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Abstract

The interest in traffic measurement and analysis has increased tremendously and provides us
with new ways to understand, operate and improve network performance. The heterogeneity of
the Internet is constantly increasing, with new access technologies, new client devices and with
more and more services and applications. On the other hand, the interest of the research commu-
nity to measure enterprise network performance has grown, due to a complexity that sometimes
rivals Internet. These subjects, of crucial importance forservice providers, network managers and
companies have already received substantial attention in the research community. Despite these
efforts, a number of issues still remain unsolved. This thesis is concerned with TCP traffic, which
carries the large majority of the Internet’s traffic. While analyzing the performance of TCP trans-
fers, we focused on the connections that correspond to validand complete transfers, from the TCP
perspective. The present work consists of three parts dealing with various aspects of the challen-
ging task of, revisiting TCP performance, performance study and anomaly detection.

In the first part, we revisit most important works and discussproblems faced when we studied
TCP performance. We present an overview of the impact of the application, on the TCP transfers.
We show that while losses can have a detrimental impact on short TCP transfers, the application
significantly affects the transfer time of almost all short and even long flows. In this part we show
that measurements from passively collected traces can be biased by specific technologies imple-
mented in Cellular networks to boost performance and control users activity.

In the second part, we compare the performance of Cellular, FTTH and ADSL accesses with
traces collected on access networks under the control of thesame ISP. We shows that a study
of classical performance parameters does not lead to a full understanding of client perceived
throughput. Then, we propose and validate a method that drills down into the data transfer of
each well-behaved connection. The Data time break-down approach automatically extracts the
application, access, server and client behavior impacts from passively observed TCP transfers. It
also groups together, with an appropriate clustering algorithm, the transfers that have experienced
similar performance over different access technologies. We then characterize some salient aspects
of analyzing enterprise traffic and we provide an overview ofproblems.

In the last part, we focus on the issue of profiling anomalous TCP connections that are defined
as functionally correct TCP connections but with abnormal performance. Our method enables to
pinpoint the root cause of the performance problem, which can be either losses or some idle times
during data preparation or transfer. We apply this methodology to several traces corresponding
to Internet and enterprise traffic. We demonstrate the existence of specific strategies to recover
from losses on Cellular networks that seem more efficient than what is done currently in wired
networks.
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Résumé

L’intérêt pour l’analyse passive de traces a considérablement augmenté, nous offrant de nou-
velles approches pour analyser et améliorer les performances réseaux. L’hétérogénéité d’Internet
est en constante évolution : nouvelles technologies d’accès, des clients avec mobiles et toujours de
plus en plus de services et d’applications. D’autre part, l’intérêt pour la mesure de performance des
réseaux d’entreprises ne cesse de se développer. Ces sujetssont d’une importance cruciale pour les
fournisseurs de services Internet, gestionnaires de réseaux et des entreprises, puisqu’ils ont déjà
reçu une attention considérable de la part de la communauté de recherche. Malgré ces efforts, un
certain nombre de questions reste ouvert. Dans cette thèse on traite le trafic TCP, qui représente la
majorité des flux Internet. Lors de cette analyse, nous nous concentrons sur les connexions com-
plètes, du point de vue TCP. Le présent travail se compose de trois parties traitant différent aspects
sur les approches actuelles d’analyse de performances de TCP, l’étude des performances et la dé-
tection d’anomalies de niveau applicatif.

Dans la première partie, nous présentons les travaux les plus importants, les traces réseaux sur
lesquelles nous nous sommes basé ainsi que les problèmes rencontrés lors de l’étude des perfor-
mances de TCP au niveau applicatif. Nous présentons un premier aperçu de l’impact de l’applica-
tion sur les transferts TCP. Nous démontrons que si les pertes peuvent avoir un impact négatif sur
les petits transferts TCP, l’application affecte de manière significative le temps de transfert de la
majorité des flux. Dans cette partie, nous démontrons que certaines mesures peuvent être biaisées
par des technologies spécifiques mises en oeuvre dans les réseaux Cellulaires.

Dans la seconde partie, nous comparons sur des traces passives, les performances de clients
Internet, d’un même operateur sur les trafics : Cellulaires,FTTH et ADSL. Nous montrons que
l’étude des paramètres classiques d’analyse de performance ne permet pas d’expliquer totalement
les performances perçues par les clients. Ensuite, nous validons une approche plus fine, permettant
de décomposer chaque connexion TCP, bien formée, en intervalles de temps. Notre approche de
décomposition de connexion TCP permet d’extraire automatiquement l’impact du comportement
de l’application, l’accès, le serveur et le client. Nous regroupons, avec des algorithmes adéquats,
les transferts avec des performances similaires sur les différents types d’accès. Puis, nous propo-
sons une caractérisation de certains aspects de l’analyse de trafic dans un reseau d’entreprise.

Dans la dernière partie, nous nous concentrons sur la problématique de profilage d’anomalies
sur les connexions TCP, définis comme correct mais avec des performances anormales. Notre mé-
thode permet d’identifier la cause des problèmes de performance, qui peuvent être soit des pertes
ou bien des temps perdus lors de la préparation des données oudu transfert. Nous appliquons cette
approche pour le cas de plusieurs traces de trafic Internet etentreprise. Nous démontrons l’exis-
tence d’une adaptation spécifique pour la récupération sur les pertes sur le réseau Cellulaire qui
semble plus efficace que sur les réseaux filaires.
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1

Introduction

The Transmission Control Protocol/Internet Protocol (TCP/IP) is the dominant packet proces-
sing protocol in local and wide area networks. The TCP/IP protocols were initially developed as
part of the research network. In the late 1960s the Advanced Research Projects Agency (ARPA,
now called DARPA) of the U.S. Department of Defence began a partnership with U.S. universities
and the corporate research community to design open, standard protocols and build multi-vendor
networks. The Internet is a primary reason why TCP/IP is whatit is today. In fact, the Internet and
TCP/IP are so closely related in their history that it is difficult to discuss one without also talking
about the other. TCP/IP has over the years continued to evolve to meet the needs of the Internet
and also smaller, private networks that use the technology.

In the last 15 years, the interest in data collection, measurement and analysis of traffic has
increased steadily. There has been an immense effort in recent years on various aspects of Inter-
net measurements. Significant progress has been made on manyfronts. Important aspects of the
Internet’s structure have been measured, and some general understanding of how the network is
organized is starting to emerge, e.g, measuring the available bandwidth, capacity, application clas-
sification. However, there are still some missing pieces in the puzzle. In particular, there is a need
for Internet Service Providers (ISPs) to measure the offered services and the performance of their
end clients in order to overcome the identified network problems.

While wide-area Internet traffic has been heavily studied for many years, the characteristics of
traffic inside enterprises remains almost wholly unexplored. Nearly all of the studies of enterprise
traffic available in the literature are well over a decade oldand focus on individual Local Area
Networks (LANs) rather than whole sites. One likely reason why enterprise traffic has gone uns-
tudied for so long is that it is technically difficult to measure. Unlike Internet traffic, which we can
generally monitor by recording a single access link, an enterprise of significant size lacks a single
choke-point for its internal traffic that would ease the measurement task.

From the beginning, the Internet was intended to provide a general infrastructure on which a
wide range of applications could operate - Internet is less atraditional network and more like a
programmable computer. In fact, the design of the Internet envisions two sorts of objectives at the
same time. The ability to support a range of applications is critical, but so is the ability to operate
over a range of new emergent network access technologies such as Cellular and high speed ones,
different than a classical Digital Subscriber Line (DSL).

The most popular are Cellular access, on the one hand, and Fiber To The Home (FTTH) and
Asymmetric Digital Subscriber Line (ADSL) on the other hand. Satellite connections are also
available, but tend to only be practical in cases where no wired connection exists, ,e.g., to connect
isolated Islands.

Nowadays Cellular networks offer the ability to connect to high-speed Internet, that gives full
mobility to consumers. Several technologies are available, such as General Packet Radio Service
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(GPRS), Third Generation (3G), Universal Mobile Telecommunications System (UMTS),etc.
ADSL and cable are arguably the most popular Internet accesses [1], and also in France. It

is a broadband connection technology which enables computers to connect to the Internet using
existing copper wired telephone networks. The main idea of DSL technology is that it works by
splitting the existing telephone line signal into two parts: one for voice and the other for data.

In contrast to DSL, FTTH systems involve the installation ofoptical fiber from homes to a
central point. The fiber technology is now becoming more accessible for residential Internet client.
It promises speeds of up to 100M bit/sec, but costs considerably more than DSL or existing cable
services.

With the emergence of those new technologies to access the Internet, we notice an emergence
of new applications and services. Services previously designed for ADSL lines are now used in
networks with low or high latency.

The need we address in this thesis is the ability to develop a global methodology that allows
to study the performance of heterogeneous access technologies and to attribute performance pro-
blems perceived by the client separately to the specific characteristics of the access technology,
behavior of the server, or behavior of the client. This is indeed a challenging task given that few
seminal works [2, 3] had focused on this problem and developed TCP root cause analysis method,
that allow users to determine from a passively captured packet trace the primary cause for the
throughput limitation. The work by Matti Siekkinen et all constituted a starting point for our TCP
performance analysis. While authors in [2] enumerate a number of causes that limit the through-
put achieved, it was dedicated to TCP connections that carryat least 130 data packets. As short
flows constitute the majority of flows, we decided to address the challenge of devising a generic
methodology of profiling TCP connections, irrespectively of their size.

The task of profiling TCP connections is difficult with the variety of applications and the
evolution of existing ones. Furthermore, with the new generation of access technologies such as
Cellular and Fiber families, service providers have expressed their deep interest in being able to
locate the main factors that limit throughput for Internet clients. It is important for service provider
to demonstrate that poor client performance is not only due to the access link only, as the access
link capacity is the usual suspect.

So far, despite extensive research in the domain, a number ofaspects remain unsolved. In
this thesis, through extensive evaluation, we uncover several formerly overlooked issues, as for
instance, revisiting performances of short TCP transfers and presenting a definition in-line with
their performance : connection unable to perform Fast Retransmit/Recovery (FR/R), after a packet
loss detection.

To tackle the problem of root cause analysis, we adopt a divide and conquer approach, where
we first focus on losses, which are arguably a major cause of performance problems for TCP.
Next, we analyze the transfers or the parts of transfers thatare unaffected by losses. We use a fine
grained methodology, based on TCP data time transfers break-down to profile TCP transfers in
general and discuss how anomalies can be uncovered by applying this technique.

