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Introduction

Muscles perform various functions in living organisms: they control the volume of
hollow organs, pump blood and drive body locomotion. Different types of muscle

are specialized for different tasks. In this Thesis, we are focusing on skeletal muscles.

Although the mechanism of contraction is basically the same for all types of muscles,
skeletal or striated muscles are probably the most natural object to study the general

principles of muscle contraction. First, striated muscles are geometrically simple because of
their mostly one-dimensional arrangement. Second, skeletal muscle fibers have an almost
crystalline microstructure, allowing one to use X-ray diffraction techniques to measure
displacements at the nano-meter scale. Most importantly, this structural simplicity makes
adequate even the models with minimal geometrical complexity.

In this Thesis we attempt to answer two fundamental questions of muscle mechanics
originating from experimental observations and not yet explained satisfactorily by the
existing theories. These question are:

1. Explain the pronounced difference in the rate of mechanical response
of striated muscles in soft and hard devices (Edman and Curtin, 2001;
Piazzesi et al., 2002a, 2007).

2. Explain the well documented heterogeneity of half sarcomere
lengths observed in the broad physiologically relevant range
(Rassier and Pavlov, 2010; Telley et al., 2006b).

While answering these specific questions we had to deal with a much more general question
which we formulate as follows:

3. Is the power-stroke a purely mechanical phenomenon or does it
require ATP the hydrolysis for its functioning ?

We recall that at the microscale, skeletal muscles can be viewed as an assembly of paral-
lel fibers. Each fiber has a striated structure originating from the series arrangement of
sarcomeres. The sarcomere is a generic contractile unit of every muscle (not only skeletal
muscles): it contains two types of filaments, actin and myosin. Actin is a helical fiber
with periodic arrangement of attachment sites. The myosin filament is a bundle of mo-
tor proteins (myosin II) that are connected to a backbone and point out towards the
surrounding actin filaments. Actin and myosin interaction is ultimately responsible for
muscle contraction.

Myosin consumes energy which is released during ATP hydrolysis. This allows it: to
attach to the actin filament to form what is called a cross-bridge (step 1), to generate
an incremental force called the power-stroke (step 2), to detach form the actin filament
(step 3) and finally to ‘recharge’ the power-stroke mechanism (step 4). By cyclically going
through those four steps known as the Lymn–Taylor cycle, the myosin motors pull on actin
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filaments, generating the shortening of the sarcomere and thereby producing a macroscopic
force.

The main goal of this Thesis is to understand the inner mechanical working of the
power-stroke mechanism (step 2). While the whole Lymn-Taylor cycle requires ATP sup-
ply, the power-stroke is believed by many to be taking place at such short time scales
(milliseconds) that it can be considered as a mostly mechanical phenomenon which is not
rate limited by the ATP delivery/kinetics. In this sense, the power-stroke is the perfect
object to be studied by means of mechanics. In view of the small sizes of the ‘mechan-
ical parts’ involved (nanometers), the classical mechanical picture should be of course
augmented by taking temperature induced fluctuations into account.

Power-stroke has been thoroughly studied experimentally through the transient re-
sponses of single muscle fibers to fast loadings. In this Thesis, we contribute to the
rationalization of the results of these mechanical experiments and also propose new exper-
imental set-ups.

On the modeling side, muscle contraction is usually associated with a set of chemical
reactions among a finite number of states (detached pre-power-stroke ↔ attached pre-
power-stroke ↔ attached post-power-stroke ↔ detached post-power-stroke, etc ...). The
response of the system strongly depends on the transition rates characterizing these reac-
tions. To match experimental data, some researchers find it necessary to introduce more
and more chemical states which they interpret as ‘sub-strokes’. While these new states are
usually not clearly linked to specific chemical species, the additional chemical constants
(which are actually functions of the mechanical variables in the case of muscle) bring new
curve fitting possibilities.

In this Thesis we abandon the phenomenological path of chemo-mechanical models
and pursue an approach based on a consistent mechanical modeling of the power-stroke
mechanism. More specifically, instead of a set of discrete states, we consider a continuum
of states and replace the phenomenological assumptions regarding rate functions by the
study of stochastic dynamics in a multi-dimensional energy landscape. This approach
has the advantage of capturing the mechanical response of the sarcomere lattice within
a framework based on a small set of parameters rather than a set of fitting functions.
One outcome of our model is a mechanical interpretation of the rate constants in the
conventional chemo-mechanical models of the power-stroke, in terms of mechanical and
anatomical characteristics of actin and myosin fibers.

Our main result is a quantitative model of a half-sarcomere which is in full agreement
with experiments. We consider the attached myosin heads as a set of parallel bi-stable
springs with a non-convex bi-quadratic potential responsible for the conformational change.
Following experimental evidence, we incorporate into the model, the linear elasticity of
myofilaments (actin and myosin filaments) which introduces a mean-field type interaction
between the cross-bridges and generates collective effects. We find that the model with just
8 parameters (!) reproduces rather well the experimental data on fast force recovery after
shortening, including the mysterious difference in time scales of mechanical experiments
in hard and soft devices (imposed displacement and imposed force known in muscle as
load clamp/isotonic and length clamp/ isometric settings). Our model also reinforces
the opinion that the power-stroke mechanism is characterized by negative stiffness and
operates in an inherently unstable regime. We show that this instability leads to highly
inhomogeneous response of a multi-sarcomere chain which is in agreement with the growing
experimental evidence.

In a separate development, we have proposed a way to rigorously replace the stochastic
dynamics of many (∼ 300) interacting cross-bridges by an effective stochastic dynamics of
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a single point in a one-dimensional configurational space. Such model reduction allows one
to construct effective algorithms dealing with stochastic evolution of a chain of interact-
ing sarcomeres paving the way towards building an adequate model of a whole muscle fiber.

The manuscript is organized as follows:

Chapter 1 contains a brief account of basic muscle anatomy and physiology. In partic-
ular, we review the mechanism of muscle contraction and discuss mechanical experiments
that contributed to the understanding of the cross-bridge behaviour.

Chapter 2 is focused on the modeling of the power-stroke viewed as a sub-system of a
more general contractile machinery. After a review of the previous theoretical and exper-
imental work we summarize the proposed model and introduce the main non dimensional
parameters.

In Chapters 3–5, we present a study of the mechanical response of our model system
in hard and soft device loadings.

First, in Chapter 3, we neglect the effects of temperature and present an account of
local and global minima of the mechanical energy of the system. At this stage, the crucial
difference between the behaviours in hard and soft devices is revealed and linked to the
presence of the mean field elastic interaction between different cross-bridges.

In Chapter 4, the temperature is added to the picture. We perform the analytical
computation of the free energy and study the detailed structure of both the isotherms and
the adiabats.

The kinetic response of a half-sarcomere to ramp loadings is studied in Chapter 5 where
we simulate numerically a large system of stochastic ordinary differential equations. The
study of the characteristic rates in different loading conditions shows the phenomenon of
‘kinetic trapping’ which we link to the presence of the mean field interaction among the
cross-bridges. We show that this phenomenon is more pronounced in soft device than in
hard device (in accordance with experiments).

In Chapter 6 we develop a reduced version of our model, with only one collective
variable. We show that such a simplified model still allows us to capture rather well the
mechanical transients exhibited by the original model.

In Chapter 7, we perform some benchmark simulations of the mechanical response
of a half-sarcomere by using a realistic set of parameters. We first show in detail how
the parameters can be extracted from the experimental data. Based on the quantitative
comparison of the theory with experiments, we conclude that, at ambient temperatures, a
single half sarcomere behaves as a ‘cold system’ which is characterized by negative stiffness
and is inherently unstable. We propose several mechanisms of active stabilization requiring
continuous energy supply. In the same Chapter, we also briefly discuss the role of strain
inhomogeneity inside individual half-sarcomere and study additional mechanisms that may
get involved during stretching (second head, detachment)

Finally in Chapter 8, we study the collective behaviour of a chain of half-sarcomeres
connected in series. We find that the response is markedly non affine. In contrast to the
behaviour of a single half-sarcomere, the whole chain exhibits small but positive effective
stiffness and operates in a stable regime.

The last Chapter contains our conclusions.





Chapter 1

Basic muscle anatomy and
physiology

To understand the mechanics of muscle contraction and to interpret the experiments
carried out on muscle proteins and muscle fibers, it is natural to first turn to the

basics of muscle anatomy and physiology. After the principles of muscle contraction are
clarified, we present some typical mechanical experiments revealing the inner working of
single molecules involved in active force generation.
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1.1 The background

In this section, we introduce the basic anatomical and physiological concepts that
are necessary to understand this manuscript (Alberts et al., 2008; Tortora and Derrikson,
2009).

1.1.1 Muscles in human organism

Muscles are contractile tissues, that play a variety of roles in living organisms. The
most visible one is to allow motion of the body by either exerting forces on joints or
pulling on the environmental surfaces. More precisely, muscle tissue accomplishes at least
4 different tasks in the human body:

1. It produces movement by coordinated displacements of the bones. The most impor-
tant example is locomotion.

2. It stabilizes a posture through continuous contraction. For example, neck muscles
are constantly contracting in order to keep the position of the head of a standing up
person.

3. It regulates organs volume. In particular, sphincters prevent leakage from hollow
organs such as the stomach or the bladder.

4. It displaces substances in the organism. For instance, repeated contractions of car-
diac muscle pump the blood while muscle tissues around blood vessels regulate the
flow rate.

Muscles are highly specialized in order to accomplish different tasks. One distinguishes
3 families of muscles which differ essentially by their regulation processes and by the spatial
organization of their constitutive fibers.

Smooth muscles are mostly present in digestive organs, around blood vessels, along air
ways, and even in erector muscles of hair. Smooth muscle cells are elongated ellipsoids of
30 to 200 µm long. Inside each cell the contracting fibers are arranged almost randomly so
the contraction is close to being isotropic. Smooth muscle are autorythmic: they contract
without stimulation by the central nervous system and are instead activated by local
electric signals.

Cardiac muscles are found only in the heart and are also autorythmic. Their fibers
are 50 to 100 µm long and 14 µm wide. The organization of the fibers is less isotropic
than in smooth muscles but still one finds there connected fibers constituting a ramified
network which, during contraction, exerts an isotropic stress.

Skeletal muscles are the main elements of body locomotion. They are fixed to the
bones by tendons. Skeletal fibers are long, non ramified cells (from 100 µm to 30 cm
long and 10 µm to 100 µm wide) that confer a preferred orientation to the muscle. Skele-
tal muscles elongate and apply stress in a uni-dimensional manner. Their contraction is
faster than for other types of muscle and is directly triggered by the central nervous system.

In the present work, we focus on single muscle fibers. As we shall see in the following
sections, the muscle fiber is highly organized, almost crystalline, which facilitates both
observation and modeling. However, the principles of active force generation revealed by
the study of skeletal muscles, remain valid for other muscle types as well.



1.1. The background 3

Fig. 1.1 – Representation of a skeletal muscle and its multiscale organization. Muscle is an
ensemble of fascicles. Each fascicle contains muscle cells. Muscle cells are also called fibers. They span the
whole fiber length. Each fiber is composed of myofibrils; each one being a crystalline array of interdigitated
filaments. Adapted from Tortora and Derrikson (2009).

1.1.2 Anatomy of a skeletal muscle

Fascicles and muscle fibers

A skeletal muscle is a multiscale tissue (see Fig.1.1). Typically, a human skeletal muscle
is a few cm long and less that 5 cm wide. We can distinguish, in a transversal cut, bundles
of about 1 mm diameter called the fascicles. Each fascicle contains 10 to 100 parallel
muscle fibers. A muscle fiber is a multi-nuclei cell that spans the whole length of the
tissue (see Fig.1.2). Muscle cells do not divide and their number does not change during
the adult life. Their cytoplasm contains hundreds of 2 µm wide myofibrils that are covered
by a network of tubes called the transverse tubules whose role is to deliver the chemicals
that trigger the contraction (see section 1.1.3 and Fig.1.9).

The sarcomere

Under the transmission electron microscope, one can see that myofibrils exhibit, along
their longitudinal axis, a very regular succession of dark an light bands. These striations
are present in both skeletal and cardiac muscle fibers justify the term: striated muscles.
Dark and light bands are due to periodic succession of contractile units called sarcomeres

(Fig. 1.3). Each sarcomere is about 50 nm wide and 2.4 µm long so the region between
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Fig. 1.2 – Detailed representation of a muscle fiber. Adapted from Tortora and Derrikson (2009).

Fig. 1.3 – Transmission electron micrograph of a myofibril. Each sarcomere is about 2.1µm long.
Adapted from Tortora and Derrikson (2009).

the two light bands is in fact a parallel arrangement of ∼1000 sarcomeres. Note that a 10
cm muscle fiber contains about 1015 sarcomeres with ∼109 sarcomeres in the cross section
and ∼106 sarcomeres along the length.

The fibrous aspect of the sarcomere is the consequence of the presence of interdigitated
myofilaments: the actin (or thin) and myosin (or thick) filaments, that can overlap and
cross-link. The myosin filament is an assembly of molecular motors (the myosins) that can
bind to the actin filament to form cross-bridges. We specify the structure of the thick and
thin filaments in the next paragraph.

In Fig.1.3 we show the striated structure of myofibrils in more details. One can easily
identify:

– The darker A–band spans the region where, in the sarcomere, the actin and myosin
filaments overlap. In the middle of the A–band, the H–zone corresponds to bare
segments of thick filaments where there are no myosin motors. The M–line, where
different thick filaments are cross-linked, is located in the center of the A–band.

– The I–band is brighter and corresponds to a zone where there are no thick filaments
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Fig. 1.4 – Cross section electron micrograph of an insect myofibril. See the almost crystalline
hexagonal alternation of thick (darker spots) and thin filaments (lighter spots). From Alberts et al. (2008).

diameter cross-section relative quantity per muscle

thin filaments 8 nm 50 nm2 3000/myofibril 100.109/muscle
thick filaments 10 nm. 80 nm2 1500/myofibril 50.109/muscle
myofibril 2 µm 3 µm2 700/fiber 35.106/muscle
fiber 50 µm 2000 µm2 500/fascicle 50000/muscle
fascicle 1 mm 1 mm2 100/muscle

Tab. 1.1 – Main anatomic components of a muscle with their characteristic scale. From
Tortora and Derrikson (2009).

overlapping the actin filaments. The Z–disk that separates two adjacent sarcomeres
is located in the middle of the I–band.

In the cross section of the myofibril (see Fig.1.4), the alternation of thick and thin
filaments (thick filaments form darker spots on the micrograph) forms an almost perfect
hexagonal lattice. In Tab.1.1, we summarize the main elements that constitute the muscle
fiber together with their characteristic size and their quantities.

Myofilaments and molecular motors

We now turn to the structure of actin and myosin filaments:

– The actin filament (also called thin filament) is 8 nm wide and 1 µm long. It is a
double helix built with polymerized actin monomers as one can see in Fig.1.6 and
Fig.1.9. Each actin monomer has a 5 nm diameter and the helix has a periodicity of
about 36 nm. The actin monomers are surrounded by a proteins called tropomyosins
are activated in the presence of calcium ions. When activated, tropomyosin flips and
reveals the actin monomers to which the surrounding myosin can bind; otherwise,
the actin monomers remain hidden and unable to bind myosin (see Sec.1.1.3).

– The myosin filament (thick filament) is an arrangement of ∼300 myosin II molecules.
The ensemble of myosins is a triple helix with a myosin head projected every 14.5
nm (Fig.1.6B).

Myosin II is a molecular motor: an enzyme that is able to convert the chemical energy car-
ried by the ATP 1 into mechanical work. In the presence of ATP it undergoes time-periodic

1. Adenosine triphosphate
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Fig. 1.5 – Schematic representation of a sarcomere. From Tortora and Derrikson (2009)

conformational changes in the vicinity of the actin filament to which it successively at-
taches and detaches (see section 1.8). This protein has 2 globular heads (S1) whose tails
are assembled in a helix (see Fig. 1.6 A). In the sarcomere, the tails of different myosins
are packed together and constitute the backbone of the thick filament from which all the
300 heads project outward towards the surrounding actin filaments (see Fig. 1.6 B). The
part of the tail that points out of the thick filament backbone is called S2 and the part in-
side the thick filament is called the light meromyosin (LMM, Craig and Woodhead, 2006).
Together, S1 and S2 segments are called the heavy meromyosin (HMM). The fine structure
of myosin S1 will be discussed in Sec.2.1 where we focus on the power-stroke proper.

There exists a large variety of molecular motors. Each family of motor accomplish
specific tasks in the living organisms. For example, in the cytoplasm of cells, kinesins and
dyneins are molecular motors that carry vesicles along the microtubules. Molecular motors
can be classified in two families (for a more detailed introduction to molecular motors we
refer to Howard (2001) and references therein):

– Processive motors act individually in the living environment. The time the motor
spends attached to the filament (not necessarily actin) is large compared to the time
it spends detached (high duty ratio). Those motors have two legs and walk on the
filament. Myosin V and Kinesin I are examples of such proteins.

– Non-processive motors act in a collective fashion like rowers (while processive motors
are sometimes called porters). The attached time to the filament is small compared
to the detached time, so the motors spend a small fraction of time performing the
work (low duty ratio). Myosin II responsible for muscles contraction belongs to this
second category.

So far, we have not mention yet another sarcomere protein: titin. This giant molecule
(the biggest in the organism), spanning the whole sarcomere length and anchored on the
Z-disks (see Fig.1.5), contributes to passive elasticity of the muscle and allows the muscle
to preserve its integrity when the latter is stretched beyond the overlap between actin and
myosin fibers (Leonard et al., 2010).
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A

B

C

Fig. 1.6 – Thick and thin fila-
ments(A): representation of myosin II and
a cartoon of the arrangement of myosin II
in a thick filament.(B): representation of 3
strands of myosin heads on the backbone
(top) and the structure of an actin fila-
ment (bottom). The helical repetition of
each strand is 43.5 nm and the axial dis-
tance between 2 adjacent myosin heads is
14.5 nm. (C): representation of the thin
filament with actin monomers covered by
the troponin-tropomyosin complex. Fig-
ures are taken from Reconditi (2006).

Fig. 1.7 – Muscle contraction at the scale of the sarcomere. On the left column: a cartoon
representing the sliding of the filaments during contraction. On the left column: an electron myograph
of a contracting sarcomere. The width of the A band (dark) remains constant while the I band (white)
shortens. From Tortora and Derrikson (2009)

1.1.3 Physiology of muscle contraction

The sliding filament theory

The basics of the sliding filament theory were developed by A.F Huxley and H.E
Huxley in the 1950’s. The improvement of electron microscopy and X-ray diffraction
techniques allowed them to observe the structure of the dark and light bands in muscle
myofibrils during fiber contraction (Hanson and Huxley, 1953; Huxley and Niedergerke,
1954). The first contraction mechanism was proposed in a famous article by A.F. Huxley
(Huxley, 1957). Huxley argued that muscle contraction is due to a periodic attachment of
the cross-bridges between the myosin filaments and the actin filaments (see also Huxley,
1953). The individual attachment phase lasts few tens of millisecond during which the
muscle develops force. The maximum force developed during contraction depends on the
sarcomere length as we will explain in section 1.2.2.



8 Chapter 1 – Basic muscle anatomy and physiology

A
t
t
a
c
h
e
d

D
e
t
a
c
h
e
d

2 3

41

A
T

P
A

D
P

Pi

ATP = ADP + Pi

Actin filament

S1 S2

Myosin filament

τ4⇄1 ≈ 30ms

τ2⇄3 ≈ 2ms

τ1⇄2 < 1ms τ3⇄4 ≈ 100ms

P
ow

er
-s

tr
ok

e

Z–line Z–lineM–line

Fig. 1.8 – Representation of the Lymn–Taylor cycle with for each step an indication of the char-
acteristic time ms

Molecular mechanism of muscle contraction

As we have already mentioned, filament sliding is induced by the periodic attach-
ment and detachment between the myosin heads and the actin binding sites. In 1971,
R.W. Lymn and E.W. Taylor proposed a chemo-mechanical scheme that establishes quan-
titative relation between the conformational change of myosin head and the ATP split-
ting (Lymn and Taylor, 1971). Although their proposed cycle has been updated many
times since, it remains a reference in the field and has the advantage of representing
the inner mechanism of muscle contraction in its simplest form (Fortune et al., 1991;
Kawai and Halvorson, 1991; Linari et al., 2010; Smith et al., 2008; White and Taylor, 1976).

The Lymn–Taylor cycle has 4 steps (see Fig.1.8):

– 1→2: Attachment. The myosin head is first detached from actin in a pre-power-
stroke configuration. ATP is in its hydrolyzed form ADP+Pi 2 which has high affinity
to actin binding sites. Then, the binding site is open, the myosin heads ends up
attached to the actin filament.

– 2→3: Power-stroke is a conformational change during which the myosin head
executes a rotation around the binding site which corresponds to a displacement
increment of a few nm towards the Z–line. This movement stretches the elastic tail
connecting the head to the backbone and thus generates a force of a few pN. During
the power-stroke, phosphate (Pi) is released (Linari et al., 2010)

– 3→4: Detachment occurs after the power-stroke while the myosin head still re-
mains in its post-power-stroke state. Detachment coincides with the release of ADP
(the second hydrolysis product that has low affinity to the attached state) and re-
cruitment of a fresh ATP molecule.

– 4→1: ATP Hydrolysis provides the energy to recharge the power-stroke mech-
anism. The myosin head is now searching for the next binding site to restart the
cycle.

Each ATP molecule provides ∼100 zJ 3 which is equivalent to ∼25 kbθ (1kbθ ∼ 4 zJ)

2. ADP: Adenosine DiPhosphate; Pi: Phosphate
3. z stands for zepta = 10−21
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at room temperature. Here, kb is the Boltzmann constant (kb = 1.381.10−23J.K−1) and θ
is the absolute temperature in K.

The characteristic times indicated in Fig.1.8 are obtained from (Linari et al., 2010;
Lymn and Taylor, 1971) and correspond to experiments made with actin and myosin in
solution. These experiments clearly show that the different steps of the cycle have different
time scales. On the one hand, the fastest steps are the attachment of the myosin head
S1 to actin (1 ⇄ 2) and the conformational change (2 ⇄ 3): both last a few ms. On
the other hand, the detachment and the hydrolysis of ATP occur, in solution, on a much
slower time scale (≈ 100 ms).

Above conclusions based on experiments in solutions have to be considered very care-
fully when dealing with actual reactions inside the sarcomere:

– In solution, the different molecular motors are not mechanically coupled to a loading
device. So those rates do not take into account the effect of the stress in the fiber
which clearly influences the kinetics of muscle contraction (Bigland and Lippold,
1954; Edman, 1988; Hill, 1938; Huxley and Simmons, 1971).

– The chemical cycle does not take into account the geometry of the system (steric

effects). Thus, in solution, the attachment is as a very fast step as soon as the myosin
is in its hydrolyzed state. Indeed, if the concentration of actin is sufficiently high,
there is a high probability for the myosin to find a binding site. In the muscle, as the
binding sites on the actin filament are separated by a distance of 36 nm (Howard,
2001), the hydrolyzed myosin head may stay detached if there is no binding site near
its position. Hence, the attachment rate is likely to be slower in the fiber than in
solution.

The control mechanisms

The control of skeletal muscle contraction is by itself a broad and active field of re-
search and we only mention here the basic ideas explaining how the Lymn–Taylor cycle is
activated and controlled.

A detailed scheme of the regulation loop is presented on Fig.1.9. Activation reduces
to the conversion of an electric signal from the moto-neuron (there can be many axon
terminals along the same muscle fiber) into an action potential (a depolarization of the
fiber membrane). The signal travels along the transverse tubule (see Fig.1.2) and triggers
the release of calcium ions Ca2+ from sarcoplasmic reticulum into the sarcoplasm. As we
explained earlier (see section 1.1), actin filament are covered by tropomyosin, a protein
with two conformations controlled by Ca2+. In the presence of Ca2+, tropomyosin flips
and allows myosin heads to bind to the actin filaments (see Fig.1.9).

Without continuous electric stimulation, the depolarization of the membrane cannot
be maintained and the calcium ions are pumped back into the sarcoplasmic reticulum. As
a result the muscle relaxes as tropomyosin flips back into its inactivated conformation.

The degree of activation is controlled not by the intensity of the action potential but by
the frequency of the stimulation, each action potential being an ‘1 or 0’ trigger. A single
action potential generate a twitch that lasts ∼ 50 ms, during which the fiber contracts and
then relaxes (see Fig.1.10A and B(a)). A low frequency stimulation (i.e. 30 ∼ 40 Hz in
human) generates a so called unfused tetanus where the successive twitches are summed but
remain distinguishable (see Fig.1.10B(b) and (c)). At sufficiently high frequency (∼ 100Hz
in human), the twitches merge and become undistinguishable and the force raises up to a
level called fused tetanus (see Fig.1.10B(d)).
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Fig. 1.9 – Summary of the events of contraction and relaxation in a skeletal muscle fiber.
A crucial role is played by calcium ions that allow the attachment of myosin heads to actin. From
Tortora and Derrikson (2009)

A B

Fig. 1.10 – Electric stimulation triggering muscle contraction. (A) Electromyogram (force vs

time) showing the contraction following a single stimulation (single twitch). (B) Twitches summation
towards a fused tetanus. From Tortora and Derrikson (2009).
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1.2 Mechanical experiments

In this section we briefly review mechanical experiments carried out on muscle fibers.
However, we leave the experiments specifically focused on the power-stroke mechanism for
the next Chapter.

1.2.1 Typical experimental set-up

The classical experimental set-up allows one to realize length clamp and force clamp
experiments on a single fiber (diameter ∼ 100µm) with a feedback control on the sarcomere
length (Ford et al., 1977; Piazzesi et al., 1992)

After the fiber is carefully dissected from the animal (usually sartorius or psoas muscles
of the leg from frog or rabbit), it is mounted between a loudspeaker motor that can apply
controlled displacements and a capacitance force transducer. The total fiber length is a few
mm. The muscle fiber has to be kept in an appropriate solution (called Ringer’s solution)
containing mainly: NaCl, KCl, CaCl2 and ATP. An optical set-up (Huxley et al., 1981),
called striation follower, can detect the displacement of sarcomere dark and light bands
by means of an array of photodiodes. Two laser beams are pointed on two spots on the
fiber separated by 1 mm. The segment between the spots contains about 500 sarcomeres.
Under the assumption of the homogeneous sarcomere length distribution between the
spots, the length change per sarcomere is deduced from counting the striation entering
and leaving the segment during the time of experiment. The resolution is 1µs in time and
1 nm in length. The signal from the optical system enters a feedback loop that allows one
to indirectly control the sarcomere length by moving the extremities of the fiber (length

clamp mode). An alternative is to use the signal from the force transducer in the feedback
loop and apply the appropriate displacements on the fiber. This is the way to maintain
the force at the desired value (force clamp mode).

Some experiments are carried out on intact fibers that need to be electrically stimulated
in order to contract. However, typical experiments are performed on skinned fibers (where
the cell membrane is removed by chemical agents) offering the possibility to directly control
the chemical environment of the myofibrils (for instance, the calcium concentration, see
Sec.7.1.3). In that case, the contraction is triggered by the temperature increments instead
of electrical impulses (Coupland et al., 2001; Linari et al., 2004).

1.2.2 Muscle fiber experiments

Isometric contraction

We introduced, in section 1.1.3, the notion of fused tetanus where the muscle generates
its maximal force called the tetanic or isometric force. The isometric force varies with the
imposed sarcomere length (sl) (see Fig.1.11). The resulting curve ‘tension vs elongation’
is not obtained by a quasi-static stretching as for classical material. Instead, each point
corresponds to a different tetanic stimulation at a given sarcomere length. As it is shown
by Fig.1.11A, the isometric force is directly linked to the degree of filaments overlap in each
sarcomere. The maximal isometric tension is reached for 2 < sl < 2.5 µm, which is the
physiological regime of muscle contraction. At such sarcomere lengths, all myosin heads
are facing an actin filament (full overlap). If sl < 2 µm, the isometric tension starts to de-
crease with sarcomere length even though filaments are in full overlap: when a sarcomere
is too short, the internal geometrical structure of the sarcomere is perturbed due to steric
reasons (filament buckling, bad attachments conditions, frustration, ...). After sl > 2.5µm,
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A B

Fig. 1.11 – Tension vs sarcomere length relation. (A): scheme indicating the relation between
the isometric tension and the degree of filament overlap (from Tortora and Derrikson, 2009). The tension
reaches a plateau for an optimal filament overlap (2 < sl < 2.5 µm). On the ascending limb (sl < 2 µm),
the tension generation is less efficient for steric reasons. On the descending limb (sl > 2.5 µm), the tension
decreases as the degree of overlap decreases with sl, instabilities starts to develop. (B) Data from rat flexor
allucis brevis from (Roots et al., 2007). (3): isometric tension obtained for various sarcomere lengths. (*):
tension vs strain curve obtained with a relaxed muscle showing an hyperelastic behavior.

the degree of overlap decreases progressively with sl (descending limb). In some sarcom-
eres, the overlap may be lost completely leading to the phenomenon called ‘sarcomere
popping’. The behavior of the muscle fiber on the descending limb has been studied exper-
imentally by W. Herzog and co-authors (Rassier and Herzog, 2005; Rassier et al., 2003b;
Walcott and Herzog, 2008). Most recent experiments (Leonard et al., 2010) imply the role
of titin responsible the particular behavior of muscle fibers in this range. A theoretical
explanation of popping instability was proposed in (Novak and Truskinovsky, 2002).

In addition to the isometric tension, Fig.1.11B shows how the ‘passive tension’, ob-
tained during a quasi-static stretching of a non-activated muscle, depends on sarcomere
length (Roots et al., 2007). This purely mechanical response is usually interpreted as
hyperelastic behavior with a considerable (exponential) increase in stiffness at large de-
formation. In the physiological regimes (corresponding to the plateau on Fig.1.11), we
observe that the contribution of those passive structures is negligible.

Force-velocity relation

Force-velocity relation is one of the main experimental result in muscle mechanics. It
is actively discussed since the early 20th century. Even now many models of muscle con-
traction implement the hyperbolic law derived by A.V. Hill in (Hill, 1938) (see for instance
the work of D. Chapelle and co-workers in Bestel et al., 2001; Chapelle et al., 2001). A
non-trivial hyperbolic force-velocity relation is a crucial property of active materials. It is
shown by A. Asnacios et al. that a single cell exhibits a force-velocity relation comparable
to the one observed in full muscles (Mitrossilis et al., 2009).

Experimentally, the force-velocity relation is obtained as follows (Piazzesi et al., 2002a,
2007):

First, the muscle fiber is stimulated under isometric conditions till it reaches the tetanus
force T0. From this point the control device is switched to force clamp mode and a force
step is applied. As a consequence, the fiber shortens.

After three transient phases, the shortening ends up in a steady state regime (marked
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Fig. 1.12 – Force velocity relation.(A), from (Reconditi et al., 2004). Upper trace: force change
normalized to the isometric tension T0. Lower trace: length change in nm per half-sarcomere (nm/hs).
Transients phases 1 and 2 reveal the fast process occurring at the scale of the cross-bridges (see Sec.2.2).
Phase 3 represents the onset of attachment detachment process and phase 4 is a steady state regime with
shortening at constant velocity (from Reconditi et al., 2004). (B): the constant velocity attained in phase 4
vs the normalized force (T/T0). In shortening we recognize the hyperbolic force-velocity relation described
in (Hill, 1938). The force for which the velocity is equal to 0 is called the stall force . For low stretching
(T/T0 < 120%), muscle ‘resists’ the applied force before the velocity diverges (T/T0 > 120%, destruction of
the fiber). Data are compiled from (Ford et al., 1985) (for shortening) and (Lombardi and Piazzesi, 1990)
(for lengthening).

as phase 4 on Fig.1.12A) and it is at this stage that the velocity corresponding to the
given force is extracted. The intermediate phases 1&2 reflect the fast processes (detailed
in section 2.2) occurring at the scale of the cross-bridges before the attachment-detachment
process starts getting involved (Huxley and Simmons, 1971). Phase 3 reflects the onset
of the attachment–detachment process, characterized by the first detachments of cross-
bridges (Reconditi et al., 2004).

Fig.1.12B shows the force-velocity relation characterizing the typical frog muscles
(Ford et al., 1985; Lombardi and Piazzesi, 1990). In the shortening regime (negative ve-
locities), the muscle acts against the applied load and the dependence of the velocity on
the force follows an almost hyperbolic relation (Hill, 1938). The shortening velocity pro-
gressively decreases as the force rises up to the stall force where the velocity is equal to
zero. In the stretching regime (positive velocities), the velocity remains close to zero until
the force reaches about 120% of the stall force and then diverges at the point where the
force reaches ∼ 200% of isometric force (yield) leading to the destruction of the fiber (Katz,
1939). The precise shape of the force velocity curve around the stall force is in fact poorly
known because it is probably exhibiting a short region of negative slope, with two velocity
regimes existing for the same imposed force. The experimental study of these regimes are
complicated by oscillations at different scales (Edman, 1988; Fabiato and Fabiato, 1978;
Placais et al., 2009).

The strong asymmetry of the response in shortening and stretching protocols suggests
that the behavior of muscles is different in these two regimes. Shortening is a physiological
regime: muscle displaces a load and plays the role of a motor. Stretching is a more rare
regime in which the structural integrity of the muscle is threatened if the load is too high.
For moderate stretching loads, the muscle can ‘resist’ by keeping the velocity close to zero
and in this regime it plays the role of a damper (Lindstedt et al., 2001). It might be that
the internal mechanisms operating in those two regimes are rather different which allows
them to perform successfully these two different tasks.
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Fig. 1.13 – Example of an experimental set-up allowing the observation of individual sar-
comeres. From (Shimamoto et al., 2009). (A) Schematic diagram of the mechanical measurements in
myofibrils under an inverted phase-contrast microscope. (B) The phase-contrast image of a myofibril. (C)
The intensity profile of phase-contrast image allows the following of individual sarcomere length. (Scale
bar, 10 µm.)

Fig. 1.14 – Displacement of the M-line upon activation by an increase in Ca2+ concentration.
From Telley et al. (2006a). A myofibril segment containing ∼10 half-sarcomeres with fluorescent markers
on M-lines and Z-lines is mounted between a cantilever and a force transducer and is observed under a phase
contrast microscope during activation by increase in Ca2+ concentration. (A) Schematic representation of
two half-sarcomeres forming a sarcomere, in which the A-band is displaced to the right. The displacement
DeltaL is defined as the distance between the sarcomere center (measured from Z-line to Z-line) and
the position of the M-band. Positive displacement is in direction of the cantilever side. (B) example of
a displacement trace (outlined) of the A-band of one sarcomere and the corresponding force transient
(circles).

1.3 Sarcomere inhomogeneities

1.3.1 Following individual half-sarcomeres

Recent developments in microscopic techniques allow one to follow in detail the stria-
tion generated by the succession of sarcomeres in a single myofibril (see e.g. Telley et al.,
2006a). The experimental precision has reached such a level that it is possible to detect,
using phase contrast (Shimamoto et al., 2009), the relative positions of both M-line and
Z-lines at the level of a single sarcomere (see Fig.1.13). The contrast can be enhanced by
attaching different fluorescent markers to the M-line and Z-Line (Telley et al., 2006a).

1.3.2 Non-uniformity during isometric contraction

Experimentally, the displacement of the M-line of a selected sarcomere can be recorded
upon activation under hard device conditions. I.A. Telley was probably the first who sys-
tematically observed the development of heterogeneities within neighboring half-sarcomeres
(Telley et al., 2006a) but the initial insight were obtained in (Rassier et al., 2003a). These
observations were made in physiological range outside the notorious descending limb.



1.3. Sarcomere inhomogeneities 15

Fig. 1.15 – M-line displacement upon activation of a single sarcomere at different initial
length. From Rassier and Pavlov (2010). In this paper a single sarcomere is clamped between two
microneedle and activated. The displacement of the M-line indirectly recorded and show that a single
isometrically contracting half-sarcomere is not symmetric. Values are means ± SEM

where inhomogeneity is expected and has been studied for a long time (Leonard et al.,
2010). In Fig.1.14, we show one of the traces taken at the level of a single sarcomere in
(Telley et al., 2006a). The displacement of the M-line (solid line on Fig.1.14B) closely fol-
lows the evolution the force development (see �) and the asymmetric configuration remains
stable during activation.

A stable shift of the M-line upon activation of a single sarcomere, held between two
microneedles, has been recently reported in (Rassier and Pavlov, 2010). The amount of
M-Line displacement depends on the total sarcomere length. The asymmetry disappears
at both large and short elongations (see Fig.1.15).

1.3.3 Non-uniformity in response to an external force

At shorter time scales, S.Ishiwata et al., studied in (Shimamoto et al., 2009) the evo-
lution of the distribution of sarcomere length upon applying a fast positive force step
(stretching) to an isometrically contracting single myofibril containing 13 sarcomeres (their
apparatus is shown on Fig.1.13).

The main results of (Shimamoto et al., 2009) are summarized in Fig.1.16. On (Fig.1.16A,
top panel) we show the tension vs time trace: the initially contracting myofibril first gener-
ates a tension P0, then reaches a higher level P1 at the end of the step, and upon sarcomere
contraction quickly drops to the level P2 before finally increasing again upon relaxation of
the stretched sarcomeres. The maximal sarcomere length change ∆SL, measured 100 ms
after the end of the step reveals 2 different populations of sarcomeres. The first population
is ‘resisting’ the applied load and maintain a constant sarcomere length while the second
population is ‘yielding’ in the sense that the sarcomere length increases considerably. Such
separation into two distinct populations does not persist at large loadings (see Fig.1.16B),
where all sarcomere end up in the ‘yielding’ category.

We have not discussed here in details different studies of sarcomere inhomogeneity on
the descending limb (of the force vs sarcomere length relation) in particular those that
have been recently performed by using a hard device protocol at the level of a single
myofibrils (Rassier et al., 2003a). Here inhomogeneity may be related to ‘popping’ of
certain sarcomeres which is a process outside the scope of our work. To our best knowledge,
similar measurements during shortening have not been performed yet.

To summarize, numerous recent experiments reveal that the actively contracting mus-
cle (or sarcomere) is not characterized by a homogeneous distribution of half-sarcomere
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Fig. 1.16 – Evolution of the sarcomere following fast force stretch. From Shimamoto et al. (2009).
The elongation of 13 sarcomeres is followed by a phase contract microscope after force steps of various
amplitude are applied to the myofibril. (A), from top to bottom: tension vs time. The isometrically
contracting myofibril generates a tension P0. Then a fast force step is applied to a tension P1 (rate
0.02P0/ms) followed by a relaxation of tension back to P0 within a few seconds. Mean myofibril length
(MFL) vs time. Sarcomere length vs time for the 13 sarcomeres in the segment under study (the colors
correspond to the lower bar plot). ∆SL is the change in sarcomere length measured 100 ms after P1 and
reported vs the number of the sarcomere on the lower histogram. The dotted line indicates ∆SL = 150
nm. (B): histograms of the observed ∆SL during the response to force steps of different amplitudes
(∆P/P0 = 0.025, 0.05, 0.1, 0.125, and 0.15). The vertical dotted line indicating ∆SL = 150 nm separates
two populations of sarcomeres, one ‘yielding’ (high elongation) and the other ‘resisting’ (lower elongations).

lengths. This question has not been addressed in full details from a theoretical perspective.
In this manuscript we will propose an explanation of the onset of inhomogeneity outside
the descending limb by using purely mechanical arguments.

Conclusions

The mechanical experiments reviewed in this Chapter reveal the complex machinery
of muscle contraction in steady state regimes. Power-stroke is an important part of the
mechanism whose place inside the bigger picture of muscle contraction has not been firmly
established. It has been suggested in the literature (Huxley and Simmons, 1971; Huxley,
1969) that the power-stroke discharge is a purely mechanical process which does not require
ATP consumption. In the next Sections, we carefully examine this hypothesis and question
its final conclusion.

Very recent experiments revealed unambiguously the presence of length inhomogeneities
not only in myofibrils but also inside individual sarcomeres. It remains to propose a me-
chanical explanation for the onset of these inhomogeneities.

In the next Chapter, we present experimental results focused particularly on the power-
stroke and review some theoretical attempts to interpret these experiments.



Chapter 2

Power-stroke: experiments and
theories

In this Chapter we describe in more detail the anatomic structure of myosin head and
specify the nature of the conformational change that occurs during the power-stroke.

Then, we review the main mechanical experiments that give insight into mechanism of the
stroke. In particular, we describe the controversy around the power-stroke size interpre-
tation based on either the whole fibers experiments or the single molecule experiments.
Finally, we review different theoretical attempts to model the power-stroke and propose a
new purely mechanical model of the power-stroke mechanism.

Contents

2.1 Anatomy of the myosin head . . . . . . . . . . . . . . . . . . . . 18

2.2 Power-stroke experiments . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Interpretation of the fast transients . . . . . . . . . . . . . . . . . 19

2.2.3 Length and force clamp experiments: similarities and differences 22

2.3 Single molecule experiments . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The power-stroke controversy . . . . . . . . . . . . . . . . . . . . 26

2.3.3 The energetics of muscle contraction . . . . . . . . . . . . . . . . 27

2.4 Theoretical modeling of muscle contraction . . . . . . . . . . . . 28

2.4.1 Phenomenological models . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Huxley’s 1957 model . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Power-stroke models . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Recent developments . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Brownian ratchet: purely mechanical model . . . . . . . . . . . . 39

2.5 The proposed model of a half sarcomere . . . . . . . . . . . . . 43

2.5.1 Myosin head as a bi-stable spring . . . . . . . . . . . . . . . . . . 43

2.5.2 Local minima of the energy landscape . . . . . . . . . . . . . . . 45

2.5.3 Mechanical model of a half-sarcomere . . . . . . . . . . . . . . . 46



18 Chapter 2 – Power-stroke: experiments and theories

Fig. 2.1 – Crystallographic structure of myosin sub-fragment S1. From Geeves and Holmes
(2005). Among the different substructures, we distinguish: the actin binding cleft that binds actin
monomers, the nucleotide binding site, where the ATP is hydrolyzed and the regulatory light chain that
links the head to the backbone. ATP hydrolysis induces a local conformational change in the converted
sub-domain which is then amplified by the lever arm. The two structures of pre-power-stroke and post-
power-stroke myosin heads are represented on Fig.2.2
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Fig. 2.2 – Structure of the acto-myosin complex in pre and post-power-stroke. Adapted from
Irving et al. (2000), based on Rayment et al. (1993). The pre-power-stroke structure is oriented towards
the M-line (upper structure) while post-power-stroke conformation (lower structure) turns towards the Z-
line. Based on the work by Rayment et al. (Rayment et al., 1993) and Dominguez et al. (Dominguez et al.,
1998). The swing of the lever arm by 70° correspond to an axial displacement of 10 nm towards the Z-line.

2.1 Anatomy of the myosin head

We have already briefly described the structure of myosin II in the Introduction (see
Fig.1.6). It is then clear that the heavy meromyosin (HMM) has the ability to bind to actin
filaments using the two globular parts called S1 whose atomic structure is known from X-
ray crystallography (Rayment et al., 1993). In general, myosin head can be represented
as a complex 3D arrangement of α − helices and β − sheets (see Fig.2.1). The actin
binding cleft enables the head to bind actin monomers, the nucleotide binding site is
where ATP is hydrolyzed into ADP + Pi. Upon binding to actin, the converter domain
undergoes a conformational change, amplified by the lever arm that swings over ∼ 70°
towards the Z-line thereby generating a displacement of the tip of the lever arm of ∼10
nm (see Fig.2.2). Therefore, the cross-bridge can be viewed as a mechanical switch with
one rotational degree of freedom corresponding to the orientation of the converter domain.
It has been also shown that myosin heads and in particular, the lever arm has elastic
properties (Ford et al., 1977; Huxley, 1957; Huxley and Simmons, 1971; Reconditi, 2006).
In a recent work, M. Kaya and H. Higuchi questioned the linearity of the elasticity of the
myosin. By pulling on a single molecule (Kaya and Higuchi, 2010) they showed that the
elasticity of the head resides principally in the sub-fragment S1. The S2 sub-fragment is
much stiffer but, being much longer than S1, can buckle under compressive loading.
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2.2 Power-stroke experiments

2.2.1 Methods

As we explained in Sec.1.1.3, the power-stroke lasts only a few milliseconds. Therefore,
to study its mechanism on has to design an experiment where the time scale of the ATP
cycle does not interfere with the time-scale of the conformational change. The quick re-
covery experiment first designed by A.F Huxley (Huxley and Simmons, 1971) was aimed
at resolving the mechanics and kinetics of the power-stroke by looking at the fast transient
response of a muscle fiber following a shortening or stretching ramp. This type of experi-
ment has been developed and performed principally by V. Lombardi, Y.Goldman, K.A.P
Edman and K.W. Ranatunga groups in both length and force clamp settings (see e.g., the
review by Offer and Ranatunga, 2010). Bellow, we explain in some detail the experiment
in length clamp. We have already described the experimental set-up for the force clamp
experiment in Sec.1.2.1.

First a single fiber is mounted between the force transducer and the loudspeaker mo-
tor. The fiber is then activated at a sarcomere length of about 2.1 nm. It generates
an isometric tension T0 corresponding to the plateau of the tension vs sarcomere length
relation (see Fig.1.11 and 2.4). After the isometric tension is reached, a fast length step
δ is applied with a feedback from the striation follower. The step size is measured in
nanometers per half-sarcomere (nm/hs) and it is completed in ∼100 µs (Huxley et al.,
1981; Lombardi and Piazzesi, 1990; Piazzesi et al., 1992). The step amplitude is such that
the final sarcomere length is still on the plateau region of the tension-sarcomere length
relation.

In Fig.2.3(A) we show the evolution of the tension during a length clamp experiment
and in Fig.2.4, we show the trajectory of the system in the tension vs sarcomere length
diagram. The typical range of length changes is between +3 and -12 nm/hs, where the
negative sign is for shortening. Experimentally, it is more difficult to separate the different
transient steps in stretching than in shortening (Piazzesi et al., 1997). Also, for large
stretching, cross-bridges start to detach (Brunello et al., 2007; Piazzesi et al., 1997) and
the integrity of the sarcomere can be compromised like in the force-velocity experiments
involving the yield (see Fig.1.12).

2.2.2 Interpretation of the fast transients

The response of a single muscle fiber submitted to a fast increment of length or tension
can be decomposed into 4 phases:

– 0 − 150 µs (Phase 1)(t = 0 corresponds to the beginning of the step). The tension
(resp. length) changes simultaneously with the length step and reaches a level T1

(resp. L1) (see Fig.2.3B and C). Fig.2.5 shows that T1(�) and L1(�) are superim-
posed and show linear dependence on the step size. This suggests that phase 1 cor-
responds to purely elastic response of the fiber which is also being linear (Fusi et al.,
2010; Huxley and Simmons, 1971; Linari et al., 2004).

– 150 µs − 3 ms (Phase 2). This phase starts at the end of the step. In hard device,
the tension quickly recovers up to a plateau level called T2 close to the initial level
T0 (see Fig.2.3B). In soft device, the half-sarcomeres shorten to a new length L2

determined by a tangent method (see Fig.2.3D). When plotted against the step size,
one can see that T2 is almost equal to T0 for step amplitude lower than ∼ 3nm/hs
(see Fig.2.5, 3). At larger steps, T2 decreases linearly with the step size. In force
clamp, the L2 curve superimposes with the T2 curve except in a small interval near
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A C

B D

Fig. 2.3 – Quick recovery experiments: fast transient responses. (A and B): length clamp. (C
and D): force clamp. Upper traces represent the response after a length step (A) or a force step (C) is
applied to the fiber (large time window). The fast transients following the steps are shown with a more
refined time scale on (B) and (D). In (A), the rising and decaying phases of the tension trace correspond
to the onset (activation) and the end (relaxation) of electric stimulations, respectively. In length clamp
experiments (see A and B), after the step is applied, the tension progressively recovers up to its initial
value with a time scale of about 100 ms (A). On an expanded time scale (B), the tension first decays
during the step up to T1 (elastic response) and then partially recovers to a fraction of the initial tension,
called T2, within ∼ 2 ms after the step (quick recovery). T2, is characterized by a plateau on the tension vs

time curve (barely visible on (A)). The fast transients phases 1 and 2 are shown in (D) for the force clamp
setting. The half-sarcomere first shortens elastically up to L1 and phase 2 sees an additional shortening up
to L2. Measurement of L2 is done by a linear extrapolation of phase 3 to the middle of the step (see the
construction lines on (D)). (A), from Huxley and Simmons (1971), (B) from Piazzesi et al. (2002b) (C)
and (D) from Piazzesi et al. (2002a).

the initial tension T0 where L2 cannot be resolved (see Fig.2.5 (_) and the discussion
bellow). The transition T1 → T2 lasts ∼1−2 ms and is called the quick force recovery.
In force clamp, phase 2 lasts ∼1−4 ms. The time scale of the transition corresponds
to the time scale of the power stroke in the cross-bridge cycle. Thus the T1 → T2 and
L1 → L2 transitions are interpreted as the power-stroke event among the attached
myosin heads (Chen and Brenner, 1993; Huxley and Simmons, 1971; Linari et al.,
1997; Lombardi et al., 1992). At low step amplitudes, the power-stroke is sufficient
to recover 100% of the initial tension because of the plateau on Fig.2.5. At larger
step amplitudes, even after all the attached cross-bridges have stroked, the initial
tension is recovered only partially.

– 3 ms − 0.5 s (Phase 3 and 4). Phase 3 corresponds to the onset of the steady state
process. It is signaled by the first detachments of myosin heads visible using X-ray
diffraction techniques (Reconditi et al., 2004). During phase 4, in length clamp, the
tension rises slowly (the characteristic time is about 100 ms) from the T2 plateau and
finally reaches a steady value that correspond to the initial T0 (see Fig.2.3A). The
final sarcomere length is still in the plateau region of the tension-sarcomere length
relation (see Fig.1.11). In soft device, as we saw in Sec.1.2.2, phase 4 is characterized
by a shortening at constant velocity. In both length and force clamp experiments,
this last phase corresponds to cyclic attachment and detachment of the heads that
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Fig. 2.4 – Schematic representation of the loading trajectory in length and force clamp
experiments in the tension-sarcomere length plane (see Fig.1.11). The numbers indicates the different
phases of the response in both length clamp and force clamp. Length clamp mode loading trajectory is
represented by a dashed line. During phase 1 (continuous line), the same response is observed in length
clamp and force clamp modes. During phase 2, in length clamp, the initial tension is partially recovered
while the length is held at its final value. Subsequent force recovery is obtained during phase 3 and mostly
in phase 4 when the attachment-detachment process gets involved. In force clamp, when a given fraction of
the initial tension is attained at the end of the step, the fiber first shortens quickly to a new length L2 (see
also Fig.2.3). After a period of slower shortening (phase 3), the systems reaches a steady state shortening
velocity (phase 4). The constant velocity of phase 4 is used to construct the force-velocity relation (see
Fig.1.12).

Fig. 2.5 – Quick recovery experiment: tension and half-sarcomere length change at the end of
phase 2. T1(�) and L1(�) are the tension and half-sarcomere length attained at the end of the loading step.
They correspond to the instant elastic response of the fiber. T2(3) and L2(_) are respectively the tension
and half-sarcomere length change attained a the end of phase 2. The T1 → T2 and L1 → L2 transitions
are interpreted as the power-stroke events among the attached myosin heads. In hard device, for low step
amplitudes (< 3nm/hs), the full initial tension is restored after phase 2 (see the plateau). Subsequently, for
larger steps, the power-stroke capacity is exhausted T2 (resp. L2) depends linearly on the applied length
step (resp. force step). Remarkably, L2 is not resolved for low force step amplitudes. Instead several
papers report oscillatory response after small force steps (Edman and Curtin, 2001; Edman et al., 1988;
Granzier et al., 1990; Sugi and Tsuchiya, 1981). From Piazzesi et al. (2002a).
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act in concert like in a tug of war.

Fast transient experiments are used to determine the main characteristics of the power-
stroke mechanism (Huxley and Simmons, 1971; Piazzesi et al., 2007). From phase 1, one
can measure the elasticity of the muscle in the state of isometric contraction. By doing
this experiment on skinned fibers, it is possible to modulate chemically the number of
attached myosin heads (we explain in details this type of experiment in Sec.7.1.3, only
the main results are presented here). This protocol allows to measure the stiffness of the
myofilaments with results similar to those found more directly using the X-ray diffraction
techniques (Huxley et al., 1994; Linari et al., 2004, 2009; Wakabayashi et al., 1994). One
can also measure the fiber stiffness in rigor mortis, i.e. when ATP is depleted. In this
condition, it is known that all ∼300 myosin heads of each half-sarcomere attach to the
actin filament (Cooke and Franks, 1980). By knowing the filament compliance, we can
then find the cross-bridges stiffness from the overall rigor stiffness. The value obtained
with this method for frog muscles is about 2 − 3 pN.nm−1 (Piazzesi et al., 2007).

The shortening observed in phase 2 in force clamp experiments is due to the power-
stroke event which involves the attached heads. Therefore, after the filament compliance
is taken into account, one can interpret the distance L1 − L2 as the power-stroke size. It
ranges from ∼ 5 nm at high force (T ≈ T0) to ∼ 10 nm at low force (Linari et al., 2009;
Reconditi et al., 2004). The value at low force is consistent with structural reconstruction
for the acto-myosin complex (see Sec.7.1.1) (Dominguez et al., 1998; Rayment et al., 1993).

2.2.3 Length and force clamp experiments: similarities and differences

From Fig.2.5, one could conclude that the length and force clamp settings are equivalent
and could simply replace one another in the study of the quick recovery. However, there
are two main differences:

1. The results in length clamp experiments clearly show a plateau on the T2 curve
(3 on Fig.2.5) while in force clamp experiments, similar plateau has never been
resolved (dark diamonds). Experimentally, the measurement of L2 for small force
steps (near the initial tension T0) appears to be difficult. In particular, oscillations
have often been observed after a small force step was applied to an isometrically
contracting muscle (Edman and Curtin, 2001; Edman et al., 1988; Granzier et al.,
1990; Sugi and Tsuchiya, 1981).

2. In Fig.2.6, we show different rates of the quick force and velocity transients obtained
for frog fibers in length and force clamp conditions. The rate is defined as the
inverse of the time required to reach the value of force equal to 0.63(T2 − T1) from
the value T1 in length clamp experiment (or the value of length 0.63(L2 − L1) from
the value of L1 in force clamp). For length clamp, the rate is plotted against the step
size δ (data from Ford et al. (1977)(3), Piazzesi et al. (1992)(�), and Linari et al.
(2009)(�)). As we did not find in the literature the measurements of the rate in force
clamp, the data represented for force clamp (�) are estimates computed by the ratio
L2/v2, where v2 is the velocity of phase 2 reported in (Piazzesi et al., 2002a). Instead
of representing the force clamp rate as a function of tension, we represented it as a
function of L2. Therefore, Fig.2.6 juxtaposes the rates of recovery in the same T2−L2

conditions by using two different experimental settings. We clearly see that the time
needed to complete phase 2 is about 5 times longer in force clamp experiments than
in length clamp experiments. To our knowledge, this feature of fast force recovery
has not been discussed previously in the literature and one of the objective of our
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Fig. 2.6 – Quick recovery: rates of recovery. The rate is defined as the inverse of the time taken to
reach 0.63(T2 − T1) from T1 in length clamp (or 0.63(L2 − L1) from L1 in force clamp). The length clamp
data (open symbol) are from Ford et al. (1977) (3), Piazzesi et al. (1992) (⊚), and Linari et al. (2009)
(�), Huxley and Simmons (1971) (×). Note that the data from Ford et al. (1977) and Linari et al. (2009)
are obtain with frog type rana temporaria while all other results are from rana esculenta. In Ford et al.
(1977), the rate is measured as the reciprocal of half time to reach T2 from T1. To be consistent, the results
presented here are adjusted by a factor 0.5/0.63. The force clamp data (filled symbols) are represented as
function of the elongation at the end of phase 2 (L2). Load clamp data are from: Piazzesi et al. (2002a)
(�), Decostre et al. (2005) (N).

work is to propose the first explanation for this difference. To our best knowledge,
no rate data for shortening steps larger than 6 nm are available, probably because,
for larger shortening steps, the fiber starts to buckle (see for instance Piazzesi et al.
(1992) Fig.2).

We also observe that only a few T2 and T1 points are reported on the stretching
side in Fig.2.5, and, to our best knowledge, no data are available for do not include
stretching increments above 6 nm. It was argued in (Piazzesi et al., 1997) that for stretches
beyond 2 nm/hs, cross-bridges start to detach perturbing the measurement. Moreover, the
detection of the end of phase 2 in those cases is not clearly marked by the presence of a
characteristic plateau on the tension vs time curve. In fact, it has been suggested in
(Brunello et al., 2007; Piazzesi et al., 1997) that additional mechanism are involved when
muscle is stretched. First, in (Brunello et al., 2007), the authors have detected an increase
in the instant stiffness of the system which they attributed to the attachment of the second
head of the myosin molecule. Second, to explain the slow tension relaxation following a
lengthening step G. Piazzesi et al. invoked a passive friction mechanism of the detached
heads passively interacting with the actin filament (Piazzesi et al., 1997). We investigate
these two possibilities within our model in Sec.7.5

2.3 Single molecule experiments

In the previous Section, we presented a family of experiments from which we could
extract some information about the mechanism of the power-stroke. These reconstructions
can be viewed as a ‘top-down approach’ as the corresponding experiments are realized on
whole muscle fibers. Notice however that we are in fact interested in the force generation
at the level of myosin molecules and complicate muscle architecture may actually be an
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Fig. 2.7 – Experimental set-up using optical tweezers to detect single acto-myosin interac-
tions. The upper panel is a cartoon of the ‘3 bead geometry’ designed by Finer et al. in (Finer et al.,
1994). A 10 µm actin filament is anchored on two latex beads (∼ 1 µm) manipulated by independent opti-
cal traps. After the actin filament is put under a tension of ∼ 2pN , it is presented to a 3rd bead stick to a
coverslip and covered with a low density of myosin sub-fragment S1 (or HMM) (see Fig.1.6). Acto-myosin
interactions are observed by monitoring the positions XL and XR of the beads with a photodetector. Lower
panel gives a mechanical representation of the system when a myosin molecule is attached. κxb is the stiff-
ness of the cross-bridge, linked in series with the actin-bead connection stiffness, κcon and the stiffness of
the optical traps, κtrap. Upon attachment, the myosin molecule produces a displacement dxb. Due to the
presence of other compliant elements, a displacement dobserved , dxb is measured by the photodetector. All
the preparation is immersed in an appropriate solution containing ATP. From Veigel et al. (1998).

obstacle in the study of the microscopic mechanisms of force generation. Therefore, in the
nineties, a whole new ‘bottom-up’ approach has been developed based on the revolutionary
development of optical tweezers.

2.3.1 Optical tweezers

In 1970, A. Ashkin, showed the possibility to use forces gradients from a continuous
laser to trap micron-sized particles (Ashkin, 1970). Later, he reported the first case of
dielectric particle trapping by a single-beam gradient force trap (Ashkin et al., 1986).
Since then, this technology called optical tweezers have found considerable applications in
live sciences. Major examples are the studies by C. Bustamante et al. of DNA unfolding
(Smith et al., 1996) or by J. Spuddish’s and J.E. Molloy’s groups on molecular motors
(Finer et al., 1994; Mehta et al., 1997; Molloy et al., 1995; Veigel et al., 1998). We can
also mention another single molecule technique used by T. Yanagida’s group which is based
on the use of microneedles instead of optical traps for nanomanipulation (Ishijima et al.,
1996; Kitamura et al., 1999; Yanagida and Ishijima, 1995).

One of the most important experimental set-ups designed to study single acto-myosin
interaction is known as the ‘three beads geometry’ (Finer et al., 1994). In Fig.2.7, we
illustrate the main idea of the method: a 10 µm actin filament is attached to 2 latex beads
(diameter ∼1 µm) trapped in two different laser beams. A third bead is coated with a low
density of myosin molecules and glued to a coverslip. The low density coating is used to
avoid multiple myosin attachments to the actin filament. The whole preparation is then
immersed in an appropriate solution containing ATP (Veigel et al., 1998).

When the actin filament is brought in contact of the third bead, a single myosin
molecule binds to actin and generates a force. This force is transmitted through the actin
filament and displaces the two trapped beads whose positions (XR and XL on Fig.2.7) are
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Fig. 2.8 – Displacement traces of trapped beads showing attachment events of myosin
molecule. In each panel (i), (ii) and (iii), the upper and lower traces represent the displacements of
the right and left bead respectively. The variance of the Brownian motion of the beads is considerably
reduced upon attachment of myosin motor. Therefore one can measure the displacement generated by the
power-stroke. In addition the change in variance gives information about the stiffness of the system. The
lower traces show histograms of the beads displacements during the attachment events (left and right) with
Gaussian fit. The mean displacement is 5 ± 10 nm. Adapted from (Veigel et al., 1998).

monitored using a photodetector. To compute the displacement of the myosin molecule
from XR and XL, one has to take into account the stiffness of all elements of the me-
chanical pathway (see Fig.1.9, lower panel): κxb, the stiffness of the myosin itself which
one would like to measure, κcon the stiffness of the connections between the actin filament
and the trapped beads and finally κtrap, the stiffness of the two laser traps. Note that
the actin stiffness is high compared to other stiffnesses involved, therefore its effects on
the measurements can be neglected (Kojima et al., 1994). A review of the use of optical
tweezers in the study of acto-myosin interactions can be found in (Knight, 2001).

In Fig.2.8, we show three displacement records of the left and right trapped beads
(noted i,ii and iii). Some attachment ‘events’ are clearly distinguishable after the significant
noise reduction (see the arrows on Fig.2.8). Upon attachment, the two beads undergo a
correlated displacement in the same direction. If the stiffness of the trap is low compared
to other stiffnesses in the system, then the bead-actin-bead part moves as a rigid body
under the action of the myosin stroke. Three major pieces of information can be extracted
from theses experiments:

1. If the trap stiffness is low compared to the cross-bridge stiffness, then it is expected
that the displacements of the beads reflect directly the power-stroke size. In Fig.2.8,
the lower panel shows the histograms of the left and right bead displacements mea-
sured after various attachment events. The mean displacement is ∼ 5nm. This
value is twice as small as the previous value measured by using the same technique
(Finer et al., 1994) principally because in the latter, only one bead displacement as
been recorded. Similar values of ∼5 ± 10 nm are reported in (Molloy et al., 1995;
Veigel et al., 1998) and also with other single molecule techniques (Kitamura et al.,
1999; Yanagida et al., 2000).
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2. The myosin stiffness κxb is determined from the displacement’s variance change upon
attachment. This is possible if we assume linear elasticity of the different components
which leads to a Gaussian distribution of the displacements. In the absence of
myosin motor, one can measure the stiffness of the optical trap κtrap by analyzing
the displacements of a single trapped bead. Then the displacements of two trapped
beads, linked by an actin filament gives κcon provided the actin filament stiffness is
large compared to the connection stiffness (Kojima et al., 1994). Finally the stiffness
of the cross-bridge is deduced from experiments involving the attachment events. In
addition to this analysis of Brownian fluctuations, cyclic loading with and without
attached motor provides additional information that leads to similar conclusions
(Veigel et al., 1998). Several papers have then confirmed that the myosin stiffness
must be around 0.5 pN.nm−1 (Knight, 2001; Mehta et al., 1997; Veigel et al., 1998).
We recall that the typical stiffness deduced from fiber experiments is about 3 times
higher (see Sec.7.1.3 and (Offer and Ranatunga, 2010; Piazzesi et al., 2007)).

3. A feedback loop can be used to constantly adjust the position of the optical trap in
order to maintain a constant distance between the two beads. This would correspond
to the length clamp set-up for muscle fibers. Using this technique, one expects to
measure the maximum force a myosin can produce: the isometric force. J.E. Molloy
reports an isometric force of 1.7 pN (Molloy et al., 1995). The isometric force per
motor extracted from the whole muscle fiber experiments is in the range of 5 pN so
about three times higher.

2.3.2 The power-stroke controversy

One can see that measurements in single molecule experiments and the results from
fiber experiments are in contradiction which is a source of controversy in the field of
muscle mechanics. First, as we have seen the maximum power-stroke size inferred from
fiber experiments is about 10 nm, while single molecule experiments suggest a 5 nm stroke
size. This is an average value; for a comprehensive review of stroke size data from single
molecule techniques see (Tyska and Warshaw, 2002). An argument against the single
molecule experiments is that the orientation of the myosin motor cannot be controlled so
it may attach in some sub-optimal way to the actin filament. Therefore the 5 nm stroke
may be just a low bound (Veigel et al., 1998). Some measurements with an artificially
rebuilt myosin filament have been done by T. Yanagida’s group and they report a 20
nm power-stroke size under low force conditions, with presumably less uncertainty on
the relative orientation between the myosin heads and the actin filament (Ishijima et al.,
1996). This can be taken as an upper bound, in view of the specially engineered geometry
in these experiments.

Second, the instant cross-bridge stiffness measured from the whole fiber experiments
is about 2 − 3 pN.nm−1. The corresponding value is about 0.5 − 0.7 pN.nm−1 in single
molecule experiment (note that A. Lewalle report a stiffness of 1.7 pN.nm−1 for rigor

cross-bridges in (Lewalle, 2008)). The value from fiber level measurements is based on the
hypothesis that all cross-bridges contribute to the stiffness in rigor condition (Linari et al.,
1998; Piazzesi et al., 2007). Moreover, if some rigor cross-bridges remain ‘slack’, then one
can expect the stiffness to be even higher than 3 pN.nm−1. This was an argument proposed
by J.Howard against the Huxley and Simmons theory (Huxley and Simmons, 1971) of the
power-stroke (see (Howard, 1997; Huxley, 1998)).

To summarize, the issue remains unresolved and some independent pieces of evidence
would need to appear for this controversy to be settled. Hozwever, recent papers suggest
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that the results from single molecule experiments have to be reevaluated (see ??).

2.3.3 The energetics of muscle contraction

One source of additional information is provided by energetics. Several groups have
been studying the maximum mechanical efficiency of muscle contraction from the measure-
ment of the maximum power-output and heat release during isotonic shortening (phase 4,
see Sec.1.2.2). These studies follows directly from the pioneering work of A.V Hill who
first experimentally observed that an isometrically contracting muscle releases heat at a
constant rate (Hill, 1938).

When the load is suddenly dropped, the muscle starts to shorten and this shortening is
accompanied by an increase in heat liberation that is proportional to the allowed shortening
range but does not depend of the load. This phenomenon is known as the Fenn effect. A.V.
Hill concluded that the heat per unit length of shortening liberated by a fully activated
muscle is a characteristic constant for a given muscle type which he denoted by a. Hence,
for a given shortening distance x, the extra heat released is equal to ax. The macroscopic
work performed by the muscle against a load T is Tx so that the total energy change
during shortening x is (T + a) x and the rate of energy liberation is (T + a) ẋ where ẋ
is the shortening speed. Experimentally, Hill could directly show that the rate of extra
energy liberation compared to isometric contraction varied linearly with the applied load
and was zero for T = T0, the isometric tension. Therefore, he derived the following relation
directly from macroscopic energetics:

(T + a) ǫ̇ = b (T − T0) (2.3.1)

This phenomenological formula providing the simplest hyperbolic force-velocity relation is
often used as a constitutive relation for the whole muscle (see Sec.2.4.1).

If we now follow (Barclay et al., 2010), we can define the mechanical efficiency of a
muscle as:

ξmec =
ω̇

ω̇ + Q̇

where ω̇ = T ẋ is the mechanical power-output and Q̇ = aẋ is the rate of heat production
during steady shortening. This value is different from what is sometimes called the ther-
modynamic efficiency ξtherm which is the ratio of the rate of work and the rate of energy
supply provided by ATP hydrolysis:

ξtherm =
ω̇

ḞATP

where ḞATP is the rate of ATP consumption which is presumably higher that ω̇ + Q̇ =
(T + a) ẋ. This definition of efficiency takes into account the amount of ATP potentially
consumed by the the contraction mechanism (for instance ion pumping, see Fig.1.9) and
causing deviation from the hyperbolic force-velocity law.

Experiments on whole muscle and on isolated muscle fibers, reported in (Barclay et al.,
2010), show that ξmec ≈ 50% and ξtherm ≈ 40%. For comparison, the typical efficiency of a
car does not exceed 15 % if we consider all the losses in engine, transmission and accessories
(U.S. Departement of Energy, 2011). Now the energy provided by the hydrolysis of one
ATP molecule is ∼80 zJ or ∼20 kbθ at room temperature (θ is the absolute temperature
and kb is the Boltzmann constant). If we assume that there is only one ATP molecule used
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per cycle (as shown on Fig.1.8), we expect the mechanical work of a single cross-bridge to
be ∼ 30 zJ or ∼ 7.5kbθ.

Woledge et al. (Barclay et al., 2010), proposed a simple chemo-mechanical model (see
the next chapter) which generate experimentally observed shape of the T2 curve (see
Fig.2.5). By computing

∫

T2 (δ) dδ they estimate the work done during the power-stroke.
Their chemo-mechanical model gives ∼ 45 zJ of work. Therefore, we may conclude that
the cross-bridge stiffness derived from experimental measurement conducted on muscle
fibers gives a realistic prediction of energetics.

On the other hand, from single molecule experiments, one can compute the mechanical
work performed during the power-stroke as the product of the stiffness κxb and the square
of the power-stroke size dxb: 1/2κxbd

2
xb (Barclay et al., 2010). This gives a mechanical

work of ∼15 zJ (by using κxb=0.7 pN.nm−1 and dxb = 5 nm) which is about a third of the
mechanical work inferred from the whole fiber measurements. Hence the value of single
molecule stiffness appears to be inconsistent with muscle energetics. However, if one uses
the cross-bridge stiffness obtained from fiber experiments in a conventional two states
model of the power-stroke (not the special many state model of Barclay et al. (2010)), the
resulting T2 curve exhibits a region of negative slope (see Sec.2.4.3) which is not observed
experimentally (see Fig.2.5).

