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Abstract

The interest in traffic measurement and analysis has iretlelasmendously and provides us
with new ways to understand, operate and improve networdopeance. The heterogeneity of
the Internet is constantly increasing, with new accessniaolgies, new client devices and with
more and more services and applications. On the other hamdhterest of the research commu-
nity to measure enterprise network performance has groumta a complexity that sometimes
rivals Internet. These subjects, of crucial importancestawice providers, network managers and
companies have already received substantial attentiomeimesearch community. Despite these
efforts, a number of issues still remain unsolved. Thisithissconcerned with TCP traffic, which
carries the large majority of the Internet’s traffic. Whileadyzing the performance of TCP trans-
fers, we focused on the connections that correspond to anticcomplete transfers, from the TCP
perspective. The present work consists of three partsrapalith various aspects of the challen-
ging task of, revisiting TCP performance, performance sttt anomaly detection.

In the first part, we revisit most important works and disqusblems faced when we studied
TCP performance. We present an overview of the impact ofppécation, on the TCP transfers.
We show that while losses can have a detrimental impact o &P transfers, the application
significantly affects the transfer time of almost all sharti@ven long flows. In this part we show
that measurements from passively collected traces canalsedby specific technologies imple-
mented in Cellular networks to boost performance and cbagers activity.

In the second part, we compare the performance of CellularH-and ADSL accesses with
traces collected on access networks under the control ofdahee ISP. We shows that a study
of classical performance parameters does not lead to a figkenstanding of client perceived
throughput. Then, we propose and validate a method thds didhwn into the data transfer of
each well-behaved connection. The Data time break-dowmnoapp automatically extracts the
application, access, server and client behavior impaota frassively observed TCP transfers. It
also groups together, with an appropriate clustering élgor the transfers that have experienced
similar performance over different access technologiestiWn characterize some salient aspects
of analyzing enterprise traffic and we provide an overviewroblems.

In the last part, we focus on the issue of profiling anomalo@® Tonnections that are defined
as functionally correct TCP connections but with abnornefgrmance. Our method enables to
pinpoint the root cause of the performance problem, whichbeaeither losses or some idle times
during data preparation or transfer. We apply this mettagloto several traces corresponding
to Internet and enterprise traffic. We demonstrate the enast of specific strategies to recover
from losses on Cellular networks that seem more efficient thibat is done currently in wired
networks.







Résumé

L'intérét pour I'analyse passive de traces a considérabferaugmenté, nous offrant de nou-
velles approches pour analyser et améliorer les perforesaréseaux. L'hétérogénéité d’Internet
est en constante évolution : nouvelles technologies d&cies clients avec mobiles et toujours de
plus en plus de services et d'applications. D'autre pantdiét pour la mesure de performance des
réseaux d’entreprises ne cesse de se développer. Cesssujeddune importance cruciale pour les
fournisseurs de services Internet, gestionnaires dewnéstades entreprises, puisqu'ils ont déja
recu une attention considérable de la part de la communautéctierche. Malgré ces efforts, un
certain nombre de questions reste ouvert. Dans cette thdsaite le trafic TCP, qui représente la
majorité des flux Internet. Lors de cette analyse, nous nonsentrons sur les connexions com-
plétes, du point de vue TCP. Le présent travail se composeidgairties traitant différent aspects
sur les approches actuelles d’analyse de performances Bd'&Dde des performances et la dé-
tection d’anomalies de niveau applicatif.

Dans la premiére partie, nous présentons les travaux lesrpportants, les traces réseaux sur
lesquelles nous nous sommes basé ainsi que les probléntesitréss lors de I'étude des perfor-
mances de TCP au niveau applicatif. Nous présentons ung@repercu de I'impact de I'applica-
tion sur les transferts TCP. Nous démontrons que si lesppeigvent avoir un impact négatif sur
les petits transferts TCP, I'application affecte de manggnificative le temps de transfert de la
majorité des flux. Dans cette partie, nous démontrons quaices mesures peuvent étre biaisées
par des technologies spécifiques mises en oeuvre dansdesixéSellulaires.

Dans la seconde partie, nous comparons sur des tracesgsadss/ performances de clients
Internet, d’'un méme operateur sur les trafics : CellulaiFfdsSIH et ADSL. Nous montrons que
I'étude des parameétres classiques d’analyse de perfoemanpermet pas d’expliquer totalement
les performances percues par les clients. Ensuite, noideralune approche plus fine, permettant
de décomposer chaque connexion TCP, bien formée, en iésrde temps. Notre approche de
décomposition de connexion TCP permet d’extraire autamatnent I'impact du comportement
de l'application, I'acces, le serveur et le client. Nousreegpons, avec des algorithmes adéquats,
les transferts avec des performances similaires sur l&Eseatits types d’acces. Puis, nous propo-
sons une caractérisation de certains aspects de I'anaytsafit dans un reseau d’entreprise.

Dans la derniére partie, nous nous concentrons sur la pnaliigue de profilage d’anomalies
sur les connexions TCP, définis comme correct mais avec diegsipances anormales. Notre mé-
thode permet d’identifier la cause des problemes de perfureyaui peuvent étre soit des pertes
ou bien des temps perdus lors de la préparation des donnéesti@ansfert. Nous appliquons cette
approche pour le cas de plusieurs traces de trafic Interregttietprise. Nous démontrons I'exis-
tence d’'une adaptation spécifique pour la récupérationesupértes sur le réseau Cellulaire qui
semble plus efficace que sur les réseaux filaires.
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Introduction

The Transmission Control Protocol/Internet Protocol (TIRPis the dominant packet proces-
sing protocol in local and wide area networks. The TCP/IRquas were initially developed as
part of the research network. In the late 1960s the Advanasd&tch Projects Agency (ARPA,
now called DARPA) of the U.S. Department of Defence begarreeship with U.S. universities
and the corporate research community to design open, sthpdatocols and build multi-vendor
networks. The Internet is a primary reason why TCP/IP is wthatoday. In fact, the Internet and
TCP/IP are so closely related in their history that it is difft to discuss one without also talking
about the other. TCP/IP has over the years continued to @volmeet the needs of the Internet
and also smaller, private networks that use the technology.

In the last 15 years, the interest in data collection, messant and analysis of traffic has
increased steadily. There has been an immense effort intrgears on various aspects of Inter-
net measurements. Significant progress has been made onfroaisy Important aspects of the
Internet’s structure have been measured, and some gemel@istanding of how the network is
organized is starting to emerge, e.g, measuring the alaite@mdwidth, capacity, application clas-
sification. However, there are still some missing piecefiénpuzzle. In particular, there is a need
for Internet Service Providers (ISPs) to measure the affeegvices and the performance of their
end clients in order to overcome the identified network poid.

While wide-area Internet traffic has been heavily studiedrfany years, the characteristics of
traffic inside enterprises remains almost wholly unexmlof¢early all of the studies of enterprise
traffic available in the literature are well over a decade aid focus on individual Local Area
Networks (LANSs) rather than whole sites. One likely reasdry wnterprise traffic has gone uns-
tudied for so long is that it is technically difficult to measuUnlike Internet traffic, which we can
generally monitor by recording a single access link, anrpntee of significant size lacks a single
choke-point for its internal traffic that would ease the nuieasient task.

From the beginning, the Internet was intended to providereige infrastructure on which a
wide range of applications could operate - Internet is legaditional network and more like a
programmable computer. In fact, the design of the Interneisens two sorts of objectives at the
same time. The ability to support a range of applicationsiiial, but so is the ability to operate
over a range of new emergent network access technologibsasuCellular and high speed ones,
different than a classical Digital Subscriber Line (DSL).

The most popular are Cellular access, on the one hand, ard FabThe Home (FTTH) and
Asymmetric Digital Subscriber Line (ADSL) on the other hai@htellite connections are also
available, but tend to only be practical in cases where nedsvionnection exists, ,e.g., to connect
isolated Islands.

Nowadays Cellular networks offer the ability to connect ighhspeed Internet, that gives full
mobility to consumers. Several technologies are availaleh as General Packet Radio Service
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(GPRS), Third Generation (3G), Universal Mobile Telecomimations System (UMTS),etc.

ADSL and cable are arguably the most popular Internet aes€gld3, and also in France. It
is a broadband connection technology which enables comgptdeconnect to the Internet using
existing copper wired telephone networks. The main idea®if Bechnology is that it works by
splitting the existing telephone line signal into two partse for voice and the other for data.

In contrast to DSL, FTTH systems involve the installationoptical fiber from homes to a
central point. The fiber technology is now becoming more ssibée for residential Internet client.
It promises speeds of up to 100M bit/sec, but costs condieraore than DSL or existing cable
services.

With the emergence of those new technologies to accesstdradt, we notice an emergence
of new applications and services. Services previouslygdesi for ADSL lines are now used in
networks with low or high latency.

The need we address in this thesis is the ability to develdplzafmethodology that allows
to study the performance of heterogeneous access teclg®kgd to attribute performance pro-
blems perceived by the client separately to the specificacharistics of the access technology,
behavior of the server, or behavior of the client. This issied a challenging task given that few
seminal works [2, 3] had focused on this problem and develdpgP root cause analysis method,
that allow users to determine from a passively captured gidtéce the primary cause for the
throughput limitation. The work by Matti Siekkinen et allrsiituted a starting point for our TCP
performance analysis. While authors in [2] enumerate a murabcauses that limit the through-
put achieved, it was dedicated to TCP connections that ergast 130 data packets. As short
flows constitute the majority of flows, we decided to addréesdhallenge of devising a generic
methodology of profiling TCP connections, irrespectivelyheir size.

The task of profiling TCP connections is difficult with the wedy of applications and the
evolution of existing ones. Furthermore, with the new gatien of access technologies such as
Cellular and Fiber families, service providers have exggdsheir deep interest in being able to
locate the main factors that limit throughput for Internimts. It is important for service provider
to demonstrate that poor client performance is not only dube access link only, as the access
link capacity is the usual suspect.

So far, despite extensive research in the domain, a numbaspmEcts remain unsolved. In
this thesis, through extensive evaluation, we uncoverraefermerly overlooked issues, as for
instance, revisiting performances of short TCP transfads@esenting a definition in-line with
their performance : connection unable to perform Fast Retni/Recovery (FR/R), after a packet
loss detection.

To tackle the problem of root cause analysis, we adopt a@li&it conquer approach, where
we first focus on losses, which are arguably a major cause rédrpeance problems for TCP.
Next, we analyze the transfers or the parts of transfersatieatinaffected by losses. We use a fine
grained methodology, based on TCP data time transfers Hol@ak to profile TCP transfers in
general and discuss how anomalies can be uncovered by agiys technique.

For our work we collected several traces from different emvinents : traffic Internet from the
network of an European ISP (Cellular, FTTH and ADSL), a véssl hotspot and research lab and
a trace from Enterprise traffic. Those traces were colledtethg different periods of times. The
subtlety of this diversity is to avoid the fact that obtainmedults be biased by locality or temporal
aspects. We intend to propose a global performance anappi®ach with a broad scope and
application agnostic (no assumption is made concerningagipdication on top of TCP) or the
traces considered.




Thesis Claims and Structure

We make the following claims in this thesis :

I. While losses can have a detrimental impact on short TO#steas, the application signifi-
cantly affects the transfer time of almost all short - andhdeag - flows in a variety of ways.
Indeed, the application can induce large tear-down timesitaran slow the rate of actual
TCP transfers or affect the ability of TCP to recover usingtiRetransmit/Fast Recovery.

Il. Several specific devices might affect classical perfamgce metrics in Cellular networks,
which should be taken into account when performing measeméstudies.

lll. Round-Trip Time (RTT) and packet loss alone are not eyoto fully understand the obser-
ved differences or similarities of performance betweendifferent access technologies,

IV. Our data time break down methodology for traffic analysisbles :

e to present a general approach for traffic analysis basedssiveameasurements, available
for multiple environments,

e to perform a fine-grained profiling of the data time of transfthat sheds light on the
interplay between service, access and usage, for the alehterver side,

e to attribute performance differences perceived by thentbeparately to the specific cha-
racteristics of the access technology, behavior of theeseand behavior of the client.

V. We aim at detecting and uncovering the reason behinchialved TCP transfers, where aiill-
behaved connection here is a functionally correct TCP odtiore— normal set-up/tear-down
and actual data transfer —that experienced performangesiss.g. losses or abnormally long
waiting times at the server side.

VI. Our approach for detecting and uncovering the reasoindelt-behaved TCP transfers, is
able to isolate various types of anomalies, some beingeetlatthe configuration of servers
and some other being shared by several services.

Our thesis deals with different aspects of traffic measundsnfor the case of heterogeneous
environments. In addition to the introduction and final dosion, we divide the content of this
thesis in three main parts.

In the first part, we introduce the world of Internet/Intrangeasurements and revisit most of
the important related works. We highlight problems facedmwive revisited TCP performance.
We introduce a new definition of short transfers. This pasiLides 3 chapters.

In Chapter 1, we briefly review the most important works thatfacused on, and present a
first overview of the problems tackled in the thesis. We thexs@nt InTraBase - the traffic analysis
tool (used to manipulate all our traffic traces). We sumneattie main characteristics of traces at
the packet level used in this work to carry out our traffic gsial

In Chapter 2, we highlight the interplay between TCP and gi@ieation on top. We discuss
the definition commonly made of short TCP transfers. We olesttat, while losses can have a
detrimental impact on short TCP transfers, the applicatignificantly affects the transfer time of
almost all short - and even long - flows in a variety of way.

In Chapter 3, we study the performance of Cellular accessanks and we bring to light
phenomena introduced by Cellular core network equipmetigh can bias measurements. As a
second step we investigate the performance of Cellularar&yfocusing on two key services :
mail and webmail.
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In the second part we compare the performance of CellularH-and ADSL accesses with
traces collected on access networks under the control stifne ISP. We show that loss and access
impacts are not only the main parameters that influencetsligerceived performance. This part
includes 5 chapters.

In Chapter 4, we report a classical approach to comparerpeafce of different access tech-
nologies in order to conclude if clients fully benefit fromethbroadband access. We assess the
stability of the traffic for the traces that we have to studg Wviefly analyse usual suspects and
parameters that can impact the results of different aceessiblogies.

In Chapter 5, we propose a new analysis method that uncdwelisnpact of specific factors
like the application and the interaction with user, and timfigrms the comparison of heteroge-
neous access technologies.

In Chapter 6 we validate key elements of our analysis methertely the data time breakdown
approach and the clustering technique. This validatioch$eed through simulations carried out
using the Qualnet simulator.

In Chapter 7 we address the problem of comparing the perfozenperceived by end users
when they use different technologies to access the Intevietapply our data break-down and
a clustering approaches to identify groups of connecticiper/encing similar performance over
the different access technologies.

In Chapter 8, we revisit some salient aspects of enterpragéict Our goal is to provide an
overview of the problem faced when performing measuremargach environments such as ba-
sic RTT estimation. We also present a fine-grained profilindp@ most popular applications used
in the network we measure.

The last part (Ill) of the thesis focuses on the issue of pngfiknomalous TCP connections
that are defined as functionally correct TCP connection it abnormal performance.

In Chapter 9, we present a methodology to profile anomalou? d@hnections, which leve-
rages the approach proposed previously and applied tankitand intranet traffic for profiling
all the TCP traffic. We demonstrate the existence of spedifitegies to recover from losses on
Cellular network that seem more efficient than what is dorreeotly in wired networks. When
focusing on the transfers or parts of the transfers that araffected by losses, we demonstrate
that our approach is able to detect and classify differexsisgds of anomalies, especially anomalies
due to transient or persistent - provisioning - problem$iatserver side.

In Chapter 10, we apply a methodology similar to the one pgedan Chapter 9 to the case of
characterizing TCP traffic anomalies for enterprise traffic

Each part starts with a short introduction, contributiomsisary. Thesis conclusions and pers-
pectives chapter concludes the thesis and gives our opimidrow this research could be extended
in the future.




Part |

Challenges in Assessing TCP
Performance







Overview of Part |

In Part | we revisit the most important related works, we higjtt problems faced when we
revisited TCP performance. Then we motivate our approactataf time break down.

In Chapter 1, we present the research efforts related toitfieestht parts of the thesis and we
provide a high level overview of the challenges we addressigwork. We summarize the main
characteristics of the traces captured at the packet leset] in this work to carry out our traffic
analysis.

In Chapter 2, we highlight the interplay between TCP and gi@ieation on top. We discuss
the definition commonly made of short TCP transfers - trassteat cannot rely on the Fast
Retransmit/Fast Recovery (FR/R) mechanism - with the eemesgof new mechanisms to improve
the performance of small transfers, dignited transmit We present an overview of the impact of
the application, on the TCP transfers. We show that whiledegan have a detrimental impact on
short TCP transfers, the application significantly affébtstransfer time of almost all short - and
even long - flows in a variety of way.

In Chapter 3 we highlight that measurements from passiva@lgated traces can be biased by
specific technologies implemented in Cellular networks @odb performance and control users
activity. Also, we cast a first look to two key Internet seesc: mail and webmail in order to
identify factors that lead to different perceived perfonoa for the case of Cellular users.

In summary, this part essentially describes challengegafffd analysis and presents guide-
lines to use in order to uncover the impact of specific fadthesthe application and the interaction
with user, and thus informs the comparison of access teobied, presented in Part II.







Chapter 1

Overview of Challenges

1.1 Introduction

In this chapter, we present the research efforts relateldetalifferent parts of the thesis and
we provide a high level overview of the challenges we addires$isis work. We then present an
overview of InTraBase - the traffic analysis tool, used to ipalate the traces and to implement
the algorithms we developed. We summarize the main chaistate of the traces captured at the
packet level, used in this work to carry out our traffic analy3hose traces were collected in
heterogeneous wireless and wired environments, whicHigightthe wide scope of our study of
traffic analysis performance.

1.2 Short TCP flows

TCP carries 95% of Internet traffic and constitutes 80% oftthal number of flows in the
Internet [4]. A large majority of TCP flows are short livedsaknown as 'Mice’. This highlight the
importance of understanding the behavior of short livedsloFor example mice can contribute
about to 6% of global traffic, but represent more than 97% etatal number of flows [5].

1.2.1 Definition of Short TCP flows

Several approaches and definitions have been proposedgenprghort TCP flows. Some
proposals consider short flows as sessions which are srttalem fixed threshold, e.g, 10 kbytes
[6, 7, 8, 9] or 13.5 kbytes [4].

Alternatively, some works [10, 11] define a short connectsnconnections spending their
lifetime in the slow start phase when the congestion windomn@) is increased exponentially.

A mouse [5] was defined as data transfer comprising a numhmaiets less than or equal to
20 packets ; a flow is terminated if no packets of the flow hawnlmbserved for a time period of
5 seconds.

Also, Cumulative Distribution Function (CDF) of Hypertektansfer Protocol (HTTP) res-
ponses size with status 200 (class of status code that teditiaat the client's request was suc-
cessfully received) shows that other definitions can bedo&or instance, three plausible values
are specified [12] : 8 kbytes, 16 kbytes and 32 kbytes.
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1.2.2 Short TCP Performance Analysis

Several techniques have previously been proposed for gtigtion of the transfer time for a
short TCP connection. In [12], two types of predictions amestigated : the estimation based on
the initial RTT and the one based on the performance of recamfers.

Authors introduced some modifications to increase the acguof predictions approaches
adopting a trace based validation. Cardwell et al [9, 8] psepanalytic models to fit TCP beha-
viour under realistic loss rates in the Internet.

Other proposals [4] include a recursive analytical modgiredict the TCP performance of
short lived flows in the presence of losses. Ebrahim et alptdgent a systematic study of scena-
rios where short-lived flows severely impact long-lived Tiltivs. They demonstrate that in some
cases, a reduction greater than 80% as compared to the tiputuachieved in long-lived flows.

1.2.3 Harmful Scenarios for Short TCP Performance

TCP timeout values are based on round-trip time estimafimms a flow’s data-ack samples.
When a connection is initiated, TCP uses a conservativeotitnelue due to lack of such samples
from the connection. These timeout values are large [13}actre (as large as three seconds).
Loss of the connection establishment (SYN, SYN-ACK) carstbause significantly increase in
the latency for short flows.

Fast Recovery can be trigged only when the congestion winsltavger or equal to four seg-
ments, which can happen only when the flow has at least segemeses [4].

Ayesta et al [6] present two losses scenarios that can behamgful from the performance
point of view and inevitably lead the sender to timeout :
— Congestion window < 1 + number of duplicate Acknowledgeim¢ACK).
— The remaining amount of data < Number of duplicate ACK * Maxm Segment Size
(MSS), then short flows often do not have sufficient trafficeéagyate three duplicate ACKs.

In those scenarios, the sender will not receive three dateli@CKs and will have to rely on
a timeout to detect the loss. Balakrishnan et al. [14] refgmdvery from almost 50% of losses in
web flows via timeout.

Cardwell et al [9] focus on circumstances under which delaf€Ks can cause relatively

large delay for short transfers :

— When the sender sends an initial cwnd of one MSS : in this tteseeceiver waits in vain
for a second segment, until finally its delayed ACK timer fia@sl sends an ACK.

— When the sender sends segments that are not full-sizedeségytvefore sending an ACK
or when the sender sends small segments and the Nagle lahggmievents it from sending
further segments. And the receiver implementation waitaio full-sized segments before
sending an ACK.

Finally, other reasons can slow down short flows transnisdi6] :

— Packet dropping : Most routers deploying droptail queydnticy discard packets indistin-
guishably under congestion. Because of the poor loss recgegformance, even a small
amount of packet drops can slow down short flows greatly.neamore, the retransmission
of these dropped packets also consumes network resoumresxémple, bandwidth and
buffer space) and makes things even worse.

— High queuing delay : Although routers can provide adeqbatter space to avoid packet
dropping, short flows still suffer from the high queuing gelleecause they may be blocked
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by long flows which send tens of packets within one congestimaow.

Several proposals that attempt to solve one or more of tHalgrs of short flows, have been
proposed and can be mainly classified [16] in three categjorlg reduce connection overheads
[17, 18], 2) share network state information [19, 20, 21,1191,22] , and 3) improve performance
during slow start [23, 24, 25, 6, 26].

1.3 Performance Analysis

1.3.1 The Challenge of Comparing Performance of Different Acess Technologies

The domain of Internet measurements is rich with a numbeiffgrent works. For our case
we were especially interested by comparing the performanhd¢eterogeneous wired and wire-
less networks. We enumerate the most important works fronviewpoint, i.e., we studied the
performance of different accesses technologies.

1.3.1.1 Wired Networks

While residential broadband Internet access is popularanynparts of the world, only a few
studies have examined the characteristics of such trafferdJof residential broadband connec-
tions will often have different goals than those in otherigmments, and are not subject to the
same sorts of strict acceptable use policies that may regthair access at work or at school,
such as prohibitions against accessing certain Web siwsiploying certain applications. Optical
technology plays a key role in new telecommunication netaovhile this technology has been
used for a long time in backbone networks, it progressivelgoimes available up to the end user
through the deployment of FTTH access networks. The bisnatev available for end users reach
very high values. Over the past few years, an unprecedenteéaise in Internet traffic has been
observed worldwide, particularly in France due to high pextion rate of fiber-based broadband
access.

In [27] the authors analyze passive traffic measurements ABDSL and FTTH commercial
networks under the control of the same ISP (Orange). Pdekeltiraces are used to evaluate the
impact of the new fiber access network on traffic characiesisThey demonstrate that only a
minority of clients and flows really take advantage of thenhigpacity of FTTH access. The main
reason is the predominance of Peer to Peer (p2p) protocisithnot exploit locality and high
transmission capacities of other FTTH clients. The use aftFprovides a slightly improved per-
formance for the most commonly used peer-to-peer protoEtsever, at the current deployment
level, measurements show no increase in peer-to-peectiadality.

In [28] the authors report aggregated traffic measuremesitected over 21 months from
seven ISPs covering 42% of the Japanese backbone traffibislistudy, residential broadband
traffic accounts for two thirds of the ISP backbone traffic anidcreasing at 37% per year, which
will force significant reevaluation of the pricing and cosustures of the ISP industry. Authors
further investigate residential per-customer traffic ie @fithe ISPs by comparing DSL and fiber
users, heavy-hitters and normal users, and geographfic tnaétrices. The results reveal that a
small segment of users dictate the overall behavior ; 4% ayhitters account for 75% of the
inbound volume, and the fiber users account for 86% of theundo/olume. About 63% of the
total residential volume is user-to-user traffic.
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The study of dominant applications exhibit poor localitheldistribution of heavy-hitters is
heavy-tailed without a clear boundary between heavyssittexd normal users, which suggests
that users start playing with peer-to-peer applicatioesome heavy-hitters, and eventually shift
from DSL to fiber.

Work in [29] constitutes an initial exploration of residetbroadband Internet traffic, where
authors present a broad range of dominant characteridtiessiolential traffic across a number
of dimensions, including DSL session characteristicswagt and transport-level features, pro-
minent applications, and network path dynamics. Authoeciee the network activity for more
than 20,000 residential DSL customers in an urban area. grttnseveral observations presen-
ted the most important one is : HTTP traffic, not peer-to-pdeminates. Overall, HTTP makes
up nearly 60% of traffic by bytes while peer-to-peer contiéisuroughly 14%. DSL sessions run
quite short in duration, with a median between 20 and 30 ntie.short lifetime affects the rate of
IP address reassignments, and find 50% of addresses anmgealsaigeast twice in 24 h, and 1 to
5% of addresses more than 10 times, with significant imptinatfor IP address aliasing. Delays
experienced from the customer premise to the ISP’s Inteyaietwvay often exceed those over the
wide-area path from the gateway to the remote peer (medcah domponent of 46 ms , versus a
median remote component of 17 ms). 802.11 wireless netngiiki customers’ homes, and TCP
settings on the residential systems, appear to limit theeeahle throughput.

In [2], the authors pinpoint factors that limit ADSL perfoamce through the analysis of a
24-hours packet trace containing TCP traffic of approxitgat800 residential ADSL clients.

The authors underscore a low utilization of upload and doaahlcapacity for most of the
clients. To carry out the study (see Section 1.5.1), theyarla TCP Root Cause Analysis Tool
(RCA).

Application of RCA shows that in over 90% of the cases, theutlzation is mostly due to the
p2p applications clients use, which limits the transmissate and not due to network congestion.
For instance, p2p applications typically impose upload taits to avoid uplink saturation that
hurts download performance.

1.3.1.2 Wireless Networks

The past few years have seen a fast growth in Cellular dateonietechnologies in terms of
available services and coverage/usage extent; smartplamteother advanced portable devices
(e.g., iPad), and a wide variety of mobile telecommunicatpplications (such as mobile web,
video conferencing, voice over IP, online social netwogkionline gaming, e-commerce, etc.).
Technology advances in these areas, device, and appfidatim a virtuous circle that further
stimulates more technical innovation and drives popylanitthe use of mobile applications even
higher. 3G wireless communication has increasingly becamiategral part of daily life. Rising
together with the ever maturing technologies is users’ ebghen of the 3G service-users are loo-
king beyond basic service availability and starting to dedhhigher service performance. Thus
it is of interest to study the performance of new Cellulamweks with available application like
p2p, streaming and video conference, designed to wiredank$w Several measurement works
on 3G networks have been done to obtain a better understantl®G networks and to identify
possible performance problems.

In [30], authors cast a first look on mobile hand-held devieage from a network perspective
and what kind of services users are interested in when thewatahome and have access to all
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services. They base their study on anonymized packet letal r@presenting more than 20,000
residential DSL customers (not mobile usage in Cellulawodts), spanning a period of 11 month,
for several 24 hours traces. The purpose was to observe lta&ibe of mobile users when they
are connected via WiFi at home and compare their traffic pette the overall residential traffic
characteristics.

The authors find that iPhones and iPods are by far the most cofgrobserved mobile users.
This has an impact on the most popular mobile applicatiorafar5(Apple’s browser), iTunes,
and Weather. The largest fraction by volume of HTTP contemhultimedia. Comparing HTTP
object sizes of overall and mobile devices traffic, the argtimd that mobiles HTTP objects are
on average larger. The contribution of mobile devices toaverall traffic volume is still small,
but rapidly growing, especially compared to the overalficarowth.

In [31] the authors present a study of the mobile data trafferacteristics by analyzing the
data traffic trace from a commercial CDMA backbone netwodue®al characteristics of mobile
traffic are presented. For instance, authors show an uneveutlhhound traffic utilization at the
mobile, a low average packet size, a short session lengtiha &igh retransmission ratio. Mobile
traffic significantly differs from wired residential traffi@he authors report a retransmission rate
of 80% and indicate that this observation is due unneedeanshission. It generates a waste of
network bandwidth and negatively influences the transpgrefnetwork usage billing. In addi-
tion, they correlate short session length with the tempganaege of user behavior in mobile data
network. We note that this extremely high retransmissidesraas not been reported in any other
studies on wireless traffic, which sheds suspicion on tlsslte

In [32], the authors present results from a measurement @gmgpor GPRS, Enhanced Data
Rates for GSM Evolution (EDGE), Cellular, and High-Speedvdlink Packet Access (HSDPA)
radio access, to evaluate the performance of web transfdramd without caching. Results were
compared with the ones of a standard ADSL line (down :1Mbys:286kb/s). Benchmarks reveal
that there is a visible gain introduced by proxies within téehnologies : HSDPA is often close
to ADSL but does not outperform it; In EDGE, the proxy achigtee strongest improvement,
bringing it close to HSDPA performance.

In [33], the authors quantify the improvement provided byG &cess compared to a 2G
access in terms of delays and throughput. Authors meastfi@mance metrics for ISP managed
live Television (TV) and Progressive Download (PDL, e.guYabe or Deezer).

First they show that for wired access networks (ADSL and FY e average number of
servers accessed per subscriber is one order of magnitwee ém the mobile trace, due to the
absence of P2P and different user behaviors. Authors shaivtia Web is still the most popular
application for Cellular access. Then they quantify thégrarance gain from 2G to 3G and show
that 3G allows users to experience both higher TCP throughgnud shorter delays. Focusing on
the user experience when viewing multimedia content, theyshow their behavior differs and
how the radio access type influences their performances.

They observe that live TV streams only suffer from moderaekpt losses thanks to conser-
vative encoding bitrates chosen according to the radiosactyge, and note that the quality of
live TV streams is high, explaining the popularity of this\dee. By focusing on the number of
playback interruptions, they conclude that PDL streamitaya to efficiently deliver both video
and audio content over a 3G access. 2G PDL video streamstarepafturbed by interruptions.

In [34], the authors identify and study the most importartdes that impact user perceived
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performance of network applications on smartphones. Tleegldped a systematic methodology
for comparing this performance along several key dimessgrch as carrier networks, device
capabilities, and server configurations. To ensure a falrrepresentative comparison, authors
conduct controlled experiments, informed by data collkdteough 3GTest; a cross-platform

measurement tool they designed, executed by more than@B0geds from all over the world.

In this work, the authors study the 3G network and applicgpierformance of four major U.S.
wireless carriers including AT & T, Sprint, Verizon, and Teldile. They choose popular devices
including iPhone, Android G2 from HTC, and Windows Mobilegples from Palm, HTC, and
Samsung for carrying out experiments. Results show that peeformance varies significantly
across network applications.

The four studied different carriers exhibit distinct netlwperformance in terms of throughput,
RTT, retransmission rate, and time-of-day effect [34]. Ti@®ughput, RTT, and retransmission
rate vary widely even for a single carrier in measuremensrtat different times and locations,
e.g., downlink throughput ranges from 50 kbps to 4 Mbps for&AT, with the median value of
about 1 Mbps. The wireless delay in the 3G network domindiesathole network path delay,
e.g., latency to the first hop is around 200 ms, which is closthé end-to-end Ping latency to
landmark servers distributed across the U.S. Besides rigtywdevices heavily influence applica-
tion performance. Given the same content and network dondidifferent devices exhibit vastly
different Web page loading time, e.g., the page loading tiffeamsung SCHIi760 is consistently
twice that of iPhone. Mobile devices can benefit from new eohoptimization techniques like the
data URL scheme, e.g., page loading time for GPhone can warp 20% in their experiments,
despite its already good performance compared to othecekevi

1.4 Enterprise Networks

We aim here to present an overview of research activitiegsing on enterprise network is-
sues. More specifically, the vast majority of works makesaisaeasurements collected in wired
or wireless networks of enterprise that encompass camplisetworks.

The majority of the studies rely on packet [35, 36] flow (Natfldevel traces [37]. This type
of trace might be complemented with other sources such asFS[88]| or syslog data [39]. In
addition, information from the lower or higher layers midi# requested. For the case of wired
network, lower layer data might be topological informat[df]. For the case of wireless network,
it might be layer two [41], or physical layer data [42]. As fitre upper layer, studies rely on
operating systems logs [43] or specific application relgedormance metrics [44].

We list below some fairly general problems faced when amadythe traffic of enterprise

networks :

— The lack of representativity of each and every specificrpritee networks. This problem in
fact also pops up while studying Internet traffic, e.g. ficafapture in residential networks
in the US varies from traffic observed in residential netwgarkEurope due to some trends
in the use of applications or new services.

— The complexity of establishing ground truth. Some appbce are complex, not well do-
cument and uncommon to the practitioner of Internet traffitypical example is Window
services and ERP applications.

— The structure of enterprise networks, where the complézs both in the network structure
with its use of VLANSs and the server side with the server ctidation and virtualization
trend observed in typical Enterprise networks.
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1.4.1 Measurement Process

A great deal of work has used measurements captured at apresgs access link, which
allows characterization of network activity involving te&ternal Internet, but does not shed any
light on activity that stays confined within the enterpristare recently, studies have drawn upon
measurements made at an enterprise’s core routers [35]

Alternatively, some studies have measured communicatioii® end-hosts themselves [45].
While this approach yields information about all of a hositfic including communication that
occurs outside the enterprise in the case of monitoring @p@p-the measurements it lacks of
a broader context of what is happening in the surroundingornét(e.g., network load). A recent
alternative approach presented in [46], was to capturBdiafdifferent Ethernet switch ports.

In [46] the authors presented a number of techniques fdoreding packet traces captured at
switches connecting end hosts in terms of : gain, loss, timidayout.

They rely on the following principles : (i) using one sourdgackets as unambiguous ’'stakes
in the ground’ to hunt for thresholds and compare clock} etinploying expected replication of
broadcast packets to point to missing events from tracesahich mapping networks, (iii) leve-
raging TCP semantics to identify measurement loss, péatigun terms of seemingly erroneous
acknowledgments for data never observed in transmissiuh (ig) leveraging multiple, simul-
taneous data collections to further illuminate unrecordeents and improve confidence in the
timestamping process.

The authors reveal a predominance of phantoms in switclesrabey see many identical
packets very closely separated in time. Authors define phasias identical copies of previous
packets, observed less than 5 msec in the past.

The take away message here is that measurement of entarptigerks is a difficult task that
has received little attention so far.

1.4.2 Preliminary Analysis

In this paragraph, we report on studies that do not rely oredirgnced data mining technique
but rather use techniques based on descriptive statisticséstigate performance of enterprise
networks.

In [35], the authors presented a first work of its kind focgsim the traffic of large enterprise
network, collected traces at LBNL (Lawrence Berkeley NagioLaboratory). Those (publicly
available) traces amount for 100 accumulated hours of ¢radfthough given the large size and
even more the complex structure of the LBNL network, theyldoot capture at a given time
instant all the traffic flowing inside the network. They rellien Bro!, an intrusion detection system
that can do deep packet inspection, i.e., look for speci§inatiures within the packet payload of
a trace, to identify the applications having generatedi¢raf the traces. In particular, they have
extended Bro, or more precisely its signature base, to recedVindows protocols and network
file services protocols.

They first look at the overall traffic comparing internal amteenal traffic volumes. They also
looked at the fan-in and fan-out of local peers, given thatestocal peers are servers accessible
from the Internet. Next, they focus on specific applicati@mne being used in both worlds, e.g.,
HTTP or mail and some being intranet specific like Windowwsises and network file services.

The article is mostly descriptive, but they pinpointed s@pecific phenomena like the exis-
tence of failures to establish specific connections intgrn@hey leveraged their knowledge of
protocol semantics to check if failures are widespread anocal peers (it turns out to be the

1. http ://www.bro-ids.org/publications.htmi
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case) or not. However, they did not try to identify some sipeobot causes behind those observa-
tions. They looked also at the network load. Specificallgytilentified traffic peaks at small time
scales, indicating the possible existence of transientlaa@ periods. They also addressed the
load problem from the end hosts point of view by computingah®unt of TCP retransmissions
experienced by connections. They observed that TCP retiasi®n rates could reach values up
to 1%, which is less than what is observed for Internet tratficugh still surprisingly large for an
intranet.

In [47] the authors present an initial step towards assgg®rformance within enterprise net-
works. This work is somehow the sequel of [35] and uses theshata set. The authors base their
analysis on a dataset consisting of switch-level packeetrdaken at the LBNL over the course
of four months. In this work the authors assess the prevalehbroken TCP transactions, appli-
cations used, throughput of TCP connections, and phenothabanfluence performance, such
as retransmissions, out-of-order delivery, and packeuption. The study of prevalent applica-
tion in the enterprise dataset shows that most applicatomsinbalanced in that they contribute a
significant fraction of connections or bytes but not both.

The authors show that out-of-order packet delivery is muohemare, with 0.0035% of data
packets, than observed for wide-area traffic, and likewés@t corruption and replication. Addi-
tionally, they find that 0.5% of TCP senders experience &t leae retransmission. A wide range
of transfer rates, with connections achieving throughjbatsveen 3 and 12 times those seen for
wide area TCP, was observed for internal traffic, which caesplvith intuition, due to the proxi-
mity of servers and clients and the data high rates of thenateetwork of typical companies.

1.5 How to Detect TCP Performance Anomalies ?

1.5.1 |Internet Traffic

Traffic anomaly detection has received a lot of attentiorr ogeent years, but understanding
the nature of these anomalies and identifying the flows imablis still a manual task, in most
cases. Several traffic anomaly detection methods have bepoged. Note that this is different
objective from the detection of traffic anomalies, wherefthmus is to detect threats against the
network, e.g. Distributed Denial of Service (DDoS) [48, 89, 51, 52].

Some of the techniques look at changes in traffic featureilolisions [53] or apply methods
involving the analysis of content or the behavior of each bogroup of hosts [54].

More recently, with a new definition of TCP anomaly, Melliaat[55] propose a heuristic
technique to classify TCP anomalies, i.e., segments thet Asequence number different from
the expected one, such as out-of-sequence and duplicateesty In [56], the authors consider
the use of the RTTs as a possible signal for detecting neteraoknalies.

On the other hand only few works have tried to address thelgmobf detecting traffic ano-
malies introduced by performance problems of distant sewmper layer application or service
usage. The common view of a TCP transfer is that its trangonigate is limited by the network,
i.e. by a link with a small capacity or a congested bottleretk In [3, 57] the authors defend the
thesis that this view is too restrictive. Instead, the latidn causes may lie in different layers of
the network stack, either in the end-points or in the middigne TCP/IP data path.

In [3], Zhang et al pioneered research into the origins of TBughput limitation causes.
They propose a taxonomy of rate limitations into (i) apgimwa, (i) congestion, (iii) bandwidth,
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(iv) sender/receiver window, (v) opportunity and (vi) tsort limitations, and second applied it
to various packet traces.

In this work the authors examined the rates of flows and treiogiship between flow rates
and other flow characteristics. They found that fast flowsrasponsible for most of the bytes
transmitted in the Internet. They also observed a strongelation between flow rate and size,
suggesting an interaction between the bandwidth avaitabdeuser and what the user does with
that bandwidth. They found that the dominant rate limitiagtbr appears to be congestion and
receiver window limits.

More recently, some researchers [57] designed and implemhenset of algorithms, the root
cause analysis toolkit, for doing root cause analysis of Tf€GBughput. They used a classification
of TCP throughput limitations, greatly inspired by [3], aextend the scope of this initial work
and discuss the difficulties of identifying TCP throughpuaiitation causes through examples.

The Isolate and Merge (IM) algorithm that partitions thekes of a given TCP connection
into application limited periods (ALPs) and bulk data tri@nsgperiods (BTPs). A BTP is a period
where the TCP sender never needs to wait for the applicatidomto provide data to transfer. On
the other hand, when the TCP sender needs to wait for thecatiph on top, we call that period
an ALP. Once BTPs have been identified, the root cause asdbyalkit analyzes them for TCP
and IP layer throughput limitations, i.e. inferring the reauses for the BTPs, which will be the
focus of this paper. As a next step, Siekkinen et all deserilmethodology to quantify TCP and IP
level throughput limitations that is referred to as the rcaise analysis toolkit. More specifically,
they define a set of quantitative metrics, called limitatimores, that can be computed from the
information contained in the packet headers collected atglesmeasurement point, and show
how these scores can be used in a threshold-based clagsifisaihieme to derive a root cause for
a given BTP.

