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Preface

This PhD thesis is part of the cooperation of Mines ParisTech, Technical University of Kaiserslautern
and Fraunhofer Institute for Industrial Mathematics in Kaiserslautern. Further financial support was
provided by the Institute Carnot M.I.N.E.S. The work of this manuscript includes images recorded
at the ESRF in Grenoble, Fraunhofer ITWM in Kaiserslautern, at the synchrotron BESSY in Berlin
and at the Ecole Polytechnique in Saclay. The focus lies on glass fiber reinforced polymers from
samples provided by the IVW in Kaiserslautern.

Softwares and libraries as Morph-M and Morph-Hom (developed at CMM - Center of Mathematical
Morphology in Fontainebleau) as well as MAVIlib and MAVI (developed at the Fraunhofer ITWM
in Kaiserslautern) serve as toolboxes for the creation of algorithms presented in this thesis. Visual-
izations use the open source VTK library.
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Abstract

The various uses of fiber-reinforced composites, for example in the enclosures of planes, boats and
cars, generates the demand for a detailed analysis of these materials. The final goal is to optimize fi-
brous materials by the means of “virtual material design”. New fibrous materials are virtually created
as realizations of a stochastic model and evaluated with physical simulations. In that way, materials
can be optimized for specific use cases, without constructing expensive prototypes or performing
mechanical experiments. In order to design a practically fabricable material, the stochastic model is
first adapted to an existing material and then slightly modified. The virtual reconstruction of the
existing material requires a precise knowledge of the geometry of its microstructure.

The first part of this thesis describes a fiber quantification method by the means of local measure-
ments of the fiber radius and orientation. The combination of a sparse chord length transform and
inertia moments leads to an efficient and precise new algorithm. It outperforms existing approaches
with the possibility to treat different fiber radii within one sample, with high precision in continuous
space and comparably fast computing time. This local quantification method can be directly applied
on gray value images by adapting the directional distance transforms on gray values. In this work,
several approaches of this kind are developed and evaluated.

Further characterization of the fiber system requires a segmentation of each single fiber. Using ba-
sic morphological operators with specific structuring elements, it is possible to derive a probability
for each pixel describing if the pixel belongs to a fiber core in a region without overlapping fibers.
Tracking high probabilities leads to a partly reconstruction of the fiber cores in non crossing regions.
These core parts are then reconnected over critical regions, if they fulfill certain conditions ensuring
the affiliation to the same fiber.

In the second part of this work, we develop a new stochastic model for dense systems of non over-
lapping fibers with a controllable level of bending. Existing approaches in the literature have at
least one weakness in either achieving high volume fractions, producing non overlapping fibers, or
controlling the bending or the orientation distribution. This gap can be bridged by our stochastic
model, which operates in two steps. Firstly, a random walk with the multivariate von Mises-Fisher
orientation distribution defines bent fibers. Secondly, a force-biased packing approach arranges them
in a non overlapping configuration. Furthermore, we provide the estimation of all parameters needed
for the fitting of this model to a real microstructure.

Finally, we simulate the macroscopic behavior of different microstructures to derive their mechanical
and thermal properties. This part is mostly supported by existing software and serves as a summary
of physical simulation applied to random fiber systems. The application on a glass fiber reinforced
polymer proves the quality of the reconstruction by our stochastic model, as the effective properties
match for both the real microstructure and the realizations of the fitted model.

This thesis includes all steps to successfully perform virtual material design on various data sets.
With novel and efficient algorithms it contributes to the science of analysis and modeling of fiber
reinforced materials.
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CHAPTER 0. ABSTRACT

KEYWORDS: Fiber Quantification, Single Fiber Separation, Stochastic Modeling, Phys-

ical Simulation, Directional Distance Transform, Inertia Moments, Random Walk, Force-

Biased Packing, Parameter Estimation.
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Résumé

Titre : « Analyse Morphologique et Modélisation en 3D de Systèmes Aléa-
toires de Fibres »

L’utilisation diversifiée des composites renforcés par des fibres, par exemple dans des pièces des avions,
des bateaux ou des voitures, génère une demande croissante d’analyse de ces matériaux. Cette thèse
s’articule autour de l’optimisation de ces matériaux fibreux à l’aide d’un « schéma de conception de
matériaux virtuels ». De nouveaux matériaux fibreux sont créés virtuellement en tant que réalisations
d’un modèle stochastique, puis évalués par rapport à leurs propriétés physiques. De cette manière,
les matériaux peuvent être optimisés pour des cas d’utilisation spécifique, sans réellement construire
de coûteux prototypes ou faire des tests mécaniques. La reconstruction virtuelle du matériau réel
demande une connaissance précise de la géométrie de sa microstructure.

La première partie de cette thèse décrit une méthode de quantification de fibres à l’aide de mesures
locales de leurs rayons et de leurs orientations. La combinaison de la transformée de distance direc-
tionnelle et des moments d’inertie locaux permet de construire une méthode efficace et précise pour
déterminer ces propriétés dans des images binaires. Cette approche surpasse les méthodes existantes
par rapport à la possibilité de traiter des fibres de rayons variés, possède une précision accrue, et un
temps de calcul rapide. Cette méthode de quantification locale peut aussi être appliquée directement
sur des images à niveaux de gris en généralisant la transformée en distances directionnelles dans le
cadre des images à niveau de gris. Dans ce travail, plusieurs approches de ce type sont développées
et évaluées.

Une caractérisation détaillée d’un systèmes de fibres peut nécessiter la segmentation de chaque fibre
individuellement. Nous décrivons dans ce chapitre comment l’utilisation d’opérateurs morphologiques
avec des formes explicites d’élément structurant, permet de dériver une probabilité pour chaque pixel
de faire partie du coeur de la fibre dans une région où les fibres ne se croisent pas. Dans un second
temps, en traçant des chemins de probabilité élevée, il est possible de reconstruire des parties non
connexes du cœur des fibres. Enfin, ces parties sont reconnectées à travers des zones critiques, sous
des contraintes assurant que celles ci font effectivement partie de la même fibre.

Dans la deuxième partie de ce travail, nous développons un nouveau modèle stochastique de systèmes
denses de fibres sans intersection avec un niveau de courbure contrôlable. Les approches existantes de
la littérature possèdent au moins une des faiblesses suivantes : la fraction volumique produite n’est
pas assez élevée pour décrire certains systèmes de fibres réels, les fibres peuvent se croiser et fusion-
ner, la distribution d’orientation ainsi que la courbure des fibres n’est pas contrôlable. Ce manque
peut effectivement être comblé avec notre modèle, qui fonctionne en deux étapes. Une première étape
utilise une marche aléatoire pour définir des fibres dont la courbure est liée à une distribution de von
Mises-Fisher. Une deuxième étape utilise un algorithme d’empilement pour produire une configura-
tion de fibres sans imbrication. En outre, on propose des estimateurs pour tout les paramètres de
notre modèle, afin de l’adapter à une microstructure réelle.
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CHAPITRE 0. RÉSUMÉ

Finalement, on simule numériquement le comportement macroscopique des différentes microstruc-
tures étudiées pour obtenir leurs propriétés mécaniques et thermiques. Cette partie est basée sur des
logiciels existants et consiste essentiellement à résumer l’état de l’art de la simulation physique de
systèmes de fibres aléatoires. L’application à un polymère renforcé par des fibres de verre démontre la
validité de notre approche en soulignant la similarité des comportements mécaniques de nos modèles
stochastiques avec des microstructures réelles.

Cette thèse décrit toutes les étapes nécessaires pour effectuer la conception de matériaux fibreux
virtuels. Des algorithmes nouveaux et efficaces ont été développés afin d’enrichir les connaissances
et les possibilités d’analyse d’images et de modélisation des matériaux composites renforcés par des
fibres.

MOTS CLES : Quantification des Fibres, Segmentation des Fibres Uniques, Modéli-

sation Stochastique, Simulation Physique, Transformation de Distance Directionnelle,

Moments d’Inertie, Marche Aléatoire, Empilement Basé sur des Forces, Estimation de

Paramètres.
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Résumé des Chapitres en Français

1. Introduction

L’introduction présente la structure de la thèse et les motivations de ce travail. L’utilisation diversi-
fiée des composites renforcés par des fibres, par exemple dans des pièces des avions, des bateaux ou
des voitures, génère une demande croissante d’analyse de ces matériaux. Cette thèse s’articule autour
de l’optimisation de ces matériaux fibreux à l’aide d’un « schéma de conception de matériaux vir-
tuels ». De nouveaux matériaux fibreux sont créés virtuellement en tant que réalisations d’un modèle
stochastique, puis évalués par rapport à leurs propriétés physiques. De cette manière, les matériaux
peuvent être optimisés pour des cas d’utilisation spécifique, sans réellement construire de coûteux
prototypes ou faire des tests mécaniques. La reconstruction virtuelle du matériau réel demande une
connaissance précise de la géométrie de sa microstructure.

2. Matériaux et Imagerie

L’application de ce travail est focalisée sur l’étude d’un polymère renforcé par des fibres de verre.
L’analyse de ce matériau a été conduite à l’aide d’images par microtomographie 3D. Néanmoins,
plusieurs projets et collaborations menés durant cette thèse nous ont amené à tester nos algorithmes
sur des applications plus diversifiées comme l’analyse de fibres biologiques. Ce chapitre présente les
différents matériaux sur lesquels nous avons travaillé et rappelle les techniques d’imagerie utilisées.

3. Analyse Locale d’Orientation et de Rayon

La première partie de cette thèse décrit une méthode de quantification de fibres à l’aide de mesures
locales de leurs rayons et de leurs orientations. La combinaison de la transformée de distance direc-
tionnelle et des moments d’inertie locaux permet de construire une méthode efficace et précise pour
déterminer ces propriétés dans des images binaires. Cette approche surpasse les méthodes existantes
et décrites dans la littérature grâce à la possibilité de traiter des fibres de rayons variés, une pré-
cision accrue, et un temps de calcul rapide. Cette méthode de quantification locale peut aussi être
appliquée directement sur des images à niveaux de gris en généralisant la transformée en distances
directionnelles dans le cadre des images à niveau de gris. Dans ce travail, plusieurs approches de ce
type sont développées et évaluées.

4. Présentation et Interprétation des Informations Locales

Les analyses du chapitre précédent fournissent des informations locales pour chaque pixel. Ce cha-
pitre est dédié à la représentation de ces informations et notamment la représentation d’un champs
d’orientation locale dans un espace couleur. Ce problème simple en 2D s’avère difficile et non trivial
en 3D. En outre, ce chapitre pose également le problème de l’estimation de la fonction empirique de
densité d’orientation par un histogramme. Dans ce cadre, nous traitons le problème de pondération
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CHAPITRE 0. RÉSUMÉ DES CHAPITRES EN FRANÇAIS

des informations locales dans le but de calculer un histogramme et le problème du calcul efficace
d’une tesselation régulière de la surface d’une sphère.

5. Séparation des Fibres

Une caractérisation détaillée d’un systèmes de fibres peut nécessiter la segmentation de chaque fibre
individuellement. Nous décrivons dans ce chapitre comment l’utilisation d’opérateurs morphologiques
avec des formes explicites d’élément structurant, permet de dériver une probabilité pour chaque pixel
de faire partie du cœur de la fibre dans une région où les fibres ne se croisent pas. Dans un second
temps, en traçant des chemins de probabilité élevée, il est possible de reconstruire des parties non
connexes du cœur des fibres. Enfin, ces parties sont reconnectées à travers des zones critiques, sous
des contraintes assurant que celles ci font effectivement partie de la même fibre. Ce schéma permet
finalement de segmenter individuellement chaque fibre d’un matériau.

6. Modélisation Stochastique

Dans ce chapitre, nous développons un nouveau modèle stochastique de systèmes denses de fibres
sans intersection, avec un niveau de courbure contrôlable. Les approches existantes de la littérature
possèdent au moins une des faiblesses suivantes : la fraction volumique produite n’est pas assez élevée
pour décrire certains systèmes de fibres réels, les fibres peuvent se croiser et fusionner, la distribution
d’orientation ainsi que la courbure des fibres n’est pas contrôlable. Ce manque peut effectivement
être comblé avec notre modèle, qui fonctionne en deux étapes. Une première étape utilise une marche
aléatoire pour définir des fibres dont la courbure est liée à une distribution de von Mises-Fisher. Une
deuxième étape utilise un algorithme d’empilement pour produire une configuration de fibres sans
imbrication. En outre, on propose des estimateurs pour tout les paramètres de notre modèle, afin de
l’adapter à une microstructure réelle.

7. Simulation Physique

La dernière étape de cette thèse présente la simulation numérique du comportement macroscopique
des différentes microstructures étudiées pour obtenir leurs propriétés mécaniques et thermiques. Cette
partie est basée sur des logiciels existants et consiste essentiellement à résumer l’état de l’art de la
simulation physique de systèmes de fibres aléatoires. L’application à un polymère renforcé par des
fibres de verre démontre la validité de notre approche en soulignant la similarité des comportements
mécaniques de nos modèles stochastiques avec des microstructures réelles.

8. Application du Processus Complet sur un Polymère Renforcé
par de Fibres de Verre

Dans ce dernier chapitre, on applique le processus complet du « schéma de conception de matériaux
virtuels » à un échantillon de polymère renforcés par de fibres de verre. On présente tout d’abord
les caractéristiques de l’échantillon étudié, l’image obtenue par tomographie 3D et la segmentation
binaire du matériau. La quantification des rayons et de l’orientation locale est réalisée sur l’image
binaire et présentée par des distributions empiriques. En outre, les fibres sont séparées par l’algorithme
proposé au chapitre 5. Le système de fibres ainsi reconstruit permet d’estimer tous les paramètres
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9. CONCLUSION ET PERSPECTIVES

du modèle stochastique. Nous créons alors des réalisations du modèle stochastique possédant les
mêmes caractéristiques que le matériau réel, ainsi que des caractéristiques modifiées. Les simulations
physiques nous fournissent ensuite les propriétés effectives de ces matériaux créés virtuellement

9. Conclusion et Perspectives

Cette thèse décrit toutes les étapes nécessaires pour effectuer la conception de matériaux fibreux
virtuels. Des algorithmes nouveaux et efficaces ont été développés afin d’enrichir les connaissances
et les possibilités d’analyse d’images et de modélisation des matériaux composites renforcés par
des fibres. Nous détaillons en guise de conclusion l’ensemble des contributions et des perspectives
apportées dans cette thèse.
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1
Chapter 1.

Introduction

The increasing interest in fibrous materials expands to a large variety of use cases. The most com-
mon fiber-reinforced polymers are currently contained in the enclosure of aircrafts, boats, and cars;
furthermore, wound-disinfection tissues and thermal insulations make also use of fibrous media. The
macroscopic physical properties of these materials are highly influenced by the fiber geometry, in
particular by the orientation distribution of the fibers. This thesis is motivated by the demand for a
detailed analysis of such materials, which is based on image analysis, stochastic modeling and phys-
ical simulation.

The final goal of our studies is to optimize the physical properties of the material by adapting the
microstructure respectively. This process is called “virtual material design“. The aim is to create vir-
tually new innovative materials with optimal physical properties in order to propose their structure
and design before they are practically available. This approach replaces expensive prototypes and
mechanical experiments. Hence, the costs of development can be substantially reduced with the help
of numerical simulation. To this end a realistic stochastic model is created and fitted to a particular
material using image analysis techniques.

This work includes three main parts:

3D image analysis of micro computed tomography datasets for fiber quantification,

stochastic modeling and simulation of the physical properties,

an application of the overall process on a particular glass-fiber reinforced polymer.

Image Analysis for Fiber Quantification. We first present some image analysis methods developed
in order to locally analyze and segment single fibers in 2D or 3D datasets. This first task consists
basically in automatically recognizing and tracking fibers with a circular cross section. Our solution
for local analysis is based on the stereological idea that a cylindrical shape is well-defined by the
knowledge of one dimensional cuts in several directions. This knowledge is derived from a directional
distance transform in a fixed amount of orientations (4 in 2D and 13 in 3D). The main inertia axis of
the endpoints, given by the local centralized chords, provide an estimate of the local orientation. In
contrast to most of the existing approaches, our method does not require a fixed fiber radius, more-
over it computes the local fiber radius. Furthermore, we study how to optimize the measurements
by an orientation correction (due to directional sampling error) and an adaptive smoothing based on
a weighting with the ratio of inertia moments.

This method can be extended to operate directly on gray level images, by replacing the distance
transform (on binary images) with a similar method on gray value images. Different approaches are
developed and evaluated within this thesis. The thresholded quasi distance and the maximal-mean
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CHAPTER 1. INTRODUCTION

gradient have proven to be the most stable approaches in practical use. This first processing step
permits to obtain accurate orientation and radius measurements on various images including 2D and
3D, binary and gray level images.

In Chapter 4, we study the visual representation of the local radius and orientation maps. In 2D, the
orientation information reduces to an angle that can be visualized by a color on a periodic rainbow
spectrum. In the 3D case, one can imagine a similar coloring of the surface rendering of fibers. Still,
the task of mapping a three-dimensional orientation to a color space is in fact quite complex. We
developed an adequate mapping for a certain amount of orientations of interest. However, a general
color mapping, taking into account all possible orientations on the unit sphere without assigning two
independent orientations to the same color, remains in the perspectives of this work. Furthermore,
we describe how empirical distributions can be estimated from the map of local measurements. De-
scribing an orientation distribution is equivalent to computing a density function on the unit sphere,
which raises a non trivial task. An empirical orientation distribution can be presented as a histogram
on the unit sphere, which requires a regular tessellation of the sphere surface. We study and describe
some existing approaches and propose a new efficient tessellation algorithm. Classical tessellations
are based the Voronoi mosaic of a certain amount of well placed points on the sphere, which implies
a comparison of the distances to all points in order to assign an arbitrary orientation to its Voronoi
cell. Our tessellation permits a direct classification of any arbitrary orientation and a refinement of
the tessellation by one parameter.

Chapter 5 proposes a new approach to separate and track single fibers in a binary image. The method
is based on probability maps, indicating for each pixel the probability that it belongs to a fiber core
in a region without overlapping fibers. Parts of the fibers are then reconstructed by tracking high
probabilities and later on pairs of core parts are reconnected over the critical regions, if they affiliate
to the same fiber.

At the end of this first part of the thesis, we are able to efficiently analyze real fibrous materials and
synthesize useful information needed for the steps of modeling and the physical simulations.

Stochastic Modeling and Physical Simulations. There exist several stochastic models in the lit-
erature: systems of straight non overlapping fibers, systems of overlapping bending fibers, or fiber
systems created by sedimentation. However, there is a lack of models providing dense, non overlap-
ping fiber systems with a given random orientation distribution and a controllable level of bending.
The limitation of volume fraction in non overlapping systems is closely linked to the problem of
computing a packing of predefined rigid shapes. In Chapter 6, we introduce a new stochastic model
that generalizes the force-biased packing approach to fibers represented as chains of balls, which have
a flexible behavior during the packing process. The starting configuration is modeled using random
walks, where two parameters in the multivariate von Mises-Fisher orientation distribution control the
bending. The fibers can be placed intelligently by evaluating the overlap at several placements. The
final fiber configuration is obtained as an equilibrium between repulsion forces avoiding crossing fibers
and recover forces ensuring a correct fiber structure. This approach provides high volume fractions
up to 72%. Furthermore, we study the estimation of the parameters included in the stochastic model.
We developed a new estimator for the von Mises-Fisher distribution parameter κ, that works out to
have more stable and less biased estimates than the known one. Moreover, we develop an approxi-
mation of the parameters in the multivariate von Mises-Fisher distribution used for the random walk.

In Chapter 7, we recall the theory of physical simulation based on homogenization using the FFT
method. Two main physical properties are tested for the real material and the model realizations:
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the linear elasticity and thermal conductivity. Furthermore, we recall the bounds for the effective
properties and explain how the representative volume element can be calculated.

Application Finally in Chapter 8, we apply the overall process of virtual material design to a sample
of a glass fiber reinforced polymer. The local fiber radii and orientations are quantified on the binary
image. Furthermore, we separate single fibers with the algorithm proposed in Chapter 5. The recon-
structed fiber system yields the possibility to estimate the parameters for the stochastic model. Two
kinds of stochastic models are taken into account: the force-biased fiber packing presented in Chapter
6 and the classical Boolean model of cylinders. With that knowledge, we create realizations of the
stochastic models with the same parameters as well as realizations with slightly modified parame-
ters. From physical simulations, we observe the effective properties of the virtually created material
and we evaluate the different microstructures. The effective properties of the real microstructure and
the realizations of our stochastic model match, which proves the quality of the fitted stochastic model.
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Chapter 2.

Materials & Imaging

Originally this work was dedicated to the application of three dimensional images of glass fiber
reinforced polymer acquired with micro computed tomography (µCT) using either laboratory-based
X-ray sources or hard synchrotron radiation. This application fixed some basic assumptions about
the material, as e.g. fibers with a spherical cross section and low to medium bending. Furthermore,
the resolution is assumed to be high enough to sample a fiber radius with at least two pixels. During
several projects, the algorithms were tested on various applications as for example collagen fibers in
a hydrogel, imaged by second harmonic generation (Altendorf et al., 2011). We can generalize that
the algorithms are applicable in a large field of materials and imaging techniques as long as the basic
assumptions are respected. In this chapter, we present some of the materials, we worked with, and
briefly recall some imaging techniques.

2.1. Imaging

Traditionally, imaging and quantification of a material microstructure was based on 2D section im-
ages. These techniques are still in use and adequate for planar structures. When it comes to random
fiber systems, the fiber orientations in 3D are essential for the behavior of the material. It is nowadays
possible to achieve directly images of the three dimensional structure via second harmonic generation
or micro computed tomography using either laboratory-based X-ray sources or hard synchrotron ra-
diation. All of these methods have the great advantage to be non invasive and non destructive, at
least to some extent.

Still, for some application on materials with mainly planar fiber distributions, 2D imaging (as scan-
ning electron microscopy (SEM) or scanning acoustic microscopy (SAM)) may be sufficient or simply
chosen to reduce costs. Those imaging techniques, taking surfacial images, have the disadvantage
that fibers are overlapping, which poses some problems in the analysis part as fibers are cut in several
part. One consequence is that border artifacts increases. Furthermore, fibers from lower levels are
shining through, while lying out of focus, which biases in general analysis results.

Further imaging techniques, that are not described here in detail are the phase contrast CT, confocal
laser scanning microscopy, electron tomography or FIB-tomography. The chosen technique needs to
respect the requirements of the analysis approach: The algorithms presented in this work assume
fibers with a gray value (on the whole fiber volume) differing from the one of the matrix (e.g. white
fibers on black background or vice versa). This assumption already rules out phase contrast techniques
on composites with similar absorption coefficient, as the object boundaries show the contrast, whereas
the object volume does not. Furthermore, the imaging technique needs to be chosen with respect to
the material, that induces a certain resolution (that samples the fiber radius with at least two pixels).
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2.1.1. Micro Computed Tomography (µCT)

The general scheme of computed tomography is to illuminate a sample with penetrating radiation
and to detect the transmitted beam downstream of the object. Frequently, these images present
the projection of the X-ray absorption. Figures 2.1(a) and 2.1(b) show a sketch of the assembly for
µCT imaging and the projection of an object. The projections represent line integrals of the 3D
microstructure. By rotating the table, on which the sample is positioned, different angles of the
material are imaged. The inner mass distribution of the object can be reconstructed by an inver-
sion of the so-called Radon transformation. Different approaches for the latter exist. Typically, the
filtered-back projection is used in parallel beam geometry. A micro computed tomograph operates
commonly a X-ray source with a spot size in the micrometer range. Achievable spatial resolution
can reach up to 1 µm. The great advantage of those systems is that they achieve high resolutions of
the full 3D microstructure without destroying the specimen. The technique is called non destructive
as the imaging does not include cutting apart the sample, but there are some limitations in time
and energy. The ionized radiation has well known side effects on living tissue and also on chemical
bonds: long molecules are being cracked, which results in a color falsification (as e.g. bleaching or
glass getting brown or enamel getting black). For more details on computed tomography, see Banhart
(2008) and Stock (2008).

(a) (b) (c)

Figure 2.1.: Sketch of a cone beam computed tomography and image of µCT at Fraunhofer
ITWM in Kaiserslautern. (a) Assembly of computed tomography, with X-ray source on the right,
the specimen on the rotating table in the middle and the detector on the left. (b) Projection
of the X-ray absorption of the red specimen. (c) Industrial µCT at the Fraunhofer ITWM in
Kaiserlautern.

The X-ray light was discovered by Wilhelm Conrad Röntgen in 1901, who received the Nobel Prize
in Physics. The reconstruction from integral values was already published by Johann Radon in
1917, but rediscovered for the 3D reconstruction of X-ray projections not until 1963 due to Allan C.
Cormack. The first CT for human skulls was performed in 1967 by Godfrey N. Hounsfield. In the
following years, resolution and accuracy was essentially increased and the application was expanded
to material inspection. The first X-ray micro tomography system was conceived and built by Jim
Elliott in the early 1980s.

Nowadays, small industrial computed tomographs are available for large-scaled enterprises. For
small-medium enterprises, e.g., specialized on the development of new material systems, operating a
micro tomography facility is frequently to cost intensive. Consequently, they subcontract such kind
of analysis, e.g. to a research institute like the Fraunhofer ITWM, where a system for 3D micro
computed tomography is available (see Figure 2.1(c)). It is suitable for non-destructive analysis of
various materials such as foams, fibrous materials, polymer composites, metals, ceramics or con-
crete. The technical specification of an industrial µCT, as it is available at the Fraunhofer ITWM in
Kaiserslautern, is a X-ray tube of 225 kV, two X-ray detectors for high and low absorbing materials
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(low and high energies). The size of specimens can vary from 1 − 100 mm cube side length. Larger
objects, whose size exceeds the detector field of view in one dimension, can be imaged by stacking
tomographic scans. The nominal resolution reaches from 1 to 70 µm voxel side length for images with
image sizes up to 20483 voxels.

2.1.2. Synchrotron Radiation

A synchrotron is a cyclic particle accelerator, where a synchronized magnetic and electric field ac-
celerate a particle beam in a ring shaped path. The ring energy varies up to 8 GeV. Particles are
injected with a substantial energy from a linear accelerator inside the main ring. Synchrotron ra-
diation is based on acceleration of charged particles, i.e. electrons (similar to a dipole antenna),
which can be released at several beam lines outside the ring. The relativistic speeds of the electrons
result in an emission characteristic tangential to the flight direction: a synchrotron beam propagates
nearly parallel in only one direction. Frequently, the radiation passes metal attenuators (to absorb
low energy X-rays) and a monochromator. A focusing option can be accessible as well. The emitted
photon flux density is intense enough to achieve high resolution images depicting features down to
the nanometer scale. Figure 2.2 shows a sketch of the synchrotron light source Soleil, located in Paris
(France). Examples of synchrotron images are illustrated in Figures 2.4(a) and 2.5(a).

Figure 2.2.: Sketch of the synchrotron light source Soleil, located in Paris (France). The inner
circular ring is the actual synchrotron, where electrons are accelerated close to the speed of light.
The outer ring is the storage ring where the accelerated electrons are injected when they reached
there final speed. The stored electrons in the ring emit "synchrotron radiation" when they pass
with their relativistic speed a magnetic field. Depending on the speed and the magnetic field, the
wavelength can range from infrared to the hard X-ray regime. The radiation is delivered to the
different beamlines (the straight lines branching out of the synchrotron). Each beamline contains
scientific instruments, experiments etc. and receives an intense beam of radiation.
Source: Synchrotron Soleil, 18th october 2005, © EPSIM 3D/JF Santarelli, Synchrotron Soleil.

Compared to laboratory X-ray sources, synchrotron radiation offers a significant improvement with
its nearly parallel beam propagation, a flux which is several orders of magnitudes higher and the
possibility to work with a monochromatic beam (Rack, 2006, Rack et al., 2008). These advantages
lead to higher reconstruction qualities, fewer artifacts from beam hardening, shorter acquisition times
and improved contrast. With the additional use of X-ray optics to focus the beam, X-ray images
with a spatial resolution well below 100 nm can be acquired.

In the scope of this thesis, images were received from the European Synchrotron Radiation Facility
ESRF in Grenoble, from the Angströmquelle ANKA in Karlsruhe and from the electron storage ring
BESSY in Berlin. X-ray imaging using synchrotron light sources was suggested for the first time in
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through a final lens, which diffuses the beam into a rectangular raster pattern. The electrons interact
with the material in several ways: there are secondary emitting electrons, back scattered electrons,
characteristic X-ray light, specimen current and transmitted electrons. Only parts of these effects
are captured. Secondary electron detectors are standard for all SEM, further detectors are optional.
The resolution of SEM is extremely high and can reach values finer than 1 nm. The first SEM image
was obtained by Max Knoll in 1935.

This imaging technique can only be applied to material with a electrically conductive surface. If this
is not the case, materials are coated ultra thinly with electrically-conducting material, commonly
gold. Furthermore, for porous material it happens often that structures from a secondary or tertiary
layer are shining through and thus are also captured by the microscope even if they are out of focus.
This fact often complicates the analysis of the resulting images as the secondary objects are diffuse,
but are difficult to blank out.

To get a representative analysis of a material it is not sufficient to analyze the surface, but also the
inside of a material. For SEM imaging, the material can be iteratively analyzed by cutting off thin
slices and imaging the appearing surfaces in 2D images. This technique destroys the material and it
happens (mostly for porous materials) that the specimen does not stand the cutting process, which
may result in a destroyed surface, that does not reflect the actual material.

2.1.5. Scanning Acoustic Microscopy (SAM)

Scanning Acoustic Microscopy (SAM) is based on a focused sound from a transducer. Similar to
the SEM, there are several interactions of the sound with the surface: the sound is either scattered,
absorbed, reflected or transmitted. A detector on a certain position detects the scattered pulses
traveling in a certain direction. The distance to the objects is determined by the time when a sound
arrives at the detector. The image is taken iteratively with a slight change of the source position.
This results in a 2D relief of the material surface, which means a distance information for each point
in a 2D image.

The resolution of the image reaches down to 1 µm and is limited by the physical scanning resolution
and the width of the sound beam. This imaging technique is non destructive and often used to detect
cracks in a material. The first scanning acoustic microscope was developed in 1974 by R. A. Lemons
and C. F. Quate at the Microwave Laboratory of Stanford University (Lemons & Quate, 1974).

2.2. Materials

The essential assumptions for our approaches are a spherical cross section of the fibers and a fiber
radius relatively large, that it can be sampled with at least two pixels by the chosen imaging technique.
Further properties as a extreme high level of bending and high density can also influence the quality
of the results, but are not generally limited. In the following, we present some typical applications
for our algorithm, that were tested in the scope of these studies.

2.2.1. Glass Fiber Reinforced Polymer (GRP)

Glass fiber reinforced polymer (GRP) consists of a plastic matrix reinforced with thin glass fibers.
The plastic matrix may be epoxy, polyester, vinylester or thermoplastic. In order to achieve the
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2.2.4. Collagen Fibers in a Hydrogel Matrix

Also biological tissues can be an application for fiber quantification, as we showed in Altendorf et al.
(2011) for collagen fibrils. In this work, the fibrils were inserted in a hydrogel matrix with the
following fabrication process:

Collagen I was purified from Wistar rat-tails tendon as previously described (Gobeaux et al. (2007)).
Purity and homogeneity of the solution were verified by SDS-PAGE electrophoresis. Collagen I diluted
solutions were then concentrated by centrifugation at 14 000 g using 3 kD filters tubes (VIVASPIN 20,
Sartorius). These concentrated collagen solutions were checked for their hydroxyproline amount and
adjusted to 100 mg/ml. The concentrated solutions were then deposited in Teflon crucibles (3 mm
wide, 5 mm long and 2 mm deep). The outer surface was gently flattened out longitudinally using a
glass coverslip. Subsequently, the Teflon molds were tightened into a dialysis membrane and dipped
into a phosphate-buffer saline (PBS) solution to induce the collagen fibrillogenesis and synthesize
fibrillated matrices. On the basis of conditions already published (Gobeaux et al. (2008)), two dif-
ferent PBS concentrations were used to vary the size of the collagen fibrils: 50 mM and 100 mM,
at pH = 7.4. After a few days, the collagen fibrillated matrices were taken off the molds and were
directly plunged into the buffer solutions and stored at 4 ℃ until used.

Figure 2.7 shows a typical slice cut and surface rendering of collagen images taken with SHG.

(a) Slice of original gray-value image. (b) Surface rendering of the binarization.

Figure 2.7.: Example of Collagen. Imaged with SHG at the Ecole Polytechnique in Paris.
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Chapter 3.

Local Orientation and Radius Analysis

Some fabrication processes of fibrous material reinforce the matrix randomly with fibers. Therefore,
the distribution of the fibers in the material is not known. In the case of post-processing, like burning
and cooling or compressions, the fibers may deform in an uncontrolled way. Thus, it can happen
that the fiber radii do not stay constant during the fabrication process. Still, those characteristics
highly influence the physical behavior of the material in performance. The quantification of the fiber
system yields the opportunity to verify the required distributions and to evaluate the quality of the
material. It also helps to better understand the material forming, as we can compare the outcomes
of different fabrication processes or different configurations of one process.