One can see that the debate between the single proponents of single molecule measure-
ments and the experts in fiber measurements is not over. The available techniques do not
allow a direct measurement of the mechanical characteristics of the myosin head and of
the power-stroke size. Therefore only indirect measurements are used with all the implied
uncertainties. Great efforts have been made to match the macroscopic thermodynamics
of muscle contraction with the mechanical measurements at the microscale.

The goal of the theoretical work is to contribute to these efforts and to try to reconstruct
the macroscopic dynamics from the simplest model of the power-stroke. In this way we
can link microscopic and macroscopic data and contribute to the resolution of the existing
controversy. Therefore, we now turn to the discussion of the attempts of theoretical
modeling of the power-stroke.

2.4 Theoretical modeling of muscle contraction

Before focusing specifically on the power-stroke, we review here several fundamental
attempts to understand the mechanisms of muscle contraction. Characteristically, most
of them avoid explicit reference to the power-stroke.

2.4.1 Phenomenological models

Historically, the first feature of muscle contraction studied in systematically set exper-
iments was isotonic shortening (see Sec.1.2.2). In 1938, well before the sliding filament
theory was put forward, A.V. Hill reported the dependence of shortening velocity on the
applied force and measured the heat release during isotonic contraction (Hill, 1938). It was
already known at that time that muscles exhibit a linear elastic response when submit-
ted to fast length changes. Therefore to explain his experiments, Hill proposed a simple
rheologic model including a linear elastic element with stiffness κ in series with a contrac-
tile element governed by a particular constitutive relation. This relation was derived by
Hill from the measurements of heat release during isotonic contractions (see the previous
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Fig. 2.9 – Phenomenological model proposed by A.V. Hill in (Hill, 1938). A linear elastic element
of stiffness κ and strain ǫe is coupled in series to a ‘contractile’ element driven by the hyperbolic force-
velocity relation Eq.(2.3.1). vmax is the maximum shortening velocity attained for T = 0 and T0 is the
isometric force or stall force.

Section and Fig.2.9):

(T + a) (ẋ+ b) = c, with a, b, c constant.

The resulting model has been widely implemented into more complex models of muscle
contraction. For instance D. Chapelle and co-workers used the relation (2.3.1) in their
comprehensive model of heart contraction (Chapelle et al., 2001).

Notice that, in the above class of models, the microscopic molecular mechanism is
lumped into a phenomenological relation. Thus Hill’s Eq.(2.3.1) gives the hyperbolic the
force-velocity which looked convincing because the coefficients turned out to be almost in-
dependent on temperature (Hill, 1938). However, the biological origin of these coefficients
is unclear and the phenomenology provides no link between the macroscopic behavior and
the mechanisms occurring at the microscale. After the sliding filament process has been
discovered, A.F. Huxley proposed a model of the acto-myosin interaction that was sup-
posed to link the macroscopic force-velocity relation with the details of the microscopic
attachment-detachment process involving myosin motors (Huxley, 1957).

2.4.2 Huxley’s 1957 model

In 1957, the details of the coupling between the cross-bridge mechanism and the ATP
hydrolysis process were still not clear (the Lymn–Taylor cycle was published in 1971
Lymn and Taylor (1971)). A.F. Huxley proposed a model whose goal was to quantify the
relative dynamics of actin and myosin filaments during contraction. The ideas contained
in his 1957 paper form the baseline of almost all muscle contraction models published ever
since (see the coming Sections). The model is illustrated on Fig.2.10.

In Huxley’s model, the myosin head is represented by a linear spring connected to
the backbone. The strain of the spring is denoted by x. Huxley assumed the existence
of binding sites on the actin filament. The head undergoes thermal fluctuations that
can stretch or compress the spring in a symmetric manner. Rectification of the noise is
brought in by the binding and unbinding rate functions f and g. The latter describe the
effect of chemical reactions which control the affinity of myosin for actin. Our Fig.2.10B
shows how f and g may depend on x. Huxley supposed that attachment can only occur
within an distance h from the resting position of the head therefore f is maximal at
x = h (to favor high force generating cross-bridges) and decreases with decreasing x. The
rate of detachment g is assumed to be very high at x < 0 to prevent cross-bridges from
being compressed. Otherwise, g is finite everywhere to ensure that when muscle activation
stops, all heads can detach. The fact that the cross-bridges preferably attach in a stretched
configurations is the ‘ghost’ of the power-stroke mechanism, the idea that in some way,
energy must be stored and discharged upon attachment.
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Fig. 2.10 – A.F. Huxley’s model for acto-myosin interaction published in (Huxley, 1957). (A):
sketch of the model. The myosin motor is connected to the backbone by a linear spring with stiffness κ.
The resting strain of the spring is set to 0. The actual strain of the myosin head is x. The actin and myosin
filaments are moving past each other at a velocity v. The myosin head undergoes thermal fluctuations
that bring it with equal probability into stretched and compressed states. To bias this process, Huxley
introduces the binding and unbinding functions f and g. To have a maximal mechanical efficiency, it is
preferable to attach with a large strain, therefore f was chosen to depend linearly on x with a maximum at
x = h, the maximum distance allowed for attachment and f = 0 for x < 0. The form of g is more subtle.
Again to preserve mechanical efficiency, cross-bridges must detach if there are in compression, hence the
high value of g for x < 0. The reason why g is finite everywhere is to ensure that when activation stops,
the muscle completely relaxes i.e., all heads detach.

Huxley’s model also takes into account that each cross-bridge is convected at a velocity
v towards the Z–line by the action of other motors. Denote n (x, t) the normalized density
of cross-bridges with strain x at time t. The kinetic equation for the population of cross-
bridges can be written as follows:

Dn

Dt
=
∂n

∂t
+ v

∂n

∂x
= (n0 − n) f − ng (2.4.1)

T (t) = κ

∫

xn (t, x) dx (2.4.2)

Hence, if the velocity v is high, the number of attached heads drops and therefore the
tension T is reduced. In the case v = const with f and g as shown on Fig.2.10, an
analytic solution of the stationary version of Eq.(2.4.1) can be found and parameters can
be adjusted to fit the force-velocity curve in shortening regimes. The parameter n0 in
Eq.(2.4.1) has been introduced in (Chapelle et al., 2011) to account for the fact that not
all detached myosins can bind to actin at time t: first the power-stroke must be ‘recharged’
through ATP hydrolysis before the heads can bind again to actin (see Fig.1.8). In (Huxley,
1957), n0 = 1.

As an example of the modern version of the Huxley approach we can mention the work
of D. Chapelle et al. who explicitly relate the definition of f and g to the rate of ATP con-
sumption and to the calcium concentration in order to simulate the contraction of cardiac
muscle and its control by electrical stimuli from the pacemaker cells (Chapelle et al., 2011).

This recent model and the original 1957 Huxley’s model can reproduce quite accurately
the basic force-velocity relation, i.e. the steady state contraction mechanism. However,
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they cannot account for some particularities of the force velocity relation, for instance the
fact that for loads larger than the isometric tension T0, the muscle elongates a velocity
much smaller than the direct extrapolation of the Hill’s force velocity curve (Katz, 1939).
Moreover it is known that for intermediate activation condition (intermediate Ca2+ con-
centration), muscles exhibit a regime of SPontaneous Oscillatory Contraction (SPOC, see
(Ishiwata et al., 2011)) that might play a crucial role in the periodic contraction of heart
muscles (Sasaki et al., 2005, 2006); these models cannot reproduce such phenomenon.

A particularity of those approaches is that the cross-bridge is formed in a stretched
configuration. Therefore to be efficient, the motor has to accumulate elastic energy before
binding. Huxley assumed that this energy accumulation originates from interactions with
the thermal bath before binding. The experimental evidence of a quick force recovery after
a sudden length change (see Sec.2.2) contradicted this hypothesis as it revealed that after
the attached cross-bridges experience an elastic drop in force during the step, they are able
to re-generate a force within a time scale that is incompatible with the ATP turnover which
exclude the possibility of binding of fresh myosin heads. These experiments suggested the
presence of a power-stroke mechanism inside the cross-bridge itself.

2.4.3 Power-stroke models

Huxley and Simmons’ 1971 model

This work was inspired by an earlier paper published in 1969 by H.E. Huxley (Huxley,
1969). He proposed a model of muscle contraction where the cross bridge mechanical
cycle includes a rotation of the S1 sub-fragment of myosin II (see Fig.2.2), with respect
to the actin filament. This first picture of the power-stroke explains force generation by
a local conformational change in the cross-bridge rather than by rectification of thermal
noise prior to attachment. Indeed the storage of the required elastic energy can be time
consuming (specially if the stiffness of the head is high) which is incompatible with the
fast transient response observed after a sudden length change.

Following the work of H.E. Huxley, A.F. Huxley and R.M. Simmons proposed in
(Huxley and Simmons, 1971) a model allowing one to explain the this quick force recovery
quantitatively. The model is based on the association of 2 elements (see Fig.2.11):

1. A multistable element described by a discrete energy potential v. The associated
internal degree of freedom ǫx is interpreted as the angular position of the myosin
head with respect to actin. The discrete potential is shown on Fig.2.11A for the case
of two energy wells. Each energy well is infinitely steep and the variable ǫx can be
interpreted as a ‘spin’ degree of freedom. The 2 preferred states are separated by
a distance a characterizing the power-stroke size. It must be noted that the energy
barriers B1 and B0 are constant and therefore do not depend on the applied force.

2. A linear elastic element whose energy is of the type: Ve (ǫy, ǫx) = 1/2κ (ǫy − ǫx)2 (see
Fig.2.11B). ǫy is the overall strain in the cross-bridge. In the original 1971 model, the
actin and myosin filaments are rigid therefore the applied length step corresponds to
a direct change of ǫy.

While Huxley and Simmons used in their paper the language of chemical reactions,
here we reformulate their theory in terms of general statistical mechanics. Consider a
population of N cross-bridges connected in parallel. In thermal equilibrium, the tension
is computed from the partition function (see Sec.4.1) of the system. We denote N1 the
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Fig. 2.11 – Power-stroke model proposed by A.F. Huxley and R.M. Simmons in 1971 in
(Huxley and Simmons, 1971). (A): the conformational change of the myosin head is associated with the
energy potential v. This potential allows only discrete positions (here to position ǫx = 0 and ǫx = −a).
The energy offset of the right had energy well is v0. Huxley introduced 2 arbitrary energy barriers B1

and B0 for the left to right and right to left transition respectively. (B): to take into account the elastic
properties of the motor, he added an harmonic potential of stiffness κ to the double well potential. ǫy

is the overall strain in the cross-bridge. As Huxley assumed rigid myofilaments, the length step applied
on the fiber is equal to the change in ǫy . The transition rate between the 2 conformations are noted k+

(pre-power-stroke to post-power-stroke) and k− (post-power-stroke to pre-power-stroke).

number of cross-bridges with ǫx = −a. The partition function for this model is 1:

Z (ey, β) =

N
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)
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where β = 1/kbθ, kb being the Boltzmann constant and θ the absolute temperature. Then,
from the partition function the equilibrium tension after the quick recovery is given by:

T2 (ǫy, β) =
∂F

∂ǫy
,where F = − 1

β
ln (Z (ǫy, β))

T2 (ǫy, β) = Nκ

(

ǫy +
a

2
− a

2
tanh

(

β

2

(

κǫya+ κ
a2

2
− v0

)))

(2.4.3)

In isometric contraction (ǫy = ǫ0y) it was supposed that N1/N = 1/2, which here would
mean that the total energy of the 2 conformations are equal so v0 = κǫ0ya+κa2/2. Therefore
by eliminating v0 we obtain:

T2 = Nκ

(

ǫy +
a

2
− a

2
tanh

(

β

2
κa
(

ǫy − ǫ0y
)

))

.

We can rewrite the preceding formula in a non dimensional form:

T 2 = N

(

ǫy +
1

2
− 1

2
tanh

(

β

2

(

ǫy − ǫ0y
)

))

,

1. We use the following notation for the binomial coefficients:
(

N
K

)

= N!
K!(N−K)!
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Fig. 2.12 – T2 curves obtained with Huxley and Simmons 1971 model for different values of

β. We see that for β < 4, the curve is monotone, otherwise it develops a region of negative stiffness near
ǫy = ǫ0

y. The 2 linear regimes correspond to an homogeneous population of cross-bridges inside the left
hand (post-power-stroke configuration) or in the right hand well (pre-power-stroke configuration).

with: T 2 = T2/(κa), ǫy = ǫy/a and β = κa2/ (kbθ). On Fig.2.12, we represent T 2/T0 (ǫy),
with T 0 = T 2

(

ǫy = ǫ0y
)

, for different values of β. The curves show two linear regimes cor-
responding to the cases where the cross-bridges are all in the left well (post-power-stroke
conformation) and in the right well (pre-power-stroke conformation). For low values of β,
the T 2 curve is monotone. At the critical value β = 4, the curve shows an incipient hori-
zontal plateau as observed experimentally (see Fig.2.5). For β > 4, a region with negative
stiffness starts to develop and, ultimately, when β → ∞, we observe a sharp transition
between the 2 linear regimes. The Huxley and Simmons model is therefore potentially
able to reproduce the plateau of the T2 curve, by redistributing the cross-bridges between
the 2 conformations.

The next step in the Huxley and Simmons theory is the treatment of the kinetics of
the transition between the 2 conformations. Here by presenting a rigorous definition of
the transition rates (see Fig.2.13), we reveal an inconsistency in the reasoning of Hux-
ley and Simmons concerning the computation of the equilibration time between the two
configuration even though it does not affect their results.

Huxley and Simmons denoted k+ and k− the transition rates from pre-power-stroke
to post-power-stroke conformation and vice-versa (see Fig.2.11). According to Kramers
theory for chemical reactions (see Sec.C.1.2 and Kramers (1940)),the rate constant k+ and
k− are inversely proportional to the exponential function of the energy barriers. Then, in
the Huxley and Simmons model, the size of the barriers depends on the elastic energy in the
linear spring and on the shape of the potential v. We denote ∆V e (ǫy) = 1

2 (ǫy + 1)2− 1
2ǫ

2
y =

ǫy + 1
2 , the difference in elastic energies between the 2 conformations at a given ǫy. The

quantities B1 and B0 are constants as postulated by Huxley and Simmons.

We have to distinguish two cases:

1. If ǫy < −1
2 (see Fig.2.13A), then ∆Ve (ǫy) < 0 and the energy barrier from pre-

power-stroke (right hand well) to post-power-stroke (left hand well) is equal to B0

while the barrier from post-power-stroke to pre-power-stroke is B1 − ∆Ve (ǫy)

2. If ǫy >
1
2 (see Fig.2.13B), then ∆Ve (ǫy) > 0 the energy barrier from pre-power-stroke

(right hand well) to post-power-stroke (left hand well) is equal to B0 + ∆Ve (ǫy) a
the barrier from post-power-stroke to pre-power-stroke is B1

Huxley and Simmons considered only the case ǫy >
1
2 . Following the preceding rules
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Fig. 2.13 – Consistent definition of the transition rates in the Huxley and Simmons model

the transition rates have to be defined as follows:

k+ (ǫy) =

{

α exp
[

−βB0

]

= k0
+ = const if ǫy < −1

2

α exp
[

−β
(

B0 + ∆V e (ǫy)
)]

if ǫy > −1
2

(2.4.4)

k− (ǫy) =

{

α exp
[

−β
(

B1 − ∆V e (ǫy)
)]

if ǫy < −1
2

α exp
[

−βB1

]

= k0
− = const if ǫy > −1

2

(2.4.5)

where α is a constant. In the model represented on Fig.2.13, B1 > B0 and thus k0
+ > k0

−.

Note that the ‘chemical’ rates k+ and k− depend continuously on the cross-bridge’s
overall strain ǫy. Usually, chemical reactions are viewed as jump processes between discrete
‘sites’ that have a fixed position in the conformational space. Here, instead the chemical
states are represented not by points on the configurational space but by lines (see Fig.2.23).

Now for ǫy < −1/2 we can rewrite k− as:

k− (ǫy) = k0
+ exp [−β (B1 −B0 − ∆Ve (ǫy))]

= k0
+ exp [−β (v0 − ∆Ve (ǫy))]

and, because v0 = ǫ0y + 1
2 , we obtain:

k− (ǫy) = k0
+ exp

[

−β
(

ǫ0y − ǫy
)]

for ǫy < −1

2
(2.4.6)

and similarly

k+ (ǫy) = k0
− exp

[

−β
(

ǫy − ǫ0y
)]

for ǫy > −1

2
(2.4.7)

Hence, by assuming the evolution of the population N1 in post-power-stroke conformation
is governed by a jump process, we write:

dN1

dt
= k+ (N −N1) − k−N1 = k+N − (k+ + k−)N1.
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Fig. 2.14 – Consistent representation of the rate following Huxley and Simmons model. ×:
experimental data from Huxley and Simmons (1971). Solid line: rate computed following Huxley and
Simmons paper corresponding to the case ǫy > −1/2 (values to read on the left axis). The dashed line
(values read on the right axis) corresponds to the case ǫy < −1/2. Note that in both cases the rates are
finite for large |ǫy |. Huxley and Simmons model suggests that for large shortening the rate will actually
decrease with ǫy

The system will then reach equilibrium with a rate

τ−1 = (k+ + k−) =

{

k0
+

(

1 + exp
[

−β
(

ǫ0y − ǫy
)])

for ǫy < −1
2

k0
−
(

1 + exp
[

−β
(

ǫy − ǫ0y
)])

for ǫy > −1
2

(2.4.8)

With the parameters used by Huxley and Simmons, the condition ǫy > −1/2 corre-
sponds to ǫy − ǫ0y > −8 nm/hs which covers the range of their measurements and match
the experimental data (see Fig.2.14). However, one must keep in mind the consistency
condition on ǫy when dealing with a different set of parameters and in particular a different
value of ǫ0y.

Fig.2.14 shows the rate of equilibration obtained by Huxley and Simmons (solid line).
(×) represent Huxley and Simmons experimental data. The parameters are adjusted to
match the data with the solid line while maintaining the plateau of the T2 curve (k0

− = 0.2,
β = 4, ǫ0y = 1/2 which corresponds to v0 = 1, same parameter as in Huxley and Simmons
(1971)).

In the Huxley and Simmons model, because the energy barrier B1 and B0 do not de-
pend on the applied load, the equilibration rate becomes constant for large values of |ǫ|y
(see Fig.2.14B). This property cannot remain if one considers a regularized version of the
Huxley and Simmons potential (see Fig.2.15B). Even with the slightest smoothing, the
barrier B1 and B0 becomes functions of ǫy and eventually disappear at large loadings;
consequently, the equilibration rate cannot be kept constant in such regime an one should
actually observe an increase (see Fig.2.15D).

Eisenberg and Hill’s 1978 model

One of the main criticism about this otherwise extremely important model came from
T.L. Hill and co-workers in (Eisenberg and Hill, 1978; Eisenberg et al., 1980). Huxley and
Simmons model states that the transition between the 2 conformations implies stretching
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Fig. 2.15 – Hard spin model vs soft spin model. On (A), we schematically represent a bi-stable
model of the type used by Huxley and Simmons characterized by infinitely steep wells and with fixed barriers
B1 and B0 and on (B) we show a regularized version of this potential. (A) model in non-regularizable
without removing this hypothesis of fixed barriers. When a force is applied on the Huxley and Simmons
model B1 and B0 remains unchanged while with even the slightest smoothing of the potential, barriers are
always removed at finite force. (C) and (D) shows the trends of the rate curves expected from models (A)
and (B). With model (A), the rate decrease to a constant at large loading while with model, because of
the removal of the fixed barriers, the rate always increases at large loadings.

of the spring by thermal fluctuations required to overcome the energy barrier. According
to Hill et al., this process is likely to be too slow to reproduce experiments, specially if
the the parameter β is high since the rate of recovery is an exponential function of β (see
Eq.(2.4.8)). As β = κa2/(kbθ), an increase either in κ or a will considerably increase the
equilibration time between the conformational states. Huxley and Simmons were of course
aware of this drawback and therefore already in their original paper contemplated dividing
the power-stroke into at least 2 sub-steps (see Huxley and Simmons (1971) and Fig.2.17).
To overcome this difficulty, Hill and Eisenberg proposed a slightly different model.

In 1974, T.L. Hill in his attempt to formalize and unify the existing approaches to
muscle contraction modeling, emphasized the necessity to compute free energy profiles
and extract forces from the knowledge of the free energy (Hill and Chen, 1974). Following
this idea, E. Eisenberg and T.L. Hill proposed in 1978, to associate some energy landscape
with the conformational change then couple it with the energy of the spring. In the
Huxley and Simmons model, the non dimensional energy of the spring is always equal
to 1/2 (ǫy − ǫx)2 with ǫx the internal degree of freedom equal to 0 or −1 depending on
the conformation. In Eisenberg and Hill’s model, the spring is now a bi-stable element
whose energy depends on the internal degree of freedom q , ǫx (Eisenberg and Hill, 1978).
In other word, the conformational change occur without net movement of the lever arm.
They set:

V e (ǫy, ǫx, q) =

{

1
2 (ǫy)2 , if q = 0
1
2 (ǫy + 1)2 , if q = −1

Huxley and Simmons’ and Eisenberg and Hill’s models are compared on Fig.2.16. For
the Huxley and Simmons model, the internal degree of freedom accounting for the con-
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Fig. 2.16 – Huxley and Simmons’ 1971 model vs Eisenberg and Hill’s 1978 model. In both
models, the conformational change is associated to a jump between two discrete values of an internal degree
of freedom. In both conformations the energy of the cross-bridge is quadratic. In Huxley and Simmons’
model (A), the internal degree of freedom is the rotation of the head ǫx so that the energy of the spring and
the conformational change are tightly coupled, see the arrows showing the jump between the conformations
on (A). In Eisenberg and Hill’s model (B), the rotation ǫx is not associated to the conformational change
which now depend on some other degree of freedom noted q. In both models, the tension attained at the
end of the conformational change are the same. In both model we represent in the ǫx/q−(ǫy −ǫx) plane the
level set of the energy landscape implicitly meant by Eisenberg and Hill although the continuous dynamics
was still replaced by a jump process.

formational change is the rotation of the lever arm ǫx which takes discrete values (see
Fig.2.16A). Note that in both models, the energy of the cross-bridge after the conforma-
tional change is the same and that relaxation of the tension occurs with a net change in
ǫy − ǫx. Although Eisenberg and Hill, show an explicit energy landscape represented by
level sets (see Fig.2.16B) in fact the continuous dynamics in their model was still replaced
by the jump process.

The crucial feature in the approach of Eisenberg and Hill is that the transition between
q = 0 and q = −1 states does not require stochastic stretching the elastic spring and so
the transition rates between conformations have to be prescribed as phenomenological
functions of the strain ǫy − ǫx. Hence there was still no formal link in this model between
the rate functions and energy barriers.

Discussion

Nowadays the power-stroke is mostly modeled using Huxley and Simmons approach
providing a direct link between the rate constants and the mechanical state of the spring.
Also this approach is consistent with results of crystallographic studies which unambigu-
ously shows the rotation of the lever arm following the conformational change (Dominguez et al.,
1998; Rayment et al., 1993). However, as correctly stated by T.L. Hill, if the value
of β is too large, the T2 curve starts to develop a negative slope and the kinetics of
the quick recovery might become too slow compared to experimental rate measurements
(Piazzesi and Lombardi, 1995). This problem is illustrated on Fig.2.17. The energy of
the system is represented against the overall strain in the cross-bridge ǫy. To reproduce
the T2 curve and in particular the interception of the T2 curve with the abscissa (lo-
cated at δ = −10 on Fig.2.5), the size of the power-stroke (a) must be about 8 − 10
nm (taking into account filament elasticity). If the stiffness of the spring is low (as
sketched on Fig.2.17A), this ∼ 10 nm sliding can be achieved with only one confor-
mational change without compressing the spring (a typical chemical “pathway” is indi-
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Fig. 2.17 – Free energy profiles for chemo-mechanical models. (A) case with low cross-bridge
stiffness. In this case, only 2 attached states are needed to account for the maximum sliding required for
the experimental T2 curve. If the stiffness is higher (B), one or more intermediate conformations must be
introduced to avoid compression of the cross-bridges. In both (A) and (B), there are 2 detached states
whose energy is strain independent. The energy difference between these detached states is equal to energy
supplied by ATP hydrolysis. The bold lines indicate an example of chemical pathway between the states.

cated with bold lines). On the other hand, a high stiffness (see Fig.2.17B) requires the
definition of one or more sub-steps, otherwise the cross-bridge has to be considerably
compressed before the conformational change can occur so the mechanical efficiency is
reduced. This has lead to many discussions regarding the necessity of introducing in-
termediate states in the power-stroke (Huxley and Simmons, 1971; Linari and Lombardi,
2010; Offer and Ranatunga, 2010; Piazzesi and Lombardi, 1995; Smith et al., 2008) and
the issue remains open.

2.4.4 Recent developments

The formalism introduced by Hill in the seventies for the modeling of muscle contraction
(Eisenberg and Hill, 1978; Hill and Chen, 1974) has been widely used in the so-called
chemo-mechanical models (As an example we can mention Piazzesi and Lombardi (1995)
which is illustrated on Fig.2.18; see also Smith et al. (2008)). In this class of models, the
different states of the cross-bridge cycle are associated with their own energy landscapes
that depend on the strain in the cross-bridge. Usually, the energy of the detached states
are constant and differ only by the energy level controlled by the ATP hydrolysis. An
example of such model is sketched on Fig.2.17.

The 2 detached states are represented as strait lines. The attached states are usually
described using Huxley and Simmons theory of the power-stroke with strain dependent
rate functions satisfying locally detailed balance condition. Some rate functions (for at-
tachment and detachment) are prescribed phenomenologically and are adjusted to fit ex-
perimental data. The choice of the rate constants creates the ‘preferred pathways’ among
the states (see the bold lines on Fig.2.17). The rate functions used by V. Lombardi et al.

in (Piazzesi and Lombardi, 1995) are shown on Fig.2.18B,C,D and E.

This type of modeling is wide spread in the community with different groups empha-
sizing different pathways and different number of attached states. For instance T.A.J
Duke suggested a version with 3 attached states in (Duke, 1999). The rate constants for
attachment and detachment do note depend on stretch so that, finally, this model has
only a discrete set of parameters and is able to reproduce quantitatively many experi-
mental observations for isotonic velocity transients. However, the quick force recovery is
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Fig. 2.18 – Chemo-mechanical model proposed by G.Piazzesi et al. in (Piazzesi and Lombardi,
1995). (A left): Ensemble of possible reactions between the different chemical states. A1–A2 are respec-
tively the different attached states from pre– to post-power-stroke. D1 and D2 represent the M-ATP and
M-ADP-Pi states respectively. (A right): Energy of the different states. Attached states are harmonic
with the same stiffness κ and the detached states have a fixed energy. The difference between the energy
of state D1 and D2 is the energy input from ATP hydrolysis. (B, C and D) shows the rate transition
function between the states.

reproduced only qualitatively. Another simple chemo-mechanical model is proposed in
(Cordova et al., 1992), with attachment and detachment rates depending on the strain in
the myosin (like in (Huxley, 1957)). They also model the binding sites as energy wells
whose depth depends on the cross-bridge strain. The model of V.Lombardi et al. shown
on Fig.2.18 contains 3 attached states (A1, A2 and A3) and 2 detached states (D1 and D2)
and they consider a chemical scheme with 6 forward rate functions and their reverse. Even
more detailed schemes has been used by M. Linari and co-workers in order to account for
specific effects of the chemical species present in muscle such as the inorganic phosphate.
These models use up to 5 attached states and 4 detached states (Linari et al., 2010, 2009).

2.4.5 Brownian ratchet: purely mechanical model

Modeling molecular motors has been recently a very active field of bio-physics stim-
ulated by the development of single molecule techniques (see Sec.2.3). The goal was to
explain how a molecular motor (not necessarily muscle myosin II) can ‘walk’ on a track in
a preferred direction provided that it is constantly hit by molecules from the surrounding
solvent in a stochastic way.

In Brownian ratchets models, the idea is to trace one or several mesoscopic degrees
of freedom (x) in full details. These degrees of freedom are explicitly associated with a
particular energy landscape V (x). Most of the other degrees of freedom are assumed to
be equilibrated and are represented by a thermostat (white noise and dissipation) im-
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posing finite temperature. In this framework, the inertial terms can often be neglected
(overdamped regimes) and the motion of the particle is driven by the Langevin (Smolu-
chowsky) equation:

η
dx

dt
= −∂xV

′ (x) + Γ (t) (2.4.9)

where η is the viscous drag coefficient and Γ is the random Langevin’s force which
is prescribed by the fluctuation dissipation theorem: 〈Γ (t)〉 = 0 and 〈Γ (t) Γ (t′)〉 =
2ηkbθδ (t− t′). 〈.〉 denote ensemble average and δ is the Dirac function.

The implicit non-equilibrium degrees of freedom representing non-equilibrium reservoir
enter the model as an explicit correlated time dependent signal for instance a colored

component of the noise and such model generate directional motion of the particle x if the
potential V (x) is asymmetric.

The colored component of the noise can take multiple forms (see the review by F.
Jüllicher A. Ajdari and J. Prost (Jülicher et al., 1997)). For instance one can use a time-
periodic force (rocking)

V (x, t) = V (x) + ψ (t) with 〈ψ (t)〉 = 0. (2.4.10)

Another option is a time-periodic multiplier (flashing)

W (x, t) = ψ (t)V (x, t) . (2.4.11)

In Eq.(2.4.10) ψ has a clear mechanical meaning, it is an external force. For instance
in (Magnasco, 1993) (and Fig.2.19A), the non-symmetric periodic potential V (x) can be
represented as a piecewise linear function of the position x while the time-periodic force
ψ (t) was assumed to be piecewise constant (with 0 time average). Of course, for sufficiently
large |ψ|, the motor can work even at zero temperature, but when |ψ| is small temperature
is needed to overcome the energy barriers in V . When the potential shown in Fig.2.19A
is rocked (see dashed lines), the distance traveled before the rocking is inverted is higher
in the right direction than in the left direction. Hence a steady state flux to the right is
generated. The same type of motion can be obtained with a symmetric potential and a
non-symmetric time dependent force.

The function ψ (t) is less obvious to interpret mechanically. It describes the affinity of
the particle to certain ‘states’ in the energy landscape. A way to understand this is to assign
different energy landscapes to different ‘chemical states’ (see Jülicher et al., 1997). This
type of model is a generalization of the chemo-mechanical models presented in the previous
sub-section. Each state i is characterized by an energy landscape Wi (see Fig.2.19B for
a case with 2 states) where the motion of a particle is govern by a Langevin’s equation
of the type (2.4.9), with Γ prescribed by the fluctuation-dissipation theorem. Like in
chemo-mechanical models, the transition rates between the sates are prescribed functions
of the position x. The necessary condition to obtain a directed motion is to break detailed
balance. For the case shown on Fig.2.19B, if detailed balance is satisfied, the transition
functions k1 and k2 are related as follows:

k1 (x) = k2 (x) e−β(W1(x)−W2(x))

Note that this relation is equivalent to the one used in the Huxley and Simmons model of
the power-stroke to describe thermal equilibrium. Now, to break the detailed balance we
can write (Chauwin et al., 1994):

k1 (x) = k2 (x) (exp [β (W1 −W2)] + ξ (x))
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Fig. 2.19 – Thermal ratchets and multistate modeling. We show two examples of how to create
a biased movement out of the classical overdamped Langevin’s equation (2.4.9). (A): the motion of the
particle x is driven by a non-symmetric potential W . In presence of a symmetric time periodic force F (t)
(here equal to ±F ), a finite steady state flux is generated in the direction of the lower gradient of W (here
to the right). See Magnasco (1993). (B): the particle oscillate between 2 energy potential: W1, representing
an ‘attached’ state and W2, representing a ‘detached state’. The necessary condition to generate a directed
motion is to break detailed balance between the transition function k1 and k2 (Chauwin et al., 1994;
Prost et al., 1994), for instance by using k1 (x) = k2 (x) (exp [β (W1 − W 2)] + ξ (x)) where ξ (x) controls
the distance from thermal equilibrium. In both cases, the motor moves to the right.

where ξ (x) is a prescribed function that controls the local deviation from thermal equi-
librium (see Fig.2.19B, lower part). The presence of ξ ensures a directed motion (here to
the right) (Jülicher and Prost, 1997): in the example shown on Fig.2.19, the particle has a
higher probability to be ‘pumped’ to detached state W2 when it has moved to the bottom
of the sawtooth potential. This prevents the particles from moving backward where the
slope of the potential is less steep.

A quadratic potential can be added to W1 to take into account the elasticity of the
motor (Guerin et al., 2010b; Placais et al., 2009). In those models the definition of the
power-stroke is not associated with a conformational change occurring without net dis-
placement along the track. From Fig.2.19B for instance it is not straightforward to identify
a particular sequence of motion to be interpreted as the power-stroke and so it becomes
ambiguous whether the motor is driven by the power-stroke or by the ratchet.

In another recent development H. Wang and G. Oster proposed their own definition
of ‘power-stroke models’ and ‘ratchet models’ in (Wang and Oster, 2002). They consider
a motor coupled to a ‘load’ or ‘cargo’ which it then attempts to move. Based on the fact
that, in steady state regime the system is periodic in time, they write the energy balance
as follows:

ẆM + ẆE − Q̇out + Q̇in = 0 (2.4.12)

where WM is the work done by the motor, WE is the work done by external forces −Qout

is the work done by the drag forces of the thermostat and Qin is the work done by thermal
forces from the thermostat. During one cycle, the motor consumes energy equal to ∆GC

at a rate r where ∆GC is the free energy change in one reaction cycle (it correspond to
the energy released by the ATP hydrolysis) and r is the rate of chemical reactions. They
define the ‘percent power stroke’ of such model by:

fP =
ẆM

r (−∆GC)
(2.4.13)
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A B

Fig. 2.20 – Examples of a power-stroke model (A) and of a ratchet model (B). From
Wang and Oster (2002). The motor is driven by a series of periodic potentials φi shifted in the direc-
tion of increasing motor coordinate θ and with lower free energy at each step. A a power-stroke model.
The amount of work done during one cycle (①→③) is negative and larger that the net free energy change
∆GC , thus fP > 1. B: a ratchet model. The forward motion occurs against energy gradients that moves
the motor backward. Hence ∆WM > 0 and thus fR > 1.

and similarly the ‘percent ratchet’ is defined as:

fR = 1 − ẆM

r (−∆GC)
(2.4.14)

Therefore a motor has two components added in such a way that fP + fR = 1. We can
then qualify a given model a power-stroke model as soon as fR exceeds a certain predefined
proportion f0.

Fig.2.20 shows two hypothetical motor systems modeled using the ‘flashing’ ratchet
formalism. Each chemical state Si is associated to an energy landscape φi (here all states
have the same energy landscape for simplicity). Like in the model shown on Fig.2.19B,
the transition between the states is forced at certain values of the coordinate (see the grey
regions).

In (A), the free energy change due to the transition from ① to ② is positive while the
energy change from ② to ③ corresponding to the power-stroke in this interpretation is
negative and is larger than the net free energy change during the cycle (∆WM > −∆GC).
As a result, the power-stroke component in Eq.(2.4.13) is larger that 1. This arises from
the fact that the transition ①→② is not energetically preferable.

In Fig.2.20B, the forward motion (①→②) is achieved through diffusion against the
energy gradient so the work done by the motor on the load is positive ∆WM > 0 and
consequently fR > 1.

In the above sense, the ‘soft motor’ model proposed by F.Jülicher and J.Prost illus-
trated in Fig.2.19B et al., appears as a another power-stroke model.

To summarize, the ratchet models merge all degrees of freedom into one coordinate in
such a way that the role played by the swing of the lever arm (usually associated with
the power-stroke) remains unclear. On the other hand, in modern chemo-mechanical cy-
cles, breaking detailed balance is hidden behind the fact that the energy of the detached
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stated attained at the end of the stroke and the energy of the detached state before at-
tachment differ by the amount ∆GAT P although they represent the same mechanical state
(see Fig.2.17 and Piazzesi and Lombardi (1995); Smith et al. (2008)). In this sense these
models do not provide clear guidance on how the underlying mechanical phenomena can
be reproduced in the lab at larger scales.

It is also important to have in mind that most ratchet models and chemo-mechanical
models reproduce the quick recovery only qualitatively, or if quantitatively then at the
expense of introducing numerous intermediate power-stroke states (Linari et al., 2009).
In fact, these models mostly focus on long time scales associated with the force-velocity
relation. However, the well documented phenomenon of the swinging of the lever arm is
probably essential for an efficient contraction and therefore, we believe it is necessary to
capture also the fast transients revealing the inner working of the power-stroke mechanism
inside theoretical models.

2.5 The proposed model of a half sarcomere

Here we list the main ingredients of what we call a mechanical model of the power-
stroke. Such model should contain only few mesoscopic degrees of freedom, and be driven
only through easily reproducible correlated compound of the noise. First of all, we dis-
tinguish the degrees of freedom associated with the attachment-detachment mechanism
and with the power-stroke mechanism. In the original Huxley and Simmons model (see
Fig.2.23A) the variable y − x is associated with the stretching of the myosin-head elastic
component and the conformational change was implicitly linked with a discrete variable
x (spin model). As a generalization, we can consider x as a continuous variable as it
was first implicitly suggested by E. Eisenberg and T.L. Hill (Eisenberg and Hill, 1978)
and later implemented in (Marcucci and Truskinovsky, 2010). Here, we extend the latter
model, where the cross-bridges were mechanically independent, by considering the simplest
elastic interaction between the individual cross-bridges inside a half-sarcomere

2.5.1 Myosin head as a bi-stable spring

L. Marcucci and L. Truskinovsky (Marcucci and Truskinovsky, 2010) generalized the
Huxley and Simmons model by replacing the discrete degree of freedom accounting for the
conformation of the myosin head by a continuous variable (called here x). This degree of
freedom can be interpreted as the projected angle between the sub-fragment S1 of the head
(see Fig.2.2) and the actin filament. Since the structure of half-sarcomeres is essentially
one dimensional, we choose to work with elongations instead of angles, reminding that
in the case of x, there is a direct relation with the orientation of the myosin head. The
introduction of a continuous variable eliminates the necessity to deal with multiple discrete
configurations for the head domain (see the previous section). The model have to takes
into account 2 mechanical characteristics of the myosin head:

1. The head has at least 2 distinct conformations, pre- and post-power-stroke which
suggests that the potential has to be bi-stable.

2. The head must also have series elasticity that will enter the mechanical response T1

after a length step (see Sec.2.2).

To account for the bi-stability of the myosin head, we associate with S1 a mechan-
ical energy v modeled as a continuous piecewise quadratic function (see Fig.2.21). We
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Fig. 2.21 – Mechanical model of a single cross-bridge . Each myosin S1 sub-fragment is associated
with a bi-stable energy v modeled as a piecewise quadratic function of the rotational degree of freedom x.
In addition to this non convex energy, we associate with S1 a series linear elastic element (with stiffness κ)
that models the stretching of the lever arm.

intentionally use this rather simple form to make the computations analytically doable.
In addition to this non convex energy, we associate with S1 a series linear elastic element
(with stiffness κ) that models the stretching of the lever arm. Hence we can write the
energy of a cross bridge as

Vxb (x, y) = v(x) +
1

2
κ(y − x− l0)2 where (2.5.1)

v (x) =

{

1
2κ0(x)2 + v0 if x > l,
1
2κ1(x+ a)2 if x ≤ l.

(2.5.2)

l is the point of intersection of the 2 parabolas in the interval [−a, 0] (see Fig.2.21). Later
on, we will refer to the state x = 0 (resp. x = −a) as well 0 (resp. well 1 ); those states are
of course the pre-power-stroke and post-power-stroke conformation respectively. Parame-
ters κ1 and κ0 are the respective stiffnesses of well 1 and well 0. In the limit κ0 → ∞ and
κ1 → ∞, this model is similar to the model of Huxley and Simmons (Huxley and Simmons,
1971).

Notice that in Huxley and Simmons’s model, a is a fixed distance between the pre- and
post-power-stroke conformations. We explained in the previous section the problems with
this approach. In our model, a is interpreted as the characteristic length of the conforma-
tional change rather than the unique size of the power-stroke. Note that experimentally,
this distance cannot be measured directly, but crystallographic studies of the myosin II
structure suggest that a is close to 10 nm (Dominguez et al., 1998; Holmes and Geeves,
2000; Rayment et al., 1993)

Another parameter v0 is the energy difference between the pre-power-stroke and the
post-power-stroke configurations. We would like v (x) to be continuous in x, hence we
impose the following relation between v0 and l that defines v0:

1

2
κ0(l)2 + v0 =

1

2
κ1(l + a)2, (2.5.3)

the cross-bridge model is fully described by 4 parameters: κ1,κ0, l and a.

We assumed for simplicity that the spring in series with the bi-stable element was
linear. However, in a recent paper, M.Kaya and H.Higuchi mention measured a non elastic
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Fig. 2.22 – Metastability of a single cross-bridge . (I): equilibrium relation. The equilibrium
positions in the double well potential are the solutions of v′ (x) = (y −x− l0). We represented the solutions
for y = −0.3 denoted A, B and C with B localized on the degenerate spinodal region and the unique
solution D for y = 0.4. (II): Equilibrium position of x in double well potential vs y. The solid lines
represent the metastable states and the dashed line the unstable state. (III) tension vs y in the different
equilibrium configurations.

behaviour of the myosin head using optical tweezers (Kaya and Higuchi, 2010). They show
basically two linear regime, and, in one of them, the elastic modulus is comparable to the
one we use in our study, which comes from an indirect measurement via the full fiber
elasticity (Piazzesi et al., 2007) (see Sec.7.1.3). The second linear regime correspond to
the buckling of the S2 part and seems to be laying outside physiological regime of myosin.

2.5.2 Local minima of the energy landscape

In our description of the myosin head, we have separated the linear elasticity and the
bi-stable potential. This is done to introduce local minima in the energy landscape of the
cross-bridge. Indeed, at a given total length, one could have just considered the bi-stable
potential which already shows elasticity characterized by κ1 and κ0. However, with this
approach, which correspond to κ → ∞ in our model, at fixed y, there is only one possible
state x and thus no metastability. The introduction of an intermediate degree of freedom
allows the transition of x between 2 locally stable equilibrium positions at fixed y, one in
well 0 and the other in well 1. For a single cross-bridge, mechanical equilibrium at a fixed
y is given the following relation:

v′ (x) = y − x− l0 (2.5.4)

Due to the non convexity of v (2.5.4) has up to 3 solutions, labeled A, B and C on
Fig.2.22A. Those 3 solutions exists only on a finite interval of y out of which only one
equilibrium position remains available (see D). Fig.2.22II and III shows respectively the
positions in the double well potential en the tension levels as functions of the controlled
parameter y. Hence, our model which uses a regularized potential exhibits a finite interval
of metastability while for instance, in the Huxley and Simmons model (see Fig.2.23A),
the system at every y, can be either at x = 0 (pre-power-stroke) or x = −1 (post-power-
stroke). A similar picture of multistable system has been investigated in (Guerin et al.,
2010a) but for the kinetics in the framework of flashing ratchets model.

The level sets of the energy landscape for our cross-bridge model are represented on
(see Fig.2.23B). The pre- and post-power-stroke states are identified as the local minima
of this energy (represented by the dashed lines) and the transition takes place at x = l
(dotted line). When y is changed, the energy landscape is changes in such a way that one
of the minima disappears and only one minimum remains while in Huxley and Simmons
models the two states always exist. Another feature of our approach is that the distance
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Fig. 2.23 – Chemo-mechanical cross-bridge model and our new cross-bridge model. (A):
cross-bridge model from Huxley and Simmons model used in almost all chemo-mechanical models of muscle
contraction. The orientation of the head ǫx can take only a finite number of values (here 0 and -1). We
propose to associate the orientation of the head to a continuous energy landscape v (see Eq(2.5.2)) so in
a sense we are changing from an Ising spin model to a soft spin model. Like in the Huxley and Simmons
model, the bi-stable element is coupled to a linear spring and ǫy denotes the overall strain of the cross-
bridge. The dashed lines on B represent the minimum of the energy in each well. We see that for large
enough ǫy, the bi-stability is lost, only one minimum remains available. Also the distance between the
minima is not constant as soon as the stiffnesses in the wells are different. Parameters are: λ1 = 0.4,
λ0 = 0.7, see Sec.2.5.3 for the definitions of non dimensional quantities

between the two minima varies with y while it is constant in Huxley and Simmons model.
This property is needed to avoid the definition of multiple intermediate states in the
power-stroke.

2.5.3 Mechanical model of a half-sarcomere

Model reduction

As we have seen in Chap.1, the half-sarcomere has a complex anatomical and molecular
structure (see Fig.1.5) which we represented on Fig.2.24 as a network of connected springs.
Both actin and myosin filaments are elastic (Huxley et al., 1994; Wakabayashi et al., 1994)
so, in the overlapping region, each cross-bridge is mechanically coupled to its nearest
neighbors by a portion of actin and myosin filaments with respective stiffnesses κa and
κm. The segment of the filament stretching out of the overlapping region have stiffnesses
κF A (for actin filament) and κF M for myosin filament. We can also take into account the
presence of the giant protein titin which links the myosin filament to the M–line. Titin
has a non-linear elastic behavior responsible for the passive response of muscle fiber (see
Fig.1.11B). In physiological conditions, this passive elasticity is negligible.

In our complex but still very schematic picture, we do not represent the mechanical
coupling between parallel half-sarcomere through the elasticity of the M– and Z–lines even
though it may play an important in coherent oscillations involving different half-sarcomeres
(Sato et al., 2011). As we have already mentioned, it is reasonable to neglect kT IT , the
elasticity of titin.

Let us first consider, the cross-bridges as elastic elements. The following computations
was first presented in (Ford et al., 1981). The result was then used for the study of the
influence of filament elasticity in isometric contraction in (Mijailovich et al., 1996). P–G.
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Fig. 2.24 – Realistic model of a half-sarcomere. The upper and lower chains of springs represents
the actin and myosin filament respectively. The cross-bridges are represented by a bi-stable snap spring
(κ1, κ0) connected in series to a linear spring κ. The part of the filament that are out of the overlapping
region are characterized by the stiffnesses κF A (actin filament) and κF M (myosin filament). We can also
take into account the effect of the giant protein titin through the elastic component κT IT

De Gennes introduced a similar computation in (De Gennes, 2001) to compute maximum
pull out separating two strands of DNA.

Our mechanical system is presented on Fig.2.24. We define: L, the length of the
overlapping region, LA and LM the length of actin and myosin filament that are out of
the overlapping region. The total energy of the system is of the form:

V =
N
∑

i=1

1

2
κa (xi+1 − xi)

2 +
N
∑

i=1

1

2
κm (yi+1 − yi)

2 +
N+1
∑

i1

1

2
κ (yi − xi)

2

+
1

2
κF Ax

2
1 +

1

2
κF M (z − yN+1)2 (2.5.5)

Then, the equilibrium conditions with respect to xi and yi are respectively:

−∂V

∂xi
= κa(xi+1 − 2xi + xi−1) + κ (yi − xi) = 0 for i ≥ 2 (2.5.6)

−∂V

∂yi
= κm(yi+1 − 2yi + yi−1) − κ (yi − xi) = 0 for i ≤ N (2.5.7)

− ∂V

∂x1
= κa (x2 − x1) + κ (y1 − x1) − κF Ax1 = 0 (2.5.8)

− ∂V

∂yN+1
= κF M (z − yN+1) − κm (yN+1 − yN ) − κ (yN+1 − xN+1) = 0. (2.5.9)

To simplify the analysis we consider the continuum limit. Then equilibrium equations can
be written as:

κa
∂2x (ξ)

∂ξ2
+ κ (y (ξ) − x (ξ)) = 0 (2.5.10)

κm
∂2y (ξ)

∂ξ2
− κ (y (ξ) − x (ξ)) = 0 (2.5.11)

where ξ is the coordinate counted from the center of the overlapping region while κ = κ/dξ,
is the cross-bridge stiffness per unit length and 1/κa and 1/κm are the compliance per unit
length of actin and myosin filaments respectively. The boundary conditions are ∂y/∂ξ = 0
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for ξ = −L/2 and ∂x/∂ξ = 0 for ξ = L/2. The solution of Eqs.(2.5.10) and (2.5.11) is of
the form:

ǫ (ξ) = ǫ0 cosh [µ (ξ − ξ0)] (2.5.12)

where µ2 = κ

(

1

κm
+

1

κa

)

(2.5.13)

and tanh [µξ0] =
κa − κm

κm + κa
tanh [µL/2] (2.5.14)

ǫ0 =

(

1
κm

+ 1
κa

)

T

2µ sinh [µL/2] cosh [µξ0]
(2.5.15)

To compute the overall stiffness of the system K we sum the elongation of the free filaments
and the elongation of the overlapping region:

1

K
T =

1

κF M
T +

1

κF A
T +

∫ L/2

−L/2

∂y (ξ)

∂ξ
dξ (2.5.16)

After some computations we obtain:

1

K
=

1

κF A
+

1

κF M
+ L

1

κa + κm
+

1

2κ

(

coth [µL/2] +
κa − κm

κa + κm
tanh [µL/2]

)

(2.5.17)

We now consider the limit µL → 0 (either short overlapping region or more interestingly
µ → 0) and denoting 1/κF A = 1

κa
(LF A − L) and 1/κF M = 1

κm
(LF M − L) obtain:

1

K
=

1

κa

(

LF A − 2

3
L

)

+
1

κm

(

LF M − 2

3
L

)

+
1

κL
(2.5.18)

which is the effective elasticity formula first obtained in (Ford et al., 1981). Hence, the
overall compliance decomposes in a contribution related to the filaments and a part related
to the cross-bridges:

K =
KfilamentsKcross−bridges

Kfilaments +Kcross−bridges
(2.5.19)

We now assume the half-sarcomere described on Fig.2.24 can be reduced, to a simpler
system represented on Fig.2.25 with a bundle of N cross-bridges in parallel which in
turn are connected in series to a spring κf lumping the contribution of actin and myosin
filaments:

1

κf
=

1

κa

(

LF A − 2

3
L

)

+
1

κm

(

LF M − 2

3
L

)

. (2.5.20)

Myofilament elasticity was largely ignored before the landmark works of H.E Huxley
and K. Wakabayashi in 1994 (Huxley et al., 1994; Wakabayashi et al., 1994) who indepen-
dently measured, using X-rays interference techniques, the elastic distortions of actin and
myosin networks during muscle contraction. This discovery forced a complete reinterpre-
tation of many experimental data where it was assumed that all the elasticity resided in
the cross-bridges themselves.

In the rest of this Thesis, we assume that a series spring representing filaments elasticity
is described by the energy:

Vf (z, y) =
1

2
κf (z − y − lf )2 . (2.5.21)

where z is the half-sarcomere length. In the limit κf → ∞, this model becomes similar to
the one studied in (Marcucci and Truskinovsky, 2010).
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Fig. 2.25 – Mechanical model of a half-sarcomere. Left: schematic representation of the constitutive
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The non dimensional form of the energy

In what follows it will be convenient to work with non dimensional quantities. A
natural length scale is a, the power-stroke characteristic length, thus we define:

ǫi =
xi

a
; ǫy =

y − l0
a

; ǫ =
z − (l0 + lf )

a
and l =

l

a
.

Next we define the characteristic force as κa and the characteristic energy as κa2 and write
the total energy in the form

V (ǫ1, . . . , ǫN , ǫy, ǫ) =
N
∑

i=1

{

v (ǫi) +
1

2
(ǫy − ǫi)

2

}

+
1

2
Nλf (ǫ− ǫy)2 (2.5.22)

where λf = κf/ (Nκ) is the stiffness of the myofilament relative to the stiffness of the
cross-bridges array and,

v (ǫi) =
1

κa2
v (x) =

{

1
2κ0(ǫi)

2 + v0 if ǫi > l,
1
2κ1(ǫi + 1)2 if ǫi ≤ l,

(2.5.23)

with κ0 = κ0/κ and κ1 = κ1/κ. We also define:

λ0 =
κ0

k0 + κ
, λ1 =

κ1

k1 + κ
, (2.5.24)

The particular form chosen for λ1 and λ0, is convenient because then κλ1 and κλ0

represent the equivalent stiffnesses of the cross-bridge: κκ1
κ+κ1

and κκ0
κ+κ0

. By definition, we
have 0 < λ1, λ0 < 1, where the upper bound is the limit of infinitely stiff wells. Here
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and later in the manuscript, for convenience, we drop the bars over normalized variables.
Eq.(2.5.3), the relation between l and v0 can then be rewritten as:

v0 =
1

2

λ1

1 − λ1
(l + 1)2 − 1

2

λ0

1 − λ0
l2 (2.5.25)

It is instructive to list here the main non-dimensional parameters of the model. They
include the two elasticities of the energy wells κ1 and κ0, the coupling parameter λf and
the number of cross-bridges: N . Parameter l defines the location of the barrier between
the pre– and the post-power-stroke state. We emphasize that N is finite (of the order of
100 (Piazzesi et al., 2007)) and therefore our system may exhibit the so called size effect
(in classical statistical mechanics, N ∼ 1023). We also notice that since the temperature
is finite there will be an additional parameter characterizing the amplitude of the thermal
fluctuations with respect to the characteristic energy. In Chap.7, we match the model with
observation and come up with an optimal set of values for our parameters.

Conclusions

In muscle mechanics, there have always been a distinction between the motors which
are ATP driven and the power-strokes, which are mechanical processes driven by energy
gradients. The conventional description of the power-stroke is based on the idea of infinitely
narrow energy wells and it always implies the validity of Kramers approximation. In this
way, the actual mechanics of the system is grossly misrepresented.

To deal with this question, we developed in this Chapter, a new model which captures
the mot important mechanical ingredients of the power-stroke mechanism. In the next
Chapters, we study the mechanics, the thermodynamics and the kinetics of our system
preparing the way for the eventuel optimal parameter fit.



Chapter 3

Mechanical equilibrium at θ = 0

Our goal is to study the response of our model of sarcomere to stepwise loading in
length clamp and force clamp to see if it can reproduce the response observed in real

muscle fiber (see section 2.2). Due to the presence of the non-convex bistable elements,
the energy landscape of our system is rugous and is characterised by many local minima
that can be identified in a purely mechanical framework. In this chapter we will restrict
our analysis to these metastable states, postponing the study of dynamics till Chap.5. To
adopt a mechanical vocabulary, we will speak as the system in hard device (resp. soft

device) for the system under controlled total length (resp. force)
We assume that our parameters may vary in a broad range and specify their realistic

values only in Chap.7 after we study the effect of finite temperature.
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3.1 Energy landscape and metastable states

In hard device, the total elongation of the system is the controlled parameter. In that
case, the normalized energy of our mechanical system is given by Eq.(2.5.22):

V (ǫ1, . . . , ǫN , ǫy, ǫ) =

N
∑

i=1

{

v (ǫi) +
1

2
(ǫy − ǫi)

2

}

+
1

2
Nλf (ǫ− ǫy)2

where ǫ is the loading parameter. In soft device, the energy of the system is the Gibbs
energy:

W (ǫi, ǫy, ǫ, σ) = V (ǫ1, . . . , ǫN , ǫy, ǫ) − σǫ (3.1.1)

where σ is the loading parameter.

3.1.1 Local minima of the energy

In hard device, the metastable states correspond to the zeros of the energy gradient so
we have to solve 1

{

∂i (V (ǫ1, . . . , ǫN , ǫy, ǫ)) = 0, for all 1 ≤ i ≤ N
∂y (V (ǫ1, . . . , ǫN , ǫy, ǫ)) − = 0

. (3.1.2)

In soft device, we have to minimize W by solving:







∂i (W (ǫ1, . . . , ǫN , ǫy, ǫ, σ)) = 0, for all 1 ≤ i ≤ N
∂y (W (ǫ1, . . . , ǫN , ǫy, ǫ, σ)) = 0
∂ǫ (W (ǫ1, . . . , ǫN , ǫy, ǫ, σ)) = 0

. (3.1.3)

Due to the non-convexity of v, equations ∂iV = 0 and ∂iW = 0 have up to 3 solutions:











ǫ̂1 (ǫy) = (1 − λ1) (ǫy) − λ1, if ǫi < l

ǫ̂0 (ǫy) = (1 − λ0) (ǫy) , if ǫi > l

ǫ̂⋆ = l.

(3.1.4)

where ǫy still need to be determined from the Eqs.(3.1.2) or (3.1.3). Here ǫ̂⋆ is a degenerate
‘spinodal’ phase. Due to the permutational invariance of the energy, the equilibrium state
depends only on the fraction of cross-bridges in each of the three phases. Denote N1, N⋆

and N0 the number of cross-bridges that occupy positions ǫ̂1, ǫ̂⋆ and ǫ̂0 respectively. We
define the corresponding fractions:

– n1 = N1
N , the fraction of cross-bridge that occupy position ǫ̂1,

– n0 = N0
N , the fraction of cross-bridge that occupy position ǫ̂0,

– n⋆ = 1 − n1 − n0, the fraction of cross-bridges at l.

The triplet ξ = (n1, n⋆, n0) defines a microscopic configuration of the system. The num-
ber of possible configuration is of the order of 3N so the energy landscape becomes ex-
tremely wiggly when N is large (N ≈100 in a single half-sarcomere). This is the origin
of complex behaviour in this mechanical systems. However, due to the permutational
invariance of the cross-bridges, the total number of different configurations is reduced to:
(N + 1) (N + 2) /2 ≪ 3N . This degeneracy is of course destroyed if full filament elasticity
is taken into consideration.

1. We use the following notation: ∂i = ∂
∂ǫi

and ∂y = ∂
∂ǫy



3.1. Energy landscape and metastable states 53

In the hard device, equation ∂yV = 0 gives:

ǫ̂y =
1

1 + λf

(

λf ǫ+
1

N

N
∑

i=1

ǫi

)

, (3.1.5)

while in soft device, the equilibration conditions ∂yW = 0 and ∂ǫW = 0 gives:

ǫ̂y =
σ

N
+

1

N

N
∑

i=1

ǫi, (3.1.6)

ǫ̂z = ǫ̂y +
σ

Nλf
. (3.1.7)

If we now eliminate ǫy from the energy (2.5.22) by using Eq.(3.1.5) we obtain, in hard
device:

Ṽ (ǫ1, . . . , ǫN , ǫ) =

N
∑

i=1







v (ǫi) +
1

2





1

1 + λf



λf ǫ+
1

N

N
∑

i=j

ǫj



− ǫi





2




+
1

2
Nλf

(

1

1 + λf
ǫ− 1

N (1 + λf )

N
∑

i=1

ǫi

)2

.

One can see that the individual cross-bridges ǫi interact now with the mean field generated
by all other cross-bridges (see the second term of the first sum). The coupling parame-
ter λ−1

f controls the intensity of this interaction: the larger the coupling parameter, the
stronger the mean-field interaction. In soft device, we obtain using Eqs.(3.1.6) and (3.1.7):

W̃ (ǫ1, . . . , ǫN , σ) =

N
∑

i=1







v (ǫi) +
1

2





σ

N
+

1

N

N
∑

i=j

ǫj − ǫi





2




+
1

2

N

λf

(

σ

N

)2

− σ

(

σ

N

1 + λf

Nλf
+

1

N

N
∑

i=1

ǫi

)

In this case, the level of coupling between cross-bridges is not affected by the value of λf ,
instead the coupling is inherent. In particular, the level of coupling is independent on the
magnitude of the applied force σ.

In hard device, the solution of the minimization problem for a given microscopic con-
figuration ξ = (n1, n⋆, n0) is:

ǫ̂1 (ǫ, ξ) =
1 − λ1

λf + λxb (ξ)
(λf ǫ− n1λ1 + n⋆l) − λ1 (3.1.8)

ǫ̂0 (ǫ, ξ) =
1 − λ0

λf + λxb (ξ)
(λf ǫ− n1λ1 + n⋆l) (3.1.9)

ǫ̂y (ǫ, ξ) =
λf

λf + λxb (ξ)

(

ǫ− n1λ1 − n⋆l

λf

)

(3.1.10)

where we have introduced the equivalent non-dimensional stiffness of the array of cross-
bridges:

λxb (ξ) = n1λ1 + n0λ0 + n⋆. (3.1.11)
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Thus, the total tension in configuration ξ is given by:

T̂ (ǫ, ξ) = N
λfλxb (ξ)

λf + λxb (ξ)

(

ǫ+
n1λ1 − n⋆l

λxb (n1, n⋆, n0)

)

, (3.1.12)

where we recognize the equivalent stiffness of 2 springs in series
λxbλf

λxb+λf
. Finally, we can

express the energy of configuration ξ as:

V̂ (ǫ, ξ) =
N

2





λf

(

n1λ1 (ǫ+ 1)2 + n0λ0ǫ
2 + n⋆ (ǫ− l)2

)

λf + λxb (ξ)

+
n1λ1 (n0λ0 + n⋆(1 + 2l)) − n⋆l

2(n⋆ + λf )

λf + λxb (ξ)

+n⋆
l2

1 − λ0
+ 2 (n0 + n⋆) v0



 . (3.1.13)

In soft device, one finds:

ǫ̂1 (σ, ξ) =
(1 − λ1)

λxb (ξ)

(

σ

N
− n1λ1 + n⋆l

)

− λ1, (3.1.14)

ǫ̂0 (σ, ξ) =
(1 − λ0)

λxb (ξ)

(

σ

N
− n1λ1 + n⋆l

)

, (3.1.15)

ǫ̂y (σ, ξ) =
1

λxb (ξ)

σ

N
− n1λ1 − n⋆l

λxb (ξ)
, (3.1.16)

ǫ̂ (σ, ξ) =

(

1

λf
+

1

λxb (ξ)

)

σ

N
− n1λ1 − n⋆l

λxb (ξ)
, (3.1.17)

and the energy:

Ŵ (σ, ξ) = −N

2

(

1

λxb (ξ)

(

σ

N
− n1λ1 + n⋆l

)2

+
σ2

N2λf
− 2 (n0 + n⋆) v0 − n⋆

l2

1 − λ0
− n1λ1

)

. (3.1.18)

3.1.2 Existence domain of metastable states

Since ǫ̂1 and ǫ̂0 are increasing functions of ǫ (see Eq.3.1.4),it is clear that for increasing
ǫy (resp. decreasing ǫy), the condition ǫ̂1 < l (resp. ǫ̂0 > l) will ultimately be violated.
This implies that a given configuration (n1, n⋆, n0) exists only on a finite interval of ǫ (or
σ). This is a fundamental difference between our model and existing chemo-mechanical
models where the analogue chemical states are accessible at any level of loading (ǫ, σ, see
Sec.2.4.4).

More precisely, in hard device, a metastable state (n1, n⋆, n0) exists in the interval
[ǫinf , ǫsup] defined by:

ǫinf (ξ) =
l (λf + λxb (ξ)) + (1 − λ0) (n1λ1 − n⋆l)

λf (1 − λ0)
, (3.1.19)

ǫsup (ξ) =
(l + λ1) (λf + λxb (ξ)) + (1 − λ1) (n1λ1 − n⋆l)

λf (1 − λ1)
. (3.1.20)
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The special cases are the homogeneous configurations (1, 0, 0) and (0, 0, 1) defined on
]−∞, ǫsup (1, 0, 0)] and [ǫinf (0, 0, 1) ,+∞[, respectively. In particular, for ǫ < ǫinf (0, 0, 1)
(resp. ǫ > ǫsup (1, 0, 0)) only configuration (1, 0, 0) (resp. (0, 0, 1)) is available.

Similarly, in soft device, we define the lower and upper boundaries of the configuration
(n1, n⋆, n0):

σsup (ξ) = N

(

l + λ1

1 − λ1
λxb (ξ) + n1λ1 − n⋆l

)

, (3.1.21)

σinf (ξ) = N

(

l

1 − λ0
λxb (ξ) + n1λ1 − n⋆l

)

. (3.1.22)

The homogeneous configurations are, of course, again special.

In Fig.3.1 and 3.2 we show a representation of all the metastable states in the case
N = 3 in hard and soft device respectively. The parameters chosen for this computation are
λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 2. The labels on the curve represent the configurations
expressed in term of number of cross-bridges in different states rather than in terms of
their fractions. Note that each configuration (n1, n⋆, n0) exists on its own finite interval.

For the resulting picture to be non-trivial, we need to have the following inequality
satisfied:

∆ǫ (ξ) = ǫsup (ξ) − ǫinf (n1, n0)

=
(λ1 (λ0 − 1 − l) + lλ0) (n1λ1 + n0λ0 + n⋆ + λf )

λf (1 − λ0) (1 − λ0)

This implies the following relation between the parameters:

λ1 (λ0 − 1 − l) + lλ0 ≥ 0

which correspond to −1 < l < 0.

3.1.3 Stability

The shape of the bistable potential v (ǫ) is very singular since the spinodal region is
reduced to a single point. To study the stability, we remove temporarily this singularity by
considering a smoother transition where the potential shows a negative second derivative
in an extended spinodal interval [l − t; l + t]. Outside this interval the potential has a
positive second derivative. Hence our singular case can be viewed as the limit of this
smoothed potential when t → 0. We also assume that the spinodal region makes the
total energy twice continuously differentiable (class C2). We present the discussion of the
stability of metastable states in the hard device case, the result is the same in soft device
even though it is not usually the case. Here, the similarity comes from the fact that the
cross-bridges are arranged in parallel and not in series.

Within the present mode with landscape, for a given ǫ, the equation ∂iV = 0 has up
to 3 solutions, ê1 (ǫ) , ê0 (ǫ) and ǫ̂⋆ (ǫ), with l − t ≤ ǫ̂⋆ (ǫ) ≤ l + t for all t > 0. We define
(no summation):

∂iiV (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂1(ǫ),ǫy=ǫ̂y(ǫ),ǫj,i=ǫ̂j(ǫ) ≡ h1 (ǫ) > 0,

∂iiV (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂⋆(ǫ),ǫy=ǫ̂y(ǫ),ǫj,i=ǫ̂j(ǫ) ≡ h⋆ (ǫ) < 0,

∂iiV (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂0(ǫ),ǫy=ǫ̂y(ǫ),ǫj,i=ǫ̂j(ǫ) ≡ h0 (ǫ) > 0.
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Fig. 3.1 – Representation of the metastable states in hard device for a system with N = 3
cross-bridges . For this picture we used the following parameters: λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 2.
The bold triplet N {n1, n⋆, n0}, indicates the number of cross-bridges in each phase and identifies individual
branches. Solid lines indicate the stable states, dashed lines the unstable ones and bold line, the global
minimum. The position of the global minimum transition between the two affine configurations (300) and
(003) is localised at ǫ = ǫ⋆.

For each case, the second derivative of V does not depend on ǫy. We further denote:

Hi (ǫ) = ∂iiV (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂i(ǫ),ǫy=ǫ̂y(ǫ),ǫj,i=ǫ̂j(ǫ) , i = 1, . . . , N (no summation)

the N first diagonal terms of the Hessian. Each of them can be equal either to h1 (ǫ),
h0 (ǫ) or h⋆ (ǫ). The other terms of the hessian H (ǫ) are:

∂ij V (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂i(ǫ),ǫj=ǫ̂j(ǫ),ek,i,j=ǫ̂k(ǫ),ǫy=ǫ̂y(ǫ) = 0 for i , j (3.1.23)

∂iy V (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂i(ǫ),ǫj,i=ǫ̂j(ǫ),ǫy=ǫ̂y(ǫ) = −1 for i = 1, . . . , N (3.1.24)

∂yy V (ǫ, ǫ1, . . . , ǫN , ǫy)|ǫi=ǫ̂i(ǫ),ǫy=ǫ̂y(ǫ) = N (1 + λf ) . (3.1.25)

Therefore,

H (ǫ) =

















H1 (ǫ) 0 · · · 0 −1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 HN (ǫ) −1

−1 · · · · · · −1 N (1 + λf )

















.

From the form ofH (ǫ), it is clear that as soon as one term Hi is equal to h⋆ (ǫ), there are
at least one principal minors of H (ǫ)that is negative. This means that the absence of cross-
bridges in the spinodal region is mandatory for stability of the critical point for all t > 0.
The equilibrium strain in the spinodal region remains between −t and t and thus converges
to l, when t goes to 0. Therefore, if n⋆ , 0, the configuration (n1, n⋆, n0) is necessary
unstable. Hence among the (N + 1) (N + 2) /2 branches of equilibrium, N (N + 1) /2 are
unstable which leaves N + 1 stable branches. On Figs.3.1 and 3.2, showing the case
N = 3, stable branches are identified by solid lines, unstable by dashed lines and the
global minimum by bold lines.

3.1.4 The global minimum

Let us now consider, at a fix ǫ and consider the energy of the stable configurations
(n1, 0, 1 − n1) as a a function of n1. The goal is to determine the local minimum with
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Fig. 3.2 – Representation of the metastable states in soft device for a system with N = 3
cross-bridges . For this picture we used the following parameters: λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 2.
The bold triplet N {n1, n⋆, n0}, indicates the number of cross-bridges in each phase and identifies individual
branches. Solid lines indicate the stable states, dashed lines the unstable ones and bold line, the global
minimum. The position of the global minimum transition between the two affine configurations (300) and
(003) is localised at σ = σ⋆.

the lowest energy level. The energy of the global minimum will be denoted V̂GM in hard
device and ŴGM in soft device. As it was shown in section 3.1.2,

V̂GM (ǫ, n1) =

{

N
2

λ1λf

λ1+λf
(ǫ+ 1)2 if ǫ < ǫinf(0, 0, 1),

N
2

λ0λf

λ0+λf
ǫ2 +Nv0 if ǫ > ǫsup(1, 0, 0).