For our work we collected several traces from different environments : traffic Internet from the
network of an European ISP (Cellular, FTTH and ADSL), a wireless hotspot and research lab and
a trace from Enterprise traffic. Those traces were collectedduring different periods of times. The
subtlety of this diversity is to avoid the fact that obtainedresults be biased by locality or temporal
aspects. We intend to propose a global performance analysisapproach with a broad scope and
application agnostic (no assumption is made concerning theapplication on top of TCP) or the
traces considered.
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Thesis Claims and Structure

We make the following claims in this thesis :

I. While losses can have a detrimental impact on short TCP transfers, the application signifi-
cantly affects the transfer time of almost all short - and even long - flows in a variety of ways.
Indeed, the application can induce large tear-down times and it can slow the rate of actual
TCP transfers or affect the ability of TCP to recover using Fast Retransmit/Fast Recovery.

II. Several specific devices might affect classical performance metrics in Cellular networks,
which should be taken into account when performing measurement studies.

III. Round-Trip Time (RTT) and packet loss alone are not enough to fully understand the obser-
ved differences or similarities of performance between thedifferent access technologies,

IV. Our data time break down methodology for traffic analysisenables :

• to present a general approach for traffic analysis based on passive measurements, available
for multiple environments,

• to perform a fine-grained profiling of the data time of transfers that sheds light on the
interplay between service, access and usage, for the clientand server side,

• to attribute performance differences perceived by the client separately to the specific cha-
racteristics of the access technology, behavior of the server, and behavior of the client.

V. We aim at detecting and uncovering the reason behind ill-behaved TCP transfers, where a ill-
behaved connection here is a functionally correct TCP connection – normal set-up/tear-down
and actual data transfer – that experienced performance issues, e.g. losses or abnormally long
waiting times at the server side.

VI. Our approach for detecting and uncovering the reason behind ill-behaved TCP transfers, is
able to isolate various types of anomalies, some being related to the configuration of servers
and some other being shared by several services.

Our thesis deals with different aspects of traffic measurements for the case of heterogeneous
environments. In addition to the introduction and final conclusion, we divide the content of this
thesis in three main parts.

In the first part, we introduce the world of Internet/Intranet measurements and revisit most of
the important related works. We highlight problems faced when we revisited TCP performance.
We introduce a new definition of short transfers. This part includes 3 chapters.

In Chapter 1, we briefly review the most important works that we focused on, and present a
first overview of the problems tackled in the thesis. We then present InTraBase - the traffic analysis
tool (used to manipulate all our traffic traces). We summarize the main characteristics of traces at
the packet level used in this work to carry out our traffic analysis.

In Chapter 2, we highlight the interplay between TCP and the application on top. We discuss
the definition commonly made of short TCP transfers. We observe that, while losses can have a
detrimental impact on short TCP transfers, the applicationsignificantly affects the transfer time of
almost all short - and even long - flows in a variety of way.

In Chapter 3, we study the performance of Cellular access networks and we bring to light
phenomena introduced by Cellular core network equipments,which can bias measurements. As a
second step we investigate the performance of Cellular networks, focusing on two key services :
mail and webmail.
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In the second part we compare the performance of Cellular, FTTH and ADSL accesses with
traces collected on access networks under the control of thesame ISP. We show that loss and access
impacts are not only the main parameters that influence clients perceived performance. This part
includes 5 chapters.

In Chapter 4, we report a classical approach to compare performance of different access tech-
nologies in order to conclude if clients fully benefit from their broadband access. We assess the
stability of the traffic for the traces that we have to study. We briefly analyse usual suspects and
parameters that can impact the results of different access technologies.

In Chapter 5, we propose a new analysis method that uncovers the impact of specific factors
like the application and the interaction with user, and thusinforms the comparison of heteroge-
neous access technologies.

In Chapter 6 we validate key elements of our analysis method,namely the data time breakdown
approach and the clustering technique. This validation is achieved through simulations carried out
using the Qualnet simulator.

In Chapter 7 we address the problem of comparing the performance perceived by end users
when they use different technologies to access the Internet. We apply our data break-down and
a clustering approaches to identify groups of connections experiencing similar performance over
the different access technologies.

In Chapter 8, we revisit some salient aspects of enterprise traffic. Our goal is to provide an
overview of the problem faced when performing measurementsin such environments such as ba-
sic RTT estimation. We also present a fine-grained profiling of the most popular applications used
in the network we measure.

The last part (III) of the thesis focuses on the issue of profiling anomalous TCP connections
that are defined as functionally correct TCP connection but with abnormal performance.

In Chapter 9, we present a methodology to profile anomalous TCP connections, which leve-
rages the approach proposed previously and applied to Internet and intranet traffic for profiling
all the TCP traffic. We demonstrate the existence of specific strategies to recover from losses on
Cellular network that seem more efficient than what is done currently in wired networks. When
focusing on the transfers or parts of the transfers that are not affected by losses, we demonstrate
that our approach is able to detect and classify different classes of anomalies, especially anomalies
due to transient or persistent - provisioning - problems at the server side.

In Chapter 10, we apply a methodology similar to the one proposed in Chapter 9 to the case of
characterizing TCP traffic anomalies for enterprise traffic.

Each part starts with a short introduction, contributions summary. Thesis conclusions and pers-
pectives chapter concludes the thesis and gives our opinionon how this research could be extended
in the future.
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Part I

Challenges in Assessing TCP
Performance
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Overview of Part I

In Part I we revisit the most important related works, we highlight problems faced when we
revisited TCP performance. Then we motivate our approach ofdata time break down.

In Chapter 1, we present the research efforts related to the different parts of the thesis and we
provide a high level overview of the challenges we address inthis work. We summarize the main
characteristics of the traces captured at the packet level,used in this work to carry out our traffic
analysis.

In Chapter 2, we highlight the interplay between TCP and the application on top. We discuss
the definition commonly made of short TCP transfers - transfers that cannot rely on the Fast
Retransmit/Fast Recovery (FR/R) mechanism - with the emergence of new mechanisms to improve
the performance of small transfers, e.g.limited transmit. We present an overview of the impact of
the application, on the TCP transfers. We show that while losses can have a detrimental impact on
short TCP transfers, the application significantly affectsthe transfer time of almost all short - and
even long - flows in a variety of way.

In Chapter 3 we highlight that measurements from passively collected traces can be biased by
specific technologies implemented in Cellular networks to boost performance and control users
activity. Also, we cast a first look to two key Internet services : mail and webmail in order to
identify factors that lead to different perceived performance for the case of Cellular users.

In summary, this part essentially describes challenges of traffic analysis and presents guide-
lines to use in order to uncover the impact of specific factorslike the application and the interaction
with user, and thus informs the comparison of access technologies, presented in Part II.
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Chapter 1

Overview of Challenges

1.1 Introduction

In this chapter, we present the research efforts related to the different parts of the thesis and
we provide a high level overview of the challenges we addressin this work. We then present an
overview of InTraBase - the traffic analysis tool, used to manipulate the traces and to implement
the algorithms we developed. We summarize the main characteristics of the traces captured at the
packet level, used in this work to carry out our traffic analysis. Those traces were collected in
heterogeneous wireless and wired environments, which highlight the wide scope of our study of
traffic analysis performance.

1.2 Short TCP flows

TCP carries 95% of Internet traffic and constitutes 80% of thetotal number of flows in the
Internet [4]. A large majority of TCP flows are short lived, also known as ’Mice’. This highlight the
importance of understanding the behavior of short lived-flows. For example mice can contribute
about to 6% of global traffic, but represent more than 97% of the total number of flows [5].

1.2.1 Definition of Short TCP flows

Several approaches and definitions have been proposed to present short TCP flows. Some
proposals consider short flows as sessions which are smallerthan a fixed threshold, e.g, 10 kbytes
[6, 7, 8, 9] or 13.5 kbytes [4].

Alternatively, some works [10, 11] define a short connectionas connections spending their
lifetime in the slow start phase when the congestion window (cwnd) is increased exponentially.

A mouse [5] was defined as data transfer comprising a number ofpackets less than or equal to
20 packets ; a flow is terminated if no packets of the flow have been observed for a time period of
5 seconds.

Also, Cumulative Distribution Function (CDF) of HypertextTransfer Protocol (HTTP) res-
ponses size with status 200 (class of status code that indicates that the client’s request was suc-
cessfully received) shows that other definitions can be found. For instance, three plausible values
are specified [12] : 8 kbytes, 16 kbytes and 32 kbytes.



10 1. OVERVIEW OF CHALLENGES

1.2.2 Short TCP Performance Analysis

Several techniques have previously been proposed for the prediction of the transfer time for a
short TCP connection. In [12], two types of predictions are investigated : the estimation based on
the initial RTT and the one based on the performance of recenttransfers.

Authors introduced some modifications to increase the accuracy of predictions approaches
adopting a trace based validation. Cardwell et al [9, 8] propose analytic models to fit TCP beha-
viour under realistic loss rates in the Internet.

Other proposals [4] include a recursive analytical model topredict the TCP performance of
short lived flows in the presence of losses. Ebrahim et al [11]present a systematic study of scena-
rios where short-lived flows severely impact long-lived TCPflows. They demonstrate that in some
cases, a reduction greater than 80% as compared to the throughput achieved in long-lived flows.

1.2.3 Harmful Scenarios for Short TCP Performance

TCP timeout values are based on round-trip time estimationsfrom a flow’s data-ack samples.
When a connection is initiated, TCP uses a conservative timeout value due to lack of such samples
from the connection. These timeout values are large [13] in practice (as large as three seconds).
Loss of the connection establishment (SYN, SYN-ACK) can thus cause significantly increase in
the latency for short flows.

Fast Recovery can be trigged only when the congestion windowis larger or equal to four seg-
ments, which can happen only when the flow has at least seven segments [4].

Ayesta et al [6] present two losses scenarios that can be veryharmful from the performance
point of view and inevitably lead the sender to timeout :

– Congestion window < 1 + number of duplicate Acknowledgements (ACK).
– The remaining amount of data < Number of duplicate ACK * Maximum Segment Size

(MSS), then short flows often do not have sufficient traffic to generate three duplicate ACKs.

In those scenarios, the sender will not receive three duplicate ACKs and will have to rely on
a timeout to detect the loss. Balakrishnan et al. [14] reportrecovery from almost 50% of losses in
web flows via timeout.