The imaging techniques for material samples vary from 2D surface imaging (as scanning acoustic or
electron microscopy, SAM and SEM) to 3D scanning (as micro computed tomography µCT or second
harmonic generation SHG). The results of those imaging techniques are 2D or 3D gray-level images,
which may be filtered and segmented to binary images. We provide algorithms for binary images as
well as gray-level images with a relatively good contrast. Preprocessing steps, as smoothing filters
and contrast enhancement, can be applied to improve the image quality. Studies of discretization
artifacts have shown that the resolution of the fiber radius should correspond to at least 2 pixels.
All approaches are based on the assumption of solid fibers with circular cross sections (in the 3D
structure), which is e.g. met by glass fibers. In the case of bending fibers, the analysis adapts locally
to the fiber orientation.

Several methods have been proposed in the literature to deal with fiber quantification in 3D images.
The chord length transform (Sandau & Ohser, 2007) works on binary images of nearly straight fibers
with a significant thickness. The orientation of a foreground point is defined as one of a fixed amount
of directions, having the longest chord length. The approach of the Gaussian Orientation Space
(Robb et al., 2007, Wirjadi, 2009, Wirjadi et al., 2009) works on both binary or gray-level images
with fibers of nearly constant thickness. Oriented Gaussian filters are applied with a fixed amount of
directions and the local orientation in a voxel corresponds to the orientation yielding the highest filter
response. The oriented Gaussian filters are highly stable to image noise, but just as the chord length
transform the fixed amount of directions in 3D is limited caused by highly increasing computing
times. Therefore, also the accuracy of the method is limited.

Further approaches for orientation estimation in local windows are the inertia moments (Bigun &
Granlund, 1987, Reuze et al., 1993), quadrature filters (Granlund & Knutsson, 1995) and the Hes-
sian Matrix (Frangi et al., 1998, Tankyevych et al., 2008). All three methods (just as the Gaussian
orientation space) suppose similar radii of the objects and work on gray-level images. The first two
methods can also be applied on binary images. The limitation to a fixed radius restricts the appli-
cation to a certain class of materials, whereas our method is applicable on various radii and even
calculates the radius in the same step.

In the field of radius estimation there is the granulometry (Beucher, 2007), which considers the
changes of gray values for openings of increasing size. The estimated radius is the size with the
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highest difference of the opening results to the next size. This approach is applicable for several
kinds of objects with a significant size, as the discretization effect is high on small structuring el-
ements. It is not precise enough for thin fibers or low resolution, as often the case in our applications.

This chapter starts with an introduction in preprocessing steps to improve the image quality or even to
binarize the image, followed by the description of the fiber quantification method, beginning with the
initial idea on binary images, including studies about improvement of the results and discretization
artifacts. We present several ideas to generalize the method for gray-value images, we compare the
approaches and explore the best choices for different use cases. Finally, we show how the resulting
local orientation maps can be visualized and how distribution functions can be calculated, including
studies about regular tessellations of the unit sphere.

3.1. Preprocessing

Every image brings along a certain amount of background noise according to the imaging technique,
to the configuration of the imaging tool and also to the composition of the material (e.g. difference
of absorption coefficients of the components for CT-imaging). It is advisable (and in some cases
necessary) to apply some image processing to reduce the noise before segmenting or analyzing the
microstructure.

The first step usually integrates a smoothing filter. The basic filters are the mean or Gaussian filter
(with a small structuring element compared to the object size). This kind of filter smoothes over all
gray values and therefore does also blur the boundaries of objects. The median filter has less blurring
artifacts, however it also merges close fibers with thin contour lines. In contrast, non linear diffusion
filters (Catté et al., 1992, Perona & Malik, 1990, Weickert, 1998) smooth over similar gray values
and enhance the contrast on boundaries. The following presentation of the diffusion filters is taken
from Altendorf et al. (2010).

For the input image f : I → R, I ⊆ N
d, the filtered image u is computed as the solution of the non

linear isotropic heat conduction equation

∂tu = div
(
g(|∇uσ|2)∇u

)
(3.1)

∂νu = 0 for all x ∈ ∂I

u(·, 0) = f.

In this equation, uσ := Kσ ∗ u denotes a pre-smoothed version of the data, which is received by
a convolution with a Gaussian kernel Kσ with standard deviation σ. g stands for some diffusivity
function and ν is the normalized vector in outer orthogonal direction. The equation introduces a
time parameter t ∈ R

+
0 , which adjusts the level of filtering. The simplified versions of the image

with varying t form a scale space with established properties of simplification (Iijima, 1962, Perona
& Malik, 1990, Weickert, 1998, Weickert et al., 1999, Witkin, 1983). Typical diffusivity functions are
(Perona & Malik, 1990)

g1(s2) :=
1

1 + s2

λ2

or g2(s2) := exp
(

− s2

2λ2

)

. (3.2)

In the application considered in this thesis we make use of g1. The contrast parameter λ > 0 controls
the preservation and enhancement of the edge contrast. Edges having a gradient norm |∇u| higher
than the value of λ are not only preserved, but even enhanced. Figure 3.1 shows an example of this
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(a) Input Image (b) λ = 1 (c) λ = 2 (d) λ = 5

Figure 3.1.: Influence of the contrast parameter λ in the preprocessing by linear diffusion (fix
parameters: σ = 1 and t = 100). The filter is applied on a cutout of a 2D SEM image of a
non-woven produced with meltblown.

behavior for varying λ (all other parameters are fix: σ = 1 and t = 100).

This filtering reduces noise in the data and in the case of 2D SEM images, fades out blurred fibers
that lie out of focus. We make us of an additive operator splitting (Weickert et al., 1998), which
yields efficient implementation and sufficient accuracy. Further improvement in the efficiency of the
implementation are possible (Grewenig et al., 2010).

Another additional possibility for datasets with a lot of background noise is the white top hat fil-
ter (Meyer, 1979, 1986), which is defined as the difference between original image and an opening
th(f) = f −γf . The structuring element should be chosen slightly bigger than the largest interesting
diameter of the fibers. The opening removes the fibers from the image and leaves background noise
behind. After the subtraction, just the fibrous structures are left, excluding the background noise.
The top hat filter can be especially useful for the approach of the maximal-mean gradient (presented
in Section 3.3.2). Here, it is necessary to spread the image such that fibers are white on a black
background. Generally, a linear spread between the typical foreground and background gray value
can also reduce background noise in a pre-smoothed image.

For all gray level approaches presented in this work, we advise to terminate the preprocessing with a
toggle mapping (Serra (1989) and Fabrizio et al. (2009)), also called morphological shock filter (Osher
& Rudin, 1990). Every pixel receives adaptively the result of an erosion or dilation, depending on
which resulting gray value is closer to the original pixel value:

SB(f) :=







δB(f) , for ∆Bf < 0
ǫB(f) , for ∆Bf > 0
f , for ∆Bf = 0 .

(3.3)

B denotes the structuring element of the dilation δB(f) or erosion ǫB(f) and morphological Laplace
operator

∆Bf := (δB(f)) − 2f + (ǫB(f)) . (3.4)

We usually use an approximative ball as structuring element with a radius adapted on the fiber di-
mension. The resulting prefiltered images are convenient for the use of the gray value quantification
methods proposed in the following sections. At the same time they yield a suitable starting point for
binarization.

Generally, preprocessing needs to be chosen very carefully in order to maintain the object structure.
With simple smoothing filters, it is possible that fibers are enlarged, which leads to an overestimation
of the fiber radius. The non linear diffusion with reasonable parameters and the toggle mapping in
general do not distort the fibers and are therefore a suitable possibility for preprocessing.
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3.2. Analysis on Binary Images

In the literature, there are a lot of approaches testing different fiber orientations and choosing the one
fitting the best (like the chord length transform (Sandau & Ohser, 2007)). Most of the time, more
than 100 directions are sampled to achieve a sufficient precision. The idea leading to our approach is
that even with much less information the geometrical object is already well defined. Mathematically,
a fiber in form of an infinite cylinder in 2D can be defined by 4 variables: the orientation given by
the angle θ ∈ [0, π), the radius r ∈ R

+ and a point on the core line (x, y)T ∈ R
2. In 3D, the fiber is

defined by 6 variables: the orientation given by a point on the upper half unit sphere v ∈ S2
+, the

radius r ∈ R
+ and a point on the core line (x, y, z)T ∈ R

3. We define a d-dimensional orientation
space as the upper half of the unit sphere Sd−1 = {x ∈ R

d; |x| = 1}:

Sd−1
+ = {(x1, . . . , xd)T ∈ Sd−1; ∃ i0 ∈ 1, . . . , d : (xi0

> 0) ∧ (xi = 0; ∀ i > i0)}. (3.5)

Thinking of solving an equation system, we need to sample at least 4 directions in 2D and 6 in 3D.
This stereological idea, to sample on differently directed lines in order to conclude to the geometric
properties of the whole structure, can be applied to any evaluation method for a given direction in a
given image point (e.g. the oriented Gaussian filters or the chord length transform).

This section is structured as follows: We first describe the general idea of using inertia moments
to extract the fiber orientation from the sampled information. We discuss the deviation, caused by
sampling few directions, and the possibility to correct it in 2D and to approximate it in 3D. The
directed distances or chord lengths together with the information of the fiber orientation yield also an
approximation of the fiber radius. Finally, we describe how the results can be improved by smoothing
adaptively the orientation and radius maps and how the discretization influences the estimates.

3.2.1. Inertia Axes of Directed Distance Transform

In this section, we present the fiber quantification by the local orientation and radius from binary
images. The algorithms are based on computing the directional distances to the background for every
object point. The sampled directions of the distance transform are chosen as the complete adjacency
system (in 2D 8 neighbors, in 3D 26 neighbors). For details on adjacency systems see Altendorf
(2007). That means for a chosen direction vsi, we measure the distance d(vsi) between the actual
image point and the background as drafted in Figure 3.2. The chord length defined in (Sandau &
Ohser, 2007) is essentially the sum of the distances of two inverse directions:

dc(vsi) = d(vsi) + d(−vsi). (3.6)

A useful observation is that the chord lengths in 2D stay constant for all points inside one straight
fiber (except for border effects on the ends of a fiber). This fact is shown in Figure 3.2(a), where
two different points are sampled. The star of the centered chords is drafted outside the fiber to
demonstrate the equality. In Figure 3.2(b), the cut of a 3D cylinder is shown, where the chords do
not stay constant for two arbitrary points with different distances to the fiber core. The most reliable
results are those taken near to the fiber core. Therefore, we try to approach to the fiber core by
relying on the estimates at the center of mass g of the extremities. That means for a 3D image point,
we calculate the center of mass:

g =
1
26

25∑

i=0

d(vsi)vsi, (3.7)

and continue the calculation with the distance information on that point, where we consider only the
centered chord lengths. Which means the information relevant for the next steps are the extremities
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(a) Constant chord lengths in 2D. (b) Varying chord lengths in sec-
tion of a 3D fiber.

Figure 3.2.: Illustration of the constant chord lengths in a 2D fiber vs. the variation in a section
of a 3D fiber. In both images chord lengths are drawn for two foreground points. The centralized
chord lengths are presented additionally outside the fibers, with the main inertia axes in color.

Pi of the centered chords defined by Pi = 1
2 dc(vsi) · vsi. In the following, we will refer to the central-

ized distances as di = 1
2 dc(vsi).

Implementation Details: The directed distance transform can be calculated efficiently
following an adapted version of the algorithm introduced by (Rosenfeld & Pfaltz, 1966).
We are splitting up the set of neighbors in two classes: forward and backward neigh-
bors, according to the order in which the image will be processed. Assuming the stan-
dard storage order for a digital image, we define an order on the pixel coordinates:
p1 < p2 ⇔ z1 < z2 ∨ [(z1 = z2) ∧ (y1 < y2)] ∨ [(z1 = z2) ∧ (y1 = y2) ∧ (x1 < x2)].
The backward neighbors are all those neighbors, which were already processed in the
marching before arriving at the center pixel. If the set of all neighbors is Nc, the back-
ward neighbors are nb ∈ Nc |nb < ~0. The forward neighbors are those still to be processed:
nf ∈ Nc |~0 < nf . This classification is shown in Figure 3.3. To determine the directional

(a) 2D Classification (b) 3D Classification

Figure 3.3.: Classification of forward (blue) and backward (violet) neighbors.

distances in every pixel, we need to march twice through the image: the first time we
process the image in forward order, while increasing the directional distances assigned to
the backward neighbors; the second time we process the image in backward order, while
increasing the directional distances assigned to the forward neighbors. This algorithm
runs in linear time with respect to the number of image pixels. The results are 8 distance
maps in 2D and 26 distance maps in 3D.
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From the endpoints Pi, derived from the centralized chords in all sampled directions, we calculate
the moments (Duda & Hart, 1973). In our case, the moments can be reduced to:

Mpq =
7∑

i=0

(Pi,x)p(Pi,y)q for 2D and (3.8)

Mpqr =
25∑

i=0

(Pi,x)p(Pi,y)q(Pi,z)r for 3D. (3.9)

Note that the centralization of the chords has the effect, that the center of inertia or gravity is the
origin. Therefore, it yields M10 = M01 = M100 = M010 = M001 = 0 and also M00 = 8 and M000 = 26.
To achieve the direction of elongation of the endpoints, it is necessary to solve the eigenvalue problem
of the inertia tensor (Bakhadyrov & Jafari, 1999) or the covariance matrix. Both matrices have the
same eigenvectors and their eigenvalues can be transformed to one another (McCartin, 2007). The
covariance matrices adapted to our case are:

C2 =
1
8

(
M20 M11

M11 M02

)

for 2D and (3.10)

C3 =
1
26





M200 M110 M101

M110 M020 M011

M101 M011 M002



 for 3D. (3.11)

The direction of the concentration ellipsoid or the main inertia axis is the eigenvector to the highest
eigenvalue (which indicates the elongation in the according direction). The direction defined in that
way gives a first estimate of the fiber orientation.

3.2.2. Deviation in the Orientation Estimate and its Correction

Evaluation of the presented method shows a certain deviation in the orientation estimate as presented
in Figure 3.4. The maximal possible deviation is limited to ≈ 10◦ in both cases 2D and 3D. By con-
sidering the endpoints just in a few sampled directions, those directions receive a high weight. This
causes an attraction to the sampled directions, explaining the deviation. The orientation estimate is
perfect in those orientations lying on or in the middle of two sampled directions.

The regular nature of the bias motivated a theoretical study of the problem. The fiber is assumed
to be a spherical cylinder with radius r, infinite length and orientation v, represented by the angle θ
(in 3D θ and φ, derived from the spherical coordinates). The centralized distances are therefore:

di =
r

sin(∠(v, vsi))
in 2D

=
r

| sin(θi − θ)| (3.12)

from which we can calculate the endpoints

Pi =
(

di cos θi

di sin θi

)

for 2D and Pi =





di sin θi cos φi

di sin θi sin φi

di cos θi



 for 3D. (3.13)

To calculate the eigenvalues of the 2D covariance matrix and the main axis (given by the angle θ′

of the eigenvector to the highest eigenvalue), we use the existing formula (Hu, 1962) adapted to our
case:

λ1,2 =
M20 + M02 ±

√

4M2
11 + (M20 − M02)2

16
(3.14)

tan(2θ′) =
2M11

M20 − M02
(3.15)
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(a) 2D case

(b) 3D case

Figure 3.4.: Deviation of the orientation estimate based on covariance or inertia moments. (a)
True angle of a fiber with length-radius ratio of 1000 vs. calculated angle and corrected angle. The
grid indicates the sampled directions. (b) Relief of the angle error (true direction vs. direction
calculated from the moments), for a fiber with direction (1, θ, φ) in spherical coordinates.
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We enter the formula for Mpq depending on the fiber parameters r and θ. After applying multiple
steps of simplification for trigonometric functions, it was possible to achieve the following equations,
which depend only on the main parameters r and θ. The detailed simplification can be found in the
appendix A (page 161ff.).

λ1 = r2

(

2 +
√

3 cos2(4θ) + 1
sin2(4θ)

)

(3.16)

λ2 = r2f(θ) with f(θ) =







(
2−

√
3 cos2(4θ)+1

sin2(4θ)

)

, sin2(4θ) 6= 0

3
4 , otherwise

(3.17)

tan(2θ′) = tan3(2θ). (3.18)

From formula (3.18) it is possible to correct the deviation by inverting it with respect to the periodicity
in the inversion of the tangent. The orientation can be derived from the estimate θ′ as follows:

θ =
1
2

arctan
(

3
√

tan(2θ′)
)

+ i
π

2
, (3.19)

for i
π

2
≤ θ′ +

π

4
< (i + 1)

π

2
, i ∈ N

(

⇒ i =
⌊

2θ′

π
+

1
2

⌋)

.

The deviation and the corrected angle are shown in Figure 3.4(a). The eigenvalue curve dependent
on the fiber orientation is shown in Figure 3.5.
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Figure 3.5.: Eigenvalues λ1,2 and ratio λ1
λ1+λ2

of 2D covariance matrix dependent on fiber orien-
tation θ.

There exist also theoretical solutions for the eigenvalue problem in 3D (Jeulin & Moreaud, 2008a).
With this, it is possible to deduce an equation for the inertia moments and the inertia vectors. How-
ever, simplification of these complex equations and reduction to the main parameters, which provides
the possibility to correct the orientation, was not possible. The deviation in 3D is shown in Figure
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3.4(b).

Still it is possible to improve the orientation estimate also in the 3D case. Based on the idea of the
correction in 2D, we reduce the deviation of the calculated direction by pushing it away from the
surrounding sampled directions. First of all, we define the force strength that influences the direction
dependent on the distance to the sampled direction. This formula emerged from several tests based
on the two dimensional correction curve.

t(d) =

{

−0.2 sin(π(4d/π)0.424) d < π/4
0 otherwise

(3.20)

To complete the approach, we need to define the direction in which the force operates: the projections
pn of the sampled directions vsi on the 2D subspace orthogonal to the calculated orientation v. This
projection is defined by: pn(vsi, v) = vsi − (v · vsi)v. The approximated orientation v′ is then
calculated as follows:

v′ = v +
∑

i

t(∠(vsi, v))pn(vsi, v) (3.21)

This procedure reduces the maximal error from 9.97◦ to 4.78◦ and the mean error from 6.40◦ to
1.27◦. The reduction of the deviation is visualized in figure 3.6 on the unit sphere in colors from 0◦

in dark blue to 10◦ in dark red.

(a) Deviation of main inertia axes (b) Deviation of approximated orientation

Figure 3.6.: Visualization of the deviation of the calculated fiber orientation on the unit sphere.
The maximal error could be reduced from 9.97◦ to 4.78◦ and the mean error from 6.40◦ to 1.27◦.
The deviation is visualized on the unit sphere in colors from 0◦ in dark blue to 10◦ in dark red.

3.2.3. Radius Estimation

Most of the existing approaches to estimate the local fiber orientations need to be adapted to the
fiber radius. This parameter often needs to be computed by hand or guessed from an image visual-
ization. If the fiber radii vary to a large scale in the image, those approaches can not create stable
results. A great advantage of our quantification method is not only that the orientation estimate is
working for varying radii, but that a local radius estimation is practically included in the information.
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The eigenvalues and eigenvectors from the covariance matrix describe a concentration ellipsoid (Mc-
Cartin, 2007). The radii of the ellipsoid are determined by the square root of the eigenvalues, that
are in increasing order λmin ≤ λmid ≤ λmax. Assuming a cylindrical object, we could estimate the
radius by

√
λmin (in 3D also by

√
λmid, as it holds theoretically λmin = λmid). This theory is based

on the concentration ellipsoid of a cloud of points forming the cylindrical volume. In our case, a
limited amount of points describe the surface of the object. Still, the 2D fiber radius is highly related
to the stable value of the minimal eigenvalue (λ2/r2 ∈ [0.75, 1]) and can be calculated according to
our theoretical studies (Formula 3.17). Thus, the radius can be computed as

r′ =
√

λ2/f(θ) (3.22)

with f(θ) from Formula 3.17.

According to our knowledge, there is no equivalent formula in 3D, thus we present a second method
to estimate the radius, which is based on the centralized distances di. Equation 3.12 shows that the
distances di hold the information of the radius. Therefore, each endpoint leads to an estimate of the
radius:

r̃i = di sin(∠(v′, vsi)). (3.23)

An example is shown in Figure 3.7.

Figure 3.7.: Radius estimation from centralized endpoints.

Based on these radius estimates, there are various possibilities to choose the final radius approxima-
tion. We have chosen a trimmed mean, which is a mixture of the mean and median value: discarding
the lower radius estimates reduces wrong estimates due to noise or border regions and discarding
the higher radius estimates reduces wrong estimates due to crossing regions. The final estimate is
computed as follows:

r′ =
1
8

17∑

i=10

r̃(i), (3.24)

based on the ordered sequence of the radius estimates:

r̃(1) ≤ r̃(2) ≤ . . . ≤ r̃(26). (3.25)

This approach is also an alternative for the radius estimation in the 2D case, The evaluation on
synthetic data has shown that this method yields even better results than the recalculation from the
eigenvalues. This can be explained by the fact that the trimmed mean is less sensible to outliers,
which occur for example in fiber crossings.
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3.2.4. Improvement by Adaptive Smoothing

The resulting direction and radius maps can be locally smoothed by using a smoothing filter (e.g.
mean or Gaussian). In addition, filter weights can be based on the ratio of eigenvalues, which indicates
the elongation of an object. We define the moment ratio as

MR(λ1, λ2) =
λ1

λ1 + λ2
∈ [0.5, 1). (3.26)

For a ball, all eigenvalues are the same, whereas for a fiber the first eigenvalue λ1 differs significantly
from the second (in 3D the second and third are similar). In a point where two fibers cross, the first
and second eigenvalues are similar. In such crossing regions, the main inertia axis is a mixture of
the orientations of the two fibers and thus not reliable. The mixture of information also leads to a
non-reliable radius estimate. Therefore, we use the moment ratio of the first two inertia moments to
indicate the relevance of the estimated information.

To smooth the orientation and radius information of neighbor pixels, we apply a mean filter with an
adapting structuring element (a ball with radius given by the radius map) and filter weights given
by the moment ratio. It is advisable to apply this smoothing first on the radius map and then on
the orientation information to avoid too big structuring elements for the orientation map, due to a
too large radius estimate in crossing regions.

3.2.5. Application

In Figure 3.8 the method is applied on a 2D SAM-image (Scanning Acoustic Microscopy) of a glass-
fiber reinforced polymer used for the wheel rim of cars. The sample has a volume fraction of 30% of
1 inch long fibers. Imaged is the projection of a thin slice focussed in a depth of 0.1 mm.

The cutout in Figure 3.8(d) illustrates, that also for very thin fibers we can get a reasonable direction
estimate. Nevertheless, as mentioned earlier, in too thin fibers the estimated directions are reduced
to the sampled directions. This effect is visible in the direction distribution shown in Figure 3.8(e).
For the 4 sampled directions we get unreasonable high peaks, which are caused by discretization limits.

In Figure 3.9, we apply our method to the CRP plate introduced in Chapter 2. In the direction
distribution on the unit sphere, shown in Figure 3.9(f), the two main orientations from the different
layers are indicated by red marks. The θ angle maps can be used to separate the layers. A 3D
rendering of the separated layers is shown in Figure 3.9(e).

3.2.6. Evaluation and Comparison on Synthetic Images

In this section, we study in detail the discretization artifacts and limits for reasonable quantifications.
Furthermore, we compare the results of our approach with the Gaussian orientation space and the
chord length transform on synthetic data. The tested images are realizations of a boolean model
of isotropically oriented cylinders. We compare the different approaches by evaluating pixelwise the
angle error, that is presented in an error histogram.

Discretization Artifacts

In this subsection, we will discuss the error of the estimation due to discretization artifacts, which
will lead us to the necessary resolution to apply our algorithms. In order to answer this question, we
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(a) Initial binary image

(b) Color coded direction map

(c) Color coding (d) Zoomed cutout, with reasonable
orientations even in thin fibers

(e) Rose of directions

Figure 3.8.: Application of the local analysis to a 2D SAM-image of a glass fiber reinforced
polymer used in a car wheel rim.
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have measured the maximal and mean angle error for the fiber orientation estimate over all possible
directions, depending on the relative radius (in pixels).

From the resulting curves presented in Figure 3.10, we can conclude that the deviation is acceptable
for a resolution, where the fibers appear with a radius ≥ 2 pixel. We show the measures for the main
inertia axis and for the corrected angles (in 2D) and the approximated orientation (in 3D). These
plots indicate also the improvement of the orientation correction and approximation.

Evaluation with Error Histogram

Working on synthetic data and knowing the ground truth yields the possibility to evaluate and to
compare methods. The evaluation method is an error histogram, showing the quantity (amount of
pixels) for a certain error. Perfect results would show just one peak on 0. The method, which has a
high peak near 0 and decreases fast, provides good results.

The error histograms of the angle maps for synthetic images (Figure 3.11 and 3.12) show the im-
provement between the different steps of our method. In 2D: the main inertia axis, the corrected or
approximated orientation and the result after adaptive smoothing. In 3D: the main inertia axis in
every pixel, the main inertia axis in the centers of gravity and the results after approximating the
real angle. Smoothing of the 3D image was not yet applied here.

Comparison to Gaussian Orientation Space

Furthermore, we compare our method to the Gaussian orientation space, which uses several elongated
Gaussian filters in given directions and assumes the local orientation to be the one, which yields the
highest filter response (Robb et al., 2007, Wirjadi, 2009, Wirjadi et al., 2009). The results are limited
to the chosen directions, whereas the moments compute angles in the continuous space. That implies
that the Gaussian method will need much more directions to achieve comparable results, which
increases computation time, especially in 3D. The evaluated error histograms are shown in Figure
3.13 for 2D and in Figure 3.14 for 3D synthetic images. The advantage of this method is that it can
be applied directly to the gray-level images and it is highly robust according to noise.

On the chosen 3D model, our method finishes in about one minute, whereas the Gaussian method
with 98 orientations needed two hours for comparable results.

Comparison to Chord Length Transform

The chord length transform (Sandau & Ohser, 2007) computes the chord lengths of a certain amount
of directions in a binary image. The local direction is the one yielding the longest chord lengths.
The results are again limited to the chosen directions. This implies again a long computing time in
the 3D case. Figure 3.15 shows, that the results in 2D are outstanding, as it is possible to scan a
large amount of directions and the designed objects as cylinders are the optimal application for this
approach. Furthermore, in crossing regions this method decides for the orientation of the longest
fiber instead of mixing the informations. In 3D, the calculation time limits the amount of direction
to a too small number (same as for the Gaussian orientation space) which leads to low precision and
high deviations from the real fiber orientation.
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3D Inertia Axes 3D approximated Direction 2D Inertia Axes 2D Corrected Angle

Radiusmax error inertmean error ine max error inertmean error inemax error corr.

1 17,64 8,75 16,62 5,86 14,69 6,9 14,69 3,45

1,1 15,73 8,02 15,73 5,7 14,28 7,45 11,25 2,88

1,2 18,18 7,46 18,18 4,79 13,49 7,02 12,7 3,4

1,3 15,93 8,15 13,83 4,36 17,29 6,92 17,29 4,21

1,4 16,56 8,52 14,01 5,32 15 6,8 15 3,33

1,5 19,09 8,41 18,84 5,42 12,7 6,66 12,7 2,74

1,6 13,99 7,69 12,63 4,68 11,54 6,69 10,41 2,67

1,7 15,55 7,79 11,23 4,69 12,56 6,52 10,1 2,54

1,8 13,9 7,78 11,13 4,03 13,39 6,58 7,81 1,93

1,9 13,31 7,36 8,17 3,18 13,08 6,41 5,51 1,35

2 12,38 6,94 9,51 2,97 12,78 6,38 3,18 1,07

2,1 12,51 6,69 10,28 3,14 12,14 6,25 2,91 0,91

2,2 11,74 6,56 8,16 2,87 11,53 6,29 5,82 1,16

2,3 14,23 6,46 11,19 2,89 10,83 6,17 9,26 1,81

2,4 12,85 6,6 10,03 3 11,45 6,18 10,41 2,43

2,5 11,71 7,17 8,73 3,37 12,39 6,32 8,69 1,85

2,6 12,34 7,31 8,47 3,08 13,01 6,67 6,97 1,46

2,7 12,06 7,26 9,09 2,92 12,59 6,72 5,25 1,2

2,8 12,19 7,39 8,34 2,62 12,02 6,53 3,53 0,85
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Figure 3.10.: Deviation of calculated direction dependent on resolution of discretization. We
show the mean and maximal error over all fiber orientations for the main inertia axis, deriving
directly from the covariance matrix, and for the corrected (2D) or approximated (3D) orientation
estimates.
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error 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Gaussian1077 1560 1312 1567 873 228 547 463 247 206 248 185 83 156 138 82 98 82 44 17 69 53 15 24 17 10 19 20 11 3 30 5

Gaussian1136 506 0 413 1695 0 0 1897 0 0 1087 0 0 802 869 0 0 0 336 0 0 204 0 0 0 0 161 61 0 94 116 24

Gaussian1213 0 0 422 1086 0 0 0 0 0 0 0 0 0 0 0 0 0 1795 0 0 1181 0 0 0 0 1730 0 0 557 418 0

Moment 923 497 407 703 713 490 245 387 240 538 194 547 344 458 666 392 260 138 114 90 65 64 120 67 45 50 71 57 33 72 48 35

with Ang 1255 1162 1121 1230 636 503 471 295 273 298 299 219 150 130 98 106 120 107 121 52 34 34 41 21 11 33 65 13 14 33 25 7

Moment 841 1708 1334 1202 544 403 302 202 155 154 120 106 121 114 105 102 90 90 102 76 74 82 72 72 79 67 64 89 82 53 85 75

error [de 0 0,71 1,41 2,12 2,82 3,53 4,24 4,94 5,65 6,35 7,06 7,76 8,47 9,18 9,88 ### ### 12 12,71 ### ### 14,82 ### ### ### ### 18,35 ### ### ### ### ###

0 5 10 15 20 25 30 35 40

0

200

400

600

800

1000

1200

1400

1600

1800

Error Histogram of Angle Maps 2D

Moment Method

with Angle Correction

Moment Method angle 
corrected and smoo-
thed

error [degree]

q
u
a
n
tit

y 
[n

u
m

b
e

r 
o

f 
p

ix
e

l]

Figure 3.11.: Error Histogram of the angle maps on 2D synthetic data: in orange the first
estimate by the inertia moments, in red the corrected angle results and in dark red the results
after smoothing.
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Figure 3.12.: Error Histogram of the angle maps on 3D synthetic data: in orange the first
estimate by the inertia moments, in red the error after centralizing by the center of mass from
inertia calculation and in dark red the results after approximation of deviation correction.
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Figure 3.13.: Comparison of our method (4 sampled directions) to the Gaussian orientation space
with 8, 18 and 180 directions on a synthetic 2D model.
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Figure 3.14.: Comparison of our method (13 sampled directions) to the Gaussian orientation
space with 18, 50 and 98 directions on a synthetic 3D model.
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3.3. Analysis on Gray-Value Images

In dense parallel fiber networks, it often appears that fibers merge or approach very closely and that
thin frontiers disappear during the binarization process. Applying the directional distance transform
directly to the gray level images could yield the advantage to detect these thin frontiers.

In order to explore this idea, different approaches are proposed. The first possibility to measure
distances on gray level images is the quasi distance transform, invented by Beucher (2007), with an
additional contrast threshold. The second approach is based on the max-mean gradient, which is
an extension of the morphological gradient with different size. Alternatively, we explored two other
ideas: the Gaussian filters of adapting size and the comparison of a shape model. We define the four
approaches, evaluate them and work out the most adequate applications (Altendorf & Jeulin, 2009a).

3.3.1. Quasi Distance Transform

The quasi distance is based on a residual operator τ , evaluating the difference of erosions or dilations.
For each pixel, the maximal change between an operation with structuring element of size i ∈ N and
i + 1 is required. The associated function yields the smallest size id ∈ N, which gives the maximal
value for the residual operator. In this case, the associated function is called quasi distance:

τ = sup
i∈I

(ǫi+1 − ǫi, δi − δi+1). (3.27)

The quasi distance is the size id for which the dilation or erosion yields the highest residue when
compared to the next size id + 1. In our case, as we want to measure the directional distance, the
structuring element is a directed segment. In this case, the image can be treated as several 1D signals.
For a 1D signal or gray level function f : R+ → R we can define the distance for a point x0 in -x
direction with the help of the underbuild function

f̂x0 = sup
g:[0,x0]→R,

g increasing

(g ≤ f). (3.28)

This function is increasing and keeps the value in x0: f̂x0
(x0) = f(x0). The definition of f̂x0

equals
the reconstruction by dilation from the point x0, as known in mathematical morphology (Salembier
& Serra, 1995, Vincent, 1993). The quasi distance is the distance to the point with the highest
gradient:

d(x0) = inf
{

h ∈ (0, x0)|gx0(x0 − h) = Gmax
x0

}
with (3.29)

Gmax
x0

= sup
y∈(0,x0)

{gx0(y)}, (3.30)

gx0(y) = max(|f̂x0(y) − f̂x0(y − 1)|, |f̂c
x0

(y) − f̂c
x0

(y − 1)|) (3.31)

and fc the inverted image (in theory -f , on 8-bit images 255-f). The implementation can be simpli-
fied by defining an image walker in the requested direction and buffering the gray level values in a
decreasing and in an increasing vector for one line, which needs to be updated respectively.