(3.1.26)

ŴGM (σ, n1) =







N
(

−1
2

(

1
λ1

+ 1
λf

)

(

σ
N

)2
+ σ

N

)

if σ < σinf (0, 0, 1) ,

N
(

−1
2

(

1
λ0

+ 1
λf

)

(

σ
N

)2
+ v0

)

) if σ > σsup (1, 0, 0) .
(3.1.27)

Now between ǫinf(n1, 0, 1 − n1) and ǫsup(n1, 0, 1 − n1, ) (resp. σinf (n1, 0, 1 − n1) and
σsup (n1, 0n1 − n1)), the energy in the stable local minima is parametrized by n1:

V̂ (ǫ, n1) =
N

2





λf

(

n1λ1 (ǫ+ 1)2 + (1 − n1)λ0ǫ
2
)

λf + n1λ1 + (1 − n1)λ0

+
n1λ1 (1 − n1)λ0

λf + n1λ1 + (1 − n1)λ0
+ 2 (1 − n1) v0



 . (3.1.28)

Ŵ (σ, n1) = −N

2

(

1

n1λ1 + (1 − n1)λ0

(

σ

N
− n1λ1

)2

+
σ2

N2λf
− 2 (1 − n1) v0 − n1λ1

)

. (3.1.29)

If we assume for the time being that n1 is a continuous variable, we can compute the
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second derivative of V and W with respect to n1:

∂n1n1V (ǫ, n1) = −N

2

(λfλ1 (ǫ+ 1) + λ0 (λ1 − ǫλf ))2

(n1λ1 + (1 − n1)λ0 + λf )3 ≤ 0 (3.1.30)

∂n1n1W (σ, n1) = −N

2

(

2 (λ1 − λ0)2 (σ/N − n1λ1)2

(n1λ1 + (1 − n1)λ0)3 +
2λ2

1

n1λ1 + (1 − n1)λ0

)

≤ 0 (3.1.31)

which means that the minimum of the energy is attained either for n1 = 0 or n1 = 1.
Therefore the stable configuration with the minimum energy is either (1, 0, 0) or (0, 0, 1).
We came down to the same conclusion in soft device. We define ǫ⋆ (resp. σ⋆), the point
where V̂ (ǫ, 1, 0, 0) = V̂ (ǫ, 0, 0, 1) (resp. Ŵ (σ, 1, 0, 0) = Ŵ (σ, 0, 0, 1)). Therefore:

V̂GM (ǫ) =







N
(

1
2

λ1λf

λ1+λf
(ǫ+ 1)2

)

if ǫ < ǫ⋆,

N
(

1
2

λ0λf

λ0+λf
ǫ2 + v0

)

if ǫ > ǫ⋆,
(3.1.32)

and,

ŴGM (σ) =







N
(

−1
2

(

1
λ1

+ 1
λf

)

(

σ
N

)2
+ σ

N

)

if σ < σ⋆,

N
(

−1
2

(

1
λ0

+ 1
λf

)

(

σ
N

)2
+ v0

)

) if σ > σ⋆.
(3.1.33)

Hence, when the absolute temperature θ goes to zero, if the system follows the global
minimum, we observe a sharp transition either in force (in hard device) or in length (in
soft device) (see Fig.3.1 for hard device and Fig.3.2 for soft device), as the system jumps
from configuration (1, 0, 0) to (0, 0, 1). The details of the transition and the size of the
barrier are still unclear, because, we do not know the path followed by the system to go
between the configurations (1, 0, 0) to (0, 0, 1): we will discus this in details in section 3.3.

If we interpret our conclusions in the light of experimental results, and would identify
the T2 curve with the global minimum, we may notice that the mechanical approach
predicts a sharp transition between the 2 linear regimes which, of course, is not observed
in experiments (see Fig.2.5).

3.2 Influence of the parameters

Our non dimensional model depends on 5 parameters. Three of them, λ1, λ0 and l
control the shape of the bistable potential, the fourth λf is the stiffness of the filaments
and the fifth N is the number of cross-bridges. We will first study the influence of the
shape of the double well potential. As a reference set we consider the following choice
of parameters: λ1 = 0.5, λ0 = 0.5, l = −0.5 (a symmetric double well potential) and
λf = 1. The energy and tension will be represented divided by N which gives ‘per cross-
bridge’ values (Fig.3.3, 3.4, 3.5, 3.6, 3.7 and 3.8). To avoid the representation of all the
local minima, we show only the contour of the region where metastable states are present
(delimited by dotted lines), together with the stable configurations (0.5, 0, 0.5), (1, 0, 0)
and (0, 0, 1) (solid line),the unstable state (0, 1, 0) (dashed line) and the global minimum
(bold line).

3.2.1 Shape of the double well potential

Stiffness of pre and post-power-stroke configuration

Fig.3.3 and 3.4 show how the structure of the local minima depends on the stiffness
of energy wells 1 and 0. Of course, a change in λ1,0 changes the stiffness of the different
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Fig. 3.3 – Influence of the stiffness of pre-power-stroke and post-power-stroke states on the
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(continuous line). The unstable state (0, 1, 0) is represented by
the dashed line and dotted lines delimits the region of metastability.

configuration and also the transition point ǫ⋆ is shifted to the right if λ1 > λ0 and to the
left otherwise. Moreover the transition is no longer located in the center of the metastable
region (compare with the bold figure representing the symmetric case λ1 = λ0 = 1/2). Also
note that the energy minima (and therefore the zeros of tension) of the limit configurations
(1, 0, 0) and (0, 0, 1) remain the same independently of the stiffnesses λ1 and λ0. This can
be seen directly from the form of Eq.3.1.12, 3.1.17, where we also see that the zeros of
intermediate configurations depend on the well stiffnesses.

Symmetric wells, influence of l

Parameter l Characterizes the limit point between the two wells of the potential v. It
controls the value of the energy offset v0 through Eq.(2.5.25). Fig.3.5 and 3.6 show that l
shifts the metastable region but does not change its shape nor the relative position of the
transition. We also see that the energy level of homogeneous configuration (1, 0, 0) is not
affected by l in accordance with the expression for V̂ and Ŵ in Eq.(3.1.13) and Eq.(3.1.18):
indeed l enters this expression through v0 which disappears when n0 = n⋆ = 0.

3.2.2 Stiffness of the filaments and the energy gap

The elastic distortion measured in muscle fiber cannot be attributed only to the cross-
bridges (Huxley et al., 1994; Wakabayashi et al., 1994). Our Fig.3.7 and 3.6 show, that
when the filaments are compliant (finite λf ), the existence interval of each configuration
is different (see the tilted boundaries of the metastable region when λf is finite). Fig.3.7
and 3.6 are obtained with a non symmetric double well potential: λ1 = 0.4, λ0 = 0.7,
l = −0.3. The points where the tension is equal to 0 remain the same independently of
the value of λf . In addition, the position of the transition ǫ⋆ depends on λf in hard device
(see Fig.3.7) while it is unchanged in soft device (see Fig.3.8). In the limit λf → 0 (not
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shown here) the overall stiffness which has the form λfλxb/ (λf + λxb) tends to λf and the
system looses exhibits an elastic behaviour.

In addition, the presence of smooth filament increases the asymmetry between shorten-
ing and stretching, when the system is asymmetric (here well 0 is stiffer than well 1). Thus,
if we compare the tension vs elongation on Fig.3.7D and F, we see that the metastable
domain is considerably extended in the shortening direction for λf = 0.5(see D) compared
to λf → ∞ (see F). Hence, augmenting the coupling between the cross-bridges, displace
the wiggly domain of the energy landscape towards the working regime of the muscle i.e.

towards shortening. This interesting effect of filament elasticity has not been discussed
before and may be fundamental to explain the inherent asymmetry in the power-stroke
mechanism.

Last but not least, the presence of a compliant filaments, introduces an energy gap be-
tween the global minimum and other metastable states in hard device (see Fig.3.9 and also
observe on Fig.3.7 the gap between the global minimum and the metastable configuration
(0.5, 0, 0.5)). In soft device this gap is always present and does not depend on the value
of λf . In the hard device, when λf → ∞, the energy levels of all configurations become
the same at ǫ = ǫ⋆ (Fig.3.9A) indicating that, in order to shift from configuration (1, 0, 0)
to (0, 0, 1) at θ = 0, the system, following the ‘global minimum path’, can evolve through
intermediate local minima. In contrast, when λf is finite, the metastable states are no
longer accessible and the transition becomes a cooperative jump of the cross-bridges from
pre to post-power-stroke. In other words, the presence of compliant myofilaments favours
the homogeneous states, and thus enhances cooperativity in hard device. This effect is, of
course, intrinsically present in soft device.

To conclude this section, we mention that the shape of the double well potential,
controlled by λ1, λ0 and l, affects the size (λ1 and λ0) and the location (l) of the metastable
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region. When the stiffness of the filament λf changes, the stiffness of the configurations is
changed accordingly but, λf as a larger impact on the energy landscape in hard device than
in soft device. In particular, the stability interval for different configurations is different
for λf < ∞ and the energy of the homogeneous configurations is lower in this case than
in the rigid case λf → ∞.

We observe that in principle, our system can exhibit non-affine (inhomogeneous) re-
sponse but the presence of elastic coupling strongly favours coherent (affine) reaction to
loading. The cooperative effect is needed to achieve the largest force recovery in both
shortening and stretching.

3.3 Barrier structure in soft and hard device

We have seen that in both hard and soft devices our system possesses numerous
metastable states which remains stable along a finite interval of the loading (ǫ or σ).
In both devices, the global minimum is always in one of the homogeneous configurations
(1, 0, 0) and (0, 0, 1) with a sharp transition at ǫ⋆ in hard device and σ⋆ in soft device.
However, we have also seen that, in hard device, the presence of compliant myofilaments
introduces an energy gap between the global minimum and other metastable state while
in soft device this gap is always present (Fig.3.9). The fact that the filament stiffness λf

has less of an impact in the soft device is not surprising. Indeed, as one applies the force,
the information transmitted to the array of cross-bridges is the same independently of the
filament stiffness. Instead, in hard device, as the total length is fixed, the displacement
of the array of cross-bridges ǫy is affected by the filament compliance. With this idea in
mind, it is interesting to study in both hard and soft device how the system with different
λf evolves from configuration (0, 0, 1) to configuration (1, 0, 0) when it is placed at the
transition point (ǫ = ǫ⋆, σ = σ⋆).

To study the mechanism of the transition, we chose to represent the energy landscape,
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at ǫ = ǫ⋆, as a function of the common deformation of the cross-bridges: ǫy (see Fig.2.25).
This reduced energy with parameters ǫi minimized out is denoted by V̂y in hard device
and Ŵy in soft device. It depends on ǫ (resp.σ), and on the configuration (n1, n

⋆, n0). The
internal variable ǫy, may evolve in such a way that the system crosses many energy barriers
while cross-bridges execute the power-stroke in a non cooperative manner. Instead a single
barrier will be encountered if the power-stroke is done collectively.

Our Fig.3.10 represents the energy levels of V̂y and Ŵy depending on the internal de-
gree of freedom ǫy in a system with 3 cross-bridges and the same parameters as on Figs.3.1
and 3.2. The global minimum is indicated by the thick line. We marked by A and B the
equilibrium positions corresponding to the initial and final states of the transition. In both
hard and soft devices, we see that this transition is accomplished without visiting non-
affine states. This means that in both cases, the transition can be viewed as a synchronized
switch of all the cross-bridges from pre-power-stroke to post-power-stroke. However, as
the two figures A and B are shown on the same scale, we notice that the distance travelled

by ǫy from A to B is much shorter in hard device than in soft device and that the energy
barrier is about 5 times higher in soft device than in hard device.



3.3. Barrier structure in soft and hard device 65

To explain this difference in the heigh of the energy barrier, let us consider a very
simplified system made of only 1 cross-bridge connected to a filament (see Fig.3.3).

On the one hand, in hard device, the transition A → B at ǫ = ǫ⋆, corresponds to a
change in ǫy of size d represented on the cartoon below the graph. Since the total length
is fixed, a displacement in ǫy causes the filament to extend generating a force against the
displacement. However, in order to keep mechanical equilibrium between the head and the
filament, the head’s spring is also extended by a distance d′. As a result, a displacement
d of ǫy generates a displacement d+ d′ on the head, and thereby allow the transition from
pre-power-stroke to post-power-stroke.

On the other hand, in soft device, there is not such mechanical re-equilibrium between
the myofilaments and the cross-bridge since the load is kept constant equal to σ⋆. Hence,
to go from pre-power-stroke to post-power stroke the variable ǫy has to cover the distance
D > d. As a result, even though the system is stiffer in hard device ; which could have
mislead us suggesting the naive conclusion that the transition barrier is higher in the stiffer
system; the energy barrier in the soft device case is at least twice as big as in the case of
hard device given that all other parameters are kept the same.

Conclusions

In this Chapter we have shown that our system evolves on a rugged energy landscape
characterised by a large number of local minima. Each metastable state is fully charac-
terised by the fraction of cross-bridges in post-power-stroke described by the parameter
n1.

We have also found, that the global minimum can be fully associated with the coherent
response of affine states with n1 = 0 or 1.

The presence of a mean field type elastic coupling between the cross-bridges enhances
the synchronisation effect by creating an additional energy gap between the affine states
and the non affine states.

Moreover, the global minima in hard and soft devices are similar, but the energy
barriers in the two cases are very different. More specifically, to shift from one affine
state to another, the system has to overcome a much larger energy barrier in soft device
than in hard device. We observed a considerable influence of the coupling parameter λf

on the asymmetry of the metastable domain. In particular, it contributes markedly to
the asymmetry between shortening and stretching which is one of the main unresolved
problems in muscle mechanics.





Chapter 4

Thermal equilibrium at θ , 0

In the previous Chapter, we saw that the energy landscape of our system exhibits a large
number of metastable states in which the system can be ‘trapped’ at zero temperature.

As a result, the characteristic features of the experimental T1 curve can be reproduced while
those of the T2 curve cannot. In this Chapter we will study the influence of temperature on
the structure of the equilibrium response. The thermal forces will allow the system to travel
between local minima thereby smoothing the transition. First of all, we assume thermal
equilibrium and introduce the general framework of equilibrium statistical mechanics. We
then compute the partition function of our system, the free energy, the tension/elongation
curves isotherms or adiabats. In particular, we will study in detail the influence of the
filament elasticity λf and the temperature on the structure of the free energy landscape.
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4.1 Introduction

4.1.1 Why temperature matters ?

In the presentation of the anatomic structure of the muscle (see Sec.1.1), we saw that
the length scale involved in the force generation was of the scale of a nanometer. At
the same time, the measured stiffness of myosin head is of the order of 1 pN/nm (see
Sec.2.3.2) which gives a characteristic energy of a less than 100 zJ 1. The energy provided
by the thermal fluctuations are of the order of kbθ ≈ 4 zJ, where θ is the absolute tem-
perature in K (θ ≈ 300°K) and kb is the Boltzmann constant (kb ≈ 1.38 × 10−2zJ). For a
single cross-bridge, this means that the thermal energy is sufficient to induce by itself a
power-stroke, and therefore, we expect the system to be able to explore a large part of the
energy landscape in addition to the two homogeneous configurations (1, 0, 0) and (0, 0, 1).
In other words, we expect that in the presence of a finite temperature, the sharp tran-
sition we observed when the system was following the global minimum will be smoothed
(see Sec.3.1.4). Taking into account equilibrium thermal fluctuations computation of the
partition function from which, one can reconstruct all other thermodynamic quantities in
equilibrium.

We will neglect the temperature dependent part of the free energy by assuming that
the momentum part of the energy can be fully decoupled (Howard, 2001).

4.1.2 General formulas

We use the canonical description for our system of N cross-bridges, which assumes
that:

– the temperature θ is fixed by a thermostat,
– the system does not exchange any particle with the environment (N is constant).

The fact that we consider N as a constant is a consequence of our assumption that no
attachment-detachment process is involved during the fast transients following a rapid
change in loading conditions (see Sec.2.2). Our configurational phase space is then:

Ωh = (ǫ1, . . . , ǫN , ǫy) ∈ RN+1 in hard device,

Ωs = (ǫ1, . . . , ǫN , ǫy, ǫ) ∈ RN+2 in soft device.

At equilibrium, canonical distribution can be written in the form:

ph (ǫ1, . . . , ǫN , ǫy, ǫ, β) =
1

Zh (ǫ, β)
exp [−βV (ǫ1, . . . , ǫN , ǫy, ǫ)] in hard device (4.1.1)

ps (ǫ1, . . . , ǫN , ǫy, ǫ, σ, β) =
1

Zs (σ, β)
exp [−βW (ǫ1, . . . , ǫN , ǫy, ǫ, σ)] in soft device (4.1.2)

where β = κa2/ (kbθ) is the non dimensional ratio of the characteristic elastic energy of
a single cross-bridge over the thermal energy. On the one hand, the limit β → 0 cor-
responds to infinite temperature, which means that the behavior of the system becomes
purely diffusive and does not ‘feel’ the energy landscape. In this regime, the notion of
power-stroke becomes irrelevant. On the other hand, the limit β → ∞ (or θ → 0) corre-
sponds to the global minimum response we described in the previous Chapter. Note the
difference between the athermal behavior at θ = 0, where the system cannot escape from a

1. 1 zJ = 10−21J . z stands for zepta.
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metastable state and the behavior at β → ∞ (corresponding to θ → 0), where the system
exits metastable states with probability one and reaches the global minimum (see however
the discussion of escape times in Sec.5.3.1).

The normalization constants (or partition functions) Zh and Zs are given by:

Zh (ǫ, β) =

∫

R

. . .

∫

R

exp [−βV (ǫ1, . . . , ǫN , ǫy, ǫ)] dǫ1 . . . dǫNdǫy, (4.1.3)

Zs (σ, β) =

∫

R

. . .

∫

R

exp [−βW (ǫ1, . . . , ǫN , ǫy, ǫ, σ)] dǫ1 . . . dǫNdǫydǫ. (4.1.4)

From partition functions one can compute the Helmholtz free energy F (the free energy at
fixed volume in classical thermodynamics) and the Gibbs free energy G (the free energy
at fixed pressure in classical thermodynamics):

F (ǫ, β) = − 1

β
ln Zh (ǫ, β) , (4.1.5)

G(σ, β) = − 1

β
ln Zs (σ, β) , (4.1.6)

The equilibrium tension and elongations are obtained from F and G by using the following
relations:

T2 (ǫ, β) = ∂ǫF (ǫ, β) at fixed β, (4.1.7)

L2 (σ, β) = −∂σG (σ, β) at fixed β. (4.1.8)

In addition, we denote by Sh and Ss the entropies in hard and soft devices, respectively:

Sh (ǫ, β) = −
∫

ph (ǫ1, . . . , ǫN , ǫy, ǫ) ln (ph (ǫ1, . . . , ǫN , ǫy, ǫ)) dǫ1 . . . dǫNdǫy (4.1.9)

Ss (σ, β) = −
∫

ps (ǫ1, . . . , ǫN , ǫy, ǫ, σ) ln (ps (ǫ1, . . . , ǫN , ǫy, σ)) dǫ1 . . . dǫNdǫydǫ (4.1.10)

which can be rewritten by using Eqs.(4.1.1) and (4.1.2):

Sh (ǫ, β) = β (〈V 〉h (ǫ, β) − F (ǫ, β)) , (4.1.11)

Ss (σ, β) = β (〈W 〉s (σ, β) −G (σ, β)) , (4.1.12)

where 〈〉h and 〈〉s stands for the average over the phase space with probabilities (4.1.1)
and (4.1.2) in hard and soft devices respectively. More precisely, the mean value of the
energy is computed as follows:

〈V 〉h (ǫ, β) =
1

Zh (ǫ, β)

(
V exp [−βV ] dǫ1, . . . , dǫN , dǫy

= − 1

Zh (ǫ, β)

(
∂β exp [−βV ] dǫ1, . . . , dǫN , dǫy

= −∂β ln (Zh (ǫ, β))

and similarly the mean value of the Gibbs energy is given by:

〈W 〉 (σ, β) = −∂β ln (Zs (σ, β)) .

The entropies in hard and soft devices are obtained by using Eq.(4.1.11) and Eq.(4.1.12)
in the form:

Sh (ǫ, β) = −β∂β ln (Zh (ǫ, β)) + ln (Zh (ǫ, β)) , (4.1.13)

Ss (σ, β) = −β∂β ln (Zs (σ, β)) + ln (Zs (σ, β)) . (4.1.14)



70 Chapter 4 – Thermal equilibrium at θ , 0

4.2 Thermal equilibrium

To compute the thermodynamical quantities in thermal equilibrium, we have to com-
pute the partition functions Zh and Zs. Here we present the direct computation that leads
to non-explicit relations. In App.A.2, we construct a semi-analytic approximation using
the fact that N is large and β is small.

4.2.1 Partition function

Due to the additive form of V and W , the integrations with respect to each variables
ǫi, for 1 ≤ i ≤ N , can be performed independently and we can write:

Zh (ǫ, β) =

∫

exp
[

−β 1
2Nλf (ǫ− ǫy)2

]

(Z1 (ǫy, β) + Z0 (ǫy, β))N dǫy, (4.2.1)

Zs (σ, β) =
x

exp
[

−β
(

Nλf
1
2 (ǫ− ǫy)2 − σǫ

)]

(Z1 (ǫy, β) + Z0 (ǫy, β))N dǫydǫ, (4.2.2)

where

Z1 (ǫy, β) =

∫ l

−∞
exp

[

−β
(

1
2κ1 (x+ 1)2 + 1

2 (ǫy − x)2
)]

dx (4.2.3)

Z0 (ǫy, β) =

∫ +∞

l
exp

[

−β
(

1
2κ0x

2 + v0 + 1
2 (ǫy − x)2

)]

dx. (4.2.4)

For convenience, we denote:

V1 (x, ǫy) =
1

2
κ1 (x+ 1)2 +

1

2
(ǫy − x)2 (4.2.5)

V0 (x, ǫy) =
1

2
κ0x

2 + v0 +
1

2
(ǫy − x)2 , (4.2.6)

which are the energies of a single cross-bridge in post-power-stroke state (well 1) and in
pre-power-stroke state (well 0). One can compute the minimum of those 2 functions with
respect to variable x:

V̂1 (ǫy) =
1

2
λ1 (ǫy + 1)2 ,

V̂0 (ǫy) =
1

2
λ0ǫ

2
y + v0

where λ1,0 = κ1,0/ (1 + κ1,0). The computation of the integrals in Z1 and Z0 leads to the
following exact expressions 2 (see details in appendix A.1.1):

Z1 (ǫy, β) =
√

(1−λ1)2π
β exp

[

−βV̂1 (ǫy)
] 1

2
erfc (−f1 (ǫy, l, β)) , (4.2.7)

Z0 (ǫy, β) =
√

(1−λ0)2π
β exp

[

−βV̂0 (ǫy)
] 1

2
erfc (f0 (ǫy, l, β)) , (4.2.8)

2. with

erfc :R −→ ]0, 2[

x 7−→ 2√
π

∫ +∞

x

exp
[

−t2] dt,
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where

f1 (ǫy, x, β) =

√

β

2

(√

1
(1−λ1)x+

√

(1 − λ1)
(

λ1
1−λ1

− ǫy

))

(4.2.9)

f0 (ǫy, x, β) =

√

β

2

(√

1
(1−λ0)x−

√

(1 − λ0)ǫy

)

. (4.2.10)

In addition, in (4.2.2), we can also integrate analytically with respect to ǫ. However, in both
hard and soft devices, the integration with respect to ǫy cannot be performed analytically
without any simplifying assumptions (see Sec.A.3). Finally, the exact formulas for the
partition functions can be presented in the form:

Zh (ǫ, β) =

∫

R

exp (−βFy (ǫ, ǫy, β)) dǫy, (4.2.11)

Zs (σ, β) =
√

2π
Nλf β

∫

R

exp (−βGy (σ, ǫy, β)) dǫy (4.2.12)

where we introduced with the non-equilibrium (partially equilibrated) free Gibbs energies:

Fy (ǫ, ǫy, β) = N

(

1

2
λf (ǫ− ǫy)2 − 1

β
ln (Z1 (β, ǫy) + Z0 (βǫy))

)

(4.2.13)

Gy (σ, ǫy, β) = N

(

− σ

N
ǫy − 1

2

σ2

N2λf
− 1

β
ln (Z1 (β, ǫy) + Z0 (β, ǫy))

)

. (4.2.14)

Let us discuss the different entries in Fy and Gy. The term −1/β log (Z1 + Z0) represents
the free energy of the array of cross-bridges at a fixed ǫy. Considering the expression of
Z1 and Z0 given by Eq.(4.2.7) and (4.2.8), we see that −1/β ln (Z1 + Z0) has a double
well shape, which means that the array of cross-bridges behaves as a macroscopic bi-stable
spring at a given ǫy. This is a direct consequence of the parallel arrangement used in
our model. The other terms in (4.2.13) and (4.2.14) contain the control parameters, ǫ
and σ, and also depend on the stiffness of the filaments λf . They do not depend on the
temperature so the entropic elasticity in the system comes only from the non-linear part
of the energy associated with the array of cross-bridges.

4.2.2 Free energy, tension and elongation in hard and soft devices

The free energies in hard and soft devices are obtained directly from the partition
function using Eq.(4.1.5) and (4.1.6), respectively.

Equilibrium tension T2 and elongation L2 are obtained by differentiating F and G with
respect to ǫ and σ respectively. For T2 we have:

T2 (ǫ, β) = − 1

β
∂ǫ (ln (Zh (ǫ, β)))

= − 1

β

∂ǫ (Zh (ǫ, β))

Zh (ǫ, β)
then from the expression (4.2.11)

= − 1

βZh (ǫ, β)

∫

R

−βNλf (ǫ− ǫy) exp [−βFy (ǫ, ǫy, β)] dǫy

The last formula can be also written in the short form:

T2 = Nλf

(

ǫ− 〈ǫy〉h (ǫ, β)
)

(4.2.15)
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where 〈ǫy〉h is the mean value of ǫy in thermal equilibrium for the hard device given by:

〈ǫy〉h (ǫ, β) =
1

Zh (ǫ, β)

∫

R

ǫy exp [−βFy (ǫ, ǫy, β)] dǫy. (4.2.16)

This result is not surprising since, given the particular configuration of our system, with a
linear spring attached to a non linear system of N cross-bridges. It is then quite clear that
the tension will be equal to the mean elongation of the linear spring times the stiffness.
This result is no longer valid if we consider non linear elastic myofilaments.

A similar computation gives in soft device:

L2 (σ, β) =
σ

Nλf
+ 〈ǫy〉s (σ, β) with (4.2.17)

〈ǫy〉s (σ, β) =
1

Zs (σ, β)

∫

R

ǫy exp [−βGy (σ, ǫy, β)] dǫy, (4.2.18)

Here, L2 is then expressed as the sum of the elongation of the filament σ/(Nλf ) plus the
mean elongation of the array of cross-bridges. The term σ/(Nλf ) does not depend on
the temperature so the mean elongation of the series spring in thermal equilibrium can be
obtained from purely mechanical formulas which is of course a consequence of linearity.

Let us next express the tension and elongation along isotherm as function of the mean
position of the cross-bridges. The results are quite intuitive (for the details of calculation,
see App.B.4.2). We recall that, in mechanical equilibrium at zero temperature:

ǫ̂y =
1

1 + λf

(

λf ǫ+
1

N

N
∑

i=1

ǫi

)

in hard device,

ǫ̂y =
σ

N
+

1

N

N
∑

i=1

ǫi in soft device.

These equalities remain true at finite temperature, with 1
N

∑

ǫi being replaced by the
mean values 〈ǫi〉. Hence:

〈ǫy〉h (ǫ, β) =
1

1 + λf
(λf ǫ+ 〈ǫi〉h (ǫ, β)) in hard device, (4.2.19)

〈ǫy〉s (σ, β) =
σ

N
+ 〈ǫi〉s (σ, β) in soft device (4.2.20)

leading to

T2 (ǫ, β) = N
λf

1 + λf
(ǫ− 〈ǫi〉 (ǫ, β)) , in hard device, (4.2.21)

L2 (σ, β) =
σ

Nλf
+
σ

N
+ 〈ǫi〉s (σ, β) , in soft device. (4.2.22)

To illustrate the above computations, we show on Fig.4.1 and Fig.4.2 the free energy
and equilibrium tension vs elongation in hard and soft devices, respectively.

In hard device, at large temperature (low β), the free energy is convex (see Fig.4.1A)
showing that the double well structure of the energy disappears; at low temperature, the
free energy remains bi-stable and converges to the global minimum when β → ∞. The non-
convexity of the free energy is the result of parallel connection of the bistable elements and
remains so in the thermodynamic limit (N → ∞, see App.B.2). In this sense our system
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Fig. 4.1 – Free energy and isotherm tension in hard device. (A): free energy computed from
Eq.(4.1.5), with different values of β (β =2, dotted line; β = 5, dashed line; β = 20, dot-dashed line and
β = 100, solid line) and in the limit β → ∞ (bold line). (B): isotherm tension computed from Eq.(4.2.15)
for different values of β (β = 5, dotted line; β = 10, dashed line; β = 20, dot-dashed line and β = 50, solid
line) and for β → ∞ (bold line). Parameters other than β are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10 and
λf = 1.

differs from classical distributed systems in which the free energy is always convex in the
thermodynamic limit (Lebowitz and Lieb, 1969).

As a consequence of the non-convexity of the free energy in hard device, the equilibrium
tension vs elongation curve shows a region of negative stiffness at low temperature (large
β), while in soft device, the corresponding curve remains monotone (compare Fig.4.1B
and 4.2B). Therefore, in hard device, the system operates in a inherently unstable state
when it is brought into such spinodal state while it is always stable in soft device. This
difference between hard and soft device survives in the thermodynamic limit N → ∞ (see
App.B.2).

In Fig.4.3, we compare the tension vs elongation relations in hard and soft devices for
β = 20. The difference between the two responses suggests that, switching the control
back and forth between hard and soft device will generate oscillations in the system (see
Fig.4.3B). Indeed suppose first that the system is in thermal equilibrium at point P in hard
device (dashed curve). If the control is suddenly changed to soft device, the system will
equilibrate on the soft device equilibrium curve (solid line) at point Q. By switching the
control back to hard device, one can move the system to point R and eventually to point
S after a new switch to soft device. By periodically repeating this process, the system can
be driven repeatedly through the states P,Q R and S.

4.2.3 Influence of the coupling parameter λf

Isotherms

We do not discuss here the effect of the change of the shape of the double well: it is
similar what we observed at θ = 0 (change in the stiffness of the phases and a shift in the
position of the barrier (see Sec.3.2.1)).

The influence of filament elasticity is illustrated in Fig.4.4 for hard device and on
Fig.4.5 for soft device. The value of β is taken to be equal to 10 and other parameters are:
λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100 and a = 1.
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Fig. 4.2 – Gibbs free energy and isotherm elongation in soft device. (A): Gibbs free energy
computed from Eq.(4.1.6), with different values of β (β =2, dotted line; β = 5, dashed line; β = 20,
dot-dashed line and β = 100, solid line) and in the limit β → ∞ (bold line). (B): isotherm elongation
computed from Eq.(4.2.17) for different values of β (β = 1, dotted line; β = 5, dashed line; β = 10,
dot-dashed line and β = 20, solid line) and for β → ∞ (bold line). Parameters other than β are: λ1 = 0.4,
λ0 = 0.7, l = −0.3, N = 10 and λf = 1.
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Fig. 4.3 – Tension vs elongation relation in hard (dashed line) and soft (solid lines) devices
computed using Eq.(4.2.15) and (4.2.17). (A)is with β = 20 and (B) is zoomed on the transition region
and with β = 10. To illustrate the meaning of the difference between hard and soft devices we propose
the following experiment: the system is initially brought to point P in hard device. If the control is
suddenly switched to soft device and the tension of point P(T2 (P )) is clamped, the system will elongate
spontaneously to point Q where it is in equilibrium at L2 (Q) on the soft device diagram. Then if the
controlled is switched back to hard device, the system will evolve to point R and then to point Q after
switching again to soft device. Hence by switching back and forth hard and soft device, one can emphasize
the different ensemble in of both modes. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10, λf = 1..
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Fig. 4.4 – Influence of the coupling parameter in hard device. Free energy (A) and tension
vs elongation (B) computed for different λf : λf → ∞ (dotted line), λf = 0.5 (dashed line), λf = 0.2
(dot-dashed line), λf = 0.1 (solid line), λf = 0.05 (bold line) and λf = 0.01 (bold dashed line). The
curves for λf = 0.01 (bold dashed lines) are continued with a different scale on the right plots to show
the transition that occurs at larger imposed stretch. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3
β = 10 and N = 100.

0 0.1 0.2
7

10

0 0.1 0.2
-1

0

1

2

0 0.2
-0.1

0

0.1

Λ f®¥

Λ f=0.5

Λ f=0.2

Λ f=0.1

Λ f=0.05

Λ f=0.01

0 0.1 0.2
-0.4

-0.2

A

σ

G/N

σ

L2
B

Fig. 4.5 – Influence of the coupling parameter in soft device. Gibbs Free energy (A) and
elongation vs tension (B), computed for different values of λf → ∞ (dotted line), λf = 0.5 (dashed line),
λf = 0.2 (dot-dashed line), λf = 0.1 (solid line), λf = 0.05 (bold line) and λf = 0.01 (bold dashed line).
The curves for λf = 0.01 are continued using a different scale to show the transition that occurs at larger
tension. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3 β = 10 and N = 100.
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Fig. 4.6 – Fraction of cross-bridges in post-power-stroke in hard (A) and soft (B) devices for
different value of the coupling parameter λf : λf = 0.01 (bold dashed line), λf = 0.05 (bold lines), λf = 0.1
(solid lines), λf = 0.2 (dot-dashed line), λf = 0.5 (dashed line) and λf → ∞ (dotted line). In soft device,
all curves superimpose. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3 β = 10 and N = 100.

In hard device, when λf decreases, the transition is shifted towards larger ǫ, the tension
vs elongation elongation curve becomes monotone and the free energy becomes convex
(see Fig.4.4 bold dashed lines). This behavior can be explained by the fact that when the
filaments are softer than the array of cross-bridges (λf ≪ 1), one sees mostly the passive
response of the series spring which has a convex (parabolic) energy. As a consequence, the
two linear branches of the tension vs elongation curve approach the same slope: λf .

In soft device, the position of the transition in not affected by the coupling parameter
(see Fig.4.5). For all λf , the Gibbs free energy remains concave (see Fig.4.5A) and the
elongation vs tension relation is monotone (see Fig.4.5B).

Weaker series spring favors collective behavior

We denote by 〈n1〉h,s the fraction of cross-bridges in post-power-stroke in thermal
equilibrium. We obtain (see the details of this computation in App.B.4.1):

〈n1〉h (ǫ) =
1

Zh (ǫ)

∫ Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)
exp [−βFy (ǫ, ǫy)] dǫy (4.2.23)

〈n1〉s (σ) =
1

Zs (σ)

∫ Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)
exp [−βGy (σ, ǫy)] dǫy (4.2.24)

with Z1 and Z0 given by Eqs.(4.2.7) and (4.2.8). We denote by ǫ1/2 (resp. σ1/2) the value
of ǫ (resp.σ) for which 〈n1〉h (ǫ) = 1/2 (resp. 〈n1〉s (σ) = 1/2). At fixed ǫy, the fraction of

cross-bridges in post-power-stroke is given by
Z1(ǫy)

Z1(ǫy)+Z0(ǫy) . We denote:

〈n1〉y (ǫy) =
Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)
. (4.2.25)

This function of ǫy is the same in hard and soft devices and does not depend on λf .
Our next Fig.4.6 shows that, in hard device, lowering the value of λf favors a sharp

transition between high and low fraction of post-power-stroke cross-bridges. This means
that the presence of an interaction due to the elasticity of the backbone enhances collective
behavior of the cross-bridges: the power-stroke takes place almost simultaneously in all
elements. In soft device (see Fig.4.6), the curve 〈n1〉s vs σ is identical for all values λf

because in Gy (see Eq.(4.2.14)), the terms containing λf do not depend on ǫy. As a result,
those terms come out of the integral in Eq.(4.2.24) and simply cancel with similar terms
in the denominator.
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Fig. 4.7 – Comparison of the influence of λf in hard (A) and soft (B) devices. We show
the parametric plots

(

〈ǫy〉h (ǫ) , T2 (ǫ)
)

(see A) and
(

〈ǫy〉s (σ) , σ
)

obtained with Eq.(4.2.16) and (4.2.18)
respectively for different values of λf : λf → 0 (bold line), λf = 0.02 (solid line), λf = 0.05 (dashed line),
λf = 0.1 (dot-dashed line) and λf = ∞ (dotted line). In soft device (see B), all curves superimpose.
The curve in hard device converges to the curve in soft device as λf decreases. Other parameters λ1 =
0.4, λ0 = 0.7, l = −0.3, N = 100 and β = 10.

Hard device behavior converges to soft device behavior for weak coupling

To remove the effect of the strain in the series spring that shifts the transition towards
larger elongations (see Figs.4.4 and 4.5), we show the parametric plots

(

〈ǫy〉h (ǫ) , T2 (ǫ)
)

and
(

〈ǫy〉s (σ) , σ
)

on Fig.4.7 A and B respectively. The mean values of ǫy are obtained
from (see Eqs.(4.2.16) and (4.2.18)).

In soft device (see Fig.4.5B) the curves for different λf superimpose showing that the
behavior of the cross-bridge array is not affected by the stiffness of the filaments (the reason
is similar to the one implied in the discussion of 〈n1〉s). In hard device (see Fig.4.5A), the
coupling parameter reduces the negative stiffness of the T2 vs 〈ǫy〉h curve and in the limit
of weak coupling, we see that the hard device device curve converges to the soft device
curve.

4.3 Negative slope

By using Eq.(4.2.15) and (4.2.17), and differentiating with respect to the loading we
obtain:

∂T2

∂ǫ
(ǫ, β) = Nλf

(

1 − ∂

∂ǫ
〈ǫy〉h (ǫ, β)

)

∂L2

∂σ
(σ, β) =

1

Nλf
+

∂

∂σ
〈ǫy〉s (σ, β)

The computation of the derivative of 〈ǫy〉h and 〈ǫy〉s is straightforward. We obtain:

∂T2

∂ǫ
(ǫ, β) = Nλf

(

1 − βNλf Var (ǫy)h (ǫ, β)
)

(4.3.1)

∂L2

∂σ
(σ, β) =

1

Nλf
+ βVar (ǫy)s (σ, β) (4.3.2)

where Var (ǫy)h,s =
〈

ǫ2y
〉

h,s
− 〈ǫy〉2

h,s is the variance of ǫy in equilibrium. On the one hand,

as the variance is positive, the slope of the L2 curve is always positive. Moreover, since
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Fig. 4.8 – Phase diagram for the slope of the T2 curve. The graph is obtained by computing the
slope of the T2 curve for 50 points in the interval

[

ǫ1/2 − 0.5, ǫ1/2 + 0.5
]

, using Eq.(4.3.1). This is because
the slope at ǫ1/2 is not always negative (e.g. ǫ1/2 can be located at near the end of the transition where the
slope is positive). We indicate as examples, on the left, the free energy and the T2 curve for λf = 2 and
θ = 59.1 (corresponding to θ = 400K), in the region of negative slope and, on the right, the free energy
and T2 curve for λf = 1.5 and β = 14.5 (corresponding to θ = 1631K), in the region of positive slope. (�)
indicates the set (λf , β) adjusted to fit muscle experiments. The other parameters used for this figure are
obtained from the fitting procedure explained in Sec.7.1 (see Tab.7.1 on p.139)

in Gy, the term containing λf does not contains ǫy (see Eq.(4.2.14)), the variance of ǫy
in soft device does not depend on λf . Hence the slope of L2 (σ) curve depends on λf

only through the additive 1/ (Nλf ) which, given that N is large, can be viewed as a small
contribution.

On the other hand, the slope of T2 (ǫ) curve depends in a non trivial way on both
λf and β (see Eq.(4.3.1)). Fig.4.8 shows a phase diagram in the space of parameters λf

and β identifying the domains where the slope of the T2 curve is everywhere positive (no
spinodal region). The boundary is obtained by computing the slope with Eq.(4.3.1) for
50 points within

[

ǫ1/2 − 0.5, ǫ1/2 + 0.5
]

and testing positiveness. The parameters used in
this figure are those obtained from the fitting procedure explained in Sec.7.1 (see Tab.7.1
on p.139); the set (β, λf ) corresponding to muscle experiments is indicated by the (�).

Fig.4.8 shows that the presence of the negative slope depends strongly on β, with a
sharp transition located around β = 15.5, which corresponds to a temperature of ∼ 1550°K
(with the chosen set of parameters). The dependence on λf is weaker: the slope becomes
positive only when λf → 0 but in this range, we saw that the transition region become
infinitely narrow (see Fig.4.4A). We illustrate the phase diagram by showing in the inserts
T2 associated with particular points: on the left, with λf = 2 and θ = 59.1 (corresponding
to θ = 400K) and on the right with λf = 1.5 and β = 14.5 (corresponding to θ = 1631K).

4.4 Adiabats

The observed negative stiffness associated with the thermal equilibrium response is
disturbing. One can think however that the power-stroke operates at such short time scale
that the temperature does not have time to equilibrate during the quick recovery and the
response is closer to adiabatic one than to isothermal one. Therefore, bellow we compute
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Fig. 4.9 – Influence of temperature on entropy in hard (A) and soft devices (B), for different
values of β (dotted line: β = 5; dashed line: β = 10; dot-dashed line: β = 20; Continuous line: β = 100).
The curves are obtained from direct computation of Eq.(4.1.11) and (4.1.12). Other parameters are:
λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10, λf = 1. and a = 1.

the adiabatic response (iso-entropic) of our system by assuming that the initial entropy is
conserved during the loading. When the load step is applied from the central region of the
T2 vs elongation curve, the system is eventually brought into a region where the number
of available state is lower than in the initial configuration. If the response is iso-entropic,
one expects the temperature to rise which tends to smooth the equilibrium curve.

4.4.1 Entropy

We begin with the computation of the entropy along the isotherms. The entropy has
been computed from the partition function using Eq.4.1.13 and Eq.(4.1.14) in hard and
soft devices respectively.

Fig.4.9 shows the entropy vs loading curves (ǫ or σ) at different temperatures (dotted
line: β = 5; dashed line: β = 10; dot-dashed line: β = 20; solid line: β = 100). The other
parameters are the same as in Fig.4.1 (λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10, λf = 1.
and a = 1.).

The entropy in soft device (B) is always larger than in hard device (A) because there
is an additional degree of freedom in soft device (ǫz). Moreover, since the double well is
asymmetric (in this case λ0 > λ1), the entropy is higher at large shortening than at large
stretching (the asymptotic values of the entropy are computed in App.B.3.3).

In the central region, the entropy presents a maximum as, near the transition, the
system can both states; this maximizes ‘disorder’ and increases the entropy. When the
temperature is large (β → 0), this peak is smoothed as the diffusion starts to dominate
while for low temperatures (β → ∞), the system follows the global minimum and we
observe a sharp transition between two intervals of constant entropy.

4.4.2 Temperature change along the adiabats

Along the adiabats, the temperature β varies in such a way that:

Sh (ǫ, β) = Sh

(

ǫ0, β0
)

in hard device, (4.4.1)

Ss (ǫ, β) = Ss

(

σ0, β0
)

in soft device, (4.4.2)

where ǫ0, σ0 and β0 are initial conditions. We choose ǫ0 = ǫ1/2 and σ0 = σ1/2. We compute
the value of the non-dimensional temperature β that ensures that the entropy S is equal
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Fig. 4.10 – Adiabatic response in hard device. (A): Temperature change for various initial temper-
ature: β0 = 5 (dotted line), β0 = 10 (dashed line), β0 = 20 (dot-dashed line) and β0 = 30 (solid line). (B):
T2 (ǫ), computed along isotherm (solid line) and along adiabat (dashed line) with β0 = 10. Parameters
are: λ1 = 0.4, λ0 = 0.7, l = −0.3 and N = 100.

to the initial value using a dichotomy algorithm (at all levels of loading). We know that
the initial state of the system is located in the transition region where the microstructure
is not homogeneous (〈n1〉 , 1, 0), and the entropy is high (see Fig.4.9). After the step, the
system evolves towards more homogeneous configurations so its entropy decreases along
the corresponding isotherm. Hence in adiabatic response, the temperature of the system
increases (and thus β decreases).

Fig.4.10 shows the adiabtic response of the system in the hard device. On (Fig.4.10A),
we represent the change in β under the assumption of constant entropy. Due to the asym-
metry of the double well potential (λ1 = 0.4, λ0 = 0.7), the entropy is not at its maximal
value when 〈n1〉h = 1/2. Hence, in shortening β first increases before finally decreasing
to a constant value. The constant temperature, reached in stretching, is lower than in
shortening because the stiffness of the system is lower in stretching than in shortening
(λ1 < λ0). The asymptotic values of the temperature can be computed analytically (see
App.B.3.3) As β0 decreases the variations of β decrease as well since the system becomes
more diffusive.

On Fig.4.10B, we compare the T2 curve along the isotherm for β = 20 (solid line) with
the T2 curve along the adiabat (dashed line). We see that the stiffness persists along the
adiabat even though the transition becomes smoother.

The adiabatic response in soft device is shown on Fig.4.11. The variation of β is
similar to the case of hard device but the sharp transition in β occurs at smaller values of
β0 compared with the hard device case. The adiabatic L2 curve is similar to the isotherm
(see Fig.4.11).

We conclude that the adiabatic response is basically similar to the isothermal response
and in particular it also shows a region of negative stiffness in hard device for the same
values of parameters. So far, the systematic study of the presence of a negative slope in
adiabats has not been made for the whole range of λf and β but we checked that, for
realistic sets of parameters, the responses are similar in adiabatic and isothermal regimes
(see Sec.7.2.3).
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Fig. 4.11 – Adiabatic response in soft device. (A): Temperature change for various initial tempera-
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4.5 Partially equilibrated system

4.5.1 The double well nature of the non-equilibrium energy landscapes

To better understand the difference between hard and soft devices and to illuminate
the influence of the coupling parameter λf , we consider the partially equilibrated system
with two degrees of freedom: ǫy and ǫ in hard device and ǫy and σ in soft device. Here,
ǫ and σ are the control parameters and ǫy is the internal degree of freedom we would like
to track. The probability densities of ǫy are:

ph
y (ǫ, ǫy, β) =

1

Zh (ǫ, β)
exp [−βFy (ǫ, ǫy, β)] in hard device, (4.5.1)

ps
y (ǫ, ǫy, β) =

√

2π
βNλf

Zs (ǫ, β)
exp [−βGy (σ, ǫy, β)] in soft device, (4.5.2)

with Fy and Gy given by (see Eq.(4.2.13) and (4.2.14)):

Fy (ǫ, ǫy, β) = N

(

1

2
λf (ǫ− ǫy)2 − 1

β
ln (Z1 (β, ǫy) + Z0 (βǫy))

)

,

Gy (σ, ǫy, β) = N

(

− σ

N
ǫy − 1

2

σ2

N2λf
− 1

β
ln (Z1 (β, ǫy) + Z0 (β, ǫy))

)

,

where the functions Z1 and Z0 (see Eq.(4.2.7) and (4.2.8)) do not depend on the coupling
parameter λf . The first term in Gy, which depends on λf , is quadratic and ‘produces’ a
gaussian probability distribution centered on ǫ. −1/β ln (Z1 + Z0) generates a sum of two
gaussian distributions centered at 0 and −1 (see Eq.(4.2.7) and (4.2.8)). Hence, changing
the value of the coupling parameter can lead to switching from a convex energy landscape
to a non-convex energy landscape in terms of ǫy.

We illustrate the probability density of ǫy and the non-equilibrium free energy Fy

on Fig.4.12A and B respectively for two different values of the coupling parameter λf :
0.05 (solid line) and 0.2 (dashed line). For λf = 0.05, the partially equilibrated energy
landscape is non-convex and the probability density shows two peaks at ǫy ≈ −0.7 and
ǫy ≈ −0.1. Instead for λf = 0.2, Fy is convex and the probability density has a single
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Fig. 4.12 – Non-equilibrium energy landscape in hard device at ǫ = ǫ1/2. (A): marginal proba-
bility density of ǫy computed using Eq.(4.5.1) for λf = 0.05 (solid line) and λf = 0.2 (dashed line). The
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wells. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100 and β = 10.

peak at ǫy ≈ −0.25. We also show the mean fraction of post-power-stroke cross-bridges
at fixed ǫy by the dotted line (〈n1〉y given by Eq.(4.2.25)). We recall that 〈n1〉y does not
depend on the value of λf .

In must be noted that in both cases (λf = 0.2 and λf = 0.05), as the curves are
obtained for ǫ = ǫ1/2, the equilibrium fraction of post-power-stroke cross-bridges is 1/2.
1/2 is obtained through

∫

〈n1〉y exp [−βFy] dǫy (see Eq.(4.2.25) and App.B.4.1). Hence
this equilibrium value is achieved either with a single value of ǫy (≈ −0.25, see Fig.4.12
dashed lines), for λf = 1, corresponding to a mixed microstructure (〈n1〉y ≈ 0.5 indi-
cated by the arrow on Fig.4.12B) or by mixing two more homogeneous configurations, for
λf = 0.05 with 〈n1〉y ≈ 0.9 and 〈n1〉y ≈ 0.25 corresponding to the two minima of the
non-equilibrium (macroscopic wells). In other words, at low λf , there are two populations
of half-sarcomeres (two different ǫy): one is pre-power-stroke and the other in post-power-
stroke. At large λf , there is only one population of half-sarcomere (one ǫy) with a mixed
microstructure.

In soft device, if we replace Zs by its expression (4.2.2), we see that the terms depending
on λf in (4.5.2) vanish, and unexpectedly the distribution ps

y (ǫy) does not depend on λf

(see Fig.4.5). Hence, the presence of macroscopic wells in soft device does not depend on
λf (see the reduced Gibbs free energy Gy - Eq.(4.2.14)): the terms containing λf are not
related to the internal parameters (ǫ1, . . . , ǫN , and, ǫy) and the double well 1

β ln (Z1 + Z0)

is ‘tilted’ by the term σ
N ǫy, so, at moderate σ (i.e. σ ≈ σ1/2), the probability distribution

of ǫy is always bi-modal. On Fig.4.13, we show the probability density (see A) and the non-
equilibrium energy landscape Gy (see B) for λf = 0.05 and λf = 0.2. We conclude that
in soft device, the average fraction 〈n1〉s is always obtained by mixing two homogeneous
configurations with two different values of ǫy (see Fig.4.13B).
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4.5.2 Energy barriers

When we compare Fig.4.12 and 4.13, we observe that for the same set of parameter,
one can get a convex energy landscape in hard device and a non-convex energy landscape
in soft device (see the dashed lines corresponding to λf = 0.2 on Fig.4.12 and 4.13B).
Moreover, when both hard and soft devices exhibit macroscopic wells (see solid lines), the
two minima in ǫy are separated by a larger distance in soft device than in hard device.
Simultaneously, the energy barrier is higher in soft device than in hard device (e.g. the
barrier is ∼4kbθ on Fig.4.13B and ∼1kbθ on Fig.4.12B). This result echoes our computa-
tions at zero temperature (see Fig.3.10) and suggests that the transition between the wells
will be considerably slower in soft device than in hard device.

To support this conclusion, on Fig.4.14(left, A and D), we plot the isolines of the non-
equilibrium free energy Fy vs ǫy and ǫ − ǫ1/2 with and without a double well structure
(upper part for λf = 0.05 and lower part for λf = 0.5 respectively). The energy landscapes
are modified to remove the global tilt in the ǫ direction and all parameters other than λf

are taken to be the same in both figures (λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100 and
β = 10). The bold lines represent the mean value of ǫy (see Eq.4.2.16). On the right ((B)
and (E)) we show the T2 curves corresponding to (A) and (D) respectively. The curves
are normalized by the tension T0 at ǫ1/2. On (C) and (F) we show two typical trajectories
of ǫy in the energy landscapes (A) and (D) for ǫ = ǫ1/2. These trajectories are obtained
from Langevin simulation of a single half-sarcomere with 100 cross-bridges at ǫ = ǫ1/2 (see
the next Chapter).

The upper part of Fig.4.14 shows that for a double well non-equilibrium energy land-
scape, the system oscillates between the 2 long-living states indicated by the black dots
(see also Fig.4.14C). In each state, the corresponding tension is either higher or lower
than the equilibrium tension and it corresponds to the the tensions generated by homo-
geneous half-sarcomeres (see the correspondence with the dashed lines on Fig4.14B). The
resulting equilibrium tension, shown by the circle in the middle, can then be obtained
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Fig. 4.14 – Trajectories in the non equilibrium energy landscape in hard device and influence
of the coupling parameter. We show the non-equilibrium energy landscape (A and D), the T2 curve
(B and E) and a typical trajectory of ǫy at ǫ = ǫ1/2 (C and F) for two values of the coupling parameter:
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tension T0 at ǫ = ǫ1/2. On (B), the dashed lines represent the tension in the homogeneous configurations
with all cross-bridges in post-power-stroke or in pre-power-stroke. In the presence of a double well Fy

(upper part), the equilibrium tension is achieved by mixing the 2 homogeneous configurations between
which ǫy oscillates (see C). Such system is therefore very unlikely to be found in the equilibrium value
whereas, with a single well Fy, the system can equilibrates with a mixed microstructure and does not
oscillate (see lower part).

only by averaging the trajectories of an inhomogeneous assembly of many homogeneous
half-sarcomeres.

On the lower part of Fig.4.14, λf = 0.5 and the function Fy has a single-well struc-
ture. Consequently, a single state with a heterogeneous microstructure is reached and no
oscillations are observed (see Fig.4.14D).

The persistence of a a double well structure has a serious impact on the kinetics of
the system. As shown by Fig.4.14(A) and (D), when ǫ is changed slightly with respect
to ǫ1/2 the equilibrium immediately shifts to the affine states where the microstructure is
homogeneous, but the double well structure is still present. We saw that when the double
well structure is present, the system spends most of the time either at low ǫy or high
ǫy and occasionally switches position while crossing the energy barrier. Hence, for small
load changes, the system will reach equilibrium on a much slower time scale if the double
well structure is maintained, since cross-bridges may have to collectively cross an energy
barrier.
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Kinetic phase diagram

The double well nature of the free energy Fy (ǫy, ǫ), at ǫ = ǫ1/2, exists in a subdomain
of the parametric space (β, λf ). As shown on Fig.4.15(A) (where λf = 0.05), a decrease
in β (increase of temperature θ) convexifies the non-equilibrium free energy Fy. The effect
of temperature is the same in soft device (see Fig.4.15B).

In Fig.4.16, we show a phase diagram indicating the domain of existence for the double
well structure of Fy

(

ǫy, ǫ1/2

)

in the space of λf and β. The solid line is obtained numer-
ically in Mathematica® using the set of parameters obtained after fitting the model to
experimental data (see Sec.7.1 and Tab.7.1 on p.139). The chosen set (β, λf ) = (85, 0.53)
is indicated by the (×). As expected, at a given temperature θ, there is a critical value
of λf at which the energy landscape becomes convex. We illustrate the two domain by
showing the non-equilibrium energy landscapes at ǫ = ǫ1/2 and σ = σ1/2 for two selected
points (on the left, β = 119 and λf = 1 and on the right, β = 25 and λf = 1.5). We see
that in both domains, Gy

(

ǫy, σ1/2

)

is non convex.

The convexity of Fy and Gy can be verified analytically at a given value of ǫy by
computing the second derivative. In hard device we have:

∂yyFy (y) = λf − β
Z1 (ǫy, β) Z0 (ǫy, β)

(Z1 (ǫy, β) + Z0 (ǫy, β))2 ((λ1 − λ0) ǫy + λ1)2

+ λ1
Z1 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
+ λ0

Z0

(

ǫǫy,β

)

Z1 (ǫy, β) + Z0 (ǫy, β)
. (4.5.3)

Since ∂yyGy (y) = ∂yyFy (y)−λf we see that λf has no impact on the convexity of Gy. We
would like to derive an asymptotic criterion for the non convexity of Fy considering the case
β ≫ 1. We know that, in the limit β → ∞, the system converges to the global minimum
where ǫ1/2 = ǫ⋆ (see Sec.3.1.4). Then, the non-equilibrium free energy Fy converges to

the reduced energy V̂y (represented on Fig.3.10, thick line; see Sec.3.3), and the eventual
interval of non convexity shrinks to ǫ⋆y (represented with a ⋆ on Fig.3.10). We recall that

ǫ⋆y must satisfy: 1
2λ1

(

ǫ⋆y + 1
)2

= 1
2λ0ǫ

⋆
y

2 +v0 which means that the exponential parts in Z1
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testing the presence of 2 minima in the non-equilibrium free energy at ǫ = ǫ1/2 and at σ = σ1/2. The dashed
line is an approximation of the boundary for low temperatures (see Eq.(4.5.4)). This plot is obtained with
the parameters adjusted to muscle fiber experiments (see Sec.7.1 and Tab.7.1 on p.139).

and Z0 are equal (see Eq.4.2.7 and 4.2.8). Thus (4.5.3) reduces to the asymptotic relation:

∂yyFy (ǫy) ≈ λf −β
√

(1 − λ1) (1 − λ0)
(√

1 − λ1 +
√

1 − λ0

)2 ((λ1 − λ0) ǫy + λ1)2+
λ1

√
1 − λ1 + λ0

√
1 − λ0√

1 − λ1 +
√

1 − λ0

(4.5.4)
The corresponding isoline, ∂yyFy (ǫy⋆) = 0, is represented with a dashed line on Fig.4.16.
It matches asymptotically the numerical computation as θ decreases but also provides a
good approximation in the whole domain.

As we have already mentioned, in soft device, the convexity of Gy does not depend on
λf . Using the same method as in hard device we find that Gy becomes convex for:

β <
λ1

√
1 − λ1 + λ0

√
1 − λ0√

1 − λ1 +
√

1 − λ0

(

√

(1 − λ1) (1 − λ0)
(√

1 − λ1 +
√

1 − λ0

)2 ((λ1 − λ0) ǫy + λ1)2

)−1

(4.5.5)

which correspond to β < 16 and θ > 1480℃ at realistic values of other parameters.

Conclusions

By introducing finite temperature in our system, we observed that our the mechanical
energy landscape with exponentially many wells has been smoothed. However, due to the
parallel arrangement of the cross-bridges, our model markedly differs from classical dis-
tributed systems and preserves a non-convex energy landscape even in the thermodynamic
limit for sufficiently low temperatures.
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Near the metastable region, where the isometric contraction is supposed to take place,
the systems operates in an inherently unstable regime in hard device, characterized by an
effective negative stiffness that ultimately disappear at large temperature.

The diminishing of the parameter λf , acts similar but not equivalent to a decrease in
temperature. It enhances the cooperative transition between pre- and post-power-stroke
states but has only little effect on the presence of negative stiffness.

At the same time, the coupling parameter has a dramatic effect on the shape non-
equilibrium energy landscape in hard device. A reduction of λf creates a barrier between
a population of pre-power-stroke half-sarcomeres and a population of post-power-stroke
half-sarcomere. This separation is always present in soft device however the energy barrier
is at least twice as high as in hard device. Due to bi-stability of the effective free energy,
the system oscillates at the macroscopic level and spends only a small fraction of time near
its microscopically equilibrium state.





Chapter 5

Kinetics

We saw in Chapter 4, that the reduced energy landscape exhibits 2 macroscopic wells
in the region of the transition (ǫ = ǫ1/2 and σ = σ1/2) even at finite temperature. In

this chapter, we study the kinetics of the system when the controlled parameter evolves in
time. First, we treat the simple case of zero temperature. Then, we present the analytical
study of first passage times and discuss the Kramers approximation. Finally we introduce
the Langevin’s equation for our system and study numerically its stochastic response to
length steps and load steps.
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5.1 Kinetics at θ = 0

5.1.1 System of ODEs

In this sub-section we investigate the response of our system submitted in standard
physiological length and load clamp experiments by using first the classical mechanical
framework. We neglect the fluctuations produced by the thermal bath (θ → 0 or β → ∞)
but keep the dissipative friction within the cross-bridges described by a viscous force −ηǫ̇i.
Also, we assume that all other (linear) elastic elements are considered conservative.Later
we show that this assumption is consistent with experimental results on muscle fiber (see
Sec.7.1).

To nondimensize times are we use the time scale τ = η/κ.
We choose as initial condition the metastable state n1 = 0.5 at ǫ0 = ǫ⋆ in hard device

and σ0 = σ⋆ in soft device. This implies that the system is initially stable. Then, we
apply ramps of different amplitudes. In real experiments, the step is applied as fast as
possible so that T1 and L1 can be associated with a purely elastic response (see Sec.7.1 and
(Huxley and Simmons, 1971; Smith et al., 2008)). To stay close to experiments, we have
chosen tramp ≪ τ . It what follows we use tramp = 0.1 in arbitrary units and we compute
the tension and elongation as a function of time.

Without thermal noise, the system of governing equations is completely determinist and
all the cross-bridges in the same well are exactly at the same position at the same time.
Thus the system reduces to a set of two (dimensionless) ordinary differential equations
(ODE). In hard device we obtain:

{

ǫ̇1 = −∂ǫ1v (ǫ1) + 1
1+λf

(

λf ǫ (t) + n0
1ǫ1 + n0

0ǫ0
)

− ǫ1

ǫ̇0 = −∂ǫ0v (ǫ0) + 1
1+λf

(

λf ǫ (t) + n0
1ǫ1 + n0

0ǫ0
)

− ǫ0

where ǫ1 (t) is the position of the cross-bridges in well 1 and ǫ0 (t) is the position of the
cross-bridges in well 0. In soft device, the system takes the form:

{

ǫ̇1 = −∂ǫ1v (ǫ1) + σ(t)
N + n0

1ǫ1 + n0
0ǫ0 − ǫ1

ǫ̇0 = −∂ǫ0v (ǫ0) + σ(t)
N + n0

1ǫ1 + n0
0ǫ0 − ǫ0

In hard device the tension T (t) is given by:

T (t) =
Nλf

1 + λf

(

ǫ (t) − n0
1ǫ1 (t) − n0

0ǫ0 (t)
)

,

and, in soft device, the total elongation is:

L(t) =
σ (t)

N

(

1 +
1

λf

)

+ n0
1ǫ1 + n0

0ǫ0.

Notice that if tramp ≫ τ , viscous relaxation will start taking place during the ramp itself
while if tramp ≪ τ , only the elastic response will be activated, with the cross-bridges
remaining almost at the same position in their wells.

5.1.2 Length clamp and load clamp experiments

On Fig.5.1(A), we plot the tension versus time for different length change experiments,
starting all from the same configuration n1 = 0.5 (denoted as S). In (B) we represent the
evolution in time of the total elongation for different changes in load starting from point S.
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Fig. 5.1 – Visco-elastic response of a half sarcomere in hard and soft devices. (A) (resp.
(B)): tension (resp. elongation) evolution in time for 4 different step sizes. The system is initially in
configuration (1/2, 0, 1/2) represented by point S. Then a ramp of duration tramp = 0.1 is applied (in A a
length ramp and in B a force ramp) from S to A1, B1, C1 and D1. When the ramp is finished, the system
relaxes to a new tension (A) or elongation (B). The final steady state are noted A2, B2, C2 and D2. (C)
and (D), the state of the system after the ramp (dashed line) and after viscous relaxation (continuous
line) are represented for different step sizes. The point A1, B1, etc... and A2, B2, etc... correspond
to the trajectories shown in (A) and (B). The gray region is the existence domain of metastable states.
Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 2 and N = 300.

In both hard and soft devices, we distinguish two phases in the transient response. First,
the tension or elongation changes during the ramp (from S to A1, B1, etc...). This is an
elastic behavior (tramp ≪ τ), leading to a straight line in the graph tension vs total elon-
gation (dashed line on the right figure of Fig.5.1C and D). This straight line corresponds
to the T1 curve. When the ramp is finished, the tension (resp. elongation) readjusts to
its a new equilibrium value (from A1, B1 etc... to A2, B2 etc...). Here two cases can be
distinguished. First, the amplitude of the ramp is small enough so that the configuration
n1 = 0.5 still exists for the final total elongation or tension (cases A and C, in the gray
region). In that case, we have an exponential decay as the system equilibrates back to its
initial configuration n1 = 0.5 at a new length (tension) (paths A1 → A2, and C1 → C2),
the heads remaining in the same well. Second, the amplitude of the ramp is large and the
configuration no longer exists for the final total elongation (tension) (cases B and D leads
outside the gray region); then we observe a response with 2 times scales. The first one is
due to the motion of the heads in their initial well, up to the point where the cross-bridges
in the well reach the spinodal point. Then, the cross-bridges have to transit to the new
well. There is then an acceleration of the tension or elongation evolution (indicated by the
⋆ on Fig.5.1A and B).

By comparing the time response of the system in both hard and soft devices, we observe
that the rates of recovery are higher in hard device than in soft device as it was suggested
by the analysis of the energy landscape (see Sec.3.1.4).

To conclude, we observe that if we wanted to reproduce the quick recovery experiments
using a mechanical model that does not take into account temperature, it would have been
natural to interpret the experimental T1 curve as the instant response of our visco-elastic
system (points A1, B1, etc...). Then T2 (resp. L2) would be identified with the final
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tension (resp. elongation) (points A2, B2, etc...). However, we have shown that within
this framework, it is not possible to reproduce the experimental T2 curve (see Fig.2.5).
Instead we obtained a discontinuous T2 curve with the jumps located at the boundary of
the metastability domain for the initial configuration.

5.2 Kinetics at finite temperature

5.2.1 Elements of theory

We recall that our relatively low parametric mechanical system is immersed in a
medium with a large (∼ 1023) number of degrees of freedom. These degrees of freedom are
assumed to be equilibrated and are represented in our model by a thermostat imposing
finite temperature θ. In our framework, the inertial terms can be neglected (overdamped

regime) and the motion of a point-like particle X in a potential V (X) is governed by the
Langevin equation:

η
dX

dt
= −V ′ (X) +

√

2ηkbθΓ (t) (5.2.1)

where η is the viscous drag coefficient and Γ (t) is the white noise whose strength is
prescribed by the fluctuation dissipation theorem: 〈Γ (t)〉 = 0 and 〈Γ (t) Γ (t′)〉 = δ (t− t′).
Here, 〈.〉 denote ensemble average and δ is the Dirac function. With these notations, Γ (t)
can be interpreted as the derivative of a Wiener process whose property is to be non-
differentiable (Gardiner, 2004). Therefore, it is more natural to rewrite Eq.(5.2.1) as the
Stochastic Differential Equation (SDE)

dXt =
1

η

(

−V ′ (Xt
)

dt +
√

2kbθdB
t
)

where dBt is the increment of a Wiener process with variance dt. As in the previous
Section, we define τ = η/κ as our characteristic time and, using the notation introduced
in Sec.2.5.3 rewrite the preceding equation in the following non-dimensional form:

dX
t

= −V ′ (
X
)

dt+
√

2β−1dBt (5.2.2)

where β = κa2/ (kbθ) and dBt ∼ N (0, 1) 1. From now on, the bars will be dropped for
convenience. For a given initial condition X0 = x0 The solution of (5.2.2) is:

Xt = X0 +

∫ t

0
−V ′ (Xt

)

dt+
√

2β−1

∫ t

0
dBt

where, the second integral is an Itô stochastic integral which is defined, for a given division
t1, . . . , tn of the time interval [0, t] and for an arbitrary function f as follows 2:

∫ t

0
f (t) dBt = m.s. lim

n→∞

[

n
∑

i=1

f (ti−1)
(

Bti −Bti−1
)

]

The essential properties of the brownian increment dBt are:
∫ ti+1

ti

(

dBt
)2

= ti+1 − ti;

∫ ti+1

ti

(

dBt
)n+2

= 0 for all n > 0 (5.2.3)

1. Notation: X ∼ N (0, 1) means that the probability density of X is a normal distribution with zeros

mean and variance 1. p (x) = 1√
2π

exp
[

− t2

2

]

2. A random variable Xn converges in mean square to the random variable X with the notation
m.s. lim
n→→∞

[Xn] = X if and only if lim
n→∞

〈

(Xn − X)2
〉

= 0.
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Now consider an arbitrary function f of our stochastic variable Xt interpreted as a solution
of Eq.(5.2.2). By expanding df

(

Xt
)

, and using (5.2.3), we obtain the so-called Itô formula
which describes the change of variable in the context of stochastic differential equations:

df
(

Xt
)

=
[

−V ′ (Xt
)

f ′ (Xt
)

+ β−1f ′′ (Xt
)]

dt+
√

2β−1f ′ (Xt
)

dBt

This formula will be extensively used in Chap.6.
Now, at each time t, the random variable Xt has a probability density p (x, t) > 0 such

that
∫

p (x, t) dx = 1. Next, for an arbitrary function f we write:

d

dt

〈

f
(

Xt
)〉

=

∫

f (x)
∂p (x, t)

∂t
dx =

〈

−V ′ (Xt
)

f ′ (Xt
)

+ β−1f ′′ (Xt
)〉

=

∫

[

−V ′ (x) f ′ (x) + β−1f ′′ (x)
]

p (x, t) dx.

which after integration by parts and discarding the surface terms gives:

∫

f (x)
∂p (x, t)

∂t
dx =

∫

f (x)

[

∂

∂x

[

V ′ (x) p (x, t)
]

+ β−1 ∂
2

∂x2
p (x, t)

]

dx. (5.2.4)

Since this equality is true for arbitrary f , we obtain the the (forward) Fokker–Planck
equation:

∂p (x, t)

∂t
=

∂

∂x

[

V ′ (x) p (x, t)
]

+ β−1 ∂
2

∂x2
p (x, t) for t > t0 (5.2.5)

with the initial condition p (x, t0) = p0 (x).