Cardwell et al [9] focus on circumstances under which delayed ACKs can cause relatively
large delay for short transfers :

– When the sender sends an initial cwnd of one MSS : in this casethe receiver waits in vain
for a second segment, until finally its delayed ACK timer firesand sends an ACK.

– When the sender sends segments that are not full-sized segments before sending an ACK
or when the sender sends small segments and the Nagle algorithm prevents it from sending
further segments. And the receiver implementation waits for two full-sized segments before
sending an ACK.

Finally, other reasons can slow down short flows transmission [15] :
– Packet dropping : Most routers deploying droptail queuingpolicy discard packets indistin-

guishably under congestion. Because of the poor loss recovery performance, even a small
amount of packet drops can slow down short flows greatly. Furthermore, the retransmission
of these dropped packets also consumes network resources (for example, bandwidth and
buffer space) and makes things even worse.

– High queuing delay : Although routers can provide adequatebuffer space to avoid packet
dropping, short flows still suffer from the high queuing delay because they may be blocked
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by long flows which send tens of packets within one congestionwindow.
Several proposals that attempt to solve one or more of the problems of short flows, have been

proposed and can be mainly classified [16] in three categories : 1) reduce connection overheads
[17, 18], 2) share network state information [19, 20, 21, 14,19, 22] , and 3) improve performance
during slow start [23, 24, 25, 6, 26].

1.3 Performance Analysis

1.3.1 The Challenge of Comparing Performance of Different Access Technologies

The domain of Internet measurements is rich with a number of different works. For our case
we were especially interested by comparing the performanceof heterogeneous wired and wire-
less networks. We enumerate the most important works from our viewpoint, i.e., we studied the
performance of different accesses technologies.

1.3.1.1 Wired Networks

While residential broadband Internet access is popular in many parts of the world, only a few
studies have examined the characteristics of such traffic. Users of residential broadband connec-
tions will often have different goals than those in other environments, and are not subject to the
same sorts of strict acceptable use policies that may regulate their access at work or at school,
such as prohibitions against accessing certain Web sites oremploying certain applications. Optical
technology plays a key role in new telecommunication networks. While this technology has been
used for a long time in backbone networks, it progressively becomes available up to the end user
through the deployment of FTTH access networks. The bit rates now available for end users reach
very high values. Over the past few years, an unprecedented increase in Internet traffic has been
observed worldwide, particularly in France due to high penetration rate of fiber-based broadband
access.

In [27] the authors analyze passive traffic measurements from ADSL and FTTH commercial
networks under the control of the same ISP (Orange). Packet-level traces are used to evaluate the
impact of the new fiber access network on traffic characteristics. They demonstrate that only a
minority of clients and flows really take advantage of the high capacity of FTTH access. The main
reason is the predominance of Peer to Peer (p2p) protocols that do not exploit locality and high
transmission capacities of other FTTH clients. The use of FTTH provides a slightly improved per-
formance for the most commonly used peer-to-peer protocols. However, at the current deployment
level, measurements show no increase in peer-to-peer traffic locality.

In [28] the authors report aggregated traffic measurements collected over 21 months from
seven ISPs covering 42% of the Japanese backbone traffic. In this study, residential broadband
traffic accounts for two thirds of the ISP backbone traffic andis increasing at 37% per year, which
will force significant reevaluation of the pricing and cost structures of the ISP industry. Authors
further investigate residential per-customer traffic in one of the ISPs by comparing DSL and fiber
users, heavy-hitters and normal users, and geographic traffic matrices. The results reveal that a
small segment of users dictate the overall behavior ; 4% of heavy-hitters account for 75% of the
inbound volume, and the fiber users account for 86% of the inbound volume. About 63% of the
total residential volume is user-to-user traffic.
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The study of dominant applications exhibit poor locality. The distribution of heavy-hitters is
heavy-tailed without a clear boundary between heavy-hitters and normal users, which suggests
that users start playing with peer-to-peer applications, become heavy-hitters, and eventually shift
from DSL to fiber.

Work in [29] constitutes an initial exploration of residential broadband Internet traffic, where
authors present a broad range of dominant characteristics of residential traffic across a number
of dimensions, including DSL session characteristics, network and transport-level features, pro-
minent applications, and network path dynamics. Authors describe the network activity for more
than 20,000 residential DSL customers in an urban area. Among the several observations presen-
ted the most important one is : HTTP traffic, not peer-to-peer, dominates. Overall, HTTP makes
up nearly 60% of traffic by bytes while peer-to-peer contributes roughly 14%. DSL sessions run
quite short in duration, with a median between 20 and 30 min. The short lifetime affects the rate of
IP address reassignments, and find 50% of addresses are assigned at least twice in 24 h, and 1 to
5% of addresses more than 10 times, with significant implications for IP address aliasing. Delays
experienced from the customer premise to the ISP’s Internetgateway often exceed those over the
wide-area path from the gateway to the remote peer (median local component of 46 ms , versus a
median remote component of 17 ms). 802.11 wireless networking in customers’ homes, and TCP
settings on the residential systems, appear to limit the achievable throughput.

In [2], the authors pinpoint factors that limit ADSL performance through the analysis of a
24-hours packet trace containing TCP traffic of approximately 1300 residential ADSL clients.

The authors underscore a low utilization of upload and download capacity for most of the
clients. To carry out the study (see Section 1.5.1), they rely on a TCP Root Cause Analysis Tool
(RCA).

Application of RCA shows that in over 90% of the cases, the lowutilization is mostly due to the
p2p applications clients use, which limits the transmission rate and not due to network congestion.
For instance, p2p applications typically impose upload rate limits to avoid uplink saturation that
hurts download performance.

1.3.1.2 Wireless Networks

The past few years have seen a fast growth in Cellular data network technologies in terms of
available services and coverage/usage extent ; smartphones and other advanced portable devices
(e.g., iPad), and a wide variety of mobile telecommunication applications (such as mobile web,
video conferencing, voice over IP, online social networking, online gaming, e-commerce, etc.).
Technology advances in these areas, device, and application form a virtuous circle that further
stimulates more technical innovation and drives popularity in the use of mobile applications even
higher. 3G wireless communication has increasingly becomean integral part of daily life. Rising
together with the ever maturing technologies is users’ expectation of the 3G service-users are loo-
king beyond basic service availability and starting to demand higher service performance. Thus
it is of interest to study the performance of new Cellular networks with available application like
p2p, streaming and video conference, designed to wired networks. Several measurement works
on 3G networks have been done to obtain a better understanding of 3G networks and to identify
possible performance problems.

In [30], authors cast a first look on mobile hand-held device usage from a network perspective
and what kind of services users are interested in when they are at home and have access to all
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services. They base their study on anonymized packet level data representing more than 20,000
residential DSL customers (not mobile usage in Cellular networks), spanning a period of 11 month,
for several 24 hours traces. The purpose was to observe the behavior of mobile users when they
are connected via WiFi at home and compare their traffic patterns to the overall residential traffic
characteristics.

The authors find that iPhones and iPods are by far the most commonly observed mobile users.
This has an impact on the most popular mobile applications : Safari (Apple’s browser), iTunes,
and Weather. The largest fraction by volume of HTTP content is multimedia. Comparing HTTP
object sizes of overall and mobile devices traffic, the authors find that mobiles HTTP objects are
on average larger. The contribution of mobile devices to theoverall traffic volume is still small,
but rapidly growing, especially compared to the overall traffic growth.

In [31] the authors present a study of the mobile data traffic characteristics by analyzing the
data traffic trace from a commercial CDMA backbone network. Several characteristics of mobile
traffic are presented. For instance, authors show an uneven in/outbound traffic utilization at the
mobile, a low average packet size, a short session length, and a high retransmission ratio. Mobile
traffic significantly differs from wired residential traffic. The authors report a retransmission rate
of 80% and indicate that this observation is due unneeded retransmission. It generates a waste of
network bandwidth and negatively influences the transparency of network usage billing. In addi-
tion, they correlate short session length with the temporary usage of user behavior in mobile data
network. We note that this extremely high retransmission rates has not been reported in any other
studies on wireless traffic, which sheds suspicion on this result.

In [32], the authors present results from a measurement campaign for GPRS, Enhanced Data
Rates for GSM Evolution (EDGE), Cellular, and High-Speed Downlink Packet Access (HSDPA)
radio access, to evaluate the performance of web transfers with and without caching. Results were
compared with the ones of a standard ADSL line (down :1Mb/s ; up :256kb/s). Benchmarks reveal
that there is a visible gain introduced by proxies within thetechnologies : HSDPA is often close
to ADSL but does not outperform it ; In EDGE, the proxy achieves the strongest improvement,
bringing it close to HSDPA performance.

In [33], the authors quantify the improvement provided by a 3G access compared to a 2G
access in terms of delays and throughput. Authors measure performance metrics for ISP managed
live Television (TV) and Progressive Download (PDL, e.g. YouTube or Deezer).

First they show that for wired access networks (ADSL and FTTH) the average number of
servers accessed per subscriber is one order of magnitude lower on the mobile trace, due to the
absence of P2P and different user behaviors. Authors show that the Web is still the most popular
application for Cellular access. Then they quantify the performance gain from 2G to 3G and show
that 3G allows users to experience both higher TCP throughputs and shorter delays. Focusing on
the user experience when viewing multimedia content, they show how their behavior differs and
how the radio access type influences their performances.

They observe that live TV streams only suffer from moderate packet losses thanks to conser-
vative encoding bitrates chosen according to the radio access type, and note that the quality of
live TV streams is high, explaining the popularity of this service. By focusing on the number of
playback interruptions, they conclude that PDL streaming allows to efficiently deliver both video
and audio content over a 3G access. 2G PDL video streams are often perturbed by interruptions.

In [34], the authors identify and study the most important factors that impact user perceived



14 1. OVERVIEW OF CHALLENGES

performance of network applications on smartphones. They developed a systematic methodology
for comparing this performance along several key dimensions such as carrier networks, device
capabilities, and server configurations. To ensure a fair and representative comparison, authors
conduct controlled experiments, informed by data collected through 3GTest ; a cross-platform
measurement tool they designed, executed by more than 30,000 users from all over the world.

In this work, the authors study the 3G network and application performance of four major U.S.
wireless carriers including AT & T, Sprint, Verizon, and T-Mobile. They choose popular devices
including iPhone, Android G2 from HTC, and Windows Mobile phones from Palm, HTC, and
Samsung for carrying out experiments. Results show that their performance varies significantly
across network applications.