The main limitation of the IM algorithm is that it processeadyoconnections consisting of at
least 130 data packets. This threshold is chosen since a di@ersthat starts in slow start needs
to transmit approximately 130 data packets (assuming a MS869D bytes) in order to reach a
congestion window size equal to 64 kbytes, which is a comnmma fer the receiver advertised
window. One of the starting points of this thesis work is thgportance of also profiling the
performance of short flows, and more generally of flows of arg.s

1.5.2 Enterprise Traffic

Diagnosing problems in enterprise networks is challengind complex. Modern networks
have many components/services that interact in complexswagnfiguration changes in seemin-
gly unrelated files, resource/components elsewhere inghgonk, and even ’just a software up-
grades can ruin what worked perfectly yesterday. Thus,élieldpment of tools to help operators
diagnose faults has been the subject of much research anderoial activity [58, 59, 60, 61, 40].

The main difference between those tools and the ones dedciibthe previous paragraph
for Internet traffic is that in the context of enterprise natks, the sets of clients and servers are
limited and relatively stable, which enables to feed the@llgms with much more information to
infer the root of the performance problems in this type ofwoek.

The systems for large enterprises, such as Sherlock [58kttanly performance and rea-
chability issues and diagnose at the granularity of machimey essentially sacrifice detail in
order to scale. Other systems, such as Pinpoint for onlineces [60] and SCORE for ISP net-
works [40], use extensive knowledge of the structure oftliemains. Extending them to perform
detailed diagnosis in enterprise networks would requirderiding detailed knowledge of each
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application dependency and failure mode. The range and leaitypof applications inside mo-
dern enterprises can make this task difficult.

In [43], the authors of Sherlock adapt their technique toctee of small enterprise networks.
It enables detailed diagnosis by harnessing the rich irdition exposed by modern operating sys-
tems and applications. A key challenge in their approach tetapplication agnostic. They rely
on a large number of heuristics to address many problemgHieorrelation that exists among
the variables exposed by the operating system that they tdanioav a priori. The resulting solu-
tions appear quite complex due to the many heuristics, dw@mrgh the complexity of the problem
requires such an empirical approach.

Troubleshooting of Enterprise Traffic, with a profiling ofdte approach is a topic that has
received a significant attention. The purpose is to gain mébginderstanding of the role played
by hosts in a network [36, 62] or in complement, to combat analis activities.

In [36], the authors tackle the problem of role classifiaatidhosts within enterprise networks.
Role classification consists in grouping hosts into relatéels so as to obtain a logical view of the
network in terms of who is using which resources.

In [62], the authors investigate the use of community ofriegéas a means to characterize data
networks. Broadly speaking, a community of interest is a@efias a set of communicating hosts.
Authors investigate two possible definitions of COls (pepity/frequency). The main objective
of this work was to assess the stability of their two COI dé&bni over the 11 week by varying
various parameters. As a main conclusion they obtain thdt€&s to be fairly stable and abrupt
changes might thus be considered as abnormal behaviors.

In [63], the authors investigate the use of host profilingeoterprise network security. Their
main contribution is a clustering algorithm that aims atugiog nodes with similar communica-
tion profiles over time. The behavior of a host on a given tinterival is summarized through a
small set of indicators related to the amount of bytes anélgiager destination type and applica-
tion.

In [64], the authors build upon host profiling to propose a testinique to mitigate propaga-
tion of malicious activities within an enterprise netwofle starting point is to build a profile of
the communications of a host based upon its communicatitiarpaat the transport layer.

Graph techniques constitute an appealing solutions towemdmehavioral characteristics of
network traffic. In [65, 37], Traffic Dispersion Graphs (TD)@se introduced as a mean to visua-
lize and analyze traffic from a specific network.

Several recent works have tackled the problem of mining adtiraffic in order to uncover
temporal relations between flows [66]. In [66], the authaespnt eXpose, a tool that mines flow
level traces to uncover communication patterns in the demnsd traces. In their approach, a flow
trace is transformed into a matrix where rows corresponairie slices while columns correspond
to flows where for each time slice, it is indicated whetherfkbnw is present or not. To work around
the problem, they propose to use the JMeasure, an entropy basiric.
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1.6 Intrabase

Internet traffic analysis as a research area has experigap&bigrowth over the last decade
due to the increasing needs caused by the massive increaadfiofin the Internet together with
new types of traffic generated by novel applications, sugheas-to-peer. Today, the state of the
art in traffic analysis is handcrafted scripts and a largebemof software tools specialized for a
single task. The amount of data used in traffic analysis i@y very large.

For our case, we based our analysis on InTraBase, a traffigsi&ool [67] : a reliable and
flexible tool, compared to existing ones [68]. It is a Databsanagement System (DBMS)-based
approach for traffic analysis. It allows to manage colledadhps within the Database System
(DBS). In other words, it processes the input data as liglp@ssible prior to loading it into the
database.

The data uploaded into the database is referred to as baseEd@mples of base data are
packet traces collected via tcpdump or a similar tool.

Once the base data is uploaded into the DBS, it is processeeritee new data that is also
stored in the database. For instance, it demultiplexescfigump packet traces into connections
by assigning a connection identifier to each packet. All tree@ssing is done within the DBS.

InTraBase is not designed, for instance, to monitor thethedila large ISP’s network in real-
time due to the immense amounts of data that would need tehtett constantly. It is rather an
exploratory tool for fine-grained analysis of Internet fi@flt allows to make multiple iterations
over the analysis process cycle, which is generally imptssvith systems specialized into on-
line analysis.

connections packets cid2tuple
fid d tid tid
reverse cnxid :
started reverse reverse
duration Hnestamp b4
throughput flags srcPort
bytes startSeq dstlp
packets endSeq dstPort
lataPkts nbBytes
acks ack
pureAcks win
pushes urgent retransmissions
syns options :
ﬁmt descr-iption \* tid
s doe e
e
reverse
Sa_cks describes traffic Type uniqueBytes
minRwnd connectionsTable retransmittedBytes
maxRwnd packetTable
avgRwnd

FIGURE 1.1 — Main Tables in InTraBase

The core tables used in InTraBase are described in Figu®7]1The tabletraces contains
annotations about all the packet traces that are uploadi idatabase. Theacketstable holds
all packets for a single trace. The two tabt@mnectionsand retransmissionshold connection
level summary data for all traces. Thaxid attribute identifies a single connection in a packet
trace, reverse differentiates between the two directions of traffic witlinconnection, andd
identifies a single traceCid2tuple is a table to store a mapping between unigugid and 4-
tuplesformed by source and destination IP addresses and TCP pbésttributes of the packets
table are directly from the standard output of tcpdump foPT2ickets. The attributes of the other
tables were chosen so that the connection level informatioghly covers that given by tcptrace.
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Processing a tcpdump packet trace with InTraBase includesrfajor steps [67] :

Copy packets into theacketstable in the database;

Build an index for thepacketstable based on the connection identifier ;

Create connection level statistics from gaeketstable into theconnectionstable ;
Insert uniquet-tuple to cnxid mapping data from packets table into tid2tuple table ;

a ks Nk

Count the amount of retransmitted bytes per connectiom the packets table and insert
the result into the retransmission table ;

Step 1, copying packets into tipacketstable is done as follows : tcpdump is used to read
the packet trace file and the output is piped through a filteggam to the database. The filter
program’s primary task is to make sure that each line of iexteach packet, is well-structured
before uploading it into the database. More specificallghdi@me of text representing a TCP packet
contains all the attributes defined in the packet table. linbute is missing, the filter program
adds a special character signifying that its value is null.

The remaining four processing steps are performed withcired Query Language (SQL)
queries. It would be logical to have the retransmission degated in step 5 in the same table with
the other connection level statistics created in step 3tHauheed to use separate SQL queries to
create these two sets of data forces us to use separate tHindeablepacketsdoes not contain
the 4-tuple attributes and, in fact, the reason for performing the Beicg step 4 is that we can
drop the4-tuple attributes data from the packets table, which saves disgespacause we only
store thed-tuple twice per connection (both directions) instead of once &mhepacket.

Trace Analysis

Results

Graphs
. Ee] - Exploitation: Functions (plpgsq|, c, Sql, plr,etc.)

Sql Request Output @ - S Ak _q

Data Base

Tcpdump Capture

FIGURE 1.2 — Global Overview of InTrabase Processing

After the five processing steps the tables are populateddaithfrom the packet trace and the
user can either issue standard SQL queries or use a set t¢ibfusiprovided for more advanced
guerying on the uploaded data. Alternatively, the user mesekbp his own functions. User can
not limit himself on connection level analysis but alsoldidwn to per-packet analysis.

Intrabase offers the possibility to implement functionspiocedural languages to perform
operations that cannot be done with plain SQL queries. Seitopn data analysis we developed
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several functions to compute basic key performance inglisaind complex ones to develop our
fine grained TCP performance analysis presented next imibrik. We present in Figure 1.2 the
general schema of a tcpdump file processing within InTraBasamportant to note that our main
contribution in InTraBase is situated on the exploitatiaydr, since we developed several plpgsql
functions to carry out our algorithms of TCP transfer timeak-down and anomalies detection.

1.7 Overview of Datasets

We used, throughout the thesis, three different sets ofstat/e provide an overview of these
different sets in this section.

1.7.1 Heterogeneous Environments

Table C.1 summarizes the main characteristics of the padekel traces used in this work.
These traces were collected from several different enmients : the network of a DSL from an
European ISP, a wireless hotspot in Portland and a resestsdElUrecom). Those traces are inter-
esting because of their diversity in terms of access tecdgyahnd also in terms of applications.
For instance, p2p transfers are banned from the Eureconorietmhile it represents a large frac-
tion of the bytes for the DSL trace. A wireless hotspot shdailiffkér from a DSL network in that
users tend to focus more on interactive application in sueir@nment and tend to refrain them-
selves from generating large transfers, e.g. applicatipaktes or p2p transfers. As presented in
Table C.1, these traces present several differences indapture time and location, nature of
traffic, as well as type of users selected. We detail in Se@i@ the definition of well behaved
TCP connections.

Capture Duration Nb Well-behaved| Size Size
day connections | connections| connections| in MB | in packets
ADSL | 2005-05-31| 1 minand 29 s 37790 5873 357.51 | 743683
Portland | 2007-09-14| 2 h and 20 min 5051 3798 174.13 | 352569
Hotspot
Eurecom| 2008-10-20| 1 hand 1 min 32153 26837 1567.42| 2867321

TABLE 1.1 — Heterogeneous Traces : Description

Table 1.2 reports some characteristics of the amount of flobserved for mainly used desti-
nation and source ports. From presented statistics it geavithat applications using port 80 are
more dominant, with for instance 42% for ADSL trace and 92%Hoarecom trace.

Our objective, with this first set of traces, was to apply owtimodology of analysis of TCP
connections, see Chapter 2, and obtain conclusions thatveeébound to a specific location. Thus,
while the ADSL trace is extremely short in terms of duratitrfeatures enough connections to
have a statistically sound analysis. However, the tracetismough to characterize an ADSL trace.
We also used longer traces obtained from Orange to carry imdepth analysis. We present them
in the next paragraph.
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Total Port=80 Port!=80 Port=80 Port!=80
connexions| Number of | Number of Mean Mean
connections| connections| data packets | data packets
per connection per connection
ADSL 5873 2496 3377 10.55 8.69
Portland 3798 3504 294 18.27 121.95
Hotspot
Eurecom 26837 24855 1982 31.23 69.02
TABLE 1.2 — Port Distribution
1.7.2 Traces from Orange ISP

We study three packet level traces of end users traffic fromapmirench ISP involving
different access technologies : ADSL, Celldaand FTTH. ADSL and FTTH traces correspond
to all the traffic of an ADSL and FTTH Point-of-Presence (Po#3pectively, while the Cellular
trace is collected at a GGSNevel, which is the interface between the mobile network ted
Internet. Table C.2 summarizes the main characteristiencif trace.

Note that measurements were performed at different timeg®during the day to compare
traffic stability and to get conclusions independent froneaqa of time or users behaviors.

As a consequence it is important to note the large varighalitd diversity of our considered
data sets which is more accentuated with different useravi@is from one access network to an
other, capture time and used services. For instance Qeflataess should differ from FTTH and
ADSL in terms of usage, because Cellular access users tensitecific temporal usage as e-mail
checking or web browsing ; We can expect further changestiwéhntroduction of smart phones
and the usage of 3G keys.

Cellular FTTH ADSL
Date 2008-11-22| 2008-09-30| 2008-02-04
Starting Capture 13:08:27 | 18:00:01 | 14:45:02:03
Duration 01:39:01 | 00:37:46 00 :59:59
NB Connections 1772683 574295 594169
Well-behaved cnxs| 1236253 353715 381297
Volume UP(GB) 11.2 51.3 4.4
Volume DOWN(GB) 50.6 74.9 16.4

TABLE 1.3 — Traces From a Major ISP : Description

In the present work, our focus is on applications on top of ,;M@fch carries the vast majority
of bytes in our 3 traces, and close to 100% for the Celluldnrielogy. We restrict our attention
to the connections that correspond to presumably valid antptete transfers, that we term well-
behaved connections. Well-behaved connections carrydeetv20 and 125 GB of traffic in our
traces (see Table C.2).

2. Cellular corresponds to 2G and 3G/3G+ accesses as ahéht3G/3G+ subscriptions can be downgraded to 2G
depending on the base station capability.

3. The Gateway GPRS Support Node (GGSN) is a main componém GPRS network. The GGSN is responsible
for the interworking between the GPRS network and exteraaket switched networks, like the Internet and X.25
networks.
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1.7.2.1 Applications and Performance

Cellular FTTH ADSL
TCP Port| Connection %| TCP Port| Connection %| TCP Port| Connection %
80 58.9 80 42.75 80 57.85
8080 17.12 443 2.38 443 4.4
443 7.7 25 2.52 135 4.38
110 2.4 6881 2.3 8080 3.98
143 2 30042 1.36 110 2.91
445 1.7 24350 1.07 445 2.29
993 1.63 51413 0.96 2000 1.41
5223 0.64 110 0.88 25 1.27
5001 0.62 26091 0.83 19898 1.03
995 0.4 4661 0.76 139 1
others 6.89 others 44.19 others 19.22

TABLE 1.4 — A First Classification

It is out of the scope of this work to precisely profile userpplcations within the three
traces we consider. We however performed a rough classincat traffic by identifying popular
destination server’s ports. Table 1.4 reveals that morne 886 of Cellular access connections
targeted ports 80, 8080 and 443 unlike FTTH and ADSL with eespely 45% and 62%. Also,
notice for ADSL and FTTH traces a large fraction of connawiwith non-trivial destination ports
number, which symbolize p2p applications.
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FIGURE 1.3 — Orange Client Traffic

We would need more sophisticated techniques to fully profileapplications active in our
trace [69, 70]. However, those figures comply with intuisanon Cellular access, a majority of
traffic flows over HTTP (browsing, HTTP streaming, Webmédit)@nd on FTTH and DSL access,
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HTTP tends to dominate again (at the expense of p2p traphsigtsthe rise of HTTP streaming,
e.g., YouTube.

We next turn our attention to per client utilisation of aaéille bandwidth. Figure 1.3 shows the
scatter plot of the traffic volume uploaded and download ger €or considered traces. We focus
only on active client : i.e. clients having more than one gteket in each direction.

The main observation is that Cellular clients tend to dowadlsignificantly more data than they
upload. This is in contrast to wired networks usage profilesne one observes that a significant
fraction of users upload large volumes of traffic becausepfapplications [69].

A fist explanation is that the usage of Cellular and wired oeks are different. In fact for our
case, the majority of Cellular connections are establistsiag mobile phones, which mainly uses
web browsing, streaming or video applications. Also, whegrsi browse Internet pages, they tend
in most cases to download data, unless they use an interagtplication requiring uploading data
than download like playing games or completing forms.

This result is also in line with the findings in [30] where théleors observe that the largest
fraction in term of volume of HTTP over mobile devices is nmakdia : watching video from
Youtube, listening music from Itunes or downloading apatiiens from Apple Store or Android
Market, induce more download than upload traffic .

1.7.3 Enterprise Traffic

Students

DMZ

2L

0

® Switch
Switch

Router

FIGURE 1.4 — Architecture of the Network

Our last set of traces consists of a single trace collectesl émterprise environment, thus
consisting of a set of machines that might communicate reitlign internal servers or with ma-
chines on the Internet.

Figure C.1 presents a high level view of our network. Thismeeking infrastructure, which
consists of around 800 workstations equipped with a vaoétyperating systems. The network
is organized into several Virtual Local Area Networks (VLAN servers, staff, DMZ, connected
via a Cisco multilayer switch. We collected a trace of one (@ayanuary 2010) long of all traffic
flowing between the servers and the end users machines whhiurecom network. We restrict
our attention to TCP flows as they represent more than 97%ws flo each trace, and they carry
over 99% of the bytes.
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Table C.3 summarizes the main characteristics of the tidue one day trace can be divided
in several classes of traffic, according to the source antdndéisn machines. As depicted in
Table C.3 we can notice that client/server traffic dominateterms of identified well behaved
connections and exchanged data volumes. Interestinghaeged data volumes are quite similar,

except for the Demilitarized Zone (DMZ) traffic with more datolume for the upload.

Server/DMZ | Client/Server| Server/Servel
Well behaved 57348 128237 52333
connections
Volume UP(GB) 8.581 127.061 76.290
Volume DOWN(GB) 6.651 114.054 76.365
Volume UP(data packets) | 10798530 | 153704391 61114981
Volume DOWN(data packets) 9268532 145712454 61198436
TABLE 1.5 — Enterprise Trace : Description
1.7.3.1 Applications Break-Down
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FIGURE 1.5 — Eurecom Client/Server Traffic

Figure 1.5 shows the scatter plot of the traffic volumes artd gackets uploaded and down-
load per user. We observe that enterprise clients tend tergenthe same amount of data volume
for upload and download. This significantly differs fromeady presented traces from Internet
environments.

In the previous paragraph we have noticed that client/sdraffic, e.g., HTTP ; represents
the highest number of TCP connections and the larger voluntata exchanged. In Table 1.6
we report ten most popular targeted destination ports orseineer side, in terms of number of
connections, exchanged data volume and data packets.\Weselthe presence of new protocols
as compared to legacy Internet traffic, which are typicalraémorise environements, e.g. Server
Message Block (SMB).
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As can be seen from Table 1.6, we notice that the Symantecdiridprotection Manager
(SEPM) generates the highest number of TCP connectionsydiuhe largest exchanged data
volume. With clearly less TCP connections, Lightweightdatory Access Protocol Over SSL
(LDAPS) and Network File System (NFS) generate more datarwel

Server Port | NBcnxs| UP MB | Down MB | Datapkts | Down Datapkts
Symantec SER 114130 88.95 2,288.08 | 154155 1727323
(8014)
SMB 20679 | 17,448.04| 30,031.54| 54534755 63508706
(445)
LDAPS 19186 72.94 401.09 411181 1888158
(636)
LDAP 13886 42.23 186.62 85347 278375
(389)
Windows RPC| 10524 21.066 9.30 56299 50626
(1025)
epmap 9208 3.69 3.39 29506 29576
(135)
Http 8189 284.95 766.48 437805 849342
(80)
sunrpc 8015 0.78 0.30 8042 8039
(1112)
Https 6604 36.95 31.21 103107 70526
(443)
nfs/shilp 4174 | 36,756.97| 17,795.81| 34536623| 21141082
(2049)

TABLE 1.6 — Eurecom Traffic Overview

1.8 Conclusion

In this Chapter we presented main research works in relatitmour scope of TCP perfor-
mance analysis for the case of Internet and enterprisecsaffie focused on short TCP transfers,
since they represent the large amount of Internet conmextidext, we revisited relevant works in
TCP performance analysis of (i) Internet wired and wirebessesses (ii) and enterprise traffic. We
show that main works in TCP anomaly detection focus on sicand attack aspects, and neglect
the impact of new applications and remote server impactsroughput limitation.

We then presented InTraBase - the traffic analysis tool, ts@danipulate the traces and to
implement the algorithms we developed.

Based on a DBMS approach it allows to manage collected dumpsdier to processes the
input tcpdump file as little as possible prior to loading ibithe database. Finally, we summari-
zed the main characteristics of the traces captured at ttiepkevel, collected in heterogeneous
wireless and wired environments, used to carry out our ¢raffialysis.

In the next Chapter, we revisit the performance of TCP tensséspecially for short TCP
transfers. Then we present an overview of our data time bdeak methodology in order to
focus on the impact of application on top of TCP.
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Chapter 2

Revisiting the Performance of TCP
Transfers

2.1 Introduction

In this Chapter, we highlight the interplay between TCP dradpplication on top. We first
discuss the definition commonly made of short TCP transféransfers that cannot rely on the
FR/R mechanism - with the emergence of new mechanisms t@oiuaghe performance of small
transfers, e.dimited transmit

Our main contribution is to present an overview of the impHdhe application, on the TCP
transfers. We show that while losses can have a detrimenfzdt on short TCP transfers, the
application significantly affects the transfer time of aknall short - and even long - flows in a
variety of way. Indeed, the application can induce extrgrnegpe tear-down times and it can also
slow the rate of actual TCP transfers.

In addition, the application can worsen the impact of logsepreventing TCP from sending
large enough bursts of packets. We adopt an applicationséigrapproach, i.e., we do not make
any assumption on the way the application is working, to igva set of techniques that delineate
the impact of the application from other causes that exmagiven transfer duration, including
the data transfer itself and the recovery time if any.

We illustrate our findings with the set of traces describe&éattion 1.7.1, which includes
DSL, wireless hotspot and a research lab traffic.

2.2 Well-Behaved Connections

While analyzing the performance of TCP transfers, we fodusethe connections that corres-
pond to valid and complete transfers from the TCP perspac8pecifically, well-behaved TCP
connections must fulfill the following conditions : (i) A cqiiete three-way handshake ; (ii) At
least one TCP data segment in each direction ; (iii) The attiove must finish either with a FIN
or RESET flag.

When applying the above heuristics for our traces, we atew#h a total of over 35,000
TCP connections when summing over the three traces. The B8k is the one offering the
smallest fraction of well-behaved connections, 5873 ower 30, because of a large number of
unidirectional transfers (SYN without a reply). The shautation of the trace also impacts this
value as for a lot of cases, we do not observe the beginnirfgecerid (or both) of the connection.
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P2p applications tend to generate such abnormal connscfamtacting a non available p2p
server to download a content) as well as malicious actsitie

Figure 2.1 depicts the cumulative distribution of well-Betd connection size using bytes and
data packets for the 3 traces. We observe that the EurecorP@nmidnd traces offer a similar
connection profile that significantly differs from the DSlade. For instance, 65% of the DSL
connections are less than 1 Kbytes and 25% are between 1Kagte1l Mbytes, unlike Port-
land and Eurecom traffic which offers larger values at similannection percentiles. A reason
behind this observation, again, is the small duration ofQI$t. trace. However, our focus is on
short transfers, and from this perspective, the DSL traferofaluable information. While Eure-
com and Portland traces present different types of traffi,ehand wireless), they have roughly
the same cumulative distribution of bytes. Secondly, aeraig the cumulative distribution of
connection size in terms of data packets, we observe thatabes present the same shape until
transfer size of 10 data packets. After this value, the D8tdrincreases faster to reach 95% of
connection for less than 20 data packets.

When focusing on the performance of TCP transfers, the nuoflmata packets to be transfe-
red is a key element to consider, as it impact the ability oPTQ recover using the Fast Retrans-
mit/Recovery mechanism. We can already observe from Figdréhat irrespectively of the trace,
a significant portion of connections (between 53% and 65%# less than 7 data packets.
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FIGURE 2.1 — Trace Characteristics

2.3 Short Transfers : Definition

In this section we introduce a first definition of a short TCRreection, which is commonly
used in the literature.

A short TCP connection is a well behaved connection unalgertimrm fast retransmit/recovery
(FR/R), after a packet loss detection.

While simple, the above definition does not lead to a uniqtestiold value in terms of number
of data packets for a short TCP transfer. Indeed, various igfementations and connection
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characteristics can affect this definition : the initial gestion window, the use of delayed ACK,
the number of duplicate acks that triggers a FR/R.

For instance, Windows Vista implements Limited Transmhjaek means that only 2 duplicate
ACKs are enough to trigger a fast retransmit. We estimateth&3 traces, the number of segments
observed in a duration equal to one RTT after the sendingediitst data packet, and this for each
direction - see Table 2.1. The obtained value provides arld@end on the initial congestion
window that the transport uses as the application may naetiggolr CP with enough data to send
at the beginning of the transfer. This is especially truetfar initiator side in the case of Web
transfer where the GET request might fit in a single data gackeerall, we observe that values
of 1 and 2 MSS (and possibly higher values) seem to be commual icongestion windows.
Initial congestion windows larger than 2 MSS (we observddasup to 12 MSS) might be due
to specific optimizations of operating systems that cach [e@el variables of previous transfers
for a few minutes [71].

Trace Initiator Remote party
1 pkt| 2 pkts| > 2 pkts| 1 pkt | 2 pkts| > 2 pkts
DSL 99% | 1% 0% 80% | 18% 2%
Portland | 82% | 17% 1% 64% | 24% 2%
Eurecom| 90% | 10% 0% 65% | 24% 1%

TABLE 2.1 — Estimated Initial Congestion Window

Given the estimated initial congestion window of Table 2v&, report in Table 2.2 the main
scenarios we focus on to find the threshold in terms of numbelata packets that triggers a
FR/R. A short connection is thus, for each scenario, one avithmber of packets strictly smaller
than the threshold. Those scenarios cover, to the best dirawledge, all the most commonly

encountered cases.

Scenario 1| Scenario 2| Scenario 3| Scenario 4
Initial cwnd 1 1 2 2
Delayed ACK no yes yes yes
Duplicate ACK 3 3 3 2
Minimum connection 7 9 8 7
size (data packets)

TABLE 2.2 — Minimum Connection Size to Perform Fast RetransmiéiRery

Based on the results presented in Table 2.2, we observe that :

— Different scenarios lead to different thresholds, from 8 data packets ;

— A connection size with less than 7 data packets can notee@mm packet loss using FR/R,
whatever the exact scenario is;

— When considering a given scenario and a connection whasdssone packet larger than
the threshold, we observe that this connection is able tmera FR/R for only a single
packet in its last round. The loss of any other packet wiltlleatimeout. A connection is
thus not always able to perform FR/R if it is larger than theshold.

Based on the result obtained from this section, we adopt ad#@fnition of a short TCP

transfer, as a connection of size less than 7 data packdatsdefinition, while simple, relies on
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the implicit hypothesis that the application on top of TCRslmot impact the way TCP sends
packets. As we will see in Section 2.5, this assumption candetrong in practice, as even long
TCP transfers can be divided into short bursts (due to thécapipn on top) that prevent TCP
from relying on FR/R in case of losses.

2.4 Transfer Time Break-Down
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FIGURE 2.2 — Transfer Time Break-Down

To understand the factors that affect the performance of tr&#fers, we rely on the follo-
wing decomposition in Figure 2.2 of each transfer into 3edéht phases :

Set-up time : this is the time between the first control packet and the fa gpacket. Since
we consider only transfers which have a complete three-vaag$hake, the first packet is a SYN
packet while the last one is a pure ACK in general. The commeset-up time is highly correlated
to the RTT of the connection. For the three traces we considehave a correlation coefficient of
70% for the DSL trace, 60% for the Portland trace, and 39%hfeBurecom trace.

Data transfer time : this is the time between the first and the last data packetrwdxen the
connection. Note that it includes loss recovery duratidresy.

Tear-down time : this is the time between the last data packet and the lastatqacket of
the connection. We impose, as explained in Section 2.2 athlatast one FIN or one RESET be
observed, but there can be multiple combinations of thogs #idithe end of the transfer. Unlike
set-up, tear down is not only a function of the RTT of the caioa, but also a function of the
application on top of TCP. For instance, the default settihgn Apache Web server is to allow
persistent connection but with a keep alive timer of 15 sdspwhich means that if the user does
not post a new GET request after 15 seconds, the connecttwsisd. A consequence of the rela-
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tion between the tear-down time and the application is a wesalelation between tear-down times
and RTT in our traces : 40% for the DSL trace (which is stilltgthigh), 0.7% for the Portland
trace, and -2% for the Eurecom trace.

Using the above decomposition, we analyze next, the imgddosses (Section 2.4.1) and of
the application (Section 2.5) on the data transfer time.

2.4.1 Recovery and Tear-down
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FIGURE 2.3 — Recovery Time

As explained above, the data transfer time possibly induolss events. We estimate the time
spent by TCP in recovering from losses using riéeovery time Specifically, for a given transfer,
each time the sequence number in the stream of data packetdes, we record the duration
between this event and the observation of the first data padkese sequence number is larger
than the largest observed sequence number seen so farskorde, we present in Figure 2.3 an
example of a TCP connection suffering from data packet lsssuming that we associate a unique
sequence number to each packet, if we observe the sequéen8g r7,6,5,6,8, we will record the
duration between packet 7 and packet 8. This duration ischiddderecovery timeof the transfer.
To filter out reorderings that occur at the network layer, wseard each recovery time smaller
than one RTT. Rewaskar et al. [72] developed algorithmsgessswhether an observed loss event
can be attributed to a time-out or a FR/R. We were not able échis technique as it requires to
perform a passive OS finger printing of the sender of the dtdaever, in our traces, most losses
occurred in the data stream issued by the remote party aridentmtcal clients. While pOftt t p:

/1l cant uf. coredunp. cx/ pOf . sht m ), which is recommended in [72], is effective when
used on SYN packets, it fails when working on SYN/ACK packetsich limits the applicability
of the techniques proposed in [72].

Figure 2.4 presents the break-down of the small and large tf@Rfers for the three traces.
We first observe from Figure 2.4 that while set-up duratiorscansistently small for all traces
and transfer sizes, tear-down take very high values, bet®éeand 27.5 seconds on average. The
tear-down phase in itself often represents the majorithefdonnection time. Note however, that
the tear-down time should have no impact on the performanoeejved from the application on
top as the data transfer is completed.

As for losses, we present two distinct values for the regotiene : the average conditional
recovery time and the average recovery time. The latterrigpeed over all transfers of the ca-
tegory while the former is computed only for the transferst #axperience at least one recovery
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FIGURE 2.4 — Transfer Time Break-Down

event. Since only a small fraction of the transfers expegdnsses (9.4% for DSL trace, 13.2%
for Portland and 6.8% for Eurecom), the average conditioeebvery time is often much larger
than the average transfer time. This impact is clearly mooamqunced for small than for large
flows, over the three traces, most probably because of ttaomi@ance of time-outs for short
transfers.

Still, from a server point of view that is serving a large nnbf clients simultaneously, like
a Web server, long tear down times can affect the servicatyife limit is set on the number of
active clients. A side effect from those large tear-dowmnigalis when one estimates the throughput
of transfers. If one divides the total number of data byteshaytotal duration, one can greatly
underestimate the actual throughputs perceived by theanskthe application. Figure 2.5 depicts,
for the case of the Eurecom trace, the throughput computehwbnsidering the total connection
time and the throughput computed when one considers onletihiep and data transfer times. We
term the latter "application-level” throughput (it is ldleel AL in the graph), as this is the rate at
which data are sent or received from the application petsged-igure 2.5 shows a significant
difference between both compared metrics for short ane lemnsfers.

The main conclusion from the above study is that losses aecaly, but have a highly detri-
mental effect. A second take-away is that the tear-down $ihoelld be removed when computing
the throughput of a transfer as it can lead to a dramatic estieration of the throughput percei-
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ved at the application level. For the case of the Eureconetrfie median throughput of small
(resp. large) transfers obtained when considering thedian is 34 kbits/s (resp. 8.7), while it is
67 kbits/s (resp. 88) when tear-down is discounted.

2.5 Application Impact

In this section, we are interested in assessing the impdleapplication on the transfer time
of a TCP connection. There are many ways by which the apjgitaian influence the pace at
which data flows in a network. First, the user might be invdlve the transfer, as the case in
a persistent HTTP connection, where the download of a new Etriggered by an HTTP Get
message issued by the client browser. Second, the appticatight cap the rate at which infor-
mation is sent to the TCP layer. This is typically what p2plaations do to limit the congestion
on the uplink of the user. A third possibility is when the gextion of data is done online. For
instance, when querying Google for a specific keyword, sg¢tens of machines are involved in
this operation.

From the above discussion, we observe that the applicatiay affect the transfer of data
in many different ways. A first simple assessment that can adento infer the impact of the
application on a TCP transfer is to compute the fraction akpts with PUSH flags [73]. The
PUSH flag is a way for the application to specify that it has raverbytes to send at the moment
and the current segment can be sent. We plot in Figure 2.@tleeaf PUSH flags as a function
of the transfer size for the three traces. We observe thattpact of the application as captured
by the PUSH flags decreases with increasing transfer sizéh&short connections, the push flag
ratio is extremely high, between 74% and 86%.

In the next sections, we assess in more details the way theapmn influences the transfer
time. We show that the application tends to fragment thesfearin small flights of packets that
prevent TCP from relying on FR/R in cases of losses.

2.6 Synchronism and Losses

For client/server applications, one often observes thahef/the server is sending a large
amount of bytes/packets, the actual exchange is fragmetiedserver sends a few packets (he-
reafter called a train of packets), then waits for the clterfiost another request and then sends its
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next answer. If such a behavior is predominant in TCP trassfiecan have a detrimental impact
if ever the train size is too small as it might prevent TCP fioenforming FR/R in cases of losses.

When we observe passively a connection, we see data flowibgtmdirections, i.e., each
direction sends in turn a train of packets. This is not nerédgsharmful if the two parties are not
synchronized, i.e. if one party does not need to receivegiad¢kom the other party before sending
its next train of packets. However, we observed that the @avtigs are apparently most of the time
synchronised, i.e. that they have to wait for a signal fromdther side before sending their next
train of packets.

The question we raise is thus : are the two parties involvesdtiansfer synchronized or not ?
Proving synchronism requires an a priori knowledge of th@iegtion semantics. We can however
prove that the synchronism hypothesis cannot be rejectili@ss : for a given transfer, each time
we observe a transition from one side sending packets, say the other side sending packets,
say B, we observe if the first packet from B acknowledges tbepton of the last packet from A.
If this is not the case, then there is no synchronism, ottsrwgynchronism can not be rejected.
Applying this methodology to the three traces, we obtairet for each trace, the fraction of
connections for which synchronism could not be rejected exdsemely high : 88.6% for the
ADSL trace, 94.4% for the Portland trace and 95.3% for theeBam trace.

For the connections for which synchronism could not be tegeave looked at the distribution
of the size of the trains of packets sent. We distinguishaadxn the initiator of the connection
and the remote party, as we expect the latter to be some kisdreér that usually sends larger
amount of packets than the former that simply posts requastilustrated by Figure 2.7 :

— Trains size sent by the remote part are larger than thoségdme initiator, in line with our

hypothesis that the remote party be a server;

— More than 97% of initiator trains are less than 3 data packetich leaves TCP unable to

trigger any Fast Retransmit, even if Limited Transmit iscuse

— More than 75% of remote party trains are less than 3 dateeggakhich again leaves TCP

unable to trigger the fast recovery/retransmit, even iftlah transmit is used.

Taking a broader perspective, the fraction of connectibashave a maximum train size of 3
packets is 85.2% for the DSL trace, 40.5% for the Portlanckteand 54% for the Eurecom trace.
Sizes of those connections remain quite in line with our dédimof Section 2.3 We observe for
our traces that over 97% of those connections have less thpadkets.
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2.7 Conclusion

We analyzed in this chapter the performance limitationoftsand interactive TCP transfers,

for heterogeneous traffic traces. Short transfers sendisgythan seven packets are not able to
apply Fast Retransmit. Thus, they are really sensitive ¢e &vents in the network. These short
transfers represent the majority of transfers. We have @iserved very long tear-down delays,
between the last data packet of the connection and the lagbtpacket. This tear-down delay
does not influence the user perception, but it may affect thasorement of response times of
short transfers in network management functions.

The sensitivity to loss concerns also many long transfermasy of them are a sequence of
alternate exchanges and the vast majority of these bumstiess than 3 packets. Such a feature
has a direct influence on the ability of TCP to recover fromss lasing Fast Retransmit.

In the next Chapter, we highlight that measurements froraiypely collected traces can be bia-
sed by specific technologies implemented in Cellular néte/to boost performance and control
users activity. Also, we cast a first look to two key Interratvices : mail and webmail in order to
identify factors that lead to different perceived perfonoa for the case of Cellular users.
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Chapter 3

Profiling Cellular Applications

3.1 Introduction

In the previous chapter, we studied TCP performance in geémethout paying attention to
the specific features of a given access technology. In cgiritréhis chapter, we focus on a specific
technology, 3G access, to highlight some of the difficuléesountered when profiling its traffic.

In this Chapter, we present observations from a passivespémlel trace with more than 1.7M
TCP connections, collected at the access network of a majapgan ISP. Our study includes
different classes of access : 3G, EDGE and 2.5G connectogsen user can be observed using
any of these technologies as Cellular contracts work in adfémt manner : the client is granted
a 3G access whenever it is available at the base station tihwhs connected ; or downgraded to
former technologies, EDGE or 2.5G, if 3G is not available. ffther observe a diversity related
to users devices, e.g., mobile phones and Universal Sanga(BSB) pluggable 3G modems.

We study the performance of Cellular access network and wng o light phenomena in-
troduced by Cellular corenetwork equipments, which can bias measurements. As acgsten
we investigate the performance of Cellular networks, fomi®n two key services : mail and
webmail.

Mail and webmail are a key applications from the end usertpafiview and while most of
work has focused on trendy applications, e.g., p2p, stieguor social networks, mail has received
little attention.

3.2 Impact of Core Network Equipments

In this section, we highlight that in modern Cellular netkmrestimating latency turns out to
be a complex task. Indeed, we demonstrate that latency cande estimated due to the use of
new mechanisms or services, like proxies for content atlaptar applications acceleration. We
investigate how these mechanisms impact our measuremettth@ performance perceived by
end users.

3.2.1 RTT Estimation

The round trip time corresponds to the spent time betweendesdéransmitting a segment and
the reception of its corresponding acknowledgement. Thesval includes propagation, queuing,
and other delays at routers and end hosts [74].

1. Core relates here to the wired part of the ISP network thailes access of 2G/3G clients to the Internet.
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Several approaches have been proposed to accurately testimaRTT from a single measu-
rement point [75, 76, 77, 3]. To estimate RTT, we adopted ®abiques. The first method is
based on the observation of the TCP 3-way handshake [76]firsheomputes the time interval
between the SYN and the SYN-ACK segment, and adds to the thddime interval between the
SYN-ACK and its corresponding ACK. It is important to notathve take losses into account in
our analysis. The second method is similar but applied to @i@® and acknowledgement seg-
ments transfered in each directirOne then takes the minimum over all samples as an estimate
of the RTT.

Due to the location of the probe within the network of the ISEe(Section 1.7.2), we are able
to distinguish between a local and a remote RTT. The local RTmeasured within the access
network, including the wireless link, of the ISP, while themote RTT factors both the latency
over the path from inside the network ISP to the first peeiimigdnd then to the remote server.

3.2.1.1 Impact of Active Devices

While analyzing modern Cellular networks, we face a douiffecdlty : (i) the access techno-
logy can vary (from 2G to 3G) from one user to the other and trregs and (ii) the capabilities of
the device itself varies from one device to the other, whimmeatimes prevents the user from ac-
cessing all types of Internet applications. In the netwoekamalyze, devices with limited display
capability are serviced by a specific device. Redirectiothi® specific device is achieved at the
mobile client using Access Point Name (APN). It can be sedhesquivalent of a dial-up phone
number of an ISP. For convenience, we term those connediBhktransfers below.

An Access Point Name is a specific network to which a mobile lmaiconnected. It corres-
ponds to the name of an external network that is accessitte & terminal [78]. In practice, the
Subscriber Identity Module (SIM) card of the end user teahis configured with the IP address
of the APN of the Service Provider. It provides routing imf@tion for Serving GPRS Support
Nodes (SGSN) and GGSN. In the 3rd Generation Partnershjpd®(@GPP), content billing of
GPRS activity is generated based on APN accounting features

In our Cellular trace, we have more than 17% of APN transfefsch can be identified as
targeting a specific private IP address and port 8080.
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FIGURE 3.1 — Remote RTT of APN Transfers

We compared the RTT of APN and non APN transfers. For therlattes, we restrict our
attention to connections targeting port 8080, to have a sdraecomparable basis (though it is
still quite arbitrary). In Figure 3.1, we compare remote RFthe two RTT estimation methods
gave similar results —for the two types of transfers. Weasadi difference of about 100 ms between

2. Keep in mind that we focus on well-behaved transfers fackvthere is at least one data packet in each direction.
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the two types of traffic, which is explained by the split moded at the device, which adapts the
content for those limited capacity devices.