The two problems (5.2.2) and (5.2.5) are equivalent under the condition that V ′ is lips-
chitzian and that there exist C ∈ R such that V ′ (x) ≤ C (1 + |x|). There exists a number
of numerical methods to solve the problem of finding p (x, t) in both approaches (Allaire,
2007; Kloeden and Platen, 1999). Numerical solutions of the Fokker–Planck equation will
be performed using finite volume or finite elements methods (see App.D.1). In these meth-
ods, the ‘numerical cost’ increases exponentially with the dimension d of the phase space
(the dimension of the discretization grid), thus they are not adapted to solve problems
with d > 3. Here we have d ∼ 100 so we would need to dramatically reduce the dimension
of the system in order to use its Fokker–Planck description and implement finite volume
or finite element methods. We present an attempt of such model reduction in Chap.6. In
the following, we will use numerical simulation of the stochastic trajectories by dealing
directly with stochastic dynamics of the variable Xt.

5.2.2 Numerical simulation of stochastic trajectories

The exact relation between the solution of Fokker–Planck equation and the trajectory
of the stochastic process Xt is that (Graham and Talay, 2010):

p (x, t) =
〈

p0

(

Xt
x,t0

)〉

(5.2.6)

where Xt
x,t0

represents the stochastic realizations of XT that start at the point x at time t0.
By using the strong law of large numbers we approximate the mean value by the empirical
sum over Nr independent realizations of the stochastic process:

〈

p0

(

Xt
x,t0

)〉

= lim
Nr→∞

1

Nr

Nr
∑

i=1

p0

(

Xt,i
x,t0

)

. (5.2.7)
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Where Xt,i
x,t0

with 1 ≤ i ≤ Nr is a family of trajectories of the stochastic process Xt
x,t0

solution of Eq.(5.2.2) with the initial condition Xt0
x,t0

= x.

In order to simulate a trajectory of XT
t,x, we use the Euler algorithm. This method was

chosen because the drift and diffusion terms in our problem are relatively simple (V ′ (x)
is piecewise linear and the diffusion coefficient is constant). We have also found that the
numerical convergence was fast enough to avoid the use of more sophisticated algorithms.

To explain the numerical method, we introduce ∆t the time step of the simulation and
denote by n the number of time steps in the time interval [t, T ]. The discretization scheme
is the following:

Xi+1 = Xi +
(

−V ′ (Xi
))

∆t+
√

2β−1
(

Bi+1 −Bi
)

(5.2.8)

where
(

Bi+1 −Bi
)

∼ N (0,
√

∆t). This scheme is consistent by construction and is nu-
merically stable (Kloeden and Platen, 1999). By solving finite difference equations, we
obtain a family of simulated trajectories Xt,i,n

x,t0
with 1 ≤ i ≤ Nr. Then we obtain the

approximation of the solution of the Fokker–Planck equation:

pn,Nr (x, t) =
1

Nr

Nr
∑

i=1

p0

(

Xt,i,n
t0,x

)

. (5.2.9)

Now the error can be decomposed as follows (Graham and Talay, 2010):

∣

∣p (x, t) − pn,Nr (x, t)
∣

∣ ≤
∣

∣

∣
p (x, t) −

〈

p0

(

XT,n
x,t0

)〉∣

∣

∣
+
∣

∣

∣

〈

p0

(

Xt,n
x,t0

)〉

− pn,Nr (x, t)
∣

∣

∣
. (5.2.10)

The first term denoted α (n) is the discretization error and the second term denoted
β (n,Nr) is the statistical error. It is known from the central limit theorem that β (n,Nr) ∼
N (0, 1) when Nr → ∞ as 1/

√
Nr. For the Euler scheme it can be shown that the dis-

cretization error α is bounded as follows (Graham and Talay, 2010; Kloeden and Platen,
1999):

|α| ≤ C√
n
. (5.2.11)

In most of the cases, where the drift and diffusion functions are sufficiently smooth, the
convergence of the scheme with order 1 is guaranteed (Graham and Talay, 2010). In actual
computations, the unit of non dimensional time must be constructed from the smallest
‘physical time’ if one would like to capture the effect of the fastest processes. In our case,
we achieved a good numerical convergence with ∆t = 10−3 ≪ 1 and with Nr ∼ 500.

5.3 First passage times and equilibration of populations

Before studying the kinetic response at finite temperature numerically, it is instructive
to first obtain an estimate of the operative timescales in our system. we observe that,
during a typical experiment, the system will go from one well of the free energy landscape
to another well corresponding to its final equilibrium state. On its way, the system have
to cross different energy barriers, and the barrier crossing process will dictate the time
scale of recovery. Here, we will investigate two one-dimensional barrier crossing processes
that are relevant for our system. First, at the level of a single cross-bridge would study
the barrier crossing in the energy landscape Vxb (ǫ1, ǫy) = v (ǫ1) + 1/2 (ǫy − ǫ1)2 at fixed
ǫy. Second, we’ll study the barrier crossing in the reduced free energy landscape Fy (ǫy)
obtained in Sec.4.5.
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5.3.1 First passage times

Consider a particle X undergoing a drift-diffusion motion in an energy landscape V (X)
which possesses two wells located at x̂1 and x̂0, with x̂1 < x̂0. Assume also that the two
wells are separated by an energy barrier located at point x = l. Suppose the particle is
initially at x̂0 at time t0. We would like to know: what is the average time before the
particle that starts at x̂0 reaches a given position x ? The standard solution of this escape

time problem in 1-D can be found in most textbooks on stochastic processes. In App.C
we recall the main steps of the derivation of the solution. Here we just present the final
formulas Let T (t0, x0 → x) be the first passage time at x starting from the position x̂0 at
time t0. The function T (t0, x0 → b) is the solution of the following elliptic equation (see
App.C):

[

−V ′ (x)
d

dx0
+ β−1 d

2

dx2
0

]

〈T (x0 → b)〉 = −1 (5.3.1)

with the boundary conditions

d

dx0
〈T (x0 → x)〉

∣

∣

∣

∣

x0=−∞
= 0; 〈T (x0 → x)〉|x0=x = 0. (5.3.2)

This problem has an analytical solution. In the case of a passage from x0 to x one can
show that:

〈T (x̂0 → x)〉 = β

∫ x̂0

x
exp [βV (s)]

(∫ +∞

s
exp [−βV (y)] dy

)

ds. (5.3.3)

Similarly, for the passage time from x̂1 to x one finds:

〈T (x̂1 → x)〉 = β

∫ x

x̂1

exp [βV (s)]

(∫ s

−∞
exp [−βV (y)] dy

)

ds (5.3.4)

5.3.2 Kramers approximation

In 1940, H.A. Kramers derived an approximate formula for the mean first passage
time inside a double well potential when the energy barrier is large compared to kbθ (see
(Kramers, 1940)). The result is extensively used in reaction rate theory constituting the
basics of the chemo-mechanical models of muscle contraction (see the review by P. Hanggi
(Hanggi et al., 1990) and our discussion on chemo-mechanical models in Sec.2.4.4).

Consider for instance a single cross-bridge, and associate with it the energy potential
Vxb (ǫ, ǫy) = v (ǫ)+1/2 (ǫy − ǫ)2 where ǫy is fixed. We recall that for a given ǫy, Vxb has two
minima at ǫ̂0 > l and at ǫ̂1 < l. We would like to compute 〈T (ǫ̂1 → ǫ)〉 (see Eq.(C.1.6))
for l < ǫ < ǫ̂0. A numerical integration is doable in Eqs.(5.3.3) and (C.1.6) with the use of
special function. However, Kramers allows one to derive a simple asymptotic formula in
the limit β → ∞. The result will be slightly different from the most well known Kramers
formula as we consider a piecewise parabolic potential rather than a twice differentiable
potential; note that Kramers himself treated this special case in his 1940 paper (Kramers,
1940). The computations are detailed in App.C. In the limit β → ∞, Eqs.(C.1.6) and
(5.3.3) can be written as

〈T (ǫ̂1 → ǫ)〉 ∼
√

2π (1 − λ1)

β
exp [β (V1 (l) − V1 (ǫ̂1))]

(

1

a1 (l)
− 1

a0 (l)

)

(5.3.5)
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of ǫy indicated on the graphs. ǫy = −0.32 (middle) represents the position of the energy barrier in the
potential Fy at ǫ = ǫ1/2 (see Eq.(4.2.13)). Continuous line represents the energy landscape in unit of kbθ.
Thick dotted line and dot-dashed line represent 〈T (ǫ̂1 → ǫ)〉 and 〈T (ǫ̂0 → ǫ)〉 computed with Eq.(C.1.6)
in arbitrary units. The corresponding Kramers approximation obtained using Eqs.(C.1.7) and (C.1.8) are
represented by thin dashed and dot-dashed lines respectively. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3,
λf = 0.05, β = 10 and N = 100.

and

〈T (ǫ̂0 → ǫ)〉 ∼
√

2π (1 − λ0)

β
exp [β (V0 (l) − V0 (ǫ̂0))]

(

1

a1 (l)
− 1

a0 (l)

)

. (5.3.6)

One can see that, in the limit of large temperatures, the escape time increases expo-
nentially with the energy barrier V1 (l) − V1 (ǫ̂1) (resp. V0 (l) − V0 (ǫ̂0)) which is of course
the classical Arrhenius formula. Note that the pre-factor also depends on β which is not
the case if the energy landscape is smooth. These results revealing an exponentially dis-
tributed mean exit time have been obtained rigorously in a more general context by M.V
Day in (Day, 1983).

In Fig.5.2, we show the escape times for a single cross-bridge at different values of ǫy
(−0.42,−0.32 and −0.22 indicated on the figure). Here, ǫy = −0.32 corresponds to the
position of the energy barrier in the potentials Fy and Gy at ǫ = ǫ1/2 (resp.σ = σ1/2) (see
Fig.4.15 and Eqs.4.2.13 and 4.2.14). The continuous line represents the energy landscape
Vxb and the thick dashed line (resp. thick dot-dashed line) represents the mean first passage
time from the left well (resp. right well) computed with the use of special functions. The
energy is represented in unit of kbθ and the time is in non dimensional units. Kramers
approximation of the escape times is indicated by the thin dashed lines.

One can see for the chosen value of β (β = 10), the Kramers approximation gives a
correct order of magnitude estimate for the time to jump energy barriers whose size is
of the order of ∼1kbθ. However, the details of the behavior near the barrier are lost in
this approximations. Also one case see that, as ǫy increases (or decreases), the energy
barrier disappears and the Kramers approximation cannot be used anymore to describe
the kinetics of the transition.

5.3.3 Transition rates and equilibrium of population

Next consider an ensemble of N particle xi (t) undergoing stochastic motion in the
potential V . We are now interested in the characteristic time before the fraction of particles
in each well reaches steady states. We then have to consider the flux of particles starting
at x̂0 that the cross the barrier l towards x̂1 which we denote by k1. This quantity
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corresponds to the famous transition rate functions used to describe chemical reactions. It
can be shown that the escape rate r correspond to the first eigenvalue of the Fokker–Planck
equation of the system (Schuss, 2010) and that it simply corresponds to the inverse of the
mean escape time

k1 =
1

2
〈T (x̂0 → l)〉−1 (5.3.7)

and similarly we have:

k0 =
1

2
〈T (x̂1 → l)〉−1 (5.3.8)

The net flux of probability from one well to the other will be a combination of k1 and
k0 which depend only on the initial position and the height of the barrier if β → ∞. Also,
when β → ∞ the probability density is for all time t localized near the bottom of the
wells so that the whole system can be described by the fraction of particle occupying each
well. Hence, the real dynamics described by the Fokker–Planck equation can be replaced
by jump dynamics ruled by a master equation. Now consider the ensemble of N particles.
With the particle xi (t), we associate the following random variable

Y i
t =

{

1 if xi (t) < b

0 if xi (t) ≥ b
such that N1 (t) =

N
∑

i=1

Y i
t

which represents the number of particle in well 1 at time t. In steady state, the evolution
of the stochastic variable Y i

t is defined by a jump process:

P
(

Y i
t+dt = 1 − Y i

t

)

= kY i
t
dt, so we have

P (N1 (t+ dt) = N1 (t) − 1) =

(

N1 (t)

1

)

k1dt = N
N1 (t)

N
k1dt

P (N1 (t+ dt) = N1 (t) + 1) =

(

N −N1 (t)

1

)

k0dt = N
N −N1 (t)

N
k0dt.

Therefore, N1 (t) satisfy the following master equation:

dN1 (t) /N

dt
= −k1

N1 (t)

N
+ k0

N −N1 (t)

N
with N1 (t = t0) = N0

1 (5.3.9)

where N0
1 is the initial number of particles in well 1 at time t0. Now denote by n1 = N1/N

the fraction of particles in well 1. For finite N , n1 is a discrete variable which follows
(5.3.9). It can be shown that in the limit N → ∞, the discrete solution of the preceding
master equation on N1 (t) converges to the continuous solution of the following initial value
problem on n1 (see Kurtz, 1971, 1972, 1970):

dn1 (t)

dt
= k0 − (k1 + k0)n1 (t) , with n1 (t) = n0

1

Finally, we see that the characteristic time of the evolution of the population in the
wells, called equilibration time is:

τ = (k1 + k0)−1 =

(

1

2
〈T (x̂1 → b)〉−1 +

1

2
〈T (x̂0 → b)〉−1

)−1

(5.3.10)
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Fig. 5.3 – Equilibration time in the double well potential Vxb depending on ǫy . Continuous
line: equilibration time in non dimensional units computed using Eq.(5.3.10). Dashed line (resp. dot
dashed line): reduced free energy landscape Fy (resp. Gy) in unit of κbθ. The dotted line delimits the
domain where Vxb has 2 minima. Beyond those limits, there is no energy barrier and therefore Kramers
approximation is no more valid. The equilibration time in Vxb is maximum for values of ǫy corresponding
to the higher energy level in Fy and Gy . Then the equilibration time decreases exponentially to 0 where
the double well structure of Vxb is lost. Parameters are the same as on Fig.5.2

5.3.4 Microscopic and macroscopic time scales

We show on Fig.5.3, the equilibration time τ (in arbitrary units), inside the double
well potential Vxb depending on the value of ǫy. This computation tells us how fast,
cross-bridge elongation of the bundle, a single cross-bridge will equilibrate between its two
conformations. Note that the results we present here are valid only in the limit β → ∞.

The dashed and dot-dashed lines represents the energy profiles Fy and Gy respectively
for ǫ = ǫ1/2 and σ = σ1/2. Thus we can see the probability of a particular ǫy together with
the equilibration time in the corresponding double-well potential. The dotted lines delimit
the interval of ǫy where Vxb has 2 minima. Beyond those limits, there is no energy barrier
and therefore Kramers approximation is no more valid. The equilibration time is maxi-
mum (∼ 1.5) when ǫy ≈ −0.32. This value corresponds to the point where, in equilibrium,
half of the population is in well 1 (see Fig.5.2, middle). Then, the equilibration time decays
to 0 at the point points where the double well structure of Vxb is lost (indicated by the
vertical dotted lines and the arrows). We see that the lower equilibration times are found
near the most probable values of ǫy located in the bottom of the macro-wells. Beyond
those values of ǫy the double well structure is lost and therefore Kramers approximation
of the escape times cannot be used. This result shows that a description of the kinetics
of the system in terms of chemical reactions implicitly assuming the validity of Kramers
approximation, is valid only on a finite interval of the internal parameters.

The other time scale of interest is the equilibration time for the macroscopic wells at
different values of the loading. We compute this time scale using Eq.(5.3.10), in the limit
β → ∞ as long as the 2 wells are present in Fy and Gy. Fig.5.4 shows the equilibration
time between the macroscopic wells in hard (continuous line) and soft devices (dashed
line) for β = 10 (A) and β = 20 (B). We have represented the equilibration time in soft
device as a function of δL2 = L2 (σ) − L2

(

σ1/2

)

, instead of σ. This allows us to compare
the characteristic times in hard and soft devices at the same level of elongation.

In both hard and soft devices, the equilibration time for the macroscopic wells is larger
than the equilibration time for the case of a single cross-bridge at fixed ǫy. This effect is
strongly amplified by increasing β (compare Fig.5.4 A and B). This is simply due to the
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Fig. 5.4 – Equilibration time in Fy and Gy energy landscapes. (A): β = 10. (B): β = 20. For the
hard device case (continuous line), the equilibration time in Fy is represented against the step size from
the middle of the transition (ǫ− ǫ1/2). In soft device (dashed line), the equilibration time is plotted against
δL2 = L2 (σ) − L2

(
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)

, instead of σ. This allows to compare the characteristic times taken to reach
the same final elongation. The vertical dotted lines indicate the interval where Fy and Gy present two
macroscopic wells, which indicate slower kinetics. We observe a plateau on the soft device equilibration
time curve at β = 20 (B, dashed line). The concerned range of elongations corresponds to the plateau of
the L2vs σ curve, and thus to the same tension σ = σ1/2; hence the equilibration rates are the same. The
equilibration time between macroscopic wells is much higher than the equilibration time in Vxb (compare
with Fig.5.3). In addition the equilibration time is higher in soft device than in hard device and so is the
interval of slower kinetics. Parameters are the same as on Fig.5.2

fact that the transition between the macroscopic wells requires a collective configuration
switch of the cross-bridges. Indeed, as we already discussed in Sec.4.5, the left macroscopic
well correspond to a preferred post-power-stroke conformation and the right macroscopic
well corresponds to a preferred pre-power-stroke. The fact that the transition between
macroscopic wells requires simultaneous transitions in of all the cross-bridges increases the
free energy barriers and thus the equilibration time.

We observe an interesting plateau in the case of the soft device at β = 20 (see Fig.5.4B,
dashed line). The concerned range of elongation values corresponds to the plateau of the
L2 curve, and thus the tension along this plateau remains constant: σ = σ1/2. The
equilibration time is considerably higher in soft device (dashed line) than in hard device
(continuous line) as a consequence of the higher energy barrier in Gy.

In addition, the domain with two macroscopic wells (materialized by vertical dotted
lines on Fig.5.4) is larger in soft device than in hard device. Again beyond these limits,
the energy barrier disappears and Kramers approximation can no longer be used.

To summarize, in both hard and soft devices, the response of the system will be slow if
the loading is such that the double well structures of Fy and Gy are preserved, compared
to larger load changes where potentials have single-well structure. Moreover, this interval
of slow kinetics is larger in soft device than in hard device.

In the next section, we use stochastic dynamics to investigate in details the kinetics of
the quick recovery without approximations.
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5.4 Stochastic response to length and load steps

5.4.1 Langevin’s equations

To model the actual time dependent behavior of the system we need to study its
stochastic dynamics in the full configurational space of the variables ǫi, ǫy, ǫz. We recall
that the cross-bridges are under the influence of several forces:

– dissipative drag force due to internal kinetics of the conformational change and the
interaction with the surrounding media. We model it as a viscous force proportional
to the velocity of a cross-bridge:

f v
i = −ηẋi = −ηǫ̇i (5.4.1)

– constant thermal agitation modeled as non correlated random forces which verifies
the following fluctuation dissipation relations

f θ
i =

√

2ηκbθΓi (t) with 〈Γ (t)〉 = 0 and
〈

Γi (t) Γi

(

t′
)〉

= δ
(

t− t′
)

, (5.4.2)

δ denotes here the Dirac’s distribution.

For simplicity, we assume that the dynamics of the variables ǫy and ǫz can be associated
with the same viscosity η and the same noise intensity

√
2ηκbθ. We will reconsider this

hypothesis in the next in Sec.7.4.2. We denote by τ = η
κ . τ the characteristic time and

write the non dimensional time as t = t/τ . In hard device, we consider the following
system of overdamped Langevin’s equations:











ǫ̇i (t) = ∂ǫiV
(

ǫti
)

+ ǫty − ǫti +
√

2β−1Γ (t) for 1 ≤ i ≤ N

ǫ̇y (t) = N

(

− (1 + λf ) ǫty + λf ǫ (t) + 1
N

N
∑

i=1
ǫti

)

+
√

2β−1Γy (t)

which we rewrite as a set of stochastic differential equations (SDE):



















dǫti =
(

∂ǫiV
(

ǫti
)

+ ǫty − ǫti
)

dt+
√

2β−1dBt
i for 1 ≤ i ≤ N

dǫty = N

(

− (1 + λf ) ǫty + λf ǫ (t) +
1

N

N
∑

i=1

ǫti

)

dt +
√

2β−1dBt
y.

(5.4.3a)

(5.4.3b)

Similarly in soft device we obtain:



































dǫti =
(

∂ǫiV
(

ǫti
)

+ ǫty − ǫti
)

dt +
√

2β−1dBt
i for 1 ≤ i ≤ N

dǫty = N

(

−ǫty +
σ (t)

N
+

1

N

N
∑

i=1

ǫti

)

dt +
√

2β−1dBt
y

dǫtz = N

(

σ (t)

N
− λf (ǫ− ǫy)

)

dt+
√

2β−1dBt.

(5.4.4a)

(5.4.4b)

(5.4.4c)

Here dBt
i is the increment of a Wiener process, with zero mean and variance dt. We

compute the time response of the system to a ramp loading by solving equations (5.4.3)
and (5.4.4) numerically.
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5.4.2 Simulation of the quick recovery

In the following, the parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, β = 10 and N = 100
and we study 2 cases: λf = 0.05 where Fy presents macroscopic wells (see Figs.4.12 and
4.13) and λf = 1 where Fy in convex. The numerical parameters used for these simulations
are: Nr = 1000 and ∆t = 10−3. The duration of the step is 0.1. In the the following plots,
we will represent the 95% confidence interval computed with a non-biased estimate of the
variance.

Initial conditions

The initial state of our system is defined as the state of thermal equilibrium at ǫ = ǫ1/2

in hard device and σ = σ1/2 in soft device. For the chosen set of parameters, in the
initial state, the reduced free energies Fy and Gy present 2 macroscopic wells with a large
equilibration time between the wells (see Fig.5.4). To avoid time consuming simulations,
it is natural to chose initial distribution close to the thermal equilibrium one. We denote
lhy (resp. lsy) the value of ǫy for which Fy (resp. Gy) reaches its maximal value between the
macroscopic wells. We define:

nh
y (ǫ, β) =

1

Zh (ǫ, β)

lhy
∫

−∞

exp [−βFy (ǫy, β, ǫ)] dǫy (5.4.5)

ns
y (σ, β) =

1

Zs (σ, β)

lsy
∫

−∞

exp [−βGy (ǫy, β, σ)] dǫy (5.4.6)

the cross-bridges populations in the left macroscopic well in hard and soft device respec-
tively. We denote by nh,0

y = nh
y

(

ǫ1/2, β
)

and ns,0
y = ns

y

(

σ1/2, β
)

, the initial populations.
In each macroscopic wells, the probability density is localized near the minimum (see
Figs.4.12 and 4.13), and the time to reach the steady state density locally is much smaller
than the time to equilibrate between the wells. Therefore we have to ensure only that our
initial condition have the correct partition of populations between the 2 macroscopic wells.
This is achieved by simply choosing a fraction nh,0

y (resp. ns,0
y ) of our Nr realizations at the

bottom of the left macroscopic well. For this set of realizations, we have in hard device:
ǫy (t = 0) = argmin

ǫy<lhy

(Fy (ǫy)), and similarly in soft device . The remaining realizations are

chosen at the bottom of the right macroscopic well.

Now, for a given realization, the initial value of ǫy is known and so the initial fraction
〈n1〉0 (ǫy) of post-power-stroke cross-bridges is known (see Figs.4.12 and 4.13). Hence for
each realization a fraction 〈n1〉0 (ǫy) of the N cross-bridges are chosen to be at the bottom
of well 1 and the rest at the bottom of well 0. Finally, in soft device, the value of ǫz is
initialized so that σ1/2 = Nλf (ǫz − ǫy) in each realization.

To further illustrate the initial configuration of the system, it is instructive to follow the
motion of only two internal degrees of freedom (ǫ1, ǫy) where ǫ1 represents the configuration
of an arbitrary cross-bridge. When the system is at equilibrium, these variables evolve in
a free energy landscape obtained by equilibrating the system with respect to the other
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Fig. 5.5 – Representation of 2 independent trajectories (duration 5) of randomly chosen cross-bridges
initiated in each macro-well of the equilibrium energy landscape F1y (see Eq.5.4.8) with ǫ = ǫ1/2. The
parameters are the same as in Figs.4.12 and 4.13 with λf = 0.05 (left) and λf = 1 (right). The dashed line
represent the mechanical equilibrium relation: ǫ1 = (1 + λf ) ǫy + λf ǫ1/2. The dot-dashed line represents
the limit between the 2 wells in v.Energy at the bottom of the wells and at the energy barrier is indicated
in units of kbθon each plots and the energy increment between two consecutive lines is equal to 0.5κbθ.
Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100, β = 10

internal variables ǫ2, . . . , ǫN . More precisely, in the case of hard device we obtain

p (ǫ1, ǫy|ǫ, β) =
1

Zh (ǫ, β)

∫

R

. . .

∫

R

e−βV (ǫ1,...,ǫN ,ǫy,ǫ)dǫ2 . . . dǫN

=
1

Zh (ǫ, β)
exp (−βF1y (ǫ1, ǫy, ǫ, β))

(5.4.7)

where F1y (ǫ1, ǫy, ǫ, β) = v (ǫ1) +
1

2
(ǫy − ǫ1)2 +

1

2
Nλf (ǫ− ǫy)2

− 1

β
(N − 1) ln (Z1 (ǫy, β) + Z0 (ǫy, β))

(5.4.8)

Similarly in the case of soft device, we obtain the expression for the Gibbs partially equi-
librated free energy in the form

G1y (ǫ1, ǫy, σ, β) = v (ǫ1) +
1

2
(ǫy − ǫ1)2 − 1

2

σ2

Nλf
− σǫy

− 1

β
(N − 1) ln (Z1 (ǫy, β) + Z0 (ǫy, β))

(5.4.9)

Note that our previously introduced free energies Fy and Gy are obtained by integration
of F1y and G1y over ǫ1.

In Fig.5.5 and 5.6 (with ǫ = ǫ1/2 in hard device and σ = σ1/2 in soft device), we show
the trajectories of 2 selected independent realizations in the plane (ǫ1, ǫy) at ǫ = ǫ1/2 and
σ = σ1/2, each one initiated in a different macro-well. The time goes from 0 to 5 (5000
steps). The contours represent the free energy levels expressed in unit of kbθ; the energy
difference between 2 consecutive isolines is 5.10−3kbθ.

We observe once again that the response of the system in soft device does not depend
on the value of λf (see Fig. 5.6). We also notice that no jumps occurs between the macro-
wells (we tested it on a period of 300 arbitrary units with β = 10). For low values of λf

(see Fig. 5.5A), the cross-bridges spend most of the time in one conformational state. The
configuration is close to the equilibrium line (dashed, marked ‘mechanical equilibrium’),
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Fig. 5.6 – Representation of 2 independent trajectories (duration 5) of randomly chosen cross-bridges
initiated in each macro-well of the equilibrium energy landscape G1y (Eq.5.4.9) with ǫ = ǫ1/2. The
parameters are the same as in Figs.4.12 and 4.13 with λf = 0.05 (left) and λf = 1 (right). The dashed line
represent the mechanical equilibrium relation: ǫ1 = (1 + λf ) ǫy + λf ǫ1/2. The dot-dashed line represents
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in units of kbθon each plots and the energy increment between two consecutive lines is equal to 0.5κbθ.
Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100, β = 10

representing the mechanical equilibrium of the filament with (see Eq. 3.1.5):

ǫy =
1

1 + λf
(λf ǫ+ 〈ǫ1〉) in hard device (5.4.10)

ǫy = 〈ǫ1〉 +
σ

N
in soft device (5.4.11)

These observations emphasize the effect of the mean field interaction between the cross-
bridges. It creates macroscopic wells in which the system can be ‘kinetically trapped’.
Indeed, when macroscopic wells are present, the equilibration time in the reduced free en-
ergy landscape Fy and Gy is large and depends exponentially on temperature (see Fig.5.4)
even if the energy barrier in Fy and Gy is only a few kbθ high (see Figs.4.12 and 4.13).
In a 2D energy landscape, a realization initialized in one macroscopic well does not jump
to the other one (in physically observable times). The presence of elastic filaments im-
plies that on the full energy landscape (which depends on all degrees of freedom), the the
cross-bridges are strongly confined in a domain where they mostly adopt the post-power-
stroke or pre-power-stroke conformation, and going from one domain to the other requires
a ‘massive’ collective stroke (or reverse stroke) which is an event with very low probability.

Quick recovery in hard device

Fig.5.7 shows the time evolution of the relative tension T/T0 in response to a ramp
loading where, T0 is the isothermal tension at ǫ = ǫ1/2. The time origin is set at the end
of the step (this is for graph clarity as only few points are computed before the step). We
presented the tension response to 4 different step sizes, 2 in stretching and 2 in shortening
(+0.6, +0.1, −0.1, and −0.6 nm) with 2 different values of λf : λf = 0.05 (Fig.5.7A)
and λf = 1 (Fig.5.7B). In the former case, the reduced free energy landscape exhibits 2
macroscopic wells while it is always convex in the latter case. We represented with thin
lines the 95% confidence interval (computed using a non biased estimate of the variance).

On the one hand, for the lower step sizes (δ = 0.1 and δ = −0.1) on Fig.5.7(A), the
(final) free energy landscape Fy still has a double well structure (see Fig.5.4A, ǫ− ǫ1/2 =
±0.1 is between the dotted vertical lines). As a consequence, the recovery is much slower
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Fig. 5.7 – Evolution of the mean tension in time (1000 independent realizations) after length step of
various amplitudes (δ = 0.6, 0.1, −0.1 and −0.6; indicated on the figure) form the middle of the transition
(ǫ = ǫ1/2) where T = T0. The 0 time corresponds to the end of the step. The thin lines denotes the 95%
confidence interval. The parameters are the same as in figure 5.2(λ1 = 0.4, λ0 = 0.7, l = −0.3, β = 10 and
N = 100) with λf = 0.05 (A) and λf = 1 (B). In (A, the double well structure of Fy is preserved for the
steps δ = ±0.1. As a results the kinetic of the response is slow and the system barely reaches equilibrium
after 800 units of time. When λf = 1 (B), the kinetics are independent from the step size and the system
has reached steady state after ∼ 15 units of time. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100,
β = 10.

than for larger step sizes (δ = ±0.6 on Fig.5.7A) and barely attains the steady state at
the end of the 800 units of time long experiment.

On the other hand, Fig.5.7B shows that in the case λf = 1 (no macroscopic wells), the
recovery rate is the same are the same independently of the step size. The responses to
both large (δ = ±0.3) and small (δ = ±0.1) step amplitudes, are faster than in the case
λf = 0.05 (note the different time scaling), which of course results from the absence of
macroscopic wells in Fy.

Notice also that the confidence interval is larger for low step amplitudes than for large
step amplitude (see Fig.5.7). The mean values of the tension represented on Fig.5.7 are
obtained from 〈ǫy〉 (see Eq.4.2.15) and is computed by summing the contributions of both
macroscopic wells each having their own dispersion. This leads to the increase in the global
variance.

The tension levels reached at the end of the simulation (after 800 units of time for the
case λf = 0.05, and 40 units of time for the case λf = 1), are reported on Fig.5.8 (�, with
bars indicating the 95% confidence interval) together with the equilibrium isotherm (line).
In both cases, λf = 0.05 (Fig.5.8A) and λf = 1 (Fig.5.8B) the tensions attained at the
end of the simulation match the isothermal values computed with Eq.(4.2.15). The higher
confidence interval of the case λf = 1 (see Fig.5.8B), is a direct consequence of the higher
stiffness which multiplies the variance on ǫy.

Quick recovery in soft device

In the case of soft device, we consider a system initially at σ1/2. It undergoes a load
step of duration 0.1 units of time, to a tension ασ1/2 with 0 < α < 1.6. The change
in elongation δL2 = L2 (σ) − L2

(

σ1/2

)

is represented on Fig.5.9 for 2 different filament
stiffnesses: λf = 0.05 (Fig.5.9A) and λf = 1 (Fig.5.9B). As in hard device, we represented
the elongation traces for 4 different step sizes (σ/σ1/2 = ±1.2 and σ/σ1/2 = ±1.05); the
lower step sizes correspond to the cases where Gy has a double well structure. Note that,
in order to compare the kinetics in hard and soft devices, the step sizes are chosen in such
a way that the final elongations δL2 correspond to the length step sizes applied in hard
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Fig. 5.8 – Thermal equilibrium tension. Comparison between the tension obtained after 800 units
of time (A with λf = 0.05) or 40 units of time (B with λf = 1) of stochastic simulations (�) with analytic
computation of the isotherm (continuous line, from Eq.4.2.15). The error bars indicate the 95%confidence
interval (1000 independent realizations). The isotherm obtained using stochastic simulation matches the
analytic computations. The higher confidence interval of the case λf = 1 (B), is a direct consequence of the
higher stiffness that multiplies the variance on ǫy Other Parameters are the same as on Fig.5.2(λ1 = 0.4,
λ0 = 0.7, l = −0.3, β = 10 and N = 100. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 100, β = 10)
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with time obtained with stochastic simulations (1000
independent realizations). Thick lines: mean trajectories. Thin lines: 95% confidence interval. The origin
of time is set to the end of the load step. We see that some trajectories has not reached their equilibrium
state even after 2000 units of time. This confirms that soft device transients are slower than hard device
transients. The parameters are the same as in figure 5.2(λ1 = 0.4, λ0 = 0.7, l = −0.3, β = 10 and
N = 100), with λf = 0.05 (A) and λf = 1 (B).

device.

In the case σ/σ1/2 = ±1.05, it is only after 2000 units of time, that the elongation
reaches a steady state value and this remains true for both filament stiffnesses (Fig.5.9
A and B). This is in agreement with the much higher equilibration time, than in the
case of hard device, computed in the previous section (see Fig.5.4).The values attained
after 2000 units of time are close to the isotherm computed using Eq.(4.2.17) (see Fig.5.10).

The results of our stochastic simulations are therefore confirming our previous obser-
vations:

– the kinetic response of the system in soft device is not affected by the filament
elasticity λf (see Fig.5.9), while in hard device, for high values of λf , the double well
structure of Fy is lost and the quick recovery is accelerated with respect to lower
values of λf (see Fig.5.7)

– For a comparable final point on the isothermal tension vs. elongation curve, the
soft device response to a load step is slower than the hard device response (compare
Fig.5.9 with 5.7). This strengthens the conclusions obtained on the study of the
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) obtained using
analytic computations (line) compared to tension obtained after 2000 units of time using stochastic com-
putation (squares, 1000 independent realizations). (A): λf = 0.05. (B): λf = 1. Error bars indicate the
95% confidence interval.The parameters are the same as in figure 5.2(λ1 = 0.4, λ0 = 0.7, l = −0.3, β = 10
and N = 100).

energy barriers and the equilibration time scales in the reduced energy landscapes
Fy and Gy.

Conclusions

Our main conclusion is that the presence of macroscopic energy wells in the reduced
energy landscape leads to kinetics dominated response when the system undergoes a load
change.

Furthermore, we showed that the range where the chemical description of the system
can be used (Kramers approximation), is limited to the domain of parameters where
macroscopic wells exist. Beyond the limits of this interval, ‘chemical states’ cannot be
defined and Kramers approximation breaks.

Unlike the case of the soft device, the kinetics in hard device is directly linked to the
amplitude of the coupling parameter. Thus, at low λf the quick force recovery is slow which
is coherent with the presence of a double well non-equilibrium energy landscape. Instead
at high λf , a single well energy landscape favors much faster recovery. It must be noted
that the double well structure of the non-equilibrium energy landscape always disappear
at large loadings hence faster kinetics in comparison to small loadings. In addition, the
speed of the recovery is always slower in the soft device than in the hard device.



Chapter 6

Equivalent model of a
half-sarcomere

The computations in the last section are quite costly in terms of computer time as they
require the simulation of the trajectories of N + 1 stochastic variables. To deal with

many half-sarcomeres in series, one can’t afford to have such a detailed description of each
half-sarcomere. Here, we attempt to develop a reduced model capturing only the most
important aspects of the dynamics of our system.
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6.1 Homogenization of stochastic systems

6.1.1 Preliminary examples

The goal of model reduction, is to describe the behavior of many (microscopic) degrees
of freedom by following only few (macroscopic) degrees of freedom. It may happen that
the number of the required microscopic degrees of freedom is still ‘large’. The reduction
works when there exist a separation of time scales which allows one to eliminate the fast
variable by considering only their equilibrium values.

As an example, where such reduction is has been used successfully, we can mention
chemical kinetics. There, the goal is to describe the evolution of different species in a
solution where several (many) reactions occurs transforming some species into others.
This system can have a large number of degrees of freedom if one considers all the species
in solution.

One typical approach (see e.g. Gorban and Karlin, 2004) is to assume that several
species are in quasi-equilibrium, so that we can divide the phase space of concentration,
into orthogonal sub-manifolds characterizing slow and fast species. The definition of a
projector for the full system is necessary to transform the vector field in the space of con-
centration into the vector field on the quasi equilibrium manifold. As a consequence of this
decomposition, the knowledge of reaction rate constants of ‘fast’ reactions is not required
and the dynamics on the quasi-equilibrium manifold is defined as the quasi equilibrium
projection of the ‘slow sub-system’ of the full system of kinetic equations.

In Chap.5, we already encounter a case of model reduction when we dealt with first
passage dynamics and assumed partial equilibration of population in a double well poten-
tial (see Sec.C.2). There, following Kramers (1940), we assumed that the time required to
equilibrate in each of the wells was negligible compared to the escape time. In this way,
we could reduce the stochastic motion of the system in the energy landscape to a jump.

Another type of reduction is based on the assuming that the number of particle is
large. Then the stochastic dimension of the dynamics disappears through averaging and
at the macro-scale, the process is described by a deterministic system.

6.1.2 Adiabatic elimination of ǫy

In Chap.5, we saw that the dynamics of a half sarcomere can be modeled by the
following set of SDE (non-dimensional time):















dǫti =
1

η
b (ǫi, ǫy) dt+

√

2β−1dBt
i for 1 ≤ i ≤ N

dǫty =
1

ηy
bh

y (ǫ1, . . . , ǫN , ǫ, t) dt+

√

2β−1
y dBt

y,

(5.4.3a)

(5.4.3b)

where β = η
kbθ and βy =

ηy

kbθ . These expressions result from the fluctuation-dissipation
theorem. The drift forces are given by:

b (ǫi, ǫy) = −∂ǫiv
(

ǫti
)

+ ǫty − ǫti (6.1.2)

bh
y (ǫ1, . . . , ǫN , ǫ) = N

(

− (1 + λf ) ǫty + λf ǫ (t) +
1

N

N
∑

i=1

ǫti

)

(6.1.3)
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Similarly in the soft device:


































dǫti =
1

η
b (ǫi, ǫy) dt+

√

2β−1
i dBt

i for 1 ≤ i ≤ N

dǫty =
1

ηy
bs

y (ǫ1, . . . , ǫN , σ) dt+

√

2β−1
y dBt

y

dǫtz =
1

ηz
bs

z (ǫz, ǫy, σ) dt+

√

2β−1
z dBt

(5.4.4a)

(5.4.4b)

(5.4.4c)

where βz = ηz

kbθ and

bs
y (ǫ1, . . . , ǫN , σ) = N

(

−ǫty +
σ (t)

N
+

1

N

N
∑

i=1

ǫti

)

(6.1.5)

bs
z (ǫz, ǫy, σ) = N

(

σ (t)

N
− λf (ǫz − ǫy)

)

(6.1.6)

These equations were written assuming that the drag coefficients associated with differ-
ent variable are of the same scale. Hence the intensity of the thermal fluctuations is the
same in all SDEs. Noticed also that in Eqs.(5.4.4b) and (5.4.4c), the drift coefficients are
proportional to N . Thus, when N is large, the thermal fluctuations becomes negligible
compared to the drift in these equations. This means that the motion of the variables ǫy
and ǫz is nearly determinist. Furthermore, we have shown in Sec.7.1 that the drag coeffi-
cients ηy and ηz associated with variables ǫy and ǫz respectively are negligible compared
to the drag coefficient η which we associate with variables ǫi.

We begin with rewriting the systems (6.1.1) and (6.1.4) in the following non-dimensional
form:















dǫti = b (ǫi, ǫy) dt+
√

2β−1dBt
i for 1 ≤ i ≤ N

dǫty =
1

γy
bh

y (ǫ1, . . . , ǫN , ǫ) dt+

√

2β−1
1

γy
dBt

y

(6.1.7a)

(6.1.7b)

and


































dǫti = b (ǫi, ǫy) dt+
√

2β−1dBt
i for 1 ≤ i ≤ N

dǫty =
1

γy
bs

y (ǫ1, . . . , ǫN , σ) dt+

√

2β−1
1

γy
dBt

y

dǫtz =
1

γz
bs

z (ǫz, ǫy, σ) dt+

√

2β−1
1

γz
dBt

(6.1.8a)

(6.1.8b)

(6.1.8c)

where γ = ηy/η and γ = ηz/η. In our case, γy → 0 and γz → 0. From the point of view of
numerical simulations, the time step ∆t have to be small compared to γy and γz in order
to correctly capture the fast fluctuations of ǫy, ǫz. Choosing to keep this small parame-
ters γy and γz in the simulations is not an option as it will be prohibitively time consuming.

In the limit γy,z → 0, we can ‘adiabatically eliminate’ the fast variables ǫy and ǫz.
The detailed proof of the following reduction procedure can be found in (Gardiner, 2004;
Lelièvre et al., 2010; Risken, 1988).

Consider two stochastic variables Xt
1 and Xt

2 driven by the following set of SDEs:











dXt
1 = b1

(

Xt
1,X

t
2

)

dt +
√

2β−1dBt
1

dXt
2 =

1

γ
b2

(

Xt
1,X

t
2

)

dt+

√

2β−1
1

γ
dBt

1.

(6.1.9a)

(6.1.9b)
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Suppose γ → 0. Then the dynamics of Xt
2 is infinitely fast compared to the dynamics of

Xt
1 which means that for a given value of Xt

1, the probability distribution of Xt
2 can be

considered as equilibrium at a given Xt
1:

p (x2, t) ≈ pXt
1

(x2) , (6.1.10)

where pXt
1(x) is the solution

b2 (x1, x2) pXt
1

(x2) + β−1∂x2pXt
1

(x2) = 0 at fixed Xt
1. (6.1.11)

Going back to SDEs, we can write 1:

{

dXt
1 = b1

(

Xt
1

)

dt+
√

2β−1dBt
1

Xt
2 ∼ pXt

1

(6.1.12a)

(6.1.12b)

where b1 is obtained by averaging b1 over X2:

b1 (x1) =

∫

b (x1, x2) pXt
1

(x2) dx2. (6.1.13)

In our system, in hard and soft device, the stationary probability distributions of ǫty
and ǫtz for a given set ǫt1, . . . , ǫ

t
N are canonical. Then, in hard device, we can write:







dǫti = b (ǫi) dt +
√

2β−1dBt
i for 1 ≤ i ≤ N

ǫty ∼ ph
ǫt

1,...,ǫt
N

(6.1.14a)

(6.1.14b)

where b (ǫi) is computed with:

ph
ǫt

1,...,ǫt
N

(ey) =
1

Zh
y

(

ǫt1, . . . , ǫ
t
N , ǫ

) exp
[

−βV
(

ǫt1, . . . , ǫ
t
N , ey, ǫ

)]

(6.1.15)

Zh
y

(

ǫt1, . . . , ǫN , ǫ
)

=

∫

e−βV (ǫt
1,...,ǫt

N ,ey,ǫ)dey (6.1.16)

Observe that we obtained an effective dynamic on theN–dimensional slow-manifold (ǫ1, . . . , ǫN ).
The computation of b is straightforward since b depends linearly on ǫy (see Eq.(6.1.2)).
We obtain (for 1 ≤ i ≤ N):

b
(

ǫti
)

= −v′ (ǫti
)

+
〈

ǫty
〉h

ǫt
1,...,ǫt

N
− ǫti, with (6.1.17)

〈

ǫty
〉

ǫt
1,...,ǫt

N
=

∫

eyp
h
ǫ1,...,ǫN

(ey) dey = ǫ̂y =
1

1 + λf

(

λf ǫ+
1

N

N
∑

i=1

ǫti

)

. (6.1.18)

Similar computations for soft device, give:

〈

ǫty
〉s

ǫt
1,...,ǫt

N
=

σ

N
+

1

N

N
∑

i=1

ǫti (6.1.19)

〈

ǫtz
〉s

ǫt
1,...,ǫt

N
=

σ

Nλf
+
σ

N
+

1

N

N
∑

i=1

ǫti. (6.1.20)

1. Notation: X ∼ p means that the random variable X has a probability density p
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To summarize we obtained that, in the limit of a purely elastic behavior of the myofilaments
(in the limit γy → 0 and γz → 0), the reduced sets of Langevin’s equations (6.1.7) and
(6.1.8) can be written as:































dǫti = b
(

ǫti,
〈

ǫty
〉h

ǫt
1,...,ǫt

N

)

dt +
√

2β−1dBt
i for 1 ≤ i ≤ N

where

〈

ǫty
〉h

ǫt
1,...,ǫt

N
=

1

1 + λf

(

λf ǫ+
1

N

N
∑

i=1

ǫti

)

,

(6.1.21a)

(6.1.21b)

in the hard device and as































































dǫti = b
(

ǫti,
〈

ǫty
〉h

ǫt
1,...,ǫt

N

)

dt +
√

2β−1dBt
i for 1 ≤ i ≤ N

where

〈

ǫty
〉s

ǫt
1,...,ǫt

N
=

σ

N
+

1

N

N
∑

i=1

ǫti

and

〈

ǫtz
〉s

ǫt
1,...,ǫt

N
=

σ

Nλf
+
σ

N
+

1

N

N
∑

i=1

ǫti

(6.1.22a)

(6.1.22b)

(6.1.22c)

in the soft device.

Notice that in Eq.(6.1.21) and (6.1.22) we still have N degrees of freedom. We cannot
reduce further the size of the system as there is no obvious small parameter.

However, we are still dealing with a rather simple system as the cross-bridges are all
equivalent and all driven by the same drift term b.

In the following sections we describe our attempts to simplify the dynamics further by
using the remaining permutational symmetry.

Most of these attempts implies solving Fokker–Planck equations. The numerical meth-
ods implemented to simulate numerically the solutions are described in App.D.1.

6.2 General framework

6.2.1 Initial set of equations

For a fixed trajectory of ǫy, as the cross-bridges are arranged in parallel, they are
mechanically independent. We then write that the conditional probability densities for
individual cross-bridges are equal and that the conditional probability for bundle of cross-
bridges is equal to the product of individual conditional probabilities:

p (ǫ1, . . . , ǫN |ǫy, t) =
N
∏

i=1

p (ei|ǫy, t) . (6.2.1)

In this case the overall probability can be written:

p (ǫ1, . . . , ǫN , ǫy, t) =
N
∏

i=1

p (ǫi|ǫy, t) py (ǫy, t) . (6.2.2)
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Consider now the system of SDE (6.1.21) where ǫy has been adiabatically eliminated. Then
replacing 〈ǫy〉 by ǫy we can write:

{

dǫti = b
(

ǫti, ǫ
t
y

)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

ǫty = f
(

ǫt1, . . . , ǫ
t
N , t
)

(6.2.3a)

(6.2.3b)

where f , represents the force balance between the myofilament and the array of cross-
bridges. As we know, f has a different expressions in hard and soft device:

f
(

ǫt1, . . . , ǫ
t
N , t
)

=
1

1 + λf

(

λf ǫ (t) +
1

N

N
∑

i=1

ǫti

)

in the hard device

f
(

ǫt1, . . . , ǫ
t
N , t
)

=
σ

N
+

1

N

N
∑

i=1

ǫti in the soft device.

Therefore, we are interested in the case where f is linear with respect to ǫ1, . . . , ǫN , however
the analysis can be done in the general case.

In fact, the macroscopic parameter we are interested in is ǫy because it is directly
linked to the tension (through Eq.(4.2.15)) and the total elongation (through Eq.(4.2.17)).
Therefore, our first task will be to derive a reduced description at the macroscale by using
ǫy as the only variable.

To this end we derive a stochastic differential equation (SDE) on ǫy by using Itô
formula (see Sec.5.2). Then, by integrating the Fokker–Planck equation for the whole
system including ǫi and ǫy over ǫ1, . . . , ǫN , we obtain the desired 1-D partial differential
(PDE) equation on the probability density of ǫy. The computation of the coefficient of
this equation will require the corresponding closure conditions.

6.2.2 Itô calculus

First, we apply Itô formula (Gardiner, 2004; Mahnke et al., 2009) to equation (6.2.3b):

dǫty = d
(

f
(

ǫt1, . . . , ǫ
t
N , t
))

=



∂tf
(

ǫt1, . . . , ǫ
t
N , t
)

+

N
∑

i=1

b
(

ǫti, ǫ
t
y

)

∂if
(

ǫt1, . . . , ǫ
t
N , t
)

+

N
∑

i,j=1

(

(

H.HT
)

ij
∂i,jf

(

ǫt1, . . . , ǫ
t
N , t
)

)



 dt

+

N
∑

i,j=1

(

Hij∂if
(

ǫt1, . . . , ǫ
t
N , t
)

dBt
j

)

(6.2.4)

where H =
√

2β−1IN , with IN , the N ×N identity matrix.
We denote:

hi = ∂if (e1, . . . , ǫN , t) , for all 1 ≤ i ≤ N. (6.2.5)

In view of the linearity of the function f , parameters hi are constants. Since hi → 0 as
N → ∞, the variable ǫy is only weakly affected by microscopic parameters ǫi and can
therefore be considered a macroscopic degree of freedom.
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The system (6.2.3) becomes:


















dǫti = b
(

ǫti, ǫ
t
y

)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

dǫty =

(

∂tf
(

ǫt1, . . . , ǫ
t
N , t
)

+

N
∑

i=1

hib
(

ǫti, ǫ
t
y

)

)

dt +
√

2β−1

N
∑

i=1

(

hidB
t
i

)

.

(6.2.6a)

(6.2.6b)

where the permutational invariance is visible through the fact that b is the same for all
1 ≤ i ≤ N . We denote:

by

(

ǫt1, . . . , ǫ
t
N , ǫ

t
y, t
)

= ∂tf
(

ǫt1, . . . , ǫ
t
N , t
)

+
N
∑

i=1

hib
(

ǫti, ǫ
t
y

)

(6.2.7)

and thus Eq.(6.2.6) becomes:


















dǫti = b
(

ǫti, ǫ
t
y

)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

dǫty = by

(

ǫt1, . . . , ǫ
t
N , ǫ

t
y, t
)

dt +
√

2β−1

N
∑

i=1

(

hidB
t
i

)

.

(6.2.8a)

(6.2.8b)

6.2.3 Averaged Fokker–Planck Equation

We define the following vectors of N + 1 elements

ǫt =
(

ǫt1, . . . , ǫy
)

∈ RN+1 (6.2.9)

b (ǫ, t) = (b (ǫ, t) , . . . , b (ǫ, t) , by (ǫ, t)) ∈ RN+1 (6.2.10)

and introduce the N ×N + 1 matrix:

ω =
√

2β−1











1 0
. . .

0 1
h1 · · · hN











(6.2.11)

Our system of N + 1 Langevin’s equations is equivalent to the following Fokker–Planck
equation (see Sec.5.2 and Gardiner (2004)):

∂tp (ǫ, t) =

y
∑

i=1

∂i



−bi (ǫ, t) p (ǫ, t) +
1

2

y
∑

j=1

(

ω.ωT
)

ij
∂jp (ǫ, t)



 (6.2.12)

where p is the probability density of the whole system (introduced in Eq.(6.2.2)) and where

ω.ωT = 2β−1











1 h1

. . .
...

1 hN

h1 · · · hN h











with h =

N
∑

i=1

h2
i . (6.2.13)

We also prescribe the initial condition p (ǫ, t = 0) = p0 (ǫ). Next, we integrate the Fokker–
Planck equation (6.2.12) with respect to ǫ1, . . . , ǫN . We denote:

py (ǫy, t) =

(
p (ǫ, t) dǫ1 . . . dǫN , and write (6.2.14)
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∂tpy (ǫy, t) =
N
∑

i=1

(
∂i



− bi (ǫ, t) p (ǫ, t) +

y
∑

j=1

1

2

(

ω.ωT
)

ij
∂jp (ǫ, t)



 dǫ1 . . . dǫN

+ ∂y





(
(−by (ǫ, t) p (ǫ, t)) +

y
∑

j=1

1

2

(

ω.ωT
)

yj
∂jp (ǫ, t) dǫ1 . . . dǫN



 .

Since p and all its derivatives vanish at the boundaries of the integration domain, we are
left with:

∂tpy (ǫy, t) = ∂y

(
(−by (ǫ, t) p (ǫ, t)) dǫ1 . . . dǫN + β−1h∂yypy (ǫy, t) (6.2.15)

Now we use the independence relation (6.2.1) in the multiple integral to extract an equation
for py (ǫy, t):

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

+ β−1h∂yypy (ǫy, t) , (6.2.16)

Here, we implicitly defined:

by (ǫy, t) =

(
by (ǫ, t)

N
∏

i=1

p (ǫi|ǫy, t) dǫ1 . . . dǫN .. (6.2.17)

Recall that in Eq.(6.2.16), h is a function of N . As N → ∞, since h → 0, the diffusion
term in (6.2.16) vanishes and in the limit, the dynamics of ǫy becomes deterministic. This
shows that ǫy is indeed a macroscopic degree of freedom.

We see from Eq.(6.2.17), that closing the system describing the reduced dynamics
requires the knowledge of the microscopic conditional probability p (ǫi|ǫy, t) so we need an
additional closure relation to solve the problem. In the next section, we discuss a simple
system where the power-stroke element v is quadratic and where the closure relation can
be derived from the micro-model.

6.3 Exact solution: single well potential

The Ornstein Uhlenbeck process describes the motion of a particle in a parabolic en-
ergy in the presence of thermal fluctuations. The solution of this process can be found
analytically (Gardiner, 2004; Risken, 1988) and we use it to illustrate our reduction pro-
cedure.

In this section, we suppose here that our double well potential v is replaced by a single
parabola: v (ǫ) = 1/2ǫ2.

The set of equation, corresponding to (6.2.3) can be written as:


















dǫti =
(

ǫty − 2ǫti
)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

ǫy =
1

1 + λf

(

λf ǫ (t) +
1

N

N
∑

i=1

ǫti

)

(6.3.1a)

(6.3.1b)

From (6.2.5) and (6.2.13), we can obtain the following explicit relations:

hi = 1/ (N (1 + λf )) for 1 ≤ i ≤ N

h = 1/
(

N (1 + λf )2
)
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Now by using Itô formula we obtain:



















dǫti =
(

ǫty − 2ǫti
)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

dǫty =
1

1 + λf

(

λf ǫ
′ (t) + ǫty − 2

1

N

N
∑

i=1

ǫti

)

dt +
√

2β−1
1

N (1 + λf )

N
∑

i=1

dBt
i .

(6.3.2a)

(6.3.2b)

Next, we use the equilibrium relation to express 1/N
∑

ǫti in (6.3.2b) as:

1

N

N
∑

i=1

ǫti = (1 + λf ) ǫty − λf ǫ (t)

Then we obtain


















dǫti =
(

ǫty − 2ǫti
)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

dǫty =
1

1 + λf

(

λf ǫ
′ (t) + 2λf ǫ (t) − (1 + 2λf ) ǫty

)

dt+
√

2β−1
1

N (1 + λf )

N
∑

i=1

dBt
i .

Notice that the effective drift term by does not depend on ǫis. This is the reason why
for this simple case, we don’t need a closure relation to solve the problem (see below).
Instead, we can explicitly compute the homogenized drift coefficient using (6.2.17):

by (ǫy, t) =

∫

RN

1

1 + λf

(

λf ǫ
′ (t) + 2λf ǫ (t) − (1 + 2λf ) ǫy

)

N
∏

i=1

p (ǫi|ǫy, t) dǫ1 . . . dǫN .

(6.3.4)
The term λf ǫ

′ (t)+ 2λf ǫ (t)− (1 + 2λf ) ǫy does not depend on ǫi and can be removed from
the integral. Due to the normalization condition

∫
∏

p = 1 can write:

by (ǫy, t) =
1

1 + λf

(

λf ǫ
′ (t) + 2λf ǫ (t) − (1 + 2λf ) ǫty

)

. (6.3.5)

We observe that this expression depends only on ǫy. The homogenized Fokker–Planck
equation can be written explicitly:

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

+
β−1

N (1 + λf )2 ∂yypy (ǫy, t) . (6.3.6)

In this particular case, we don’t need to know the form of p (ǫi|ǫy, t) to completely char-
acterize the dynamics of ǫy.

Notice that the diffusion term in Eq.(6.3.6) vanishes when N → ∞ thereby reducing
the PDE to a one-dimensional ODE. This shows that for a system with infinitely many
linear cross-bridges the macroscopic behavior is deterministic.

The stationary solution of Eq.(6.3.6) can be written as:

ps
y (ǫ, ǫy) =

1

Zy (ǫ)
exp

[

−βN2 (1 + λf )

(

1

2

(

1

2
+ λf

)

ǫ2y − λf ǫǫy

)]

(6.3.7)

where Zy (ǫ) =

(

π

βN
(

1
2 + λf

)

)
1
2

exp

[

βN (1 + λf )
(λf ǫ)

2

(

1
2 + λf

)

]

. (6.3.8)
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It is instructive to compare this expression with equilibrium distribution for the whole sys-
tem without an assumption that ǫy is linked to other variables through purely mechanical
equilibrium conditions:

ps
y (ǫ, ǫy) =

1

Zy (ǫ)
exp

[

−βN
(

1

2

(

1

2
+ λf

)

ǫ2y − λf ǫǫy

)]

(6.3.9)

with Zy (ǫ) =

(

2π

βN
(

1
2 + λf

)

) 1
2

exp

[

βN
(λf ǫ)

2

2
(

1
2 + λf

)

]

. (6.3.10)

The effective energy landscape for the reduced system from the potential for the full
system by a constant 2 (1 + λf ) which depends on the coupling coefficient λf . This is a
consequence of the adiabatic elimination procedure leading to Eq.(6.3.1): by eliminating
the fluctuation at the scale of ǫy we increased the effective stiffness of the system. However,
as ǫy only appears in quadratic terms in the energy, the adiabatic elimination leaves the
mean value of ǫy unchanged.

6.3.1 Recovery relations

So far, we have derived an equation only for py (ǫy, t), which, if we are only interested
in the macroscopic quantities, is sufficient. However, p (ǫi|ǫy, t) is still unknown to finish
the solution, it is necessary to express it through py. To this end, we integrate the full
Fokker–Planck equation Eq.(6.2.12) with respect to ǫ2, . . . , ǫN . We are then left with the
following 2-D Fokker–Planck on the joint probability density p (ǫ1, ǫy, t):

∂tp (ǫ1, ǫy, t) = ∂1

(

−b1 (ǫ1, ǫy) p (ǫ1, ǫy, t) + β−1∂ip (ǫ1, ǫy, t)
)

+ ∂y

(

−by (ǫy, t) p (ǫ1, ǫy, t) +
β−1

N (1 + λf )2∂yp (ǫ1, ǫy, t)

)

+ 2
β−1

N (1 + λf )
∂1yp (ǫ1, ǫy, t) (6.3.11)

where again the most important feature is that the drift term for ǫy depends only on ǫy.
This allows one to integrating it with respect to ǫ2, . . . , ǫN . Due to the permutational
invariance, a similar equation can be written for each ǫi. After solving Eqs.(6.3.11) and
(6.2.16) we obtain p (ǫi|ǫy, t) using its definition:

p (ǫi|ǫy, t) =
p (ǫi, ǫy, t)

p (ǫy, t)
. (6.3.12)

6.3.2 Results

When v is quadratic, the integration of 6.2.17 can be done explicitly. Hence, in this
particular case, the 1D averaged model for ǫy is indeed ‘equivalent’ to the original N
Langevin equations (6.3.1). On Fig. 6.1(A), we show the mean trajectories of ǫy obtained
after a step of −1 nm obtained from the full Langevin system and from the equivalent
model. Fig.6.1(B) shows the probability distribution and the corresponding histograms
from 104 independent realizations of the Langevin’s system. Dashed lines represent the
Boltzmann probability density for the complete system without adiabatic elimination so
we can appreciate the effect of the 2 (1 + λf ) factor presented in Eqs.(6.3.7) and (6.3.9).
The parameters are: λf = 1, N = 100 and β = 5.
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Fig. 6.1 – Equivalent model with an Ornstein Uhlenbeck process. Comparison between full
Langevin simulation and equivalent model in the case where v is a simple quadratic potential. (A): open
squares and circles represent the mean value over 104 Langevin simulations for 1 nm release respectively;
dashed line and solid line represent the mean value from the equivalent model for the same step size. (B):
histogram from the langevin simulations (filled) and probability density (lines) from the equivalent model
before (right) and after (left) a 1 nm shortening step. The dashed lines show the Boltzmann probability
density for the full system without adiabatic elimination (see Eq.(6.3.9)). Parameters are: λf = 1, N = 100
and β = 5.

6.4 Double well potential

6.4.1 Initial set of equations

We now turn to back to the double well potential v is given by (2.5.2). The total
energy of the system is:

V (ǫ1, . . . , ǫN , ǫy, ǫ, t) =
N
∑

i=1

{

v (ǫi) +
1

2
(ǫy − ǫi)

2

}

+
1

2
Nλf (ǫ (t) − ǫy)2 .

By assuming a purely elastic behavior of the filaments, we obtain the following system of
governing equations:



















dǫti = b
(

ǫti, ǫ
t
y

)

dt+
√

2β−1dBi
t, for 1 ≤ i ≤ N

ǫty =
1

1 + λf

(

λf ǫ (t) +
1

N

N
∑

i=1

ǫi

)

(6.4.1a)

(6.4.1b)

where

b (ǫi, ǫy) = −v′ (ǫi) + (ǫy − ǫi) , for 1 ≤ i ≤ N, (6.4.2)

Again the particularity of this mechanical system is that all the cross-bridges are charac-
terized by the same drift term b.

6.4.2 Itô calculus

Using the definition presented in Sec.5.2, we obtain:

hi =
1

N (1 + λf )
. (6.4.3)

Therefore we have hi → 0 when N → ∞ and ǫy is a macroscopic variable, which is only
weakly affected by fluctuations at the microscopic level. Next we write the analog of
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(6.2.6):






































dǫti = b
(

ǫti, ǫ
t
y

)

dt +
√

2β−1dBi
t, for 1 ≤ i ≤ N

dǫty =
1

1 + λf

(

λf ǫ
′ (t) + ǫty − 1

N

N
∑

i=1

(

ǫti + v′ (ǫti
))

)

dt

+
√

2β−1
1

N (1 + λf )

N
∑

i=1

dBt
i

(6.4.4a)

(6.4.4b)

and replace the term 1/N
∑

ǫti in (6.4.4b) by using the equilibrium relation (6.4.1b) to
obtain:







































dǫti = b
(

ǫti, ǫ
t
y

)

dt +
√

2β−1dBi
t, for 1 ≤ i ≤ N

dǫty =
1

1 + λf

(

λf

(

ǫ′ (t) + ǫ (t) − ǫty
)

− 1

N

N
∑

i=1

v′ (ǫti
)

)

dt

+
√

2β−1
1

N (1 + λf )

N
∑

i=1

dBt
i

(6.4.5a)

(6.4.5b)

We observe that, in equation (6.4.5b), only the term
∑

v′ (ǫti
)

depends on ǫ1, . . . , ǫN .

6.4.3 Equivalent of Fokker–Planck equation

We can perform the integration (6.2.17) to compute the drift term in the averaged
Fokker–Planck equation:

by (ǫy, t) =
1

1 + λf

(

λf

(

ǫ′ (t) + ǫ (t) − ǫy
)

− 1

N

N
∑

i=1

(
v′ (ǫi)

N
∏

i=1

p (ǫi|ǫy, t) dǫ1 . . . dǫN
)

.

(6.4.6)
Since v′ (ǫi) depends only on ǫi, all term of the sum are equal to:

〈v′ (x)〉y =

∫

R

v′ (x) p (x|ǫy, t) dx. (6.4.7)

In the expression of 〈v′ (x)〉y, the term p (x|ǫy, t) is unknown and therefore this integral
cannot be computed. We are left at this stage with the following implicit relation:

by (ǫy, t) =
1

1 + λf

(

λf

(

ǫ′ (t) + ǫ (t) − ǫy
)

− 〈v′ (x)〉y

)

. (6.4.8)

The corresponding one dimensional Fokker–Planck equation on ǫy takes the form:

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

+ β−1 1

N (1 + λf )2 ∂yypy (ǫy, t) . (6.4.9)

Before discussing different approximations of 〈v′ (x)〉y, we can use the same methodol-
ogy to derive a similar Fokker–Planck equation in the soft device (details are presented in
appendix D.4):

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

+ β−1 1

N
∂yypy (ǫy, t) (6.4.10)

where now by (ǫy, t) =
1

N

(

σ′ (t) + σ (t)
)

− 〈v′ (x)〉y. (6.4.11)

Once again, the expression for by (ǫy, t) remains implicit.
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6.4.4 Comments

Observe that the impact of the thermal fluctuations is different in hard and soft device.
Indeed by looking at equations (6.4.9) and (6.4.10), we see that the diffusion coefficients
are equal β−1/(N (1 + λf )2) in hard device and β−1/N in soft device. As λf > 0, we see
that the diffusion will be stronger in soft device than in hard device. Physically it comes
from the fact that the system in soft device has one additional degree of freedom ǫz. The
trace of this additional source of entropy is still visible in the averaged 1D-Fokker–Planck
equation. Moreover, when λf → ∞, both the drift term and the diffusion coefficient in
Eq.(6.4.9) vanish, however the diffusion coefficient decays as 1/λ2

f while the drift decays
only as 1/λf . Hence for weakly interacting cross-bridges, the behavior of ǫy becomes
progressively more deterministic. Indeed, as λf → ∞, the total length is imposed in a
deterministic way, and the elongation of the myofilaments becomes negligible. In this limit
ǫy = ǫ and diffusion is absent. This, does not happen in the soft device because, even with
stiff filaments, the variables ǫy and ǫz are free to diffuse.

When N is large, the noise term is vanishing (in practice, in our model, N and β are in
of the order 100 meaning that the noise term is of the order of 10−4) reducing the problem
to a simple ODE:

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

. (6.4.12)

However, this does not mean that temperature plays no role at the macroscopic level, since
in the computation of by, the integration of v′ does take into account the noise at the level
of the cross-bridges through p (ǫi|ǫy).

Notice also that in the previous section, where potential was quadratic, the Fokker–
Planck equation on ǫy (see Eq.6.3.6) was self-consistent as the drift term depended only on
ǫy. In Eqs.(6.4.11) and (6.4.8), the drift still depends on p (ǫi|ǫy, t) which now cannot be
obtained without knowing the dynamics of ǫy. Hence, one needs to find a realistic closure
relation that would either express p (ǫi|ǫy, t) as a function of py (ǫy, t) or directly postulate

the resulting expression for by (ǫy, t). In the next section we investigate two possibilities:

– One can naively assume that 〈v′ (x)〉y = v′ (〈x〉y) and use the equilibrium relation
(6.4.1b) to compute by (ǫy, t). We call this mean field approximation

– One can assume that p (x|ǫy, t) = ps (x|ǫy), which is the stationary conditional prob-
ability density. In our case, ps (x|ǫy) is a Boltzmann distribution parametrized by
ǫy. We call it the equilibrium approximation.

Below, We will show that the mean field approximation gives poor results regarding both
the stationary mean value of ǫy (we will not recover the T2 curve), and the kinetics of
the recovery. The equilibrium approximation will be able to reproduce the steady state
mean value of ǫy but will fail to capture kinetics. In a subsequent section, we present
another reduction technique which gives satisfactory results but only when the applied
ramp loading increments are sufficiently large (closure relation).

6.5 Different approximations

6.5.1 The mean field approximation

To close our reduced model problem, we need a way to compute 〈v′ (x)〉y. One possi-
bility is to consider the mean field approximation:

〈v′ (x)〉y = v′ (〈x〉y) , (6.5.1)
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which is exact when v is linear (see Sec.6.3). In the hard device, the average position 〈x〉y

is given by:

〈x〉y =

+∞
∫

−∞

xp (x|ǫy) dx

=
1

N

+∞
∫

−∞

N
∑

i=1

xip
N (xi|ǫy) dx1 . . . dxN

= (1 + λf ) ǫy − λf ǫ (t)

(6.5.2)

where we used Eq.(6.4.1b). Similarly in the soft device, we have:

〈x〉y = ǫy − σ

N
. (6.5.3)

By using this approximation the drift terms by in the Fokker–Planck equations (6.4.9) and
(6.4.10) can be computed as follows:

by (ǫy, t) =
1

1 + λf

(

λf

(

ǫ′ (t) + ǫ (t) − ǫy
)

−v′ ((1 + λf ) ǫy − λf ǫ (t))
)

in hard device,

(6.5.4)

by (ǫy, t) =
1

N

(

σ′ (t) + σ (t)
)

− v′
(

ǫy − σ

N

)

in soft device. (6.5.5)

where by now depends only on ǫy. It can be replaced into Eq.(6.4.9) and (6.4.10) which
allows one to obtain py. Unlike the case of the single well (see Sec.6.3), the rigorous
derivation of a 2D Fokker–Planck equation of the type of Eq.(6.3.11) is not possible in this
setting since the by term will in general depend on ǫ2, . . . , ǫN . Hence, this first method
does not allow to recover the dynamics of individual cross-bridges (p (ǫi|ǫy, t)) from the
knowledge of py without an additional closure relation.

The computational results obtained from this approximation are shown on Figs.6.2
and 6.3. These figures are obtained with the set of parameter fitted to muscle data (see
Tab.7.1 on p.139). We see that the model based on mean field approximation fails to
reproduce neither the stationary state (measured after 5ms, compare � with �) nor the
transients. In the hard device, this is particularly visible for the mean trajectories (see
Fig.6.2(A)): the equivalent model (solid lines) never fits the Langevin simulations (dashed
lines) except during the application of the step because it does not allow the change in the
distribution of the cross-bridges (purely elastic response, see the T1 curve on Fig.6.2(B)).

