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Introduction

Uscles perform various functions in living organisms: they control the volume of
hollow organs, pump blood and drive body locomotion. Different types of muscle
are specialized for different tasks. In this Thesis, we are focusing on skeletal muscles.
Although the mechanism of contraction is basically the same for all types of muscles,
skeletal or striated muscles are probably the most natural object to study the general
principles of muscle contraction. First, striated muscles are geometrically simple because of
their mostly one-dimensional arrangement. Second, skeletal muscle fibers have an almost
crystalline microstructure, allowing one to use X-ray diffraction techniques to measure
displacements at the nano-meter scale. Most importantly, this structural simplicity makes
adequate even the models with minimal geometrical complexity.
In this Thesis we attempt to answer two fundamental questions of muscle mechanics
originating from experimental observations and not yet explained satisfactorily by the
existing theories. These question are:

1. Explain the pronounced difference in the rate of mechanical response
of striated muscles in soft and hard devices (Edman and Curtin, 2001;
Piazzesi et al., 2002a, 2007).

2. Explain the well documented heterogeneity of half sarcomere
lengths observed in the broad physiologically relevant range
(Rassier and Pavlov, 2010; Telley et al., 2006b).

While answering these specific questions we had to deal with a much more general question
which we formulate as follows:

3. Is the power-stroke a purely mechanical phenomenon or does it
require ATP the hydrolysis for its functioning ?

We recall that at the microscale, skeletal muscles can be viewed as an assembly of paral-
lel fibers. Each fiber has a striated structure originating from the series arrangement of
sarcomeres. The sarcomere is a generic contractile unit of every muscle (not only skeletal
muscles): it contains two types of filaments, actin and myosin. Actin is a helical fiber
with periodic arrangement of attachment sites. The myosin filament is a bundle of mo-
tor proteins (myosin II) that are connected to a backbone and point out towards the
surrounding actin filaments. Actin and myosin interaction is ultimately responsible for
muscle contraction.

Myosin consumes energy which is released during ATP hydrolysis. This allows it: to
attach to the actin filament to form what is called a cross-bridge (step 1), to generate
an incremental force called the power-stroke (step 2), to detach form the actin filament
(step 3) and finally to ‘recharge’ the power-stroke mechanism (step 4). By cyclically going
through those four steps known as the Lymn—Taylor cycle, the myosin motors pull on actin



xiv | Introduction

filaments, generating the shortening of the sarcomere and thereby producing a macroscopic
force.

The main goal of this Thesis is to understand the inner mechanical working of the
power-stroke mechanism (step 2). While the whole Lymn-Taylor cycle requires ATP sup-
ply, the power-stroke is believed by many to be taking place at such short time scales
(milliseconds) that it can be considered as a mostly mechanical phenomenon which is not
rate limited by the ATP delivery/kinetics. In this sense, the power-stroke is the perfect
object to be studied by means of mechanics. In view of the small sizes of the ‘mechan-
ical parts’ involved (nanometers), the classical mechanical picture should be of course
augmented by taking temperature induced fluctuations into account.

Power-stroke has been thoroughly studied experimentally through the transient re-
sponses of single muscle fibers to fast loadings. In this Thesis, we contribute to the
rationalization of the results of these mechanical experiments and also propose new exper-
imental set-ups.

On the modeling side, muscle contraction is usually associated with a set of chemical
reactions among a finite number of states (detached pre-power-stroke <+ attached pre-
power-stroke <+ attached post-power-stroke <+ detached post-power-stroke, etc ...). The
response of the system strongly depends on the transition rates characterizing these reac-
tions. To match experimental data, some researchers find it necessary to introduce more
and more chemical states which they interpret as ‘sub-strokes’. While these new states are
usually not clearly linked to specific chemical species, the additional chemical constants
(which are actually functions of the mechanical variables in the case of muscle) bring new
curve fitting possibilities.

In this Thesis we abandon the phenomenological path of chemo-mechanical models
and pursue an approach based on a consistent mechanical modeling of the power-stroke
mechanism. More specifically, instead of a set of discrete states, we consider a continuum
of states and replace the phenomenological assumptions regarding rate functions by the
study of stochastic dynamics in a multi-dimensional energy landscape. This approach
has the advantage of capturing the mechanical response of the sarcomere lattice within
a framework based on a small set of parameters rather than a set of fitting functions.
One outcome of our model is a mechanical interpretation of the rate constants in the
conventional chemo-mechanical models of the power-stroke, in terms of mechanical and
anatomical characteristics of actin and myosin fibers.

Our main result is a quantitative model of a half-sarcomere which is in full agreement
with experiments. We consider the attached myosin heads as a set of parallel bi-stable
springs with a non-convex bi-quadratic potential responsible for the conformational change.
Following experimental evidence, we incorporate into the model, the linear elasticity of
myofilaments (actin and myosin filaments) which introduces a mean-field type interaction
between the cross-bridges and generates collective effects. We find that the model with just
8 parameters (!) reproduces rather well the experimental data on fast force recovery after
shortening, including the mysterious difference in time scales of mechanical experiments
in hard and soft devices (imposed displacement and imposed force known in muscle as
load clamp/isotonic and length clamp/ isometric settings). Our model also reinforces
the opinion that the power-stroke mechanism is characterized by negative stiffness and
operates in an inherently unstable regime. We show that this instability leads to highly
inhomogeneous response of a multi-sarcomere chain which is in agreement with the growing
experimental evidence.

In a separate development, we have proposed a way to rigorously replace the stochastic
dynamics of many (~ 300) interacting cross-bridges by an effective stochastic dynamics of
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a single point in a one-dimensional configurational space. Such model reduction allows one
to construct effective algorithms dealing with stochastic evolution of a chain of interact-
ing sarcomeres paving the way towards building an adequate model of a whole muscle fiber.

The manuscript is organized as follows:

Chapter 1 contains a brief account of basic muscle anatomy and physiology. In partic-
ular, we review the mechanism of muscle contraction and discuss mechanical experiments
that contributed to the understanding of the cross-bridge behaviour.

Chapter 2 is focused on the modeling of the power-stroke viewed as a sub-system of a
more general contractile machinery. After a review of the previous theoretical and exper-
imental work we summarize the proposed model and introduce the main non dimensional
parameters.

In Chapters 3-5, we present a study of the mechanical response of our model system
in hard and soft device loadings.

First, in Chapter 3, we neglect the effects of temperature and present an account of
local and global minima of the mechanical energy of the system. At this stage, the crucial
difference between the behaviours in hard and soft devices is revealed and linked to the
presence of the mean field elastic interaction between different cross-bridges.

In Chapter 4, the temperature is added to the picture. We perform the analytical
computation of the free energy and study the detailed structure of both the isotherms and
the adiabats.

The kinetic response of a half-sarcomere to ramp loadings is studied in Chapter 5 where
we simulate numerically a large system of stochastic ordinary differential equations. The
study of the characteristic rates in different loading conditions shows the phenomenon of
‘kinetic trapping’ which we link to the presence of the mean field interaction among the
cross-bridges. We show that this phenomenon is more pronounced in soft device than in
hard device (in accordance with experiments).

In Chapter 6 we develop a reduced version of our model, with only one collective
variable. We show that such a simplified model still allows us to capture rather well the
mechanical transients exhibited by the original model.

In Chapter 7, we perform some benchmark simulations of the mechanical response
of a half-sarcomere by using a realistic set of parameters. We first show in detail how
the parameters can be extracted from the experimental data. Based on the quantitative
comparison of the theory with experiments, we conclude that, at ambient temperatures, a
single half sarcomere behaves as a ‘cold system’ which is characterized by negative stiffness
and is inherently unstable. We propose several mechanisms of active stabilization requiring
continuous energy supply. In the same Chapter, we also briefly discuss the role of strain
inhomogeneity inside individual half-sarcomere and study additional mechanisms that may
get involved during stretching (second head, detachment)

Finally in Chapter 8, we study the collective behaviour of a chain of half-sarcomeres
connected in series. We find that the response is markedly non affine. In contrast to the
behaviour of a single half-sarcomere, the whole chain exhibits small but positive effective
stiffness and operates in a stable regime.

The last Chapter contains our conclusions.






CHAPTER 1

Basic muscle anatomy and
physiology

0 understand the mechanics of muscle contraction and to interpret the experiments
T carried out on muscle proteins and muscle fibers, it is natural to first turn to the
basics of muscle anatomy and physiology. After the principles of muscle contraction are
clarified, we present some typical mechanical experiments revealing the inner working of
single molecules involved in active force generation.
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2| CHAPTER 1 - Basic muscle anatomy and physiology

1.1 The background

In this section, we introduce the basic anatomical and physiological concepts that
are necessary to understand this manuscript (Alberts et al., 2008; Tortora and Derrikson,
2009).

1.1.1 Muscles in human organism

Muscles are contractile tissues, that play a variety of roles in living organisms. The
most visible one is to allow motion of the body by either exerting forces on joints or
pulling on the environmental surfaces. More precisely, muscle tissue accomplishes at least
4 different tasks in the human body:

1. It produces movement by coordinated displacements of the bones. The most impor-
tant example is locomotion.

2. It stabilizes a posture through continuous contraction. For example, neck muscles
are constantly contracting in order to keep the position of the head of a standing up
person.

3. It regulates organs volume. In particular, sphincters prevent leakage from hollow
organs such as the stomach or the bladder.

4. Tt displaces substances in the organism. For instance, repeated contractions of car-
diac muscle pump the blood while muscle tissues around blood vessels regulate the
flow rate.

Muscles are highly specialized in order to accomplish different tasks. One distinguishes
3 families of muscles which differ essentially by their regulation processes and by the spatial
organization of their constitutive fibers.

Smooth muscles are mostly present in digestive organs, around blood vessels, along air
ways, and even in erector muscles of hair. Smooth muscle cells are elongated ellipsoids of
30 to 200 pm long. Inside each cell the contracting fibers are arranged almost randomly so
the contraction is close to being isotropic. Smooth muscle are autorythmic: they contract
without stimulation by the central nervous system and are instead activated by local
electric signals.

Cardiac muscles are found only in the heart and are also autorythmic. Their fibers
are 50 to 100 um long and 14 pm wide. The organization of the fibers is less isotropic
than in smooth muscles but still one finds there connected fibers constituting a ramified
network which, during contraction, exerts an isotropic stress.

Skeletal muscles are the main elements of body locomotion. They are fixed to the
bones by tendons. Skeletal fibers are long, non ramified cells (from 100 pm to 30 cm
long and 10 pm to 100 pm wide) that confer a preferred orientation to the muscle. Skele-
tal muscles elongate and apply stress in a uni-dimensional manner. Their contraction is
faster than for other types of muscle and is directly triggered by the central nervous system.

In the present work, we focus on single muscle fibers. As we shall see in the following
sections, the muscle fiber is highly organized, almost crystalline, which facilitates both
observation and modeling. However, the principles of active force generation revealed by
the study of skeletal muscles, remain valid for other muscle types as well.
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Fig. 1.1 — Representation of a skeletal muscle and its multiscale organization. Muscle is an
ensemble of fascicles. Each fascicle contains muscle cells. Muscle cells are also called fibers. They span the
whole fiber length. Each fiber is composed of myofibrils; each one being a crystalline array of interdigitated
filaments. Adapted from Tortora and Derrikson (2009).

1.1.2 Anatomy of a skeletal muscle
Fascicles and muscle fibers

A skeletal muscle is a multiscale tissue (see Fig.1.1). Typically, a human skeletal muscle
is a few cm long and less that 5 cm wide. We can distinguish, in a transversal cut, bundles
of about 1 mm diameter called the fascicles. FEach fascicle contains 10 to 100 parallel
muscle fibers. A muscle fiber is a multi-nuclei cell that spans the whole length of the
tissue (see Fig.1.2). Muscle cells do not divide and their number does not change during
the adult life. Their cytoplasm contains hundreds of 2 ym wide myofibrils that are covered
by a network of tubes called the transverse tubules whose role is to deliver the chemicals
that trigger the contraction (see section 1.1.3 and Fig.1.9).

The sarcomere

Under the transmission electron microscope, one can see that myofibrils exhibit, along
their longitudinal axis, a very regular succession of dark an light bands. These striations
are present in both skeletal and cardiac muscle fibers justify the term: striated muscles.
Dark and light bands are due to periodic succession of contractile units called sarcomeres
(Fig. 1.3). Each sarcomere is about 50 nm wide and 2.4 um long so the region between
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Fig. 1.2 — Detailed representation of a muscle fiber. Adapted from Tortora and Derrikson (2009).

Fig. 1.3 — Transmission electron micrograph of a myofibril. Each sarcomere is about 2.1um long.
Adapted from Tortora and Derrikson (2009).

the two light bands is in fact a parallel arrangement of ~1000 sarcomeres. Note that a 10
cm muscle fiber contains about 10! sarcomeres with ~10% sarcomeres in the cross section
and ~10° sarcomeres along the length.

The fibrous aspect of the sarcomere is the consequence of the presence of interdigitated
myofilaments: the actin (or thin) and myosin (or thick) filaments, that can overlap and
cross-link. The myosin filament is an assembly of molecular motors (the myosins) that can
bind to the actin filament to form cross-bridges. We specify the structure of the thick and
thin filaments in the next paragraph.

In Fig.1.3 we show the striated structure of myofibrils in more details. One can easily
identify:

— The darker A—band spans the region where, in the sarcomere, the actin and myosin
filaments overlap. In the middle of the A-band, the H-zone corresponds to bare
segments of thick filaments where there are no myosin motors. The M-line, where
different thick filaments are cross-linked, is located in the center of the A—band.

— The I-band is brighter and corresponds to a zone where there are no thick filaments



1.1. The background | 5

Fig. 1.4 — Cross section electron micrograph of an insect myofibril. See the almost crystalline
hexagonal alternation of thick (darker spots) and thin filaments (lighter spots). From Alberts et al. (2008).

diameter cross-section relative quantity per muscle
thin filaments 8 nm 50 nm? 3000/myofibril  100.10° /muscle
thick filaments 10 nm. 80 nm? 1500/myofibril  50.10° /muscle
myofibril 2 pm 3 pm? 700/fiber 35.105 /muscle
fiber 50 pm 2000 pim? 500/fascicle 50000/muscle
fascicle 1 mm 1 mm? 100/muscle

Tab. 1.1 — Main anatomic components of a muscle with their characteristic scale. From
Tortora and Derrikson (2009).

overlapping the actin filaments. The Z-disk that separates two adjacent sarcomeres
is located in the middle of the I-band.

In the cross section of the myofibril (see Fig.1.4), the alternation of thick and thin
filaments (thick filaments form darker spots on the micrograph) forms an almost perfect
hexagonal lattice. In Tab.1.1, we summarize the main elements that constitute the muscle
fiber together with their characteristic size and their quantities.

Mpyofilaments and molecular motors

We now turn to the structure of actin and myosin filaments:

— The actin filament (also called thin filament) is 8 nm wide and 1 pm long. It is a
double helix built with polymerized actin monomers as one can see in Fig.1.6 and
Fig.1.9. Each actin monomer has a 5 nm diameter and the helix has a periodicity of
about 36 nm. The actin monomers are surrounded by a proteins called tropomyosins
are activated in the presence of calcium ions. When activated, tropomyosin flips and
reveals the actin monomers to which the surrounding myosin can bind; otherwise,
the actin monomers remain hidden and unable to bind myosin (see Sec.1.1.3).

— The myosin filament (thick filament) is an arrangement of ~300 myosin II molecules.
The ensemble of myosins is a triple helix with a myosin head projected every 14.5
nm (Fig.1.6B).

Myosin II is a molecular motor: an enzyme that is able to convert the chemical energy car-
ried by the ATP ! into mechanical work. In the presence of ATP it undergoes time-periodic

1. Adenosine triphosphate
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conformational changes in the vicinity of the actin filament to which it successively at-
taches and detaches (see section 1.8). This protein has 2 globular heads (S1) whose tails
are assembled in a helix (see Fig. 1.6 A). In the sarcomere, the tails of different myosins
are packed together and constitute the backbone of the thick filament from which all the
300 heads project outward towards the surrounding actin filaments (see Fig. 1.6 B). The
part of the tail that points out of the thick filament backbone is called S2 and the part in-
side the thick filament is called the light meromyosin (LMM, Craig and Woodhead, 2006).
Together, S1 and S2 segments are called the heavy meromyosin (HMM). The fine structure
of myosin S1 will be discussed in Sec.2.1 where we focus on the power-stroke proper.