We now restrict our attention to non APN transfers. Thesesfeas are characterized in our
trace by a straightforward manner : they have a public rertidi@ddress. Still, the devices that
generate this type of traffic do not necessarily communidagzetly with the remote server. The
ISP is using a set of devices for user authentication (Radietwork Address Translation (NAT)
(as we find also in wired networks) and a proxy (a specificiteflular networks) whose main
objective is to boost performance of the initial phases oPTf@nsfers. This proxy intercepts the
first SYN of new connections and responds on behalf of the terserver, with a SYN-ACK,
while in parallel, the initial SYN is forwarded to the rematerver. The proxy later applies various
tricks to (try to) improve the performance of TCP transfé@itse way the proxy works at connection
establishment leads to a significant discrepancy betweetwith methods we use to compute the
RTT, which often reaches 100 ms, as can be seen from Figure 3.2
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FIGURE 3.2 — Proxy Impact for Latency Estimation

The key message from this section is that several specificekemight affect classical perfor-
mance metrics in Cellular networks, which should be takémagcount when performing measu-
rement studies. In the rest of analysis of Cellular traffie,facus only on non APN traffic and our
estimation for latency will be based on the DATA-ACK methadyo

3.3 Mail and Webmail : Characteristics and Usage

The E-mail service is often overlooked in traffic analysisdgs, even though it represents a
key service for end users that use it on a daily basis. Toaditiworks in traffic measurement,
usually, study the performance of p2p applications, stregrand more recently the impact of
social networks [33, 79, 80]. The shortcoming of such stwii¢hat they neglect mail and webmail
impact, even though they represent one of the most poputarnkt application [81, 82] and
millions of Internet users use them several times per daproiessional or personal usage.

In this section, we detail how mail and webmail traffic is exted from the trace and evaluate
the popularity of mail and webmail usage. We further extpaetes of information related to the
popularity of the different service providers and end ussficks for the case of webmail, taking
advantage of the fact that the HTTP protocol exposes somaf@ynation.

Therefore, during our next analysis we will distinguishvibe¢n webmail and mail perfor-
mances in order to evaluate the main features that chamcteach service and in next level to
respond to the question : Why users prefer one service akffenee of the other ?
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3.3.1 Service ldentification

Internet traffic classification is an area that attracted aflattention recently [83, 84, 85]. In
most cases, mail traffic is classified based on the legacypr@ibcols : IMAP, POP3 and SMTP.
Concerning webmail, the following identification techréguhave been proposed :

1) Map the destination IP address with a list of URLs of popwabmail providers [86] 2)
Combine the previous method of URL matching with keywordahitg (based on unique key-
words that appear in the packets payload that can identifynved traffic) [81] 3) Use statistical
methods [82].

In this paragraph, we adopted the second approach to dedbohail traffic : we first extract
HTTP requests with webmail key words, then we identified tbenections corresponding to
these requests. To identify malil traffic for the upload angload, we use TCP port numbers and
remote address resolution.

3.3.2 Usage and Popularity

Using the detection method presented in the previous paphgkive extracted mail and web-
mail traffic from our trace. It turns out in our trace that meaild webmail represent about 5% of
all flows and 17% of overall traffic volume.

Tables 3.1 and 3.2 summarize characteristics of mail ananaélconnections, including num-
ber of connections, volumes uploaded and downloaded irstefriotal amount of bytes at the IP
layer and in terms of data packets, number of servers, anteuat clients.

Concerning mail (see Table 3.1), we observe that Post Offie®édl version 3 (POP3) and
POP Secure (POPS) dominate downloads while Simple MailsfeafProtocol (SMTP) and SMTP
Secure (SMTPS), obviously, dominate uploads. Internetsiigs Access Protocol (IMAP) and
IMAP Secure are the most popular service in terms of numbest#blished TCP connections,
followed by POP3/POPS and finally SMTP/SMTPS. The smallenlver of mails uploaded as
compared to mails downloaded is likely to be due to the lichitepabilities of devices (most
of them are smart phones and not PC with USB pluggable 3G medamve will see soon) as
compared to legacy wired access with desktops and laptdmshvieature convenient displays
and also store data that can be used as attachments, asdppesart phones in general

SMTP/SMTPS| POP3/POPS IMAP/IMAPS
Nb cnxs 7330 51202 64493
Upload (MB) 116.1 5.7 59.8
Download (MB) 1.2 1741.6 853.8
Upload (Data Pkts) 78631 261828 731616
Download (Data Pkts 10130 1523961 1270844
Nb Servers 360 1578 883

TABLE 3.1 — Mail Traffic Characteristics

Table 3.2 shows general information about webmalil traffioun trace. We observe similar
results as for mail : users tend to download more than theyadplWe hypothesize again that it
is a result of the limited capacities of devices in generair @pint of view was that this trend is
strongly correlated with mobile devices limitation, besawntil now, not all existing devices offer

3. Our experience with wired traces of DSL and FTTH acceskews that email traffic is also asymmetric in
wired accesses, e.g., because of mailing lists and wantedveeinted advertisements ; but the extent of asymmetry is
far smaller than in Cellular networks.
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the possibilities to send mails with one or more attachedich@nts. Hence, Cellular user, using
their mobile devices, tend to write short mails without eltieed files.

Cellular
Nb Cnxs 16275
Upload (MB) 1364.4

Download (MB) 7169.8
Upload (Data Pkts) | 1712270
Download (Data Pkts) 2022705
Nb Servers 528

TABLE 3.2 — Webmail Traffic Characteristics

Comparing mail and webmail volume statistics, we obsergevlebmail is much more popu-
lar than classical mail. Concerning connection sizes, dxaurof webmail connections are smaller
in size as compared to mail transfers.

At this stage a natural question is : Why Cellular users tengsé more webmail than classical
mail ? We can envisage several options :

1) Cellular users prefer webmail at the expense of legacy 2)alvebmail services offer in
general better performance than mail 3) Cellular devicesrasre adapted to webmail usage.

Option 1 stems from two intuitions. First, the natural ititn that the complexity of confi-
guring a POP/IMAP client as compared to using a Webmail acisea barrier for a lot of users.
Second, the intuition that users prefer to have a mail adcivaom a mail service provider that
is not their network provider in order to keep the accounnefi¢he network provider changes.
Though mail service providers offer in general POP/IMARIfdces, Web based interfaces, i.e.,
webmail, is by far the most popular way to reach those sesvice

We gathered also statistics on webmail servers, clientde\and their OSs, and clients brow-
sers, taking advantage of the presence of many key infoomati the HTTP fields. Figure 3.3
reports the percentage of transfers per webmail servicadens (for the most popular ones). We
observe a dominance of Hotmail, Gmail and Yahoo. Only afterfiwd webmail services offe-
red by network providers like Orange, Tele2 and Alice. Thesellts show that webmail service
providers that propose free mail boxes are much more popldar the corresponding services
offered by network providers. The latter means that hymigh€) mentioned above plays a role in
the higher popularity of webmail at the expense of tradilanail.

Let us now focus on devices and their Operating Systems (OSgsire 3.4 shows that among
the currently popular devices and OSs, we find iPhone at tstepiirsition followed by Microsoft
OSs (Vista, XP and CE). MacQOS, Linux and other mobile devieesain marginal in our data
set. The above result was obtained for clients using wekandilnot for clients using mail, as we
have no access to similar information in the latter case. &#ehowever conjecture that the trends
(OS shares) for these other clients be similar. More gelgetiaé above observation is in line with
current market trends that shows that, at least in Franedptione is the dominating smart phone
at the moment. The small fraction of OSes of laptops sugdkatsdevices connected with USB
pluggable 3G modems are still marginal in the Cellular nekwee study.

Operating systems and Web browser can impact network peafuze through several para-
meters and especially the number of connections establlishthe Web server they connect to.
To assess if there was significant difference in the strabsgyl by the different OS/device in our
data set, we report in Table 3.3 the mean numbers of connsgber webmail session. A session
consists of all the connections between a specific pair ehtind server IP addresses in our trace.
The results in Table 3.3 suggest a similar behavior for thaidant OSes/devices we observe in
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OS/Device NB Cnxs | NB Sessions| NB Cnxs/Session
Iphone 9780 2562 3.81
Windows Vista 1283 304 4.22
Windows XP 1170 376 3.11
Windows CE 290 140 2.07
Macintoch 169 55 3.07
Symbian 138 50 2.76
Linux 22 12 1.83
Others 326 126 2.58

TABLE 3.3 —Webmail Connections and Sessions

our trace. Main observations here was that Microsoft Vistersi were characterized by highest
number of connections per session and Iphone devices gemaome connections compared to
Windows CE and Symbian operating systems.

Hotmail: 23%

Alice < 1%

Live: 13%
Yahoo: 10%

Connections

FIGURE 3.3 — Webmail Service Provider

Linux <1%
) Symbian: 1%
Others: 2% Macintoch: 1%
indows CE: 2%

Windows XP: 9%
Windows Vista: 10%

Iphone: 74%

Connections

FIGURE 3.4 — OS and Devices for Webmail Traffic

3.3.3 Application Level Throughput

Throughput is an important metric for a lot of applicatioB®mmon practice is to use through-
put for applications generating bulk transfers, while oese time is used for interactive applica-
tions. Mall traffic in general appears to be a mixed applwatigenerating interactive and bulk
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transfers. Bulk transfers are generated by large mail$(@&itachments), while interactive trans-
fers are due to mailbox checking and the sending/recepfismall mails. In this section, we use
the throughput to compare the performance of mail and wdbfar purpose here is to show that
the access technology influences the throughput but is robrity factor. Congestion, transport
layer details or the application on top (e.g., rate limiterp2p applications) can also impact the
observed throughput.

We have shown in Chapter 2 that a straightforward estimatidimroughputs where the amount
of bytes transfered at the TCP layer is divided by the totahtion between the first packet (first
SYN) and last packet of the connection (e.g., FIN) providdsased view of the throughput
perceived at the user side. The tear down of a connectiohwbalefine as the time between
reception of the last data packet and the last control packebe extremely high due to numerous
reasons : the application, the server implementation ooflegating system. We thus introduced
in 2 the notion of Application-Level (AL) throughput whefleet amount of bytes transfered at the
TCP layer is divided by the total duration between the firskpa(first SYN) and lastlata packet
of the transfer.
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FIGURE 3.5 — Application Level Throughput

In Figure 3.5, we report the AL throughput for mail and wehinsannections. A first striking
observation is that webmail offers significantly highertghputs than mail. More than 75% of
webmail connections achieve a throughput higher than 18 kinlike mail where the equivalent
portion is only 20%. Several factors can explain this digarey. In the following section, we
explore in more details mail and webmail traffic charactiess in order to find which parameters
degrade mail performance. We focus on volumes of data egeltampplication impact, and time
spent to recover from losses.

3.4 Detailed Performance Comparison

3.4.1 Connections Size

Figure 3.6 depicts the cumulative distribution of well-bedd (see Section 2.2) mail and web-
mail connection size in bytes. It appears that mail trassfiee clearly smaller than webmail trans-
fers. This observation is in line with the results in Tables&nhd 3.2 where we noticed the smaller
number of webmail connections but the larger amount of dathanged. We believe that two
factors explain this observation : (1) webmail applicasiorot only convey data related to the
mailbox of the user but also data related to the HTTP framaei¥eb page in which the content
of the mailbox is displayed, (2) web(mail) applications psesistent connections unlike legacy
mail protocols (POP, SMTP - but not IMAP), which results inder transfers. A smaller amount
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of data to transfer leads inevitably to a smaller throughpith TCP on average, which is a first
explanation behind the observation of mail achieving senaliroughputs than webmail. Howe-
ver, different connection size is not the only factor thgblais the lower throughput of mail as
compared to webmail.
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FIGURE 3.6 — Connections Size

3.4.2 Impact of Application on Top
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FIGURE 3.7 — Exchanged Trains Size

For client/server applications, one generally observasdten if the server is sending a large
amount of bytes/packets, the actual data exchange is fragohethe server sends a few packets
(hereafter called train), then waits for the client to pasbther request and then sends its next
answer 2. If such a behavior is predominant, it can have austtal impact to TCP if the train
size is too small, as it prevents TCP from performing FR/Rhandase of losses.

We evaluate here the distribution of train sizes for mail aethmail transfers. For the connec-
tions for which synchronism could not be rejected, we lookethe distribution of the size of the
trains of packets sent. We distinguish between the initiatdhe connection, which is in our case
the Cellular client and the remote party, which is the maivebmail server.

Figure 3.7 reports the distribution of train sizes for webraad mail transfers. We observe
that :

— Trains sent by servers (remote party) are larger than gergeby the initiator (local client) ;

— Webmail trains are larger than the ones of mail traffic, fathbnitiator and remote party. In

fact, more than 38% of webmalil initiator trains are largearti2 data packets, unlike mail
where it is only 16%.
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— More than 99% of initiator mail and webmail trains are seralthan 3 data packets, which
leaves TCP unable to trigger any Fast Retransmit, even iftedriTransmit is used [87].
This might lead to performance issues during mail uploads.

— More than 92% of remote party trains are also smaller thata8phckets, compared to only
70% for webmail. This again leaves TCP unable to trigger ar&aovery/retransmit, even
if Limited Transmit is used in a lot of case. Mail is more atfet than webmail though.

A conclusion of the above analysis is that both mail and welkim@ughputs are affected by
the behavior of the application on top of TCP with a potehtiadore detrimental effect for malil
than for webmail transfers. Smaller train sizes tend to slown TCP, as it prevents the protocol
from opening its congestion window, but can also lead toéomgcovery time during loss events.
We turn our attention to this specific issue in the next payalgr

3.4.3 Losses

To assess the impact of TCP loss retransmission times oretfi@mance of mail and web-
mail, when we observed throughput estimation in Figure @& developed an algorithm to detect
retransmitted data packets, which happen between theregpmtint and the server or between the
capture point and the client. This algoritfris similar to the one developed in [75].

If ever the loss happens after the observation point, werebdethe initial packet and its
retransmission. In this case, the retransmission timeniplgi the duration between those two
epochs. When the packet is lost before the probe, we infer the epbehiah it should have been
observed, based on the sequence numbers of packets. Wesapdmte real retransmission from
network out of sequence events by eliminating durationdlenthan the RTT of the connection.

Note that computations of all those durations are perforatdtie sender side, as time series
are shifted according to our RTT estimate. For our traceebser to detect losses for the second
case, because in case of packet loss the retransmittedatizt is seen twice. But, when the loss
happened between the capture point and the distant serseaarevonly able to detect an out of
sequence packets.
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FIGURE 3.8 — Retransmission Times per Loss Event

We define the retransmission time as the time elapsed betwesatuplicate TCP data packets
or the moment where we obsefa decrease of the TCP sequence number and the first time where
it is reaches a value larger than the largest sequence nusbkerved so far. Once losses are

4. The used loss’ detection algorithm is available on htiptrabase.eurecom.fr/tmp/papers.html. People areeidvi
to check the correctness of our algorithm to detect losses

5. Those epochs are computed at the sender side by shiferignb series according to our RTT estimate.

6. at the sender side — time series are shifted according tR Dl estimate.
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identified with (i) data packet retransmission and (ii) ous@equence data packet, we compute for
each TCP connection retransmission time for each loss .&erdo not distinguish between out of
sequence data packets and retransmitted data packetsI\elyuse the term "retransmission”.

Figure 3.8 plots the cumulative distribution of retranssita time per each loss event, for
mail and webmail traffic. As expected from our study of traimes, mail traffic experiences larger
recovery times than webmail traffic.

We can further notice two thresholds of common retransiistimes at 400 ms and 1 seconds
for webmail and mail respectively. This in in-line with woitk [56, 88] of RTO estimation for
Cellular networks, where authors show that RTO bound has bhertened in modern widely
spread TCP implementations for Cellular networks.

In summary, several factors contribute to the degradationail performance as compared to
webmail. Some of these factors are driven by clients usagdke wthers are more fundamentally
related to the way those different mail implementationsksard their interplay with the transport
layer.

3.5 Conclusion

In this Chapter we have reported some observations aboutthenet traffic of a Cellular
network with users connected via handsets or USB pluggablm8dems. The predominance of
Iphone however suggests that the first category of userslfctlominates over the second one,
for the ISP we consider. We have highlighted that measurenfesm passively collected traces
can be biased by specific technologies implemented in @elhétworks to boost performance
and control users activity. RTT, which is a key metric, isexsally affected by those network
appliances.

We cast a first look to mail and webmail traffic in Cellular netks. We found that mail seems
to be less popular than webmail as the majority of mail dateaissfered using webmail.

A first explanation to this difference in usage is the highiyapty of free webmail service
providers like Google, Yahoo !, Hotmail, etc. We indeed otied that those providers are much
more used than the webmail services offered by the netwarkigers. This is presumably because
users want an email account that is independent of theirarktprovider, in case they switch to
another network provider.

We further observed that webmail performance outperfolra®he of mail. We demonstrated
that several factors lead mail to offer smaller throughpgbs webmail, especially, the size of
the transfers, the application semantics which leads tdlesntata exchange phases, which slows
down TCP in general and prevents fast retransmit if lossedetected.

In the next Chapter, we presented a first look of a methodoiogyder to compare perfor-
mance of different accesses technologies. We focus on ssspécts indicators that can influence
client perceived performance.




a7

Conclusion of Part |

In Part | of this thesis, we first revisited main research waetated to our objectives of TCP
performance analysis for the case of Internet and enterpradfics. Our main observation was
that focusing on the impact of new applications, client waraand server impacts, has been
often overlooked in the literature. To perform our traffi@bsis, we used a traces collected from
heterogeneous wireless and wired environments, whichligighthe wide scope of our study
of traffic analysis performance. Our traffic analysis stuslypased on a DBMS approach, which
allows to manage collected dumps into a database.

We presented an overview of the impact of the applicationopnaf TCP. With our connec-
tion time break-down, we showed that while losses can hawtrantental impact on short TCP
transfers, the application significantly affects the tfanime of almost all short and long flows
in a variety of way, e.g. tear down and short exchanged tiaiaf data.

Our study of a Cellular trace with users connected via haedsdJSB pluggable 3G modems
highlighted that measurements, e.g. RTT estimation, fragspely collected traces can be bia-
sed by specific technologies implemented in Cellular ndta/to boost performance and control
users activity. To study the application impact we perfatnaefirst study of mail and webmail
applications. Mainly we observed that webmail performamagperforms the one of mail. We de-
monstrated that several factors lead mail to offer smaileughputs than webmail, especially, the
size of the transfers and the application semantics.

In Part Il, we introduce an analysis method that uncoversntipact of each layer that contri-
butes to the overall data transfer time, namely the appdicathe transport layer, and the end-to-
end path. The analysis method that we use consists in twe.dtst, the transfer time of each
TCP connection is broken down into several factors that weat@ibute to different causes. Se-
cond, we use a clustering approach to uncover the majorgneitdin the different data sets under
study.
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3. PROFILING CELLULAR APPLICATIONS
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Part |l

A New Approach to Performance
Analysis of TCP Transfers
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Overview of Part Il

In the previous part, we have underscored both the crucighatnof the applications on top of
TCP and also, for the case of the Cellular technology, theashpf some technological choices
on the metrics typically used to assess performance leielsart Il of the thesis, we present a
method that drills down into the data transfer of each weltdved connection, which is the main
contributions of this thesis. The approach developed imgkéed with the set of traces collected
on the CellulafFTTH and ADSL backbones of Orange.

In Chapter 4, before turning our attention only on the daadfer phase, we explore several
factors that are classically used to assess the perforn@dnt€P connections, namely RTT and
losses. The crucial impact of those parameters are forrkatdiwn since the derivation of the well-
known TCP throughput formula [89]. We discuss the derivatib those parameters for the case
of our traces. At the end of this chapter, we illustrate ddite fact that RTT and losses are not
enough to characterize TCP connection in the wild, justdyour efforts in Chapter 5 of drilling
down into the data transfer phase.

In Chapter 5 we propose a new analysis method that uncoweimiact of specific factors like
the application and the interaction with user, and thusrm#the comparison of heterogeneous
access technologies. The analysis method that we use tsoakisvo steps. In the first step, the
transfer time of each TCP connection is broken down intorsg¢Vactors that we can attribute to
different causes, e.g., the application or the end-to-exd. pn a second step, we use a clustering
approach to uncover the major trends within the differetd gdats under study.

In Chapter 6, we address the problem of comparing the pedace perceived by end users
when they use different technologies to access the Intddsetrs primarily interact with the net-
work through the networking applications they use. We &tk comparison task by focusing on
several Internet key services such as Google search andThalis because we focus on user
perceived performance and users do not care about raw perfice metrics. They care about the
performance of the applications they use. We then apply ata time break-down approach, ba-
sed on a fine-grained profiling of the data time of transfemsgheds light on the interplay between
service, access and usage, for the client and server sidas&\gustering approaches to identify
groups of connections experiencing similar performanaeg the different access technologies.

In Chapter 8 we present characteristics of some salienttspéenterprise traffic. Our goal
is to provide an overview of the problem faced when perfogmmeasurements in such environ-
ments such as basic RTT estimation. We also present a fimeedrprofiling of the most popular
applications used in the network we measure.




52




53

Chapter 4

A First Look on Key Performance
Parameters

4.1 Introduction

The study of TCP behavior, specifically its performance imieof delay, losses and through-
put, has been studied since its emergence for specific aménts and users. However, compa-
ring and understanding key parameters that influence peteerformance from different access
technologies such as Cellular, FTTH and ADSL traffics beuli#ficult when it is interacting
with the application layer above and the network layer beldere after we report a classical
approach to compare performance of different access téagjias in order to conclude if clients
fully benefit from their broadband access. In this Chapterfivét assess the stability of the traffic
for the trace that we have to study. Then we briefly analysalususpects that can impact the
results of different accesses. We also provide a systersattty of the tear-down phase of the
well-behaved connections that highlight the diversity adrgarios observable in practice. Finally,
we illustrate shortly the fact that RTT and losses are notighdo characterize a TCP connection
in the wild, justifying our efforts in chapter 2 of drillingadvn into the data transfer phase.

4.2 Traffic Stability

4.2.1 Data Volume

In this part, we assess the stability of the traffic for theoselcdatasets, which we introduced
in 1 and consists of traces captured under different enwgaris : Cellular, FTTH and ADSL.
For this purpose, we observe the time series of traffic volame the number of active flows.
The objective is to assess if several regimes exist in ouw, dethich would require to analyze
the performance within each corresponding time intervalw& will see, it is apparently not the
case with our trace. This justifies our approach in this Girapthere we will look at marginal
distributions of different metrics where all samples of tteee are grouped together to form those
distributions.

Figures 4.1, 4.2 and 4.3 shows the evolution of traffic volane the number of active flows
for the upload and the download directions. To obtain thaperdis, we broke up our trace into
short time windows of 30 seconds and we compute the numbetigédlows and the exchanged
data volume for each direction in each window. Note that a fkbeonsidered active for a given
time slice if it transmits at least one data packet duringstioe.
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Figures 4.1(a), 4.2(a) and 4.3(a) show that traffic is catalikly more bursty in the download
than the upload direction. This is presumably because dargt shaped by the limited uplink
capacity implemented by the operator. Another immediasepnfation is the difference of uplink
and downlink capacity between observed accesses. FTTit iatharacterized by higher values
of exchanged data in terms of bytes and active flows.

Concerning active flows, Figures 4.1(b), 4.2(b) and 4.3édnstrate that they do not vary
drastically over time, further reinforcing the idea thatffic is stable over the time span of our
trace.

The study of the evolution of exchanged data volume and nuoflzetive flows did not reveal
any abnormal phenomenon or anomalies in our traces. Hantigef analysis will be based on all
identified well behaved connections.
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4.3 Usual Suspects

4.3.1 Exchanged Data Volume

Figure 4.4 depicts the CDF and Complementary CDF (CCDF) nhection size in terms of
bytes, for Cellular, ADSL and FTTH traces. Only well behawetnections are considered. We
observe that FTTH and ADSL traces offer a similar connectimrfiles that significantly differs
from the radio access. For instance 30% of ADSL and FTTH grace less than 1kbytes and 55%
are between 1kbytes and 10 kbytes, unlike Cellular whiokrstiarger values at similar connection
percentiles.

The inspection of CCDF, shows that the probability to obtaamsfers with 1 Megabyte is
very low (under 0.01). It reveals that while the majority allQlar connections did not target p2p
ports Cellular users are able to perform as large connectswired accesses.

--UMTS
—FTTH
-- ADSL

B v
il sl L L I 1

- 10
Connection Size Connection size

(a) CDF (b) CCDF
FIGURE 4.4 — Connection Size (bytes)

In fact, several explanations can be found for this obsemaEor instance, the usage of per-
sistent HTTP connections (more than 84% of Cellular traffiget HTTP(s) ports). Also, the usage
of new applications or services in new devices like the doadlof applications from 'Apple Sto-
re’ or 'Android Market’ and the increase of streaming apgiions (Youtube, etc) explain the
higher values of connections size for Cellular access cosdp@ FTTH and ADSL.

The main conclusion from this paragraph is that, nowadagdul@r users tend to use their
handsets to perform a new usage different from the simpleoc&hort Message Service (SMS)
send, in line with the increase of display and Central PingsUnit (CPU) capacities of smart-
phones This means that Cellular access is not used for &tmpériod or nomadic usage but for a
current uses.

4.3.2 Access

We observed that both RTT estimation methods with SYN-/SADK or DATA-ACK lead to
a same estimate of the round trip time for ADSL and FTTH traeédsle we observe differences
for Cellular access because of a Performance Enhancingy PP&EP) and APN, as presented in
Section 3.2.

We thus rely on the DATA-ACK method to estimate RTTs over dered traces. Figure 4.5
depicts the resulting RTT estimations for the three trattedearly highlights the impact of the
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access technology on the RTT. FTTH access offer low RTT ireg@r- less than 110 ms for more
than 60% of connections. This finding is in line with the cluteastics generally advertised for
FTTH access technology. On other hand, RTTs on the Celletémology are notably longer than
under ADSL and FTTH, in line with intuition.
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FIGURE 4.5 — RTT Estimation

4.3.3 Data Packet Retransmission

To assess the impact of TCP losses on the performance ofdeoediaccess, we based our
study on approach presented in 3.4.3.
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FIGURE 4.6 — Retransmission Time

We do not distinguish between out of sequence data packdtsetnansmitted data packets.
We will only use the term "retransmission". We try to sepauraal retransmissions from network
out of sequence events by eliminating durations smaller the RTT of the connection. Once
losses are identified with (i) data packet retransmissiah(anout of sequence data packet, we
compute total retransmission time for each TCP connection.

Figure 4.6 depicts the cumulative distribution of retraission time per connection, for consi-
dered accesses. The main observation is that retransmisgio is higher for Cellular with more
than 28.6% and only less than 9% for ADSL and FTTH accessedsdtdemonstrates that loss
ratio decreases with high bandwidth. An intuitive expl&rabf such observation may lay in the
difference of reliability between Cellular and wired aces

From previous works, we noticed that authors presentedadaetors that influence loss ratio
for Cellular access. In fact, in [90] authors recommend t® aisoss detection algorithm, which
uses dumps of each peer of the connection (this algorithratiagapted for our case because our
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measurements have been collected at a GGSN level) to avaitbgp Retransmission Timeouts
in TCP. In addition, authors report in [56] that spuriousaesmission ratio in Cellular networks is
higher for Google traffics than other ones, due to short implged Timeouts in Google servers.

4.4 How Applications Free TCP Connections ?

4.4.1 FINvs RST flags

Closing TCP connection is an operation which means thatltfséng side has no more data to
send. The notion of closing a full-duplex connection is sabjo ambiguous interpretation [73],
since it may not be obvious how to decide to the receiving sfdbe connection.

The final flag is the FIN flag, standing for the word finished.sTtag is used to tear down the
virtual connections created using an established cororecti

It is important to note that when a host sends a FIN flag to cGosennection, it may continue
to receive data until the remote host has also closed theection, although this occurs only
under certain circumstances.

In other hand, upon reception of RST segment, the receivde\gill immediately abort the
connection. This statement has more implications thamjestning that each side will not be able
to receive or send any more data to/from this connection.

Once the connection is liberated by both sides, the buffese@ated on each end for the
connection are released. Previous work on TCP performandetee application layer did not
cover or focus on the step of tearing down a connection.

In 2.4.1 we defined the tear-down as the time between recgeilim last data packets and the
last FIN or RST control packets. We have shown that the teamndghase in itself often represents
the majority of the connection time. Hence, large tear-dtmes can alter throughput estimation
by largely underestimating actual throughput, i.e., tieughput perceived by the application.

Note however, that the tear-down time should have no impatt®performance perceived by
the client, as the data transfer is completed. Client angesare more interested by data exchange
time than time to free TCP connection. In contrast large-desyn times can be penalizing for
the server in terms of allocated resources, memory and ggeseln fact, servers are in general
configured to have a limited number of connections that dogvatl to connect from clients.

FIN RST
Traces % AL TH(Kbts) % AL TH(Kbts)
Cellular | 92.42 28.74 7.57 9.73
FTTH | 92.96 77.25 7.04 57.58
ADSL | 89.91 71.62 10.08 66.96

TABLE 4.1 — Tear-down Flags

For instance, the default value for an Apache server is 30Dextions. The objetive is to
avoid exhaustion of memory resource at the server side a# fioiginstance occur during a SYN
DoS attack.

We present in Table 4.1 the percentage of connections anticAppn Level Throughput, for
each access, that perform tear-down with FIN or RST flagsll lnages, results show that ended
TCP connections with FIN flag are characterized by highesughput than ones finished with
RST flag. It suggests that connections ended with RST flag wffest performance and can be
characterized as connections that are not finished corraetl probably having an anomaly.
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Also, Table 4.1 demonstrates that more than 89% of TCP céionsovere finished with FIN

flags and less than 10% with RST flags. This further enforce$iipothesis of an anomaly that
triggered the sending of RST flags.
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FIGURE 4.7 — FIN/RST Flags Distribution

Figure 4.7 shows distributions of exchanged FIN and RST fMgsfind that connections that
finish correctly exchange a median values of 2 FIN data packate per side, in line with [73].
Median value of RST control packets. Also, more than 80% oheations that finish correctly,
have less than 2 FIN control packets.

More than 72% of up to the remaining connections were finiskigld a median of one RST
flag. It is important to note that we noticed several high galof exchanged RST flags which
could reach up to 100 for Cellular and 46 for ADSL accesses.

A worth to investigate hypothesis that connections witlyganumber of tear-down control
packets probably correspond to an applicative anomalies.

FIN RST
Trace | Init (%) | Rem (%) | Init (%) | Rem (%)
Cellular | 85.96 14.03 49 52
FTTH 48.71 51.28 72.72 27.27
ADSL 44.11 55.88 83.09 16.9

TABLE 4.2 — Tear Down Side Initiation - Percentages

Table 4.2 depicts the percentage of clients and serverditigtt TCP connections with FIN
or RST flags. The main observation here is the difference dmtwconnections depending on
the underlying access technology. However, for FTTH and AD&@ observe in Table 4.2 that
between 51% and 55% of TCP connections are closed by the seitleFIN flags, which means
that approximatively we find the same ratio of TCP connesticlosed by each side. While only
14% of Cellular connections are closed by the server with fidiys.

A basic explanation for this observation is that Cellulagrssare limited by their devices, in the
sense that after performing a browsing (which is the maim astvity as described in paragraph
1.7.2.1 user closes immediately the Internet browser tifteend of browsing in order to switch to
other activity or to lock their phone. While, for FTTH and ADlient keeps the browser opened
in the background and can do other activities at the same time

However, the study of RST flag shows that FTTH and ADSL usexsraure frequently closed
by the client with more than 72% of connections. For Celltdace, result are more balanced with
49% of connections are closed by the client while 52 are ditsethe server.




59

FIN RST
Trace | Init(ms) | Rem (ms)| Init(ms) | Rem (ms)
Cellular | 2000 6000 154.79 36000
FTTH 55.54 8528 39148 40854
ADSL 80.46 516.08 702.31 25444

TABLE 4.3 — Tear Down Side Initiation - Median Times

Table 4.3 shows the median of tear down values found in eashafdigures. We distinguish
cases where the initiator or the remote side of the connesémds FIN or RST flags. Our main
observation is that tear down times are higher when the reide initiate tear down step. This
suggests that remote server close the current opened ¢amssance the client is idle for a period
higher than the maximum time-out.

4.4.2 Diversity of Thresholds

Based on the previous analysis and in order to further iigedst these results, we categorize
tear-downs in several classes based on FIN and RST flagsd®ear times are defined as the
time between the last data packet and the first FIN/RST clgpdicket. The idea here was to check
if different behaviors exist when connection is liberatddpending on the application on top of
TCP. We expect to observe specific time-out values when a D@Rection is finished with FIN
or RST for each considered service or application.
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In Figures 4.8, 4.9 and 4.10 we present tear down times ftardiit TCP services and for our
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Cellular, FTTH and ADSL traces. For each access we distaligbetween connections finished
with RST or FIN flags. Main observations are :

— 87% of IMAPS Cellular connections, finished with FIN flag wha tear-down time-out of

200 ms

— Few ADSL and FTTH connections using POP3 and Emule finish d@Rection with RST

flags, the majority of connections are closed using FIN flags

— Large variability of tear-down times within observed aggiion, finished with FIN or RST

flags

— FTTH and ADSL accesses show similar tear-down values foul&monnections finished

with FIN flag

— Even for the same service, we observe different distobstfor tear-down times for connec-

tions finished with RST or FIN flags.

From this study, we see that connection tear-down timesmdkepa several factors. (1) The
flag : tear-down values are higher for connections finishinip WST flags than with FIN flags.
(2) and the used application used on top of TCP.

Our study was mostly descriptive. A primary reason for ihistf to the best of our knowledge,
no research work so far as paid attention to the tear dowsegoh&/le have only scratched the
surface of the problem. More work needs to be done. We haveore much in the context of
this thesis as our focus is on the client performance and someéhe tear down phase does not
impact the client. The latter is true if the connection fieisttorrectly from the TCP viewpoint,
i.e. with a FIN and not a RST flag. This further justifies ouricks of focusing on well behaved
connections.

4.5 Performance Comparison Challenge

Our purpose here is to show that the access technology ic#sehe throughput, but it is not
the only factor. Congestion, transport layer details orapplication on top (e.g., rate limiters in
p2p applications) can also impact the observed throughjgetbase our estimation of throughput
on the definition presented in Section 2.4.1 where througbpuwesponds to the amount of bytes
transferred at the TCP layer, divided by the total duratietwieen the first packet (first SYN) and
lastdatapacket of the transfer. Formally, this is what we called thpligation layer throughput.

In Figure 4.11(a), we report CDF of AL throughput for our #acA first striking observa-
tion is that FTTH and ADSL accesses offer significantly higtmeoughputs than Cellular. As we
presented previously in Section 4.3.2, we can confirm thiatdhservation is a consequence of
the RTT available for each used access. On the other handanveatice that AL throughput for
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ADSL and FTTH often similar(up to the 50th percentile), imtrast with what end users expect.
A first explanation of this fact, was the RTT distribution #DSL and FTTH.

In order to avoid the mixed results of AL throughput for shemt large connections, we plot
in Figure 4.11(b) median values of AL throughput per conioactize in terms of data packets.
It shows that higher values of AL throughout were obtainethWwil TH connections. But in other
hand, it confirms results observed in Figure 4.11(a) : thinpug for FTTH, ADSL and Cellular
are not as different as one can expect, when we focus only anlB3s and connection size.

To compare performance of different Internet accessestdatjies, we started with a classical
approaches based on the study of the two key factors thagidféuthe throughput of TCP transfers
(see the TCP throughput formula [89]), namely loss rate arifl R suggests that the performance
over FTTH should significantly outperform the one of ADSL igthshould in turn outperform the
one of Cellular. But, it turns out that reality is slightly mocomplex as can be seen from Figure
4.11(a). Indeed, while the Cellular technology offers gigantly small AL Throughput, in line
with RTT and loss factors, FTTH and ADSL have much closergrerance than RTT and loss
were suggesting.

Next in our work, we present a new method to uncover the imphatite application and to
better explain the differences or lack of differences betwie access technologies. By applica-
tion, we mean the way applications work, and also the way $lee interacts with the application,
as the latter directly impacts the way that data is deliveoethe transport layer. In addition of
the user behavior, which is a function of the access teclyyoleor instance, large file downloads
might be rare on Cellular technology unlike wired technasg

4.6 Conclusion

In this section, we have applied a somewhat classical metbgd in order to compare per-
formance of different accesses technologies. We first tegdhe stability of the traffic within the
trace that we study : Cellular, FTTH and ADSL. The objectivasvio assess if several regimes
exist in our data, which would then require to analyze penfonce within each corresponding
time interval. We focused then on key parameters that cameinfle client perceived performance.
Specially emphasized the importance of the time to recawen fosses and to free TCP connec-
tions.

From the study of tear down process, we uncovered a highdgiliyén terms of observed time-
out and times to liberate TCP connection. We demonstratedmaection tear-down time depends
on several factors. Especially, the used flags : SYN or R&Tu#ed application on top of TCP
and the access technologies (user behavior depends oretihel@xce)
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We conclude that the observed values of loss recovery timésRA T are not sufficient to
explain the observed performances, specially, FTTH and IAB&/e much closer performance
than RTT and loss were suggesting.

In the next Chapter, we propose a new analysis method thawvarethe impact of specific
factors like the application and the interaction with used thus betters informs the comparison
of access technologies.
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Chapter 5

Methodology : The Interplay Between
Application, Behaviors and Usage

5.1 Introduction

Our study of the key factors that influence the throughput@PTransfers, namely, connection
size, loss rate and RTT. RTT suggested that FTTH shouldfgigntly outperform the one of
ADSL, which should in turn outperform Cellular. It turns dbat reality is slightly more complex
as seen in Section 4.5. Indeed, while the Cellular techiyotdigrs significantly longer response
time, in line with RTT and loss factors, FTTH and ADSL have mmatoser performance than RTT
and loss were suggesting.

In this Chapter, we propose a new analysis method that uredlve impact of specific fac-
tors like the application on top of TCP and the interactiothwhe user, in order to inform the
comparison of different access technologies.

The analysis method that we use consists in two steps. Inrgstép, the transfer time of each
TCP connection is broken down into several factors that vmeat@ibute to different causes, e.g.,
the application or the end-to-end path. In a second stepseeaclustering approach to uncover
the major trends within the different data sets under study.

5.2 Methodology

In this paragraph, we introduce a methodology that extertd® vas been introduced in Sec-
tion 2.4. The objective is to reveal the impact of each lapat tontributes to the overall data
transfer time, namely the application, the transport, dedend-to-end path (network layer and
layers below) between the client and the server.

We perform a break down of the duration of the data transfasgtof a TCP connection,
which we termdata time i.e., excluding the connection establishment and teanduvases.

The starting point is that the vast majority of transferssisinof dialogues between the two
sides of a connection, where each party talks in turn. Thsnm¢hat application instances rarely
talk simultaneously on the same TCP connection [91]. Wetballsentences of these dialogues
trains.

For instance, as explained in Section 2.6 we observe thatittlee server is sending a large
amount of bytes/packets, the actual data exchange is fratgohe the server sends a few data
packets (one train), then waits for the client to post anathguest and then sends its next answer,
i.e. the next set of packets (another train).
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FIGURE 5.1 — Data Time Break-Down

We term A and B the two parties involved in the transfer (A ie thitiator of the transfer)
and we break down the data transfer into three componentsmMWa time, Theoretical time and
Pacing time. Figure 5.1 illustrates this break down in theecaf a Google search where A is a
client of the ISP and B is a Google server.

A Warm-up corresponds to the time taken by A or B before ansgdp the other party. It
includes durations such as thinking time at the user sidatar preparation at the server side. For
our use case, a Warm-up of A corresponds to the time spentebglimt to type a query and to
browse through the results before issuing the next quergniih or clicking on a link, whereas
a Warm-up of B corresponds to the time spent by the Googlees¢éovprepare the appropriate
answer to the request.

Theoretical time is the duration that an ideal TCP transfeuld take to transfer an amount
of packets from A to B (or from B to A) equal to the total amoufipackets exchanged during
the complete transfer. Theoretical time can be seen as thlettansfer time of this ideal TCP
connection that would have all the data available right atlibginning of the transfer. For this
ideal transfer, we further assume that the capacity of tlie ipanot limited and an RTT equal to
RTTs_p (or RT'Ts_ 4). We depict in Table 5.1 an example of Theoretical time catauan.