Also, one can see that the shape of the T2 curve corresponds to the local minimum of
the energy defined by the initial fraction of cross-bridges in post-power-stroke n0

1 (thick
dot-dashed line). However, the upper and lower boundaries of this local minimum branch
correspond to the upper and lower limits for configurations (1, 0, 0) and (0, 0, 1) respec-
tively, rather that the upper and lower limits for the configurations

(

n0
1, 0, 0

)

and
(

0, 0, n0
1

)

.
This is a direct consequence of the mean field approximation which considers only the mean
position of the cross-bridges as a representation of the whole set. The mean position, at
a given ǫy can either be in well 1 or in well 0 hence the whole assembly of cross-bridges is
considered as effectively homogeneous. Hence, the boundaries correspond to those of the
homogeneous configurations. The fact that the T2 curves tracks the configuration

(

n0
1, 0, 0

)
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and the equivalent model with the mean field approximation (solid lines); (B):T1 and T2 curves obtained
using the mean-field approximation in a hard device (open � and �) compared to the corresponding
curves obtained using the full simulations (� and �). The dot dashed line represent the metastable state
corresponding to the initial state of the system. The parameter used for this results are adjusted to muscle
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Fig. 6.3 – Results obtained with the mean field approximation in soft device. (A): trajectories
obtained for different step size (indicated on the plot) using the full Langevin simulation (dashed lines) and
the equivalent model with the mean field approximation (solid lines); (B):L1 and L2 curves obtained using
the mean-field approximation in a hard device (� and �) compared to the corresponding curves obtained
using the full simulations (� and �). The dot dashed line represent the metastable state corresponding to
the initial state of the system. The parameter used for this results are adjusted to muscle experimental
data (see Sec.7.1 and Tab.7.1 on p.139).
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is due to the fact that the initial distribution of ǫy is chosen to ensure the correct fraction
of cross-bridges in post-power-stroke.

To summarize, one can see that the mean field approximation is not adequate to
describe an effective behavior of the half sarcomere. The main problem with this method
is that we completely neglect the effect of thermal fluctuations at the scale of a cross-bridge,
by considering only an average value of the characteristic quantities. The only random
entry is the diffusion of ǫy (see Eqs.6.4.9 and 6.4.10), which comes with the multiplier
(Nβ)−1 ≈ 10−4. It turns out that this weak diffusion is not sufficient to escape from the
initial macroscopic well.

6.5.2 Equilibrium approximation

Another approximation is based on the assumption that the distribution of ǫi with
respect to ǫy is an equilibrium one, namely:

p (ǫi|ǫy, t) = ps (ǫi|ǫy) =
1

Z1 (ǫy) + Z0 (ǫy)
exp

[

−β
(

v (ǫi) +
1

2
(ǫy − ǫi)

2

)]

(6.5.6)

where Z1 (ǫy, β) =

l
∫

−∞

exp

[

−β
(

1

2

λ1

1 − λ1
(x+ 1)2 +

1

2
(ǫy − x)2

)]

dx

and Z0 (ǫy, β) =

l
∫

−∞

exp

[

−β
(

1

2

λ0

1 − λ0
x2 + v0 +

1

2
(ǫy − x)2

)]

dx.

We can now compute 〈v′ (x)〉y by using this probability density to obtain:

〈v′ (x)〉y =

+∞
∫

−∞

v′ (x) ps (x|ǫy) dx

=

l
∫

−∞

λ1

1 − λ1
(x+ 1)

exp
[

−β
(

1
2

λ1
1−λ1

(x+ 1)2 + 1
2 (ǫy − x)2

)]

Z1 (ǫy) + Z0 (ǫy)
dx

+

+∞
∫

l

λ0

1 − λ0
x

exp
[

−β
(

1
2

λ0
1−λ0

x2 + v0 + 1
2 (ǫy − x)2

)]

Z1 (ǫy) + Z0 (ǫy)
dx.

(6.5.7)

To compute this integral we have to calculate the following quantities:

〈x〉1 (ǫy) =

l
∫

−∞

x
exp

[

−β
(

1
2

λ1
1−λ1

(x+ 1)2 + 1
2 (ǫy − x)2

)]

Z1 (ǫy) + Z0 (ǫy)
dx, and (6.5.8)

〈x〉0 (ǫy) =

+∞
∫

l

x
exp

[

−β
(

1
2

λ0
1−λ0

x2 + v0 + 1
2 (ǫy − x)2

)]

Z1 (ǫy) + Z0 (ǫy)
dx (6.5.9)

They can be expressed in terms of special functions and can be rewritten then in the form:

〈x〉1 (ǫy) =
Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)
((1 − λ1) ǫy − λ1 − ∆1 (ǫy)) (6.5.10)

〈x〉0 (ǫy) =
Z0 (ǫy)

Z1 (ǫy) + Z0 (ǫy)
((1 − λ0) ǫy + ∆0 (ǫy)) (6.5.11)
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where (1 − λ1) ǫy − λ1 and (1 − λ0) ǫy are the position of the minima for the energy well
1 and 0, respectively, and ∆1 and ∆0 are positive numbers which are negligible when
temperature is low (β → +∞) or when we consider infinitely steep wells (see Sec.A.2):

∆1 (ǫy) =

√

2 (1 − λ1)

βπ

exp
[

−f1 (ǫy)2
]

erfc (−f1) (ǫy)
(6.5.12)

∆0 (ǫy) =

√

2 (1 − λ0)

βπ

exp
[

−f0 (ǫy)2
]

erfc (f0) (ǫy)
. (6.5.13)

Here the functions f1 and f0 are defined by Eqs.(4.2.9) and (4.2.10). Now we can substitute
(6.5.10) and (6.5.11) into (6.5.7) and obtain:

〈v′〉y (ǫy) =
λ1

1 − λ1

(

〈x〉1 (ǫy) +
Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)

)

+
λ0

1 − λ0
〈x〉0 (ǫy) (6.5.14)

which is true in both hard and soft devices. If we substitute this expression into (6.4.8)
and (6.4.11) for hard and soft devices, respectively we obtain:

by (ǫy) =
1

1 + λf

(

λf ǫ
′ (t) + λf (ǫ− ǫy)

− Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)

(

λ1 (ǫy + 1) − λ1

1 − λ1
∆1 (ǫy)

)

− Z0 (ǫy)

Z1 (ǫy) + Z0 (ǫy)

(

λ0ǫy +
λ0

1 − λ0
∆0 (ǫy)

))

(6.5.15)

in the hard device and

by (ǫy) =
1

N

(

σ′ (t) + σ

− Z1 (ǫy)

Z1 (ǫy) + Z0 (ǫy)

(

λ1 (ǫy + 1) − λ1

1 − λ1
∆1 (ǫy)

)

− Z0 (ǫy)

Z1 (ǫy) + Z0 (ǫy)

(

λ0ǫy +
λ0

1 − λ0
∆0 (ǫy)

))

, (6.5.16)

in the soft device. We recall that the quantity Z1/(Z1 + Z0) represent the equilibrium
fraction of cross-bridges in post-power-stroke at a given ǫy.

The drift force given by equation (6.5.15) and equation (6.5.16) reflects the nature of
an effective potential for a 1 dimensional sarcomere. One can show that, in thermal equi-
librium, this effective potential is nothing else but the non equilibrium energy landscape
Fy (Gy in soft device), derived previously in Eqs.(4.2.14) and (4.2.13). Indeed, in the hard
device, we recall the expression of Fy:

Fy (ǫy, β) = N

(

1

2
λf (ǫ− ǫy)2 − 1

β
log (Z1 (ǫy, β) + Z0 (ǫy, β))

)

.

Its derivative with respect to ǫy can be written in the form:

∂yFy (ǫy, β) = N

(

− λf (ǫ− ǫy)

− 1

β

∂yZ1 (ǫy, β) + ∂yZ0 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)

)

.

(6.5.17)
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A straightforward computation gives:

∂yZ1 (ǫy, β) = Z1 (ǫy, β) (−βλ1 (ǫy + 1) − ∆1 (ǫy, β)) (6.5.18)

∂yZ0 (ǫy, β) = Z0 (ǫy, β) (−βλ0ǫy + ∆0 (ǫy, β)) , (6.5.19)

where ∆1 and ∆0 are given by Eq.(6.5.12) and Eq.(6.5.13). This allows us to write the
final expression for the force derived from Fy:

− ∂yFy (ǫy, β) = N

(

λf (ǫ− ǫy)

− Z1 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
(λ1 (ǫy + 1) + ∆1 (ǫy, β))

− Z0 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
(λ0 (ǫy) − ∆0 (ǫy, β))

)

. (6.5.20)

Similarly, in the soft device, we obtain:

− ∂yGy (ǫy, β) = N

(

σ

N

− Z1 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
(λ1 (ǫy + 1) + ∆1 (ǫy, β))

− Z0 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
(λ0 (ǫy) − ∆0 (ǫy, β))

)

. (6.5.21)

These expressions look rather similar to Eq.(6.5.15) and Eq.(6.5.16); the difference
coming from the terms with ∆1 and ∆0. In fact, the two expressions are equivalent. To
prove this we write (omitting the variables for clarity):

Z1

Z1 + Z0

λ1

1 − λ1
∆1 = − Z1

Z1 + Z0
∆1 +

Z1

Z1 + Z0

1

1 − λ1
∆1

− Z0

Z1 + Z0

λ0

1 − λ0
∆0 =

Z0

Z1 + Z0
∆0 − Z0

Z1 + Z0

1

1 − λ0
∆0.

Here, the first terms are the same as in Eq.(6.5.20) and Eq.(6.5.21). Now, using the
expression of f1 and f0 given by Eqs.(4.2.9) and (4.2.10), the second terms are explicitly:

Z1

Z1 + Z0

1

1 − λ1
∆1 =

1

β

1

Z1 + Z0
exp

[

−β

2
λ1 (ǫy + 1)2

−β

2

(
√

1

1 − λ1
l +

√

1 − λ1

(

λ1

1 − λ1
− ǫy

))2
]

and

− Z0

Z1 + Z0

1

1 − λ0
∆0 =

1

β

1

Z1 + Z0
exp

[

−β

2

(

λ0ǫ
2
y + 2v0

)

−β

2

(
√

1

1 − λ0
l −

√

1 − λ0ǫy

)2
]

.
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The exponent being expanded, we get:

Z1

Z1 + Z0

1

1 − λ1
∆1 =

1

β

1

Z1 + Z0
exp

[

−β

2

(

λ1

1 − λ1
(l + 1)2 + (ǫy − l)2

)]

− Z0

Z1 + Z0

1

1 − λ0
∆0 = − 1

β

1

Z1 + Z0
exp

[

−β

2

(

λ0

1 − λ0
l2 + 2v0 + (ǫy − l)2

)]

.

Here, in the exponential terms we recognize the energies of well 1 and well 0, v (x) +
1/2 (ǫy − x)2, which are equal for x = l. Hence Z1

Z1+Z0

1
1−λ1

∆1 − Z0
Z1+Z0

1
1−λ0

∆0 = 0, and
we have proven that, in for the stationary process:

−∂yFy (ǫy, β, ǫ) = (1 + λf )Nby (ǫy, ǫ) in hard device (6.5.22)

−∂yGy (ǫy, β, σ) = Nby (ǫy, σ) in soft device. (6.5.23)

Now, the stationary solution of the one dimensional Fokker–Planck equations (6.4.9) and
(6.4.10) can be written explicitly:

py,s (y, β, ǫ) =
1

Zh (ǫ, β)
exp



−βN (1 + λf )2

y
∫

0

−by (x, β, ǫ) dx



 in the hard device

(6.5.24)

py,s (y, β, σ) =
1

Zs (σ, β)
exp



−βN
y
∫

0

−by (x, β, ǫ) dx,



 in the soft device (6.5.25)

Notice that, we have identified the effective potentials as (1 + λf )Fy in the hard device
and Gy in the soft device.

The fact that we again obtain an additional stiffness in the hard device is the conse-
quence of the adiabatic elimination of ǫy (see Sec.6.1.2), not the approximation we used
for p (ǫi|ǫy) (see Eq.6.5.6). We have already found similar result in the case of a single well
potential (see Eqs.6.3.7 and 6.3.9 and the following comments).

From the stationary distributions (6.5.24) and (6.5.24), the equilibrium mean value of
ǫy denoted by 〈ǫy〉h in hard device and by 〈ǫy〉s in soft device, can be computed explicitly.
This allows us to obtain the tension vs elongation relations in steady state:

T 2 (ǫ) = Nλf

(

ǫ− 〈ǫy〉h

)

in the hard device, (6.5.26)

L2 (σ) =
σ

Nλf
+ 〈ǫy〉s in the soft device. (6.5.27)

In contrast to the mean field theory, in the equilibrium approximation we do take
into account thermal fluctuation at the scale of a cross-bridge distribution in equilibrium.
Therefore, we recover exactly the results of the full simulation regarding the T1 − T2 and
L1 −L2 curves, including the kinetic trapping (see Fig.6.4). Moreover, the equilibrium T2

and L2 curves computed using the stationary equilibrium distribution of the equivalent
model matches exactly the thermal equilibrium curves computed within the full model
(see solid lines obtained with Eqs.6.5.26 and 6.5.27).

However, the kinetics of the full system cannot be reproduced faithfully. From, the
comparison of selected trajectories shown on Fig.6.5, we observe that the equivalent model
(dashed lines) reaches steady state faster than the full Langevin system (solid lines) for
low step amplitudes (see Fig.6.6). The faster kinetics of the equivalent model can be
explained by the fact that we neglected the equilibration time of the cross-bridges by
assuming equilibrium upfront.
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librium T2 and L2 curves obtained with the stationary distribution of the equivalent model. Dashed lines:
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Fig. 6.6 – Rate of recovery obtained with full Langevin simulation and the equivalent model
with equilibrium approximation. (A): hard device. (B): soft device. The rate is measured as the
inverse of the time to reach 0.63 (T2 − T1) from T1 (resp. 0.63 (L2 − L1) from L1). (�): rate measured
obtained with the equivalent model. (�): rate measured with the full Langevin simulations. Parameters
are listed in Tab.7.1 on p.139.

6.6 The weak coupling model

In this Section we present a different approach to the derivation of a reduced model.
Previously, we tried to derive a 1-D equation on ǫy and the conclusion was that the
subtleties of the dynamical behavior of the system are lost when one tries to simplify
the kinetics of a single cross-bridge to get an approximate picture at the macroscale.
In fact, the kinetics of the system is mainly defined by the microscopic kinetics of the
conformational change at the cross-bridge scale. Hence, instead of deriving an equation
on the macroscopic degree of freedom ǫy, we shall take an opposite way and try to derive
a PDE for a single cross-bridge. The challenge here is to take into account the cooperative
effects while remaining at the scale of an individual cross-bridge.

6.6.1 The method

In our initial system, (6.2.3), we can replace ǫy given by (6.2.3b) to obtain:

dǫti = b
(

ǫt1, . . . , ǫ
t
N

)

dt+
√

2β−1dBt
i for ı = 1, . . . , N (6.6.1)

where the drift term b now depends on all ǫi-s and is the same for all 1 ≤ i ≤ N . As we
have done previously for the system (6.2.6), we can write the corresponding Fokker–Planck
equation for the probability density p (ǫ1, . . . , ǫN , t):

∂tp (ǫ1, . . . , ǫN , t) =

N
∑

i=1

{

∂i [−b (ǫ1, . . . , ǫN , t) p (ǫ1, . . . , ǫN , t)] + β−1∂iip (ǫ1, . . . , ǫN , t)
}

.

(6.6.2)
Next, we consider the following anzats:

p (ǫ1, . . . , ǫN , t) =

N
∏

i=1

p (ǫi, t) (6.6.3)

which is equivalent to assuming the complete independence of different cross-bridges. This
assumption is different from Eq.(6.2.1) which does not contain any approximation: the
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cross-bridges, in that expression, were independent on the condition that ǫy is fixed. Here,
we essentially assume that the probability density of a single cross-bridge depends on
the mean field only weakly and this dependence can be treated independently for each
sarcomere. Moreover, it is implied that all half-sarcomeres are statistically independent
and that all marginal probability densities are the same (p does not depend on i).

To obtain a reduced model, we can now integrate Eq.(6.6.2), over ǫ2, . . . , ǫN . We obtain
the following non-linear kinetic equation:

∂tp (ǫ1, t) = ∂1

[

−
∫

{

b (ǫ1, . . . , ǫN , t)

N
∏

i=2

p (ǫi, t) dǫ2, . . . , dǫN

}

p (ǫ1, t)

]

+ β−1∂11p (ǫ1, t)

(6.6.4)
where the non-linearity comes from the drift which is function of the solution p (ǫi, t). The
model can now be specified in the cases of hard and soft devices.

6.6.2 Special cases: hard and soft devices

In both hard and soft devices, the drift term associated with the variable ǫ1 was
initially:

b
(

ǫt1, ǫ
t
y

)

= −v′ (ǫ1) +
1

2

(

ǫty − ǫt1
)

.

If we replace ǫy using Eq.(3.1.5) and (3.1.6) we obtain:

b (ǫ1, . . . , ǫN , t) = −v′ (ǫ1) +
λf

1+λf
ǫ (t) + 1

N(1+λf )

N
∑

i=2

ǫi +

(

1
N(1+λf )

− 1

)

ǫ1. (6.6.5)

in the hard device and

b (ǫ1, . . . , ǫN , t) = −v′ (ǫ1) + σ(t)
N + 1

N

N
∑

i=2

ǫi +
(

1
N − 1

)

ǫ1. (6.6.6)

in the soft device. After replacing the drifts terms (6.6.5) and (6.6.6) in (6.6.2), only the
terms containing

∑

ǫi remain to be integrated. The other terms integrate to one because
of normalization. Since all ps are equivalent the multi-variable integral reduces to a sum
of single variable

∫

xp (x, t) dx. Finally, for both hard and soft devices, we obtain:

∂tp (ǫ1, t) = ∂1

[

−
(

−v′ (ǫ1) + g (t) +m (t) − qǫ1
)

p (ǫ1, t)
]

+ β−1∂11p (ǫ1, t) (6.6.7)

where g (t) =
λf

1+λf
ǫ (t) ; m = N−1

N(1+λf )

∫

xp (x, t) dx; q = 1 − 1
N(1+λf )

in the hard device

and g (t) = σ(t)
N ; m = N−1

N

∫

xp (x, t) dx; q = 1 − 1
N in the soft device.

Notice that in both models the drift is a function of the mean value m of the variable ǫ1
which encompasses the collective effect of the bundle of cross-bridges. In the hard device,
we see that m vanishes when λf → ∞, which is coherent with the fact that coupling
diminishes with increasing λf . In the soft device, the coupling is always present and the
drift does not depend on λf .
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Fig. 6.7 – Existence of 2 solutions for the non linear 1 dimensional Fokker–Planck equation
in hard device (A) and soft device (B). The solid lines represent the mean value of ǫ1 vs m∞ for different
loadings. (A): from δ = −10 to δ = 10. (B): from 0 to 2T0. The dashed line is the identity (y = x).
The thick lines mark the isometric conditions. The problem (6.6.12) can have up to 3 solutions marked
I,J and K. I and K are stable and J is unstable. As the loading changes, only one solution remains. The
parameters are listed in Tab.7.1 on p.139. In particular λf = 0.53.

To recover the equilibrium tension–elongation curve, we have to compute the mean
value of ǫ1 by using the solution of Eq.(6.6.7). We obtain:

〈ǫy〉h (t) =
1

1 + λf
(λf ǫ (t) + 〈ǫ1〉h (t)) , in hard device (6.6.8)

〈ǫy〉s (t) = 〈ǫ1〉s (t) +
σ (t)

N
, in soft device, (6.6.9)

where 〈ǫ1〉h,s (t) =

∫

xp (x, t) dx, (6.6.10)

which allows us to compute the macroscopic quantities.

6.6.3 Multiple stationary solutions

As we have already mentioned, the kinetic Eq.(6.6.7) is non linear since m depends
on p. It can have more than one stationary solution. To investigate this possibility, we
first express the stationary solution of equation (6.6.7) in terms of ǫ1 and m∞, the still
unknown asymptotic value of m (the details of the computation are in App.D.5):

p∞ (ǫ1, g,m
∞, β) =

1

Z (g,m∞, β)
exp

[

−β
(

v (ǫ1) − gǫ1 −m∞ǫ1 + 1
2qǫ

2
1

)]

(6.6.11)

where m∞ = N−1
N(1+λf )

m∞ in the hard device and m∞ = N−1
N m∞ in the soft device. Next

we write the following consistency relation which takes the form of an algebraic relation:

m∞ =

∫

xp∞ (x, g,m∞) dx, (6.6.12)

In hard device, when λf → ∞, then m∞ → 0 and in this limit Eq.(6.6.12) has only one
solution which is in agreement with the fact that all cross-bridges are independent.

Fig.6.7 shows the solutions of (6.6.12) in hard (see A) and soft (see B) devices. In both
(A) and (B), we show two

∫

xp∞dx vs m∞ curves (see solid line and dot-dashed line) that
corresponds to two values of the loading parameter g. In hard device (A), the solid line
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Fig. 6.8 – Probability density associated to points I and K and instability of point J. Solid
lines: probability density associated to point I (A) and K (B), the solutions of the consistency equation
(6.6.12) in hard device. Dashed lines show two different initial conditions associated to mean values around
point J (indicated by the vertical dot-dashed line) that converged to the to stable distribution.

corresponds to ǫ = ǫ0 (isometric condition) and the dot-dashed to ǫ = ǫ0 − 5 nm/hs. In
soft device, the solid lines corresponds to σ = T0 and the dot-dashed line to σ = 0.2T0.

One can see that for small loads, Eq.(6.6.12) has up to 3 solutions (marked I, J and
K on Fig.6.7). Solutions I and J are stable. They are represented by the solid line on
Fig.6.8 for the hard device case. Stability of point J was checked numerically by running
simulations with various initial distributions compatible with mean values close and equal
to J (the vertical dot-dashed line represents point J on Fig.6.8). Dashed lines on Fig.6.8
show examples of such initial conditions that converged to distributions corresponding to
points I and K. Based on this we conclude that stationary solutions I and K are stable
while distribution J is unstable.

When the load g is changed (see Fig.6.7 dot-dashed line), the curves
∫

xp∞dx vs m∞

remain parallel, while shifting in the horizontal direction. For sufficiently large loadings,
there is only one intersection with the identity line and so Eq.(6.6.11) has only one stable
solution. We show on Fig.6.9, that the interval of loading where 2 solutions exist coincides
with the interval where the non-equilibrium energy landscapes Fy andGy have two minima.
We conclude that the two stable solutions correspond to the homogeneous configurations
localized in the macroscopic wells.

6.6.4 Weak coupling model vs full Langevin dynamics

On Fig.6.10, we show three snapshots of the probability density for a single cross-
bridge obtained from the full Langevin simulations (histograms) and compared with the
weak coupling model (lines). The left column shows the response to a shortening step of
1 nm/hs in hard device and the right column, the response to a force step of −0.7T0.

Light gray and dark gray histograms show the cross-bridges probability density for
two types of realizations. Light gray histograms represent realizations initialized in the
left macroscopic well (post-power-stroke). Dark gray histograms result from realizations
initialized in the right macroscopic well (pre-power-stroke). The dot-dashed line (resp.
dashed line) is the first (resp. second) solution Eq.(6.6.7) corresponding in steady state to
point I (resp. K) on Fig.6.7.

We see that the first solution of Eq.(6.6.7) corresponds to the distribution of cross-
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Fig. 6.9 – Existence of multiple solution and macroscopic wells for different loadings. (A):
hard device. (B): soft device. (�): Presence of multiple stationary solutions of Eq.(6.6.12) at different
loadings. Solid line: presence of macroscopic wells in the non equilibrium energy landscapes Fy and Gy

(see Eqs.(4.2.13) and (4.2.14)) for different loadings.

bridges within the left macroscopic well (dot-dashed lines superimposes on light gray
histograms) and the second solution of Eq.(6.6.7) corresponds to the distribution of cross-
bridges within the left macroscopic well (dot-dashed lines superimposes on dark gray his-
tograms).

We recall that the overall cross-bridge density is obtained by summing the contributions
of both macroscopic wells according to the initial equilibrium probability to be in the left
macroscopic well ny (see Sec.5.4.2). The (�) represent the sum of the histograms which
is matched by the solid line representing sum of the two solutions of Eq.(6.6.7). In steady
states before and after the step (first and last row of Fig.6.10), the exact equilibrium
density of cross-bridges is represented by the (�). It is satisfactorily reproduced by both
the full Langevin dynamics and the equivalent weak coupling model.

To summarize, the effect of coupling is correctly taken into account by the non linearity
of Eq.(6.6.7). Each of the two solutions of the non-linear problem corresponds to a partic-
ular type of half-sarcomere, remaining in a particular macroscopic well (pre-power-stroke
or post-power-stroke) characterized by a particular value average value of ǫy. In a sense,
by using our approximation, we replaced the energy landscape with two macroscopic wells
by two single well landscapes separated by an infinite barrier.

The main question regarding this approximation concerns is the precise role played by
ny. Here the kinetics of the system is well reproduced by taking ny constant (equal to its
initial value), meaning that as long as two solutions exist, their respective weights remain
equal to ny and 1 −ny. As soon as one of these two solutions disappears and only at that
moment, the two densities merge and afterwards coincide with the remaining solution (see
the last row of Fig.6.10).

We observe that in the full system, the two distributions can merge before the double
well structure is lost, by crossing the barrier of the non-equilibrium energy landscape.
However, this process is not allowed in the weak coupling approximation as the ǫy dimen-
sion is not present. Therefore, we expect to see a difference between the two approaches
only in the range where the barrier is sufficiently small and the full system allows reequili-
bration between the macroscopic wells. This occurs only at the boundaries of the existence
domain for the macroscopic wells (see Fig.6.9).

To take into account the missing phenomenon in the weak coupling model, one needs
to prescribe a dynamics for ny that would mimic the barrier crossing. One possibility is
to model the time dependence of ny by a jump process between two states, the transition
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probability being defined by the transition rate corresponding to the macroscopic wells
(see Sec.C.2). With our set of parameters, such refinement is not really necessary as the
interval where the barrier between the macroscopic wells is comparable to kbθ is very
narrow.

6.6.5 Results

The results obtained by using the weak coupling approximation for various loading
steps are compared with the full Langevin simulations in Figs.6.11, 6.12 and 6.13. The
overall kinetics of the full system is very well reproduced but we notice a slight differ-
ence in the steady state values (see Fig.6.11). This difference remains small as shown in
Fig.6.12 where we present the T1, T2, L1 and L2 curves obtained from the weak coupling
model and from the full model. On the histograms shown in Fig.6.10, one can see this
difference particularly in soft device, where we observe a shift of the probability density,
the diffusion being correctly reproduced. This difference comes from the fact that the
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zeros of the drift term in the full system is not exactly the same as the ones in the weak
coupling approximation model. We also notice a small difference in the rate curves shown
on Fig.6.13. However, in general, compared to both our previous attempts (see Fig.6.6),
the weak coupling approximation gives much better results.

6.7 Further developments

Before concluding this Chapter, we can discuss briefly another (ongoing) attempt to
obtain an efficient reduced model. Instead of restricting ourselves to a one dimensional
reduced model for ǫy (like in Sec.6.2) or for ǫi (like in Sec.6.6) we can try now to derive
a two-dimensional model which would targets the time evolution of the joint probability
density for ǫy and ǫ1. Following the method proposed in Sec.6.2, we start with the following
set of SDE:



















dǫti = b
(

ǫti, ǫ
t
y

)

dt +
√

2β−1dBt
i , for 1 ≤ i ≤ N

dǫty = by

(

ǫt1, . . . , ǫ
t
N , ǫ

t
y, t
)

dt+
√

2β−1

N
∑

i=1

(

hidB
t
i

)

.

which corresponds to the following Fokker–Planck equation:

∂tp (ǫ, t) =

y
∑

i=1

∂i



−bi (ǫ, t) p (ǫ, t) +
1

2

y
∑

j=1

(

ω.ωT
)

ij
∂jp (ǫ, t)





We then integrate with respect to ǫ2, . . . , ǫN and find:

∂tp (ǫ1, ǫy, t) = ∂1

(

−b1 (ǫ1, ǫy) p (ǫ1, ǫy, t) + β−1∂ip (ǫ1, ǫy, t)
)

+ ∂y

(

−
(

by (ǫ1, ǫy, t) p (ǫ1, . . . , ǫN , ǫy, t) dǫ2, . . . , dǫN + β−1h∂yp (ǫ1, ǫy, t)

)

+ 2β−1h1∂1yp (ǫ1, ǫy, t) .
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where h1 and h are given by Eqs.(6.2.5) and (6.2.13). To simplify the integral term, we
write:

p (ǫ1, . . . , ǫN , t) = p (ǫ2, . . . , ǫN |ǫ1, ǫy, t) p (ǫ1, ǫy, t) (6.7.1)

which is a direct generalization of Eq.(6.2.2), and substitute into the integral. We obtain:

∂tp (ǫ1, ǫy, t) = ∂1

(

−b1 (ǫ1, ǫy) p (ǫ1, ǫy, t) + β−1∂1p (ǫ1, ǫy, t)
)

+ ∂y

(

−by (ǫ1, ǫy, t) p (ǫ1, ǫy, t) + β−1h∂yp (ǫ1, ǫy, t)
)

+ 2β−1h1∂1yp (ǫ1, ǫy, t) .

where

by (ǫ1, ǫy, t) =

(
by (ǫ1, . . . , ǫy) p (ǫ2, . . . , ǫN |ǫ1, ǫy, t) dǫ2, . . . , dǫN . (6.7.2)

Needless to say that as in Sec.6.2, a closure relation is needed to determine p (ǫ2, . . . , ǫN |ǫ1, ǫy, t).
We are presently trying different plausible options.

Conclusions

The dynamics of our systems can be viewed as a combination two phenomena: the
individual behavior of a cross-bridge at fixed ǫy and collective interaction of many parallel
cross-bridges exposed to the mean field.

In an attempt to compute an effective drift affecting the mesoscopic degree of freedom
ǫy, we simplified the dynamics of the single cross-bridge by assuming thermal equilibrium
at the microscale. This lump model produces an effective drift at the mesoscale and allows
one to compute the effective diffusion coefficient as a function of the coupling parameter.
Although the resulting reduced model gives satisfactory results, the kinetics of the full
Langevin’s system cannot be reproduced with sufficient accuracy because we oversimplify
the dynamics of individual cross-bridges.

Therefore we designed another model based on a non-linear equation describing the
evolution of the probability density for a single cross-bridge ǫi with an effective drift that
incorporates the non-local interactions with the mean field. This effective model effectively
reduces ∼100 Langevin’s equation into a PDE and remarkably accurately reproduces the
mechanical response of our system.





Chapter 7

Realistic model of a half-sarcomere

In this Chapter we match quantitatively the experimental results with the predictions
of our model. To do so we need to identify the essential experimental data on muscle

fibers and propose a mechanical interpretation of phase 1 and 2 of the quick recovery.
After the parameters are matched to available experimental data, we present two possible
interpretations of the T2 curve and discuss the power-stroke controversy. An interesting
conclusion of our parameter fit is that the single half-sarcomere behaves as ‘cold system’.
In the last section, we present the results of stochastic simulations of the kinetics of the
quick recovery end expose the quantitative difference of the response in hard and soft
devices.
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Non dimensional parameters Dimensional parameters

λ1 0.29 β 85
λ0 0.6 N 86

λf 0.53 T0 14.7

ls -0.131 lh -0.093
ǫ0 0.42

k1 1.33 pN.nm−1 κf 150 pN.nm−1

k0 0.6 pN.nm−1 kbθ 3.82 zJ
κ 3.29 pN.nm−1 T0 480 pN
a 10 nm lh -0.93 nm
ǫ0 4.2 nm ls -1.31 nm
η 0.38 ms.pN.nm−1

Tab. 7.1 – Parameters of the model. The experimental data used to find this set of parameters can
be found in (Holmes and Geeves, 2000; Linari et al., 1998, 2009; Piazzesi et al., 2007). They correspond
to frog muscle (rana temporaria).

7.1 Identification of parameters

In this section, as we try to adjust the parameters of the model to the experimental
data, we will start writing the non-dimensional quantities again with over-lines to avoid
confusion with dimensioned quantities. The parameters of the non-dimensional model are
listed in table 7.1.

The difficulty of the parameter identification lies in the fact that the experimental
results vary depending on the animal species. Thu, most of quick recovery experiments
are done on frog or rabbits, for instance, the experimental results presented in Chap.2 (see
Fig.2.5) are obtained with frog rana esculenta. However, the most documented frog type
in literature is rana temporaria. We therefore chose to adjust our parameters to this type
of muscle and mostly rely on the experimental results from (Holmes and Geeves, 2000;
Linari et al., 1998, 2009; Piazzesi et al., 2007).

7.1.1 Parameter found directly in the literature

The first parameter a will be obtained from structural analysis of myosin II protein. We
have shown in Chap.2 (see Figs.2.1 and 2.2) that the tertiary structure can be found in two
conformations forming an angle of ∼70°Ṫhis corresponds to an axial displacement of the
lever arm end of ∼10nm (Dominguez et al., 1998; Holmes and Geeves, 2000; Piazzesi et al.,
1992; Rayment et al., 1993) (see Fig.2.2). We therefore choose to set the characteristic
length in our model to a = 10 nm.

The absolute temperature θ is set to 277.15 °K which correspond to 4 ℃. This is the
temperature at which most experiments on frog muscles have been done (Piazzesi et al.,
1992).

7.1.2 Linear regimes of the T2 (δ) curve

We have shown in the previous Chapters that for large shortening (resp. stretching),
the equilibrium tension T 2 coincides with the tension generated by configuration (1, 0, 0)
(for large shortening) and (0, 0, 1) (for large stretching). We denote the tension in these

regimes as T
−
2 and T

+
2 . Using equation (3.1.12) with n1 = 1 we obtain:

T
−
2 (ǫ) =

λ1λf

λ1 + λf

(

ǫ+ 1
)

(7.1.1)

T
+
2 (δ) =

λ0λf

λ0 + λf
ǫ (7.1.2)
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A B

C

Fig. 7.1 – Quick recovery in stretching experiments adapted from Piazzesi et al. (1997). (A)
and (B) show the evolution of length (upper trace) and tension (lower trace) with time. On (B), the
time scale is expanded to resolve the quickest part of the transient. Note that unlike in shortening (see
Fig.2.3), the end of the quick recovery is not marked by a clear plateau on the tension time curve. (C)
shows an extrapolation of the T2 curve in stretching, obtained after a multi-exponential analysis of the
tension transients for different step sizes. △: T1 curve. ⊚: T2 measured by a linear extrapolation of the
tension-time curve and � indicates the points corresponding to the “reverse power-stroke” obtained after
the multi-exponential analysis. We used the slope of this extrapolated T2 to fit the parameters of the
model.

Experimentally, the tension T
−
2 drops to 0 when a step δ2 is applied to the initial elongation

ǫ0. Therefore we can write:

ǫ0 = −1 − δ2. (7.1.3)

Denote the slope of the T
−
2 curve as s

T
−
2

. Experimentally, the T2 curves are normalized

to the tension in the isometric contraction T0 (see Fig.2.5). Hence:

sT −
2

= sT −
2

T0

κ
= N

λ1λf

λ1 + λf
. (7.1.4)

In stretching, the identification of T2 points is more difficult than in shortening as no
characteristic T−

2 related plateau can be clearly observed on the tension-time curves a few
ms after the step (Ford et al., 1977; Martyn et al., 2002; Piazzesi et al., 1992; Ranatunga et al.,
2002). Nevertheless, G. Piazzesi et al. in (Piazzesi et al., 1997) have extracted from a
multi-exponential analysis of the recovery process, the curve which they attributed to the
end of the reversal of the power-stroke process (see Fig.7.1). We identify the slope of this
theoretical curve (sT +

2
T0/κ) with the stiffness of the configuration (0, 0, 1). Therefore, we

can write:

sT +
2

= N
λ0λf

λ0 + λf
. (7.1.5)
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7.1.3 Stiffness measurements

In our model, the overall elasticity is provided by both filaments (κf ) and the cross-
bridges. The latter include the linear spring κ and the elasticity brought by the double
well potential (κ1, κ0). So far, we have not mentioned the viscosities of these compo-
nents. The question of viscoelasticity is crucial for the interpretation of the experimental
results: if the viscosity of one element is very high compared to others, this element will
not deform during the fast loading (visco-elasticity). The first question is then: which of
our mechanical elements will participate in the elastic response to sudden length changes ?

It is clear from Fig.2.5 that the stiffness associated with the T1 curve and the stiffness
of the linear part of the T2 curve are different. So far this feature is not reproduced by any
of the existing models before (Marcucci and Truskinovsky, 2010). Also, from the length
clamp experiment in stretching, we see that the stiffness of T+

2 response is different from
the stiffness of T−

2 response (Piazzesi et al., 1997). This suggests an asymmetry in the
double well potential (κ1 , κ0), which was first explored in (Marcucci and Truskinovsky,
2010).

Let us suppose, for the time being, that every component of our half-sarcomere par-
ticipates in the elastic response. In this case, one expects the instant stiffness measured
in isometric contraction (corresponding to the slope of T1 curve) to be different from the
instant stiffness measured during or after the quick recovery as the relative populations
in wells 1 and 0 have changed. Notice however that in double step experiments done in
(Lombardi et al., 1992), the stiffness measured after a second step is applied following the
the quick recovery indicates less than 2% difference with the original isometric stiffness
obtained in the first step. This experimental results suggests that the motion of the heads
in the double well potential (ǫi) is not involved in the building of the instant stiffness.
Hence, the viscous force of kinetic origin associated with the conformational change (de-
gree of freedom ǫi) is high compared to other viscous forces. Therefore we need to take
into account only the contributions due to the linear spring (κ) inside the cross-bridges
and due to the series spring (κf ).

Experimentally, it is possible to control the chemical environment inside the fiber
by removing the cell membrane (‘skinning’). In particular, this procedure allows one to
perform length step experiments at various calcium concentrations pCa 1. We recall that
calcium ions bind to tropomyosin complex to allow the attachment of myosin heads to
actin (see Fig.1.9). Therefore, by changing the calcium environment, one can change
the number of attached motors (N). Our Fig.7.2(A) shows that the active force decreases
when calcium concentration is reduced (pCa increases), which is coherent with a reduction
of the number of cross-bridges. Now, if we apply fast length steps of various amplitudes
under different calcium concentrations, we can see that the instant elasticity changes with
calcium concentration and so with the number of cross-bridges (see Fig.7.2(B)).

Based on these arguments, we assume that the purely elastic response in our model, is
given by Eq.(4.2.21) where the mean position of the cross-bridges, 〈ǫi〉h is maintained at
its initial value:

T
(

δ
)

= N
λf

1 + λf

(

ǫ0 + δ − 〈ǫi〉0
h

)

(7.1.6)

where 〈ǫi〉0
h, is the mean position of a cross-bridge in the double well potential during

isometric contraction (before the step). The relation (7.1.6) holds also in soft device

1. pCa= − log
([

Ca2+
])



142 Chapter 7 – Realistic model of a half-sarcomere

A B C

Fig. 7.2 – Influence of calcium concentration of the elasticity of the fiber. (A): from
Brandt et al. (1980). Force-pCa relation: The isometric tension is measured for different calcium con-
centration. Changing the calcium modifies the number of attached motors. Experiments done on skinned
rabbit psoas fibers and the different symbol represent different fibers. The tension is normalized to the
tension at saturating pCa. (B and C): from (Linari et al., 2009) where the number of attached motors is
modified using BTS (N-benzyl-p-toluene sulfonamide) rather than calcium but the effect is the same. (B):
Measurement of T1 at different BTS concentration, open circles represent the control case. Experiments
made on frog (rana temporaria). The slopes are different showing that the elastic spring of the cross-bridges
participates in the instant elastic response. The intercept of different T1 curves with the abscissa, noted
−Y0, is reported on (C) against the isometric tension (open circles). The filled circles are obtained by
subtracting the filament elongation according to Eq.(7.1.8). This shows that the strain in the elastic spring
of the cross-bridges (noted s0) does not depend on the number of attached motors

where the tension σ is imposed and we where measure the evolution of δ so the T1 and L1

curves are the same with this hypothesis.
Now, Fig.7.2B, shows the T1 curves obtained at different calcium concentrations. We

call −Y0, the intersection of the linear extrapolation of T1 experimental curve with abscissa.
Based on Fig.7.2B, one can anticipate a relation T0 = K(T0)Y0, between Y0 and T0. Here
K has the dimension of a stiffness and depends on T0. Our Fig.7.2C (�) shows that this
relation is in fact linear but surprisingly the value of Y0 at T0 = 0 is not equal to zero.
Hence the relation is of the type: Y0 = α + γT0 where α and γ are constants. We can
rewrite Eq.(7.1.6) with dimensioned quantities in the following way:

Y0 =
T0

κxN
+
T0

κf
. (7.1.7)

Next, we notice that in equilibrium, the tension T0 is equal to the sum of the cross-bridges
spring forces. Hence, T0 is proportional to N : T0 = NF0 and Eq.(7.1.7) becomes:

Y0 =
F0

κx
+
T0

κf
. (7.1.8)

From (7.1.8) we can identify the slope of the Y0 − T0 relation with the compliance of the
myofilaments (1/κf ). The value from Fig.7.2C, is κf = 166 pN.nm−1 which is in agreement
with the independent estimates obtained using X-ray diffraction technique (Dobbie et al.,
1998; Huxley et al., 1994; Piazzesi et al., 2002b; Reconditi et al., 2004; Wakabayashi et al.,
1994). For our simulations, we choose a slightly smaller value κf = 150 pN.nm−1, proposed
in (Piazzesi et al., 2007).

Another interesting piece of information recoverable from the Y0 − T0 relation is that
the force of isometrically contracting myosin heads is a constant F0. Similarly, the inter-
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ception of the Y0 − T0 curve with the Y-axis (F0/κ) is the strain in the linear spring of
the cross-bridges (denoted by s0 and represented with solid circles on Fig.7.2). Therefore,
we can conclude that, in the steady state, the force produced by each head is an intrinsic
characteristic which does not depends on the number of attached motors.

Going back to non-dimensional quantities, we can use Eq.(7.1.6) to identify the slope
of the T1 curve in control condition (saturated pCa) with the parameters of our model as
follows:

sT1 = sT1T0 = N
λf

1 + λf
which leads to the final estimate:

λf =
sT1

N − sT1

(7.1.9)

Stiffness in rigor mortis

It is known that when ATP is depleted from the medium all 300 myosin heads are
bound to actin (rigor mortis). Stiffness measurements in rigor have also been performed
in (Linari et al., 2007, 1998) giving the value which we denote by sR

T1
. Then Eq.(7.1.9)

can be rewritten as:

λf =
sR

T1

N

(

1 − sR
T1

NR

) with NR = 300. (7.1.10)

Now, if we write the definition of the non-dimensional isometric tension:

T0 =
T0

κxa
, (7.1.11)

We can solve the system of Eq. (7.1.4) to Eq.(7.1.11), knowing the filament stiffness κf

and find the values all the non-dimensional parameters except l (see Tab.7.1).

7.1.4 Hard device experiments in rigor mortis

We have seen in Sec.7.1.3 that one can assume that the only viscous component in our
system model is the bi-stable snap-spring. We denote by η the drag coefficient associated
with the variables ǫi. Once again, the parameter η can be viewed as an internal friction
in the rotating part of the converter domain. Its value can be estimated from the length
step experiments performed in rigor, where it is known that the cross bridges are all
in their post-power-stroke configuration (Holmes and Geeves, 2000; Rayment et al., 1993;
Reconditi et al., 2003).

Indeed, let us assume that all the ∼ 300 cross-bridges are attached and that the cross
bridge mechanisms are initially all in the post-power-stroke state. If we apply a fast length
step to this system, we expect a single exponential relaxation with a characteristic time
of η/κ.

Fig.7.3 shows the experimental results indicating the visco-elastic response to different
step sizes (the data were provided by M.Linari from University of Florence). One can show
that the value η ≈ 0.38 ms.pN/nm fits very well the experimental relaxation curves (see
Fig.7.3). This value of the drag coefficient corresponds to a characteristic time of ∼ 0.1 ms.
Note that this value will not affect the conclusions of our numerical experiments since it will
be hidden in the scale of the time axis. A better estimate of the drag coefficient is certainly
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Fig. 7.3 – Rigor transient (continuous lines provided by M.Linari from the University of Florence)
fitted with single exponential corresponding to the visco-elastic response of our system with all 300 cross-
bridges attached in their post-power-stroke configuration (dashed lines). The value of the drag coefficient
found is η = 0.38
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Fig. 7.4 – Fit of l in hard and soft device. (A): The total elongation is fixed to the isometric

elongation ǫ0 and the isotherm tension is computed at different values of l. From experiment, the isometric
tension is T 0 = 14.7. We used a simple dichotomy algorithm to find l = 0.0932. (B): The total tension is
set to T 0 = 14.7 and the total elongation ǫ in isotherm is represented for different values of l. The value
of l corresponding to ǫ = 0.42 is -0.131.

possible, but we will see that even this coarse fitting gives already good predictions for the
rate of the quick recovery (see Sec.7.4).

7.1.5 Isometric contraction: determination of l

In isometric contraction, our model must be able to reproduce the steady state tension
T0 = 14.7. As we do not take into account the attachment-detachment process, we cannot
model the isometric contraction in full detail by taking into account that the system is
maintained out of equilibrium by the constant ATP supply. Nevertheless, we know that
in steady state isometric contraction the tension is constant, which suggest that even if
the individual cross-bridges are constantly attached and detached, the number of attached
ones remains constant. Also X-ray diffraction measurements suggests that the average
orientation of the heads does not change during isometric contraction (Dobbie et al., 1998;
Irving et al., 2000). Therefore, we can reasonably assume that the tension T0 corresponds
to the isotherm T2 at ǫ = ǫ0. This hypothesis may be reconsidered in a broader model
that also takes into account the attachment-detachment process.

In Fig.7.4(A) we show the dependence of T0 on the value of l. We use a simple
dichotomy algorithm to specify the value of l which ensure that T 0 = 14.7. The result is
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Fig. 7.5 – Isotherms fitted to experimental data. Representation of the isotherm quantities T2

(continuous line) and L2 (dashed line) computed using Eq.(4.2.15) and (4.2.17) and the elastic response
T1, L1 (dot-dashed line) computed using Eq.(7.1.6), compared to experimental data. Experimental points
are taken from Ford et al. (1977)(T1: ×, T2: ▽), Brunello et al. (2007)(T1: 3, T2: △) and Linari et al.
(2009)(T1: ⊚, T2: �). The tension isotherm (continuous line) presents a sharp transition between 2 linear
regimes corresponding the the global minimum. This is due to the high value of β (β = 85). The half-
sarcomere behaves like a ‘cold system’. For the same reason the response in soft device shows a plateau at
T = T0.

lh = −0.093.
We apply the same procedure in soft device to find the value of l which is equivalent

to ǫ0 = 0.42. In this case we find ls = −0.131 (see Fig.7.4B). This discrepancy means
that, at the level of a single half sarcomere, the isometric contraction does not represent
the same tension-elongation state in hard and soft devices. At this stage of the work, we
cannot conclude definitively on the value of l. However, this question will be resolved in
Sec.8.4.1, where we study a more general system representing a chain of half-sarcomeres.

We observe that in both hard and soft devices, the fit data is very sensitive to the
value of l because a small change in l may lead to a very large change in T 0 (resp. ǫ0)
(see Fig.7.4). This sensitivity has its origin in the large value of β (β = 85) obtained after
fitting other parameters. Indeed such a low temperature makes the transition between the
linear regimes of T2 (resp. L2) very sharp indicating that the half-sarcomere is a ‘cold’
system with very coherent behavior (see next section).

7.2 Equilibrium response

7.2.1 Isotherms

The linear regimes of the T2 curve correspond to the tension in almost homogeneous
configurations (1, 0, 0) and (0, 0, 1). In between these linear regimes, the system evolves
through in homogeneous or non-affine configurations. The nature of the configurations
may be different depending on our interpretation of the T2 curve.

In experiments, the tension T2 is associated with a plateau on the tension-time curve
occurring a few millisecond after the step. This short-time steady state, is compatible
with the idea that T2 corresponds to an equilibrium isotherm.

On Fig.7.5, we compare the isotherms computed in hard and soft device (contin-
uous line and dashed line) with experiments from Ford et al. (1977)(T1: ×, T2: ▽),
Brunello et al. (2007)(T1: 3, T2: △) and Linari et al. (2009)(T1: ⊚, T2: �). The experi-
mental points are different from those presented in the introduction (see Fig.2.5) because
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minima given by Eq.(3.1.32) and (3.1.33) corresponding to the limit β → ∞ in our system. The arrows
indicate example of loading path in both stretching and shortening.

they do not correspond to the same frog species (rana esculenta in introduction and rana

temporaria here). We have therefore adjusted our model to rana temporaria, which is
better documented than other types of frog muscles. However, we were not able to find
experimental L2 points. The gray region represents the existence domain for the metasta-
bles states at θ = 0 (see Sec.3.1.2) and the dot dashed line is obtained using Eq.(7.1.6)
which represents the elastic response of the filament and the linear spring of the myosin
head in both hard and soft devices.

As it is expected from the fitting procedure, both hard and soft device isotherms fit the
linear segments of the T2 curve. Since our value of β is large compared to 1, the isotherm
is very close to the behavior of the system following the global minimum of the energy
at θ = 0 (see Sec.3.1.4). On the one hand, we observe, in hard device, a sharp transition
between the two linear regimes on the T2 curve. This is incompatible with experimental
data showing a plateau (see solid line on Fig.7.5 compared to △, ▽ and �). On the other
hand, our L2 curve does contain a plateau (dashed line). We recall that the soft device
value of l is different from the hard device value. If one had taken l = −0.093 (the hard
device value) for both case, the plateau of the L2 curve would have been at T/T0 ≈ 1.25
rather than 1.

In general, after all parameters have been adjusted to experimental data, the behavior
of our half-sarcomere is very close to the purely mechanical system at zero temperature,
with a sharp transition between the two homogeneous configurations (1, 0, 0) and (0, 0, 1)
(see Fig.7.5 and 7.6). However, this does not mean that the role of temperature can
be neglected. Indeed, when β → ∞ we still observe in thermally equilibrated system a
transition between the wells separated by a barrier (which may take a long time), while
the purely mechanical system at θ = 0 cannot escape a metastable state as long as it exists
(see the gray region on Fig.7.5). We already encountered the same difference (θ → 0vs.

θ = 0) in the model problem of escaping from a well (see Chap.5): when temperature is
finite the probability of exiting an attractor is equal to 1 while if θ = 0 the trajectory
always end up at the attractor if the initial position is in the domain of attraction (see
e.g. Schuss, 2010, Chap.6).
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7.2.2 Variation of parameters

The parameters listed in Tab.7.1 enabled us to reproduce the linear parts of the T2

and L2 curves and to capture the isometric tension in thermal equilibrium. However,
the values found in literature and the data from experiments, carry some uncertainty. In
particular, we are interested in the key values of a and κ, which are a subject heated
debate in the community (see Sec.2.3.2). The combination of those two parameters gives
the value of β, that (as we shown in Chap.4) controls the main conclusion that the power-
stroke mechanism operates at negative stiffness. The values in Tab.7.1 correspond to
measurements presented in (Piazzesi et al., 2007). However, stiffness values and power-
stroke amplitudes can also be taken from other sources.

Notice that in our model, the isometric tension T0 is necessarily located between the
tension generated by a full post-power-stroke half-sarcomere and the tension generated by
a full pre-power-stroke half-sarcomere:

N
λ0λf

λ0 + λf
ǫ0 ≤ T0 ≤ N

λ1λf

λ1 + λf

(

ǫ0 + 1
)

(7.2.1)

Using Eq.(7.1.5) and (7.1.3), we obtain the lower bound for a:

a ≥ −
(

δ2 +
1

sT +
2

)

(7.2.2)

Now from (Piazzesi et al., 1997), the slope of the T2 curve in stretching is 1.5 times higher
than in shortening, leading to a > 8.14 nm. If we take the same slope in both stretching
and shortening we obtain a > 5.5 nm which is closer to the values obtained from the
single molecule experiments (see Sec.2.3.2). We can also obtain a lower boundary for κ by
requiring that λ0 and λ1 are strictly between 0 and 1. This leads to the estimate:

κ >
sR

T1

NR



1 −





sR
T1

κf



1 − κf

max
[

sT +
2
, sT −

2

]

T0







+
−δ1s

R
T1

T0





−1

. (7.2.3)

In addition, with a given set (κ, a), and with all other parameters listed in Tab.7.1, there
must be a value of l for which T2

(

ǫ0
)

= T0. This condition has been tested numerically.
On Fig.7.7A and B, we show, in gray regions, the domains of admissible values for a

and κ with all other parameters listed in Tab.7.1 and with sT +
2
/sT −

2
= 1 (see A) or 1.5

(see B). The isolines indicate the values of β. For each cases, we represent on (C) and (D)
the T2 curves corresponding to the selected points indicated on the parametric diagrams
(A) and (B).

When sT +
2
/sT −

2
= 1 (see A and C), for low values of β (point I), the T2 curve exhibits

a plateau which is not localized a T0 as expected from experiments. For higher β (see
points J and K) a region with negative slope is always present at T0. Meanwhile, for
sT +

2
/sT −

2
= 1.5, the negative slope persists over the whole domain of admissible κ and a

and for the set of parameters obtained from (Piazzesi et al., 2007) (point R). Moreover,
the T2 curve in almost all admissible region shows a sharp transition between the two
linear and remains very close to the global minimum.

Next we mention that the value of the cross-bridge stiffness κ obtained by G.Piazzesi
et al. in (Piazzesi et al., 2007) is ∼ 3.3 pN.nm−1; it is higher than the highest value
measured using single molecule techniques, (A. Lewalle report a value of 1.7 pN.nm−1

form rabbit muscle (Lewalle, 2008); see also our discussion in Sec.2.3.2). More recently G.
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Fig. 7.7 – Influence of a and κ on the T2 curve. On (A) and (B), we show the domain of admissible
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2

/s
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the values of β. The T2 curves (C) and (D) correspond to the point indicated on (A) and (B). I: κ = 0.7,
a = 5.5; J: κ = 0.5, a = 10; K: κ = 2, a = 9. Q: κ = 1.2, a = 8.5; R: κ = 3.27, a = 10; K: κ = 5.3,
a = 8.2. R corresponds to the experimental data from (Piazzesi et al., 2007). Other parameters are listed
in Tab.7.1.

Offer and K.W. Ranatunga mention that, the experimental uncertainties in the stiffness
measurements may lead to an overestimate of κ and suggest to use the intermediate value
2pN.nm−1 (Offer and Ranatunga, 2010). This value, would also lead to negative stiffness
with our model.

To summarize, we have shown here that the presence of negative stiffness on the equi-
librium T2 curve is certain over a wide range of realistic sets of parameters in the present
model. Given this instability, however, the force recovery for both small shortening and
small stretching is the strongest. For instance, upon stretching, the equilibrium force
quickly drops which can greatly help to avoid damaging the fiber by a sudden elongation.
Such strongly non-linear response appears to be essential for muscle activity. Mechani-
cal mechanisms may be designed to operate exactly in the domain of negative stiffness.
We shall discuss this issue more thoroughly in the conclusions section of this work (see
Chap.8.4.4)

7.2.3 Adiabats

We have seen in the previous section that, if the L2 and T2 curves are interpreted as
isotherms, the state of the system after the quick recovery corresponds to the state of the
cold system at and, in particular, we do not obtain the plateau on the T2 curve. We would
like now to explore the possibility of T2 and L2 being adiabats instead of isotherms, since
it is known that adiabats in bi-stable chains provides ‘smoother’ response than isotherms
(see e.g. Efendiev and Truskinovsky, 2010).

Along adiabats, the entropy S is constant so we have to compute for a given loading the
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Fig. 7.9 – Evolution of temperature along adiabats. (A): hard device. (B): soft device. The results
are computed using equation Eq.(4.1.11) and (4.1.12).

value of the non-dimensional temperature β that keeps the entropy S equal to the initial
value. Yet we know that the initial state of the system is located in the transition region
where the microstructure is not homogeneous (〈n1〉 , 1, 0). In this region, the entropy
is high (see Fig.4.9) while after the step, the system evolves towards more homogeneous
configurations with lower entropy. Hence in adiabatic response, the temperature of the
system will increase leading to the desired smoothing of the T2 curve.

The temperature change in adiabatic loading is computed by numerically solving the
following equations on β:

Sh (ǫ, β) = Sh

(

ǫ0, β
)

in hard device, (7.2.4)

Ss (ǫ, β) = Ss

(

σ0, β
)

in soft device, (7.2.5)

Here the expression of Sh and Ss should be taken from Eq.(4.1.11) and (4.1.12), respec-
tively.

In Fig.7.9, we show the evolution of temperature along the adiabats in hard (A) and
soft (B) devices. In hard device, the entropy achieves its maximum value at the state of
isometric contraction so the temperature increases in both stretching in shortening. The
lower stiffness of well 1 induce a smaller increase in temperature on the shortening side,
whereas in stretching, the temperature increment reaches 200℃ as stiffness of well 0 is
higher. In soft device, the behavior is closer to the zero temperature limit with a sharp
transition between two intervals of constant entropy (again controlled by the stiffness of
the double well). Hence, in this case, the temperature is essentially constant in both
stretching and shortening.

Finally we see on Fig.7.10 that the mechanical response of the system along the adiabats
(dashed lines) is very close to the isothermal response (continuous line) although the
transitions in both hard and soft device are slightly less steep (as expected). We can
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The results are computed using equation Eq.(4.1.11) and (4.1.12).

therefore conclude that the sharp transition around the state of isometric contraction
obtained in isotherm cannot be avoided assuming that the response is adiabatic.

7.3 Variable size of the power-stroke

7.3.1 Definition of the power-stroke

The question of the power-stroke size is a source of continuous controversy. As we
discussed in the introduction (see Sec.2.3.2), single molecule measurements show a power-
stroke size of ∼ 5 nm (Kitamura et al., 1999; Knight et al., 2001; Mehta et al., 1997;
Molloy et al., 1995; Veigel et al., 1998), while structural reconstruction are more con-
sistent with a distance of ∼ 10 nm between the pre-power-stroke and the post-power-
stroke conformations (Dobbie et al., 1998; Dominguez et al., 1998; Holmes and Geeves,
2000; Irving et al., 2000; Rayment et al., 1993). Recent chemomechanical models devide
the full power-stroke into multiple sub-steps of reduced amplitude (2 sub-steps of 5 nm
each or more) (Linari and Lombardi, 2010; Smith et al., 2008). It is important to notice
that single molecule experiments are performed on isometrically contracting molecules, i.e.

in presence of ATP, while structural analysis are made on crystallized proteins, ‘frozen’
in a given conformation. Our model can conciliate both approach as the power-stroke is
not viewed anymore as a fixed distance between rigid conformations but as a continuous
deformation.

In order to proceed, we first we need to give a clear definition of what we call ‘power-
stroke’, and relate this definition to experimental measurements. We see two possibilities.

1. We can define the power-stroke as the relative mean position in the double well
potential (〈ǫi〉) measured against the mean position in isometric contraction. Such
power-stroke can be interpreted as the motion of the tip of the lever arm (the end
of the blue chains on Fig.2.2) if we assume that the lever arm is rigid.

2. If the lever arm is elastic, which seems more realistic (see results published in
(Dobbie et al., 1998; Irving et al., 2000; Kaya and Higuchi, 2010), which suggests
that the instant elasticity of the myosin head resides in the S1 part of the molecule,
i.e. in the lever arm, rather than in the S2 subfragment), then it is more likely that
the experimentally measured power-stroke corresponds to the movement of the tip of
the lever arm i.e. to ǫy in our model. This is particularly visible in X-ray experiments
where the signal attributed to the tilt of the lever arm changes during the step. This
proves that the lever arm participates in the elastic response (Irving et al., 2000).
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Fig. 7.11 – Amplitude of the power-stroke.(A and C): hard device. (B and D): soft device. On
(A) and (B), the mean displacement in the double well with respect to the initial position (∆ 〈ǫi〉h =
〈ǫi〉h (ǫ) − 〈ǫi〉h

(

ǫ0
)

in hard device, ∆ 〈ǫi〉s = 〈ǫi〉s (σ) − 〈ǫi〉s (T0) in soft device) is represented against the
loading, in isotherm (continuous line) and in the limit θ → 0 (dashed line). The isotherms are computed
using direct numerical integration.

7.3.2 Single molecule and whole fiber experiments

To illustrate this difference in Fig.7.11A and B we show the mean displacement in the
double well while C and D show the evolution of 〈ǫy〉. In A and B the continuous lines
represent the isotherms and the dashed line the mean position in the limit θ → 0. In C
and D, the continuous line represents the isotherm and the dashed line shows the elastic
response computed using Eq.(4.2.19) and (4.2.20) where the mean position in the double
well remains equal to its initial value. In all cases, the responses show the typical sharp
transition between two linear regimes. No matter what interpretation is adopted for the
power-stroke, we see that its amplitude is reduced at low force (resp. length) steps.

On Fig.7.12, we represented the tension as a function of the mean displacements ∆ 〈ǫy〉
(A) and ∆ 〈ǫi〉 (B) , in hard and soft devices (continuous and dashed lines respectively).
The squares represent results from X-ray experiments (Reconditi et al. (2004), similar re-
sults are also presented in Piazzesi et al. (2007)). We can see the results of removing
successively the filament elastic distortion (A) and the elastic distortion of the head (B).
Note that we did not use the instabilities of different components used in (Reconditi et al.,
2004). This can explain some differences with our curves. We see however that our model
reproduces quite accurately the movement observed in X-rays experiments. The differences
may come from the estimates of filament elasticity or simply from experimental dispersion.

Last but not least, we observe in Fig.7.12, that the size of the stroke near the isometric
condition is close to 5 nm in both (A) and (B), so it is the same no matter whether we
define the power-stroke as the displacement in the double well or as the movement of
the tip of the lever arm. Interestingly, this distance matches precisely the value obtained
from single molecule experiments (Kitamura et al., 1999; Knight et al., 2001; Mehta et al.,
1997; Molloy et al., 1995; Veigel et al., 1998). Therefore our results show that the two
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well potential in hard (continuous line) and soft device (dashed line). � represent the displacement mea-
sured using X-ray diffraction techniques. The difference between theoretical and experimental curves may
be due to the variability in the siffnesses estimates and also the experimental dispersion. Nevertheless
we see that our model predicts the correct order of magnitudes. In addition, the power-stroke size is
about 5 nm near isometric condition, in both (A) and (B). This is fully coherent with results from single
molecule experiments from (Kitamura et al., 1999; Knight et al., 2001; Mehta et al., 1997; Molloy et al.,
1995; Veigel et al., 1998). Hence our model can conciliate both approach for measuring the size of the
power-stroke.

approaches (single molecule experiments vs fiber experiments) can be reconciled in our
framework and be viewed as providing independent and consistent measurements of the
power-stroke size.

7.4 Kinetics of the quick force recovery

7.4.1 Equilibration times

Following the analysis made in Sec.C.1.2, we can represent on Fig.7.13, the equilibra-
tion time in the reduced energy landscapes Fy and Gy by using the fitted parameters
(from Tab.7.1). As we previously observed, the equilibration time is much longer in the
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Fig. 7.13 – Equilibration time in the macroscopic wells computed according to Kramers approx-
imation (see Sec.5.3.4). (A): Hard device. (B): soft device. The equilibration time can be computed as
long as the double well structure of Fy (resp. Gy) is present (between the vertical dashed lines). The
equilibration time is much larger in soft device (B) than in hard device (A) and so does the domain of
slow kinetics
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soft device (B) than in the hard device (A) which has been a major unresolved puzzle.
In both cases, the time to equilibrate achieves its maximum in the condition δǫ = 0 and
σ = T0 and remains high as long as the double well structure of the reduced free energy
landscapes is preserved (between the vertical dotted lines on Fig.7.13). The domain of
slow kinetics in hard does not exceed 0.5 nm/hs in both shortening and stretching; our
model suggests that it is much larger in the soft device (between 0.5T0 and 1.4T0). Hence
we expect that the dynamic response in the soft device will be slow on a much larger
loading interval than in the hard device.

7.4.2 Solving stochastic differential equations

For the direct numerical simulation of quick force recovery, we assume that ǫy is al-
ways in mechanical equilibrium. By making this assumption, we follow the experimental
evidence that the viscosity associated with myofilaments is negligible compared to the
viscosity associated with the power-stroke element. Then after the adiabatic elimination
of the fast variable ǫy in (see Sec.6.1.2), we obtain the following dynamics for the system
see Eqs.(6.1.21) and (6.1.22):



















dǫti = b
(

ǫti, ǫy
)

dt+
√

2β−1dBt
i for 1 ≤ i ≤ N

ǫy =
1

1 + λf

(

λf ǫ+
1

N

N
∑

i=1

ǫti

)

(7.4.1a)

(7.4.1b)

in the hard device and







































dǫti = b (ǫi, ǫy) dt+
√

2β−1dBt
i for 1 ≤ i ≤ N

ǫy =
σ

N
+

1

N

N
∑

i=1

ǫti

ǫz =
σ

Nλf
+
σ

N
+

1

N

N
∑

i=1

ǫti

(7.4.2a)

(7.4.2b)

(7.4.2c)

in the soft device.

In practice, we uses a simple explicit Euler algorithm to solve these systems. The time
step has to be small compared to 1. We chose ∆t = 10−3. The number of independent
realizations is Nr = 500 (see Sec.5.2).

7.4.3 Numerical experiments

Initial conditions

In hard device, we suppose that our system is initially placed in thermal equilibrium
such that the initial isothermal tension is equal to T0 (in hard device) and the initial
itothermal elongation is equal to ǫ0. Since the equilibration time is very slow around the
initial conditions, we initiate a fraction ny of the Nr realizations in the left macroscopic
well (As we did in Sec. 5.4.2). With our set of parameters, we have nh

y ≈ 0.33 and
ns

y ≈ 0.27. If we compute the fraction 〈n1〉 of cross-bridges in post-power-stroke state at

ǫ = ǫ0 and σ = T0, we obtain: 〈n1〉h ≈ 0.37 in the hard device and 〈n1〉s ≈ 0.27 in the soft
device.
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that the slow kinetic domain (see Fig.7.13), i.e. T = 1.3T0 and T = 0.7T0, the systems reaches a steady
state that does not correspond to the isotherm (see Fig.7.15). For small load steps, the system is kinetically
trapped in macroscopic wells.

Evolution of tension and elongation with time

Our Fig.7.14 shows the time evolution of the normalized tension T/T0 (A) and the
relative elongation δL2 = L2 (σ) − L2

(

σ0
)

measured in nm/hs (nanometer per half-
sarcomere)(B) following various length and load steps (indicated on the figure). In the
hard device, we see that for δ = −1 and δ = 2 nm/hs, the system evolves to its stationary
state following a dynamic process with 2 time scales, the first one is slower than the sec-
ond one. This is particularly visible on the curve δ = −1nm/hs where the velocity of the
recovery clearly changes about 2.3 ms after the beginning of the step. This observation is
qualitatively similar to what we have seen at θ = 0 in Chap.5 (see Fig.5.1): first the mi-
croscopic configuration of the system is mixed and the cross-bridges evolves in both wells
of the bistable potential. After some time, (denoted by a ⋆ on 5.1), all the cross-bridges
end up in the same post-power-stroke state. In the meantime, the barrier of the double
well potential disappears thereby increasing the velocity. As in Fig.5.1, for larger length
step, such change in velocity is less visible.

In soft device (see Fig.7.14B), at low force steps (T = 1.3T0 and T = .7T0), the system
is brought to a state where the double well structure of Gy is still present (see Fig.7.13).
Consequently, the system equilibrates quickly in the macroscopic wells and reaches a quasi
steady state. This steady state does not correspond to thermal equilibrium because the
system is kinetically trapped. For larger load steps (T = 2.2T0 and T = 0.3T0), like
in hard device, we observe an evolution of the elongation with two characteristic times,
which is again in accordance with our computations at zero temperature (see Fig.5.1).
Such response with 2 time scales does not seem to be observed in physical experiments
(see Fig.2.3). This is a limitation of our model and it is most probably due to the fact
that we simulate only a single half sarcomere while the fibers contains many sarcomeres
in series and in parallel (see Sec.1.1) which gives rise to collective effects (see Chap.8).
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Fig. 7.15 – Equilibrium computed with stochastic simulations. (A): Hard device. (B): soft device.
Continuous line: thermal equilibrium computed using Eq.(4.2.15) (A) and (4.2.17)(B). (�): Tension and
elongation attained 5 ms after the step (numerics). (•): Tension and elongation attained at the end of
the step. Experimental points are taken from Ford et al. (1977)(T1: ×, T2: ▽), Brunello et al. (2007)(T1:
3, T2: △) and Linari et al. (2009)(T1: ⊚, T2: �). The experimental data shown here are all from hard
device experiments, but we remind that the linear part of L2 and T2 are the same (see Fig.2.5). We did
not find L2 curve for the frog type used here (rana temporaria). We observe the consequence of the slow
equilibration time in soft device: on (B), the system cannot reach equilibrium around T/T0 = 1. This
qualitatively explains why the L2 curve cannot be resolved experimentally around T0 (Edman and Curtin,
2001; Edman et al., 1988; Granzier et al., 1990; Sugi and Tsuchiya, 1981). Note that the domain of slow
kinetics is more localized around T0 in these experiments (typically between 0.9T0 and 1.1T0). We see that
one could also observe such very slow kinetics in hard device, but on a very short interval of δ.