In the case of fiber systems, it often appears that single fibers are separated by a weakly contrasted
line, whereas the end of a fiber bundle has a very high contrast. Therefore, the quasi distance would
detect the end of the fiber bundle, even if there is a closer significant contrast. The distance can be
influenced by giving a threshold for the significant gradient Gl. Thus the distance is defined as

dGl
(x0) = inf

{
h ∈ (0, x0)|gx0

(x0 − h) ≥ min(Gmax
x0

, Gl)
}

. (3.32)
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This threshold treats the case where regions are separated just by a weakly contrasted line and a
larger region of background further away is higher contrasted. In the standard case, the distance will
cross the low contrasted background line and stop at the higher contrasted background, thus wrongly
measuring the distance. If the threshold is lower than the contrast of the line separating the regions,
the distance measure will stop at that line and detect the fiber end correctly. The significance limit
Gl needs to be adapted to a kind of image with a certain prefiltering (e.g. a linear spread can change
the optimal choice of Gl essentially). The choice of this parameter can be evaluated with the stability
of the radius map or the classification map, which will be presented in Section 3.3.3. An example is
shown in Figure 3.16.

(a) Original CRP image. (b) Prefiltered image with toggle mapping.

(c) Gray value relief with quasi distance.

Figure 3.16.: Quasi distance with significance threshold. We treat the gray value relief on the
horizontal red lines in (a) and (b). The curves in (c) are: blue = original gray value relief, red =
gray value relief after applying the toggle mapping filter and green = underbuild function of the
red curve from the green point at x = 4. There are two high gradients on the green curve: one at
the fiber end with residue 28 and one at the end of a bundle with residue 36. The classical quasi
distance would prefer the higher residue, which is false in this example. By choosing a significance
limit ≤ 28, the single fiber end is recognized correctly.

3.3.2. Maximal-Mean Gradient

The thresholded quasi distance transform, defined in the previous subsection, takes into account every
change of gray values. In the case of tomographic images of two phase materials, we can specialize
the method to find borders between foreground and background. For this purpose, we developed
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the maximal-mean gradient approach, inspired by the morphological gradient. The input of this
approach is a gray-level line l : {1, . . . , n} → R, which is extracted from a 3D image. Zeros are added
at the front and the back of the line, and intermediate points are introduced with the average value
of their two neighbors. This results in an up-sampled line l2 : {1, . . . , 2n + 3} → R, which is defined
as follows:

l2(i) =







l((i − 1)/2) , for (i − 1)/2 ∈ {1, . . . , n}
0 , for i = 1 or i = 2n + 3
(l2(i − 1) + l2(i + 1))/2 , else.

(3.33)

The gradient in a point i with step size s is g(i, s) = l2(i + s) − l2(i − s). Note that this gradient can
be positive or negative, respectively if the gray values on the line are increasing or decreasing. The
classical morphological gradient is |g(i, 1)|. On a gray-level line cutting through a fiber, the increase
or decrease of the gray values depends highly on its angle with respect to the fiber orientation. If
the line is perpendicular to the fiber, the gray-level change will be abrupt; with decreasing angle
the gray value change will protract over several pixels, thus g(i, 1) will only recognize a part of the
increase. To detect boundaries of different levels of increase, the average over gradients with vari-
ous step sizes is computed. This can also improve the robustness with respect to salt and pepper noise.

The mean gradient in a point i for the step size s is

Gmean(i, s) =
1
s

s∑

k=1

g(i, k). (3.34)

For too high step sizes s the peaks will flatten down or merge with surrounding peaks. To keep high
peaks, we introduce the maximal-mean gradient, which increases with the step size. With respect
to salt and pepper noise, a minimal step size s0 is defined for the initial mean gradient. Then the
maximal-mean gradient is recursively defined as:

Gmax
mean(i, s) =







Gmean(i, s) , for s ≤ s0

Gmean(i, s) , for (s > s0) and |Gmean(i, s)| > |Gmax
mean(i, s − 1)|

and
(

sign(Gmean(i, s)) = sign(Gmax
mean(i, s − 1))

)

Gmax
mean(i, s − 1) , else.

(3.35)

The meaningful extrema of i 7→ Gmax
mean(i, s), for a given s, are extracted in three steps: First, the

extrema between two changes of sign are considered, and only the main one is kept. That gives us a
sequence of peaks with alternating signs. Then peaks with an amplitude lower than a given gradient
limit G0 are deleted, as they are not significant. This sequence is again reduced to an alternating
one by extracting the extrema of neighbors with the same sign. The resulting sequence of peaks rep-
resents the significant boundaries on the line and defines a foreground and background classification.

Figure 3.17 shows an example of an extracted line from one of the collagen images (Altendorf et al.,
2011). The relief of the gray values is presented by the thick black line. The thin colored lines
represent the maximal-mean gradient for different step sizes. The minimal step size is chosen as
s0 = 4 and the final maximal-mean gradient for step size s = 10 is presented in thick red, with the
first sequence of alternating peaks. The thick blue line represents the final estimated boundaries.
The parameters s0 = 4 and s = 10 showed up to be a good choice for various kinds of images and
materials. The significant lower limit for the gradient is dependent on the difference of gray values
of foreground and background in the original image. Therefore, it needs to be adapted according to
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can be used in two ways: first, the classification gives a quality measure and second, the thresholding
of the classification map with the limit c0 defines a mask for the foreground voxels. For c0 close to
the maximum Nd, the foreground pixels mainly include bright pixels localized in the inner part of a
fibers, this generates a high specificity of the measure but thins the fibers in the mask. Note, that
this does not affect the radius estimate, as it is based on the distances calculated from the gray-level
images.

3.3.4. Alternative Approaches

Apart from the already presented approaches, we developed and studied two alternatives: the differ-
ence of Gaussian filters and the shape model. In comparison, we will see that these approaches do
not give as nice results as the quasi distance or the maximal-mean gradient. Still, we include this
study to show the variety of possibilities (published in Altendorf & Jeulin (2009a)).

Gray Value Distances by Adapting Difference of Gaussian Filters

This approach makes use of the difference of Gaussian filters of varying size of filter mask. More
precisely, the mask size is adapted to the distance s to the point of interest x0. The function for the
Gaussian filter weights is defined as:

hs(x) =
1

σs

√
2π

e
− x2

2σ2
s , (3.36)

where s denotes the filter size. The parameters are chosen as with σs = (s + 1)/4 and µ = 0. The
filter is applied to the reconstruction by dilation f̂x0 with respect to the distance to x0: s =

√
x0 − y.

The filter response is then

f̃x0
(y) =

∫ y+
√

x0−y

y
f̂x0(x) · h√

x0−y(x − y)dx
∫√

x0−y

0
h√

x0−y(x)dx
. (3.37)

The distance should yield the highest difference in f̃x0(y):

dg(x0) = inf
{

h ∈ (0, x0)|f̃x0
(x0 − h) = Gmax

g (x0)
}

(3.38)

with Gmax
g (x0) = supy∈(0,x0) |f̃x0

(y) − f̃x0
(y − 1)| . Increasing the size of the filter with increas-

ing distance, results in a stronger smoothing of the borders further away, thus close distances are
preferred.

Gray Value Distances by Shape Model Comparison

The third approach considers a shape model for the fiber, which takes not only into account the local
decrease of the gray level, but also the regularity of the values considered to be fiber foreground.
The evaluation of a certain distance h from x0 is dependent on the regularity of the values between
x0 − h and x0 and the decrease at the point x0 − h. The gray values are expected to be constantly
high on fiber foreground (between xs(h) = (x0 − h) + s/2 and x0), whereas they should decrease
from xs(h) to xe(h) = xs(h) − s. The strength of the decrease can be chosen with respect to the
image. On the treated images the minimal choice of s = 2 was optimal. The smoothed model
decrease is considered to be like hs(x) = 1

2 sin( (x−(x0−h))π
s ) + 1

2 . We evaluate a distance h according
to the adapted model structure. We define two penalty functions: I1(x0, h) for the regularity in the
foreground and I2(x0, h) for the form of the decrease (evaluation is done with the squared deviation
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from the expected model). In order to honor high difference in foreground and background gray
values, we take into account the integral of the minimum of model and real structure with Ig(x0, h).
The final rating It(x0, h) is a combination of these three values.

It(x0, h) = max(0, Ig(x0, h) −
√

I1(x0, h)2 + I2(x0, h)2)

I1(x0, h) =
f∆

x0 − xs(h)

∫ x0

xs(h)

(
f(x) − f̄)

f∆
)2dx

I2(x0, h) =
f∆

xs(h) − xe(h)

∫ xs(h)

xe(h)

(
f(x) − fmin

f∆
− hs(x))2dx)

Ig(x0, h) =
√

f∆

x0 − xs(h)

∫ x0

xs(h)

min(1,
f(x) − fmin

f∆
)dx

+
√

f∆

xs(h) − xe(h)

∫ xs(h)

xe(h)

min(hs(x),
f(x) − fmin

f∆
)dx

with the mean value f̄ = 1
x0−xs(h)

∫ xs(h)

x0
f(x)dx. The minimal value, the curve does decrease to, is

fmin = infx∈(xe(h),xs(h)) f(x) and the difference between these two values is f∆ = f̄ − fmin. The final
distance is then defined as

dI(x0) = inf{h ∈ (0, x0)|It(x0, h) = max
d∈(x0,h)

It(x0, d)}. (3.39)

3.3.5. Comparison of the Different Approaches on a Gray Value Line

The presented approaches are evaluated on an original and preprocessed gray value line from the
CRP data set. As preprocessing we used toggle mapping to enhance the contrast. The main idea of
this filter is to build upper and lower bounds by dilation and erosion, and fit the original gray level in
every point to the nearest of the bounds. For more details, see Fabrizio & Marcotegui (2006). Note
that this operator can enhance salt and pepper noise.

On a preprocessed gray value line, the thresholded quasi distance as well as the shape model are
showing perfect results as presented in Figure 3.18 as well as the approach of the maximal-mean
gradient as shown in Figure 3.20. For the approach with the Gaussian filters we can already see,
that the results are not as stable in neighboring points as for the other approaches. On the original
gray value line (without preprocessing) the approach of the integral model shows acceptable results
(Figure 3.19). The thresholded quasi distance and the maximal-mean gradient both work fine on
the first three fibers and split the fourth fiber up in two. This behavior is not necessarily wrong.
We know from the 2D image that it actually is one fiber, but from the gray value line it could be
interpreted as two.

In Figure 3.19(b), we can see the most important weak point in the local approaches (quasi dis-
tance, integral model and Gaussian filters). Those three approaches search for the highest gray value
difference from a local point of view. That means for two neighbor pixels, the next highest differ-
ence may be at a different place and thus in one foreground component, the distance function is
not regularly increasing, as it should be. In contrast, the maximal-mean gradient detects the high-
est changes globally on the whole line and assures therefore a coherent design of the distance function.

Regarding the computational complexity, the fastest approach is the maximal-mean gradient with
linear time (O(n)), directly followed by the approach of quasi distance which runs in nearly linear
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(a) Binary Version (b) Standard Quasi Distance (c) Thresholded Quasi Distance
(f0 = 15)

(d) Maximal-Mean Gradient (e) Difference of Gaussian Filters (f) Shape Model

(g) Gaussian Orientation Space
with size (0.5, 4)

(h) Manual Classification

Figure 3.22.: Direction analysis for binary image and preprocessed gray level images (Figure
3.21(b)) with different approaches.
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(a) Binary Version (b) Classical Quasi Distance (c) Thresh. Quasi Distance

(d) Maximal-Mean Gradient (e) Difference of Gaussian (f) Shape Model

Figure 3.23.: Radius analysis for binary image and preprocessed gray level images (Figure
3.21(b)).

Approach Left Part Right Part Single Fiber Mean Mean
Mean (Dev.) Mean (Dev.) Mean (Dev.) Error Dev.

Manual Classification π/4 ≈ 0.785 1.9809 3π/4 ≈ 2.355
Maximal-Mean Gradient 0.781 (0.123) 1.906 (0.089) 2.371 (0.154) 0.134 0.133
Thresholded Quasi Distance 0.778 (0.138) 1.905 (0.157) 2.364 (0.173) 0.15 0.149
Binary 0.79 (0.132) 1.938 (0.079) 2.363 (0.192) 0.153 0.154
Difference of Gaussian 0.769 (0.159) 1.91 (0.129) 2.385 (0.226) 0.183 0.183
Gaussian Orientation Space 0.776 (0.235) 1.913 (0.151) 2.374 (0.276) 0.249 0.249
Standard Quasi Distance 0.769 (0.243) 1.874 (0.242) 2.48 (0.443) 0.312 0.309
Shape Model 0.745 (0.316) 1.841 (0.345) 2.446 (0.543) 0.397 0.402

Table 3.1.: Evaluation of different orientation analysis methods. Manual classification enables
comparison of the automatic analysis. Three classes were defined: right part, left part and the
single fiber on the top left, whose orientation differs from the one of the surrounding fibers. For
every class we compute the mean orientation and the deviation from these values. We finally
evaluate the method by comparing the mean error over all foreground pixels according to the
manual classification.
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Approach Mean Radius Deviation Mean Error to 2
Maximal-Mean Gradient 1.69914 0.27106 0.465954
Thresholded Quasi Distance 2.7078 0.384283 0.720088
Difference of Gaussian 2.35981 4.12308 0.814177
Shape Model 2.50726 5.33168 0.936004
Binary 2.71203 3.39907 1.23598
Standard Quasi Distance 3.24365 7.64946 1.33518

Table 3.2.: Evaluation of different radius analysis methods on gray value image. We compute the
mean radius with deviation and the mean deviation from the manually defined real radius of 2.

the approaches in the table equals their rank in the evaluation for the chosen data set. We observe
that the maximal-mean gradient performs the best, followed by the thresholded quasi distance.

In Table 3.2, we show the mean radius, the deviation, and the mean error assuming the real radius is
equal to 2. We manually measured some fibers in the image and concluded that 2 is approximately
the mean radius. Still, the radius is not constant in the image as we see cuts of 3D fibers. Thus,
it is hard to estimate the radius manually as we tend to take into account only the middle part of
the nicely reconstructed ones, which would result in an overestimation. The evaluation of the mean
error with respect to the radius 2 shows again the maximal-mean gradient and the thresholded quasi
distance on the first two ranks, which have also the most stable radius maps. Unfortunately, they do
not agree in the measure of the mean radius.

Irregularities in the measurements can be smoothed with the adaptive smoothing depending on the
moment ratio (introduced in Section 3.2.4). Smoothing will decrease the error in the evaluation, but
will keep the ranks nearly equal.

3.3.7. Application

In the following, we have chosen two applications treated in the context of project collaborations.
Both studies are published (reference given in the corresponding sections below).

2D SEM Images of a Meltblown Non Woven

In the following application on 2D SEM images of a meltblown non woven, the quality of the final
product is highly dependent on the mean fiber diameter. In this case, our software could replace
stultifying manual measurements, that even deviates essentially between different test persons. Six
different probands manually estimated the empirical diameter distribution of one image, by choosing
50 points in the image, measuring the diameter by clicking on both opposed fiber boundaries and
noting the diameter in an Excel worksheet. Figure 3.24 shows that the empirical distribution functions
of the automatic analysis perfectly lie in the range of those of the probands. Thus, the quality can
be controlled much more efficient automatically and the results can be reproduced at any time.

Figure 3.25 shows an example for varying enlightening techniques for the SEM imaging. Different
configurations were tested on the same specimen. The distribution densities of test 1, 2, 4 show similar
curves, whereas test 3 overestimates the diameter. This effect is equivalent to the one in binarized
images: in overlapping regions the fibers merge and form a larger object, which yields a higher local
radius estimate. The other enlightening configurations create a contrast between superposing fibers
and the boundaries can be identified.
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For further details see Altendorf et al. (2010).

3D SHG Images of Collagen

The gray value method can also be applied on 3D images of collagen in a phosphate-buffer saline
(PBS) solution. The imaging technique is Second Harmonic Generation (SHG) producing stacks of
2D images, that can be interpreted as a 3D image with a non cubic lattice. A collection of results
was created, including (a) volume rendering of the original gray level image, (c) calculated orien-
tation distribution and (f) diameter distribution. The main orientations are classified and a color
was assigned to each class, which is visualized on the unit sphere (d). The choice and size of the
classes is defined manually, thus their their fraction of the sphere surface is not corresponding to
the distribution density. Additionally, the surface rendering of the c0−thresholded classification has
been overlaid with the colors of the main orientation classes (b) and a color-coded depth profile of
the densities of the main orientations was created (e). The overall density is presented in black and
the non assigned pixels in gray.

Concerning the diameter distributions (Figure 3.26(f)), it should be stressed that the first classes
(0.0 − 0.4 µm) are just within the lateral resolution of the microscope, and probably correspond to
the sharp extremities of the fibers. Concerning the depth profile of the main orientations (e), the
two peaks in the curves of the main orientations are essentially formed by the red curve, where the
first peak is accentuated by the green curve. The other main orientations are uniformly distributed
in depth.

For further details see Altendorf et al. (2011).
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4
Chapter 4.

Presentation and Interpretation of
the Local Information

In the previous chapter, we presented the local analysis of fiber orientation and radius. The result of
these approaches are maps including the local information for every foreground pixel. In this chapter,
we discuss how the local orientations can be presented using a color coding, which is a non trivial
problem in 3D. Furthermore, we estimate the empirical distribution density by a histogram. This
rises two problems: first the weighting of the local information, that may distort the histogram, and
second the division of the S2 sphere surface in regular cells.

4.1. Visualization of Direction Map

In this section, we treat the question how to visualize the results of the local orientation. One
possibility is the representation of tensorial data as ellipsoids at each pixel or for a coarser resolution.
Here, we chose a color representation for every pixel in 2D and on a surface rendering in 3D. The
presentation of three dimensional orientation data is difficult and often confusing. Nevertheless, we
present a possibility to define a color code, which is useful to represent the variation with respect to
some given preferred directions.

4.1.1. 2D Colorization

The visualization of a 2D direction map in color is quite straight forward. It suffices to define a π-
periodic color function fc : R → [0, 255)3 for the angle θ, which fulfills fc(θ) 6= fc(θ′) for θ, θ′ ∈ [0, π)
and θ 6= θ′. There are various functions fulfilling these conditions, we have chosen

fc(θ) =





gcos(θ/π)
gcos(θ/π − 1/3)
gcos(θ/π + 1/3)



 (4.1)

with

gcos =







gcos(x + 1) , x < 0
1 , 0 ≤ x < 1/6
1 + cos(6π(x − 1/6)) , 1/6 ≤ x < 2/6
0 , 2/6 ≤ x < 4/6
1 − 1/2(1 + cos(6π(x − 4/6))) , 4/6 ≤ x < 5/6
1 , 5/6 ≤ x < 1
gcos(x − 1) , x ≥ 1

. (4.2)

The curves of fc(θ) and the colorization of a centralized ring are shown in Figure 4.1.
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(a) 2D Color Function fc (b) Color on Unit Circle

Figure 4.1.: Colorized 2D angle.

4.1.2. 3D Colorization

The color assignment for 3D orientation information is not as trivial as in 2D. The conditions for
the function to be periodic and injective are harder to fulfill. One possibility is to choose fix points
P1, . . . , Pn ∈ Sd−1

+ on the upper half sphere, assign fix colors C1, . . . , Cn ∈ R
d to these points and

compute the color for an arbitrary direction v ∈ Sd−1 dependent on the distances to the fixed points
or its inverses.

C(v) =
255 · c(v)

|c(v)| with c(v) =







Ci , for v ∈ {Pi, −Pi}
∑n

i=1

(
π

∠min(Pi,v)

)k

Ci , otherwise
, (4.3)

with ∠min(p, v) = min{∠(p, v),∠(−p, v)}. The parameter k in the Equation (4.3) defines the influence
of the surrounding points. For k = 0 all surrounding points participate with their colors in equal
weights, disregarding the distance to the point v. For k = ∞ the closest point defines the color and
the color mapping defines regions according to the Voronoi tessellation. The color distribution on
the unit sphere and in plane cuts (for k = 3) is shown in Figure 4.2.

With this color definition for unit vectors in R
3 it is possible to colorize the surface rendering. An

example for random 3D synthetic data is shown in Figure 4.3. Note, that it still might happen that
two different orientations are assigned to the same color. Furthermore, the sharp color transitions
for k = 3, that we used here, yield a wide range of orientations with similar color as well as high
alternation around the boundaries between two color cells. This method serves nicely to be adapted
to the case of several (at most 6) preferred directions. The colored representation can then be seen
as a classification into the main directions.

4.2. Estimation of Empirical Distribution Densities

Once the local radius and orientation information are computed, a convenient representation of the
underlying distribution is required. There are different possibilities to find these distributions (e.g.
a histogram, a kernel density function and an empirical distribution function). The easiest way to
collect real-valued information like the radius is a histogram on an interval division of the region
of interest. The shape and significance of a histogram depends highly on the chosen width of the
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In the case of cylindrical fibers, we can convert the volume-weighted measure to a length-weighted
one by dividing by a weight according to the cross section of the cylinder, thus a disc with the given
radius. In the same manner, we could divide by the volume of the cylinder to achieve a number-
weighted distribution. This requires the knowledge of the fiber length, which is often not available.
Given a sample space Ω, divided in n classes ω1, . . . , ωn ⊂ Ω and a measure λ : I → Ω, which assigns
every pixel in a d-dimensional image I ⊂ N

d a certain statistics.
The volume-weighted histogram is calculated as

HV (ωj) = CV

∑

i∈I,λ(i)∈ωj

1,

the length-weighted histogram is calculated as

HL(ωj) = CL

∑

i∈I,λ(i)∈ωj

1
πr(i)2

and the number-weighted histogram is calculated as

HN (ωj) = CN

∑

i∈I,λ(i)∈ωj

1
πr(i)2l(i)

.

The values CV , CL and CN are normalizing constants, such that the integral of the histogram over
the sample space is equal to one:

∑n
j=1 H(ωj) = 1. Figure 4.4 shows the number-, length-, and

volume-weighted version of 10 000 realizations of capsules (cylinders with round caps) with fix length
and fiber radius distributed with the uniform or normal distribution.

In our approach of fiber quantification, we do not know the length of the fibers, thus we cannot
calculate the number-weighted histogram. A prerequisite for computing the fiber length is to identify
single fibers, which is not always possible in the application. For high resolution images with low
density, we still propose a single fiber separation method in Chapter 5. For other cases, we prove in
the following that if radius, length and orientation of a fiber are independent, the volume-weighted
orientation distribution, as well as the length-weighted radius distribution, do not differ from their
number-weighted versions (Altendorf et al., 2011).

We consider a population of fibers with random radius R, length L, and orientation Ω. The number
and volume weighted multivariate distributions f(r, l, ω) and g(r, l, ω) are related as follows:

g(r, l, ω) = k1r2lf(r, l, ω) (4.4)

with a normalization constant k1 given by

k1 =
1

∫∫∫
r2lf(r, l, ω) dr dl dω

. (4.5)

The marginal distributions of the orientation f(ω) and g(ω) are related by the following expression,
deduced from Equation (4.4):

g(ω) = k1

∫∫

r2lf(r, l, ω) dr dl. (4.6)

If, for each fiber, the orientation is statistically independent of the radius and of the length, we have
the decomposition

f(r, l, ω) = f(ω)f(r, l) (4.7)
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Figure 4.4.: Comparison of number-, length-, and volume-weighted version of a theoretical uni-
form and normal distributed radius.
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and

g(ω) = f(ω)k1

∫∫

r2lf(r, l) dr dl = f(ω), (4.8)

as

k−1
1 =

∫∫∫

r2lf(r, l)f(ω) dr dl dω =
∫∫

r2lf(r, l)
(∫

f(ω) dω

)

dl dr. (4.9)

Per definition f(ω) is normalized, thus
∫

f(ω) dω = 1. It follows that

k−1
1 =

∫∫

r2lf(r, l) dl dr, (4.10)

which eliminates the second constant in Equation (4.8). Therefore, the assumption of independence
involves that the volume- and number-weighted distributions are the same. This result is true, even
if the length and the radius of fibers are not independent.

Similarly, we can derive a relationship between the length (h(r, l)) and number (f(r, l)) weighted
joint distributions of the random radius R with the random length L. We have

h(r, l) = k3

∫

lf(r, l, ω) dω = k3l

∫

f(r, l, ω) dω = k3lf(r, l), (4.11)

with
k3 =

1
∫∫

lf(r, l) dl dr
. (4.12)

When the random length L is independent of the radius R, we have the decomposition

f(r, l) = f(l)f(r) (4.13)

and therefore k3 = 1∫
∞

0
lf(l) dl

= 1
E[L] , with E[L] being the number-weighted expectation of the fiber

length. The marginal radius distribution becomes

h(r) = k3

∫ ∞

0

h(r, l) dl = f(r)k3

∫ ∞

0

lf(l) dl = k3E[L]f(r) = f(r). (4.14)

Thus, the length and number weighted joint distributions of the random radius R are the same. This
result is true, even if the radius and length are not independent of the orientation of fibers.

4.2.2. Radius Distribution

The radius distribution is represented by a weighted histogram with bin sizes hw. Additionally, to
the weight transforming the histogram in a length-weighted version, we can make use of the quality
measures. In Equation 3.26 (page 27), we presented the ratio of eigenvalues Rλ as a quality measure
for the local orientation and thus indirectly also for the local radius. In Section 3.3.3, the classifi-
cation in foreground and background is presented, which yields another quality measure c. We can
respect both by defining the weight of quality q(i) = Rλ(i)c(i).

Thus, the masked foreground voxels contribute to the histogram with a weight of quality q(i) divided
by the approximated fiber cross section πr(i)2. The relative quantity of a histogram bin b(k) =
((k − 1)hw, khw] is then defined as:

Hr(k) = Cr

∑

i∈I,r(i)∈b(k),c(i)>c0

q(i)
πr(i)2

, (4.15)
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where Cr is a normalizing factor, such that the integral over the whole histogram is equal to one:
∑∞

k=1 Hr(k) = 1. The histogram is mostly presented as the histogram step function:

h(r) = Hr(⌈r/hw⌉). (4.16)

It is often difficult to choose a reasonable interval for the histogram. If the observation is split in too
many bins (hw small) the trend of the overall distribution is not visible. For a too large value for
hw, it may happen that several peaks merge to one and furthermore the accuracy of the maxima is
decreasing. A more smooth progression can be achieved by the empirical distribution function with
a rather small value for hw:

F (r) =
⌈r/hw⌉
∑

k=1

Hr(k). (4.17)

A smooth approximation of the density function is the numerical derivative of Fr, with an interval
width parameter hd ≥ hw:

f(r) =
F (r + hd/2) − F (r − hd/2)

hd
. (4.18)

We advise to choose a small value for hw around one tenth of the pixel sampling and hd equal to the
pixel sampling. The parameter hd represents the level of smoothing for the empirical density function
f . For hd ≤ hw there is no smoothing and the empirical density function equals the histogram step
function h. For a too large value for hd, the smoothing can again merge close peaks, but in contrast
to the histogram the accuracy of the maximum positions keeps intact.

4.2.3. 3D Orientation Histograms

For the orientation histogram, the sphere surface is divided in m cells C1, . . . , Cm ⊂ S2. The partition
in equally sized and formed cells is a non trivial task and discussed in detail in the following section.
Again, the masked foreground voxels contribute to the histogram with a weight set to their quality
index, so the distribution is defined by:

Ho(k) = Co

∑

i∈I,o(i)∈Ck,c(i)>c0

q(i), (4.19)

where Co is the normalizing factor, so that the integral over the distribution is equal to one. The
orientation distribution is volume-weighted. The division of the sphere surface in equally cells is not
trivial and discussed in the following section.

Division of Sphere Surface

For some directional operations on 3D images and for creating a histogram on the sphere surface, it
is necessary to divide the surface in a finite number of evenly formed cells or to define evenly placed
points. In 2D this is trivial as we can divide the circle in an arbitrary number of equal sectors.
Unfortunately, it is nontrivial to transfer this to the 3D case.

In the following, we discuss the state-of-the-art of this problem and assign a name to every method,
that will reappear in the section of comparison.
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Fliege. Fliege & Maier (1996) propose a method based on a forced bias packing, which starts with
a certain amount of random points. By applying forces of repulsion, the distances between neighbors
are maximized iteratively. Wirjadi (2009) adapted this approach to evenly place points on the upper
hemisphere.

Sloane. Furthermore, Hardin et al. (2000) developed a method to optimize one of three different
aspects for a set of n points:

- Packing: maximize the distance between pairs of the n points.

- Covering: minimize the distance between any point on the sphere surface to one of the n points.

- Maximal Volume Arrangement: maximize the volume of the convex hull on the n points.

This method can generally optimize any amount of points, but their are certain amounts of points
having better properties in the given aspects. Therefore, it only makes sense to work with the points
given on their website (Hardin et al., 1994).

HEALpix. A third approach is given in Górski et al. (2005), where a diamond pattern is projected
on the sphere surface. In the following, we will describe an even simpler approach, which projects a
grid from the unit cube.

QuadSphere. The idea of mapping the cube faces on the sphere surface was already studied by
the NASA (Chan & O’Neill, 1975, O’Neill & Laubscher, 1976, White & Stemwedel, 1992) and was
called the Quadrilateralized spherical cube (QuadSphere). The fundamental difference between the
QuadSphere and our approach is the mapping, which we will discuss in detail in the paragraph on
page 62.

The last three methods have similar ideas and the great advantages that for an arbitrary point on
the sphere surface, the index of the according cell can be computed directly in constant time.

Grid Projection

The division of the 2D circle can be projected on the surrounding unit square. If we expand this
division to a grid on the unit cube, we can project it on the unit sphere to get a division of the sphere
surface. This construction is visualized in Figure 4.5. Later we observe that the area fraction of the
cells can be optimized by displacing minimally the division lines of the grid. There are now different
ways to define points and cells on this grid:

Config. 1: points = grid points, cells = their Voronoi cells

Config. 2: cells = grid cells, points = middle grid nodes of a twice finer grid

Config. 3: points = points from Config. 2., cells = their Voronoi cells

Config. 4: cells = optimized grid cells, points = middle grid nodes of a twice finer grid

Config. 5: points = points from Config. 4., cells = their Voronoi cells

First, we studied the nodes of the grid and their Voronoi cells on the unit sphere, which build a
partition of the sphere surface.

58







4.2. ESTIMATION OF EMPIRICAL DISTRIBUTION DENSITIES

Figure 4.7.: Angles α0 and β1 in optimal grid division.

and φ0 = π/4; the right cube boundary extends to φn = 3π/4. A vertical line keeps θ = π/2 and
φ = lπ with l ∈

[
1
4 , 3

4

]
. For the included angle between the upper cube boundary (orthogonal to n⊥)

and a vertical line (orthogonal to n), it yields

cos β = n⊥ · n (4.27)

= sin θ⊥ cos φ⊥ sin θ cos φ + sin θ⊥ sin φ⊥ sin θ sin φ + cos θ⊥ cos θ (4.28)

= sin
(

3π
4

)
cos(0) sin

(
π
2

)
cos(lπ) + sin

(
3π
4

)
sin(0) sin

(
π
2

)
sin(lπ) + cos

(
3π
4

)
cos
(

π
2

)
(4.29)

=
1√
2

cos(lπ) (4.30)

To calculate the edge angle α0, we consider π − β for l = 1
4 . Thus, it yields cos(π − α0) = 1√

2
cos( π

2 ).

This implies α0 = 2π
3 .

Considering the desired area for A0, we receive the equation

2β1 − 2α0 − 2π =
4π

6n
⇔ β1 =

π

3
(
1
n

+ 1). (4.31)

We can generalize this for the ith line, which cuts a slice of area 4iπ
6n and has therefore

βi =
π

3
(

i

n
+ 1). (4.32)

Note, that we can expand i to the real-valued interval [0, n], which is used to compute the supporting
vectors of the cell. By inverting the Equation 4.30, we obtain

li =
cos−1(

√
2 cos βi)

π
. (4.33)

By respecting the index ordering defined in Equation 4.24 and presented in Figure 4.6(a), we define
the orthogonal vectors of the division lines by their polar coordinates as

ni : θi =
π

2
, φi = liπ (4.34)

nj : θj = (
3
2

− lj)π, φj = 0. (4.35)

The supporting vector of the cell (s, i, j) is

v(s, i, j) =







−ni+0.5 × nj+0.5 , for s = 0
(vy(0, i, j), vx(0, i, j), vz(0, i, j)) , for s = 1
(vy(0, i, j), vz(0, i, j), vx(0, i, j)) , for s = 2

. (4.36)
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Assuming that the inverse tangent function tan−1 is mapping in (−π/2, π/2], we can calculate the
cell index for an arbitrary vector v ∈ S2 by:

Cellopt(v) =







(0, Indexi(− vx

vy
), Indexj(− vz

vx
)) , for |vx| = max{|vx|, |vy|, |vz|}

(1, Indexi(− vy

vx
), Indexj(− vz

vy
)) , for |vy| = max{|vx|, |vy|, |vz|}

(2, Indexi(− vz

vx
), Indexj(− vy

vz
)) , for |vz| = max{|vx|, |vy|, |vz|}

(4.37)

with

Indexi(t) =







⌊(
2 tan−1(t)

π − 1
2

)

n
⌋

, for tan−1(t) ≥ 0
⌊(

2 tan−1(t)
π + 3

2

)

n
⌋

, for tan−1(t) < 0
(4.38)

Indexj(t) =
⌊(

1
2

− 2 tan−1(t)
π

)

n

⌋

(4.39)

Quadrilateralized Spherical Cube - Similarities and Differences

The idea of mapping a grid from the cube face to the sphere was firstly studied by Chan & O’Neill
(1975), O’Neill & Laubscher (1976) and detailed in Patt (1993), White & Stemwedel (1992). The
main edges of the cube are projected in the same manner as explained in our approach. The great
difference lies in the mapping from the face to the sphere surface. In our approach, we use a tangential
mapping treating x and y direction independently. The QuadSphere approach uses a rather complex
mapping defined in Patt (1993) for Cartesian coordinates (x, y) ∈ [0, 1]2, x > y on the 2D square
([−1, 1]2) (representing the x cube face) to coordinates (q, r, s) ∈ S2 of the sphere surface by:

s

r
=

sin
(

π
12

y
x

)

cos
(

π
12

y
x

)
− 1√

2

(4.40)

q = 1 − x2



1 − 1
√

2 +
(

s
r

)2



 (4.41)

r =
x

|x|

√

1 − q2

1 +
(

s
r

)2 . (4.42)

These equations are defined only on an eighth of the square, other values can be achieved by intelli-
gently reflecting or rotating to this case (switching x and y as well as the results r and s, or inverting
signs respectively). The mapping from the sphere to the square is then defined by:

x =

√
√
√
√

1 − q

1 − 1√
2+( s

r )2

(4.43)

y

x
=

12
π

[

tan−1
(s

r

)

− sin−1

(
2√

2r2 + 2s2

)]

. (4.44)

Note, that this kind of mapping distorts structure as shown in Figure 4.8. In our approach straight
lines on the square are projected to lines on the sphere (intersections between a plane through the
origin and the sphere), presented by the red lines. The QuadSphere approach distorts the original
lines. The result is presented by the gray lines.