There exists a large variety of molecular motors. Each family of motor accomplish
specific tasks in the living organisms. For example, in the cytoplasm of cells, kinesins and
dyneins are molecular motors that carry vesicles along the microtubules. Molecular motors
can be classified in two families (for a more detailed introduction to molecular motors we
refer to Howard (2001) and references therein):

— Processive motors act individually in the living environment. The time the motor
spends attached to the filament (not necessarily actin) is large compared to the time
it spends detached (high duty ratio). Those motors have two legs and walk on the
filament. Myosin V and Kinesin I are examples of such proteins.

— Non-processive motors act in a collective fashion like rowers (while processive motors
are sometimes called porters). The attached time to the filament is small compared
to the detached time, so the motors spend a small fraction of time performing the
work (low duty ratio). Myosin II responsible for muscles contraction belongs to this
second category.

So far, we have not mention yet another sarcomere protein: titin. This giant molecule
(the biggest in the organism), spanning the whole sarcomere length and anchored on the
Z-disks (see Fig.1.5), contributes to passive elasticity of the muscle and allows the muscle
to preserve its integrity when the latter is stretched beyond the overlap between actin and
myosin fibers (Leonard et al., 2010).
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1.1.3 Physiology of muscle contraction
The sliding filament theory

The basics of the sliding filament theory were developed by A.F Huxley and H.E
Huxley in the 1950’s. The improvement of electron microscopy and X-ray diffraction
techniques allowed them to observe the structure of the dark and light bands in muscle
myofibrils during fiber contraction (Hanson and Huxley, 1953; Huxley and Niedergerke,
1954). The first contraction mechanism was proposed in a famous article by A.F. Huxley
(Huxley, 1957). Huxley argued that muscle contraction is due to a periodic attachment of
the cross-bridges between the myosin filaments and the actin filaments (see also Huxley,
1953). The individual attachment phase lasts few tens of millisecond during which the
muscle develops force. The maximum force developed during contraction depends on the
sarcomere length as we will explain in section 1.2.2.
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Molecular mechanism of muscle contraction

As we have already mentioned, filament sliding is induced by the periodic attach-
ment and detachment between the myosin heads and the actin binding sites. In 1971,
R.W. Lymn and E.W. Taylor proposed a chemo-mechanical scheme that establishes quan-
titative relation between the conformational change of myosin head and the ATP split-
ting (Lymn and Taylor, 1971). Although their proposed cycle has been updated many
times since, it remains a reference in the field and has the advantage of representing
the inner mechanism of muscle contraction in its simplest form (Fortune et al., 1991;
Kawai and Halvorson, 1991; Linari et al., 2010; Smith et al., 2008; White and Taylor, 1976).

The Lymn-Taylor cycle has 4 steps (see Fig.1.8):

— 1—2: Attachment. The myosin head is first detached from actin in a pre-power-
stroke configuration. ATP is in its hydrolyzed form ADP+Pi? which has high affinity
to actin binding sites. Then, the binding site is open, the myosin heads ends up
attached to the actin filament.

— 2—3: Power-stroke is a conformational change during which the myosin head
executes a rotation around the binding site which corresponds to a displacement
increment of a few nm towards the Z—line. This movement stretches the elastic tail
connecting the head to the backbone and thus generates a force of a few pN. During
the power-stroke, phosphate (Pi) is released (Linari et al., 2010)

— 3—4: Detachment occurs after the power-stroke while the myosin head still re-
mains in its post-power-stroke state. Detachment coincides with the release of ADP
(the second hydrolysis product that has low affinity to the attached state) and re-
cruitment of a fresh ATP molecule.

— 4—1: ATP Hydrolysis provides the energy to recharge the power-stroke mech-
anism. The myosin head is now searching for the next binding site to restart the
cycle.

Each ATP molecule provides ~100 zJ 3 which is equivalent to ~25 ky0 (1ky0 ~ 4 zJ)

2. ADP: Adenosine DiPhosphate; Pi: Phosphate
3. z stands for zepta = 10~
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at room temperature. Here, kj is the Boltzmann constant (k, = 1.381.10723] .K_l) and 0
is the absolute temperature in K.

The characteristic times indicated in Fig.1.8 are obtained from (Linari et al., 2010;
Lymn and Taylor, 1971) and correspond to experiments made with actin and myosin in
solution. These experiments clearly show that the different steps of the cycle have different
time scales. On the one hand, the fastest steps are the attachment of the myosin head
S1 to actin (1 &2 2) and the conformational change (2 2 3): both last a few ms. On
the other hand, the detachment and the hydrolysis of ATP occur, in solution, on a much
slower time scale (=~ 100 ms).

Above conclusions based on experiments in solutions have to be considered very care-
fully when dealing with actual reactions inside the sarcomere:

— In solution, the different molecular motors are not mechanically coupled to a loading
device. So those rates do not take into account the effect of the stress in the fiber
which clearly influences the kinetics of muscle contraction (Bigland and Lippold,
1954; Edman, 1988; Hill, 1938; Huxley and Simmons, 1971).

— The chemical cycle does not take into account the geometry of the system (steric
effects). Thus, in solution, the attachment is as a very fast step as soon as the myosin
is in its hydrolyzed state. Indeed, if the concentration of actin is sufficiently high,
there is a high probability for the myosin to find a binding site. In the muscle, as the
binding sites on the actin filament are separated by a distance of 36 nm (Howard,
2001), the hydrolyzed myosin head may stay detached if there is no binding site near
its position. Hence, the attachment rate is likely to be slower in the fiber than in
solution.

The control mechanisms

The control of skeletal muscle contraction is by itself a broad and active field of re-
search and we only mention here the basic ideas explaining how the Lymn—-Taylor cycle is
activated and controlled.

A detailed scheme of the regulation loop is presented on Fig.1.9. Activation reduces
to the conversion of an electric signal from the moto-neuron (there can be many axon
terminals along the same muscle fiber) into an action potential (a depolarization of the
fiber membrane). The signal travels along the transverse tubule (see Fig.1.2) and triggers
the release of calcium ions Ca?t from sarcoplasmic reticulum into the sarcoplasm. As we
explained earlier (see section 1.1), actin filament are covered by tropomyosin, a protein
with two conformations controlled by Ca?*. In the presence of Ca?*, tropomyosin flips
and allows myosin heads to bind to the actin filaments (see Fig.1.9).

Without continuous electric stimulation, the depolarization of the membrane cannot
be maintained and the calcium ions are pumped back into the sarcoplasmic reticulum. As
a result the muscle relaxes as tropomyosin flips back into its inactivated conformation.

The degree of activation is controlled not by the intensity of the action potential but by
the frequency of the stimulation, each action potential being an ‘1 or 0’ trigger. A single
action potential generate a twitch that lasts ~ 50 ms, during which the fiber contracts and
then relaxes (see Fig.1.10A and B(a)). A low frequency stimulation (i.e. 30 ~ 40 Hz in
human) generates a so called unfused tetanus where the successive twitches are summed but
remain distinguishable (see Fig.1.10B(b) and (c)). At sufficiently high frequency (~ 100Hz
in human), the twitches merge and become undistinguishable and the force raises up to a
level called fused tetanus (see Fig.1.10B(d)).



10| CHAPTER 1 - Basic muscle anatomy and physiology

Nerve impulse arrives at
axon terminal of motor
neuron and triggers release
Nerve A\ of acetylcholine (ACh)
e

action potential does not
arise unless more ACh is

o Muscle relaxes.

T

blocks the myosin
binding sites on actin.

B

Ca® active
o?® transport pumps
S POIpPSESery

© _©  ca® insarcoplasm.
o _o0o0
°o% o 0% o
o o
o %°c°0 ©

o

( : C’; ACh d]ﬁuses across Transverse tubule
(5 (,’_ synaptic cleft, binds
<

o sarcoplasmlc reticulum (SR)

=

° |ons to Ilood into the sarcoplasm

< toits receptors in the S
g motor end plate, and ° 0 0,
/9 tiggers a muscle © wuscle AP travelllng along
action P"“*"“al (AP). transverse tubule opens Ca**
X, release channels in the
ACh receptor o Acelylchollnes\erase in o, © membrane, which allows calcium
Synaptic vesicle synaptic cleft destroys
filled with ACh ACh so another muscle /7 ol o LIPS
o

%o
released from motor neuron.  © © ° 20— Ca?

e Troponin—tropomyosin o ca” binds to troponin on

complex slides back the thin filament, exposing
into position where it the binding sites for myosin.

to actin, swivel, and release;

o
° 8% 0 00 5° oo e Contraction: power strokes
o Ca? release channels in ° use ATP; myosin heads bind
SR close and Ca* active © 9,
@ transport pumps use ATP  © thin filaments are pulled toward
o o torestorelowlevelof o o center of sarcomere.

_

Fig. 1.9 — Summary of the events of contraction and relaxation in a skeletal muscle fiber.
A crucial role is played by calcium ions that allow the attachment of myosin heads to actin. From

Tortora and Derrikson (2009)

= Myograms

Contraction
period

Relaxation
period

Force of contraction ——3»

Latent
period

Force of contraction

Action | |
potential | |
|
.
0 10 20 30 40 50

Time in milliseconds (msec) (a) Single twitch  (b) Wave summation

Time (msec) —>

(d) Fused tetanus

Fig. 1.10 — Electric stimulation triggering muscle contraction. (A) Electromyogram (force vs

time) showing the contraction following a single stimulation (single twitch).
towards a fused tetanus. From Tortora and Derrikson (2009).

(B) Twitches summation



1.2. Mechanical experiments |11

1.2 Mechanical experiments

In this section we briefly review mechanical experiments carried out on muscle fibers.
However, we leave the experiments specifically focused on the power-stroke mechanism for
the next Chapter.

1.2.1 Typical experimental set-up

The classical experimental set-up allows one to realize length clamp and force clamp
experiments on a single fiber (diameter ~ 100um) with a feedback control on the sarcomere
length (Ford et al., 1977; Piazzesi et al., 1992)

After the fiber is carefully dissected from the animal (usually sartorius or psoas muscles
of the leg from frog or rabbit), it is mounted between a loudspeaker motor that can apply
controlled displacements and a capacitance force transducer. The total fiber length is a few
mm. The muscle fiber has to be kept in an appropriate solution (called Ringer’s solution)
containing mainly: NaCl, KCI, CaCly and ATP. An optical set-up (Huxley et al., 1981),
called striation follower, can detect the displacement of sarcomere dark and light bands
by means of an array of photodiodes. Two laser beams are pointed on two spots on the
fiber separated by 1 mm. The segment between the spots contains about 500 sarcomeres.
Under the assumption of the homogeneous sarcomere length distribution between the
spots, the length change per sarcomere is deduced from counting the striation entering
and leaving the segment during the time of experiment. The resolution is 1us in time and
1 nm in length. The signal from the optical system enters a feedback loop that allows one
to indirectly control the sarcomere length by moving the extremities of the fiber (length
clamp mode). An alternative is to use the signal from the force transducer in the feedback
loop and apply the appropriate displacements on the fiber. This is the way to maintain
the force at the desired value (force clamp mode).

Some experiments are carried out on intact fibers that need to be electrically stimulated
in order to contract. However, typical experiments are performed on skinned fibers (where
the cell membrane is removed by chemical agents) offering the possibility to directly control
the chemical environment of the myofibrils (for instance, the calcium concentration, see
Sec.7.1.3). In that case, the contraction is triggered by the temperature increments instead
of electrical impulses (Coupland et al., 2001; Linari et al., 2004).

1.2.2 Muscle fiber experiments
Isometric contraction

We introduced, in section 1.1.3, the notion of fused tetanus where the muscle generates
its maximal force called the tetanic or isometric force. The isometric force varies with the
imposed sarcomere length (sl) (see Fig.1.11). The resulting curve ‘tension vs elongation’
is not obtained by a quasi-static stretching as for classical material. Instead, each point
corresponds to a different tetanic stimulation at a given sarcomere length. As it is shown
by Fig.1.11A, the isometric force is directly linked to the degree of filaments overlap in each
sarcomere. The maximal isometric tension is reached for 2 < sl < 2.5 pm, which is the
physiological regime of muscle contraction. At such sarcomere lengths, all myosin heads
are facing an actin filament (full overlap). If sl < 2 pm, the isometric tension starts to de-
crease with sarcomere length even though filaments are in full overlap: when a sarcomere
is too short, the internal geometrical structure of the sarcomere is perturbed due to steric
reasons (filament buckling, bad attachments conditions, frustration, ...). After sl > 2.5um,



12| CHAPTER 1 - Basic muscle anatomy and physiology

— - —
_ F22um i
————e ) — Vv Filaments ' H
100 [ A8umi Thin  Thick 1.0 4 g! *

§§ 80 U — g’g% 532\@
S % —3.8 um— g:° 0.8 1 : 8"y
SE e £ 4 ; o
°s S 06 - b L
St @ & g aw
N @ 40 5 ¢ . B
=5 204 4 p = /g

20 [ P

L 1 1 1 1 0.2 4 %
g ¥
40 60 80 100 120 140 160
'TEA S ESS
Resting sarcomere length (percentage of optimum) 0 - T £ .| ! & .' 4 T T 1
< I T I > 06 0.3 10 1.2 14 16
Understretched Optimal Overstretched Fibre Length fLo
length

Fig. 1.11 — Tension vs sarcomere length relation. (A): scheme indicating the relation between
the isometric tension and the degree of filament overlap (from Tortora and Derrikson, 2009). The tension
reaches a plateau for an optimal filament overlap (2 < sl < 2.5 pm). On the ascending limb (sl < 2 pm),
the tension generation is less efficient for steric reasons. On the descending limb (sl > 2.5 ym), the tension
decreases as the degree of overlap decreases with s, instabilities starts to develop. (B) Data from rat flexor
allucis brevis from (Roots et al., 2007). (<): isometric tension obtained for various sarcomere lengths. (*):
tension wvs strain curve obtained with a relaxed muscle showing an hyperelastic behavior.

the degree of overlap decreases progressively with sl (descending limb). In some sarcom-
eres, the overlap may be lost completely leading to the phenomenon called ‘sarcomere
popping’. The behavior of the muscle fiber on the descending limb has been studied exper-
imentally by W. Herzog and co-authors (Rassier and Herzog, 2005; Rassier et al., 2003b;
Walcott and Herzog, 2008). Most recent experiments (Leonard et al., 2010) imply the role
of titin responsible the particular behavior of muscle fibers in this range. A theoretical
explanation of popping instability was proposed in (Novak and Truskinovsky, 2002).

In addition to the isometric tension, Fig.1.11B shows how the ‘passive tension’, ob-
tained during a quasi-static stretching of a non-activated muscle, depends on sarcomere
length (Roots et al., 2007). This purely mechanical response is usually interpreted as
hyperelastic behavior with a considerable (exponential) increase in stiffness at large de-
formation. In the physiological regimes (corresponding to the plateau on Fig.1.11), we
observe that the contribution of those passive structures is negligible.

Force-velocity relation

Force-velocity relation is one of the main experimental result in muscle mechanics. It
is actively discussed since the early 20th century. Even now many models of muscle con-
traction implement the hyperbolic law derived by A.V. Hill in (Hill, 1938) (see for instance
the work of D. Chapelle and co-workers in Bestel et al., 2001; Chapelle et al., 2001). A
non-trivial hyperbolic force-velocity relation is a crucial property of active materials. It is
shown by A. Asnacios et al. that a single cell exhibits a force-velocity relation comparable
to the one observed in full muscles (Mitrossilis et al., 2009).

Experimentally, the force-velocity relation is obtained as follows (Piazzesi et al., 2002a,
2007):

First, the muscle fiber is stimulated under isometric conditions till it reaches the tetanus
force Tj. From this point the control device is switched to force clamp mode and a force
step is applied. As a consequence, the fiber shortens.

