author belongs to a European Project called BrainScaleS

(http://brainscales.kip.uni-heidelberg.de/) which focuses on the study of multi-scale phe-

nomena in the brain.
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switching completely to recurrent networks which are the building blocks of

more relevant hierarchies. Then, we shortly introduce cortical maps and their

developmental models in section 3.2. The third section 3.3 corresponds to the

analysis of the symmetric part of the connectivity. We show that interpreting

it as a distance matrix leads to extracting the underlying geometry of the

inputs. Finally, we address the skew-symmetric part of the connectivity in 3.3

which will be seen as a vector field defined on the geometric shape introduced

in the previous part.
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3.1 A glimpse of hierarchy

Here, we shortly present the notion of hierarchical neural network. First, we

motivate it as a necessary feature to account for multiple scales. Second, we

introduce some important results about correlation-based learning rules in

feed-forward networks (probably the simplest hierarchical networks). Finally,

we present the different ingredients of a canonical hierarchical network whose

study is beyond the scope of this thesis. In this framework, recurrent networks

(which are the topic of this thesis) appear to be the building blocks of such

hierarchical structures.

3.1.1 Functional role of hierarchy

The organization of the cortex is hierarchical: the sensory inputs are not

uniformly plugged to the neurons. Some neurons are significantly influenced

by the inputs; whereas others are far away from the inputs (meaning the

information has to pass through a lot of intermediary neurons). Actually,

biological experiments report a roughly vertical organization of the different

areas in the cortex, see figure 3.1 for instance, allowing the definition of low-

level and high-level areas.

The notion of receptive field gives a heuristic intuition about the functional

role of hierarchy. In a feed-forward framework, the receptive field is defined

as the region of space in which the presence of a stimuli will influence the

behavior of a neuron. As an example, we focus on vision in the following and

we refer to [Rolls and Deco 2002] for an easy introduction to the organization

of the visual system. Roughly speaking, neurons in the retina or in the lateral

geniculate nucleus (LGN) (the gray boxes on the left picture of figure 3.1) are

excited when some light reaches the part of the retina they are in charge of

representing. Their receptive field is a small part of the visual field. More

precisely, they a have a center-surround receptive field: they are maximally

excited when the stimulus corresponds to a dot of light in the middle and

dark surrounds (or reciprocally). One step higher in the hierarchy is the

primary visual cortex (V1). Hubel and Wiesel have received a Nobel prize for

showing that some neurons in V1 where tuned to detecting edge. Indeed, they

are optimally excited by small oriented edges with a given orientation in the

visual field, see [Hubel and Wiesel 1962]. This discovery led to the analysis



122
Chapter 3. Neural networks post-learning as models of their

environment

Figure 3.1: (left) Hierarchical organization of the macaque visual system

in 32 areas connected via more than 300 pathways. The inputs arrive on

the bottom box which correspond to the Retinal Ganglion Cells (in the

retina). Taken from [Felleman and Van Essen 1991] (right) This is a sim-

plification of Felleman diagram that highlights the existence of two differ-

ent pathways: the ventral (what) and dorsal (where) streams. Taken from

[Van Essen and Gallant 1994]

of the receptive field of neurons higher in the hierarchy. It was observed that

their shape grew larger and more complex at each step in the hierarchy. It was

even observed that high enough in the hierarchy some neurons where excited

when human faces appeared in the visual field, as shown the right picture of

figure 3.1. These results tend to show that neurons code for some concepts

and that these concepts grow more abstract and complicated when we go up

the hierarchy.

However, this view of neural processing is not relevant to describe recurrent

network subject to spontaneous activity. Indeed, the brain is to be seen

as a dynamical system perturbed by the inputs. The neurons are not only

influenced by the inputs but also by the internal state of the brain. More

concretely, a particular neuron can be excited because of internal variability

or connections from high-level neurons. Besides, the notion of receptive field

is irrelevant for high-level neurons which might be triggered by a particular
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event anywhere in the visual field. In a way, the notion of receptive field

can only make sense if the neuron receives most of its excitation from the raw

inputs (yet, it does not mean that these sensory neurons all have a well-defined

receptive field). The notion of receptive field is only a nice intuition for the

low-level part of the network.

The role of hierarchy is to build concepts on multiple scales. Based on

a low-level description of the world hierarchical learning makes it possible to

define the meaning a higher-order concept. Based on the lower-level under-

standing of the world the neurons in the area above would code for a frequent

pattern observed in the lower layer(s). In a hierarchical network the total

connectivity can be separated in two parts: the vertical and the lateral con-

nectivity. The former links neurons from different layers, while the second

links neurons from the same layer. A intuitive vision of their respective role

is that learning of the vertical connections defines the meaning of a neuron

(what it codes for in terms of the lower-level concepts), while learning the

lateral connections defines the way these concepts are statistically linked to-

gether.

3.1.2 Unsupervised perceptron: a study case

3.1.2.1 What is a perceptron?

The study of learning rules has been introduced and extensively studied in

the case of a perceptron network, see [Dayan and Abbott 2001] for a review.

It is the simplest feed-forward network: n ∈ N pre-synaptic neuron sending

their axon to a single post-synaptic neuron, see figure 3.2. This structure is

at the heart of any hierarchical structure, therefore the results on perceptrons

correspond to the learning of vertical connections in the cortex.

The storage capacity of the perceptron under various rules has been widely

studied [Gardner and Derrida 1988, Engel and Broeck 2001, Brunel et al. 2004]

but is out of the scope of this thesis.

The evolution of the variables still evolve according to equations (2.1) and

(2.2) with a particular connectivity mask χ detailed below, so that most of
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Figure 3.2: A perceptron is a network with a single post-synaptic neuron, the

connectivity is a vector of Rn (thus noted with a lowercase letter).

the results of the previous part hold.

χ =




0 · · · · · · 0
...

...
...

...

0 · · · · · · 0

1 · · · 1 0




(3.1)

A great deal of work about the (multilayer) perceptron has been done

in the field of supervised learning. This is out of the scope of this thesis.

We focus on unsupervised correlation-causation based learning rules on this

structure. Actually, all the rules in part 2.2 can be studied in this feed-

forward framework. However, we will only focus on three of them for the

striking conclusions they lead to.

3.1.2.2 Oja learning rule and PCA extraction

This learning rule introduced in [Oja 1982] was described in equation (2.7)

for a recurrent network. We also refer to [Miller and MacKay 1994] for a

generalization to other rules. We follow the lines of this reference in this short

section.

In the traditional approach used for most studies, it is assumed that the

post-synaptic activity is a linear combination of the inputs (which is opposed

the dynamical system we have in this thesis), i.e. vpost =
∑n

k=1 jkvk = j′.v

In the perceptron framework, it reads

dj

dt
= vpostv − v2

postj = (j′.v)v − (j′.v)2j

As shown in part 2.2.2, it is easy to show that the L2 norm of the connectivity

is kept constant (equal to 1) during learning.
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If this equation is slow, it seems reasonable to average the equation over

the inputs. Besides, using the assumption that vpost = j′.v leads to defining

the averaged system

dj

dt
= C.j − (j′.C.j)j

where C is the temporal correlation matrix of the inputs U.U′ =
∑

i U
′
i.Ui

with the notations defined in section 2.3.1. Oja proved the last two systems

were identical (in the asymptotic regime). The eigenvectors of C are obviously

equilibrium points of the previous equation and it can be shown that the

principal eigenvector is the only one to be stable.

The conclusion to this is dramatic: the Hebbian learning rule (with a

multiplicative normalization, see 2.2) in a perceptron leads to the extrac-

tion of the first principal component of the inputs! And there is more: if

one consider n′ post-synaptic neurons in the high-level layer negatively con-

nected, then the n′ vector of connectivity from the low-layer to each neuron

in the top layer will converge the n′ principal component of the inputs, see

[Rubner and Tavan 1989]. The learning of vertical connections has made it

possible to represent the inputs in the best way possible in the upper layer.

This suggests hierarchy corresponds to successive representations of the inputs

at different scales.

3.1.2.3 BCM learning rule and input selections

The BCM learning rule [Bienenstock et al. 1982, Intrator and Cooper 1992,

Blais and Cooper 2008] was originally developed in a perceptron framework

and is generalized to a recurrent network in part 2.2. As opposed to our

temporal approach, this rule was originally introduced as an ensemble learning

rule:
dj
dt

= φ(vpost, θ)v − κj

θ = E(vpost/c)
2

where φ is shown in figure 2.1, c ∈ R+ and the expectation is taken over all

the inputs. It is also assumed that the activity of the post synaptic neuron is

a linear function of the inputs vpost = j′.v. It can be proved that if the inputs

are linearly independent then the learning rule converges to a state so that

the post-synaptic neuron is becoming selective to only one of the inputs. If
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there are multiple post-synaptic neurons negatively connected, the neurons of

the top layer become selective to different inputs, see [Castellani et al. 1999].

As in the case of Oja learning, learning of feed-forward connections leads

to good representation of the inputs in the upper layer.

3.1.2.4 Hebbian learning rule with linear decay

This is a (small) contribution of this thesis to the study of hierarchical neural

network. Here, we consider that the network follows a differential equation of

the type system Σ in equation (2.9) where the learning equation is multiplied

by χ (this is a Hadamard product). For simplicity, we also assume that S = Id.

The idea is to analyze the ”shape“ of the fixed points of this system using the

slow inputs approximation Σ′ derived in section 2.3.

Because the matrix χ for a perceptron in equation (3.1) is not trivial,

we can not be sure there is a stable fixed point. However, we propose to

mathematically analyze the fixed points of the system. Then, we numerically

show that the system may converge to such particular equilibrium points.

Recall the network is exposed to m inputs in Rn, i.e. the inputs matrix

U and the activity matrix V have n + 1 rows and m columns (each column

corresponds to a different input). Note that the last row of U is null. The

fixed point of system Σ′ are
{

V∗ =
(

1
κ
χ ⊙ V∗.V∗′).V∗ + U

J∗ = 1
κ
χ ⊙ V∗.V∗′

Therefore, the fixed points of the activity of the pre-synaptic neurons verifies

V∗
ia = Uia for i a neuron in {1..n} and a a input in {1..m}. The equilibrium

value of the post-synaptic activity is

Vn+1,a =
1

κ

m∑

b=1

n+1∑

i=1

χn+1,iV
∗
n+1,bV

∗
i,bV

∗
i,a

=
1

κ

m∑

b=1

n∑

i=1

V∗
n+1,bU

∗
i,bU

∗
i,a =

1

κ
{V∗.U∗′.U}n+1,a

For simplicity, we write vpost ∈ Rm the vector of the equilibrium values of

the post-synaptic neuron for all the inputs such that vposta = Vn+1,a. This is

the last row of matrix V. According to the previous equation its equilibrium

value verifies

v∗
post =

1

κlpost

U′.U.v∗
post (3.2)
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Here, we have added lpost ∈ R the time constant of the decay of the activity

of the post-synaptic neuron which is assumed to be different from the time-

constants of the pre-synaptic neurons, i.e. the decay term of the post-synaptic

term in the activity equation of system (2.9) is multiplied by lpost ∈ R.

Due to the very sparse shape of χ, the information in J∗ can be summarized

in j ∈ Rn which corresponds to the connectivity of the n pre-synaptic neurons

to the post-synaptic neuron (it is the last row of J). With this notation, the

equilibrium point of the connectivity is

j∗ =
1

κ
U.v∗

post

Multiply this equation by U.U′ on the leads to

U.U′.j∗ =
1

κ
U.U′.U.v∗

post︸ ︷︷ ︸
=κlpostv

∗
post

= lpost U.v
∗
post︸ ︷︷ ︸

=κj∗

= κlpostj
∗

The conclusion is that the system converges to both the eigenvectors of the

spatial and temporal correlation of the inputs: v∗
post is an eigenvector of U′.U

and j∗ is an eigenvector of U.U′ (both of them associated with the eigenvalue

κlpost). This approach gives an interesting interpretation of the connectivity

versus the membrane potential: j extracts the temporal correlation whereas

vpost extracts the spatial correlation of the inputs. It also says that a sequence

of output neurons with different decay time constants, could extract all the

eigen-modes of the inputs. Note that if κlpost is not an eigenvalue of U.U′,

then the network must either converge to the null solution or diverge.

Simulations of the linear perceptron are illustrated in figure 3.3.

These results show that it is not necessary to have hetero-synaptic con-

straints as described in [Oja 1982, Miller and MacKay 1994] and in section

2.2.2 to converge to the eigenvectors of the time-correlation of the inputs.

The eigenvector extraction is possible even for a local learning rule. The main

difference with hetero-synaptic constraints lies in the fact that they systemat-

ically converge to the maximum eigenvector, whereas this system with a local

learning rule needs κlpost to be well tuned to converge to this eigenvector.

3.1.3 A canonical hierarchical network

As suggested by figure 3.1, the hierarchical structure of the cortex is very com-

plicated. We believe a computational approach would be able to address the
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Figure 3.3: Evolution of the membrane potential of the post-synaptic neu-

ron (left) and the connectivity of pre-synaptic neurons to the post-synaptic

neuron (right) for a linear perceptron. Plain curves correspond to the (nor-

malized) membrane potential (left) and strength of the connectivity from 3

input neurons to a single post-synaptic neurons (right) elicited by different

inputs. Dotted curves correspond to each components of the eigenvector of

U′.U (left) and U.U′ (right), with U being a 3 × 3 random matrix. For this

simulation, κ = 1, ε = 0.01, T = 10 and κlpost is set to be the maximal

eigenvalue of U′.U.

real hierarchies, but a mathematical approach needs a simplified architecture.

Therefore, we define a canonical hierarchical network to be analyzed mathe-

matically (though it is beyond the scope of this thesis which focuses on fully

recurrent networks). We believe the structure of figure 3.4 is a good candi-

date for the canonical hierarchical because it gathers the main features of the

biological hierarchical structures described before while being quite simple. It

is made of a cascade of layers which correspond to the different areas in the

cortex. There are three types of connections: lateral or recurrent connections

that link neurons of the same layer, feed-forward connections which link neu-

rons from low-level layers to high-level layers and feedback connections which

go in the opposite side propagating top-down information.

This structure is very simplified because an underlying abstraction axis

was assumed (from low-level to high-level). In other words, it has a ”one-

dimensional“ structure which corresponds to a single pyramid of abstraction.

For instance, it does not take into account double streams structure like in
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High−level layer

(e.g. frontal lobe)

Figure 3.4: Idealization of a hierarchical network.

the right picture of figure 3.1.

Considering that he lowest layer (e.g. the retina) is unconnected and does

not receive feedbacks is not a restrictive assumption. Indeed, choosing appro-

priately the feed-forward connection from the lowest layer to the first above

makes it possible to get rid of the retina which may become a transparent

filter. The two reasons why we defined this canonical structure with a retina

are (i) there are biological evidence that it is true in the brain (ii) the results

for the perceptron only work for this stage of the hierarchy.

A priori, the simplest way to keep this hierarchical structure invariant

through learning is to consider a roughly ”one-dimensional“ physical struc-

ture, i.e. the binary matrix χ which pre-multiply the connectivity evolution.

However, we have shown in section 2.4.5, that the addition to spatially corre-

lated noise can induce and define a hierarchical structure. The noise matrix

which specifies the spatial correlation of the noise plays the role of the physical

connection matrix χ.

To our knowledge, there is no satisfying mathematical approach of learn-

ing in hierarchical network in the sense defined above. Learning the first feed-

forward connections (e.g. from retina to V1) has been extensively studied since

it corresponds to a simple generalization of the perceptron reviewed before.

There has been many computational studies on network without feedback
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and where the lateral connectivities were fixed [Linsker 1988, Földiák 1991,

Stringer and Rolls 2002, Serre 2005]. Several studies have addressed the si-

multaneous learning of feed-forward and lateral connectivity [Rubner and Tavan 1989,

Bartsch and Van Hemmen 2001, Miikkulainen et al. 2005]. Yet, there does

not seem to be a generalizable and compelling mathematical principle emerg-

ing for larger networks, e.g. with feedbacks. It seems we are not yet able to

understand deeply the consequence of having learning recurrent or feedback

connections. In this thesis, we address the case of fully recurrent networks,

which can be seen as the building blocks of the canonical hierarchical network.

We hope this will eventually help studying these hierarchical structure from

a mathematical perspective.
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3.2 Emergence of cortical maps

Over the last fifty years, the field of neuroscience has developed significantly

thanks to new imaging methods. They have made it possible to observe and

understand patterns in the brain. One of the most important results has been

the discovery of cortical maps.

3.2.1 What is a cortical map?

They are spatially structured patterns observed in the cortex. They are closely

linked with the functional connectivity of the cortex which specifies which

neuron codes for what. There is probably an underlying structure to any

cortical area, however we are not able to understand all of them because we

do not know precisely what is encoded in every part of the cortex. Therefore,

the best examples of cortical maps can be found among the low-level sensory

area. In the following, we detail three of them. Before proceeding, note that

the existence of such structured patterns depends not only on the task the

area is devoted to but also on the species. For instance, if it is possible to

have beautiful results for the orientation columns for tree shrew, they do not

arise in rats for instance.

• Rat barrel cortex an analogous to retinotopy:

In rat’s sensory cortex, every whisker is associated with a sharply bounded

cortical site in layer IV (see figure 3.5). However such a barrel structure

is less evident in other layers so that it is harder to distinguish columns

and label them with a given whisker.

This kind of cortical map is qualitatively very similar to the retinotopy

observed in the visual cortex of many animals. Indeed, it has been

observed that neurons in V1 (the lowest-level area of the visual cortex)

tend to be closer in the cortex when their receptive fields are close in the

visual field. Because, the visual field is roughly two dimensional then

the cortex also has a two dimensional structure. This is similar to the

rat’s barrel cortex since the whiskers are aligned on a two dimensional

grid and we observe that the associated area in the cortex also has this

geometry. These are good examples of the cortex learning the underlying

geometrical structure of the inputs (which is the same in both cases: a

plane).
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Figure 3.5: Rat’s barrel cortex (actually this is layer IV). Every whisker of

the rat corresponds to a well defined area of the cortex mostly responsible

for processing information from it. These processing units have the same

distribution as whiskers on the muzzle. Taken from [Kandel et al. 1991].

• Ocular dominance columns:

In some species, it has also been observed that neurons of low-level visual

layers tend to have a specific eye preference: they are almost not excited

when their preferred eye is closed. It is then possible to project this in-

formation on the cortex by coloring both eyes in different colors. To be

more precise, this applies only in layer IV of V1 by injecting radioactive

tracers in one eye and finding in the laminar plane of layer IV the group-

ing in radioactive bands of the same occularity, given that enough time

has been given to the tracer to diffuse with axonal transport. Figure 3.6

represent this organization.

In this case, the information to be stored has a binary value and therefore

is spread along a one-dimensional axis. The reason why figure 3.6 does

not have only two regions for each eye is that this binary information

is considered on top of others, e.g. position in the visual field. There-

fore, there must be a trade-off between retinotopy and ocular dominance

which ends up in the layered structure above.

• Orientation columns:

The discovery of Hubel and Wiesel that some neurons in the primary

visual cortex were tuned to select an edge of a particular orientation at

a particular position in the visual field also has a nice interpretation in

terms of cortical map. Using an imaging method called optical imaging,

it is possible to observe the orientation preference of the neurons at the

scale of the area. For some species, neurons coding for the same orien-
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Figure 3.6: Ocular dominance columns in macaque monkey. It shows the

pattern over nearly the complete visual hemi-field in a macaque monkey. The

outer boundaries of the pattern correspond to the vertical mid-line of the

visual field; F indicates the fovea; OD the optic disc, and MS the monocular

segment. The pattern is a drawing made from a montage of sections stained

for cytochrome oxidase in a monkey which had lost one eye over a year prior

to sacrifice. Taken from [Florence and Kaas 1992].

tation tend to gather together to form orientation columns. As shown

in figure 3.7, it possible to draw a map of these orientation columns.

Superposing the distribution of axons from one column to its neighbors

leads to an interesting observation. Neurons tend to have co-aligned

connections: (i) neurons coding for the same orientation tend to be

preferentially connected, (ii) the direction of the axons roughly match

the preferred direction of the neurons. As shown later, we believe this

is a consequence of a Hebbian learning rule with inputs made of a lot of

straight lines (covering more than a single receptive field).

These orientation columns are superposed to the retinotopic organiza-

tion and the ocular dominance columns, see [Swindale 2000].

• Face columns in the Infero-Temporal cortex:

It has even been observed [Tanaka 1996, Wang et al. 1998] that some

cells were specifically excited by faces in the infero-temporal cortex.

Besides, neighboring columns code for close-by views of the same face,

therefore there is a notion of cortical space as in the previous cases.

Although very irregular, the two-dimensional cortical maps observed at

a given stage of development, can be unfolded in higher dimensions to get

smoother geometrical structures. Indeed, [Bressloff et al. 2001] suggested that
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Figure 3.7: Optical imaging in tree shrew visual cortex. A, Difference images

obtained for four stimulus angles. Dark colors indicates areas that were active

during presentation of the stimulus. B, Orientation preference map. Orien-

tation preference of each location is color-coded according to the indications

below the map. C, Portions of the orientation preference map shown in B have

been enlarged to demonstrate that the orientation preference maps contained

both linear zones (left), and pinwheel arrangements (right) that are functional

discontinuities. D, reconstruction of axon terminal distribution (black dots)

from a marker (biocytin) injected in neurons (white crosses) in (layer II/III

of) the tree shrew visual cortex. Although the distribution is locally isotropic,

an orientation preference emerges at longer scales. The neurons connect pref-

erentially to others of the same orientation preference. Besides, the direction

of the axon seems to correspond to the orientation preference. This is called

co-linearity. Taken from [Bosking et al. 1997].

the network of orientation pinwheels in V1 is a direct product between a circle

for orientation preference and a plane for position, based on a modification

of the ice-cube model of Hubel and Wiesel [Hubel and Wiesel 1977]. From

a more abstract geometrical perspective, [Petitot 2003] has associated such

a structure to a 1-jet space and used this to develop some applications to

computer vision. More recently, more complex geometrical structures such
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as spheres and hyperbolic surfaces that incorporate additional stimulus fea-

tures such as spatial frequency and textures, were considered respectively in

[Bressloff and Cowan 2003] and [Chossat and Faugeras 2009]. To our knowl-

edge, there is no research yet about the emergence of such high dimensional

structures through biologically inspired learning. We intend to address this

problem in the following.

3.2.2 Through learning of the feed-forward connectivity

Unsupervised learning of feed-forward connections forms the basis of most

weight-based models of cortical development, assuming fixed lateral connec-

tivity (e.g. Mexican hat) and modifiable vertical connections (see the reviews

of [Erwin et al. 1995, Swindale 1996, Dayan and Abbott 2001]). In these de-

velopmental models, the statistical structure of input correlations provides a

mechanism for spontaneously breaking some underlying symmetry of the neu-

ronal receptive fields leading to the emergence of feature selectivity [Miller and MacKay 1994].

When such correlations are combined with fixed intra-cortical interactions,

there is a simultaneous breaking of translation symmetry across cortex lead-

ing to the formation of a spatially periodic cortical feature map. A related

mathematical formulation of cortical map formation has been developed in

[Takeuchi and Amari 1979, Bressloff 2005] using the theory of self–organizing

neural fields.

3.2.3 Through learning of the recurrent connectivity

There is less literature about the emergence of cortical maps through the learn-

ing of lateral connections. Swindale has shown how to use Kohonen maps (see

[Kohonen 1990]) to compute cortical maps in [Swindale 1996, Swindale 2000].

He assumes the inputs he plugs to the Kohonen map correspond to the out-

put of the feed-forward processing and let the neurons’ position evolve. They

converge to biologically plausible maps (when appropriately initialized). As

shown later, the method we present in the following is quite close to his, the

main difference being that we use correlation based learning rules when he uses

Kohonen maps. Another approach similar in the philosophy is the dimension

reduction approach called elastic net approach [Goodhill and Willshaw 1990,

Durbin and Mitchison 1990].
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There have only been a few computational studies that consider the joint

development of lateral and vertical connections: [Bartsch and Van Hemmen 2001,

Miikkulainen et al. 2005] and we are not aware of any mathematical treatment

of this question.

This thesis focuses on learning of the recurrent (or horizontal or lateral)

connectivity and, in the following, we propose a generic way to extract the

underlying geometry of a connectivity matrix.
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3.3 Symmetric part of the recurrent connectivity:

a distance matrix

We have seen in the previous chapter that the symmetric part of the connec-

tivity of a recurrent network roughly converges to the temporal correlation

matrix of the inputs: sym(J∗) ∼ u.u′. In the case of a voltage-based network

with slow inputs, it is precisely given by theorem 2.3.4. For a linear, weakly

connected network with Hebbian learning is is given by theorem 2.4.9. In all

the cases described in chapter 2, the symmetric part of J∗ can be thought of

as a spatial correlation matrix of a positive time-series related in some way to

the inputs.

We believe this matrix is related to the underlying geometry of the inputs

or the manifold on which is defined the dynamical system generating the

inputs. This part is devoted to showing how to extract it from the connectivity.

In this section, we focus on the symmetric part of the connectivity therefore

on the correlation-based mechanism of the learning rule.

3.3.1 From a symmetric connectivity matrix to a convolu-

tional network

So far neurons have been identified by a label i ∈ {1..n}; there is no notion

of geometry or space in the preceding results. However, as we show below,

the inputs may contain a spatial structure that can be encoded by the final

connectivity. In this section, we show that the network behaves as a convo-

lutional network on this geometrical structure. The idea is to interpret the

final connectivity as a matrix describing the distance between the neurons

living in a k-dimensional space. This is quite natural since J∗ is symmetric

and has positive coefficients, properties shared with a Euclidean distance ma-

trix. More specifically, we want to find an integer k ∈ N and n points in Rk,

denoted by xi, i ∈ {1, . . . , n}, so that the connectivity can roughly be written

as J∗
ij ≃ g(‖xi − xj‖2), where g is a positive decreasing real function. If we

manage to do so then the interaction term in system Σ becomes

{J · S(v)}i ≃
n∑

j=1

g(‖xi − xj‖2)S
(
v(xj)

)
(3.3)
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where we redefine the variable v as a field such that v(xj) = vj. This equation

says that the network is convolutional with respect to the variables xi, i =

1, .., n and the associated convolution kernel is g(‖x‖2).

In practice, it is not always possible to find a geometry for which the con-

nectivity is a distance matrix. Therefore, we project the appropriate matrix

on the set of Euclidean distance matrices. This is the set of matrices W such

that Wij = ‖xi − xj‖2 with xi ∈ Rk. More precisely, we define D = g−1(J∗),

where g−1 is applied to the coefficients of J∗. We then search for the distance

matrix D⊥ such that ‖Dq‖2 = ‖D−D⊥‖2 is minimal. The minimization turns

out to be a least square minimization whose parameters are the xi ∈ Rk. This

can be implemented by a set of methods known as multidimensional scal-

ing, which are reviewed in [Borg and Groenen 2005]. In particular, we use

the stress majorization or SMACOF algorithm for the stress1 cost function

throughout the thesis. This leads to writing D = D⊥ + Dq and therefore

J∗
ij = g(D⊥ij +Dqij) where D⊥ is a distance matrix, i.e. there exists n vectors

xi ∈ Rk such that D⊥ij = ‖xi − xj‖2 with xi ∈ Rk

We now consider two particular choices of the function g:

1. If g(x) = a
(
1 − x

λ2

)
with a > 1 and λ ∈ R+, then one can always write

J∗
ij = J∗(xi,xj) = M(xi,xj) + g(‖xi − xj‖2) (3.4)

such that M(xi,xj) = − a
λ2Dqij.

2. If g(x) = ae−
x

λ2 with a, λ ∈ R+, then one can always write

J∗
ij = J∗(xi,xj) = M(xi,xj) g(‖xi − xj‖2) (3.5)

such that M(xi,xj) = e−
Dqij

λ2 ,

where J∗ is also redefined as a function over the xi, i.e. J∗(xi,xj) = J∗
ij.

For obvious reasons, M is called the non-convolutional connectivity. It is the

role of multidimensional scaling methods to minimize the role of the undeter-

mined function M in the previous equations, i.e. ideally having M ≡ 0 (resp.

M ≡ 1) for the first (resp. second) assumption above. The ideal case of a fully

convolutional connectivity can alway be obtained if k is large enough. Indeed,

proposition 3.3.1 shows that D = g−1(J∗) satisfies the triangular inequality

for matrices (i.e. Dij ≤ (
√

Dik +
√

Dkj)
2) for both g under some plausible
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assumptions. Therefore, it has all the properties of a distance matrix (sym-

metric, positive coefficients and triangular inequality) and one can find points

in Rk such that it is the distance matrix of these points if k ≤ n − 1 is large

enough. In this case, the connectivity on the space defined by these points is

fully convolutional, i.e. equation (3.3) is exactly verified.

For the following proposition, we assume that we are the the situation

of an equilibrium connectivity J∗ of a voltage-based network with Hebbian

learning, i.e. J∗ is the solution of the fixed point equations in theorem 2.3.4.

The important detail about this setup is that the sigmoid S is always positive

(as opposed to the linear case). This hypothesis makes it possible to prove

Proposition 3.3.1.If the neurons are equally excited on average (i.e. ‖S(Vi.)‖ =

c ∈ R+), and

1. if g(x) = a
(
1 − x

λ2

)
with a, λ ∈ R+, then D = g−1(J∗) satisfies the

triangular inequality.