The number of cells in the division of the QuadSphere is defined to 6 · 22N , with N ∈ N
+
0 . Still, with

the defined mapping we can easily generalize it to the finer division rate of 6n2 as used before.
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(a) Config. 1: grid nodes,
n = 6, 218 points

(b) Config. 4: optimal cell
points with grid faces, n =
6, 216 points

(c) Config. 5: optimal cell
points with Voronoi cells,
n = 6, 216 points

(d) QuadSphere division,
216 points

(e) QuadSphere points
with Voronoi cells, 216
points

(f) HEALpix, 192 points (g) Fliege, 196 points (h) Sloane - Covering, 272
points

Figure 4.9.: Visualization of division for different approaches for approximately 200 points.

Perimeter P =
∑k−1

0 li
Lengths L = {l0, . . . , lk−1}
Number of Nodes k
Inner Angles Θ = {α0, . . . , αk−1}
Area A =

∑k−1
0 αi − (k − 2)π

Circularity fcirc = 4πA/P 2

with li = d(vi, v[(i+1) mod k]), αi = π − cos−1(ni · n[(i+1) mod k]) and ni = ±vi × v[(i+1) mod k] such
that ni · p > 0.

Figure 4.10 shows the variation coefficient of the cell area for different approaches. This was the
characteristic optimized in Config. 4, which means for a mapping, treating the coordinates x and
y independently and therefore conserving the line structure, these are the best possible results. We
can observe that the optimal grid division can compete with the alternative existing approaches. We
also see that the Voronoi cells (dashed lines) are slightly better than the grid division. Similar results
yield the statistics of the perimeter in Figure 4.11.

In Figure 4.12, all the grid division approaches win, as the amount of cell nodes is fixed to 4, this
would also yield for the HEALpix, considering the grid division (which we did not implement). Con-
sidering the length of all cell edges (Figure 4.13), we see that the Voronoi cells have high variations
as the edges are varying. For the grid divisions edge lengths are more stable, just as well as for the
icosahedral divisions. The last obviously have the lowest variation in the inner angles (Figure 4.14),
followed by the grid division and the Voronoi cells are on the last positions. This ranking is also
applicable on the statistics of the circular shape factor in Figure 4.15.
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Figure 4.10.: Comparison of the variance coefficient of the cell area of the different tessellations
of the unit sphere surface.
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Figure 4.11.: Comparison of the variance coefficient of the cell perimeter of the different tessel-
lations of the unit sphere surface.
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Figure 4.12.: Comparison of the variance coefficient of the number of nodes of the cells in the
different tessellations of the unit sphere surface.

� ��� ���� ���� ���� ����

���������

���������

���������

	��������


��������

���������

���������

����������	�
�����
���������
��
����

��������������������������������

�������	���������������  ������
!������"��#�!���������

���������������������"��#���  ���
����!�����

����������$ ��%&���������  ������
!������"��#�!���������

�������
��$ ��%&��������"��#�
��  ������!�����

'�() �*

+������

��&������&�,���

��&������-�����

��&�����!��%��(��&���%���

.�&��� #����"��#�!���������

.�&��� #����"��#������+&��

/�%0����������1�����

!
&
��
&
��

�
��

�
��
��
��
�
�

Figure 4.13.: Comparison of the variance coefficient of the length of the edges of the cells in the
different tessellations of the unit sphere surface.
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Figure 4.14.: Comparison of the variance coefficient of inner angles in the cells of the different
tessellations of the unit sphere surface.
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Figure 4.15.: Comparison of the variance coefficient of circularity shape factor of the cells of the
different tessellations of the unit sphere surface.
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Considering the advantage of the grid division in simple construction and direct cell assignment, the
choice of the optimal cell division is recommended. In the following example of direction distributions,
we will make use of the presented method.
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5
Chapter 5.

Single Fiber Separation

In the previous chapter, we presented approaches for local analysis of fiber orientation and radius.
Further characteristics of the fiber system remain unknown, as fiber length and curvature or the
number-weighted distribution of orientation and radius. To achieve this kind of knowledge, it is nec-
essary to recognize each fiber, which rises the problem of fiber separation. Fibrous materials usually
form multiply connected networks. Thus, standard labeling techniques for connected components are
not suitable to separate fibers.

Talbot et al. (2000) propose a method on 2D images, which recognizes parts of the fiber cores from
the skeleton and reconnects them afterwards. The skeletonization of fibers already poses a great
problem, as even slight fiber contacts or noisy images can distort the skeleton. Another approach
(Sandau & Ohser, 2007) relies on the chord length transform to lift 2D fibers into 3D space, where
the z-coordinate is derived from the orientation. The lifted fibers are in general not connected and
can be separated by standard labeling techniques. Unfortunately, the generalization of the method
to a 3D fiber system is non trivial. In materials with cellulose fibers (Axelsson, 2009, Bache-Wiig &
Henden, 2005, Walther et al., 2006), the non-crossing lumen can be used as markers to separate the
fibers with standard labeling techniques.

In this chapter, we present a fiber separation approach based on probability maps indicating the prob-
ability for each point to be inside the core of a fiber in a non-crossing region (published in Altendorf
& Jeulin (2009b). We define the core parts, which are initialized in locally maximal probabilities and
expand along the fiber core, indicated by high probabilities. The core parts stop at crossing regions
and will be reconnected in a second step. To decrease the amount of comparisons of pairs of core
parts during reconnection, we developed a reconnection graph, which refers only to those pairs as
reconnection candidates, which hold a connecting line in the foreground of the image. The decision
of reconnection is made according to the orientations of the core parts and their connection line, as
well as the length and the image values of the connection line.

Our studies are mainly focused on glass fiber reinforced polymers, where we can assume fibers with
low bending, no branching and circular cross section. The algorithm is based on binary images and
uses the local orientation map and a knowledge of the local radius (from a local radius map or a fix
global radius).

The chapter starts with several possibilities to calculate the probability maps, followed by a study
of the core parts: definition, initialization, expanding and reconnection over crossing regions. We
terminate the chapter with applications on synthetic and real data.
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CHAPTER 5. SINGLE FIBER SEPARATION

5.1. Probability Maps

In this section, we present three approaches to compute the probability maps: the original idea based
on mean filters with adapting structuring element, the mean filter with a propagating structuring
element and a method based on the Euclidean distance transform. The probability maps include two
types of information: the probability of a pixel being on a fiber core (called inner probability) and
the probability for a pixel to be in a non-crossing region (called outer probability).

5.1.1. Probability from Mean Filter with Adapting Structuring Element

The fiber core is formed by the centers of maximal balls. Thus, a ball with given fiber radius fits in
the fiber only if the center is situated on the fiber core. While moving this ball away from the fiber
core, the intersection of the ball and the foreground decreases. To evaluate if a point is situated in
a non-crossing region, we consider a ring around the point of interest, where the inner radius equals
the fiber radius and the outer radius equals twice the fiber radius. In a core point situated in a non-
crossing region, we observe that the surface or volume of this ring is covered to 52% with background
in 2D and to 74% in 3D, see equations 5.2 and 5.5. If the point is situated in a crossing region, the
ring hits another fiber and the intersection of ring and background decreases. This ball-ring-theory
is illustrated in Figure 5.1 and the given percentages are computed as follows.

(a) blue - fiber, violet - ball with
fiber radius fitting completely in the
fiber, yellow - ring with 52% of its
surface in the background

(b) cutout of one quarter of the ring surface,
serves to calculate the percentage of the back-
ground

Figure 5.1.: Ball-ring-theory on a 2D fiber.

Surfaces in the 2D case (notation and formula derived from Figure 5.1(b)):

Sb =
∫ R

0

√

4r2 − x2dx − Rr = r2(−
√

3/2 + 2π/3) (5.1)

In the case of no overlap, the maximal percentage of the surface of the ring, that lies in the background
is

ρmax
2 = 4Sb/Sring =

4r2(−
√

3/2 + 2π/3)
π((2r)2 − r2)

=
8
9

− 2
√

3
3π

≈ 52.13%. (5.2)
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5.1. PROBABILITY MAPS

In the case of two orthogonal overlapping fibers, the percentage decreases to

ρmin
2 =

4
∫ R

r

√
4r2 − x2dx − Rr

Sring
=

4r2( π
3 + 1 −

√
3)

3πr2
≈ 13.36%. (5.3)

The volume for the 3D case is derived from the function f(x) (in Figure 5.1(b)) rotating around
the x axes. The following integral builds half of the volume of the intersection of the ring and the
background:

Vb = π

∫ R

0

3r2 − x2dx = 2πr3
√

3 (5.4)

In the case of no overlap, the maximal percentage of the volume of the ring, that lies in the background
is

ρmax
3 = 2Vb/Vring =

4πr3
√

3
4
3 π((2r)3 − r3)

=
3
√

3
7

≈ 74.23%. (5.5)

In the 3D case, it is not that trivial to compute the minimal percentage in the case of overlapping
fibers. We approximate this minimal percentage by assuming the foreground percentage as twice the
percentage in the case of a single fiber. This minimal percentage is

ρmin
3 = 1 − 2(1 − ρmax

3 ) ≈ 48, 46%, (5.6)

which is slightly higher than the real percentage, as it neglects the overlapping volume of the two
orthogonal fibers inside the ring element.

The percentage of the intersection of a structuring element with the foreground or background can be
easily computed with the mean filter, assuming the foreground to have value 1 and the background
value 0. Applying the mean filter to the foreground with a structuring element of a ball with radius
equal to the fiber radius, we achieve the percentage of intersection and save it in the inner probability
map. The boundary points still yield 50% of the ball in the foreground. Therefore, we spread the
probability from [0.5, 1] to [0, 1], which defines:

Pinner(x) =
2

‖Br(x)(x)‖




∑

y∈Br(x)(x)

b(y)



− 1, (5.7)

where b : Nd → {0, 1} defines the binary image and Br(x) =
{

y ∈ N
d | |y − x| ≤ r

}
the ball with

radius r centered in x ∈ N
d.

The outer probability is computed by applying the mean filter to the background with a ring as
structuring element, which results in

ρ(x) =
1

‖Rr(x),2r(x)(x)‖




∑

y∈Rr(x),2r(x)(x)

1 − b(y)



 , (5.8)

with Rr1,r2
(x) = Br2

(x)\Br1
(x) the ring element. The outer probability is spread according to its

minimal and maximal values:

Pouter(x) =
ρ(x) − ρmin

d

ρmax
d − ρmin

d

, (5.9)

where d defines the dimension of the image.
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CHAPTER 5. SINGLE FIBER SEPARATION

(a) Binary Image (b) Inner Probability Map (c) Outer Probability Map (d) Product of (b) and (c)

Figure 5.2.: Example of probability maps.

Assuming these two incidences to be independent, the product of the probabilities equals the com-
bined probability of being inside a core in a non-crossing region. An example is shown in Figure 5.2.

By varying the structuring elements, we can include the information of the local fiber orientation.
Different examples are visualized in Figure 5.3. The structuring elements are drawn on a blue fiber,
the violet region indicates the structuring element for calculating the inner probability, whereas the
yellow region indicates the structuring element (on the background) for calculating the outer prob-
ability. Note, that in the case of oriented structuring elements, the accuracy of the local orientation
influences the probability maps.

Figure 5.3.: Structuring elements for calculating the probability maps. The structuring elements
are drawn on a blue fiber, the violet region indicates the structuring element for calculating the
inner probability, whereas the yellow region indicates the structuring element (on the background)
for calculating the outer probability. From left to right: original structuring element, ring ele-
ment limited to the expected background and additionally an elongated inner structuring element
(defined by the intersection of the ball with radius 2r and the expected foreground).

5.1.2. Probability from Mean Filter with Propagating Structuring Element

The approach using the mean filter over the entire structuring element has the great disadvantage that
close fibers influence the surrounding probabilities. To avoid this, we define a propagating structuring
element, which acts like a radial underbuild function or a radial reconstruction by dilation. Let
f : W → R be any real valued image. The radial underbuild function is defined on a window W ∈ N
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5.1. PROBABILITY MAPS

with center x ∈ W and an adjacency system N as:

fr̂(y) =

{

f(y) , for y = x

min{f(y)} ∪ {f(z) | z ∈ N(y) ∧ [d(z, x) < d(y, x)]} , otherwise.
(5.10)

In binary images, this radial underbuild function is included in the connected component of x. This
means close parallel fibers do not influence the probability and even in crossing regions the crossing
fiber has less influence on the probability.

5.1.3. Probability from Euclidean Distance Transform

The calculation of the probability maps in 3D, especially the propagating one, is very time-consuming,
therefore we try to find a faster method to achieve the probability maps. In a first step, we treat the
probability Pinner of being in the fiber core. The definition of this normalized probability that x is
inside a fiber core is given in equation 5.7. The key properties, we want to keep, are Pinner(xcore) = 1
and Pinner(xborder) = 0. We observe that optically the Euclidean distance transform (EDT) gives
similar results as the inner probability map and can be calculated much faster. We can define an
inner probability dependent on the EDT and the local radius map r : Rd → R

+ as:

PEDT(x) = min
{

EDT(x)
r(x)

, 1
}

. (5.11)

This definition fulfills the key properties:

EDT(xcore) = r(xcore) ⇒ PEDT(xcore) = 1 and EDT(xborder) = 0 ⇒ PEDT(xborder) = 0. (5.12)

For further discussion of the crossing regions, we need to distinguish between the 2D and 3D case
and between an exact or approximated radius, because the calculation of the EDT and the radius
map differs in those cases. In the 2D case, the EDT increases in the crossing regions, whereas in 3D
this is in general not the case. In 2D we can define a formula for the outer probability knowing the
exact radius r(x):

PEDT,outer = min
{

e−10(
EDT(x)

r(x)
−1), 1

}

. (5.13)

The crossing regions with higher EDT values naturally yields a boundary where the EDT value equals
the radius. This undesirable effect can be eliminated by some simple morphological operations on
the outer probability map. Practical tests showed good results after applying an erosion followed
by an opening, both with Br(x) as structuring element. Figure 5.4 shows the results of the enlarged
probability maps.

(a) PEDT,outer (b) PEDT,outer · PEDT (c) enlarged P
′
EDT,outer

(d) P
′
EDT,outer

· PEDT

Figure 5.4.: Example of EDT probability maps.
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Probability Map by Mean Filter with Structuring Element Probability Map by
Ball and Ring Elongated Propagating Ball EDT approach
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Figure 5.5.: Comparison of probability maps for different approaches. The first row makes use of
the fixed real radius r = 4, the second row uses the approximation of the radius with the approach
presented in chapter 3 and the third row yields the same results as the second row with spread
gray values, to make the difference in the gray values more visible.

Figure 5.6.: Structure of a core part. The small circle indicates the location of the point, the big
circle refers to the radius and the arrows show the orientation in that point.
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a core part. Defining the core of a fiber this way, instead of using straight lines, allows bending of
the fiber and variation of the local radius. In the following, we build the core parts such that the
distance between two points equals approximately the fiber radius. We describe, how the core parts
are initialized, expanded along the fiber core and reconnected over crossing regions.

5.2.1. Initializing Core Parts

The core parts should be initialized on the fiber core in regions, where the orientation and radius
information is reasonable, which is the case in non-crossing regions. Thus, we start the initialization
process on the local maxima of the probability map, presented by a marker map as shown in Figure
5.7. The local maxima are processed in the order of decreasing probability higher than the lower

Figure 5.7.: Initializing of core parts. Basis: orientation, radius and probability map; marker
from local maxima of the probability map; discretized core parts from expanded markers.

threshold Pmin. This limit needs to be chosen carefully and may vary in different applications. If
Pmin is too low, the core parts can depart from the fiber core or enter in crossing regions, which can
imply a disorientation of the core part ends and therefore a problem in the reconnecting process. If
Pmin is too high, parts of the fiber can be missed, because all points in the fiber part under-run the
limit.

The markers create core parts, consisting of one point with radius and orientation given by the
according maps. The core parts are created in decreasing order of probability. Each created core
part is directly expanded and sets the values of the probability map in its influence zone to zero.
This procedure assures the uniqueness of core parts and increases the efficiency of the algorithm.

5.2.2. Expanding Core Parts

A core part should be expanded along the fiber core as long as it does not enter a crossing region.
The decision to expand is based on the probability given by the probability map. We expand from
both ends of the core part in the direction of the assigned orientation and in the distance given by
the assigned radius. Allowing a certain variation in those parameters, we obtain an area, in which we
search for the highest probability value. The variation parameter in the expanding direction controls
the accepted bending of the fibers. We expand a core part as long as the probability values are higher
than the limit Pmin. The expanding process is illustrated in Figure 5.8.
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5.2. CORE PARTS

Figure 5.8.: Expanding of the core parts.

5.2.3. Reconnecting Core Parts

Two core parts should only be reconnected over a crossing region, if they are direct neighbors in the
same fiber, which defines the reconnection candidates. For a pair of core parts, we decide about their
reconnection by comparing the orientations and position of their closest ends. Having chosen two
reasonable endpoints, we evaluate the angle between their orientations as well as the angle between
their orientations and the orientation of the connection line. The evaluation value for the orientation
is defined by VDir ∈ [0, 1]. We also take into account the distance between the core parts, evaluated
with VDist ∈ [0, 1], and the intersection of the connecting line with the foreground, evaluated with
VLine ∈ [0, 1]. The mentioned values are computed from the endpoints p1, p2 and their orientations
v1, v2 as follows:

f(v, w) = 1 −
√

max {∠(v, w) − 0.3, 0}
π

∈ [0, 1] (5.15)

VDir =
f(v1, v2) + f(v1,

−→
p1p2) + f(v2,

−→
p1p2)

3
(5.16)

VLine =
Volume[Foreground

⋂
CorePart(p1, p2)]

Volume[CorePart(p1, p2)]
(5.17)

VDist =

(

| −→
p1p2 |
100

+ 1

)−1

(5.18)

⇒ VTotal =
VDir + VLine + VDist

3
(5.19)

If any of those values under-run the lower bound Vmin, the connection is directly denied. The con-
necting process is performed in decreasing order of the evaluation values VTotal. After a connection,
the values of the surrounding core part pairs can change and need to be recomputed.

5.2.4. Reconnection Graph

The straightforward approach of evaluating every pair of core parts exceeds very fast an acceptable
runtime. Therefore, it is necessary to find a reasonable way to choose candidates for the connecting
process. Core parts should only be connected through the foreground without crossing any other
core part. So we define, that two core parts are connection candidates, if there exists a path in the
foreground connecting them, which does not cross another core part.

This approach can be implemented on the mosaic of labeled core parts, including an additional
label for the background. The region graph yields all connections between neighbor regions and can
therefore indicate candidates for reconnection. An example of such a mosaic and the resulting region
graph is shown in Figure 5.9(c) and 5.9(d).
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5.3. Application on Synthetic Images

The presented algorithms are tested on synthetic datasets, where the result can be compared to the
ground truth. Examples are shown in Figure 5.9 for the 2D case and in Figure 5.10 for the 3D case,
where the fiber system is achieved by a cherry-pit RSA cylinder process. The results are nearly
perfect, as all synthetic fibers could be recognized and separated from other colliding fibers. There
remain some assignment problems at the fiber ends or in crossing regions.

(a) Probability Map (b) Center Line of Core Parts (c) Labeled Core Parts

(d) Reconnection Graph (e) Reconnected Core (f) Separated Fibers

Figure 5.9.: Example for the separation of fibers on a 2D fiber model

5.4. Application on Real Datasets

We can now apply the fiber separation on real datasets. In Figure 5.11, the method is applied to
a glass fiber reinforced polymer, where standard labeling techniques fail, because of the multiple
connections in the fiber system. The probability Pouter is low in dense regions and therefore some
fibers may remain undetected (especially in the low left corner in the sample shown in Figure 5.11(b)).
The EDT probability is not influenced by close fibers and could therefore detect those missing fibers
(see 5.11(c)).
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(a) Labeled Fibers (b) Reconstructed Sphere Chains (c) Labeling of Foreground by Re-
gion Growing from Fiber Cores

Figure 5.10.: Example for the separation of fibers on a 3D model. Labeled 3D Rendering
visualized with Amira software.

(a) Standard Labeling (b) Separation with Probability
Map Pinner · Pouter

(c) Separation with Probability
Map PEDT

Figure 5.11.: Application of separation approaches on IVW glass fibers. GRP Sample from R.
Velthuis (IVW Kaiserslautern) recorded by A. Rack, J. Goebbels at the BAMline (BESSY II,
Berlin, Germany) with a resolution of 3.5 µm.

5.5. Conclusion

The algorithm shows reasonable results on synthetic data. In the application on CT datasets, the
majority of fibers is detected. The problem of undetected fibers in dense regions of GRP got resolved
by the EDT probability. Still it remains to verify, if the method is adaptable to highly dense and
parallel fiber system, as often seen in carbon fiber reinforced polymer. The method was tested on
materials as glass fiber reinforced polymers and steel fiber reinforced concrete with a volume fraction
up to 15%. For a sufficiently high resolution, volume fraction up to 30% should be even possible to
treat. For higher volume fraction or carbon fiber reinforced polymers, it remains to check the limits
of density and resolution, for which the method still yields acceptable results.
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Chapter 6.

Stochastic Modeling

Thanks to the analysis from the previous chapter, the microstructure of a fibrous material is known
in details. In this chapter, we design a suitable stochastic model for a random fiber system and show
how it can be fitted based on the knowledge of the microstructure of a real material. The stochastic
model is published in Altendorf & Jeulin (2011a) and the model fitting in Altendorf & Jeulin (2011b).

In the area of stochastic geometry models, we distinguish between soft-core and hard-core systems.
A hard-core system forbids overlap between the objects, which is strongly required, as such penetra-
tions are not realistic in the case of solid glass or carbon fibers. Concerning random fiber systems,
there exist several approaches providing either hard-core fiber systems with a low volume fraction,
soft-core systems and sedimentation algorithms, providing hard-core systems with restrictions on the
orientation distribution.

We recall in detail the state of the art in fiber modeling: The classical approach called the dilated
Poisson line process was introduced in Matheron (1975) and creates infinite straight cylinders in a
soft-core network. Since then, fiber modeling has evolved into more flexible approaches. In order to
achieve hard-core systems, the random sequential adsorption model was created in Widom (1966),
which iteratively generates objects and tries to place them in the system such that they do not
overlap with already existing objects. This approach was applied for cylinders in Feder (1980). Two
other random fiber-packing methods have been developed: one for ellipsoids presented in Bezrukov &
Stoyan (2006) and one for spherocylinders in Williams & Philipse (2003). All three random packing
approaches produce straight fibers in a hard-core system and achieve only low volume fractions of
about 10% − 15% for isotropic orientation distribution and a fiber aspect ratio of 10. For long fibers,
as is the case for fiber-reinforced composites (aspect ratio of about 200), the producible volume frac-
tion goes down to 5%, while 15% − 55% is required. Furthermore, long fibers cannot be realized
with cylinders in a periodic window, as fibers tend to overlap themselves. Still, periodic boundary
conditions are often required for simulations of physical properties.

There are also more physically motivated approaches of fiber sedimentation, which achieve, in gen-
eral, high volume fractions but are limited in realizing a given orientation distribution. The fiber
deposition model in Provatas et al. (2000) generates fibers oriented in the plane and deposes them
with a certain bending parameter on the existing system. In this approach, high volume fractions can
be achieved, but the most important parameter, the orientation distribution, is limited to the plane.
The sequential deposition algorithm in Coelho et al. (1997) realizes a fall of random particles until
they reach a local minimum of their potential energy. During the fall, rotation and displacement are
not restricted. Therefore, the particle can change its orientation arbitrarily, and it cannot be assured
that the desired orientation distributions will be achieved. This approach allows up to a 59% volume
fraction for cylinders with an aspect ratio of 10.

Another hard-core bending fiber model was proposed in Pan et al. (2008). The representative volume
element is divided into sublayers. Fibers are randomly oriented in the xy plane, and in the case of
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overlap, the newly added fiber changes the sublayer to avoid the existing fiber. The resulting chains
of polyhedra with ellipsoid cross sections achieve a volume fraction of 35% − 40%. Still, the buckled
polyhedra do not appear to be very realistic, and again, the orientation distribution is restricted to
the xy plane.

Our model uses four major inspirations: Firstly, model bended fibers as ball chains by a random
walk (initiated by Joachim Ohser). Secondly, a combination of the ideas from Wirjadi (2009) and
Karkkainen et al. (2008) to control the orientation distribution in spite of the bending. Thirdly, the
force-biased approach on sphere packings (Mościński & Bargieł (1989) and Bezrukov et al. (2002)).
Fourthly, the design of energies in molecular dynamics to define the forces (Mościński & Bargieł,
1989).

Soft-core bending fiber systems can be achieved by random walks introduced in Wirjadi (2009) with
the von Mises-Fisher distribution, controlling the smoothness of the bending. In this approach it
is possible that long fibers bend to a circle; thus, the final orientation distribution cannot be con-
trolled. The approach of Karkkainen et al. (2008) provided 2D random walks with the multivariate
von Mises-Fisher distribution, which also controls the deviation from the main fiber orientation, as-
suring a certain loyalty to a given orientation distribution. Furthermore, in Faessel et al. (2005) a
bending fiber model is proposed based on dilated cores made of curvature points connected by spline
interpolation. The last three models are soft-core systems.

The idea to represent fibers as chains of spheres was already considered in Karayiannis & Laso (2008).
An irregular assembly of chains of tangent hard spheres (like in a pearl necklace) were studied to build
dense packings with Monte Carlo simulation schemes. Hard-core configurations with low density are
packed with a “box shrinkage” algorithm and relaxed in Monte Carlo algorithms by localized moves
as flip, rotation, reptation, and intermolecular reptation. The aim of the approach in Karayiannis
& Laso (2008) is a highly dense packing, which was successfully achieved with a volume fraction of
63.9%, which corresponds to the densest packing of hard spheres. To this end, the restrictions on the
fiber structure are very low, and thus, the approach is not suitable for reconstructing fiber-reinforced
composites.

Material properties are highly influenced by the fiber structure, particularly its orientation distribu-
tion. This correlation is studied in Schulgasser (1985), Chin et al. (1988), Jain & Wetherhold (1992),
Hine et al. (1995), Fu & Lauke (1996) and Favier et al. (1997). Furthermore, Berhan and Sastry
(Berhan & Sastry (2007a) and Berhan & Sastry (2007b)) studied the influence of model characteris-
tics on percolation simulation for different high-aspect-fiber systems. In Berhan & Sastry (2007a), the
influence of soft-core and hard-core systems is examined, while Berhan & Sastry (2007b) focuses on
the waviness of the fibers. Berhan states that the frequently used straight and overlapping fiber sys-
tems are inappropriate to model fiber-reinforced materials, and he suggests using hard-core bending
fiber systems. Those studies enhance the need for stochastic models, creating realistic fiber systems
dedicated to fiber composite materials. In the previous chapters, we proposed quantification methods
to analyze the most important characteristics of fiber systems. Now, a stochastic model is required
to realize the measured properties. In contrast to physical simulations dedicated to systems of liquid
crystals (e.g. Cinacchi & Gaetani (2008)), we are only interested in the final configuration of the
stochastic model and its properties, instead of the behavior of the fibers during the simulating process.

The aim of this chapter is to provide a random hard-core fiber model with a controllable bending
and high volume fractions. For this purpose, random walks are used to create a realistic system
of bending fibers. The level of bending is controlled by two parameters in the multivariate von
Mises-Fisher distribution. The created points are provided with a radius and the current orienta-
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tion. The balls, defined by the points and the assigned radii, are connected in chains according to
the paths of the random walks. This approach results in a soft-core system of bending fibers, mod-
eled as chains of balls. In a second step, we apply a force-biased approach to achieve a hard-core
configuration of the fiber system. Force-biased algorithms on spheres were introduced in Mościński
& Bargieł (1989) and statistically analyzed in Bezrukov et al. (2002). The forces in our approach
were inspired by the energy-reducing models known from molecular dynamics (Mościński & Bargieł,
1989). The mentioned forces describe the necessary displacement of the balls to relax the system.
They do not act like mechanical forces. Two kinds of forces are applied to the ball centers: repul-
sion and recover forces. The repulsion force arises in the case of a fiber overlap and displaces the
balls to a non overlapping position. The recover force maintains the fiber structure between the balls.
It keeps the distance and the angles between a ball and its neighbors, allowing only a small deviation.

The approach works in a closed cubic window W ⊂ R
3 with periodic boundary conditions. Overlap

checks are effectively computed in subdivisions of the window W , where only neighboring cells need
to be compared. Therefore, the algorithm has low computing time. We ensured the quality of the
realization by evaluating the parameters of the final configuration.

Although ball chains are considered as the second type of ideal amorphous solids, they are purely
used in modeling fibrous material. As stated in Laso et al. (2009), in the case of non overlapping
neighbor spheres, the maximal possible volume fraction rises up to the one of individual spheres:
≈ 0.64. With decreasing distance between neighboring spheres and increasing alignment of fibers,
we approach a system of parallel cylinders. In this case, the problem reduces to a random packing of
2D disks, for which the maximal volume fraction can reach up to 0.78 (Hinrichsen et al., 1990). In
our approach, the distance between neighboring spheres is approximately r/2, where r is the sphere
radius. This distance is one-quarter of the distance of non overlapping neighbor spheres. Thus, the
maximal possible volume fraction may lie between the values 0.64 and 0.78. As we include higher
restrictions to the fiber structure than the random packing of tangent sphere chains of Karayiannis &
Laso (2008), it is probable that we will not reach such high volume fractions for every set of param-
eters. Still, volume fractions around 50% were achieved for several input parameters. The maximal
volume fraction of our experiments was 72.0075 %, achieved for a z axis preferred orientation distri-
bution and an aspect ratio of 9.

We start this chapter with a presentation of the orientation distributions used in this studies: the
standard and multivariate von Mises-Fisher distribution (Fisher, 1953, Karkkainen et al., 2008) and
the β girdle orientation (Ohser & Schladitz, 2009, Schladitz et al., 2006). In the following, we first
introduce the rather classical approach of hardcore cylinders organized with the RSA algorithm
(random sequential absorption). We generalize the approach by adding a soft-shell ratio, which
keeps the fiber core solid and allows overlap on the shell. The idea of the soft-shell ratio is taken
from the cherry-pit model introduced by Rikvold & Stell (1985), Torquato (2002) and analyzed in
Elsner et al. (2009). In Section 6.3, we introduce the random walker creating a soft-core system of
bended fibers. Section 6.4 presents the force-biased fiber packing bringing the bended fibers in a non
overlapping configuration. We terminate the chapter with a study on the estimation of the model
parameters and further statistics on the created model.

6.1. Orientation Distributions

In this chapter, we recall some three-dimensional orientation distributions, which are used in the
following studies. In the definition of the distributions, we make use of the spherical coordinates
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(θ, φ) ∈ [0, π) × [0, 2π). The conversion to Cartesian coordinates (x, y, z) ∈ S2 ⊂ R
3 is the following:

x = sin θ cos φ, y = sin θ sin φ, z = cos θ. (6.1)

Thus θ describes the deviation from the positive z axis, while φ describes the deviation from the
positive x axis in the xy plane projection in clockwise order. We will refer to the presentation in
polar coordinates with square brackets and the index PC: (x, y, z)T = 〈θ, φ〉PC. There are various
alternatives to describe an orientation with angles like the geographical, geological or astronomical
coordinates (see Fisher et al. (1993)). Note that also the definition of the spherical coordinates is not
always identical in the literature.