Round| Current Window| Data Sent
2
5
8
13
19
23

O O | WIN|
00| OO U] W[ W| N

TABLE 5.1 — Example : Theoretical Time Computation(Data packds€wnd initial= 2, ACK
for 2 data packets)
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Theoretical times can be seen, for example, as the duratian$TP transfers would take to
complete when neglecting the dialogue between A and Btheapplication impact. For our case,
let us assume, that we have 4 data packets sent by our clemte(cts to Google server + Performs
a query + request part 1 + request part 2). Then our clientrEtieal data time will correspond to
the time spent by a TCP model [92] to send 4 data packets wehtaig initial congestion window
(already estimated from the initial congestion window).

Once Warm-up and Theoretical times have been substractexitifie total transfer time, some
additional time may remain. We term that remaining time R@¢ime. Theoretical time can be
attributed to characteristics of the path, Warm-up time gpliaations and/or user, and finally
Pacing is due to the access link and the application on topC#. Tndeed, as we assume in the
computation of Theoretical time that A and B have infiniteemscbandwidth, we in fact assume
that we can pack as many MSS size packets within an RTT asaestih is not necessarily true
due to a limited access bandwidth. In this case, the extrawiti be factored in the Pacing time.
Similarly, if the application or some middle-boxes are ttimg the transmission rate, this will
also be included in the Pacing time. A contextual intergi@tathat accounts for the access and
application characteristics is thus needed to uncover @glnisecbehind an observed Pacing time.
The above breakdown of the total transfer time is computeddoh side A and B separately.

Note that to obtain accurate estimations of those duratibatsare related to the sender or
receiver side, we have to shift in time the time-series okpecreceived at the probe. Specifically,
we assume that a packet received from A at probe P Wasﬁazgéﬂi‘ in the past and will be

receivedRTj;ﬁ in the future, whereRTTp_ 4 (resp.RTTp_pg) is the RTT between P and A
(resp. B). While doing this operation, we assume that the &fTte transfer stays constant.
The above breakdown strategy results in a complete partifiohe total transfer time.

5.3 How to Present Results ?

5.3.1 Crude Representation

After performing data time break-down, each well-behavednection is transformed into a
point in a 6-dimensional space (Pacing, Theoretical arid tirae of the client and the server).

We report in Figure 5.2 a representation of the data timekidesn for Cellular, FTTH and
ADSL traces. Figures 5.2 shows the breakdown per directighpar access technology with, for
each case, the median of each component in relative (lefisy-arlative to total data time) and
absolute values (right y axis - in seconds). Medians enabddirhinate potential outliers.

The first observation from FTTH and ADSL data time break dosvthat they feature similar
duration in terms of percentage (and approximatively timesan terms of seconds), in line with
the similarity between the two traffics in terms of usage amidcharacteristics (connections size,
destination port and traffic volume distribution,etc..)

From Figure 5.2, we observe that 45.4% of data time of theuGelitransfers is spent on
Warm-up time at the client side, against only 30.6% for alkdietical data transfer time (client
and server). We notice that Pacing is more important on theesside (13.1%) than the client
one. It suggests that Cellular users were more affectedrvgrsgolicies/performance and remote
network side impact, than throughput limitation on the riside. FTTH and ADSL have the
same Warm-up B (a median value of 50 ms). This suggests thatrselo not distinguish between
ADSL and FTTH servers, which corresponds to intuition as weeet to observe similar usage of
users in both environments. Warm-up B values is more impbfta the Cellular access. We note
the same observation for warm-up A.
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FIGURE 5.2 — Data Time Break Down

The main conclusions, at least at this stage from this daia tireak down, is that more
than 55% of data time is spent during data preparation ondhesside (Warm-up B), client
interaction/thinking (Warm-up A) and Pacing times. It isail from the comparison of Theoretical
times that performances are better for fast accesses,diuirttpact is not as important as Warm-
up or Pacing times.

5.3.2 Clustering Approach

Here-after we use clustering approaches to obtain a glotiaire of the relation between the
service, the access technology and the usage.

After performing data time break-down, each well-behavednection is transformed into a
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point in a 6-dimensional space (Pacing, Theoretical and tirme of the client and the server). To
mine this data, we use a clustering techniques to group ctions with similar characteristics.

We use an unsupervised clustering approach, namely the igadgorithm. A key issue when
using Kmeans is the choice of the initial centroids and thalmer of clusters targeted. To assess
the number of clusters we use a test and trial approach westantevith an initially large number
of clusters and then reduce this number as long as insignifica., too small) clusters remain.
Concerning the choice of the centroids, we perform one hadhthials and take the best result
(i.e., the one that minimizes the sum over all clusters ofdise&ances between each point and its
centroid). Note that we use the Matlab implementation of Knmsg93].

To assess the number of used clusters, we rely on a visuahdiomality reduction technique,
t-Distributed Stochastic Neighbour Embedding (t-SNE)][24NE projects multi-dimensional
data on a plane while preserving the inner neighbouringacieristics of data.

A straightforward application of the 6-dimensional poiotgtained from the 2-step approach
presented above, bears a difficulty. Indeed, the per dimmensilues tend to be highly dependent
on the connexion size. For instance, the warm-up A valueeistim of all warm-up periods over
the whole duration of the transfer (for the A to B directiomheoretical and Pacing time depend
on the total number of packets to send. Then it is importar@mgresenting results to keep a look
on connection size, because it is more probable that langeextion size have largest Warm-up
and Pacing times (but also as we can notice in our furtherysisathat this assumption is not
always true due to several parameters to be detailed nexisimork).

Finally, to present results, we use boxplote obtain compact representations of the values
corresponding to each dimension. On the top of each clustgpu/the median size of grouped
connections, cluster ID and for each trace the percentagerofections. This percentage is com-
puted as the number of connections in a cluster over the iotaber of connection for a trace,
i.e., an access technology. It is important to note that vegforming clustering, we use the same
number of connection form each trace.

For each clustering case, we use the same number of sampksscpss technology to prevent
any bias in the clustering. Note that connections were chomedomly among the ones in each
traces.

5.4 Conclusion

We presented in this Chapter our methodology to reveal tipaatnof each layer that contri-
butes to the overall data transfer time, namely the apjicathe transport, and the end-to-end
path. We focused on the duration of the data transfer phaaél @ connection, which we term
data time i.e., excluding the connection establishment and teanduvases.

After performing data time break-down, each well-behavednection is transformed into a
point in a 6-dimensional space (Pacing, Theoretical and time of the client and the server). A
warm-up corresponds to the time taken by each side involvedTiCP transfer before answering
to the other party. It includes durations such as thinkingetat the user side or data preparation at
the server side. Theoretical times can be seen, as the tiededdy an optimal TCP algorithm to
transfer an amount of data computed for each studied canone@nce warm-up and Theoretical
times have been substracted from the total transfer tinmagsadditional time may remain. We
term that remaining time Pacing time.

To mine this data, we discussed different approaches teptresita time break-down results.

1. boxplots are compact representations of distributiadhe central line is the median and the upper and lower of
the box the 25th and 75th quantiles. Extreme values - far frmwaist of the distribution - are reported as crosses.
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First we plot for Cellular, FTTH and ADSL trace median valwgained from data break-down
values in relative and absolute values. It allows to haveoaallpicture of the impact of access
technologies through Theoretical times, client and selpedraviors with Warm-up times and fi-
nally Pacing, which merges application and access liroitiati

To go farther in our analysis we proposed clustering teal@gdgo group connections with si-
milar characteristics. Through this clustering technjgue plane to tackle the issue of comparing
networking applications over different access technaegit automatically extracts the impact of
Warm-up, Pacing and Theoretical times from passively olesef CP transfers and group together,
with an appropriate clustering algorithm, the transfeet ttave experienced similar performance
over the three access technologies.

In the next Chapter, we validate key elements of our anaiysithod of data time break down
time and clustering. This validation is achieved throughwations carried out using mixed sce-
narios with one or more applications. Then, we test thetghifithe proposed clustering methods
to lead to clusters that can be easily related to the expéetedvior of the service under study.
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Chapter 6

Validation of Data Time Break-down
and Clustering Technigues

6.1 Introduction

The main objective of this chapter is to validate key eleme@ifitour analysis method, namely
the data time breakdown approach and the clustering teebnigtroduced in Chapter 5. This
validation is achieved through simulations carried ouhgshe Qualnet simulatdt

As the data time breakdown (see Chapter 5) relies on the ashimof the RTT, we also
validate our RTT estimation technique, introduced in Caapt

We create a variety of scenarios, which correspond to diffielink latencies or client think
times (time spent at the client side to interact with the igpgibn and to perform queries) using
several TCP application models available in Qualnet : FERNET and HTTP. In particular, we
show that our clustering approach naturally groups clieritis similar profiles at the application
(e.g. similar Warm-up or Pacing) or network layers (e.g.lginRTT).

Those controlled experiments also allow to illustrate thfeent throughput definitions that
we introduced : the Application Layer (AL) and the Effectiggchange (EE) throughputs.

6.2 Network Setup

We designed several scenarios to reflect different Interset behaviors like varying thinking
times (time needed at the client side before performing aeasigto the server) or network condi-
tions like rate limitation or large RTT. Simulations weraried out under a Fedora Linux (kernel
2.6.22) environment, using the QualNet 4.5.1 simulator.

As shown in Figure 6.1, the reference topology is a wired natveomprising two sites : a
local site, which consists exclusively of client machingghwvired access to the network and a
remote site with application servers and also wired andleseeclients. On the two sites, access
points, wired clients and servers are inter-connectedgusiswitch directly connected to a global
router, in order to ensure inter-site connectivity.

We vary parameters like latency, access link capacity aheratonfiguration parameters de-
pending on the simulation scenario.

1. QualNet is a commercial simulator. It is based on GloMo8eueloped at the University of California, Los
Angeles (UCLA). GloMoSim uses the Parallel Simulation Eoment for Complex Systems (PARSEC) for basic ope-
rations. QualNet has a graphical user interface for crgatia model and its specification [95].
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In all scenarios, tcpdump traces are collected at the ssiderlt is an advantage of Qualnet to
generate tcpdump traces. However, the latter can be cdpitieedevice that feature a TCP layer,

i.e. a client or a server only.

a@» . j
Clients & Web Server

Router Switch

g Switch Router

Latency

Distant Clients Local Clients

FIGURE 6.1 — Used Simulation Network

6.3 Macroscopic Connection Time Break-down : Set-up and Dat
Time

Our objective here is to assess the ability of our technitpiessess the set-up and data times
of the transfers. These are relatively easy tasks, whichotloepresent a major challenge for our
tools, but it also enabled us to validate the way the simuoiatevorking.

In this scenario, we use File Transfer Protocol (FTP), HTH& &Erminal NETwork (TEL-
NET) servers and wired clients, which post requests to teeseers resulting in different connec-
tion sizes. We tune link latencies so that 20 clients on tloallsite observe respectively 30, 50
and 100 milliseconds when accessing HTTP, FTP and TELNEJes&rThe duration of HTTP

session (consisting of a single transfer) was set to 180nsiscavhile the durations of FTP and
TELNET connections were set to 600 seconds.

cX 10 T —— —— L —— L =
2007 1 T HTTP tion=180: ds
_ e —conection= seconds
a N ?_-II_—;—_P L Ltatenc_y-s(:)SOms _5l -- FTP-connection=600seconds
£ atency= >oms a —TELNET-connection=600seconds
T 1500 —TELNET- Latency= 100ms £
S @ 4
= £
o =
0 £ L gl
s 8
s0f 2 e

10 12 10 12
Client ID Client ID

(a) Set-up (b) Data-Transfer
FIGURE 6.2 — Connection Time Break Down

Figure 6.2 shows the connection break-down results for efte 20 clients. From the left
plot, we notice that set-up time (time between the first SYbkpaand first data packet) is strongly
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correlated with RTT for all observed protocols. It means NP, HTTP and TELNET clients tend
to start data transmission just after the TCP connecti@abéshment, in line with what is observed
in the wild.

The right plot shows effective data transmission time, time between the first and the last
transmitted data packet. We notice, for all clients and ofeskprotocols, that due to short set-
up values, the connection time corresponds approximgtieetiata transfer time. To finish with
connection time break-down, we note that we omit to repant-twn here, which is defined as
the time between the last data packet and the last contrgeeral FIN or RST) control packet,
due to the way tear down phases are implemented in Qualneingtance, with QualNet doing
an experiment with HTTP connection of 180 seconds meansthb¢nt establishes connection
and sends data until the end of 180 seconds without closangdhnection at the end.

In the next section, we start zooming into the data time ofrtiesfer.

6.4 Microscopic Connection Time Break-down : Think and DataPre-
paration Time

We address the problem of validating our data-time breakdapproach using simulation
results and also measurements collected in the wild. Whileiigt allows to mimic specific users
and servers behaviors, some details concerning the uintprdystributions used to implement
those behaviors are not externally visible. For instandglewone can specify different maximum
thinking time, the distribution of thinking time is not sgféed in the Qualnet manual. In such a
context, we use an indirect approach to validate our apprbgcvarying some parameters, e.g.
the link latency, while leaving other constant, e.g., th&imam thinking time, and check that our
estimation of the constant parameters is unaffected byahation of the other parameters.

We further present, in a second part of this section, somdtsesbtained in the wild where
we observe that some parameters, e.g. the server behavimaffected by the type of clients (we
consider clients using different access technologies lu2el ADSL and FTTH) that make the
request. While indirect, we believe that this approach tyreacreases the confidence one can
have in our analysis tools.

6.4.1 Simulation results

We consider the topology of Figure 6.1 with 20 clients (on ltteal site) targeting a single
Web server (on the remote site).

We first vary the link latency in the following range of valuels 10, 70 and 100 milliseconds.
The maximum thinking time is kept fixed at 10 seconds. Durabb each simulation was 600
seconds.

1
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FIGURE 6.3 — Different Link Delay
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Figure 6.3, shows results of estimated think time at thextiele (Warm-up A) and processing
time at the server side (Warm-up B) for the different linkajeValues. Values for Warm-up A and
B were computed for each exchanged train of data, see Sécfion

Results in Figure 6.3(a) irrespectively show the link dslathe distributions of computed
think time on the client side remains the same (it looks axipratively as a uniform distribution
between 0 and the maximum thinking time, which is 10 s herais Gonstitutes a strong argument
for our methodology for computing Warm-up A values.

To get a clearer picture of what is happening on the server gsid computed (using our data
time break-down methodology) the processing time on theesside, for each transmitted train of
data. These results are plotted in Figure 6.3(b). Again, beeve that the estimated distribution
remains the same for all link latencies, which complies whthidea that server thinking time is a
property of the application and not of the link charactarsst
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FIGURE 6.4 — Different Think Time

In a second stage, we used the same simulation setup but waatalve link delay to 10
milliseconds and we varied the think time of web clients. &lethat a web session lasts 600s
and consists of a single long connection, where clients ngogtests and the web server sends the
corresponding objects. Thinking and processing timeslaoe/is in Figure 6.4. These new expe-
riments are consistent with our earlier results. Figuréa.gdhows that for clients with different
think time, we obtain different distributions of computedkw-up A, each following approximati-
vely a uniform distribution. As for processing time, we olv&ein Figure 6.4(b) same distributions
of Warm-up B irrespectively of the client behavior. The stestimated processing times (less than
a millisecond) on the server side further underscore tharacg of our approach for estimating
Warm-up times.

6.4.2 Real-life Traces

In the above section, we observed that absolute values ahWarB should not be correlated
neither with user think time nor with link latency. This is line with intuition and with what
should be observed for real traffic : if we assume an homogen&oplementation of a service
and similar load conditions at the server side, Warm-up extsérver side should have a similar
distribution.

We present measurements obtained from the study of tradested by Orange for different
heterogeneous environments : ADSL, Cellular and FTTH. @uu$ is on the study of POP3
traffic for Orange clients and Orange’s mail servers.

We report in Figure 6.5, CDFs of each Warm-up at server side(to prepare the answer for
the client) for each access technology. It shows that, teedpé diversity in access technology,
using our data time break-down methodology, we are abletti@ve very similar distributions of
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FIGURE 6.5 — Server's Warm-up Time : Orange POP Service
data preparation for each technology. Note that the trdwsate focus on, were not captured at

the same time period and thus, the load conditions mighaaxhe little differences observed in
the CDFs.
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To better understand the root cause of the peaks in thebdistms in Figure 6.5, we inspected
the time series of Warm-up B values. Figure 6.6 depicts the Series of warm-up for each access
technology. A key observation is that the presence of pealksgure 6.5. They do not seem to
be time dependent (because of load variations) but rath@icapion dependent, as we believe it
represents the service times of different type of inteoaistibetween the client and the server, e.g.,
authentication, (empty) mail box checking, etc.

To sum up, we have presented in this section different esbltained through simulations or
real-life examples that validate, even if indirectly, oatattime breakdown methodology. We next
turn our attention to our clustering approach.
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6.5 Clustering Validation

6.5.1 Single Application Scenario

In this section and in the remaining of this chapter, we pregalidation results obtained using
simulation and the network topology of Figure 6.1. In thists®, we consider exclusively Web
traffic. Twenty Web clients on the local site are interactivith a Web server on the remote site.

We implemented different scenarios corresponding to miffeclient behaviors, different net-
work conditions, or different transport layer parametétsese scenarios are detailed in Table 6.1.
Each scenario is executed sequentially in order to avoies@r network overload. For a given
scenario, several connections from the different clienégssimultaneously active but the global
load remains moderate and we observed no impact in termssségoor time-outs at the TCP
layer.

Once each scenario has been executed, we group all the imzesunique trace consisting
of all the observed connections. We next apply our data tirmekdown technique : each well-
behaved HTTP connection is transformed into a point in andedisional space (Pacing, Theore-
tical and Warm-up time of the client and the server). We thgplyaour clustering technique on
the aggregate trace. To avoid biases introduced by think &étrthe client side, we omit to use
Warm-up A values in the clustering. Indeed, thinking timéhatclient side represent large values
as compared to the other dimensions and tend to dominate tiuktering phase.

Our clustering technique is unsupervised. We use the K-makyorithm. A key issue when
using K-means is the choice of the initial centroids and timalmer of clusters targeted. To address
the problem of the choice of the initial centroids, we run Kieneans algorithm several times
(100 times, which is considered as a good practice) withegfit initial centroids and pick the
best results in terms of distance between clusters. To ghelehoice of the number of centroids,
we consider two options : either we use a test and trial agbresere we start with an initially
number of clusters and then reduce this number as long agifisant clusters remains; or we
rely on a dimensionality reduction technique, t-SNE, thrajgrts multi-dimensional data on a two
dimensional plane. Figure 6.7(b) shows the applicatiorQINE on the global trace (we explain
the colors later) and suggest that 3 to 6 clusters are prasent aggregate trace.

Scenario 1| Scenario 2| Scenario 3| Scenario 4| Scenario5| Scenario 6
Application HTTP HTTP HTTP HTTP HTTP HTTP
Connection Time (sec 600 600 600 180 600 600
Bandwidth (Mbps) 10 10 10 10 1 10
Link Delay (ms) 50 50 10 10 100 wifi(802.11b)
MSS 1460 1460 1460 1460 1460 1460
Sender Buffer Size 64500 64500 16000 64500 64500 64500
Receiver Buffer Size 64500 64500 16000 64500 64500 64500
Think Time (sec) 2 10 10 10 10 10

TABLE 6.1 — Scenarios Configuration : Different Delays

We focus hereafter on the clustering with 6 clusters, eaqutdeé number of scenarios we have.
Figure 6.7(a) depicts the characteristics of the 6 clustbtained with K-means. We use boxplots
to obtain compact representations of the values corregpgrid each dimension. We indicate,
on top of each cluster, to which scenario the connectionsénctuster correspond to, and the
median size of the number of data packets from and to thetsligve first observe by inspecting
those labels that each identified cluster corresponds tacuerscenario. Cluster 1 corresponds
to scenario 3 and groups connections characterized by Ragmg B due to sender and receiver
buffer size limitation. Cluster 3 aggregates connectionsnfscenario 6, with short Pacing and
Theoretical times. Those are penalized by large procesisiegat the server side. Cluster 4 groups
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FIGURE 6.7 — HTTP scenatrios : Data Clustering

connections with large Theoretical and Warm-up B timesciiare the connections in scenario
5 that correspond to slow access links (1Mb/s) with highneye(100ms). Cluster 6 groups the
shortest connections corresponding to scenario 5.

Figure 6.7(b), that present the projection obtained by ESMNrther demonstrates that t-SNE
and K-means are in are in good agreement as the data samgiledigure are indexed using their
cluster identifier obtained from K-means.

The above results were obtained for a number of clustersctiragsponds to the exact num-
ber of scenarios. We also tested what happens if we reduceutneer of clusters in K-means
(remember that t-SNE suggested that it should not be lainger @).

If we decrease the number of cluster to 4, we also obtainfgatisresults : in this case,
clusters 1, 3 and 4 remain unchanged and clusters 2,5 and 6emjrouped together. This is
because clusters 2, 5 and 6 have similar absolute times alacly dimension of the data time
break-down procedure.
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6.5.2 Heterogeneous Scenario

In this section, we continue the validation of our clustgrtechnique that we started in the
previous section. We consider again the topology in Figute\§fe created classes of users corres-
ponding to different applications. We employed a sensjtignalysis, which exposes the capacity
of our methodology in finding significant categories of ta#nd delineates performance problem
from an original mixed traffic.

Table 6.2 summarizes the key characteristics of the 3 da$SeP, TELNET and HTTP) of
users we use. HTTP and TELNET traffic is bi-directional in @eawhile FTP traffic is uni-
directional. For all classes of clients, the duration ofreacnnection is set to 600 seconds, the
access bandwidth to 10 Mbps and the link delay to 30 ms. Fdr epplication, we designed
two cases. An optimal case where the parameters of cliemtémtion (MSS and client/server
buffer size) allow to reach good performance and a non-@htoase where we limit the MSS and
client/server buffer size.

users 1| users2| wusers3 users4 | users5| users 6

Application FTP FTP TELNET | TELNET HTTP HTTP
Connection Time (sec] 600 600 600 600 600 600
Bandwidth (Mbps) 10 10 10 10 10 10
Link Delay (ms) 30 30 30 30 30 30
MSS 1460 1460 1460 65 1460 1460

Sender Buffer Size 64500 | 64500 64500 64500 64500 | 16000
Receiver Buffer Size | 64500 | 16000 64500 64500 64500 | 16000
Think Time (sec) - - - -

TABLE 6.2 — User Classes

Figure 6.8 presents the clustering results using K-meashgheprojection obtained via t-SNE.
The first observation here is that the clusters obtained Mdtheans are in good agreement with
the projection obtained by t-SNE as indicated in Figurel§,8{here data samples are indexed
using their cluster identifier in K-means.

Before moving to the interpretation of the individual ckrstwe observe that two of them
gather the interactive traffic while the two other ones gathe bulk transfers. Indeed, Figure
6.8(a) shows that cluster 2 and 3 correspond exclusivelyltoRHand TELNET connections while
clusters 1 and 4 correspond to FTP traffic with median trarsste of 50000 data packets. Cluster
1 corresponds to FTP connections characterized by larged?awalue due to the limited receiver
buffer size for users of class 1. Cluster 2 groups TELNET amdPiconnections with large Pacing
A and B values : in fact users of class 4 were penalized by Vet SS size and users of class
6 by limited client and server buffer size. Let us now consiclasters 3 and 4. Those clusters
correspond to shorter data time break-down values, whelg pnesent the same amount of data as
in clusters 1 and 2 respectively. Cluster 3 shows that WebT&IINET connections are feature
high Warm-up B when MSS as their sender/receiver buffer aizeoptimal. It means that when
connection is optimally tuned, the impact of processingesns more important than Pacing and
theoretical times. Finally cluster 4 corresponds to FTRdfers with low Pacing A as those users
have large sender/receiver buffer size.

Overall, we observe our clustering method, when appliedrdtii¢ profiles with different
connections parameters, lead to clusters that can be eeklgd to the expected behavior of
the service under study (clusters 3 and 4) while some othidrselate to anomalous behavior
because of non optimal setting of some parameters (clusiznsl 2).
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FIGURE 6.8 — Heterogeneous Traffic : Data Clustering

6.6 Comparison with RCA Technique

In [2], the authors develop a methodology similar to ourseylidentify four types of through-
put limitations for connections : (i) unshared bottleneickitation that corresponds to the case
where a single connection uses the full capacity of the dnwdttk link, (ii) shared bottleneck li-
mitation, which occurs when several connections share tehetk link. (iii) receiver window
limitation, if ever the receiver window is too small as comgzhto the bandwidth-delay product of
the path, which prevents the sender to achieve a higherghpat and finally (iv) sender buffer
limitation, if the sender buffer is too small (rare case iaqtice).

In our simulations in Sections 6.5.2 and 6.5.1 we reprodulifdrent scenarios of perfor-
mance limitation. To degrade client throughput, we modified capacity/latency, MSS, sen-
der/receiver buffer size and think time for HTTP client.
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We observed that, for HTTP transfers, connections with sraeéiver buffer size feature an
increase of Pacing A and large value of Pacing B and globellsef data than connections with
buffer size of 64500 bytes. Small sender buffer size leasistalan increase of Pacing A and large
Pacing B. This means that our technigue can not distinghisbet two cases — receiver or sender
window limitations. We note that in QualNet, for the case GfTHP transfers, if we focus on the
number of exchanged data, the server sends more data paeketbe client, which explains the
large values of Pacing B. In contrast, when we perform erpanmis with FTP traffic from the
client to the server (upload), results show that small xereand sender buffer size lead to large
Pacing A.

Hence, we conclude that (i) if more data is transferred fromdlient to the server, small
sender/receiver buffer size lead to large Pacing A (ii) ifendata is transferred from the server to
the client, small sender/receiver buffer size lead to |&geing B.

Simulations of unshared bottleneck limitation show thatlfits case, TCP connections present
large Pacing values. Finally, with shared bottleneck ktigin, as defined in [2], connections ex-
perience a high loss ratio and are penalized by large retiga®n time. In our simulations we
excluded the recovery time from the data transfer time tadaki@ases when we compute Theo-
retical, Pacing and Warm-up times. However, we accounthigrrhetric in our global connection
time break-down, and we are thus also able to infer this ditioih.

6.7 Throughput Computation Methods

This last section does not present any validation resultdiber illustrates the different me-
trics we have proposed to measure the throughput using afiowl which offers a controlled
environment.

We use the same architecture as presented in Figure 6.1.nviage two scenarios of Web
clients with different think time values, respectively 2dab0 seconds. Table 6.3 presents the
main configuration parameters for each scenario. We usda@tiinteracting concurrently with
a single Web server. Consequently, the client perceiveidmmeance can depend on the load at the
Web server and also the bottleneck link load. The purposki®kixperiment was to compare the
performance of users with different think times and the sameunt of exchanged bytes. Since
users in scenario 2 have 10 seconds of think time limit, @ajanly 2 seconds for scenario 1,
Table 6.3 shows that we used longer connections for sceBario

Scenario 1| Scenario 2

Application HTTP HTTP

Connection Time (sec) 600 2500
Bandwidth (Mbps) 10 10
Link Delay (ms) 30 30

MSS 1460 1460

Client Data Packets (mean 1343 1477

Server Data Packets (mea) 9955 10849
Think Time (sec) 2 10

TABLE 6.3 — Scenarios Configuration : Different Think Times

Figure 6.9 presents performance results for each scer@icall configurations, we report
two metrics related to the throughput of the transfers : (i)tAroughput, which corresponds to
the amount of bytes transferred at the TCP layer, dividechbytdtal duration between the first
packet (first SYN) and last data packet of the transfer ; lfg) EE throughput that corresponds to
the amount of bytes transferred at the TCP layer, dividechbytdtal duration between the first
packet (first SYN) and last data packet of the transfer mihestimulated think time at the client.
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FIGURE 6.9 — Throughput Estimation

A comparison of AL throughput in Figure 6.9 shows that usesihhput in scenario 1 clearly
outperforms the throughput in scenario 2, which was to beeea from its definition as the AL
throughput is sensitive to the end user behavior. On the btoed, the EE throughput conveys the
message that the performance achieved during the actoafdraimes is essentially the same in

both scenarios.

6.8 Conclusion

We validated the ability of our approach of data break-dowstudy the interplay between
TCP connection factors such as : the applications on top &, Tlznts behavior, the application
usage, and the access technology. We designed severatissanaeflect different Internet user
behaviors with the Qualnet Simulator. We based our anatyse topology comprising two sites :
a local site, with wired client machines and a remote sitd \&jtplication servers and also wi-
red and wireless clients. We then vary network parametkeslditency, access link capacity and
client/application server configuration parameters ddjpgnon the simulation scenario.

First, we validated the process of computing thinking tirhtha server side (what we called
previously in 5.2 Warm-up B) for each transmitted train ofada hrough different results from
simulations or real-life examples, we show that the eswahalistribution of thinking time at the
server side remains the same for all link latencies and adeesnologies, which complies with
the idea that for a considered service, server thinking t&@eproperty of the application and not

of the link characteristics.
Then, we test the ability of used clustering methods to leadiisters that can be easily related

to the expected behavior of the service under study. To doweimplemented different scena-
rios corresponding to different client behaviors, differeetwork conditions or different transport
layer parameters. Results show that clusters obtainedKamtieans are in good agreement with
the projections obtained by t-SNE.

Finally, we compare results of our data time-break down ouklogy with the RCA Tech-
nique. We discuss how limitations identified in RCA are haddkith our methodology. We pro-
pose different metrics : the Application Layer (AA) and thiéeEtive-Exchange (EE) throughputs,
to measure the throughput and to avoid biases introducebéebtime introduced by the client to
interact with the application/service.

In the next chapter, we apply our methodology to real trafficés. In particular, we focus on
the Google Web search service, being accessed by differeasstechnologies.
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Chapter 7

A Fine Grained Analysis of TCP
Performance

7.1 Introduction

Telecommunication operators offer several technologigbéir clients for accessing the In-
ternet. We have observed an increase in the offering of @eland FTTH accesses, which now
compete with the older ADSL and cable modem technologiesveyder, until now it is unclear
what are the exact implications of the significantly differeroperties of these access technolo-
gies on the quality of service observed by clients.

In this chapter, we address the problem of comparing th@prence perceived by end users
when they use different technologies to access the Intddsetrs primarily interact with the net-
work through networking applications they use. We tackke cbmparison task by focusing on
several Internet key services such as Google search andThalis because we focus on user
perceived performance and users do care about raw perfoemaetrics. They care about the per-
formance of the applications they use. Similarly to what wkfdr the overall traffic in Chapter
4 we first demonstrate when focusing on Google search tra#itcRTT and packet loss alone are
not enough to fully understand the observed differencesnlesities of performance between the
different access technologies. We then apply our data lfeak approach, detailed in Chapter
5, based on a fine-grained profiling of the data time of trasdfeat sheds light on the interplay
between service, access and usage, for the client and steeMVe use clustering approaches,
introduced in Chapter 5, to identify groups of connectioxggegiencing similar performance.

7.2 The Case of Google Search Traffic

7.2.1 Problem Statement

Cellular | FTTH | ADSL
Well-behaved Cnxs| 29874 1183 6022
Data Packets Up | 107201 | 2436 18168
Data Packets Down| 495374 | 7699 | 139129
Volume Up(MB) 74.472 1.66 11.39
Volume Down(MB) | 507.747 8 165.79

TABLE 7.1 — Google Search Traffic

To identify traffic generated by the usage of Google searginenwe adopted the following
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approach : we first extract HTTP requests containing thegtmww.google.com/fr in their HTTP
header.

We paid attention to excluding requests to or from otheriseswffered by Google like gmail,
Google map, etc. This first step provides a set of pairs of teemdes and source/destination ports
identifying the local client and the remote Google Web serWe then flagged all connections
between those pairs of IP addresses and source/destimatits) as Google Web search traffic.
To identify Google search traffic for the upstream and doweash directions, we use TCP port
numbers and remote address resolution (Nslookup). Tablsummarizes the amount of Google
search traffic we identified in our traces.

7.2.1.1 Connection Size

Figure 7.1 depicts the cumulative distribution of well-aetd Google search connection size
in bytes. It appears that data transfer sizes are very sirfuitathe three access technologies.
This observation constitutes a good starting point sineepirformance of TCP depends on the
actual transfer size. RTTs and losses also heavily influgé@ performance, as the various TCP
throughput formulas indicate [89, 96]. Also, the availab&dwidth plays a role. With respect to
these metrics, we expect the performance of a service tagbdisantly influenced by the access
technology since available bandwidth, RTTand losses are considerably different over ADSL,
FTTH and Cellular. However, as we demonstrated in Chaptad4rethe remaining of this section,
those metrics alone fail at fully explaining the relativefpemance observed in our traces.

Celular| e
0.8/—FTTH
---ADSL

L 06
3]

0'47 . ‘:"
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10° 10' 10°
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FIGURE 7.1 — Connection Size

7.2.1.2 Latency

Figure 7.2 depicts the resulting RTT estimations for the8es, connecting only to the Google
Web search service. It clearly highlights the impact of tbeeas technology on the RTT. FTTH
access offer very low RTT in general — less than 50 ms for mmaa ©6% of connections. This
finding is in line with the characteristics generally adigad for FTTH access technology. In
contrast, RTTs on the Cellular technology are notably loigen under ADSL and FTTH.

7.2.1.3 Packet Loss

Figure 7.3 depicts the cumulative distribution of retraission time per connection for each
trace. Retransmissions are clearly more frequent for thell@eaccess with more than 35% of

1. Asnoted in several studies on ADSL [29]. See also AppeAdihere we contrast what we call local and remote
RTT (see Figure A.1) and Cellular networks [56], the acceslsriology often contributes a significant part of the overal
Round Trip Time.
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transfers experiencing losses compared to less than 6% B@LAand FTTH accesses. From
previous works, we noticed that several factors explainhigger loss ratio for Cellular access.
Note again that the metric we consider here is not the losdxatthe fraction of connections that
experience losses. The overall loss rates are small, irrdlee of a few percent at most on all access
technologies here. In fact, in [90] authors recommend toau®ss detection algorithm, which
uses dumps of each peer of the connection (this algorithratiadapted for our case because our
measurements have been collected at a GGSN level) to aveitbgp Retransmission Timeouts
in TCP. In addition, authors report in [56] that spuriougsarsmission ratio in Cellular networks
is higher for Google servers than others. For Google seraeithors show short retransmission
timeouts.

Most of the transfers are very short in terms of number of pcknd we know that for such
transfers, packet loss has a detrimental impact to the npeafoce presented in Chapter 2. Thus,
the performance of these transfers are dominated by theepluds. It is important to note that
using our data time break-down approach, we analyze allesiiums, including the ones that
experience losses by first removing recovery times fronr to&l duration.

7.2.1.4 Application Level Performance

Our study of the two key factors that influence the throughgduECP transfers, namely loss
rate and RTT, suggest that, since Google Web search trartsfee a similar profile on the 3
access technologies, the performance of this service oVEHFshould significantly outperform
the one of ADSL, which should in turn outperform the one ofldat. It turns out that reality is
slightly more complex as can be seen from Figure 7.4 whereepert the distribution of transfer
times. Throughput analysis is qualitatively similar, b prefer to report transfer times since Web
search is an interactive service. Indeed, while the Celkglehnology offers significantly longer
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FIGURE 7.4 — Google Transfer Time

response time, in line with RTT and loss factors, FTTH and ADb&ve much closer performance
than RTT and loss were suggesting.

In the next section, we apply our data time break-down amprda uncover the impact of
specific factors like the application and the interactiothwiser, and thus informs the comparison
of access technology, for Google search traffic.

7.2.2 Break-down Results

The analysis method that we use consists in two steps aslmEsan Chapter 5. In the first
step, the transfer time of each TCP connection is broken dotenseveral factors that we can
attribute to different causes, e.g., the application orthg-to-end path.

At the end of step 1, each well-behaved Google search cdandsttransformed into a point
in a 6-dimensional space (pacing, theoretical and traie tifrthe client and the server). To mine
this data, we use in a second step, a clustering approachcavemthe major trends within the
different data sets under study.

Application of t-SNE to our 6-dimensional data leads to figatrplot seen in Figure C.17(a).
This figure indicates that a natural clustering exists withir data. In addition, a reasonable value
for the number of clusters lies between 5 and 10. Last butaast lthe right plot of Figure C.17(a)
suggests that some clusters are dominated by a specificsgecesology while some others are
mixed. We picked a value of 6 for the number of clusters in Knsea

Figure C.17(b) depicts the 6 clusters obtained by apptinatf Kmeans. We use boxpldts
to obtain compact representations of the values corregppmol each dimension. We indicate, on
top of each cluster, the number of samples in the clusterdoh eccess technology. We use the
same number of samples per access technology to preventeaniy bhe clustering, which limits
us to 1000 samples, due to the short duration of the FTTH.tldwe ADSL and Cellular samples
were chosen randomly among the ones in the respective tiacEgure 7.6(b) we plot the size
of the transfers of each cluster and their application |#yerughpuf.

We first observe that the clusters obtained with Kmeans agead agreement with the pro-
jection obtained by t-SNE as indicated in the left plot of g C.17(a), where data samples are
indexed using their cluster id in Kmeans.

Before delving into the interpretation of the individualisters, we observe that three of them
carry the majority of the bytes. Indeed, Figure 7.6(a) iaths that clusters 1 and 2 and 6 represent

2. Boxplots are compact representations of distributidhs central line is the median and the upper and lower of
the box the 25th and 75th quantiles. Extreme values -far fremwaist of the distribution - are reported as crosses.

3. We compute the throughput by excluding the tear down timiéch is the time between the last data packet and
the last packet of the TCP connection
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FIGURE 7.6 — Google Search Engine Parameters

Clusters 1, 2 and 6 are characterized by large warm-up A saluge, long waiting time at the
client side in between two consecutive requests. The warA-values are in the order of a few
seconds, which are compatible with human actions. Thissbehis in line with the typical use of
search engines where the user first submits a query therzasdhe results before refining further
her query or clicking on one of the links of the result pageug;tthe primary factor that influences
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observed throughputs in Google search traffic is the usen@h(how the client interact with the

application). In fact, identified values in clusters 1, 2 &raf Warm-up A are in line with results in

[97] of the time between query submission and first click, rghauthors identified different users
trends.

We can further observe that clusters 1 and 2 mostly consi§tediilar connections while
cluster 6 consists mostly of FTTH transfers. This meanstti@tlustering algorithm first based
its decision on the Warm-up A value ; then, this is the acaadstology that impacts the clustering.
As ADSL offers intermediate characteristics as compardeltbH and Cellular, ADSL transfers
with large Warm-up A values are scattered on the three chiste

Let us now consider clusters 3, 4 and 5. Those clusters, wéilying a tiny fraction of traffic,
feature several noticeable characteristics. First, weakaest no Cellular connections in those
clusters. Second, they total two thirds of the ADSL and FT BiHreections, even though they are
smaller than the ones in clusters 1, 2 and 6 — see Figure 7B{}l, those clusters, in contrast
to clusters 1, 2 and 6 have negligible Warm-up A values. Framechnical viewpoint, Kmeans
separates them based on the RTT as cluster 5 exhibits langeaid ThB values and also based
on Pacing B values. A deeper analysis of these clusterslegvdet they correspond to very short
connections with an exchange of 2 HTTP frames. In fact, etuStcorresponds to cases when
a client opens the Google Web search page in his/her Intbroatser without performing any
search request, then after a time-out of 10 seconds, thel&seryer closes the connection. On
the other hand, cluster 4 and 5 correspond to GET request$i@m& OK responses with an
effective search, the main difference between cluster bdming RTT and connection size.

Cluster 1 | Cluster 2 | Cluster 6 Cluster 3 | Cluster 4 | Cluster 5
Large Warm-up A Negligible Warm-up A
Large Transfers Short Transfers (exchange of 2 HTTP frames)
Large RTT (Majority of CELL) Short RTT Google servers finish current connection after an idle
(Majority of period of 10 seconds
FTTH)

Short Pacing B | Large Pacing B

Large Transfers | Short Transfers

Large RTT Short RTT
] warm-up A [ ]RTT [] server Time-out
[ connection Size [_] Pacing B B Request Type

FIGURE 7.7 — Overview of Google Clusters

Our clustering results thus comply with intuition : in a @édr environments, there is no -at
the moment and in our trace - default opening of pages likeglgosearch unlike for computers
where this is often the default case. In the latter case, @ tiot occurs after a long idle period
when the server decides to close the HTTP connection. Tadsléo clusters 3, 4 and 5 that we
observe on ADSL and FTTH only. Cellular environments arenojgied differently and it is only
when the user issues a query that the Google server is adc&seclustering technique enables
to pinpoint those different usages by a precise profiling bawis happening at the client and
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server side.