2. if g(x) = ae−
x

λ2 with a, λ ∈ R+, then D = g−1(J∗) satisfies the triangular

inequality if the following assumption is satisfied

arcsin
(
S(0)

)
− arcsin(

√
a3 −

√
a6 − a3) ≥ π

8
(3.6)

Proof. We recall the notation V ∈ Rn×m such that Via = v
(a)
i the value

of the equilibrium activity of the ith neuron for the ath input. We also note

Vi. ∈ Rm the vector of the activity of neuron i for all the inputs. The uniform

excitement of neurons on average reads, for all i = 1, .., n, ‖S(Vi.)‖ = c ∈ R+.

For simplicity and without loss of generality we can assume c = 1 and a ≥ 1

(we can play with a and λ to generalize this to any c, a ∈ R+ as long as a > c).

The triangular inequality we want to prove can therefore be written

√
g−1
(
S(Vi.).S(Vj.)′

)
≤
√
g−1
(
S(Vi.).S(Vk.)′

)
+
√
g−1
(
S(Vj.).S(Vk.)′

)

(3.7)

for readability we rewrite x = S(Vi.), y = S(Vj.) and z = S(Vk.). These three

vectors are on the unity sphere and have only positive coefficients. Actually,

there is a distance between these vectors which consists in computing the

geodesic angle between them. In other words, consider the intersection of

vect(x,y) and the m-dimensional sphere. This is a circle where x and y are

located. The angle between the two points is written θx,y. It is a distance on
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the sphere, thus, it satisfies the triangular inequality:

θx,y ≤ θx,z + θz,y (3.8)

Actually, all these angles belong [0, π
2
[ because x,y and z only have positive

coefficients.

Observe that g−1(x.y′) = g−1
(
cos(θx,y)

)
and separate now the two case for

the choice of function g:

1. If g(x) = a
(
1 − x

λ2

)
with a ≥ 1, then g−1(x) = λ2

(
1 − x

a

)
. Therefore,

define h1 : x 7→ λ
√

1 − cos(x)
a

. We now want to apply h1 to (3.8) but h1

is monotonic only if x ≤ π
2
. Therefore, divide (3.8) by 2 and apply h1

on both sides to get

h1(
θx,y

2
) ≤ h1(

1

2
θx,z +

1

2
θz,y)

Now consider the function ηa(x, y) = h1(x + y) − h1(x) − h1(y) for

x, y ∈ [0, π
4
[. Because, h1 is increasing it is clear that ∂ηa

∂x
(x, y) ≤ 0

(and similarly for y), such that ηa reaches its maximum for x = y = π
4
.

Besides, ηa(
π
4
, π

4
) ≤ η1(

π
4
, π

4
) < 0. This proves that 2h1(

1
2
θx,z + 1

2
θz,y) ≤

h1(θx,z) + h1(θz,y). Moreover, it is easy to observe that 2h1(
x
2
) ≥ h1(x)

for all a > 1. This concludes the proof for g(x) = a
(
1 − x

λ2

)
.

2. If g(x) = ae−x then g−1(x) = λ2ln(a
x
). As before, define h2 : x 7→

λ
√
ln( a

cos(x)
). We still want to apply h2 to (3.8), but h2 is not defined

for x > π
2
, which is likely for the right hand side of (3.8). Therefore, we

apply h2 to (3.8) divided by two and use the fact that h2 is increasing

on [0, π
2
[. This leads to h2(

θx,y

2
) ≤ h2(

1
2
θx,z + 1

2
θz,y). First, we use the

convexity of h2 to get 2h2(
θx,y

2
) ≤ h2(θx,z) + h2(θz,y) and then we use

the fact that 2h2(
x
2
) ≥ h2(x) for x ∈ [0, δ[. With δ < π

2
. This would

conclude the proof but we have to make sure the angles remain in [0, δ[.

Actually, we can compute δ which verifies 2h2(
δ
2
) = h2(δ). This leads

to, δ = 2arccos(
√
a3 −

√
a6 − a3).

In fact, the coefficients of x,y and z are strictly positive and larger than

S(0). Therefore, the angles between them are strictly smaller than π
2
.

More precisely, θx,y ∈ [0, π
2
− 2arcsin

(
S(0)

)
[. Therefore, a necessary

condition for the result to be true is 2arccos(
√
a3 −

√
a6 − a3) ≥ π

2
−

2arcsin
(
S(0)

)
. Using the fact that arccoS(x) = π

2
− arcsin(x) leads to

arcsin
(
S(0)

)
− arcsin(

√
a3 −

√
a6 − a3) ≥ π

8
.
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Remark 4.It is necessary that S > 0 for the previous to hold. In a way,

the sigmoid has the role of making sure the activity remains positive so that

the equilibrium connectivity can be a distance matrix. Therefore, we can not

be sure that the equilibrium connectivity of a linear system as considered in

part 2.4. Yet, we believe that the result may still hold in more general cases.

3.3.2 Unveiling the geometrical structure of the inputs

We hypothesize that the shape defined by the set of the xi reflects the under-

lying geometrical structure of the inputs. We have not found a way to prove

this so we only provide numerical examples that illustrate this claim. There-

fore, the following is only a (numerical) proof of concept. For each example,

we feed the network with inputs having a defined geometrical structure and

then show how this structure can be extracted from the lateral connectivity

by the method outlines in section 3.1.

In particular, we assume that the inputs are uniformly distributed Gaus-

sians over a submanifold Ω ⊂ Rn with fixed geometry which we expect the

network to retrieve after learning. This corresponds to associating to the ath

input a location za ∈ Ω and assuming that it has a bell shape around this

center.

We introduce now a strong assumption, which corresponds to saying that

the feed-forward connectivity (which we do not consider here) has already

properly filtered the information coming from the sensory organs. Indeed, as

said in part 3.1, the feedforward connections tend to isolate the meaningful fea-

tures of the input by designing relevant receptive fields for the cortical neurons.

A inspiring example is that of neurons in V1 which are selective for positions in

the visual field: the feedforward connections from the retina to V1 give a posi-

tion yi to the ith neuron in the visual field. There has been numerous papers

describing the evolution of such feedfoward connections leading to retinotopic

receptive field in the low-level areas of the cortex [Miller and MacKay 1994,

Dayan and Abbott 2001, Gerstner and Kistler 2002b, Miikkulainen et al. 2005].

In our more general framework, we can generalize it by saying that each neu-

ron is assigned a position on the manifold Ω. All the neurons are therefore

assumed to be localized on the manifold Ω but this piece of information is

only in the inputs to the network.
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With these notations we define the set of inputs by the matrix U ∈ Rn×m

such that Uia = u
(a)
i = f(‖yi − za‖Ω) where f is a decreasing function on

R+. The norm ‖.‖Ω is the natural norm defined over the manifold Ω. For

simplicity, assume f(x) = fσ(x) = Ae−
x2

σ2 so that the inputs are localized

bell-shaped bumps on the shape Ω.

These stimuli are different from natural pictures of the daily life even if

they may capture some essential regularity in them. However, they appear to

be good approximations of retinal (resp. cortical) waves which are pre-natal

spontaneously emerging waves of activity propagating in the retina (resp.

the cortex) [Wong 1999]. In a way, the waves in the retina train the cortex

to understand their 2 dimensional geometry even before the eyes open. It

was suggested that these local waves are a good motivation for considering

localized inputs, [Miikkulainen et al. 2005]. Although we do not capture the

dynamics of these waves in the part (see 3.3) the spatial structures of these

waves are close to be localized Gaussians in the visual field.

3.3.2.1 Planar retinotopy
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Figure 3.8: Plot of planar retinotopic inputs on Ω = [0, 1] × [0, 1] (left) and

final connectivity matrix of the system Σ′ (right). The parameters used for

this simulation are S(x) = 1
1+e−4(x−1) , l = 1, κ = 10, n = m = 100, σ = 4. As

can be seen on the left picture, these inputs correspond to um = 1.
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First, we consider a set of spatial Gaussian inputs uniformly distributed over

a two-dimensional plane, e.g. Ω = [0, 1] × [0, 1]. For simplicity, we take

n = m = K2 and set za = yi for i = a, a ∈ {1, . . . ,m}. (The numerical results

show an identical structure for the final connectivity when the yj correspond

to random points, but the analysis is harder). In the simpler case of one-

dimensional Gaussians with n = m = K, the input matrix takes the form

U = Tfσ
, where Tf is a symmetric Toeplitz matrix:

Tf =




f(0) f(1) f(2) · · · · · · f(K)

f(1) f(0) f(1) f(2) · · · f(K − 1)

f(2) f(1) f(0) f(1) · · · f(K − 2)
...

...
. . . . . . . . .

...

f(K) f(K − 1) f(K − 2) · · · · · · f(0)




(3.9)

In the two-dimensional case, we set z = (x, y) ∈ Ω and introduce the label-

ing yk+(l−1)K = (xk, yl) for k, l = 1, . . . , K. It follows that Uia = u
(a)
i ∼

exp(− (xk−xk′ )
2

σ2 ) exp(− (yl−yl′ )
2

σ2 ) for i = k + (l − 1)K and a = k′ + (l′ − 1)K.

Hence, we can write U = Tfσ
⊗ Tfσ

, where ⊗ is the Kronecker product; the

Kronecker product is responsible for the K ×K sub-structure we can observe

in figure 3.8 with K = 10. Note that if we were interested in a n-dimensional

retinotopy, then the input matrix could be written as a Kronecker product

between n Toeplitz matrices. As previously mentioned, the final connectivity

matrix roughly corresponds to the correlation matrix of the input matrix. It

turns out that the correlation matrix of U is also a Kronecker product of two

Toeplitz matrix generated by a single Gaussian (with a different standard de-

viation). Thus, the connectivity matrix has the same basic form as the input

matrix when za = yi for i = a. The inputs and stable equilibrium points of

the simulated system are shown in figure 3.8. The positions xi of the neurons

after multidimensional scaling are shown in figure 3.9 for different parameters.

Note that we find no significant change in the position xi of the neurons when

the convolutional kernel g varies (as will be also shown in section 3.3.3.1).

Thus, we only show results for one of these kernels, namely, g(x) = e−x.

If the standard deviation of the inputs is properly chosen as in figure

3.9.b, we observe that the neurons are distributed on a regular grid which

is retinotopically organized. In other words, the network has learned the

geometric shape of the inputs. This can also be observed in figure 3.9.d which

corresponds to the same connectivity matrix as in figure 3.9.b but represented
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Figure 3.9: Positions xi of the neurons after having applied multidimensional

scaling to the equilibrium connectivity matrix of a learning network of n = 100

neurons driven by planar retinotopic inputs as described in figure 3.8. In all

figures, the convolution kernel g(x) = e−x; this choice has virtually no impact

on the shape of the figures. (a) Uniformly sampled inputs with m = 100,

σ = 1, um = 1 and k = 2. (b) Uniformly sampled inputs with m = 100,

σ = 4, um = 1 and k = 2. (c) Uniformly sampled inputs with m = 100,

σ = 10, um = 1 and k = 2. (e) Uniformly sampled inputs with m = 100,

σ = 4, um = 0.2 and k = 2. (d) Same as b) but in three dimensions, i.e.

k = 3. (f) Non-uniformly sampled inputs with m = 150, σ = 4, um = 1 and

k = 2. The first 100 inputs are as in (b) but 50 more inputs of the same type

are presented to one half of the visual field. This corresponds to the denser

part of the picture.
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in three dimensions. The neurons self-organize on a 2-dimensional saddle

shape that accounts for the border distortions that can be observed in two

dimensions (which we discuss in the next paragraph). If σ is too large, as can

be observed in figure 3.9.c, the final results is poor. Indeed, the inputs are

not local anymore and cover most of the visual field. Therefore, the neurons

saturate, i.e. S(Via) ≃ Sm, for all the inputs and no structure can be read in

the activity variable. On the other hand, if σ is small then the neurons still

seem to self organize (as long as the inputs are not completely localized on

single neurons) but with significant border effects.

There are several reasons why we observe border distortions in figure 3.9.

We believe the most important is due to an unequal average excitation of

the neurons. Indeed, the neurons corresponding to the border of the “visual

field“ are less excited than the others. For example, consider a neuron on

the left border of our artificial visual field. It has no neighbors on its left

and therefore is less likely to be excited by its neighbors and therefore less

excited on average. The consequence is that it is less connected to the rest

of the network (see for instance the top row of the right picture of figure

3.8), because their connection depends on their level of excitement through

the correlation of the activity. Therefore, it is further away from the other

neurons, which is what we observe. When the inputs are really localized the

border neurons are even less excited on average and thus are further away

as shown in figure 3.9.a. Note that that neurons near a map border have

neighbors not only in the considered visual area but also in the symetrical map

extending in the next (or previous) area. For instance, the map of the visual

field flip symmetrically arround the representation of the vertical meridian of

the hemifield (e.g. border V1-V2) and the periphery (e.g. border V2-V3).

However, we did not model the hierachy in our articificial cortex and the

space in which we represent the neurons is abstract and does not necessarily

correspond to the physical space. Therefore, these biological observations do

not concern us in the following.

Another way to get distortions in the positions xi is to reduce or increase

excessively the amplitude um = maxi,a |u(a)
i | of the inputs. Indeed, if it is

small, the equilibrium activity described by equation (2.22) is also small and

likely to be the flat part of the sigmoid. In this case, neurons tend to be more

homogeneously excited and less sensitive to the particular shape of the inputs.

Therefore, the network loses some information about the underlying structures
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of the inputs. Actually, the neurons become relatively more sensitive to the

neighborhood structure of the network and the border neurons have a different

behavior as the rest of the network as shown in figure 3.9.e. The parameter

κ has much less impact on the final shape since it only corresponds to a

homogeneous scaling of the final connectivity.

So far, we have assumed that the inputs were uniformly spread on the

manifold Ω. If this assumption is broken the final position of the neurons will

be affected. As shown in figure 3.9.f, where 50 inputs were added to the case

of figure 3.9.b in only half of the visual field, the neurons that code for this

area tend to be closer. Indeed, they tend not to be equally excited on average

(as supposed in proposition 3.3.1) and a distortion effect occurs. This means

that a proper understanding of the role of the vertical connectivity would be

needed to complete this geometrical picture of the functioning of the network.

This is, however, beyond the scope of this thesis.

3.3.2.2 Toröıdal retinotopy

Figure 3.10: Plot of retinotopic inputs on Ω = T2 (left) and the final connectiv-

ity matrix (right) for the system Σ′. The parameters used for this simulation

are S(x) = 1
1+e−4(x−1) , l = 1, κ = 10, n = 1000,m = 10, 000, σ = 2.

We now assume that the inputs are uniformly distributed over a two-

dimensional torus, i.e. Ω = T2. That is, the input labels za are randomly

distributed on the torus. The neuron labels yi are regularly and uniformly

distributed on the torus. The inputs and final stable weight matrix of the
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Figure 3.11: Positions xi of the neurons for k = 3 after having applied multidi-

mensional scaling methods presented in section 3.3.1 to the final connectivity

matrix shown in figure 3.10.

simulated system are shown in figure 3.10. The positions xi of the neurons

after multidimensional scaling for k = 3 are shown in figure 3.11, and appear

to form a cloud of points distributed on a torus. In contrast to the previous

example, there are no distortions now because there are no borders on the

torus. In fact, the neurons are equally excited on average in this case which

makes property 3.3.1 valid.

3.3.3 Links with neuroanatomy

The brain is subject to energy constraints which are completely neglected in

the above formulation. These constraints most likely have a significant impact

on the positions of real neurons in the brain. Indeed, it seems reasonable to as-

sume that the positions and connections of neurons reflect a trade-off between

the energy costs of biological tissue and their need to process information effec-

tively. For instance, it has been suggested that a principle of wire length mini-

mization may occur in the brain (see [Swindale 1996, Chklovskii et al. 2002]).

In our neural mass framework, one may consider that the stronger two neural
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masses are connected, the larger the number of real axons linking the neurons

together. Therefore, minimizing axonal length can be read as: the stronger the

connection the closer, which is consistent with the convolutional part of the

weight matrix. However, the underlying geometry of natural inputs is likely to

be very high-dimensional, whereas the brain lies in a three-dimensional world.

In fact, the cortex is so flat that it is effectively two-dimensional. Hence,

the positions of real neurons are different from the positions xi ∈ Rk in a

high dimensional vector space; since the cortex is roughly two-dimensional,

the positions could only be realized physically if k = 2. Therefore, the three-

dimensional toric geometry or any higher dimensional structure could not be

perfectly implemented in the cortex without the help of non-convolutional

long-range connections. Indeed, we suggest that the cortical connectivity is

made of two parts: i) a local convolutional connectivity corresponding to

the convolutional term g in (3.4) and (3.5), which is consistent with the re-

quirements of energy efficiency, and ii) a non-convolutional connectivity cor-

responding to the factor M in equations (3.4) and (3.5), which is required

in order to represent various stimulus features. If the cortex were higher-

dimensional (k ≫ 2) then there would no non-convolutionnal connectivity M,

i.e. M ≡ 0 for the linear convolutional kernel or M ≡ 1 for the exponential

one.

We illustrate the above claim by considering two examples based on the

functional anatomy of the primary visual cortex: the emergence of ocular

dominance columns and orientation columns, respectively. We proceed by

returning to the case of planar retinotopy (section 5.3.1) but now with addi-

tional input structure. In the first case, the inputs are taken to be binocular

and isotropic, whereas in the second case they are taken to be monocular

and anisotropic. The details are presented below. Given a set of prescribed

inputs, the network evolves according to equation (2.17) and the lateral con-

nections converge to a stable equilibrium. The resulting weight matrix is then

projected onto the set of distance matrices for k = 2 (as described in section

3.3.2.1) using the stress majorization or SMACOF algorithm for the stress1

cost function as described in [Borg and Groenen 2005]. We thus assign a po-

sition xi ∈ R2 to the ith neuron, i = 1, . . . , n. (Note that the position xi

extracted from the weights using multidimensional scaling is distinct from the

“physical” position yi of the neuron in the retino-cortical plane; the latter

determines the center of its receptive field). The convolutional connectivity
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(g in equations (3.4) and (3.5)) is therefore completely defined: on the planar

map of points xi, neurons are isotropically connected to their neighbors; the

closer the neurons are the stronger is their convolutional connection. More-

over, since the stimulus feature preferences (orientation, ocular dominance) of

each neuron i, i = 1, . . . , n, are prescribed, we can superimpose these feature

preferences on to the planar map of points xi. In both examples, we find

that neurons with the same ocular or orientation selectivity tend to cluster

together: interpolating these clusters then generates corresponding feature

columns. It is important to emphasize that the retino-cortical positions yi do

not have any columnar structure, that is, they do not form clusters with sim-

ilar feature preferences. Thus, in contrast to standard developmental models

of vertical connections, the columnar structure emerges from the recurrent

weights post-learning which are interpreted as a Euclidean distances. It fol-

lows that neurons coding for the same feature tend to be strongly connected;

indeed, the multidimensional scaling algorithm has the property that it posi-

tions strongly connected neurons close together . Equations (3.4) and (3.5)

also suggest that the connectivity has a non-convolutional part, M, which is a

consequence of the low-dimensionality (k = 2). In order to illustrate the struc-

ture of the non-convolutional connectivity, we select a neuron i in the plane

and draw a link from it at position xi to the neurons at position xj for which

M(xi,xj) is maximal in figures 3.13, 3.14 and 3.15. We find that M tends to

be patchy, i.e. it connects neurons having the same feature preferences. In

the case of orientation, M also tends to be co-aligned, i.e. connecting neurons

with similar orientation preference along a vector in the plane of the same

orientation.

3.3.3.1 Ocular dominance columns and patchy connectivity

In order to construct binocular inputs, we partition the n neurons into two

sets i ∈ {1, . . . , n/2} and i ∈ {n/2 + 1, . . . , n} that code for the left and right

eyes, respectively. The ith neuron is then given a retino-cortical position yi,

with the yi uniformly distributed across the line for figure 3.12 and across the

plane for figures 3.13 and 3.13. We do not assume a priori that there exist

any ocular dominance columns, that is, neurons with similar retino-cortical

positions yi do not form clusters of cells coding for the same eye. We then
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take the ath input to the network to be of the form

Left eye u
(a)
i = (1 + γ(a))e−

(yi−za)2

σ′2 , i = 1, . . . , n/2

Right eye u
(a)
i = (1 − γ(a))e−

(yi−za)2

σ′2 , i = n/2 + 1, . . . , n,
(3.10)

where the za are randomly generated from [0, 1] in the 1-dimensional case

and [0, 1]2 in the 2-dimensional case. For each input a, γ(a) is a randomly

and uniformly taken in [−γ, γ] with γ ∈ [0, 1] (see [Bressloff 2005]). Thus, if

γ(a) > 0 (γ(a) < 0) then the corresponding input is predominantly from the

left (right) eye.

First, we illustrate the results of ocular dominance simulations in one di-

mension in figure 3.12. Although not biologically realistic, taking the visual

field to be one dimensional makes it possible to visualize the emergence of

ocular dominance columns more easily. Indeed, in figure 3.12 we analyze the

role of the binocular disparity of the network, i.e. we change the value of γ.

If γ = 0 (blue curves in figures 3.12.a and 3.12.b and top pictures in figures

3.12.c and 3.12.d), there are virtually no differences between left and right

eyes and we observe much less segregation than in the case γ = 1 (green

curves in figures 3.12.a and 3.12.b and bottom pictures in figures 3.12.c and

3.12.d). Increasing the binocular disparity between the two eyes results in the

emergence of ocular dominance columns. Yet, there does not seem any spatial

scale associated with these columns: they form on various scales as shown in

figure 3.12.d.

In figures 3.13 and 3.14, we plot the results of ocular dominance simu-

lations in two dimensions. In particular, we illustrate the role of changing

the binocular disparity γ, changing the standard deviation of the inputs σ′

and using different convolutional kernels g. We plot the points xi obtained

by performing multidimensional scaling on the final connectivity matrix for

k = 2, and superimposing upon this the ocular dominance map obtained by

interpolating between clusters of neurons with the same eye preference. The

convolutional connectivity (g in equations (3.4) and (3.5)) is implicitly de-

scribed by the position of the neurons: the closer the neurons, the stronger

their connections. We also illustrate the non-convolutional connectivity (M

in equations (3.4) and (3.5)) by linking one selected neuron to the neurons it

is most strongly connected to. The color of the link refers to the color of the

target neuron. The multidimensional scaling algorithm was applied for each

set of parameters with different initial conditions and the best final solution
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Figure 3.12: Emergence of ocular dominance columns. Analysis of the equi-

librium connectivity of a network of n = 1000 neurons exposed to m = 3000

inputs as described in equation (3.10) with σ′ = 10. The parameters used

for this simulation are um = 1, κ = 10 and S(x) = 1
1+e−4(x−1) . (a) Relative

density of the network assuming that the “weights” of the left neurons are

+1 and the “weights” of the right eye neuron are −1. Thus, a positive (resp.

negative) lobe corresponds to a higher number of left neurons (resp. right

neurons) and the presence of oscillations implies the existence of ocular dom-

inance columns. The size of the bin to compute the density is 5. The blue

(resp. green) curve corresponds to γ = 0 (resp. γ = 1). It can be seen that

the case γ = 1 exhibits significant oscillations consistent with the formation

of ocular dominance columns. (b) Power spectra of curves plotted in (a). The

dependence of the density and power spectrum on bin size is shown in (c)

and (d), respectively. The top pictures correspond to the blue curves, i.e. no

binocular disparity and the bottom pictures correspond to the green curves

γ = 1, i.e. a higher binocular disparity.
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was kept and plotted. The initial conditions were random distributions of neu-

rons or artificially created ocular dominance stripes with different numbers of

neurons per stripe. It turns out the algorithm performed better on the latter.

(The number of tunable parameters was too high for the system to converge

to a global equilibrium for a random initial condition). Our results show that

non-convolutional or long–range connections tend to link cells with the same

ocular dominance provided the inputs are sufficiently strong and different for

each eye.

3.3.3.2 Orientation columns and collinear connectivity

In order to construct oriented inputs, we partition the n neurons into four

groups Σθ corresponding to different orientation preferences θ = {0, π
4
, π

2
, 3π

4
}.

Thus, if neuron i ∈ Σθ then its orientation preference is θi = θ. For each group,

the neurons are randomly assigned a retino-cortical position yi ∈ [0, 1]× [0, 1].

Again, we do not assume a priori that there exist any orientation columns,

that is, neurons with similar retino-cortical positions yi do not form clusters

of cells coding for the same orientation preference. Each cortical input u
(a)
i is

generated by convolving a thalamic input consisting of an oriented Gaussian

with a Gabor–like receptive field (as in [Miikkulainen et al. 2005]). Let Rθ

denote a 2-dimensional rigid body rotation in the plane with θ ∈ [0, 2π).

Then

u
(a)
i =

∫
Gi(ξ − yi)Ia(ξ − za)dξ, (3.11)

where

Gi(ξ) = G0(Rθi
ξ) (3.12)

and G0(ξ) is the Gabor–like function

G0(ξ) = A+e
−ξ′.Λ−1.ξ − A−e

−(ξ−e0)′.Λ−1.(ξ−e0) − A−e
−(ξ+e0)′.Λ−1.(ξ+e0)

with e0 = (0, 1) and

Λ =

(
σlarge 0

0 σsmall

)
.

The amplitudes A+, A− ∈ R are chosen so that
∫
G0(ξ)dξ = 0. Similarly, the

thalamic input Ia(ξ) = I(Rθ′aξ) with I(ξ) the anisotropic Gaussian

I(ξ) = e−ξ′.Λ′−1.ξ, Λ′ =

(
σ′

large 0

0 σ′
small

)
.
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Figure 3.13: Analysis of the equilibrium connectivity of a modifiable recurrent

network driven by 2-dimensional binocular inputs. This figure and figure 3.14

correspond to particular values of the disparity γ and standard deviation σ′.

Each cell shows the profile of the inputs (top), the position of the neurons for a

linear convolutional kernel (middle) and an exponential kernel (bottom). The

parameters of the kernel (a and λ) were automatically chosen to minimize the

non-convolutional part of the connectivity. It can be seen that the choice of

the convolutional kernel has little impact on the position of the neurons. (a)

and (c) correspond to γ = 0.5, which mean there is little binocular disparity.

Therefore, the non-convolutional connectivity connects neurons of opposite

eye preference more than for γ = 1, as shown in (b) and (d). The inputs for (a)

and (b) have a smaller standard deviation than for (c) and (d). It can be seen

that the neurons coding for the same eye tend to be closer when σ′ is larger.

The other parameters used for these simulations are S(x) = 1/(1 + e−4(x−1)),

l = 1, κ = 10, n = m = 200.
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Figure 3.14: See figure 3.13 for the commentaries.
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The input parameters θ′a and za are randomly generated from [0, π) and [0, 1]2

respectively. In our simulations we take σlarge = 0.133..., σ′
large = 0.266...

and σsmall = σ′
small = 0.0333.... The results of our simulations are shown in

the left picture of figure 3.15. In particular, we plot the points xi obtained

by performing multidimensional scaling on the final connectivity matrix for

k = 2, and superimposing upon this the orientation preference map obtained

by interpolating between clusters of neurons with the same orientation pref-

erence. To avoid border problems we have zoomed on the center on the map.

We also illustrate the non-convolutional connectivity by linking a group of

neurons gathered in an orientation column to all other neurons for which M

is maximal. The patchy, anisotropic nature of the long–range connections is

clearly seen. The anisotropic nature of the connections is further quantified

in the histogram of figure 3.15.

3.3.4 Summary, conclusions and immediate extensions

In this section, we have shown how a neural network can learn the underlying

geometry of a set of inputs.

We have considered the solution of a fully recurrent neural network whose

connections were slowly learned through Hebbian learning with decay. The

equilibrium connectivity is the starting point of this chapter. The approach

could be extend to any symmetric learning rule and we would get the same

qualitative results. If the learning rule was asymmetric this method is to be

applied on the symmetric part of the connectivity.

We have then demonstrated how the connectivity matrix can be expressed

as a distance matrix in Rk for sufficiently large k when the sigmoid is positive,

which can be related to the underlying geometrical structure of the inputs.

Indeed, this methods gives a position in Rk to all the neurons. On the geo-

metrical shape suggested by the neurons’ distribution in space, the network

appears to be convolutional: the connectivity is only a function on the distance

between the neurons.

If the connectivity matrix is embedded in a lower two-dimensional space

(k = 2), then the emerging patterns are similar to experimentally observed

cortical feature maps. That is, neurons with the same feature preferences

tend to cluster together forming cortical columns within the embedding space.

Moreover, the recurrent weights decompose into a local isotropic convolu-
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Figure 3.15: Emergence of orientation columns. (Left) Plot of the positions

xi of neurons for k = 2 obtained by multidimensional scaling of the weight

matrix. Neurons are clustered in orientation columns represented by the col-

ored areas, which are computed by interpolation. The strongest components

of the non-convolutional connectivity (M in equation (3.5)) from a particular

neuron in a yellow area are illustrated by drawing black links from this neuron

to the target neurons. Since the yellow color corresponds to an orientation of
3π
4

, the non-convolutional connectivity shows the existence of a co-linear con-

nectivity as exposed in [Bosking et al. 1997]. The parameters used for this

simulation are S(x) = 1
1+e−4(x−1) , l = 1, κ = 10, n = 900, m = 9000. (Right)

Histogram of the 5 largest components of the non-convolutional connectivity

for 80 neurons randomly chosen among those shown in the left picture. The

abscissa corresponds to the difference in radian between the direction pref-

erence of the neuron and the direction of the links between the neuron and

the target neurons. This histogram is weighted by the strength of the non-

convolutional connectivity. It shows a preference for co-aligned neurons but

also a slight preference for perpendicularly-aligned neurons (e.g. neurons of

the same orientation but parallel to each other).
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tional part, which is consistent with the requirements of energy efficiency,

and a longer–range non-convolutional part that is patchy. This suggest a

new interpretation of the cortical maps: they correspond to two-dimensional

embeddings of the underlying geometry of the inputs.