There are two classes of distributions on the unit sphere, considering either directed vectors or axial
data, where inverse directions yield the same probability. This difference is essentially important for
statistical analysis of the data as well as for parameter estimation. In the case of fibers, the fiber
orientation is generally not directed. This axial data reduces the orientation space to the half sphere
S2

+ described by the spherical coordinates in [0, π/2) × [0, 2π). For global orientation distributions,
we take into account only those distributions having equal probabilities for inverse directions. Still,
for the stochastic model based on random walks, we need to consider a distribution for preferred
directed orientations. For this approach, we choose the multivariate von Mises-Fisher distribution.

Furthermore, the presentation of the orientation distributions need to be discussed. We choose the
same specification as in Fisher et al. (1993) by probability density function (pdf) and probability
density element (pde). The pde h(x) describes the probability for a certain range around the point
x. The distribution specified by the pdf f(x), which is not a probability, serves for integration. The
relation of both functions is: h(x) = f(x) dx, which differs just in the multiplication by the elemental
range dx for x ∈ R. In the case of 3D orientation, the elemental area for spherical coordinates is the
unit spherical surface having Θ between θ and θ + dθ and Φ between φ and φ + dφ. The element of
surface dS in spherical coordinates is

dS = sin θ dθ dφ. (6.2)

Therefore, a pde h(θ, φ) dS has the pdf f(θ, φ) = h(θ, φ) sin θ.

In the following, all presented orientation distributions have one preferred direction µ and are isotropic
in rotation around that preferred direction. Thus, they can be defined by the marginal distribution
only dependent on the angle θ between a direction v and the preferred direction µ. It yields cos θ =
µ · v, where “·“ represents the scalar product (also called inner vector product).

6.1.1. von Mises-Fisher Distribution

The most common orientation distribution with preferred direction µ ∈ S2 and reliability parameter
κ > 0 is the von Mises Fisher distribution defined by its probability density element (see pages 86 ff.
in Fisher et al. (1993))

hvMF(v) =
κ

2π(eκ − e−κ)
eκ(µ·v) dS (6.3)

or by the probability density function in polar coordinates (µ = 〈θ0, φ0〉PC)

fvMF(θ, φ) =
κ

2π(eκ − e−κ)
eκ(sin θ sin θ0 cos(φ−φ0)+cos θ cos θ0) sin θ, (6.4)

with preferred direction µ ∈ Sd−1 and concentration parameter κ > 0. κ → 0 leads to the uniform
distribution and κ → ∞ leads to the fixed distribution of µ. Examples of realizations with different
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Figure 6.1.: Realizations and density functions of the von Mises Fisher distribution with κ =
1, 10, 100.

anisotropy parameter κ are shown in Figure 6.1.

The marginal distribution for µ = (0, 0, 1)T = 〈0, 0〉PC or θ representing the angle between µ and v
is

gvMF(θ) =
κ

(eκ − e−κ)
eκ cos θ sin θ. (6.5)

Respectively, the cumulative distribution function over θ for a von Mises Fisher distribution is

GvMF(θ) =
1 − eκ(cos θ−1)

1 − e−2κ
. (6.6)

We roughly sketch the deduction of the cumulative distribution function:

GvMF(θ) =
∫ θ

0

gvMF(α) dα (6.7)

=
κ

(eκ − e−κ)

∫ θ

0

eκ cos α sin α dα (6.8)

=
κ

(eκ − e−κ)

[

− 1
κ

eκ cos α

]θ

0

(6.9)

=
1

(eκ − e−κ)

(
−eκ cos θ + e−κ

)
(6.10)

=
1 − eκ(cos θ−1)

1 − e−2κ
(6.11)

The pseudo random generator for µ = (0, 0, 1)T is based on the cumulative distribution function for
θ ∈ [0, π] and the isotropically distributed φ ∈ [0, 2π]:

1. generate X1, X2 uniformly in [0, 1]

2. find θ with GvMF(θ) = P (Θ ≤ θ) = X1: θ = cos−1
(

1 + ln[1−X1(1−e−2κ)]
κ

)

3. find φ with F (φ) = P (Φ ≤ φ) = X2: φ = 2πX2
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Other choices of µ = 〈α, β〉PC can be realized by rotating the z centered realization 〈θ′, φ′〉PC ∼
vMF(〈0, 0〉PC, κ) with the rotation matrix:

Rα,β =





cos α cos β − sin β sin α cos β
cos α sin β cos β sin α sin β

− sin α 0 cos α



 (6.12)

It yields 〈α, β〉PC = Rα,β〈0, 0〉PC and the rotated direction 〈θ, φ〉PC = Rα,β〈θ′, φ′〉PC is distributed
with vMF(〈α, β〉PC, κ).

6.1.2. multivariate von Mises Fisher Distribution

The multivariate von Mises Distribution was first defined in Karkkainen et al. (2008) for the 2D case.
The generalization to higher dimensions has the pde:

h(x|x1, κ1, x2, κ2) dS = c(x1, κ1, x2, κ2) eκ1xT
1 x+κ2xT

2 x dS, (6.13)

where x1, x2 ∈ Sd−1 are two preferred directions and κ1, κ2 ∈ R
+ are the reliability parameters

towards the preferred directions. The factor c(x1, κ1, x2, κ2) serves for the normalization, such that
the integral over Sd−1 is equal to 1.

A useful observation is that every multivariate von Mises Fisher distribution can be written as a
classical von Mises Fisher distribution with the parameters

κ = |κ1x1 + κ2x2| and x0 =
κ1x1 + κ2x2

κ
, (6.14)

which can be easily checked by inserting those parameters in the classical von Mises Fisher density
function. This simplifies the generation of the pseudo random variables to the standard case, which
has been described before. Furthermore, this defines the normalization factor in S2

c(κ) =
κ

2π(eκ − e−κ)
(6.15)

⇒ c(x1, κ1, x2, κ2) =
|κ1x1 + κ2x2|

2π(e|κ1x1+κ2x2| − e−|κ1x1+κ2x2|)
. (6.16)

As the multivariate von Mises Fisher distribution can be written as a classical vMF distribution, it
is not very interesting to observe realizations of this distribution with fixed parameters. This case
could be replaced by the classical von Mises Fisher distribution. The multivariate version is required
during the random walk, where the first preferred direction is fixed to the global mean direction of
the walk, whereas the second preferred direction refers to the last direction in the walk. Therefore,
this parameter changes during the process other than the remaining three parameters.

6.1.3. β Distribution

For the global orientation distribution, we have applied the β orientation distribution (Schladitz et al.
(2006), (Ohser & Schladitz, 2009, p. 252)) with one parameter β ∈ R

+\{0}. For β = 1 it results in
the uniform distribution on the sphere, for β → 0 it concentrates on the z axis, and for β → ∞ the
orientations are distributed isotropically in the xy plane. The probability density function of the β
orientation distribution is

fB(θ, φ) =
β sin θ

4π(1 + (β2 − 1) cos2 θ)3/2
. (6.17)
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Figure 6.2.: Probability densities (pdf and pde) for the β distribution with parameters β = 0.1
and β = 10.

Figure 6.2 shows the probability density elements and functions for the β distribution with parameters
β = 0.1 and β = 10.

In difference to the von Mises Fisher distribution, the girdle distribution treats inverse directions
equally. Thus, it yields fB(v) = fB(−v) for all v ∈ S2. This behavior is important for a fiber orienta-
tion, as the sense of the orientation is not defined. Furthermore, this orientation distribution yields
the possibility to describe a concentration on a girdle in the xy plane, which appears quite often in
real materials, as e.g. in non woven or in CRP.

The marginal probability density function is

gB(θ) =
β sin θ

2(1 + (β2 − 1) cos2 θ)3/2
, (6.18)

and the cumulative distribution function over θ ∈ [0, π) is

GB(θ) =
1
2

− β

2
√

cos−2 θ + (β2 − 1)
. (6.19)

The inversion of the cumulative distribution function serves to create the pseudo random generator:

1. generate X1, X2 uniformly in [0, 1]

2. find θ with GB(θ) = X1: θ = cos−1

(

X1√
X2

1 −β2X2
1 +β2

)

3. find φ with F (φ) = X2: φ = 2πX2

The created pseudo random vector v = 〈θ, φ〉PC can also be rotated according to a preferred orien-
tation or axis with the rotation matrix (see Equation 6.12).

6.1.4. Variations of the von Mises Fisher distribution

There are also several approaches to generalize the von Mises Fisher distribution, in order to achieve
equality for inverse directions and to create a distribution, which covers bipolar and girdle preferences.
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One possibility of expanding the von Mises Fisher distribution to create a girdle distribution was
introduced by Watson (1965). The Watson density element is

hW(θ, φ) = CW(κ)eκ cos2 θ dS, with CW(κ) =
(

4π

∫ 1

0

eκu2

du

)−1

. (6.20)

The normalizing constant includes solving the integration of the Gaussian function, which can not
be ascribed to an antiderivative and therefore needs to be approximated numerically by the so called
error function. One may think of the possibility to compress the von Mises Fisher distribution on
polar coordinates from θ ∈ [0, 2π] to θ ∈ [0, π] by making use of cos(2θ), which leads to the probability
density element

hDF(θ, φ) = CDF(κ)eκ cos 2θ dS, with CDF(κ) =
(

2π

∫ π

0

eκ cos 2θ sin θ dθ

)−1

. (6.21)

As it yields cos 2θ = 1 − 2 cos2 θ, we end up with the same unsolvable problem as for the Watson
distribution. The probability density elements and function of the doubled Fisher distribution hDF

and the Watson distribution are shown in Figure 6.3 for κ = 10 and κ = −10. Both yield similar,
smooth curves.
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(b) Doubled Fisher Distribution

Figure 6.3.: The probability density elements and function for the Watson and the doubled von
Mises Fisher distributions for κ = 10 and κ = −10.

However, there is a way to create a variation of the von Mises Fisher distribution with nice integration
properties by using the absolute value of the cosine | cos(θ)|. The probability density element is defined
as

hFA(v) = CFA(κ)eκ|µT ·v| dS, with CFA(κ) =
κ

4π(eκ − 1)
. (6.22)

For κ > 0 the distribution concentrates around the axis µ, with equal probabilities for inverse
directions and for κ < 0 the distribution concentrates isotropically around the plane orthogonal to
µ. Figure 6.4 shows an example of the probability density function and elements for κ = 10 and
κ = −10. The probability density is continuous, but unfortunately it is not differentiable in the point
θ = π/2.

6.2. RSA and Cherry-Pit Fiber Model

A classical approach to model random fiber networks is a cylinder process. The basis is a hard-
core germ grain process realized with the RSA algorithm (random sequential adsorption, see Feder
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Figure 6.4.: Fisher absolute distribution with κ = 10 and κ = −10.

(1980)). To achieve a certain degree of overlap the collision check is performed on thinned fibers,
similar to the cherry-pit model.

Figure 6.5.: Cherry-pit model in 2D.

Fibers are defined as cylinders with starting point x ∈ R
d uniformly distributed, orientation v ∈ Sd−1

with specific orientation distribution (here we used β orientation distribution) and radius r ∈ R
+.

The fiber model is provided with an overlap ratio ρ ∈ R
+. Collision checks are accomplished for the

realized fibers with adapted radius ρ · r. With that extension we can allow a certain overlap of the
fibers for ρ < 1 or assure a free surrounding of each fiber for ρ > 1.

Figure 6.6 shows some realizations of the cherry-pit fiber model for varying orientation distributions
and a soft-shell ratio of 0.5.

6.3. Random Walker

In this section, we present a model to create bended fibers in a soft-core system. Each fiber of
the initial fiber system is modeled as a random walk. A random walk is a Markov process on R

3

producing a chain of points. We assign to every fiber point the current direction and a radius. The
result of a random walk is a sequence of points in R

3 × S2 × R
+, describing the fiber:

P = {p0, . . . , pl}, pi = (xi, µi, ri) ∈ R
3 × S2 × R

+. (6.23)

The starting point p0 = (x0, µ0, r0) and the path length l could be generated from four distributions
for the starting coordinate, the principal fiber orientation, the fiber radius, and the fiber length.
In general, the initial coordinate x0 is uniformly distributed in a cubic window with periodic edge
treatment x0 ∼ U(W ⊂ R

3). The other three distributions describe the main parameters of the fiber
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(a) β = 1, uniformly distributed (b) β = 0.2, z preferred (c) β = 50, girdle distribution

Figure 6.6.: Examples of realizations of the cherry-pit fiber model. Modeling Parameters: image
size = 3003, amount of fibers = 200, overlap ratio = 0.5, radius ∈ [2, 10] and length ∈ [200, 300].
The direction distribution (girdle distribution) is controlled by different values of β.

system. For the orientation distribution, we have applied the β orientation distribution, described
in Section 6.1.3. The radius and length can be simulated from any distribution on R

+. The radius
can either be fixed for the whole system or chosen once for each fiber or for every point during the
random walk with some strategy for smooth variation. The number of fibers for the system is chosen
depending on the required volume fraction. Another main characteristic of the fiber system is the
bending of the fibers, which is indirectly controlled by two parameters, κ1 and κ2, in the multivariate
von Mises-Fisher distribution.

During the random walk, the generation of a new point pi+1 requires three steps: First, the new
orientation µi+1 is generated according to the multivariate von Mises-Fisher distribution, with the
last orientation µi and the main fiber orientation µ0 as parameters. Second, the new radius ri+1 is
generated. Finally, the new coordinate is calculated as xi+1 = xi + ri+1

2 µi+1. The distance between
the points is a trade-off between a representative fiber structure and a treatable number of points.

We specify the multivariate von Mises-Fisher distribution in our approach as follows: the first pre-
ferred direction is the main fiber orientation µ0 and the second preferred direction is the orientation of
the previous point µi−1. Therefore, κ1 describes the reliability to the main fiber orientation, whereas
κ2 describes the reliability to the last orientation and hence specifies the smoothness of the bending.
The probability density element for the ith step in the random walk (with i ≥ 1) is

h(µi) = c(µ0, κ1, µi−1, κ2) eκ1µT
0 µi+κ2µT

i−1µi dS. (6.24)

Realizations of the soft-core fiber model created by random walks with varying choices of reliability
parameters κ1 and κ2 are shown in Figure 6.7.

The mean fiber orientation of a created ball chain P = {p0, . . . , pl} is defined as µ̄(P ) = pl−p0

|pl−p0| ∈ S2.
The mean orientations of the created fibers are supposed to be realizations of a global orientation
distribution for the fiber system. The starting orientations µ0 are chosen with respect to the global
orientation distribution, but the mean orientation differs from µ0 with a deviation depending on
the reliability parameters κ1 and κ2. To ensure the global orientation distribution, we rotate the
chosen fiber, so that the mean fiber orientation equals the originally chosen main fiber orientation:
µ̄(P ) = µ0. The fiber structure (length, radii, bending) remains constant during the rotation. Every
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realized in several steps. In each step, the forces are calculated for the current configuration of the
system, and displacements are performed, respectively.

6.4.1. Repulsion Force

The repulsion force for a pair of overlapping balls describes the necessary displacement to make them
non penetrating. An overlap between two balls is permitted if the balls are close neighbors in the
same fiber. In this case, we define the two points p, q ∈ P as related:

p ∼ q ⇔ ∃ path between p and q with length ≤ 5. (6.35)

The value of 5 is an approximation for the minimal distance of two balls in the same chain that do
not naturally overlap. The distance between the ball centers of two direct neighboring balls is chosen
as r/2. In this case, balls in the same chain connected by a path with length less than 4 do overlap
naturally. In order to take care of small deviations in the radius or additional curvature, we increase
the minimal path length to 5.

Let p1 = (x1, d1, r1) and p2 = (x2, d2, r2) ∈ P be two arbitrary points in the fiber system. The
overlap between those two points is

Overlap(p1, p2) = max [0, r1 + r2 − d(x1, x2)] (6.36)

with the distance function d(x1, x2) respecting the periodic edge treatment. The repulsion force given
by

Frp(p1, p2) = 1p1≁p2

Overlap(p1, p2)
2

x1 − x2

|x1 − x2| , (6.37)

is applied if the points are not related as defined in Equation (6.35). The force on p1 works in the
opposite direction to p2, with a strength linearly dependent on the overlap. The total repulsion force
for the point p1 is cumulated over all points in P :

Frp(p1) =
∑

q∈P

Frp(p1, q). (6.38)

6.4.2. Recover Force

The recover force keeps the distance between neighboring points by modeling springlike forces between
them, and it keeps the angle in the joints by modeling open springs between the connections. Open
springs describe the fact that there is a force for decreasing but none for increasing angles. Thus, a
fiber can be straightened but not folded into a clew.

The recover force is induced by a displacement of the original ball coordinate as an effect of the
applied repulsion force. By applying the recover forces to one ball it induces recover forces on its
neighbors. Even if the strength of the indicated forces is decreasing, a kind of domino effect has
started, and the process does not stop. In order to stabilize the movement, we introduce a smoothing
factor, which acts like a starting friction. We define a minimal change xs, which is necessary to
induce a force, and a change xe when the force regains its full strength. The friction factor is defined
as

fxs,xe
(x) =







0 , x < xs

1
2 − 1

2 cos( |x|−xs

xe−xs
π) , xs ≤ x ≤ xe

1 , xe < x

. (6.39)

The curve fxs,xe
(x) is given in Figure 6.8.
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Figure 6.8.: Friction factor for recover forces.

Spring Force: In order to keep the distances between the balls in a fiber, we define a force between
the centers of the balls, with a strength linearly dependent on the change of distance. This kind of
force can be interpreted as a spring between the ball centers. Let p = (xp, dp, rp) and q = (xq, dq, rq)
be two neighboring points. The change of distance is

∆D(q, p) = Dorig(q, p) − |xq − xp| (6.40)

and the unit vector for the direction of the force is

v(p, q) =
xp − xq

|xp − xq| . (6.41)

Thus, the recovery spring force Frs on a point p is defined as

Frs(p) =
∑

q∈P

{

[1E(p, q) + 1E(q, p)] fds,de

( |∆D(q, p)|
Dorig(q, p)

)

× [∆D(q, p)] v(p, q)
}

. (6.42)

The spring force is applied to p for every direct neighbor (at most two). It is linear to the distance
change and multiplied by the friction factor on the ratio of distance change. For the realizations
created in our applications, the friction parameters were chosen as ds = 5 % and de = 10 %.

Angle Force: In order to keep the angle between joints, we define a recover force on each point
having two direct neighbors. Let (q1, p, q2) ∈ C be a joint in the point p = (x, d, r) with the
neighbors q1 = (x1, d1, r1) and q2 = (x2, d2, r2). We define

α0 = Aorig(q1, p, q2) (6.43)

m = x1x2 ∩ Plane (x, ⊥(x1 − x2)) (6.44)

h1 = |m − x1|, h2 = |m − x2|, z = |m − p| (6.45)

α1 = tan−1(h1/z), α2 = tan−1(h2/z) (6.46)

tan α = tan(α1 + α2) =
z(h1 + h2)
z2 − h1h2

(6.47)

z0 =
h1 + h2 +

√

(h1 + h2)2 + 4h1h2 tan2 α

2 tan α
. (6.48)

Now, the recovery angle force Fra on a point p is defined as

Fra(p) = 1∃q1,q2∈P,(q1,p,q2)∈C fαs,αe
(α0 − α) (z − z0)v(m, p). (6.49)
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Figure 6.9.: Geometry for angle force.

The angle force is linearly dependent on the necessary displacement to regain the original angle, and
it is multiplied by the friction factor, depending on the angle change. For the realizations created
in this work, the friction parameters were chosen as αs = 0.1 ◦ and αe = 0.2 ◦. The geometrical
construction is visualized in Figure 6.9.

6.4.3. Application of Force

The total force on an arbitrary point p ∈ P is composed of the sum of all mentioned forces:

Ftotal(p) =
∑

q∈P

Frp(p, q) + ρFrs(p) + ρFra(p), (6.50)

where ρ is a factor in [0, 1] leading to a smooth development of the recover forces, favoring the
repulsion forces in the first steps. For the realizations created in this thesis, we chose ρ = 0.2. In
order to limit the possible displacement of a point, we define an upper bound Fmax for the final force
strength:

Ffinal(p) =
Ftotal(p)
|Ftotal(p)| min(|Ftotal(p)|, Fmax). (6.51)

In each step, the ball center of p is displaced by the limited final force:

x′
p = xp + Ffinal(p). (6.52)

After a displacement step, the forces are recalculated for the new configuration and applied in the
following step.

6.4.4. Stop Criterion and End Step

During the packing process the forces decrease very quickly in the beginning and converge slowly to
zero in the end. The process should be stopped by a criterion dependent on the force strength. In our
implementation, the algorithm terminates with a solution if the total force strength

∑

p∈P Ftotal(p)
falls below a certain limit and the displacements become negligible. For the realizations created in
this work, we chose the limit as 0.002 s n, where n is the number of fibers and s the side length of
the window. That means the mean sum of necessary displacements in a fiber is smaller than 0.2%
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of a unit size. When the volume fraction is chosen too high, it is possible that there is no config-
uration with low force strength. In this case, the process will not converge, and we need to add a
stop criterion. We have chosen an upper bound for the number of steps of 10 000. If the process
reaches this limit, it will terminate unsuccessfully. This stop criterion varies from the idea in the
force-biased sphere packing, where the radius is directly reduced to a non interacting size and the
volume fraction of the sphere system with reduced radii decides about the termination of the process.

(a) Trade-off between repulsion and recover forces.

(b) Solution 1: Reducing the radius.

(c) Solution 2: Endstep regarding only the repulsion forces.

Figure 6.10.: Trade-off problem in the final configuration with two possible solutions: reducing
the radius or applying an end step considering only the repulsion forces. Note that force vectors
are elongated for visualization reasons; they do not correspond to the necessary displacements.

In the case of a successfully completed process, the total force strength is negligible. Still, one should
be aware that the total force on a point is a sum of different forces. Thus, even if the sum of forces
is zero, it is not sure that every specific force is negligible in its strength. In particular, for the
repulsion force, it may happen that the recover force acts in the opposite direction with exactly the
same strength [as shown in Figure 6.10(a)]. As the repulsion force is linear to the overlap, we conclude
that the fiber packing does not necessarily have a zero overlap, which means that the system may
not be totally hard-core.
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This effect is similar to the maximal random jammed state, known from random packings (see Laso
et al. (2009)). In our approach, a ball is never jammed since its displacement is defined by reducing
forces and overlap in a following configuration is not strictly forbidden. Still, we have a similar
situation if the requested volume fraction is too high for the fiber structure.

To assure a non overlapping system, we accept an outcome only if the maximal overlap falls below a
certain limit. Here we chose 0.1 rmin, where rmin is the minimal radius in the system. Then, a final
step is added, where the radius of each point is reduced according to the maximal overlap with other
points. This approach is similar to the idea in the force-biased sphere packing. Let p = (x, d, r) ∈ P
be an arbitrary point of the fiber system; the radius r is reduced to

r′ = r − 1
2

max
q∈P,q≁p

Overlap(p, q). (6.53)

If the accuracy of the radius distribution is very important, the end step can be replaced by a second
run of the packing algorithm, where only the repulsion force is active. In this case, the theoretical
recover force strength should be checked afterwards, to make sure that the fibers are not drawn apart.

6.4.5. Implementation Details

The periodic distance function for x = (xx, xy, xz)T and y = (yx, yy, yz)T and a window W =
[0, wx] × [0, wy] × [0, wz] is defined as

d(x, y) =

∣
∣
∣
∣
∣
∣





min(|xx − yx|, wx − |xx − yx|)
min(|xy − yy|, wy − |xy − yy|)
min(|xz − yz|, wz − |xz − yz|)





∣
∣
∣
∣
∣
∣

. (6.54)

The repulsion force on an arbitrary point p ∈ P is defined as the sum over all points q ∈ P . Still,
the repulsion force is equal to zero if balls p and q are not overlapping, which is definitely the case if
q /∈ Brp+rmax(xp), where rmax = maxq∈P rq. As proposed in Mościński & Bargieł (1989) we divide
the window W into smaller cubic subwindows with a side length si ≥ rmax with i ∈ {x, y, z}. For a
window W = [0, wx] × [0, wy] × [0, wz] the side lengths of the subwindows are calculated as

si =
wi

ni
, ni = ⌈ wi

rmax
⌉. (6.55)

Thus, Brp+rmax
(xp) is included in the union of the subwindow including p and its neighbor subwin-

dows. The overlap check is limited to this union.

Experiments show that the number of iterations can be essentially reduced by including a placing
strategy in the initial random walk. For every fiber to be added to the system, we choose several
starting points and place the fiber to the one with the lowest overlap to the existing fibers. This
strategy avoids multiple clustering of fibers and therefore the fiber packing can start with a more
relaxed configuration.

6.4.6. Realizations

Figure 6.11 shows realizations of the presented model with varying input parameters for the fiber
aspect ratio χ, the number of objects n and the global orientation distribution. The parameters and
the achieved volume fraction VV are given below for each realization.
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The aspect ratio is generally defined as length divided by diameter. In the case of a ball chain
p1, . . . , pn with fixed radius r, the aspect ratio χ can be calculated as

χ =
2r +

∑n−1
i=1 |pi − pi+1|

2r
. (6.56)

(a) χ = 1, n = 1146,
VV = 57.27%

(b) χ = 33, n = 90, VV =
50.35%, isotropic orienta-
tion (β = 1)

(c) χ = 17.67, n = 170,
VV = 49.60%, orientation
in z-direction (β = 0.1)

(d) χ = 17.67, n = 170,
VV = 49.95%, orientation
in xy-plane (β = 10)

Figure 6.11.: Realizations for packed fiber systems. Common parameters are as follows: window
side length s = 100 and bending parameters κ1 = 10 and κ2 = 100.

To evaluate if the final configuration fulfills the required distributions, we observed the changes in
the characteristics of the fiber system during the force-biased packing for three realizations with
different choices of β ∈ {0.1, 1, 10}. The remaining parameters are chosen as follows: window size
= 1003, length = 50, radius = 5, number of fibers = 100, and required density = 44.483%. The
evolution of the characteristics is shown in Figure 6.12. The estimation of the parameters will be
discussed in details in Section 6.6, still we roughly sketch the main ideas here: The estimation of
length and radius is obvious. The measured density is the volume fraction of the discretized image.
The β estimate is the numerical approximation of the maximal likelihood estimator, which cannot
be resolved theoretically. The estimation of the bending parameters κ1 and κ2 is not that simple,
but experiments showed that they can be approximated for κ2/κ1 > 2 with the following estimates:

κ̂1 = 1/Var1 with Var1 =
1
n

n∑

j=1




1
lj

lj∑

i=0

[
µj,i − µ̄(pj,1, . . . , pj,lj

)
]2



 (6.57)

κ̂2 = 2/Var2 with Var2 =
1
n

n∑

j=1




1

lj − 1

lj−1
∑

i=0

(µj,i − µj,i+1)2



 . (6.58)

The estimates are not highly accurate. However, they still describe the global and local bending. As
long as the measures of the real data set and the measures of the final model configuration are close,
the aim of realistically reproducing the fiber structure is fulfilled.

In Figure 6.12, the first steps are mostly driven by the repulsion forces, which evokes changes in
the local structure and therefore in the parameter measure. When the repulsion force decreases,
the recover forces reconstruct the fiber structure, which results in a convergence of the measures to
the requested values. Most measures start with the requested values, except for the density and the
global bending parameter κ1. The low density in the beginning is evident, as the overlapping fiber
volume is counted only once. The deviation of the global bending parameter κ1 or reliability to the
principal fiber orientation is caused by different measure conditions: During the realization of the
fiber structure, κ1 represents the reliability to the chosen fiber orientation µ0, whereas the measure
of κ1 reflects the reliability to the resulting fiber orientation µ̄(P ), which differs slightly. This results
in an overestimation of the parameter κ1. The convergence to the required value is surprisingly good
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(a) Orientation distribution with β = 0.1

0 50 100 150 200

0
2
0

4
0

6
0

8
0

1
0
0

Packing Steps

P
a

ra
m

e
te

rs

0
.0
1

0
.1

1
1
0

(l
e
ft
: 
a
ll 

e
x
c
e
p
t 

b
e
ta

, 
ri

g
h
t:
 b

e
ta

 i
n
 l
o
g
 s

c
a
le

) Density

Length

Radius

Kappa1

Kappa2

Beta

(b) Orientation distribution with β = 1
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(c) Orientation distribution with β = 10

Figure 6.12.: Evolution of estimated model parameters during the packing process for different
choices of β for the orientation distribution. Fixed parameters are as follows: window size = 1003,
length = 50, radius = 5, number of fibers = 100, and starting density = 44.483%.
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and is probably caused by the trade-off between the recover force to the original fiber structure and
the tolerance range of local deviation.

We stress once more that the important configuration is the final one, and the geometric character-
istics during the process are studied to understand better what happens during the packing process.
The evaluation of the quality of our models is only based on the geometric characteristics of the final
configuration, as shown in Table 6.1.

Density Length Radius κ1 κ2 β
Required 44.48% 50 5 10 100 various
β = 0.1 43.94% 50.66 4.99 9.91 96.32 0.134
β = 1 43.90% 50.75 4.98 8.21 80.95 0.87
β = 10 44.10% 50.90 4.98 8.03 82.39 5.6

Table 6.1.: Parameter measures for the final configuration of experiments from Figure 6.12.

In both visualizations, we can see that the parameters of length, radius, and density fit perfectly
to the requested values. The global and local bending κ1 and κ2 are approaching the required
values, as expected. As the local orientations have some tolerance during the packing process, it is
understandable that the final bending values are lower than the initial ones. If the final bending
values are not satisfying, there are two possibilities to improve this: first, one can choose the initial
values higher than required, and second, one can reduce the tolerance αs and αe in the packing
process. The parameter β for the orientation distribution is acceptably approximated for the choices
β = 0.1 and β = 1, whereas the girdle orientation with β = 10 could not be maintained that strictly
during the packing process. The results would even become worse for higher choices of β. With the
described model, we can realize parameters in the range of 0.05 − 5. If a more restricted orientation
distribution is required, recover forces for the orientation of a fiber have to be included. This could be
obtained by forces on the extremities of a fiber. As we included no restrictions in changing the mean
fiber orientation during the packing process, the system will relax in a less restrictive configuration.

6.4.7. Discussion

In this section, we discuss the volume fractions achieved by numerical simulations and the evolution
of the repulsion and recover forces during the fiber packing. Furthermore, we analyze the computing
time.

Volume Fraction

The maximal volume fraction depends on the aspect ratio and on the orientation distribution of the
system. Figure 6.13 shows the maximal volume fractions, achieved with realizations for the β orien-
tation distribution with β ∈ {0.1, 1, 10} and varying aspect ratio χ ∈ [1, 33]. We achieved the highest
volume fraction 72.0075 % for an aspect ratio of 9 and a z axis preferred orientation distribution with
β = 0.1. In general, Figure 6.13 supports the intuitive expectation that fibers can be packed in a
particularly dense system, if they are oriented parallel, and that short fibers can be packed more easily.

In Figure 6.14, the ratio of achieved volume fraction to initial volume fraction is shown. The initial
volume fraction is the sum of all fiber volumes after the random walk divided by the window size.
The change of the distances between the balls is related to a change in the volume fraction. As
we allow small deviations in the distances, we allow also small deviation in the volume fraction.
Here the deviation of the distances is limited to 10 %. As a consequence, there also exists a limit
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Figure 6.13.: Maximal volume fractions for realizations with varying orientation distributions
and aspect ratios.
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Figure 6.15.: Evolution of force during the fiber packing process. Aspect ratio χ = 6. Isotropic
orientation distribution.

for the deviation of the volume fraction caused by the distance change. It ranges from 90 % to
110 % of the initial volume fraction. Another deviation in the volume fraction is caused by the end
step, reducing the radii. The maximal overlap is 0.1 rmin, and a radius r is maximally reduced by
1
2 Overlap ≤ 0.05 rmin ≤ 0.05 r. Therefore, the volume V of a fiber could maximally be reduced to

V ′ ≈ lπ(r′)2 > (0.95)2lπr2 ≈ 0.9025 V. (6.59)

Thus, a lower limit for the volume fraction would be 0.9 · 0.9025 = 81.225% of the initial volume
fraction. The upper limit remains at 110% since the radius is not enlarged in the end step. Note
that this is a rough approximation of the limits. Particularly for dense systems, it may happen
that bending or force-canceling effects influence the structural arrangement, so that these limits are
exceeded. We assume that this effect happened in one of realizations in Figure 6.14: the point with
the highest required volume fraction of 90% underruns the lower limit. Note that volume fraction of
90% is impossible to reach for a fiber system with spherical fiber cross-section.

The reduction of the volume fraction is expected for dense systems of fibers with a low aspect ratio,
where the packing consists of moving and shortening of the objects, which causes a decrease of the
volume fraction. The aspect ratio 1 is a special case, as the “fibers” consist only of one ball and
shortening is not possible. For a high aspect ratio, the packing is essentially bending the fibers
around each other, which causes elongation of the fibers and rising of the volume fraction.

Evolution of Forces

Figure 6.15 shows the evolution of the repulsion and recover forces during the fiber packing. Initially,
the recover force is zero, as the fibers still have the initial structure, whereas the repulsion force is high
at the beginning because the fibers can overlap without restriction. The repulsion force is decreasing
very quickly, while the recover force rises slightly in the first steps, caused by the displacements
according to the repulsion forces, and decreases quite smoothly with respect to the parameter ρ.