After three transient phases, the shortening ends up in a steady state regime (marked
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Fig. 1.12 — Force velocity relation.(A), from (Reconditi et al., 2004). Upper trace: force change
normalized to the isometric tension 7p. Lower trace: length change in nm per half-sarcomere (nm/hs).
Transients phases 1 and 2 reveal the fast process occurring at the scale of the cross-bridges (see Sec.2.2).
Phase 3 represents the onset of attachment detachment process and phase 4 is a steady state regime with
shortening at constant velocity (from Reconditi et al., 2004). (B): the constant velocity attained in phase 4
vs the normalized force (T'/Tp). In shortening we recognize the hyperbolic force-velocity relation described
in (Hill, 1938). The force for which the velocity is equal to 0 is called the stall force . For low stretching
(T/To < 120%), muscle ‘resists’ the applied force before the velocity diverges (T7'/To > 120%, destruction of
the fiber). Data are compiled from (Ford et al., 1985) (for shortening) and (Lombardi and Piazzesi, 1990)
(for lengthening).

as phase 4 on Fig.1.12A) and it is at this stage that the velocity corresponding to the
given force is extracted. The intermediate phases 1&2 reflect the fast processes (detailed
in section 2.2) occurring at the scale of the cross-bridges before the attachment-detachment
process starts getting involved (Huxley and Simmons, 1971). Phase 3 reflects the onset
of the attachment—detachment process, characterized by the first detachments of cross-
bridges (Reconditi et al., 2004).

Fig.1.12B shows the force-velocity relation characterizing the typical frog muscles
(Ford et al., 1985; Lombardi and Piazzesi, 1990). In the shortening regime (negative ve-
locities), the muscle acts against the applied load and the dependence of the velocity on
the force follows an almost hyperbolic relation (Hill, 1938). The shortening velocity pro-
gressively decreases as the force rises up to the stall force where the velocity is equal to
zero. In the stretching regime (positive velocities), the velocity remains close to zero until
the force reaches about 120% of the stall force and then diverges at the point where the
force reaches ~ 200% of isometric force (yield) leading to the destruction of the fiber (Katz,
1939). The precise shape of the force velocity curve around the stall force is in fact poorly
known because it is probably exhibiting a short region of negative slope, with two velocity
regimes existing for the same imposed force. The experimental study of these regimes are
complicated by oscillations at different scales (Edman, 1988; Fabiato and Fabiato, 1978;
Placais et al., 2009).

The strong asymmetry of the response in shortening and stretching protocols suggests
that the behavior of muscles is different in these two regimes. Shortening is a physiological
regime: muscle displaces a load and plays the role of a motor. Stretching is a more rare
regime in which the structural integrity of the muscle is threatened if the load is too high.
For moderate stretching loads, the muscle can ‘resist’ by keeping the velocity close to zero
and in this regime it plays the role of a damper (Lindstedt et al., 2001). It might be that
the internal mechanisms operating in those two regimes are rather different which allows
them to perform successfully these two different tasks.
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Fig. 1.14 — Displacement of the M-line upon activation by an increase in Ca*" concentration.
From Telley et al. (2006a). A myofibril segment containing ~10 half-sarcomeres with fluorescent markers
on M-lines and Z-lines is mounted between a cantilever and a force transducer and is observed under a phase
contrast microscope during activation by increase in Ca?" concentration. (A) Schematic representation of
two half-sarcomeres forming a sarcomere, in which the A-band is displaced to the right. The displacement
DeltaLs is defined as the distance between the sarcomere center (measured from Z-line to Z-line) and
the position of the M-band. Positive displacement is in direction of the cantilever side. (B) example of
a displacement trace (outlined) of the A-band of one sarcomere and the corresponding force transient
(circles).

1.3 Sarcomere inhomogeneities

1.3.1 Following individual half-sarcomeres

Recent developments in microscopic techniques allow one to follow in detail the stria-
tion generated by the succession of sarcomeres in a single myofibril (see e.g. Telley et al.,
2006a). The experimental precision has reached such a level that it is possible to detect,
using phase contrast (Shimamoto et al., 2009), the relative positions of both M-line and
Z-lines at the level of a single sarcomere (see Fig.1.13). The contrast can be enhanced by
attaching different fluorescent markers to the M-line and Z-Line (Telley et al., 2006a).

1.3.2 Non-uniformity during isometric contraction

Experimentally, the displacement of the M-line of a selected sarcomere can be recorded
upon activation under hard device conditions. 1.A. Telley was probably the first who sys-
tematically observed the development of heterogeneities within neighboring half-sarcomeres
(Telley et al., 2006a) but the initial insight were obtained in (Rassier et al., 2003a). These
observations were made in physiological range outside the notorious descending limb.
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Fig. 1.15 — M-line displacement upon activation of a single sarcomere at different initial
length. From Rassier and Pavlov (2010). In this paper a single sarcomere is clamped between two
microneedle and activated. The displacement of the M-line indirectly recorded and show that a single
isometrically contracting half-sarcomere is not symmetric. Values are means + SEM

where inhomogeneity is expected and has been studied for a long time (Leonard et al.,
2010). In Fig.1.14, we show one of the traces taken at the level of a single sarcomere in
(Telley et al., 2006a). The displacement of the M-line (solid line on Fig.1.14B) closely fol-
lows the evolution the force development (see O) and the asymmetric configuration remains
stable during activation.

A stable shift of the M-line upon activation of a single sarcomere, held between two
microneedles, has been recently reported in (Rassier and Pavlov, 2010). The amount of
M-Line displacement depends on the total sarcomere length. The asymmetry disappears
at both large and short elongations (see Fig.1.15).

1.3.3 Non-uniformity in response to an external force

At shorter time scales, S.Ishiwata et al., studied in (Shimamoto et al., 2009) the evo-
lution of the distribution of sarcomere length upon applying a fast positive force step
(stretching) to an isometrically contracting single myofibril containing 13 sarcomeres (their
apparatus is shown on Fig.1.13).

The main results of (Shimamoto et al., 2009) are summarized in Fig.1.16. On (Fig.1.16A,
top panel) we show the tension vs time trace: the initially contracting myofibril first gener-
ates a tension Py, then reaches a higher level P; at the end of the step, and upon sarcomere
contraction quickly drops to the level P, before finally increasing again upon relaxation of
the stretched sarcomeres. The maximal sarcomere length change ASL, measured 100 ms
after the end of the step reveals 2 different populations of sarcomeres. The first population
is ‘resisting’ the applied load and maintain a constant sarcomere length while the second
population is ‘yielding’ in the sense that the sarcomere length increases considerably. Such
separation into two distinct populations does not persist at large loadings (see Fig.1.16B),
where all sarcomere end up in the ‘yielding’ category.

We have not discussed here in details different studies of sarcomere inhomogeneity on
the descending limb (of the force vs sarcomere length relation) in particular those that
have been recently performed by using a hard device protocol at the level of a single
myofibrils (Rassier et al., 2003a). Here inhomogeneity may be related to ‘popping’ of
certain sarcomeres which is a process outside the scope of our work. To our best knowledge,
similar measurements during shortening have not been performed yet.

To summarize, numerous recent experiments reveal that the actively contracting mus-
cle (or sarcomere) is not characterized by a homogeneous distribution of half-sarcomere
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Fig. 1.16 — Evolution of the sarcomere following fast force stretch. From Shimamoto et al. (2009).
The elongation of 13 sarcomeres is followed by a phase contract microscope after force steps of various
amplitude are applied to the myofibril. (A), from top to bottom: tension ws time. The isometrically
contracting myofibril generates a tension FPy. Then a fast force step is applied to a tension P; (rate
0.02P, /ms) followed by a relaxation of tension back to Py within a few seconds. Mean myofibril length
(MFL) vs time. Sarcomere length vs time for the 13 sarcomeres in the segment under study (the colors
correspond to the lower bar plot). ASL is the change in sarcomere length measured 100 ms after P; and
reported vs the number of the sarcomere on the lower histogram. The dotted line indicates ASL = 150
nm. (B): histograms of the observed ASL during the response to force steps of different amplitudes
(AP/Py, = 0.025, 0.05, 0.1, 0.125, and 0.15). The vertical dotted line indicating ASL = 150 nm separates
two populations of sarcomeres, one ‘yielding’ (high elongation) and the other ‘resisting’ (lower elongations).

lengths. This question has not been addressed in full details from a theoretical perspective.
In this manuscript we will propose an explanation of the onset of inhomogeneity outside
the descending limb by using purely mechanical arguments.

Conclusions

The mechanical experiments reviewed in this Chapter reveal the complex machinery
of muscle contraction in steady state regimes. Power-stroke is an important part of the
mechanism whose place inside the bigger picture of muscle contraction has not been firmly
established. It has been suggested in the literature (Huxley and Simmons, 1971; Huxley,
1969) that the power-stroke discharge is a purely mechanical process which does not require
ATP consumption. In the next Sections, we carefully examine this hypothesis and question
its final conclusion.

Very recent experiments revealed unambiguously the presence of length inhomogeneities
not only in myofibrils but also inside individual sarcomeres. It remains to propose a me-
chanical explanation for the onset of these inhomogeneities.

In the next Chapter, we present experimental results focused particularly on the power-
stroke and review some theoretical attempts to interpret these experiments.



CHAPTER 2
Power-stroke: experiments and
theories

N this Chapter we describe in more detail the anatomic structure of myosin head and
I specify the nature of the conformational change that occurs during the power-stroke.
Then, we review the main mechanical experiments that give insight into mechanism of the
stroke. In particular, we describe the controversy around the power-stroke size interpre-
tation based on either the whole fibers experiments or the single molecule experiments.
Finally, we review different theoretical attempts to model the power-stroke and propose a
new purely mechanical model of the power-stroke mechanism.
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Fig. 2.1 — Crystallographic structure of myosin sub-fragment S1. From Geeves and Holmes
(2005). Among the different substructures, we distinguish: the actin binding cleft that binds actin
monomers, the nucleotide binding site, where the ATP is hydrolyzed and the regulatory light chain that
links the head to the backbone. ATP hydrolysis induces a local conformational change in the converted
sub-domain which is then amplified by the lever arm. The two structures of pre-power-stroke and post-
power-stroke myosin heads are represented on Fig.2.2
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Fig. 2.2 — Structure of the acto-myosin complex in pre and post-power-stroke. Adapted from
Irving et al. (2000), based on Rayment et al. (1993). The pre-power-stroke structure is oriented towards
the M-line (upper structure) while post-power-stroke conformation (lower structure) turns towards the Z-
line. Based on the work by Rayment et al. (Rayment et al., 1993) and Dominguez et al. (Dominguez et al.,
1998). The swing of the lever arm by 70° correspond to an axial displacement of 10 nm towards the Z-line.

2.1 Anatomy of the myosin head

We have already briefly described the structure of myosin II in the Introduction (see
Fig.1.6). It is then clear that the heavy meromyosin (HMM) has the ability to bind to actin
filaments using the two globular parts called S1 whose atomic structure is known from X-
ray crystallography (Rayment et al., 1993). In general, myosin head can be represented
as a complex 3D arrangement of o — helices and  — sheets (see Fig.2.1). The actin
binding cleft enables the head to bind actin monomers, the nucleotide binding site is
where ATP is hydrolyzed into ADP + Pi. Upon binding to actin, the converter domain
undergoes a conformational change, amplified by the lever arm that swings over ~ 70°
towards the Z-line thereby generating a displacement of the tip of the lever arm of ~10
nm (see Fig.2.2). Therefore, the cross-bridge can be viewed as a mechanical switch with
one rotational degree of freedom corresponding to the orientation of the converter domain.
It has been also shown that myosin heads and in particular, the lever arm has elastic
properties (Ford et al., 1977; Huxley, 1957; Huxley and Simmons, 1971; Reconditi, 2006).
In a recent work, M. Kaya and H. Higuchi questioned the linearity of the elasticity of the
myosin. By pulling on a single molecule (Kaya and Higuchi, 2010) they showed that the
elasticity of the head resides principally in the sub-fragment S1. The S2 sub-fragment is
much stiffer but, being much longer than S1, can buckle under compressive loading.
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2.2 Power-stroke experiments

2.2.1 Methods

As we explained in Sec.1.1.3, the power-stroke lasts only a few milliseconds. Therefore,
to study its mechanism on has to design an experiment where the time scale of the ATP
cycle does not interfere with the time-scale of the conformational change. The quick re-
covery experiment first designed by A.F Huxley (Huxley and Simmons, 1971) was aimed
at resolving the mechanics and kinetics of the power-stroke by looking at the fast transient
response of a muscle fiber following a shortening or stretching ramp. This type of experi-
ment has been developed and performed principally by V. Lombardi, Y.Goldman, K.A.P
Edman and K.W. Ranatunga groups in both length and force clamp settings (see e.g., the
review by Offer and Ranatunga, 2010). Bellow, we explain in some detail the experiment
in length clamp. We have already described the experimental set-up for the force clamp
experiment in Sec.1.2.1.

First a single fiber is mounted between the force transducer and the loudspeaker mo-
tor. The fiber is then activated at a sarcomere length of about 2.1 nm. It generates
an isometric tension Ty corresponding to the plateau of the tension vs sarcomere length
relation (see Fig.1.11 and 2.4). After the isometric tension is reached, a fast length step
0 is applied with a feedback from the striation follower. The step size is measured in
nanometers per half-sarcomere (nm/hs) and it is completed in ~100 us (Huxley et al.,
1981; Lombardi and Piazzesi, 1990; Piazzesi et al., 1992). The step amplitude is such that
the final sarcomere length is still on the plateau region of the tension-sarcomere length
relation.

In Fig.2.3(A) we show the evolution of the tension during a length clamp experiment
and in Fig.2.4, we show the trajectory of the system in the tension vs sarcomere length
diagram. The typical range of length changes is between +3 and -12 nm/hs, where the
negative sign is for shortening. Experimentally, it is more difficult to separate the different
transient steps in stretching than in shortening (Piazzesi et al., 1997). Also, for large
stretching, cross-bridges start to detach (Brunello et al., 2007; Piazzesi et al., 1997) and
the integrity of the sarcomere can be compromised like in the force-velocity experiments
involving the yield (see Fig.1.12).

2.2.2 Interpretation of the fast transients

The response of a single muscle fiber submitted to a fast increment of length or tension

can be decomposed into 4 phases:

— 0—150 pus (Phase 1)(t = 0 corresponds to the beginning of the step). The tension
(resp. length) changes simultaneously with the length step and reaches a level T}
(resp. L1) (see Fig.2.3B and C). Fig.2.5 shows that 77(0) and L,(®) are superim-
posed and show linear dependence on the step size. This suggests that phase 1 cor-
responds to purely elastic response of the fiber which is also being linear (Fusi et al.,
2010; Huxley and Simmons, 1971; Linari et al., 2004).

— 150 pus — 3 ms (Phase 2). This phase starts at the end of the step. In hard device,
the tension quickly recovers up to a plateau level called T5 close to the initial level
Ty (see Fig.2.3B). In soft device, the half-sarcomeres shorten to a new length Lo
determined by a tangent method (see Fig.2.3D). When plotted against the step size,
one can see that T5 is almost equal to Ty for step amplitude lower than ~ 3nm/hs
(see Fig.2.5, ©). At larger steps, T decreases linearly with the step size. In force
clamp, the Lo curve superimposes with the 75 curve except in a small interval near
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Fig. 2.3 — Quick recovery experiments: fast transient responses. (A and B): length clamp. (C
and D): force clamp. Upper traces represent the response after a length step (A) or a force step (C) is
applied to the fiber (large time window). The fast transients following the steps are shown with a more
refined time scale on (B) and (D). In (A), the rising and decaying phases of the tension trace correspond
to the onset (activation) and the end (relaxation) of electric stimulations, respectively. In length clamp
experiments (see A and B), after the step is applied, the tension progressively recovers up to its initial
value with a time scale of about 100 ms (A). On an expanded time scale (B), the tension first decays
during the step up to T3 (elastic response) and then partially recovers to a fraction of the initial tension,
called T», within ~ 2 ms after the step (quick recovery). T», is characterized by a plateau on the tension vs
time curve (barely visible on (A)). The fast transients phases 1 and 2 are shown in (D) for the force clamp
setting. The half-sarcomere first shortens elastically up to L1 and phase 2 sees an additional shortening up
to La. Measurement of Lo is done by a linear extrapolation of phase 3 to the middle of the step (see the
construction lines on (D)). (A), from Huxley and Simmons (1971), (B) from Piazzesi et al. (2002b) (C)
and (D) from Piazzesi et al. (2002a).

the initial tension Ty where Ly cannot be resolved (see Fig.2.5 (#) and the discussion
bellow). The transition 77 — T5 lasts ~1—2 ms and is called the quick force recovery.
In force clamp, phase 2 lasts ~1 —4 ms. The time scale of the transition corresponds
to the time scale of the power stroke in the cross-bridge cycle. Thus the T} — T5 and
L1 — Lo transitions are interpreted as the power-stroke event among the attached
myosin heads (Chen and Brenner, 1993; Huxley and Simmons, 1971; Linari et al.,
1997; Lombardi et al., 1992). At low step amplitudes, the power-stroke is sufficient
to recover 100% of the initial tension because of the plateau on Fig.2.5. At larger
step amplitudes, even after all the attached cross-bridges have stroked, the initial
tension is recovered only partially.