The four studied different carriers exhibit distinct network performance in terms of throughput,
RTT, retransmission rate, and time-of-day effect [34]. TCPthroughput, RTT, and retransmission
rate vary widely even for a single carrier in measurements taken at different times and locations,
e.g., downlink throughput ranges from 50 kbps to 4 Mbps for AT& T, with the median value of
about 1 Mbps. The wireless delay in the 3G network dominates the whole network path delay,
e.g., latency to the first hop is around 200 ms, which is close to the end-to-end Ping latency to
landmark servers distributed across the U.S. Besides networks, devices heavily influence applica-
tion performance. Given the same content and network condition, different devices exhibit vastly
different Web page loading time, e.g., the page loading timeof Samsung SCHi760 is consistently
twice that of iPhone. Mobile devices can benefit from new content optimization techniques like the
data URL scheme, e.g., page loading time for GPhone can improve by 20% in their experiments,
despite its already good performance compared to other devices.

1.4 Enterprise Networks

We aim here to present an overview of research activities focusing on enterprise network is-
sues. More specifically, the vast majority of works makes useof measurements collected in wired
or wireless networks of enterprise that encompass campus and networks.

The majority of the studies rely on packet [35, 36] flow (Netflow) level traces [37]. This type
of trace might be complemented with other sources such as SNMP [38] or syslog data [39]. In
addition, information from the lower or higher layers mightbe requested. For the case of wired
network, lower layer data might be topological information[40]. For the case of wireless network,
it might be layer two [41], or physical layer data [42]. As forthe upper layer, studies rely on
operating systems logs [43] or specific application relatedperformance metrics [44].

We list below some fairly general problems faced when analyzing the traffic of enterprise
networks :

– The lack of representativity of each and every specific enterprise networks. This problem in
fact also pops up while studying Internet traffic, e.g., traffic capture in residential networks
in the US varies from traffic observed in residential networks in Europe due to some trends
in the use of applications or new services.

– The complexity of establishing ground truth. Some applications are complex, not well do-
cument and uncommon to the practitioner of Internet traffic.A typical example is Window
services and ERP applications.

– The structure of enterprise networks, where the complexity lies both in the network structure
with its use of VLANs and the server side with the server consolidation and virtualization
trend observed in typical Enterprise networks.
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1.4.1 Measurement Process

A great deal of work has used measurements captured at an enterprise’s access link, which
allows characterization of network activity involving theexternal Internet, but does not shed any
light on activity that stays confined within the enterprise.More recently, studies have drawn upon
measurements made at an enterprise’s core routers [35]

Alternatively, some studies have measured communication on the end-hosts themselves [45].
While this approach yields information about all of a host’straffic including communication that
occurs outside the enterprise in the case of monitoring on a laptop-the measurements it lacks of
a broader context of what is happening in the surrounding network (e.g., network load). A recent
alternative approach presented in [46], was to capture traffic at different Ethernet switch ports.

In [46] the authors presented a number of techniques for calibrating packet traces captured at
switches connecting end hosts in terms of : gain, loss, time and layout.

They rely on the following principles : (i) using one source of packets as unambiguous ’stakes
in the ground’ to hunt for thresholds and compare clocks, (ii) employing expected replication of
broadcast packets to point to missing events from traces andaid in mapping networks, (iii) leve-
raging TCP semantics to identify measurement loss, particularly in terms of seemingly erroneous
acknowledgments for data never observed in transmission, and (iv) leveraging multiple, simul-
taneous data collections to further illuminate unrecordedevents and improve confidence in the
timestamping process.

The authors reveal a predominance of phantoms in switch traces, they see many identical
packets very closely separated in time. Authors define phantoms as identical copies of previous
packets, observed less than 5 msec in the past.

The take away message here is that measurement of enterprisenetworks is a difficult task that
has received little attention so far.

1.4.2 Preliminary Analysis

In this paragraph, we report on studies that do not rely on anyadvanced data mining technique
but rather use techniques based on descriptive statistics to investigate performance of enterprise
networks.

In [35], the authors presented a first work of its kind focusing on the traffic of large enterprise
network, collected traces at LBNL (Lawrence Berkeley National Laboratory). Those (publicly
available) traces amount for 100 accumulated hours of traffic, although given the large size and
even more the complex structure of the LBNL network, they could not capture at a given time
instant all the traffic flowing inside the network. They relied on Bro1, an intrusion detection system
that can do deep packet inspection, i.e., look for specific signatures within the packet payload of
a trace, to identify the applications having generated traffic in the traces. In particular, they have
extended Bro, or more precisely its signature base, to recognize Windows protocols and network
file services protocols.

They first look at the overall traffic comparing internal and external traffic volumes. They also
looked at the fan-in and fan-out of local peers, given that some local peers are servers accessible
from the Internet. Next, they focus on specific applications, some being used in both worlds, e.g.,
HTTP or mail and some being intranet specific like Windows services and network file services.

The article is mostly descriptive, but they pinpointed somespecific phenomena like the exis-
tence of failures to establish specific connections internally. They leveraged their knowledge of
protocol semantics to check if failures are widespread among local peers (it turns out to be the

1. http ://www.bro-ids.org/publications.html
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case) or not. However, they did not try to identify some specific root causes behind those observa-
tions. They looked also at the network load. Specifically, they identified traffic peaks at small time
scales, indicating the possible existence of transient overload periods. They also addressed the
load problem from the end hosts point of view by computing theamount of TCP retransmissions
experienced by connections. They observed that TCP retransmission rates could reach values up
to 1%, which is less than what is observed for Internet traffic, though still surprisingly large for an
intranet.

In [47] the authors present an initial step towards assessing performance within enterprise net-
works. This work is somehow the sequel of [35] and uses the same data set. The authors base their
analysis on a dataset consisting of switch-level packet traces taken at the LBNL over the course
of four months. In this work the authors assess the prevalence of broken TCP transactions, appli-
cations used, throughput of TCP connections, and phenomenathat influence performance, such
as retransmissions, out-of-order delivery, and packet corruption. The study of prevalent applica-
tion in the enterprise dataset shows that most applicationsare unbalanced in that they contribute a
significant fraction of connections or bytes but not both.

The authors show that out-of-order packet delivery is much more rare, with 0.0035% of data
packets, than observed for wide-area traffic, and likewise packet corruption and replication. Addi-
tionally, they find that 0.5% of TCP senders experience at least one retransmission. A wide range
of transfer rates, with connections achieving throughputsbetween 3 and 12 times those seen for
wide area TCP, was observed for internal traffic, which complies with intuition, due to the proxi-
mity of servers and clients and the data high rates of the internal network of typical companies.

1.5 How to Detect TCP Performance Anomalies ?

1.5.1 Internet Traffic

Traffic anomaly detection has received a lot of attention over recent years, but understanding
the nature of these anomalies and identifying the flows involved is still a manual task, in most
cases. Several traffic anomaly detection methods have been proposed. Note that this is different
objective from the detection of traffic anomalies, where thefocus is to detect threats against the
network, e.g. Distributed Denial of Service (DDoS) [48, 49,50, 51, 52].

Some of the techniques look at changes in traffic feature distributions [53] or apply methods
involving the analysis of content or the behavior of each host or group of hosts [54].

More recently, with a new definition of TCP anomaly, Mellia etal [55] propose a heuristic
technique to classify TCP anomalies, i.e., segments that have a sequence number different from
the expected one, such as out-of-sequence and duplicate segments. In [56], the authors consider
the use of the RTTs as a possible signal for detecting networkanomalies.

On the other hand only few works have tried to address the problem of detecting traffic ano-
malies introduced by performance problems of distant server, upper layer application or service
usage. The common view of a TCP transfer is that its transmission rate is limited by the network,
i.e. by a link with a small capacity or a congested bottlenecklink. In [3, 57] the authors defend the
thesis that this view is too restrictive. Instead, the limitation causes may lie in different layers of
the network stack, either in the end-points or in the middle of the TCP/IP data path.

In [3], Zhang et al pioneered research into the origins of TCPthroughput limitation causes.
They propose a taxonomy of rate limitations into (i) application, (ii) congestion, (iii) bandwidth,
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(iv) sender/receiver window, (v) opportunity and (vi) transport limitations, and second applied it
to various packet traces.

In this work the authors examined the rates of flows and the relationship between flow rates
and other flow characteristics. They found that fast flows areresponsible for most of the bytes
transmitted in the Internet. They also observed a strong correlation between flow rate and size,
suggesting an interaction between the bandwidth availableto a user and what the user does with
that bandwidth. They found that the dominant rate limiting factor appears to be congestion and
receiver window limits.

More recently, some researchers [57] designed and implemented a set of algorithms, the root
cause analysis toolkit, for doing root cause analysis of TCPthroughput. They used a classification
of TCP throughput limitations, greatly inspired by [3], andextend the scope of this initial work
and discuss the difficulties of identifying TCP throughput limitation causes through examples.

The Isolate and Merge (IM) algorithm that partitions the packets of a given TCP connection
into application limited periods (ALPs) and bulk data transfer periods (BTPs). A BTP is a period
where the TCP sender never needs to wait for the application on top to provide data to transfer. On
the other hand, when the TCP sender needs to wait for the application on top, we call that period
an ALP. Once BTPs have been identified, the root cause analysis toolkit analyzes them for TCP
and IP layer throughput limitations, i.e. inferring the root causes for the BTPs, which will be the
focus of this paper. As a next step, Siekkinen et all describea methodology to quantify TCP and IP
level throughput limitations that is referred to as the rootcause analysis toolkit. More specifically,
they define a set of quantitative metrics, called limitationscores, that can be computed from the
information contained in the packet headers collected at a single measurement point, and show
how these scores can be used in a threshold-based classification scheme to derive a root cause for
a given BTP.

The main limitation of the IM algorithm is that it processes only connections consisting of at
least 130 data packets. This threshold is chosen since a TCP sender that starts in slow start needs
to transmit approximately 130 data packets (assuming a MSS of 1460 bytes) in order to reach a
congestion window size equal to 64 kbytes, which is a common size for the receiver advertised
window. One of the starting points of this thesis work is the importance of also profiling the
performance of short flows, and more generally of flows of any size.

1.5.2 Enterprise Traffic

Diagnosing problems in enterprise networks is challengingand complex. Modern networks
have many components/services that interact in complex ways. Configuration changes in seemin-
gly unrelated files, resource/components elsewhere in the network, and even ’just a software up-
grades can ruin what worked perfectly yesterday. Thus, the development of tools to help operators
diagnose faults has been the subject of much research and commercial activity [58, 59, 60, 61, 40].