Geometric diffusion methods (see [Coifman et al. 2005]) are also an effi-

cient way to reveal the underlying geometry of sets of inputs. There are several

reasons why multidimensional scaling of the lateral connectivity is preferred.

First, the focus of this thesis is not the direct analysis of the inputs but the

study of the final lateral connectivity of a learning network. The advantage

is that the connectivity is a n × n matrix whereas the size of the inputs is

n ×m which is potentially much higher. Besides, the present approach allo-

cates a position to the neurons, as opposed to the inputs (which is the case for

geometric diffusion methods). This makes these two techniques different in

nature. Second, we are interested in decomposing the connectivity between a

convolutionnal and non-convolutionnal part and this is why we focus not only

on the spatial structure but also on the shape of the activity equation on this

structure. This two results come together when decomposing the connectiv-

ity. Actually, this focus on the connectivity was necessary to use the energy

minimization argument of part 2.3.2.1 and compute the cortical maps in part

3.3.3. This would have made no sense in the diffusion geometric framework.

In conclusion, these two approach share the same philosophy but diffusion

geometry is focused on inputs whereas ours is focused on the connectivity of

the network.

One of the limitations of applying simple Hebbian learning to recurrent

cortical connections is that it only takes into account excitatory connections,

whereas 20% of cortical neurons are inhibitory. Indeed, in most develop-

mental models of feed-forward connections, it is assumed that the local and

convolutional connections in cortex have a Mexican hat shape with negative

(inhibitory) lobes for neurons that are sufficiently far from each other. From

a computational perspective, it is possible to obtain such a weight distribu-

tion by replacing Hebbian learning with some form of covariance learning (see

[Sejnowski and Tesauro 1989]). However, it is difficult to prove convergence to

a fixed point in the case of the covariance learning rule, and multidimensional

scaling method cannot be applied directly unless the Mexican hat function is

truncated so that it is invertible. Another limitation of rate-based Hebbian

learning is that it does not take into account causality, in contrast to more
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biologically detailed mechanisms such as spike timing dependent plasticity.

The approach taken here is very different from standard treatments of

cortical development (as in [Miller et al. 1989, Swindale 1996]), in which the

recurrent connections are assumed to be fixed and of convolutional Mexican

hat form whilst the feed-forward vertical connections undergo some form of

correlation-based Hebbian learning. In the latter case, cortical feature maps

form in the physical space of retino-cortical coordinates yi, rather than in

the more abstract planar space of points xi obtained by applying multidi-

mensional scaling to recurrent weights undergoing Hebbian learning in the

presence of fixed vertical connections. A particular feature of cortical maps

formed by modifiable feed-forward connections is that the mean size of a col-

umn is determined by a Turing-like pattern forming instability, and depends

on the length scales of the Mexican hat weight function and the two-point

input correlations (see [Miller et al. 1989, Swindale 1996]). No such Turing

mechanism exists in our approach so that the resulting cortical maps tend

to be more fractal-like (many length scales) compared to real cortical maps.

Nevertheless, we have established that the geometrical structure of cortical

feature maps can also be encoded by modifiable recurrent connections. This

should have interesting consequences for models that consider the joint devel-

opment of feed-forward and recurrent cortical connections. One possibility is

that the embedding space of points xi arising from multidimensional scaling

of the weights becomes identified with the physical space of retino-cortical

positions yi. The emergence of local convolutional structures together with

sparser long-range connections would then be consistent with energy efficiency

constraints in physical space.

This section also draws a direct link between the recurrent connectivity of

the network and the positions of neurons in some vector space such as R2. In

other words, learning corresponds to moving neurons or nodes so that their

final position will match the inputs’ geometrical structure. Similarly, the Ko-

honen algorithm detailed in [Kohonen 1990] describes a way to move nodes

according to the inputs presented to the network. It also converges toward the

underlying geometry of the set of inputs. Although not formally equivalent, it

seems that both of these approaches have the same qualitative behavior. How-

ever, our method is more general in the sense that no neighborhood structure

is assumed a priori; such a structure emerges via the embedding into Rk.

Finally, note that we have used a discrete formalism based on a finite



3.3. Symmetric part of the recurrent connectivity: a distance
matrix 159

number of neurons. However, the resulting convolutional structure obtained

by expressing the weight matrix as a distance matrix in Rk, see equations

(3.4) and (3.5), allows us to take an appropriate continuum limit. This then

generates a continuous neural field model in the form of an integro-differential

equation whose integral kernel is given by the underlying weight distribu-

tion. Neural fields have been used increasingly to study large–scale cortical

dynamics (see [Coombes 2005] for a review). Our geometrical learning the-

ory provides a developmental mechanism for the formation of these neural

fields. One of the useful features of neural fields from a mathematical per-

spective is that many of the methods of partial differential equations can

be carried over. Indeed, for a general class of connectivity functions defined

over continuous neural fields, a reaction-diffusion equation can be derived

whose solution approximates the firing rate of the associated neural field

[Degond and Mas-Gallic 1989, Cottet 1995, Edwards 1996]. It appears that

the necessary connectivity functions are precisely those that can be written in

the form (3.5). This suggests that a network that has been trained on a set

inputs with an appropriate geometrical structure behaves as a diffusion equa-

tion in a high-dimensional space together with a reaction term corresponding

to the inputs.
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3.4 Anti-symmetric part of the recurrent connec-

tivity: a vector field

We have shown in section 2.4.4 than a learning rule for a rate-based, lin-

ear neural networks inspired from STDP lead to an equilibrium connectivity

which has both a symmetric and an anti-symmetric part. The analysis of the

symmetric part was done in the previous part and leads to the definition of a

distribution of points which, we believe, corresponds to the underlying geom-

etry of the inputs. This part is devoted to the analysis of the anti-symmetric

part of the connectivity.

What we want to prove here is that the antisymmetric part of the connec-

tivity codes for a vector field on top of the geometrical structure defined in

the previous section. We believe this vector field corresponds to that of the

inputs.

This part is not finalized yet. We did not manage to use rigorously the

mathematical language to get the expected result. Besides, we have not

merged yet the results of this section and the previous one. In particular,

we work with a predefined geometry instead of inferring it thanks to the pre-

vious section. This part has to be considered as a detailed perspective section.

3.4.1 The input as the solution of a dynamical system

First, we need to assume that the inputs u : t ∈ R 7→ u(t) ∈ Rn correspond to

the solution of an autonomous dynamical system, i.e. there exists ξ : Rn → Rn

a vector field such that

u̇(t) = ξ
(
u(t)

)
(3.13)

Actually, there a several ways to make this more general:

• An explicit time dependence of ξ can be considered so that u is the

solution of a non-autonomous system.

• The network’s inputs u can be seen as an observable of a hidden state

of the environment written x ∈ Rñ in higher dimension, i.e. ñ ≥ n.

Redefining ξ on Rñ and with ζ : Rñ → Rñ, the system would be

ẋ = ξ
(
x(t)

)
evolution of the environment

u(t) = ζ
(
x(t)

)
observable of the environment
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In this framework, the hidden cortical layers may be responsible of defin-

ing and estimating the hidden environment variables.

• Some noise could be added to the inputs equation to take into account

their intrinsic variability and/or the noisy behaviors of the sensors. This

may give

du(t) = ξ(u(t))dt+ η(u) · dB(t)

where η : Rn → Rn×n and B is a n-dimensional Brownian noise.

• The inputs need not to be defined on a Euclidean space (such as Rn) but

can be defined on a n-dimensional manifold M. The dynamical (3.13)

can therefore be redefined on a manifold by considering that ξ : M →
Rn.

All these additional level of complexity could also be combined. Yet, in the

following, we focus on the initial formulation (3.13) for simplicity.

3.4.2 An analytic tentative to extract the vector field

In this part, we remove the inputs’ term and, therefore, consider the sponta-

neous activity of the network. It is governed by

dv =
(
− lv + J∗.v

)
dt+ Σ.dB(t)

We focus on the communication term J∗.v to show how the vector field of the

inputs u emerges in the activity equation.

Assume that the connectivity matrix is the result of purely anti-symmetric

STDP learning, i.e. a± = a+ = a−, for inputs which where shown very slowly,

i.e. µ = 0. According to section 2.4.4, and more precisely equation (2.35) the

final connection is

J∗ =
2a±
γτ

(du
dt

∗ g1/γ

)
.
(
u ∗ g1/γ

)′

When γ tends to infinity J∗ tends to zero. From a biological stand-point,

it is absurd to take this limit. However, we want to exploit the fact that

lim
γ→+∞

g1/γ = δ so that it is reasonable to consider that, in a certain regime,

J∗ ∝ J∞
def
=

du

dt
.u′
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Therefore, using equation (3.13) the computation of the communication term

J∗.v is uniformly proportional to

J∞.v = ξ(u).u′.v(t) =

∫ τ

0

ξ(u)(s) ⊗ u(s)ds.v(t) =

∫ τ

0

ξ(u)(s)
〈
u(s),v(t)

〉
ds

The idea is to see the last integral as an expectation for a given measure.

To do so we must introduce some assumptions and definitions:

• Here, we need to assume that the inputs and the activity are always pos-

itive. We think it is a useful property granted in more realistic networks

by the positive sigmoid we have neglected here for simplicity. Indeed,

considering a voltage-based equation (see section 2.1) instead of a linear

equation would immediately give this property. Under this assumption

and for a fixed v(t) ∈ Rn, the scalar product
〈
u(s),v(t)

〉
is always

positive and can be seen as a probability density function.

• We assume that τ is large enough so that the (stochastic) inputs have

had enough time to sample their distribution. Yet, the inputs may not

sample Rn entirely. Therefore, we introduce the function

χu : Rn → R+

x 7→
∫ τ

0
δ
(
x − u(s)

)
ds

where δ is the Dirac function. In a way, χu counts the number of times

the inputs have passed through a point in Rn. Note that this definition

extends very easily to u being a stochastic process by changing the Dirac

function by the probability density function of u at time s.

This motivates the definitions

ρv

(
x
)

= χu(x)〈x,v〉
Zv

where Zv =
∫

Rn χu(x)〈x,v〉dx =
∫ τ

0
〈u(s),v〉ds

such that

J∗.v ∝ J∞.v = Zv

∫

Rn

ξ(x)ρv

(
x
)
dx = Zv Eρv(x)

(
ξ(x)

)

The factor Eρv(x)

(
ξ(x)

)
is the expectation of the inputs’ vector field for a

measure ρv proportional to x 7→ χu(x)〈x,v〉. It is interesting to observe

that ρv(x) is maximal when x belong to the trajectory of the inputs and is
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proportional to v. If v belongs to the trajectory of the inputs (and the inputs

are assumed to be normalized by the feed-forward connectivity, i.e. ‖u(t)‖
is a constant) then the probability density function is peaked on v such that

Eρv(x)

(
ξ(x)

)
≃ ξ(v). On the contrary, if v does not belong to the trajectory

of the inputs then the communication term will infer the value of the vector

field from the elements of the trajectory of the inputs that are close to v.

The factor Zv corresponds to the fact that the right hand side can not

be an uniform expectation since the result is going to be stronger when v(t)

is close to a very frequent input. For instance, if the inputs converges to an

equilibrium point, the value of the integral above is going to be larger when

v(t) is close to this equilibrium point. In other words, the network would

need the inputs to sample uniformly Rn for this integral to be the empirical

expectation.

Therefore, the communication term can be though of as a smoothed and

weighted version of the inputs vector field.

The network as a predictor of the future of the inputs The activity of

such a network post-learning can therefore be seen as

dv

dt
=
(
− lv + Σ.

dB(t)

dt

)
+ ξ(v) + u(t)

where dB(t)
dt

is a white noise. Of course this formulation is not rigorously true

but we believe it captures the idea of this section. The first two terms (in the

large parenthesis) correspond to a random excitation of the neurons field which

rapidly and uniformly fades away. In a way, this is a mechanisms to propose

different patterns according to matrix Σ. The third term ξ(v) propagates the

propositions of the random term as the inputs would have done. It is the

predicting term. It models the dynamics of the inputs. The last term u is an

external input which is null when considering the spontaneous activity of the

network. It can also trigger some neural representations if switched on briefly.

For instance, if u is the beginning of an input (e.g. a movie) the network is

used to seeing and then stops suddenly, the network will still temporarily see

the rest of the input because of the term ξ(v).
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3.4.3 A computational approach to extract the vector field

Chapter 23 of [Borg and Groenen 2005] reviews the traditional methods to

visually represent an asymmetric matrix. Among several methods, they show

that any asymmetric matrix can be seen a drift field defined over a distribution

of points. The symmetric part of the matrix leads to defining the position of

the points whereas the anti-symmetric part of the matrix defines a vector

attached to each point to indicate the statistical direction embedded in the

matrix. This methods gives a way to convert a matrix to a discretized spatial

structure equipped with a vector field. We illustrate this mechanism in the

two following examples.

We will also simulate the network post-learning with a punctual stimula-

tion both in time and space to illustrate the predicting capabilities of such

networks.

Example 1: A flow along a cylinder In this example we consider inputs

described by figure 3.16. The inputs u(t) ∈ Rn2
corresponds to a small Gaus-

sian drifting on a cylinder. Its center is written z(t) ∈ [0, 10]2 and is assumed

to verify

dz =

(
0

1

)
dt+ 0.01

(
dB1(t)

dB2(t)

)

where we assume that z(t + dt) = (c, 0)′ when z(t) = (c, 10)′ to emulate a

cylinder.

In the same spirit as section 3.3, we assume the n2 ∈ N neurons are “la-

beled” by a position yi ∈ [0, 10]2, which are uniformly spread. For simplicity

here, we assume that yi = 2
n
(i // n, i % n)′ + ( 1

n
, 1

n
) (where we consider // is

the integer division and % the modulo). Therefore, the inputs can be written

ui(t) = e−
‖z(t)−yi‖

σ2

where σ = 2
n
. Actually, we consider 100 different initial conditions for the

inputs (uniformly spread along the left border) and concatenate the results in

a single function u.

We then compute the equilibrium connectivity matrix according to section

2.4.4 with n = 51, a+ = 4, a− = 2, γ = 0.05, Σ = 0.01Id, µ = 0, and we

choose τ to correspond to the entire history of the inputs.
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Figure 3.16: The inputs consists in a drifting point with noise in one direction

of a square. When the points reaches the right border it is immediately

teleported to the left border. This has the effect of emulating a drift on a

cylinder.

• In a first time, we apply the methods of [Borg and Groenen 2005] on

the equilibrium connectivity J∗. The neurons are assumed to lie on a

regular grid on the square [10, 10]2. Actually, we would have had the

same retinotopic distribution by applying the methods of section 3.3.2.1.

This gives the vector field shown in figure 3.17.

We see that the left and right extremity of the square have small vectors.

This is due to the fact that we emulated a flow on a torus. At the

right border the neurons want to send their piece of information to the

first neuron on the left. Yet they also strongly inhibits the neurons

immediately on their left. Therefore, the two effects cancel out because

both of them are in the same direction. A similar reasoning applies to

neurons on the right border.

In this case, the vector field inferred by equation (3.4.3) is well retrieved

by the network.

• We now compute the activity field for any input. We use a (stochastic)

Euler method for 6000 time-steps with dt = 5. The initial condition

is null. The parameter l is chosen so that the largest eigenvalues real

part of −lId + J∗ is null. We choose an input which corresponds to a

temporary excitation of a single neuron of ui = 0.2 between t = and

t = 1200 and t = 2400. The results are shown in figure 3.18. We
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Figure 3.17: This is the vector field deduced from the anti-symmetric part

of the equilibrium connectivity of the system in example 1 and according

to chapter 23 of [Borg and Groenen 2005]. For readability we have chosen

n = 212 for this simulation.

have located the neurons according to their label position yi although

the structure of the symmetric part of the equilibrium connectivity is

exactly the same as that of section 3.3.2.1 so that the previous method

would find the planar geometry of the inputs.

We see that the temporary excitation generates a wave of excitation

in the same direction as the learned inputs. In a way, the network

propagates the information it expects to see. Actually, it is possible

to see the propagation of the noisy patterns due to the white noise in

the same direction as the flow on videos of such a system. When the

external excitation stops there is still a remaining propagating bump

which travels at the same speed as the inputs.

We think the retro-propagating oscillations in figure 3.18 are due to the

linearity of the model. The positive spot inhibits the neurons imme-

diately in the opposite direction as the flow which become negatively

excited (due to the linearity). Then these negative neurons have the

effect of positively exciting the next neurons in the direction opposite

to the flow. This mechanism repeats to give these oscillations.
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t=1224 t=2400 t=3300 t=4200

Input location

Figure 3.18: The two rows correspond to the same simulation with two differ-

ent scales. (top) The scale is [−50, 185], it corresponds to the extrema of the

field. (bottom) The scale is [−1, 1] and the values larger or smaller than the

extrema are thresholded.

Example 2: a spiral in 2 dimensions We consider an input made of localized

Gaussians on a square converging to the middle of the square with damped two

dimensional oscillations . In other words, the inputs u(t) ∈ Rn2
corresponds

to a small Gaussian drifting on plane along a spiral. Its center is written

z(t) ∈ [0, 10]2 and is assumed to verify

dz =

(
−0.5 1

−1 −0.5

)
.zdt+ 0.01

(
dB1(t)

dB2(t)

)

200 inputs are drawn randomly, uniformly on the square [10, 10]2. The pa-

rameters to compute the equilibrium connectivity are n = 21, a+ = 1,

a− = 0.9999, γ = 0.5, Σ = 0.01Id, µ = 0, and we choose τ to correspond

to the entire history of the inputs.

• The vector field extracted from the equilibrium connectivity is shown in

figure 3.19.

We observe that the strength of the vector field is much stronger close

to the middle of the square. This is due to the fact that a lot of inputs

trajectories have been in this area and therefore the term Zv is very
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Figure 3.19: This is the vector field deduced from the anti-symmetric part

of the equilibrium connectivity of the system in example 2 and according to

chapter 23 of [Borg and Groenen 2005].

strong in this area. Put differently, the inputs do not cover uniformly

the square and therefore the network knows some area (the center) better

than others (the borders).

In this case, also learning has made it possible for the network to learn

the vector field of the inputs.

• We now compute the activity field for any input. We use a (stochastic)

Euler method for 6000 time-steps with dt = 0.5. The initial condition

is null. The parameter l is chosen so that the largest eigenvalues real

part of −lId + J∗ is null. We choose an input which corresponds to a

temporary excitation of a single neuron of ui = 10. between t = and

t = 1200 and t = 5600. The results are shown in figure 3.4.3. We

have located the neurons according to their label position yi although

the structure of the symmetric part of the equilibrium connectivity is

exactly the same as that of section 3.3.2.1 so that the previous method

would find the planar geometry of the inputs.

The pictures in the extreme left and right columns show 2 different states

that are often visited by the dynamics of the stochastic network. They
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Input location

t = 2075 t = 5350 t = 6675 t = 22500

Figure 3.20: The two rows correspond to the same simulation with two differ-

ent scales. (top) The scale is [−20, 130], it corresponds to the extrema of the

field. (bottom) The scale is [−1, 1] and the values larger or smaller than the

extrema are thresholded.

can alternate because the network is linear. They have an oscillatory

spatial pattern as in the example 1.

We still see a propagation of the inputs activity in the same direction

as what the inputs would have done. However, with these parameters

there is no residual excitation when the stimulation is stopped.

As in the previous case, we see that the temporary excitation generates

a wave which goes in the same direction as the inputs: it describes a

spiral.

3.4.4 Summary, conclusions and immediate extensions

In this section, we have shown that the anti-symmetric part of the equilib-

rium connectivity after STDP learning codes for the vector field generating

the inputs. Considering the inputs as the solution of a dynamical system

amounts to defining them completely by a manifold and a vector field upon

this manifold. While the previous section was devoted to showing the mani-

fold could be extracted from the symmetric connectivity, this section showed
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how the vector field was extracted from the anti-symmetric connectivity. The

technical core of this approach is given by lemma C.3.2 which says that it

is the cross-correlation of the inputs with their derivative (the vector field

comes in the computation through this mechanism). With this formulation,

we have been able to show that the communication term acts as the action of

the vector field on the activity.

This approach reveals how the spontaneous activity can “replay” the in-

puts. We believe equation (3.4.2) is an interesting expression of the sponta-

neous activity (with u = 0) which is comparable to the inputs given by system

(3.13).

The simulations suggest that the network post-learning acts as a predictor

of the inputs. In a way, it fills in the gaps left by a potentially noisy input

and its observations smoother. In a framework where the inputs u are just an

observable of a real underlying system, we believe the activity field is a more

reliable observable.
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4.1 Conclusions

The goal of this thesis is to introduce a mathematical theory to show how a

neural network with unsupervised learning can create a model of its environ-

ment. It consists in defining a learning neural network in mathematical terms

from the observations of the biological mechanisms taking place in the brain.

These mathematical neural networks are most probably closer to the neo-

cortex than any other part of the brain. Yet, there is still a gap between the

simplified mathematical models and the reality of the biological tissues, which

calls into question the biological relevance of our approach. Thus, we believe

that the interest of this thesis mainly lies in the theory itself. We propose a

functional mechanism describing the functioning of a recurrent learning neu-

ral network: it copies the statistics and dynamics of the stimuli it has been

exposed to. Whatever the nature of the inputs, it learns the way they are

statistically distributed and also the direction in which they will most prob-

ably evolve. Therefore, this works only if the statistics of the stimuli is not

changing through time. In other words, if the network is exposed to visual

stimuli first and then for some reason these stimuli change in nature (e.g. the

network becomes blind) then the network will forget its knowledge about vi-

sion to learn that about a new kind of stimuli, e.g. audition. We believe this

thesis is a crucial increment to the literature devoted to unravel the generic

mechanism which leads us to learn the ontological structure of any kind of

stimuli.

Chapter 1 was devoted to the mathematical modelisation of a learning

neural network, i.e. going from biological facts to mathematical models. First

we introduced the building blocks of a network: the neurons and the synapse.

The molecular mechanisms at the basis of their functioning and their func-

tional behavior were shortly sketched before introducing their mathematical

models. The synapse appears to have two different roles: it is a chemical filter

at the heart of neural communication and its strength is the variable subject

to learning. With these building bocks, we design a fully recurrent spiking

neural network made of noisy McKean neurons with linear synapses

and STDP learning, in system (1.15). This system is very non-linear be-

cause of the spiking behavior of the neurons and therefore mathematically

difficult to handle. To simplify it, we developed our own mean field the-

ory. The idea is to consider the neurons belong to different populations and
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let the number of neurons in each population tend to infinity. We based our

analysis on the theoretical result of [Touboul 2011, Baladron et al. 2011], and

after a few approximations, we managed to derive a closed differential system

describing the evolution of the firing rate of each population. This averaged

system is close to the traditional rate-based equations. To our knowledge, it

is for the first time derived from first principles. It is much more simple to

analyze than the former spiking network because the non-linearity is much

smoother: it is a sigmoidal function whose precise shape emerged from the

computations. In a certain regime (high noise, small input range) it can even

be assumed to be linear; yet, this may not correspond to the biological regime.

Although we got rid of the spikes in the averaged system, this derivation does

not discard the possibility that the spikes carry all the information and that

the firing rates do not. Indeed, it only says that the behavior of the network

at a larger scale can be described by a firing-rate model. We may have lost

some small-scale information.

We also tried to take learning into account during this spatial averaging step.

We have suggested a heuristic method to show that the learning equation can

also be written as a function of the firing rate only. Yet, this is not satisfying

enough and we can not conclude yet because this would have a very deep

meaning in terms of learning. Is the spiking behavior of neurons necessary

to understand learning in neural tissue? Or is it just a epiphenomenon so

that only the firing rate matters, as far as learning is concerned? We can

not answer yet, nevertheless, we suggest that the STDP learning rule has an

interesting counterpart for rate-based networks.

In chapter 2, we studied the dynamics of the spatially averaged system

with learning under the assumption that learning is very slow compared to

the evolution of the activity. It makes it possible to study the coupled system

connectivity/activity as a slow/fast system and apply tools of the tem-

poral averaging theory. In the initial system, there is a non-autonomous

input to the fast variable corresponding to the stimuli, therefore, the notion

of equilibrium point of the system is not well-defined. Yet, the temporally

averaged system is a reduced system about the evolution of the connectivity

only. It has no external forcing because the fast non-autonomous input is

averaged. Therefore, tools from temporal averaging theory make it possible

to define an equilibrium point for the slow variable, i.e. the connectivity.

In a first time, we used the Tikhonov theorem and periodic averaging to de-
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rive an averaged system in the case of a voltage-based network with Hebbian

learning with decay and slow inputs. It appears this system derives from an

energy, i.e. the right hand side is the opposite of the gradient of an energy

function. Dynamically speaking, this is a striking fact, since it implies that

the system always converges to a equilibrium point. It is due to a deep math-

ematical relationship between the communication term (a dot product) and a

Hebbian learning (a tensor product): both of them derive from the same term

in the energy.

In a second time, we generalized this approach to noisy activities with arbi-

trarily fast inputs. Based of the recent results developed in [Wainrib 2011]

and introduced in appendix B, we were able to derive an averaged, reduced

system for the evolution of the connectivity (see theorem 2.4.1). However, this

system is only formally defined and can only be made explicit if the activity

equation is linear. Therefore, we considered linear activities as motivated by

the previous chapter. In this framework, we were able to compute explicitly

the right hand side of the reduced system based on the result of a technical

paper we wrote in this purpose and exposed in appendix E. It can be shown

that the reduced system always converges if the parameters of the system ver-

ify a certain assumption. In a weakly connected regime, it is even possible

to compute explicitly an expansion of the equilibrium connectivity. Because

the network is linear, the neurons which do not receive a direct input tend

to disconnect from the rest of the network. This problem is irrelevant to the

non-linear case since there is always a small intrinsic resting activity, which

draws the connections away from zero by the Hebbian mechanism. Another

way to go around this problem is to consider that the noise is spatially

correlated. Then, the neurons which share their noise connect preferentially.

The structure that is learned from the inputs is superposed to this artificial

structure. It is an ad hoc way to impose a hierarchical structure on the net-

work.

We also compared the equilibrium connectivity for different neuron models

and different learning rules.

• In the simplest case of Hebbian learning, the first order of the equi-

librium connectivity corresponds to the correlation matrix of the inputs

temporally smoothed by a decreasing exponential function. The tempo-

ral decay of this exponential is linked to the speed of the inputs so that:
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(i) if the inputs are very slow, the temporal decay goes to zero and the

equilibrium connectivity is only the correlation matrix of the inputs,

which is a well known result(ii) if the inputs are fast the equilibrium

connectivity corresponds to the spatial but also temporal correlations

of the inputs. It corresponds to the fact that the excitation elicited by

a past stimulus does not have enough time to fade away and might be

still strong enough to be learned by association with responses to newer

stimuli through the Hebbian mechanism.

• When the neurons are assumed to be damped oscillators with trace

learning, it appears that the equilibrium connectivity corresponds to

the correlation of the filtered input. The filter applied to the inputs is

a band pass filter centered on the intrinsic oscillatory frequency of the

neurons. This suggests a new mechanism for the tonotopic organization

of neural tissues (e.g. in the primary auditory cortex): a network of

neurons with a lot of different intrinsic frequencies would decompose

the signal in a Fourier-like fashion.

• We proved that STDP learning is nothing more than an asymmetric

rule generalizing Hebbian learning. Indeed, the symmetric part of the

equilibrium connectivity is the same as in the Hebbian case, whereas

there is an additional anti-symmetric part of the connectivity that was

null in the Hebbian case. We observed that only the symmetric part of

the STDP rule was responsible for writing the noise in the connectivity,

while the anti-symmetric part is noise free. One of the main results

of this thesis is that the first order of the anti-symmetric part of the

equilibrium connectivity (which is the core of STDP learning) is the

cross-correlation of the inputs with their time derivative.

In chapter 3, we focused on the network activity post-learning and showed

how it is a model of its environment.

First, we put the recurrent networks that we consider into the context of hier-

archical neural networks. Most theoretical research on unsupervised learning

in neural networks has been devoted to feed-forward connections and more

precisely on the perceptron. In particular, it was previously shown that

learning the feed-forward or retino-cortical connections with the Oja learning

rule lead to the extracting the principal components of the inputs, i.e. the
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principal eigenvectors of the temporal correlation matrix of the inputs. Us-

ing the results of the previous chapter applied to a perceptron, we showed

that a simple Hebbian learning rule with decay would extract the eigenvec-

tor of the inputs temporal correlation matrix corresponding to a combination

of the decay parameters of the system. We also showed that the activity of

the post-synaptic neuron extracts the corresponding eigenvector of the spatial

correlation matrix of the inputs. This suggests that the previous results of

unsupervised learning in a perceptron were over-constrained and partial: a

local learning rule can extract the eigenvectors of both the temporal

and spatial correlation matrix of the inputs.

The study of the recurrent or lateral connectivity is the next step in the

understanding of hierarchical learning networks. Obviously the inputs to this

kind of networks have been filtered by the feed-forward connectivity but it is

not clear how it restricts the class of cortical inputs. In the spirit of the reti-

nal waves being the inputs to V1 during development, we assumed that the

inputs are localized bell-shaped bumps of excitation in a visual field of a given

geometry. These inputs might have a certain dynamics, i.e. the bumps may

move on the geometry according to a vector field. Actually, this description is

generalizable to any kind of inputs: we can assume that these inputs are the

solutions of an autonomous dynamical system which is entirely characterized

by a vector field upon a manifold (as any dynamical system).