Computing Time

In practical applications the algorithm showed good performance. All time measurements are taken
with a desktop PC with an Intel(R) Core(TM)2 processor with CPU X6800, 2.93 GHz and 3.8 GB
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Figure 6.16.: Computing time of the random walk and the fiber packing for isotropic orientation
distribution and constant fiber volume of 0.005 s3, with s = 100 window side length.
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memory. Realization conditions are an isotropic global orientation distribution and constant fiber
volume of 0.005 s3, and s = 100 as window side length. The creation time for the random walk
progresses approximately linearly with the number of steps, which corresponds to the total number
of ball centers in the system. The mean creation time per ball center is approximately 0.05 ms:

tRW ≈ 0.05 ms × number of ball centers. (6.60)

The computing time for the fiber packing increases exponentially with the volume fraction VV for
fixed aspect ratio χ. This is caused by the enormous increase of interaction with increasing volume
fraction. Still, the realization with the longest computing time took about 41 min for an aspect ratio
χ = 25, an isotropic orientation distribution, and an achieved volume fraction of VV = 51.43%,
which is at the limit of the possible volume fraction for the given parameters. The computing time
is acceptable for those circumstances and a standard desktop computer. The computing time for the
random walk and the fiber packing are shown in Figure 6.16.

6.4.8. Conclusion and Perspectives

We have presented an algorithm generating bending hardcore fibers, with given orientation, radius,
and length distributions. We showed how to evaluate the quality of the final configuration of the fiber
system. For the performed realization, we could achieve high convergence to the requested parame-
ters, and for the global orientation distribution, we studied the realizable range for the parameter β.
In the future, we will include further recover forces to be able to realize more restricted orientation
distributions.

In practical tests, we achieved the highest volume fraction of 72.0075 % for the β orientation distri-
bution (β = 0.1) and an aspect ratio of 9. Practical applications for isotropic orientation distribution
have shown a computing time linearly dependent on the number of points for the random walk and
a computing time exponentially increasing with the initial volume fraction for the fiber packing.

A soft-shell ratio can be easily included to allow partial overlap or to keep distances between the
objects. In the overlap calculation, each radius would be multiplied by the soft-shell ratio. Further
studies will include the observation of additional morphological properties during the packing process
and the application and adaption of the model parameters to data sets on real materials.

6.5. Placing Strategy

In the above described stochastic model, there is no strategy for placing the fibers in the initial
configuration. Still, the initial placement influences highly the time of stabilization in the packing
process. We can make use of the idea of the random sequential adsorption algorithm (RSA, see Feder
(1980)) to create the initial configuration.

The RSA algorithm was originally invented for sphere packing, but can be generalized to any kind
of objects. In a first step, a finite set of objects is created in a stochastic process. In the second step,
the objects are iteratively inserted in the scene of interest with well defined boundary conditions.
For every object, which should be inserted in the scene, new placements are randomly chosen and
the object is inserted as soon as a placement is found without any collision with the already inserted
objects. To assure chosen characteristic distributions of the object (as for example size or orientation
distribution) it is important that the object is not recreated, but only displaced. Otherwise, objects
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with smaller size or aligned orientations would be preferred.

In the case of fiber systems, the RSA algorithm combined with cylindrical objects has the disad-
vantage, that only low volume fractions can be achieved. However, it can serve to create a less
overlapping initial configuration for our stochastic model. The criterion to evaluate a placement for
a sphere chain Fm = {pm,1, . . . , pm,lm

} in a scene with m − 1 already inserted fibers F1, . . . , Fm−1

can be either the maximal overlap or the sum of overlaps of the spheres of the fiber Fm with the
already inserted fibers. We define these two criteria as following:

Cmax(Fm | F1, . . . , Fm−1) = max
i,j,k

{Overlap(pm,i, pk,j)} (6.61)

Csum(Fm | F1, . . . , Fm−1) =
∑

i,j,k

Overlap(pm,i, pk,j) (6.62)

with 1 ≤ i ≤ lm, 1 ≤ k ≤ m − 1, 1 ≤ j ≤ lk. We displace the objects as long as the criterion
value is higher than a global limit Overlapmin, which serves also as stop criterion for the packing
process. After a certain volume fraction, the probability to exceed this limit is quite low (otherwise
the packing process would not be necessary). Therefore, we fix a certain number of placements (in the
experiments prepared for this work we tested 10 and 100). The object is inserted at those placement,
having the lowest value of the evaluation criterion.

Figure 6.17 shows the computation time for the fiber packing with 10 and 100 steps for the initial
configuration and the standard Boolean configuration. The model is realized in a unit cube with
periodic boundary conditions. The fibers are isotropically oriented and have an aspect ratio of 9
and a volume of 1% of the cube volume. The curvature parameters are chosen as κ1 = 10 and
κ2 = 100. The experiment runs 100 realizations of the stochastic model and averages the extracted
characteristics.
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Figure 6.17.: Computation times for the object generation.
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Figure 6.18 shows the ratio of the placing and packing time versus the packing time without strat-
egy for the initial configuration. We observe that the strategy is not very efficient for low volume
fractions, as in this case the probability of overlap is very low, thus already the first random placing
has low overlap and even in the case of overlap, there is enough free space to displace the fiber
in only few steps. The influence of the placing strategy rises with the volume fraction until about
50% − 55%, where the placing strategy results in a more evenly placed systems and decreases the
appearance of locally overcrowded areas. When the volume fraction rises over 55%, the influence
of the placing strategy decreases again and may even vanish for very dense systems. This effect
has two reasons. First, we count only the successfully finished jobs, which results in an underes-
timation of the computation times for cases with low success rate. Secondly, for a higher volume
fraction, we have also a higher amount of fibers, which may be naturally placed more evenly over
the image (according to the law of large numbers). Additionally, the placing strategy gets inef-
fective as with the high density, as there exits no “good“ placement any more. Thus the last fibers
are placed randomly and the configurations with or without strategy are equally distributed in space.

Still, Figure 6.19 shows that the placing strategy increases the probability to successfully finish the
packing process for high volume fractions. For 70% of volume fraction, there remain no successfully
finished packings without placing strategy, whereas the probability of the process with the Csum

criterion and 100 placing tests is still at 33%. Thus, we conclude that for medium to high volume
fractions, the use of a placing strategy is advisable. Still, as this part of the thesis is a very recent
study, the placing strategy was not used for the presented applications.

6.6. Parameter Estimation

In order to fit a stochastic model realistically to an existing material, it is important to accurately
estimate the model parameters. For the force-biased fiber model this would be: the volume fraction
VV , the distribution of the fiber radius and orientation, the mean fiber length and the curvature
expressed by κ1 and κ2.

Local information and histograms about the radius and orientation distribution, can be estimated
directly from the original CT image (as explained in Chapter 3). Still, we need to fit a stochastic
model to the empirical distributions. The volume fraction can be measured from a binarized image,
which is created e.g. during the local analysis. Approximation of the mean fiber length and the
fiber curvature requests a separation of single fibers (presented in Chapter 5), which is applicable in
the case of fiber systems with moderate volume fraction and sufficient resolution. The separation of
single fibers results in a reconstruction of the fibers as ball chains (equal to the structure created by
the random walk) and is therefore highly qualified for the parameter estimation.

We will also mention here the different possibilities to base our statistics on: the local analysis from
the gray value images or the binarized image, the fiber reconstruction from the single fiber separation
and the different weighting (number-, length- or volume-weighted). Ideally, all the possibilities agree
in the statistics, unfortunately this is not always the case in praxis. The experiments show simi-
lar results in the length-weighted statistics from the smoothed and quality-weighted local analysis
and from the separated fibers. The length-weighted statistics are preferable to the number-weighted
one (which are now possible with the separated fibers), as short fiber with maybe not representable
properties are gaining too much interest in the number-weighted evaluation. Thus, in the following
we show how to estimate the model parameters from the reconstructed fiber system with length-
weighting, that can be realized by taking into account every sphere of the chain (as the number of
spheres are linearly dependent on the fiber length).
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Radius Estimation

The reconstructed ball chains from the single fiber separation are described by

P = {p1,1, p1,2, . . . , p1,l1 , p2,1, . . . , pn,ln
} (6.63)

with pj,i = (xj,i, µj,i, rj,i) ∈ R
3 × S2 × R

+. The fiber index is j ∈ {1, . . . , n} and the balls in the
fiber j are ordered by the index i ∈ {1, . . . , lj}. Parameters for the stochastic model can be directly
measured from this reconstructed microstructure. The estimation of the mean radius and its standard
deviation is evident:

r̄(P ) =
1
L

n∑

j=1

lj∑

i=1

rj,i with L =
n∑

j=1

lj (6.64)

σr(P ) =

√
√
√
√ 1

L

n∑

j=1

lj∑

i=1

(rj,i − r̄(P ))2. (6.65)

In general, we try to fit the normal distribution to the empirical radius distribution with the above
parameters. Of course, the distribution model needs to be adapted to every application respectively.

Length Estimation

For long fiber reinforced composites as CRP and GRP, the fibers are so long that they emerge
the samples prepared for CT with sufficient resolution. Therefore, there is no way to estimate a
distribution of the fiber length. The mean fiber length can be approximated from the sum of all fiber
lengths divided by half the visible ends, excluding the cuts at image borders:

l̄(P ) =
2

#(visible ends)

n∑

j=1

lj∑

i=2

|xj,i − xj,i−1| (6.66)

Still, every incorrect reconstruction can highly influence the estimation. It happens quite often that
one fiber could not be tracked completely and splits up in two or more parts. This behavior distorts
mainly the length estimation, so we suspect the mean fiber length to be underestimated.

Global Orientation Distribution

The global fiber orientation distribution is determined by the parameter β, which can be approxi-
mated by the statistic over | cos θ| which yields theoretically

E(| cos θ|) =
1

β + 1
therefore β̂ = E(| cos θ|)−1 − 1. (6.67)
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The deduction of this statistic is sketched in the following:

E(| cos θ|) =
∫ 2π

0

∫ π

0

fβ(θ, φ) | cos θ| dθ dφ (6.68)

=
∫ π/2

0

β sin θ cos θ

(1 + (β2 − 1) cos2 θ)3/2
dθ (6.69)

=
β

β2 − 1

[

(1 + (β2 − 1) cos2 θ)−1/2
]π/2

0
(6.70)

=
β − 1
β2 − 1

=
1

β + 1
(6.71)

Unfortunately, this estimator is not very precise. Nevertheless, it can serve as a first guess to numer-
ically approximate β from the maximum likelihood function:

ml(β) = n ln β − n ln(4π) − 3
2

n∑

j=1

ln(1 + (β2 − 1) cos2 θj), (6.72)

for θj the angle between the j-th mean fiber orientation µ̄(P, j) =
pj,lj

−pj,1

|pj,lj
−pj,1| ∈ S2 and the global

mean fiber orientation µ̄(P ), which can be derived by the main inertia axis of the set of all mean fiber
orientations and their inverse: M(P ) = {µ̄(P, j), −µ̄(P, j) | j = 1, . . . , n}. For the case of a girdle
distribution, the interesting orientation is not the mean orientation, but the mean axis orthogonal
to the samples. This mean axis is not the first (the main) but the third inertia axis. According
to different applications, it may happen that the global orientation distribution is a mixture of β
distributions with varying parameters. In this case, we rougly estimate the different parameters, and
classify the orientations to the distribution having the highest probability for the specific orientation.
This classification yields the weighting factors for the different distributions. For every class, we re-
compute the parameter estimation and adapt the classification respectively. Iteratively, we approach
the real distribution when the classification and the parameter estimation stabilize.

Curvature Estimation

To estimate the curvature parameters κ1 and κ2 appearing in the multivariate von Mises Fisher
distribution, we first study the classical von Mises-Fisher distribution. From basic statistics we can
derive the following relations (E being the mathematical expectation):

Var(µ) = E
[
‖µ − µ0‖2

]
=

2
κ

+ 2(1 − eκ + e−κ

eκ − e−κ
) (6.73)

E[cos θ] = − 1
κ

+
eκ + e−κ

eκ − e−κ
, (6.74)

E[cos2 θ] = 1 − 2
κ

eκ + e−κ

eκ − e−κ
+

2
κ2

. (6.75)

Note, that the first two statistics are directly related as ‖µ − µ0‖2 = 2(1 − cos θ) for θ = ∠(µ, µ0). In
the following, we will refer to Var(µ) as the spatial variance and to E[cos θ] as the deviation cosine.
The term (eκ + e−κ)/(eκ − e−κ) also known as hyperbolic cotangent (coth κ) converges very fast to
1 for κ → ∞. Already for κ > 2 the difference is negligible. This gives us an estimator for κ > 2:

κ̃ ≈ 2
Var

=
1

1 − C
(6.76)
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with the empirical statistics for the spatial variance Var = 1
n

∑

i ‖µi − µ0‖2 and the deviation cosine
C = 1

n

∑

i cos θi. Including an empirical correction term, we achieve an even better estimator for
κ > 1:

κ̃MLE-A =
2

Var
− e−1.45/Var =

1
1 − C

− e−0.725/(1−C). (6.77)

The numerical estimate κ̂MLE-A from the equations (6.73) or (6.74) coincides with the maximum
likelihood estimator:

MLE(κ) =
∑

i

ln
[

κ

(eκ − e−κ)
eκ cos θi

]

(6.78)

=
∑

i

ln κ − ln(eκ − e−κ) + κ cos θi (6.79)

= n ln κ − n ln(eκ − e−κ) +
∑

i

κ cos θi. (6.80)

To maximize the maximum likelihood function, we set its derivation to zero:

0
!
= n

1
κ

− n
eκ + e−κ

eκ − e−κ
+
∑

i

cos θi ⇒ 1
n

∑

i

cos θi = − 1
κ

+
eκ + e−κ

eκ − e−κ
(6.81)

Furthermore, we can make use of the theoretical value of the squared deviation cosine presented in
Equation (6.75) to replace the hyperbolic cotangent in the deviation cosine in Equation (6.74). This
simplifies the κ estimator to:

κ̂A =
2E[cos θ]

1 − E[cos2 θ]
. (6.82)

Experiments will show that this is the best estimation of the real value for κ. Theoretical properties
of this estimate are left to be checked.

In the literature (Fisher et al., 1993) the maximum likelihood estimator is denoted as

R/n = − 1
κ

+
eκ + e−κ

eκ − e−κ
with R = ‖

∑

i

vi‖ (6.83)

and described as biased and unstable. Theoretically, we have E[R2] = E[cos2 θ] and therefore the
two described methods are nearly identical, but in praxis there are not enough realizations and the
value R is biased. R does not only take into account the deviation from the mean direction: cos θi,
but also the isotropically distributed variation in the orthogonal plane. This variation has the ex-
pectation 0, but in the statistic of realizations the value is too biased and therefore biases also the
κ estimate. In my opinion, there is no indication why this variation should appear in the maximum
likelihood estimate. The probability density function is only dependent on the deviation to the mean
orientation: cos θ.

Table 6.2 shows a comparison of different κ estimates (presented in this work, in Fisher et al. (1993)
or in Banerjee et al. (2005)). The estimates are evaluated with mean relative error |κ̂−κ|

κ over 100
experiments with each 100 realizations. The parameter κ is varying from 0.1 until 100 with step size
0.1. The estimator κ̂A (6.82), developed in this work, shows the best results.

The problem in estimating the parameters for the multivariate von Mises-Fisher distribution (mvMF)
is to fix µ1, while µi−1 is varying during the process. Thus, for each realization of the von Mises-
Fisher distribution parameters have changed. A fixed mvMF distribution can be described as a
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Name Formula all κ small κ large κ
Altendorf κ̂A = (2E[cos θ])/(1 − E[cos2 θ]) 0.0115583 0.016697 0.0112822
Altendorf MLE κ̂MLE-A numerically solve (6.81) 0.0124714 0.031205 0.0114646
Altendorf MLE approx κ̃MLE-A = 1/(1 − C) − e−0.725/(1−C) 0.022026 0.219301 0.0114243
Fisher MLE κ̂MLE-F numerically solve (6.83) 0.0237823 0.0923478 0.0200975
Fisher MLE approx κ̃MLE-F = n/(n − R) 0.0472494 0.552439 0.0201001
Fisher unbiased κ̃1-F = (1 − 1/n)κ̃MLE-F 0.0383229 0.537169 0.0115145
Fisher robust κ̃R-F = 1/(

∑n
i=1 ciX(i)) 0.0510952 0.536255 0.0250223

Banerjee κ̃B = (3R − R3)/(1 − R2) 0.037771 0.123189 0.0331806

Table 6.2.: Comparison of κ estimates. Evaluation with mean relative error |κ̂−κ|
κ

over 100
experiments and with each 100 realizations. The parameter κ is varying from 0.1 until 100 with
step size 0.1 and the classification in small and large κ is separated at κ = 5. Sources for other
estimators: Banerjee et al. (2005), Fisher et al. (1993).

classical von Mises Fisher distribution with a single reliability parameter κ = |κ1µ1 + κ2µ2|. For
several realizations of mvMF with fixed κ1, µ1, κ2, µ2 and known µ1, µ2 the estimator for κ would be
trivial, and κ1 and κ2 could be derived from the linear combination κµ = κ1µ1 + κ2µ2. Instead, the
random walk realizes Xi ∼ mvMF(κ1, µ1, κ2, µi−1). Thus, we achieve single realizations for varying
distributions. Still, we can define spatial variances to each preferred direction µ1 and µi−1 as:

Var1(X) =
1

n − 1

n∑

i=2

‖µi − µ1‖2 and Var2(X) =
1

n − 1

n∑

i=2

‖µi − µi−1‖2. (6.84)

Simulations show that

κ1 ≈ 1/Var1 and κ2 ≈ 2/Var2 for κ2/κ1 > 2. (6.85)

We are aware of the limitation of this estimator and that it can just be seen as a first guess of the
parameters. Still, it is a measure of the curvature of the fiber. If we achieve similar measure values
for the real and the virtual material, we can conclude that the model fitting is successful. Some
results for the estimation from the variances can be seen in Figure 6.20.

6.7. Statistics

For the evaluation of the models, we introduce a new method: the orientation covariance, which
indicates the correlation of orientations in two image points with respect to their distance. We can
interpret the covariance as a measure of local alignment. Moreover, the covariance yields the distance
where fiber orientations become independent. Some studies of correlations of orientations between
vectors are available in the literature (Jupp & Mardia (1989), Fisher et al. (1993), Fisher (1996)
and Mardia et al. (2000)). They are dedicated to statistics for pairs of unit vectors on a circle for
the planar case, or on a sphere for the three dimensional case. No statistics have been proposed for
the characterization of a random vector field. So far, this is done in this thesis in quite a different
and novel way. The statistical tools available in the literature are based on the standard correlation
matrix between coordinates of the random vector.

The orientation covariance is a modification of the classical covariance in image processing (Serra,
1982, p. 532). Instead of evaluating the correlation of the binary image with respect to coordinate
distance, we evaluate the correlation of the fiber orientations in foreground pixels (Altendorf & Jeulin,
2011b). This approach can be applied to a binary image of a fiber system with the information of
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Figure 6.20.: Estimation of κ1 and κ2 for multivariate von Mises Fisher distribution.

local orientation, as resulting e.g. from the algorithm introduced in Chapter 3. Furthermore, we are
comparing the tortuosity (see Decker et al. (1998) and Peyrega et al. (2009)) of the fibers, which will
be measured on the separated fibers.

6.7.1. Orientation Covariance

The classical covariance ((Stoyan et al., 1987, pp.72), (Serra, 1982, pp. 532) and Matheron (1975))
is defined on a stationary random set B ⊂ R

3 as the probability that an arbitrary point x and its
translation x + hv are part of the set B. We can define the covariance with the following formula:

CovB(h, v) = E[1B(~0)1B(hv)], for v ∈ S2 and h ∈ R. (6.86)

For a binary image b : W ⊂ R
3 → {0, 1}, we define B as the set of foreground points B = {x ∈

W | b(x) = 1} and estimate the covariance as average over all image points x ∈ W :

CovB(h, v) =
1

‖W‖
∑

x∈W

1B(x)1B(x + hv). (6.87)

The covariance is also known as normalized geometric covariogramm Matheron (1975). It evaluates
the similarity of the indicator function on two points depending on their distance h in direction
v. The covariance function starts at 1 for h = 0 and converges to the squared volume fraction for
h → ∞. From the evolution of the covariance function we can interpret the mean width of objects
in a given direction and the existence and size of clusters. Comparison of covariance functions for
different directions gives indications on the anisotropy of the microstructure.
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The covariance can be applied to different characteristics by replacing the indicator function. In
particular, the covariance of local fiber orientations can be defined on the scalar product of two
orientations as follows:

Covo(x, x + hv) = E[(o(x)o(x + hv))2 | 1B(x)1B(x + hv) = 1], (6.88)

where o : W → S2 is the local orientation map. By equation (6.88), we estimate a scalar, namely
the conditional expectation of the square of the scalar product between two vectors located in x and
in x + hv, knowing that the two points are in the set of interest. For a stationary random field of
orientations, the covariance does not depend on the point x and can be written as

Covo(h, v) = E[(o(~0)o(hv))2 | 1B(~0)1B(hv) = 1], . (6.89)

In the sequel of this work, we assume stationarity. In that case, the covariance is estimated from the
spatial average of the scalar product over the location of x in the image:

Covo(h, v) =
1

‖W ∗‖
∑

x∈W ∗

(o(x)o(x + hv))2 with W ∗ = {x ∈ W | 1B(x)1B(x + hv) = 1}. (6.90)

It turns out, that this scalar equals the average of cos2 α, α being the angle between the two vectors
o(x) and o(x + hv). The squared cosine is one for equal orientations and drops down to zero for
orthogonal orientations. The conditional expectation assures that only foreground points are taken
into account. Otherwise, the curve would be a mixture of the classical covariance and the orientation
covariance. The orientation covariance starts at 1 for h = 0 and converges to 1/3 for h → ∞ in an
isotropically distributed fiber system, which is deducted in details in the following.

The orientation covariance converges for h → ∞ to the covariance of two independent random vectors
x, y ∈ S2 distributed with the orientation distribution of the fiber system. In the case of isotropic
orientation distribution, the orientation covariance converges to the same value for all x ∈ S2. Thus,
we can assume x = (0, 0, 1)T without loss of generality. Let θ and φ be the angles of the polar
coordinates of y. The probability density function for the isotropic distribution is: f(θ, φ) = 1

4π sin θ.
The convergence of the orientation covariance for isotropic orientation distribution can be solved with
partial integration as follows:

Covo(h, v) h→∞−−−−→ E[(xy)2] = E[((0, 0, 1)T y)2] = E[cos2 θ] (6.91)

=
∫ 2π

0

∫ π

0

cos2 θ
1

4π
sin θ dθ dφ (6.92)

=
1
2

∫ π

0

cos2 θ sin θ dθ (6.93)

=
1
2

(− cos3 θ

3

)∣
∣
∣
∣

π

0

=
1
3

(6.94)

In contrary to the classical statistics on spherical data, the covariance also takes into account the
spatial arrangement of the information. It can reveal local alignment and global anisotropy in the
orientation distribution. It can be applied directly on data sets with the results from local orientation
analysis as well as to realizations from the stochastic modeling. Therefore, it serves as a quality mea-
sure of the reconstructed material. Using the square of the scalar product enables a fast estimation
by fast Fourier transform of the covariance of orientations for any separation hv. This is an advantage
when dealing with images, which was not the scope of earlier statistical studies on populations of
vectors.
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Figure 6.21 shows an example for the orientation covariance for several orientation models. We
observe the theoretical start at 1 for all orientation models and the convergence to one third for the
isotropic orientation distribution. The z preferred orientation model yields a slower decrease for the
curve in z direction, whereas the decrease of this curve is faster in the case of a girdle distribution.
Furthermore, the convergence limit is higher if the orientation distribution is more restricted to one
orientation or to the girdle.
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Figure 6.21.: Example for orientation covariance and different orientation models: z preferred
orientation distribution (β distribution with β = 0.01 and β = 0.1), isotropic orientation distribu-
tion, girdle distribution (β distribution with β = 10 and β = 100).

Furthermore, the orientation covariance can be generalized for arbitrary directions, which means we
are not only evaluating one fixed direction v, but the mean over all directions v ∈ S2. We call this
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observation radial orientation covariance and it is defined as

Covo(h) =
1

‖R∗‖
∑

(x,y)∈R∗

((o(x)o(y))2 (6.95)

with R∗ = {(x, y) ∈ W × W | (1B(x) = 1) ∧ (1B(y) = 1) ∧ (d(x, y) ∈ [h − ǫ, h + ǫ])}. Figure 6.22
shows an example of the radial orientation covariance for the same realizations as in Figure 6.21.
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Figure 6.22.: Example for the radial orientation covariance and different orientation models
(same as in Figure 6.21).

We show now, that it is possible to estimate the curvature parameters κ1 and κ2 directly from
the radial orientation covariance. This is a great advantage as the estimation of these parameters
are based on the single fiber separation, which is not always possible to perform. The idea is that
the radial orientation covariance for h equal to the half fiber radius (which is the distance of balls
in the according ball chain) gives us the statistic E(cos2 θ), from which κ2 could be numerically
approximated with the Equation (6.75). And for h → ∞ we can numerically estimate κ1 from the
radial orientation covariance. This study is not yet completely finished, but first experiments show
that the parameters could be estimated with the following equations:

κ̂1 = κ̃(Covo(10r))/1.1 (6.96)

κ̂2 = κ̃(Covo(r/2))/7.1 (6.97)

with κ̃(s) the numerical approximation of

s
!
= E[cos2 θ] = 1 − 2

κ

eκ + e−κ

eκ − e−κ
+

2
κ2

. (6.98)

The results of two first experiments are shown in Figure 6.23. In both versions, we created one fiber
for each step with different parameters. Simultaneously, we created the binary image as well as the
angle maps and calculated the radial orientation covariance for h = 2.5 and h = 50 (fiber radius
r = 5). First experiment: vary κ1 from 1 to 100, while keeping κ2 = 100 fix. Second experiment:
keep κ1 = 10 fixed and vary κ2 from 10 to 100. These two experiments are not sufficient to assure the
quality of the estimators, but they show a strong correspondence of the radial orientation covariance
to the κ estimators.

These results are very promising as the single fiber separation would not longer be necessary for
parameter estimation. The only parameter still based on the separated fibers is the fiber length,
which cannot be estimated reliably anyway.
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Figure 6.23.: Example for the estimation of curvature parameters κ1 and κ2 from the radial
orientation covariance.

6.7.2. Tortuosity

In order to evaluate the bending of the fibers, we observe an additional characteristic: the tortuosity,
which is defined as the ratio between geodesic fiber length and the distance of starting and end point:

T̂ (Pj) =
∑lj

i=2 |xj,i − xj,i−1|
|xj,1 − xj,lj

| . (6.99)

For totally straight fibers (cylinders) the tortuosity is equal to 1. The higher the bending, the higher
the tortuosity.

The theory of this chapter will be applied to a glass-fiber reinforced polymer in a detailed case study
in Chapter 8.
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7
Chapter 7.

Physical Simulation

The final goal of our studies is to optimize the physical properties of the fiber composites by adapting
the microstructure respectively. This process is called virtual material design. The aim is to create
virtually new innovative materials with optimal physical properties in order to propose their struc-
ture and design before they are practically available. This approach replaces expensive prototypes
and mechanical experiments. Therefore, the costs of development can be substantially reduced with
the help of numerical simulation.

In this chapter, we recall briefly the theory of physical simulation using the FFT-based method. Two
main physical properties of the material and the model realizations are tested: the linear elasticity
and thermal conductivity. Applications on a glass fiber reinforced material and on various realizations
of stochastic models can be found in the following chapter.

7.1. Linear Elasticity

Elasticity describes the ability of a material to return to its original shape after stress is applied
(reversible behavior). The level of deformation in the material is called strain. Linear elasticity is
considered, i.e. strain depends linearly on stress (Hooke’s law). The classical example for linear
elasticity is a spring. The linear elasticity is a simplification of the reality. If the stress passes the
elastic limit the material deforms irreversibly, which is called plasticity. Furthermore, viscoelastic
behavior is not considered in the simulations.

Linear elasticity is described by the stiffness tensor Cijkl, which is a 4th order tensor. The linear
relation between the stress σij and strain εkl tensors is

σij = Cijkl · εkl for i, j, k, l ∈ {1, 2, 3}. (7.1)

Due to tensor symmetries, this relation is classically exposed (in the Voigt notation) as











σxx

σyy

σzz

σyz

σxz

σxy











=











C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66











·











εxx

εyy

εzz

εyz

εxz

εxy











, (7.2)

with (Crs)1≤r,s≤6 is a second-rank symmetrical tensor with 21 components, which is called the
stiffness matrix. Symmetrical constraints of the material can reduce the variety of the components,
which we will explain in detail in the following subsection. The stiffness matrix is reconstructed by
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the stress σ necessary to create several deformation, described by the strain tensor ε. We consider
the following modes for the strain tensors:

εC =





1 0 0
1 0

1



 , εS1 =





1 0 0
1 0

-2



 , εS1b =





1 0 0
-2 0

1



 , (7.3)

εS2 =





0 1 0
0 0

0



 , εS3 =





0 0 0
0 1

0



 , εS4 =





0 0 1
0 0

0



 . (7.4)

The simulation responses for the necessary stress tensors σC , σS1, σS1b, σS2, σS3, σS4 serve to recon-
struct the stiffness matrix Crs, which is used to extract the Young’s moduli E, the Poisson’s ratios
ν and the shear moduli G for the different symmetry axes.

Furthermore, we calculate the bulk modulus (also known as the modulus of compression), which
describes the resistance of a material to uniform compression. In response to the hydrostatic load, the
specimen will change its volume. The bulk modulus is defined as the ratio of hydrostatic pressure to
the relative volume change (related to the direct strain). For any material and a constant compression
σ the bulk modulus is:

K =
σ

∆V/V
=

σm

εxx + εyy + εzz
=

σC
xx + σC

yy + σC
zz

9
. (7.5)

7.1.1. Isotropy

In the case of isotropy, the elasticity tensor is invariant to rotations of the coordinate system, that
means the effective properties are independent of the sample adjustment. For fibrous materials this
is the case, if the fiber orientations are isotropically distributed. It is the simplest case for physical
simulations and the stiffness matrix simplifies to a matrix with two independent values C11 and C44.
The diagonal values in the first quarter are C11 = E(1−ν)

(1+ν)(1−2ν) , whereas the non-diagonal values equal
C11 − C44. The lower left and upper right quarters of the matrix vanish, and the lower right quarter
has a diagonal form with the three equal entries C44 = E

(1+ν) .

It is sufficient to apply two modes of strain: the compression εC and a generalized shear strain

εS =





0 1 1
0 1

0



 . (7.6)

The resultant stress tensors σC and σS are simplified to the values σ̄d =
σC

xx+σC
yy+σC

zz

3 and σ̄n =
σS

xy+σS
yz+σS

xz

3 , from which the engineering constants can be computed as following:

ν =
σ̄d − σ̄n

2σ̄d − σ̄n
, E = σ̄n(1 + ν), and G =

σ̄n

2
. (7.7)

7.1.2. Transverse Isotropy

In the case of transverse isotropy, the stiffness matrix simplifies to 5 independent values. Transverse
isotropy means that the material properties do not change if we rotate the material around the z
axis, thus the material is symmetric around the z axis. This is always the case for fiber systems
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with the β distribution as global fiber orientation distribution. Hooke’s Law states that the stiffness
matrix for transverse isotropic materials is given by

Crs =













1−νpzνzp

EpEz∆
νp+νpzνzp

EpEz∆
νzp+νpνzp

EpEz∆ 0 0 0
νp+νpzνzp

EpEz∆
1−νpzνzp

EpEz∆
νzp+νpνzp

EpEz∆ 0 0 0
νpz+νpνpz

E2
p∆

νpz(1+νp)
E2

p∆

1−ν2
p

E2
p∆ 0 0 0

0 0 0 2Gzp 0 0
0 0 0 0 2Gzp 0
0 0 0 0 0 Ep

1+νp













, (7.8)

with ∆ = (1+νp)(1−νp−2νpzνzp)
E2

pEz
. The 5 engineering constants in the stiffness matrix are: the “parallel”

and “transverse” Young’s modulus Ep and Ez and Poisson’s ratios νp (along the z axis and in the
xy plane) and νpz as well as the shear modulus Gzp in the z direction (Mandel, 1966). With this
knowledge, we can simplify the stiffness matrix to

Crs =











C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11 − C12











. (7.9)

Note that the formula for the last entry C66 often appears with a factor 1/2, which is due to a
different definition of the strain tensor.