The main difference between those tools and the ones described in the previous paragraph
for Internet traffic is that in the context of enterprise networks, the sets of clients and servers are
limited and relatively stable, which enables to feed the algorithms with much more information to
infer the root of the performance problems in this type of network.

The systems for large enterprises, such as Sherlock [58], target only performance and rea-
chability issues and diagnose at the granularity of machines. They essentially sacrifice detail in
order to scale. Other systems, such as Pinpoint for online services [60] and SCORE for ISP net-
works [40], use extensive knowledge of the structure of their domains. Extending them to perform
detailed diagnosis in enterprise networks would require embedding detailed knowledge of each
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application dependency and failure mode. The range and complexity of applications inside mo-
dern enterprises can make this task difficult.

In [43], the authors of Sherlock adapt their technique to thecase of small enterprise networks.
It enables detailed diagnosis by harnessing the rich information exposed by modern operating sys-
tems and applications. A key challenge in their approach is to be application agnostic. They rely
on a large number of heuristics to address many problems likethe correlation that exists among
the variables exposed by the operating system that they do not know a priori. The resulting solu-
tions appear quite complex due to the many heuristics, even though the complexity of the problem
requires such an empirical approach.

Troubleshooting of Enterprise Traffic, with a profiling of hosts approach is a topic that has
received a significant attention. The purpose is to gain a logical understanding of the role played
by hosts in a network [36, 62] or in complement, to combat malicious activities.

In [36], the authors tackle the problem of role classification of hosts within enterprise networks.
Role classification consists in grouping hosts into relatedroles so as to obtain a logical view of the
network in terms of who is using which resources.

In [62], the authors investigate the use of community of interest as a means to characterize data
networks. Broadly speaking, a community of interest is defined as a set of communicating hosts.
Authors investigate two possible definitions of COIs (popularity/frequency). The main objective
of this work was to assess the stability of their two COI definition over the 11 week by varying
various parameters. As a main conclusion they obtain that COI tends to be fairly stable and abrupt
changes might thus be considered as abnormal behaviors.

In [63], the authors investigate the use of host profiling forenterprise network security. Their
main contribution is a clustering algorithm that aims at grouping nodes with similar communica-
tion profiles over time. The behavior of a host on a given time interval is summarized through a
small set of indicators related to the amount of bytes and packets per destination type and applica-
tion.

In [64], the authors build upon host profiling to propose a newtechnique to mitigate propaga-
tion of malicious activities within an enterprise network.The starting point is to build a profile of
the communications of a host based upon its communication pattern at the transport layer.

Graph techniques constitute an appealing solutions to uncover behavioral characteristics of
network traffic. In [65, 37], Traffic Dispersion Graphs (TDGs) are introduced as a mean to visua-
lize and analyze traffic from a specific network.

Several recent works have tackled the problem of mining network traffic in order to uncover
temporal relations between flows [66]. In [66], the authors present eXpose, a tool that mines flow
level traces to uncover communication patterns in the considered traces. In their approach, a flow
trace is transformed into a matrix where rows correspond to time slices while columns correspond
to flows where for each time slice, it is indicated whether theflow is present or not. To work around
the problem, they propose to use the JMeasure, an entropy based metric.
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1.6 Intrabase

Internet traffic analysis as a research area has experiencedrapid growth over the last decade
due to the increasing needs caused by the massive increase oftraffic in the Internet together with
new types of traffic generated by novel applications, such aspeer-to-peer. Today, the state of the
art in traffic analysis is handcrafted scripts and a large number of software tools specialized for a
single task. The amount of data used in traffic analysis is typically very large.

For our case, we based our analysis on InTraBase, a traffic analysis tool [67] : a reliable and
flexible tool, compared to existing ones [68]. It is a Database Management System (DBMS)-based
approach for traffic analysis. It allows to manage collecteddumps within the Database System
(DBS). In other words, it processes the input data as little as possible prior to loading it into the
database.

The data uploaded into the database is referred to as base data. Examples of base data are
packet traces collected via tcpdump or a similar tool.

Once the base data is uploaded into the DBS, it is processed toderive new data that is also
stored in the database. For instance, it demultiplexes the tcpdump packet traces into connections
by assigning a connection identifier to each packet. All the processing is done within the DBS.

InTraBase is not designed, for instance, to monitor the health of a large ISP’s network in real-
time due to the immense amounts of data that would need to be treated constantly. It is rather an
exploratory tool for fine-grained analysis of Internet traffic. It allows to make multiple iterations
over the analysis process cycle, which is generally impossible with systems specialized into on-
line analysis.

FIGURE 1.1 – Main Tables in InTraBase

The core tables used in InTraBase are described in Figure 1.1[67]. The tabletracescontains
annotations about all the packet traces that are uploaded inthe database. Thepacketstable holds
all packets for a single trace. The two tablesconnectionsand retransmissionshold connection
level summary data for all traces. Thecnxid attribute identifies a single connection in a packet
trace, reverse differentiates between the two directions of traffic withina connection, andtid
identifies a single trace.Cid2tuple is a table to store a mapping between uniquecnxid and 4-
tuples formed by source and destination IP addresses and TCP ports.The attributes of the packets
table are directly from the standard output of tcpdump for TCP packets. The attributes of the other
tables were chosen so that the connection level informationroughly covers that given by tcptrace.
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Processing a tcpdump packet trace with InTraBase includes five major steps [67] :

1. Copy packets into thepacketstable in the database ;

2. Build an index for thepacketstable based on the connection identifier ;

3. Create connection level statistics from thepacketstable into theconnectionstable ;

4. Insert unique4-tuple to cnxid mapping data from packets table into thecid2tuple table ;

5. Count the amount of retransmitted bytes per connection from the packets table and insert
the result into the retransmission table ;

Step 1, copying packets into thepackets table is done as follows : tcpdump is used to read
the packet trace file and the output is piped through a filter program to the database. The filter
program’s primary task is to make sure that each line of text,i.e. each packet, is well-structured
before uploading it into the database. More specifically, each line of text representing a TCP packet
contains all the attributes defined in the packet table. If anattribute is missing, the filter program
adds a special character signifying that its value is null.

The remaining four processing steps are performed with Structured Query Language (SQL)
queries. It would be logical to have the retransmission datacreated in step 5 in the same table with
the other connection level statistics created in step 3, butthe need to use separate SQL queries to
create these two sets of data forces us to use separate tables. The tablepacketsdoes not contain
the4-tuple attributes and, in fact, the reason for performing the processing step 4 is that we can
drop the4-tuple attributes data from the packets table, which saves disk space because we only
store the4-tuple twice per connection (both directions) instead of once for each packet.

FIGURE 1.2 – Global Overview of InTrabase Processing

After the five processing steps the tables are populated withdata from the packet trace and the
user can either issue standard SQL queries or use a set of functions provided for more advanced
querying on the uploaded data. Alternatively, the user may develop his own functions. User can
not limit himself on connection level analysis but also drill down to per-packet analysis.

Intrabase offers the possibility to implement functions inprocedural languages to perform
operations that cannot be done with plain SQL queries. So to perform data analysis we developed
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several functions to compute basic key performance indicators and complex ones to develop our
fine grained TCP performance analysis presented next in thiswork. We present in Figure 1.2 the
general schema of a tcpdump file processing within InTraBase. It is important to note that our main
contribution in InTraBase is situated on the exploitation layer, since we developed several plpgsql
functions to carry out our algorithms of TCP transfer time break-down and anomalies detection.

1.7 Overview of Datasets

We used, throughout the thesis, three different sets of traces. We provide an overview of these
different sets in this section.

1.7.1 Heterogeneous Environments

Table C.1 summarizes the main characteristics of the packetlevel traces used in this work.
These traces were collected from several different environments : the network of a DSL from an
European ISP, a wireless hotspot in Portland and a research lab (Eurecom). Those traces are inter-
esting because of their diversity in terms of access technology and also in terms of applications.
For instance, p2p transfers are banned from the Eurecom network while it represents a large frac-
tion of the bytes for the DSL trace. A wireless hotspot shoulddiffer from a DSL network in that
users tend to focus more on interactive application in such environment and tend to refrain them-
selves from generating large transfers, e.g. applicationsupdates or p2p transfers. As presented in
Table C.1, these traces present several differences in their capture time and location, nature of
traffic, as well as type of users selected. We detail in Section 2.2 the definition of well behaved
TCP connections.

Capture Duration Nb Well-behaved Size Size
day connections connections connections in MB in packets

ADSL 2005-05-31 1 min and 29 s 37790 5873 357.51 743683

Portland 2007-09-14 2 h and 20 min 5051 3798 174.13 352569
Hotspot
Eurecom 2008-10-20 1 h and 1 min 32153 26837 1567.42 2867321

TABLE 1.1 – Heterogeneous Traces : Description

Table 1.2 reports some characteristics of the amount of flows, observed for mainly used desti-
nation and source ports. From presented statistics it is evident that applications using port 80 are
more dominant, with for instance 42% for ADSL trace and 92% for Eurecom trace.

Our objective, with this first set of traces, was to apply our methodology of analysis of TCP
connections, see Chapter 2, and obtain conclusions that were not bound to a specific location. Thus,
while the ADSL trace is extremely short in terms of duration,it features enough connections to
have a statistically sound analysis. However, the trace is not enough to characterize an ADSL trace.
We also used longer traces obtained from Orange to carry morein depth analysis. We present them
in the next paragraph.
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Total Port=80 Port !=80 Port=80 Port !=80
connexions Number of Number of Mean Mean

connections connections data packets data packets
per connection per connection

ADSL 5873 2496 3377 10.55 8.69
Portland 3798 3504 294 18.27 121.95
Hotspot
Eurecom 26837 24855 1982 31.23 69.02

TABLE 1.2 – Port Distribution

1.7.2 Traces from Orange ISP

We study three packet level traces of end users traffic from a major French ISP involving
different access technologies : ADSL, Cellular2 and FTTH. ADSL and FTTH traces correspond
to all the traffic of an ADSL and FTTH Point-of-Presence (PoP)respectively, while the Cellular
trace is collected at a GGSN3 level, which is the interface between the mobile network andthe
Internet. Table C.2 summarizes the main characteristics ofeach trace.

Note that measurements were performed at different time periods during the day to compare
traffic stability and to get conclusions independent from a period of time or users behaviors.