We propose that the network is a model of its environment in the sense that

learning leads to copying the manifold and the vector field of the

inputs. We have not been able to prove rigorously this claim, yet, we used a

semi-analytic approach coupled to numerical simulations on simple examples

to support it.

• We proposed that the symmetric part of the connectivity is responsi-

ble for encoding the underlying geometry or manifold of the inputs.

Indeed, we showed that the symmetric part of the equilibrium connec-

tivity matrix could be interpreted as a distance matrix provided the

sigmoid was positive. This is equivalent to giving to the neurons a posi-

tion such that the distances between all the neurons correspond to the

coefficients of the connectivity matrix. Actually, we argued that the dis-

tance had to be equal to a decreasing function applied to the coefficients

so that the stronger the connections between neurons, the closer they
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have to be. Based on multidimensional scaling methods, we were

able to give a position in Rk to the neurons. If k is large enough, i.e.

larger than the dimension of the underlying geometry of the inputs, we

showed that the geometrical structure of the inputs was retrieved by the

networks whose neurons sample the manifold. If k was too small, in

particular k = 2 as in the cortex, the geometry could not be retrieved,

yet we saw the emergence of columnar group of neurons which were very

similar to cortical maps. In fact, we argued that applying the prin-

ciple “the stronger the connection, the closer the neurons” was similar

to the energetic principle of wire length minimization in the brain.

Indeed, in our framework of populations of neurons, if two populations

are strongly connected, it is likely that a lot of axons will go from one

to the other. Therefore, we suggested the cortical maps are two dimen-

sional embeddings of high-dimensional geometries corresponding to the

underlying structure of the inputs.

• We proposed that the anti-symmetric part of the connectivity is re-

sponsible for encoding the underlying vector field governing the evolu-

tion of the inputs. First, we had a semi-analytic approach to show how

the communication term due to the anti-symmetric part of the connec-

tivity can be approximated by the vector field of the inputs applied to

the activity vector. Second, we showed how to define a vector field from

any anti-symmetric matrix and then we illustrated on simple examples

how this can be applied to the anti-symmetric part of the equilibrium

connectivity to retrieve efficiently the vector field governing the inputs.

This vector field can be superposed to the geometry extracted from the

symmetric part of the connectivity to provide a discretized version of

the dynamical system generating the inputs.

Therefore, the network post-learning corresponds to a dynamical copy of the

inputs shown during learning. Thus, the spontaneous activity of the net-

work, i.e. when no input is presented, replays in a way the inputs. More pre-

cisely, the noise term in the activity equation generates patterns randomly.

Then the communication terms measure a sort of distance with the inputs

and propagates the excitation according to the statistical behavior that the

corresponding inputs have had.

Similarly, if an input (belonging to those that have been learned) is temporar-
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ily shown to the network and then suddenly removed, the excitation in the

network will propagate so as to predict the evolution of the input: the network

is therefore a dynamical and statistical predictor of the inputs.
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4.2 Perspectives

Heterogeneous networks In this thesis, we have always considered that the

networks were made of neurons with the same properties. However, we have

mentioned several times the potential usefulness of having a lot of different

neurons with different parameters. First, in section 2.4.3 we have shown that,

in the case of neurons being damped oscillators, learning lead to computing

the correlation matrix of the filtered inputs. The filter was a band-pass filter

centered on the intrinsic frequency oscillation of the neurons. Thus having

a heterogeneous network would make it possible to process information at

different frequencies, which seems a priori very useful. Second, in part 3.1.2.4

we have shown that a perceptron with Hebbian learning with linear decay

would lead to the extraction of the eigenvectors of the (temporal and spatial)

correlation matrices with an eigenvalue corresponding to a combination of

the decay parameters of the neurons and connections. Again, it seems that

a heterogeneous network would process a much broader information than a

homogeneous one. Finally, it appears compelling from a biological perspective

that a homogeneous network does not exist.

However, the study of heterogeneous networks increases significantly the

difficulty of proving some mathematical results. For instance, one may as-

sume that the matrix gathering the time constants of all the neurons is not

proportional to the identity, i.e. L = diag(li) with li 6= lj for some i and j.

This implies that this matrix is not co-diagonalizable with the connectivity J

and therefore most of the results of appendix C would fall.

Learning the symmetries of the inputs It is common to assume the visual

inputs to the retina have a translational and rotational symmetry. In other

words, one may assume that the group of rigid motions E(2) leaves the set of

inputs invariant. It seems an interesting perspective to study what this claim

would mean in term of learning. Would the connectivity learn the symmetry?

Actually, we believe that the equilibrium connectivity would be invariant un-

der the action of the symmetries of E(2) in some way. Put differently, the

propagation of the action of symmetry groups from the set of inputs to the

connectivity is an interesting conjecture to check.
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Geometrical role of constraints We have given a geometrical interpretation

of the connectivity post-learning. In particular, we gave a position to each

neuron in the network and observed that it samples the geometrical support

of the inputs. Yet, the density of neurons on this geometrical shape is very

dependent on the variety of inputs. In a way, very frequent inputs will be

“approximated” by a lot of neurons.

As reviewed in section 2.2.2, there are different constraints that can be

added to keep the connectivity in certain subspace. Do these constraints have

an interesting interpretation in the geometrical structure we have defined?

Does it lead to a more homogeneous spread of the neurons?

Internal hierarchy of cortical layers The neocortex is a biological tissue

made of 6 different density layers. These layers are said to have different

functional roles. In this thesis, we have completely neglected this additional

structure for modeling the cortex. However, we believe that this thesis sets

the pace for a new way to analyze this internal structure. Indeed, the learning

rules between the different layers seem to be different as shown in figure 1.8.

The machinery for studying and explicitly computing the equilibrium connec-

tivities we have built in section 2.4 could be extended to manipulate several

learning rules at the same time, and we believe that it would be possible to

compute and analyze the different connections from one layer to the others.

This may reveal what is the computational role of such a structure.

Note that extending the theory in this direction would also be relevant to

studying balanced networks, where neurons are grouped by pair of excitatory

and inhibitory neurons.

Hierarchy: networks, with feed-forward, feedback and lateral connections

In section 3.1.3, we defined a canonical hierarchical network and argued that

modeling recurrent or lateral networks was the step we took toward a better

understanding of the full hierarchy. Indeed, these hierarchical networks are

very interesting since they seem to build abstraction pyramids with high-level

concepts at the top of the hierarchy and low-level concepts at the bottom.

This thesis was devoted to learning the lateral connectivity of raw inputs

and therefore low-level information. It is a fascinating problem to study the

interaction between feed-forward, feedback and recurrent connectivity.
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Synaptic tagging: Coupling with reinforcement learning Actually, the

modifications of the connectivity due to activity-based unsupervised learning,

as described in this thesis, fade away in a few hours. In fact, there is an

additional mechanism called synaptic tagging which makes it possible to store

definitively the modifications of the connectivity. This roughly corresponds to

a global signal modulating the learning rule: if, for some reason, the signal is

active then the network will learn “for ever” and else if the signal is inactive

the network will forget. The criterion to release the global signal would be

very interesting to study. We may suspect that the global signal is active if

the network is exposed to some crucial information.

This modulatory signal seems to be a way to perform reinforcement learn-

ing. It would be especially interesting to be studied in a network were not only

perceptive cortical areas are modeled, but also motor areas. In this context

the activity of some (motor) neurons would have an impact on the environ-

ment and one could think that unsupervised learning with a modulatory effect

based on some criterion may lead to the emergence of behavior.

Does it work? This thesis is theoretical. It intends to build a mixed math-

ematical and computational theory of unsupervised learning in neural net-

works. The final claims are independent of the mathematical formalism and

define functional principles of functioning: learning leads to copying the in-

puts, the spontaneous activity replays the inputs and the networks behaves

as a predictor of the inputs. The last chapter is nothing more than a proof of

concept.

Yet, we did not study the effectiveness of such networks on problems of

real life. Can this approach be applied to concrete problems? Can it be useful

for traditional data-mining topic, e.g. classification, estimation, prediction?

What kind of problems does it best apply to? In other words, does it work?
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Throughout the thesis we use the standard conventions:

• Bold symbols in upper case like J,W are matrices (which may depend

on time).

• Bold symbols in lower case like v,w,x,y, z, j are unidimensional vectors

(which may depend on time).

• Normal letters are either real constants or functions.

In particular we use the following symbols

• l, κ, τ, ε1, ε2, µ, σ
2, β, γ, a± ∈ R+ are parameters of the network.

We also define ∆ =
√

1 − 4 l
β

for section 2.4.3 and Σ ∈ Rn×n, a fixed

noise matrix, for section 2.4.4.

• n ∈ N is the number of neurons in the network.

• m ∈ N is the number of inputs or stimuli to the network in section 2.3.

• v ∈ C1(R+,R
n) is the field of membrane potential in the network.

• u ∈ C1(R+,R
n) is the field of inputs to the network. We write um =

supt∈R+
‖u(t)‖2.

• v ⊗ u ∈ C1(R+,R
n×n) is the tensor product between u and v, which

simply means {u ⊗ v}ij(t) = ui(t)vj(t).

• J ∈ C1(R+,R
n×n) is the connectivity of the network. Throughout the

thesis we assume J(R−) = 0.

• ‖u(t)‖p for p = 1, 2 is the Lp norm of u(t) ∈ Rn, i.e. ‖u(t)‖p =
(∑n

i=1 |ui(t)|p
) 1

p

. And similarly for the connectivity matrices of Rn×n

with a double sum.

• |||J||| = sup
x∈Cn, ‖x‖=1

|〈x,J.x〉| = max
i∈{1,..,n}

{
|λi| : λi is an eigenvalue of J

}
.

• x.y′ ∈ Rn×n is the cross-correlation matrix of two compactly supported

and differentiable functions from R to Rn, i.e.

{x.y′}ij =

∫ +∞

−∞
xi(t)yj(t)dt
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• H is the Heaviside function, i.e. H(t) =

{
0 if t ≤ 0

1 if t > 0
.

• The real functions

g1/γ : t 7→ γe−γtH(t)

v : t 7→ l
µ∆

(
e−

β
2µ

(1−∆)t − e−
β
2µ

(1+∆)t
)
H(t)

w : t 7→ l
2µ∆

(
(1 + ∆)e−

β
2µ

(1−∆)t − (1 − ∆)e−
β
2µ

(1+∆)t
)
H(t)

are integrable on R.
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In this section, we present multiscale theoretical results concerning stochas-

tic averaging of periodically forced SDEs (section B.3). This part is a peda-

gogical introduction to the main theorem of [Wainrib 2011] which we use in

section 2.4.1. These results combine ideas from singular perturbations, clas-

sical periodic averaging and stochastic averaging principles. Therefore, we

recall briefly in section B.1 and in B.2 several basic features of these prin-

ciples, providing several examples that are closely related to the application

developed in section 2.4.

B.1 An elementary example of averaging for pe-

riodically forced slow-fast ODE

We present here an example of a slow-fast ODE perturbed by a fast external

periodic input. We have chosen this example since it readily illustrates many

ideas that will be developed in the following sections. In particular, this

example shows how the ratio between the time-scale separation of the system

and the time-scale of the input appears as a new crucial parameter.

Example 1. Consider the following linear time-inhomogeneous dynamical

system, with ε1, ε2 > 0 two parameters:

dv
dt

= 1
ε1

(
−v + sin( t

ε2
)
)

dw
dt

= −w + v2

This system is particularly handy since one can solve analytically the first

ODE, that is:

v(t) =
1

1 + µ2

(
sin(

t

ε2

) − µ cos(
t

ε2

)

)
+ v0e

− t
ε1

where we have introduced the time-scales ratio

µ :=
ε1

ε2

In this system, one can distinguish various asymptotic regimes when ε1 and

ε2 are small, according to the asymptotic value of µ:

• Regime 1 : Slow input µ = 0 :
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First, if ε1 → 0 and ε2 is fixed, then v(t) is close to sin( t
ε2

), and from

geometric singular perturbation theory [Fenichel 1979, O’Malley 1991]

one can approximate the slow variable w by the solution of

dw

dt
= −w + (sin(

t

ε2

))2

Now taking the limit ε2 → 0, and applying the classical averaging princi-

ple [Arnold and Levi 1988] for periodically driven differential equations,

one can approximate y by the solution of

dw

dt
= −w +

1

2

since 1
2π

∫ 2π

0
sin(s)2ds = 1

2
.

• Regime 2 : Fast input µ = ∞ :

If ε2 → 0 and ε1 is fixed, then the classical averaging principle implies

that v is close to the solution of
dv

dt
= − v

ε1

so that w can be approximated by

dw

dt
= −w +

(
x0e

−t/ε1
)2

and when ε1 → 0, one does not recover the same asymptotic behavior

as in Regime 1.

• Regime 3 : Time-scale matching 0 < µ <∞ :

Now consider the intermediate case where ε1 is asymptotically propor-

tional to ε2. In this case, v can be approximated on the fast time-

scale t/ε1 by the periodic solution ṽµ(t) = 1
1+µ2 (sin(t) − µ cos(t)) of

dv
dt

= −v + sin(µt). As a consequence, w will be close to the solution of

dw

dt
= −w +

1

2(1 + µ2)

since 1
2π

∫ 2π

0
ṽµ(t)2dt = 1

2(1+µ2)
.

Thus, we have seen in this example that

1. the two limits ε1 → 0 and ε2 → 0 do not commute

2. the ratio µ between the internal time-scale separation ε1 and the input

time-scale ε2 is a key parameter in the study of slow-fast systems subject

to a time-dependent perturbation.
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B.2 Stochastic averaging principle

Time-scales separation is a key property to investigate the dynamical behav-

ior of non-linear multi-scale systems, with techniques ranging from averaging

principles to geometric singular perturbation theory. This property appears

to be also crucial to understand the impact of noise. Instead of carrying a

small noise analysis, a multi-scale approach based on the stochastic averaging

principle [Khas’ minskii 1968] can be a powerful tool to unravel subtle inter-

plays between noise properties and non-linearities. More precisely, consider a

system of stochastic differential equations (SDEs) in Rp+q :

dvε
t =

1

ε
F (vε

t ,w
ε
t )dt+

1√
ε
Σ(vε

t ,w
ε
t ).dB(t)

dwε
t = G(vε

t ,w
ε
t )dt

with initial conditions vε(0) = v0, wε(0) = w0, and where wε ∈ Rq is called

the slow variable, vε ∈ Rp is the fast variable, with F,G,Σ smooth functions

ensuring existence and uniqueness for the solution (vε,wε), and B(t) a p-

dimensional standard Brownian motion. Time-scale separation in encoded in

the small parameter ε = (ε1, ε2).

In order to approximate the behavior of (vε,wε) for small ε, the idea is to

average out the equation for the slow variable with respect to the stationary

distribution of the fast one. More precisely, one first assumes that, for each

w ∈ Rq fixed, the frozen fast SDE:

dvt = F (vt,w)dt+ σ(vt,w).dB(t)

admits a unique invariant measure, denoted ρy(dx). Then, one defines the

averaged drift vector field Ḡ :

Ḡ(w) :=

∫

Rm

G(v,w)ρw(dv) (B.1)

and w̄ the solution of dw̄
dt

= Ḡ(w̄) with initial condition w̄(0) = y0. Under

some dissipativity assumptions, the stochastic averaging principle [Khas’ minskii 1968]

states:

Theorem B.2.1. For any δ > 0 and T > 0,

lim
ε→0

P

[
sup

t∈[0,T ]

||wε
t − w̄t||2 > δ

]
= 0 (B.2)
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As a consequence, analyzing the behavior of the deterministic solution w̄ can

help to understand useful features of the stochastic process (vε,wε).

Example 2. In this example we consider a similar system as in Example

1, but with a noise term instead of the periodic perturbation. Namely, we

consider (vε,wε) the solution of the system of SDEs:

dvε = −1

ε
vεdt+

σ√
ε
.dB(t)

dwε =
(
−wε + (vε)2) dt

with ε > 0 a small parameter and σ > 0 a positive constant. From Theorem

B.2.1, the stochastic slow variable wε can be approximated in the sense of

(B.2) by the deterministic solution w̄ of:

dw

dt
=

∫

v∈R

(−w + v2)ρ(dv)

where ρ(dv) is the stationary measure of the linear diffusion process:

dv = −vdt+ σdB(t)

that is :

ρ(dv) =
1

σ
√
π
e−

v2

σ2

Consequently, wε can be approximated in the limit ε→ 0 by the solution of:

dw

dt
= −w +

σ2

2

Applying (B.2) leads to the following result: for any T > 0 and δ > 0,

lim
ε→0

P

[
sup

t∈[0,T ]

|wε
t − (y0 −

σ2

2
)e−t +

σ2

2
|2 > δ

]
= 0

Interestingly, the asymptotic behavior of wε for small ε is characterized by

a deterministic trajectory that depends of the strength σ of the noise applied

to the system. Thus, the stochastic averaging principle appears particularly

interesting to unravel the impact of noise strength on slow-fast systems.

Many other results have been developed since, extending the set-up to

the case where the slow variable has a diffusion component or to infinite-

dimensional settings for instance, and also refining the convergence study,
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providing homogenization results concerning the limit of ε−1/2(wε − w̄) or

establishing large deviation principles (see [Kifer 2009] for a recent mono-

graph). However, fewer results are available in the case of non-homogeneous

SDEs, that is when the system is perturbed by an external time-dependent

signal. This setting is of particular interest in the framework of stochastic

learning models and we present the main relevant mathematical results in the

following section.

B.3 Stochastic averaging in the non-homogeneous

case

Combining ideas of periodic and stochastic averaging introduced previously,

we present here theoretical results concerning multiscale SDEs driven by an

external time-periodic input. Consider (vε,wε) solution of:

dvε = 1
ε1

[
F (vε,wε, t

ε2
)
]
dt+ 1√

ε1
Σ(vε,wε).dB(t)

dwε = G(vε,wε)dt
(B.3)

with t→ F (v,w, t) ∈ Rp a τ -periodic function and ε = (ε1, ε2) ∈ R2
+. Param-

eter ε1 represents the internal time-scale separation and ε2 the input time-

scale. We consider the case where both ε1 and ε2 are small, that is a strong

time-scale separation between the fast variable vε ∈ Rp and the slow one

wε ∈ Rq, and a fast periodic modulation of the fast drift F (v,w, .).

We further denote z = (v,w).

Definition B.3.1.We define the asymptotic time-scale ratio

µ := lim
ε→0

ε1

ε2

(B.4)

Accordingly, we denote
µ

lim
ε→0

the distinguished limit when ε1 → 0, ε2 → 0 with

ε1/ε2 → µ.

The following assumption is made to ensure existence and uniqueness of a

strong solution to system (B.3).

Assumptions B.3.2. Existence and uniqueness of a strong solution

(i) The functions F,G and Σ are locally Lipschitz continuous in the space

variable z
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(ii) There exists a constant R > 0 such that:

sup
||z||>R, t>0

< (F (z, t), G(z)), z >

||z||2 < 0

To control the asymptotic behavior of the fast variable, one further assumes:

Assumptions B.3.3. Asymptotic behavior of the fast process:

(i) The diffusion matrix Σ is bounded:

∃MΣ > 0 s.t ∀z, ||Σ(z)|| < MΣ

and uniformly non-degenerate:

∃η0 > 0 s.t ∀v, z < Σ(z)Σ(z)′v,v >≥ η0||v||2

(ii) There exists r0 < 0 such that for all t ≥ 0 and for all z,x ∈ Rp+q :

< ∇zF.x,x >≤ r0||x||2

According to the value of µ ∈ {0,R∗
+,∞}, the stochastic averaging principle

is based on a description of the asymptotic behavior of various rescaled fast

frozen processes. More precisely, under Assumptions B.3.2 and B.3.3, one can

deduce that:

• For any fixed w0 ∈ Rq and t0 > 0 fixed, the law of the rescaled time-

homogeneous frozen process:

dv = F (v,w0, t0)dt+ Σ(v,w0).dB(t)

converges exponentially fast to a unique invariant probability measure

denoted by ρw0,t0(dv).

• For any fixed w0 ∈ Rq, there exists a τ
µ
-periodic evolution system of

measures νw0
µ (t, dv), different from ρw0,t(dv) above, such that the law of

the rescaled time-inhomogeneous frozen process

dv = F (v,w0, µt)dt+ Σ(v,w0).dB(t) (B.5)

converges exponentially fast towards νy
µ(t, x), uniformly with respect to

w0 (cf. Appendix Theorem B.3.5)
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• For any fixed w0 ∈ Rq, the law of the rescaled time-homogeneous frozen

process:

dv = F̄ (v,w0)dt+ Σ(v,w0).dB(t)

where F̄ (x, y) := τ−1
∫ τ

0
F (x, y, t)dt, converges exponentially fast to-

wards a unique invariant probability measure denoted by ρ̄w0(dv).

According to the value of µ ∈ {0,R∗
+,∞}, we introduce a vector field Ḡµ

which will play a role similar to Ḡ introduced in eq. (B.1).

Definition B.3.4.We define Ḡµ : Rq → Rq as follows. In the time-scale

matching case, that is when 0 < µ <∞, then

Ḡµ(w) :=

(
τ

µ

)−1 ∫ τ
µ

0

∫

v∈Rp

G(v,w)νw
µ (t, dv)dt (B.6)

In the extremal cases µ ∈ {0,∞} :

• Slow input µ = 0 :

Ḡ0(w) := τ−1

∫ τ

0

∫

v∈Rp

G(v,w)ρw,t(dv)dt

• Fast input µ = ∞ :

Ḡ∞(w) :=

∫

v∈Rp

G(v,w)ρ̄w(dv)

Notation: We may denote the periodic system of measures νw
µ (t, dv) associ-

ated with (B.5) by νw
µ [F,Σ](t, dv) to emphasize its relationship with F and

Σ. Accordingly, we may denote Ḡµ(w) by Ḡ
[F,Σ]
µ (w).

Preliminaries before the main result Under regularity and dissipativity

conditions, [Lorenzi et al. 2010] prove the following result about the asymp-

totic behavior of the solution of:

dXs,x
t = b(Xs,x

t , t)dt+ σ(Xs,x
t , t)dWt, t > s

Xs = x

Theorem B.3.5. [Lorenzi et al. 2010]
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1. There exist a unique τ -periodic family of probability measures {µ(s, .), s ∈
R}, such that:

∫

x∈Rp

E [f(Xs,x
t )]µ(s, dx) =

∫

x∈Rp

f(x)µ(t, dx)

Such a family is called evolution systems of measures.

2. Furthermore, under stronger dissipativity condition, the convergence of

the law of X to µ is exponentially fast. More precisely, for any r ∈
(1,+∞) there exist M > 0 and ω < 0, such that for all φ ∈ Lr(Rp, µ(s, .)):
∫

x∈Rp

||E [φ(Xs,x
t )]−

∫

x′∈Rp

φ(x′)µ(t, dx′)||rµ(s, dx) ≤Meω(t−s)

∫

x∈Rp

||φ(x)||rµ(t, dx)

We are now able to present our main mathematical result. Extending Theorem

B.2.1, the following theorem describes the asymptotic behavior of the slow

variable wε when ε→ 0 with ε1/ε2 → µ.

Theorem B.3.6. Let µ ∈ [0,∞]. If w̄ is solution of

dw̄

dt
= Ḡµ(w̄) with w̄(0) = wε(0) (B.7)

then the following convergence result holds, for all T > 0 and δ > 0:

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|wε
t − w̄t|2 > δ

]
= 0

Proof. This is just an idea of the proof, whose full version can be found in

[Wainrib 2011].

• We start by splitting [0, t] as the union of Lk = [kt/n, (k + 1)t/n] for

k = 0, ..., n− 1. Within each Lk we define x̂ε solution of:

dx̂ε
s =

1

ε
g(x̂ε

s, ykt/n,
s

ε
)ds+

1√
ε
σ(xε

s, y
ε
kt/n)dWs

for kt/n ≤ s ≤ (k + 1)t/n and x̂ε
kt/n = xε

kt/n.

• We write the difference yε
t − ȳt as a sum:

yε
t − ȳt =

n−1∑

k=0

∫ (k+1)t/n

kt/n

(
f(xε

s, y
ε
s) − f̄(ȳs)

)
ds

=
n−1∑

k=0

(I1,k + I2,k) +

∫ t

0

(f(x̂ε
s, y

ε
s) − f(x̂ε

s, ȳs)) ds
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with

I1,k :=

∫ (k+1)t/n

kt/n

(f(xε
s, y

ε
s) − f(x̂ε

s, y
ε
s)) ds

I2,k :=

∫ (k+1)t/n

kt/n

(
f(x̂ε

s, ȳs) − f̄(ȳs)
)
ds

• Inspired from [Khas’ minskii 1968], the idea is to select the value of n(ε)

so that the subintervals size ∆(ε) would be:

1. sufficiently small to be able to approximate xε by x̂ε during a time

∆(ε).

2. sufficiently large for the mixing to occur.

• Estimate 1.

sup
s∈[0,t]

E
[
||xε

s − x̂ε
s||2
]
≤ C

(
1

ε2n3
+

1

εn2

)
exp

[
C

(
1

ε2n2
+

1

εn

)]

• Estimate 2. (Consequence of [Lorenzi et al. 2010])

∫

x∈Rp

E

[
||1
ξ

∫ t0+ξ

t0

(f(Xε,x,y
s , y) − f̄(y))ds||2

]
µt0(dx) ≤Mε/ξ

• Now we are able to select

n(ε) =
1

ε ln(1/ε)1/4

and conclude the proof.

�

Remark 5.

1. The case µ = 0 (slow input) can be deduced from a combination of

Theorem B.2.1 and of the classical averaging principle. More precisely,

in this case the limit ε1 → 0 is taken first, so that from Theorem B.2.1

with fast variable vε and slow variables w and t (with the trivial equation

ṫ = 1), wε is close in probability on finite time-intervals to the solution

of the following inhomogeneous ODE:

dw̃

dt
=

∫

v∈Rp

G(v, w̃)ρw̃,t/ε2(dv) := G̃(w̃, t/ε2)
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Then taking the limit ε2 → 0, one can apply the deterministic averaging

principle to the fast periodic vector field G̃(w, t/ε2), so that w̃ converges

when ε2 → 0 to the solution of:

dw̄

dt
= τ−1

∫ τ

0

G̃(v, w̄)dt = Ḡ0(w̄)

which is precisely the statement of Theorem B.3.6.

2. The case µ = ∞ (fast input) can again be deduced from the same tools,

but in the reverse order. As the limit ε2 → 0 is taken first, one has

to perform first a classical averaging of the periodic drift F (v,w, t/ε2),

leading to the homogeneous system of SDEs (B.3) but whith F̄ (v,w)

instead of F (v,w, t/ε2). Then, an application of Theorem B.2.1 on this

system produces exactly the statement of Theorem B.3.6.

3. The case 0 < µ < ∞ is more complicated in the sense that it combines

simultaneously both the periodic and stochastic averaging principles. A

particular role is played by the frozen periodically forced SDE (B.5).

The equivalent of the quasistationary measure ρw of Theorem B.2.1 is

given by the asymptotically periodic behavior of Eq. (B.5), represented

by the periodic family of measures νw
µ (t, dv).

4. By a rescaling of the frozen process (B.5), one deduces the following

scaling relationships :

νw
µ [F,Σ](t, dv) = νw

1 [
F

µ
,

Σ√
µ

](µt, dv)

and

Ḡ[F,Σ]
µ (w) = Ḡ

[F
µ

, Σ√
µ

]

1 (w)

Therefore, if one knows in the case µ = 1 the averaged vector field

associated with the fast process generated by a drift F and a diffusion

coefficient σ, denoted Ḡ1[F,Σ], it is possible to deduce Ḡµ in the general

case µ ∈ (0,∞) with a change F → µF and Σ → √
µΣ.

B.4 Case of a fast linear SDE with periodic input

We present here an elementary case where one can compute explicitly the

quasi-stationnary time-periodic family of measures νy
µ(t, x), when the equation
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for the fast variable is linear. Namely, we consider v ∈ Rn solution of:

dv(t) = (−A.v(t) + u(µt)) dt+ Σ.dB(t)

with initial condition v(0) = v0 ∈ Rn, and where A is a n×n positive definite

matrix and u(.) a τ -periodic function.

We are interested in the large time behavior of the law of v(t), which is a

time-inhomogeneous Ornstein-Uhlenbeck process. From [Lorenzi et al. 2010]

we know that its law converges to a τ -periodic family of probability measures

ν(t, dv). Due to the linearity in the previous equation, ν(t, dv) is Gaussian

with time-dependent mean and constant covariance matrix:

ν(t, dv) = Nx(t),Q(dv)

where x is the τ
µ
-periodic attractor of dx

dt
= −A.x(t) + u(µt), i.e.

x(t) =

∫ t

−∞
e−A(t−s)u(µs)ds

and Q is the unique solution of:

A.Q + Q.A′ + Σ.Σ′ = 0 (B.8)

Indeed, if one denotes c(t) = v(t) − x(t), then c(t) is solution of a classical

homogeneous Ornstein-Uhlenbeck equation:

dc(t) = −Ac(t)dt+ Σ.dB(t)

whose stationary distribution is known [Risken 1996] to be a centered Gaus-

sian measure with covariance matrix Q solution of (B.8). Notice that if A is

self-adjoint with respect to D−1 = (Σ.Σ′)−1 (i.e. A.D = D.A′) , then the

solution is Q = A−1.D
2

= D.A′−1

2
, which will be used in section C.2.2.