Finally, to wrap-up results of data time break-down methogky we present in Figure 7.7 the
main characteristics and features that differentiate eludter. As we can see, user behavior is the
main discriminant factor between clusters 1,2 and 6 on tleehand and on the other hand clusters
3,4 and 5 followed respectively by the usage and access tmpac

To consolidate our finding we report in Figure 7.8(a) respaimmes for clusters 1, 2 and 6
without Warm-up A. Also, we report in Figure 7.8(b) respotisees for clusters 3, 4 and 5. The
two figures match with each other and feature a similar shai&Ta distributions.
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FIGURE 7.8 — Computation of Response Time Without Warm-up A

More generally, we expect that our method, when applieddbilprother services, will lead to
some clusters that can be easily related to the behavioes#itvice under study while some others
will relate anomalous or unsual behaviors that might regfiirther investigation. For the case of
Google search engine, we do not believe clusters 3,4 andh§ beomalies that affects the quality
of experience of users since the large number of conneciioti®se clusters would prevent the
problem from flying below the radar. We found only very few esasvhere the server's impact
to the performance was dominating and directly impactiregghality of experience of the end
user. Observing many such cases would have indicated jssgeswith service implementation
or provisioning.

Clustering results show that Warm-up A influences respoinse éstimation and represents
the most discriminant clustering parameter. In order tadatle bias introduced by user behavior,
we limit next our break down study to Warm up B, Pacing A/B artkedretical A/B. As for
previous results, we obtain 6 clusters and we observe thateck obtained with Kmeans are in
good agreement with the projection obtained by t-SNE.

We summarize in Figure 7.9 characteristics of each idedtilaster, when performing clus-
tering without taking into account Warm-up A.

A comparison of generated data volume per cluster, depictddgure 7.10(a) shows that
cluster 5 contains the highest volume of data, while clesteR, 3 and 4 have between 12 % and
19 % of data volume, cluster 6 contains only 5% of generateag®d/Neb search traffic.

Figure 7.9 shows that like for clusters presented prewo(with Warm-up A) we have two
classes of cluster with short and large transfers. Thee laegnsfers are more penalized by Pacing
B since they are more affected by access and applicationritts important to note that we
identified 3 categories of clusters based on their Warm-uglBes. In fact from Figure 7.10(b) we
observed 3 profiles of Warm-up B distributions, correspogdb : (i) short transfers (ii) Mobile
devices with windows CE and iPhone and finally (iii) clienthwvindows machines. This suggests
that Google Web search Engine adapts content for mobileeeVhis hypothesis will be studied
with more details in next Section 7.3.
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FIGURE 7.10 — Google Clusters Parameters (without Warm-up A)

A comparison of clustering results with and without takim¢pi account Warm-up A shows
that while we obtain the same number of clusters, we obtdi@rednces in cluster characteristics.
Results show that user behavior plays an important role arrégponds to the discriminant para-
meters for first results in Figure 7.7. In the other hand, loyoidang out client behavior impact, we
noticed from Figure 7.7 that server policy, with an adaptaif data preparation time becomes
the discriminant parameter in obtained clusters.

7.3 Contrasting Web Search Engines

The main idea in this section is to contrast Google resulls @thers Web search services. For
the case of our traces, we observed that the second domiremS@Aarch engine is Yahoo, with
few connections. This low number of samples somehow lirhigsapplicability of our clustering
approach as used in the Google case. We restrict our attetithe following questions : (i) Do
the two services offer similar traffic profile ? (ii) Are seres provisioned in a similar manner ?
The architecture of Google and Yahoo data-centers are wlyidifferent but they must both obey
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the constraint that the client must receive its answer toegygun a maximum amount of time that
is in the order of a few hundreds of milliseconds [98]. We btigate the service provisioning by
analyzing the Warm-up B values offered by the two services.

7.3.1 Traffic Profiles
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FIGURE 7.11 — Yahoo vs. Google Web Search Services

Figure 7.11(a) shows CDFs of data connections size for [2ellaTTH and ADSL traces for
both Google and Yahoo. We observe for our traces that Yahdomda&®rch connections are larger
than Google ones. An intuitive explanation behind this ole@n is that Yahoo search pages
contain, on average, more photos and banners than ordirgl&pages.

Figure 7.11(b) plots cdfs of RTTs. We can observe that RTlieg@bn each access technology
are similar for the two services, which suggests that theesgrare located in France and that it is
the latency of the first hop that dominates.

We do not present clustering results for Yahoo due to thelsmabber of samples we have.
However, a preliminary inspection of those results rewvk#he existence of clusters due to long
Warm-up A values, i.e., long waiting times at the client sidi@ line with our observations with
the Google Web search service. In the next section, we fattiseowaiting time at the server side.

7.3.2 Data Preparation Time at the Server Side
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FIGURE 7.12 — Warm-up B

Figure 7.12(a) presents the cdf of warm-uf Balues for both Yahoo and Google for the
ADSL and Cellular technology (we do not have enough sampieSTorH for Yahoo to present

4. We have one total warm-up B value per connection, whichaddtal observed warm-up B for each train.
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them). We observe an interesting result : for both Yahoo amaly&, the time to craft the answer is
longer for Cellular than for the ADSL technology. It suggetttat both services adapt the content
to Cellular clients. A simple way to detect that the remoiertlis behind a wired or wireless
access is to check its Web browser-User Agent as reporté@ iIHT TP header. This is apparently
what Google does as Figure 7.12(b) reveals (again, due tov auonber of samples on Yahoo,
we are not able to report a similar breakdown). Indeed, Geltlients featuring a laptop/desktop
Windows operating system (Vista/XP/2000) experiencelamawarm-up B as ADSL clients while
clients using iPhones or a Windows-CE operating systemriaqpse way higher warm-up B. As
the latter category (esp. iPhones : more than 66% of Googlesmtions) dominates in our dataset
they explain the overall Cellular plot of Figure 7.12(a).tBlahat further investigations would
be required to fully validate our hypothesis of content aatgn. \We could think of alternative
explanations like a different load on the servers at theuragime or some specific proxy in the
network of the ISP. In [99] authors show that market leademnobile data services (T-Mobile
and Vodafone) intercept the response from the Web servesearétly infiltrate into Web page’s
JavaScript code and forward responses to the correspontiémy. However, it is a merit of our
approach to pinpoint those differences and attribute ttesoine specific components like the
servers here.

7.4 Conclusion

In this chapter, we tackled the issue of comparing netwgrkjpplications over different access
technologies : FTTH, ADSL and Cellular. We focused on thegjmecase of search services. First,
we showed that packet loss, latency, and the way clientsaicitevith their mobile phones all have
an impact on the performance metrics of the three techredogi

Second, we applied our technique of data time break-dowtiptiesented in Chapter 5. It au-
tomatically extracts the impact of each of these factonsfpassively observed TCP transfers and
then group together, with an appropriate clustering allgor;j the transfers that have experienced
similar performance over the three access technologies.

Application of this technique to the Google Web search serdemonstrated that it provides
easily interpretable results. It enables us for instangginpoint the impact of usage or of raw
characteristics of the access technology. We demonstrateuser behavior dominates clusters
with large volume of data packets and connections. Thisa@gxplthe similar behavior of FTTH
and ADSL as response time is dominated by Warm-up A. Clugjaesults without taking into
account Warm-up A suggest that clusters depend mainly amembion size and access impact. We
observe for identified clusters different data prepardtiimes at the server side, depending on the
terminal used by the end user. Especially, Cellular conmestfrom mobile devices like iPhone
and Windows CE have larger data preparation time at Googgeigers than on Windows devices.

To provide evidence for these observations, we further @etg Yahoo and Google Web
search traffic and provided evidences that they are likehdapt content to the terminal capability
for Cellular clients which impacts the performance obsgrtadeed, Cellular clients featuring
a laptop/desktop Windows operating system (Vista/XP/2@@erience similar warm-up B as
ADSL clients while clients using iPhones or a Windows-CE ragiag system experience way
higher warm-up B.

In the next chapter, we characterize a number of the mostinsalspects of enterprise traffic.
The idea s to present an overview of some problems faced pér@orming measurements such as
basic RTT estimation, and then investigate performanceaif nsed application in the considered
enterprise network using our break-down and clusteringagmhes.
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Chapter 8

A First Characterisation of an
Enterprise Traffic

8.1 Introduction

Enterprise networks have a complexity that sometimes thalone of the larger Internet.
The characteristics of traffic inside enterprises remaimoat wholly unexplored. Nearly all of the
studies of enterprise traffic available in the literature well over a decade old and dedicated to
individual Local Area Networks (LANS) rather than wholeesit

In this chapter we present a broad overview of traffic tracdlected from a medium-sized
site with heterogeneous characteristics in terms of ciegess link (wired, wireless and VPN
accesses) and client usage (student, staff and nomad).aEketgdraces span one day of capture,
over which we observed a total of 345 clients and 56 interealess .

The main idea here is to characterize a number of the mostsalspects of enterprise traffic.
Our goal is to provide an overview of some problems faced wiggforming measurements such
as basic RTT estimation, and then present a fine-grainedipgodif popular applications.

8.2 Overall characteristics

In this section we first examine some basic characterisfid&® connections in our dataset.
Secondly, we describe problems faced when we inferred RTasarement.

For our measurements, we observe different classes ottiradfile Eurecom traffic. It involves
DMZ, sever to server and client to server.

8.2.1 Backup Traffic Impact

We start with the study of the time series of traffic volumecheck if several regimes exist
in our data. To distinguish upload and download flows, we idemghe client as the initiator of
TCP connection and the server as the remote part. The anit@rresponds mostly to a regular
end user machine, but it can also be a server requestingcsdreim another server as we will
see soon. Based on this assumption, we display in Figurén8.&volution of traffic volume and
number of active flows for upload and download directionsnfrFigure 8.1(a) we observe that
upload traffic volume is characterized by two high peakseAiivestigation we concluded that
(Dthe first peak corresponds to the usage by the client af lmenes directory to store data (ii)the
second one which happens at night, precisely at around 1@®pesponds to backup traffic.
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FIGURE 8.1 — Data Volume and Nb Flows Stability

On the other hand, Figure 8.1(b) shows that the number afesittiws vary during the capture
time for two periods of times. The first period is between 7ar@sand 6 :45am : which is the time
where Eurecom employees are in their office. The seconddyeasowe have identified in Figure
8.1(b) on data volume, corresponds to flows generated byupacaffic.

8.2.2 Connection Characteristics
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FIGURE 8.2 — Connection Size

Figure 8.2 shows the distribution of the total number of byte both directions, transferred
across each connection in our dataset, for each class fo¢ tafl well-behaved TCP connections.

It appears that client/server traffic is larger than othangfers. In other hand, we shows that
server to server traffic is characterized by shorter TCP ections.

A comparison between median transfers size, for connexcbetween clients and servers, and
median transfers size for internet traffic presented in ilgigli4, shows that client/server traffic
inside enterprise is larger than Internet ones. A first exqtian of this observation is the diffe-
rence of used applications and services. In these enviremsnas one finds in enterprise networks
some applications like network file systems applicationsSNSMB) which involve massive data
transfers.

8.2.3 Throughput for Enterprise Traffic

The estimation of throughput of enterprise traffic is impattfor a broad class of applications.
We focus in this paragraph on results obtained with AL thigug estimation method, introdu-
ced previously in Section 2.4.1, in order to avoid TCP teasd impact. We first classify TCP
throughput estimation into different categories, depegdin the class of traffic.
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Figure 8.3 shows cumulative distributions of Applicatioaviel throughput for Eurecom In-
ternal traffics. We observe that identified classes of trgffesent approximatively similar AL
throughput with a little advantage for server to serveffigalhis is in line with the usage inside
Eurecom and also in enterprise traffic in general where onergdly caps end hosts capacity to
100 Mb/s (even though they might have 1 Gb/s) while servexsetr up with 1 Gb/s access. Still,
the rates observed are modest as compared to those capduiglighting again the impact of
the application in actual data exchanges.

8.2.4 Tear-down Analysis
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FIGURE 8.4 — Tear-Down Times

Before examining different facets of TCP connection clgsirethods within an enterprise, we
recall that we define the tear-down as the time between thedas data packet and last control
packet. The last control packet corresponds to a packetPriitfor RST flag.

Flag Tear-Down| Tear-Down>1 secondsg
FIN (%) 62.36 85.71
RST (%) 37.63 14.28

TABLE 8.1 — Tear-Down Flags

We examine in Table 8.1 the percentage of TCP connectiorshédiwith FIN or RST flags.
In our dataset, we observe that 62% of all TCP connectiondirishied with FIN flag. Then it
is important to note that this percentage increases to r8a&h for connections with tear-down
values more than one second.
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Figure 8.4(a) shows cumulative distributions of time nektteperform tear-down. We dis-
tinguish between two exiting TCP connection tear-down w@sh with FIN or RST flags. From
this figure we can notice that more than 33% of tear-down tiosasg FIN flags are larger than
using RST ones. At this stage it is a bit early to present a éimatlusion about the comparison of
tear-down methods.

To go farther in our analysis of TCP tear-down methods, wesan Figure 8.4(b) only on
connections with large tear-down : more than 1 second. Ei§ut(b) shows that a large fraction
of connections finished with FIN flag tend to have large temawd than ones finished with RST
flag.

Additionaly, Figure 8.4(b) shows for connections finisheithw-IN flag several peaks, e.qg,
at 10 or 100 seconds. We conjecture that they could be dugeimal timers in servers/services
set-ups.

The next step was to identify prevalent applications andices with large tear-down values.
To do that, we report in Figure 8.5 statistics about targptets and the corresponding number of
TCP connections. Figure 8.5 shows for connections finishigddN flags, that the most targeted
ports are ports HTTP, End-Point Mapper (EPMAP), SMB and 1Q3&d for windows Remote
Procedure Call (RPC)). In contrast, for connections witi R&gs we find as target ports : HTTP,
SMB (445), 8014 (used by SYMANTEC) and 9154.

It thus appears that different liberation methods corradpo different services or different
regimes (normal, abnormal) within an applications.

T T T T T
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NB Connections
P
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22 25 80 135 143 389 443 445 1025 1433 2049 3306 8659 9154 9582 445
TCP Ports TCP Ports
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FIGURE 8.5 — Connection With Large Tear-Down : Destination Ports

We assessed in this paragraph characteristics of conndii&ration methods with FIN or
RST flags. We observed that most connections are closed Witfiags, the 'usual way’ to close
correctly a current TCP connection. While we are focusingonvironment with short latency
we observed high values of tear-down times, especially fdrflag. The study of high FIN tear-
down times reveals several peaks that presumably corrddpdime-outs at the application layer.

We did not continue this study further as we expect that inrdarprise network, actual tear-
down times are loosely if at all related with clients perfame.

8.3 RTT Estimation in Enterprise Network

One likely reason why enterprise traffic has gone unstudiedd long is that it is technically
difficult to measure. Enterprise networks, unlike a siteteinet traffic, which we can generally
record by monitoring a single access link, the capture m®&emore difficult within an enterprise
with different sub-networks.
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In the case of Eurecom network, the small size of the networsented in Chapter 1 as
considerably simplified the capture process for us. The Istina¢ scales values appears to be
challenging in a typical enterprise networks. However trabfem of RTT estimation is raised.

The RTT measurements are composed of several delays, mngmission delay or propaga-
tion delay, but also queuing delay at various network elémand end hosts. Network measure-
ments usually include all of these delays. However, for endnd measurements, most of tools
and researchers assume that local processing and quelsyg dee negligible and interpret their
results without considering local delays.

In this paragraph, we compare different RTTs estimationthatkin order to identify a me-
thod that allows to minimise biases introduced within measient process. On the other hand it
is important to note that our setting — a mirror port conngétea collection machine that uses tcp-
dump —is de facto weak as compared to hardware methods Wat.ge, on Data Acquisition and
Generation (DAG) cards which are Network Interface CarddN\dedicated to capturing traffic,
where time stamping is handled directly at the NIC level wifbrecision higher than any software
(tcpdump, windump) method.

To estimate RTT, we adopted two techniques already preséotdnternet traffic in Section
3.2.1. The first method is based on the observation of the T@Ry3handshake. The second
method is similar but applied to TCP data and acknowledgérsegments transferred in each
direction®.

Figure 8.6 shows RTT estimations for each class of traffienftheses figures we can observe :

— RTT using DATA-ACK estimation method are larger than ondéh whree way handshake,

— Majority of RTT are very short,

— RTT values inside Eurecom network can reach 100 ms. Iniactiave noticed that these
cases correspond to several clients connected to Eurectworkeusing Virtual Private
Network (VPN) connections. Clients connected via VPN aseemre characterized by large
latency due to their localisation outside the enterpriskling,

— Large RTT were computed for traffic between DMZ zone andeserv
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FIGURE 8.6 — RTT Estimations

In Figure 8.7 we compare RTT estimation methods, for each §dd. We divide RTT esti-
mation in two values. For each RTT estimation approaches;omgpute : first, the time elapsed
between connection initiator and the probe, second, the @lapsed between the probe and the
distant side.

A first observation is that RTT estimation using DATA-ACK rhetl provide larger RTT es-
timates for all observed traffics. A possible explanationtfe introduced delay by DATA-ACK

1. For our case we focus only on well-behaved transfers witliramum of one data packet exchanged in each
direction.
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FIGURE 8.7 — RTT : Detailed Comparison

method, was the small number of data packets of these commgcin fact, delays added by de-
layed ACKs timer (maximum 500 ms [73]) can increase the tiogent data packet and to receive
the corresponding ACK. Indeed, we have observed that diffex between RTT estimation me-
thods RT Toaranck — BT Tsyn-sywackack Was less than 400 ms that could confirm the hypothesis of
delayed ACKSs.

Further, to investigate differences between RTT estimatiethods, next in our experiments
we restrict our analysis on client server traffic.

8.3.1 Short Connection Impact

We focus in this paragraph on connections whereRB& ,uaack — BT Tsyn-synacknack 1S lar-
ger than 10 ms. Our purpose is to validate the hypothesiepies in the previous paragraph :
observed differences between RTT estimations is espggigbent for short TCP connections.

We report in Figure 8.8(a) the scatter plot®T Tosanck — BT Tsyn-synmackack More than 10
ms on the x-axis and corresponding connection size in tefriata packets.

Figure 8.8(b) shows the CDF of connections size in terms @&f packets, WittRT Taranck —
RTTsyn.synnckack More than 10 ms.

A first observation from Figure 8.8(b) was that 92 % of conivest with RT Thxanck —
RTTen-synnckack More than 10 ms are less than 10 data packets. It confirms shenpion for
RTT over estimation using DATA-ACK method for short tramrsteFigure 8.8(a) shows two high
values corresponding to the differenB& Tpxranck — RTTsyn.synackack With 425 ms. These values
are obtained with connections of 3 and 6 data packets.

At this stage of analysis we can conclude that RTT estimasiomore accurate with three way
hand shake method. To fully validate that RTT was bettenedgd using the 3-way handshake
method, we compared values obtained with this method teedgtinferred latency measurements
with ping.




97

RTT RTT, >10ms

DATA-ACK SYN-ACK

a1
o
[N

g
S - —
A
%30 0.6
E 2 &
1 ° L
520 ot 04
i HEE § .
%10 8% : 05, 8000 oo ® . 0.2
E 0 s i ia §% v ° 88 s e o
0 1 3 @ 10° 10" 10° 10°
10 lOConnection S]igze(Data Packejf)o 10 Connection Size (Data Packets)
(a) Scatter Plot (b) CDF

FIGURE 8.8 — RTT Estimation Methods and Connections Size

8.3.2 A comparison with Active Measurements

In this paragraph we compare controlled experiments of Rslimation with Internet Control
Message Protocol (ICMP) messages and three way handshakedn® examine the accuracy
of our selected RTT estimation method.

We base our experiments on the estimation of RTT using pingsage sent from client to
server. The purpose here is to estimate RTTs from clientéon@te host using ICMP packets. This
measurement technique involves sending an ICMP Echo Repaeset, receiving an ICMP Echo
Reply packet, and recording the elapsed time between thevemts. We applied this technique,
for the case of two different pairs of client and server, vehee had, for each case, enough samples
obtained with the SYN/SYN-ACK-ACK method (i.e., cases fdrieh we observed a large number
of connections between the client and one server).
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FIGURE 8.9 — A comparison with Active Measurement

We plot in Figure 8.9 RTT estimations with tree way handshakelassical ping and a ping
message with 1500 octets of payload. The first observatioa isghat RTTs are very low and
close to the precision of tcpdump (10 microseconds). RTimesibn with three way handshake
and classical ping are similar for the two observed coupfedients and servers. Experiments
show different results for full sized ICMP message with ¢stgRTT values. We believe that the
observed difference is due to data sending and receivingepso

In summary, RTT estimation is challenging in an enterprisgrenment when the estimation
is done using legacy NIC and tcpdump like methods as the saue close to the precision of
the timestamping achieved with this technique. The latésmeyso such that the packet processing
time plays a role as well as the delay-ack mechanism whose tiatue is very large as compared
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to the observed RTT. At the end of the day, we obtained (sea&i.1(b) for instance) that the
RTT estimation can lead to errors up to 100%. Still, the oafenagnitude (a fraction of a ms) is

correct. When applying our profiling technique based on a tilate breakdown, the precision will

turn out to be large enough as the other phenomena that wetovargasure, esp. the application
and users delays are working at a time scale of a few ms or @safinilliseconds, ie. one order
of magnitude larger than the RTT. Clearly more accurate atetif RTT estimation should be

developped for RTT estimation in enterprise networks, Weateave for future work.

8.4 Service Profiling

We first take in Section 8.2 a broad look at the protocols prtaseour trace. We examined in
previous sections of this Chapter several parameters effarge traffic performance.

We noticed from Table 1.6 that SYMANTEC and LDAP(S) genetthite largest number of
TCP connections, but not the largest volume of data. On therdiand largest volumes of data
were obtained respectively with NFS and SMB, used by cliericcess files over a network in a
manner similar to the way local storage is accessed.

Before proceeding further, we need to present statistiostainachines and classes of clients
for the present trace. Next in our analysis, we focus onlyl@miserver traffic. Table 8.2 shows
the percentage of generated connections per class of Uséepicts that the enterprise trace
consists of 3 categories of users (based on IP addressfidatin) : staff with 73.9% , student
with 21.6% and finally nomad users and external users withothiest percentage - we group the
last classes into the Others class.

Client Connection (%)
Student Eurecon 21.6
Staff Eurecom 73.96
Others 4.42

TABLE 8.2 — Eurecom Clients

In addition to the knowledge of clients classes, we sucattal@entify clients operating sys-
tem and the nature of his machine : personal computer ordajtle figured out that the majority
of connections were established from Windows machine wi# 6Linux with 16%, laptop with
4.6% and the remaining is a mix of non classified connections.

We report in Figure 8.10 data time break down for traffic betmveurecom’s client and servers.
We plot results for all transfers. Figure 8.10 shows the latean per direction and per access
technology with, for each case, the median of each compadneatative (left y axis - relative to
total data time) and absolute values (right y axis - in sespnthe first observation is that data
time transfer is dominated by data preparation time at theesside. Median data transfers time
are very short, due to access characteristics.

A comparison of data time beak down results in Figure 8.10ranmdlts with Internet traffic
in Figure 5.2 shows different transfer profiles. First, degasfers for enterprise traffic are shorter
than Internet ones, due to each access characteristic.

While for enterprise and Internet traffics, we observe theoretical times represent approxi-
matively between 35% and 50% of data transfers time, we exdiiiterent impact for server side.
In fact, enterprise traffic is dominated by data prepardtiioe at the server side and without Pa-
cing A and B, while for Internet Traffic Warm-up A is larger theVarm-p B. An explanation for
this observation is that Web traffic, which implies interactbetween client and servers (some
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time clients take large time to think and perform a requekijninates Internet traffic. Also, for
Internet traffic we showed that Pacing represents betwe@na2al 42% of data transfer time

To go deeper in enterprise characteristics and to highkghter, application and usage im-
pacts, we focus in the next paragraphs on LDAP and SMB traffic.

8.4.1 LDAP

In our trace, LDAP(S) is a key protocol that email and othexgpams use to look up informa-
tion from a server. LDAP is not limited to contact informatjcr even information about people.
It is used to look up encryption certificates, pointers tofanis and other services on a network,
and provide "single sign-on" where one password for a usgrased between many services. We
shows in Section 8.2 that it represent a large amount of T@Rexiions due to its importance and
its usage by key enterprise applications.

To investigate the performance of LDAP protocol our strate@s to apply our data time
break-down and clustering approaches, in order to propéise grained study an to shed light on
the interplay between service, access and usage, for g alnd server side.

Figure 8.11 depicts the 4 clusters obtained by applicatidtneeans. The value of 4 clusters
was obtained by inspection of the projection obtained WA8NE. We indicate, on top of each
cluster, the median connection size, the percentage aiview@onnections and clients.

In order to have an idea about how LDAP exchanged data issatidaover identified clusters,
we present in Figure 8.12 data volume distribution per elus¥e observed, in the one hand, two
dominant clusters : 1 and 2 with 99% of data and in other hamstenls 3 and 4 with less than 1%
of data.

A first observation from Figure 8.11 is that three of the idfeed clusters (Cluster 1, 2 and
3) are characterized by a dominance of data preparationdirttee server side, what we defined
as Warm-up B. Inside these clusters we identified 2 categafieservers. In fact in clusters 1
and 2, with majority of clients, we observed that clientabbsh connections to Active Directory
Domain Controller, while in cluster 3 we identified only LDARrvers for Linux machines.

Cluster 4 contains only 1% of LDAP connections and 8% of ¢ieand it was characterized
by large Theoretical times A and B. Clients in this clusteresponds to ones with Wifi and VPN
access, which explains high theoretical times.

A characterisation of LDAP traffic reveals a strong coriielatwith the target servers. Data
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FIGURE 8.12 — Data Distribution per Cluster : LDAP

Warm-up times on the server side dominate data transfeestfor the majority of transfers in
clusters 1, 2 and 3. Connections to LDAP servers from Linuxhirees in clusters 3 are short
compared to ones in the remaining clusters, which can lgightlifferent LDAP policies between
Linux and Windows machines. We summarize in Table 8.3 theacheristics of each identified
clusters.

Cluster 3 Cluster 1 |  Cluster2 | Cluster4
LDAP Server for Linux Domain Controller - Active Directory
Majority of Connections| Large Transferg Large RTT

TABLE 8.3 — Clusters Characteristics : LDAP

In summary, our data time breakdown and clustering teclenigueals that for internal clients,
the major source of delay was the server data preparatien 8till, the values of the warm-up are
small in most cases, and we do not see any highly visible paeince anomaly in LDAP for the
Eurecom network.
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Server Message Block (SMB) traffic is an application-levetwork protocol typically used
for file and printer sharing. It represents the largest va@lwhdata in our trace. It also provides an
authenticated inter-process communication mechanismiiant usage of SMB involves com-
puters running Microsoft Windows. We present in the followparagraph an analysis of regimes
that we observe in SMB traffic. Figure 8.13 shows clusteriegults for SMB connections. As
for LDAP clustering cluster 4 corresponds to connectiorhwarge RTT, and groups SMB users

connected via Wifi and VPN accesses.

Data Volume

HMCluster 1
[Cluster 2
[ICluster 3
B Cluster 4

FIGURE 8.14 — Data Distribution per Cluster : SMB

The study of targeted servers shows two categories of chugthuster 1 corresponds to servers
that contain client data such as homes folders and data. ©atlier hand, clusters 2, 3 and 4
correspond to connections towards Active Directory doncamtrollers. Figure 8.13 depicts large
Warm-up B for cluster 1. We noticed large Pacing B for clu&era median over 10 s, probably
due to the chatty nature of SMB protocol [100]. Cluster 3t tmntains the majority of exchanged
bytes, as plotted in Figure 8.14, involves most of SMB chelit presents reasonable values of

data time break down with a dominance of Warm-up B.
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The study of SMB application shows 4 categories of clusté/s.observed that cluster 4
corresponds to clients with large RTT via VPN and Wifi acces&mn the other hand server cha-
racteristic plays an important role for the remaining austWe summarize in Table 8.4 the main
characteristics of each SMB clusters.

Cluster 1 Cluster 2 |  Cluster3 | Cluster 4
Server for Homes Data Domain Controller - Active Directory
High Number of Trains| Moderate valueg Large RTT

TABLE 8.4 — Clusters Characteristics : SMB

8.4.3 Discussion

To study the performance of enterprise traffic we selecteditteresting protocols in terms
of service presented to client and their usage in enterpnsgonment. While SMB and LDAP
applications have different strategies we noticed siritiégr in terms of behaviours. In particular
we identified between 6 and 8% of clients with VPN and Wifi asdesalized in cluster 4 for
LDAP and SMB. It does not reveal an RTT anomaly but it highiggthe impact of low access
bandwidth. For the case of LDAP, we shows that the Domainvadiirectory Controller plays
an important role for these protocols in the way that it waarabterized by short think times
compared to Linux ones. Finally, we noticed large Pacing Basafor SMB traffic in cluster 2;
It could be classified as an application anomaly ; SMB is a dgtty protocol and performs a
large number of data exchanges. In summary, our methodsdpntify key regimes due to the
characteristics of the access technology used by the enaéude server type/provisioning.

8.5 Conclusion

The study of Enterprise network performance has been rtedlén the modern literature
compared to Internet accesses measurements. Our majababanh in this Chapter is to provide
a first characterization for several aspects of enterpeseark traffic.

Our investigation covers topics previously studied forevatea traffic. Through the study of
traffic stability we pinpointed the impact of backup procesth an increase of exchanged data
volume and RTT. At the connection level, we concentratedemersl key indicators such as data
transfers, throughput and RTT. Through the study of RTT vghlight the difficulty observed in
order to accurately estimate this metric, first due to sHmsbhute RTTs (close de the timestamping
accuracy) and second the impact of TCP mechanism like cip8cACK, which can introduce
biases especially for short transfers. For RTT estimatienselected the most accurate method
(three way hand shake) that we can use for our case, but foefateasurements we recommend
to perform measurements with DAG cards.

Then we investigated performance of main used applicatiaour enterprise network using
our break-down and clustering approaches.

Our investigation is only an initial step in enterprise fiménalysis. Our in depth profiling of
two key services has underscored the ability of our breakddwustering approach to pinpoint the
different types of usage of these applications. It enatdds obtain clusters that correspond to the
baseline regime of the application, e.qg. clusters 1 and RD&P and cluster 3 for SMB. Also, our
technique has enabled to identify a potential anomaly tetusin SMB. There exist two natural
extensions to this work.
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First, one could collect several days of data, cluster eatitieaperiod (day time) separately
and seek if the baseline regimes persist and identify anemak minor clusters, which feature
high values on some our metrics. A second extension would feus specifically on anomalies
by filtering out potential candidate connections, e.g. eations that feature high values on some
or all of the metrics obtained during the data time breakddure to the lack of time the first
extension, will be presented as a future work for this theé3is the other hand, we investigated
further the case of anomalies for Internet, but also entiraffic in the next chapters.
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Conclusion of Part Il

In this part, we compared the performance from differeneastechnologies such as Cellular,
FTTH and ADSL. We showed that this task becomes difficult astthnsport layer is interacting
with the application layer above and network layer below. &plored several factors that are
classically used to assess the performance of TCP conngo@mnely RTT and losses. The cru-
cial impact of those parameters is formally known since thgvdtion of the well-known TCP
throughput formula. We discussed the derivation of thosarpaters for the case of our traces. We
illustrated shortly the fact that RTT and losses are not ghda characterize TCP connection in
the wild.

To overcome to this problematic, we propose a new analysibadehat uncovers the impact
of specific factors to inform the comparison of differentesxtechnologies. The analysis method
that we used consists of two steps. In the first step, thefaatime of each TCP connection is
broken down into several factors that we can attribute tieidiht causes, e.g., the application or
the end-to-end path. In a second step, we used a clustenorgaah to uncover the major trends
within the different data sets under study.

Application of this technique to the Google Web search serdemonstrated that it provides
easily interpretable results. It enables for instance npgint the impact of usage or of raw cha-
racteristics of the access technology. We demonstratedisea behavior dominates clusters with
large volume of data packets and connections. This exptamsimilar behavior of FTTH and
ADSL as response time is dominated by Warm-up A.

Using the example of the Eurecom network, we also charaeta number of the most salient
aspects of enterprise traffic, and we presented a fine-grairdiling of two popular applications.
We obtained clusters that correspond to the baseline regfitiee application, e.g. clusters 1 and
2 for LDAP and cluster 3 for SMB. Our technique has alloweddeniify a potential anomaly,
cluster 2 in SMB.

The next part of this thesis presents how our fine grainecoajgprof performance analysis can
be used to detect anomalous TCP connections. We aim atidgtaaid uncovering the reason be-
hind ill-behaved TCP transfers, where a ill-behaved cotimetere is a functionally correct TCP
connection — normal set-up/tear-down and actual datafeiarsthat experienced performance
issues, e.g. losses or abnormally long waiting times atehees side.
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Part Il

Profiling Anomalous TCP
Connections
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Overview of Part Il

Traffic anomaly detection has received a lot of attentiorirdulast years, but understanding
the nature of these anomalies and identifying the flows imablis still a manual task, in most
cases. Several traffic anomaly detection methods have bepnsed, (i) e.g. DDoS [48, 49, 50,
51, 52], or (ii) traffic feature distributions [53], or (ii$egments that have a sequence number
different from the expected one [55], etc.

On the other hand only few works [3, 57] have tried to addresgptoblem of detecting traffic
anomalies introduced by performance problems of distameseipper layer application or service
usage.

In this part we focus on the issue of profiling anomalous TCRnheations that are defined
as functionally correct TCP connections but with abnormaffgrmance. Our method enables
to pinpoint the root cause of the performance problem, whaxh be either losses or some idle
times during data preparation or transfer. To study thedditpe of anomaly, we use a variant
of the method developped in 5 to profile all connections of esdraces, irrespectively of their
anomalous nature.

In Chapter 9 we apply our method to the case of residentifficirasing the same set of traces
(FTTH, ADSL,Cellular) as before.

In Chapter 10 we apply a methodology similar to the one prepgas Chapter 9 to the case of
TCP traffic anomalies for enterprise traffic.
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Chapter 9

Pinpointing and Understanding
Anomalous TCP Connections in
Residential Traffic

9.1 Introduction

Several access technologies are now available to the endansecessing the Internet, e.g.,
ADSL, FTTH and Cellular. Those different access technasgentail different devices, e.g.,
smartphones equipped with dedicated OS like android. litiadda different access technolo-
gies also imply a different usage, e.g., it is unlikely thap@pplications are used as heavily on
Cellular than on wired access. Even if we consider ADSL and@HFTwhich are two wired tech-
nologies, some differences have been observed in termaffo€ forofile [27].

Despite this variety of combinations of usage and technplegme constant factors remain in
all scenarios like the continuous usage of email or the u3eCet to carry out the majority of user
traffic. This predominance of TCP constitutes the startiogipof our study and our focus in the
present work is on the performance of TCP transfers.

In this chapter, we aim at detecting and uncovering the rebebind ill-behaved TCP trans-
fers, where a ill-behave connection here is a functionatiyrect TCP connection — normal set-
up/tear-down and actual data transfer — that experiencedrpgnce issues, e.g. losses or ab-
normally long waiting times at the server side. Note thas thidifferent objective from the de-
tection of traffic anomalies, where the focus is to deteatats against the network, e.g. DDoS
[49, 50, 48, 51, 52].

Our main contributions are as follows (i) we demonstrate wieed (ADSL and FTTH) and
wireless (Cellular) technology adopt different strategie recover from packet losses, especially
under time out conditions (time outs being prevalent in alli®mnments over fast retransmits),
and that the strategies observed on the Cellular technadegyn more efficient than on ADSL
and FTTH, (ii) we show that our methodology for profiling thartsfers (or parts of transfers)
unaffected by losses is able to uncover various types of aliesy some being related to the
configuration of servers and some other being shared byaeawices.

9.2 On the Impact of Losses

TCP implements reliability by detecting loss of data segimemd retransmitting lost seg-
ments. Unfortunately, the loss detection/recovery meisharcan be penalising due to high re-
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transmission times : it is generally known that segmentdegsan adversely impact the duration
of TCP connections,especially short ones.

In this section, we address this issue by evaluating the ¢trgfal CP loss detection/recovery
mechanisms (presented in Section 4.3.3), with the studgssflecovery approaches, on the per-
formance of real-world TCP connections collected fromed#ht Internet accesses.

9.2.1 Identifying RTO and FR/R

TCP detects and recovers from losses using two basic typaedianisms : retransmission-
timeouts (RTO) and fast retransmit/recovery (FR/R).

In a nutshell, RTO can be seen as a safety mechanism thabi®gtaan recover from losses
in any scenario, provided that the network offers enougbhue®s to carry the segment. On the
other hand, FR/R does not work in any situation but in the nitgjof them and provides faster
recovery time than RTO. FR/R triggers retransmission as asa! ACKs with the same sequence
number are observed. This figure of 4 ACKs, represents a-tHideetween accuracy and speed
of reaction as a lower value would lead to false positivesadket reordering occurred.

Two important parameters guide the design of TCP loss detéitcovery mechanisms. First,
TCP should accurately identify segment losses. In pagticifi TCP erroneously inferred that a
segment was lost, it would unnecessarily invoke loss ragosed increase the connection dura-
tion. Second, TCP should quickly identify segment lossesofger detection period adversely
impacts connection duration as well. However, a quick grfiee of segment loss would also be
erroneous when segments (or their ACKs) are not lost butlyndedayed or reordered in the net-
work. To achieve high loss-estimation accuracy, therefdo€&P has to wait longer for ACKs that
may merely be delayed.

More generally, this fundamental trade-off between aaguend timeliness is controlled by
several design parameters associated with RTO and FR/RI bas® detection. These include
the duplicate ACK threshold, the minimum RTO, the RTT-srhowy factor, the weight of RTT
variability in the RTO-estimator, and the RTO estimatoroaidnm itself. While the proposed stan-
dards for TCP recommend values for each of these design paaesnTCP implementations in
prominent operating systems differ, sometimes signiflgaint the values used.

The invoking of loss detection/recovery can thus be quittlgan terms of connection dura-
tion. The exact cost depends on the choice of values for efttte parameters associated with
loss detection such number of duplicate ACK, minimum RTO @@ stack parameters on used
client and servers.

9.2.2 Retransmissions in the Wild

We first report, in Table 9.1, on two metrics : the average tags and the average fraction of
connections affected by loss events for the three tracesl{seare based on loss detection/recovery
algorithm presented in Section 3.4.3).

Cellular | FTTH | ADSL
Loss rate 4% 2% 1.2%
% of connections 29% 9% 5%

TABLE 9.1 — Overall Loss Rates

We observe from Table 9.1 that while loss rates are quite taw tfaces are too short to draw
general conclusions on the loss rates in each environméet)raction of connections affected
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by losses are quite high, esp. for the Cellular technologgossible reason is that losses are due
to actual wireless channel conditions with the Cellulahtetogy, which may result in small loss
episodes that affect connections irrespectively of thaius (duration, rate).

We next turn our attention to the way losses are recovereds We suppose that RTO (resp.
FR/R) correspond to recovery periods with strictly lessitfrasp. greater or equal to) 3 duplicate
acknowledgments. This definition leads to a striking residt our traces, more than 96% of loss
events are detected using RTO. Two factors contribute saréfsult. First, most transfers are short
and it is well-known that short transfers, which do not hameugh in flight packets to trigger a
FR/R revert to the legacy RTO mechanism. Second, long ctioneamust often rely on RTO as
the transfer, while large, consists of a series of trainggtjans and answers of the application
layer protocol) whose size is not large enough, in almost 60%e cases in our traces, to trigger
a FR/R (see next section for more details).
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FIGURE 9.1 — Retransmission Time

Figure 9.1 plots the distribution of data retransmissiometfor FR/R and RTO based retrans-
missions (only for connections that experience lossesysfdbservation is that ADSL and FTTH
show similar behavior to recovery from losses. We obserag:th

— FR/R retransmission times are shorter than RTO, as exhdoteall access technologies.
Still, the difference is larger for the FTTH trace than foe fellular trace. This apparently
reveals different implementation strategies in a cellalarironment.

— A significant number of Cellular TCP retransmission refuoltn losses at the beginning of
the respective TCP connections, where the RTO is primaalieged by the initial RTO. It
results in 5 easily identifiable peaks in the RTO values an)®B00ms, 1600ms, 3200ms
and 6400ms.