As a consequence it is important to note the large variability and diversity of our considered
data sets which is more accentuated with different users behaviors from one access network to an
other, capture time and used services. For instance Cellular access should differ from FTTH and
ADSL in terms of usage, because Cellular access users tend toa specific temporal usage as e-mail
checking or web browsing ; We can expect further changes withthe introduction of smart phones
and the usage of 3G keys.

Cellular FTTH ADSL
Date 2008-11-22 2008-09-30 2008-02-04

Starting Capture 13 :08 :27 18 :00 :01 14 :45 :02 :03
Duration 01 :39 :01 00 :37 :46 00 :59 :59

NB Connections 1772683 574295 594169
Well-behaved cnxs 1236253 353715 381297
Volume UP(GB) 11.2 51.3 4.4

Volume DOWN(GB) 50.6 74.9 16.4

TABLE 1.3 – Traces From a Major ISP : Description

In the present work, our focus is on applications on top of TCP, which carries the vast majority
of bytes in our 3 traces, and close to 100% for the Cellular technology. We restrict our attention
to the connections that correspond to presumably valid and complete transfers, that we term well-
behaved connections. Well-behaved connections carry between 20 and 125 GB of traffic in our
traces (see Table C.2).

2. Cellular corresponds to 2G and 3G/3G+ accesses as clientswith 3G/3G+ subscriptions can be downgraded to 2G
depending on the base station capability.

3. The Gateway GPRS Support Node (GGSN) is a main component ofthe GPRS network. The GGSN is responsible
for the interworking between the GPRS network and external packet switched networks, like the Internet and X.25
networks.
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1.7.2.1 Applications and Performance

Cellular FTTH ADSL
TCP Port Connection % TCP Port Connection % TCP Port Connection %

80 58.9 80 42.75 80 57.85
8080 17.12 443 2.38 443 4.4
443 7.7 25 2.52 135 4.38
110 2.4 6881 2.3 8080 3.98
143 2 30042 1.36 110 2.91
445 1.7 24350 1.07 445 2.29
993 1.63 51413 0.96 2000 1.41
5223 0.64 110 0.88 25 1.27
5001 0.62 26091 0.83 19898 1.03
995 0.4 4661 0.76 139 1

others 6.89 others 44.19 others 19.22

TABLE 1.4 – A First Classification

It is out of the scope of this work to precisely profile users’ applications within the three
traces we consider. We however performed a rough classification of traffic by identifying popular
destination server’s ports. Table 1.4 reveals that more than 84% of Cellular access connections
targeted ports 80, 8080 and 443 unlike FTTH and ADSL with respectively 45% and 62%. Also,
notice for ADSL and FTTH traces a large fraction of connections with non-trivial destination ports
number, which symbolize p2p applications.
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FIGURE 1.3 – Orange Client Traffic

We would need more sophisticated techniques to fully profilethe applications active in our
trace [69, 70]. However, those figures comply with intuitions : on Cellular access, a majority of
traffic flows over HTTP (browsing, HTTP streaming, Webmail, etc) and on FTTH and DSL access,
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HTTP tends to dominate again (at the expense of p2p transfers) with the rise of HTTP streaming,
e.g., YouTube.

We next turn our attention to per client utilisation of available bandwidth. Figure 1.3 shows the
scatter plot of the traffic volume uploaded and download per user for considered traces. We focus
only on active client : i.e. clients having more than one datapacket in each direction.

The main observation is that Cellular clients tend to download significantly more data than they
upload. This is in contrast to wired networks usage profiles where one observes that a significant
fraction of users upload large volumes of traffic because of p2p applications [69].

A fist explanation is that the usage of Cellular and wired networks are different. In fact for our
case, the majority of Cellular connections are establishedusing mobile phones, which mainly uses
web browsing, streaming or video applications. Also, when users browse Internet pages, they tend
in most cases to download data, unless they use an interactive application requiring uploading data
than download like playing games or completing forms.

This result is also in line with the findings in [30] where the authors observe that the largest
fraction in term of volume of HTTP over mobile devices is multimedia : watching video from
Youtube, listening music from Itunes or downloading applications from Apple Store or Android
Market, induce more download than upload traffic .

1.7.3 Enterprise Traffic

FIGURE 1.4 – Architecture of the Network

Our last set of traces consists of a single trace collected ina enterprise environment, thus
consisting of a set of machines that might communicate either with internal servers or with ma-
chines on the Internet.

Figure C.1 presents a high level view of our network. This networking infrastructure, which
consists of around 800 workstations equipped with a varietyof operating systems. The network
is organized into several Virtual Local Area Networks (VLANs) : servers, staff, DMZ, connected
via a Cisco multilayer switch. We collected a trace of one day(in January 2010) long of all traffic
flowing between the servers and the end users machines withinthe Eurecom network. We restrict
our attention to TCP flows as they represent more than 97% of flows in each trace, and they carry
over 99% of the bytes.
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Table C.3 summarizes the main characteristics of the trace.The one day trace can be divided
in several classes of traffic, according to the source and destination machines. As depicted in
Table C.3 we can notice that client/server traffic dominatesin terms of identified well behaved
connections and exchanged data volumes. Interestingly exchanged data volumes are quite similar,
except for the Demilitarized Zone (DMZ) traffic with more data volume for the upload.

Server/DMZ Client/Server Server/Server
Well behaved 57348 128237 52333
connections

Volume UP(GB) 8.581 127.061 76.290
Volume DOWN(GB) 6.651 114.054 76.365

Volume UP(data packets) 10798530 153704391 61114981
Volume DOWN(data packets) 9268532 145712454 61198436

TABLE 1.5 – Enterprise Trace : Description

1.7.3.1 Applications Break-Down
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FIGURE 1.5 – Eurecom Client/Server Traffic

Figure 1.5 shows the scatter plot of the traffic volumes and data packets uploaded and down-
load per user. We observe that enterprise clients tend to generate the same amount of data volume
for upload and download. This significantly differs from already presented traces from Internet
environments.

In the previous paragraph we have noticed that client/server traffic, e.g., HTTP ; represents
the highest number of TCP connections and the larger volume of data exchanged. In Table 1.6
we report ten most popular targeted destination ports on theserver side, in terms of number of
connections, exchanged data volume and data packets.We observe the presence of new protocols
as compared to legacy Internet traffic, which are typical of enterprise environements, e.g. Server
Message Block (SMB).
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As can be seen from Table 1.6, we notice that the Symantec Endpoint Protection Manager
(SEPM) generates the highest number of TCP connections, butnot the largest exchanged data
volume. With clearly less TCP connections, Lightweight Directory Access Protocol Over SSL
(LDAPS) and Network File System (NFS) generate more data volume.

Server Port NB cnxs UP MB Down MB Datapkts Down Datapkts
Symantec SEP 114130 88.95 2,288.08 154155 1727323

(8014)
SMB 20679 17,448.04 30,031.54 54534755 63508706
(445)

LDAPS 19186 72.94 401.09 411181 1888158
(636)
LDAP 13886 42.23 186.62 85347 278375
(389)

Windows RPC 10524 21.066 9.30 56299 50626
(1025)
epmap 9208 3.69 3.39 29506 29576
(135)
Http 8189 284.95 766.48 437805 849342
(80)

sunrpc 8015 0.78 0.30 8042 8039
(111)
Https 6604 36.95 31.21 103107 70526
(443)

nfs/shilp 4174 36,756.97 17,795.81 34536623 21141082
(2049)

TABLE 1.6 – Eurecom Traffic Overview

1.8 Conclusion

In this Chapter we presented main research works in relationwith our scope of TCP perfor-
mance analysis for the case of Internet and enterprise traffics. We focused on short TCP transfers,
since they represent the large amount of Internet connections. Next, we revisited relevant works in
TCP performance analysis of (i) Internet wired and wirelessaccesses (ii) and enterprise traffic. We
show that main works in TCP anomaly detection focus on security and attack aspects, and neglect
the impact of new applications and remote server impacts in throughput limitation.

We then presented InTraBase - the traffic analysis tool, usedto manipulate the traces and to
implement the algorithms we developed.

Based on a DBMS approach it allows to manage collected dumps in order to processes the
input tcpdump file as little as possible prior to loading it into the database. Finally, we summari-
zed the main characteristics of the traces captured at the packet level, collected in heterogeneous
wireless and wired environments, used to carry out our traffic analysis.

In the next Chapter, we revisit the performance of TCP transfers especially for short TCP
transfers. Then we present an overview of our data time break-down methodology in order to
focus on the impact of application on top of TCP.
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Chapter 2

Revisiting the Performance of TCP
Transfers

2.1 Introduction

In this Chapter, we highlight the interplay between TCP and the application on top. We first
discuss the definition commonly made of short TCP transfers -transfers that cannot rely on the
FR/R mechanism - with the emergence of new mechanisms to improve the performance of small
transfers, e.g.limited transmit.

Our main contribution is to present an overview of the impactof the application, on the TCP
transfers. We show that while losses can have a detrimental impact on short TCP transfers, the
application significantly affects the transfer time of almost all short - and even long - flows in a
variety of way. Indeed, the application can induce extremely large tear-down times and it can also
slow the rate of actual TCP transfers.

In addition, the application can worsen the impact of lossesby preventing TCP from sending
large enough bursts of packets. We adopt an application agnostic approach, i.e., we do not make
any assumption on the way the application is working, to develop a set of techniques that delineate
the impact of the application from other causes that explaina given transfer duration, including
the data transfer itself and the recovery time if any.

We illustrate our findings with the set of traces described inSection 1.7.1, which includes
DSL, wireless hotspot and a research lab traffic.

2.2 Well-Behaved Connections

While analyzing the performance of TCP transfers, we focused on the connections that corres-
pond to valid and complete transfers from the TCP perspective. Specifically, well-behaved TCP
connections must fulfill the following conditions : (i) A complete three-way handshake ; (ii) At
least one TCP data segment in each direction ; (iii) The connection must finish either with a FIN
or RESET flag.

When applying the above heuristics for our traces, we are left with a total of over 35,000
TCP connections when summing over the three traces. The DSL trace is the one offering the
smallest fraction of well-behaved connections, 5873 over 37,790, because of a large number of
unidirectional transfers (SYN without a reply). The short duration of the trace also impacts this
value as for a lot of cases, we do not observe the beginning or the end (or both) of the connection.
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P2p applications tend to generate such abnormal connections (contacting a non available p2p
server to download a content) as well as malicious activities.