In general, four modes of strain are sufficient to reconstruct the values of Crs from physical sim-
ulations: the compression εC and three modes of shear εS1, εS2, εS3. The result of the physical
simulations are the stress tensors σC , σS1, σS2, and σS3. From these results we calculate the char-
acteristics of the stiffness matrix with the following equations:

C44 = σS3
yz (7.10)

C33 =
σC

zz − σS1
zz

3
(7.11)

C13 =
σC

xx − σS1
xx

3
(7.12)

C11 =
1
3

σC
xx +

1
6

σS1
xx +

1
2

σS2
xy (7.13)

C12 =
1
3

σC
xx +

1
6

σS1
xx − 1

2
σS2

xy . (7.14)

The 5 engineering constants can be calculated as follows:

Gzp =
1
2

C44 (7.15)

vzp =
C13

C11 + C12
(7.16)

Ez = C33 − 2C2
13

C11 + C12
(7.17)

Ep =
(C11 − C12)(C33(C11 + C12) − 2C2

13)
C11C33 − C2

13

(7.18)

vp =
Ep

C11 − C12
− 1. (7.19)
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7.1.3. Orthotropic Materials

A material is orthotropic if its mechanic and thermal properties are described by three perpendicular
axes. The classic example for orthotropy is a partial cutout of wood. The three axes of wood are: the
fiber directions, the direction tangential to visual part of the growth rings and the direction normal
to the growth rings. This example yields only for a wood panel. A slice of wood with the complete
growth rings would be transverse isotropic. Fiber reinforced materials are orthotropic, if the fiber
orientation distribution is a mix of β distributions with different axes (out of the x, y or z axes) as
preferred direction.

In the case of orthotropic materials, the stiffness matrix is described by 9 values as follows:

Crs =











C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66











. (7.20)

For complete reconstruction of the values of Crs, we need to apply all 6 modes of strain described in
Equation 7.4. The values of Crs of the stiffness matrix are computed as follows:

C44 = σS3
yz C13 =

σC
xx − σS1

xx

3
C12 =

σC
xx − σS1b

xx

3
(7.21)

C55 = σS4
xz C23 =

σC
yy − σS1

yy

3
C22 =

σC
yy − σS1b

yy

3
(7.22)

C66 = σS2
xy C33 =

σC
zz − σS1

zz

3
C11 =

σC
xx + σS1

xx + σS1b
xx

3
. (7.23)

The inverse of the stiffness matrix, known as the compliance matrix, is described by the essential
engineering constants:

C−1
rs =












1
Ex

− vxy

Ex
− vxz

Ex
0 0 0

− vxy

Ex

1
Ey

− vyz

Ey
0 0 0

− vxz

Ex
− vyz

Ey

1
Ez

0 0 0
0 0 0 1

2Gyz
0 0

0 0 0 0 1
2Gzx

0
0 0 0 0 0 1

2Gxy












. (7.24)

The lower right part leads directly to the following relations:

Gyz =
1
2

C44, Gzx =
1
2

C55, Gxy =
1
2

C66 (7.25)

By inverting the upper left part of the stiffness matrix Crs, we achieve the following relations:

Ex =
D

C22C33 − C2
23

vxy = −Ex
C13C23 − C12C33

D
(7.26)

Ey =
D

C11C33 − C2
13

vxz = −Ex
C12C23 − C13C22

D
(7.27)

Ez =
D

C11C22 − C2
12

vyz = −Ey
C13C12 − C23C11

D
(7.28)
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with D = C11C22C33 + 2C12C13C23 − C11C2
23 − C22C2

13 − C33C2
12.

The assumption of orthotropic, transverse isotropic, or isotropic material properties can be verified
from the disposition of the complete stiffness matrix. This includes simulations for at least 6 load
modes, for which the strain tensors are linearly independent. With the 6 resulting stress tensors, all
21 values of Crs of the stiffness matrix can be reconstructed and symmetries can be verified.

7.2. Conductivity

In physics, there are two kind of conductivity: thermal and electrical conductivity. Electrical con-
ductivity is a measure of how strongly a material allows the flow of electric current, whereas thermal
conductivity describes how a material allows thermal differences. Fortunately, the computation of
both behaviors is identical. It only varies in the input parameters of the two phases and in the
interpretation of the results.

The electrical resistivity is ρ = E/J , where ρ is the static resistivity (measured in ohm-meters
[Ωm]), E is the magnitude of the electric field (measured in volts per meter, [V/m]), and J is the
magnitude of the current density (measured in amperes per square meter, [A/m2]). With respect to
the symmetry of the material, there can be three different constants for the three axes: ρx, ρy and ρz.

Thermal conductivity k is the ability of a material to conduct heat. As higher the thermal conduc-
tivity as faster the rate of heat transfer across the material. In heat sink applications high thermal
conductivity is preferred, whereas for thermal insulation low thermal conductivity is required.

According to the Fourier’s law, the relation between an applied temperature gradient and resulting
heat transfer is simply linear: φ = −k̺, k being a second order tensor and ̺ the temperature
gradient. For the different symmetry cases, the conductivities k may equal in specific directions. In
the isotropic case, all principal values kii are equal. In the case of transverse isotropy around the z
axis, the conductivity in x or y directions equals to kp and differs from the one in z direction kz. In
the general case (including orthotropy), all directions needs to be treated separately. The tensors for
applied heat differences are just the unit vectors for the threedimensional space:

̺C1 =





1
0
0



 , ̺C2 =





0
1
0



 , and ̺C3 =





0
0
1



 . (7.29)

In the case of transverse isotropy, the simulation for ̺C1 and ̺C3 is sufficient, and in the case of
isotropy, we can reduce the simulation to one case of temperature gradient, we chose ̺C1.

7.3. Simulation via the FFT-based method

The full-fields computations by means of fast Fourier transforms was realized with the Morph’Hom
Software developed by François Willot at the Center of Mathematical Morphology in Fontainebleau.
Willot & Jeulin (2009) describe the method as following:

When the “fast Fourier method” was introduced by Moulinec & Suquet (1994), it was considered as
a breakthrough in numerical methods for computing the mechanical response of composite materials.
It can be applied to many other homogenization problems, as conductivity or permittivity Jeulin
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& Moreaud (2008b). The FFT-based method is an iterative fixed-point algorithm derived from the
periodic Lippman–Schwinger equation in elasticity (Kroner, 1972). Given an homogeneous elastic
reference material with elastic tensor L0, the strain field ε is the solution of the implicit equation:

ε(x) = 〈ε〉 +
∫

d3x′G0(x − x′) : τ(x′), τ(x) = σ(x) − L0 : ε(x), (7.30)

where G0 denotes the Green function, that depends only on the reference tensor L0. The average
of G0 is set to zero. The polarization stress with respect to the reference L0 is denoted as τ and
〈ε〉 is the prescribed macroscopic strain field. The original scheme of the FFT-based method is a
straightforward application of the Lippman-Schwinger equation. Given an image of the strain field
with ε ≡ 0, the polarization field τ on the right side equation in (7.30) is computed in the real space,
making use of the constitutive law, whereas the convolution on the left side equation is computed
in the Fourier space, as a product, yielding a new strain field. The original FFT-based algorithm
consists in iterating the two equations, computing forward and backward fast Fourier transforms at
each step, on a cubic grid of L3 voxels. The iterations stop, when the given convergence criterion
falls below a fixed limit. It is common to check for stress equilibrium in the Fourier space, i.e.:

(
∑

q |q · σ̂(q)|2
)1/2

|σ̂(0)| < η, (7.31)

in our applications, we chose η of order 10−2. The use of an optimal reference elastic tensor L0

strongly improves convergence, however the number of iterations to achieve convergence is roughly
proportional to the contrast between the phases, i.e. this method cannot be applied to infinitely
contrasted media.

Subsequently, Eyre & Milton (1999) and Michel et al. (2001) have developed refined algorithms
which proved more efficient in the case of a high contrast between the phases (see Moulinec & Su-
quet (2003) for comparisons between the three methods). In this work, we use Michel’s “augmented
Lagrangian” algorithm, which, among its advantage, is the only one that converges for infinitely con-
trasted medium. However, no formula for the optimum elastic reference tensor L0 is known. Worst,
numerical computations show that the optimum choice is very sensitive to the contrast, geometry
and the required precision, although less to the system size. Consequently, a sub-optimal reference
field is numerically estimated at small grid sizes, and applied to larger systems.

The augmented Lagrangian scheme is derived from the minimization of an elastic potential over an
auxiliary variable e with the additional condition that e = ε (see Eq. (6) in Moulinec & Suquet
(2003)). Contrary to the strain field ε in the original scheme, the compatibility for e is not enforced
at each step. Since the Fourier transform of the stress is not directly available in the augmented
Lagrangian algorithm, convergence is checked as a relative difference in the real space between the
tensors ε and e, i.e.:

(
∑

x ‖ε(x) − e(x)‖2
)1/2

‖σ̂(0)‖ < η, (7.32)

with η = 10−6 or η = 10−7. Attention must be paid to the highest frequencies (e.g. q = ±(L/2 + 1),
where L is the number of voxels along each direction, see Moulinec & Suquet (1998)), at which point
the Green function lacks its usual symmetry (i.e. G ∗ (q) 6= G(−q)), inducing an edge effect.
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7.4. Bounds for Effective Properties

The Hashin-Shtrikman (HS) bounds, used in this work, are theoretical limits for the effective prop-
erties of a multiphase material with arbitrary but isotropic microstructure. These bounds are appro-
priate for the case of fiber systems with isotropic distributed orientations. In the case of transverse
isotropy, where fibers are aligned to a preferred direction or oriented in a plane, we consider the 2D
bounds for the planar properties (in x or y direction) as the slices orthogonal to the z direction show
an isotropic distribution of the objects. In the z direction the properties may exceed the bounds.
Still, it serves to check how much the anisotropy of the material influence the physical behavior. In
(Bornert et al., 2001, p. 176f.) the following equations are shown to compute the HS bounds in 3D
for the bulk modulus K and the shear modulus G for the two phases of the material:

pHS = p1 + c2
p2 − p1

1 + c1
p2−p1

p∗+p1

, (7.33)

where p stands for the shear modulus G or bulk modulus K. The values of p∗ are either K∗ = 4
3 G0

or G∗ = G0(9K0+8G0)
6(K0+2G0) with K0 and G0 equal to one of the two phase constants, one for the lower

bound, the other for the upper bound. The constants c1 and c2 represent the volume fraction of the
two phases, thus it yields c1 + c2 = 1.

In Peter Wall (1997), a general expression for bounds of shear or bulk modulus is given as:

p̄(ξp) = p2
1 + ξp η c1

1 − η c1
with η =

p1 − p2

p1 + p2ξp
, (7.34)

where ξp distinguishes the values for the upper and lower bounds of different definitions, that can be
found in the Table 7.1.

Bound Description Bulk Modulus Shear Modulus

Reuss-Voigt 0 ≤ ξK ≤ ∞ 0 ≤ ξG ≤ ∞

Hashin-Shtrikman 2D G2

K2
≤ ξK ≤ G1

K2

K2

K2+2G2
≤ ξG ≤ G1K1

G2(K1+2G1)

Hashin-Shtrikman 3D 4G2

3K2
≤ ξK ≤ 4G1

3K2

9K2+8G2

6(K2+2G2) ≤ ξG ≤ G1(9K2+8G2)
6G2(K2+2G2)

Table 7.1.: Values for ξp for the bulk and shear modulus and different bound definitions.

The equality of p̄(ξp) and pHS for the 3D Hashin-Shtrikman bounds are not included in Peter Wall
(1997), therefore we will shortly sketch the equality for ξp = p∗

p2
(which leads to the bounds given in

Table 7.1):

pHS = p1 + c2
p2 − p1

1 + c1
p2−p1

p∗+p1

= p1 + (1 − c1)
p2 − p1

1 − c1
p1−p2

p∗+p1

=
p1(1 − c1

p1−p2

p∗+p1
) + (1 − c1)(p2 − p1)

1 − c1
p1−p2

p∗+p1

=
−p1c1

p1−p2

p∗+p1
+ p2 − c1p2 + c1p1

1 − ηc1

=
p2 + c1( −p1(p1−p2)+(p1−p2)(p∗+p1)

p∗+p1
)

1 − ηc1
=

p2 + c1(p∗ p1−p2

p∗+p1
)

1 − ηc1

= p2
1 + ξpηc1

1 − ηc1
= p̄(ξp)
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In our case, the 3D Hashin-Shtrikman bounds yield for isotropic orientation distribution of the fibers.
For the transverse isotropy, the 2D bounds of Hashin-Shtrikman are optimal for the bulk modulus in
the sense that there exist geometries which attain the upper or the lower bound. The 2D bounds of
Hashin-Shtrikman hold also for the transverse shear modulus Gxy in the case of transverse isotropy.
For all other cases, the effective properties are bounded by the Reuss-Voigt bounds for the general
case of anisotropic materials.

Furthermore, we can extend the bounds to the Young’s modulus E and the Poisson’s ratio ν (Jeulin,
2008, pp.VI,30-31). The relation 1

E = 1
9K + 1

3G leads us to the bound:

Elu =
(

1
9Klu

+
1

3Glu

)−1

, (7.35)

where l and u represents the lower and upper bound. In the same matter, we can describe the bounds
for the Poisson’s ratio as

νlu =
1
2

− 3
2

Gul

3Klu + Gul
. (7.36)

Note, that the bounds for the Poisson’s ratio are valid only for the isotropic case.

There are equivalent equations (Hashin & Shtrikman, 1962) for the thermal conductivity in a m-phase
composite,

k̄(η) =
∑m

t=1 ctkt(η + kt)−1

∑m
t=1 ct(η + kt)−1

, (7.37)

where ct is the volume fraction and kt the thermal conductivity of the phase t. Note:
∑m

t=1 ct = 1.
The parameter η equals 0 or ∞ for the Wiener bounds, the maximal or minimal kt for the 2D Hashin-
Shtrikman bounds and twice the maximal or minimal kt for the 3D Hashin-Shtrikman bounds. This
generalization can be simplified for a two phase composite as described in Table 7.2, and can also be
found in the following references: Torquato (1991), Trias et al. (2006), Markov & Zvyatkov (1995)
and Carson et al. (2005).

Description Lower Bound Upper Bound

Wiener
1

c1

k1
+ c2

k2

c1k1 + c2k2

Hashin-Shtrikman 2D k1 +
c2

1
k2−k1

+ c1

2k1

k2 +
c1

1
k1−k2

+ c2

2k2

Hashin-Shtrikman 3D k1 +
c2

1
k2−k1

+ c1

3k1

k2 +
c1

1
k1−k2

+ c2

3k2

Table 7.2.: Bounds for the thermal conductivity in a two phase material.

The application of the bounds to the different isotropy cases is equivalent to those of the previously
explained effective properties.

7.5. Representative Volume Element

The representative volume element (RVE) describes which volume a sample of a microstructure
should have to show representative behavior in physical simulations. The RVE is dependent on the
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effective property that should be computed and on the relative error accepted for the deviation. It
is possible to compute it on one big image or on several n smaller samples and mean over the results
(Kanit et al., 2003, 2006, Oumarou et al., 2011).

We explain stepwise how the RVE can be computed from simulation results concerning a certain
effective property Z. One simulation should be applied on a relatively large image size V0 with a field
of the local effective property in each point. The mean of the effective property over all image points
is Z̄. The image is then separated in different non overlapping regions with smaller volumes V ≪ V0,
and the variance of the mean property in the m small region Z̄j to the over all mean property Z̄ is
calculated as D2

Z(V ) = 1
m

∑m
j=1(Z̄j − Z̄)2. This variance theoretically has the following relation to

the volume:
D2

Z(V ) = D2
Z(1) Aα

3 /V α. (7.38)

Observing the variance curve to the region volume in a logarithmic scale on both axes, it should have
a linear progression. Therefore, the variables A3 and α can be numerically approximated by fitting
a straight line to the logarithmic version:

log D2
Z(V ) = log D2

Z(1) + α log A3 − α log V. (7.39)

The relative error ǫrel and the absolute error ǫrel are dependent on the sample volume of n independent
samples or realizations by the following equation:

ǫrel =
ǫabs

Z̄
=

2DZ(V )

Z̄
√

n
⇒ ǫ2

rel =
4 D2

Z(1) Aα
3

Z̄2 n V α
. (7.40)

This implies the limit for the volume of the RVE dependent on a fixed relative error (e.g. 1%) as

VRVE =
(

4 D2
Z Aα

3

ǫ2
rel Z̄2 n

)1/α

. (7.41)

For more details on micro mechanics we refer to the literature, e.g. Gross & Seelig (2011), Mura
(1987), Nemat-Nasser & Hori (1998), Aboudi (1991), Zohdi & Wriggers (2008), Schmauder & Mish-
naevsky (2008), and Barbero (2007).
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8.2. LOCAL RADIUS AND ORIENTATION ANALYSIS

8.2. Local Radius and Orientation Analysis

The quantification of the local fiber radius and orientation is based on the binarized image, presented
in Figure 8.1(b). The standard approach of orientation correction (Section 3.2.2) is applied as well
as a locally adaptive smoothing (Section 3.2.4) with the size of 0.4 times the local radius. From the
local maps of radius and orientation, we extract empirical distributions as explained in Sections 4.2.2
and 4.2.3. As already mentioned in Section 4.2.1, the histogram of the radius and orientations can
be weighted in different ways. We recall, that in general it is not advisable to observe the volume-
weighted histogram of the fiber radius as the volume of a fiber depends on the radius. Figure 8.3
shows the length-weighted empirical distribution function F (r) with a bin width of 0.1 pixel and
the empirical derivative f(r) for hd = 1 pixel. Furthermore, we estimate the mean radius and the
standard deviation (given in Figure 8.3) to fit the normal distribution to the results.
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   File: verbund_regionA_400_binary

   AcceptionThreshold: 1

   Resolution: 1 [pixel]

   Histogram−Width: 0.1 [pixel]

   Maximal−Probability−Range: 4.9−5 [pixel]

   Modal−range: 5.2−5.3 [pixel]

   Median(50%−Quantile): 5.29896 [pixel]

   Mean: 5.34 [pixel] Dev: 0.95

Cummulative Distribution Fct
Probability Density Fct
Mean Radius

Figure 8.3.: Empirical distribution and density function from local analysis on the binary image
of the GRP sample.

In Figure 8.4 we compare different weightings of the radius distribution: the length-weighted version
with or without the quality weighting and the volume-weighted version. We observe that the volume-
weighted version is distorted to larger radii as expected. The quality weights reduce the participation
of pixels in crossing regions, where the radius is overestimated, as well as those of pixels at the bound-
ary between fiber and matrix, where there might be some discretization effect influencing the radius
estimation. The dashed light-blue curve shows the radius distribution without the quality measure,
which is slightly distorted to larger radii as the overestimation in crossing regions participates with
a higher weight. We conclude that the quality- and length-weighted radius distribution is the most
reliable.
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In the following, we will study the radius and orientation distributions of the reconstructed fiber
system. Optimally, this will equal the distribution estimated from the original sample. Figure 8.7
shows the length-weighted radius distribution from the separated fibers. We recall that the length-
weighted distribution from Figure 8.4 had a mean radius of 5.34 pixels with a deviation of 0.95
pixels. The mean radius from the reconstructed fiber system differs only by 0.1 pixels, which is
negligible. The decrease of the deviation to 0.59 is not surprising, as the radius in the separated
fibers is only measured at the sphere centers, thus less estimates are taken into account and fur-
thermore, the distorted estimates at the boundaries or the crossing regions do not participate. The
normal distribution N (5.44, 0.59) fits well to the empirical radius distribution as shown in Figure 8.7.
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   File: verbund_regionA_400_binary_Cutout_remerged_2_python_EDT_Core

   AcceptionThreshold: non(CorePart−Analysis)

   Resolution: 1 [pixel]

   Histogram−Width: 0.1 [pixel]

   Maximal−Probability−Range: 5.4−5.5 [pixel]

   Modal−range: 5.4−5.5 [pixel]

   Median(50%−Quantile): 5.35101 [pixel]

   Mean: 5.44 [pixel] Dev: 0.59

Cummulative Distribution Fct
Probability Density Fct
Mean Radius
Fitted Normal Distribution

Figure 8.7.: Length-weighted radius distribution of the reconstructed fiber system.

In this case, length-weighted means that all radii assigned to a sphere are taken into account. In the
case of number-weighting, every fiber contributes once with its mean radius. In the case of volume-
weighting, we discretize the local radius in a radius map from the separated fiber system with the
same size as the original image. The distribution is then composed of the estimate from all fore-
ground pixels. Figure 8.8 shows a comparison between the number-, length-, and volume-weighted
radius distribution with the fitted normal distribution. We observe again that the volume-weighted
distribution is distorted towards larger values, whereas the number-weighted version has a higher
deviation. We base our estimation on the length-weighted distribution as it has a higher amount of
trials compared to the number-weighted version, and might therefore give a better approximation of
the actual radius distribution.

Figure 8.9 shows the length-weighted orientation distribution on the unit sphere. We observe a sim-
ilar structure as for the analysis of the binary image itself. The difference to Figure 8.5 lies again in
the lower deviation of the distributions, thus the preferred orientation has a more concentrated circle
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8.4. STOCHASTIC MODELING

Additionally to the force-biased fiber packing (presented in Chapter 6), we will consider a Boolean
cylinder model with the same characteristic exempt from the curvature. To study the influence of the
microstructure on the physical behavior of the material, we are slightly changing the parameters for
the orientation distribution and the bending. For the orientation distribution, we use single and mixed
β orientation distributions. The single β orientation distributions varies from z preferred orientations
(β = 0.05) over the isotropic distribution (β = 1) to a planar or girdle preference (β = 30). For the
mixed β orientation distributions (see Equation 8.4), we vary the parameter qz (qg = 1 − qz), which
concerns the percentage of influence of the two β distributions. The set of characteristics is shown
in Table 8.2. For each configuration, we create 10 realizations in a cubic window of 400 pixels side
length and periodic boundary conditions. The changes of the curvature controlling parameters listed
in the right hand table are applied to the fiber packing only.

Single β Distributions

Description β

Z-pref. (β=0.05) 0.05
Z-pref. (β=0.08) 0.08
Z-pref. (β=0.1141) 0.1141
Z-pref. (β=0.15) 0.15
Z-pref. (β=0.30) 0.3

Isotropic (β=1) 1

Planar (β=5) 5
Planar (β=7.5) 7.5
Planar (β=10.06) 10.06
Planar (β=15) 15
Planar (β=30) 30

Mixed Distributions

Description qz

Mixed (q=0.2) 0.2
Mixed 0.3933
Mixed (q=0.5) 0.5
Mixed (q=0.8) 0.8

Changes in Curvature

Description κ1 κ2

Mixed (k1=10) 10 120
Mixed (k1=10, k2=80) 10 80
Mixed (k1=10, k2=300) 10 300
Mixed (k1=1) 1 120
Mixed (k1=1, k2=80) 1 80
Mixed (k1=1, k2=300) 1 300
Mixed (k1=40, k2=300) 40 300
Mixed (k1=40, k2=80) 40 80
Mixed (k1=80, k2=80) 80 80
Mixed (k1=80, k2=130) 80 130
Mixed (k1=80, k2=300) 80 300

Table 8.2.: Set of changed characteristics for the stochastic models.

The variety of orientation distributions is shown in Figure 8.11 and Figure 8.12 shows realizations of
the according distributions.

Figure 8.11.: Variety of orientation distributions. From left: Z-pref. (β = 0.05), Z-pref. (β =
0.3), Planar (β = 5), Planar (β = 30), Mixed (q = 0.2), Mixed (q = 0.8).

Figure 8.12.: Realizations with varying orientation distributions. From left: Z-pref. (β = 0.05),
Z-pref. (β = 0.3), Planar (β = 5), Planar (β = 30), Mixed (q = 0.2), Mixed (q = 0.8).
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Figure 8.13 shows a comparison of the real material to realizations of the two stochastic models. We
observe that the orientation distribution seems to be realistic, whereas the bending in the realizations
seems to be too high, as a result of an overestimation on the reconstructed single fibers.

8.5. Physical Simulations

In this section, preliminary results for the quasi static (mechanical and thermal) responses of the
various realizations and the original microstructure are shown. The computation is based on a bi-
nary discretization of the structure and the initial physical properties for the separated components,
as shown in Table 8.3. The effective properties of the different microstructures is determined by a
homogenization approach using the FFT method (see Chapter 7). Furthermore, we compare the
results to the theoretical bounds of Hashin-Shtrikman, Reuss-Voigt, and Wiener and we compute the
size of the representative volume element (RVE) for a cubic, elongated or flat window.

Young’s Poisson’s Bulk Shear Thermal
Modulus Ratio Modulus Modulus Conductivity
E [MPa] ν K [MPa] G [MPa] k [W/mK]

PA6 Glass Fibers 72000 0.22 42857 29508 1
Polymer Matrix 2002 0.39 3033 720 0.2

Table 8.3.: Characteristics of P6 glass fibers and polymer matrix (see Oumarou et al. (2011)).

8.5.1. Verification of the Symmetry Cases

In this section, we compute the fully reconstructed stiffness matrix for the different cases of symmetry.
Optimally the matrices fulfill the symmetries described in Section 7.1. In the most restrictive case
of isotropy, we expect a matrix with two independent values C11 and C44 on the first and second
halves of the diagonal as explained in Section 7.1.1. The non-diagonal entries of the first quarter
equal C11 − C44, whereas the remaining non-diagonal entries vanish. For an arbitrary realization of
the isotropic orientation distribution, we achieve the following stiffness matrix:

Cisotropic =











6391.44 3394.00 3365.64 −28.85 46.35 −26.38
3399.60 6502.43 3436.42 −105.23 −3.08 −55.95
3378.52 3445.55 6394.85 −121.69 28.27 −12.45
−60.56 −216.24 −243.37 3118.67 −26.98 −14.06

95.22 −9.02 57.00 −27.72 3053.90 −79.30
−56.45 −114.16 −24.90 −14.06 −76.42 3072.67











. (8.7)

Non-diagonal values do not overrun 250, which is negligible compared to the high values on the diag-
onal. The diagonal values match the equality conditions of two values and the mean of non-diagonal
values in the first quarter is 3403.29, which is close to the difference of the means for C11 and C44:
3347.83. Thus, we confirm the symmetry case for the simulated isotropic material.
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The second case of transverse isotropy is slightly more complex as shown in Equation 7.9, which we
recall here:

Crs =











C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11 − C12











.

This structure is supposed for the case of z preferred or girdle orientation distribution. The corre-
sponding stiffness matrices for arbitrary realizations are

Cz-preferred =











5179.43 2982.40 3141.73 1.74 −1.74 −1.91
3016.38 5031.73 3051.98 −1.56 −15.69 −3.59
3090.30 3047.32 11227.94 0.84 31.92 2.49

3.77 −3.22 0.46 2344.22 1.90 −30.44
−5.24 −31.39 69.54 1.58 2466.12 3.94
−0.91 −7.18 4.13 −31.88 3.94 2061.38











(8.8)

and

Cgirdle =











7799.50 3780.97 2972.98 −0.92 6.37 12.02
3780.97 7554.32 2975.42 −13.65 2.03 37.79
2972.63 2974.84 5078.91 −7.09 −3.53 1.22

−1.44 −28.11 −14.18 2169.46 5.12 −1.06
13.37 3.39 −7.06 5.12 2181.00 5.45
23.42 75.01 1.81 −0.62 5.40 3820.53











. (8.9)

The highest value, that is supposed to vanish, is 75 which is comparatively small. The symmetry in x
and y directions is given. It remains to verify the equality of the lower right value to C11 − C12. The
stiffness matrix for the z preferred orientations yields C11 − C12 = 2197.03 versus 2061.38 and for
the girdle orientation, it yields C11 − C12 = 4018.53 versus 3820.53. Both constraints are acceptable.
Thus, we confirm the transverse isotropy for the simulated material with single β distributions.

In the case of orthotropic microstructure, it suffices to verify the vanishing values in the upper right
and lower left quarter of the matrix as well as the diagonal form of the lower right quarter. We verify
the stiffness matrix of an arbitrary realization of the type “Mixed“

Cmixed =











6066.10 3348.66 3404.30 1.66 −25.59 524.42
3360.65 5405.84 3210.74 35.35 8.05 228.07
3404.30 3202.34 8538.99 139.00 −128.68 191.09

3.33 66.74 277.99 2652.07 403.67 6.86
−51.19 15.67 −257.37 403.67 3081.05 13.26
1026.54 430.45 373.77 6.29 12.84 2823.16











(8.10)

and the stiffness matrix of the original microstructure

Corig =











5933.17 3283.14 3541.18 4.87 −55.50 445.01
3283.14 5326.58 3210.82 28.35 26.48 190.44
3509.92 3197.54 8994.90 59.21 −186.21 320.97

7.66 53.62 121.16 2733.97 697.23 35.24
−107.38 48.60 −372.41 683.03 3376.96 5.86

859.89 366.84 655.95 35.24 6.89 2709.74











. (8.11)

The highest value, supposed to vanish, is 1026.54. In this case, we cannot argue any more that the
value is comparatively small. However, as there are only few outliers in the part supposed to vanish,
we still assume an orthotropic material. The physical responses will be treated as approximations of
the accurate effective properties.
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8.5.2. Results for the Mechanical and Thermal Responses

Figures 8.14 - 8.18 show the mechanical and thermal responses for all types of realizations, for the
original and reconstructed microstructure as well as the bounds adapted to the different cases of
symmetry. Table 8.4 presents the bounds for the mechanical and thermal properties. Note that the
bounds for the transverse isotropy only yields for properties in directions orthogonal to the fiber
arrangement, which are in the case of z preferred directions: Ex, Ey, Gxy, kx, ky and for the girdle
distribution: Ez, kz. All other properties are bounded by the general Reuss-Voigt or Wiener bounds.
Furthermore, the bounds for the Poisson’s ratio yield only for the isotropic case.

Description & Bulk Shear Young’s Poisson’s Thermal
Symmetry Case Modulus Modulus Modulus Ratio Conductivity

K [MPa] G [MPa] E [MPa] ν k [W/mK]
Hashin-Shtrikman 3D 3663.70 986.28 2715.19 0.1680 0.2563
Isotropic Case 6354.24 3124.36 8053.16 0.4262 0.2917
Hashin-Shtrikman 2D 3629.60 923.36 2553.55 0.2444
Transverse Isotropy 5961.24 2228.37 5944.42 0.2766
Reuss-Voigt / Wiener 3524.60 843.59 2343.79 0.2273
Orthotropic Case 9006.90 5038.35 12739.60 0.3200

Table 8.4.: Bounds for mechanical and thermal properties for a glass-polymer ratio of 15%.

The results of the Young’s modulus shown in Figure 8.14 are quite intuitive. The material is rein-
forced in the direction of the fibers, as the fibers are highly stiff, the stiffness of the composite is high
in the preferred direction of the fibers. For a planar orientation distribution the Young’s modulus is
also higher in the planar directions, but not as much as in the case of one preferred direction. This
effect is due to the lower amount of fibers reinforcing a certain direction. If stiffness of the material
is required in a certain arrangement, the material needs to be oriented correctly.

The boolean model of cylinders has on average a slightly higher stiffness than the corresponding
model with bending fibers. This is expected, as both characteristics (straight fibers and connected
fiber system) can charge more energy. Still, it is not a realistic model as in practice glass fibers
can not penetrate each other. For the bent fiber packing, on the other hand, we observe that the
properties of the real microstructure and the corresponding model (”Mixed“) are nearly equal, which
confirms that we successfully rebuilt the structure of the real material with our stochastic model.

The results of the Poisson’s ratio (Figure 8.15) are known to be between 0.05 and 0.5 for composite
materials, highly dependent on the directions. We can confirm this observation by responses reaching
from 0.12 to 0.51 for the same sample, but different sample rotations. The values for different rotations
vary extremely for a parallel fiber system. The values differ less for a planar orientation distribution
and also the higher fiber curvature decreases the difference.

The shear modulus (Figure 8.16) is especially high in the planar directions of a girdle orientation.
This effect is comprehensible as the stiff fibers in the planar direction directly oppose to the applied
strain. The mixed distributions have a nearly equilibrated intermediate behavior. The values for
Gzx are slightly higher, because the zx plane is closest to the plane in which the girdle orientation
distribution is concentrated. As also experienced in Oumarou et al. (2011), the shear modulus is
close to the lower Hashin-Shtrikman bound for z preferred materials.
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The bulk modulus in Figure 8.17 is the response to uniform pressure on the material. As we do not
consider different directions of this property, it is not surprising that the bulk modulus does not vary
much for different orientation distributions. The response value is mainly dependent on the volume
fraction, which is constant in all models. The responses for the boolean model are slightly higher
as the fiber system is interconnected and therefore more resistant to the applied strain. The bulk
modulus is close to the lower bound for all type of materials.

The thermal conductivity (Figure 8.18) is high along the fiber directions as the very long fibers con-
duct heat through the material. If we think of the enclosure of boats or airplanes, fibers are usually
in a planar configuration, which supports the thermal isolation between interior and exterior. As
also experienced in Oumarou et al. (2011), the thermal conductivity is close to the lower Hashin-
Shtrikman bound for z preferred materials.

We emphasize once more, that the estimated physical properties of the real microstructure and the
ones of our stochastic model (”Mixed“) are nearly equal for all physical and thermal responses, which
confirms that we successfully rebuilt the structure of the real material.

In this section, we showed various physical responses to mechanical strain and thermal differences.
The optimization of the material depends highly on its application and will certainly vary in different
situations. This section mirrors preliminary results. More detailed studies and the adaption of the
material to its use cases remain in the perspectives.

8.5.3. Calculation of the Representative Volume Element

As presented in Section 7.5, we calculate the RVE for several characteristics for fiber systems with
three kinds of orientation distributions: z preferred (β = 0.05), isotropic (β = 1), and planar (β = 30).
This study is based on realizations of our stochastic model in cubic images with a volume of 6003

pixels, model parameters as described in Table 8.1, and periodic boundary conditions. We calculate
the variance of a characteristic for non overlapping subwindows to the mean characteristic of the
complete volume. We also observe the influence of the height-width ratio on the RVE by taking into
account three subwindow shapes: the standard cubic shape (multiples of (1, 1, 1)T ), a shape elongated
in z direction (multiples of (1, 1, 10)T , and a plate shape in the xy plane (multiples of (10, 10, 1)T .