The research question we target is the identification of @hons TCP connections in a set
of environments that reflect user typical experience noysdéd/e observe from the above results
that manufacturers apparently take advantage of the leawtlye specification of TCP to try to
optimize performance in some environments, esp. the @elarivironment. For the latter case, it
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results in RTO performance close to the FR/R performanceslinlar environment. As cellular
environment features higher RTTSs, in the order of 200 ms aganed to less than 70 for ADSL
and FTTH cases, the optimization process has possibly edathlimit in this environment with
the current technology constraints. Optimizing the RTO ma@ism is a strategy that pays offs
as the vast majority of TCP transfers rely on RTO. If we adbily set a threshold in terms of
anomaly to 1s of recovery period, we observe that with theectiroptimization, the fraction of
anomalous recovery time is about 20% smaller in Cellulan thaADSL and FTTH scenarios.

9.2.3 Studying Impact on Short and Large Transfers

Itis well-known that packet losses can adversely affecttimmection duration of TCP connec-
tions. However, what is not fully understood is how short krde transfers deal with losses.

Figure 9.2 plots the distribution of retransmission timeA®SL trace and for short and large
transfers. We find that : a significant fraction of large tfarsretransmission time is similar to
short transfers retransmission time. Moreover, the tailistfibutions show that large transfers are
more penalized by consecutive retransmissions.

This is against intuition as it suggests that large trassfhould recover from loss using FR/R.
Also, when focusing on short transfers, we notice that mbas t50% of RTO are less than 1s
which is the recommended minimum RTO threshold [13]. Aldmrsand large transfer retrans-
mission times apparently show new RTO thresholds. ForngstaFigure 9.2 shows that 7% of
RTO short transfers are equal to 300 ms which suggests a n@vtiR€shold implemented in
new TCP stack generation. The explanation behind the bddrpgnce of long transfers lies, as
already pinpointed in Chapter 3 in the impact of the apghecadn top of TCP.
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FIGURE 9.2 — Short vs Large Transfers

Indeed, one often observes that even if the server is seadimge amount of bytes/packets,
the actual exchange is fragmented : the server sends a féatpdiaat we called a train of packets,
then walits for the client to post another request and thedssién next answer. If such a behavior
is predominant in TCP transfers, it can have a detrimentphirhif ever the train size is too small
as it might prevent TCP from performing FR/R in cases of Issse

Table 9.2 summarises the distribution of train sizes fortshnd large transfers. We use our
definition presented in Section 2.3 to classify short angddransfers, . We distinguish between
the initiator of the connection, which is generally the cti@and the remote party which corres-
ponds to the server. We differentiate between trains lessooe 3 data packets. In fact trains with
more than 3 data packet are able to recover using FR from tdgsatnen the first data packet is
lost and the recommended duplicate ACK is equal to 2 duglié&tK. This depends on the actual
implementation of the OS as the default standard is 3 duplis&K. Here we observe that :
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Short Transfers Large Transfers
Initiator Remote Initiator Remote
Trace | <=3 | >3 | <=3 | >3 | <=3| >3 | <=3 | >3
CELL | 98% | 2% | 98% | 2% | 65% | 35% | 68% | 32%
FTTH | 90% | 10% | 92% | 8% | 47% | 53% | 49% | 51%
ADSL | 92% | 8% | 92% | 8% | 64% | 36% | 76% | 24%

TABLE 9.2 — Train Size Distribution

— Trains sent by servers (remote party) are larger than gm#eby the initiator (local client),
in line with our hypothesis that the remote party is the serlRemember that in the Cellular
network we observe only the mobile hosts can initiate cotimes to the outside : they can
not be reached from the outside,

— More than 90% of short Remote and Initiator transfers ag flean 3 data packets, which
confirms our definition of short transfers (see Chapter 2usTlbng connections are often
not able to trigger FR/R,

— The focus on large transfers shows that more than 47% ofdibérains are less than 3
data packets. This again leaves TCP unable to trigger adflegvery/retransmit, even if Li-
mited Transmit is used. Hence, large transfer with shomgraize can be penalizing and
have a detrimental impact on recovery time.

The main conclusion from this study is that while short TCih&fers are penalized by TCP
strategy which requires enough duplicates ACK to triggerfaist retransmission strategy (note
that we use the term 'penalyzing’ but no better strategy leas Iproposed in the literature). Long
transfers are penalized by the application that sends tadl borst of packets. Again, for the latter
case, it is difficult to prescribe any improvement to thiskpeon.

9.3 Anomalies within Data Transfers

9.3.1 Methodology

We next turn our attention to connections (or part of corinas) that are not affected by
retransmissions. We are left with the set-up, data trarsféitear-down times. We did not observe,
in our data sets long set-up times, due, for instance, taofgedf the SYN or SYN-ACK packets.
We thus do not consider this portion of connections in oulyasig On the other hand, tear-down
durations arguably do not affect client perceived perfarcea though their actual value might be
extremely large as compared to the set-up time. To hightightfact, we present in Figure 9.3 the
legacy throughput (total amount of bytes divided by totatation including tear down) and what
we call the Application-Layer (AL) throughput where teawh is excluded. We already see a
major difference between those two metrics. If we are toaktree actual performance perceived
by the end user, we further have to remove the durations ftmmepochs where the user has
received all data she requested from the server (which veetas no unacknowledged data from
the server to the client in flight) and the epochs where sluiessiser next query. We call this metric
the Effective Exchange (EE) throughput. Those three neeftimoughput, AL throughput and EE
throughput) are presented in Figure 9.3 and we can see thaptiesent highly different views
of the achieved performance and question the choice of afbie to consider if we are to select
anomalous connections based on a throughput metric only.
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We build on the previous observation to derive a methodolbgy takes as input the actual
duration of transfers and output 6 durations that sum thed taansfer durations (complete par-
tition). These are first the cliehtand serveiVarm-up times, where either the client is thinking
or the server is crafting data, and tihbeoretical times computed on the client and server side
which represent the time an ideal TCP connection acting erséfime path (same RTT but infi-
nite bandwidth) would take to transfer all data from one s$aithe other. The difference between
the transfer in one direction (say client to server) and tima sf thinking time and Theoretical
time is due to some phenomenon in the protocol stack, e.gppkcation or the uplink/downlink
capacity that slowed down the transfer. We &atingthose remaining durations.

The above methodology was presented in Chapter 5 to prdfitheait transfers. We aim here
at using it to isolate abnormal connections. We adopt a €rapproach : we isolate as potential
anomalies connections that feature high values in (at)leass of the above dimensions. We
exclude from our next analysis the think time at the cliedesias client can spend large times
to interact with the application on top of TCP. All the resyttresented here were obtained with
a threshold vector formed by the 85-th quantile in all dimens, i.e., a connection is flagged if
its values in one or several dimensions is higher than thia 8frantile in those dimensions. With
this threshold, we restrict the analysis to 5% of the initiata volume. To discuss the choice of
the quantile we report in Figure 9.4 the volume of data assedito each threshold.
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FIGURE 9.4 — Data time Break Down Quantile vs Data Volume

The application of the methodology to our traces will thuddge connections that apparently
miss-perform in (at least) one of the above dimensions. \&e te make two important remarks :
first, when a connection is flagged, it is not necessarily bareamaly and some further analysis

1. The client is for us, the initiator of the transfer.
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might be required. Second, to soften the previous pointitbthodology we apply has the merit
to not only isolate blindly a set of potential anomalous ¢dats but also to uncover the origin
of the problem through the set of dimensions that were aftedtVe build on this richness of the
methodology to cluster the a priori anomalies together,imgiall candidate connections on all
access technologies. The idea is to observe if anomalieshared or not and to categorize them.
We use Kmeans to cluster those connections (again, for spactraint, we leave apart important
details like the choice of the number of clusters) and regrethe clusters we obtained in terms
of boxplots - see Figure 9.6 — enriched with additional infation on top of each plot like the
fraction of connection for each access technology and hisoiedian size of the transfers.

9.3.2 Results

Figure 9.5 enables a quantitative comparison of the cleistene clearly sees that we have
three large clusters in terms of bytes and connections, aadmaller cluster (cluster 2).

Cluster 1 MCluster 1

[Cluster 2 21% [Cluster 2

[Cluster 3 [Cluster 3

WlCluster 4 WlCluster 4
(a) Distribution of Volumes (b) Distribution of Connections

FIGURE 9.5 — Overall Characteristics of Clusters

Figure 9.6 depicts boxplot representations of the clustedsthe distributions of port numbers
in each cluster. It enables a qualitative comparison of thsters by comparing the relative size
and position of boxplots. With this approach, we observedvaups of clusters : clusters 1 and 3
and clusters 2 and 4. The main factor that differentiatetetasvithin each group is the Pacing A
value, which are higher in clusters 1 and 4.

Let us first focus on clusters 2 and 4. There are only few cdiorecin those clusters for
Cellular and ADSL technologies, while for FTTH, it is onlyuster 2 that is small as cluster 4
aggregates 42% of FTTH samples. Let us first consider cldstarhere TCP connections are
characterized by extremely high Warm-up B and Pacing B ga(oeedian of several seconds).
This suggests that the anomaly is located at the servertsaeever, we observe a predominance
of port 1863 that corresponds to Microsoft Messenger. Thidieation is highly interactive as
it involves two humans, and we can conclude here that the alyois a false positive as what
we believe to be servers or an application with low respoimestis in fact a human with long
response times (time to read, think and write).

On the other hand, cluster 2 corresponds mostly to IMAP &afiflAP is used to download
messages, hence there is little traffic from the client tosbever, which results in negligible
Pacing A in cluster 2. Cluster 2, unlike cluster 4, could thejsresent a problem (cluster 4 with
a majority of Microsoft Messenger connections correspdadsfalse positive) where insufficient
server resources have been allocated or alternativelytaqmicanomaly.

Let us now turn our attention to clusters 1 and 3, which gatlenections from the three
access technologies. They are characterized by quite Vatges — median in the order of one to
two seconds — on every dimension, except Pacing A for cl@séfhen looking at the port number,
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we can see that cluster 1 corresponds mostly to HTTP traffilewluster 3 corresponds mostly to
a mix of applications (based on port numbers) : HTTP, HTTERRnd SMTP. Large Warm-up B
and Pacing B values indicates that the server is taking siongetd prepare its response and also
is slow to send packets. Again, this is a hint that there isesparformance problem on the server
side.

As for cluster 1, we observe that Th A and Th B on one side, amih§a\ and Pacing B
on the other side are similar, which hints that the Web usagsists not only of pure downloads
from the server to the client but a mix of uploads and dowrdo&de indeed observe a significant
fraction of Facebook transfers in this cluster, which isp@dsl Web site involving more symmetric
transfers.

9.3.3 Zoomonclusters 1 and 3

Clusters 1 and 3 have both a dominant application : HTTP fatel 1 and IMAP for cluster 2.
The question we address here is to quantify the extent ofrtbenaly. We can only rely on indirect
means as we do not have access to those Web and IMAP servemoWéeded as follows : we
count, for each server, the total number of connections mti@eces and the fraction of these
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connections that have been declared anomalous. Resulispaeed in Figure 9.7. Let us first
focus on the IMAP case. Focusing on the left plot, where eaclttrresponds to a server, we can
see itis a all or nothing situation : either all the connetdiof the server are anomalous according
to our algorithm, or only a small fraction. This suggestsekistence of configuration problems on
the servers where almost all connections affected. Forttier gases, this might just be transient
phenomena. The right plot for IMAP shows that those serveit (100 % of anomalies) are
clearly unpopular as compared to the ones with only a sneadtityn of connection affected. We
observe a similar situation for the HTTP case where have afdatly anomalous servers, a set
of transient anomalies and a class of servers in betweegl{hgservers with id 20 to 40). Again,
we observe that the fully anomalous servers are the lesdgrames.

9.4 Conclusion

In summary, our clustering approach enables to narrow dbesét of candidates when loo-
king for anomalies in residential traffic. In addition, itopides for every connection flagged as an
anomaly , a precise identity card of the connection to undedsif the problem comes from the
client side, the server side or the network. Clusteringhierrenables to detect if groups of anoma-
lies are spanning over several access technologies andatjpis or not. Clearly, our approach
is not immune to false positives and requires to hand ovexperés, once the location of the pro-
blem has been identified, but we believe that it is alreadyl@atée tool that does a good job at
narrowing down the crime scene. It could constitute a vdéutdnl for ISP and network engineers
to quickly detect potential weaknesses in their network.




9. PNPOINTING AND UNDERSTANDING ANOMALOUS TCP CONNECTIONS INRESIDENTIAL
120 TRAFFIC




121

Chapter 10

Proposal to Locate Application Layer
Anomalies in an Enterprise
Environment

10.1 Introduction

Localizing performance problems in enterprise networkshallenging and difficult because
little is known about enterprise characteristics and alsnlable studies are made for specific
enterprise networks. On the other hand, establishing grouth, for some applications is complex
as they are often not well documented and unlike Interndgbpads. A typical example is Windows
services and Enterprise Resource Planning (ERP) applisati

Nowadays, modern networks have many components/senfiaeiteract in complex ways.
Client connectivity (VPN, Wifi, Ethernet,etc) and networnkclatecture makes the task of traffic
analysis more complex, since we have to deal with each castdake into account constraints
of network topology.

As Little is known about anomalies detection inside enisgonetworks [58, 43], we propose
in this chapter approaches to detect performance anonfatienterprise networks. After a first
overview of our Eurecom enterprise traces study in Chaptere §ropose two approaches to
differentiate anomalous connection from normal ones.

We show that the most popular applications such as SYMANTHEEB, LDAP and mail
applications present problems of performance due mainthecserver side. We discuss results
from each anomalies detection approaches.

10.2 Study Challenge

10.2.1 Client Access

We presented in Chapter 8 an overview of traffic analysis eftthffic traces we collected
from the Eurecom network. We distinguished between 3 ctaeséraffics : client/server, DMZ
and server to server. In this chapter we focus on clientsdraffic analysis, since it corresponds
to the majority of enterprise connections and traffic volysee Section 1.7.3).

For the case of our trace, we identified 4 categories of djexticording to the user class or the
type of its access link. Inside Eurecom we have student uS&a# users and Wifi users with their
laptops ; On the other hand employers located outside tlegpEige can use VPN connections to
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access the enterprise servers and Intranet. Staff anchssuggresent the majority of clients with
respectively 70% and 26% of clients, while VPN and Wifi clerdpresent 4% of clients.

Figure 10.1 shows RTT distribution for the different cliemiasses. We group students and
staff in the same category, since they use similar Ethercwss. We observe different RTT dis-
tributions for each class of client access. Inside the priter students and staff are characterized
by short RTT, while VPN users have large ones similar to RTrTriternet traffic (see Chapter 4).

1

0.8
L 0.6 —Students + Staff
O : Wifi
04 VPN
0.2
0= - :
10 2 0 2 104

10
RTT(millseconds)

FIGURE 10.1 — Several Client Accesses

High RTT for VPN and Wifi users can bias the anomaly detectimtgss, since we reproduce
the approach presented in Chapter 9. In this case we willrebs®nnections with high theore-
tical times A and B, in the same cluster could mistakenly eriaas an anomaly. To avoid this
false positive impact, we concentrate our next analysigaffid inside the enterprise from wired
students and staff classes.

10.2.2 How to Define Anomalous Behavior

Before presenting results we note that, as we did for theratetraffic, we have no prior
knowledge of the threshold to consider in order to identifipraalies. As the Eurecom network
is well dimensioned (at least short RTTs) we adopted an agiyee approach and we set the
anomalies threshold to the 99-th quantile .

The research question that we target is the identificatioanoimalous TCP connections in
enterprise environments that highlight factors that infleee client perceived performance. The
first parameter to investigate is connection reliabilittenms of loss rate. We have observed in
Chapter9 that invoking of loss detection/recovery medragican be quite costly for TCP in terms
of connection duration.

We observed for our trace that 0.5% of TCP connections expegiloss/retransmission, which
is a low compared to loss Internet accesses ratios presiersedttion 9.2.2. In fact, enterprise and
Internet traffic present different characteristics in tewwharchitecture and traffic load. This figure
is in line with what has been observed in other studies [35].

We can conclude that only a small amount of traffic is affedigdosses, and loss does not
constitute the first factor that penalizes users in our priger trace. We next turn our attention to
connections (or part of connections) that are not affecyegttvansmissions.

To investigate anomalies on application layer for entegptraffic, we base our study on the
methodology presented in Chapter 5 to profile all clientdfars. We aim here at using it to isolate
abnormal connections.

In Chapter 9, we adopted a basic approach to isolate a noomagéction from an anomalous
one. A Connection with potential anomalies correspondsnt that features high values in (at
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least) one of the dimensions : : theoretical A/B, pacing AiBrm-up A/B. We exclude the client
side thinking time (warm-up A) as large thinking time at thiertt side do not mean anomalies.

10.3 High Quantile Metric

All the results presented here have been obtained with afhble vector formed by the 99-th
qguantile in all dimensions, i.e., a connection is flaggetsii/alues in one or several dimensions is
higher than the 99-th quantile in those dimensions. Witk thieshold, we restrict the analysis to
9% of the initial data volume.

Figure 10.2(a) depicts the 6 clusters obtained by apphicaii Kmeans and the distributions
of port numbers in each cluster. We indicate, on top of eaaktet, median connection size,
percentage of samples in the cluster (compared to connebtgher than 99-th quantile) and
percentage of servers and clients. We notice 3 clustersa(i3q4) with more than 28 data packets,
while clusters 1, 2 and 6 correspond to short transfers wgh than 8 data packets of connection
size.

Before beginning to the interpretation of the individualgters, we observe that clusters 3, 5
and 6 are identified by higher break-down values, while ehssi, 2 and 4 present moderate ones.
We use the percentage of active clients and servers to é@alua popularity of the identified
phenomenon and if it affects isolated clients/servers ar no

Let us focus on clusters 3, 5 and 6 where data transfers tiohmmsnated by data break-down
values on the server side. In cluster 5, Warm-up B dominaitstdansfers, while in clusters 3 and
6 we notice that Pacing B dominates.

Connections in these clusters represent 48% of connedtlensified with anomalies (higher
than 99-th quantile).

From Figure 10.2 we observe that Cluster 5 corresponds td sbaonections with 2 data
packets, it represents connections with large data priépardme at the server side. Destination
ports results in Figure 10.2(b) shows that connectionsustel 5 corresponds to SYMANTEC
traffic. Clients connect to the antivirus server in orderdad updates for local virus list or to
perform a check for their status, which generates sevemhtipns at the server side.

Clusters 3 depict large connections with higher Pacing Biesl It corresponds mostly to
LDAPS, SMB and IMAP traffics. These large Pacing B could thegresent a problem of per-
formance, especially for IMAP where client need to uploadl med@hout high waiting time. One
explanation for this observation are application impaatgg transfers with short train size) or
insufficient server resources have been allocated fortslien

On the other hand, cluster 6 corresponds to connections laige Pacing B, with mostly
LDAPS transfers. In this cluster we identified 8% of anomaloannections. While cluster 3 and
6 have are characterized by large Pacing B values, clusteidémtified by Warm-up B values.

Let us now turn our attention to clusters 1, 2 and 4, which gaihort and large transfers.
A common characteristics of these clusters is the quitet shedian values on each dimension,
compared with cluster 3, 5 and 6. We wonder if these clusrespond to anomalies.

We noticed that cluster 1, with a median size of 7 data pacietharacterizes by large Pa-
cing A. Port distribution in Figure 10.2(b) shows that traffn cluster 1 corresponds mainly to
SYMANTEC and SMTP. Probably large Pacing A in SMTP trafficresponds to an application
anomaly.

Cluster 4 corresponds to large connections, from a diyedditntranet applications such as
HTTP, SSH and IMAP. It is characterized by large values oftWap/Pacing B and Pacing A, but
with median values clearly smaller in clusters 3, 5 and 6.
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FIGURE 10.2 — Anomalies Clustering

In Cluster 2 we observe shortest break-down values, cormdgar@revious ones. It corres-
ponds to mainly to SYMANTEC traffic. Median values of data dsnvalues do not exceed 15
milliseconds, a priori it does not influence client percdiyperformance.

To quantify the extent of impacted clients and servers withnaalies in each cluster, we
proceeded as follows : for each cluster we compute the pexgerof clients or servers that are
present in a considered cluster and are not in the rest ofleamfye obtain the two following

vectors, one for clients and one for servers :
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Client Clusterl Cluster2 Cluster3 Clusterd Clusterd Cluster6
1.6949 0 2.22 2.38 0 0

(C’lusterl Cluster2 Cluster3 Clusterd Clusterb Cluster6>
Server

0 0 20 21.42 0 0

Results show that a small fraction of clients in clusters &nd@ 4 does not exist in the rest
of data, while clients in clusters 2, 5 and 6 are included & st of traffic. It does not seem
significant enough to draw any conclusions.

On the other hand, the server vector shows interestingtsedlie notice that 20% of servers in
cluster 3, where connections are characterized by larg@dPBoseveral seconds of magnitude),
are not included in the rest of transfers. As in clusters 3@&uders use approximatively same
applications (mainly LDAPS and SMB) results in server ma#ie different, one explanation is
that this is the IMAP servers in cluster 3 suffer from an anlgritzat generates large Pacing B.

Also, for cluster 4 we notice that about 21% of servers arquasiand not included in the rest
of data. This cluster includes different applications sastHTTP, SSH, IMAP and LDAP, with
high values of Warm-up and Pacing B.

Those results would need more investigations. Howeveraweut of time and were not able
to confirm those results with the IT service of Eurecom.

Results from a comparison of affected clients and servew fat identified anomalies can be
identified on specific servers, such as in clusters 3 and 4ewttiers not and observed anomalies
depends more on others parameters (such as traffic loadensdéttors) that needs a more fine
grained approach.

Finally, we report in Figure 10.3 the client OS or operatiggtem, that we are able to distin-
guish using client IP address (a specific naming conventi®ueecom). The striking conclusion
here is that, except for cluster 6, the majority of connextiare established from laptop machines
connected through their wired connections. This can sudbatlaptop users are more prone to
performance problems due to limited capacity of laptopsemrms of processing compared with
personal computers for the case of Eurecom users.

10.4 Outliers in Data Time Beak-down Values

In this section we discuss a second approach to detect anosnabnnections. We adopt an
approach similar to the one presented in the previous seutith some differences in terms of
computation of the upper bound limit of the normal behavior.

We define anomalous connections here as, outliers thatréeattleast, along one of the di-
mensions a values higher than the upper bound limit (75-#mgje + 1.5 * interquartile range of
the dimension to study) for each dimensions from data tinealbdown that identify each TCP
connection. Note that this approach is similar to the ond usboxplot representations to identify
outliers.

Also, as the same as the first approach, we exclude the cidmttlsinking time as large
thinking time at the client side do not mean anomalies.

Through this definition of abnormal connections, we intem@sttract only high extreme be-
haviors that deviate from median and the range of most dlailalues. With this threshold, we
restrict the analysis to 5% of connections and 10% of thalrdata volume.
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Figure 10.4 shows data volume and number of connectionsguér @uster. We notice that
clusters 2, 4 and 6 represent majority of data volume, whilster 1 aggregates 25% of connec-
tions and only 6% of data volume.

35%
6%

5%
9% WCluster 6

<1% 25%

34% 3%

20%
5% 30%

(a) Distribution of Volumes (b) Distribution of Connections

FIGURE 10.4 — Overall Characteristics of Outliers Clustering

We report in Figure 10.5(a) clusters obtained by the apfphicaof Kmeans and the distribu-
tions of port numbers in each cluster, for identified anomsiconnections.

The first observation here is that we recognize in Figure ¢ldigers 3 and 5 already identified
with the first approach in Section 10.3, also in clusters 3@nthey are characterized respecti-
vely by (i) large Pacing B for the case of LDAP, SMB and IMAP giiyllarge Warm-up B for
SYMANTEC flows.

On the other hand we find in cluster 1 connections identifiethlyye theoretical times for a
short amount of data packets (median size of 4 data packéig)h suggests large RTT for these
connections. A further investigation show that these cotioes correspond to ones established
during backup process (see Section 8.2.1). This can highdigoroblem of latency due to traffic
over load. This phenomena covers 25% of selected anomatmugections and a majority of
clients.

Cluster 2 is characterized by several hundreds of millisdsaf Pacing. For the case of this
cluster we notice from Figure 10.5(b) that some of the papayglications in our trace are affec-
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FIGURE 10.5 — Clusters : Threshold at 75-th quantile + 1.5 * intertjlearange

ted, e.g. SYMANTEC, SMB, and LDAP. In this cluster data tinsdues appear reasonable and do
not reveal, according to us, real performance problems.
Cluster 4 corresponds to a majority of Web applicationshuéss than 5% of data volume.
This clusters have large preparation times and Pacing attiver side. While this behavior covers
9% of connections, it affects more than 40% of clients angessr This cluster is in line with

our experience of the internal Web server of Eurecom, wisatbnnected to complex back-end

applications and which is often quite slow.

Finally, in clusters 6 we have connections with large voluofiedata, with a majority of
HTTPS, IMAP and IMAP transfers characterized by large RaéinThis cluster involves 70% of
clients ad servers. We hypothesize that these are fat éranitfat are identified because of their
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size and not because of their performance problem.

The study of client operating systems and machines, shavsrtlall clusters the majority of
connections are established from laptop machines ; It coafabservations presented in Section
10.3.

10.5 Discussion

We proposed in this chapter 2 approaches based on diffeeéinitabns of threshold in order
to detect anomalous connections in enterprise environreetfirst approach was based on selec-
ting high quantiles for vector formed by data time break dowlues. We defined an anomalous
connection, as connection where one or several dimenssohigher than the 99-th quantile in
those dimensions. This approach allowed us to identifyustelrs 3, 5 and 6 large times of Pacing
and Warm-up in the server side.

The second approach is based on the study of outliers usingaiine approach as in boxplot
representation. An anomalous connection features af @sof data time break-down dimension
values, that identify each TCP connection, higher than gpeubound limit (75-th quantile + 1.5
* interquartile range of the dimension to study). With thggpeoach we recognised in cluster 3
and 5 two clusters identified with the first approach. Alse,rist of clusters depicts the impact of
backup process in increasing RTT values, high Pacing A duiéeld performance for uplink traffic
to servers : HTTPS and IMAP, and on the other hand client istetud with HTTP(S), LDAPS
and SMB are penalized by large waiting time for response filtgrservers.

To wrap up, with these two anomalies detection approache&leveified different pheno-
mena, several ones can be assimilated to anomalous servigéves, e.g. large Warm-up B for
SYMANTEC traffic, and others with less degree of criticglityhere the total connection time
does not exceed hundred of milliseconds, e.g cluster 1 iar&ig0.2.

The impact of large Warm-up B in cluster 5 in Figures 10.2 a@d an be expected not to
be be very penalizing for client performance if the intei@ttwith the SYMANTEC server is
executed as the background tasks. On the other hand if tigis teeatment time on the server,
is recurrent for the case of several requests at the samedintifferent users, it can globally
increase server response time and the server/applicatongsneeds to be re-evaluated

On the other hand, others identified phenomena can be mtoakiWe show that large mail
(using imap), LDAP and file sharing (SMB) traffics depictectinster 3 in Figures 10.2 and 10.5
present large Pacing B. This suggests problem of perforenanc¢he server side in addition of the
chatty characteristics of SMB protocol [100]. Cluster 6 igufe 10.5, with higher data volume,
shows large Pacing A values for several key applicationsh sis HTTPS and IMAPS. We high-
lighted in Figure 10.5, with a majority of SYMANTEC traffidyé impact of the traffic load, which
generated large RTT.

At this stage, we can conclude that with the presented anesmddtection approaches we suc-
ceed to identify several behaviors of anomalous connegtiwith different degrees of criticality.
The task of the definition of anomalous behavior was comptarpared to the one presented
in Chapter 9 mainly due to the enterprise environment clewized by specific applications,e.g
SYMANTEC, RPC,etc. The main difference with Internet ti that the knowledge of each
application behavior is very important (executed in baokigd or not, etc). Presented approaches
are not immune to false positives and require to hand ovexperts, once the location of the
problem has been identified, but we believe that it is alreadgluable tool that does a good job
at narrowing down several abnormal behaviors.
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10.6 Conclusion

We tried in this chapter to propose approaches to detect @oos) connections, where an
anomalous connection here is a functionally correct TCRheotion — normal set-up/tear-down
and actual data transfer — that experienced performanuesisg.g. losses or abnormally long
waiting times at the server side. We succeeded to identifgraéphenomena, where some were
common between the two approaches, especially large Pacthgvarm-up B and others not. We
pinpointed factors that explain large observed RTT, PaaimdyWarm-up B.

In the future, it would be interesting to consolidate theicbmf anomaly threshold and to
automatize the process of selecting anomalous clustarsricomal ones. Also, it would be better
to perform the study on a larger set of traffic traces, for eanthat spans over several days.
Such analysis would help to understand how the client behawid their performance limitations
evolve over a large time scale. While the study over a singleptesented in this chapter brings
many useful insights and highlights performance probleonsbn trivial applications, it cannot
be considered, alone, fully representative. The main giodli® study was to show how proposed
approaches can be applied to produce the first results te quither research in enterprise traffic
analysis.
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Conclusion of Part Il

In Part 11l we focused on the issue of profiling anomalous T@Rnections. Our method en-
abled to pinpoint the root cause of the performance probieich can be either losses or some
idle times during data preparation or transfer. We appliési mnethodology to several traces cor-
responding to Internet and enterprise traffics. We dematesthe existence of specific strategies
to recover from losses on Cellular network that seem moreiefii than what is done currently
in wired networks. When focusing on the transfers or parttheftransfers that are not affected
by losses, we demonstrate that our approach is able to detéatiassify different classes of ano-
malies, especially anomalies due to transient or persisggrovisioning - problems at the server
side.

In the last concluding chapter of the thesis, we reevalledhesis claims made in the begin-
ning and evaluated how we fulfilled those claims. We alsoudis¢he possible future directions of
research for which this thesis has laid the basis.




132




133

Thesis Conclusions and Perspectives

Internet performance has been measured in various wayssigirioception as the ARPANET
in 1969. There have been a number of trends that have affdotediay the Internet has been
measured over this span of time. Some trends depend on theotegy improvement : Internet
technology has changed over time, which has made some meeasuis more difficult and some
measurement easier to obtain. Other trends are matterslaigsc the prodigious growth of the
Internet has changed metrics to measure for performandeagiea, and has triggered the deve-
lopment of new measurement methods and statistical tomlallyFsocial trends, the transition of
the Internet from government funding to private operatiod tne economic significance of Inter-
net communication have altered the kinds of measuremeatiedeand the extent to which certain
measurements can be made.

These trends have been driven by the interplay between megasnot goals and measurements
difficulties. In this thesis, we reviewed different diffitiels that can face experts when collecting
data with new available architectures (Internet and eriggrgnvironments) and then, we proposed
a new methodology to highlight new parameters that can infleelient perceived performance.
Finally, we discussed approaches to detect anomaliesémkttand enterprise environments.

In this final chapter we seek to synthesize some salient ctesiistics of Internet and enter-
prise traffic measurement to show problematics where weesacto progress, and where more
efforts have to be performed. We now revisit the thesis daamd discuss the thesis work in ge-
neral, highlighting the main contributions. Finally, wegiour vision on how this research could
be extended in the future.

Short Transfers and Application.

While analyzing the performance of TCP transfers, we fodusethe connections that corres-
pond to valid and complete transfers, from the TCP persgedfiat fulfill the following criteria :

a complete three-way handshake, at least one TCP data sggreanh direction, and the connec-
tion must finish either with a FIN or RESET flag.

In Chapter 2, we introduced a first definition of a short TCPnemtion, which is commonly
used in the literatureA short TCP connection is a well behaved connection unalpetimrm fast
retransmit/recovery (FR/R), after a packet loss detectia presented an overview of the impact
of the application, on the TCP transfers. We showed thatemMogses can have a detrimental
impact on short TCP transfers, the application signifigaatfects the transfer time of almost all
short - and even long - flows in a variety of way.

We demonstrated that the sensitivity to loss concerns aloyriong transfers as many of
them are a sequence of alternate exchanges and the vasttynafjdhese bursts are less than 3
packets. Such a feature has a direct influence on the abilifyC® to recover from a loss using
Fast Retransmit. We observed that the application can éndyicemely large tear-down times and
it can also slow the rate of TCP transfers.
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ISP Architecture have to be Taken in to Account In Chapter 3, we highlight that in mo-
dern Cellular networks, estimating latency turns out to lmeraplex task. We demonstrated that
latency can be under estimated due to the use of new meclenisservices, like proxies for
content adaptation or applications acceleration. We tigate how these mechanisms impact our
measurements and the performance perceived by end userkeyimessage here, was that seve-
ral specific devices might affect classical performanceriagein Cellular networks, which should
be taken into account when performing measurement studies.

Usual suspects are not enough to explain Performanc&Ve used in Chapter 4 a classical
approach to compare performance of different access témjiae : Cellular, FTTH and ADSL
in order to conclude if clients fully benefit from their brdmhd access. We focused on the two
key factors that influence the throughput of TCP transfe@RThroughput formula [89]), namely
loss rate and RTT, that suggest that the performance oveHFSHbuld significantly outperform
the one of ADSL, which should in turn outperform the one ofldat. It turned out that reality
is slightly more complex. While the Cellular technologyes significantly smaller throughput,
in line with RTT and loss factors, FTTH and ADSL have much etggerformance that RTT and
loss were suggesting. We conclude that focusing on cldgsacameters of performance analysis
does not lead to a full understanding of client perceivedughput.

Fine Grained Analysis We proposed mainly in Part Il a method that drills down irite tata
transfer of each well-behaved connection. The developptbaph is exemplified with the set of
traces collected on the Cellular/FTTH and ADSL backbone3rahge. Proposed data time break-
down approach automatically extracts the applicationesscserver and client behavior impacts
from passively observed TCP transfers and then group tegetith an appropriate clustering
algorithm, the transfers that have experienced simildiopances.

Application of this technique to the Google Web search serdemonstrated that it provides
easily interpretable results. It enables for instance npgint the impact of usage or of raw cha-
racteristics of the access technology. We demonstratedisea behavior dominates clusters with
large volume of data packets and connections. This exptamsimilar behavior of FTTH and
ADSL as response time is dominated by Warm-up A.

Also, we further compared Yahoo and Google Web search traffict provided evidences
that they are likely to adapt content to the terminal cajtgifibr Cellular clients which impacts
the performance observed. Cellular clients featuring sof@desktop Windows operating system
(Vista/XP/2000) experience similar warm-up B as ADSL digewhile clients using Iphones or a
Windows-CE operating system experience way higher warrB-up

Proposal of Approaches to detect Anomalous Behavior§Ve profiled in Part 11l anomalous
TCP connections that are defined as functionally correct @@mection but with abnormal per-
formance. Our method enabled to pinpoint the root causeegbénformance problem, which can
be either losses or some idle times during data preparatitrammsfer. We applied this methodo-
logy to several traces corresponding to Internet and emgerfraffics.

We demonstrated that common wired (ADSL and FTTH) and wsse(€ellular) technology
adopt different strategies to recover from packet lossgge@ally under time out conditions (time
outs being prevalent in all environments over fast retrarsdpand that the strategies observed on
the Cellular technology seem more efficient than on ADSL anh@Hf.

We showed that our methodology for profiling the transfersp@rts of transfers) unaffected
by losses is able to uncover various types of anomalies, saing related to the configuration of
servers and some other being shared by several services.
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On the other hand, through the study of an enterprise envieom, we argued two anoma-
lies detection approaches. We succeed to identify sevetaviors of anomalous connections,
with different degrees of criticality. The task of the defimm of anomalous behavior was complex
compared to the Internet one, mainly due to the enterprigsgogsmment characterized by speci-
fic applications,e.g SYMANTEC, RPC,etc. The main differendth Internet traffic is that the
knowledge of each application behavior is very importaré¢eted in background or not,etc).

Finally, the approaches presented are not immune to falsévaes and requires to hand over
to experts, once the location of the problem has been ideahtifiut we believe that it is already a
valuable tool that does a good job at narrowing down sevérabiemal behaviors.

On the other hand, we identify future research tasks andtdaire in three categories : first,
related to the methodology, second, the scale of analysisfiamally, the architecture of the used
approach.

Leaving the connection level of analysisin this thesis and in the thesis of Matti Siekkinen
[101], the emphasis was put on the analysis of individuaheotions. While it turned out to be a
rich and complex topic, which enables to obtain many insigitincerning the performance per-
ceived by the end users, it bears specific limitations. Aiafumne is that the dependency between
flows is not taken into account. Trivial but important exaegpére the case of DNS queries prior
to a lot of application specific connections in IP context argtlel HTTP or P2P transfers. Some
techniques [66] have been proposed to automatically extoamections inter-dependency, which
is a valuable approach as, similarly to what we do, the agfitin semantic can be ignored, i.e. no
details about the specific application needs to be cast ialtjogitm. Also, a lot of works have pro-
posed graph approaches [65, 102, 83] to identify applinatiouser behaviors. Such approaches
are interesting as they provide high level overview of ¢besmnd application behaviors. However,
it is difficult to troubleshoot the network with those teatués. An interesting continuation of this
work, could be to combine those types of approaches (at s®oseor application or user level)
with our low level approach at the connection level to batitarm the results obtained during the
clustering process we use.

Large scaled analysis We faced, in our work a problem that is common to a lot of tcaffi
analysis study : we spent a lot of time developing and calitgaour analysis techniques and due
to the limited size of our traces, our results are not esthbtl on a fully solid ground. We mean
that it is difficult to know if our results are limited to thetseg of the network for which we have
traces or if it general for the technology we consider, &@SL or Cellular. In our opinion, this
weakness does not affect enterprise as the latter is by wafinspecific to a location. However,
in the latter case, the advantage is that, in some caseghi{#keurecom network) all the network
and all the traffic can be simultaneously observed, whictbisausly more difficult at the Inter-
net scale. We expect that a continuation of the present wdkk&on applying the methods we
developed on large variety of traces, e.g. several Celtrdaes from the same GGSN or several
days/weeks of enterprise traffic.

Cloud computing. Cloud computing is not only a buzz word of the moment butkslyi to
become the future of the data network in a lot of scenariosufih context, remote servers are ac-
cessed by end users and pinpointing the performance prelilenomes crucial in these complex
environments both from a networking but also from a systeintpaf view, e.g. server conso-
lidation with virtualization. We hope and expect that thetimel we developed could constitute
valuables tools to diagnose the performance issues indhigxt.
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Appendix A

RTT Stabllity for the Cellular, FTTH
and ADSL Traces

The RTT stability measurement methodology works as followe compute for each slice of
30 seconds, the median values of local and remote RTT, weataédk estimation method. Re-
member that the syn/acka approach was not appropriated@ehular scenario and that syn/ack
and data/ack approaches were giving comparable resulis€ather access technologies.
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FIGURE A.1 — RTT median : over time windows of 30 seconds

FigureA.1 s that local RTT values constitute a signatureachenetwork access impact. For
instance, lower values of local RTT were detained respelgtivy FTTH, ADSL and finally Cel-
lular.

Unfortunately we can not draw conclusion from the comparisbremote RTT due to several
factors, the fact that traces haven't been simultaneowslgated (not the same client and server
load) and specific handling in Core Network between FTTH/ADS one hand and Cellular on

the other hand.
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Figure A.1 shows that 3G remote RTT is more unstable andhlartaan in FTTH and ADSL
access. In fact we can perceive high and periodic fluctustidr8G remote RTT in the temporal
profile : for each slice of 10 minutes we observe two peaks &hi After further explorations
we found that this phenomenon was previously observed in 8(&l@r networks [103] : They
found that the primary causes of remote RTT spikes are scarifige probe traffic generated by a
sequential high rate scanning source causes an arrivgdatiegn at the peering link. It mirrors the
address space allocation of the local network. If the scasmérce keeps cycling into the address
space, such patterns will appear periodically. We did natstigate further this problem and we
were not able to confirm or deny this hypothesis of scannitigigc

After focusing at local RTT, it is interesting to note thatHT access offer shorter and stable
local RTT (between 3 and 4ms) compared to ADSL and radio acedsich is a consequence of
the used architecture in each access. Fiber client accbases on Ethernet unlike ADSL which
uses ATM until Orange’s core network.
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Appendix B

Data Time Break-down for Mail and
Webmall Traffic

B.1 Webmall : Clustering Results

Figures B.1(a) and B.1(b) present results for Orange Wdbkchaters, with Kmeans and a
graphical representation using T-SNE method.