Hence, in the linear case, the averaged vector field of equation (B.6) be-

comes

Ḡµ(y) :=

(
τ

µ

)−1 ∫ τ
µ

0

∫

v∈Rn

G(v(t) + v, y)ϕ0,Q(dv)dt (B.9)

where ϕx,Q is the probability density function of the Gaussian law with mean

x ∈ Rq and covariance Q ∈ Rq×q.

Therefore, due the linearity of the fast SDE, the periodic system of measure

ν is just a constant Gaussian distribution shifted by a periodic function of time
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v(t). In case G is quadratic in v, this remark implies that one can perform

independently the integral over time and over Rn in formula B.9 (noting that

the crossed term has a zero average). In this case, contributions from the

periodic input and from the noise appear in the averaged vector field in an

additive way.

Example 3. In this last example, we consider a combination between Exam-

ple 1 and Example 2, namely we consider the following system of periodically

forced SDEs:

dvε =
1

ε1

[
−vε + sin

(
t

ε2

)]
dt+

σ√
ε1

.dB(t)

dwε =
(
−wε + (vε)2) dt

As in Example 1 and as shown above, the behavior of this system when

both ε1 and ε2 are small depends on the parameter µ defined in (B.4). More

precisely, applying Theorem B.3.6, we have the following three regimes:

• Regime 1 : slow input µ = 0 :

Ḡ0(y) = −y +
σ2

2
+

1

2

• Regime 2 : fast input µ = ∞ :

Ḡ∞(y) = −y +
σ2

2

• Regime 3 : time-scale matching 0 < µ <∞ :

Ḡµ(y) = −y +
σ2

2
+

1

2(1 + µ2)

B.5 Asymptotic well-posedness

In some cases, assumptions B.3.2-B.3.3 may not be satisfied on the entire

phase space Rp × Rq, but only on a subset. Such situations when considering

learning models. We introduce here a more refined set of assumptions ensuring

that theorem B.3.6 still applies.
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Let us start with an example, namely the following bidimensional system with

white noise input:





dvε = 1
ε

(
− lvε + wεvε

)
dt+ σ√

ε
.dB(t)

dwε =
(
− µwε + (vε)2

)
dt

(B.10)

with ε > 0, σ > 0, l > 0, µ > 0.

For the fast drift −(l−w)v to be non-explosive, it is necessary to have w < l−α
with α > 0 for all time. The concern about this system comes from the fact

that the slow variable w may reach l due to the fluctuations captured in

the term v2, for instance if µ is not large enough. Such a system may have

exponentially growing trajectories. However, we claim that for small enough

ε, wε will remain close to its averaged limit w̄ for a very long time, and if

this limit remains below l−α, then wε can be considered as well-posed in the

asymptotic limit ε → 0. To make this argument more rigorous, we suggest

the following definition:

Definition B.5.1. A stochastic differential equation with a given initial con-

dition is asymptotically well-posed in probability if for the given initial condi-

tion:

1. a unique solution exists until a time τε

2. for all T > 0,

lim
ε→0

P [τε ≥ T ] = 1

We give in the following proposition sufficient conditions for system (B.3)

to be asymptotically well-posed in probability and to satisfy conclusions of

Theorem B.3.6.

Proposition B.5.2. If there exists a subset E of Rq such that:

1. The functions F,G,Σ satisfy Assumptions B.3.2-B.3.3 restricted on Rp×
E.

2. E is invariant under the flow of Ḡµ, as defined in (B.6)

Then for any initial condition w0 ∈ E system (B.3) is asymptotically well-

posed in probability and wε satisfies the conclusion of Theorem B.3.6. The

proof of prop. B.5.2 can be found in appendix B.6.



B.6. Proof of asymptotical well-posedness, proposition B.5.2 201

Here, we show that it applies to system (B.10). First, with Eα = {w ∈
R, w < l − α}, for some α ∈]0, l[, it is possible to show that assumptions

B.3.2-B.3.3 are satisfied on Rp × Eα. Then as a special case of (B.9), we

obtain the following averaged system:

dw̄

dt
= −µw̄ +

σ2

2(l − w̄)
:= Ḡ(w̄)

It remains to check that the solution of this system satisfies:

∃α > 0, s.t w̄(0) < l − α⇒ ∀t > 0, w̄(t) < l − α

that is the subset Eα is invariant under the flow of Ḡ.

This property is satisfied as soon as

η :=
2σ2

µl2
< 1

Indeed, one can show that Ḡ(w) = 0 admits two solutions iff η < 1:

w± =
l

2
(1 ±

√
1 − η) ∈ (0, l)

and that w− is stable whereas w+ is unstable. Thus, if w̄(0) < l − α with

α = l − w+ > 0, then w̄(t) < l − α for all t > 0. In fact, the invariance

property is true for all α ∈]l − w−, l − w+[.

B.6 Proof of asymptotical well-posedness, propo-

sition B.5.2

Recall prop. B.5.2

Proposition B.6.1.If there exists a subset E of Rq such that:

1. The functions f, g,Σ satisfy Assumptions B.3.2-B.3.3 restricted on Rp×
E.

2. E is invariant under the flow of f̄µ, as defined in (B.6)

Then, for any initial condition w0 ∈ E, system (B.3) is asymptotically well-

posed in probability and wε satisfies the conclusion of Theorem B.3.6.
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Proof. First we introduce (ṽε,β, w̃ε,β) solution of the auxiliary system:

dv =
1

ε1

[
g(v,w,

t

ε2

)

]
dt+

1√
ε1

Σ(v,w).dB(t)

dwε = f̃β(v,w)dt

with the same initial condition as (vε,wε) and where:

f̃β(v,w) = f(v,w)ψβ(w)

ψβ(w) = e−βd(w,∂E)

with d(w, ∂E) the distance between w and E , taken negative if w ∈ E and

positive otherwise.

Let η > 0. We claim that one can choose β = β0 > 0 sufficiently large such

that:

For all T, δ, ε1, ε2 > 0, P

[
sup

t∈[0,T ]

|ŵε
t − w̃ε,β0

t | > δ

]
< η/2

where ŵt = wt∧τε
and

τε := inf{t ≥ 0; wε
t /∈ E}

As assumptions B.3.2-B.3.3 are satisfied for the auxiliary system (ṽε,β, w̃ε,β)

(by assumption 1.), one can apply Theorem B.3.6: for all δ, T > 0,

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|w̃ε,β0
t − w̄t| > δ

]
= 0

where w̄ is defined by (B.7). As a consequence, there exists ε0 such that for

all ε < ε0:

P

[
sup

t∈[0,T ]

|w̃ε,β0
t − w̄t| > δ

]
< η/2

Then, as |ŵε
t − w̄t| ≤ |ŵε

t − w̃ε,β0
t | + |w̃ε,β0

t − w̄t|, one deduces that for all

ε < ε0:

P

[
sup

t∈[0,T ]

|ŵε
t − w̄t| > δ

]
< η/2

that is to say:
µ

lim
ε→0

P

[
sup

t∈[0,T ]

|ŵε
t − w̄t| > δ

]
= 0
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We know by assumption 2., for all t ≥ 0, w̄t ∈ E , so we conclude the proof by

observing that for all T > 0,

lim
ε→0

P [τε ≥ T ] = 1

�
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C.1 Proofs for slow inputs section 2.3

C.1.1 Proof of theorem 2.3.3

Consider the following Lyapunov function (see equation (2.18))

E(X,J) = −1

2
〈X,J · X〉 − 〈U,X〉 + 〈1, S−1

(
X
)
〉 +

κ̃

2
‖J‖2, (C.1)

where κ̃ = κm, such that if J = JS + JA, where JS is symmetric and JA is

anti-symmetric.

−∇E(X,J) =

(
JS · X + U − S−1

(
X
)

X · X′ − κJ

)
(C.2)

Therefore, writing the system Σ′, equation (2.17), as

dY
dt

= γ

(
JS · S(V) + U − S−1

(
S(V)

)

S(V) · S(V)′ − κ̃J

)
+ γ

(
JA.S(V)

0

)
,

where Y = (V,J)′, we see that

dY
dt

= −γ
(
∇E

(
σ(V,J)

))
+ Γ(t) (C.3)

where γ(V,J)′ = (V, εJ/m)′, σ(V,J) = (S(V),J) and Γ : R+ → H such that

‖Γ‖ →
t→+∞

0 exponentially (because the system converges to A). It follows

that the time derivative of Ẽ = E ◦ σ along trajectories is given by:

dẼ

dt
=

〈
∇Ẽ, dY

dt

〉
=

〈
∇VẼ,

dV

dt

〉
+

〈
∇JẼ,

dJ

dt

〉
. (C.4)

Substituting equation (C.3) then yields

dẼ

dt
= −

〈
∇Ẽ, γ

(
∇E ◦ σ

)〉
+

〈
∇Ẽ,Γ(t)

〉

︸ ︷︷ ︸
Γ̃(t)

(C.5)

= −
〈
S ′(V)∇XE ◦ σ,∇XE ◦ σ

〉
− ε

m

〈
∇JE ◦ σ,∇JE ◦ σ

〉
+ Γ̃(t).

We have used the chain–rule of differentiation, whereby

∇V(Ẽ) = ∇V(E ◦ σ) = S ′(V)∇XE ◦ σ,
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and S ′(V)∇XE (without dots) denotes the Hadamard (term by term) product,

that is,

[S ′(V)∇XE]ia = S ′(V(a)
i )

∂E

∂X
(a)
i

Note that |Γ̃| →
t→+∞

0 exponentially because ∇Ẽ is bounded, and S ′(V) > 0

because the trajectories are bounded. Thus, there exists t1 ∈ R+ such that

∀t > t1, ∃k ∈ R∗
+ such that

dẼ

dt
≤ −k‖∇E ◦ σ‖2 ≤ 0. (C.6)

As in [Cohen and Grossberg 1983] and [Dong and Hopfield 1992], we apply

the Krasovskii-LaSalle invariance principle detailed in [Khalil and Grizzle 1996].

We check that:

• Ẽ is lower bounded. Indeed, V and J are bounded. Given that U and

S are also bounded it is clear that Ẽ is bounded.

• dẼ

dt
is negative semidefinite on the trajectories as shown in equation

(C.6).

Then the invariance principle tells us that the solutions of the system Σ′

approach the set M =
{
Y ∈ H :

dẼ

dt
(Y) = 0

}
. Equation (C.6) implies that

M =
{
Y ∈ H : ∇E◦σ = 0

}
. Since

dY
dt

= −γ
(
∇E◦σ

)
and γ 6= 0 everywhere,

M consists of the equilibrium points of the system. This completes the proof.

C.1.2 Proof of theorem 2.3.4

Denote the right–hand side of system Σ′, equation (2.17) by

F (V,J) =

{
−V + J · S

(
V
)

+ U
ε

m

(
S(V).S(V)′ − κmJ

)

The fixed points satisfy the condition F (V,J) = 0 which immediately leads

to equations (2.22). Let us now check the linear stability of this system. The

differential of F at V∗,J∗ is

dF(V∗,J∗)(X,W) =

(
−X + J∗ ·

(
S ′(V∗)X

)
+ W · S(V∗)

ε

m

((
S ′(V∗)X

)
· S(V∗)′ + S(V∗) ·

(
S ′(V∗)X

)′ − κmW
)
,

)
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where S ′(V∗)X denotes a Hadamard product, that is, [S ′(V∗)X]ia = S ′(V ∗
i

(a))X
(a)
i .

Assume that there exist λ ∈ C∗, (X,W) ∈ H such that dF(V ∗,J∗)

(
X

W

)
=

λ

(
X

W

)
. Taking the second component of this equation and computing the

dot product with S(V∗) leads to

(λ+ εκ)W · S =
ε

m
((S ′X) · S ′ · S + S · (S ′X)′ · S)

where S = S(V∗), S′ = S ′(V∗) (and therefore use the explicit notation .T for

the transpose operator in the rest of this section). Substituting this expression

in the first equation leads to

m(λ+εκ)(λ+1)X = (
λ

κ
+ε)S ·ST · (S′X)+ε(S′X) ·ST ·S+εS · (S′X)T ·S

(C.7)

Observe that setting ε = 0 in the previous equation leads to an eigenvalue

equation for the membrane potential only:

(λ+ 1)X =
1

κm
S · ST · (S′X).

Since J∗ = 1
κm

(
S ·ST

)
, this equation implies that λ+1 is an eigenvalue of the

operator X 7→ J∗.(S′X). The magnitudes of the eigenvalues are always smaller

than the norm of the operator. Therefore, we can say that if 1 > ‖J∗‖s′m then

all the possible eigenvalues λ must have a negative real part. This sufficient

condition for stability is the same as in [Faugeras et al. 2008]. It says that

fixed points sufficiently close to the origin are always stable.

Let us now consider the case ε 6= 0. Recall that X is a matrix. We now

“flatten” X by storing its rows in a vector called Xrow. We use the following

result in [Brewer 1978]: the matrix notation of operator X 7→ A · X · B is

A ⊗ BT , where ⊗ is the Kronecker product. In this formalism the previous

equation becomes

m(λ+εκ)(λ+l)Xrow =

(
(
λ

κ
+ε)S·ST ⊗Id+εId⊗ST ·S+εS⊗ST

)
·(S′X)row

(C.8)

where we assume that the Kronecker product has the priority over the dot

product. We focus on the linear operator O defined by the right hand side
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and bound its norm. Note that we use the following norm ‖J‖∞ = supX
‖J.X‖
‖X‖

which is equal to the largest magnitude of the eigenvalues of J.

‖O‖∞ ≤ s′m

(
|λ
κ
|‖S · ST ⊗ Id‖∞ + ε‖S · ST ⊗ Id‖∞ + ε‖Id ⊗ ST · S‖∞

+ ε‖S ⊗ ST‖∞
)
. (C.9)

Define, νm to be the magnitude of the largest eigenvalue of J∗ = 1
κm

(S · ST ).

First, note that S·ST and ST ·S have the same eigenvalues (κm)νi but different

eigenvectors denoted by ui for S ·ST and vi for ST ·S. In the basis set spanned

by the ui⊗vj, we find that S·ST⊗Id and Id⊗ST ·S are diagonal with (κm)νi as

eigenvalues. Therefore, ‖S·ST ⊗Id‖∞ = (κm)νm and ‖Id⊗ST ·S‖∞ = (κm)νm.

Moreover, observe that

(ST ⊗S)T · (ST ⊗S) · (ui ⊗vj) = (S ·ST ·µi)⊗ (ST ·S ·vj) = (κm)2νiνj ui ⊗vj

(C.10)

Therefore, (ST ⊗ S)T · (ST ⊗ S) = (κm)2diag(νiνj). In other words, ST ⊗ S is

the composition of an orthogonal operator (i.e. an isometry) and a diagonal

matrix. Immediately, it follows that ‖ST ⊗ S‖ ≤ (κm)νm.

Compute the norm of equation (C.8)

|(λ+ εκ)(λ+ 1)| ≤ s′m(|λ| + 3εκ)νm. (C.11)

Define fε : C → R such that fε(λ) = |(λ + εκ)||(λ + 1)| − (|λ| + 3εκ)s′mνm.

We want to find a condition such that fε(C+) > 0, where C+ is the right

half complex plane. This condition on ε, κ, νm, and s′m will be a sufficient

condition for linear stability. Indeed, under this condition we can show that

only eigenvalues with a negative real part can meet the necessary condition

(C.11). Complex number of the right half plane cannot be eigenvalues and

thus the system is stable. The case ε = 0 tells us that f0(C+) > 0 if 1 > s′mνm,

compute
∂fε

∂ε
(λ) = κ(ℜ(λ) + κε)

|(λ+ 1)|
|(λ+ εκ)| − 3κs′mνm

If 1 ≥ εκ, which is most probably true given that ε << 1, then |(λ+1)|
|(λ+εκ)| ≥ 1.

Assuming λ ∈ C+ leads to:

∂fε

∂ε
(λ) ≥ κ(κε− 3s′mνm) ≥ κ(1 − 3s′mνm)

Therefore, the condition 3s′mνm < 1, which implies s′mνm < 1, and leads to

fε(C+) > 0.
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C.2 Proofs for fast inputs section 2.4

C.2.1 Special notations

The computations involve a lot of convolutions and, for readability of the

appendix, we introduce some new notations. Indeed, we rewrite the time-

convolution between u and g a integrable function on R:

u ∗ g = u.G

This suggests one should think of v as a semi-continuous matrix of Rn×R and

G1/γ as a continuous matrix of RR×R, such that uit = ui(t) and Gst = g(t− s).

Indeed, in this framework the convolution with g is nothing but the continuous

matrix multiplication between v and a continuous Toeplitz matrix generated

row by row by g. Hence, the operator “.“ can be though of as a matrix

multiplication.

Therefore, it is natural to define (u∗ g)′ = (u.G)′ = G ′.u′ where G ′ ∈ RR×R

is the transpose of G, i.e. the continuous Toeplitz matrix generated row by

row by g(−.) : t 7→ g(−t) and u′ ∈ RR×n. Thus, for g and h two integrable

functions on R, we can rewrite

(x ∗ g).(y ∗ h)′ = x.G.H′.y′

where G and H are their associated continuous matrices. More generally,

the bold curved letters Gc, V , W represent these continuous Toeplitz matrices

which are well-defined through their action as convolution operators with gc, v

and w. The previous formulation naturally expresses the symmetry of relation

(2.30).

With these notations we an alternative definition to the correlation matri-

ces at the heart of our computations Ck,q, C̃k,q and Dk,q,

Ck,q def
=

1

u2
mτ

u · Gk+1
µ/l · G ′

µ/l
q+1 · u′ (C.12)

C̃k,q def
=

1

u2
mτ‖v‖k+q+2

1

u · Vk+1 · V ′q+1 · u (C.13)

Dk,q def
=

1

u2
mτ
(
|a+| + |a−|

)u · Gk+1
µ/l ·

(
a+G ′

1/γ − a−G1/γ

)
· G ′

µ/l
q+1 · u (C.14)
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C.2.2 Hebbian learning with linear activity

In this part, we consider system (2.28).

C.2.2.1 Application of temporal averaging theory

Theorem C.2.1.If assumption 2.4.4 is verified for p ∈]0, 1[, then system (2.28)

is asymptotically well-posed in probability and the connectivity matrix Jε so-

lution of system (2.28) converges to J̄, in the sense that for all δ, T > 0,

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|Jε
t − J̄t|2 > δ

]
= 0

where J̄ is the deterministic solution of:

dJ̄ij

dt
= Ḡ(J̄)ij = −κJ̄ij︸ ︷︷ ︸

decay

+
µ

τ

∫ τ
µ

0

vi(s)vj(s) ds

︸ ︷︷ ︸
correlation

+
σ2

2
(L − J̄)−1

ij
︸ ︷︷ ︸

noise

where v(t) is the τ
µ
-periodic attractor of dv

dt
= (J̄ − L).v + u(µt), where J ∈

Rn×n is supposed to be fixed.

Proof. We are going to apply Prop. 2.4.3. For p ∈]0, 1[, one introduces

the space

Ep =
{
J ∈ Rn×n : J is symmetric, J ≥ 0 and |||J||| < lp

}

First, since L−J is strictly positive in Ep, assumptions B.3.2-B.3.3 are satisfied

on Rn ×Ep. Then we will compute the averaged vector field Ḡ and show that

Ep is invariant under the flow of Ḡ.

1. Computation of the averaged vector field Ḡ

The fast variable is linear, the averaged vector field is given by (B.9).

This reads

Ḡ(J) =

(
τ

µ

)−1 ∫ τ
µ

0

∫

x∈Rn

G(v(t) + x,J)ϕ0,Q(dx)dt

where ϕv,Q is the probability density function of the Gaussian law with

mean v and covariance Q. And Q is the unique solution of (2.27), with

Σ = σId. This leads to Q = σ2

2
(L − J)−1.
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Therefore,

Ḡ(J) = −κJ +
µ

τ

∫ τ
µ

0

(∫

v∈Rn

(v(t) + v) ⊗ (v(t) + v)ϕ0,Q(dv)

)
dt

= −κJ +
µ

τ

∫ τ
µ

0

v(t) ⊗ v(t)dt

+
µ

τ

∫ τ
µ

0

(
v(t)⊗

∫

v∈Rn

vϕ0,Q(dv)

︸ ︷︷ ︸
Expectation of N (0,Q)=0

)
dt+

µ

τ

∫ τ
µ

0

( (∫

v∈Rn

vϕ0,Q(dv)

︸ ︷︷ ︸
Expectation of N (0,Q)=0

⊗v(t)

)
dt

+
µ

τ

∫ τ
µ

0

(∫

v∈Rn

v ⊗ vϕ0,Q(dv)

︸ ︷︷ ︸
Covariance of N (0,Q)=Q

)
dt

= −κJ +
µ

τ

∫ τ
µ

0

v(t) ⊗ v(t) dt+
σ2

2
(L − J)−1

The integral term in the equation above is the correlation matrix of the
τ
µ
-periodic function v. To rewrite this term, we define v ∈ R

n×[0, τ
µ

[ such

that v(i, t) = v(t)i. v can be seen as a matrix gathering the history

of v, i.e. each column of v corresponds to the vector v(t) for a given

t ∈ [0, τ
µ
[. It turns out

∫ τ
µ

0

v(t) ⊗ v(t) dt = v.v′

Therefore,

Ḡ(J) = −κJ +
µ

τ
v.v′ +

σ2

2
(L − J)−1

According to the results in section 2.4.1, the solutions of this equation

are close to that of the initial system (C.2.4). Hence, we focus exclusively

on it and try to unveil the properties of its solutions which will be

retrospectively extended to those of the initial system (2.28).

2. Invariance of Ep under the flow of (2.29):

Here we assume that J(0) ∈ Ep and we want to prove that the trajectory

of J is in Ep too.

(a) Symmetry:

It is clear that each term in Ḡ is symmetric. Their sum is therefore

symmetric and so is J(t).
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(b) Inequality J ≥ 0:

The correlation term v.v′ is a Gramian matrix and is therefore

positive. Because, L−J is assumed to be positive, so is its inverse.

Therefore, if ei is an eigenvector of J ≥ 0 associated with a null

eigenvalue, then e′
i.Ḡ(J).ei ≥ 0. Thus, the trajectories of (2.29)

remain positive.

(c) Inequality |||J||| < lp:

For all x ∈ Cn such that ‖x‖ = 1, define a family of positive num-

bers (αx) whose supremum is written α∗ and a family of functions

(gx) such that

gx : W → ‖W.x‖2 − α2
x

Observe that dgx
J(W) = 1

2
〈J.x,W.x〉. For J ∈ gx−1(0), i.e. ‖J.x‖ =

αx, compute

2dgx
J

(
Ḡ(J)

)
= −κ 〈J.x,J.x〉︸ ︷︷ ︸

=α2
x

+
µ

τ
〈J.x,v.v′.x〉︸ ︷︷ ︸

=A

+ 〈J.x, σ
2

2
(L − J)−1.x〉

︸ ︷︷ ︸
=B

• Majoration of A:

Applying Cauchy-Schwarz leads to

|A| ≤ ‖J.x‖
∥∥v.v′.x

∥∥ ≤ αx

∫ τ
µ

0

∥∥∥v(s) ⊗ v(s).x
∥∥∥ds

≤ αx

∫ τ
µ

0

∣∣〈v(s),x〉
∣∣∥∥v(s)

∥∥ds ≤ αx

∫ τ
µ

0

∥∥v(s)
∥∥2
ds

However, for t ≥ 0

∥∥v(t)
∥∥ ≤

∫ t

−∞

∥∥e(J−L)(t−s).u(µs)
∥∥ds ≤ um

∫ t

−∞
e(α

∗−l)(t−s)ds

≤ ume
(α∗−l)t

[e−(α∗−l)s

l − α∗

]t
−∞

=
um

l − α∗

Therefore, A ≤ αxτu2
m

µ(l−α)2
.

• Majoration of B:

Observe that for W a positive definite matrix whose eigenval-

ues are the λi, then the spectrum of W−1 is { 1
λi
}. There-

fore, |||W−1||| = 1
min(λi)

. Therefore, if W = L − J, then

|||W−1||| ≤ 1
l−α∗ .
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Using the previous observation and Cauchy-Schwarz lead to

|B| ≤ αx

σ2

2
|||(L − J)−1||| ≤ αxσ

2

2(l − α∗)

Therefore, for α∗ < l

2 dgx
J

(
Ḡ(J)

)

αx

≤ −καx+
u2

m

(l − α∗)2
+

σ2

2(l − α∗)
=

1

(l − α∗)2
P (α∗)+κ(α∗−αx)

where

P (α) = −κα3 + 2κlα2 − (κl2 +
σ2

2
)α+ (u2

m +
lσ2

2
)

Now write α∗ = pl with p ∈]0, 1[. Equation (2c) becomes

P (p) = −κl3p(1 − p)2 +
lσ2

2
(1 − p) + u2

m

When there exists p such that P (p) < 0 (which corresponds to

assumption 2.4.4), then their exist a ball of radius pl on which

the dynamics is pointing inward. It means any matrix J whose

maximal eigenvalue is α∗ = pl will see this eigenvalue (and those

which are sufficiently close to it, i.e. for which α∗ − αx > 0 is

sufficiently small) decreasing along the trajectories of the system.

Therefore, the space Ep is invariant by the flow of the system iff

assumption 2.4.4 is satisfied.

The trajectories of system (2.29) with the initial condition in Ep are defined

on R+ and remain bounded. Indeed, if J(0) ∈ Ep, the connectivity will stay

in Ep, in particular 0 < L − J ≤ L along the trajectories, more precisely

L − J > str. postitive constant since p ∈]0, 1[. Because v is also bounded by
um

l(1−p)
, v.v′ + σ2

2
(L− J)−1 is bounded. The right hand side of system (2.29) is

the sum a bounded term and a linear term multiplied by a negative constant,

therefore, the system remains bounded and it can not explode in finite time:

it is defined on R+. �

C.2.2.2 An expansion for the correlation term

We first write a lemma proved in appendix E.
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Lemma C.2.2.If v is the solution of dv
dt

= (J−L).v+u(t), it can be written

by the sum below which converges if J is in Ep for p ∈]0, 1[.

v =
+∞∑

k=0

Jk

lk+1
· u ∗ g(k+1)

1/l

where g1/l : t 7→ le−ltH(t).

Proof. See the first example of the appendix E. �

This is useful to find the next result

Proposition C.2.3. The correlation term can be written

µ

τ
v.v′ =

u2
m

l2

+∞∑

k,q=0

Jk

lk
· Ck,q · J′q

lq

where Ck,q is defined in (2.4.2.2) or (C.12).

Proof. We can use lemma 2.4.6 with µ 6= 1 and compute the cross product

v.v′.

Therefore, consider u(µ.) : t 7→ u(µt) instead of u. A change of variable

shows that
(
u(µ.) ∗ g(k)

1/l

)
(t) = 1

µ

(
u ∗ g(k)

1/l(
.
µ
)
)
(µt). Therefore,

µ

τ
{v.v′}ij =

µ

τ

∫ τ
µ

0

vi(t)vj(t)dt =
1

τ

∫ τ

0

vi(
s

µ
)vj(

s

µ
)ds

=
1

τ

∫ τ

0

( +∞∑

k=0

Jk

lk+1
·
(
u(µ.) ∗ g(k+1)

1/l )(
s

µ
)
)

i

( +∞∑

q=0

Jq

lq+1
·
(
u(µ.) ∗ g(q+1)

1/l )(
s

µ
)
)

j
ds

=
1

τ

∫ τ

0

( +∞∑

k=0

Jk

lk+1
·
(
u ∗

g
(k+1)
1/l (./µ)

µ
)(s)

)
i

( +∞∑

q=0

Jq

lq+1
·
(
u ∗

g
(q+1)
1/l (./µ)

µ
)(s)

)
j
ds

=
{u2

m

l2

+∞∑

k,q=0

Jk

lk
· Ck,q · J′q

lq

}
ij

�

C.2.2.3 Global stability of the single equilibrium point

Theorem C.2.4. If assumption 2.4.4 is verified for p ≤ 1
3

then there is a unique

equilibrium point in the invariant subset Ep which is globally, asymptotically

stable.

Proof. For this proof define F (J) = u2
m

l2

∑+∞
k,q=0

Jk

lk
·Ck,q · J′q

lq
+ σ2

2
(L−J)−1.
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First, we compute the differential of F and show it is a bounded operator.

Second, we show it implies the existence and uniqueness of an equilibrium

point under some condition. Then we find an energy for the system which says

the fixed point is a global attractor. Finally, we show the stability condition

is the same as assumption 2.4.4 for p ≤ 1
3
.

1. We compute the differential of each term in F :

• Formally write the second term v.v′(J) =
∑+∞

k,q=0
Jk

lk
·Ck,q · J′q

lq
. To

find its differential compute v.v′(J + W) − v.v′(J) and keep the

terms at the first order in W. Before computing the whole sum

observe that

(J + W)k · Ck,q · (J + W)′
q − Jk · Ck,q · J′q

=
k−1∑

m=0

Jm·W·Jk−1−m.Ck,q.J′q+
q−1∑

m=0

Jk.Ck,q.J′m·W′·J′q−1−m
+O(‖W‖2)

This leads to

dv.v′
J(W) =

1

l

+∞∑

k,q=0

( k−1∑

m=0

Jm

lm
·W·J

k−1−m

lk−1−m
.Ck,q.

J′q

lq
+

q−1∑

l=0

Jk

lk
.Ck,q.