Numerical T2 and L2 curves

In Fig.7.15(A and B, �), we report the tension and elongation attained after 5 ms of
recovery (where the system reaches a quasi steady state) on Fig.7.15(A and B, �). Open
symbols refer to experimental data from Ford et al. (1977)(T1: ×, T2: ▽), Brunello et al.
(2007)(T1: 3, T2: △) and Linari et al. (2009)(T1: ⊚, T2: �). Although we did not find
experimental data for the load clamp quick recovery, we expect L1 and L2 curve to su-
perimpose over T1 and T2 curve exepts around T = T0 (see Fig.2.5). The tension and
elongation attained at the end of the step (T1, L1) are represented by (•) and we see
that they match the experimental points reasonably well. The continuous lines are the
isotherms.

Observe that in both hard (A) and soft (B) devices, there is an interval of kinetic
trapping, where the system does not reach thermal equilibrium after 5 ms. In both cases,
this interval corresponds to the persistence of the macroscopic wells as shown in Fig.7.13.
Once again, such ‘kinetic trapping’ interval is much smaller in the hard than in the soft
device.

Rate of recovery

The rate of recovery is usually defined as the inverse of the time required to reach
0.5 (T2 − T1) starting from T1. Simulated rate curves (�, device and •, soft device) are
compared with experimental data on Fig.7.16. The length clamp data are from Ford et al.
(1977) (3), Piazzesi et al. (1992) (×), and Linari et al. (2009) (�). The load clamp data
(⊚) are estimated from the velocity during phase 2 of the quick recovery published in
(Piazzesi et al., 2002a). These points are obtained from rana esculenta. For this type of
frog, the interception of the T2 curve is at about −10 nm while it is at about −15 nm for
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Fig. 7.16 – Rate curves in hard and soft device compared with experimental results. The length
clamp data (open symbol) are from Huxley and Simmons (1971)(▽) Ford et al. (1977) (3), Piazzesi et al.
(1992) (×) and Linari et al. (2009) (�). The load clamp data (⊚) are estimated from the velocity during
phase 2 of the quick recovery Piazzesi et al. (2002a). (△) are from Decostre et al. (2005). These points
(⊚,△) are obtained from rana esculenta for which the intercept of the T2 curve is about −10 nm while it
is about −15 nm for rana temporaria. We arbitrarily displaced the experimental points of rana esculenta

by 5 nm to the left (see the arrow) to compare with the results of our simulations (•). (�) represent the
rate curve obtained in hard device. Our simulations match the available measurements. We observe that
the rate is not exponential as in chemo-mechanical models (Huxley and Simmons, 1971) but saturates at
large loadings. Experimental observations of this saturation of the rate in shortening has been reported in
(Piazzesi and Lombardi, 1995; Ranatunga et al., 2002).

rana temporaria. We arbitrarily displaced the experimental points of rana esculenta(⊚) by
5 nm to the left (see the arrow) to compare with the shape of experimental and theoretical
curves (•).

The results of our simulations can’t be fit with a simple exponential curve, as one may
expect for a single chemical transition. In particular, we observe a plateau for large short-
ening steps. Similar results indicating non exponential rate curves have been obtained in
some models (Smith and Sleep, 2004; Smith and S.M., 2008). In experimental rate curves,
non-exponential behavior has been reported in (Martyn et al., 2002; Ranatunga et al.,
2002)(rabbit psoas fibers). Our results are also coherent with the fact that for large steps,
the two macro-well structure of the landscape disappears and thus the evolution becomes
of non-Kramers type.

Note that we do not show the results for steps near the initial state (between our
‘vertical lines’). In this region the system does not reach the thermal equilibrium within
the time of observation (here 5ms). As we have seen, it is trapped in macro-wells. This
region of extremely slow force recovery is larger in the soft device than in the hard device,
which of course follows from our discussion on the peculiarities of the energy landscape.
This also explains at least qualitatively why the quick recovery cannot be observed for
small load steps in the soft device (Edman and Curtin, 2001; Piazzesi et al., 2002a): On
Fig.2.5, no points are reported for soft device above 0.8T0 and in (Edman and Curtin,
2001), the authors observe an damped oscillatory response of the fiber length at such
applied force steps. Our simulations also predict a slower recovery in soft than in hard
device. We are not aware any systematic comparison in the literature of the rate of phase
2 between in hard and soft device, but our examination of various experimental curves
(Piazzesi et al., 2002a, 2007; Ranatunga et al., 2002) seems to agree with the model.
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Fig. 7.17 – Evolution of the population in the double well potential in hard device. Left
column: δ = −1. Right column: δ = −10. Dark gray (resp. light gray) histogram represents the cross-
bridges positions for the realizations initialized in the left macroscopic well (resp. right macroscopic well).
Continuous line represents the equilibrium probability density in the double well for the given step size.
The � are obtained by summing the 2 histograms weighted by the initial fraction of population in the left
macroscopic well (〈ny〉): � = ny × light-gray + (1 − ny) × dark-gray. The dotted line indicates the limit
between pre-power-stroke and post-power-stroke configurations. In steady state, the results of Langevin
simulations matches the analytic computation of the probability distribution. The transition is slower after
low steps than after large step.

Evolution of the probability distributions

In Figs.7.17 and 7.18, we show the statistics of the cross-bridge positions ǫi in the
double well potential v which also illustrate the power-stroke dynamics and reveals the
cooperative effects. The light gray histograms show the distribution of cross-bridges for
nyNr realizations starting in the left macroscopic well and the dark gray histograms, for
the (1 − ny)Nr realizations starting in the right macroscopic well. As we already dis-
cussed in Sec.4.5, the two populations contain essentially pre-power-stroke (dark gray)
and post-power-stroke (light gray) cross-bridges (the vertical dotted line shows the sepa-
ration between the two wells). The overall distribution of the cross-bridges is obtained by
adding the contributions due to two populations with the corresponding weights ny and
(1 − ny): � = ny × light-gray + (1 − ny) × dark-gray. The continuous lines represent the
distribution in thermal equilibrium.

The kinetic trapping is clearly visible in Fig.7.18(left column): the distribution remains
bi-modal after 5ms while it should have reached a single mode equilibrium (continuous
line).

In addition, we observe that for steps allowing to escape from the macroscopic wells
(see Fig.7.17 and 7.18 right column) 1 ms after the step (see middle rows), the pre-power-
stroke population (dark gray) exectute the conformational change in a collective manner,
avoiding the energy barrier at l.
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Fig. 7.18 – Evolution of the population in the double well potential in soft device. Left
column: T/T0 = 0.6. Right column: T/T0 = 0.3. Dark gray (resp. light gray) histogram represents the
cross-bridges positions for the realizations initialized in the left macroscopic well (resp. right macroscopic
well). Continuous line represents the equilibrium probability density in the double well for the given step
size. The � are obtained by summing the 2 histograms weighted by the initial fraction of population in the
left macroscopic well (ny): � = ny × light-gray + (1 − ny) × dark-gray. The dotted line indicates the limit
between pre-power-stroke and post-power-stroke configurations. In steady state, the results of Langevin
simulations matches the analytic computation of the probability distribution only for large step, this shows
the kinetic trapping of the cross-bridges for low load step (left column).

7.5 Muscle response to stretching

7.5.1 Experimental evidence

We have already seen in the introductory Chaps.1 and 2 that skeletal muscles exhibit
different behaviors in shortening and stretching. For instance it is known (Katz, 1939) that
the force-velocity relation is strongly non-symmetric with a very slow increase of velocity
with force as the force exceeds the isometric tension T0 and all the way till the yield
state is reached (see Fig.1.12). We recall onece againt that muscle mechanism is designed
first of all to generate a force during contraction, and its main physiological regime is
shortening. However, in order to preserve its integrity, muscle must be able to ‘resist’
stretching. Since this regime is physiologically so different, some additional mechanisms
to the ones considered above may be activated upon elongation. Those mechanisms are
most probably passive, given the damping role the muscle plays during stretching.

We also recall that the passive elasticity of muscle fibers is known to be negligible under
physiological conditions but becomes critical when the sarcomeres enters the descending
limb of the tension vs sarcomere length relation (see Fig1.11). In single myofibrils, titin is
the main source source of passive alasticity (Cazorla et al., 2000; Linke et al., 1997) and
it has been shown recently (Leonard et al., 2010) that titin can regulate the force on the
descending limb even without the contribution of the cross-bridges.

However, even before reaching the descending limb, we can already observe some dif-
ference between shortening and stretching. In particular this concerns the response of
muscle fiber to fast length changes in hard device. In Fig.7.19, we show the response of
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Fig. 7.19 – Asymmetry in the response of a fiber to comparable step stretch and release.
From (Piazzesi et al., 1997). Left column: tension responses to a lengthening step of 4.2 nm/hs(upper
panel) and a shortening step of 4.8 nm/hs (lower panel). In each panel, from top to bottom, traces are:
length change per half-sarcomere, tension response, resting tension. The figures close to the tension record
in the left upper panel indicate the various phases of the transient as introduced in Sec.2.2.2. Right column
shows the fast transient of the response on an expanded time scale.

a muscle fiber to equal step size applied in the hard device setting in stretching (upper
panel) and shortening (lower panel). On each plot, from top to bottom we see the sarcom-
ere length, the tension and the resting tension. The numbers on the upper left plot show
the various phases of the transients as introduced in Sec.2.2.2. The right panel shows the
fast transients on an expanded time scale.

First we observe that the force recovery is faster in shortening than in stretching and
particularly during phase 2. Second, in shortening, the end of phase 2 is clearly identified
by the presence of a plateau on the tension vs time curve in the lower-right panel while in
stretching, such plateau does not really exists which raises the question of the definition
of T2. Usually, in shortening, T2 is determined by the extrapolation of the tangent to the
tension vs time curve on the plateau. Instead, in stretching, T2 is usually interpreted as
the tension measured after about 2 ms delay following the step (Brunello et al., 2007).
The difficulty of clearly identifying the end of phase 2 poses the question of the existence
of a reverse power-stroke or power-stroke repriming in stretching. In fact, it has been
shown by X-ray diffraction analysis that the early phase of the recovery in stretching is
accompanied by a change in the orientation of the myosin heads which strongly suggested
that repriming does occur after a sudden elongation(Lombardi et al., 1995).

In (Piazzesi et al., 1997), a multi-exponential fit has been performed for the tension vs

time curve in response to stretching. It suggests that the reverse power-stroke should be
completed within ∼1 ms after the step and from this analysis a T2 curve can be extracted
from experiments (see Fig.7.1).

Interestingly, there is an experimental evidence that even the elastic response, T1 is
non symmetric in stretching and shortening. Thus, in (Brunello et al., 2007), a slight
increase in stiffness has been reported and it has been shown that the associated change in
the X-ray diffraction pattern is compatible with the idea of the attachment of the second

head of the myosin whose role was so far obscure. Hence, attachment of the second head
could be one of the additional mechanisms that helps to prevent the fiber from dramatic
elongation by increasing its stiffness. In addition, the slow delay of the force recovery on
the ms timescale has been attributed in (Piazzesi et al., 1997) to passive friction of the
myosin heads on the actin filament. These new mechanisms can be incorporated into our
model.
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Fig. 7.20 – Response of a model with second head. (A): cartoon representing the dimeric structure
of myosin II and the mechanism of attachment of the second head. (B): example of a 3 well potential (solid
line) compared to the original double well potential (dashed line). (C): tension vs time for step sizes from
0 to 6 nm/hs. (D): equilibrium response of the double head system. Dashed line: Analytic T2 curve with
the single head model; solid line: analytic T2 curve with second head; (• and �): T1 and T2 curve obtained
numerically with the second head model. (E): rate curve with experimental data (open symbols), rate
obtained with the single head model (�) and with the second head model (•).

7.5.2 Additional mechanical mechanisms

Here, present an attempt to match the experimental data in stretching by implementing
two additional physical mechanisms: the second head and the passive friction due to partial
detachment of cross-bridges from actin filaments.

Second head

Our working hypothesis will be that the binding of the second head occurs when the
lever arm angle for the attached head becomes larger that a critical value ǫc. Beyond
this threshold, the energy of the cross-bridge should start favoring energetically the state
where both heads are attached. Hence we model the presence of this additional state with
two heads attached as a third well in our potential v (x).

In Fig.7.20A and B, we show a sketch of a double headed cross-bridge system together
with an example of energy landscape with three wells (see B solid line; dashed line repre-
sents the intial double well energy landscape). Our (C) shows tension vs time trajectories
for six stretching steps, from δ = 0 to δ = 6 nm/hs. The presence of an additional well
introduces a second transition in the T2 curve as shown on Fig.7.20D by the solid line rep-
resenting the analytical computation. The T1 curve remains basically unchanged (•). The
presence of an additional energy barrier also reduces the relaxation rate (see Fig.7.20D).
Unfortunately, this model cannot reproduce the increase in stiffness observed along the
T1 in (Brunello et al., 2007). To account for this phenomenon, one can make the linear
spring of the myosin head non-linear by say, doubling its stiffness at ǫi > ǫc. To summa-
rize, the introduction of an additional well can flatten the T2 curve near the origin which
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Fig. 7.21 – Response of a model with passive friction. (A): cartoon a single myosin interacting
with a periodic potential representing the actin filament. (B): example of a periodic potential representing
actin with a parabolic binding site every 36.5 nm. (C): tension vs time for step sizes from 0 to 6 nm/hs.
The interval between the vertical dashed line indicates where the tension T2 is measured. (D): Equilibrium
response of the system. Dashed line: Analytic T2 curve with the single head model; (• and �): T1 and T2

curve obtained numerically with the second head model. Open symbols are experimental data. (E): rate
curve with experimental data (open symbols), rate obtained with the single head model (�) and with the
passive friction model (•).

is a desirable effect. However, it remains unclear whether the second head can be indeed
adequately represented by the third well and whether it is indeed involved in the fast force
recovery.

Passive friction

To model passive friction, we unfreeze a degree of freedom which represents the position
of the myosin head on the actin filament. We denote the strain associated with this new
degree of freedom by ǫia. The interaction with the actin filament is modeled by a periodic
potential va

(

ǫia
)

. The choice for va is very broad. We can mention for instance the
sawtooth potential often used in Brownian ratchet models (see Sec.2.4.5. However, with
this type of potential, it is difficult to determine when the cross-bridge is attached or
when it is detached unless we explicitly introduce another potential for the detached state
and the corresponding rate functions as illustrated on Fig.2.19. Therefore, we consider
a periodic potential where the biding sites are clearly identified by parabolic wells with
stiffness κa and between biding sites, the energy landscape is flat. We show such potential
on Fig.7.21B, with a periodicity of 36.5 nm as it is expected for actin filaments (see
Sec.1.1.2). One can also use a potential with a finer succession of wells located every 5.5
nm and representing individual monomers.

The particularity of this model is that, at finite temperature, the system in hard device
has no stationary state and the isothermal tension is always equal to zero. Indeed, the
time to escape from an ‘actin well’ is finite so in long time limit the tension always relaxes
to zero within a finite time. To circumvent this problem, we assumed that T0, κa → ∞.



162 Chapter 7 – Realistic model of a half-sarcomere

Therefore, we start with the same initial conditions as in the case of fully attached cross-
bridges and we introduced the periodic potential with finite κa only at the beginning of
the step. The periodic potential is then maintained throughout the simulation.

The computed tension vs time curves are shown on Fig.7.21C. Due to sliding, the
response curves do not exhibit a plateau like in our original model so the definition of T2

is no longer obvious, like in experiments. Note that the shortening response is almost not
affected by the presence of the actin potential since the drag coefficient associated with ǫa
is chosen to be about 10 times larger than the drag coefficient associated with the double
well potential. Thus, upon shortening, we do observe a plateau before the tension starts
to decrease due to the incipient movement along the filament.

To define T2 in stretching, we used the method proposed in (Brunello et al., 2007). It
is then the average tension between 2.5 and 3.5 ms after the step (between the vertical
dashed lines on Fig.7.21C). Interestingly, for small stretches (see δ = 0, 1 nm/hs on C),
we observed a non monotone response with an increase in tension before the system starts
to relax. This is simply due to the fact that when ǫa starts to increase after the step, the
tension in the cross-bridges automatically decreases. This triggers a power-stroke which
temporarily increases the tension. When the stretch is loo large the such power-stroke
event is does not take place.

The T2 curve we obtained within this model (see Fig.7.21D(�)) is very similar to the
curve obtained by using the model with the second head (see Fig.7.20D). The result, of
course, depends strongly on the way we ‘measure’ T2. The rate curve is also similar but it
‘saturates’ faster. In fact, as soon as the cross-bridges detaches, the sliding velocity starts
to be controlled by the drag coefficient ηa which we associate with ǫa. At that point, the
rate becomes constant as it is expected from experiments.

To conclude, within both the second head model and the passive friction mpdel, we
obtained a slower growth of the T2 curve which goes in the direction of lowering the force
on a fast time scale to prevent the damage of the fiber. Furthermore, the absence of a
plateau on the tension vs time relation in stretching (and only in stretching) is correctly
reproduced by the passive friction. So far the experimental rates have not been matched
quantitatively but at least we can now reproduce a constant asymptotic rate in stretching.
In fact, the experimental rate data in stretching are rare. The data shown on 7.20E
and 7.21E (×) are those published in (Huxley and Simmons, 1971) and to the best of our
knowledge there have been no other paper reporting the rates above 2 nm/hs in stretching.

7.6 System with distributed elasticity

In the Introduction, we have shown how our system with an array of cross-bridges
connected in series with a linear spring can be used as a simplified representation of a
much more complex model accounting for the elasticity of the myofilaments. In a more
adequate model, each cross-bridge would have to be elastically connected to its nearest
neighbors (see Fig.2.24). Here we present several preliminary numerical results obtained
within this more complex framework.

7.6.1 The model

Our model of a half-sarcomere with distributed elasticity is shown in Fig.2.24. The
potential energy of this system must take into account the following entries:
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1. The elastic energies of the terminal springs which include actin and myosin filaments
and a single titin protein. All these elements will be assumed linear for simplicity:

Efil =
κF A

2
(x1)2 +

κF M

2
(ytot − yN+1)2 +

κT IT

2
(y1 − lT IT )2 (7.6.1)

2. The linear elastic energies of the series of springs for the actin and myosin filament,
connecting the cross-bridges:

Eel =
N
∑

i=1

κa

2
(xi+1 − xi)

2 +
N
∑

i=1

κm

2
(yi+1 − yi)

2 (7.6.2)

3. The non-linear double well elastic energies of the cross-bridges which are the same
as in the simplified lump model:

Exbs =

N+1
∑

i=1

[

v (ui − xi) +
κ

2
(yi − ui)

2
]

(7.6.3)

The potential v discribing the double well will be again assumed to be bi-quadratic:

v (ui − xi) = κ1
2 (ui − xi + a)2 ui − xi ≤ −l (7.6.4)

v (ui − xi) = κ0
2 (ui − xi)

2 + v0 ui − xi ≥ −l

The non-dimensional quantities are constructed in the same way as in the case of the lump
model. In the non-dimensional variables, the total energy of the distributed system can
be written as follows:

V =
κF A

2
(x1)2 +

κT IT

2
(y1 − lT IT )2 +

κF M

2
(z − yN+1)2

+

N
∑

i=1

[κa

2
(xi+1 − xi)

2 +
κm

2
(yi+1 − yi)

2
]

+
N+1
∑

i=1

[

1

2
(yi − ui)

2 + v (ui − xi)

]

where the dimensionless potential v is

v (ui − xi) =

{

κ1
2 (ui − xi + 1)2 if ui − xi ≤ −l
v (ui − xi) = κ0

2 (ui − xi)
2 + v0 if ui − xi ≥ −l

(7.6.5)

In muscle the myosin filament is three times stiffer that the actin filament (Huxley et al.,
1994; Wakabayashi et al., 1994).

Therefore, to simplify the computations, we consider the myosin filament as a rigid
bar which correspond to κm → ∞ and κM → ∞. Then titin will also be neglected at this
stage.

Under these assumptions, the total energy simplifies considerably:

V =
κF A

2
(x1)2 +

N
∑

i=1

κa

2
(xi+1 − xi)

2 +

N+1
∑

i=1

[

1

2
(z − ui)

2 + v (ui − xi)

]

(7.6.6)



164 Chapter 7 – Realistic model of a half-sarcomere

7.6.2 Mechanical system at θ = 0

We consider our system under the hard device setting. Therefore, z is the controlled
parameter. The set of equations for the system at θ = 0 is obtained by differentiating
the energy (7.6.6) with respect to the variables xi, ui at a given z. For the ui (the cross-
bridges), we can write:

− (yi − ui) + v′(ui − xi) = 0 (7.6.7)

while for the springs, we obtain:

ka (2xi − xi+1 − xi−1) − v′(ui − xi) = 0 for i = 2, . . . , N

ka (xN+1 − xN ) − v′(uN+1 − xN+1) = 0 (7.6.8)

ka (x1 − x2) + κF Ax1 − v′(u1 − x1) = 0

Notice that both sets of equations involve non-linear terms. To specify the expression for
v′(ǫ), we introduce the ‘spin’ vector (δi) which represents the current configuration of the
cross-bridges: δi = 0 if cross-bridge with index i is in well 0 and δi = 1 if cross-bridge
with index i is in well 1. We also introduce a vector of (κi), which represents the different
rigidities felt by the cross-bridges in their particular configurations: ki = k0 + (k1 − k0)δi.

Assuming that the vector (δi) is known, we can solve for the variables ui explicitly:

κi (ui − xi + δi) = − κi

1 + κi
(xi − δi) +

κi

1 + κi
z (7.6.9)

The corresponding strains along the actin fiber satisfy the following system of linear finite
difference equations:

κa (xi − xi+1) + κF Axi +
ki

1 + ki
xi =

κi

1 + κi
(δi + z) for i = 1

κa (2xi − xi+1 − xi−1) +
κi

1 + κi
xi =

κi

1 + κi
(δi + z) for i ∈ [2, N ] (7.6.10)

κa (xi − xi−1) +
κi

1 + κi
xi =

κi

1 + κi
(δi + z) for i = N + 1

This system can also be solved analytically by inverting a tridiagonal matrix but we will
not provide the solution here. The parameters of the model have been adjusted to the
experimental data following a similar procedure as the one detailed in Sec.7.1.

We observe that, in the distributed system there is no permutational invariance for
the cross-bridges. Therefore, the equilibrium positions in the double well potential are
different for all the cross-bridges and there is no configuration scalar like n1 replacing the
configuration vector (δi).

In our Fig.7.22A, we show the tension-elongation curve along the local minima of the
energy which are characterized by the presence of a single front separating a population
in pre-power-stroke from a population in post-power-stroke. Dashed lines represent con-
figurations were post-power-stroke cross-bridges are located to the right of the front. On
the lowest curve, the front is at the very right position and at the upper curve, the front is
located to the very left. Solid lines represent configurations were post-power-stroke cross-
bridges are located to the left of the front. On the upper line, the front is at the very left
and at the bottom line, the front is at the right.

We observe that the limits of the metastable region are no longer linear like in the
case of the lump modef. Another fundamental difference is that the global minimum path
(see bold line in Fig.7.22 and the blow up) goes through a succession of non affine states
where now ther is a front separating pre-power-stroke cross-bridges from post-power-stroke
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Fig. 7.22 – Realistic model of a half-sarcomere: equilibrium in hard device. (A) equilibrium
at θ = 0. Dashed lines and solid lines: local minima of the energy characterized by a front separating a
population of cross-bridges in pre-power-stroke and a population of cross-bridges in post-power-stroke as
indicated by the rectangles. For clarity we represent only ten states for each configurations. Solid line:
Global minimum. The insert shows a blow up of the transition region. (B): thermal equilibrium. (⊚):
simulations initialized at δ = 4 nm/hs in a full pre-power-stroke configuration. (∗): simulations initialized
at δ = −4 nm/hs in a full post-power-stroke configuration (∗) and (⊚) form an hysteresis in the center.
Dotted line shows the hysteresis obtained with the same protocol using the parallel model. Dashed line:
thermal equilibrium obtained with the parallel model.

cross-bridges. Remarkably this front is not moving continuously but undergoes a jump
at a critical value of the total strain. Although we do not discuss other configurations
here, one can show that, since the myosin filament is rigid, there is always only one front
characterizing the global minimum. In the case of compliant myosin filament we expect
the presence of two fronts which does not of course exclude the possibility of a jump along
the global minimum path.

7.6.3 Equilibrium system at θ , 0

As in the case of the lump model, we can now consider the thermal equilibrium for
the variables describing the power-stroke. For simplicity, the variables associated with
the filament (xi) will be viewed as mechanically equilibrated. Behind this is the implicit
assumption that they equilibrate much faster. We denote the fluctuating variables as
ǫti = ut

i − xt
i and write the associated stochastic differential equations:

dǫti =
[

ǫi(t) − v′(ǫti) + (z − ǫti − xt
i)
]

dt+
√

2/β−1dBt
i . (7.6.11)

Once again, the linear elastic spring are assumed to be in equilibrium:

κa

(

xt
1 − xt

2

)

+ κF Ax
t
1 + xt

1 = (z − ǫt1) for i = 1

κa

(

2xt
i − xt

i+1 − xt
i−1

)

+ xt
i = (z − ǫti) for i ∈ [2, N ] (7.6.12)

κa

(

xt
N+1 − xt

N

)

+ xt
N+1 = (y − ǫN+1) for i = N + 1

We consider two types of initial configurations: either all cross-bridges are in well 1 (∀i, ǫi =
−1) or all the cross-bridges are in well 0 (∀i, ǫi = 0). In both cases, the actin springs are
equilibrated within this initial configuration.

In our Fig.7.22B, we show the results of numerical simulations. Instead of starting with
an inhomogeneous structure in the transition region like we did for the lump system, here
we initiate the simulation either in the post-power-stroke homogeneous phase (see ∗) or in
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Fig. 7.23 – Distribution of average strain of each cross-bridge in thermal equilibrium at
different lengths. The dashed line indicate the separation between the two wells: well 0 is at the top
and well 1 at the bottom. (•) represent the equilibrium obtained in stretching and shortening outside the
transition region. (�) shows the equilibrium distribution for different steps in the transition region. Note
the gap between the transition curve and the stretching curves.

the pre-power-stroke homogeneous phase (see ⊚). We then apply quick strain increments
of different amplitude. For the (∗) branch the initial position is at δ = −4.2 nm/h and for
the (⊚) branch, the initial position if at δ = 4.2 nm/hs. For comparison, the equilibrium
T2 curve of the lump model is represented by the dashed line and the mechanical global
minimum by the solid line.

We observe that the transitions obtained with simulations starting in pre-power-stroke
(⊚) and simulations starting in post-power-stroke do not superimpose which reveals the
presence of a macroscopic kinetic trapping. However, this hysteresis is much smaller than
the hysteresis obtained within the lump model (see dotted lines). This result suggest that
the kinetics of the quick recovery in hard and soft device will be faster with the distributed
model than with the lump model even though the general shape of the thermal equilibrium
curve and, in particular, the presence of a negative slope would survive. Notice also that
the T2 curve is smoothened in the model with distributed elasticity comparing to the lump
model which also makes the results more realistic.

We show on Fig.7.23 the distribution of the snap-springs in the double well potential
along the chain of 86 cross-bridges for different values of the applied elongations. The hor-
izontal dashed line indicates the limit between well 0 which is above it and well 1 which
is below it. The dotted curves represent the cases when the chain is fully in pre-power-
stroke (above the dashed line) or fully in post-power-stroke (below the dashed line). They
correspond, respectively to stretching and shortening outside the transition region. In the
middle (see ‘transition’), we represent with squares (�) the configurations with inhomo-
geneous distribution of cross-bridges in the two wells. These configurations are contain a
front propagating from righ to left when the loading changes from stretching to shorten-
ing. Remarkably, as predicted by the global minimum curve (see Fig.7.22 A, dashed line)
the front does not propagate continuously from left to right but rather exhibits a jump
between a homogeneous and an inhomogeneous configurations (see ‘gap’ on Fig.7.22).

The above preliminary results for this much more complicated mechanical system are
showing that the main features of the mechanical response of the half-sarcomere have
been already captured by the lump model. However, the presence of additional degrees



7.7. Negative stiffness and stability 167

of freedom allows for a smoother transition and accelerates the recovery as the λf re-
lated constraint leading in the lump model to an extremely coordinated behaviour of the
cross-bridges is (partially) removed. These results also suggest the development of new ex-
periments, where the propagation of the ‘power-stroke front’ could be detected during the
quick recovery. Recent measurements performed at the scale of the single half-sarcomere
are are showing that such experiments are now technically achievable (Rassier and Pavlov,
2010; Telley et al., 2006a).

7.7 Negative stiffness and stability

The presence of a negative slope in the T2 curve has always been a puzzle for both the
physiologists and biophysicists. Already within the model of Huxley and Simmons (see
Sec.2.4.3), it was realized that a large β (β > 4) is responsible for a negative slope on the
T2 curve (see β > 4 on Fig.2.12). There are two possible mechanisms potentially leading
to this phenomenon. As β = κa2/ (kBθ), the negative slope would appear either as a result
of large κ, the cross-bridge stiffness, or, as a result of an increase in a, the characteristic
amplitude of the power-stroke. In the original Huxley and Simmons model, a ≈ 8 nm
and κ ≈ 0.2 pN.nm−1 and the corresponding T2 curve is flat or slightly monotone (see
β = 4 on Fig.2.12). Both single molecule experiments (see Sec.2.3) and direct stiffness
measurements on muscle fibers (see Sec.7.1.3) have shown that κ is at least 3 times larger
(0.7 pN.nm−1 in (Veigel et al., 1998) and 3 pN.nm−1 in (Piazzesi et al., 2007)). Therefore,
both types of experiments lead to the negative slope.

Most of the existing power-stroke models consider the behavior of an entire muscle
fiber as a direct extrapolation of the single half-sarcomere if not a single cross-bridge. The
power-stroke is modeled as a quick equilibration process between two to three configura-
tions of attached cross-bridge (Huxley and Simmons, 1971; Piazzesi and Lombardi, 1995;
Smith et al., 2008; Smith and Sleep, 2004). It has been repeatedly mentioned that that
when parameters are fit to experimental data, the myosin head stiffness and the power-
stroke size are such that the effective T2 curve contains a region of negative stiffness. Most
strikingly, this is precisely the region where the system is operating during isometric con-
tractions (Cordova et al., 1992; Duke, 1999; Huxley and Tideswell, 1996; Vilfan and Duke,
2003).

Since negative stiffness is infinitely associated with instability, efforts have been made
to eliminate the negative slope on the T2 curve. One proposed solution is to increase
the number of ‘sub-steps’ in the power-stroke mechanism which is equivalent to reduc-
ing the characteristic distance a (see Sec.2.4.4 and Fig.2.17, (Linari and Lombardi, 2010;
Smith et al., 2008)). For instance A.F Huxley and S. Tideswell proposed a model in-
troducing two sub-strokes in (Huxley and Tideswell, 1996). Another idea is to consider
distributed pre-strain in the cross-bridges to account for the possibility to bind at different
actin site (Huxley and Tideswell, 1996). This additional quenched inhomogeneity intro-
duces more ‘randomness’ in the system and, as in the case of temperature, helps to reduce
the negative slope. This idea was also used in (Marcucci and Truskinovsky, 2010).

It may be however, that a single half-sarcomere is indeed operating in the regime of
negative stiffness but that rearrangement occurs within an ensemble of many half sar-
comeres and in our Chap.8 finally the negative stiffness disappears at the macroscales
(Efendiev and Truskinovsky, 2010; Puglisi and Truskinovsky, 2000) (see (Duke, 1999)).

Here we discuss the possibility that the negative stiffness of the power-stroke mechanism
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Fig. 7.24 – Effective behavior of a single half-sarcomere. (I): sketch of a half-sarcomere in hard
device. The array of parallel cross-bridges is coupled to a linear spring in series lumping the effect of
myofilaments elasticities. Our study showed that this system is characterized by a double well free energy
potential as represented on (II). In each of the well, the cross-bridges are in affine state: either all in
post-power-stroke (point A) or all in pre-power-stroke (point B) and the mixed microstructure (point C) is
highly unstable. Such energy landscape is associated to a tension vs elongation relation displaying a region
of negative stiffness (see III). We showed that, in order to reproduce the tension generated by muscle fibers
in isometric contraction the half sarcomere must be in the unstable state C. This position is sustainable is
we directly control the elongation at the level of a single half-sarcomere, but within a chain were individual
units are free to elongate and shorten, half-sarcomeres will be found mostly in state A and B.

is stabilized by an active control system requiring ATP consumption.
Observe that the presence of ‘negative stiffness’ is actually an essential property of

many biological systems that involve collective action of molecular motors (Guerin et al.,
2010b; Placais et al., 2009). In this sense it is not surprising to encounter it also in muscles.
When a system is operating in a region with negative stiffness in hard device, a slight
change in elongation generates a large change in force. Analogously, in soft device, if the
system is placed on the plateau of the L2 curve, a slight change in force generate large
shortening. This high sensitivity is used by biological systems (and also by electronic
devices) to amplify an input signal. As an example we can mention hair cells which use
negative stiffness to efficiently transduce the mechanical signal generated by the movement
of the cilia into electric signal (Martin et al., 2000).

7.7.1 Unstable half-sarcomere

The presence of negative stiffness signals the non convexity of the and indicates that
the system operates in the spinodal region (point C on Fig.7.24II). In the stables states A
and B in FIg.7.24, all cross-bridges are either in post-power-stroke or in pre-power-stroke
(affine states) while the state C corresponds to more complex microstructure (non-affine

state). A simple way to illustrate the instability of state C is to consider the half-sarcomere
initially positioned in state C and connected in series to a ‘dashpot’ with drag coefficient η
(see Fig.7.25). When the system is released, the elongation of the half-sarcomere ǫz relaxes
to −1 which correspond to the energy minimum with all cross-bridges in post-power-stroke
(state A) (see Fig.7.25B).

By holding a single half-sarcomere in the hard device, one can of course stabilize state
C. If the unstable half-sarcomere is connected with other elements there must be an active
mechanism that, either triggers oscillations between state A and state B in such a way
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Fig. 7.25 – Instability of a single half-sarcomere released from isometric condition (point
C). left: half-sarcomere in series with a dashpot, the total length is controlled. Right: elongation of the
half-sarcomere ǫz vs time after the system is released from point C (ez = ǫ0). The system relaxes in its
full post-power-stroke configuration at ǫz = −1 (state A).

that the time averaged state is C, or directly stabilizes the state C.

7.7.2 Active stabilization mechanisms

The role of negative stiffness in muscle contraction and its stabilization was first em-
phasized by T.A.J Duke and further explored by A. Vilfan and T.A.J. Duke (Duke, 1999;
Vilfan and Duke, 2003). The value of β used in their model is ∼40 corresponding to a
characteristic length of 8 nm and a cross-bridge stiffness of 2.5 pN.nm−1 which corre-
sponds to the domain of negative slope in our phase diagram (see Fig.4.8). The model
of Vilfan and Duke belongs to the chemo-mechanical family as they phenomenologically
prescribe transition rate functions for different discrete states. We should mention how-
ever that their rate functions are parametrized by several constants so the number of free
parameters remains reasonable.

In the presence of attachment-detachment process, Vilfan and Duke observed the onset
of oscillations that stabilize the system around the region of negative stiffness(see Fig.7.26).
Their explanation is based on the fact that the cross-bridges may preferably detach from
actin in the post-power-stroke state and preferably attach in pre-power-stroke.

More specifically, when the majority of bound motors are in post-power-stroke state
(A2, see Fig.7.26B), the model prescribes a higher detachment rate and consequently,
the number of attached motor decreases thereby increasing the force per attached motor
((1)→(2)). When the upper limit of stability in the post-power-stroke state is reached,
the system abruptly jumps to the other branch of the T2 curve in which most bound
motors are in pre-power-stroke state (A1) ((2)→(3)). As the detachment rate is low in
state A1, the number of bound cross-bridges increases and the force per motor decreases
((3)→(4)). Finally the system reaches the lower limit of the hysteresis loop and the cross-
bridges jumps back into the post-power-stroke configuration. Then the cycle repeats itself
((4)→(1)).

This simple scheme explains how an isometrically contracting muscle may be consuming
ATP without net change in elongation at the macroscopic scale. The consumed energy is
fully dissipated as the system is constantly oscillating to remain in average in the region of
instability. P. Martin et al. used the same argument to explain how the active hair bundle
in the ear constantly adapts to maintain the system in the unstable regime (Martin et al.,
2000).

Following (Vilfan and Frey, 2005), we can propose a simple mechanical set-up gener-
ating oscillations at the level of a single half-sarcomere (see Fig.7.27A). Let us arrange
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Fig. 7.26 – Instabilities of an assembly of cross-bridges in near isometric conditions. Taken
from (Vilfan and Duke, 2003). (A): oscillations of an array of cross-bridges in isometric conditions. The
presence of a negative slope leads to oscillations in a system where attachment and detachment occurs: (1)
when the majority of bound motors are in state A2 (post-power-stroke), the average detachment rate is
higher than attachment rate (this is prescribed by the model), thus the number of attached motor decreases
thereby increasing the force per motor ((1)→(2)). When the upper limit of the hysteresis is reached, the
system abruptly jumps to the other fixed point in which most bound motors are in state A1 (pre-power-
stroke) ((2)→(3)). As the detachment rate is low in state A1, the number of bound cross-bridges increases
and the force per motor decreases ((3)→(4)). Finally the system reaches the lower limit of the hysteresis
loop and the cross-bridges jumps back in post-power-stroke conformation and the cycle repeats((4)→(1)).

in parallel a so-called delayed force activator and a power-stroke element which is char-
acterized by a tension vs length relation with a region of negative stiffness T2 (ǫ (t)). For
simplicity, we use a piecewise linear force elontation relation represented on Fig.7.27D(solid
line). The force delayed activation element is characterized by the following constitutive
relation:

dσ

dt
=

1

τ
(κaǫ (t) − σ (t)) . (7.7.1)

When ǫ (t) = ǫ0 = const, and σ (t0) = 0, the stress σ (t) increases exponentially with the
characteristic time τ till it stabilizes at the level equal to κaǫ

0. We put this mechanical
system in a soft device, where the total tension T = σ (t) + T2 (ǫ (t)) is held constant and
we fix T = 0.2. Suppose that the initial condition is chosen. This means that the system
to be ǫ (t = 0) = 0, which is located in the center of the unstable region, where T2 = 0 (see
Fig.7.27D).

First, as the load increases, ǫ decreases due to the negative slope effect. Then, as ǫ
decreases, the force activation mechanism starts to reduce the tension σ which induces a
further increase in T2 and further decrease in ǫ. This process continues until the system
reaches the point α on the T2 vs ǫ curve where the elongation ǫ jump to the stable branch
at point β. Such sudden elongation activates an increase in σ and therefore a decrease in
T2 accompanied by a decrease in ǫ up to point γ where a new jump occurs. The system is
now in δ so the tension σ starts to decrease which again generates an increase in both T2

and σ bringing the system back to point α where the whole cycle restarts. It is clear that
with this mechanism, the time average value of ǫ is 0 (see Fig.7.27B and D).

One can see that this rather simple mechanical feedback device is able to generate
self oscillation under isotonic conditions. As we have already mentioned, such oscillatory
behavior is present in many dynamic cellular processes involving for instance auditory
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Fig. 7.27 – Response of a force delayed activation coupled to a power-stroke element. (A):
mechanical set-up. A force delayed activation mechanism is connected in parallel to a power-stroke element
showing a region of negative stiffness which we characterize by a piece-wise linear relation T2 (ǫ) represented
by a solid line on (D). This system is load in soft device and the applied tension T is constant; here, T = 0.2.
(B) and (C) show the evolution of ǫ and T2 vs time. The system is initialized at ǫ = 0 in the center of the
unstable region (T2 = 0). The parametric trajectory (ǫ (t) , T2 (t)) is represented by circles on (D).

hair bundles, or rod-like bacterium Esherichia coli (Grill et al., 2005; Günther and Kruse,
2007; Kruse and Jülicher, 2005). In the context of muscle we can mention the SPonta-
neous Oscillatory Contraction (SPOC), which has been observed at intermediate muscle
activation (see the recent review on the subject by Ishiwata et al., 2011). This oscillatory
regime is also observed under physiological conditions for cardiac muscles. In fact, P.-Y.
Plaçais et al. demonstrated that the auto-oscillatory movement can take place in in in

vitro motility assays composed of randomly distributed myosin molecules and actin fila-
ments suggesting that this property is inherent to the contractile proteins (Placais et al.,
2009).

Of course, in the muscle context, the inner working of the force delayed activation
element is still not clear and can be viewed only as a prototypical phenomenological rep-
resentation of the attachment-detachment process. However, our simple numerical ex-
periment suggests a way to build an actual experimental soft device set-up at the level
of a single sarcomere. This seems accessible in view of the recent results published in
(Rassier and Pavlov, 2010). For a single sarcomere, the T2 vs ǫ relation shows actually
two regions with negative slope (see Fig.8.3), so, depending on the initial elongation, one
should be able to observe different hysteresis loops within the same general range of applied
loads.

7.7.3 Direct mechanical stabilization

In the previous models our system responded only passively to external loadings hence,
the isometric unstable state was maintained only on average. There exist however a possi-
bility to stabilize the state C shown on Fig.7.24 directly by applying periodic (or correlated)
mechanical excitation immitating ATP activity. This idea of parametric resonnance is used
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for instance to stabilize an inverted pendulum or a launching rocket (see Fig.7.28A). The
equation of motion for an inverted pendulum with a mobile support can be written:

lẍ− ÿ sin (x) = g sin (x) (7.7.2)

where x is the angle of the pendulum with the vertical axis, y is the vertical position of the
support base, l is the length of the massless bar and g is acceleration of gravity. Suppose
that y(t) is an harmonic function y = A sin (ωt). Then the equation of motion becomes
(Mathieu equation):

ẍ+

(

−g

l
+
A

l
ω2 sin (ωt)

)

sin (x) = 0

The numerical simulation reported on Fig.7.28 shows that, for sufficiently fast oscillations
of the support, the pendulum indeed oscillates around the unstable upward position. More
sophisticated stabilization strategies outside the linear regime are developed for instance
in (Carbo et al., 2010).

7.7.4 Stochastic resonance

Yet another stabilizing mechanism which takes randomness into account is based on
the idea of stochastic resonnance (Gammaitoni et al., 1998; Grossmann et al., 1993; Jung,
1993). Suppose that the double well potential v (x) is periodically tilted so that the system
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constantly oscillates between states A and B and the time averaged position is in state C
(see Fig.7.29). Suppose also that the system is subjected to Gaussian white noise. Then,
we write the following SDE describing the system dynamics in the form:

dXt = (−∂XV + F (t)) dt+
√

2β−1dBt (7.7.3)

where F (t) is a time periodic force with frequency ω, e.g.:

F (t) = A cos (ωt+ φ) . (7.7.4)

Consider a symmetric double well potential V with two minima located at +x̂ and −x̂.
denote r0 and r1 the transition rates over the energy barrier ∆V from both wells. In the
limit β → ∞, and since here we are dealing with a symmetric V , the transition rates r0

and r1 and can be expressed as an exponential function of the energy barrier :

r0 = r1 = K exp [−β∆V ] with K ∈ R (7.7.5)

Under the periodic forcing (7.7.4), those transition rate become periodic:

r+ (t) = r0 exp [βAx̂ cos (ωt)] (7.7.6)

r− (t) = r1 exp [−βAx̂ cos (ωt)] (7.7.7)

Then it can be shown that also the average position 〈X〉 becomes a periodic function ot
time. In the limit of small temperature (β → ∞), the mean amplitude of the particle’s
position

〈

X
〉

has the following limit:

〈

X (β)
〉

= βAX̂22r0

(

4r2
0 + ω2

)− 1
2 (7.7.8)

Our Fig.7.29 shows the dependence of
〈

X
〉

on β−1 for different amplitudes of the periodic
force (dashed line A = 1, dot-dashed line A = 2, solid line A = 4). One can see that the
amplitude reaches its maximum at a particular temperature (stochastic resonnance).

In this Chapter (but also in Chap.8), we saw that the response of our system to a
load step was dominated by kinetics. This result questions our initial hypothesis of the
power-stroke as a purely mechanical process and suggests that ATP may be playing an
important role even at the short time scale involved in the power-stroke. The activity
of ATP in the power-stroke would justify the use of a periodic (correlated) function that
can stabilize the unstable state and accelerate the kinetics through stochastic resonnance.
It is likely that again the presence of coupling enhances the effect of a local stochastic
resonance and synchronizes the response maximize force recovery.

Conclusions

In the previous sections we proposed a model with only 6 parameters (λ1, λ0, l, N ,
λf , β) plus two additional conditions describing the isometric contraction (ǫ0 and T0). In
this section we were able to fit the available experimental data and construct an adequate
model of a half-sarcomere.

We have shown that the isometric contraction is robustly characteristic by a strong
effective negative stiffness. This allows the system to operate with maximum number of
wells in the energy landscape.

By simulating the response to fast load steps in hard and soft devices, we observed that
kinetics dominates at experimental time scales. The kinetic response reveals the double
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well nature of the non-equilibrium energy landscape which is the origin of the trapping
phenomenon. The scale of slowing down is dramatically larger in soft device than in hard
device.

In addition we proposed an extension of our model to explain the puzzling asymmetry
between the response in shortening and the response in stretching. In the later case, a
decrease in both the tension T2 and the rate is obtain by either modeling the presence of
the second myosin head or the passive friction of the detaching heads on the myofilaments.

We also presented preliminary results on our ongoing work on a system with distributed
elasticity. The main conclusion regarding the presence of negative stiffness remains the
same but we have access to a richer panel of available microstructures.

We investigated several mechanisms that would allow the system to stabilize in the
spinodal region of the energy. These mechanisms involve continuous energy supply and
are therfore implicitely linked to ATP activity. The need of such active stabilization would
mean that the power-stroke mechanism requires ATP for its functionning.

After our attempts to reproduce experimental data in the setting of a single half sar-
comere, we see that he mystery of the plateau in the T2 curve remains unresolved. In the
next Chapter, where we consider a series arrangement of half-sarcomeres, this problem
will disappear and the responses in hard and soft devices will become more similar but
the difference in kinetics will remain.



Chapter 8

Chain of half-sarcomeres

In a muscle fiber, thousands of sarcomeres are tightly interconnected and it is this bundle
of active elements that ultimately generates the macroscopic force. In this Chapter,

we consider a series arrangement of half-sarcomere and address the question of how the
different behaviors observed experimentally in hard and soft device for the single unit
translate into the behavior of the whole fiber. Following the same approach as in the case
of a single half-sarcomere, we start with a description of the local minima in the purely
mechanical setting. In particular, we study in detail the case of 2 half-sarcomeres in series
forming a sarcomere. We show that the presence of the coupling parameter, augments
the wiggliness of the non-equilibrium energy landscape as it was the case for a single half-
sarcomere. Finally, we derive an asymptotic formula for the free energy of a chain in the
thermodynamic limit and show that the behaviors in hard and soft devices becomes more
similar from the points of view of equilibrium but a difference remains in kinetics.
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Fig. 8.1 – Mechanical model of a chain of sarcomeres. Upper panel: sketch of an assembly of
sarcomere in the longitudinal axis of the fiber. Lower panel: our mechanical model with an assembly of
series half-sarcomeres. P denotes the number of half-sarcomeres connected in series. The elongation of
half-sarcomere k is noted ǫk

z . The elongation of the array of cross-bridges of half-sarcomere k is ǫk
y and

inside the array of cross-bridges, the elongation of cross-bridge i is noted ǫk
i . The total elongation of the

chain is ǫ = 1
P

P
∑

k=1

ǫk
z .

8.1 Mechanical model

We consider an assembly of P half-sarcomeres in series. Each half-sarcomere contains
N cross-bridges connected in parallel and a linear spring representing the myofilaments
(see Fig.8.1). The total elongation of the chain is Pǫ where ǫ denotes the mean elongation
per half-sarcomere. In the half-sarcomere with index k, ǫkz is the total elongation, ǫky is the

elongation of the cross-bridge array and ǫki is the elongation of the cross-bridge with index
i. For simplicity, we assume that each units contains the same number of cross-bridges:
N . We denote ǫ =

(

ǫ11, . . . , ǫ
1
N , . . . , ǫ

P
1 , . . . , ǫ

P
N , ǫ

1
y, . . . , ǫ

P
y , ǫ

1
z, . . . , ǫ

P
z

)

the vector containing
all P (N + 2) degrees of freedom. The total energy of the system is given by:

V (ǫ) =

P
∑

k=1

{

N
∑

i=1

(

v
(

ǫki

)

+
1

2

(

ǫky − ǫki

)2
)

+Nλf
1

2

(

ǫkz − ǫky

)2
}

(8.1.1)

where v is the double well potential introduced in Chap.2 (see Eq.2.5.23).

In the hard device, the total elongation of the chain is fixed: Pǫ = Pǫ =
P
∑

k=1

ǫkz . ǫ is

then the applied elongation per half-sarcomere. In the soft device case, the tension σ is
imposed.
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8.1.1 Mechanical equilibria

Metastable states

In order to understand the inner working of this system, we first start with describing
the equilibrium response at zero temperature as we did in Chap.3. In hard device, we
prescribe the total: ǫ = ǫ and we compute V̂ (ǫ), the energy with all internal variables are
minimized. In soft device, we minimize W = V − σǫ where σ is the applied tension. The
analysis follows (Puglisi and Truskinovsky, 2000) where the authors deal with a chain of
bistable spring. Here instead, we have a chain of elements where each element is a parallel
bundle of bi-stable springs and linear elastic spring.

The metastable states of the system are obtain by minimizing:

V (ǫ, ǫ) − T

(

ǫ− 1

P

P
∑

k=1

ǫkz

)

= ψ (ǫ, ǫ, T ) in hard device

W (ǫ, σ) = V (ǫ) − σ
P
∑

k=1

ǫkz in soft device. (8.1.2)

with T , the Lagrange multiplier associated with the hard device constrain. In hard device
the minimisation problem is:

gradψ ((e, ǫ, T )) = 0 (8.1.3)

and similarly in soft device it is:

gradW (e, σ) = 0 (8.1.4)

Along the coordinate ǫki we have:

∂ǫk
i
ψ (ǫ, ǫ, T ) = v′(ǫki ) − ǫky + ǫki = 0 in the hard device (8.1.5)

∂ǫk
i
W (ǫ, σ) = v′(ǫki ) − ǫky + ǫki = 0 in the soft device. (8.1.6)

As in the case of a single sarcomere, equations ∂ǫk
i
ψ = 0 and ∂ǫk

i
φ = 0 can have up to

3 solutions:










ǫ̂k1
(

ǫky
)

= (1 − λ1)
(

ǫky
)

− λ1, if ǫki < l

ǫ̂k0
(

ǫky
)

= (1 − λ0)
(

ǫky
)

, if ǫki ≥ l

ǫ̂k⋆ = l.

(8.1.7)

Then we define the triplet ξk =
(

nk
1 , n

k
⋆, n

k
0

)

, denoting the fraction of cross-bridges in
half-sarcomere k that occupy position ǫ̂k1, ǫ̂k⋆ and ǫ̂k0 respectively. The vector ξk defines the
microstructure of half-sarcomere k. We will next denote ξ =

(

ξ1, . . . , ξk
)

, the configuration

of the whole chain. Obviously we have: nk
1 + nk

⋆ + nk
0 = 1 for all 1 ≤ k ≤ P . For a given

configuration ξk, the equilibrium value of ǫky in the half-sarcomere k is given by:

ǫ̂ky

(

ξk, ǫ
)

=
1

λk
xb (ξk)

(

T (ǫ)

N
− nk

1λ1 + nk
⋆l

)

in hard device (8.1.8)

ǫ̂ky

(

ξk, σ
)

=
1

λk
xb (ξk)

(

σ

N
− nk

1λ1 + nk
⋆l

)

in soft device, (8.1.9)

where λxb(ξ
k) = nk

1λ1 + nk
0λ0 + nk

⋆. (8.1.10)

The elongation of half-sarcomere k is obtained from the equation ǫkz = ǫky +T
(

ǫ, ξ
)

/ (Nλf )
in hard device and soft devices (with σ instead of T (ǫ) in soft device). Finally we close
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the system by writing the relation between the tension T (resp. σ in soft device) and the
total elongation ǫ (resp.ǫ in soft device) which can be written in the form:

ǫ =
1

P

P
∑

k=1

{

ǫky +
T (ǫ, ξ)

Nλf

}

in the hard device (8.1.11)

ǫ =
1

P

P
∑

k=1

{

ǫky +
σ

Nλf

}

in the soft device (8.1.12)

After computations, an equilibrium state can be written as follows:

T̂
(

ǫ, ξ
)

= N

(

1

λf
+

1

P

P
∑

k=1

1

λxb (ξk)

)−1(

ǫ+
1

P

P
∑

k=1

nk
1λ1 − nk

⋆l

λxb (ξk)

)

(hard device)

(8.1.13)

ǫ̂
(

σ, ξ
)

=

(

1

λf
+

1

P

P
∑

k=1

1

λxb (ξk)

)

σ

N
− 1

P

P
∑

k=1

nk
1λ1 − nk

⋆l

λxb (ξk)
(soft device).

(8.1.14)

As in the case of a single half-sarcomere, the formulas are identical. The influence of
the microstructure of the chain ξ, appears only through the sums over k. Therefore
there is an additional permutational invariance among different half-sarcomeres for a given
configuration

(

ξ1, . . . , ξP
)

. We define the stiffness of the chain for a given configuration ξ
by:

λ
(

ξ
)

=

(

1

λf
+

1

P

P
∑

k=1

1

λxb (ξk)

)−1

(8.1.15)

Then, the energy of a given configuration can be written as follows:

V̂
(

ǫ, ξ
)

= NP



λ
(

ξ
)

(

ǫ+
1

P

P
∑

k=1

nk
1λ1 − nk

⋆l

λxb (ξk)

)2

−1

2

1

P

P
∑

k=1

(

(

nk
1λ1 − nk

⋆l
)2

λxb (ξk)
− C

(

ξk
)

)]

in hard device,

(8.1.16)

Ŵ
(

σ, ξ
)

= NP

[

−1

2

1

λf

(

σ

N

)2

− 1

P

P
∑

k=1

{

1

2

1

λxb (ξk)

(

σ

N
− nk

1λ1 + nk
⋆l

)2
}

+
1

P

P
∑

k=1

C
(

ξk
)

]

in soft device,

(8.1.17)

where C(ξk) = (nk
0 + nk

⋆)v0 +
1

2
nk

1λ1 +
1

2
nk

⋆

1

1 − λ0
l2

It is easy to check that one can also write

T̂ (ǫ, ξ) =
∂V̂ (ǫ, ξ)

∂ (Pǫ)
in hard device, (8.1.18)

ǫ̂ (σ, ξ) = −∂Ŵ (σ, ξ)

∂σ
in soft device. (8.1.19)
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In order to have a better understanding of the internal configuration of the chain, we also
compute the elongation of each given half-sarcomere k:

ǫ̂kz

(

ǫ, ξk
)

=
1

λxb (ξk)

(

T̂ (ǫ, ξ)

N
− nk

1λf + nk
⋆l

)

+
T̂ (ǫ, ξ)

Nλf
, in hard device (8.1.20)

ǫ̂kz

(

σ, ξk
)

=

(

1

λf
+

1

λxb (ξk)

)

σ

N
− nk

1λf − nl
⋆l

λxb (ξk)
, in soft device. (8.1.21)

In hard device (see Eq.8.1.20), the elongation of a given half-sarcomere depends on the
configuration of the whole chain (ξ) through the tension T̂ given by Eq.(8.1.13) while in
soft device (see Eq.8.1.21), the local elongation depends only on the local configuration
(ξk). Moreover, in hard and soft devices all half-sarcomeres with the same microstructure
ξk have the same elongation.

Stability

The stability of a given equilibrium configuration can be checked using the Hessian
matrix. Let us consider first the generic case where the spinodal region of the double well
is not reduced to a single point. Here we present the hard device case only; the stability
related conclusions are the same in soft device.

After eliminating the hard device constrain ǫ = 1
P

∑

ǫkz , we rewrite the energy as a
function of (P − 1) (N + 2) + P + 1 variables:

Ṽ
(

ǫ11, . . . , ǫ
P
y

)

= V

(

ǫ11, . . . , ǫ
P
y , P ǫ−

P
∑

k=1

ǫzk

)

Consider first the entries of the Hessian associated with k = 1, . . . , P . We have seen that
the equation ∂ǫk

i
Ṽ = 0 have up to 3 solutions, ê1 (ǫ) , ê0 (ǫ) and ǫ̂⋆ (ǫ), with l− t ≤ ǫ̂⋆ (ǫ) ≤

l + t for all t > 0.
We denote:

Hk
i (ǫ) = ∂k

iiV (ǫ, ǫ) , i = 1, . . . , N, y, z

the N first diagonal terms of the Hessian. Each of them can be equal either to hk
1 (ǫ),

hk
0 (ǫ) or hk

⋆ (ǫ) where:

∂k
iiV (ǫ, ǫ)

∣

∣

∣

ǫk
i =ǫ̂k

1(ǫ),ǫm,k
j,i =ǫ̂m

j (ǫ),ǫ
yk=ǫ̂k

y(ǫ),ǫ
ym,k=ǫ̂m

y (ǫ)ǫ
zk=ǫ̂k

y(ǫ),ǫ
zm,k =ǫ̂m

y (ǫ)
≡ hk

1 (ǫ) > 0,

∂k
iiV (ǫ, ǫ)

∣

∣

∣

ǫk
i =ǫ̂k

⋆(ǫ),ǫm,k
j,i =ǫ̂m

j (ǫ),ǫ
yk=ǫ̂k

y(ǫ),ǫ
ym,k=ǫ̂m

y (ǫ)ǫ
zk=ǫ̂k

y(ǫ),ǫ
zm,k =ǫ̂m

y (ǫ)
≡ hk

⋆ (ǫ) < 0,

∂k
iiV (ǫ, ǫ)

∣

∣

∣

ǫk
i =ǫ̂k

⋆(ǫ),ǫm,k
j,i =ǫ̂m

j (ǫ),ǫ
yk=ǫ̂k

y(ǫ),ǫ
ym,k=ǫ̂m

y (ǫ)ǫ
zk=ǫ̂k

y(ǫ),ǫ
zm,k =ǫ̂m

y (ǫ)
≡ hk

0 (ǫ) > 0.

The other entries of the Hessian Hk (ǫ) are, for a single half-sarcomere:

∂k
ijV (ǫ, ǫ) = 0 for i , j

∂k
iyV (ǫ, ǫ) = −1 for i = 1, . . . , N

∂k
yyV (ǫ, ǫ) = N (1 + λf )

∂k
izV (ǫ, ǫ) = 0

∂k
yzV (ǫ, ǫ) = −Nλf , for 1 ≤ k ≤ P − 1

∂k
zzV (ǫ, ǫ) = Nλf , for 1 ≤ k ≤ P − 1
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Therefore we can write:

Hk (ǫ) =





















Hk
1 (ǫ) 0 · · · 0 −1 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · 0 Hk

N (ǫ) −1 0
−1 · · · · · · −1 N (1 + λf ) −Nλf

0 · · · · · · −1 −Nλf Nλf





















, for 1 ≤ k ≤ P − 1

and for the last half-sarcomere:

HP (ǫ) =

















HP
1 (ǫ) 0 · · · 0 −1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 HP

N (ǫ) −1
−1 · · · · · · −1 N (1 + λf )

















These matrices contains the blocks with the following dimensions: Hk ∈ R(N+2)×(N+2)

and HP ∈ R(N+1)×(N+1). Now, we consider the terms coupling sarcomere k with half-
sarcomere m , k in the Hessian corresponding to the whole chain:

∂km,k
zz V (ǫ, ǫ) = Nλf (8.1.22)

∂kP
zy V (ǫ, ǫ) = Nλf . (8.1.23)

Hence the complete Hessian can be written in the form:

HP (ǫ) =

















H1 (ǫ) + C C · · · C CP

C
.. .

. . .
...

...
...

. . .
. . . C

...
C · · · C HP −1 (ǫ) + C CP

T
(

CP
)

· · · · · · T
(

CP
)

HP

















where C =











0
. . .

0
Nλf











∈ R(N+2)×(N+2)

and CP =











0
. . .

0
Nλf











∈ R(N+2)×(N+1).

The computation of the principal minors is too technical to be written in full details
here. But one can show, using this technique that if all cross-bridges are in a stable posi-
tion, the chain of half-sarcomere is stable. However, we see that as soon as a single cross-
bridge stays in the spinodal region, Hk cannot be positive definite (see Eq.8.1.1) and so
the whole chain becomes unstable. In must be noted that for the case of a chain of bistable
element, each, being characterized by a double well potential of the type of our v, the whole
chain can be stable even in the presence of one unstable element (Puglisi and Truskinovsky,
2000).
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Existence domain of metastable configurations

As in the case of one half-sarcomere, different metastable states exist on different finite
intervals of the variation of the loading parameters. The solution of the minimization
problem gives the equilibrium position of each cross-bridge in the double well potential.
We use and (8.1.8) and (8.1.9) in Eq.(8.1.7) to obtain:















ǫ̂k1
(

T, ξk
)

= 1−λ1

λxb(ξk)

(

T
N − nk

1λ1 + nk
⋆l
)

− λ1 if ǫk1
(

T, ξk
)

< l,

ǫ̂k0
(

T, ξk
)

= 1−λ0

λxb(ξk)

(

T
N − nk

1λ1 + nk
⋆l
)

1 if ǫk0
(

T, ξk
)

> l,

ǫ̂k⋆
(

T, ξk
)

= l

(8.1.24)

For a given half-sarcomere must k we must therefore have:

T
(

ǫ, ξ
)

N
≤ (l + λ1)λxb

(

ξk
)

1 − λ1
+ nk

1λ1 − nk
⋆l if ǫki = ǫ̂k1, (8.1.25)

T
(

ǫ, ξ
)

N
>
l + λxb

(

ξk
)

1 − λ0
+ nk

1λ1 − nk
⋆l if ǫki = ǫ̂k0 (8.1.26)

In soft device, the criteria are the same modulo replacing T by σ. Hence, in soft device, a
given configuration ξ exists in the interval:

max
ξk

(

l + λxb

(

ξk
)

1 − λ0
+ nk

1λ1 − nk
⋆l

)

≤ σ

N
≤ min

ξk

(

(l + λ1)λxb

(

ξk
)

1 − λ1
+ nk

1λ1 − nk
⋆l

)

(8.1.27)
Of course the limit configuration {(1, 0, 0) , . . . , (1, 0, 0)} (all cross-bridges in post-power-
stroke, affine states) does not have a lower bound and respectively configuration {(0, 0, 1) , . . . , (0, 0, 1)}
(all cross-bridges in pre-power-stroke) does not have an upper bound. In hard device, the
metastability domain can be defined in terms of ǫ as follows:

max
ξk

(

λ
(

ξ
)

(

l + λxb

(

ξk
)

1 − λ0
+ nk

1λ1 − nk
⋆l

)

− 1

P

P
∑

k=1

nk
1λ1 − nk

⋆l

λxb (ξk)

)

≤ ǫ ≤

min
ξk

(

λ
(

ξ
)

(

(l + λ1)λxb

(

ξk
)

1 − λ1
+ nk

1λ1 − nk
⋆l

)

− 1

P

P
∑

k=1

nk
1λ1 − nk

⋆l

λxb (ξk)

)

(8.1.28)

In Fig.8.2 we illustrate those computations by showing the energy, tension and elonga-
tion levels for a chain with six half-sarcomeres. Suppose first that each half-sarcomere is
in its global minimum configuration (1, 0, 0) or (0, 0, 1), having all its cross-bridges either
in pre- or post-power-stroke. On Fig.8.2B (resp. D), the branches at the very left and
right correspond to affine states with all half-sarcomeres in post-power-stroke and pre-
power-stroke, respectively. To shift from one limiting branch to another, half-sarcomeres
progressively switch to pre-power-stroke and the chain goes through a sequence of non-

affine states characterized by inhomogeneous distribution of strain. The global minimum
path is indicated by the bold line on Fig.8.2 it also contains inhomogeneous configurations.

If we take into account all local minima, the lines showed on Fig.8.2 will split into
many sub-branches where individual cross-bridges of the same half-sarcomere are allowed
now to be both in pre- and post-power-stroke states.
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Fig. 8.2 – Configuration involving homogeneous half-sarcomeres in hard and soft device
device for a chain of 6 half-sarcomeres. (A) and (B): hard device energy (A) and (B) tension.
(C and (D): soft device energy (C) and elongation (D) Here we show only the configurations containing
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In between the system goes through a sequence of non-affine states. The global minimum path is shown by
the bold line. It goes through non-affine states in the hard device but not in the soft device. Parameters
are: λ1 = λ0 = 0.5, l = −0.5, λf = 1, N = 10.
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Fig. 8.3 – Local minima for 2 half-sarcomeres with 2 cross-bridges per half-sarcomere in
hard device. (A) shows the energy in the local minima computed using Eq.(8.1.16) and (8.1.28). (B)
represents the tension in the local minima computed with Eq.(8.1.13). The stable states are represented
by solid lines and unstable states by dotted lines. The configurations of the stable states are indicated
in the table bellow. The global minimum is shown with the thick line. In addition to the affine states
{(1, 0) , (1, 0)} and {(0, 1) , (0, 1)}, the system following the global minimum path (thick line) visits the new
degenerate non-affine state {(1, 0) , (0, 1)}/{(0, 1) , (1, 0)}. The cartoons on (B) shows the configuration of
the sarcomere in the 3 configuration of the global minimum (1, 4 and 6). In the non-affine state 4, and the
M-line is not in the center of the structure anymore. Parameters are: λ1 = λ0 = 0.5, l = −0.5 (symmetric
double well), λf = 1, N = 2, P = 2.
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Fig. 8.4 – Local minima for 2 half-sarcomeres with 2 cross-bridges per half-sarcomere in
soft device. (A) shows the energy in the local minima computed using Eq.(8.1.17) and (8.1.27). (B)
represents the elongation in the local minima computed with Eq.(8.1.14). The stable states are represented
by solid lines and unstable states by dotted lines. The configurations of the stable states are indicated in
the table bellow. The global minimum is shown with the thick line. Unlike in hard device (see Fig.8.3), the
systems switches between the two affine states {(1, 0) , (1, 0)} and {(0, 1) , (0, 1)} without visiting the non
affine states {(1, 0) , (0, 1)}/{(0, 1) , (1, 0)}. The cartoons on (B) shows the configuration of the sarcomere
in the 2 affine configurations of the global minimum (1, and 6). Parameters are: λ1 = λ0 = 0.5, l = −0.5
(symmetric double well), λf = 1, N = 2, P = 2.

The ensuing picture is rather complicated and therefore we first study the simplest case
of a single sarcomere containing two half-sarcomeres (P = 2). The local minima of the
energy, for this problem are shown on Fig.8.3(hard device) and 8.4(soft device). For this
figure, we used a symmetric double well potential (λ1 = λ0 = 0.5, l = −0.5) and represent
metastable states by solid lines, unstable states by dotted lines and the global minimum
by the bold line. Each stable configuration is labeled by a number whose correspondence
with the particular configuration specified in the table. Within parenthesis, the first pair
indicates the fraction of cross-bridges in pre- and post-power-stroke for the first half-
sarcomere and the second pair gives the same information for the second half-sarcomere.
For instance the labeling 2:

{

(1
2 ,

1
2), (1, 0)

}

correspond to a configuration where in the first
half-sarcomere, 1/2 of the cross-bridges in post-power-stroke and 1/2 in pre-power-stroke;
in the second half-sarcomere, all the cross-bridges in post-power-stroke.

In the hard device (see Fig.8.3), the system following the global minimum path (bold
line) goes through the following sequence of non affine states {(1, 0) , (0, 1)}/{(0, 1) , (1, 0)}
(state 4 on Fig.8.3) where one half-sarcomere is always in pre-power-stroke and another is
always in post-power-stroke. The cartoon on Fig.8.3(B) shows a single sarcomere in the
3 configurations comprising the global minimum. Notice that, in the two affine branches
where the chain is homogeneous (1 and 6), the M-line (see the middle vertical dashed line)
is in the middle of the structure while in the non-affine state (branch 4), the two half-
sarcomeres are not equally stretched and the M-line is not in the center of the sarcomere
anymore (it can be shifted in both directions).

In the soft device (see Fig.8.4), the situation is different: the system in global minimum
directly switches between the homogeneous configurations {(1, 0) , (1, 0)} and {(0, 1) , (0, 1)}
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Fig. 8.5 – Elongation of the two half-sarcomeres in the local minima with a symmetric double
well potential. (A): hard device. (B): soft device. The configurations of the stable states (solid lines)
are indicated by the tables bellow the curves. Unstable states are indicated by dotted-lines and the global
minimum by the bold lines. In hard device (see A), the system following the global minimum transits
through non-affine states where the distribution of half-sarcomeres is inhomogeneous (see configuration 3).
In soft device (see B), the system remains homogeneous. Parameters are: λ1 = λ0 = 0.5, l = −0.5, λf = 1,
N = 2 and P = 2.

without visiting the non-affine states so the distribution of strain within the half-sarcomeres
remains uniform.
We can also compare the strain inside individual half-sarcomeres to the mean elongation

(total length divided by the number of half-sarcomeres) on Fig.8.5. For each non-affine
state, the two traces show the elongation of individual half-sarcomeres. For affine states
(see configurations 1,4 and 6), the elongation is homogeneously distributed and the curve
coincides with the diagonal. In soft device, the global minimum (see bold line on Fig.8.5),
is always on the diagonal, hence the half-sarcomeres are always equally stretched unlike
the in hard device.

Those above analytic results confirm the numerical results in (Vilfan and Duke, 2003)
(see Fig.8.15A) where the authors used a chemo-mechanical model of the cross-bridge cycle
and discovered the existence of non affine-states characterized by inhomogeneous distri-
bution of sarcomere elongations. Here we are making a link between their findings based
on a kinetic Monte–Carlo model and our explicit energy landscape describing individual
sarcomeres.

We further illustrate the stretching induced transitions on Fig.8.6 (hard device) and
Fig.8.7 (soft device), showing a system with P = 2 and N = 3. There we use a non-
symmetric double well potential (λ1 = 0.4, λ0 = 0.7, l = −0.3).