— 3ms—0.5s (Phase 3 and 4). Phase 3 corresponds to the onset of the steady state
process. It is signaled by the first detachments of myosin heads visible using X-ray
diffraction techniques (Reconditi et al., 2004). During phase 4, in length clamp, the
tension rises slowly (the characteristic time is about 100 ms) from the 75 plateau and
finally reaches a steady value that correspond to the initial Ty (see Fig.2.3A). The
final sarcomere length is still in the plateau region of the tension-sarcomere length
relation (see Fig.1.11). In soft device, as we saw in Sec.1.2.2, phase 4 is characterized
by a shortening at constant velocity. In both length and force clamp experiments,
this last phase corresponds to cyclic attachment and detachment of the heads that
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represented by a dashed line. During phase 1 (continuous line), the same response is observed in length
clamp and force clamp modes. During phase 2, in length clamp, the initial tension is partially recovered
while the length is held at its final value. Subsequent force recovery is obtained during phase 3 and mostly
in phase 4 when the attachment-detachment process gets involved. In force clamp, when a given fraction of
the initial tension is attained at the end of the step, the fiber first shortens quickly to a new length Lo (see
also Fig.2.3). After a period of slower shortening (phase 3), the systems reaches a steady state shortening
velocity (phase 4). The constant velocity of phase 4 is used to construct the force-velocity relation (see
Fig.1.12).
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Fig. 2.5 — Quick recovery experiment: tension and half-sarcomere length change at the end of
phase 2. T1(0) and L (®) are the tension and half-sarcomere length attained at the end of the loading step.
They correspond to the instant elastic response of the fiber. T>(<) and L2 (#) are respectively the tension
and half-sarcomere length change attained a the end of phase 2. The Th1 — T3 and L1 — Lo transitions
are interpreted as the power-stroke events among the attached myosin heads. In hard device, for low step
amplitudes (< 3nm/hs), the full initial tension is restored after phase 2 (see the plateau). Subsequently, for
larger steps, the power-stroke capacity is exhausted T> (resp. L2) depends linearly on the applied length
step (resp. force step). Remarkably, Lo is not resolved for low force step amplitudes. Instead several
papers report oscillatory response after small force steps (Edman and Curtin, 2001; Edman et al., 1988;
Granzier et al., 1990; Sugi and Tsuchiya, 1981). From Piazzesi et al. (2002a).
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act in concert like in a tug of war.

Fast transient experiments are used to determine the main characteristics of the power-
stroke mechanism (Huxley and Simmons, 1971; Piazzesi et al., 2007). From phase 1, one
can measure the elasticity of the muscle in the state of isometric contraction. By doing
this experiment on skinned fibers, it is possible to modulate chemically the number of
attached myosin heads (we explain in details this type of experiment in Sec.7.1.3, only
the main results are presented here). This protocol allows to measure the stiffness of the
myofilaments with results similar to those found more directly using the X-ray diffraction
techniques (Huxley et al., 1994; Linari et al., 2004, 2009; Wakabayashi et al., 1994). One
can also measure the fiber stiffness in rigor mortis, i.e. when ATP is depleted. In this
condition, it is known that all ~300 myosin heads of each half-sarcomere attach to the
actin filament (Cooke and Franks, 1980). By knowing the filament compliance, we can
then find the cross-bridges stiffness from the overall rigor stiffness. The value obtained
with this method for frog muscles is about 2 — 3 pN.nm~! (Piazzesi et al., 2007).

The shortening observed in phase 2 in force clamp experiments is due to the power-
stroke event which involves the attached heads. Therefore, after the filament compliance
is taken into account, one can interpret the distance L — Lo as the power-stroke size. It
ranges from ~ 5 nm at high force (T = Tp) to ~ 10 nm at low force (Linari et al., 2009;
Reconditi et al., 2004). The value at low force is consistent with structural reconstruction
for the acto-myosin complex (see Sec.7.1.1) (Dominguez et al., 1998; Rayment et al., 1993).

2.2.3 Length and force clamp experiments: similarities and differences

From Fig.2.5, one could conclude that the length and force clamp settings are equivalent
and could simply replace one another in the study of the quick recovery. However, there
are two main differences:

1. The results in length clamp experiments clearly show a plateau on the 7, curve
(& on Fig.2.5) while in force clamp experiments, similar plateau has never been
resolved (dark diamonds). Experimentally, the measurement of Ly for small force
steps (near the initial tension Tj) appears to be difficult. In particular, oscillations
have often been observed after a small force step was applied to an isometrically
contracting muscle (Edman and Curtin, 2001; Edman et al., 1988; Granzier et al.,
1990; Sugi and Tsuchiya, 1981).

2. In Fig.2.6, we show different rates of the quick force and velocity transients obtained
for frog fibers in length and force clamp conditions. The rate is defined as the
inverse of the time required to reach the value of force equal to 0.63(75 — 11) from
the value 7T in length clamp experiment (or the value of length 0.63(Ly — L;) from
the value of L; in force clamp). For length clamp, the rate is plotted against the step
size ¢ (data from Ford et al. (1977)(<C), Piazzesi et al. (1992)(0), and Linari et al.
(2009)(0)). As we did not find in the literature the measurements of the rate in force
clamp, the data represented for force clamp (@) are estimates computed by the ratio
Lo /vg, where v is the velocity of phase 2 reported in (Piazzesi et al., 2002a). Instead
of representing the force clamp rate as a function of tension, we represented it as a
function of Lo. Therefore, Fig.2.6 juxtaposes the rates of recovery in the same 1o — Lo
conditions by using two different experimental settings. We clearly see that the time
needed to complete phase 2 is about 5 times longer in force clamp experiments than
in length clamp experiments. To our knowledge, this feature of fast force recovery
has not been discussed previously in the literature and one of the objective of our
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Fig. 2.6 — Quick recovery: rates of recovery. The rate is defined as the inverse of the time taken to
reach 0.63(72 — T1) from 71 in length clamp (or 0.63(L2 — L1) from L; in force clamp). The length clamp
data (open symbol) are from Ford et al. (1977) (<), Piazzesi et al. (1992) (@), and Linari et al. (2009)
(O0), Huxley and Simmons (1971) (x). Note that the data from Ford et al. (1977) and Linari et al. (2009)
are obtain with frog type rana temporaria while all other results are from rana esculenta. In Ford et al.
(1977), the rate is measured as the reciprocal of half time to reach 7% from T3. To be consistent, the results
presented here are adjusted by a factor 0.5/0.63. The force clamp data (filled symbols) are represented as
function of the elongation at the end of phase 2 (L2). Load clamp data are from: Piazzesi et al. (2002a)
(@), Decostre et al. (2005) (a).

work is to propose the first explanation for this difference. To our best knowledge,
no rate data for shortening steps larger than 6 nm are available, probably because,
for larger shortening steps, the fiber starts to buckle (see for instance Piazzesi et al.
(1992) Fig.2).

We also observe that only a few 75 and T} points are reported on the stretching
side in Fig.2.5, and, to our best knowledge, no data are available for do not include
stretching increments above 6 nm. It was argued in (Piazzesi et al., 1997) that for stretches
beyond 2 nm/hs, cross-bridges start to detach perturbing the measurement. Moreover, the
detection of the end of phase 2 in those cases is not clearly marked by the presence of a
characteristic plateau on the tension wvs time curve. In fact, it has been suggested in
(Brunello et al., 2007; Piazzesi et al., 1997) that additional mechanism are involved when
muscle is stretched. First, in (Brunello et al., 2007), the authors have detected an increase
in the instant stiffness of the system which they attributed to the attachment of the second
head of the myosin molecule. Second, to explain the slow tension relaxation following a
lengthening step G. Piazzesi et al. invoked a passive friction mechanism of the detached
heads passively interacting with the actin filament (Piazzesi et al., 1997). We investigate
these two possibilities within our model in Sec.7.5

2.3 Single molecule experiments

In the previous Section, we presented a family of experiments from which we could
extract some information about the mechanism of the power-stroke. These reconstructions
can be viewed as a ‘top-down approach’ as the corresponding experiments are realized on
whole muscle fibers. Notice however that we are in fact interested in the force generation
at the level of myosin molecules and complicate muscle architecture may actually be an
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tions. The upper panel is a cartoon of the ‘3 bead geometry’ designed by Finer et al. in (Finer et al.,
1994). A 10 pm actin filament is anchored on two latex beads (~ 1 pm) manipulated by independent opti-
cal traps. After the actin filament is put under a tension of ~ 2pN, it is presented to a 3'¢ bead stick to a
coverslip and covered with a low density of myosin sub-fragment S1 (or HMM) (see Fig.1.6). Acto-myosin
interactions are observed by monitoring the positions X1 and Xr of the beads with a photodetector. Lower
panel gives a mechanical representation of the system when a myosin molecule is attached. kyp is the stiff-
ness of the cross-bridge, linked in series with the actin-bead connection stiffness, kKcon and the stiffness of
the optical traps, ktrap. Upon attachment, the myosin molecule produces a displacement dx,. Due to the
presence of other compliant elements, a displacement dobserved # dxb 1S measured by the photodetector. All
the preparation is immersed in an appropriate solution containing ATP. From Veigel et al. (1998).

obstacle in the study of the microscopic mechanisms of force generation. Therefore, in the
nineties, a whole new ‘bottom-up’ approach has been developed based on the revolutionary
development of optical tweezers.

2.3.1 Optical tweezers

In 1970, A. Ashkin, showed the possibility to use forces gradients from a continuous
laser to trap micron-sized particles (Ashkin, 1970). Later, he reported the first case of
dielectric particle trapping by a single-beam gradient force trap (Ashkin et al., 1986).
Since then, this technology called optical tweezers have found considerable applications in
live sciences. Major examples are the studies by C. Bustamante et al. of DNA unfolding
(Smith et al., 1996) or by J. Spuddish’s and J.E. Molloy’s groups on molecular motors
(Finer et al., 1994; Mehta et al., 1997; Molloy et al., 1995; Veigel et al., 1998). We can
also mention another single molecule technique used by T. Yanagida’s group which is based
on the use of microneedles instead of optical traps for nanomanipulation (Ishijima et al.,
1996; Kitamura et al., 1999; Yanagida and Ishijima, 1995).

One of the most important experimental set-ups designed to study single acto-myosin
interaction is known as the ‘three beads geometry’ (Finer et al., 1994). In Fig.2.7, we
illustrate the main idea of the method: a 10 um actin filament is attached to 2 latex beads
(diameter ~1 pm) trapped in two different laser beams. A third bead is coated with a low
density of myosin molecules and glued to a coverslip. The low density coating is used to
avoid multiple myosin attachments to the actin filament. The whole preparation is then
immersed in an appropriate solution containing ATP (Veigel et al., 1998).

When the actin filament is brought in contact of the third bead, a single myosin
molecule binds to actin and generates a force. This force is transmitted through the actin
filament and displaces the two trapped beads whose positions (Xz and X7, on Fig.2.7) are
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Fig. 2.8 — Displacement traces of trapped beads showing attachment events of myosin

molecule. In each panel (i), (ii) and (iii), the upper and lower traces represent the displacements of
the right and left bead respectively. The variance of the Brownian motion of the beads is considerably
reduced upon attachment of myosin motor. Therefore one can measure the displacement generated by the
power-stroke. In addition the change in variance gives information about the stiffness of the system. The
lower traces show histograms of the beads displacements during the attachment events (left and right) with
Gaussian fit. The mean displacement is 5 + 10 nm. Adapted from (Veigel et al., 1998).

monitored using a photodetector. To compute the displacement of the myosin molecule
from X and X, one has to take into account the stiffness of all elements of the me-
chanical pathway (see Fig.1.9, lower panel): kyp, the stiffness of the myosin itself which
one would like to measure, k¢on the stiffness of the connections between the actin filament
and the trapped beads and finally Ktrap, the stiffness of the two laser traps. Note that
the actin stiffness is high compared to other stiffnesses involved, therefore its effects on
the measurements can be neglected (Kojima et al., 1994). A review of the use of optical
tweezers in the study of acto-myosin interactions can be found in (Knight, 2001).

In Fig.2.8, we show three displacement records of the left and right trapped beads
(noted i,ii and iii). Some attachment ‘events’ are clearly distinguishable after the significant
noise reduction (see the arrows on Fig.2.8). Upon attachment, the two beads undergo a
correlated displacement in the same direction. If the stiffness of the trap is low compared
to other stiffnesses in the system, then the bead-actin-bead part moves as a rigid body
under the action of the myosin stroke. Three major pieces of information can be extracted
from theses experiments:

1. If the trap stiffness is low compared to the cross-bridge stiffness, then it is expected
that the displacements of the beads reflect directly the power-stroke size. In Fig.2.8,
the lower panel shows the histograms of the left and right bead displacements mea-
sured after various attachment events. The mean displacement is ~ 5nm. This
value is twice as small as the previous value measured by using the same technique
(Finer et al., 1994) principally because in the latter, only one bead displacement as
been recorded. Similar values of ~5 + 10 nm are reported in (Molloy et al., 1995;
Veigel et al., 1998) and also with other single molecule techniques (Kitamura et al.,
1999; Yanagida et al., 2000).
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2. The myosin stiffness k., is determined from the displacement’s variance change upon
attachment. This is possible if we assume linear elasticity of the different components
which leads to a Gaussian distribution of the displacements. In the absence of
myosin motor, one can measure the stiffness of the optical trap r.qp by analyzing
the displacements of a single trapped bead. Then the displacements of two trapped
beads, linked by an actin filament gives k.o, provided the actin filament stiffness is
large compared to the connection stiffness (Kojima et al., 1994). Finally the stiffness
of the cross-bridge is deduced from experiments involving the attachment events. In
addition to this analysis of Brownian fluctuations, cyclic loading with and without
attached motor provides additional information that leads to similar conclusions
(Veigel et al., 1998). Several papers have then confirmed that the myosin stiffness
must be around 0.5 pN.nm~! (Knight, 2001; Mehta et al., 1997; Veigel et al., 1998).
We recall that the typical stiffness deduced from fiber experiments is about 3 times
higher (see Sec.7.1.3 and (Offer and Ranatunga, 2010; Piazzesi et al., 2007)).

3. A feedback loop can be used to constantly adjust the position of the optical trap in
order to maintain a constant distance between the two beads. This would correspond
to the length clamp set-up for muscle fibers. Using this technique, one expects to
measure the maximum force a myosin can produce: the isometric force. J.E. Molloy
reports an isometric force of 1.7 pN (Molloy et al., 1995). The isometric force per
motor extracted from the whole muscle fiber experiments is in the range of 5 pN so
about three times higher.

2.3.2 The power-stroke controversy

One can see that measurements in single molecule experiments and the results from
fiber experiments are in contradiction which is a source of controversy in the field of
muscle mechanics. First, as we have seen the maximum power-stroke size inferred from
fiber experiments is about 10 nm, while single molecule experiments suggest a 5 nm stroke
size. This is an average value; for a comprehensive review of stroke size data from single
molecule techniques see (Tyska and Warshaw, 2002). An argument against the single
molecule experiments is that the orientation of the myosin motor cannot be controlled so
it may attach in some sub-optimal way to the actin filament. Therefore the 5 nm stroke
may be just a low bound (Veigel et al., 1998). Some measurements with an artificially
rebuilt myosin filament have been done by T. Yanagida’s group and they report a 20
nm power-stroke size under low force conditions, with presumably less uncertainty on
the relative orientation between the myosin heads and the actin filament (Ishijima et al.,
1996). This can be taken as an upper bound, in view of the specially engineered geometry
in these experiments.

Second, the instant cross-bridge stiffness measured from the whole fiber experiments
is about 2 — 3 pN.nm~!. The corresponding value is about 0.5 — 0.7 pN.nm~! in single
molecule experiment (note that A. Lewalle report a stiffness of 1.7 pN.nm~! for rigor
cross-bridges in (Lewalle, 2008)). The value from fiber level measurements is based on the
hypothesis that all cross-bridges contribute to the stiffness in rigor condition (Linari et al.,
1998; Piazzesi et al., 2007). Moreover, if some rigor cross-bridges remain ‘slack’, then one
can expect the stiffness to be even higher than 3 pN.nm~!. This was an argument proposed
by J.Howard against the Huxley and Simmons theory (Huxley and Simmons, 1971) of the
power-stroke (see (Howard, 1997; Huxley, 1998)).