Figure 2.1 depicts the cumulative distribution of well-behaved connection size using bytes and
data packets for the 3 traces. We observe that the Eurecom andPortland traces offer a similar
connection profile that significantly differs from the DSL trace. For instance, 65% of the DSL
connections are less than 1 Kbytes and 25% are between 1 Kbytes and 1 Mbytes, unlike Port-
land and Eurecom traffic which offers larger values at similar connection percentiles. A reason
behind this observation, again, is the small duration of theDSL trace. However, our focus is on
short transfers, and from this perspective, the DSL trace offers valuable information. While Eure-
com and Portland traces present different types of traffic (wired and wireless), they have roughly
the same cumulative distribution of bytes. Secondly, considering the cumulative distribution of
connection size in terms of data packets, we observe that thetraces present the same shape until
transfer size of 10 data packets. After this value, the DSL trace increases faster to reach 95% of
connection for less than 20 data packets.

When focusing on the performance of TCP transfers, the number of data packets to be transfe-
red is a key element to consider, as it impact the ability of TCP to recover using the Fast Retrans-
mit/Recovery mechanism. We can already observe from Figure2.1 that irrespectively of the trace,
a significant portion of connections (between 53% and 65%) have less than 7 data packets.
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FIGURE 2.1 – Trace Characteristics

2.3 Short Transfers : Definition

In this section we introduce a first definition of a short TCP connection, which is commonly
used in the literature.

A short TCP connection is a well behaved connection unable toperform fast retransmit/recovery
(FR/R), after a packet loss detection.

While simple, the above definition does not lead to a unique threshold value in terms of number
of data packets for a short TCP transfer. Indeed, various TCPimplementations and connection
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characteristics can affect this definition : the initial congestion window, the use of delayed ACK,
the number of duplicate acks that triggers a FR/R.

For instance, Windows Vista implements Limited Transmit, which means that only 2 duplicate
ACKs are enough to trigger a fast retransmit. We estimated for the 3 traces, the number of segments
observed in a duration equal to one RTT after the sending of the first data packet, and this for each
direction - see Table 2.1. The obtained value provides a lower bound on the initial congestion
window that the transport uses as the application may not provide TCP with enough data to send
at the beginning of the transfer. This is especially true forthe initiator side in the case of Web
transfer where the GET request might fit in a single data packet. Overall, we observe that values
of 1 and 2 MSS (and possibly higher values) seem to be common initial congestion windows.
Initial congestion windows larger than 2 MSS (we observed values up to 12 MSS) might be due
to specific optimizations of operating systems that cache TCP level variables of previous transfers
for a few minutes [71].

Trace Initiator Remote party
1 pkt 2 pkts > 2 pkts 1 pkt 2 pkts > 2 pkts

DSL 99% 1% 0% 80% 18% 2%
Portland 82% 17% 1% 64% 24% 2%
Eurecom 90% 10% 0% 65% 24% 1%

TABLE 2.1 – Estimated Initial Congestion Window

Given the estimated initial congestion window of Table 2.1,we report in Table 2.2 the main
scenarios we focus on to find the threshold in terms of number of data packets that triggers a
FR/R. A short connection is thus, for each scenario, one witha number of packets strictly smaller
than the threshold. Those scenarios cover, to the best of ourknowledge, all the most commonly
encountered cases.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Initial cwnd 1 1 2 2

Delayed ACK no yes yes yes
Duplicate ACK 3 3 3 2

Minimum connection 7 9 8 7
size (data packets)

TABLE 2.2 – Minimum Connection Size to Perform Fast Retransmit/Recovery

Based on the results presented in Table 2.2, we observe that :
– Different scenarios lead to different thresholds, from 7 to 9 data packets ;
– A connection size with less than 7 data packets can not recover from packet loss using FR/R,

whatever the exact scenario is ;
– When considering a given scenario and a connection whose size is one packet larger than

the threshold, we observe that this connection is able to perform a FR/R for only a single
packet in its last round. The loss of any other packet will lead to timeout. A connection is
thus not always able to perform FR/R if it is larger than the threshold.

Based on the result obtained from this section, we adopt a first definition of a short TCP
transfer, as a connection of size less than 7 data packets. This definition, while simple, relies on
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the implicit hypothesis that the application on top of TCP does not impact the way TCP sends
packets. As we will see in Section 2.5, this assumption can betoo strong in practice, as even long
TCP transfers can be divided into short bursts (due to the application on top) that prevent TCP
from relying on FR/R in case of losses.

2.4 Transfer Time Break-Down

FIGURE 2.2 – Transfer Time Break-Down

To understand the factors that affect the performance of TCPtransfers, we rely on the follo-
wing decomposition in Figure 2.2 of each transfer into 3 different phases :

Set-up time : this is the time between the first control packet and the first data packet. Since
we consider only transfers which have a complete three-way handshake, the first packet is a SYN
packet while the last one is a pure ACK in general. The connection set-up time is highly correlated
to the RTT of the connection. For the three traces we consider, we have a correlation coefficient of
70% for the DSL trace, 60% for the Portland trace, and 39% for the Eurecom trace.

Data transfer time : this is the time between the first and the last data packet observed in the
connection. Note that it includes loss recovery durations,if any.

Tear-down time : this is the time between the last data packet and the last control packet of
the connection. We impose, as explained in Section 2.2, thatat least one FIN or one RESET be
observed, but there can be multiple combinations of those flags at the end of the transfer. Unlike
set-up, tear down is not only a function of the RTT of the connection, but also a function of the
application on top of TCP. For instance, the default settingof an Apache Web server is to allow
persistent connection but with a keep alive timer of 15 seconds, which means that if the user does
not post a new GET request after 15 seconds, the connection isclosed. A consequence of the rela-
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tion between the tear-down time and the application is a weakcorrelation between tear-down times
and RTT in our traces : 40% for the DSL trace (which is still quite high), 0.7% for the Portland
trace, and -2% for the Eurecom trace.

Using the above decomposition, we analyze next, the impact of losses (Section 2.4.1) and of
the application (Section 2.5) on the data transfer time.

2.4.1 Recovery and Tear-down

FIGURE 2.3 – Recovery Time

As explained above, the data transfer time possibly includes loss events. We estimate the time
spent by TCP in recovering from losses using therecovery time. Specifically, for a given transfer,
each time the sequence number in the stream of data packet decreases, we record the duration
between this event and the observation of the first data packet whose sequence number is larger
than the largest observed sequence number seen so far. For instance, we present in Figure 2.3 an
example of a TCP connection suffering from data packet loss.Assuming that we associate a unique
sequence number to each packet, if we observe the sequence 1,2,3,4,7,6,5,6,8, we will record the
duration between packet 7 and packet 8. This duration is added to therecovery timeof the transfer.
To filter out reorderings that occur at the network layer, we discard each recovery time smaller
than one RTT. Rewaskar et al. [72] developed algorithms to assess whether an observed loss event
can be attributed to a time-out or a FR/R. We were not able to use this technique as it requires to
perform a passive OS finger printing of the sender of the data.However, in our traces, most losses
occurred in the data stream issued by the remote party and notthe local clients. While p0f (http:
//lcamtuf.coredump.cx/p0f.shtml), which is recommended in [72], is effective when
used on SYN packets, it fails when working on SYN/ACK packets, which limits the applicability
of the techniques proposed in [72].

Figure 2.4 presents the break-down of the small and large TCPtransfers for the three traces.
We first observe from Figure 2.4 that while set-up durations are consistently small for all traces
and transfer sizes, tear-down take very high values, between 2.5 and 27.5 seconds on average. The
tear-down phase in itself often represents the majority of the connection time. Note however, that
the tear-down time should have no impact on the performance perceived from the application on
top as the data transfer is completed.

As for losses, we present two distinct values for the recovery time : the average conditional
recovery time and the average recovery time. The latter is computed over all transfers of the ca-
tegory while the former is computed only for the transfers that experience at least one recovery
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FIGURE 2.4 – Transfer Time Break-Down

event. Since only a small fraction of the transfers experience losses (9.4% for DSL trace, 13.2%
for Portland and 6.8% for Eurecom), the average conditionalrecovery time is often much larger
than the average transfer time. This impact is clearly more pronounced for small than for large
flows, over the three traces, most probably because of the predominance of time-outs for short
transfers.

Still, from a server point of view that is serving a large number of clients simultaneously, like
a Web server, long tear down times can affect the service quality if a limit is set on the number of
active clients. A side effect from those large tear-down values is when one estimates the throughput
of transfers. If one divides the total number of data bytes bythe total duration, one can greatly
underestimate the actual throughputs perceived by the userand the application. Figure 2.5 depicts,
for the case of the Eurecom trace, the throughput computed when considering the total connection
time and the throughput computed when one considers only theset-up and data transfer times. We
term the latter ”application-level” throughput (it is labelled AL in the graph), as this is the rate at
which data are sent or received from the application perspective. Figure 2.5 shows a significant
difference between both compared metrics for short and large transfers.

The main conclusion from the above study is that losses occurrarely, but have a highly detri-
mental effect. A second take-away is that the tear-down timeshould be removed when computing
the throughput of a transfer as it can lead to a dramatic underestimation of the throughput percei-
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ved at the application level. For the case of the Eurecom trace, the median throughput of small
(resp. large) transfers obtained when considering the teardown is 34 kbits/s (resp. 8.7), while it is
67 kbits/s (resp. 88) when tear-down is discounted.

2.5 Application Impact

In this section, we are interested in assessing the impact ofthe application on the transfer time
of a TCP connection. There are many ways by which the application can influence the pace at
which data flows in a network. First, the user might be involved in the transfer, as the case in
a persistent HTTP connection, where the download of a new page is triggered by an HTTP Get
message issued by the client browser. Second, the application might cap the rate at which infor-
mation is sent to the TCP layer. This is typically what p2p applications do to limit the congestion
on the uplink of the user. A third possibility is when the generation of data is done online. For
instance, when querying Google for a specific keyword, several tens of machines are involved in
this operation.

From the above discussion, we observe that the application may affect the transfer of data
in many different ways. A first simple assessment that can be made to infer the impact of the
application on a TCP transfer is to compute the fraction of packets with PUSH flags [73]. The
PUSH flag is a way for the application to specify that it has no more bytes to send at the moment
and the current segment can be sent. We plot in Figure 2.6 the ratio of PUSH flags as a function
of the transfer size for the three traces. We observe that theimpact of the application as captured
by the PUSH flags decreases with increasing transfer size. For the short connections, the push flag
ratio is extremely high, between 74% and 86%.