J′m

lm
·W′·J

′q−1−m

lq−1−m

)

• Write Q : J 7→ (L − J)−1. We can write (L − J).Q(J) = Id and

use the chain rule to compute the differential of Q at J which gives

−W.Q(J) + (L − J).dQJ(W) = 0. Therefore,

dQJ(W) = (L − J)−1.W.(L − J)−1

The differential of F at J is the sum of these 2 terms.

2. We want to compute the norm of ‖dFJ(W)‖2 for ‖J‖2 = 1. First,

observe that for 3 square matrices A, B and C,

‖A.B.C‖2
2 =

n∑

i,j=1

B2
ij‖A.(ei⊗ej).C‖2

2 ≤
n∑

i,j=1

B2
ij‖A.ei‖2

2‖C.ej‖2
2 ≤

n∑

i,j=1

B2
ij |||A|||2 |||C|||2

for ei the vectors of the canonical basis of Rn. This leads to ‖A.B.C‖2 ≤
‖B‖2 |||A||| |||C|||. Therefore, because |||A||| ≤ ‖A‖2

∥∥∥
Jm

lm
· W · Jk−1−m

lk−1−m
.Ck,q.

J′q

lq

∥∥∥
2
≤ |||J|||m

lm

∥∥∥
Jk−1−m

lk−1−m
.Ck,q.

J′q

lq

∥∥∥
2

≤ u2
m

|||J|||k−1

lk−1

|||J|||q
lq
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Therefore,

‖dFJ(W)‖2 ≤
u2

m

l3

+∞∑

k,q=0

(
k
|||J|||k−1

lk−1

|||J|||q
lq

+q
|||J|||k
lk

|||J|||q−1

lq−1

)
+
σ2

2
|||(L−J)−1|||2

≤ 2u2
m

l3

( +∞∑

k=0

kpk−1
)( +∞∑

q=0

pq
)
+
σ2

2
|||(L−J)−1|||2 ≤ 2u2

m

l3(1 − p)3
+

σ2

2l2(1 − p)2

This inequality is true for all W with ‖W‖2 = 1, therefore it is also true

for the operator norm:

|||dFJ||| ≤
2u2

m

l3(1 − p)3
+

σ2

2l2(1 − p)2

Therefore, F is a k-Lipschitz operator where k = 2u2
m

l3(1−p)3
+ σ2

2l2(1−p)2
. This

means ‖F (J) − F (W)‖2 ≤ k‖J − W‖2

3. The equilibrium points of system (2.31) necessarily verify the equation

J = 1
κ
F (J). If

2u2
m

(1 − p)3
+

lσ2

2(1 − p)2
< κl3 (C.15)

then 1
κ
F is a contraction map from Ep to itself. Therefore, the Banach

fixed point theorem says that there is a unique fixed point which we

write J∗.

4. We now show that, under assumption (C.15), J 7→ ‖J−J∗‖2 is an energy

function for system dJ
dt′ = −J + 1

κ
F (J) (which is a rescaled version of

system (2.31)).

Indeed, compute the derivative of this energy along the trajectories of

the system

d

dt
‖J(t)−J∗‖2 =

1

2
〈J−J∗,−J+

1

κ
F (J)〉 = −〈J−J∗,J−J∗〉+〈J−J∗,

1

κ
F (J)−J∗〉

= −‖J−J∗‖2+〈J−J∗,
1

κ
F (J)−1

κ
F (J∗)〉 ≤ −‖J−J∗‖2+‖J−J∗‖‖1

κ
F (J)−1

κ
F (J∗)‖

≤ 1

κl3

( 2u2
m

(1 − p)3
+

lσ2

2(1 − p)2
− κl3

)
‖J − J∗‖2 ≤ 0

The energy is lower-bounded, takes its minimum for J = J∗ and the

decreases along the trajectories of the system. Therefore, J∗ is globally

asymptotically stable if assumption (C.15) is verified.
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5. Observe that if assumption 2.4.4 is verified for p ≤ 1
3
, then 1

1−p
< 2

1−p
≤

1
p
. Therefore, assumption 2.4.4 implies that (C.15) is also true. This

concludes the proof.

�

C.2.2.4 Explicit expansion of the equilibrium point

Recall the notations p̃ = u2
m

κl3
+ σ2

2κl2
and λ = σ2l

2u2
m

.

Theorem C.2.5.

J∗ =
p̃l

1 + λ
(λ+ C0,0)

+
p̃2l

(1 + λ)2

(
λ2 + λ(C0,0 + C1,0 + C0,1) + C0,0.C1,0 + C0,1.C0,0)

)
+ O(p̃3)

Actually , it is possible to compute recursively the nth term of the expansion

above, although their complexity explodes.

Proof. Define p∗ the smallest value in ]0, 1[ such that assumption 2.4.4 is

valid. This implies

p∗
(
(1 − p∗)2 +

σ2

2κl2

)
=
u2

m

κl3
+

σ2

2κl2

The weak connectivity index p̃ controls the ratio of the connection over the

strength of the intrinsic dynamics. Indeed, these 2 variable are of the same

order, because
p∗

p̃
=

1

(1 − p∗)2 + σ2

2κl2

= Op̃→0(1)

We want to approximate the equilibrium J∗, i.e. the solution of Ḡ(J∗) = 0,

in the regime p̃ ≪ 1. Define Ω = J
p̃l

such that |||Ω||| = O(1). We abusively

write Ḡ(Ω) = Ḡ(p̃lJ) such that

Ḡ(Ω) = −p̃lκΩ +
u2

m

l2

+∞∑

k,q=0

(p̃Ω)k · Ck,q · (p̃Ω)q +
σ2

2l

+∞∑

k=0

(p̃Ω)k

Recalling λ = σ2l
2u2

m
leads to

Ḡ(Ω) =
(u2

m

l2
+
σ2

2l

)(
−Ω +

1

1 + λ

+∞∑

k,q=0

(p̃Ω)k ·Ck,q · (p̃Ω)q +
λ

1 + λ

+∞∑

k=0

(p̃Ω)k
)
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Now we write a candidate Ω(m) =
∑m

a=0 p̃
aΩa, then we chose the terms

Ωa = O(1) so that the first m-th orders in Ḡ(Ω(m)) vanish. This implies

that ‖Ḡ(Ω∗) − Ḡ(Ω(m))‖ = O(p̃m+1) where Ω∗ = J∗

p̃l
. Then, we use the

fact that the minimal absolute value of the eigenvalues of Ḡ is larger than

κ−
( 2u2

m

l3(1−p)3
+ σ2

2l2(1−p)2

)
> 0. Indeed, it means

‖J∗ − J(m)‖ < 1

κ−
(

2u2
m

l3(1−p)3
+ σ2

2l2(1−p)2

)O(pm+1) <
1

κ−
(

2u2
m

l3
+ σ2

2l2

)O(pm+1)

i.e. Ω(m) = Ω∗ + O(p̃m+1)

Thus, we need to find the Ωa such that the first m-th orders in Ḡ(Ω(m))

vanish. Therefore, we need to expand all the terms in Ḡ(Ω). The first term

is obvious. In the following, we write the second term F (Ω) associated to the

correlations and look for an explicit expression of the Fa such that F (Ω) =∑+∞
a=0 p̃

aFa. Second, we write the third term Q(Ω) associated to the noise and

look for an explicit expression of the Qa such that Q(Ω) =
∑+∞

a=0 p̃
aQa.

• Finding the Fa:

First, observe that

Ωq =
+∞∑

i=0

p̃i
∑

η∈Nq ,
P

k ηk=i

Ωη1 .Ωη2 . · · · .Ωηq

This leads to

F (Ω) =
1

1 + λ

+∞∑

k,q=0

+∞∑

i, j = 0

j ≤ i

p̃i+k+q
∑

η ∈ Nj,
∑

n ηn = k

θ ∈ Ni−j,
∑

n θn = q

Ωη1 . · · · .Ωηj
.Cj,i−j.Ω′

θ1
. · · · .Ω′

θi−

The a-th term in the power expansion in p̃ verifies a = i+ k + q. More

precisely, this reads

Fa =
1

1 + λ

+∞∑

k, q, i = 0

a = i+ k + q

i∑

j=0

∑

η ∈ Nj,
∑

n ηn = k

θ ∈ Ni−j,
∑

n θn = q

Ωη1 . · · · .Ωηj
.Cj,i−j.Ω′

θ1
. · · · .Ω′

θi−j

This equation is scary but it reduces to simple expressions for small

a ∈ N.
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• Finding the Qa:

Using equation (C.2.2.4) leads to

Q(Ω) =
λ

1 + λ

+∞∑

i,q=0

p̃i+q
∑

η∈Nq ,
P

k ηk=i

Ωη1 .Ωη2 . · · · .Ωηq

The a-th term in the power expansion in p̃ verifies a = i + q. More

precisely, this reads

Qa =
λ

1 + λ

+∞∑

q, i = 0

a = i+ q

p̃i+q
∑

η∈Nq ,
P

k ηk=i

Ωη1 .Ωη2 . · · · .Ωηq

Therefore,

a (1 + 1
λ
)Qa (1 + λ)Fa

0 Id C0,0

1 Ω0 Ω0.C
1,0 + C0,1.Ω0

2 Ω2
0 + Ω1 Ω2

0.C
2,0 + C0,2.Ω2

0 + Ω0.C
1,1.Ω0 + Ω1.C

1,0 + C0,1.Ω1

Therefore, it is easy to compute Ωa = Fa + Qa for a ∈ N. By definition

J = p̃lΩ = p̃l(F + Q) which leads to the result. �

C.2.3 Trace learning with damped oscillators and dynamic

synapses

Theorem C.2.6.If assumption 2.4.4 is verified for p ∈]0, 1[, then system (2.32)

is asymptotically well-posed in probability and the connectivity matrix Jε so-

lution of system (2.32) converges to J̄, in the sense that for all δ, T > 0,

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|Jε
t − J̄t|2 > δ

]
= 0

where J̄ is the deterministic solution of:

dJ̄ij

dt
= Ḡ(J̄)ij = −κJ̄ij︸ ︷︷ ︸

decay

+
µ

τ

∫ τ
µ

0

(vi ∗ g1/β)(s)(vj ∗ g1/β)(s) ds

︸ ︷︷ ︸
correlation

+ Q22︸︷︷︸
noise



C.2. Proofs for fast inputs section 2.4 221

where v(t) is the τ
µ
-periodic attractor of dv

dt
= (J̄− L).v ∗ g1/β + u(µt), where

J ∈ Rn×n is supposed to be fixed. And Q22 is a noise matrix described below.

Proof. First, it is useful to observe that one can introduce and adaptation

variable z(t) ∈ Rn such that system (2.32) is equivalent to





d

(
v

z

)
= 1

ε1

[(
0 J − L

β −β

)(
v

z

)
+

(
u( t

ε2
)

0

)]
dt+

(
σ√
ε1
dB(t)

0

)

dJ
dt

= −κJ + z ⊗ z

The structure of the proof of theorem C.2.1 remains unchanged. Indeed,

The decay term of the averaged system does not change.

The correlation term is to be replaced by µ
τ
v.G1/β.G ′

1/β.v
′.

The noise term we are looking for is Q22 in the Lyapunov equation (see

(2.27)) below

(
0 J − L

β −β

)
.

(
Q11 Q′

12

Q12 Q22

)
+

(
Q11 Q′

12

Q12 Q22

)
.

(
0 β

J′ − L −β

)
+

(
σ2 0

0 0

)
= 0

Because the learning rule is symmetric then the space of symmetric matrices

is invariant and we can restrict this section to the symmetric case. It is easy

to show that this Lyapunov equation has a unique solution, because the sum

of two eigenvalues of the drift matrix is never null (provided J stays in Ep).

This leads to the system





(J − L).Q12 + Q′
12.(J − L) + σ2 = 0 (a)

β(Q11 − Q12) + Q22.(J − L) = 0 (b)

Q22 =
Q12+Q′

12

2
(c)

One solution of equation (a) is Q12 = σ2

2
(L − J)−1. Equation (c) defines Q22

properly. Indeed, because J is symmetric, so is Q12 and Q22 = σ2

2
(L − J)−1.

Similarly, equation (b) defines Q11 but it remains to be checked that this

definition is that of symmetric matrix. In fact it works because J is assumed

symmetric and the noise is proportional to the identity matrix. Indeed, in

this case Q11 = σ2

2
(L−J)−1 + σ2

2β
. This solution is thus the unique solution of

the Lyapunov equation.

Therefore,

Ḡ(J) = −κJ +
µ

τ
v · G1/β · G ′

1/β · v′ +
σ2

2
(L − J)−1
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In the derivation of the condition under which |||J||| remain smaller than

lp, the majoration of the term A changes as follow. Define M ∈ R+ so that

‖v(t)‖ ≤ M for all t > 0. Because we assume v(R−) = 0, the variation

of constant formula for linear retarded differential equations with constant

coefficients (see chapter 6 of [Hale and Lunel 1993]) reads v(t) =
∫ t

0
U(t −

s).u(µs)ds where the resolvent U is the solution of U̇ = (J− L).(U ∗ g). We

use corollary 1.1 of the chapter 6 of [Hale and Lunel 1993] which is based on

Grönwall’s lemma, to claim that ‖U(t− s)‖ ≤ e(t−s)(α∗−l). Therefore,

‖v(t)‖ ≤
∫ t

−∞
‖U(t− s)‖‖u(µs)‖ds ≤ um

[e(t−s)(α∗−l)

l − α∗

]t
−∞

≤ um

l − α∗ = M

Then, we used Young’s inequality for convolution to get ‖(v ∗ g)(t)‖2 ≤
‖v‖2‖g‖1 = ‖v‖2.

Therefore, the majoration of A remain unchanged.

Therefore, the polynomial P remains the same and assumption 2.4.4 is

still relevant to this problem. �

Lemma C.2.7.

v =
+∞∑

k=0

Jk

lk+1
· I · W̃ · Ṽk

where u and V are convolution operators respectively generated by the func-

tions ũ and ṽ detailed below

w̃ : t 7→ l
2∆

(
(1 + ∆)e−

β
2
(1−∆)t − (1 − ∆)e−

β
2
(1+∆)t

)
H(t)

ṽ : t 7→ l
∆

(
e−

β
2
(1−∆)t − e−

β
2
(1+∆)t

)
H(t)

where H is the Heaviside function, ∆ =
√

1 − 4l
β
. If ∆ is a pure imaginary

number the expression above still holds with the hyperbolic functions sh and

ch being turned into classical trigonometric functions sin and cos and ∆ being

replaced by its modulus.

If J is in Ep for p ∈]0, 1[ then this expansion converges.

Proof. See the second example of the appendix E. �

Using lemma C.3.3, on can define redefine

Ck,q =
1

u2
mτ‖v‖k+q+2

1

u · Vk+1 · (u · Vq+1)′

where V is the convolution operator generated by v(t) = l
µ∆

(
e−

β
2µ

(1−∆)t −
e−

β
2µ

(1+∆)t
)
H(t) (see section C.3 for details). Observe that applying Young’s

inequality for convolutions leads to ‖Ck,q‖2 ≤ 1.



C.2. Proofs for fast inputs section 2.4 223

Therefore, we can rewrite theorem 2.4.7 into

Theorem C.2.8.

µ

τ
v.G1/β.G ′

1/β.v
′ =

u2
m‖v‖2

1

l2

+∞∑

k,q=0

Jk

(l/‖v‖1)k
· Ck,q · J′q

(l/‖v‖1)q

Proof. Similar to that of theorem 2.4.7. �

Theorem C.2.9.If assumption 2.4.4 is verified for p ≤ 1
3

there is a unique

equilibrium point which is globally, asymptotically stable.

Proof. Similar to the previous case. �

With the same definitions for p̃ = u2
m

κl3
+ σ2

2κl2
and λ = σ2l

2u2
m

, we can show

Theorem C.2.10.

J =
p̃l

1 + λ
(λ+ ‖v‖2

0C̃
0,0)

+
p̃2‖v‖1l

(1 + λ)2

( λ2

‖v‖1

+λ(‖v‖1C̃
0,0+‖v‖2

1C̃
1,0+‖v‖2

1C̃
0,1)+‖v‖4

1C̃
0,0.C̃1,0+‖v‖4

1C̃
0,1.C̃0,0)

)
+O(p̃3‖v‖2

1)

Proof. Define Ω = J
p̃l

so that

Ḡ(Ω) =
(u2

m

l2
+
σ2

2l

)(
−Ω+

‖v‖2
1

1 + λ

+∞∑

k,q=0

(p̃‖v‖1Ω)k·C̃k,q·(p̃‖v‖1Ω)q+
λ

1 + λ

+∞∑

k=0

(p̃Ω)k
)

So the expansion will be in orders of p̃‖v‖1 with ‖v‖1 ≥ 1.

Therefore,

a (1 + 1
λ
)Qa

1+λ
‖v‖2

1
Fa

0 Id C̃0,0

1 Ω0

‖v‖1
Ω0.C̃

1,0 + C̃0,1.Ω0

2
Ω2

0+Ω1

‖v‖2
1

Ω2
0.C̃

2,0 + C̃0,2.Ω2
0 + Ω0.C̃

1,1.Ω0 + Ω1.C̃
1,0 + C̃0,1.Ω1

Actually , it is possible to compute recursively the nth terms, although their

complexity explodes. Therefore, it is easy to compute Ωa = Fa + Qa for

a ∈ N. By definition J = p̃lΩ = p̃l(F + Q), which leads to the result. �

C.2.4 STDP learning with linear neurons and correlated

noise

Consider the following n-dimensional stochastic differential system
{
dv = 1

ε1

(
− Lv + J.v + u( t

ε2
)
)
dt+ 1√

ε1
Σ.dB(t)

dJ
dt

= G(v,J) = −κJ + a+v ⊗ (v ∗ g1/γ) − a−(v ∗ g1/γ) ⊗ v
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where u is a continuous input in Rn, l, ε1, ε2, κ ∈ R+, a+, a− ∈ R, Σ ∈
Rn×n and B(t) is a n-dimensional Brownian noise and for all γ > 0, g1/γ :

t 7→ γe−γtH(t) where H is the Heaviside function. Recall the well-posedness

assumption 2.4.10

Assumptions C.2.11.There exists p ∈]0, 1[ such that

|a+| + |a−|
p(1 − p)

( dγ

2(1 + γ/l − p)
+

u2
m

(1 − p)

)
< κl3

Theorem C.2.12.If assumption 2.4.10 is verified for p ∈]0, 1[, then system

(2.33) is asymptotically well-posed in probability and the connectivity matrix

Jε solution of system (2.33) converges to J̄, in the sense that for all δ, T > 0,

µ

lim
ε→0

P

[
sup

t∈[0,T ]

|Jε
t − J̄t|2 > δ

]
= 0

where J̄ is the deterministic solution of:

dJ̄ij

dt
= Ḡ(J̄)ij = −κJ̄ij︸ ︷︷ ︸

decay

+
µ

τ

∫ τ
µ

0

a+vi(s)(vj ∗ g1/γ)(s) − a−(vi ∗ g1/γ)(s)vj(s) ds

︸ ︷︷ ︸
correlation

+ Q12︸︷︷︸
noise

where v(t) is the τ
µ
-periodic attractor of dv

dt
= (J̄ − L).v + u(µt), where J ∈

Rn×n is supposed to be fixed. And Q12 is described below.

Proof. First, it is useful to observe that one can introduce and adaptation

variable z(t) ∈ Rn such that system (2.32) is equivalent to




d

(
v

z

)
= 1

ε1

[(
J − L 0

γ −γ

)(
v

z

)
+

(
u( t

ε2
)

0

)]
dt+

(
σ√
ε1
dB(t)

0

)

dJ
dt

= −κJ + a+v ⊗ z − a−z ⊗ v

The structure of the proof of theorem C.2.1 remains unchanged. Indeed,

The decay term of the averaged system does not change.

The correlation term is to be replaced by µ
τ

(
a+v.G ′

1/γ.v
′ + a−v.G1/γ.v

′).
The noise term we are looking for is Q12 in the Lyapunov equation (see

(2.27)) below
(

J − L 0

γ −γ

)
.

(
Q11 Q′

12

Q12 Q22

)
+

(
Q11 Q′

12

Q12 Q22

)
.

(
J′ − L γ

0 −γ

)
+

(
Σ.Σ′ 0

0 0

)
= 0



C.2. Proofs for fast inputs section 2.4 225

This leads to the system





(J − L).Q11 + Q11.(J
′ − L) + Σ.Σ′ = 0 (a)

γ(Q11 − Q12) + Q12.(J
′ − L) = 0 (b)

Q22 =
Q12+Q′

12

2
(c)

In fact, this system would be much more complicated if we had considered

damped oscillators and dynamic synapses as in the previous section. In this

case, it seems to be impossible to find Q12 explicitly.

In this simplistic case of linear neurons, Q11 is the solution of a Sylvester

equation (see equation (a)). Lemma D.3.2 gives an explicit solution: Q11 =∑+∞
k=0 Jk.Σ.Σ′.(2L − J′)−(k+1). Equation (b) leads to

Q12 = γQ11.(L + γ − J′)−1 = γ

+∞∑

k=0

Jk.Σ.Σ′.(2L − J′)−(k+1).(L + γ − J′)−1

Therefore,

Ḡ(J) = −κJ +
µ

τ

(
a+v.G ′

1/γ.v
′ − a−v.G1/γ.v

′)+ a+Q′
12 − a−Q12

We show that for J already in Ep it will stay for ever in Ep:

1. Inequality J ≥ 0:

Decomposing the connectivity as J = S+iA leads to 〈x,J.x〉 = 〈x,S.x〉+
i〈x,A.x〉. By hermiticity of S and A, 〈x,S.x〉 and 〈x,A.x〉 are real num-

bers. This means we only have to show that the eigenvalues of S remain

positive along the dynamics. Taking the symmetric part of equation

(C.2.4) leads to

dS

dt
= −κS +

µ(a+ − a−)

2τ
v.(G1/γ + G ′

1/γ).v
′ + (a+ − a−)Q22

Suppose we take an initial condition S0 > 0. It is clear that, if v.(G +

G ′).v′ and Q22 are always positive then S will remain positive. This

would prove the result. Therefore, focus on

• Proving v.(G1/γ + G ′
1/γ).v

′ ≥ 0:

According to the first point of lemma C.3.1, G1/γ +G ′ = 2G1/γ.G ′
1/γ.

Therefore, v.(G1/γ + G ′
1/γ).v

′ = 2v.G1/γ.(v.G1/γ)
′ is a Gramian ma-

trix and therefore it is positive.
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• Proving Q22 ≥ 0:

Q22 is the covariance matrix of the random value z, therefore, it is

positive-semidefinite.

2. Inequality |||J||| < lp:

For all x ∈ Cn such that ‖x‖ = 1, define a family of positive numbers

(αx) whose supremum is written α∗ and a family of functions (gx) such

that

gx : J → 〈x,J.x〉 − αx

Because g is linear, dgx
W(J) = 〈x,J.x〉. For W ∈ gx−1(0), i.e. 〈x,W.x〉 =

αx, compute

dgx
J

(
Gµ(J)

)
= −κ 〈x,J.x〉︸ ︷︷ ︸

=αx

+
µ

τ
〈x,v.(a+G1/γ − a−G ′

1/γ).v
′.x〉

︸ ︷︷ ︸
=A

+(|a+|+|a−|) 〈x,Q12.x〉︸ ︷︷ ︸
=B

• Majoration of A:

Cauchy Schwarz leads to

|A| ≤ |a+|‖v.G.v′.x‖ + |a−|‖v.G ′.v′.x‖

As before we can find an upper bound of A which reads

A ≤ τu2
m(|a+| + |a−|)
(l − α∗)2

• Majoration of B:

According to proposition 11.9.3 of [Bernstein 2009] the solution of

the Lyapunov equation (a) in system (C.2.4) can be rewritten

Q11 =

∫ +∞

0

e−t(L−J).Σ.Σt.e−t(L−J′) dt

because (J − L) ⊕ (J − L) is not singular due to the fact J ∈ Ep.

Observe that for A a positive matrix whose eigenvalues are the λi,

then the spectrum of e−A is
{
e−λi : i = 1..n

}
. Therefore, |||e−A||| =

e−min(|λi|). Therefore, if A = L − J, then |||e−A||| ≤ eα∗−l. This

leads to

|||Q11||| ≤ d

∫ +∞

0

e2(α
∗−l)tdt = d

[ e2(α∗−l)t

2(α∗ − l)

]+∞

0
=

d

2(l − α∗)

Then we apply the same arguments to say that

|B| = |||Q12||| ≤ |||Q11||| |||γ(L+γ−J)−1||| ≤ dγ

2(l − α∗)(l + γ − α∗)
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The rest of the proof is identical to the Hebbian case. Assumption 2.4.4

is changed to assumption 2.4.10 for Ep to be invariant by the flow Ḡ. �

Define

Dk,q =
1

u2
mτ
(
|a+| + |a−|

)u · Gk+1
µ/l ·

(
a+G ′

1/γ − a−G1/γ

)
· G ′

µ/l
k+1 · u′

In this framework, on can prove

Theorem C.2.13.The correlation term can be written

µ

τ

(
a+v.G ′

1/γ.v
′ − a−v.G1/γ.v

′) =
u2

m

(
|a+| + |a−|

)

l2

+∞∑

k,q=0

Jk

lk
· Dk,q · J′q

lq

Proof. Similar to that of theorem 2.4.7. �

Theorem C.2.14.If assumption 2.4.10 is verified for p ≤ 1
3

there is a unique

equilibrium point which is globally, asymptotically stable.

Proof. Similar to the previous case. �

Now, we proceed as before by defining

p̃ =
|a+| + |a−|

κl3

( d

2(1
l
+ 1

γ
)

+ u2
m

)
and λ =

d

2u2
m(1

l
+ 1

γ
)

Theorem C.2.15.

J =
p̃l

1 + λ

(
λ(α+ − α−)

Σ.Σ′

d
+ D0,0

)

+
p̃2l

(1 + λ)2

(
λ2(a+−a−)2(1+

1

1 + γ/l
)
Σ.Σ′2

d2
+λ(

a+ − a−
2

)
(
(D0,0+2D0,1).

Σ.Σ′

d
+

Σ.Σ′

d
.(D0,0+2D1

+
λ

1 + γ/l

(
a+D0,0.

Σ.Σ′

d
− a−

Σ.Σ′

d
.D0,0

)
+ D0,0.D1,0 + D1,0.D0,0

)

+ O(p̃3)

Proof. First, we need to work on the noise term Q = a+Q′
12+a−Q12. Recall

Q11 is solution of the Lyapunov equation (L−J).Q11+Q11.(L−J)′+Σ.Σ′ = 0.

Lemma D.3.2 says that

Q11 =
+∞∑

k=0

Jk.Σ.Σ′.(2L − J′)−(k+1)
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is a well-defined solution. We now use the fact that (2L − J′)−(k+1) =

1
(2l)k+1

∑+∞
n=0

(
n+ k

n

)
J′n

(2l)n to show that

Q11 =
+∞∑

k,n=0

1

(2l)k+n+1

(
n+ k

n

)
Jk.Σ.Σ′.J′n

and therefore

Q12 =
γ

2l(l + γ)

+∞∑

k,n,q=0

1

2k+n(1 + γ/l)q

(
n+ k

n

)
Jk

lk
.Σ.Σ′.

J′n+q

ln+q

Thus, writing α± = a±
|a+|+|a−| and ck,n,q = 1

2k+n(1+γ/l)q

(
n+ k

n

)
, the noise term

is

Q =
d
(
|a+| + |a−|

)

2l2
(

1
l
+ 1

γ

)
+∞∑

k,n,q=0

ck,n,q

(
α+

Jn+q

ln+q
.
Σ.Σ′

d
.
J′k

lk
− α−

Jk

lk
.
Σ.Σ′

d
.
J′n+q

ln+q

)

Define Ω = J
p̃l

such that |||Ω||| = O(1). We abusively write Ḡ(Ω) = Ḡ(p̃lJ)

such that

Ḡ(Ω) = −p̃lκΩ +
u2

m

(
|a+| + |a−|

)

l2

+∞∑

k,q=0

(p̃Ω)k · Dk,q · (p̃Ω)q

+
d
(
|a+| + |a−|

)

2l2
(

1
l
+ 1

γ

)
+∞∑

k,n,q=0

ck,n,q

(
α+(p̃Ω)n+q.

Σ.Σ′

d
.(p̃Ω′)k−α−(p̃Ω)k.

Σ.Σ′

d
.)(p̃Ω′)n+q

)

This leads to

Ḡ(Ω) =
(u2

m

(
|a+| + |a−|

)

l2
+
d
(
|a+| + |a−|

)

2l2(1
l
+ 1

γ
)

)[
−Ω+

1

1 + λ

F̃︷ ︸︸ ︷
+∞∑

k,q=0

(p̃Ω)k · Dk,q · (p̃Ω)q

+
λ

1 + λ

+∞∑

k,n,q=0

ck,n,q

(
α+(p̃Ω)n+q.

Σ.Σ′

d
.(p̃Ω′)k − α−(p̃Ω)k.