To summarize, the issue remains unresolved and some independent pieces of evidence
would need to appear for this controversy to be settled. Hozwever, recent papers suggest
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that the results from single molecule experiments have to be reevaluated (see 77).

2.3.3 The energetics of muscle contraction

One source of additional information is provided by energetics. Several groups have
been studying the maximum mechanical efficiency of muscle contraction from the measure-
ment of the maximum power-output and heat release during isotonic shortening (phase 4,
see Sec.1.2.2). These studies follows directly from the pioneering work of A.V Hill who
first experimentally observed that an isometrically contracting muscle releases heat at a
constant rate (Hill, 1938).

When the load is suddenly dropped, the muscle starts to shorten and this shortening is
accompanied by an increase in heat liberation that is proportional to the allowed shortening
range but does not depend of the load. This phenomenon is known as the Fenn effect. A.V.
Hill concluded that the heat per unit length of shortening liberated by a fully activated
muscle is a characteristic constant for a given muscle type which he denoted by a. Hence,
for a given shortening distance z, the extra heat released is equal to ax. The macroscopic
work performed by the muscle against a load T is T'x so that the total energy change
during shortening z is (7' + a) x and the rate of energy liberation is (1" + a) & where &
is the shortening speed. Experimentally, Hill could directly show that the rate of extra
energy liberation compared to isometric contraction varied linearly with the applied load
and was zero for T' = Ty, the isometric tension. Therefore, he derived the following relation
directly from macroscopic energetics:

(T +a)é=0b(T —Tp) (2.3.1)

This phenomenological formula providing the simplest hyperbolic force-velocity relation is
often used as a constitutive relation for the whole muscle (see Sec.2.4.1).
If we now follow (Barclay et al., 2010), we can define the mechanical efficiency of a

muscle as: '

W
W+ Q
where & = T is the mechanical power-output and Q = a is the rate of heat production
during steady shortening. This value is different from what is sometimes called the ther-
modynamic efficiency &perm which is the ratio of the rate of work and the rate of energy
supply provided by ATP hydrolysis:

gmec =

w

gtherm =
Farp

where Farp is the rate of ATP consumption which is presumably higher that w + Q =
(T + a) . This definition of efficiency takes into account the amount of ATP potentially
consumed by the the contraction mechanism (for instance ion pumping, see Fig.1.9) and
causing deviation from the hyperbolic force-velocity law.

Experiments on whole muscle and on isolated muscle fibers, reported in (Barclay et al.,
2010), show that {pee & 50% and Eiperm ~ 40%. For comparison, the typical efficiency of a
car does not exceed 15 % if we consider all the losses in engine, transmission and accessories
(U.S. Departement of Energy, 2011). Now the energy provided by the hydrolysis of one
ATP molecule is ~80 zJ or ~20 k6 at room temperature (6 is the absolute temperature
and ky, is the Boltzmann constant). If we assume that there is only one ATP molecule used
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per cycle (as shown on Fig.1.8), we expect the mechanical work of a single cross-bridge to
be ~ 30 zJ or ~ 7.5k0.

Woledge et al. (Barclay et al., 2010), proposed a simple chemo-mechanical model (see
the next chapter) which generate experimentally observed shape of the Ty curve (see
Fig.2.5). By computing [T (6) dd they estimate the work done during the power-stroke.
Their chemo-mechanical model gives ~ 45 zJ of work. Therefore, we may conclude that
the cross-bridge stiffness derived from experimental measurement conducted on muscle
fibers gives a realistic prediction of energetics.

On the other hand, from single molecule experiments, one can compute the mechanical
work performed during the power-stroke as the product of the stiffness k., and the square
of the power-stroke size dgp: 1/ mebdib (Barclay et al., 2010). This gives a mechanical
work of ~15 zJ (by using K;p—07 pN.am—1 and dgp = 5 nm) which is about a third of the
mechanical work inferred from the whole fiber measurements. Hence the value of single
molecule stiffness appears to be inconsistent with muscle energetics. However, if one uses
the cross-bridge stiffness obtained from fiber experiments in a conventional two states
model of the power-stroke (not the special many state model of Barclay et al. (2010)), the
resulting T curve exhibits a region of negative slope (see Sec.2.4.3) which is not observed
experimentally (see Fig.2.5).

One can see that the debate between the single proponents of single molecule measure-
ments and the experts in fiber measurements is not over. The available techniques do not
allow a direct measurement of the mechanical characteristics of the myosin head and of
the power-stroke size. Therefore only indirect measurements are used with all the implied
uncertainties. Great efforts have been made to match the macroscopic thermodynamics
of muscle contraction with the mechanical measurements at the microscale.

The goal of the theoretical work is to contribute to these efforts and to try to reconstruct
the macroscopic dynamics from the simplest model of the power-stroke. In this way we
can link microscopic and macroscopic data and contribute to the resolution of the existing
controversy. Therefore, we now turn to the discussion of the attempts of theoretical
modeling of the power-stroke.

2.4 Theoretical modeling of muscle contraction

Before focusing specifically on the power-stroke, we review here several fundamental
attempts to understand the mechanisms of muscle contraction. Characteristically, most
of them avoid explicit reference to the power-stroke.

2.4.1 Phenomenological models

Historically, the first feature of muscle contraction studied in systematically set exper-
iments was isotonic shortening (see Sec.1.2.2). In 1938, well before the sliding filament
theory was put forward, A.V. Hill reported the dependence of shortening velocity on the
applied force and measured the heat release during isotonic contraction (Hill, 1938). It was
already known at that time that muscles exhibit a linear elastic response when submit-
ted to fast length changes. Therefore to explain his experiments, Hill proposed a simple
rheologic model including a linear elastic element with stiffness x in series with a contrac-
tile element governed by a particular constitutive relation. This relation was derived by
Hill from the measurements of heat release during isotonic contractions (see the previous
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Fig. 2.9 — Phenomenological model proposed by A.V. Hill in (Hill, 1938). A linear elastic element
of stiffness x and strain €. is coupled in series to a ‘contractile’ element driven by the hyperbolic force-
velocity relation Eq.(2.3.1). ¥max is the maximum shortening velocity attained for T = 0 and T is the
isometric force or stall force.

Section and Fig.2.9):

(T 4+ a) (¢ +b) = ¢, with a, b, ¢ constant.

The resulting model has been widely implemented into more complex models of muscle
contraction. For instance D. Chapelle and co-workers used the relation (2.3.1) in their
comprehensive model of heart contraction (Chapelle et al., 2001).

Notice that, in the above class of models, the microscopic molecular mechanism is
lumped into a phenomenological relation. Thus Hill’s Eq.(2.3.1) gives the hyperbolic the
force-velocity which looked convincing because the coefficients turned out to be almost in-
dependent on temperature (Hill, 1938). However, the biological origin of these coefficients
is unclear and the phenomenology provides no link between the macroscopic behavior and
the mechanisms occurring at the microscale. After the sliding filament process has been
discovered, A.F. Huxley proposed a model of the acto-myosin interaction that was sup-
posed to link the macroscopic force-velocity relation with the details of the microscopic
attachment-detachment process involving myosin motors (Huxley, 1957).

2.4.2 Huxley’s 1957 model

In 1957, the details of the coupling between the cross-bridge mechanism and the ATP
hydrolysis process were still not clear (the Lymn-Taylor cycle was published in 1971
Lymn and Taylor (1971)). A.F. Huxley proposed a model whose goal was to quantify the
relative dynamics of actin and myosin filaments during contraction. The ideas contained
in his 1957 paper form the baseline of almost all muscle contraction models published ever
since (see the coming Sections). The model is illustrated on Fig.2.10.

In Huxley’s model, the myosin head is represented by a linear spring connected to
the backbone. The strain of the spring is denoted by z. Huxley assumed the existence
of binding sites on the actin filament. The head undergoes thermal fluctuations that
can stretch or compress the spring in a symmetric manner. Rectification of the noise is
brought in by the binding and unbinding rate functions f and g. The latter describe the
effect of chemical reactions which control the affinity of myosin for actin. Our Fig.2.10B
shows how f and g may depend on z. Huxley supposed that attachment can only occur
within an distance h from the resting position of the head therefore f is maximal at
x = h (to favor high force generating cross-bridges) and decreases with decreasing x. The
rate of detachment g is assumed to be very high at z < 0 to prevent cross-bridges from
being compressed. Otherwise, g is finite everywhere to ensure that when muscle activation
stops, all heads can detach. The fact that the cross-bridges preferably attach in a stretched
configurations is the ‘ghost’ of the power-stroke mechanism, the idea that in some way,
energy must be stored and discharged upon attachment.
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Fig. 2.10 — A.F. Huxley’s model for acto-myosin interaction published in (Huxley, 1957). (A):
sketch of the model. The myosin motor is connected to the backbone by a linear spring with stiffness «.
The resting strain of the spring is set to 0. The actual strain of the myosin head is . The actin and myosin
filaments are moving past each other at a velocity v. The myosin head undergoes thermal fluctuations
that bring it with equal probability into stretched and compressed states. To bias this process, Huxley
introduces the binding and unbinding functions f and g. To have a maximal mechanical efficiency, it is
preferable to attach with a large strain, therefore f was chosen to depend linearly on x with a maximum at
x = h, the maximum distance allowed for attachment and f = 0 for x < 0. The form of g is more subtle.
Again to preserve mechanical efficiency, cross-bridges must detach if there are in compression, hence the
high value of g for z < 0. The reason why g is finite everywhere is to ensure that when activation stops,
the muscle completely relaxes i.e., all heads detach.

Huxley’s model also takes into account that each cross-bridge is convected at a velocity
v towards the Z-line by the action of other motors. Denote n (z,t) the normalized density
of cross-bridges with strain x at time ¢. The kinetic equation for the population of cross-
bridges can be written as follows:

Dn  0On on

Dt ot Von
T(t)= H/Z‘TL (t,z)dx (2.4.2)

=(no—mn)f—ng (2.4.1)

Hence, if the velocity v is high, the number of attached heads drops and therefore the
tension T’ is reduced. In the case v = const with f and g as shown on Fig.2.10, an
analytic solution of the stationary version of Eq.(2.4.1) can be found and parameters can
be adjusted to fit the force-velocity curve in shortening regimes. The parameter ng in
Eq.(2.4.1) has been introduced in (Chapelle et al., 2011) to account for the fact that not
all detached myosins can bind to actin at time ¢: first the power-stroke must be ‘recharged’
through ATP hydrolysis before the heads can bind again to actin (see Fig.1.8). In (Huxley,
1957), ng = 1.

As an example of the modern version of the Huxley approach we can mention the work
of D. Chapelle et al. who explicitly relate the definition of f and g to the rate of ATP con-
sumption and to the calcium concentration in order to simulate the contraction of cardiac
muscle and its control by electrical stimuli from the pacemaker cells (Chapelle et al., 2011).

This recent model and the original 1957 Huxley’s model can reproduce quite accurately
the basic force-velocity relation, i.e. the steady state contraction mechanism. However,



2.4. Theoretical modeling of muscle contraction | 31

they cannot account for some particularities of the force velocity relation, for instance the
fact that for loads larger than the isometric tension T, the muscle elongates a velocity
much smaller than the direct extrapolation of the Hill’s force velocity curve (Katz, 1939).
Moreover it is known that for intermediate activation condition (intermediate Ca?* con-
centration), muscles exhibit a regime of SPontaneous Oscillatory Contraction (SPOC, see
(Ishiwata et al., 2011)) that might play a crucial role in the periodic contraction of heart
muscles (Sasaki et al., 2005, 2006); these models cannot reproduce such phenomenon.

A particularity of those approaches is that the cross-bridge is formed in a stretched
configuration. Therefore to be efficient, the motor has to accumulate elastic energy before
binding. Huxley assumed that this energy accumulation originates from interactions with
the thermal bath before binding. The experimental evidence of a quick force recovery after
a sudden length change (see Sec.2.2) contradicted this hypothesis as it revealed that after
the attached cross-bridges experience an elastic drop in force during the step, they are able
to re-generate a force within a time scale that is incompatible with the ATP turnover which
exclude the possibility of binding of fresh myosin heads. These experiments suggested the
presence of a power-stroke mechanism inside the cross-bridge itself.

2.4.3 Power-stroke models
Huxley and Simmons’ 1971 model

This work was inspired by an earlier paper published in 1969 by H.E. Huxley (Huxley,
1969). He proposed a model of muscle contraction where the cross bridge mechanical
cycle includes a rotation of the S1 sub-fragment of myosin II (see Fig.2.2), with respect
to the actin filament. This first picture of the power-stroke explains force generation by
a local conformational change in the cross-bridge rather than by rectification of thermal
noise prior to attachment. Indeed the storage of the required elastic energy can be time
consuming (specially if the stiffness of the head is high) which is incompatible with the
fast transient response observed after a sudden length change.

Following the work of H.E. Huxley, A.F. Huxley and R.M. Simmons proposed in
(Huxley and Simmons, 1971) a model allowing one to explain the this quick force recovery
quantitatively. The model is based on the association of 2 elements (see Fig.2.11):

1. A multistable element described by a discrete energy potential v. The associated
internal degree of freedom e, is interpreted as the angular position of the myosin
head with respect to actin. The discrete potential is shown on Fig.2.11A for the case
of two energy wells. Each energy well is infinitely steep and the variable €, can be
interpreted as a ‘spin’ degree of freedom. The 2 preferred states are separated by
a distance a characterizing the power-stroke size. It must be noted that the energy
barriers B; and By are constant and therefore do not depend on the applied force.

2. A linear elastic element whose energy is of the type: V. (y,€,) = 1/2r (¢, — €x)? (see
Fig.2.11B). ¢, is the overall strain in the cross-bridge. In the original 1971 model, the
actin and myosin filaments are rigid therefore the applied length step corresponds to
a direct change of €,.

While Huxley and Simmons used in their paper the language of chemical reactions,
here we reformulate their theory in terms of general statistical mechanics. Consider a
population of N cross-bridges connected in parallel. In thermal equilibrium, the tension
is computed from the partition function (see Sec.4.1) of the system. We denote Nj the
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Fig. 2.11 — Power-stroke model proposed by A.F. Huxley and R.M. Simmons in 1971 in
(Huxley and Simmons, 1971). (A): the conformational change of the myosin head is associated with the
energy potential v. This potential allows only discrete positions (here to position €, = 0 and €, = —a).
The energy offset of the right had energy well is vg. Huxley introduced 2 arbitrary energy barriers B;
and By for the left to right and right to left transition respectively. (B): to take into account the elastic
properties of the motor, he added an harmonic potential of stiffness x to the double well potential. ¢,
is the overall strain in the cross-bridge. As Huxley assumed rigid myofilaments, the length step applied
on the fiber is equal to the change in ¢,. The transition rate between the 2 conformations are noted k4
(pre-power-stroke to post-power-stroke) and k_ (post-power-stroke to pre-power-stroke).

number of cross-bridges with e, = —a. The partition function for this model is!:
N /N 1 1
2
Z (ey, B) = NZ:O <N1> exp [_5 <N1§f€(€y +a)” 4+ (N —Ny) <§/1 (62) —|—vo>>]
=

<eXp [—6%/@ (ey + a)z} + exp [_6 <%m@2’ i UO)DN

where 8 = 1/k0, ky being the Boltzmann constant and 6 the absolute temperature. Then,
from the partition function the equilibrium tension after the quick recovery is given by:

T, (e, ) = S—f;,where F= -3 (Z(e.9)

Ty (ey, ) = Nk (ey + g - gtanh (g </@6ya + Ha—; - v0>>> (2.4.3)

In isometric contraction (e, = 62) it was supposed that N1/N = 1/2; which here would
mean that the total energy of the 2 conformations are equal so vy = R62a+/£a2 /2. Therefore
by eliminating vy we obtain:

T, = Nk (ey + g — gtanh <§/{a (ey — 62))) .
We can rewrite the preceding formula in a non dimensional form:

— _ 11 B .
T2:N<ey+§—§tanh<§(ey—ey)>>,

N!
KI(N—K)!