First of all, we study the accuracy of the RVE calculations. We calculate first the variance of a
characteristic in subwindows to the the mean characteristic of the complete volume. The principal
idea is then to fit a straight line to the curve of the variance versus the volume of the subwindows (on
a logarithmic scale for both axes). Naturally, the first and the last points do not match the straight
line. The first ones, because the subwindow is too small and the last ones, because the amount of
subwindows is too low. The freedom to choose the points, which contribute to the line fitting, poses
the problem of varying values for the RVE. Figure 8.19 shows the curve of variance, where three
different straight lines are fitted according to different intervals for the points of interest. Even if
the straight lines do not seem to differ a lot on the logarithmic scale, the calculation of the RVE
differs from 3813 to 4823, which represents twice the volume. In homogeneous, isotropic materials
the calculation is more stable as the value of α is known to be equal to 1. For isotropic infinite fibers
and for the characteristic of the volume fraction, α is known to be equal to 2/3 (Jeulin, 2011). In
our case, which is a stochastic orientation distribution, the value of α may be somewhere in between.
This vague constraint is fulfilled for all three fitted lines as well as the constraint V ≫ A3, for all
points taken into account in the line fitting. Still, their estimations of the RVE differ a lot. This
effect can be explained by the relatively small observation window of 6003 pixels in one realization.
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With a larger window or several realizations, the calculation of the RVE might be more stable.
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Figure 8.19.: Example of the inaccuracy of the RVE calculation on the bulk modulus and a z

preferred orientation distribution (β = 0.05).

In our experiments, we chose the starting limit for the points of interest by a minimal volume for the
subwindow Vs and the end limit by a maximal amount of subwindows me. The values for the limits
are varying with the shape of the subwindows. We adapted these limits empirically to the curves
dependent on the subwindow shape. For cubic shape, we choose Vs = 10 000 and me = 10, for long
shape Vs = 20 000 and me = 120, and for plate shape Vs = 10 000 and me = 15.

In Table 8.5, the results for several characteristics and the three realizations are presented. The values
for the RVE given in the table are the multiples of the basic shapes of the subwindows. Furthermore,
Figures 8.20 - 8.25 show some of the curves with the line fitting. The results state that our experi-
ments based on ten realizations of each 4003 pixels are sufficient large with a relative error between
0.29% and 1.86%. Furthermore, we observe that for a fiber system with a preferred direction it is
sufficient to compute the physical behavior on a flat window with a height of at most 71 pixels. In
the literature, nearly parallel fiber system are often approximated by computations on 2D images of
spheres assuming infinite parallel fibers. If we consider only such 2D cuts of the microstructure, the
deviation to the z axis is not taken into account. Still, the physical simulations on our realizations
have shown the influence on the deviation parameter β from the preferred orientation. Knowing
that flat shape are preferred for parallel fibers, one could assume that for planar oriented fibers a
elongated shape would be preferable. On the right part of Table 8.5 and in Figures 8.24 and 8.25, we
observe that not only the fiber orientation has an influence on the preferred window shape but also
the direction of the characteristic of interest. The thermal conductivity in z direction can be better
approximated in flat window shapes, whereas the thermal conductivity in x or y direction is more
accurate in elongated window shapes. For isotropic oriented fibers, the shape of the subwindows has
less importance. Remaining differences in the shape preference can be explained by local alignments.
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Z Preferred (β = 0.05) Isotropic (β = 1) Planar (β = 30)

VV K Gzp kp kz VV K G k VV K Gzp kp kz
C

U
B

IC

VRVE(ǫrel = 1%, n = 1) 1886 414 832 371 689 1123 477 938 430 1616 509 672 801 438
VRVE(ǫrel = 1%, n = 10) 688 164 326 138 258 466 177 375 173 617 189 249 274 153
ǫrel(V = 4003, n = 10) [%] 1.86 0.33 0.78 0.29 0.6 1.22 0.39 0.92 0.35 1.68 0.42 0.58 0.67 0.35
α 0.76 0.83 0.82 0.77 0.78 0.87 0.77 0.84 0.84 0.8 0.77 0.77 0.71 0.73
A3 616 816 1086 827 686 1046 559 1031 1031 801 698 687 580 701

L
O

N
G

VRVE(ǫrel = 1%, n = 1) 771 260 478 158 393 628 207 574 172 1270 312 379 354 301
VRVE(ǫrel = 1%, n = 10) 316 105 175 66 156 239 75 199 65 394 94 122 107 91
α 0.86 0.84 0.76 0.88 0.83 0.8 0.76 0.73 0.79 0.66 0.64 0.68 0.64 0.64
A3 2699 2526 790 2315 2833 468 359 287 337 141 128 185 109 445

P
L

A
T

E

VRVE(ǫrel = 1%, n = 1) 178 53 109 58 64 239 87 134 116 513 154 84 509 48
VRVE(ǫrel = 1%, n = 10) 71 20 42 21 26 94 32 55 41 177 50 33 124 18
α 0.83 0.8 0.8 0.76 0.85 0.82 0.76 0.87 0.74 0.72 0.68 0.83 0.54 0.77
A3 205 118 168 241 160 422 286 491 420 503 333 336 191 185

R
V

E
R

at
io

V long
RVE/V cubic

RVE (ǫrel = 1%) 0.68 2.48 1.90 0.77 1.86 1.75 0.82 2.29 0.64 4.85 2.30 1.79 0.86 3.25

V plate
RVE /V cubic

RVE (ǫrel = 1%) 0.08 0.21 0.22 0.38 0.08 0.96 0.61 0.29 1.96 3.20 2.77 0.20 25.66 0.13

V long
RVE/V cubic

RVE (ǫrel = 5%) 1.12 2.59 1.39 1.30 2.38 1.27 0.77 1.29 0.50 2.07 0.99 1.03 0.53 1.75

V plate
RVE /V cubic

RVE (ǫrel = 5%) 0.12 0.18 0.20 0.36 0.11 0.77 0.57 0.33 1.17 2.05 1.59 0.26 6.16 0.17

Table 8.5.: Calculation of the representative volume element (RVE) from partial division of a 6003 cubic image. We consider three shapes for
the subvolumes: cubic shape [multiples of (1, 1, 1)T ], long shape elongated in z direction [multiples of (1, 1, 10)T ] and flat plates in the xy plane
[multiples of (10, 10, 1)T ]. The values for the RVE given in the table are the multiples of the shape elements (e.g. if the value in the table is 50 for
a long shape, the VRVE = V [50 · (1, 1, 10)T ] = 50 · 50 · 500 = 1 250 000). Notations: n denotes the number of realizations and ǫrel the relative error.
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Figure 8.20.: RVE calculation for the bulk modulus and a fiber packing with a z preferred
orientation distribution (β = 0.05).
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Figure 8.21.: RVE calculation for the shear modulus Gzp and a fiber packing with a z preferred
orientation distribution (β = 0.05).
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Figure 8.22.: RVE calculation for the volume fraction and a fiber packing with an isotropic
orientation distribution (β = 1).
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Figure 8.23.: RVE calculation for the bulk modulus and a fiber packing with an isotropic orien-
tation distribution (β = 1).
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Figure 8.24.: RVE calculation for the thermal conductivity in planar direction and a fiber packing
with a planar orientation distribution (β = 30).
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Figure 8.25.: RVE calculation for the thermal conductivity in z direction and a fiber packing
with a planar orientation distribution (β = 30).
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8.6. CONCLUSION

Taking into account the various orientation distributions of our fiber system and the different ori-
ented effective properties, we can conclude that the cubic window shape is the adequate choice for
our experiments.

In order to check the dimensions of our results, we compare them to Oumarou et al. (2011), where
the RVE is computed for a 2D section of a parallel fiber system. For fibers with a mean diameter of
16 µm the RVE is determined as a surface with 1311 µm sidelength, for n = 100 realizations and a
relative error of 1%. Adapted to our realizations with a fiber radius of 5.44 pixels, the pixel sampling
would be 1.47 µm/pixel. We can compare this to our calculations for z preferred fibers and a plate
window shape. If we flatten the volume to 1 pixel thickness, it can be interpreted as a 2D section.
This conversion of our plate RVE results in a 2D section with 1687 µm sidelength. As the fibers in
our stochastic model are not completely parallel nor straight, it is reasonable that the RVE is slightly
higher than in Oumarou et al. (2011).

8.6. Conclusion

In this chapter, we showed the application of the overall chain of virtual material design to a real
data set, starting from local radius and orientation analysis, over single fiber separation, parameter
estimation, stochastic modeling, to the simulation of physical properties.

Both analyses, from the binary image and the separated fiber system, agree in the radius and orien-
tation distribution, which confirm the single fiber separation. From the reconstructed fiber system,
more characteristics as the fiber curvature and the mixed β distribution can be estimated. The es-
timation of fiber lengths needs to be improved, which also necessitates an improvement in the fiber
tracking, as it happens that fibers are split up in parts.

The stochastic model yield the possibility to vary some characteristics of the fiber system and thus
to create virtual materials that can be evaluated in the simulation of the physical properties. We ob-
served a high influence of the fiber arrangement to the mechanical and thermal responses, whereas the
curvature of the fibers has much less influence. Furthermore, we observe the influence of overlap and
fiber bending in comparison to the Boolean cylinders. In general, the effective properties of the re-
built fiber packing confirm that the microstructure of the real material was reconstructed successfully.

Dependent on the use case of the material, the material can be optimized by changing the parameters
respectively. The computation of the representative volume element confirmed that our experiments
with 10 trials of size 4003 have a high accuracy. Still, the computation of the RVE seems to lack
on accuracy, which may be improved by a larger observation window. In perspective, it might be
interesting to study the influence of other characteristics of the fiber systems as e.g. the aspect ratio,
local alignment or layers of different orientation distributions.
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9
Chapter 9.

Conclusion and Perspectives

The main motivation of this work is the virtual material design, which is dedicated to optimize the
physical properties of a material by adapting its microstructure. This concept includes various steps
of image processing, starting with a detailed analysis of the material’s microstructure on 3D micro
tomography images, fitting a realistic stochastic model, and finally evaluating the physical properties
of the virtual materials by numerical simulations. In order to attain our goal, we developed numer-
ous novel methods in the field of local fiber quantification, single fiber separation, stochastic models,
and parameter estimation. Furthermore, we studied lateral subjects such as the visualization and
evaluation of local characteristics, including regular tessellations of the surface of the unit sphere,
color mapping of 3D orientations, and computation of the orientation covariance.

With the approaches developed and presented in this work, the overall process of virtual material
design can be applied to all fibrous materials, fulfilling the following constraints: solid fibers with a
nearly spherical cross section and an image resolution that samples the fiber radius with at least 2
pixels. A full case study is performed on a sample of glass fiber reinforced material, which confirms
the quality of our approaches.

In the following, we summarize the contributions and perspectives of this thesis.

9.1. Contributions

This section contains a summary of all novel methods, developed in the scope of this thesis, that
are contributions to the state-of-the-art of research linked to the analysis and optimization of the
microstructure of fibrous materials.

Image Analysis for Fiber Quantification. One of the main contributions of this work is the local
analysis of fiber radius and orientation. Our method combines a sparse chord length transform with
the theory of inertia moments and axis, yielding the advantages of both methods. In contrast to
other methods proposed in the literature, our approach of orientation analysis can treat various fiber
thicknesses, and moreover computes the fiber radius. Additionally, we gain high precision from the
main inertia axis. The approach is also highly efficient in terms of computational complexity. Fur-
thermore, we optimized the results by an orientation correction and an adaptive smoothing weighted
by the ratio of local inertia moments. In order to apply the analysis directly to gray value images,
we developed and evaluated numerous approaches to compute the directional distance transform on
gray value images.

We discussed in detail the difference between number-, length- and volume-weighted distributions,
and their theoretical equality in specific cases. Furthermore, we developed a method to tessellate the
sphere surface in regular regions. In contrast to existing approaches, for this method the amount
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of regions can be easily modified (within 6n2, n ∈ N) and any arbitrary orientation can be directly
assigned to a region.

In order to segment single fibers, we developed an approach based on probability maps. For each
pixel, we compute the probability that it belongs to a fiber core in a region without overlapping
fibers. By tracking high probabilities, we reconstruct parts of the fiber cores, which are conditionally
reconnected over crossing regions in a second step. The definition of the probability maps opens the
wide possibilities of morphological operations by adapting the structuring elements locally.

Stochastic Modeling and Physical Simulations. The most remarkable development of this thesis
consists in the development of a stochastic model for hardcore systems of bent fibers, represented as
sphere chains. In order to create random fibers with a controllable level of bending, we combined a
random walk with the multivariate von Mises-Fisher orientation distribution, generalized to the multi
dimensional space. The created model of overlapping bent fibers is turned into a hardcore system by
applying forces to the sphere centers. The force-biased approach is based on earlier models developed
for sphere packing, with inspiration of molecular modeling for the definition of the forces. Two kinds
of forces are applied, one to remove the overlap and one to keep the fiber structure reasonable in
terms of distance and angle between neighbor spheres. Additionally, a placing strategy can accelerate
the packing process by choosing an initial configuration with low overlap.

The model fitting requires estimation of the model parameters. Most estimations are straight for-
ward from a system of separated fibers, except the orientation distributions. We developed a novel
accurate estimator for the κ parameter in the von Mises-Fisher distribution and an approximation
of the curvature parameters, derived from the multivariate von Mises-Fisher distribution.

Further in the field of orientation distribution, there is a lack of multi-functional distributions with
parameters that can be easily estimated. By multi-functional distribution, we refer to the β distri-
bution that can concentrate on an arbitrary orientation or on an arbitrary plane. Unfortunately, the
parameter β can only be numerically approximated. We propose a modification of the von Mises-
Fisher distribution, being able to realize similar distributions with the parameter κ, that can be
estimated easily.

Furthermore, we enrich the statistics of fiber systems with the orientation covariance. This second
order characteristic can reveal local and global alignment of the fiber system without the need to
separate single fibers. It also showed some potential in achieving an estimator for the fiber curvature
directly from the local orientation maps.

In the field of physical simulation, we did not add novel algorithms, but give a summary of the
theory of effective properties and its characteristics in application to random fiber systems. The
overall process was then applied to a glass fiber reinforced composite and discussed in detail.

9.2. Perspectives

The development of novel methods answers some questions, but raises always more new perspectives.
This section contains a summary of the various perspectives that arose during the work of this thesis.
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Image Analysis for Fiber Quantification. Concerning the local orientation analysis, it might be
interesting to study the combination of other orientation information (as e.g. the oriented Gaussian
filters) with the inertia moments. This modified approach would lose the advantage of being indepen-
dent of the fiber radius, but gain robustness in noisy images. An adequate application would be fiber
reinforced materials with constant fiber radius, where the resolution is in general low or the contrast
between fibers and matrix is low. The Gaussian orientation space alone yields good results, but
needs several hours of computation time. The combination with inertia moments, has the potential
to decrease the computation time to a minute range, while increasing the precision of the results.

The methods operating directly on the gray value image depend on one or more parameters. With
some experience, these parameters can be empirically adapted with respect to the resulting classi-
fication map. With further studies, it might be possible to choose the parameters from the local
contrasts in the gray value image.

The accuracy of the orientation analysis was studied in detail, whereas the accuracy of the fiber
radius especially on gray value images remains to be verified. This should be performed in a first
step on synthetic images reconstructing the output of CT or REM imaging. In a second step, the
analysis should be compared to the actual fiber radius known from the fabrication process. One
should be aware that there remain several sources of errors, such as imaging artifacts, the effect of
partial volumes, size dependent gray values, the accuracy of the image resolution given from the CT
software, and maybe chemical reactions during the fabrication process.

In the field of visualization of the local orientation maps, we suggest a 3D color mapping for few
orientations of interest projected on the surface rendering. A general color mapping fulfilling the
constraint of injectivity remains to be developed.

The single fiber separation yields also several possibilities of improvement. The probability maps can
be modified to be applied directly on gray value images. The use of the sum of erosions with increasing
size of the structuring element is a reasonable candidate for this task. Furthermore, the tracking of
fibers can be improved with a more complex propagation algorithm. The existing approach depends
on a limit of acceptable probabilities. This limit is in practice rather difficult to choose and has
a large influence in the quality of the segmentation. This point can be improved by an iterative
approach, starting with a high limit and decreasing the limit in each iteration.

Stochastic Modeling and Physical Simulations. During the packing process of our stochastic
model, fibers are displaced to fit in a non overlapping configuration. It turned out that these displace-
ments change the fiber orientation slightly. Thus, highly restricted orientation distributions cannot
be realized. This point can be improved by adding forces that maintain the original orientation of
the fibers. Furthermore, the relation between the initial and the final curvature during the packing
process needs to be studied. Regarding the parameter estimators, properties of the estimators remain
to be verified, such as unbiasedness and robustness.

Concerning the orientation covariance, there remains a whole field of research in interpreting this
characteristic, to optimize the efficiency of the computation and to estimate curvature parameters
directly from the orientation covariance.

159





A
Appendix A.

Calculation of Theoretical Inertia
Moments

In this chapter, we proof the equations 3.16, 3.17 and 3.18 of the theoretical inertia moments and
main inertia axis in 2D. The theoretical description of the problem is given as follows:

θi =
iπ

4
, d(vsi) =

r

| sin(θi − θ)| , Pi =
(

d(vsi) cos θi

d(vsi) sin θi

)

, Mpq =
7∑

i=0

(Pi,x)p(Pi,y)q (A.1)

and the resolution of inertia moments λ1,2 and the main inertia axis with angle θ′:

λ1,2 =
M20 + M02 ±

√

4M2
11 + (M20 − M02)2

16
(A.2)

tan(2θ′) =
2M11

M20 − M02
(A.3)

Statement: To show are the following equations:

λ1 = r2

(

2 +
√

3 cos2(4θ) + 1
sin2(4θ)

)

(A.4)

λ2 = r2f(θ) with f(θ) =







(
2+

√
3 cos2(4θ)+1

sin2(4θ)

)

, sin2(4θ) 6= 0

3
4 , otherwise

(A.5)

tan(2θ′) = tan3(2θ). (A.6)

Proof. Standard trigonometrical formula will be used in a slight modification. From the equation
[cos(2α) = 2 cos2 α − 1 = 1 − 2 sin2 α] we can conclude the following useful modifications:

sin2 α =
1
2

− 1
2

cos(2α) (A.7)

cos2 α =
1
2

+
1
2

cos(2α). (A.8)

Periodicity of the sine and cosine functions yield the following formula:

sin(α + π/2) = cos α (A.9)

cos(α + π/2) = − sin α (A.10)

sin(α + π) = − sin α. (A.11)

From the symmetrical ordering of the sampled directions θi, we know that θi+4 = θi +π. This implies

sin2(θi+4 − θ) = sin2(θi + π − θ) = sin2(θi − θ) (A.12)

sin(θi+4) cos(θi+4) = sin(θi) cos(θi). (A.13)
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With this ways of simplification, we resolve first the second order moments M11, M20 and M02:

M11 =
7∑

i=0

Pi,xPi,y =
7∑

i=0

d2(vsi) sin(θi) cos(θi) =
7∑

i=0

r2

sin2(θi − θ)
sin(θi) cos(θi)

= 2
3∑

i=0

r2

sin2(θi − θ)
sin(θi) cos(θi) (with symmetry from A.12 and A.13)

= 2r2
3∑

i=0

sin(θi) cos(θi)
sin2(θi − θ)

= 2r2








sin(0) cos(0)
sin2(−θ)

︸ ︷︷ ︸

=0

+
sin(π/4) cos(π/4)

sin2(π/4 − θ)
+

sin(π/2) cos(π/2)
sin2(π/2 − θ)

︸ ︷︷ ︸

=0

+
sin(3π/4) cos(3π/4)

sin2(3π/4 − θ)








= 2r2

(
1/2

sin2(π/4 − θ)
− 1/2

sin2(3π/4 − θ)

)

= r2

(
1

sin2(π/4 − θ)
− 1

sin2(3π/4 − θ)

)

= r2

(
1

sin2(π/4 − θ)
− 1

cos2(π/4 − θ)

)

(with A.9)

= r2

(
1

1
2 − 1

2 cos(π/2 − 2θ)
− 1

1
2 + 1

2 cos(π/2 − 2θ)

)

(with A.7)

= r2

( 1
2 + 1

2 cos(π/2 − 2θ) − 1
2 + 1

2 cos(π/2 − 2θ)
1
4 − 1

4 cos2(π/2 − 2θ)

)

= 4r2

(
cos(π/2 − 2θ)
sin2(π/2 − 2θ)

)

= 4r2

(
sin(2θ)
cos2(2θ)

)

M20 =
7∑

i=0

Pi,xPi,y =
7∑

i=0

d2(vsi) cos2(θi)

= 2
3∑

i=0

r2

sin2(θi − θ)
cos2(θi) (with symmetry from A.12 and A.13)

= 2r2








cos2(0)
sin2(−θ)

+
cos2(π/4)

sin2(π/4 − θ)
+

cos2(π/2)
sin2(π/2 − θ)
︸ ︷︷ ︸

=0

+
cos2(3π/4)

sin2(3π/4 − θ)








= 2r2

(
1

sin2(−θ)
+

1/2
sin2(π/4 − θ)

+
1/2

sin2(3π/4 − θ)

)

= r2

(
2

sin2(−θ)
+

1
sin2(π/4 − θ)

+
1

sin2(3π/4 − θ)

)

= r2

(
2

sin2(−θ)
+

1
2 + 1

2 cos(π/2 − 2θ) + 1
2 − 1

2 cos(π/2 − 2θ)
1
4 − 1

4 cos2(π/2 − 2θ)

)

= r2

(
2

sin2(θ)
+

4
sin2(π/2 − 2θ)

)

= r2

(
2

sin2(θ)
+

4
cos2(2θ)

)
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M02 =
7∑

i=0

Pi,xPi,y =
7∑

i=0

d2(vsi) sin2(θi) = 2
3∑

i=0

r2

sin2(θi − θ)
sin2(θi)

= 2r2








sin2(0)
sin2(−θ)
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=0

+
sin2(π/4)
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+
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+

1
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1
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2
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2
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4
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(
2
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4
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)

To apply this knowledge to the eigenvalues λ1,2 and the main inertia axis θ′, we first simplify the
equations M20 + M02, M20 − M02 and (M11)2:

M20 + M02 = r2

(
2

sin2(θ)
+

4
cos2(2θ)

)

+ r2

(
2

cos2(θ)
+

4
cos2(2θ)

)

= r2

(
2

sin2(θ) cos2(θ)
+

8
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)

= r2

(
8

sin2(2θ)
+

8
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)

= r2

(
32

sin2(4θ)

)

M20 − M02 = r2

(
2

sin2(θ)
+

4
cos2(2θ)

)

− r2

(
2

cos2(θ)
+

4
cos2(2θ)

)

= r2

(
2

sin2(θ)
− 2

cos2(θ)

)

= r2

(
8 cos(2θ)
sin2(2θ)

)

(M11)2 = 16r4

(
sin(2θ)
cos2(2θ)

)2

= 16r4

(
sin2(2θ)
cos4(2θ)

)
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We include this information in the equations A.2 and A.3:

λ1,2 =
M20 + M02 ±

√

4M2
11 + (M20 − M02)2

16

=
r2
(

32
sin2(4θ)

)

±
√

64r4
(

sin2(2θ)
cos4(2θ)

)

+ (r2
(

8 cos(2θ)
sin2(2θ)

)

)2

16

= r2

(

2
sin2(4θ)

± 1
2

√

sin2(2θ)
cos4(2θ)

+
cos2(2θ)
sin4(2θ)

)

= r2

(

2
sin2(4θ)

±
√

sin6(2θ) + cos6(2θ)
2 cos2(2θ) sin2(2θ)

)

= r2




2

sin2(4θ)
±

√
1
8 ((1 − cos(4θ))3 + (1 + cos(4θ))3)

2 cos2(2θ) sin2(2θ)





= r2

(

2
sin2(4θ)

±
√

1 + 3 cos2(4θ)
4 cos2(2θ) sin2(2θ)

)

= r2

(

2
sin2(4θ)

±
√

1 + 3 cos2(4θ)
sin2(4θ)

)

= r2

(

2 ±
√

1 + 3 cos2(4θ)
sin2(4θ)

)

This partly proves the statement for the second order moments. If θ is a multiple of π/4 the divisor
sin2(4θ) tends to zero. For λ1 and θ = nπ/4, n ∈ N, the dividend 2 +

√

1 + 3 cos2(4θ) equals 4,
therefore λ1 diverges to infinity. Whereas for λ2, the dividend 2 −

√

1 + 3 cos2(4θ) vanishes equally
and we can compute the limit with the rule of L’Hospital applied twice:

lim
(θ→nπ/4)

λ2

r2
= lim

(θ→nπ/4)

2 −
√

1 + 3 cos2(4θ)
sin2(4θ)

L’H
= lim

(θ→nπ/4)

12 cos(4θ) sin(4θ)√
1+3 cos2(4θ)

8 sin(4θ) cos(4θ)

= lim
(θ→nπ/4)

3

2
√

1 + 3 cos2(4θ)
=

3
4

.

As both limits of dividend and divisor exist, the rule of L’Hospital holds and λ2 converges to 3
4 r2 for

θ → nπ/4. It remains to show the equation of the main inertia axis θ′:

tan(2θ′) =
2M11

M20 − M02
=

8r2
(

sin(2θ)
cos2(2θ)

)

r2
(

8 cos(2θ)
sin2(2θ)

) =
sin3(2θ)
cos3(2θ)

= tan3(2θ)
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B.1. Articles - Journals and Conference Proceedings

H. Altendorf and D. Jeulin (Jun. 2009). 3D Directional Mathematical Morphology for Analy-
sis of Fiber Orientations. Proceedings of 10th European Congress of Stereology and Im-

age Analysis, published digitally. URL: http://www.mat.unimi.it/OCS/index.php/ECS/ecs10/

paper/view/36.

H. Altendorf and D. Jeulin (Nov. 2009). 3D Directional Mathematical Morphology for Analy-
sis of Fiber Orientations. Image Analysis and Stereology, 28/3, pages: 143 − 153. URL:
http://www.ias-iss.org/ojs/IAS/article/view/857.

H. Altendorf and D. Jeulin (Aug. 2009). Fiber Separation from Local Orientation and Probability
Maps. Proceedings of 9th International Symposium, ISMM 2009, Groningen Book of Ex-
tended Abstract, pages: 33−36. University of Groningen, M.H.F. Wilkinson and J.B.T.M. Roerdink
(Eds.).

H. Altendorf, S. Didas and T. Batt (Dec. 2010). Automatische Bestimmung von Faserradienverteilun-
gen. Proceedings of Forum Bildverarbeitung 2010, pages: 59 − 70. KIT Scientific Publisher.
URL: uvka.ubka.uni-karlsruhe.de/shop/download/1000020266.

H. Altendorf and D. Jeulin (Apr. 2011). Random-Walk-Based Stochastic Modeling of Three-Dimensional
Fiber Systems. Phys. Rev. E, 83, 041804. Submitted oct 2010. URL: http://pre.aps.org/

abstract/PRE/v83/i4/e041804.

H. Altendorf and D. Jeulin (Jul. 2011). Stochastic Modeling of a Glass Fiber Reinforced Polymer.
Lecture Notes in Computer Science, Volume 6671, Mathematical Morphology and Its Appli-
cations to Image and Signal Processing, pages: 439 − 450. URL: http://www.springerlink.com/

content/2113478360418l54/fulltext.pdf.

H. Altendorf and D. Jeulin (Oct. 2011). 3D Modeling of Dense Packings of Bended Fibers. Proceed-
ings of 13th International Congress for Stereology.

H. Altendorf, E. Decencière, D. Jeulin, P. D. S. Peixoto, A. Deniset-Besseau, E. Angelini, G. Mosser
and M.-C. Schanne-Klein (submitted Jun. 2011). Imaging and 3D Morphological Analysis of Colla-
gen Fibrils. Submitted to Journal of Microscopy.
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B.2. Presentations and Conferences

3d Carnot Workshop Presentation (english) at 2nd International Fraunhofer Workshop "3d Imag-
ing, Analysis, Modeling and Simulation of Macroscopic Properties" 04.-05.11.08 Kaiserslautern,
Germany. Title: "Morphological Analysis of 3d Random Fiber Networks" (30 min).

Fiber Seminar Presentation (french) at Seminaire de fibres 27.11.08 Fontainebleau, France. Title:
"Morphologie Mathématique 3D Directionelle pour l’Analyse des Réseaux de Fibre" (30 min).

MiPoM Poster at Workshop on Models and Images for Porous Media 12.-16.01.09 Paris, France.
Title: "Characterization and Modeling of Microstructures Using Volume Images".

ESRF Seminar Presentation (english) at ESRF Seminar, Invitation of Alexander Rack 16.01.09
ESRF Grenoble, France. Title: "Mathematical Morphology for Analysis of Fiber Networks"
(60 min).

ISS 2009 Presentation (french) at 32ème journée ISS France 05.02.09 Paris, France. Title: "Mor-
phologie Mathématique 3D Directionelle pour l’Analyse des Réseaux de Fibre" (15 min).

QIA Presentation (german) at 15. Workshop on Quantitative Image Analysis 08.05.09 Bissersheim,
Germany. Title: "Lokale Vermessung von Fasersystemen: Aktuelle Entwicklungen und offene
Fragestellungen an der Schnittstelle zur Modellierung".

ECS 10 Presentation + Paper of 6 pages for ECS 10 - The 10th European Congress of Stereology
and Image Analysis 22.-26.06.09 Milan, Italy: "3D Directional Mathematical Morphology for
Analysis of Fiber Orientations".

1st Year Oral Presentation + Report for 1st year orals 29.06.09 in Fontainebleau, France.

ISMM Poster and extended abstract for International Symposium on Mathematical Morphology 2009
24.-27.08.09 Groningen, Netherlands: “Fiber separation from local orientation and probability
maps”.

ICIP 2009 Conference Participation at IEEE International Conference on Image Processing 07.-
10.11.09 Cairo, Egypt.

MIA 2009 Conference Participation at Mathematics and Image Analysis 2009 14.-16.12.09 Paris,
France.

ISS 2010 Presentation (french) at 33ème journée ISS France 04.02.10 Paris, France. Title: “Mor-
phological Analysis of Random Fiber Networks with Thresholded Quasi Distance” (15 min).

WIP 2010 Presentation at Workshop Image Processing – Trends and Applications 11.-12.03.10 Kaiser-
slautern, Germany. Title: “3D Directional Mathematical Morphology for Analysis of Fiber
Orientations” (25 min).

WMM Conference Participation at Workshop Morphologie Mathématique – 70ème Anniversaire Jean
Serra 01.04.10 Paris, France.

W3D 2010 Presentation at 3rd International Workshop: 3D Imaging, Analysis, Modeling and Sim-
ulation of Macroscopic Properties 20.-21.04.10 Fontainebleau, France. Title: “Modeling Fiber
Systems using Random Walks” (30 min).

ECCM IV Presentation at 2010 European Congress on Computational Mechanics: Solids, Struc-
tures and Coupled Problems in Engineering 17.-21.05.10 Paris, France. Title: “Modeling Fiber
Systems using Random Walks” (30 min).

IWAP Presentation at 5th International Workshop on Applied Probability 05.-08.07.10 Madrid, Spain.
Title: “Modeling Fiber Reinforced Polymers” (30 min).
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ECMI Presentation at 16th European Conference on Mathematics for Industry 26.-30.07.10 Wup-
perthal, Germany. Title: “Modeling Fiber Systems using Random Walks” (30 min).

Composite 2010 Presentation at 23rd International Workshop Research in Mechanics of Compos-
ites 29.-30.11.10 Bad Herrenalb, Germany. Title: “3D Characterization of Fibre-Reinforced
Composites” (30 min).

BV-Forum Poster at Bildverarbeitungs-Forum 2010 02.-03.12.10 Regensburg, Germany. Title: “Au-
tomatische Bestimmung von Faserradienverteilungen” (presented by Stephan Didas).

ISS 2011 Presentation (french) at 34ème journée ISS France 03.02.11 Paris, France. Title: “3D
Modeling of Dense Packings of Bended Fibers” (15 min).

CMM-ITWM Presentation at Research Workshop franco-allemand 21.-23.03.11 Fontainebleau, France.
Title: “Stochastic Modeling of a Glass Fiber Reinforced Polymer” (30 min).

ENS Cachan Invited Presentation at Seminaire CMLA-ENS Cachan 28.04.11 Cachan, France. Title:
“Morphological Analysis and Stochastic Modeling of Random Fiber Networks” (45 min).

ISMM 2011 Poster at International Symposium on Mathematical Morphology 2011 06.-08.07.11 In-
tra, Italy. Title: “Stochastic Modeling of a Glass Fiber Reinforced Polymer”.

ICS 13 Presentation at 13th International Congress for Stereology 19.-23.10.11 Beijing, China. Title:
“3d Modeling of Dense Packings of Bended Fibers” (presented by Dominique Jeulin).

3DMM Presentation at 3D Microstructure Meeting 02.-04.11.11 Saarbrücken, Germany. Title: “Ap-
plication of Virtual Material Design on a Glass Fiber Reinforced Polymer”.
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