Σ.Σ′

d
.)(p̃Ω′)n+q

)

︸ ︷︷ ︸
Q̃

]

We are looking for Fa and Qa in the following expansions F̃ =
∑+∞

a=0 Fap̃
a

and Q̃ =
∑+∞

a=0 Qap̃
a. Recall

Ωp =
+∞∑

i=0

p̃i
∑

η∈Np,
P

k ηk=i

Ωη1 .Ωη2 . · · · .Ωηp
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Therefore,

Q̃ =
+∞∑

k,n,q,i,j=0

ck,n,qp̃
k+n+q+i+j

∑

η ∈ Nk,
∑

m ηm = i

θ ∈ Nn+q,
∑

m θm = j

α+Ωη1 . · · · .Ωηn+q
.
Σ.Σ′

d
.Ω′

θ1
. · · · .Ω′

θk
−α−Ωη1 . · · · .Ωηk

.
Σ.Σ′

d
.Ω′

θ1
. · · · .Ω

Leading to

Qa =
+∞∑

k, n, i, j = 0

a = k + n+ q + i+ j

ck,n,q p̃
k+n+q+i+j

∑

η ∈ Nk,
∑

m ηm = i

θ ∈ Nn+q,
∑

m θm = j

α+Ωη1 . · · · .Ωηn+q
.
Σ.Σ′

d
.Ω′

θ1
. · · · .Ω′

θk
−α−Ωη1 . · · · .Ωηk

.
Σ.Σ′

d
.Ω′

θ1
. · · · .Ω

This equation is scary but it reduces to simple expressions for small a ∈ N.

a Qa Fa

0 (α+ − α−)Σ.Σ′

d
D0,0

1 α+−α−
2

(
Ω0.

Σ.Σ′

d
+ Σ.Σ′

d
.Ω′

0

)
+ 1

1+γ/l

(
α+Ω0.

Σ.Σ′

d
− α−

Σ.Σ′

d
.Ω′

0

)
Ω0.D

1,0 + D0,1.Ω′
0

Recall that J = p̃lΩ = p̃l( 1
1+λ

F̃ + λ
1+λ

Q̃) to get the result. �

C.3 Properties of the convolution operators G1/γ,

W and V
Recall G1/γ, W and V are convolution operators respectively generated by

g1/γ, v and w defined in (A). Their Fourier transforms are respectively

ĝ1/γ : ξ 7→ γ
γ+2iπξ

v̂ : ξ 7→ 4β(
β(1+∆)+4iπµξ

)(
β(1−∆)+4iπµξ

)

ŵ : ξ 7→ 4β+8iπµξ(
β(1+∆)+4iπµξ

)(
β(1−∆)+4iπµξ

)



230 Appendix C. Proofs of chapter 2

C.3.1 Algebraic properties

Lemma C.3.1.
G1/γ + G ′

1/γ

2
= G1/γ.G ′

1/γ

Proof. Compute

(G1/γ.G ′
1/γ)xy = γ2

∫ +∞

−∞
e−γ(x−z)H(x− z)e−γ(y−z)H(y − z) dz

= γ2e−γ(x+y)

∫ min(x,y)

−∞
e2γz dz = γ2e−γ(y+x)

[e2γz

2γ

]min(x,y)

−∞

=
γ

2
e−γ
(

y+x−2min(x,y)
)

Therefore, if y ≥ x then (G1/γ.G ′
1/γ)xy = γ

2
e−γ(y−x) and if x ≥ y then (G1/γ.G ′

1/γ)xy =
γ
2
e−γ(x−y). The result follows. �

Lemma C.3.2.

G ′
1/γ − G1/γ =

1

γ
D.(G ′

1/γ + G1/γ)

where D is the time-differentiation operator, i.e. (X .D)(t) = dX
dt

(t).

Proof. G1/γ and G ′
1/γ are a convolution operators respectively generated by

g1/γ : t 7→ γe−γtH(t) and g′1/γ : t 7→ γeγtH(−t). The Fourier transform of g1/γ

is ĥ(ξ) = 1
γ+2iπξ

. Therefore, the Fourier transform of g′1/γ − g1/γ is

̂g′1/γ − g1/γ(ξ) =
1

γ − 2iπξ
− 1

γ + 2iπξ
=

2iπξ

γ

2γ

γ2 + 4π2ξ2

=
2iπξ

γ

( 1

γ + 2iπξ
+

1

γ − 2iπξ

)
=

2iπξ

γ

(
̂g′1/γ + g1/γ(ξ)

)

Because d̂f
dt

(ξ) = 2iπξf̂ , taking the inverse Fourier transform of ̂g′1/γ − g1/γ(ξ)

gives the result. �

Lemma C.3.3.

W · Vk · Gµ/β = Vk+1

Besides, if ∆ ∈ iR, Vk is a convolution operator generated by

vk : t 7→
√
πβ

k!
e−

β
2
t
( t

|∆|
)k+ 1

2
Jk+ 1

2

(β|∆|
2

t
)
H(t)

where Jn(z) is the Bessel function of the first kind. If ∆ ∈ R, the formula

above holds if one replace Jn(z) by In(z) the modified Bessel function of the

first kind.
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Proof. We want to compute W ·Vk · Gµ/β. Compute the Fourier transform

of w ∗ vk ∗ gµ/β, where vk is the result of k convolutions of v with itself:

̂w ∗ vk ∗ gµ
β
(ξ) = ŵ(ξ)ĝµ

β
(ξ)v̂k(ξ) =

( β
(β(1+∆)

2
+ 2iπµξ

)(
β(1−∆)

2
+ 2iπµξ

)
)k+1

= v̂k+1(ξ)

This proves the first result.

Then observe that

vk+1(t) = βk+1F−1
(
ξ 7→ 1

(
β(1+∆)

2
+ 2iπµξ

)k+1

)
∗F−1

(
ξ 7→ 1

(
β(1−∆)

2
+ 2iπµξ

)k+1

)
(t)

= βk+1
(
s 7→ sk

k!
e−

β(1+∆)
2

sH(s)
)
∗
(
s 7→ sk

k!
e−

β(1−∆)
2

sH(s)
)
(t)

=
βk+1

k!2
e−

β(1−∆)
2

t

∫ t

0

sk(t− s)ke−β∆s ds H(t)

The last integral can be analytically computed with the help of Bessel func-

tions. In fact, it gives different results depending on the nature of ∆ (whether

it is real or imaginary).

• If ∆ ∈ R, then defining In(z) the modified Bessel function of the first

kind leads to
∫ t

0

e−β∆ssk(t− s)kds =
√
πe−

β∆
2

tk!
( t

β∆

)k+ 1
2 Ik+ 1

2

(β∆

2
t
)

• If ∆ ∈ iR, then defining Jn(z) the Bessel function of the first kind leads

to
∫ t

0

e−β∆ssk(t− s)kds =
√
πe−

β∆
2

tk!
( t

β|∆|
)k+ 1

2Jk+ 1
2

(β|∆|
2

t
)

This concludes the proof. �

C.3.2 Signed integral

1.
∫ +∞
−∞ g1/γ(t)dt = γ 0−1

−γ
= 1 .

2. For ∆ =
√

1 − 4l
β
∈ C compute

∫ +∞

−∞
v(t)dt =

l

∆µ

(∫ +∞

0

e−
β
2µ

(1−∆)tdt−
∫ +∞

0

e−
β
2µ

(1−∆)tdt
)

=
l

∆µ

( 0 − 1

− β
2µ

(1 − ∆)
− 0 − 1

− β
2µ

(1 + ∆)

)
=

2l

∆β

1 + ∆ − (1 − ∆)

1 − ∆2
=

4l

β

β

4l
= 1
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3. Similarly

∫ +∞

−∞
w(t)dt =

l

2∆µ

(
(1+∆)

∫ +∞

0

e−
β
2µ

(1−∆)tdt−(1−∆)

∫ +∞

0

e−
β
2µ

(1−∆)tdt
)

=
l

∆β

(1 + ∆)2 − (1 − ∆)2

1 − ∆2
=

l

∆β

4∆β

4l
= 1

C.3.3 L1 norm

• For 4l ≤ β, i.e. ∆ =
√

1 − 4l
β
∈ R+, then

1. g1/γ(t) > 0 and ‖g1/γ‖1 =
∫

R
g1/γ(t)dt = 1.

2. v(t) = 2l
∆µ
e−

β
2µ

tsh(β∆
2µ
t)H(t) ≥ 0 and ‖v‖1 =

∫
R
v(t)dt = 1.

3. w(t) = l
∆µ
e−

β
2µ

t
(
sh(β∆

2µ
t)+∆ch(β∆

2µ
t)
)
H(t) ≥ 0 and ‖u‖1 =

∫
R
u(t)dt =

1.

• For 4l > β, i.e. ∆ is a pure imaginary, we rewrite ∆ =
√

4l
β
− 1 and

observe that

1. g1/γ(t) > 0 and ‖g1/γ‖1 =
∫

R
g1/γ(t)dt = 1.

2. v(t) = 2l
∆µ
e−

β
2µ

t sin(β∆
2µ
t)H(t) which changes sign on R+. Therefore,

‖v‖1 =
2l

∆µ

∫ +∞

0

e−
β
2µ

t
∣∣ sin(

β∆

2µ
t)
∣∣dt =

4l

∆2β

∫ +∞

0

e−
s
∆

∣∣ sin(s)
∣∣ds

=
4l

∆2β

+∞∑

k=0

(−1)k

∫ (k+1)π

kπ

e−
s
∆ sin(s)ds =

4l

∆2β

+∞∑

k=0

(−1)k (−1)ke−
kπ
∆ − (−1)k+1e−

(k+1)π
∆

1 + 1
∆2

= (1 + e−
π
∆ )

+∞∑

k=0

e−
kπ
∆ =

1 + e−
π
∆

1 − e−
π
∆

= coth
( π
2∆

)

3. w(t) = l
∆µ
e−

β
2µ

t
(
sin(β∆

2µ
t) + ∆ cos(β∆

2µ
t)
)
H(t) which also changes

sign on R+. We have not found a way to compute ‖w‖1 and write

the result elegantly.
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The Kronecker product between matrices (which is equal to the tensor

product between matrices) is ubiquitous in the mathematical proofs of this

thesis. Indeed, correlation-causation based learning in a neural network can be

expressed using this operator which is written ⊗. It has interesting properties

that we briefly describe below.

We refer to [Brewer 1978] and [Bernstein 2009] for an extensive introduc-

tion to the Kronecker product.

D.1 Kronecker product

D.1.1 Definition

Between matrices Let A ∈ Rn×m and B ∈ Rp×q. The Kronecker product

between A and B is a matrix of size np×mq defined by the partitioned matrix

A ⊗ B
def
=




A11B A12B . . . A1mB
...

...
...

An1B An2B . . . AnmB




Between vectors The definition above holds when n = 1, m = 1, p = 1

and/or q = 1 extending the definition to vectors. However, the most common

way of considering the Kronecker product between two vectors assumes m = 1

and p = 1, i.e. A is a column and B is a row. In this case, A ⊗ B ∈ Rn×q

and {A⊗B}ij = AiBj. It can also be reformulated as A⊗B = A ·B where

· is the matrix multiplication.

Between operators We illustrate in appendix E, an extension of the Kro-

necker product to operators. Actually, it can be defined based on the carac-

teristic property D.1.8 of the Kronecker product.

D.1.2 Properties

D.1.2.1 Immediate properties

The Kronecker product is associative, non-commutative, bilinear and

distributive with respect to the sum of matrices.
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Proposition D.1.1.If A ∈ Cn×m,B ∈ Cp×qthen

(A ⊗ B)∗ = A∗ ⊗ B∗

Proposition D.1.2.If A ∈ Rn×m,B ∈ Rp×q,C ∈ Rm×l,D ∈ Rq×k , then

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D)

Proposition D.1.3.If A ∈ Rn×n,B ∈ Rm×m are invertible, then A ⊗ B is

invertible and

(A ⊗ B)−1 = A−1 ⊗ B−1

Proposition D.1.4.If A ∈ Rn×n,B ∈ Rm×m are invertible, then A ⊗ B is

invertible and

(A ⊗ B)−1 = A−1 ⊗ B−1

Proposition D.1.5.If {λi ∈ C : i = 1..n} (resp. {µj ∈ C : j = 1..m}) is the

set of eigenvalues of A ∈ Rn×n (resp. B ∈ Rm×m), then the eigenvalues of

A ⊗ B are all the combinations λiµj.

D.1.2.2 Caracteristic property

It is well know that any linear operator on Rn can be described by a matrix (in

fact several matrices due to the multiplicity of the basis of Rn). Conversely,

to any matrix can be associated a linear operator (in fact several operators

due to the multiplicity of the basis of Rn). Therefore, we might be interested

by the operators associated to the Kronecker product A ⊗ B. One of them

turns out to be X 7→ A.X.B′. It corresponds to the choice of a certain basis.

Another basis leads to the operator X 7→ B′.X.A. This is summarized the

following propositions.

To get to this result it is convenient to introduce the “vectorize” operators.

Definition D.1.6.The operator vecr :
Rn×m → Rnm

A 7→ vecr(A)
corresponds to

the turning a matrix into a vector by concatenating the rows of the matrix in

a single vector.
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Similarly we can define the operator vecc which corresponds to the concate-

nation of the columns of a matrix.

Proposition D.1.7.

Lemma D.1.8.Note ∀i ∈ {1, .., 4}, ni ∈ N∗. For A ∈ Rn1×n2 and B ∈
Rn3×n4.

vecr(A.X.B) = (A ⊗ B′).vecr(X)

vecc(A.X.B) = (B′ ⊗ A).vecc(X)

Proof. To do so we introduce, the operator F : X 7→ A.X.B. Then,

substitute X by Eij = (δi−kδj−l)kl one of the vectors of the canonical basis

of Rn2×n3 . Then observe that F (Eij) = A.Eij.B = A.i ⊗ Bj. (A.i is the ith

columns of A and Bj. is the jth row of B).

Consider the vector vecc(X) =
(

X11, · · · ,Xn21︸ ︷︷ ︸
X′

.1

,X12, · · · ,Xn22︸ ︷︷ ︸
X′

.2

, · · · , · · ·︸︷︷︸
X′

.n3

)′

made of the columns of X. Similarly, define vecr(X) by concatenating the rows

of X. Therefore,

vecc

(
F (X)

)
=

=
(

vecc(A.1 ⊗ B1.), · · · , vecc(A.n2 ⊗ B1.)︸ ︷︷ ︸
B′

1.⊗A

, · · · , vecc(A.1 ⊗ Bn3.), · · · , vecc(A.n2 ⊗ Bn3.)︸ ︷︷ ︸
B′

n3.⊗A

)
.vecc(X)

= (B′ ⊗ A).vecc(X) (D.1)

Similarly,

vecr

(
F (X)

)
=

=
(

vecr(A.1 ⊗ B1.), · · · , vecr(A.1 ⊗ Bn3.)︸ ︷︷ ︸
A.1⊗B′

, · · · , vecr(A.n2 ⊗ B1.), · · · , vecr(A.n2 ⊗ Bn3.)︸ ︷︷ ︸
A.n2⊗B′

)
.vecr(X)

= (A ⊗ B′).vecr(X) (D.2)

�

Lemma D.1.9.Note ∀i ∈ {1, .., 4}, ni ∈ N∗. For A ∈ Rn1×n3 and B ∈
Rn2×n4..

vecr(A.X
′.B) = (A ⊗ B′).vecr(X)

vecc(A.X
′.B) = (B′ ⊗ A).vecc(X)
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Proof. To do so we introduce, the operator F : X 7→ A.X′.B. Then,

substitute X by Eij = (δi−kδj−l)kl one of the vectors of the canonical basis

of Rn2×n3 . Then observe that F (Eij) = A.E′
ij.B = A.j ⊗ Bi. (A.j is the jth

columns of A and Bi. is the ith row of B).

Consider the vector vecc(X) =
(

X11, · · · ,Xn21︸ ︷︷ ︸
X′

.1

,X12, · · · ,Xn22︸ ︷︷ ︸
X′

.2

, · · · , · · ·︸︷︷︸
X′

.n3

)′

made of the columns of X. Similarly, define vecr(X) by concatenating the rows

of X. Therefore,

vecc

(
F (X)

)
=

=
(

vecc(A.1 ⊗ B1.), · · · , vecc(A.1 ⊗ Bn2.)︸ ︷︷ ︸
B′

1.⊗A

, · · · , vecc(A.n3 ⊗ B1.), · · · , vecc(A.n3 ⊗ Bn2.)︸ ︷︷ ︸
B′

n2.⊗A

)
.vecc(X

= (B′ ⊗ A).vecc(X) (D.3)

Similarly,

vecr

(
F (X)

)
=

=
(

vecr(A.1 ⊗ B1.), · · · , vecr(A.n3 ⊗ B1.)︸ ︷︷ ︸
A⊗B′

1.

, · · · , vecr(A.1 ⊗ Bn3.), · · · , vecr(A.n3 ⊗ Bn2.)︸ ︷︷ ︸
A⊗B′

n2.

)
.vecr(X

= (A ⊗ B′).vecr(X) (D.4)

�

D.2 Kronecker sum

Definition D.2.1.Let A ∈ Rn×n and B ∈ Rm×m, then the Kronecker sum be-

tween A and B is written A ⊕ B and is defined by

A ⊕ B
def
= A ⊗ Im + Im ⊗ B

It is associative and its eigenvalues can be described as follow

Proposition D.2.2.If {λi ∈ C : i = 1..n} (resp. {µj ∈ C : j = 1..m}) is the

set of eigenvalues of A ∈ Rn×n (resp. B ∈ Rm×m), then the eigenvalues of

A ⊕ B are all the combinations λi + µj.
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D.3 Sylvester equations

Sylvester equations are linear matrix equations. As opposed to the real case

were the commutativity of the real product leads to a simple solution, these

equations are much more difficult to solve in a matrix case.

Definition D.3.1.Given A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m, the following

equation is a Sylvester equation (where X ∈ Rn×m is the unknown variable)

A.X + X.B + C = 0 (D.5)

If C is Hermitian and B = A∗ then this equation is known as the continuous

Lyapunov equation.

D.3.1 Link with Kronecker sum

Actually, the explicit solution of a Sylvester equation can be written using

Kronecker sums. Indeed, apply the vectorize operator (with respect to the

rows for instance), defined in D.1.6, to the Sylvester equation. This gives

(A ⊗ Im + In ⊗ B′).vecr(X) = −vecr(C)

Therefore, provided A ⊕ B′ is invertible the solution of a Sylvester equation

is

X∗ = −vec−1
r

(
(A ⊕ B′).vecr(X)

)

The main problem of this formula is that it may be computationally heavy to

compute the inverse of the Kronecker sum.

D.3.2 A new way of writing the solutions

Here, we propose an original explicit solution for Sylvester equations D.5.

Indeed, provided the sum converges, the solution can be written

X∗ = −
+∞∑

k=0

(−A)k.C.B−(k+1)

Indeed, to prove this it is sufficient to observe that A.X∗+X∗.B = −C where

X∗ is defined by the equation above.

A.X∗ + X∗.B =
+∞∑

k=0

(−A)k+1.C.B−(k+1) −
+∞∑

k=0

(−A)k.C.B−k = −C
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We guessed this formula from a deep inspection of the Kronecker sums and

products defined above. Actually, the serie has to converge for X∗ to be

a solution and it not an easy task to have a subtle description of all the

converging cases. Therefore, we introduce the following rigorous lemma which

is sufficient for the computations done in this thesis.

We believe this result may interest theoreticians in different field and that

it deserves to be more developped. Indeed, it corresponds to finding an explicit

formula for the inverse of a Kronecker sum. Therefore, exploring this heuristic

result is a technical perspective of this thesis.

Lemma D.3.2. The solution of the following Sylvester equation

(L − W).X + X.(L − W)′ + D = 0

where L = lId and 0 < W < L is

X = −
+∞∑

k=0

Wk.D.(2L − W′)−(k+1)

Proof. First, observe that if {|λ| : λ eigenvalue of W} ∈]0, l[ and W > 0

then |||W||| |||(2L − W)−1||| < 1. Therefore, X is well defined by equation

(D.3.2).

Observe that (2L−W′)−1.(L−W)′ = Id−L.(2L−W′)−1. Then assuming

X is defined by equation (D.3.2) then

(L − W).X + X.(L − W)′

= −
(
L.

+∞∑

k=0

Wk.D.(2L − W′)−(k+1) − W.
+∞∑

k=0

Wk.D.(2L − W′)−(k+1)

+
+∞∑

k=0

Wk.D.(2L − W′)−k − L.
+∞∑

k=0

Wk.D.(2L − W′)−(k+1)
)

= −
( +∞∑

k=0

Wk.D.(2L − W′)−k −
+∞∑

k=0

Wk+1.D.(2L − W′)−(k+1)
)

= −D

�
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abstract Based on the analysis of a certain class of linear operators on a

Banach space, we provide a closed form expression for the solutions of certain

linear partial differential equations with non-autonomous input, time delays

and stochastic terms, which takes the form of an infinite series expansion.

Keywords: Linear, delay, stochastic, non-autonomous, partial differential equa-

tions, series expansion, Kronecker product.

Introduction

Linear differential systems are ubiquitous in pure and applied mathematics,

either as models, approximations, but also because the stability of solutions

of nonlinear differential systems reduces to the study of linear systems. Such

systems might include stochastic terms (see [Mao 1997]), temporal delays (see

[Hale and Lunel 1993]), and also encompass the case of partial differential

equations. Apart from the simplest linear finite-dimensional differential equa-

tions, finding closed forms expressions for the solutions of general linear differ-

ential systems is very complex. In this paper, based on the treatment of evolu-

tion equations as algebraic equations in a suitable Banach space, we propose a

closed-form expression for the solution of linear, non-autonomous, stochastic,

time-delayed partial differential systems. Application of this framework to

several classical examples such as the delayed Ornstein-Uhlenbeck process or

the stochastic heat equation are developed in sections E.2.3 and E.2.4. This

expression is especially useful to understand the dynamics of weakly connected

linear learning neural networks, problem which motivated the development of

this more general framework and which is the topic of this thesis.

E.1 Framework and General Result

The framework we develop here is based on extending notions of matrix calcu-

lus to infinite dimensional spaces. The linearity of the equation motivates to

extend some finite-dimensional linear algebra and matrix concepts to infinite-

dimensional spaces.

We consider in the manuscript linear equations in a Banach space C of real

functions of time t and a variable x ∈ E, called space variable, where E can

either be a finite set {1, . . . , N} (in which case C is equivalent to the space of

RN -valued functions), countable or continuous, typically R, in which case C
is a space of two-variables functions. The particular problem under consider-
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ation governs the choice of the space C, in particular including regularity or

integrability properties (typically C is a Lp or a Sobolev space). Similarly to

a matrix notation, we denote the value of X ∈ C at (x, t) ∈ E × R by Xxt.

Let E denote the space of bounded linear operators on C. We are interested

in solving equations of type LX = B where L ∈ E (this operator may involve

differentials in time and/or space) and B ∈ C. We will restrict the study to a

class of operators of a particular form we now detail. To this end, we introduce

two kinds of linear operators on C: the space operators L acting on the first

(space) variable, i.e. linear operators on RE. If E is finite, this set is reduced

to the matrices. If E is equal to Rd, it contains all the linear operators acting

on functions of the space variable, in particular, under suitable regularity

conditions, integral or differential operators. The action of the space operators

L on a function X ∈ C is denoted L · X (acting on the left). The time

operators essentially act on the second (time) variable, and the transform

might depend on the space variable x. In other words, these transforms R
can be represented by a family of operators (Rx, x ∈ E) such that for any x,

Rx is a linear operator on L2(R). The action of a time operator R on X ∈ C is

written X ·R (acting on the right). In the paper, we will mainly be interested

in diagonalizable time operators. Diagonal operators in the time domain are

operators R whose action can be written in the form (X · R)xt = r(x, t)Xx,t.

This class includes for instance all linear differential time operators, which are

diagonalizable in the Fourier basis. Another class of time operators we will be

considering is the class C of convolution operators with respect to time. Given

a finite measure g of R, the convolution operator Tg ∈ C associated with g is

defined as
(
X · Tg

)
xt

=
∫∞
−∞Xx(t−s)dg(s). Such operators are generalizations

of Toeplitz matrices generated by g, with, loosely speaking, infinitely many

rows and columns. An important property of the convolution operators is

that they are diagonal in the Fourier basis.

For L a space operator and R a time operator, we define the Kronecker

product L⊗R as the mixed operator of E such that
(
L⊗R

)
(X) = L ·(X ·R).

Note that the product becomes associative when R is a convolution operator

which will be the case in section E.2. This definition extends the property

of vectorization of the Kronecker product of matrices in linear algebra (see

e.g. [Brewer 1978]).

The main technical result of the paper is given in the following:
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Proposition E.1.1. Let L = A⊗B+IdC⊗D be a linear operator, for A a space

operator and B, D co-diagonalizable time operators, with B invertible. For the

sake of simplicity, we assume that they are diagonal in the natural time basis,

and denote for x ∈ E, Bx = diagt∈R

(
b(x, t)

)
and Dx = diagt∈R

(
d(x, t)

)
. We

assume that infx,t |b(x, t)| > 0 and the spectral condition:

∃ l ∈ R∗ such that λ
def
=

‖W‖
infx,t

{∣∣l − d(x,t)
b(x,t)

∣∣
} < 1, (E.1)

where W
def
= l IdRE +A and ‖W‖ = supX 6=0

‖W ·X‖
‖X‖ is the operator norm. Then

A⊗ B + IdC ⊗D is invertible and its inverse reads:

(
A⊗ B + IdC ⊗D

)−1

= −
+∞∑

k=0

W k ⊗ diagt∈R

( 1

b(x, t)(l − d(x,t)
b(x,t)

)k+1

)
. (E.2)

Remark The spectral condition is merely a technical sufficient condition for

the convergence of the series. The relatively formal setting and assumptions

will become clearer in the applications, section E.2.

Proof. The direct introduction of the inverse can appear artificial at first

sight. However, this formula is a natural extension of the discrete-time case

where direct linear algebra and Kronecker products calculations quite simply

provide a closely related expression the interested reader can readily derive.

In order to prove the proposition, we first need to prove that the operator

indeed exists, and that it constitutes the inverse of L. It is easy to show

that under the assumption of the proposition that the sequence of operators

in E defined by: MN
def
= −∑N

k=0W
k ⊗ diagt∈R

(
1

b(x,t)(l− d(x,t)
b(x,t)

)k+1

)
constitutes

a Cauchy sequence in E . Since C is a Banach space, so is E , and hence the

sequence (Mn)n converges. The limit of this sequence is our inverse candidate,

and is denoted as the infinite series (E.2).

In order to prove that this limit is indeed the inverse of L, we compute the

limit of (MN ◦ L)X (or similarly (L ◦MN)X) for a given X ∈ C. It is easy to

show, developing the series, that we have:

((MN◦L)X)xt = −
N∑

k=0

−W k· X.,t(
l − d(.,t)

b(.,t)

)k
+W k+1· X.,t(

l − d(.,t)
b(.,t)

)k+1
= Xxt−WN+1· X.,t(

l − d(.,t)
b(.,t)

)N+1

where Y.,t for Y ∈ C denotes the application E 7→ R such that Y.,t(x) = Yxt.

Here again, the assumptions of the proposition ensures that the second term

vanishes as N goes to infinity. �
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E.2 Application to solving linear time-delayed Stochas-

tic Partial Differential Equations

In this section we make explicit the use of the inversion formula (E.2) in

the case of linear delayed, stochastic, partial differential equations. Several

examples with different convolution operators will illustrate the main result

of the section stated in theorem E.2.1.

E.2.1 General Result

Let X be a Hilbert space, typically Rn for n ∈ N, L2(Rn) or a Sobolev

space of applications on Rn. We consider a probability space (Omega,F ,P)

satisfying the usual conditions and B a standard adapted X -Brownian motion

(for the existence and properties of this object in infinite-dimensional spaces,

see [Da Prato and Zabczyk 1992, Chapter 4]). We aim at solving the non-

autonomous time-delayed stochastic differential equation:

{
dX =

(
A · (X ∗ g) + I

)
dt+ Σ · dB

X|R−
= ζ0 ∈ L2

X (R∗
−)

(E.3)

with Σ : X 7→ X linear, I ∈ C(R+,X ) an external input, g a finite measure

of the real line supported on R+, i.e. a causal measure, and ∗ denoting the

convolution. Existence and uniqueness of weak solutions for such equations

is ensured, see e.g. [Mao 1997, Da Prato and Zabczyk 1992]. We consider

the case where the system has a unique strong solution. In the case where

X = Rn, this occurs under the assumptions of the section, see e.g. [Mao 1997,

Chapter 5], and in the infinite-dimensional case, we need to assume that B is

a genuine Wiener process (i.e. the trace of the covariance matrix is finite, and

the initial condition is in the domain of A, see [Da Prato and Zabczyk 1992]).

The solution of this stochastic differential equation at time t ∈ R+ is defined

by the integral equation X(t) = ζ0(0)+
∫ t

0

(
A · (X ∗g)(s)+I(s)

)
ds+

∫ t

0
Σ ·dB

and X|R−
= ζ0.

This problem can be set in the framework described in section E.1 using

a transformation inspired by the classical Fourier transform of the solution in

the time domain. To perform this transformation rigorously in our particular

stochastic setting, we stop our processes at a finite time τ > 0. We define

Xτ : t ∈ R → 1[0,τ ](t)X(t) the restriction of X to the compact support [0, τ ]
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and null elsewhere. Similarly, define Iτ = 1[0,τ ]I and dBτ = 1[0,τ ]dB. We

have:

Theorem E.2.1. For all τ ∈ R+, choose l ∈ R∗ and W a space operator

such that W = l IdC + A. If the spectral condition (E.1) is satisfied, i.e. in

the present case ‖W‖ < infξ{
∣∣l+ 2iπξ

ĝ(ξ)

∣∣}, then the solution of equation (E.3) is

given by

Xτ =
+∞∑

k=0

W k ·
(
ζ0(0)δ0 + Ĩτ + Σ · dBτ

)
· U · Vk (E.4)

where U = F · diagξ∈R

(
1

lĝ(ξ)+2iπξ

)
· F−1, V = F · diagξ∈R

(
ĝ(ξ)

lĝ(ξ)+2iπξ

)
· F−1

and Ĩτ = Iτ + A · (ζ0 ∗ g). The notation
(
dBτ · U

)
xt

stands for the stochastic

integral
∫ min(t,τ)

0
UstdB(s) which is square integrable on [0, τ [. Remark:The

convergence of the series (E.4) occurs as soon as the spectral condition (E.1)

is satisfied on the subspace spanned by W k · (ζ0(0)δ0 + Ĩτ + Σ · dBτ ) · U · Vk.