1. We use the following notation for the binomial coefficients: (Z) =
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Fig. 2.12 — 75 curves obtained with Huxley and Simmons 1971 model for different values of

B. We see that for § < 4, the curve is monotone, otherwise it develops a region of negative stiffness near

€y = 52. The 2 linear regimes correspond to an homogeneous population of cross-bridges inside the left

hand (post-power-stroke configuration) or in the right hand well (pre-power-stroke configuration).

with: Ty = Ty/(ka), €, = €,/a and B = ka®/ (ky0). On Fig.2.12, we represent T/T (€,),
with To = T (Ey = Eg), for different values of 3. The curves show two linear regimes cor-
responding to the cases where the cross-bridges are all in the left well (post-power-stroke
conformation) and in the right well (pre-power-stroke conformation). For low values of 3,
the Ty curve is monotone. At the critical value 8 = 4, the curve shows an incipient hori-
zontal plateau as observed experimentally (see Fig.2.5). For 3 > 4, a region with negative
stiffness starts to develop and, ultimately, when 8 — oo, we observe a sharp transition
between the 2 linear regimes. The Huxley and Simmons model is therefore potentially
able to reproduce the plateau of the T curve, by redistributing the cross-bridges between
the 2 conformations.

The next step in the Huxley and Simmons theory is the treatment of the kinetics of
the transition between the 2 conformations. Here by presenting a rigorous definition of
the transition rates (see Fig.2.13), we reveal an inconsistency in the reasoning of Hux-
ley and Simmons concerning the computation of the equilibration time between the two
configuration even though it does not affect their results.

Huxley and Simmons denoted k4 and k_ the transition rates from pre-power-stroke
to post-power-stroke conformation and wvice-versa (see Fig.2.11). According to Kramers
theory for chemical reactions (see Sec.C.1.2 and Kramers (1940)),the rate constant ky and
k_ are inversely proportional to the exponential function of the energy barriers. Then, in
the Huxley and Simmons model, the size of the barriers depends on the elastic energy in the
linear spring and on the shape of the potential v. We denote AV (g,) = & (¢, + 1)%— %Ez =
€y + %, the difference in elastic energies between the 2 conformations at a given ¢€,. The
quantities B and By are constants as postulated by Huxley and Simmons.

We have to distinguish two cases:

1. If § < —3 (see Fig.2.13A), then AV, (§,) < 0 and the energy barrier from pre-
power-stroke (right hand well) to post-power-stroke (left hand well) is equal to By
while the barrier from post-power-stroke to pre-power-stroke is By — AV, (€,)

2. If €, > 3 (see Fig.2.13B), then AV, (g,) > 0 the energy barrier from pre-power-stroke
(right hand well) to post-power-stroke (left hand well) is equal to By + AV, (g,) a
the barrier from post-power-stroke to pre-power-stroke is By

Huxley and Simmons considered only the case €, > % Following the preceding rules
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ky (¢y) = aexp [-BBy| = const ki (¢y) = aexp [-B (Bo + AV, (¢y))]

k—(¢y) = aexp [-B (B1 — AV.(§,))] k- (¢y) = aexp [-BB1]| = const

Fig. 2.13 — Consistent definition of the transition rates in the Huxley and Simmons model

the transition rates have to be defined as follows:

ko (2) = aexp —_Bo] = /c?r =const if €, < —

R (Bo+ AV, (g))] ife, > -
(B1 — AV, (gy))] ife < —
aexp —6_1] =k = const if €y > —

NI NI— N N

(2.4.4)

(2.4.5)

where « is a constant. In the model represented on Fig.2.13, B; > By and thus /c?r > k0.

Note that the ‘chemical’ rates k4 and k_ depend continuously on the cross-bridge’s
overall strain €,. Usually, chemical reactions are viewed as jump processes between discrete
‘sites’ that have a fixed position in the conformational space. Here, instead the chemical
states are represented not by points on the configurational space but by lines (see Fig.2.23).

Now for €, < —1/2 we can rewrite k_ as:

k- (2y) = kS exp [~B (B1 — By — AV, (5,))]
= kS exp [~ (vo — AV, (&))]

and, because 7y = Eg + %, we obtain:
— 0 —0 _ _ 1
k_(ey) = kY exp [- (ey —€)] fore, < 5

and similarly

1
ki (8,) = k2 exp -8 (e, — Eg)] for €, > 5

(2.4.6)

(2.4.7)

Hence, by assuming the evolution of the population Nj in post-power-stroke conformation

is governed by a jump process, we write:

4N,
dt

= ky (N = Ny) — k_Ny = ks N — (kg + k_) Ny.
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Fig. 2.14 — Counsistent representation of the rate following Huxley and Simmons model. X:
experimental data from Huxley and Simmons (1971). Solid line: rate computed following Huxley and
Simmons paper corresponding to the case €, > —1/2 (values to read on the left axis). The dashed line
(values read on the right axis) corresponds to the case €, < —1/2. Note that in both cases the rates are
finite for large |e,|. Huxley and Simmons model suggests that for large shortening the rate will actually
decrease with €,

The system will then reach equilibrium with a rate

/~c9r (1 + exp [—ﬁ (62 — ey)]) for e, < —

B (Ltexp[-8(e,—@)]) fore, >t 49
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With the parameters used by Huxley and Simmons, the condition €, > —1/2 corre-
sponds to €, — 62 > —8 nm/hs which covers the range of their measurements and match
the experimental data (see Fig.2.14). However, one must keep in mind the consistency
condition on €, when dealing with a different set of parameters and in particular a different
value of 62.

Fig.2.14 shows the rate of equilibration obtained by Huxley and Simmons (solid line).
(x) represent Huxley and Simmons experimental data. The parameters are adjusted to
match the data with the solid line while maintaining the plateau of the Ty curve (k% = 0.2,
b =4, Eg = 1/2 which corresponds to 7y = 1, same parameter as in Huxley and Simmons
(1971)).

In the Huxley and Simmons model, because the energy barrier By and By do not de-
pend on the applied load, the equilibration rate becomes constant for large values of |e| Y
(see Fig.2.14B). This property cannot remain if one considers a regularized version of the
Huxley and Simmons potential (see Fig.2.15B). Even with the slightest smoothing, the
barrier By and By becomes functions of €, and eventually disappear at large loadings;
consequently, the equilibration rate cannot be kept constant in such regime an one should
actually observe an increase (see Fig.2.15D).

Eisenberg and Hill’s 1978 model

One of the main criticism about this otherwise extremely important model came from
T.L. Hill and co-workers in (Eisenberg and Hill, 1978; Eisenberg et al., 1980). Huxley and
Simmons model states that the transition between the 2 conformations implies stretching
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Fig. 2.15 — Hard spin model vs soft spin model. On (A), we schematically represent a bi-stable
model of the type used by Huxley and Simmons characterized by infinitely steep wells and with fixed barriers
B; and By and on (B) we show a regularized version of this potential. (A) model in non-regularizable
without removing this hypothesis of fixed barriers. When a force is applied on the Huxley and Simmons
model B; and By remains unchanged while with even the slightest smoothing of the potential, barriers are
always removed at finite force. (C) and (D) shows the trends of the rate curves expected from models (A)
and (B). With model (A), the rate decrease to a constant at large loading while with model, because of
the removal of the fixed barriers, the rate always increases at large loadings.

of the spring by thermal fluctuations required to overcome the energy barrier. According
to Hill et al., this process is likely to be too slow to reproduce experiments, specially if
the the parameter 3 is high since the rate of recovery is an exponential function of 3 (see
Eq.(2.4.8)). As B = ka?/(ky0), an increase either in % or a will considerably increase the
equilibration time between the conformational states. Huxley and Simmons were of course
aware of this drawback and therefore already in their original paper contemplated dividing
the power-stroke into at least 2 sub-steps (see Huxley and Simmons (1971) and Fig.2.17).
To overcome this difficulty, Hill and Eisenberg proposed a slightly different model.

In 1974, T.L. Hill in his attempt to formalize and unify the existing approaches to
muscle contraction modeling, emphasized the necessity to compute free energy profiles
and extract forces from the knowledge of the free energy (Hill and Chen, 1974). Following
this idea, E. Eisenberg and T.L. Hill proposed in 1978, to associate some energy landscape
with the conformational change then couple it with the energy of the spring. In the
Huxley and Simmons model, the non dimensional energy of the spring is always equal
to 1/2 (€, — &)* with ¢, the internal degree of freedom equal to 0 or —1 depending on
the conformation. In Eisenberg and Hill’s model, the spring is now a bi-stable element
whose energy depends on the internal degree of freedom ¢ # €, (Eisenberg and Hill, 1978).
In other word, the conformational change occur without net movement of the lever arm.
They set:

1 2 f g —
Ve (Ey7€x7Q) = % (Ey) 7 2 lf a=90
5(ey+1)7, ifg=-1

Huxley and Simmons’ and Eisenberg and Hill’s models are compared on Fig.2.16. For
the Huxley and Simmons model, the internal degree of freedom accounting for the con-



2.4. Theoretical modeling of muscle contraction | 37

A Huxley and Simmons B Eisenberg and Hill

pre-power-stroke

pre-power-stroke %

post-power-stroke post-power-stroke

€ 01 q

Fig. 2.16 — Huxley and Simmons’ 1971 model vs Eisenberg and Hill’s 1978 model. In both
models, the conformational change is associated to a jump between two discrete values of an internal degree
of freedom. In both conformations the energy of the cross-bridge is quadratic. In Huxley and Simmons’
model (A), the internal degree of freedom is the rotation of the head €, so that the energy of the spring and
the conformational change are tightly coupled, see the arrows showing the jump between the conformations
on (A). In Eisenberg and Hill’s model (B), the rotation ¢, is not associated to the conformational change
which now depend on some other degree of freedom noted g. In both models, the tension attained at the
end of the conformational change are the same. In both model we represent in the €, /q— (e, — € ) plane the
level set of the energy landscape implicitly meant by Eisenberg and Hill although the continuous dynamics
was still replaced by a jump process.

formational change is the rotation of the lever arm e, which takes discrete values (see
Fig.2.16A). Note that in both models, the energy of the cross-bridge after the conforma-
tional change is the same and that relaxation of the tension occurs with a net change in
€y — €;. Although Eisenberg and Hill, show an explicit energy landscape represented by
level sets (see Fig.2.16B) in fact the continuous dynamics in their model was still replaced
by the jump process.

The crucial feature in the approach of Eisenberg and Hill is that the transition between
q = 0 and ¢ = —1 states does not require stochastic stretching the elastic spring and so
the transition rates between conformations have to be prescribed as phenomenological
functions of the strain €, —€,. Hence there was still no formal link in this model between
the rate functions and energy barriers.

Discussion

Nowadays the power-stroke is mostly modeled using Huxley and Simmons approach
providing a direct link between the rate constants and the mechanical state of the spring.
Also this approach is consistent with results of crystallographic studies which unambigu-
ously shows the rotation of the lever arm following the conformational change (Dominguez et al.,
1998; Rayment et al., 1993). However, as correctly stated by T.L. Hill, if the value
of B is too large, the T, curve starts to develop a negative slope and the kinetics of
the quick recovery might become too slow compared to experimental rate measurements
(Piazzesi and Lombardi, 1995). This problem is illustrated on Fig.2.17. The energy of
the system is represented against the overall strain in the cross-bridge €,. To reproduce
the T curve and in particular the interception of the 75 curve with the abscissa (lo-
cated at § = —10 on Fig.2.5), the size of the power-stroke (a) must be about 8 — 10
nm (taking into account filament elasticity). If the stiffness of the spring is low (as
sketched on Fig.2.17A), this ~ 10 nm sliding can be achieved with only one confor-
mational change without compressing the spring (a typical chemical “pathway” is indi-
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Fig. 2.17 — Free energy profiles for chemo-mechanical models. (A) case with low cross-bridge
stiffness. In this case, only 2 attached states are needed to account for the maximum sliding required for
the experimental T> curve. If the stiffness is higher (B), one or more intermediate conformations must be
introduced to avoid compression of the cross-bridges. In both (A) and (B), there are 2 detached states
whose energy is strain independent. The energy difference between these detached states is equal to energy
supplied by ATP hydrolysis. The bold lines indicate an example of chemical pathway between the states.

cated with bold lines). On the other hand, a high stiffness (see Fig.2.17B) requires the
definition of one or more sub-steps, otherwise the cross-bridge has to be considerably
compressed before the conformational change can occur so the mechanical efficiency is
reduced. This has lead to many discussions regarding the necessity of introducing in-
termediate states in the power-stroke (Huxley and Simmons, 1971; Linari and Lombardi,
2010; Offer and Ranatunga, 2010; Piazzesi and Lombardi, 1995; Smith et al., 2008) and
the issue remains open.

2.4.4 Recent developments

The formalism introduced by Hill in the seventies for the modeling of muscle contraction
(Eisenberg and Hill, 1978; Hill and Chen, 1974) has been widely used in the so-called
chemo-mechanical models (As an example we can mention Piazzesi and Lombardi (1995)
which is illustrated on Fig.2.18; see also Smith et al. (2008)). In this class of models, the
different states of the cross-bridge cycle are associated with their own energy landscapes
that depend on the strain in the cross-bridge. Usually, the energy of the detached states
are constant and differ only by the energy level controlled by the ATP hydrolysis. An
example of such model is sketched on Fig.2.17.

The 2 detached states are represented as strait lines. The attached states are usually
described using Huxley and Simmons theory of the power-stroke with strain dependent
rate functions satisfying locally detailed balance condition. Some rate functions (for at-
tachment and detachment) are prescribed phenomenologically and are adjusted to fit ex-
perimental data. The choice of the rate constants creates the ‘preferred pathways’ among
the states (see the bold lines on Fig.2.17). The rate functions used by V. Lombardi et al.
in (Piazzesi and Lombardi, 1995) are shown on Fig.2.18B,C,D and E.

This type of modeling is wide spread in the community with different groups empha-
sizing different pathways and different number of attached states. For instance T.A.J
Duke suggested a version with 3 attached states in (Duke, 1999). The rate constants for
attachment and detachment do note depend on stretch so that, finally, this model has
only a discrete set of parameters and is able to reproduce quantitatively many experi-
mental observations for isotonic velocity transients. However, the quick force recovery is
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Fig. 2.18 — Chemo-mechanical model proposed by G.Piazzesi et al. in (Piazzesi and Lombardi,
1995). (A left): Ensemble of possible reactions between the different chemical states. A1-A2 are respec-
tively the different attached states from pre— to post-power-stroke. D1 and D2 represent the M-ATP and
M-ADP-Pi states respectively. (A right): Energy of the different states. Attached states are harmonic
with the same stiffness x and the detached states have a fixed energy. The difference between the energy

of state D1 and D2 is the energy input from ATP hydrolysis. (B, C and D) shows the rate transition
function between the states.

reproduced only qualitatively. Another simple chemo-mechanical model is proposed in
(Cordova et al., 1992), with attachment and detachment rates depending on the strain in
the myosin (like in (Huxley, 1957)). They also model the binding sites as energy wells
whose depth depends on the cross-bridge strain. The model of V.Lombardi et al. shown
on Fig.2.18 contains 3 attached states (Al, A2 and A3) and 2 detached states (D1 and D2)
and they consider a chemical scheme with 6 forward rate functions and their reverse. Even
more detailed schemes has been used by M. Linari and co-workers in order to account for
specific effects of the chemical species present in muscle such as the inorganic phosphate.
These models use up to 5 attached states and 4 detached states (Linari et al., 2010, 2009).

2.4.5 Brownian ratchet: purely mechanical model

Modeling molecular motors has been recently a very active field of bio-physics stim-
ulated by the development of single molecule techniques (see Sec.2.3). The goal was to
explain how a molecular motor (not necessarily muscle myosin II) can ‘walk’” on a track in
a preferred direction provided that it is constantly hit by molecules from the surrounding
solvent in a stochastic way.

In Brownian ratchets models, the idea is to trace one or several mesoscopic degrees
of freedom (x) in full details. These degrees of freedom are explicitly associated with a
particular energy landscape V (z). Most of the other degrees of freedom are assumed to
be equilibrated and are represented by a thermostat (white noise and dissipation) im-
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posing finite temperature. In this framework, the inertial terms can often be neglected
(overdamped regimes) and the motion of the particle is driven by the Langevin (Smolu-

chowsky) equation:
dx

Tat
where 7 is the viscous drag coefficient and I' is the random Langevin’s force which
is prescribed by the fluctuation dissipation theorem: (I'(¢)) = 0 and (I'(¢)T (¢')) =
2nkp06 (t —t'). (.) denote ensemble average and ¢ is the Dirac function.