As a general remark, we noticed a good match between cludtartfied with Kmeans algo-
rithm and T-SNE, presented in Figure B.1(b). In fact, we oles¢hat Kmeans clusters, showed in
the left plot of Figure B.1(b) are easily identified usingitt@uster ID from Kmeans. We noticed
a number of clusters between 4 and 6. After several tradsrgits we fixed the number of clusters
to 4.

The main observation from this clustering is that the majarf clusters are short sized, except
cluster 6 with 33 data packets of median connection size. éigare in Figure B.2(a) CDFs of
Warm-up B for obtained clusters. We noticed similar value®varm-up B (which approves our
break down methodology : for the same service we have a higibapility to obtain the same
server response time for different client accesses). It nesthe case of cluster 3, because it
corresponds to shortest connections with a median sizeed thata packets.

To better understand the main discriminant parametersitfiaence the obtained clusters,
we investigate clusters obtained with t-SNE algorithm aeplicted in Figure B.1(b). This figures
indicate three categories of clusters according to thdadgdistributions of plotted connections.
We see that clusters 1, 4 and 6 are situated on the same asg.Clusters 3 and 5 are very close
and have common border. While cluster 6 is far from otherstehs which leads us to think that it
can reveal an non-trivial behavior.

From the study of clusters 3 and 5, as we observe from the mexianection size, they
corresponds to the shortest connections respectively 3vdihd 4 data packets and distributed
equitably from each used trace, for the two clusters. Negtcampare in Figure B.2(a) Warmu-
up B values for each cluster, we see that cluster 3 is ideshtifieshortest ones - that suggest a
common usage of this class of connections for differentsuaied it is not correlated with the used
access. In fact after further investigation we noticed tmanections in this clusters correspond to
very short connections used for users authentication ogésidownload.

To describe clusters 1, 4 and 6 we will base our analysis oimga@lues. In fact these clus-
ters have similar Warm-up B and theoretical transfers tifidgster 1 and 6, with a majority of
connections from Cellular and ADSL accesses, group Webroaiections with Pacing A values.
Which highlights throughput limitation over the uplink &ss, while cluster 4 shows no Pacing A.
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B. DATA TIME BREAK-DOWN FORMAIL AND WEBMAIL TRAFFIC
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FIGURE B.1 — Clusters : Webmail Traffic

Cluster 1 and 6 have similar behavior in terms of Theoretioas, Warm-up B and Pacing A, but
on the other hand they present different connections sitelarige connection size for cluster 6,

and different Pacing B values (no Pacing B for cluster 1).

Finally, cluster 2 is an interesting cluster, because iugsoconnections from all accesses,

characterized by a high Pacing B.

We noticed that connections in this cluster are mainly froeilCar and FTTH accesses and
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target Gmail servers. Then in order to understand the obdérigh values of Pacing times, located
on only Gmail Webmail server, we analyse connections withfdrature. We observed that Gmail
server adds a large delay between TCP segments in a samefti@dta, which highlights the
service impact.

We summarize in Figure B.3 the main characteristics of edehtified clusters and the com-
mon features and differences.

Cluster 6 Cluster1 Cluster4 Cluster5 Cluster 2 Cluster3

Large Transfers Short Transfers
+

Highest Trains

Number

[ warm-up B I Pacing B [ Trains Size
1 connection Size ElPacing A I Anomaly

FIGURE B.3 — Overview of Webmail Clusters

We present in Figure B.4 the scatter plot of each connectian time versus the cluster ID.
It shows that Webmail connections are spread over the epitme of each considered trace.
It indicates that clusters are not located over a specifie if time but equitably distributed in
Celllar, FTTH and ADSL captures.

Figure B.4 shows that anomaly corresponding to connectiitts large Pacing B (Gmalil
delay TCP segments) in cluster 2 are displayed over all ceqtit excludes that this performance
problem is correlated with the server or network load.
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FIGURE B.4 — Webmail : Clusters vs Time-stamp

B.2 Orange Mail Service

We illustrate the issue of comparing access technologigsthé case of email traffic. Before
going into the details of email traffic in our traffic traces wote that :

— Mail is a key application from the end user point of view arlilesmost of the work has
focused on trendy applications, e.g., p2p or social netsjariail has received little attention
in previous works;

— Mail is a versatile application as it can run over HTTP (Welljror through direct interac-
tions between the users and the mail servers using POP3 oPI{{ftdm the server to the
client) and SMTP (in the opposite direction). From now on,wilk refer to malil traffic to
denote POP3/IMAP/SMTP only and distinguish it from Webmail

— Mail is a rich application from the traffic analysis pointvéw as the interactions between
the user and the mail server can be interactive (mail chgokith no available mail, mail
headers download via IMAP or small mail downloads via POP)xam be considered as
bulk transfers (large mail uploads/downloads).

We take a stance in this work to focus on mail traffic becaus®dil traffic can be readily
identified using port numbers unlike Webmail, which needthtr filtering heuristics to delineate
Webmail from Web traffic and (ii) it is easy to categorize n@ithanges from client to server
and from server to client because different protocols aegel.uShe characteristics of malil traffic
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in our traces are presented in Table B.1. We restricted adysb POP3 traffic in the down link
direction and SMTP in the up link direction. Indeed, IMAP dNtAPS are popular on the Cellular
access only. We also notice that SMTP traffic appears morel@ofor FTTH and ADSL than for
Cellular access. This might be attributed to the fact thatutbers tend to use their Cellular access
to check their mail but defer the answering of those mailfiédorhoment in which they will have

a more convenient wired access.

Cellular FTTH ADSL
SMTP | 4988 (4.05%) | 11364 (65.52%)| 7555 (29.69%)
POP3 | 44200 (35.92%)| 5125 (29.55%) | 17295 (67.96%)
IMAP | 35431 (28.79%)| 97 (0.55%) 254 (0.99%)

SMTPS| 2342 (1.9%) 37 (0.21%) 4(0.01%)
IMAPS | 29062 (23.62%)| 172 (0.99%) 153 (0.60%)
POP3S| 7002 (5.69%) 547 (3.15%) 185 (0.72%)

TABLE B.1 — Mail Traffic

B.2.1 ASP Mail service : a First Look

Throughput is an appealing candidate to compare implertiensaof a service over different
access technologies. Even though we pinpointed that emailcomplex application that mixes
interactive and bulk-transfers usage, we can expect thatghput allows us to draw first conclu-
sions on the impact of the access technology.

Figure B.5 shows cumulative distribution functions of thmplécation level throughput, for
the considered traces, in both uplink (SMTP) and downlin®®B) directions. We also present
in Figure B.6, the size of transfers in data packets (bytefilps are similar to packet profiles).
Based on these figures, we formulate two hypotheses :

Hypothesis 1 :Distributions of the amount of packets transferred per egtian in the down
direction (over POP3) are similar for the three access wolgies. Therefore, the observed diffe-
rence in throughput should be a function of the latency ofpii as well as of the application.
Indeed, the low rates observed clearly suggest that theapacity of the access technology is not
the dominant factor that is limiting the performance. Alastransfers are small in size, we cannot
expect TCP to fully utilize the link capacity.

Hypothesis 2 :Distributions of the amount of packets transferred per ectian in the uplink
direction (over SMTP) differ between the three technolsgiiransfers are small for the Cellular
and FTTH traces, while they can be fairly large over ADSL.sltmieans that a priori three factors
influence the observed throughputs : Latency and the apiplicéor all three technologies and
possibly the raw capacity for the case of ADSL.
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FIGURE B.6 — POP3 vs SMTP for Orange server : Connection Size

Throughput and transfer sizes alone are clearly not encughlidate Hypotheses 1 and 2.
Scatter plots of throughput and transfer sizes could hetpke usage into account, but they are
difficult to interpret in practice. We apply in the next secti our break-down method presented in
Chapter 5 that is fully application agnostic but nevertbglallows to assess the relative impacts
of application and access technology, at the two sidesfciied server) of a transfer.
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Let us now focus on the relative values observed per accgssdgy and mail direction. For
the case of POPS, it is almost exclusively the theoreticdlvaarm-up times that explain the total
data time. As noted above, warm-ups are similar for the tlreees. Our methodology enables to
observe the relative shares of theoretical times and warsn-Qlearly, these relative values vary
according to the latency of the access technology : For FTiielwarm-up at the server side
dominates, while in the case of Cellular access, the thieatéimes are much higher because of
larger latencies. The share of Pacing is negligible, m&styjibecause a majority of downloaded
mails are short or there is no mail to transfer. In summarth petency (a clear function of the
access technology) and server response times (i.e., thieajmm) dominate in POP3 transfers.

As for SMTP, one would expect theoretical times and posghlying on the client side (A) to
play a more important role, especially for ADSL and Cell@acess due to the low uplink capacity
offered by those technologies. Also warm-ups on the sergershiould be significantly smaller as
this is mostly the client side that does the job, i.e.,pusltire mail up to the server. This is indeed
what we observe with ADSL where the Pacing-A is increasedpased to POP3. In the case of
FTTH, latency dominates (note that mail transfers are sovat FTTH as can be seen in Figure
B.6) as opposed to the other costs, which is visible as higbrdiical times. Cellular access, on
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the other hand, provides a very different picture with a lagld unexpected cost due to pacing on

the server side.

B.2.2 SMTP : Clustering Results
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FIGURE B.13 — SMTP Orange Clusters

Figure B.13(a) depicts 4 clusters obtained with Kmeans. Wedbserve that, theses clusters
coincide with the projection obtained by t-SNE as indicaitedhe left plot of Figure B.13(b),
where data samples are indexed using their cluster ID in Kmea

Before going into the interpretation of the individual dkrs, we observe that two of them
carry the majority of the bytes. Indeed, Figure B.2.2 intlisaghat clusters 1 and 2 represent 89%
of bytes. Let us first focus on these dominant clusters.
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The first observation from clustering results is that clieotess is the main discriminant pa-
rameter. For instance, we find all FTTH connections in clu3te13% of Cellular connections in
cluster 4, while in clusters 1 and 2 we identify ADSL and Clalficonnections.

Cluster 1 corresponds to the largest connections, contptritne reset of clusters with a mean
value of 24 data packets. Connections in this cluster wemetiiled by a large Pacing A. In fact,
we expected to find pacing values on the uploading (data smmtthe client to the server) due to
the limited capacity of the Cellular and ADSL accesses. Ads@ other parameter can explain this
Pacing, if we look to the number of exchanged trains in Fidgifes(a) we notice that connection
in this cluster were characterized by highest number of &xghd trains. In other hand, cluster 2
represents the majority of Cellular and ADSL short conmesj when connection is going well :
no pacing A and B. Warm-up B are similar to the ones obtainedlfssters 1 and 3, showed in
Figure B.15(b).

- 109
Clusters: 10% Cluster2: 21%

Cluster 4: < 1%

Clusterl: 68%

FIGURE B.14 — SMTP : Data Volume per Cluster

Cluster 3 corresponds only to FTTH connections. As we calc@obnnections in this cluster
are penalized only by the response time on the server sidaube large FTTH throughput allows
users to send mails more faster than ADSL and Cellular ubefact, Figure B.16(a) shows that
RTT are very low for these clusters, which generates low Tdtemal times A and B. Identified
Warm-up B are similar to ones in clusters 1, 2 and 3 (Figur&gJ))
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FIGURE B.15 — SMTP : Warm-up B and Trains

We can further observe that Cluster 4 is only from Cellulamrextions with 10 seconds of
Pacing B. After the investigation of exchanged data padketiseses connections, we found that
phenomenon was due to an anomaly in Orange SMTP servers.

Investigation results shows that problem was not relateshto server, but servers with dif-
ferent IP addresses and only for Cellular connections.reigul6(b) shows pacing B values for
connections in this cluster over the Cellular trace. We nlesthat high Pacing B values were not
limited to a period of the capture.
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We summarize in Figure B.17 the characteristics of SMTPtetusy. We observe two catego-
ries of clusters corresponding to short and large transtdrsn we show that access technology
is the main discriminant factor while since cluster 3 cqumesls to FTTH connections with short
RTT and cluster 4 correspond to Cellular connections. Omther hand, clusters 1 and 2 present
a mix of ADSL and Cellular connections.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

CELL + ADSL CELL
Large RTT

[ Pacing A I warm-up B I Pacing B
L1 Access [ connection Size I Anomaly

FIGURE B.17 — Overview of SMTP Clusters

B.2.3 POP3: Clustering Results

Figure B.18(a) shows boxplots of 4 clusters obtained witheldns algorithm. We obtain the
same number of clusters, like computed for SMTP Orangedraffe have also reasonable results
with the t-SNE clustering method. In fact, clusters obtdiméth Kmeans are in good agreement
with the projection obtained with t-SNE as indicated in teft plot of Figure B.18(b), with data
samples indexed using their cluster ID in Kmeans.

Figure B.2.3 indicates that clusters 2 and 3 correspondeanthjority of data with 81% of
bytes. While, cluster 4 has more connections and only 15%aifanged bytes.
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FIGURE B.18 — POP Orange Clusters

Overall, clusters were divided in two categories : Clustand 2 correspond to large connec-
tions, while 3 and 4 correspond to short ones. Figure B.2f¥pjcts Warm-up B distribution for
POP traffic. It shows approximatively the same Warm-up Brithistions for identified clusters.

Based on the presented results in Figure B.18(a), we cangstravg conclusions for the main
clustering parameters. We have seen that cluster 1 and &spormd exclusively to Cellular and
FTTH connections, while cluster 2 and 4 group ADSL and Catldnes. This first observation
highlights the access impact for clustering results. @uStwas identified by short Theoretical
times A/B and null Pacing A and B. It shows that due to high digfgput available in FTTH
access, users are able to download data from POP3 servefantaethan in ADSL and Cellular
without Pacing values.

In Cluster 1, we show large Cellular connections, with a nsae of 16 data packets, charac-
terized by a large Pacing A (median value=240 ms). Figur@®)2shows that cluster 4 presents
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FIGURE B.19 — POP : Data Volume per Cluster

the largest RTT, which in part explains the noticed Pacing#we can notice from Figure B.21,
more than 98% of connections in this cluster exchange seagrst\We observe in Figure B.18(a)
that they represent only 4% of all generated Orange POP dsf&c.t An explanation for this
observation is that the observed traffic corresponds to eifgpene like the one used for the
authentication step or exchanged POP messages used irimotheck mail boxes.

Clusters 2 and 4 with ADSL and Cellular connections, twotetsshave similar RTT values
as it is shown in Figure B.20(b), but with different connens size. The main conclusion here is
that ADSL and Cellular accesses offer approximatively kinperformances.
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FIGURE B.21 — POP : Client Trains

Although clusters 3 and 4 have the same connection size and¥aB, FTTH access seems
to be more penalized by data preparation in the server safettie Cellular and ADSL accesses.

We summarize in Figure B.22 the main characteristics oftifled clusters. The study of
Orange POP traffic shows that RTT is the main parameter whdorpeng clusters, presented in
Figure B.20(b). Cluster 3 is distinguished from other @dusby short RTTs because it corresponds
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to FTTH connections, while cluster 1 corresponds to Celletdgnections with largest RTTs. Then,
clusters 2 and 4 with connections from Cellular and ADSL en¢she same RTT distribution, but
different connections size : Large connections in clusi@reXharacterized by the highest number
of exchanged trains, contrariwise, the cluster 4 has caimmscwith the smallest ones.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

CELL + ADSL CELL
LargeRTT

[ Pacing A I warm-up B I Pacing B
L1 Access [ connection Size I Anomaly

FIGURE B.22 — Overview of POP Clusters
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Appendix C

Résume en Francais

C.1 Introduction

De nos jours, nous remarquons que TCP/IP (Transmissiorr@dtrotocol / Internet Proto-
col) est le protocole dominant de transfert des données ldangseaux locaux et étendus. Les
protocoles TCP/IP ont été initialement développés dansdieecde réseaux de recherche. A la
fin des années 1960, 'ARPA (Advanced Research Projects&geamaintenant appelée DARPA)
du département américain de la Défense a mis en place umaaagteavec des universités ameéri-
caines, la communauté de recherche et certaines entrgprigela conception de protocoles et de
standards pour le cas de réseaux hétérogenes. InternePgtlPGont si étroitement liés par leur
histoire qu'il est difficile de parler de I'un sans parler trutre. Ainsi, au fil des années, TCP/IP
a continué a évoluer pour répondre aux besoins de I'Inteinéfjalement pour le cas de réseaux
privés.

Au cours des 15 derniéres années, l'intérét pour la colbesadonnées, la mesure et I'analyse
de trafic ont augmenté d’une fagon constante. Des prognéi§isidifs ont été réalisés sur plusieurs
fronts. Ainsi, des aspects importants de I'architectutatdinet ont été mesurés, pour faciliter la
compréhension du fonctionnement de ces réseaux, commegapke la mesure de la bande
passante disponible, la classification de trafic et la mededa capacité disponible. Cependant,
il reste encore quelques pieces manquantes dans ce pumzbarttculier, il y a un besoin pour
les fournisseurs de services Internet (FSI) de mesurerdbtédes services offerts a leurs clients
finaux. Ceci permettra aux FSls de diagnostiquer les praigéde réseau et d’améliorer leurs
performances.

Alors que le trafic Internet a été trés bien étudié depuis debneuses années, les caractéris-
tiques des réseaux d'entreprises restent presque totalémesplorées. Nous avons observé dans
la littérature que pratiquement toutes les études dispemgur le trafic entreprise se focalisent sur
des cas particuliers d’environnement et d’architectureédeaux. Une des raisons probables pour
laguelle le trafic entreprise n'a pas été étudié pendaningjtéonps, est gu’il est techniquement
difficile a mesurer. Contrairement au trafic Internet, quesn@ouvons généralement collecter sur
un lien d’acces unique, la collecte du trafic entreprise sgteun processus de mesure plus com-
plexe.

Des le début, I'Internet avait pour but de fournir une infirasture générale sur laquelle une
large gamme d’applications pourrait fonctionner. La cqtiom d’'Internet prévoit deux sortes
d’objectifs en méme temps : la capacité a supporter une lamggté d'applications est essentielle,
mais c’est aussi la capacité de fonctionner sur une gammeuelfes technologies émergentes
d’acces aux réseaux tels que les réseaux cellulaire, ladib®DSL classique.

Avec I'émergence de ces nouvelles technologies d’accéembt, on constate une émergence
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de nouvelles applications et services. Les services gigirétauparavant concus pour les lignes
ADSL sont maintenant utilisés dans les réseaux avec uneckafaible ou élevéé.

Nous développons dans cette thése une méthodologie glpbateitudier les performances
des technologies d'acces hétérogénes et pour connaitpedelemes de performance percus par
le client, c’est a dire évaluer séparément pour les caistitgres spécifiques de la technologie
d’accés, aux comportementx des serveurs, ou aux comparteres clients. C'est en effet une
tache difficile, étant donné que peu de travaux [2, 3] se sordliEés sur ce probléeme et ont
développé des méthodes d’analyse, qui permettent ausatigilirs de déterminer a partir de traces
les causes de la limitation de débit. Les travaux de Mattkkdien ont constitué un point de
départ de notre analyse des performances TCP, ainsi sadoéib@ était dédiée aux connexions
TCP qui transportent au moins 130 paquets de données. Cagsmetits transferts constituent la
majorité des flux TCP, nous avons décidé de concevoir uneaaélibgie générique de profilage
des connexions TCP, indépendamment de leur taille.

Pour s'attaquer au probleme de I'analyse de perfomances, adbaptons une approche "diviser
pour régner”, ou nous nous sommes d'abord concentrés spefess, qui sont sans doute une
cause majeure de problemes de performance pour le protd€#eEnsuite, nous analysons les
transferts ou les parties de transferts qui ne sont padédfpar des pertes. Nous utilisons une mé-
thodologie fine et de nous discutons de la fagon dont cega@inemalies peuvent étre découvertes
en appliquant cette technique.

Pour notre travail, nous avons recueilli plusieurs traeedifiérents milieux : le trafic Internet
du réseau d'un ISP européen (cellulaire, FTTH et ADSL), uispat sans fil, un laboratoire de
recherche et une trace du trafic entreprise. Ces tracesé@nea@teillies au cours de différentes
périodes de temps. L'intérét de cette diversité est d'egte les résultats obtenus soient biaisés
par la localisation ou par les aspects temporels. Nous dimntention de proposer une approche
agnostique et globale d’analyse de performances avecgmdhiamp d’application.

C.2 Description des Traces

Nous avons utilisé, tout au long cette these, trois ensarthféérents de traces, dont nous
présentons un apercu dans la partie qui suit.

C.2.1 Environnements Hétérogénes

Le tableau C.1 résume les principales caractéristiquesraess, au niveau des paquets, uti-
lisées pour notre travail. Ces traces ont été recueillies diférents environnements : le réseau
DSL a partir d’'un FSI européen, un point d’acces sans fil ald@altet notre laboratoire de re-
cherche (Eurecom). Ces traces sont intéressantes en dadear diversité en termes de techno-
logies d’'acces et également en termes d’applications.X{ean@e, les transferts P2P sont interdits
sur le réseau Eurécom, alors gu’ils représentent une dragnportante des octets pour la trace
DSL. Un point d’acces sans fil devrait différer d'un réseal.D8ans les réseau DSL les utili-
sateurs ont tendance a se concentrer davantage soit sypgliesit#ons interactives soit a géné-
rer d'importants transferts, par exemple, les mises a jesrapplications ou des transferts P2P.
Comme présenté dans le tableau C.1, ces traces préseni@ati différences concernant la date
de capture, leur emplacement, la nature du trafic, ainsieqtypé d'utilisateurs sélectionnés. Nous
détaillons par la suite la définition des connexions TCP fhemées.
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Date de capture  Durée de Nb de NB de connexions Taille Nombre
la capture | connexions bien formées en MB | de paquetsg
ADSL 2005-05-31 | 1minand 29s| 37790 5873 357.51 | 743683
Portland | 2007-09-14 | 2 h and 20 min 5051 3798 174.13 | 352569
Hotspot
Research  2008-10-20 | 1 hand 1 min 32153 26837 1567.42| 2867321
Lab

TABLE C.1 — Environnements hétérogénes : Description

C.2.2 Des Traces du FSI Orange

Dans cette partie, nous étudions trois traces, au niveawepgopur des utilisateurs finaux ap-
partenant a un FSI francais, utilisant différentes teabgiek d’accés : ADSL, cellulaire et FTTH.
Les Traces ADSL et FTTH correspondent a I'ensemble du traficahnexions ADSL et FTTH,
tandis que la trace cellulaire est recueillie sur un GGSNidean 3, qui est l'interface entre le
réseau mobile et I'Internet. Le tableau C.2 résume les ipdites caractéristiqgues de chaque trace.
Notez que ces mesures ont été effectuées a différentesipgrite la journée afin de comparer
la stabilité du trafic et d’obtenir des conclusions indépenes d’'une période de temps ou des
comportements des utilisateurs. En conséquence, il estrient de noter la grande variabilité et
la diversité de nos ensembles de données, accentuée paffdéesndes de comportements des
utilisateurs ainsi que les cactéristiques du réseau dacce

Par exemple I'accés cellulaire devrait différer de FTTH &S\ en terme d'utilisation, car
les utilisateurs de I'accés cellulaire ont tendance a ea ta usage spécifique et rapide tel que la
consultation du courrier électronique ou la navigation V@fpeut s’attendre aussi a de nouveaux
changements avec l'introduction des téléphones inteltigesmartphones) et I'utilisation des clefs
3G pour le cas de réseaux cellulaires.

Cellulaire FTTH ADSL
Date 2008-11-22| 2008-09-30| 2008-02-04
Début de la capture| 13:08:27 | 18:00:01 | 14 :45:02:03
Durée 01:39:01 | 00:37 :46 00 :59:59
NB Connexions 1772683 574295 594169
cnxs bien formées | 1236253 353715 381297
Volume UP(GB) 11.2 51.3 4.4
Volume DOWN(GB) 50.6 74.9 16.4

TABLE C.2 — Des traces du FSI Orange : Description

Dans le présent travail, nous nous concentrons sur lescafiphs aux dessus de TCP, ce
protocole transporte I'immense majorité des octets dasstnais traces, et presque 100% pour
la technologie cellulaire. Nous limitons notre analyse agrnexions qui correspondent a des
transferts a priori compléts, que nous appelons connekiemsformées (qui seront détaillées par
la suite). Ces connexions transportent entre 20 et 125 Giafie pour le cas de nos traces (voir
tableau C.2).
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C.2.3 Trafic Entreprise

Notre derniére capture consiste en une seule trace reeuddlhs un environnement de ré-
seau d'entreprise, composé d’'un ensemble de machines upgmtecommuniquer soit avec des
serveurs internes soit avec des machines sur Internet.

La Figure C.1 présente une vue globale de notre réseau.iffedistructure se compose d’en-
viron 800 postes de travail équipés d’'une variété de systéegploitation. Le réseau est organisé
en plusieurs sous réseaux locaux virtuels (VLAN) : les agsjde personnel, DMZ, connectés via
un commutateur Cisco. Nous nous focalisons sur les flux T@R|représentent plus de 97%
des flux dans chaque trace, et ils transportent plus de 99%cties.

Students
Mz

® g

NIT?‘!

/ @ Staff
[ &
Firewall ]_éD @ @
@ switch Servers
Switch
e
Router

FIGURE C.1 — Architecture de notre réseau d’entreprise

Le tableau C.3 résume les principales caractéristiquestte trace du réseau d’entreprise.
La trace peut étre divisée en plusieurs sous-classes dg galibn la source et la destination des
machines. Comme le montre le tableau C.3, nous remarqueanie qrafic client/serveur domine
en proportion de connexions bien formées ainsi que pourdiesnes de données échangés.

Serveur/DMZ| Client/Serveur| Serveur/Serveur

Bien formées 57348 128237 52333
connections

Volume UP(GB) 8.581 127.061 76.290

Volume DOWN(GB) 6.651 114.054 76.365

Volume UP(data packets) | 10,798,530 | 153,704,391 61,114,981
Volume DOWN(data packets) 9,268,532 145,712,454 61,198,436

TABLE C.3 — Trace Entreprise : Description

C.3 Reuvisiter les Performances des Transferts TCP

Dans cette partie, nous mettons en évidence l'interactibre ée protocole TCP et I'applica-
tion. Nous allons d’abord discuter de la définition commuegtfaite des transferts TCP courts,
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gui ne peuvent pas compter sur le mécanisme Retransmisafmdd(FR/R) - méme avec I'émer-
gence de nouveaux mécanismes comme le 'limited transnotte\principale contribution est de
présenter un apercu de I'impact de I'application, sur lasdferts TCP. Nous montrons que Si
les pertes peuvent avoir un impact négatif sur les trarssTeCtP courts, I'application affecte de
maniére significative le temps de transfert de presquegdeseconnexions TCP (longs et courts).

En outre, I'application peut aggraver I'impact des pertesmpéchant TCP d’envoyer de gros
blocs avec assez de paquets (groupe de paquets de taibastdfpour que le FR/R puisse s’appli-
guer). Nous adoptons une approche agnostique d’applicatious ne faisons aucune hypothese
sur la fagcon dont I'application fonctionne, afin de dévelappn ensemble de techniques qui déli-
mitent 'impact de I'application a d’autres causes qui eypint la durée de transfert de données,
y compris le transfert de données lui-méme et le temps deééation, le cas échéant.

Nous illustrons nos résultats avec I'ensemble des trac@fiekda la section C.2.1, qui incluent
la trace ADSL, un point d’accées Wifi et finalement notre lalbaira de recherche.

C.3.1 Connexions Bien Formées

Tout en analysant les performances des transferts TCPoagsssommes concentrés sur les
connexions qui correspondent a des transferts valablesngplets du point de vue TCP. Plus
précisément, les connexions TCP bien formées doivent retaplconditions suivantes : (i) une
étape compléte d'établissement de la connexion TCP, (ijhaims un segment de données TCP
dans chaque direction, (iii) la connexion doit finir soit aum drapeau FIN ou RESET.

Lors de I'application de cette heuristique pour nos traness nous retrouvons avec un total
de connexions TCP bien formées de plus de 35.000 connexiartsace DSL est celle qui offre
la plus petite fraction des connexions bien formées, pli®B8%873 connexions, en raison d’'un
grand nombre de transferts unidirectionnels (SYN sansngg)o La courte durée de la trace a
aussi un impact, car pour un grand nombre de cas, nous malnsepas le début ou la fin (ou les
deux) de la connexion.

Les applications P2P ont tendance a générer de telles donseanormales (serveur P2P
indisponible pour télécharger un contenu) ainsi que degtést malveillantes.

La Figure C.2 représente la distribution cumulative deilketde connexion pour les connexions
bien formées en termes d’'octets et de paquets de donnéesepdunis traces. Nous observons
gue les traces d’Eurecom et de Portland offrent un profil dmerion similaire qui différe sensi-
blement de la trace DSL. Par exemple, 65% des connexions ADSmoins de 1 Ko et 25% sont
comprises entre 1 Ko et 1 Mo, contrairement a Portland etadic tEurecom qui présentent des
tailles plus grandes aux mémes percentiles. Une raisoiedenette observation est de nouveau
la petite durée de la trace DSL. Dans cette partie, nous ranceatrons sur les transferts courts.
Nous avons aboservé que la trace DSL offre des donnéesetiiffsr des deux autre traces, alors
gue les traces d’Eurecom et Portland présentent a peugradrhe distribution cumulative des
octets.

En se concentrant sur la performance des transferts TCBméne de paquets de données a
transférer est un élément clé a considérer, car il impaatapacité de TCP a récupérer aprés un
évenement de pertes a I'aide du mécanisme Fast Retransmms. pdbuvons déja observer dans la
Figure C.2 que indépendamment de la trace, une partie iemgerties connexions (entre 53% et
65%) ont moins de 7 paquets de données.
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FIGURE C.2 — Tailles des Connexions du Milieu Hétérogene

C.3.2 Transferts Courts : Définition

Dans cette section, nous introduisons une premiére défirdtune connexion TCP courte, ce
gui est communément utilisé dans la littérature.

Une connexion TCP courte est une connexion bien forméepatda d’accomplir un FR/R,
apres une détection de perte de paquets.

Bien que simple, la définition ci-dessus ne conduit pas a afeur seuil unique en termes
de nombre de paquets de données pour définir un court traisg&; En effet, les différentes
implémentations TCP ainsi que ses différentes implémentapeuvent affecter cette définition :
la fenétre de congestion initiale, I'utilisation du mésane de I'acquittement retardé, le nombre
d’acquittements (ACK) dupliqués qui déclenche un FR/R. &ample, Windows Vista implé-
mente le Limited Transmit, ce qui signifie que seulement 2 AWKt suffisants pour déclencher
un FR.

Trace Initiateur Partie Distante

1 pkt| 2 pkts| > 2 pkts| 1 pkt | 2 pkts| > 2 pkts
DSL 99% | 1% 0% 80% | 18% 2%

Portland | 82% | 17% 1% 64% | 24% 2%

Eurecom| 90% | 10% 0% 65% | 24% 1%

TABLE C.4 — Estimation de la Fenétre de Congestion Initiale

Nous avons estimé pour les trois traces, le nombre de segwiesdrvés dans une durée égale a
un RTT, aprés I'envoi du premier paquet de données, et ceghagiue la direction - voir le Tableau
C.4. La valeur obtenue donne une limite inférieure de l¢etdié la fenétre de congestion initiale,
puisque dans certains cas I'application au dessus de TGR@@eut pas fournir suffisamment de
données a TCP pour les envoyer au début du transfert. Cgtartisulierement vrai pour le cété
initiateur dans le cas des transferts Web, ou la requéte @Hifrgit tenir dans un seul paquet de
données. Globalement, on observe que les valeurs de 1 et 2 éligs valeurs éventuellement
plus élevées) semblent étre les tailles communes de ladeti@tongestion initiale. Les tailles de
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fenétres de congestion initiale de plus de 2 MSS (nous avosereé des valeurs allant jusqu’a 12
SMS) pourraient étre dues a des optimisations spécifiguesydtemes d’exploitation [71].

Compte tenu de la fenétre de congestion initiale estiméeatbled@u C.4, nous présentons dans
le Tableau C.5 les principaux scénarios pour trouver ld peur le nombre de paquets de données
qui déclenche un FR/R. Une connexion courte est donc, paaguehscénario, une connexion
avec un nombre de paquets strictement inférieur au sewsls€@marios couvrent, étant donné nos
connaissances actuelles, tous les cas de figures les plugts.

Scenario 1| Scenario 2| Scenario 3| Scenario 4

cwnd Initial 1 1 2 2
Delayed ACK no yes yes yes

ACK Duppliqués 3 3 3 2

Taille de connexion Minimum 7 9 8 7

size (paquets de données)

TABLE C.5 — Taille de Connexion minimum necessaire pour un FR/R

Sur la base des résultats présentés dans le tableau C.mbsmrgons que :

— différents scénarios conduisent a des seuils différdet3,a 9 paquets de données;;

— Une connexion de moins de 7 paquets de données ne peut piasieple FR aprés une
perte de paquets, quel que soit le scénario;

— Lorsque I'on considére un scénario donné et dont la tadlleashnexion est plus grande que
le seuil, on observe que cette connexion est en mesuredigieun FR/R pour seulement
un seul paquet dans son dernier bloc de données. La pertetdgutoe paquet ne ménera
pas a un FR/R. Une connexion n’est donc pas toujours en me'afiectuer un FR/R si sa
taille est supérieure au seuil.

Basé sur le résultat obtenu a partir de cette section, noyst@ts une premiere définition
des transferts TCP courts, c’est un transfert dont la teskeinférieure a 7 paquets de données.
Cette définition, bien que simple, repose sur I'’hypothégdiaite que I'application sur le dessus
de TCP n’a pas d'impact sur la fagon dont TCP envoie des pagdeimme nous le verrons dans
la section C.5, cette hypothése peut étre trop forte, eigpatpuisque méme les long transferts
TCP peuvent étre divisés en petits blocs (dus a I'applinadio dessus de TCP) qui empéchent le
déclenchement du FR/R en cas de pertes.

C.4 Décomposition des Délais de Transfert

Pour comprendre les facteurs qui affectent les perfornsades transferts TCP, nous nous ap-
puyons sur la décomposition suivante dans la figure C.3 dguehmansfert TCP en 3 phases :

Le délai d’'établissement :C’est le temps entre le premier paquet de controle et le gremi
paquet de données. Puisque nous ne considérons que lderteagsi ont une étape d'établis-
sement de connexion compléte, le premier paquet est un payalors que le dernier est un
ACK pur en général. Le temps d’établissement de la connesdbriortement corrélé au RTT de
la connexion. Pour les trois traces que nous considéroms, amns un coefficient de corrélation
de 70 % pour la trace DSL, 60 % pour la trace de Portland, et 38blp trace Eurecom.

Le délai de transfert des données C’est le temps entre le premier et le dernier paquet de
données de la connexion. Il comprend aussi les durées devrecoent des pertes, le cas échéant.
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FIGURE C.3 — Décomposition du Temps de Transfert

Le délai de libération : C’est l'intervalle de temps entre le dernier paquet de desret le
dernier paquet de contrdle de la connexion. Nous imposonsye expliqué dans la section C.3.1,
gu’au moins un FIN ou un RESET soit observé, mais il peut yraseimultiples combinaisons
de ces drapeaux a la fin du transfert. Contrairement a #ligttion, la phase de libération de la
connexion TCP ne dépend pas seulement du RTT de la connexa®s aussi de I'application au
dessus de TCP. Par exemple, le réglage par défaut d'un séMaduApache est de permettre des
connexions persistantes, mais avec une durée maximadetiinté de 15 secondes, ce qui signifie
gue si l'utilisateur ne poste pas une nouvelle requéte GEdsalb secondes, la connexion est fer-
mée. On trouve dans nos traces une faible corrélation entegrips de libération de la connexion
TCP et son RTT : 40% pour la trace DSL (qui est encore asseg)él@r% pour la trace de Port-
land, et -2% pour la trace Eurecom.

En utilisant la décomposition ci-dessus, nous analysossitnl'impact des pertes (section
2.4.1) et de I'application (section C.5) sur le temps dedfem des données.

C.4.1 Retransmission et Libération des Connexions TCP

Comme expliqué plus haut, le temps de transfert de donnéaparte éventuellement les
délais de retransmission des paquets perdus. Nous estlentamaps passé par le protocole TCP
dans la récupération des pertes en mesurant les délaisalrrements .

Plus précisément, pour un transfert donné, chaque foissquanhéro de séquence dans le flux
de paquets de données diminue, on enregistre la durée ehé&eenement et I'observation du pre-
mier paquet de données dont le numéro de séquence est phasggra le plus grand numéro de
séquence observée jusqu’ici. Par exemple, nous présetamsda Figure C.4 un exemple d’'une
connexion TCP avec la perte de deux paquets de données. posanp que nous associons un
numéro de séquence unique a chaque paquet, si 'on obseséguance 1,2,3,4,7,6,5,6,8, nous
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allons enregistrer la durée entre le paquet 7 et le paquett8& Gurée est ajoutée a la période de
récupération du transfert. Pour filtrer les phases de rérmrahcement dans le réseau, nous élimi-
nons chaque fois les temps de récupération inférieur a un Ré8Waskar et al.[72] ont développé
des algorithmes pour évaluer si les événements de pertemeéire attribués a un temps-mort
ou un FR/R. Nous n’étions pas en mesure d'utiliser cettenigcle car elle nécessite d’effectuer
une connaissance de I'OS de I'expéditeur des données. Gaptedans nos traces, la plupart des
pertes sont survenues dans les flux de données émis paldedistdnte et non pas pour les clients
locaux.

La Figure C.5 présente les résultats de décomposition aesférts TCP pour les petites et les
grandes connexions, pour le cas de nos trois traces. Noes/ohs tout d’abord dans la Figure C.5
gue les temps d'établissements sont toujours petits patesdes traces et les tailles de transferts ;
Les temps de libération peuvent atteindre des valeurs legées, entre 2,5 et 27,5 secondes en
moyenne.

La phase de libération, représente souvent la majorité rdpgale connexion. Notez cepen-
dant, que le temps de libération de la connexion TCP ne dewrair aucun impact sur la perfor-
mance percue de I'application quand le transfert des denestderminé.

Quant aux pertes, nous présentons deux valeurs distinoteslg temps de récupération :
le temps moyen de récupération conditionnel et le temps mdgerécupération. Ce dernier est
calculé sur tous les transferts de la catégorie alors queshaipr est calculé uniquement pour les
transferts avec au moins un événement de récupération e géant donné que seulement une
petite fraction de transferts ont des pertes (9,4% pour D&tet 13,2% pour Portland et 6,8%
pour Eurecom), le temps moyen de récupération condititmest souvent beaucoup plus grand
gue le temps de transfert moyen. Cet impact est nettementpungué pour les petits que pour les
grands flux, dans les trois traces, probablement en raistanptédominance de temps morts pour
les transferts de courte durée.

Pourtant, d’un point de vue du serveur qui sert simultanéraergrand nombre de clients,
comme un serveur Web, des temps longs de fin de connexiongguept affecter la qualité de
service. Un effet secondaire de ces grands temps de fin dexions est lors de I'estimation du
débit des transferts.

Si on divise le nombre total d'octets de données par la dutéetde la connexion TCP, on
peut sous-estimer le débit réel pergu par I'utilisateufagtdlication. La figure C.6 présente pour
le cas de la trace Eurecom, le débit calculé lorsqu’on cénsitk temps total de connexion d’un
coté et d’'un autre c6té le débit calculé lorsqu’on considiliguement le temps d’établissement
et le temps de transfert de données. On appelle ce dernibit 'aé niveau applicatif” (il est
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étiqueté AL), car il représente le taux auquel les donnépsest/oyées ou regues au hiveau de

la perspective de I'application. La figure C.6 montre unéédénce significative entre les deux
métriques pour le cas des courts et longs tranferts.
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La principale conclusion de I'étude ci-dessus est que leepse produisent rarement, mais
ont un effet trés préjudiciable. Une deuxieme remarque estlg temps de libération de la
connexion TCP doit étre retiré lors du calcul du débit caellippconduire a une sous-estimation
considérable du débit percu au niveau de I'application.eRample pour le cas de la trace Eure-
com, le débit médian des petits (respectivement grandsjfaes obtenus lorsqu’on considére le
temps de libération, est de 34 kbits/s (resp. 8,7), tandilglest de 67 kbits/s (respectivement
88) lorsque le temps de libération de connexion est élimintohps total de connexion.