Proof. First, note that A · (X ∗ g) = A · (Xτ ∗ g) +A · (ζ0 ∗ g) yielding the

equation onXτ : dXτ =
(
A·(Xτ∗g)+Ĩτ

)
dt+Σ·dBτ . Thus, the initial condition

on X acts as an external input on Xτ . In the deterministic finite-dimensional

case, it is well known that differential operators are diagonal in the Fourier

basis. Based on this result, we introduce the Fourier transform F of equation

(E.3) for a fixed ω ∈ Omega. As mentioned, for almost all ω ∈ Omega, the

processes involved are bounded, hence the function of time, on the compact

interval [0, τ ], is square integrable in time. Let Zξ : t ∈ R → e−2iπtξXτ (t) for

ξ ∈ R the Fourier variable and X is the unique solution of equation E.3. Itô

formula yields for t < τ

dZξ(t) =
(
−2iπξZξ(t)+A·

(
Zξ∗g

)
(t)+e−2iπtξ Ĩτ (t)

)
dt+e−2iπtξΣ·dBτ (t) (E.5)

Let us denote by X̂τ : ξ ∈ R →
∫ τ

0
Zξ(s)ds the Fourier transform ofXτ and Îτ :

ξ →
∫ τ

0
e−2iπtξ Ĩτ (t)dt. The process B̂τ is the well-defined stochastic integral∫ τ

0
e−2iπtξdB(t). The integral form of equation (E.5), using the fact that the

convolution is diagonal in the Fourier basis, denoting D̂ = diagξ∈R

(
− 2iπξ

)

and Ĝ = diagξ∈R

(
ĝ(ξ)

)
, leads to the functional equation:

Z ·(τ) − Z ·(0) = A · X̂τ · Ĝ + X̂τ · D̂ + Îτ + Σ · B̂τ

Applying proposition E.1.1 for a fixed ω ∈ Omega where C is the set of square
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+

−

integrable functions on [0, τ [ which is a Banach space, we obtain:

X̂τ =
+∞∑

k=0

W k·
(
−Z ·(τ)+Z ·(0)+Îτ+Σ·B̂τ

)
·diagξ∈R

( 1

ĝ(ξ)(l + 2iπξ
ĝ(ξ)

)k+1

)
(E.6)

We now take the inverse Fourier transform of this expression by applying

the time operator F−1. First of all, we perform the inversion on the terms

Îτ = Ĩτ · F . It is easy to show that Îτ · diag
(

1

ĝ(ξ)(l+ 2iπξ
ĝ(ξ)

)k+1

)
· F−1 = Ĩτ · U · Vk.

Similarly, the term
(
B̂τ ·diag

(
1

ĝ(ξ)(l+ 2iπξ
ĝ(ξ)

)k+1

)
·F−1

)
.t

can be written dBτ ·U ·Vk.

Moreover, for x ∈ {0, τ} an easy computation shows that
(
Z ·(x)·diag

(
1

ĝ(ξ)(l+ 2iπξ
ĝ(ξ)

)k+1

)
·

F−1
)

.t
=
(
X(x)δx

)
· U · Vk. Furthermore, the operators U and V are causal,

i.e. if Y has a support ⊂ [c,+∞[ then Y · U ·Vk also has a support ⊂ [c,+∞[.

Indeed, û : ξ 7→ 1
lĝ(ξ)+2iπξ

corresponds to the transfer function of a closed loop

filter shown on the right, and hence U is clearly causal since g is. V is also

causal as the convolution of g and U . This implies that the contribution of

Z(τ) vanishes in equation (E.6) since it has its support in [τ,∞].

�

E.2.2 Computational Remarks

Truncations of the formula (E.4) provides approximations of the solution of

system (E.3). We observe that the smaller the difference between the spatial

operator A and a multiple of the identity, the more accurate a truncation of

this expansion. In other words, this expansion is particularly useful if A is a

small perturbation of the (scaled) identity (e.g. the case of weakly connected

linear neural networks).

This representation allows development of new numerical schemes for the

simulations of the solutions of system (E.3). For simplicity, consider the case

where E = {1, · · · , n}. To approximate the solution over the interval [0, τ ]

define a time step ∆t an number of points T = τ/∆t ∈ N and replace U and V
by the Toeplitz square matrices Ũ and Ṽ , generated by i ∈ {0, · · · , T − 1} 7→∫ (i+1)∆t

i∆t
u(s)ds, where u is the function generating U (and similarly for V). The



248
Appendix E. Appendix for the solutions of linear SPDEs with

delays

number of operations needed is O((k+1)nT (n+lnT )) since the product with

a Toeplitz matrix, as a convolution, has a cost O(T lnT ). This scheme has a

first order accuracy, O(dtγ +dx+λk+1) where γ is equal to 1 for deterministic

equations or 1
2

if stochastic. In comparison, the Euler-Maruyama method

has a complexity of O(T
(
n2 + n θ

dt
ln( θ

dt
)
)
) where θ is the support of g and

an accuracy of O
(
dtγ + dx

)
, comparable to the expansion method in both

aspects.

Two interesting advantages of the expansion over Euler-like methods are

that (i) it is parallelizable and (ii) it appears to be numerically very stable,

i.e. large ∆t do not lead to a diverging scheme.

E.2.3 Examples

Let us now treat some classical problems that are solved in the present frame-

work.

• Ornstein-Uhlenbeck process: The simplest example is the Ornstein-

Uhlenbeck process with no delays (i.e. g = δ0). In that case, ĝ = 1, and

therefore, for all l ∈ R, infξ{|l + 2iπξ|} = |l| and the expansion is valid

if there exists l ∈ R∗ such that ‖l + A‖ < |l|, i.e. for any operator A

whose spectrum is bounded and entirely contained in the left or right

half plane. For negative matrices A (i.e. l > 0) Th = U = V is a

Toeplitz operator generated by the function h : z → e−lzH(z) with H

the Heaviside function. Therefore, the solution of Ẋ = A ·X+I+Σ ·dB
can be written as Xτ =

∑+∞
k=0W

k ·(X0δ0+Iτ +Σ ·dBτ ) ·T k+1
h . If A ∝ IdC

(e.g. in one dimension), the terms for k > 0 vanish in the above equation

and we get the simple well-known expression Xτ = (X0δ0 +Iτ +dBτ )∗h.

• Exponentionaly distributed delays: Let us now treat the case g :

x 7→ βe−βxH(x). In this case, ĝ(ξ) = β
β+2iπξ

. Therefore, 2iπξ
ĝ(ξ)

=

−2π(2π
β
ξ2 − iξ) which corresponds to the red curve in the left picture

of figure E.1. Operators A satisfying the spectral condition E.1 are the

ones whose spectrum is contained in an open ball centered at −l that

does not intersect the red curve (blue disks of in figure E.1).

When A is negative, the operators U and V can be made completely

explicit. Indeed, observing that:
ĝ(ξ)

lĝ(ξ)+2iπξ
= β

(β
2
+2iπξ)2−β2∆2

4

= β

(β 1+∆
2

+2iπξ)(β 1−∆
2

+2iπξ)
with ∆ =

√
1 − 4l/β,
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Figure E.1: The three different pictures correspond to different time-

convolution kernels g. The red curves are the parametric plots of ξ ∈ R 7→
2iπξ
ĝ(ξ)

∈ C and the blue balls are examples of sets within which the eigenvalues

of the space operator A need to live for the expansion to be well-defined. The

eigenvalues have to be contained in a single ball. The center of each ball is

−l, for different l ∈ R. To satisfy the spectral condition (E.1) the balls cannot

intersect the red lines. (left) Exponentialy distributed delays with β = 2π and

ξ ∈ [−20, 20]. (middle) Single delay with α = 2 and θ = 1 and ξ ∈ [−20, 20]

(right) Single delay with α = 0.3, θ = 1 and ξ ∈ [−5, 5]

the operator V is the convolution operators generated by β
(
h−∗h+

)
with

h± : t 7→ e−β 1±∆
2

tH(t). Similarly U is generated by β
(
h−∗h++ 1

β
h′−∗h+

)
.

Even more explicitly, for β > 4l, V is generated by t 7→ 2
∆
e−

β
2
tsh
(

β∆
2
t
)

and U by t 7→ 1
∆
e−

β
2
t
(
sh
(

β∆
2
t
)

+ ∆ch
(

β∆
2
t
))

. When 4l > β, a similar

result holds replacing the hyperbolic functions ch and sh by cos and sin.

• Single fixed delay: For g = δ0 + αδθ, we have ĝ(ξ) = 1 + αe2iπθξ. The

convergence domain of the expansion (condition E.1) is shown in the

middle and right pictures of figure E.1, for two different α ∈ R+. The

red curve seems to be living on the 2-dimensional projection of a simple

3-dimensional cone of revolution whose section is a circle. In that case,

it appears quite difficult to express U and V in a simple form, though

their Fourier transform is explicit.

Remark: As illustrated in the previous example, a procedure to find the

constant l such that the expansion converges consists in plotting on the same

figure the complex eigenvalues of the spatial operator and the red curve ξ ∈
R 7→ 2iπξ

ĝ(ξ)
∈ C related to the time operators. If there exists a ball centered

on the real axis which contains all the eigenvalues and that does not intersect
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the red curve, then choosing −l as the value of its center ensures that the

expansion will converge.

E.2.4 Stochastic heat equation

Let us now deal with a classical the stochastic heat equation on S1 (described

as the interval [0, 1] where 0 and 1 are identified) as a classical example of

linear partial differential equations:

∂u

∂t
(x, t) = ∆u(x, t) + v(x, t) + ση(x, t)

with periodic boundary conditions, where ∆ is the Laplacian on S1, v is an

external forcing and η is a multidimensional white noise. The input v(x, t) is

set to δx=x0(x) and we take the initial condition u(., t = 0) = 0.

The Laplacian operator has eigenvalues −4π2k2 with k ∈ N, corresponding

to the eigenvectors cos(2kπx) and sin(2kπx). Since the eigenvalues are not

bounded, it is not possible to find a suitable constant l to define the solution

of the heat equation in our framework. However, the semi-discretized in space

equation overcomes this problem by preventing the existence of very fast os-

cillations (corresponding to large eigenvalues of the Laplacian). We choose

to discretize the space with N points regularly spaced, corresponding to a

discretization step dx = 1/N . The resulting equation corresponds to (E.3)

in dimension N , with g = δ(t) and A ∈ RN×N such that Aii = −2/dx2,

Aij = 1/dx2 if i = j ± 1, A1n = An1 = 1/dx2 accounting for the periodic-

ity of the medium, and Aij = 0 otherwise . This matrix has eigenvalues in

[−4/dx2, 0]. This suggests the choice l = 2/dx2 so that all the eigenvalues

are in this ball a center −l and radius l. This ball intersect the imaginary

axis only in 0 (corresponding to spatially constant functions), so convergence

issues might arise if one of the terms W k · (Ĩτ + Σ · dBτ ) · U · Vk is spatially

constant, which clearly never occurs in our case. Therefore, our expansion is

well-posed and provides a numerical scheme to compute the solution as shown

in figure E.2.d. In that figure, we exhibit the fact that the solution is well

retrieved by the expansion, and the error compared to Euler’s scheme with a

time step dt = 0.01 (Fig. E.2.b) is more than two order of magnitude smaller

than the solution. An interesting point of this method is that it works for

any time step interval dt which is not the case for the Euler method which
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Figure E.2: Application of the expansion method to the stochastic heat equa-

tion on the circle with a Dirac source on the neuron in the middle. a) Space-

time diagram of the solution given by the expansion method for dt = 0.01. b)

Space-time diagram of the error between the solution in a) and the solution

given by Euler’s method. c) Space-time diagram of the solution given by the

expansion method for dt = 1. d) L2 norm of the terms in the expansion. The

parameters for these simulations are n = 100, number of time steps = 500,

σ = 0.1 and l = 2.

rapidly diverges as soon as the CFL condition is not satisfied for instance.

Moreover, extending the approach to a delayed formalism g 6= δ is costless in

our framework.
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Vreeswijk and N. Brunel. How spike generation mechanisms deter-

mine the neuronal response to fluctuating inputs. The Journal of neu-

roscience, vol. 23, no. 37, page 11628, 2003. 37

[Frey and Morris 1997] U. Frey and R.G.M. Morris. Synaptic tagging and

long-term potentiation. Nature, vol. 385, no. 6616, pages 533–536,

1997. 28

[Funahashi and Nakamura 1993] K. Funahashi and Y. Nakamura. Approxi-

mation of dynamical systems by continuous time recurrent neural net-

works. Neural networks, vol. 6, no. 6, pages 801–806, 1993. 119

[Gardner and Derrida 1988] E. Gardner and B. Derrida. Optimal storage

properties of neural network models. Journal of Physics A: Mathe-

matical and General, vol. 21, page 271, 1988. 123

[Gerstner and Kistler 2002a] W. Gerstner and W.M. Kistler. Mathematical

formulations of Hebbian learning. Biological cybernetics, vol. 87, no. 5,

pages 404–415, 2002. 30, 67, 68, 99

[Gerstner and Kistler 2002b] W. Gerstner and W.M. Kistler. Spiking neuron

models: Single neurons, populations, plasticity. Cambridge Univ Pr,

2002. 67, 68, 141

[Gerstner 1995] W. Gerstner. Time structure of the activity in neural network

models. Physical Review E, vol. 51, no. 1, page 738, 1995. 16



Bibliography 261

[Goodhill and Willshaw 1990] GJ Goodhill and DJ Willshaw. Application of

the elastic net algorithm to the formation of ocular dominance stripes.

Network: Computation in Neural Systems, vol. 1, no. 1, pages 41–59,

1990. 135

[Gütig et al. 2003] R. Gütig, R. Aharonov, S. Rotter and H. Sompolinsky.

Learning input correlations through nonlinear temporally asymmetric

Hebbian plasticity. The Journal of neuroscience, vol. 23, no. 9, page

3697, 2003. 79

[Hale and Lunel 1993] J.K. Hale and S.M.V. Lunel. Introduction to func-

tional differential equations. Springer, 1993. 72, 222, 242

[Han et al. 2008] F. Han, N. Caporale and Y. Dan. Reverberation of recent

visual experience in spontaneous cortical waves. Neuron, vol. 60, no. 2,

pages 321–327, 2008. 119

[Hansel et al. 1995] D. Hansel, G. Mato and C. Meunier. Synchrony in ex-

citatory neural networks. Neural Computation, vol. 7, no. 2, pages

307–337, 1995. 16

[Hebb 1949] D.O. Hebb. The organization of behavior: a neuropsychological

theory. Wiley, NY, 1949. 74

[Hertz et al. 1991] J. Hertz, A. Krogh and R.G. Palmer. Introduction to the

theory of neural computation, volume 1. Westview press, 1991. 66

[Hille 1992] B. Hille. Ionic channels of excitable membranes, volume 348.

Sinauer Associates Sunderland, MA, 1992. 13

[Hodgkin and Huxley 1952] A.L. Hodgkin and A.F. Huxley. A quantitative

description of membrane current and its application to conduction and

excitation in nerve. The Journal of physiology, vol. 117, no. 4, page

500, 1952. 5, 16

[Hopfield 1982] J.J. Hopfield. Neural networks and physical systems with

emergent collective computational abilities. Proceedings of the national

academy of sciences, vol. 79, no. 8, page 2554, 1982. 66



262 Bibliography

[Hopfield 1984] J.J. Hopfield. Neurons with graded response have collective

computational properties like those of two-state neurons. Proceedings

of the National Academy of Sciences, vol. 81, no. 10, page 3088, 1984.

66

[Hopfield 2007] J. J. Hopfield. Hopfield network. Scholarpedia, vol. 2, no. 5,

page 1977, 2007. 39, 67

[Hubel and Wiesel 1962] D.H. Hubel and T.N. Wiesel. Receptive fields, binoc-

ular interaction and functional architecture in the cat’s visual cortex.

The Journal of Physiology, vol. 160, no. 1, page 106, 1962. 3, 121

[Hubel and Wiesel 1977] D.H. Hubel and T.N. Wiesel. Functional architec-

ture of macaque monkey visual cortex. Proc. Roy. Soc. B, vol. 198,

pages 1–59, 1977. 134

[Intrator and Cooper 1992] N. Intrator and L.N. Cooper. Objective function

formulation of the BCM theory of visual cortical plasticity: Statistical

connections, stability conditions*. Neural Networks, vol. 5, no. 1, pages

3–17, 1992. 81, 125

[Izhikevich and Desai 2003] E.M. Izhikevich and N.S. Desai. Relating stdp to

bcm. Neural Computation, vol. 15, no. 7, pages 1511–1523, 2003. 30,

81

[Izhikevich 2003] E.M. Izhikevich. Simple model of spiking neurons. Neural

Networks, IEEE Transactions on, vol. 14, no. 6, pages 1569–1572, 2003.

15

[Izhikevich 2007] E.M. Izhikevich. Dynamical systems in neuroscience: The

geometry of excitability and bursting. The MIT press, 2007. 13, 14,

16, 17

[Kandel et al. 1991] E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegel-

baum and A.J. Hudspeth. Principles of neural science, volume 3. El-

sevier New York, 1991. 132

[Kenet et al. 2003] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald and

A. Arieli. Spontaneously emerging cortical representations of visual

attributes. Nature, vol. 425, no. 6961, pages 954–956, 2003. 119



Bibliography 263

[Khalil and Grizzle 1996] H.K. Khalil and JW Grizzle. Nonlinear systems.

Prentice hall Upper Saddle River, NJ, 1996. 90, 207

[Khas’ minskii 1968] R.Z. Khas’ minskii. The Averaging Principle for

Stochastic Differential Equations. Problemy Peredachi Informatsii,

vol. 4, no. 2, pages 86–87, 1968. 190, 196

[Kifer 2009] Y. Kifer. Large deviations and adiabatic transitions for dynam-

ical systems and markov processes in fully coupled averaging, volume

944. Amer Mathematical Society, 2009. 192

[Kohonen 1990] T. Kohonen. The Self-Organizing Map. Proceedings of the

IEEE, vol. 78, no. 9, 1990. 135, 158

[Laing et al. 2002] C.R. Laing, W.C. Troy, B. Gutkin and G.B. Ermentrout.

Multiple bumps in a neuronal model of working memory. SIAM Journal

on Applied Mathematics, pages 62–97, 2002. 67

[Lee and Wolpoff 2003] S.H. Lee and M.H. Wolpoff. The pattern of evolution

in Pleistocene human brain size. Paleobiology, vol. 29, no. 2, page 186,

2003. 2

[Linkser 1988] E. Linkser. Self-organization in a perceptual network. Com-

puter, vol. March, pages 105–117, 1988. 67

[Linkser 1992] R. Linkser. Local synaptic rule suffice to maximize mutual

information in a linear network. Neural Computation, vol. 4, pages

691–702, 1992. 67

[Linsker 1988] R. Linsker. Self-organization in a perceptual network. COM-

PUTER,, pages 105–117, 1988. 130

[Lorenzi et al. 2010] L. Lorenzi, A. Lunardi and A. Zamboni. Asymptotic be-

havior in time periodic parabolic problems with unbounded coefficients.

Journal of Differential Equations, 2010. 194, 196, 198

[Malsburg and Cowan 1982] C. Malsburg and J.D. Cowan. Outline of a the-

ory for the ontogenesis of iso-orientation domains in visual cortex.

Biological cybernetics, vol. 45, no. 1, pages 49–56, 1982. 77



264 Bibliography

[Mao 1997] X. Mao. Stochastic differential equations and their applications.

Horwood publishing, 1997. 72, 242, 245

[Masquelier et al. 2009] T. Masquelier, R. Guyonneau and S.J. Thorpe. Com-

petitive STDP-based spike pattern learning. Neural computation,

vol. 21, no. 5, pages 1259–1276, 2009. 30

[McCulloch and Pitts 1943] W.S. McCulloch and W. Pitts. A logical calculus

of the ideas immanent in nervous activity. Bulletin of Mathematical

Biology, vol. 5, no. 4, pages 115–133, 1943. 66

[McKean 1970] H. P. McKean. Nagumo’s equation. Advances in Mathematics,

vol. 4, pages 209–223, 1970. 20

[Miikkulainen et al. 2005] R. Miikkulainen, J.A. Bednar, Y. Choe and

J. Sirosh. Computational maps in the visual cortex. Springer, New

York, 2005. 130, 136, 141, 142, 152

[Miller and MacKay 1994] K.D. Miller and D.J.C. MacKay. The role of con-

straints in Hebbian learning. Neural Computation, vol. 6, no. 1, pages

100–126, 1994. 66, 77, 79, 124, 127, 135, 141

[Miller et al. 1989] K. D. Miller, J. B. Keller and M. P. Stryker. Ocular domi-

nance column development: analysis and simulation. Science, vol. 245,

pages 605–615, 1989. 158

[Miller 1996] K.D. Miller. Synaptic economics: Competition and cooperation

in correlation-based synaptic plasticity. Neuron, vol. 17, pages 371–374,

1996. 77

[Morris and Lecar 1981] C. Morris and H. Lecar. Voltage oscillations in the

barnacle giant muscle fiber. Biophysical journal, vol. 35, no. 1, pages

193–213, 1981. 18

[Muratov et al. 2005] C.B. Muratov, E. Vanden-Eijndenet al. Self-induced

stochastic resonance in excitable systems. Physica D: Nonlinear Phe-

nomena, vol. 210, no. 3-4, pages 227–240, 2005. 21, 22, 23, 47

[Nagumo et al. 1962] J. Nagumo, S. Arimoto and S. Yoshizawa. An active

pulse transmission line simulating nerve axon. Proceedings of the IRE,

vol. 50, no. 10, pages 2061–2070, 1962. 18



Bibliography 265

[Oja 1982] E. Oja. Simplified neuron model as a principal component analyzer.

Journal of mathematical biology, vol. 15, no. 3, pages 267–273, 1982.

66, 77, 80, 124, 127

[Olshausen and Field 1996] B.A. Olshausen and D.J. Field. Emergence of

simple-cell receptive field properties by learning a sparse code for nat-

ural images. Nature, vol. 381, pages 607–609, 1996. 67

[O’Malley 1991] R.E. O’Malley. Singular perturbation methods for ordinary

differential equations. Springer New York, 1991. 189

[Ostojic et al. 2009] S. Ostojic, N. Brunel and V. Hakim. How connectivity,

background activity, and synaptic properties shape the cross-correlation

between spike trains. The Journal of Neuroscience, vol. 29, no. 33, page

10234, 2009. 60

[Petitot 2003] J. Petitot. The neurogeometry of pinwheels as a sub-

Riemannian contact structure. Journal of Physiology-Paris, vol. 97,

no. 2-3, pages 265–309, 2003. 134

[Pfister and Gerstner 2006] J.P. Pfister and W. Gerstner. Triplets of spikes

in a model of spike timing-dependent plasticity. The Journal of neuro-

science, vol. 26, no. 38, pages 9673–9682, 2006. 81

[Pfister et al. 2010] J.P. Pfister, P. Dayan and M. Lengyel. Synapses with

short-term plasticity are optimal estimators of presynaptic membrane

potentials. Nature Neuroscience, vol. 13, no. 10, pages 1271–1275, 2010.

27

[Pinto and Ermentrout 2001] D.J. Pinto and G.B. Ermentrout. Spatially

structured activity in synaptically coupled neuronal networks: I. Trav-

eling fronts and pulses. SIAM journal on Applied Mathematics, pages

206–225, 2001. 67

[Redondo and Morris 2010] R.L. Redondo and R.G.M. Morris. Making mem-

ories last: the synaptic tagging and capture hypothesis. Nature Reviews

Neuroscience, vol. 12, no. 1, pages 17–30, 2010. 28

[Ricciardi and Smith 1977] L.M. Ricciardi and C.E. Smith. Diffusion pro-

cesses and related topics in biology. Springer-Verlag Berlin, 1977. 37



266 Bibliography

[Rinzel and Frankel 1992] J. Rinzel and P. Frankel. Activity patterns of a

slow synapse network predicted by explicitly averaging spike dynamics.

Neural Computation, vol. 4, no. 4, pages 534–545, 1992. 60

[Risken 1996] H. Risken. The fokker-planck equation: Methods of solution

and applications, volume 18. Springer Verlag, 1996. 198

[Rolls and Deco 2002] E.T. Rolls and G. Deco. Computational neuroscience

of vision. Oxford University Press, 2002. 77, 106, 121

[Romani et al. 1982] G.L. Romani, S.J. Williamson and L. Kaufman. Tono-

topic organization of the human auditory cortex. Science, vol. 216,

no. 4552, page 1339, 1982. 112

[Rubner and Tavan 1989] J. Rubner and P. Tavan. A self-organizing network

for principal-component analysis. Europhysics Letters, vol. 10, page

693, 1989. 125, 130

[Samuelides and Cessac 2007] M. Samuelides and B. Cessac. Random re-

current neural networks. European Physical Journal-Special Topics,

vol. 142, pages 7–88, 2007. 42

[Sanders et al. 2007] J.A. Sanders, F. Verhulst and J.A. Murdock. Averaging

methods in nonlinear dynamical systems, volume 59. Springer Verlag,

2007. 86

[Sejnowski and Tesauro 1989] T.J. Sejnowski and G. Tesauro. The Hebb rule

for synaptic plasticity: algorithms and implementations. Neural models

of plasticity, pages 94–103, 1989. 157

[Sejnowski et al. 1977] T.J. Sejnowskiet al. Statistical constraints on synaptic

plasticity. Journal of theoretical biology, vol. 69, no. 2, page 385, 1977.

81

[Serre 2005] T. Serre. A theory of object recognition: computations and cir-

cuits in the feedforward path of the ventral stream in primate visual

cortex. Rapport technique, DTIC Document, 2005. 130

[Shriki et al. 2003] O. Shriki, D. Hansel and H. Sompolinsky. Rate models for

conductance-based cortical neuronal networks. Neural computation,

vol. 15, no. 8, pages 1809–1841, 2003. 60



Bibliography 267
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INSTITUT DES SCIENCES ET TECHNOLOGIES

Une approche mathématique de l’apprentissage non supervisé dans les
réseaux de neurones récurrents.

Résumé : Dans cette thèse nous tentons de donner un sens mathématique à la proposition : le
néocortex se construit un modèle de son environnement.

Nous considérons que le néocortex est un réseau de neurones spikants dont la connectivité est
soumise à une lente evolution appelée apprentissage. Dans le cas où le nombre de neurones est
proche de l’infini, nous proposons une nouvelle methode de champ-moyen afin de trouver une équa-

tion decrivant l’évolution du taux de décharge de populations de neurones.

Nous étudions donc la dynamique de ce system moyénisé avec apprentissage. Dans le régime

oú l’apprentissage est beaucoup plus lent que l’activité du réseau nous pouvons utiliser des outils de

moyennisation temporelle pour les système lents/rapides. Dans ce cadre mathématique nous mon-

trons que la connectivité du réseau converge toujours vers une unique valeur d’équilibre que nous

pouvons calculer explicitement. Cette connectivité regroupe l’ensemble des connaissances du réseau

à propos de son environnement.

Nous comparons cette connectivité à l’équilibre avec les stimuli du réseau. Considérant que l’envi-

ronnement est solution d’un système dynamique quelconque, il est possible de montrer que le réseau

encode la totalité de l’information nécessaire à la definition de ce systeème dynamique. En effet nous

montrons que la partie symmétrique de la connectivité correspond à la variété sur laquelle est definie

le système dynamique de l’environnement, alors que la partie anti-symmétrique de la connectivité cor-

respond au champ de vecteur définissant le système dynqmique de l’environnement. Dans ce contexte

il devient clair que le réseau agit comme un predicteur de son environnement.

Mots clés : systèmes dynamiques, réseaux de neurones spikants, champ moyen, réseaux de neu-

rones à taux de décharge, apprentissage non-supervisé, basé sur les correlations , la causalité, ap-

prentissage Hebbien.

A mathematical approach to unsupervised learning in recurrent neural
networks

Abstract: In this thesis, we propose to give a mathematical sense to the claim: the neocortex builds

itself a model of its environment.

We study the neocortex as a network of spiking neurons undergoing slow STDP learning. By

considering that the number of neurons is close to infinity, we propose a new mean-field method to

find the “smoother” equation describing the firing-rate of populations of these neurons.

Then, we study the dynamics of this averaged system with learning. By assuming the modification

of the synapses’ strength is very slow compared the activity of the network, it is possible to use tools

from temporal averaging theory. They lead to showing that the connectivity of the network always

converges towards a single equilibrium point which can be computed explicitely. This connectivity

gathers the knowledge of the network about the world.

Finally, we analyze the equilibrium connectivity and compare it to the inputs. By seeing the inputs

as the solution of a dynamical system, we are able to show that the connectivity embedded the entire

information about this dynamical system. Indeed, we show that the symmetric part of the connectivity

leads to finding the manifold over which the inputs dynamical system is defined, and that the anti-

symmetric part of the connectivity corresponds to the vector field of the inputs dynamical system. In

this context, the network acts as a predictor of the future events in its environment.

Keywords: Spiking networks, mean-field, rate-based models, unsupervised, correlation-based, causation-

based, Hebbian learning, dynamical systems
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