The implicit non-equilibrium degrees of freedom representing non-equilibrium reservoir
enter the model as an explicit correlated time dependent signal for instance a colored
component of the noise and such model generate directional motion of the particle x if the
potential V' (z) is asymmetric.

The colored component of the noise can take multiple forms (see the review by F.
Jillicher A. Ajdari and J. Prost (Jiilicher et al., 1997)). For instance one can use a time-
periodic force (rocking)

= -0,V (z) + T (t) (2.4.9)

V(z,t) =V (z)+ ¢ (t) with (¢ (t)) = 0. (2.4.10)
Another option is a time-periodic multiplier (flashing)
W (z,t) =9 )V (z,t). (2.4.11)

In Eq.(2.4.10) ¢ has a clear mechanical meaning, it is an external force. For instance
in (Magnasco, 1993) (and Fig.2.19A), the non-symmetric periodic potential V' (x) can be
represented as a piecewise linear function of the position x while the time-periodic force
1 (t) was assumed to be piecewise constant (with 0 time average). Of course, for sufficiently
large [1|, the motor can work even at zero temperature, but when || is small temperature
is needed to overcome the energy barriers in V. When the potential shown in Fig.2.19A
is rocked (see dashed lines), the distance traveled before the rocking is inverted is higher
in the right direction than in the left direction. Hence a steady state flux to the right is
generated. The same type of motion can be obtained with a symmetric potential and a
non-symmetric time dependent force.

The function v () is less obvious to interpret mechanically. It describes the affinity of
the particle to certain ‘states’ in the energy landscape. A way to understand this is to assign
different energy landscapes to different ‘chemical states’ (see Jiilicher et al., 1997). This
type of model is a generalization of the chemo-mechanical models presented in the previous
sub-section. Each state i is characterized by an energy landscape W; (see Fig.2.19B for
a case with 2 states) where the motion of a particle is govern by a Langevin’s equation
of the type (2.4.9), with I' prescribed by the fluctuation-dissipation theorem. Like in
chemo-mechanical models, the transition rates between the sates are prescribed functions
of the position x. The necessary condition to obtain a directed motion is to break detailed
balance. For the case shown on Fig.2.19B, if detailed balance is satisfied, the transition
functions k1 and k9 are related as follows:

ki (z) = kg (z) e AW(2)=Wa(z)

Note that this relation is equivalent to the one used in the Huxley and Simmons model of
the power-stroke to describe thermal equilibrium. Now, to break the detailed balance we
can write (Chauwin et al., 1994):

k() = ko () (exp [B (W = W2)] + & (2))
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Fig. 2.19 — Thermal ratchets and multistate modeling. We show two examples of how to create
a biased movement out of the classical overdamped Langevin’s equation (2.4.9). (A): the motion of the
particle x is driven by a non-symmetric potential W. In presence of a symmetric time periodic force F' (t)
(here equal to +F), a finite steady state flux is generated in the direction of the lower gradient of W (here
to the right). See Magnasco (1993). (B): the particle oscillate between 2 energy potential: Wi, representing
an ‘attached’ state and W, representing a ‘detached state’. The necessary condition to generate a directed
motion is to break detailed balance between the transition function k1 and k2 (Chauwin et al., 1994;
Prost et al., 1994), for instance by using k1 (z) = k2 (z) (exp [8 (W1 — W2)] + £ (z)) where £ (x) controls
the distance from thermal equilibrium. In both cases, the motor moves to the right.

where £ (x) is a prescribed function that controls the local deviation from thermal equi-
librium (see Fig.2.19B, lower part). The presence of £ ensures a directed motion (here to
the right) (Jiilicher and Prost, 1997): in the example shown on Fig.2.19, the particle has a
higher probability to be ‘pumped’ to detached state W5 when it has moved to the bottom
of the sawtooth potential. This prevents the particles from moving backward where the
slope of the potential is less steep.

A quadratic potential can be added to W; to take into account the elasticity of the
motor (Guerin et al., 2010b; Placais et al., 2009). In those models the definition of the
power-stroke is not associated with a conformational change occurring without net dis-
placement along the track. From Fig.2.19B for instance it is not straightforward to identify
a particular sequence of motion to be interpreted as the power-stroke and so it becomes
ambiguous whether the motor is driven by the power-stroke or by the ratchet.

In another recent development H. Wang and G. Oster proposed their own definition
of ‘power-stroke models’ and ‘ratchet models’ in (Wang and Oster, 2002). They consider
a motor coupled to a ‘load’ or ‘cargo’ which it then attempts to move. Based on the fact
that, in steady state regime the system is periodic in time, they write the energy balance
as follows:

Wu + Wg = Qout + Qin =0 (2.4.12)

where Wy, is the work done by the motor, Wg is the work done by external forces —Qou¢
is the work done by the drag forces of the thermostat and ();;, is the work done by thermal
forces from the thermostat. During one cycle, the motor consumes energy equal to AG¢
at a rate r where AG¢ is the free energy change in one reaction cycle (it correspond to
the energy released by the ATP hydrolysis) and r is the rate of chemical reactions. They
define the ‘percent power stroke’ of such model by:
W

Ip= r(—AGo)

(2.4.13)
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Fig. 2.20 — Examples of a power-stroke model (A) and of a ratchet model (B). From
Wang and Oster (2002). The motor is driven by a series of periodic potentials ¢; shifted in the direc-
tion of increasing motor coordinate 6 and with lower free energy at each step. A a power-stroke model.
The amount of work done during one cycle (0—0) is negative and larger that the net free energy change
AGc¢, thus fp > 1. B: a ratchet model. The forward motion occurs against energy gradients that moves
the motor backward. Hence AWy, > 0 and thus fr > 1.

and similarly the ‘percent ratchet’ is defined as:
War

TCAGS (2.4.14)

frR=1-

Therefore a motor has two components added in such a way that fp + fr = 1. We can
then qualify a given model a power-stroke model as soon as fr exceeds a certain predefined
proportion fj.

Fig.2.20 shows two hypothetical motor systems modeled using the ‘flashing’ ratchet
formalism. Each chemical state S; is associated to an energy landscape ¢; (here all states
have the same energy landscape for simplicity). Like in the model shown on Fig.2.19B,
the transition between the states is forced at certain values of the coordinate (see the grey
regions).

In (A), the free energy change due to the transition from O to O is positive while the
energy change from [ to 0 corresponding to the power-stroke in this interpretation is
negative and is larger than the net free energy change during the cycle (AW, > —AGe).
As a result, the power-stroke component in Eq.(2.4.13) is larger that 1. This arises from
the fact that the transition [0—0 is not energetically preferable.

In Fig.2.20B, the forward motion (O—0) is achieved through diffusion against the
energy gradient so the work done by the motor on the load is positive AWy > 0 and
consequently fr > 1.

In the above sense, the ‘soft motor’ model proposed by F.Jiilicher and J.Prost illus-
trated in Fig.2.19B et al., appears as a another power-stroke model.

To summarize, the ratchet models merge all degrees of freedom into one coordinate in
such a way that the role played by the swing of the lever arm (usually associated with
the power-stroke) remains unclear. On the other hand, in modern chemo-mechanical cy-
cles, breaking detailed balance is hidden behind the fact that the energy of the detached
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stated attained at the end of the stroke and the energy of the detached state before at-
tachment differ by the amount AG 47p although they represent the same mechanical state
(see Fig.2.17 and Piazzesi and Lombardi (1995); Smith et al. (2008)). In this sense these
models do not provide clear guidance on how the underlying mechanical phenomena can
be reproduced in the lab at larger scales.

It is also important to have in mind that most ratchet models and chemo-mechanical
models reproduce the quick recovery only qualitatively, or if quantitatively then at the
expense of introducing numerous intermediate power-stroke states (Linari et al., 2009).
In fact, these models mostly focus on long time scales associated with the force-velocity
relation. However, the well documented phenomenon of the swinging of the lever arm is
probably essential for an efficient contraction and therefore, we believe it is necessary to
capture also the fast transients revealing the inner working of the power-stroke mechanism
inside theoretical models.

2.5 The proposed model of a half sarcomere

Here we list the main ingredients of what we call a mechanical model of the power-
stroke. Such model should contain only few mesoscopic degrees of freedom, and be driven
only through easily reproducible correlated compound of the noise. First of all, we dis-
tinguish the degrees of freedom associated with the attachment-detachment mechanism
and with the power-stroke mechanism. In the original Huxley and Simmons model (see
Fig.2.23A) the variable y — x is associated with the stretching of the myosin-head elastic
component and the conformational change was implicitly linked with a discrete variable
x (spin model). As a generalization, we can consider x as a continuous variable as it
was first implicitly suggested by E. Eisenberg and T.L. Hill (Eisenberg and Hill, 1978)
and later implemented in (Marcucci and Truskinovsky, 2010). Here, we extend the latter
model, where the cross-bridges were mechanically independent, by considering the simplest
elastic interaction between the individual cross-bridges inside a half-sarcomere

2.5.1 Myosin head as a bi-stable spring

L. Marcucci and L. Truskinovsky (Marcucci and Truskinovsky, 2010) generalized the
Huxley and Simmons model by replacing the discrete degree of freedom accounting for the
conformation of the myosin head by a continuous variable (called here x). This degree of
freedom can be interpreted as the projected angle between the sub-fragment S1 of the head
(see Fig.2.2) and the actin filament. Since the structure of half-sarcomeres is essentially
one dimensional, we choose to work with elongations instead of angles, reminding that
in the case of x, there is a direct relation with the orientation of the myosin head. The
introduction of a continuous variable eliminates the necessity to deal with multiple discrete
configurations for the head domain (see the previous section). The model have to takes
into account 2 mechanical characteristics of the myosin head:

1. The head has at least 2 distinct conformations, pre- and post-power-stroke which
suggests that the potential has to be bi-stable.

2. The head must also have series elasticity that will enter the mechanical response T}
after a length step (see Sec.2.2).

To account for the bi-stability of the myosin head, we associate with S1 a mechan-
ical energy v modeled as a continuous piecewise quadratic function (see Fig.2.21). We
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Fig. 2.21 — Mechanical model of a single cross-bridge . Each myosin S1 sub-fragment is associated
with a bi-stable energy v modeled as a piecewise quadratic function of the rotational degree of freedom x.
In addition to this non convex energy, we associate with S1 a series linear elastic element (with stiffness k)
that models the stretching of the lever arm.

intentionally use this rather simple form to make the computations analytically doable.
In addition to this non convex energy, we associate with S1 a series linear elastic element
(with stiffness x) that models the stretching of the lever arm. Hence we can write the
energy of a cross bridge as

1
Ve (z,y) = v(z) + im(y — 2 — lp)? where (2.5.1)
i 2 if 2> 1
v(x) = fﬂo(m) T Beet (2.5.2)
sk1(z +a)” ifz <L

[ is the point of intersection of the 2 parabolas in the interval [—a, 0] (see Fig.2.21). Later
on, we will refer to the state x = 0 (resp. z = —a) as well 0 (resp. well 1); those states are
of course the pre-power-stroke and post-power-stroke conformation respectively. Parame-
ters k1 and kg are the respective stiffnesses of well 1 and well 0. In the limit kg — oo and
k1 — 00, this model is similar to the model of Huxley and Simmons (Huxley and Simmons,
1971).

Notice that in Huxley and Simmons’s model, a is a fixed distance between the pre- and
post-power-stroke conformations. We explained in the previous section the problems with
this approach. In our model, a is interpreted as the characteristic length of the conforma-
tional change rather than the unique size of the power-stroke. Note that experimentally,
this distance cannot be measured directly, but crystallographic studies of the myosin II
structure suggest that a is close to 10 nm (Dominguez et al., 1998; Holmes and Geeves,
2000; Rayment et al., 1993)

Another parameter vy is the energy difference between the pre-power-stroke and the
post-power-stroke configurations. We would like v () to be continuous in x, hence we
impose the following relation between vy and [ that defines vg:

1 1
Emo(l)2 + vy = §m1(l +a)?, (2.5.3)
the cross-bridge model is fully described by 4 parameters: k1,kg, [ and a.

We assumed for simplicity that the spring in series with the bi-stable element was
linear. However, in a recent paper, M.Kaya and H.Higuchi mention measured a non elastic
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Fig. 2.22 — Metastability of a single cross-bridge . (I): equilibrium relation. The equilibrium
positions in the double well potential are the solutions of v’ (z) = (y —x —lo). We represented the solutions
for y = —0.3 denoted A, B and C with B localized on the degenerate spinodal region and the unique
solution D for y = 0.4. (II): Equilibrium position of = in double well potential vs y. The solid lines
represent the metastable states and the dashed line the unstable state. (III) tension vs y in the different
equilibrium configurations.

behaviour of the myosin head using optical tweezers (Kaya and Higuchi, 2010). They show
basically two linear regime, and, in one of them, the elastic modulus is comparable to the
one we use in our study, which comes from an indirect measurement via the full fiber
elasticity (Piazzesi et al., 2007) (see Sec.7.1.3). The second linear regime correspond to
the buckling of the S2 part and seems to be laying outside physiological regime of myosin.

2.5.2 Local minima of the energy landscape

In our description of the myosin head, we have separated the linear elasticity and the
bi-stable potential. This is done to introduce local minima in the energy landscape of the
cross-bridge. Indeed, at a given total length, one could have just considered the bi-stable
potential which already shows elasticity characterized by k1 and k. However, with this
approach, which correspond to k — 0o in our model, at fixed y, there is only one possible
state z and thus no metastability. The introduction of an intermediate degree of freedom
allows the transition of x between 2 locally stable equilibrium positions at fixed y, one in
well 0 and the other in well 1. For a single cross-bridge, mechanical equilibrium at a fixed
1y is given the following relation:

V@)=y—z—1 (2.5.4)

Due to the non convexity of v (2.5.4) has up to 3 solutions, labeled A, B and C on
Fig.2.22A. Those 3 solutions exists only on a finite interval of y out of which only one
equilibrium position remains available (see D). Fig.2.22II and III shows respectively the
positions in the double well potential en the tension levels as functions of the controlled
parameter y. Hence, our model which uses a regularized potential exhibits a finite interval
of metastability while for instance, in the Huxley and Simmons model (see Fig.2.23A),
the system at every y, can be either at = 0 (pre-power-stroke) or x = —1 (post-power-
stroke). A similar picture of multistable system has been investigated in (Guerin et al.,
2010a) but for the kinetics in the framework of flashing ratchets model.

The level sets of the energy landscape for our cross-bridge model are represented on
(see Fig.2.23B). The pre- and post-power-stroke states are identified as the local minima
of this energy (represented by the dashed lines) and the transition takes place at = = [
(dotted line). When y is changed, the energy landscape is changes in such a way that one
of the minima disappears and only one minimum remains while in Huxley and Simmons
models the two states always exist. Another feature of our approach is that the distance
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pre-power-stroke

S -050 ki (y—1lo) k-(y—1) - -0s

post-power-stroke

-15 -

“15 -1 05 0 0.£
(Y —lo)/a

Fig. 2.23 — Chemo-mechanical cross-bridge model and our new cross-bridge model. (A):
cross-bridge model from Huxley and Simmons model used in almost all chemo-mechanical models of muscle
contraction. The orientation of the head €, can take only a finite number of values (here 0 and -1). We
propose to associate the orientation of the head to a continuous energy landscape v (see Eq(2.5.2)) so in
a sense we are changing from an Ising spin model to a soft spin model. Like in the Huxley and Simmons
model, the bi-stable element is coupled to a linear spring and ¢, denotes the overall strain of the cross-
bridge. The dashed lines on B represent the minimum of the energy in each well. We see that for large
enough €,, the bi-stability is lost, only one minimum remains available. Also the distance between the
minima is not constant as soon as the stiffnesses in the wells are different. Parameters are: A1 = 0.4,
Ao = 0.7, see Sec.2.5.3 for the definitions of non dimensional quantities

between the two minima varies with y while it is constant in Huxley and Simmons model.
This property is needed to avoid the definition of multiple intermediate states in the
power-stroke.