C.5 Impact de I'Application

Dans cette section, nous allons évaluer I'impact de I'appilbn sur le temps de transfert d’'une
connexion TCP. Il y'a plusieurs fagons grace auquellegliaption peut influencer le débit auquel
les flux de données sont acheminés dans un réseau. Premmérbutiésateur peut étre impliqué
dans le transfert, comme dans le cas d'une connexion @@T®sHTTP, ou le téléchargement
d’une nouvelle page est déclenché par une requéte HTTP GiIpamle client. Deuxiemement,
I'application peut limiter la vitesse a lagquelle les inf@tions sont envoyées a la couche TCP. C'est
typiquement ce que les applications P2P font pour limiemdombrement sur la liaison montante
de l'utilisateur. Une troisieme possibilité est que la gatién de données se fasse en ligne. Par
exemple, lors de I'interrogation de Google pour un mot ckcdmue, implique plusieurs dizaines
de machines. De la discussion ci-dessus, nous observotigjgpiecation peut affecter le transfert
des données de différentes facons. Une premiéere évaligatiquie de I'impact de I'application sur
un transfert TCP, est de calculer la fraction des paquetsdegdrapeaux PUSH [73]. Le drapeau
PUSH est une facon pour I'application de spécifier qu’elle pés d’'octets a transmettre pour le
moment a la couche TCP et que celle-ci peut envoyer les dersugde réseau. Nous présentons
dans la Figure C.7 le ratio de drapeaux PUSH en fonction dalla tles transferts pour les trois
traces. Nous observons que I'impact de I'application dimiavec la taille de transfert jusqu’a un
certain seuil dépendant de la taille de connexion. Pourdasexions courtes, la proportion des
drapeaux PUSH est extrémement élevéé, entre 74% et 86%.
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FIGURE C.7 — Ratio conditionnel de drapeaux Push

Dans les prochaines sections, nous évaluons plus en détddson dont I'application in-
fluence le temps de transfert. Nous montrons que I'apptinaitendance a fragmenter le transfert
en petits groupes de paquets TCP qui empéchent de se fomdeR IR en cas de pertes.
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C.6 Notions de Synchronisme et de Pertes de Paquets

Pour les applications client/serveur, on constate souyeatméme si le serveur envoie une
grande quantité d’'octets/paquets, I'échange réel estigatg : le serveur envoie un groupe de
guelgues paquets (appelés ci-aprés train de paquets)attensl que le client poursuive par une
autre requéte et envoie ensuite sa réponse suivante.

Si un tel comportement est prédominant dans les transfé® iTpeut avoir un impact néfaste
sur les performances lorsque la taille des trains est trogepear il peut empécher d’accomplir le
FR/R en cas de pertes de paquets.

Quand on observe passivement une connexion, nous voyoaeaeses circulant alternative-
ment dans les deux directions ; chaque direction envoie fosomin train de paquets. Ce n'est pas
nécessairement dangereux si les deux parties ne sont pds@yes, c’est a dire si une partie n'a
pas besoin de recevoir des paquets de 'autre partie avamiajer son prochain train de paquets.
Toutefois, nous avons observé que les deux parties sonteappeent pour la plupart du temps
synchronisées, c'est a dire gu’elles n’envoient pas sam@élinent des trains de paquets.
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FiIGURE C.8 — Distribution cumulative de la taille des trains de dism

La question que nous soulevons est donc la suivante : Estecteg deux parties impliquées
dans un transfert sont synchronisées ou non ? Prouver gatierenisation nécessite une connais-
sance a priori de la sémantique de I'application. On peutmeant prouver que I'’hypothése de
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synchronisation ne peut pas étre rejetée comme suit : potnaosfert de donnée, chaque fois
gue nous observons une transition d’'un c6té qui envoie dpseps, par exemple A, a l'autre coté,

disons B, si le premier paquet de B valide la réception duidepaquet de A. Si ce n'est pas

le cas, alors il n'y a pas de synchronisation, sinon, le syarikation ne peut pas étre rejeté. En
appliquant cette méthodologie pour les trois traces, neossaobtenu que pour chaque trace, la
fraction de connexions pour lesquelles le synchronismeongait pas étre rejeté est extrémement
élevée : 88,6% pour la trace ADSL, 94,4% pour la trace de &attet de 95,3% pour la trace

d’Eurecom.

Pour les connexions pour lesquelles la synchronisatioronegit pas étre rejetée, nous avons
examiné la distribution de la taille des trains de paquetsihavons distingué entre I'initiateur de
la connexion et la partie distante. Comme nous attendonsageodernier, qui est aussi dépendant
du type de la connexion, dans une grande partie des cas datoiispondre a une sorte de serveur
qui envoie habituellement une plus grande quantité de paque I'initiateur de la connexion qui
fait juste des requétes. Comme illustré par la Figure C.8:

— Les tailles de trains envoyées par I'’hote distant sontgrasdes que ceux envoyés par I'ini-

tiateur, ce qui concorde avec notre hypothése (la partiartdis correspond a un serveur) ;

— Plus de 97 % des trains de l'initiateur ont moins de 3 pagieetionnées, ce qui laisse TCP

incapable de déclencher une retransmission rapide, ménmaigdd Transmit est utilisé ;

— Plus de 75 % des trains de I'h6te distant ont moins de 3 pagieetionnées, ce qui laisse

a nouveau TCP incapable de déclencher la retransmissiaterapéme si le Limited Re-
transmit est utilisé.

C.7 Approche Classique pour la Comparaison de Performance

L'étude du comportement de TCP, en particulier ses perfooces en termes de délais, des
pertes et de débit, a été étudié depuis son émergence daesvitesinements spécifiques et dif-
férents type d'utilisateurs.

Toutefois, la comparaison et la compréhension des parasnées qui influencent les perfor-
mances percues de différentes technologies d’acces tplese cellulaire, le FTTH et 'ADSL
deviennent difficiles quand il est en interaction avec lacbeuapplication au dessus de TCP.

Ci-apres, nous commencgons par présenter une approchgutag®ur comparer les perfor-
mances des différentes technologies d’acces, afin de cersilles clients profitent pleinement de
leur acces Internet offert par leur FSI.

Ensuite, nous proposons une nouvelle méthode d’analyspequiettera de révéler I'impact
de certains facteurs spécifiques, comme I'application aawdede TCP, son interaction avec I'uti-
lisateur pour faciliter la comparaison des performancediffierentes technologies d'acces.

La méthode d’analyse que nous utilisons consiste en depe®t®ans la premiere étape, le
temps de transfert de chague connexion TCP est décomposfserups détails que nous pouvons
attribuer a des causes différentes, par exemple, I'apjaitau le chemin de bout en bout. Dans
une deuxieme étape, nous classons les connexions poundédes grands types de connexions
présentées dans nos traces.

C.7.1 Principaux Suspects

C.7.1.1 Volume de Données

La Figure C.9 présente la CDF (Fonction de répartition) €t complémentaire (CCDF)
de la taille des connexions en termes d’octets, pour lesgreellulaires, ADSL et FTTH. Seules
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les connexions bien formées sont prises en considérations Mbservons que les traces FTTH
et ADSL offrent des profils similaires qui different sensitilent de I'acces radio. Par exemple 30
% de traces ADSL et FTTH sont inférieurs & 1 koctets et 55 % ntreelkoctet et 10 koctets,
contrairement a la trace cellulaire qui offre des valeuus girandes aux méme percentiles.

L'étude de la CCDF, montre que la probabilité d’obtenir dassferts avec 1 Megaoctets est
trés faible (moins de 0,01). Ces résultats révelent aussi mmdis que la majorité des clients
cellulaires ne font pas du P2P (limitation au niveau dephéées), ils sont capables de générer
des connexions larges comme pour les acces filaires (FTTHELA

--UMTS
—FTTH
-- ADSL

sl sl J L L L \l
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FIGURE C.9 — Taille des Connexions(Octets)

En fait, plusieurs explications peuvent étre trouvées pearobservations. Par exemple, I'uti-
lisation de connexions HTTP persistantes (plus de 84% desex@ns cellulaires ciblent des
ports HTTP (s)). En outre, l'utilisation de nouvelles apations ou de nouveaux services avec
I'’émergence des nouveaux mobiles, tels que le téléchargatiapplications de 'Apple Store’ ou
’Android Market’ et 'augmentation des applications deesining (Youtube, etc), expliquent les
valeurs des grandes tailles de connexions pour I'accadaied par rapport a FTTH et ADSL.

La principale conclusion de ce paragraphe est que, de niss Jes utilisateurs du réseau cellu-
laire ont tendance a utiliser leurs mobiles pour un usadérdift du simple appel téléphonique ou
du SMS a envoyer, en concordance avec les améliorationaffiedage et la capacités des smart-
phones. Cela signifie que I'acces cellulaire n’est pasdimitin usage pour de courtes périodes ou
a une utilisation nomade, mais pour un usage similaire a deln acceés fixe.

C.7.1.2 Lalatence de I'accés

Nous avons observé que les deux méthodes d’estimation duakRdd SYN/SYN-ACK ou
DATA-ACK conduisent pratiquement a une méme estimationedaps d’aller-retour pour les
traces 'ADSL et FTTH, tandis que nous observons des difiés pour I'acces cellulaire a cause
du 'Performance Enhancing Proxy’ (PEP) et d'un APN (AccesistName).

Nous allons donc nous fonder sur la méthode de DATA-ACK patiner la latence sur les
traces considérées. La Figure C.10 représente les estimaate RTT pour les trois traces. Elle
met clairement en évidence I'impact de la technologie dacsur la latence de chaque acces.
L'accés FTTH offre un RTT faible en général - a moins de 110 s pes plus de 60 % des
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connexions. Cette conclusion est en accord avec les castigiges généralement annoncés pour
la technologie d’acceés FTTH. D'un autre c6té, la latencelaliacces cellulaire est notamment
plus longue que pour ’ADSL ou FTTH.

1
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0.8 —FTTH
Ty ---ADSL
0.6- ]
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o .
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100 1 3

1 1
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FIGURE C.10 — Estimation du Temps d’Aller-Retour(RTT)

C.7.1.3 Temps de Retransmissions

Nous avons développé un algorithme pour détecter les padaedonnées retransmis, qui se
produisent entre le point de capture et le serveur ou enpeile de capture et le client.

Cet algorithmé est similaire a celui développé dans [75].

Si jamais la perte a eu lieu apreés le point d’observations pawvons observer le paquet initial
et sa retransmission. Dans ce cas, le délai de retransmssiidout simplement la durée entre ces
deux instant$. Lorsque le paquet est perdu avant la sonde, nous en désliisstant auquel il
aurait dG étre observé, sur la base des numéros de séquanuagdets. Notez que les calculs de
toutes ces durées sont effectués, coté expéditeur, nogsbasons sur les séries chronologiques
(nous décalons nos calculs selon nos estimations du RTTJ. iR traces, il est plus facile de
détecter des pertes ou le paquet de données est vu a delwseseiais, lorsque la perte s’est
passé entre le point de capture et le serveur distant, nouwes seulement en mesure de détecter
un paquet dé-séquencé.
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’ L 06
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B ] =
0.7 7 " 3 6 10 2 3 4 10
10 1 Temps de Rgtransmissior}(()MiIIiseconde%sc)) 10 Temps de Retransmission par Evenement de Perte (Millisecondes)
(a) Per Connection (b) Per Loss Event

FIGURE C.11 — Temps de Retransmission des Paquets de données

1. Lalgorithme de détection de perte utilisée est displenstur http ://intrabase.eurecom.fr/tmp/papers.htmé Le
lecteurs sont invités a vérifier I'exactitude de notre altyane pour détecter les pertes

2. Ces instants sont calculés du point de due émetteur efadétss séries chronologiques selon nos estimations
RTT.
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Pour le calcul des temps de retransmissons, nous ne distiagquas entre les séquences de
paquets hors-séquencé et les paquets de données sontebsgns d’une fois. Nous utiliserons
pour ces deux cas de figures le terme "retransmission". Neseyens de séparer les retrans-
missions réelles des fausses retransmissions en élinlamdeglais plus petits que le RTT de la
connexion. Une fois que les pertes sont identifiés avec (Bttansmission de paquets ou (i) les
paquets hors-séquenceés, nous calculons le temps de neigaios total pour chaque connexion
TCP.

La Figure C.11 représente la distribution cumulative désisiée retransmission par connexion,
pour les accés considérés. La principale observation estegoroportion des connexions obser-
vant des pertes est plus élevé dasn la trace cellulaire drede 28,6 % et seulement moins de
9 % pour ADSL et FTTH. Ceci démontre que la proportion des egiums observant des pertes
diminue lorsque la capacité augmente. Une explication peite observation peut résider dans la
différence de fiabilité entre les accés cellulaire et fikmire

Dans les précédents travaux, nous avons remarqué que éessaaht présenté plusieurs fac-
teurs qui influencent les taux de pertes pour I'accés cekulgn fait, dans [90] les auteurs recom-
mandent d'utiliser un algorithme de détection des perigigjtiiise des traces de chaque connexion
(cet algorithme n’est pas adapté a notre cas, parce que rmusea®nt été recueillies au un niveau
d’GGSN) pour éviter de fausses retransmissions de TCP.iAeassauteurs dans [56] ont montré
gue le taux de retransmission dans les réseaux celluldiptussélevé pour les trafics Google que
les autres, en raison de courts délais d’attente mis en ee@ans les serveurs de Google.

C.7.2 Comment Comparer les Performances ?

Notre but ici est de montrer que la technologie d’acces iefladébit, mais que ce n’est pas le
seul facteur. La congestion, les détails de la couche teaihep de I'application (par exemple des
limiteurs de débit, dans les applications P2P) peuveneéuait influencer sur le débit observé.

Nous fondons notre estimation de débit sur la définitiongartee dans la section C.4.1 ou le
débit correspond a la quantité d'octets transférés a laheoWE€P, divisé par la durée totale entre
le premier paquet (premier SYN) et le dernier paquet du teang-ormellement, c’est ce que nous
appelons le débit applicatif.
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FIGURE C.12 — Débit au Niveau Applicatif

Dans la Figure C.12(a), nous présentons la CDF de débitcaipl{AL) pour nos traces. Une
premiere observation frappante est que les accés FTTH eLAfi®nt des débits nettement plus
élevés que dans l'accés cellulaire. Comme nous l'avoneptéprécédemment dans la section
C.7.1.2, nous pouvons confirmer que cette observation estanséquence des différences de RTT
disponibles pour chaque accés utilisé. D'autre part, on gEnarquer que les débits applicatifs
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de la trace ADSL et pour FTTH sont souvent similaires (juaguB0éme percentile), en contraste
avec que les utilisateurs finaux peuvent s'attendre. Unmipre explication de ce fait, est la
distribution de RTT pour 'ADSL et la FTTH.

Afin de mieux comprendre ces courbes de débits pour les cmmsesourtes et longues, nous
avons tracé dans la Figure C.12(b) les valeurs médianeshduagplicatif relatif a chaque taille
de connexion. Ceci montre des valeurs plus élevées de I'Aénoles avec des connexions FTTH.
Mais en revanche, elle confirme les résultats observés daRiglire C.12(a) : les débits pour
le accés FTTH, ADSL et cellulaires ne sont pas aussi différqoe I'on aurait pu s’y attendre,
lorsque nous nous concentrons uniquement sur les RTTsitagida taille de connexion.

Pour comparer les performances d’Internet pour diffésetgehnologies d’'accés, nous avons
commencé avec une approche classique basée sur I'étudeedlepiihcipaux facteurs qui in-
fluencent le débit des transferts TCP (voir la formule déPT89]), le taux de perte et I'RTT.
Ceci suggeére gque la performance sur FTTH devrait sensiliemgpasser celle sur ADSL, qui
devrait a son tour surpasser celle du cellulaire. Mais,al&'e que la réalité est plus complexe
comme on peut le voir sur la Figure C.12(a). En effet, tandis la technologie cellulaire offre
débits applicatif sensiblement plus petits, en ligne ageddcteurs : RTT et perte, FTTH et ADSL
ont des performances beaucoup plus proches que ce que letREIpertes le suggerent.

Dans ce qui suit, nous présentons une nouvelle méthode gooudrir I'impact de I'appli-
cation et pour mieux expliquer les différences ou I'abseteelifférences entre les technologies
d’accés. Par application, nous entendons la maniére deoaplgications fonctionnent, et aussi la
facon dont 'utilisateur interagit avec I'application. plus du comportement des utilisateurs, qui
est fonction de la technologie d'accées. Par exemple, léstiérgements de fichiers volumineux
peuvent étre rares sur la technologie cellulaire, comtnaént aux technologies filaires.

C.8 Méthodologie Proposée : Etude de I'Interaction entre Applica-
tion, le Comportement et I'Utilisation

C.8.1 Décomposition du Temps de Transfert de Données

Dans ce paragraphe, nous introduisons une méthodologieompléte ce qui a été introduit
dans la section C.4. L'objectif ici est de révéler 'impaetahaque couche qui contribue aux délais
de transferts de données, a savoir I'application au-deksTiE€P, le transport, et le chemin de bout
en bout entre le client et le serveur.

Nous effectuons par la suite une décomposition de la duréeptese de transfert de données
d’'une connexion TCP, que nous appeltamips de effective de transfert des donnéest a dire,
nous excluons le temps d’établissement et de libératiorwalasexions.

Le point de départ de notre étude est que la grande majoistéralesferts se composent de
dialogues entre les deux parties d’'une connexion a tour lge @ela signifie que les instances
d’'application parlent rarement simultanément sur la méamexion TCP [91]. Nous appelons
les phrases de ces dialogues tfams.

Par exemple, comme expliqué dans la section C.6 on obseeven§me si le serveur envoie
une grande quantité d'octets/paquets, I'échange de deméékest fragmenté : le serveur envoie
quelques paquets de données (un train), attend ensuite glierdt formule une autre demande,
puis envoie sa réponse suivante, a savoir la prochained#paquets (un autre train).

Nous appelons A et B les deux parties impliquées dans leférrgé est I'initiateur du trans-
fert) et on décompose le transfert des données en trois @anges : le délai de préparation, le
délai théorique et le délai résiduel. La Figure 5.1 illustegte rupture dans le cas d'une recherche
sur Google, ou A est un client et B est un serveur de Google.
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FIGURE C.13 — Décomposition du Temps Effectif de Transfert de deané

Le délai de préparation (Warm-up) correspond au temps prig\u B avant de répondre a
I'autre partie. Il comprend des durées telles que le tempppr I'utilisateur pour réfléchir ou pour
préparer les données cété serveur. Pour notre cas dtidifisain warm-up de A correspond au
temps passé par le client pour taper une requéte et a naageers les résultats avant d’émettre
la requéte suivante (le cas échéant) ou en cliquant surmreliers que warm-up B correspond au
temps passé par le serveur de Google pour préparer la répppsspriée a la demande.

Le temps théorique est la durée idéale qu’un transfert TGitaitepour transférer un nombre
de paquets donné de A vers B (ou de B vers A) égal au nombrad®f@quets échangés pendant
le transfert complet. Le temps théorique peut étre vu conanterhps de transfert total de cette
connexion TCP théorique. Pour ce transfert théorique, Bopposons en outre que la capacité du
lien n’est pas limité.

C.8.2 Présentation des Résultats

Lors de notre analyse, nous avons eu recours a des techuigwisstering pour obtenir une
image globale de la relation entre le service, la techneldgcces et 'usage.

Aprés avoir décomposé le temps effectif de transfert, chagunexion bien formée est repré-
sentée par un point dans un espace de 6 dimensions (le tesighseté le temps théorique et le
temps de préparation des données au niveau du client etvkuserPour comprendre ces don-
nées, nous utilisons une techniques de regroupement dexgons pour assembler les connexions
avec des caractéristiques similaires.

Nous utilisons une approche de clustering non supervisgyaird'algorithme Kmeans. Une
guestion clé lors de l'utilisation Kmeans est le choix destiédes initiaux et le nombre de
clusters ciblés. Pour évaluer le nombre de clusters, ndlisons une approche de tests et d’es-
sais. Nous avons commencé avec un nombre important de palesrd] puis nous déduisant ce
nombre.

Concernant le choix de centroides, nous effectuons unainentl’essais pour finalement
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prendre le meilleur résultat (c'est a dire, celui qui miréeia somme sur tous les clusters des
distances entre chaque point et son centre de gravité)zag nous utilisons I'implémentation
de Kmeans dans Matlab [93].

Pour évaluer le nombre de clusters utilisés, nous nous apgsur une technique de réduction
de dimensionnalité visuelle, t-Distributed Stochastiéggibour Embedding (t-SNE) [94].

Les valeurs de chaque dimension ont tendance a étre trasd##pes de la taille des connexions.
Par exemple, le warm-up est une valeur qui représente la safertoutes les périodes de prépara-
tion sur toute la durée du transfert. Le temps théorique s résiduel dépendent du nombre
total de paquets a envoyer. Ensuite, il est important lofs geésentation des résultats de garder
un oeil sur la taille des connexions, car il est plus probajoie les grandes connexions aient le
plus grand temps de préparation des données et le plus gnaipa tésiduel.

Enfin, pour présenter les résultats, nous utilisons leedaitmoustachéspour obtenir des
représentations compactes des valeurs correspondang@ectlianension.

Au-dessus de chaque cluster nous avons mis la taille médiemeonnexions dans chaque
groupe, lidentifiant de chaque accés (ID) du cluster et pthaque trace le pourcentage de
connexions. Ce pourcentage est calculé comme le nombrentexions dans un cluster sur le
nombre total de connexions pour une trace, pour chaquedkgie d'acces. Il est important de
noter que lors de I'exécution de ce clustering, nous utibsle méme nombre de connexions de
chaque trace.

Pour chaque cas de clustering, nous utilisons le méme natdrkantillons par technologie
d’accés (prendre le minimum du nombre de connexions)pouréeher toute partialité dans le
regroupement. Notez que les connexions ont été choisieasaunchparmi celles dans chaque trace.

C.8.3 \Validation par des Traces Réelles

Sur des simulations(pour plus de détails, voir Chapitre6)is avons observé que les valeurs
absolues de Warm-up B ne doivent pas étre corrélées ni audiséiteur, ni avec le lien. Ceci est
en accord avec ce qui devrait étre observé pour le trafic sabus supposons une mise en oeuvre
homogéne d’'un service et des conditions de charge sinslairele coté serveur, le warm-up sur
le coté serveur doit avoir une distribution similaire sufétents acces.

Nous présentons les mesures obtenues par I'étude desreacedlies par Orange pour diffé-
rents environnements hétérogénes : ADSL, cellulaire etH- Nous nous concentrons sur I'étude
du trafic POP3 pour les clients Orange et les serveurs de gezsd’Orange.

Nous rapportons dans la Figure C.14, la distribution de wbagmps de préparation des don-
nées coté du serveur (le temps de préparer la réponse polierl® pour chaque technologie
d’accés. Ceci montre que, malgré la diversité de la teclgimid’'accés, en utilisant notre métho-
dologie de décomposition du temps de transfert, nous oserdes distributions similaires de
préparation des données pour chaque technologie. Notelegjtrmces sur lesquelles nous nous
concentrons n'ont pas été capturées a la méme période de &mpnc, les conditions de charge
pourraient expliquer les écarts de différences observaes lds CDF.

Afin de mieux comprendre les causes des pics élevés danstebudions de la Figure C.14,
nous avons inspecté la série temporelle des valeurs de warB1-La Figure C.15 représente
les séries temporelles de warm-up pour chaque technoldgieés. Une observation clé est la
présence de pics dans la Figure C.14. Ces pics ne semblegirpaEpendants du temps (a cause

3. boxplots sont des représentations compactes des dtgirib : la ligne centrale est la médiane et la partie supé-
rieure et inférieure de la boite représente respectivelasi5 éme et 75 éme quantiles. Les valeurs extrémes - loin de
la taille de la distribution - sont signalées par des croix
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des variations de charge), mais plutdt de I'applicationrétigément de la nature de la requéte,
comme par exemple, I'authentification, vérification de l&tdaux lettres, etc.

Pour résumer, nous avons présenté dans cette partie diatségdifférents qui valident, mais
indirectement, notre méthodologie de décomposition dysede transfert de données.

C.9 Application pour le cas de Recherche sur Google

C.9.1 Comparaison des Débits Applicatifs

Notre étude des deux facteurs clés quiinfluencent le débirdasferts TCP, a savoir le taux de
perte et la latence, suggérent que, puisque les requétesttErche Google ont un profil similaire
sur les trois technologies d’accefs, la performance dervicsesur le FTTH devrait sensiblement
dépasser celle de I'ADSL, qui devrait & son tour surpasdkr de cellulaire. Il s'avere que la réa-
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lité est plus complexe comme on peut le voir sur la Figure ©LLBous rapportons la distribution
des temps de transfert de données.

L'analyse du débit est qualitativement similaire, maissiptéférons nous concentrer sur les
temps de transfert de donnés puisque nous regardons uoesanaractif avec un faible volume
de données échangé. En effet, tandis que la technologigaied| offre un temps de réponse signi-
ficativement plus long, en accord avec les facteurs de RTE€ & gerte, FTTH et ADSL ont des
performances beaucoup plus proches que ne le suggéreelétuBTT et des pertes.

Dans le prochain paragraphe, nous appliquons une apprachéne pour la décomposition
des temps de transferts, pour le cas du trafic de recherchglésde but ici est de découvrir I'im-
pact des facteurs spécifiques comme l'application et Fauiion avec I'utilisateur, et d'informer
ainsi la comparaison des technologies d'acces, pour le ttafrecherche Google.

C.9.2 Résultats

La méthode d’analyse que nous utilisons consiste en depe®t®ans la premiere étape, le
temps de transfert de chaque connexion TCP est décomposdsarups délais que nous pouvons
attribuer a des causes différentes, par exemple, I'apjaicau le chemin de bout en bout.

A la fin de I'étape 1, chague connexion bien formée associéw daacherche Google, elle est
transformée en un point dans un espace de 6 dimensions (trm®paration des données, le
temps théorique et le temps résiduel pour chacun du clight sérveur).

Pour comprendre ces résultats, nous utilisons dans un@deziétape, une approche de grou-
pement pour découvrir les grandes tendances observableessdifférentes traces.

L'application des t-SNE a nos données a 6 dimensions comaitrésultats de la Figure
C.17(a). Ces résultats indiquent qu’un regroupement elaéxiste dans nos données. En outre,
une valeur raisonnable pour le nombre de clusters se situe Bret 10. La droite de la Figure
C.17(a) suggere que certains groupes sont dominés parammiegie d'acces spécifiques tandis
gue d’autres sont mixtes. Nous avons fixé le nombre de gralges|'algorithme de Kmeans a 6.

La Figure C.17(b) illustre les 6 clusters obtenus par apptiac de Kmeans. Nous utilisons
les boites a moustaches pour obtenir des représentatiomngactes des valeurs correspondantes
de chaque dimension. Nous indiquons, sur le dessus de clhyemue, le nombre d’échantillons
dans le cluster pour chaque technologie d'acces.

Nous utilisons le méme nombre d’échantillons pour chaqcdentgogie d’accés pour empé-
cher toute partialité dans le regroupement, ce qui nousdienil000 échantillons, en raison de la
courte durée de la trace FTTH. Dans la Figure 7.6(b) noussairacé la taille des transferts de
chaque cluster et leur débit applicatif.
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Nous observons que les clusters obtenus avec Kmeans aordesy a peu prés la projec-
tion obtenue par le t-SNE, comme indiqué dans la partie ahgade la Figure C.17(a), ou des
échantillons de données sont indexés a l'aide de leur faritdans les clusters dans Kmeans.

Avant de plonger dans l'interprétation des différentesiges, nous observons que trois d’entre
eux représentent la majorité des octets. En effet, la Figui@) indique que les clusters 1 et 2 et
6 représentent 83 % des octets. Nous commencons d’abordparconcentrer sur les groupes
dominants.

Les groupes 1, 2 et 6 sont caractérisés par des grands tengpépigation des données du
c6té client, c’'est a dire de longs temps d’attente du céentkntre deux requétes consécutives.
Ces valeurs de temps d’attente sont de I'ordre de quelquesdes, ce qui est compatible avec les
actions humaines. Ce comportement est en corrélation aisation les moteurs de recherche
typique, ou l'utilisateur soumet d’abord une requéte asmlgnsuite les résultats avant une pour-
suite sa requéte ou en cliquant sur un des liens de la pagsutaté

Nous pouvons également observer que les clusters 1 et 2 ggosent principalement de
connexions cellulaires tandis que le cluster 6 se compasmtsliement de transferts FTTH. Cela
signifie que I'algorithme de clustering a d’abord basé sa#sa#tsur le warm-up, puis sur la tech-
nologie d’accés. Comme I'ADSL offre des caractéristiquasrimédiaires par rapport aux traces




175

1
Cluster4: 5% Clusterl: 31% 0.8
# | /| Cluster 1
e 1 08 § | /| Cluster2
Cluster2: 28% [a} a |-~ Cluster 3
Oo. Co4 i Cluster 4
! —Cluster 5
0.2 H ---Cluster 6,
Cluster5: 3% Cluster6: 24% [ i ;
Cluster3: 9% 0= 0 e T
Data Bytes AL Throughput(Kbits)
(a) Volume en Octets (b) Paramétres des Clusters

FIGURE C.18 — Principaux Paramétres du Traffic de Recherche de &oogl|

FTTH et cellulaire, les transferts ADSL offrent des grandsm-up dispersés sur les groupes 1, 2
and 6.

Considérons maintenant les groupes 3, 4 et 5. Ces group&seapent une petite fraction
des transferts, et sont caractérisés par plusieurs castigiges notables. Premieérement, nous ne
trouvons presque pas de connexions cellulaires dans cgersluDeuxiémement, ils totalisent les
deux tiers des connexions ADSL et FTTH, méme si elles sorg pétites que celles dans les
groupes 1, 2 et 6 - voir la Figure C.18(b).

Troisiemement, ces clusters, contrairement aux group2®t6 ont des valeurs négligeables
de temps de préparation des données du coté client.

Une analyse plus approfondie de ces groupes a révélé gofilsspondent a des connexions
trés courtes avec un échange de deux trames HTTP. En faigupe 3 correspond aux cas ou un
client ouvre la page de recherche Google Web dans son nanrgaternet sans effectuer aucune
demande de recherche, puis aprés un temps-mort de 10 ssctinderveur de Google ferme la
connexion. D'autre part, les clusters 4 et 5 correspondeesaequétes GET et des réponses OK,
correspondant a une recherche effective, la principaférdifice entre les groupes 4 et 5 étant les
valeurs de RTT et la taille de connexion.

Cluster 1 | Cluster 2 | Cluster 6 Cluster 3 | Cluster 4 | Cluster 5
Large Warm-up A Negligible Warm-up A
Large Transfers Short Transfers (exchange of 2 HTTP frames)
Large RTT (Majority of CELL) Short RTT Google servers finish current connection after an idle
(Majority of period of 10 seconds
FTTH)

Short Pacing B | Large Pacing B

Large Transfers | Short Transfers

Large RTT Short RTT
] warm-up A [ ]RTT [] server Time-out
[ connection Size [_] Pacing B B Request Type

FIGURE C.19 — Vue Global des Groupes
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Plus généralement, nous pensons que notre méthode, laltsgest appliquée au profilage
d’'autres services, permettra d'identifier des groupes guvent étre liés au comportement du ser-
vice a I'étude, tandis que d’autres concerneront les cotapmnts anormaux ou inhabituels. Ces
dernier pourraient nécessiter par la suite une étude plusfamdie. Pour le cas du moteur de re-
cherche Google, nous ne croyons pas que les groupes 3, 4 geSpgandent a des anomalies qui
affectent la qualité de I'expérience des utilisateurs. $\aons trouvé que trés peu de cas ou I'im-
pact du serveur a été dominant sur les performances et sualiééqd’expérience de ['utilisateur
final.

C.10 Conclusion

Les performances d’Internet ont été mesurées de diversessalepuis sa création par le ré-
seau ARPANET en 1969. Un certain nombre de tendances ooté@ftefacon dont Internet a été
mesuré dans ce laps de temps. Certaines tendances dépdmtiamélioration de la technologie :
la technologie Internet a changé au fil du temps, ce qui a readaines mesures plus difficiles
a obtenir et d’autres plus faciles. D'autres tendances desiguestions d'échelle : le prodigieux
essor de I'Internet nous a forcé a faire évoluer les métsiquoair mesurer I'évaluation des per-
formances, et a déclenché le développement de nouvellé®dest de mesure ainsi que les outils
statistiques. Enfin les tendances sociales (réseaux pdpuspet 'importance économique de la
communication sur Internet, ont modifié la nature des mesuéeessaires pour I'évaluation de
performance.

Principalement, ces tendances découlaient de l'interactntre les objectifs de mesure et
de ses difficultés en méme temps. Dans cette thése, nous examsné différentes difficultés
gue peuvent rencontrer les experts lors de la collecte deégsnavec les nouvelles architectures
disponibles (spécialement avec I'usage d’APN, proxy etdéssaux d’entreprises) et ensuite, nous
avons proposé une nouvelle méthodologie pour mettre erdsgdde nouveaux parameétres qui
peuvent influencer la performance percue par le client. Enfins avons discuté des approches
pour détecter des anomalies dans Internet et les envir@mterd’entreprise.

Dans ce dernier chapitre, nous cherchons a modéliser qseltaractéristiqgues importantes
d’Internet, la mesure de trafic entreprise et & montrer lebl@matiques ou nous réussissons a
progresser, et ou plus d'efforts doivent étre effectuéemisNallons maintenant revoir les points
abordés par cette thése et ainsi présenter nos principaiésbations. Enfin, nous donnons notre
vision sur la fagon dont ces recherches pourraient étrelégsndans 'avenir.

Défnition des Petits transferts et Impact de I’Application.

Tout en analysant les performances des transferts TCPoagsssommes concentrés sur les
transferts qui correspondent a des transferts bien formésnaplets, du point de vue TCP, et
qui remplissent les critéres suivants : une étape complétabilissement de connexion, au moins
un segment de données TCP dans chaque direction, et la commmit se terminer soit par un
drapeau FIN ou RESET.

Nous avons introduit aussi une premiére définition d’uneneaion TCP courte, concept cou-
ramment utilisé dans la littératurélne courte connexion TCP est une connexion bien formée
incapable d’accomplir un FR/R, aprés une détection de pagtpaquetsNous avons présenté un
apercu de I'impact de l'application, sur les transferts TR&us avons montré que si les pertes
peuvent avoir un impact négatif sur les transferts TCP spligpplication affecte de maniere
significative le temps de transfert de presque toutes lassaons.

Nous avons démontré que la sensibilité a la perte conces® las grands transferts dont la
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taille des trains échangés fait moins de 3 paquets. Unectletéristique a une influence directe
sur la capacité de TCP a se remettre d’'une perte a l'aide datrensmission rapide.

L'architecture de I'opérateur doit étre prise en compte Nous avons souligné que, dans les
réseaux modernes comme les réseaux cellulaires, I'estimae latence se révéle complexe. Nous
avons démontré que la latence peut étre sous-estimée en dad’utilisation de nouveaux mé-
canismes ou de services, comme l'adaptation de contenu dacdélération des applications.
Nous étudions comment ces mécanismes impactent nos meslagserformance percue par les
utilisateurs finaux. Le message clé ici, est que plusiewsoditifs spécifiques pourraient affecter
les mesures de performance dans les réseaux cellulaisssgelas. Certains doivent étre pris en
compte lorsque nous effectuons les études de mesure.

Les suspects habituels ne suffisent pas a expliquer les parftances Lors de notre analyse
nous avons utilisé une approche classique pour compargetgmances des différentes techno-
logies d’acces : cellular, FTTH et ADSL, afin d'évaluer si tdi&nts profitent pleinement de leur
acceés a large bande. Nous nous sommes concentrés sur lefadeuxs clés qui influencent le
débit des transferts TCP (formule de débit TCP [89]), le Wenperte et la latence, qui suggérent
gue la performance de FTTH devrait sensiblement surpastgrde '’ADSL, qui devrait a son
tour surpasser celui des la trace cellulaire. Il s’est agégtla réalité est plus complexe. Bien que
la technologie cellulaire offre un débit nettement plustpeh accord avec le RTT et les taux de
perte, FTTH et ADSL ont des performances beaucoup plus psoglie ce que le RTT et les pertes
suggérent. Nous concluons que se concentrer sur les pagancitssiques d'analyse de perfor-
mance ne conduisent pas a une pleine compréhension déhitpearles client.

Analyse plus fine des performanceNous avons proposé une méthode de décomposition des
transferts de données pour chaque connexion bien formappildche développée est illustrée
avec I'ensemble des traces recueillies. Notre approchegial’extraire automatiqguement I'im-
pact de I'application, I'acces, le serveur et le comportende client.

L'application de cette technique pour le service de redfegoogle a démontré qu’elle fournit
des résultats facilement interprétables. Elle permet yample de localiser I'impact de I'utilisa-
tion ou les caractéristiques de la technologie d'acces.

Proposition d’approches pour détecter les comportementsreormaux. Notre méthode a
permis d’identifier les causes de certains probléemes demeahce, qui peuvent étre soit des
pertes soit quelques moments d’inactivité pendant la pafipa des données ou du transfert. Nous
avons appliqué cette méthodologie a plusieurs tracesspmnelant a des trafics Internet ou entre-
prise. Nous avons démontré que les acces filaire (ADSL et BETBans fil (cellulaire) adoptent
des stratégies différentes pour récupérer des pertes detgagt que les stratégies observées sur
la technologie cellulaire semblent plus efficaces que #D$L et I'FTTH.

Nous avons montré que notre méthode de profilage des trem@fardes parties de transferts)
affectés par des pertes est en mesure de découvrir difféngmds d’anomalies, certaines étant
liées a la configuration des serveurs et d'autres partaggdysaeurs services.

D’autre part, a travers I'étude d’un environnement d’'gntise, nous avons proposé deux ap-
proches de détection d'anomalies. Nous réussissons dafiglefets comportements de plusieurs
connexions anormales, avec différents degrés de criticitdache de la définition du comporte-
ment anormal est plus complexe que dans le cas Internetigalament a cause de I'environne-
ment d’entreprise caractérisé par des applications spéegj par exemple, SYMANTEC, RPC,
etc.
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La principale différence avec le trafic Internet est que lanaissance du comportement de
I'application est trés important (exécuté en arriere-glamon, etc.) pour pouvoir mieux interpré-
ter les résultats.

Enfin, les approches présentées ne sont pas a I'abri de faitgpet nécessitent de remettre
en oeuvre des experts, une fois le probléme identifié. Maifinal, nous croyons que nous avons
déja un outil qui fait un bon travail pour détecter certaiomportements anormaux.

Dans les paragraphes suivants, nous identifions les futassde recherche et les orientations
possibles dans trois catégories : premiérement, la mélibgidp deuxiemement, I'échelle d’ana-
lyse et, enfin, I'architecture de I'approche utilisée.

Quitter le niveau connexion Dans cette thése et la thése de Matti Siekkinen [101], ¢acc

a été mis sur I'analyse des connexions individuelles. Alprd s’est avéré étre un sujet riche et
complexe, ce qui permet d'obtenir de nombreuses réflexionsasperformance percue par les
utilisateurs finaux, ces analyses comportent des limitatapécifiques. Une question cruciale est
gue la dépendance entre les flux n’est pas prise en compts, Bdaucoup de travaux ont proposé
des approches graphe [65, 102, 83] pour identifier I'apfiinaou les comportements des utili-
sateurs. De telles approches sont intéressantes caraligsgstent un apercu de haut niveau des
clients et du comportement des applications. Une poursi#esssante de ce travail, pourrait étre
de combiner ces types d’approches avec notre approche aévbas, au niveau de la connexion,
afin de mieux documenter les résultats obtenus pendant ¢egsos de regroupement que nous
utilisons.

Analyse a grande échelleNous avons été confrontés, dans notre travail a un probdginest
commun a beaucoup d'études d’analyse de trafic : nous avasg paaucoup de temps a déve-
lopper et a calibrer nos techniques d’analyse. De plus,isarrale la taille limitée de nos traces,
nos résultats ne sont pas établis sur une base entiérentidat dtous nous attendons a ce que la
poursuite de ce travail voit I'application des méthodes goas avons développées sur une plus
grande variété de traces, par exemple, plusieurs trackegagels du méme GGSN ou plusieurs
jours/semaines de trafic entreprise.

Cloud computing. Le cloud computing n’est pas seulement un mot a la mode duengm
mais susceptible de devenir I'avenir du serveurs de dontes un grand nombre de scénarios.
Dans un tel contexte, les serveurs ou services distantasoassibles par les utilisateurs finaux et
le probleme de performance devient crucial dans ces eméragnts complexes a la fois au niveau
réseau, mais aussi d’'un point de vue du systéme. Nous namslatis a ce que la méthodologie
gue nous avons développée constitue un point de départ pagmodtiquer les problémes de
performance dans ce contexte.
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