By taking into account the permutational invariance one can see that this system has
10 metastable states, listed in the table below the graphs. Since the double well potential
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Fig. 8.6 – Detail of the transition in hard device for a chain of 2 half-sarcomeres with 3 cross-bridges
per half-sarcomere and a non symmetric double well potential. (A) and (B): energy of the metastable states;
(C) and (D) corresponding tensions. On each curve, the solid lines indicate the metastable states and the
bold line, the global minimum. (C) and (D) are zooms of (A) and (B) on the transition. The numbers
besides the lines indicates the configurations listed in the table bellow. In the table, we list the different
independent configurations of the metastable states only. All permutations of a given configuration are
equivalent. The system following global minimum path goes through configurations where each sarcomere
have all the cross-bridges either in pre-power-stroke or in post-power-stroke (here configurations 1→5→10).
The configurations with more ‘mixed’ microstructure have higher energy (see D). Parameters are: λ1 = 0.4,
λ0 = 0.7, l = −0.3, λf = 1, N = 2, P = 2.

is non-symmetric, the energy landscape is tilted and the different energy correspond to
different stiffnesses. In both hard and soft devices, the branches with the higher energy are
those with the most ‘mixed’ microstructures. These heterogeneous microstructures also
have the shortest existence intervals. One can see that, the system following the global
minimum in hard device goes successively through a sequence of non-affine states (see
1→5→10 on Fig.8.6C and D). In the soft device, there in only one transition located at
σ = σ⋆ where all non-affine configurations have the same energy (see Fig.8.7).

The corresponding distribution of elongations inside the chain is shown in Fig.8.8.
Unlike the symmetric case when potential was symmetric (see Fig.8.5), the lines charac-
terizing each configurations are not longer parallel to the diagonal. However, despite all
these differences, the general result regarding the ubiquitous presence of inhomogeneously
distributed elongations remains the same.
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Fig. 8.7 – Detail of the transition in soft device for a chain of 2 half-sarcomeres with 3 cross-bridges
per half-sarcomere. Here the double well is non-symmetric. (A) and (B) show the energy of the metastable
states; (C) and (D) the corresponding elongation. On each curve, the solid lines indicate the metastable
states and the thick line, the global minimum. (C) and (D) are zooms of (A) and (B) on the transition.
The numbers besides the lines indicates the configurations listed in the table bellow. In the table, we list
the different configurations of the metastable states only. The system following global minimum transit
experience only a single transition at σ = σ⋆ from {(1, 0), (1, 0)} to {(0, 1), (0, 1)} where all states with
homogeneous sarcomeres (1, 5 and 10) have the same energy. Unlike in hard device (see Fig.8.6), the
system does not transit through non-affine configurations (here 5). Parameters are: λ1 = 0.4, λ0 = 0.7,
l = −0.3, λf = 1, N = 2, P = 2.

8.1.2 Non-equilibrium energy landscape in the case P = 2

Transition between global minimum configurations

In the case of a single sarcomere (P = 2), we can investigate further the mechanism of
transition between different metastable states by showing how the partially relaxed energy
depends on the internal degree of freedom ǫ1z, the elongation of the first sarcomere.

Consider a system with two half-sarcomeres under hard device conditions initially
in state {(1, 0) , (1, 0)} (we omit the unstable states for simplicity, see Fig.8.9, A). If
one pushes the M–line (related to variable ǫ1z) to the left then the first half-sarcomere
is compressed and the second one is stretched. We already know that a compressed
half-sarcomere will favor homogeneous post-power-stroke microstructure while a stretched
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Fig. 8.8 – Elongation of the two half-sarcomeres in the local minima with a non-symmetric
double well potential. (A): hard device. (B): soft device. The configurations of the stable states (solid
lines) are indicated by the tables bellow the curves and global minimum by the bold lines. In hard device
(see A), the system following the global minimum transits through non-affine states where the distribution
of half-sarcomeres is inhomogeneous (see configuration 3). In soft device (see B), the system remains
homogeneous. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 1, N = 2 and P = 2.

half-sarcomere will go in a homogeneous pre-power-stroke microstructure. Hence, if we
follow the global minimum path, we end up with the configuration {(1, 0) , (0, 1)} (see
Fig.8.9, B). Now if we pull the M–line ǫ1z to the right, the first half-sarcomere elongates
and the second one is compressed; as a result, the system ends up in the configuration
{(0, 1) , (1, 0)} which is the mirror image of the previous one (see Fig.8.9, C).

The situation is different if we are in the soft device. Consider again two half-sarcomeres
initially in the configuration {(1, 0) , (1, 0)} at σ = σ⋆ (see Fig.8.9, D), where the energies
of configurations {(1, 0) , (0, 1)} and {(1, 0) , (1, 0)} are equal (see Fig.8.7). The state of the
second half-sarcomere can be either (1,0) or (0,1). When the M–line (related to variable
ǫ1z) is displaced, the first half-sarcomere changes configuration but it does not modify the
state of the second half-sarcomere, which remains either in the state (1,0) or (0,1) (see 8.9,
E and F).

To illustrate this transition further, we plot on Fig.8.10, the energy of different config-
urations vs ǫ1z, when the system is at the transition ǫ = ǫ⋆,1 in hard device (see Fig.8.10,
A and B) and at the transition point σ = σ⋆ in soft device (see Fig.8.10, C and D). The
solid lines represent the metastable states, the dotted lines, the unstable states and the
bold lines, the global minimum. The parameters are P = 2, N = 2, λ1 = 0.4, λ0 = 0.7,
l = −0.3 (non symmetric double well potential) and we use λf = 1 in (A) and (C) and
λf → ∞ in (B) and (D). The labeling of the metastable configurations is detailed in the
table bellow the curves. The energy of the global minimum is set to 0 arbitrarily.

In the hard device, the system placed initially in configuration {(1, 0) , (1, 0)} (see
Fig.8.10, right column 1) can switch to {(1, 0) , (0, 1)} (see 2) when ǫ1z is reduced and to
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Fig. 8.9 – Illustration of the transition in hard and soft device. In hard device (left column), we
start with a sarcomere in configuration {(1, 0) , (1, 0)} at the first transition (ǫ = ǫ⋆,1, see A). If the M-line
(corresponding to ǫ1

z in the model is displaced to the left (see B), the first half-sarcomere shortens and
the second lengthens and the systems ends up in configuration {(1, 0) , (0, 1)}. If the M-line is displaced
to the right (see C), the first half-sarcomere is lengthen so the second shortens and the system reaches
configuration {(0, 1) , (1, 0)}. In soft device at σ = σ⋆ (right column), we start with the first half-sarcomere
in post-power-stroke (see D). The second half-sarcomere can be in equilibrium either in pre-power-stroke
(0,1) or in post-power-stroke (1,0), without affecting the energy of the system (at σ = σ⋆ all homogeneous
configurations have the same energy, see Fig.8.7C). Therefore, moving the M-line only affects the state of
the first half-sarcomere (see E and F).

{(0, 1) , (1, 0)} (see 2’) if ǫ1z is increased.

In the soft device (see Fig.8.10, right column) the configurations {(1, 0) , (1, 0)} (see
1) and {(1, 0) , (0, 1)} (see 2) superimpose and the system transforms to one of these
configurations {(0, 1) , (1, 0)} or {(0, 1) , (0, 1)} by increasing ǫ1z (see 2’ and 6). Note that
configuration {(0, 1) , (0, 1)} (see 6) is directly accessible in the soft device (at σ = σ⋆)
while it requires further stretching in the hard device up to ǫ = ǫ⋆,2 (the position of the
second transition, see Fig.8.6).

Finally, we observe that, as in the case of a single half-sarcomere, the energy barrier
to overcome at the transition is higher in the soft device than in the hard device (compare
Fig.8.10A and C ). However, in the hard device, the system initially in configuration
{(1, 0) , (1, 0)} (see 1) cannot reach directly the final configuration {(0, 1) , (0, 1)} (6 is not
available in Fig.8.10A). Instead it has to undergo the second transition at ǫ = ǫ⋆,2. In
the soft device, the final configuration {(0, 1) , (0, 1)} (see 6) is directly reachable from
{(1, 0) , (1, 0)} at σ = σ⋆. In a nutshell, to go from one limiting configuration to the other,
the system in the hard device have to go through several transitions with small barriers
while the soft device system can reach the final state through only one transition but with
a much bigger barrier.

The above discussion raises the fundamental question of what is the ‘chemical state’
in the chemo-mechanical models. For instance, if we interpret different non-affine con-
figurations of a sarcomere as distinct chemical states with their own kinetic constants,
we recover in our framework the idea of multiple intermediate configurations proposed by
Huxley and Simmons and still broadly used in chemo-mechanical modeling.

Influence of coupling

In Fig.8.10 we compare the energy landscape as a function of the inner degree of
freedom ǫ1z at λf = 1 (see A and C) and λf → +∞ (see B and D). In both hard and soft
devices, at finite λf , as the system undergoes a transition along the global minimum path
(say ǫ = ǫ⋆,1 in hard device and σ = σ⋆ in soft device), the kinetic trajectories describing
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Fig. 8.10 – Transition between configuration in the global minimum for 2 half-sarcomeres
(P = 2).Energy of the different configurations vs the inner degree of freedom ǫ1

z at the transition ǫ = ǫ⋆,1 in
hard device (A and B, see Fig.8.6) and at the transition σ = σ⋆ in soft device (C and D, see Fig.8.7). In
all figures, solid lines represent the metastable states (N = 2) and dotted lines represent unstable states.
The parameters are P = 2, N = 2, λ1 = 0.4, λ0 = 0.7, l = −0.3 (non symmetric double well) and we use
λf = 1 in (A) and (C) and λf → ∞ in (B) and (D). The labels of metastable configurations are detailed
in the table bellow the curves. The energy of the minimum is set to 0 arbitrarily and the scale is the
same in all plots. In hard device (see A and B), the system starting from {(1, 0) , (1, 0)} (see 1) can visit
2 symmetric configurations {(1, 0) , (0, 1)} (see 2) and {(0, 1) , (1, 0)} (see 2’). In soft device (see C and
D) {(1, 0) , (1, 0)} {(1, 0) , (0, 1)} and are equivalent (see 1&2 on) and the system can directly reach the
final configuration {(0, 1) , (0, 1)} (see 6, is absent in hard device). At finite λf (upper line), the energy of
intermediate configurations (e.g.

{

(1, 0) ,
(

1
2
, 1

2

)}

, see 3) are high compared to when λf → ∞ (see lower
line).

the switch between the ground state configurations does not imply visiting any other
states (stable or unstable). For instance in Fig.8.10 (A) and (B), we study the transition
from {(1, 0) , (1, 0)} (see 1) to {(1, 0) , (0, 1)} (see 2) and we see that the intermediate
configurations

{

(1, 0) ,
(

1
2 ,

1
2

)}

or
{(

1
2 ,

1
2

)

, (1, 0)
}

(see 3 and 3’) cannot be reached.

However, as λf increases, the gap between the ground states and those intermediate
configurations tends to 0 allowing a transition through mixed microstructures. This shows
that, as in the single half-sarcomere, the presence of soft myofilament introduces cooper-
ativity among the cross-bridges and thus favors homogeneous (affine) configuration (see
Sec.3.2.2). We also see that the presence of stiff myofilament tends to lower the barriers
(compare Fig.8.10 upper line to lower line) suggesting that the kinetics of the system will
be faster as λf increases (weaker coupling).
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Fig. 8.11 – Evolution of the metastable domain for P > 2. (A): Representation of the non-affine
states with only homogeneous half-sarcomere (dotted lines) and the global minimum (solid line) for P = 5.
The non-affine states are in the metastable domain whose contours are represented in (B) by the solid
lines. The metastable domain is the same for all P . On (B), we represent the global minimum for P = 1
(dotted line), P = 2 (dashed line) and P = 5 (solid line). Parameters are: Parameters are: λ1 = 0.3,
λ0 = 0.7, l = −0.3 (non-symmetric double well potential)

8.1.3 Continuum limit

In the previous section, we discussed (for a simple case of 2 half-sarcomeres) how the
system rearranges internally under external driving as it follows the global minimum of
the energy. Here we study the tension vs elongation curves for larger values of P all the
way to infinity. We recall that the value of P does not affect the global minimum response
in the soft device: there is always a single transition at σ = σ⋆. So the corresponding
energy vs tension relation along the global minimum path is shown in Fig.8.7 for any P .

In Fig.8.11A, we show the non-affine states with homogeneous half-sarcomeres (see
dotted lines) for the case P = 5. The boundaries of these metastable states delimit a
‘metastable domain’ where all non-affine states are located. On Fig.8.11B, we show that
the boundaries of this metastable domain do not change with P . On (B), we also represent
the global minimum for P = 1 (dotted line), P = 2 (dashed line) and P = 5 (solid line).
When P increases, the transition become more wiggly as the systems goes through more
non-affine states.

We further illustrate the global minimum path in Fig.8.12 (A and B) where the energy
of the global minimum in hard device for P = 1 (dotted line), P = 2 (dot-dashed line),
P = 5 (dashed line) and P = 20 (continuous line). The other parameters are: λ1 = 0.3,
λ0 = 0.7, l = −0.3 (note that here, the value of N doesn’t matter). The energy becomes
more and more convex as P increases which also corresponds to smoothing the energy
landscape (already at P = 5 the wiggles are barely visible on Fig.8.12B). In the limit
P → ∞, relaxed energy is convex but not strictly convex: see for the case P = 20
on Fig.8.12, the interval where the energy depends linearly on the elongation (see also
(Puglisi and Truskinovsky, 2000; Rogers and Truskinovsky, 1997)). The convexification
of the energy in the thermodynamic limit is expected (Lebowitz and Lieb, 1969).

In Fig.8.12(C and D), we represent the corresponding tension vs elongation curves on
Fig.8.12(C and D). As P increases, the number of transition increases while the size of
the wiggles decreases. In the limit P → ∞, the hard device behavior along the global
minimum converges to the soft device behavior (see bold line). Hence, although for the
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Fig. 8.12 – Continuum limit as P → ∞. Energy vs elongation (A and B) and tension vs elongation
(C and (D)) in the global minimum for different half-sarcomere chain: P = 1 (dotted line), P = 2 (dot-
dashed line), P = 5 (dashed line), P = 20 (continuous line). (B) and (D) are zooms of (A) and (C). On
(C) and (D), we also represent the elongation vs applied tension relation in soft device (bold line). As
P increases, the energy landscape is smoothed and becomes convex (see A). The tension vs elongation
relation converges to the soft device elongation vs applied tension relation and exhibits a plateau (B).
Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3 (note that here, the value of Nxb does’t matter).

Fig. 8.13 – T2 curves obtained by A.Vilfan and T.A.J Duke for P = 1 (solid line), P = 2
(dotted line), P = 4 (short-dashed line), P = 8 (long-dashed line) and P = 16 (dot-dashed line). From
Vilfan and Duke (2003) Fig.8. The curves are obtained from numerical simulations based on a chemo-
mechanical model by measuring the tension attained 2 ms after a stretch/release in hard device. The value
of β used for their simulations is about 40.
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Fig. 8.14 – Elongation of half-sarcomeres in global minimum for different chain length in
hard device. (A): P = 2; (B): P = 5; (C): P = 20. In the region of the transition, the global minimum is
characterized by inhomogeneous half-sarcomere elongations: the upper branch contains pre-power-stroke
half-sarcomeres and the lower branch post-power-stroke half-sarcomeres. The numbers indicates how many
half-sarcomere are in each branch at a given ǫ. In soft device, the elongation is always the same in all
half-sarcomeres so the systems remains on the diagonal. Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3.

Fig. 8.15 – Probability density of transient stretches of individual half-sarcomeres (y-axis)
compared to the mean elongation of the half-sarcomere (total length divided by the number
of units). From Vilfan and Duke (2003) Fig.9. (A): P = 2; (B): P = 4, (C): P = 32. The curves where
obtained using a chemo-mechanical model including attachment-detachment and simulating quick force
recovery experiments. The value used for the parameters are similar to the one we presently use (unless
there is no double well potential). In particular their value of β is about 40.

single half-sarcomere, we saw that the T2 curve and L2 curve describing ground states
cannot coincide (see Figs.3.1 and 3.2), when many half-sarcomeres are connected in series,
the 2 curves superimpose. If one takes also into account the less favorable non-affine states,
our system can exhibit a much more complex path with possibly much more additional
wiggles.

Fig.8.14 we shows the distribution of half-sarcomere elongations in hard device for
different applied elongations and for different fiber lengths (A: P = 2, B: P = 5 and C:
P = 20). For this figure , we used a non-symmetric double well potential: λ1 = 0.4,
λ0 = 0.7, l = −0.3. Within the transition, the population of half-sarcomere splits into
2 categories: the first one being stretched above average (top trace above diagonal) and
the other under average (bottom trace bellow diagonal). The number beside the curves
indicates on each portion the number of half-sarcomere in each category. Theses analytical
results are in full agreement with the numerical computations based on a kinetic Monte–
Carlo model where sarcomeres are viewed as bi-stable elements (Vilfan and Duke, 2003)
(see Fig.8.15). Their model assumes a single stiffness for the cross-bridges so the slopes
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of the different branches showing the different sarcomere elongations are all equal to 1.
With our model, the presence of an asymmetric double well allows one to generate a more
complex picture where the different branches can have different slopes (see Fig.8.14).

Moreover these simulations are done at finite temperature. In our language, the value
they used for β is about 40 so their system can already be considered as ‘cold’. So the the
results in this paper are nothing else but the global minimum of the energy. This suggest
that the statistical baggage of their model is of secondary importance.

We remark that it is an actual challenge in experiment to measure the distribution
of half-sarcomere elongation under different loading conditions. Such experiments could
give a way to measure indirectly the stiffness of the pre-power-stroke and post-power-
stroke configurations, directly linked to the mechanical characteristics of our double well
potential. We discuss the potential evidence of the half sarcomere in inhomogeneity in
Sec.1.3.

8.2 Single sarcomere at θ , 0 (P = 2)

Before studying the whole chain at finite temperature we analyze the simplest case of
two half-sarcomeres in series forming a sarcomere. In this case the number of degrees of
freedom is still low and we can perform semi-analytical computations without simplifying
assumptions.

8.2.1 Partition functions

In the general case, the partition function are given by:

ZP
h (ǫ, β) =

∫

exp [−β (V (ǫ, ǫ))]1 1
P

∑

ǫk
z=ǫdǫ in hard device, (8.2.1)

ZP
s (σ, β) =

∫

exp [−β (W (σ, ǫ))] dǫ in soft device. (8.2.2)

where V and W are given by Eq.(8.1.1) and (8.1.2) respectively and 1 is the indicator
function.

For all values of P , we can integrate independently with respect to all ǫki for 1 ≤
i ≤ N and 1 ≤ k ≤ P independently like we did for the single half-sarcomere case (see
Sec.4.2.1). Furthermore, in soft device, the full integration can be performed without any
simplifying assumptions for arbitrary P due to the absence of coupling between different
half-sarcomeres. More precisely, the partition function in the soft device can be written
as the product of single half-sarcomeres partition functions (see Sec.4.2.1):

ZP
s (σ, β) = (Zs (σ, β))P =

(√

2π

Nβλf

∫

exp [−βGy (σ, x, β)] dx

)P

. (8.2.3)

The difficulty in the hard device, comes essentially from the constraint 1 1
P

∑

ǫk
z =ǫ in

Eq.(8.2.1) which couples degrees of freedom associated with different half-sarcomeres. We
will show in the next section how to deal with this problem in the limit P → ∞. In the
case P = 2, we obtain:

Z2
h (ǫ, β) =

y
exp

[

−β
(

Fy

(

ǫ1z, ǫ
1
y, β
)

+ Fy

(

2ǫ− ǫ1z, ǫ
2
y, β
))]

dǫ1ydǫ
2
ydǫ

1
z (8.2.4)
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where Fy and Gy have been introduced in Chap.4:

Fy (ǫ, ǫy, β) = N

(

1

2
λf (ǫ− ǫy)2 − 1

β
ln (Z1 (β, ǫy) + Z0 (βǫy))

)

(4.2.13)

Gy (σ, ǫy, β) = N

(

− σ

N
ǫy − 1

2

σ2

N2λf
− 1

β
ln (Z1 (β, ǫy) + Z0 (β, ǫy))

)

. (4.2.14)

The integration with respect to ǫ1z can be done independently from ǫ1y and ǫ2y; we obtain:

Z2
h (ǫ, β) =

√

2π

βNPλf

x
exp

[

−βF 2
y

(

ǫ, ǫ1y, ǫ
2
y, β
)]

dǫ1ydǫ
2
y (8.2.5)

where F 2
y

(

ǫ, ǫ1y, ǫ
2
y, β
)

= NP

{

1

2
λf

(

ǫ− 1

P

(

ǫ1y + ǫ2y
)

)2

− 1

β

1

P
ln
[(

Z1

(

ǫ1y, β
)

+ Z0

(

ǫ1y, β
)) (

Z1

(

ǫ2y, β
)

+ Z0

(

ǫ2y, β
))]

}

. (8.2.6)

In the soft device we can also define a partially equilibrated Gibbs free energy which is
simply the sum of two Gy functions for each half-sarcomere:

G2
y

(

σ, ǫ1y, ǫ
2
y, β
)

= Gy

(

σ, ǫ1y, β
)

+Gy

(

σ, ǫ2y, β
)

(8.2.7)

8.2.2 Isotherms

From the partition functions Z2
h and Z2

s , we can compute the free energy of a single
sarcomere:

F 2 (ǫ, β) = − 1

β
ln
(

Z2
h (ǫ, β)

)

in hard device (8.2.8)

G2 (σ, β) = − 1

β
ln
(

Z2
s (σ, β)

)

in soft device. (8.2.9)

The isotherms tension–elongation space can be obtained by differentiating of F 2 and G2

with respect to Pǫ and σ respectively. We obtain:

T 2
2 (ǫ, β) = Nλf

(

ǫ− 1

P

〈

ǫ1y + ǫ2y
〉2

h
(ǫ, β)

)

(8.2.10)

L2
2 (ǫ, β) = P

(

σ

N
+ 〈ǫy〉s (σ, β)

)

(4.2.17)

where
〈

ǫ1y + ǫ2y
〉2

h
(ǫ, β) =

1

Z2
h (ǫ, β)

x
(

ǫ1y + ǫ2y
)

exp
[

−βF 2
y

(

ǫ, ǫ1y, ǫ
2
y, β
)]

dǫ1ydǫ
2
y, (8.2.11)

and 〈ǫy〉s (σ, β) =
1

Zs (σ, β)

∫

ǫy exp [−βGy (σ, ǫyβ)] dǫy. (8.2.12)

Since all half-sarcomeres are independent the formula for L2 in the soft device is the same
as in the case of a single half-sarcomere. The free energies F 2 and G2 and the isotherms T 2

2

and L2
2 are represented on Fig.8.16 for the following set of parameters: λ1 = 0.4, λ0 = 0.7,

l = −0.3, λf = 1 and N = 10.
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Fig. 8.16 – Isotherms for one sarcomere. (A): Free energy in hard device obtained from Eq.(8.2.8).
(B): Gibbs free energy in soft device obtained from Eq.(8.2.9). (C): T2 curve obtained from Eq.(8.2.10).
(D): L2 curve obtained from Eq.(4.2.17). On each curve, we represent plots for: β = 10 (dotted line),
β = 20 (dashed line), beta = 50 (continuous line) and in the global minimum (solid line). Like in the single
half-sarcomere case, when β increases, the system gets closer to the global minimum. In soft device (B
and D), since the different half-sarcomeres behave independently, the curves are the same as in the case
of one half-sarcomere (see Fig.4.2). Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 1, N = 10.

On the one hand, as previously observed at the level of a single half-sarcomere, as
β decreases, the free energy in hard device becomes convexified (see Fig.8.16). We will
show in the next section that the free energy becomes convex at any temperature in the
thermodynamics limit P → ∞.

On the other hand, the T2 curve develops two regions of negative slope as β in-
creases (see Fig.8.16C). The presence of regions with negative slope was already noticed in
(Vilfan and Duke, 2003) (see Fig.8.13), they also linked them to the presence of non-affine
states ({(1, 0) , (0, 1)} and {(0, 1) , (1, 0)}) characterized by different elongations of differ-
ent half-sarcomeres in isometric contraction. The explanation of this phenomenon was
only qualitative in that paper. Here we reconstruct explicitly these curves from statistical
mechanics at finite temperature and show that the negative slope can be viewed as a finite
size effect. The isotherms in soft device (see Fig.8.16B and D) are the same as in the case
of a single half-sarcomere (see Fig.4.2).

8.2.3 Reduced energy landscape

In the previous Section, we introduced the non-equilibrium energy landscapes F 2
y and

G2
y, in the space of the internal degrees of freedom ǫ1y and ǫ2y and on the loading. As in the

case of a single half-sarcomere in the hard device, F 2
y contains the first term that depends

on λf and generates a Gaussian distribution around 1
2

(

ǫ1y + ǫ2y
)

= ǫ. The second term in
−1/β ln

(

(Z1(ǫ1y) + Z0(ǫ1y))(Z1(ǫ2y) + Z0(ǫ2y))
)

is a sum of four Gaussian distributions.

On Fig.8.17, we represent the isolines of F 2
y vs ǫ1y and ǫ2y for low λf (A, B and C,
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Fig. 8.17 – Reduced energy landscape in hard device for two half-sarcomeres. In the first
row we represent the tension in thermal equilibrium vs the applied elongation per half-sarcomere for 2
different values of λf : λf = 0.05 (I) and λf = 1 (II). On each plot, we marked 3 points: A, B and C for
λf = 0.05 and D, E and F for λf = 1. To each of those point corresponds a reduced free energy landscape
F 2

y (see Eq.(8.2.6)) function of the cross-bridges elongations ǫ1
y and ǫ2

y represented on the lower panel. For
λf = 0.05 (see A, B and C), the reduced energy landscape present 4 local minima when ǫ is in the middle
of the transition (see B). For λf = 1, the system presents only 2 local minima. Other parameters are:
λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10 and β = 10.

λf = 0.05) and large λf (D, E and F, λf = 1) in unit of kbθ. In the first row, we show the
isotherms T2 for two values of λf (I: λf = 0.05 and II: λf = 1). The corresponding energy
landscapes are represented on the second and third row. For low λf (see Fig.8.17I and
A, B, C), the energy landscape exhibits four macroscopic wells at intermediate loadings
(see B). Each macroscopic well corresponds to a particular microstructure ({(1, 0) , (1, 0)},
{(1, 0) , (0, 1)}, {(0, 1) , (1, 0)} and {(0, 1) , (0, 1)}). At larger loading (A, on the short-
ening side and C, on the stretching side), the multi-well structure disappears and the
remaining well correspond the homogeneous microstructure: {(1, 0) , (1, 0)} (see A) and
{(0, 1) , (0, 1)} (see C). As the load changes from A to C, the systems can stay in the affine
state {(1, 0) , (1, 0)} until the other affine state {(0, 1) , (0, 1)} becomes available. Then, it
jumps to this new configuration spending only a small fraction of ‘time’ in the non affine
states {(1, 0) , (0, 1)} or {(0, 1) , (1, 0)} (see the arrows indicating trajectories).

At large λf (see Fig.8.17II and D, E, F, where λf = 1), the energy landscape for
intermediate value of the loading (see E) shows only two wells corresponding to the 2
non-affine states {(1, 0) , (0, 1)} and {(0, 1) , (1, 0)}. Hence when going from D to F, the
system spends significant amount of ‘time’ in the non affine state.
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Fig. 8.18 – Reduced energy landscape in soft device for two half-sarcomeres. On the first row,
we represent the L2 curve and indicate 3 points, A at σ/N = σ1/2/N − 0.1, B at σ/N = σ1/2/N and C at
σ/N = σ1/2/N + 0.1. On the second row, we represent G2

y vs ǫ1
y and ǫ2

y corresponding to the points A, B
and C see Eq.(8.2.7). The parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10 and β = 10 and λf = 0.5.

We conclude that, like in the single half-sarcomere case where low values of λf fa-
vors homogeneous distribution of the cross-bridges (see Sec.4.2.3), the presence of strong
coupling (low λf ) favors homogeneous strain distribution also along the chain of half-
sarcomeres, the non affine states being only transitory populated.

In soft device, the dependence of G2
y on λf is only due to the term σ2/(N2λf ) and

therefore has no effect on the dependence on ǫ1y and ǫ2y. Isolines of Gy are shown on
Fig.8.18 for 3 different loadings: σ/N = σ1/2/N − 0.1 (A), σ/N = σ1/2/N (B) and
σ/N = σ1/2/N + 0.1 (C) and for λf = 0.5. The corresponding points on the L2 curve
are represented on the upper part of the figure. Like F 2

y in hard device at low λf (see
Fig.8.17), G2

y present four macroscopic wells when σ is close to σ1/2 the system spends
most of the ‘time’ in the affine states. Note that Fig.8.17 and 8.18 corresponds N = 10
and the energy barriers between the macroscopic wells are of the order of kbθ. The barrier
will of course be proportionally higher with more realistic values of N (N ∼ 100).

8.3 Chain of half-sarcomeres with P > 2

8.3.1 Partition functions

After the detailed illustrations in the previous section, here we turn to the general case
of P > 2. The partition function in the soft device can be again obtained as the product
of individual partition functions like in the case P = 2 (see Eq.8.2.3):

ZP
s (σ, β) = (Zs (σ, β))P =

(√

2π

Nβλf

∫

exp [−βGy (σ, x, β)] dx

)P

.
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In the hard device, the computation is more difficult because of the constrain
∑

ǫkz =
Pǫ. However a semi-explicit answer can still be obtained in the limit β → ∞, P → ∞.

Starting with Eq.(8.2.1), we first perform the integration with respect to all ǫki for for
1 ≤ i ≤ N and 1 ≤ k ≤ P . We obtain:

ZP
h (ǫ, β) =

∫

exp

[

−β
(

P
∑

k=1

Fy

(

ǫkz , ǫ
k
y , β
)

)]

1{ 1
P

∑

ǫk
z =ǫ}dǫ

1
y . . . dǫ

P
y dǫ

1
z . . . dǫ

P
z (8.3.1)

where Z1 and Z0 are given by Eqs.(4.2.7) and (4.2.7).
To simplify the computation of the partition function, we assume that individual half-

sarcomeres can be only either in full pre-power-stroke or post-power-stroke configuration
((1, 0, 0) or (0, 0, 1)). This means that we neglect all the local minima with nk

1 , 0, 1 for
all 1 ≤ k ≤ P and retain only the states where each half-sarcomere is in global minimum
which is in agreement with our conclusion that a single half-sarcomere is a ‘cold’ system
(these state were represented by solid lines on Fig.8.2). More specifically we make the
following hypothesis for all 1 ≤ k ≤ P :

Z1

(

ǫky , β
)

+ Z0

(

ǫky, β
)

=







√

2π(1−λ1)
β exp

[

−βλ1
1
2

(

ǫky + 1
)2
]

if αk = 1
√

2π(1−λ0)
β exp

[

−β
(

v0 + λ0
1
2

(

ǫky
)2
)]

if αk = 0.
(8.3.2)

so that Z1/ (Z1 + Z0) = 0 or 1. Then we can rewrite the partition function as:

ZP
h (ǫ, β) =

∑

α

∫

exp

[

−βN
P
∑

k=1

1

2

(

ǫkz − ǫky

)2
− 1

β

1

2
ln

(

2π(1 − λαk
)

β

)

+
1

2
λαk

(

ǫky + αk

)2
+ (1 − αk) v0

]

1{∑ ǫk
z =P ǫ}dǫ

1
y . . . dǫ

P
y dǫ

1
z . . . dǫ

P
z (8.3.3)

where α represents a vector (α1, . . . , αP ) with αk = 0 or 1. Next, we can integrate with
respect to all ǫky to obtain:

ZP
h (ǫ, β) =

∑

α

Aα

∫

exp

[

−βN
P
∑

k=1

1

2
µk

(

ǫkz + αk

)2
+ (1 − αk) v0

]

1{∑ ǫk
z =P ǫ}dǫ

1
z . . . dǫ

P
z

where µk =
λαk

λf

λαk
+ λf

and Aα =
P
∏

k=1

(

2π (1 − λαk
)

β

)N
2
(

2π

βN (λf + λαk
)

) 1
2

. (8.3.4)

From here, we follow (Efendiev and Truskinovsky, 2010). To perform the integration with
respect to ǫ1z, . . . , ǫ

P
z , we introduce:



















ǫkz + αk = zk − zk−1

z0 = 0

zP = Pǫ+
P
∑

k=1

αk.

(8.3.5)

and change variable in the integral accordingly. We rewrite ZP
h as:

ZP
h (ǫ, β) =

∑

α

{

Aα exp

[

−βN
(

1

2
µP z

2
P +

P
∑

k=1

(1 − αk) v0

)]

∫

exp

[

−βN
(

1

2
zT .TP .z − 2µP zP e

T .z

)]

dz

}

(8.3.6)
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where z =







z1
...

zP −1






; e =











0
...
0
1











; TM =



















µ1 + µ2 −µ2 0 · · · 0

−µ2 µ2 + µ3 −µ3
. . .

...

0 −µ3
. . .

. . . 0
...

. . .
. . .

. . . −µM−1

0 · · · 0 −µM−1 µM−1 + µM



















Here xT denotes the transpose of x. We now compute the Gaussian integral by using the
following classical result:

∫

exp

[

−βN
(

1

2
zT .T .z − 2µMzMeT .z

)]

dz =

(

2π

βN

)
P −1

2 (

det
(

TP
))− 1

2
exp

[

βN
1

2
(µP zP )2

(

TP
)−1

P −1P −1

]

. (8.3.7)

The determinant of P as well as
(

TP
)−1

P −1P −1
, the last entries in the inverse of TP can be

obtained explicitly:

det
(

TP
)

=

P
∏

k=1

µk

P
∑

k=1

1

µk
, (8.3.8)

(

TP
)−1

P −1P −1
=

1

det
(

TP
) (−1)2(N−1) det

(

TP −1
)

=

P −1
∏

k=1

µk

P −1
∑

k=1

1
µk

P
∏

k=1

µk

P
∑

k=1

1
µk

.

(8.3.9)

After the substitution of these relations to Eq.(8.3.6), we obtain the following Ising prob-
lem:

Zv
h (ǫ, β) =

∑

α

AαBα exp



−βNP





1

2

(

1

P

v
∑

k=1

1

µk

)−1(

ǫ+

P
∑

k=1

αk

)2

+

P
∑

k=1

(1 − αk) v0







 (8.3.10)

where Bα =

(

2π

βN

)
P −1

2

(

P
∏

k=1

µk

P
∑

k=1

1

µk

)− 1
2

. (8.3.11)

Since the energy depends only on
∑

α (‘average magnetization’) and summation is over
all spin configurations {α} it is now convenient to introduce

p =
1

P

P
∑

k=1

αk, 0 ≤ p ≤ 1, (8.3.12)

which represents the fraction of half-sarcomeres in full post-power-stroke conformation.
We see that ZP

h depends only on the sum and the product over k, hence the particular
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order of half-sarcomere in the chain does not matter. Therefore,
∑

α
reduces to a discrete

sum over p, from 0 to 1 taking into account the multiplicity of each configuration with a
given p. After some manipulations, ZP

h can be put into the form:

ZP
h (ǫ, β) =

1
∑

p=0

(

P

Pp

)

K (p) exp

[

−βNP
(

1

2

(

p

µ1
+

1 − p

µ0

)−1

(ǫ+ p)2 + (1 − p) v0

)]

where K (p) =

(

2π

β

)
(N+2)P −1

2

√

N

P
N−P

× (1 − λ1)p NP
2 (1 − λ0)(1−p) NP

2 (λf + λ1)−p P
2 (λf + λ0)−(1−p) P

2

µ
p P

2
1 µ

(1−p) P
2

0

(

p
µ1

+ 1−p
µ0

)
1
2

(8.3.13)

If P is large, we can expand the binomial coefficients by using Stirling formula and trans-
form the sum into an integral over [0, 1]. We then obtain the more compact expression:

ZP
h (ǫ, β) ≈

(

2π

β

)
(N+2)P −1

2 N
1
2

−P

√
2π

∫ 1

0
φ (p) exp [−P (ψ (ǫ, β, p))] dp (8.3.14)

with ψ (ǫ, β, p) = Nβ

(

1

2

(

p

µ1
+

1 − p

µ0

)−1

(ǫ+ p)2 + (1 − p) v0

)

− N

2
(p ln (1 − λ1) + (1 − p) ln (1 − λ0))

+ p ln (p) + (1 − p) ln (1 − p) +
p

2
ln (λ1λf ) +

1 − p

2
ln (λ0λf )

, (8.3.15)

and φ (p) =

[(

p

µ1
+

1 − p

µ0

)

(p (1 − p))

]− 1
2

(8.3.16)

When β → ∞, ψ reduces to the mechanical energy of a chain with a fraction p of half-
sarcomeres in post-power-stroke:

ψ (ǫ, β, p) −→
β→∞

Nβ

(

1

2

(

p

µ1
+

1 − p

µ0

)−1

(ǫ+ p)2 + (1 − p) v0

)

(8.3.17)

and therefore, all entropic elasticity terms disappear. For finite β, we can still obtain
analytical results in the thermodynamic limit P → ∞.Indeed, by using Laplace method
in Eq.(8.3.18) we can write:

ZP
h (ǫ, β) ≈

(

2π

β

)
(N+2)P −1

2

N
1
2

−P φ
(

p⋆,h
)

exp
[

−Pψ
(

ǫ, β, p⋆,h
)]

(

P ∂2
pψ (ǫ, β, p)

∣

∣

p=p⋆,h

) 1
2

(8.3.18)

where p⋆,h is the minimum of ψ in the interval ]0, 1[. For large shortening (resp. stretching),
as the single half-sarcomere case, we have p = 1 (resp. 0) and therefore the asymptotics
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changes to:

ZP
h (ǫ, β) ≈

(

2π

β

)
(N+2)P −1

2 N
1
2

−P

√
2π

φ (1) exp [−Pψ (ǫ, β, 1)]
(

P ∂pψ (ǫ, β, p)|p=1

) 1
2

if p⋆,h = 1 (8.3.19)

and ZP
h (ǫ, β) ≈

(

2π

β

)
(N+2)P −1

2 N
1
2

−P

√
2π

φ (0) exp [−Pψ (ǫ, β, 0)]
(

P ∂pψ (ǫ, β, p)|p=0

) 1
2

if p⋆,h = 0 (8.3.20)

In the limit β → ∞, p⋆,h converges to the the fraction of post-power-stroke half-sarcomeres
that minimizes the mechanical energy, and we recover results from Sec.8.1.1.

8.3.2 Isotherms

Based on Eq.(8.3.18) the equilibrium free energy for a chain of half-sarcomeres in hard
device can be written in the form:

FP (ǫ, β) ≈ − 1

β

(

(N + 2)P − 1

2
ln

(

2π

β

)

− Pψ
(

ǫ, β, p⋆,h
)

.

)

, (8.3.21)

Then the equilibriul tension is:

TP
2 (ǫ, β) ≈ N

(

p⋆,h

µ1
+

1 − p⋆,h

µ0

)

(

ǫ+ p⋆,h
)

. (8.3.22)

In soft device, since the partition function is the product of individual and independent
partition functions for each half-sarcomere, the Gibbs free energy and the total elongation
of a chain are simply P times the results for a single half-sarcomere:

GP (σ, β) = − 1

β
P ln (Zs (ǫ, β)) , (8.3.23)

LP
2 (σ, β) = P

(

σ

Nλf
+ 〈ǫy〉s (σ, β)

)

. (8.3.24)

There Zs is given by Eq.(4.2.12) and 〈ǫy〉s by Eq.(4.2.18).
The equilibrium mean fraction of half-sarcomere in post-power-stroke, 〈p〉h simply

corresponds in hard device to the minimum p⋆,h of ψ (given by Eq.8.3.15):

〈p〉h (ǫ, β) = p⋆,h in hard device. (8.3.25)

The argumentation here is the same as in the case of a single half-sarcomere (see App.B.4.1.
In soft device, to find 〈p〉s we first write the probability for sarcomere one to be in post-
power-stroke configuration:

q1 (σ, β) =
1

Zs (σ, β)

(

−∞<{ǫ1
i }<l

(

ǫ\{ǫ1
i }

exp [−βW (σ, ǫ)] dǫ

where the energy W is given by Eq.(8.1.2). Due to independence of individual half-
sarcomeres, all integrals for half-sarcomeres 2, . . . P simplifies and only the integrals related
to the first half-sarcomere remain. We integrate further with respect to ǫ11 . . . ǫ

N
1 to obtain:

q1 (σ, β) =

s (

Z1

(

ǫ1y, β
))N

exp
[

−β
(

1
2Nλf

(

ǫ1z − ǫ1y
)2 − σǫ1z

)]

dǫ1ydǫ
1
z

s (

Z1

(

ǫ1y, β
)

+ Z0

(

ǫ1y, β
))N

exp
[

−β
(

1
2Nλf

(

ǫ1z − ǫ1y
)2 − σǫ1z

)]

dǫ1ydǫ
1
z



202 Chapter 8 – Chain of half-sarcomeres

-2 -1 0 1
-0.05

0

0.05

0.1

Β=100
Β=20
Β=10
Β=5
Β=2

-2 -1 0 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Global Min.
Β=100
Β=20
Β=5
Β=2

F/NP T2/N

ǫǫ

A B

Fig. 8.19 – Influence of temperature on the thermal equilibrium of a chain of half-sarcomeres in hard
device. (A): free energy for β = 2 (dotted line), 5 (dashed line), 20 (dot-dashed line), 100 (solid line) and
in the global minimum (bold line). (B): T2 curve for β = 2 (dotted line), 5 (dashed line), 10 (dot-dashed
line), 20 (solid line) and 100 (bold line). The free energy is convex and the tension is monotone for all β.
As β increases, the T2 curves develops a plateau. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3,
λf = 1 and N = 10.

After yet another integration with respect to ǫ1z we obtain:

q1 (σ, β) =

∫

(

Z1(ǫ1
y,β)

Z1(ǫ1
y,β)+Z0(ǫ1

y,β)

)N

exp [−βGy (σ, ǫy, β)] dǫ1y
∫ (

Z1

(

ǫ1y, β
)

+ Z0

(

ǫ1y, β
))N

exp [−βGy (σ, ǫy, β)] dǫ1y
. (8.3.26)

Again, due to independence, the probability for any half-sarcomere in the chain to be in
post-power-stroke is given by q1. The same computation can be performed to find q0, the
probability for one half-sarcomere to be in pre-power-stroke and we find that q0 = 1 − q1.
Hence the probability to have P1 half-sarcomeres in the chain in post-power-stroke can be
expressed as a Bernoulli law with parameters P and q1:

P (P1 = X) =

(

P

N

)

qX
1 (1 − q1)P −X (8.3.27)

We can then conclude that the average fraction of post-power-stroke half-sarcomere in soft
device is:

〈p〉s = q1 (σ, β) where the rhs can be computed numerically from Eq.(8.3.26). (8.3.28)

We illustrates the above computations in Figs.8.19, 8.20, 8.21 and 8.22. The appearence
of the free energy and tension vs elongation relation for soft device is similar to what was
already presented in Chap.4.

In the hard device, the increases of the temperature enhances the convexity of the
energy landscape exactly as in the case of a single half-sarcomeres. However, as tempera-
ture is reduced (β increases), the T2 curve does not exhibit anymore a region of negative
stiffness but rather develops a plateau like it is observed in experiments. This result is
consistent with the general result that in the thermodynamic limit (P → ∞), the free
energy of a distributed system is always convex.

In Fig.8.20, we show how the number of cross-bridges N affects the state of thermal
equilibrium. A reduction of N smooths the transition on the T2 curve (see B) and con-
vexifies the energy landscape (see A) and in this sense decreasing N has a similar effect as
reducing β. This is a so-called finite size effect studied extensively by T.L. Hill in (Hill,
1964). In experiment, the transition between the plateau and the linear part of the T2
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Fig. 8.20 – Influence of the number of cross-bridges on the thermal equilibrium of a chain of half-
sarcomeres in hard device. Free energy (A) and tension (B) for N = 1 (dotted line), 5 (dashed line),
10 (dot-dashed line), 20 (solid line) and 100 (bold line). The free energy is convex and the tension ois
monotone for all β. As β increases, the T2 curves develops a plateau. Other parameters are: λ1 = 0.4,
λ0 = 0.7, l = −0.3, λf = 1 and β = 10.
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Fig. 8.21 – Influence of the coupling parameter on the thermal equilibrium of a chain of half-sarcomeres
in hard device. Free energy (A) and tension (B) for λf = 01 (dotted line), 0.2 (dashed line), 0.5 (dot-
dashed line), 1 (solid line) and 10 (bold line) The position of the transition is shifted to larger ǫ when λf

decreases. Other parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, N = 10 and β = 10.
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Fig. 8.22 – Evolution of the fraction of post-power-stroke half-sarcomere in hard and soft
devices. (A): evolution of p for different values of the coupling parameter: λf = 0.01 (dotted line), 0.02
(dashed line), 0.05 (dot-dashed line), 0.1 (long dashed line), and 10 (solid line). In soft device, the curve
(B) does not depend on λf . Parameters are: λ1 = 0.4, λ0 = 0.7, l = −0.3, β
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Fig. 8.23 – Fit of the parameter l in hard (A) and soft (B) devices for a chain of half-sarcomere.
The curve in soft device is the same as for the single half-sarcomere (see Fig.7.4). The value of l found
in hard and soft devices to reproduce the isometric conditions is now the same unlike with the single
half-sarcomere.

curve in shortening is not sharp as predicted by our model (see Figs.8.24 and 8.25) which
may be a manifestation of the finite size effect mentioned above (N ∼ 100).

The effect of the coupling parameter λf is illustrated in Figs.8.21 and 8.22. As in the
case of a single half-sarcomere in a system with soft filament (low λf ), the transition is
shifted towards larger values of the total strain (see Fig.8.21). However, the transition
occurs at the same equilibrium tension. Overall making the coupling stronger (reducing
λf ) leads to smoothing of the transition thereby increasing the size of the region with
inhomogeneous non-affine response at the microscale (see Fig.8.22A). This effect is absent
in soft device where 〈p〉s does not depend on λf .

8.4 Adjusting parameters

In this section we study the kinetics of a chain of half-sarcomeres submitted to fast load
steps. First, we re-adjust the parameters of the model following the procedure described
in Sec.7.1 and see Tab.7.1 on p.139.

8.4.1 The stata of isometric contractions

In this section, we readjust our parameter selection from a half-sarcomere level to the
level o the whole sarcomere chain. The values of λ1, λ0, N , β, ǫ0 and T0 should obviously
be the same as in the case of a single half-sarcomere. We recall that in Sec.7.1.5, the
value of l was chosen to fit the initial conditions (L2 = ǫ0 and T2 = T0) and that the
optimal choice was different in hard and soft devices (see Fig.7.4). In Fig.8.23, we show
the equilibrium tension (A) and the elongation (B) corresponding to the initial conditions
ǫ = ǫ0 and σ = T0 in hard and soft devices. In soft device (see Fig.8.23B), the curve
is the same as for the single half-sarcomere and the optimal value of l is −0.131 in non-
dimensional units. However, in hard device, the curve is radically different, and we no
longer see a sharp transition at l ≈ −0.09. Instead the optimal fit is achieved at the same
value of l as in the soft device corresponding to the equilibrium tension T0. Therefore, in
the case of a half-sarcomere chain, the isometric conditions can be matched with the same
set of parameters in hard and soft device.

8.4.2 Thermal Equilibrium

We can now apply the general formula describing thermal equilibrium in a sarcomere
chain (obtained in the previous section) to our particular model with parameters adjusted
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unit of kbθ computed from Eq.(8.3.23). (B): L2 curve computed using Eq.(8.3.24). Experimental data
are for the hard device response from: Ford et al. (1977) (▽), Brunello et al. (2007) (△) and Linari et al.
(2009) (�).

to experimental data. The equilibrium free energy (in units of kbθ) and the tension vs

elongation relations in hard and soft devices are shown respectively on Figs.8.24 and 8.25.

First, we observe that in hard device, the free energy is convex. The free energy gap
between the isometric state and the ground state is about 12kbθ (see Fig.8.24). This value
is of the order of mechanical work produced by a single motor (∼ 8kbθ) if we consider
that 40% of the energy from ATP is converted into mechanical work (see Sec.2.3.3). It
is understood that this estimate based on the free energy is only valid for quasi-static
evolution (Jarzynski, 1997). Therefore it is likely that the mechanical work performed
during the quick recovery is lower than 12kbθ and thus closer to experimental estimates
(Barclay et al., 2010). The same free energy gap is seen on Fig.8.25A, which represents
the equilibrium Gibbs free energy in soft device. In order to reproduce accurately the
energetics of the power stroke one has to keep track of the heat (Sekimoto, 2010).

Second, we observe that the isothermal tension vs elongation relations are the same
in hard and soft devices (compare Figs.8.24B and 8.25B). We see that the negative slope
observed in the case of a single half-sarcomere is no longer present. This agrees with ex-
perimental data if the T2 curve is interpreted as equilibrium response. We notice, however,
that the plateau is more marked in our computation than in experiments, which is either
due to experimental uncertainties or due to early detachment of cross-bridges at the end
of the quick recovery (see the effect of the reduction of the number of cross-bridges on
Fig.8.20).

On Fig.8.26, we show the equilibrium fraction of post-power-stroke half-sarcomeres in
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Fig. 8.26 – Fraction of post-power-stroke half-sarcomeres in hard (A) and soft device(B).
The curves are obtained from Eqs.(8.3.25) (A) and (8.3.28) (B). In hard device, for steps sizes, between
−5 and +2 nm/hs, the system equilibrates in a non affine configuration. In particular, the isometric state
27% of the half-sarcomeres are in post-power-stroke and 67% are in pre-power-stroke. In soft device, we
also have 〈p〉s = 0.27, for σ = T 0, but the whole chain immediately shift to full post-power-stroke (resp.
full pre-power-stroke) with a change in force in the shortening direction (resp. stretching direction).

hard (A) and soft devices (B). The two curves are radically different. In hard device,
we observe a linear transition going from δǫ = +2 to δǫ = −5 nm/hs corresponding to
the plateau on the T2 curves. This reminds us that in thermal equilibrium, the plateau
corresponds a succession of non affine states with heterogeneous arrangement of pre- and
post-power-stroke half-sarcomeres. In particular, in the isometric state, 27% of the half-
sarcomeres are in post-power-stroke. this proportion is the same in the soft device at
σ = T0 but in this cases, the slightest change in the applied tension automatically brings
the system either in full post-power-stroke (lower force) or full pre-power-stroke (higher
force) (see Fig.8.26B).

8.4.3 Kinetics

Method

In this section, We simulate the response of a fiber with 20 half-sarcomeres in series, by
tracking its stochastic dynamics in the full configuration space. The isometric conditions
is obtained by setting 27% of the half-sarcomeres in post-power-stroke. As we consider the
myofilaments to be instantly equilibrated the form of the system of Langevin’s equation
describing the system in the hard device takes the form:











































dǫk,t
i = b
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ǫk,t
i , ǫk,t

y

)

dt+
√

2β−1dBk,t
i , for 1 ≤ i ≤ N and 1 ≤ k ≤ P

ǫk,t
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T t

N
+
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(
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P
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N
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)

(8.4.1a)

(8.4.1b)

(8.4.1c)

In soft device the system can be written as:
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


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




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N
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(8.4.2a)

(8.4.2b)
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Fig. 8.27 – Response of fitted model to length steps (A) and load steps (B). The system
initially in isometric condition undergoes a step completed in 110 µs. In hard device (A), we represent the
response to steps with δǫ = 4, 1, −1, −4 and −8 nm/hs. In soft device (B), we represents the response the
load steps: σ/T0 = 1.5, 1.3, 0.7 and 0.4.

Notice that in our simple NN chain there is no direct interaction between adjacent half-
sarcomeres but instead each sarcomere interacts with a mean field imposed by the tension.
We also see that the values of ǫkz are not needed to compute the solution. This implies that,
within our model, the kinetics of the chain does not depend on the particular succession
of configurations which is probably an oversimplification. Notice also that physically, it
is more likely that the real fiber produces a regular pattern of half-sarcomeres in the
chain, however, within the model, we observe the same response for a chain in which e.g.,
the first K half-sarcomeres are in post-power-stroke and for a chain in which these K
half-sarcomeres are regularly spread in the chain.

The system of equations (8.4.1) and (8.4.2) are simulated using a first order Euler
algorithm with a time step ∆t = 10−3 and with 100 independent realizations (Nr = 100)
(see Sec.5.2 and references therein).

Results for a chain of 20 half-sarcomeres

On Fig.8.27 we show the collective response in the system with P = 20 half-sarcomere
at different step sizes in hard (see A) and soft (see B) devices. In hard device: δǫ =
4, 1,−1,−4,−8 nm/hs and in soft device σ/T0 = 1.5, 1.3, 0.7, 0.4. For the lowest repre-
sented step sizes, the system equilibrates in less than 1/2 ms to an apparent steady state.
For larger steps, the system reaches a steady state in two steps, the the first shorter than
the second (see δǫ = −4 nm/hs on Fig.8.27A and σ = 0.4T0 on B). For the largest steps
applied, (see δǫ = −8 nm/hs on Fig.8.27A), the slow steps become barely visible. Such
recovery with two time scale was already visible in the single half-sarcomere at finite tem-
perature (see Figs.7.14, 5.7 and 5.9) but it has not been observed in experiments. This
discrepancy can be explained by the fact that we use a very organized assembly of half-
sarcomeres all having the same number of cross-bridges. It is likely that with a more
heterogeneous sample of half-sarcomeres, this problem will disappear. This argument has
been already put forward in (Duke, 1999) as an explanation for the absence of a absence
of a region with negative stiffness on the T2 curve.

In Fig.8.28, we report the tension and elongation attained at the end of our simulations
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Fig. 8.28 – Comparison between thermal equilibrium and kinetic equilibrium in hard (A) and
soft (B) devices. (A): Hard device. (B): soft device. Continuous line: thermal equilibrium computed
using Eq.(8.3.22) (A) and (8.3.24)(B). (�): Tension and elongation attained at the end of the simulation
(in hard device after 5 ms and in soft device after 10 ms). (•): Tension and elongation attained at the end
of the step (T1 and L1). Experimental points (open symbols) are taken from (Ford et al., 1977)(T1: ×, T2:
▽), (Brunello et al., 2007)(T1: 3, T2: △) and (Linari et al., 2009)(T1: ⊚, T2: �).

(in hard device, after 6 ms and in soft device, after 10 ms) . In hard device (see A), there
is a large interval of shortening steps (5 ≤ δǫ ≤ 2 nm./hs) where the system is not able to
reach equilibrium after the time of simulation which is chosen to be compatible with the
time of observations in real physical experiments. The thermal equilibrium is indicated
by the solid line. Similarly, in the soft device (see Fig.8.28B), the system does not reach
equilibrium after 10 ms for 0.4 ≤ σ/T0 ≤ 1.5. We observe that the two intervals of interest,
in hard and soft devices, span the same region on the tension/elongation plane, where slow
kinetics dominate. We also observe that the kinetic trapping that was more pronounced in
soft device, than in hard device for the single half-sarcomere (see Fig.7.15), is now similar
for both types of experiments. As we have shown for the case of 2 half-sarcomeres, (see
Sec.8.2.3), such kinetic trapping is the consequence of the mean field interaction introduced
by the soft myofilaments.

This results shows that, our model is not able to reproduce the kinetics of the quick re-
covery fully adequately with in apurely mechanical framework with only Brownian motion
helping the system to escape from a local minimum.

Even though the power-stroke is taking place at shorter time scales than the full Lymn-
Taylor cycle, we can speculate that one needs to integrate the active effect of ATP in our
model to accelerate the power-stroke transition.

Also, recall that our model neglects the interactions between adjacent half-sarcomeres.
Such interactions may provoke power-stroke wave propagation in the fiber and accelerate
the transition making propagation of a switch wave easier than successive nucleation. We
found no evidence of such waves in the literature of quick recovery experiments but the
waves might displace at high speed and be barely visible given the size of the experimental
samples (few mm).

In Fig.8.29, we compare the rates obtained from our simulations to available experi-
mental data. As a consequence of the kinetic trapping, we observe slower recovery within
the chain than within the single half-sarcomere in hard device while in the soft device
the rate remains similar (compare Fig.8.29 with Fig.7.16, � for hard device and • for soft
device). However, the general shapes of the kinetic curves obtained in simulations (filled
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Fig. 8.29 – Comparison of the rates of recovery in hard and soft devices. The length clamp exper-
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by 5 nm to the left (see the arrow) to compare with the results of our simulations (•). (�) represent the
rate curve obtained in hard device.

symbols) remain similar to the shapes of the experimental curve (open symbols). Most
importantly, we still observe a slower recovery in soft device (•) than in hard device (�).

To illustrate the inner mechanism of the transition inside the chain, we show on
Figs.8.30 and 8.31, how the fractions of post-power-stroke cross-bridges in each half-
sarcomere evolve in time as the system responds to different load steps. On the figures,
the sarcomeres are labeled 1, . . . , 20 (see ♯) and the time is in ms. To match the initial
isometric conditions, the last 5 half-sarcomeres are assumed to be in equilibrium in the
post-power-stroke configuration (〈n1〉 = 1). When the step size is so small that the sys-
tems is kinetically trapped, the configuration of the chain remains the same throughout
the simulation (see Figs.8.30 and 8.31, first rows). At larger steps (see second row), the
fraction of post-power-stroke cross-bridges increase/decrease in all half-sarcomeres simul-
taneously. Again we do not observe any sign of wave propagation phenomena. This is a
direct consequence of our assumption regarding the the mean field interaction among both
the cross-bridges and the half-sarcomeres. Notice however, that the anatomic structure
and the various connections between different contractile units, (such as the M-lines and
the Z-disks and titin (see Figs.8.1 and 1.5)), may contribute additional non-locality of
ferromagnetic type forcing all half sarcomeres to move coherently.

8.4.4 Sarcomere length inhomogeneities

We have presented in Chap.1, recent experiments showing half-sarcomere length inho-
mogeneities in a single myofibril. The time scales involved in these experiment are still too
large to be interpreted fully with our power-stroke model. However, here we present the
results of numerical tests performed in the adequate condition of the quick force recovery.

In our Fig.8.32, we show the displacement of the M-line expected if a single sarcomere
is submitted to length increment δǫ in the hard device. The figure was the same obtained
using the results from our analysis at zero temperature and the curve superimposes of
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Fig. 8.33 – Distribution of half-sarcomeres elongations. Left column: hard device. Right column:
soft device. Upper row: isometric conditions (ǫ = ǫ0 and σ = T0), we observe a bi-modal distribution of
the half-sarcomere elongation. Lower-row: response in shortening (δǫ = −8 nm/hs and σ = 0.5T0) showing
a uni-modal distribution.

the thermal equilibrium (the value of β is large). Note that the displacement shown on
Fig.8.32 is an absolute displacement. Due to the permutational invariance, the symmetric
of this picture can also be observed (negative displacements). Our model predicts a linear
dependence of the M-line displacement on the step size in hard device. For large elongation
increments, the M-line displacement drops to zero. In soft device, one should observe no
displacement of the M-line.

In Fig.8.33, we show the distribution of the shift of the half-sarcomere elongation
with respect to the mean initial elongation in hard device (left column) and soft device
(right column). Before the step is applied (isometric conditions), the distribution of half-
sarcomere length is bi-modal whereas, after the the quick recovery (lower-row), the system
ends up in the affine state characterized by a uni-modal elongation distribution. These
results confirm the experimental observations reported in (Shimamoto et al., 2009) (see
Fig.1.16) even though these results were obtained following ‘slow’ force steps.
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Conclusions

In this Chapter, we have shown that a chain of half-sarcomeres in series, responds
to loads in a highly non-affine way due to instability of individual half-sarcomeres. The
mechanical energy landscape is even more wiggly for the chain than for the unit, and the
global minimum path passes through sequence of inhomogenous microstructures before
reaching the affine states where all half-sarcomeres are either in pre-power-stroke or post-
power-stroke conformation.

When temperature is taken intoa account, the equilibrium free energy becomes convex
in the thermodynamic limit and the tension vs elongation relations become similar in hard
and soft devices. For finite system however, considerable size effect can be expected

The effects of the coupling parameter is still felt in the chain and we have shown that the
non-equilibrium energy landscape contains multiple additional energy wells corresponding
to different arrangements of haf-sarcomeres.

The presence of these macroscopic wells considerably slow down the kinetics of the
response to fast load change in the hard device, which exhibits the same kinetic trapping
as in the soft device. The absence of next-to nearest interactions may be one of the main
reasons preventing more coherent and more rapid response to fat loadings.

Our model is able to predicts the M-line displacement of a single half-sarcomere sub-
mitted to various elongation increments in the hard device and qualitatively reproduce the
transition from bi-modal elongation distribution to uni-modal elongation distribution in
response to load increments observed in recent experiments.



General Conclusions

In this manuscript, we proposed a series of mathematical models aimed at reproducing
the mechanical behavior of a muscle fiber in response to quick length (hard device) and

force (soft device) increments.

The time scale of this response (∼1 ms) is shorter than the time scale associated with
with ATP turnover (30 ms) which suggests that the power-stroke mechanism is a ‘purely’
mechanical phenomenon. Following this idea, we attempted a far reaching generalization
of the classical Huxley and Simmons model (Huxley and Simmons, 1971) by assuming that
the bi-stable nature of the myosin head is represented by a continuous piecewise parabolic
potential. We used a simplified representation of the half-sarcomere by neglecting the spa-
tial heterogeneity and assuming that the cross-bridges are arranged in parallel. The bundle
of cross-bridges was connected in series to a linear spring lumping the myofilament elas-
ticity. This series elasticity introduces a mean field interaction between the cross-bridges
which is responsible for the cooperative effects. The study of these effects constitutes the
mean focus of our work.

First, we analyzed the fine structure of the energy landscape associated with a single
half-sarcomere. We showed that the global minimum path for the system driven quasistat-
ically in both devices goes through affine states only. The transition between two affine
states is localized at a particular value of the loading. At this stage we could already see
the crucial difference between the loadings in the hard and soft devices. Thus, we have
shown that, the energy barrier between the two affine states is much lower in the hard
device than in the soft device. In addition, we have shown that the mean field interaction
increases the coherency of the response by creating an energy gap between the affine states
and the non-affine states.

Next, we studied thermal equilibrium and showed that, due to parallel arrangement of
the cross-bridges, the free energy of a half-sarcomere remains non-convex even in the ther-
modynamic limit (N → ∞). We have also shown that at low temperatures, the T2 curve
exhibits a region of negative stiffness. Most importantly, we have shown that the negative
stiffness survives when the parameters of our model are adjusted to fit the available exper-
imental data. This result confirms that during isometric contraction the half-sarcomeres
are working in an inherently unstable regime. The presence of an elastic mean field interac-
tion between the cross-bridges strongly affects the energy landscape. When the interaction
is weak, the distribution of cross-bridges in pre-power-stroke and post-power-stroke states,
is uni-modal. Instead, when the interaction is strong, we observed a bi-modal distribution

revealing the continuous switching back and forth between the two affine configurations.
This result confirms that the mean field interaction preserves the coherent response at the
temperature of experimental observations.

The kinetics of our system is compatible with the available experimental data and the
parameters can be chosen in such a way that the relaxation rates fit the observed values.
More specifically, we observed that the response to fast load increments is dominated by
kinetics at the observational time scales and that, at least at small loading increments,
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reaching equilibrium cannot be expected in standard experiments. In particular, we have
shown that our model reproduces well the anomalously slower kinetics observed exper-
imentally in soft device. We have identified a kinetic trapping phenomenon which we
explicitly linked to the mean field interaction neglected in previous modeling attempts.
The kinetic trapping is more pronounced in soft device and could be the main reason why
the plateau of the T2 curve had never been resolved experimentally.

To make our modeling more realistic we applied the model to distributed system repre-
senting an arrangement of many half-sarcomeres in series. The main result here is that the
‘macroscopic’ equilibrium curves in hard and soft devices become similar. In particular,
the T2 curve of an infinite chain exhibits the desired plateau despite the negative slope at
the microscale. However, the behaviors in hard and soft device are not identical. Thus,
in soft device, the system following the global minimum path switches directly from one
affine state, with all half-sarcomeres in pre-power-stroke, to another affine state where all
half-sarcomere are in post-power-stroke, without ever visiting the non-affine states. In-
stead, in hard device, the global minimum path goes through a range of non-affine states

where each half-sarcomere is either in pre-power-stroke or post-power-stroke. The non-
affine states are characterized by a highly heterogeneous distribution of strain among the
half-sarcomeres. There is a growing experimental evidence that this type of heterogeneities
is indeed present in isometrically contracting sarcomeres.

We observed that for the sarcomere chain the domains of kinetic trapping become sim-
ilar in hard and soft devices. This feature is not confirmed by experiments which suggests
that our model should be modified by adding some active elements. Those elements will be
able to stabilize homogeneous states with negative stiffness and will accelerate the kinet-
ics. The ensuing active oscillations at the scale of a sarcomere will then combine with the
predicted passive oscillations at the scale of a cross-bridge creating a peculiar oscillations

inside oscillations functioning regime for the power stroke machinery.

Finally, we have shown that despite the high number of degrees of freedom in a half-
sarcomere, it is possible to capture the essential features of its overall kinetic response
within a reduced model containing only one degree of freedom. Although in our system
there is no obvious small parameter, allowing one to perform the standard adiabatic elimi-
nation, the fact that the cross-bridges are identical justifies the reduction. We have shown
that, within the set of parameters compatible with experiments, the ‘equivalent’ model
can reproduce successfully both the transients and the equilibrium states of the full model.
Such model reduction allows one to construct effective algorithms dealing with stochastic
evolution of a large number of interacting sarcomeres at the scale of a myofibril and to
perform the MD type direct numerical simulations addressing the dynamic response of the
whole muscle.

In response to the two main questions raised in the Introduction we can say the fol-
lowing:

1. The observed difference of kinetic responses in soft and hard devices
emphasizes the importance of mechanics in the interpretation of the
physiological performance of skeletal muscles. The abandoning of the
restricted chemo-mechanical framework has allowed us to reveal the
mechanical subtleties of the power stroke response and made our ex-
tension of the Huxley–Simmons model compatible with observations.
As we have shown, mechanics appear to be the only framework, where
the puzzling kinetic data could be properly rationalized.
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2. Our model establishes a solid link between the observed inhomogeneity
of half-sarcomere lengths and the negative stiffness of the individual
half-sarcomeres. In this way we have found a transparent explanation
for both the experiments and the results of the previous large scale
Monte Carlo simulations which had so far remained equally opaque.
Our findings reinforce the idea that from the point of view of mechanics
the power stroke element operates in an inherently unstable state.

Regarding the issue of the ATP involvement in the short time scale performance of the
power stroke, our work has generated more questions than answers. We have shown that
the ATP related activity may be relevant not only for the recharging of the power stroke
mechanism as in the usual Lymn–Taylor scheme, but also for active stabilization of the
conformational change precisely in the ‘unstable’ spinodal region. This peculiar feature of
the force generating machinery at the microscale, which has interesting analogs in modern
design of high performance mechanical equipment (e.g. fly by wire systems), promises to
become the signature of the mechanical engineering design of the future.





Appendix A

Computation of the partition
function

This appendix gives the details of the computation of the partition function and its
differents approximations. The definitions of the partition functions in hard and soft device
are:

Zh (ǫ, β) =

∫

R

. . .

∫

R

exp [−βV (ǫ1, . . . , ǫN , ǫy, ǫ)] dǫ1 . . . dǫNdǫy, (4.1.3)

Zs (σ, β) =

∫

R

. . .

∫

R

exp [−βW (ǫ1, . . . , ǫN , ǫy, ǫ, σ)] dǫ1 . . . dǫNdǫydǫ. (4.1.4)

where V and W are respectively the energy and the Gibbs energy of the system given by
Eqs. (2.5.22) and (3.1.1).

A.1 Exact computations

A.1.1 Z1 and Z0

In Eqs.(4.1.3) and (4.1.4), we integrate with respect to ǫi and obtain:

Zh (ǫ, β) =

∫

R

e−β 1
2

Nλf (ǫ−ǫy)2

(Z1 (ǫy, β) + Z0 (ǫy, β))N dǫy, (4.2.1)

Zs (σ, β) =
x

exp
[

−β
(

Nλf (ǫ− ǫy)2 − σǫ
)]

(Z1 (ǫy, β) + Z0 (ǫy, β))N dǫydǫ (4.2.1)

with Z1 and Z0 defined by:

Z1 (ǫy, β) =

+∞
∫

−∞

e−βV1(x,ǫy)dx−
+∞
∫

l

exp [−βV1 (x, ǫy)] dx (A.1.1)

Z0 (ǫy, β) =

+∞
∫

−∞

e−βV0(x,ǫy)dx−
l
∫

−∞

exp [−βV0 (x, ǫy)] dx. (A.1.2)

with:

V1 (x, ǫy) =
1

2
κ1 (x+ 1)2 +

1

2
(ǫy − x)2 (4.2.5)

V0 (x, ǫy) =
1

2
κ0x

2 + v0 +
1

2
(ǫy − x)2 . (4.2.6)
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The minima of V1 and V0 with respect to x are:

V̂1 (ǫy) =
1

2
λ1 (ǫy + 1)2 ,

V̂0 (ǫy) =
1

2
λ0ǫ

2
y + v0.