2.5.3 Mechanical model of a half-sarcomere
Model reduction

As we have seen in Chap.1, the half-sarcomere has a complex anatomical and molecular
structure (see Fig.1.5) which we represented on Fig.2.24 as a network of connected springs.
Both actin and myosin filaments are elastic (Huxley et al., 1994; Wakabayashi et al., 1994)
so, in the overlapping region, each cross-bridge is mechanically coupled to its nearest
neighbors by a portion of actin and myosin filaments with respective stiffnesses k, and
Km. The segment of the filament stretching out of the overlapping region have stiffnesses
krA (for actin filament) and kpps for myosin filament. We can also take into account the
presence of the giant protein titin which links the myosin filament to the M-line. Titin
has a non-linear elastic behavior responsible for the passive response of muscle fiber (see
Fig.1.11B). In physiological conditions, this passive elasticity is negligible.

In our complex but still very schematic picture, we do not represent the mechanical
coupling between parallel half-sarcomere through the elasticity of the M— and Z-lines even
though it may play an important in coherent oscillations involving different half-sarcomeres
(Sato et al., 2011). As we have already mentioned, it is reasonable to neglect kprp, the
elasticity of titin.

Let us first consider, the cross-bridges as elastic elements. The following computations
was first presented in (Ford et al., 1981). The result was then used for the study of the
influence of filament elasticity in isometric contraction in (Mijailovich et al., 1996). P-G.



2.5. The proposed model of a half sarcomere | 47

M- Line

N
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YN+ Ky

z

Fig. 2.24 — Realistic model of a half-sarcomere. The upper and lower chains of springs represents
the actin and myosin filament respectively. The cross-bridges are represented by a bi-stable snap spring
(K1, ko) connected in series to a linear spring x. The part of the filament that are out of the overlapping
region are characterized by the stiffnesses kra (actin filament) and xras (myosin filament). We can also
take into account the effect of the giant protein titin through the elastic component xrr

De Gennes introduced a similar computation in (De Gennes, 2001) to compute maximum
pull out separating two strands of DNA.

Our mechanical system is presented on Fig.2.24. We define: L, the length of the
overlapping region, L4 and Lj,; the length of actin and myosin filament that are out of
the overlapping region. The total energy of the system is of the form:

N N+1
1

1
Ka (Tip1 — ) + Z Sk (Yi1 —yi)” + Z 5h (yi — @)

V:Z :

=1 =1 11

DN =

1 1
+ §I£FA.T% + §HFM (Z — yN+1)2 (255)

Then, the equilibrium conditions with respect to x; and y; are respectively:

ov

Ton Ka(Tit1 — 22 + 1) + Kk (y; — x;) = 0 for i > 2 (2.5.6)
ov .
"o B (Yit1 — 2yi +yio1) — £ (i —x;) =0 for i < N (2.5.7)
ov
o =K (2 — 1)+ K(y1 — 1) — Kpaz; =0 (2.5.8)
€1
ov
-3 = rrM (2 = YN+1) = KEm (UN+1 — YN) — £ (Yn+1 — 2N41) = 0. (2.5.9)
YN+1

To simplify the analysis we consider the continuum limit. Then equilibrium equations can
be written as:

TR —z(€)=0 (2.5.10)

e
%y (&
e

~—

—RY () —z())=0 (2.5.11)

Rm

where £ is the coordinate counted from the center of the overlapping region while & = k/dg,
is the cross-bridge stiffness per unit length and 1/k, and 1/k,, are the compliance per unit
length of actin and myosin filaments respectively. The boundary conditions are dy/9¢ = 0
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for ¢ = —L/2 and 0z/0¢ = 0 for £ = L/2. The solution of Egs.(2.5.10) and (2.5.11) is of
the form:

€ (€) = e cosh [i (€ — &) (25.12)
where p? =& (L + i) (2.5.13)
Km  Ka
and tanh [u&y) = % tanh [pL /2] (2.5.14)
(s )
€0 = - (2.5.15)

2p sinh (L /2] cosh [1&p]

To compute the overall stiffness of the system K we sum the elongation of the free filaments
and the elongation of the overlapping region:

1 1 1 L/2
T = —T+4+—T+ / WLE) 4 (2.5.16)
KEFM KFA —r2 0€

After some computations we obtain:

1 1 1 1 1 Kg — Km,
- = + + L + — | coth [uL /2] + —— tanh [uL/2 2.5.17
=t b Lt o (com /2 + B i ur2)  (25.07)
We now consider the limit uL — 0 (either short overlapping region or more interestingly
1 — 0) and denoting 1/kpa = H—la (Lra—L)and 1/kpy = i (Lppr — L) obtain:

1 1 2 1 2 1
— =—|(Lpa—=L — | Lpyy— =L — 2.5.18
K ﬁa<FA 3>+/€m<FM >+/€ ( )
which is the effective elasticity formula first obtained in (Ford et al., 1981). Hence, the
overall compliance decomposes in a contribution related to the filaments and a part related
to the cross-bridges:
K = Kfilaments Kcross—bridges (2519)

Kfilaments + Kcross—bridges
We now assume the half-sarcomere described on Fig.2.24 can be reduced, to a simpler
system represented on Fig.2.25 with a bundle of N cross-bridges in parallel which in
turn are connected in series to a spring xy lumping the contribution of actin and myosin

filaments: ) ) ) ) )
—_— = — <LFA — —L) + — <LFM — —L> . (2.5.20)
K f Ka 3 Km, 3

Myofilament elasticity was largely ignored before the landmark works of H.E Huxley
and K. Wakabayashi in 1994 (Huxley et al., 1994; Wakabayashi et al., 1994) who indepen-
dently measured, using X-rays interference techniques, the elastic distortions of actin and
myosin networks during muscle contraction. This discovery forced a complete reinterpre-
tation of many experimental data where it was assumed that all the elasticity resided in
the cross-bridges themselves.

In the rest of this Thesis, we assume that a series spring representing filaments elasticity
is described by the energy:

1
Vi (2y) = g (2 —y = 1r)?. (2.5.21)

where z is the half-sarcomere length. In the limit x; — oo, this model becomes similar to
the one studied in (Marcucci and Truskinovsky, 2010).
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Power-stroke element Cross-bridge elasticity
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Fig. 2.25 — Mechanical model of a half-sarcomere. Left: schematic representation of the constitutive
mechanical bricks of a half-sarcomere. The array of cross-bridges share the same total elongation e,.
Together they are connected to a linear elastic element representing the elasticity of the myofilaments and
possibly of other passive structures. The characteristic parameters are indicated besides the concerned
elements. The characteristic energy profile of the different element are indicated by the surrounding plots.

The non dimensional form of the energy

In what follows it will be convenient to work with non dimensional quantities. A
natural length scale is a, the power-stroke characteristic length, thus we define:
T —1 z—(lg+1
_ i._—_ Y 0. ( 0 f) an

Ei:_; =
a a a a

<
ol
Il

Next we define the characteristic force as ka and the characteristic energy as xka? and write
the total energy in the form
al 1 1
Ve, .. en, 8,0 = Y {@(e_i) +5 @& - 6)2} + 5 NAs (€ - &)’ (2.5.22)
i=1

where Ay = ky/ (INk) is the stiffness of the myofilament relative to the stiffness of the
cross-bridges array and,

1 sFo(@)? + vy if G > 1,
v(g) = —3v (x)y=<g3 """ > (2.5.23)
sR1(€ +1) if g <1,
with By = ko/k and Ry = k1 /K. We also define:
Ko K1
AN=——, 1= 2.5.24
0 kO + P 1 kl + P ( )

The particular form chosen for A\ and Ag, is convenient because then kA1 and k)

represent the equivalent stiffnesses of the cross-bridge: RT:‘il and HTISO' By definition, we

have 0 < A\, A\g < 1, where the upper bound is the limit of infinitely stiff wells. Here
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and later in the manuscript, for convenience, we drop the bars over normalized variables.
Eq.(2.5.3), the relation between [ and vy can then be rewritten as:

S 1 Ao
T 21—\ 21—

It is instructive to list here the main non-dimensional parameters of the model. They
include the two elasticities of the energy wells k1 and ko, the coupling parameter Ay and
the number of cross-bridges: N. Parameter [ defines the location of the barrier between
the pre— and the post-power-stroke state. We emphasize that N is finite (of the order of
100 (Piazzesi et al., 2007)) and therefore our system may exhibit the so called size effect
(in classical statistical mechanics, N ~ 10%*). We also notice that since the temperature
is finite there will be an additional parameter characterizing the amplitude of the thermal
fluctuations with respect to the characteristic energy. In Chap.7, we match the model with
observation and come up with an optimal set of values for our parameters.

(1+1)*

vg 12 (2.5.25)

Conclusions

In muscle mechanics, there have always been a distinction between the motors which
are ATP driven and the power-strokes, which are mechanical processes driven by energy
gradients. The conventional description of the power-stroke is based on the idea of infinitely
narrow energy wells and it always implies the validity of Kramers approximation. In this
way, the actual mechanics of the system is grossly misrepresented.

To deal with this question, we developed in this Chapter, a new model which captures
the mot important mechanical ingredients of the power-stroke mechanism. In the next
Chapters, we study the mechanics, the thermodynamics and the kinetics of our system
preparing the way for the eventuel optimal parameter fit.



CHAPTER 3

Mechanical equilibrium at 6 =0

Ur goal is to study the response of our model of sarcomere to stepwise loading in
length clamp and force clamp to see if it can reproduce the response observed in real
muscle fiber (see section 2.2). Due to the presence of the non-convex bistable elements,
the energy landscape of our system is rugous and is characterised by many local minima
that can be identified in a purely mechanical framework. In this chapter we will restrict
our analysis to these metastable states, postponing the study of dynamics till Chap.5. To
adopt a mechanical vocabulary, we will speak as the system in hard device (resp. soft
device) for the system under controlled total length (resp. force)
We assume that our parameters may vary in a broad range and specify their realistic
values only in Chap.7 after we study the effect of finite temperature.
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3.1 Energy landscape and metastable states

In hard device, the total elongation of the system is the controlled parameter. In that
case, the normalized energy of our mechanical system is given by Eq.(2.5.22):

N

1 1
V(e1,... €N, €y, €) = Z {v (&) + 3 (ey — ei)2} + §N)\f (—¢,)°
i=1

where € is the loading parameter. In soft device, the energy of the system is the Gibbs
energy:
W (€, ey,€,7) =V (€1,...,€N, €y, €) — T€ (3.1.1)

where 7 is the loading parameter.

3.1.1 Local minima of the energy

In hard device, the metastable states correspond to the zeros of the energy gradient so
we have to solve !

. . € = <1 <
{ 87, (V €1, ,GN,Ey,G)) 07 for all 1 SUs N (312)

Oy (V (€1,...,€n,€y,€)) — 0

In soft device, we have to minimize W by solving:

0; (W (e1,...,€en,€y,6,0)) = 0, forall 1 <i< N
Oy (W (e1,...,en,€4,6,7)) = 0 ) (3.1.3)
Oc (W (€1,...,€en,€y,6,7)) = 0

Due to the non-convexity of v, equations 0;V = 0 and ;W = 0 have up to 3 solutions:

€1 (Gy) = (1 — )\1) (Ey) — A, ife <l
€o (Gy) = (1 — )\0) (Ey) R if ¢, >1 (3.1.4)

*:l

)

where €, still need to be determined from the Eqgs.(3.1.2) or (3.1.3). Here €, is a degenerate
‘spinodal’ phase. Due to the permutational invariance of the energy, the equilibrium state
depends only on the fraction of cross-bridges in each of the three phases. Denote Ny, N,
and Ny the number of cross-bridges that occupy positions €1, €, and €y respectively. We
define the corresponding fractions:

—ny = %, the fraction of cross-bridge that occupy position €y,

— ng = %, the fraction of cross-bridge that occupy position €y,

— ny = 1 —n1 — ng, the fraction of cross-bridges at .
The triplet £ = (n1, n4, no) defines a microscopic configuration of the system. The num-
ber of possible configuration is of the order of 3V so the energy landscape becomes ex-
tremely wiggly when N is large (N ~100 in a single half-sarcomere). This is the origin
of complex behaviour in this mechanical systems. However, due to the permutational
invariance of the cross-bridges, the total number of different configurations is reduced to:
(N +1) (N +2) /2 < 3V. This degeneracy is of course destroyed if full filament elasticity
is taken into consideration.

1. We use the following notation: 9; = % and 0, = %
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In the hard device, equation 9,V = 0 gives:

1 1
2, = = e, 1.
€y Ty ()\fe+ N i:1e> (3.1.5)

while in soft device, the equilibration conditions 9,W = 0 and 9.W = 0 gives:

o 1
“ —Z ) 1.
=N + N2 € (3.1.6)
A 4
€, = Ey + N—)\f (317)

If we now eliminate ¢, from the energy (2.5.22) by using Eq.(3.1.5) we obtain, in hard
device:

2
1
T )\fe—l—NE & —&

i=j

!
WE

4

S

‘7(61,...,6]\[,%) -
=1
N

2
1 1 1
—NA € — i .
T3 f<1+Af6 N(1+Af);6)

One can see that the individual cross-bridges ¢; interact now with the mean field generated
by all other cross-bridges (see the second term of the first sum). The coupling parame-
ter A;! controls the intensity of this interaction: the larger the coupling parameter, the
stronger the mean-field interaction. In soft device, we obtain using Eqgs.(3.1.6) and (3.1.7):

2

W(elw"ae]\/)E)_

|
NE

1{7 1

+§ N—Fﬁiije]’—ei
IN (7\? _[(7dl+) 1
3N (N) _U<N NA; +NZ: “

In this case, the level of coupling between cross-bridges is not affected by the value of Ay,

instead the coupling is inherent. In particular, the level of coupling is independent on the
magnitude of the applied force &.

i=1

In hard device, the solution of the minimization problem for a given microscopic con-
figuration £ = (ny,n., ng) is

b (e 6) = ﬁ (Afe = mid +mal) — A1 (3.1.8)
A = 1—A _

€0 (6,6) = m (}\fﬁ - n]_)\]_ + n*l) (319)
P o )\f _ Tll)\l — n*l

&y (€,8) = m <€ - T) (3.1.10)

where we have introduced the equivalent non-dimensional stiffness of the array of cross-
bridges:
Azb (§) = miA1 + noAo + N (3.1.11)
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Thus, the total tension in configuration £ is given by:
A )\f)\acb (f) <_ nl)\l — n*l >
TEE=N—"——"4~|et+—"—""""], 3.1.12
(€:¢) Af 4 A (€) Azb (M1, Mk, M) ( )

AepAp
Py

where we recognize the equivalent stiffness of 2 springs in series Finally, we can

express the energy of configuration ¢ as:

N (s (nl)\l @+ 1)% + noroe2 + ny (¢ — 1)2)

V(e &) ==
n1A1 (noXo + nu(1 4 21)) — nul?(ny + Af)
_|_
)‘f + )‘xb (é‘)
2
+n +2(no+ne) v | . (3.1.13)
1—Xo
In soft device, one finds:

P (1-X\) (7T
= — —niA )= A, .14
é (7,¢) Mo (6) \ NV niAL +n 1 (3 )

N = (1 - )\0) o
= — —n1A l 3.1.15
é (7,6) o (6) \ NV NIAL + Nl | ( )

& (@,8) = M @ON @ (3.1.16)
A f— o i 1 z_nl)\l—n*l

and the energy:

- 1 o 2
W(O-ag) = _5 <)\mb(§) <N —nl)\1+n*l>

o 12
N7, —2(no—|—n*)v0—n*1_)\0

=

+

— ’I’Ll)\l) . (3.1.18)

3.1.2 Existence domain of metastable states

Since € and €& are increasing functions of € (see Eq.3.1.4),it is clear that for increasing
€y (resp. decreasing €,), the condition € < [ (resp. é > ) will ultimately be violated.
This implies that a given configuration (n1,n4,n¢) exists only on a finite interval of € (or
7). This is a fundamental difference between our model and existing chemo-mechanical
models where the analogue chemical states are accessible at any level of loading (€, 7, see
Sec.2.4.4).

More precisely, in hard device, a metastable state (ni,n, ng) exists in the interval
[Einf, €sup) defined by:

LA+ A (€)) + (1= Ao) (A1 — nyld)
Ar (1= Qo) ’
(L4 A1) Ar 4+ Az (§) + (1 = A1) (naA — nud)
Af (1—=X\) ’

€inf (5) =

(3.1.19)

Esup (§) = (3.1.20)




3.1. Energy landscape and metastable states | 55

The special cases are the homogeneous configurations (1,0,0) and (0,0,1) defined on
| =00, &up (1,0,0)] and [€pnf (0,0,1),4+o00[, respectively. In particular, for € < &pn¢ (0,0, 1)
(resp. € > &up (1,0,0)) only configur