The integral over R can be computed without difficulty and we obtain:

Z1 (ǫy, β) =
√

(1−λ1)2π
β exp

[

−βV̂1 (ǫy)
]



1 −
√

β
2π(1−λ1)

+∞
∫

l

exp [−β∆V1 (x, ǫy)] dx



 ,

(A.1.3)

Z1 (ǫy, β) =
√

(1−λ0)2π
β exp

[

−βV̂0 (ǫy)
]



1 −
√

β
2π(1−λ0)

l
∫

−∞

exp [−β∆V0 (x, ǫy)] dx



 ,

(A.1.4)

with

∆V1 (x, ǫy) = V1 (x, ǫy) − V̂1 (ǫy) (A.1.5)

∆V0 (x, ǫy) = V0 (x, ǫy) − V̂0 (ǫy) (A.1.6)

The remaining integrals can easily be computed numerically using special functions. There-
fore the exact expressions of Z1 and Z0 are:

Z1 (ǫy, β) =
√

(1−λ1)2π
β exp

[

−βV̂1 (ǫy)
] 1

2
erfc (−f1 (ǫy, β)) , (4.2.7)

Z1 (ǫy, β) =
√

(1−λ0)2π
β exp

[

−βV̂0 (ǫy)
] 1

2
erfc (f0 (ǫy, β)) , (4.2.8)

with

erfc :R −→ ]0, 2[ (A.1.7)

x 7−→ 2√
π

∫ +∞

x
exp

[

−t2
]

dt (A.1.8)

and

f1 (ǫy, β) =

√

β

2

(√

1
(1−λ1) l +

√

(1 − λ1)
(

λ1
1−λ1

− ǫy

))

, (A.1.9)

f0 (ǫy, β) =

√

β

2

(√

1
(1−λ0) l −

√

(1 − λ0)ǫy

)

. (A.1.10)

A.1.2 Exact expression of Zh and Zs

The expression of Z1 and Z0 are replaced into Eqs.(4.1.3) and (4.1.4). In (4.1.4), the
integration with respect to ǫ is straightforward and we obtain:

Zh (ǫ, β) =

∫

R

exp

[

−β 1

2
Nλf (ǫ− ǫy)2

]

(Z1 (ǫy, β) + Z0 (ǫy, β))N dǫy, (A.1.11)

Zs (σ, β) =

(

2π

βNλf

)
1
2

exp

[

β

2

σ2

Nλf

] ∫

R

exp [βσǫy] (Z1 (ǫy, β) + Z0 (ǫy, β))N dǫy (A.1.12)



A.2. Extended wells approximation 219

which can be rewritten as

Zh (ǫ, β) =

∫

R

exp (−βFy (ǫ, ǫy, β)) ǫy, (4.2.11)

Zs (σ, β) =
√

2π
Nλf β

∫

R

exp (−βGy (σ, ǫy, β)) dǫy (4.2.12)

with the reduced free energy and Gibbs free energy

Fy (ǫ, ǫy, β) =
1

2
λf (ǫ− ǫy)2 − 1

β
ln (Z1 (β, ǫy) + Z0 (βǫy)) (4.2.13)

Gy (σ, ǫy, β) = − σ

N
ǫy − 1

2

σ2

N2λf
− 1

β
ln (Z1 (β, ǫy) + Z0 (β, ǫy)) , (4.2.14)

A.2 Extended wells approximation

The exact expressions give by Eqs.(4.2.11) and (4.2.12) are not explicit due to the
presence of the erfc functions in Z1 and Z0 (see Eqs.4.2.7 and 4.2.8). Here we derive semi-
analytic expressions by considering that the energy barrier in the double well potential v
is high compared to κbθ. This condition, corresponding to the limit β → ∞, implies that
the cross-bridges remain confined near the bottoms of the wells and thus one can extend
the integration in Eqs.(4.2.3) and (4.2.4) from −∞ to +∞. We call this approximation
the extended wells approximation (noted EWA).

A.2.1 Approximation of Z1 and Z0

In (A.1.3) and (A.1.4), the terms in the integrals are exponentially decaying with x,
as soon as the minimum of V1 and V0 are respectively inferior and superior to l. These
condidtions are satisfied if :

ǫy <
l + λ1

1 − λ1
for V1 (A.2.1)

ǫy >
l

1 − λ0
for V0 (A.2.2)

One can also interpret this condition as the actual existence of 2 distinct wells in v (x) +
1
2 (ǫy − x)2. Then, if l is not ‘too close’ from the bottom of the well, or in other words,
if the energy barrier is large compared to β, we can neglect the integrals in (A.1.3) and
(A.1.4) leaving Z1 and Z0 as the result of the integration over all R:

Z1 (ǫy, β) ≈
√

(1 − λ1) 2π

β
exp

(

−β

2
λ1 (ǫy + 1)2

)

, (A.2.3)

Z0 (ǫy, β) ≈
√

(1 − λ0) 2π

β
exp

(

−β

2

(

λ0ǫ
2
y + 2v0

)

)

. (A.2.4)
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A.2.2 Validity

To derive a criterion for both approximation we first rewrite, after trivial manipula-
tions, ∆V1 and ∆V0 as:

β∆V1 (x, ǫy) =
β

2

(√

1
(1−λ1)x+

√

(1 − λ1)
(

λ1
1−λ1

− ǫy

))2
(A.2.5)

= (f1 (x, ǫy))2 (A.2.6)

β∆V0 (x, ǫy) =
β

2

(√

1
(1−λ0)x−

√

(1 − λ0)ǫy

)2
(A.2.7)

= (f0 (x, ǫy))2 (A.2.8)

with, provided conditions (A.2.1) and (A.2.2),

f1 (x, ǫy) > 0 and f0 (x, ǫy) < 0. (A.2.9)

For Z1, we rewrite the integral of (A.1.4) as:

∫ +∞

l
exp [−β∆V1 (x, ǫy)] dx =

+∞
∫

f1(x,ǫy)

exp
[

−s2
]

ds

≤ 1

f1 (x, ǫy)

+∞
∫

f1(x,ǫy)

s exp
[

−s2
]

ds as f1 (l, ǫy) ≥ 0

≤ 1

2
√

β∆V1 (l, ǫy)
exp [−β∆V1 (l, ǫy)]

(A.2.10)

Therefore, the approximation (A.2.3) and (A.2.4) are valid if:

1
√

2π (1 − λ1) ∆V1 (l, ǫy)
exp [−β∆V1 (l, ǫy)] < γ (A.2.11)

with γ an arbitrary small parameter. Similarly the criterion for Z0 is:

1
√

2π (1 − λ0) ∆V0 (l, ǫy)
exp [−β∆V0 (l, ǫy)] < γ. (A.2.12)

If ǫy <
l+λ1
1−λ1

(resp. ǫy <
l

1−λ0
), v (x) + 1/2 (ǫy − x)2 has only one minimum in well 1

(resp. well0). In this case, we can neglect Z0 (resp. Z1) with the same conditions (A.2.11)
(resp. A.2.12). We summarized the extended well approximation in table A.1.

A.2.3 Approximation of the partition function under extended wells
asumption

Criteria on the internal degree of freedom ǫy

We want to replace Z1 and Z0 by their approximations in (A.1.11) and (A.1.12).

– In hard device, the term e−β 1
2

Nλf (ǫ−ǫy)2

, is peaked at ǫy = ǫ while Z1 and Z0 are
respectively peaked at −1 and 0, so we want the approximation we just derived for

Z1 and Z0 to be valid in a certain interval around ǫy = ǫ where e−β 1
2

Nλf (ǫ−ǫy)2

is
non vanishing. We have

exp

(

−β 1

2
Nλf (ǫ− ǫy)2

)

> α (A.2.13)
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ǫy <
l

1−λ0

l
1−λ0

≤ ǫy ≤ l+λ1
1−λ1

ǫy >
l+λ1
1−λ1

-1 l 0
x

vH
xL
+

1�
2H
Ε

y-
xL

2

-1 l 0
x

vH
xL
+

1�
2H
Ε

y-
xL

2

-1 l 0
x

vH
xL
+

1�
2H
Ε

y-
xL

2

Z0 → 0 if:
e−β∆V1√

2π(1−λ1)∆V1
< ε

extended wells if:
e−β∆Vi√

2π(1−λi)∆Vi
< ε

Z1 → 0 if:
e−β∆V0√

2π(1−λ0)∆V0
< ε.

with i = 0, 1

Tab. A.1 – Extended wells approximation (EWA): criterion of validity depending on the value of
ǫy. On the graphs, we show the form of the double well potential (thick lines) and its extensions (dashed
lines). We distinguish 3 intervals of ǫy . First, if ǫy < l

1−λ0
, the local minimum in well 0 disappears and

one can neglect Z0 provided that (A.2.12) is satisfied. Symetrically, one can neglect Z1 if ǫy > l+λ1

1−λ1
and

Eq. (A.2.12) is verified. For intermediate values of ǫy the approximation is valid provided criteria (A.2.12)
and (A.2.11) are valid.

with α an arbitrarity small parameter determining non vanishing value of the expo-
nential, for ǫy in:

ǫ−
√

−2 ln (α′)
βNλf

< ǫy < ǫ+

√

−2 ln (α)

βNλf
(A.2.14)

– In soft device, exp (−βσǫy) > α if:
{

ǫy >
ln(α)
βσ if σ > 0

ǫy <
ln(α)
βσ if σ < 0.

(A.2.15)

As a conclusion, in hard device the criterions (A.2.11) and (A.2.12) have to be valid
in the interval (A.2.14) and, in soft device, they have to be checked with (A.2.15).

Partition function as a sum over configurations

To perform the integration with respect to ǫy, we replace Z1 and Z0 by their approxi-

mations (A.2.3) and (A.2.4) in (A.1.11) and (A.1.12). The term (Z1 (ǫy, β) + Z0 (ǫy, β))N

is expanded using binomial coefficient and the integration can now be performed on ǫy.
We obtain:

Zh (ǫ, β) ≈
(

2π

β

)
N+1

2
N
∑

k=0

(

N

k

)

(qh (k))
1
2 exp

[

−βV̂
(

ǫ, k
N , 0,

N−k
N

)

]

(A.2.16)

Zs (σ, β) ≈
(

2π

β

)
N+2

2
N
∑

k=0

(

N

k

)

(qs (k))
1
2 exp

[

−βŴ
(

σ, k
N , 0,

N−k
N

)

]

(A.2.17)

with

qh (k) =
(1 − λ1)k (1 − λ0)N−k

Nλf + kλ1 + (N − k)λ0
(A.2.18)

qs (k) =
(1 − λ1)k (1 − λ0)N−k

Nλf (kλ1 + (N − k)λ0)
. (A.2.19)
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Hence, the partition functions Zh and Zs take the form of weigthed sums and in particular,
the exponentials contain the energies of the system in the metastable states: V̂ and Ŵ ,
defined by the triplet

(

k
N , 0,

N−k
N

)

with k = 0, 1, . . . , N (see Eqs. 3.1.13 and 3.1.18).
Hence, within extended well approximation, the partition function reduces to a sum of the
contributions of all local minima.

Asymptotic branches

For large loading (ǫ → ±∞ or σ → ±∞) the local minima disappear and the system
ends up in the homogenous configurations (1, 0, 0) or (0, 0, 1). In those limits, we can
obtain analytically the asymptotic expression of Zh and Zs by simply keeping only the
terms k = 1 or k = 0 in Eq.(A.2.16) and (A.2.17). In hard device we obtain:


















Z−
h (ǫ, β) ≈

(

2π
β

)
N+1

2
√

1−λ1
N

√

N(λ1+λf )
exp

[

−βN 1
2

λ1λf

λ1+λf
(ǫ+ 1)2

]

for ǫ → −∞,

Z+
h (ǫ, β) ≈

(

2π
β

)N+1
2

√
1−λ0

N
√

N(λ0+λf )
exp

[

−βN
(

1
2

λ0λf

λ0+λf
ǫ2 + v0

)]

for ǫ → +∞,

(A.2.20)

and in soft device:














Z−
s (ǫ, β) ≈

(

2π
β

)
N+2

2
√

1−λ1
N√

λ1λf

1
N exp

[

−βN
(

−1
2

(

1
λ1

+ 1
λf

)

(

σ
N

)2
+ σ

N

)]

for ǫ → −∞,

Z+
s (ǫ, β) ≈

(

2π
β

)
N+2

2
√

1−λ0
N√

λ0λf

1
N exp

[

−βN
(

−1
2

(

1
λ0

+ 1
λf

)

(

σ
N

)2
+ v0

)]

for ǫ → +∞.

(A.2.21)

We recover, in the exponential, the expression of the global minimum (see Eq.(3.1.32)
and (3.1.33)). Hence, in the limit of large loadings, the equilibrium probability becomes
gaussian, centered at the global minimum.

Relation to Kramers approximation

The extended wells approximation we have derived here is similar to the Kramers
approximation of chemical reactions where the transition rates over a potential barrier
depends essentially on the size of the energy barrier at low temperature (see Sec.C.1.2).
Within this scheme, one can describe the dynamics of the system by a set of ODE 1

on the population (or concentration) in each local minima (different chemical states, see
Sec.C.2). For our system, a Kramers type approach is limited since a chemical state and
the corresponding energy barrier, needed for Kramers definition of rate constant, exists
only on a finite interval of the loading parameter (see Sec.3.1.2). Also, the extended wells
is not working for intermediate values of β so we conclude that using Kramers approxi-
mation on our system is inadequate. In chemo-mechanical models (Huxley and Simmons,
1971; Piazzesi and Lombardi, 1995; Smith et al., 2008) (see Sec.2.4.4), the dynamics of the
system is always described by the mean of rate constant defined following the Kramers
approximation. Our model strongly departs from this approach: rate constants can only
be defined on a very limited range of the applied loading.

A.3 Thermodynamic limit N → +∞
It is usually assumed in classical thermodynamics that the number of particles in the

system is infinite (N ∼ 1023). In muscles, the number of cross-bridges is of the order

1. ODE: Ordinary Differential Equations
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of 100 (Piazzesi et al., 2007) which is finite but large enough to consider the asymptotic
expressions of our system in the limit N → ∞. We can study this limit combined or not
with the extended wells approximation derived in the previous section.

First let’s consider the case without extended well approximation. In Eqs.(4.2.11) and
(4.2.12), when N is large, the probability distribution converges to a Dirac distribution at
the minimum of Fy (resp. Gy). Hence, in the limit N → ∞, we can apply Laplace method
and obtain:

lim
N→+∞

Zh (ǫ, β) =
√

2π
exp

[

βFy

(

ǫ, ǫ⋆,h
y , β

)]

√

β
∂2Fy

(

ǫ,ǫ⋆,h
y ,β

)

∂ǫ2
y

(A.3.1)

lim
N→+∞

Zs (ǫ, β) =
√

2π
Nλf β

√
2π

exp
[

−βGy

(

σ, ǫ⋆,s
y , β

)]

√

β
∂2Gy(σ,ǫ⋆,s

y ,β)
∂ǫ2

y

(A.3.2)

where ǫ⋆,h
y and ǫ⋆,s

y are minima of Fy and Gy respectively. ǫ⋆,h
y and ǫ⋆,s

y have to be found
numerically due to the presence of the erfc functions in the expression of Z1 and Z0.

Now, suppose the extended wells approximation is valid. We can similarly rewrite
expressions (A.2.16) and (A.2.17) using Stirling equivalent for the binomial coefficient:

Zh(εt, β) ≈
(

π

β

)

N+1
2
√

1

2π

1

N

1
∑

n1=0

ψh(n1) exp [−Nϕh(n1)] (A.3.3)

Zs(εt, β) ≈
(

π

β

)

N
2 +1

√

1

2πN

1

N

1
∑

n1=0

ψs(n1) exp [−Nϕs(n1)] (A.3.4)

with

ϕh(n1, ǫ, β) = − 1

2
(n1 ln(1 − λ1) + (1 − n1) ln(1 − λ0))

+ n1 ln(n1) + (1 − n1) ln(1 − n1)

+
β

N
V̂ (ǫ, n1, 0, 1 − n1) ,

(A.3.5)

ϕs(n1, σ, β) = − 1

2
(n1 ln(1 − λ1) + (1 − n1) ln(1 − λ0))

+ n1 ln(n1) + (1 − n1) ln(1 − n1)

+
β

N
Ŵ (σ, n1, 0, 1 − n1) ,

(A.3.6)

and

ψh(n1) = (n1 (1 − n1) (n1λ1 + (1 − n1)λ0 + λf ))− 1
2 , (A.3.7)

ψs(n1) = (n1 (1 − n1)λf (n1λ1 + (1 − n1)λ0))− 1
2 . (A.3.8)

The terms ϕh and ϕs contain explicitely the energies of the local minima V̂ and Ŵ given
by Eqs.(3.1.13) and (3.1.18). The other terms give information about the entropy of a
given configuration and depend on the ‘mixing rate’ of the state (n1) and the curvatures
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of the wells λ1 and λ0. In (A.3.3) and (A.3.4), we replace sums by integrals and obtain:

Zh(εt, β) ≈
(

π

β

)

N+1
2
√

1

2π

1
∫

0

ψh(n1) exp [−Nϕh(ǫ, β, n1)] dn1,

Zs(εt, β) ≈
(

π

β

)

N+2
2
√

1

2πN

1
∫

0

ψs(n1) exp [−Nϕs(σ, β, n1)] dn1.

Finally, using Laplace method, we obtain:

Zh(εt, β) ≈
(

2π

β

)

N+1
2 ψh(n⋆,h

1 ) exp
[

−Nϕh(ǫ, β, n⋆,h
1 )
]

√

N ∂2ϕh(ǫ,β,n1)
∂n2

1

∣

∣

∣

n1=n⋆,h
1

(A.3.9)

Zs(εt, β) ≈
(

2π

β

)

N
2 +1

N− 1
2
ψs(n⋆,s

1 ) exp
[

−Nϕs(ǫ, β, n⋆,s
1 )
]

√

N ∂2ϕs(ǫ,β,n1)
∂n2

1

∣

∣

∣

n1=n⋆,s
1

(A.3.10)

where n⋆,h
1 and n⋆,s

1 are minima of ϕh and ϕs respectively, obtained by solving numerically
the transcendental equations ∂n1ϕh,s = 0. For large |ǫ| (resp. |σ|), the minimum of ϕh

(resp. ϕs) is either at n1 = 1 or n1 = 0 and we recover the asymptotic branches given by
Eqs.(A.2.20) and (A.2.21).

A.3.1 Conclusion

In this section, we derived 4 different formulations of the partition function:
– An exact formula, that involves the use of special function to compute Z1 and Z0:

Zh (ǫ, β) =

∫

R

exp (−βFy (ǫ, ǫy, β)) ǫy, (4.2.11)

Zs (σ, β) =
√

2π
Nλf β

∫

R

exp (−βGy (σ, ǫy, β)) dǫy (4.2.12)

– Using the extended wells approximation, we could derive a first approximated for-
mulas with finite N :

Zh (ǫ, β) ≈
(

2π

β

)
N+1

2
N
∑

k=0

(

N

k

)

(qh (k))
1
2 exp

[

−βV̂
(

ǫ, k
N , 0,

N−k
N

)

]

(A.2.16)

Zs (σ, β) ≈
(

2π

β

)N+2
2

N
∑

k=0

(

N

k

)

(qs (k))
1
2 exp

[

−βŴ
(

σ, k
N , 0,

N−k
N

)

]

(A.2.17)

– Then if N is large, we can write, without extended wells approximation:

lim
N→+∞

Zh (ǫ, β) =
√

2π
exp

[

βFy

(

ǫ, ǫ⋆,h
y , β

)]

√

β
∂2Fy

(

ǫ,ǫ⋆,h
y ,β

)

∂ǫ2
y

(A.3.1)

lim
N→+∞

Zs (ǫ, β) =
√

2π
Nλf β

√
2π

exp
[

−βGy

(

σ, ǫ⋆,s
y , β

)]

√

β
∂2Gy(σ,ǫ⋆,s

y ,β)
∂ǫ2

y

(A.3.2)

where ǫ⋆,h
y and ǫ⋆,s

y are minima of Fy and Gy respectively.
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– Finally, we can use both extended wells and large N approximation and use:

Zh(εt, β) ≈
(

2π

β

)

N+1
2 ψh(n⋆,h

1 ) exp
[

−Nϕh(ǫ, β, n⋆,h
1 )
]

√

N ∂2ϕh(ǫ,β,n1)
∂n2

1

∣

∣

∣

n1=n⋆,h
1

(A.3.9)

Zs(εt, β) ≈
(

2π

β

)

N
2 +1

N− 1
2
ψs(n⋆,s

1 ) exp
[

−Nϕs(ǫ, β, n⋆,s
1 )
]

√

N ∂2ϕs(ǫ,β,n1)
∂n2

1

∣

∣

∣

n1=n⋆,s
1

(A.3.10)

where n⋆,h
1 and n⋆,s

1 are minima of ϕh and ϕs respectively.
Those formula are still not fully explicit as the different minima have to be found numeri-
cally. In the next appendix, we apply the different approximations to the computation of
isotherms.





Appendix B

Approximations of isotherms

B.1 Free energy

The free energies in hard and soft device are defined by Eqs.(4.1.5) and (4.1.6):

F (ǫ, β) = − 1

β
ln Zh (ǫ, β) , (4.1.5)

G(σ, β) = − 1

β
ln Zs (σ, β) , (4.1.6)

If we consider the limit N → ∞, we derive Eqs.(A.3.1) and (A.3.2) with respect to ǫ and
σ and obtain:

F (ǫ, β) ≈ Fy

(

ǫ, ǫ⋆,h
y , β

)

(B.1.1)

G (σ, β) ≈ Gy

(

σ, ǫ⋆,s
y , β

)

(B.1.2)

Thus, in muscle, where we suppose this approximation is valid, the equilibrium free energy
corresponds to the minimum of the non-equilibrium free energy landscapes Fy and Gy.
Now if we use the extended wells approximation one can either compute the logarithm of
Eq.(A.2.16) and Eq.(A.2.16) to obtain the free energy as a finite sum over configurations
or consider also the limit N → ∞. In this later case we obtain

F (ǫ, β) ≈ V̂ (ǫ, n⋆,h
1 ) − 1

β

(

N + 1

2
ln

(

2π

β

)

− ln
(

N(n⋆,h
1 λ1 + (1 − n⋆,h

1 )λ0 + λf )
)

+
N

2

(

n⋆,h
1 ln (1 − λ1) + (1 − n⋆,h

1 ) ln (1 − λ0)
)

−N
(

n⋆,h
1 ln(n⋆,h

1 ) + (1 − n⋆,h
1 ) ln(1 − n⋆,h

1 )
)

)

(B.1.3)

G (σ, β) ≈ Ŵ
(

σ, n⋆,h
1

)

− 1

β

(

N + 2

2
ln

(

2π

β

)

− ln (N) − ln(λf (n⋆,h
1 λ1 + (1 − n⋆,h

1 )λ0))

+
N

2

(

n⋆,h
1 ln (1 − λ1) + (1 − n⋆,h

1 ) ln (1 − λ0)
)

−N
(

n⋆,h
1 ln(n⋆,h

1 ) + (1 − n⋆,h
1 ) ln(1 − n⋆,h

1 )
)

)

(B.1.4)
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When ǫ → ±∞ (resp.σ → ±∞), we find the expression of the free energy by taking the
logarithm of Eqs.(A.2.20) and (A.2.21). In hard device, we have:
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1
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(ǫ+ 1)2

− 1

β

(

N + 1

2
ln

(

2π

β

)

+
N

2
ln (1 − λ1)

−1

2
ln (N (λ1 + λf ))

)

if ǫ → −∞

F+ (ǫ, β) = N

(

1

2

λ0λf

λ0 + λf
ǫ2 + v0

)

− 1

β

(

N + 1

2
ln

(

2π

β

)

+
N

2
ln (1 − λ0)

−1

2
ln (N (λ0 + λf ))

)

if ǫ → +∞

(B.1.5)

and similarly in soft device:
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1

λ1
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1
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N
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+
σ

N
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− 1

β

(

N + 2

2
ln

(

2π

β

)

+
N

2
ln (1 − λ1)

− ln (N) − 1

2
ln (λ1λf )

)

if σ → −∞

G+ (σ, β) = N

(

−1

2

(

1

λ0
+

1

λf

)(

σ

N

)2

+ v0

)

− 1

β

(

N + 2

2
ln

(

2π

β

)

+
N

2
ln (1 − λ0)

− ln (N) − 1

2
ln (λ0λf )

)

if σ → +∞

(B.1.6)

In these expressions, one recognizes the energy in the global minimum (given by Eqs.3.1.32
and 3.1.33) plus an entropic term, function of the elastic characteristics of the system. In
the entropic part, the terms containing the filament elasticity λf are negligible compared
to the other terms which are multiplied by N .

B.2 Equilibrium tensions and elongations

In the limit of large N , we apply Laplace method to Eqs.(4.2.16) and (4.2.18) to find

that the mean values of ǫy in hard and soft devices correspond to the minima ǫ⋆,h
y and

ǫ⋆,s
y of Fy and Gy that are found numerically. Thus we have, in the thermodunamic limit
N → ∞:

T2 (ǫ, β) = Nλf

(

ǫ− ǫ⋆,h
y

)

(B.2.1)

L2 (σ, β) =
σ

Nλf
+ ǫ⋆,s

y (B.2.2)
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If we use the extended wells approximation, we write:

T2 (ǫ, β) = − 1

β

∂ǫ (Zh (ǫ, β))

Zh (ǫ, β)
then with expression (A.2.16)

=

(

2π
β

)
N+1

2
N
∑

k=0

(N
k

)

T̂
(

ǫ, k
N , 0,

N−k
N

)

exp
[

−βV̂
(

ǫ, k
N , 0,

N−k
N

)

]

Zh (ǫ, β)

(B.2.3)

which we write as a balanced sum of the tension in each configuration
(

k
N , 0,

N−k
N

)

:

T2 (ǫ, β) =
N
∑

k=0

T̂
(

ǫ, k
N , 0,

N−k
N

)

p̂h (ǫ, k, β) (B.2.4)

where the coefficient p̂h is given by:

p̂h (ǫ, k, β) =

(

2π

β

)
N+1

2
(

N

k

)

(qh (k))
1
2

Zh (ǫ, β)
exp

[

−βV̂
(

ǫ, k
N , 0,

N−k
N

)

]

(B.2.5)

with qh (k) defined by Eq.(A.2.18). We can also apply this computation to soft device case
to find:

L2 (σ, β) =

N
∑

k=0

ǫ̂
(

σ, k
N , 0,

N−k
N

)

p̂s (ǫ, k, β) (B.2.6)

with:

p̂s (ǫ, k, β) =

(

2π

β

)
N+2

2
(

N

k

)

(qs (k))
1
2

Zs (σ, β)
exp

[

−βŴ
(

σ, k
N , 0,

N−k
N

)

]

(B.2.7)

and qs (k) from Eq.(A.2.19). Finally, the sum in Eq.(B.2.4) and Eq.(B.2.6) is transformed
into an integral over n1 = k

N and this integral can be computed using Laplace method
(see section A.3). If we apply this method to Eq.(B.2.4) and Eq.(B.2.6), the numerator
and denominator cancel partially and the remaining terms are just:

T2 (ǫ, β) ≈ T̂ (ǫ, n⋆,h
1 , 0, 1 − n⋆,h

1 ) (B.2.8)

L2 (σ, β) ≈ ǫ̂T
(

σ, n⋆,s
1 , 0, 1 − n⋆,s

1

)

(B.2.9)

where n⋆,h
1 and n⋆,s

1 are the minima of ϕh and ϕs. With this method, T2 and L2 appears
to be a particular local minimum.

Figs.B.1 and B.2 show results given by the different methods in the simple case of
symetric wells (λ1 = λ0 = 0.5, l = −0.5). (◦) represents direct numerical computations
using Eqs.(4.2.15) and (4.2.17). The solid line stands for the computation in the limit
N → ∞ without extended wells approximation. Dot-dashed line represents the case
with extended wells approximation and finite N and dashed line represents the results
with extended wells approximation and N → ∞. The numerical integration and the
computation of minima are done using Mathematica® dedicated functions.

Not surprisingly, all approximations are valid for β → ∞, but for intermediate β, the
extended wells approximation is not giving satisfactoty results (see our previous comments
in Sec.A.2.3). Hence the use of extended wells approximation and by extrapolation, the
Kramers approximation may lead to wrong results with this system.
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Fig. B.1 – Thermal equilibrium tension in hard device for λ1 = λ0 = 0.5, l = −0.5 and for
different β and N . (A), β = 5, N = 10. (B), β = 5, N = 100. (C), β = 100, N = 10. (A), β = 100,
N = 100. For each set of parameters, we computed the tension using exact direct numerical integration
of Eq.(4.2.15) (◦); N → ∞ without extended wells approximation (EWA) (solid line); N → ∞ with EWA
(dashed line) and EWA with finite N (dot-dashed line).

The thermodynamic limit approximation gives satisfactory results (see solid lines) al-
ready fromN = 10 in hard device (see Fig.B.1A). For soft device we found a good matching
of the exact compuations from N = 30 (see Fig.B.2 A).

When N → ∞ the negative slope remains in hard device. This behavior is different
from classical distributed systems where it has been demonstrated in a general context that
the free energy is convex and thus the stress-strain relation is monoton (Lebowitz and Lieb,
1969).

B.3 Entropy

We recall that:

Sh (ǫ, β) = β (〈V 〉h (ǫ, β) − F (ǫ, β)) (4.1.11)

Ss (σ, β) = β (〈W 〉s (σ, β) −G (σ, β)) (4.1.12)

To avoid writing twice the same computations, we develop only the hard device case.

B.3.1 Computation of 〈V 〉h without approximations

〈V 〉h (ǫ, β) =
1

Zh (ǫ, β)

∫

V (ǫ1, . . . , ǫN , ǫy, ǫ) e
−βV (ǫ1,...,ǫN ,ǫy,ǫ)dǫ1 . . . dǫNdǫy (B.3.1)
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Fig. B.2 – Thermal equilibrium elongation in soft device for λ1 = λ0 = 0.5, l = −0.5 and for
different β and N . (A), β = 5, N = 10. (B), β = 5, N = 100. (C), β = 100, N = 10. (A), β = 100,
N = 100. For each set of parameters, we computed the tension using exact direct numerical integration
of Eq.(4.2.17) (◦); N → ∞ without extended wells approximation (EWA) (solid line); N → ∞ with EWA
(dashed line) and EWA with finite N (dot-dashed line).

The integral in (B.3.1) can be split in a sum of N integrals concerning the cross-bridges
part plus an integral over the filament part:

〈V 〉h (ǫ, β) =
N

Zh (ǫ, β)

∫ (

I (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)

+
1

2
λf (ǫ− ǫy)2

)

exp [−βFy (ǫ, ǫy, β)] dǫy (B.3.2)

with Fy defined by Eq.(4.2.13) and:

I (ǫy, β) =

+∞
∫

−∞

(

v (x) +
1

2
(ǫy − x)2

)

exp

[

−β
(

v (x) +
1

2
(ǫy − x)2

)]

dx. (B.3.3)

To compute I, we split the integral in two parts, I1 and I0 according to the shape
of the double well potential v. I1 and I0 are troncated Gaussian integral. After some
computations we obtain:

I1 (ǫy, β) = Z0 (ǫy, β)

(

1
2

(

λ0ǫ
2
y + 2v0 + 1

β

)

+
1

β
√
π

f0 (ǫy, β) exp
[

−f2
0 (ǫy, β)

]

erfc (f0 (ǫy, β))

)

(B.3.4)

I1 (ǫy, β) = Z1 (ǫy, β)

(

1
2

(

λ1 (ǫy + 1)2 + 1
β

)

− 1

β
√
π

f1 (ǫy, β) exp
[

−f2
1 (ǫy, β)

]

erfc (−f1 (ǫy, β))

)

(B.3.5)

with f1 and f0 defined by Eqs.(4.2.9) and (4.2.10). Hence the mean energy is given by:

〈V 〉h (ǫ, β) = N

+∞
∫

−∞

(

I1 (ǫy, β) + I0 (ǫy, β)

Z1 (ǫy, β) + Z1 (ǫy, β)
+

1

2
λf (ǫ− ǫy)2

)

exp [−βFy (ǫ, ǫy, β)]

Zh (ǫ, β)
dǫy

(B.3.6)
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With a similar approach, we find for the soft device:

〈W 〉s (σ, β) = N

+∞
∫

−∞

(

I1 (ǫy, β) + I0 (ǫy, β)

Z1 (ǫy, β) + Z1 (ǫy, β)

− σ

N
ǫy − σ2

2N2λf
+

1

2βN

)

exp [−βGy (σ, ǫy, β)]

Zs (σ, β)
dǫy. (B.3.7)

where the term 1
2βN comes from the integration with respect to ǫ and Gy is given by

Eq.(4.2.14). We fially replace (B.3.6) and (B.3.7) in (4.1.11) and (4.1.12) together with
expressions (4.1.5) and (4.1.6) of the Helmholtz and Gibbs free energies.

B.3.2 Approximations

The formula obtained for 〈V 〉h and 〈W 〉s can be simplified in the limit of large N as
done before for T2 and L2. We obtain:

〈V 〉h (ǫ, β) ≈ N





I1

(

ǫ⋆,h
y , β

)

+ I0

(

ǫ⋆,h
y , β

)

Z1

(

ǫ⋆,h
y , β

)

+ Z0

(

ǫ⋆,h
y , β

) +
1

2
λf

(

ǫ− ǫ⋆,h
y

)2



 (B.3.8)

〈W 〉s (σ, β) ≈ N

(

I1

(

ǫ⋆,s
y , β

)

+ I0

(

ǫ⋆,s
y , β

)

Z1

(

ǫ⋆,s
y , β

)

+ Z0

(

ǫ⋆,s
y , β

) − σ

N
ǫ⋆,s
y − σ2

2Nλf
+

1

2βN

)

(B.3.9)

On the other hand, when N is large, the free energies are given by (see Eqs.B.1.1 and
B.1.2):

F (ǫ, β) ≈ N

(

1

2
λf

(

ǫ− ǫ⋆,h
y

)2
− 1

β
ln
(

Z1

(

ǫ⋆,h
y , β

)

+ Z0

(

ǫ⋆,h
y , β

))

)

, (B.3.10)

G (σ, β) ≈ N

(

− σ

N
ǫ⋆,s
y − σ2

2Nλf
− 1

β
ln
(

Z1

(

ǫ⋆,s
y , β

)

+ Z0

(

ǫ⋆,s
y , β

))

)

. (B.3.11)

We then write that Sh = β (〈V 〉h − F ) and Ss = β (〈W 〉s −G). The only remaining terms
are those concerning the array of cross-bridges, I1, I0,Z1 and Z0. Hence:

Sh (ǫ, β) ≈ N



 β
I1

(

ǫ⋆,h
y , β

)

+ I0

(

ǫ⋆,h
y , β

)

Z1

(

ǫ⋆,h
y , β

)

+ Z0

(

ǫ⋆,h
y , β

) + ln
(

Z1

(

ǫ⋆,h
y , β

)

+ Z0

(

ǫ⋆,h
y , β

))





(B.3.12)

Ss (ǫ, β) ≈ N

(

β
I1

(

ǫ⋆,s
y , β

)

+ I0

(

ǫ⋆,s
y , β

)

Z1

(

ǫ⋆,s
y , β

)

+ Z0

(

ǫ⋆,s
y , β

) + ln
(

Z1

(

ǫ⋆,s
y , β

)

+ Z0

(

ǫ⋆,s
y , β

))

)

+
1

2

(B.3.13)

where n⋆,h
1 and n⋆,s

1 are the minima of ϕh and ϕs respectivey (see Eqs.A.3.5 and A.3.6).
The entropy does not depend on the filament stiffness λf . In the limit ǫ → ±∞ (resp.
σ → ±∞), the entropy becomes constant:

S−
h (ǫ, β) ≈ N+1

2

(

1 + ln
(

2π
β

))

− N
2 ln (1 − λ1) if ǫ → −∞ (B.3.14)

S+
h (ǫ, β) ≈ N+1

2

(

1 + ln
(

2π
β

))

− N
2 ln (1 − λ0) if ǫ → +∞ (B.3.15)
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And similarly in soft device

S−
s (σ, β) ≈ N+2

2

(

1 + ln
(

2π
β

))

− N
2 ln (1 − λ1) if σ → −∞ (B.3.16)

S+
s (σ, β) ≈ N+2

2

(

1 + ln
(

2π
β

))

− N
2 ln (1 − λ0) if σ → +∞ (B.3.17)

We can also derive asymptotic formulas considering only the extended wells approximation.
In this case, the above asymptotic formulas contains an additional term: −1

2 ln (N (λ1,0 + λf ))
in hard device and − ln

(

N
√

λ1,0λf

)

in soft device. Thus, again the contribution of fila-
ment stiffness to the global entropy of the system is negligible compared to the contribution
of the cross-bridges.
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B.3.3 Temperature change during adiabatic loading

Let’s denote β0 a reference temperature, S0
h = Sh

(

β0, ǫ0
)

, the reference entropy in
hard device and S0

s = Ss

(

β0, σ0
)

, the reference entropy in soft device. During adiabatic
loading, the entropy in conserved at the expense of a change in temperature β. To compute
β (ǫ) (or β (σ)), one has to solve Sh (ǫ, β) = S0

h

(

ǫ0, β0
)

(or §s (σ, β) = S0
h

(

σ0, β0
)

in soft
device). This operation is done numerically with extended well approximation or not.
Nevertheless, we can compute the solution in the extreme cases n⋆

1 = 1 or n⋆
1 = 0, with

extended wells approximation, corresponding to Z0 = 0 or Z1 = 0, without extended wells
approximation.

When n⋆
1 = 1, equation S0

h = S
(

β0, ǫ0
)

and S0
s = S

(

β0, σ0
)

both reduce to:

S0

N
=

1

2
+ ln

(
√

2π (1 − λ1)

β

)

(B.3.18)

giving

β∞
1 = 2π (1 − λ1) exp

[

1 − 2
S0

N

]

(B.3.19)

where S0 is either S0
h or S0

s depending on the loading device, computed within the extended
wells approximation.

Similarly, for n⋆
1 = 0, we find:

β∞
0 = 2π (1 − λ0) exp

[

1 − 2
S0

N

]

(B.3.20)

Without extended wells approximation, we find exatly the same results, given that
for large loading, the extended wells is always valid. In the case of symetric wells, these
extreme values of the temperature are equal: β∞

1 = β∞
0 = β∞.

B.4 Characteristic mean values

B.4.1 Fraction of population in well 1: 〈n1〉
We detail the hard device case. In steady state, the probability for cross-bridge 1 to

be in well 1 is:

〈n1〉h (ǫ, β) =

∫ l

−∞
ph

1 (ǫ1, ǫ, β) dǫ1 (B.4.1)

where p1 is the marginal probability density for ǫ1 defined by:

ph
1 (ǫ1, ǫ, β) =

∫

p (ǫ1, . . . , ǫy, ǫ, β) dǫ2, . . . , dǫN , dǫy

=
1

Zh (ǫ, β)

+∞
∫

−∞

exp

[

−β
(

v (ǫ1) +
1

2
(ǫy − ǫ1)2 +Nλf (ǫ− ǫy)2

− (N − 1) log (Z1 (ǫy, β) + Z0 (ǫy, β))

)]

dǫy

=

+∞
∫

−∞

exp[−β(v(ǫ1)+ 1
2

(ǫy−ǫ1)2)]
Z1(ǫy,β)+Z0(ǫy,β) exp [−βFy (ǫ, ǫy, β)] dǫy

+∞
∫

−∞
exp [−βFy (ǫ, ǫy, β)] dǫy

.

(B.4.2)
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We see that the expression of ph
1 does not depend on the particular choice of the cross-

bridge. Thus the exact expression of 〈n1〉h (ǫ, β):

〈n1〉h (ǫ, β) =

+∞
∫

−∞

Z1(ǫy,β)
Z1(ǫy,β)+Z0(ǫy,β) exp [−βFy (ǫ, ǫy, β)] dǫy

+∞
∫

−∞
exp [−βFy (ǫ, ǫy, β)] dǫy

. (B.4.3)

with Fy given by Eq.(4.2.13). A direct numerical integration is possible with the use of
erfc functions. However, we apply Laplace method and it is straightforward to show that,
in the limitN → ∞:

〈n1〉h (ǫ, β)
N→∞

=
Z1(ǫ⋆,h

y , β)

Z1(ǫ⋆,h
y , β) + Z0(ǫ⋆,h

y , β)
(B.4.4)

where, ǫ⋆,h
y is the minimum of Fy. Moreover, if we use the extended wells approximation,

and the limit N → ∞, we can rewrite:

ph
1 (ǫ1, ǫ, β) =

1

Zh (ǫ, β)

+∞
∫

−∞

exp

[

−β
(

v (ǫ1) +
1

2
(ǫy − ǫ1)2 +Nλf (ǫ− ǫy)2

)]

(Z1 (ǫy, β) + Z0 (ǫy, β))N−1 dǫy. (B.4.5)

Now we integrate over ]−∞, l] with respect to ǫ1, then we apply the extended wells approx-
imation (see Se.A.2) and develop the the term (Z1 + Z0)N−1 using binomial coefficient:

〈n1〉h (ǫ, β) ≈

N−1
∑

k=0

(N−1
k

)

√
1−λ0

N−(k+1)
√

1−λ1
k+1√

Nλf +(k+1)λ1+(N−(k+1))λ0
exp

[

−βV̂
(

k+1
N , 0, N−(k+1)

N

)]

N
∑

k=0

(

N
k

)

√
1−λ0

N−k
√

−λ1
k√

Nλf +kλ1+(N−k)λ0
exp

[

−βV̂
(

k
N , 0,

N−k
N

)

]

(B.4.6)
and after rearanging the numerator we obtain with the extended approximation:

〈n1〉h (ǫ, β) ≈
N
∑

k=0

k

N
p̂h (ǫ, k, β) (B.4.7)

with ph given by Eq.(B.2.5).

Finally, after transforming the sum into integral, we apply Laplace method (the same
type of computation has been done in Sec.B.2) and we find with extended wells approxi-
mation and in ther thermodynamic limit:

〈n1〉h (ǫ, β) ≈ n⋆,h
1 (B.4.8)

n⋆,h
1 being the minimum of ϕh (ǫ, β) defined by Eq.(A.3.5).
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For soft device, the same type of computations give:

〈n1〉s (σ, β) =

+∞
∫

−∞

Z1(ǫy,β)
Z1(ǫy,β)+Z0(ǫy,β) exp [−βGy (σ, ǫy, β)] dǫy

+∞
∫

−∞
exp [−βGy (σ, ǫy, β)] dǫy

(exact) (B.4.9)

〈n1〉s (ǫ, β) ≈
N
∑

k=0

k

N
p̂s (ǫ, k, β) (E.W.A with ps given by Eq.(B.2.7)) (B.4.10)

〈n1〉s (σ, β)
N→∞

=
Z1

(

ǫ⋆,s
y , β

)

Z1

(

ǫ⋆,s
y , β

)

+ Z0

(

ǫ⋆,s
y , β

) (N → ∞) (B.4.11)

〈n1〉s (σ, β) = n⋆,s
1 (N → ∞ and E.W.A) (B.4.12)

where, ǫ⋆,s
y and n⋆,s

1 are the minima of Gy (see Eq.(4.2.14)) and ϕs (see Eq.(A.3.6)) respec-
tively.

B.4.2 Mean position in the double well potential

The mean position in the double well potential can be used to compute the equilibrium
tension (see Eq.(4.2.21)). Also this quantity is used to compute the size of the power-stroke
in Sec.7.3. By definition we have in hard device:

〈ǫ1〉h (ǫ, β) =

+∞
∫

−∞

ǫ1p
h
1 (ǫ1, ǫ, β) dǫ1

where ph
1 is defined by Eq.(B.4.2). By integrating with respect to ǫ1 we obtain:

〈ǫ1〉h (ǫ, β) =
1

Zh (ǫ, β)

+∞
∫

−∞

Z1 (ǫy, β)E1 (ǫy, β) + Z0 (ǫy, β)E0 (ǫy, β)

Z1 (ǫy, β) + Z0 (ǫy, β)
exp [−βFy (ǫ, ǫy, β)] δǫy.

(B.4.13)
where:

E1 (ǫy, β) =
1

Z1 (ǫy, β)

l
∫

−∞

ǫ1 exp
[

−β
(

κ1 (ǫ1 + 1)2 + (ǫy − ǫ1)2
)]

dǫ1, (B.4.14)

E0 (ǫy, β) =
1

Z1 (ǫy, β)

+∞
∫

l

ǫ1 exp
[

−β
(

κ0 (ǫ1 + 1)2 + (ǫy − ǫ1)2
)]

dǫ1. (B.4.15)

which after some manipulations can be put rewritten as:

E1 (ǫy, β) = (1 − λ1) ǫy − λ1 − ∆1 (ǫy, β) = ǫ̂1 (ǫy) − ∆1 (ǫy, β) (B.4.16)

E0 (ǫy, β) = (1 − λ0) ǫy + ∆0 (ǫy, β) = ǫ̂0 (ǫy) + ∆0 (ǫy, β) with (B.4.17)

∆1 (ǫy, β) =

√

2 (1 − λ1)

βπ

exp
[

−f2
1 (ǫy, β)

]

erfc (−f1 (ǫy, β))

∆0 (εt, εy) =

√

2 (1 − λ0)

βπ

exp
[

−f2
0 (ǫy, β)

]

erfc (f0 (ǫy, β))
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Hence E1 and E0 appears as the position of the minimum inside each well (see Eqs.(3.1.4)),
which does not depend on temperature, plus a correction term ∆1,0 that vanishes in the
limit β → ∞. Therefore, Eq.(B.4.13) appears as the sum of the two minima weighted by
the mean population in each well: Z1/(Z1 + Z0) and Z0/(Z1 + Z0). The computation in
soft device gives the same result with Gy instead of Fy in Eq.(B.4.13) and a multiplicative

constant
√

2π
Nλf β that simplifies with Zs in the denominator.

In we consider the thermodynamic limit (N → ∞), Eq.(B.4.13) reduces to:

〈ǫ1〉h (ǫ, β)
N→∞

=
Z1(ǫ⋆,h

y , β)E1(ǫ⋆,h
y , β) + Z0(ǫ⋆,h

y , β)E0(ǫ⋆,h
y , β)

Z1(ǫ⋆,h
y , β) + Z0(ǫ⋆,h

y , β)
(B.4.18)

and similarly in soft device with ǫ⋆,s
y . ǫy⋆,h and ǫ⋆,s

y are the minima of Fy and Gy respec-
tively. Now if we consider the extended wells approximation, the correction terms ∆1,0 in
Eqs.(B.4.16) and (B.4.17) vanish and we are left with the following finite sum:

〈ǫ1〉h (ǫ, β) ≈
N
∑

k=0

(

k

N
ǫ̂1

(

ǫ,
k

N

)

+
N − k

N
ǫ̂0

(

ǫ,
k

N

))

p̂h (ǫ, k, β) (B.4.19)

with ph given by Eq.(B.2.5) and ǫ̂1,0 given by Eqs.(3.1.8) and (3.1.9). When considering
also the thermodynamics limit (N → ∞) we get:

〈ǫ1〉h (ǫ, β) ≈ n⋆,h
1 ǫ̂1(ǫ, n

⋆,h)
1 ) + (1 − n⋆,h

1 )ǫ̂0(ǫ, n⋆,h
1 ) (B.4.20)

with, n⋆,h
1 the minimum of ϕh (see Eq.(A.3.5)).

We find similar results in soft device:

〈ǫ1〉s (σ, β) =
1

Zs (σ, β)

+∞
∫

−∞

Z1(ǫy,β)E1(ǫy,β)+Z0(ǫy,β)E0(ǫy,β)
Z1(ǫy,β)+Z0(ǫy,β) exp [−βGy (σ, ǫy, β)] dǫy. (exact)

(B.4.21)

〈ǫ1〉s (σ, β) ≈ Z1(ǫ⋆,s
y , β)E1(ǫ⋆,s

y , β) + Z0(ǫ⋆,s
y , β)E0(ǫ⋆,s

y , β)

Z1(ǫ⋆,s
y , β) + Z0(ǫ⋆,s

y , β)
(N → ∞) (B.4.22)

〈ǫ1〉s (σ, β) ≈
N
∑

k=0

(

k
N ǫ̂1

(

σ, k
N

)

+ N−k
N ǫ̂0

(

σ, k
N

))

p̂s (ǫ, k, β) (E.W.A with ps given by Eq.(B.2.7))

(B.4.23)

〈ǫ1〉s (σ, β) ≈ n⋆,s
1 ǫ̂1(σ, n

⋆,s)
1 ) + (1 − n⋆,s

1 )ǫ̂0(σ, n⋆,s
1 ) (B.4.24)

where, ǫ⋆,s
y and n⋆,s

1 are the minima of Gy (see Eq.(4.2.14)) and ϕs (see Eq.(A.3.6)) respec-
tively.





Appendix C

First passage times

Consider a particle X undergoing a drift-diffusion motion in an energy landscape V (X)
inside an interval [a, b]. Suppose the particle is initially at x0 ∈ [a, b] at time t0. We are
interested in the case where the left boundary a is reflecting and the right boundary b is
absorbing so that the particle can escape interval [a, b] only through b. We would like to
know: what is the average time before the particle reaches the boundary b of the interval
[a, b] ? The standard solution of this escape time problem in 1-D can be found in most
textbooks on stochastic processes. Our analysis below is inspired by the books of C.W.
Gardiner (Gardiner, 2004), R. Mahnke et al. (Mahnke et al., 2009) and Z. Schuss (Schuss,
2010).

C.1 First passage time

C.1.1 Elliptic equation for the mean passage time

In what follows, we use the notation P (X) for the probability of an event X. We
denote p (x, t|x0, t0), the conditional probability density of the random variable Xt for
being at x at time t when starting at x0 at time t0. We define G (t, x0, t0), the probability
of finding Xt starting from x0 at time t0 still in the interval [a, b] at t:

G (t, x0, t0) =

∫ b

a
p (x, t|x0, t0) dx (C.1.1)

Let T (t0, x0 → b) be the first passage time at x = b from the position x0 at time t0:
T (t0, x0 → b) = min {t ≥ t0, x (t) = b}. From the definition of G (C.1.1), we see that
P (T (t0, x0 → b) > t) = G (t, x0, t0) (because a is a reflecting boundary), so the density P
of T (t0, x0 → b) is simply:

P (t, x0, t0) = − ∂

∂t
G (t, x0, t0) .

For simplicity we will set t0 = 0 and drop the dependence on t0 in G and T . The mean
first passage time 〈T (x0 → b)〉 1 is the first moment of T (x0 → b):

〈T (x0 → b)〉 =

∫ ∞

0
tP (t, x0) dt = −

∫ ∞

0
t
∂

∂t
G (t, x0) dt =

∫ ∞

0
G (t, x0) dt.

To compute 〈T (x0 → b)〉, we first write that p (x, t|x0, t0) is solution of the backward

1. Here 〈.〉 must me understood as average over time, not over position.
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Fokker–Planck Eq. where V is a generic energy landscape and β−1 is the diffusion coeffi-
cient:

∂p (x, t|x0, t0)

∂t0
= V ′ (x)

∂p (x, t|x0, t0)

∂x0
− β−1∂

2p (x, t|x0, t0)

∂x2
0

. (C.1.2)

Due to the reflecting boundary condition at x0 = a we must have 2:

∂p (x, t|x0, t0)

∂x0

∣

∣

∣

∣

x0=a

= 0

and due to the absorbing boundary condition at x0 = b, we must require that

p (x, t|x0 = b, t0) = 0.

The initial condition for (C.1.2) is naturally: p (x, t = t0|x0, t0) = δ (x− x0).

As the drift term −V ′ does not depend on time, the process is homogeneous in time
which allows us to shift time derivative from t0 to t and get:

∂p (x, t|x0, t0)

∂t
= −V ′ (x)

∂p (x, t|x0, t0)

∂x0
+ β−1 ∂

2p (x, t|x0, t0)

∂x2
0

.

After integration over x, we obtain a partial differential equation on G:

∂

∂t
G (t, x0) =

[

−V ′ (x0)
∂

∂x0
+ β−1 ∂2

∂x0
2

]

G (t, x0) (C.1.3)

with G (t = t0, x0) = 1 and

∂

∂x0
G (t, x0)

∣

∣

∣

∣

x0=a

= 0; G (t, x0 = b) = 0.

After integration of Eq.(C.1.3) over t from 0 to +∞, we obtain an elliptic equation for
〈T 〉:

[

−V ′ (x)
d

dx0
+ β−1 d

2

dx2
0

]

〈T (x0 → b)〉 = −1 (C.1.4)

with the boundary conditions

d

dx0
〈T (x0 → b)〉

∣

∣

∣

∣

x0=a

= 0; 〈T (x0 → b)〉|x0=b = 0. (C.1.5)

This problem has an analytical solution. In the case of a passage to x > x̂1 (resp. to
x < x̂0) considering a reflecting boundary condition at −∞ (resp. +∞) we find:

〈T (x̂1 → x)〉 = β

∫ x

x̂1

exp [βV (s)]

(
∫ s

−∞
exp [−βV (y)] dy

)

ds

〈T (x̂0 → x)〉 = β

∫ x̂0

x
exp [βV (s)]

(
∫ +∞

s
exp [−βV (y)] dy

)

ds.

(C.1.6)

2. The derivation of this boundary condition is not straightforward (see Mahnke et al. (2009) Sec. 4.2)
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C.1.2 Kramers approximation

For convenience, we define V1 and V0 as the local expressions of Vxb for ǫ < l and ǫ ≥ l
respectively (see Eqs.4.2.5 and 4.2.6), and omit the dependence on ǫy to avoid excessive
notations. We first split Eq.(C.1.6) as follows:

〈T (ǫ̂1 → ǫ)〉 = β

(∫ l

ǫ̂1

exp [βV1 (s)]

(∫ s

−∞
exp [−βV (y)] dy

)

ds

+

∫ ǫ

l
exp [βV0 (s)]

(
∫ s

−∞
exp [−βV (y)] dy

)

ds

)

In both terms in the parenthesis, the inner integral is C1 in s and is strictly positive.
Therefore we can apply Laplace’s Method on the outer integral, where both V1 and V0

have a single maximum at l. We obtain:

〈T (ǫ̂1 → ǫ)〉 ∼ β

(

eβV1(l)

βa1 (l)
− exp [βV0 (l)]

βa0 (l)

)

∫ l

−∞
exp [−βV (y)] dy

a1 (l) =
1

1 − λ1
(l + λ1) − ǫy ; a0 (l) =

1

1 − λ0
l − ǫy

In the remaining integral, V has only one minimum at y = ǫ̂1 (ǫy). By applying Laplace
method for the second time and noting that V1 (l) = V0 (l) we obtain in the limit β → ∞:

〈T (ǫ̂1 → ǫ)〉 ∼
√

2π (1 − λ1)

β
exp [β (V1 (l) − V1 (ǫ̂1))]

(

1

a1 (l)
− 1

a0 (l)

)

(C.1.7)

and similarly:

〈T (ǫ̂0 → ǫ)〉 ∼
√

2π (1 − λ0)

β
exp [β (V0 (l) − V0 (ǫ̂0))]

(

1

a1 (l)
− 1

a0 (l)

)

. (C.1.8)

C.2 Transition rates and equilibrium of population

C.2.1 Absorption rates

Consider again a generic double well potential V and an interval [a, b] with an absorbing
boundary at b and a reflecting boundary a a. The question we want to address now is the
absorption rate at the boundary b of [a, b]. In other words, we deal with a steady state
and ask how many trajectories escape the interval per unit of time ?

We have defined G (C.1.1), the probability to be still in interval [a, b] at time t, having
started at x0 at time t0 (see Eq.(C.1.1)). The absorption rate at time t for trajectories
that started at x0 at t0 is defined by:

r (x0, t) = −Ġ (t, x0)

G (t, x0)
. (C.2.1)

This expression can be read as the relative change of probability of being in the interval
[a, b] at time t. It can be shown that (Schuss, 2010), when t → ∞, the steady state
absorption rate r (x0) of trajectories starting at x0 at time t0 = 0 is equal to the inverse
of the mean escape time and so not necessarily in the limit β → ∞:

r (x0) = lim
t→+∞

r (x0, t) = 〈T (x0 → b)〉−1 . (C.2.2)
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The proof is based on the development of p (x, t|x0, t0) in eigenfunctions and eigenvalues
of the Fokker–Planck operator. The steady state absorption rate at b is then equal to the
principal eigenvalue µ1 and the mean escape time to µ−1

1 . We can then compute the mean
absorption rate r for the interval [a, b] by using the formula:

r =

∫ b

a
r (x0) f (x0) dx0 =

∫ b

a
〈T (x0 → b)〉−1 f (x0) dx0 (C.2.3)

where f (x) is the initial probability density of x at t = t0 in [a, b]. In the cases we are
interested in, the generic potential V has a single minimum at x̂0 in interval [a, b] where a
is a reflecting barrier. In the limit β → ∞, the equilibrium density converges to δ (x− x̂0)
so we have:

r ≈ 〈T (x̂0 → b)〉−1 (C.2.4)



Appendix D

Equivalent model

D.1 Numerical scheme for the Fokker Planck equation

We present a stable and conservative numerical scheme to solve a particular Fokker-
Planck equation. Precise hypothesis regarding regularity will not be discussed in this text.

Let d be the dimension of the space of configuration, Ω be the open set of Rd of
configurations with a border ∂Ω regular enough, T be the final time.
We denote

b : Ω × [0, T ] −→ R
d

(x, t) 7−→ b(x, t)

a sufficently regular function and a > 0 a strictly positive real number. The probability
p(x, t) to find the process in configuration x ∈ Ω at time t ∈ [0, T ] satisfies the following
system of equations:







∂tp+ div(bp − a∇p) in Ω × [0, T ]
p(x, 0) = p0(x)

bp− a∇p |∂Ω×[0,T ]= 0
(D.1.1)

Where, p0 is a given function that prescibes the initial probability distribution. The flux
of probability bp−a∇p is assumed to vanish on the boundary. By using the Green formula
for the linear problem (D.1.1), one can find:

∫

Ω
p(x, t)dx =

∫

Ω
p0(x)dx = 1.

This is an important property of the probability density which we want we want to ensure
in the numerical scheme.

D.2 Numerical resolution for d = 1

In the one dimensional case we denote Ω = [r, f ] (with r < f). Then equation (D.1.1)
takes the form:







∂tp+ ∂x(bp − a∂xp)
p(x, 0) = p0(x)

bp− a∂xp |(r,t)= bp− a∂xp |(f,t)= 0
(D.2.1)

The numerical scheme will be based on the finite volume upwind method. Let us denote
Zd a linear mapping of [r, f ] with N + 1 points. The spacing is then

dx =
f − r

N + 1
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and we denote by Z the dual of this mapping on [r+ dx, f − dx]. This is by itself a linear
mapping of N points with the same spacing. We denote by the sequence xj the points of
both mappings

xj =
f − r

N + 1
(j +

1

2
) + r.

Here, j = −1
2 ,

3
2 , ...,

2N−1
2 , 2N+1

2 denotes the points of Zd while j = 1, 2, .., N−1, N denotes
the points of Z.

By integrating (D.2.1)-(1) over a cell of Zd we obtain:

∂t

∫ x
j+ 1

2

x
j− 1

2

p(x, t)dx+ F ex
j+ 1

2

− F ex
j− 1

2

= 0

where F ex
j+ 1

2

denotes the probability flux at xj+ 1
2
. We approximate this flux by its upwind

approximation:∀j = 1, ..., N − 1,

F ex
j+ 1

2
≈ Fj+ 1

2
= b(xj+ 1

2
, .)
p(xj+1, .) + p(xj , .)

2
−
(

|b(xj+ 1
2
, .)| +

a

dx

) p(xj+1, .) − p(xj, .)

2
.

The two fluxes at the boundaries are set to 0 due to boundary conditions:

F− 1
2

= FN+ 1
2

= 0

The term,

|b(xj+ 1
2
, .)|

p(xj+1, .) − p(xj , .)

2

is numerical dissipation needed to stabilize the scheme. Now, to compute accurately the
dissipation, we shall allways ensure that the estep dx is chosen in such a way that that:

dx ≪ a

Max(b(., t))
.

As we can see that very small noise a will requier a very small spacial step. To approximate
the time derivative, we use an explicit scheme when the diffusion is not too small and an
implicit scheme when the diffusion is very small.

More specifically, at each time step (we shall explain how it is chosen latter) we approx-
imate the probability at a point xj , j = 1..N by its mean value over the cell [xj− 1

2
, xj+ 1

2
]:

pn
j =

1

dx

∫ x
j+ 1

2

x
j− 1

2

p(x, t)dx.

Then,

1. The explicit scheme gives the probability at the next step pn+1
j based on the infor-

mation from the previous step pn
j as follows:

pn+1
j = pn

j − dt

dx

(

Fn
j+ 1

2
− Fn

j− 1
2

)

2. The implict scheme computes the probability at the next step by solving at each
time step, the following linear system:

pn+1
j = pn

j − dt

dx

(

Fn+1
j+ 1

2

− Fn+1
j− 1

2

)
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The stability of these linear schemes is covered by the Courant-Freidrich-Levy theorem.
In the case of the explicit scheme the time step at each time should obey:

dt =
CFLdx

2a
dx +Max(b(., t))

(CFL)

with,
CFL < 1

We have seen that if the diffusion is very small, to capture it numerically dx must be very
small (dx = ǫ a

Max(b(.,t)) , with ǫ ≪ 1) and hence in the case of the explicit scheme,

dt ∼ CFL

2Max(b(., t))2
ǫdx

which is an order of magnitude smaller than a. In practice, such simulation is too long in
practice even if each step takes a very short time. The implicit scheme is unconditionaly
stable and no such condition on the time step arises. We shall use it when the diffusion is
very small with recpect to drift.

In summary, both schemes are consitent and stable which implies that they converge
to the exact solution when

dx −→ 0 and dt −→ 0

given the (CFL) condition is satisfied in the explicit case. The order of the error is equal
to one in both time and space.

D.3 Numerical resolution for d = 2 (and d = 3)

In the case d = 2 the domain is rectangular and we use a flux-vector-splitting method
to compute numerically the solution of the Fokker–Planck equation:
Denote by Hj

dt the numerical scheme that advances the solution one time step dt ahead in
the one dimensional (direction j) case :

{

pn+1
j

}

j=1..N
= Hj

dt(
{

pn
j

}

j=1..N
)

The Trotter-Katto formula justifies the use of the following scheme in a two dimensional
case:

{

pn+1
i,j

}

i,j=1..N
= H i

dt
2

(Hj
dt
2

(
{

pn
i,j

}

i,j=1..N
))

In the explicit case, the stability of the scheme is still given by the a CFL condition:

dt = CFL Min

(

dx
2ax
dx +Max(bx(., ., t))

,
dy

2ay

dx +Max(by(., ., t))

)

In the implicit case, the scheme is still unconditionally stable. The order one in space and
time is preserved.

D.4 Equivalent Fokker-Planck equation in soft device

D.4.1 Soft device experiment with a double well potential

The computations are very similar to the case of hard device
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Complete set of Langevin’s equations

In soft device the tension σ (t) is controled by the operator. The Gibbs energy is given
by:

W (ǫ1, . . . , ǫy, ǫ, σ, t) =

N
∑

i=1

(

VA (ǫi) +
1

2
(ǫy − ǫi)

2

)

+

1

2
Nλf (ǫ− ǫy)2 − σ (t) ǫ.

(D.4.1)

And the initial set of equations is


















dǫti = b
(

ǫti, ǫ
t
y

)

dt+
√

2β−1dBt
i , for 1 ≤ i ≤ N

ǫty =
σ (t)

N
+

1

N

N
∑

i=1

ǫti

(D.4.2a)

(D.4.2b)

where:
b (ǫi, ǫy) = −v′ (ǫi) + (ǫy − ǫi) , for 1 ≤ i ≤ N, (D.4.3)

Ito calculus on ǫty

It follows from Eq.(6.2.5) that in the soft device:

hi =
1

N
, for 1 ≤ i ≤ N, (D.4.4)

and obtain the following set of Langevin equation:


















dǫti = b
(

ǫt1, . . . , ǫ
t
N , t
)

dt+
√

2β−1dBi
t, for 1 ≤ i ≤ N

dǫty = by

(

ǫt1, . . . , ǫ
t
N , t
)

dt+
√

2β−1
1

N

N
∑

i=1

dBt
i

(D.4.5a)

(D.4.5b)

with,

by (ǫ1, . . . , ǫN , t) =
1

N

(

σ′ (t) +Nǫy −
N
∑

i=1

(

v′ (ǫi) + ǫi
)

)

(D.4.6)

here also we can replace the sum
∑

ǫi using the equilibrium relation (D.4.2b) and obtain:

by (ǫ1, . . . , ǫN , t) =
1

N

(

σ′ (t) + σ (t)
)

− 1

N

N
∑

i=1

v′ (ǫi) (D.4.7)

Equivalent set of Fokker-Planck equations

After integration, the drift of the one dimensional Fokker-Planck equation driving ǫy
is given by:

by (ǫy, t) =
1

N

(

σ′ (t) + σ (t)
)

− 〈v′ (x)〉y (6.4.10)

and the Fokker-Planck equation is:

∂tpy (ǫy, t) = ∂y

(

−by (ǫy, t) py (ǫy, t)
)

+ β−1 1

N
∂yypy (ǫy, t) . (6.4.10)
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D.5 Weak coupling approximation: the stationary distribu-

tion

When t → ∞, the probability density converges to the following Boltzmann distribu-
tion:

p∞ (ǫ1, g, β) =
1

Z (g,m, β)
exp

[

−β
(

v (ǫ1) − gǫ1 −m∞ǫ1 + 1
2qǫ

2
1

)]

(6.6.11)

Now the mean value of ǫ1 is obtain from:

〈ǫ1〉 (g,m) = m1 (γ,m) +m0 (g,m) (D.5.1)

with m1 (γ,m) =

∫ l

−∞
xp∞ (x, g, β) dx and m0 (γ,m) =

∫ +∞

l
xp∞ (x, g, β) (D.5.2)

The computation of m1 and m0 is done in a similar way by a change of variable in the
gaussian integral. We obtain:

m1 = Z1 (g,m, β)







g +m− λ1
1−λ1

q + λ1
1−λ1

−
√

√

√

√

2

βπ
(

q + λ1
1−λ1

)

exp
[

−h1 (g,m)2
]

erfc (−h1 (g,m))






(D.5.3)

m0 = Z0 (g,m, β)







g +m

q + λ0
1−λ0

−
√

√

√

√

2

βπ
(

q + λ0
1−λ0

)

exp
[

−h0 (g,m)2
]

erfc (h0 (g,m))






(D.5.4)

with

Z1 (g,m, β) =

√

√

√

√

2π

β
(

q + λ1
1−λ1

)

1

2
erfc (−h1 (γ,m)) e

− β
2







λ1
1−λ1

−

(

g+m−
λ1

1−λ1

)2

q+
λ1

1−λ1







,

Z0 (g,m, β) =

√

√

√

√

2π

β
(

q + λ0
1−λ0

)

1

2
erfc (h0 (γ,m)) e

− β
2

(

2v0− (g+m)2

q+
λ0

1−λ0

)

,

h1 (g,m) =

√

β

2





√

q +
λ1

1 − λ1
l −

g +m− λ1
1−λ1

√

q + λ1
1−λ1



 ,

h0 (g,m) =

√

β

2





√

q +
λ0

1 − λ0
l − g +m

√

q + λ0
1−λ0



 .

The partition function Z in Eq.(6.6.11) is simply given by:

Z (g,m, β) = Z1 (g,m, β) + Z0 (g,m, β) . (D.5.5)





Bibliography

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2008). Molecular

biology of the cell. Garland Science.

Allaire, G. (2007). Analyse numérique et optimisation. Les éditions de l’Ecole Polytech-
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Résumé :

Mécanique de la récupération rapide de force des muscles striés

Cette thèse est consacrée à la modélisation de la réponse transitoire d’une fibre mus-
culaire squelettique soumise à des sollicitations mécaniques rapides. A l’échelle du na-
nomètre, la fibre musculaire contient des filaments d’actine et de myosine regroupés en
unités contractiles appelées “sarcomères”. Le filament de myosine est un assemblage de
moteurs moléculaires qui, en présence d’ATP, s’attachent et se détachent périodiquement
au filament d’actine. Au cours de ce processus d’attachement-détachement, la myosine
génère une force lors d’un changement de conformation appelé “power-stroke”. Ses ca-
ractéristiques peuvent être étudiées lors de la réponse transitoire de la fibre soumise à
des sollicitations mécaniques rapides. Nous proposons un modèle mécanique innovant du
demi-sarcomere permettant de relier les caractéristiques de la myosine à la réponse de la
fibre complète. A la différence des modèles existants, privilégiant une approche discrète,
ce modèle s’appuie sur la définition d’un potentiel d’énergie continu qui prend en compte
une interaction de champ moyen entre les moteurs moléculaires. Ce système présente des
réponses radicallement différentes à longueur imposée et à force imposée. Nous proposons
en particulier une explication à la différence de cinétique observée expérimentalement.
Nous montrons également que le demi-sarcomere est mécaniquement instable ce qui ex-
plique les inhomogénéités de longueurs observées dans une myofibrille.

Abstract:

Mechanics of fast force recovery in striated muscles

This thesis is devoted to the modelling of transient response of muscle fibers submitted
to fast mechanical loadings. At the nanometer scale, the muscle fiber contains actin and
myosin filaments grouped to form contracile units called ‘sarcomeres’. Myosin filament is
an assembly of molecular motors that periodically attach and detach to the actin filament
in presence of ATP. During this attachement-detachement process, myosin undergoes a
force generating conformational change called the ‘power-stroke’ whose characteristics can
be revealed by the transient responses following fast mechanical loadings. We propose an
innovative mechanical model of a half sarcomere that links the characteristics of myosin
to the response of the whole fiber. Unlike existing models, using a discrete approach, this
model is based on the definition of a continuous energy landscape that takes into account
a mean field interaction between the molecular motors. This system presents radically
different responses under imposed length and imposed force conditions. We particularly
emphasize a difference in the kinetics, also observed experimentally. We show that the
half-sarcomere is inherently unstable which explains the sarcomere length inhomogeneities
observed recently on myofibrils.
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