In the next sections, we assess in more details the way the application influences the transfer
time. We show that the application tends to fragment the transfer in small flights of packets that
prevent TCP from relying on FR/R in cases of losses.

2.6 Synchronism and Losses

For client/server applications, one often observes that even if the server is sending a large
amount of bytes/packets, the actual exchange is fragmented: the server sends a few packets (he-
reafter called a train of packets), then waits for the clientto post another request and then sends its
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FIGURE 2.6 – Conditional Ratio of Push Flags

next answer. If such a behavior is predominant in TCP transfers, it can have a detrimental impact
if ever the train size is too small as it might prevent TCP fromperforming FR/R in cases of losses.

When we observe passively a connection, we see data flowing inboth directions, i.e., each
direction sends in turn a train of packets. This is not necessarily harmful if the two parties are not
synchronized, i.e. if one party does not need to receive packets from the other party before sending
its next train of packets. However, we observed that the two parties are apparently most of the time
synchronised, i.e. that they have to wait for a signal from the other side before sending their next
train of packets.

The question we raise is thus : are the two parties involved ina transfer synchronized or not ?
Proving synchronism requires an a priori knowledge of the application semantics. We can however
prove that the synchronism hypothesis cannot be rejected asfollows : for a given transfer, each time
we observe a transition from one side sending packets, say A,to the other side sending packets,
say B, we observe if the first packet from B acknowledges the reception of the last packet from A.
If this is not the case, then there is no synchronism, otherwise, synchronism can not be rejected.
Applying this methodology to the three traces, we obtained that for each trace, the fraction of
connections for which synchronism could not be rejected wasextremely high : 88.6% for the
ADSL trace, 94.4% for the Portland trace and 95.3% for the Eurecom trace.

For the connections for which synchronism could not be rejected, we looked at the distribution
of the size of the trains of packets sent. We distinguished between the initiator of the connection
and the remote party, as we expect the latter to be some kind ofserver that usually sends larger
amount of packets than the former that simply posts requests. As illustrated by Figure 2.7 :

– Trains size sent by the remote part are larger than those sent by the initiator, in line with our
hypothesis that the remote party be a server ;

– More than 97% of initiator trains are less than 3 data packets, which leaves TCP unable to
trigger any Fast Retransmit, even if Limited Transmit is used ;

– More than 75% of remote party trains are less than 3 data packets, which again leaves TCP
unable to trigger the fast recovery/retransmit, even if limited transmit is used.

Taking a broader perspective, the fraction of connections that have a maximum train size of 3
packets is 85.2% for the DSL trace, 40.5% for the Portland trace and 54% for the Eurecom trace.
Sizes of those connections remain quite in line with our definition of Section 2.3 We observe for
our traces that over 97% of those connections have less than 20 packets.
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FIGURE 2.7 – Cumulative Distribution of Transmitted Bloc Size

2.7 Conclusion

We analyzed in this chapter the performance limitations of short and interactive TCP transfers,
for heterogeneous traffic traces. Short transfers sending less than seven packets are not able to
apply Fast Retransmit. Thus, they are really sensitive to loss events in the network. These short
transfers represent the majority of transfers. We have alsoobserved very long tear-down delays,
between the last data packet of the connection and the last control packet. This tear-down delay
does not influence the user perception, but it may affect the measurement of response times of
short transfers in network management functions.

The sensitivity to loss concerns also many long transfers asmany of them are a sequence of
alternate exchanges and the vast majority of these bursts are less than 3 packets. Such a feature
has a direct influence on the ability of TCP to recover from a loss using Fast Retransmit.

In the next Chapter, we highlight that measurements from passively collected traces can be bia-
sed by specific technologies implemented in Cellular networks to boost performance and control
users activity. Also, we cast a first look to two key Internet services : mail and webmail in order to
identify factors that lead to different perceived performance for the case of Cellular users.
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Chapter 3

Profiling Cellular Applications

3.1 Introduction

In the previous chapter, we studied TCP performance in general without paying attention to
the specific features of a given access technology. In contrast in this chapter, we focus on a specific
technology, 3G access, to highlight some of the difficultiesencountered when profiling its traffic.

In this Chapter, we present observations from a passive packet level trace with more than 1.7M
TCP connections, collected at the access network of a major European ISP. Our study includes
different classes of access : 3G, EDGE and 2.5G connections.A given user can be observed using
any of these technologies as Cellular contracts work in a best effort manner : the client is granted
a 3G access whenever it is available at the base station to which it is connected ; or downgraded to
former technologies, EDGE or 2.5G, if 3G is not available. Wefurther observe a diversity related
to users devices, e.g., mobile phones and Universal Serial Bus (USB) pluggable 3G modems.

We study the performance of Cellular access network and we bring to light phenomena in-
troduced by Cellular core1 network equipments, which can bias measurements. As a second step
we investigate the performance of Cellular networks, focusing on two key services : mail and
webmail.

Mail and webmail are a key applications from the end user point of view and while most of
work has focused on trendy applications, e.g., p2p, streaming or social networks, mail has received
little attention.

3.2 Impact of Core Network Equipments

In this section, we highlight that in modern Cellular networks, estimating latency turns out to
be a complex task. Indeed, we demonstrate that latency can beunder estimated due to the use of
new mechanisms or services, like proxies for content adaptation or applications acceleration. We
investigate how these mechanisms impact our measurements and the performance perceived by
end users.

3.2.1 RTT Estimation

The round trip time corresponds to the spent time between a sender transmitting a segment and
the reception of its corresponding acknowledgement. This interval includes propagation, queuing,
and other delays at routers and end hosts [74].

1. Core relates here to the wired part of the ISP network that enables access of 2G/3G clients to the Internet.
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Several approaches have been proposed to accurately estimate the RTT from a single measu-
rement point [75, 76, 77, 3]. To estimate RTT, we adopted two techniques. The first method is
based on the observation of the TCP 3-way handshake [76] : onefirst computes the time interval
between the SYN and the SYN-ACK segment, and adds to the latter the time interval between the
SYN-ACK and its corresponding ACK. It is important to note that we take losses into account in
our analysis. The second method is similar but applied to TCPdata and acknowledgement seg-
ments transfered in each direction2. One then takes the minimum over all samples as an estimate
of the RTT.

Due to the location of the probe within the network of the ISP (see Section 1.7.2), we are able
to distinguish between a local and a remote RTT. The local RTTis measured within the access
network, including the wireless link, of the ISP, while the remote RTT factors both the latency
over the path from inside the network ISP to the first peering link and then to the remote server.

3.2.1.1 Impact of Active Devices

While analyzing modern Cellular networks, we face a double difficulty : (i) the access techno-
logy can vary (from 2G to 3G) from one user to the other and overtimes and (ii) the capabilities of
the device itself varies from one device to the other, which sometimes prevents the user from ac-
cessing all types of Internet applications. In the network we analyze, devices with limited display
capability are serviced by a specific device. Redirection tothis specific device is achieved at the
mobile client using Access Point Name (APN). It can be seen asthe equivalent of a dial-up phone
number of an ISP. For convenience, we term those connectionsAPN transfers below.

An Access Point Name is a specific network to which a mobile canbe connected. It corres-
ponds to the name of an external network that is accessible from a terminal [78]. In practice, the
Subscriber Identity Module (SIM) card of the end user terminal is configured with the IP address
of the APN of the Service Provider. It provides routing information for Serving GPRS Support
Nodes (SGSN) and GGSN. In the 3rd Generation Partnership Project (3GPP), content billing of
GPRS activity is generated based on APN accounting features.

In our Cellular trace, we have more than 17% of APN transfers,which can be identified as
targeting a specific private IP address and port 8080.
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FIGURE 3.1 – Remote RTT of APN Transfers

We compared the RTT of APN and non APN transfers. For the latter ones, we restrict our
attention to connections targeting port 8080, to have a somewhat comparable basis (though it is
still quite arbitrary). In Figure 3.1, we compare remote RTTs – the two RTT estimation methods
gave similar results – for the two types of transfers. We notice a difference of about 100 ms between

2. Keep in mind that we focus on well-behaved transfers for which there is at least one data packet in each direction.
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the two types of traffic, which is explained by the split mode used at the device, which adapts the
content for those limited capacity devices.

We now restrict our attention to non APN transfers. These transfers are characterized in our
trace by a straightforward manner : they have a public remoteIP address. Still, the devices that
generate this type of traffic do not necessarily communicatedirectly with the remote server. The
ISP is using a set of devices for user authentication (Radius), Network Address Translation (NAT)
(as we find also in wired networks) and a proxy (a specificity ofCellular networks) whose main
objective is to boost performance of the initial phases of TCP transfers. This proxy intercepts the
first SYN of new connections and responds on behalf of the remote server, with a SYN-ACK,
while in parallel, the initial SYN is forwarded to the remoteserver. The proxy later applies various
tricks to (try to) improve the performance of TCP transfers.The way the proxy works at connection
establishment leads to a significant discrepancy between the two methods we use to compute the
RTT, which often reaches 100 ms, as can be seen from Figure 3.2.
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FIGURE 3.2 – Proxy Impact for Latency Estimation

The key message from this section is that several specific devices might affect classical perfor-
mance metrics in Cellular networks, which should be taken into account when performing measu-
rement studies. In the rest of analysis of Cellular traffic, we focus only on non APN traffic and our
estimation for latency will be based on the DATA-ACK method only.

3.3 Mail and Webmail : Characteristics and Usage

The E-mail service is often overlooked in traffic analysis studies, even though it represents a
key service for end users that use it on a daily basis. Traditional works in traffic measurement,
usually, study the performance of p2p applications, streaming and more recently the impact of
social networks [33, 79, 80]. The shortcoming of such studies is that they neglect mail and webmail
impact, even though they represent one of the most popular Internet application [81, 82] and
millions of Internet users use them several times per day forprofessional or personal usage.

In this section, we detail how mail and webmail traffic is extracted from the trace and evaluate
the popularity of mail and webmail usage. We further extractpieces of information related to the
popularity of the different service providers and end user devices for the case of webmail, taking
advantage of the fact that the HTTP protocol exposes some keyinformation.

Therefore, during our next analysis we will distinguish between webmail and mail perfor-
mances in order to evaluate the main features that characterize each service and in next level to
respond to the question : Why users prefer one service at the expense of the other ?
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3.3.1 Service Identification

Internet traffic classification is an area that attracted a lot of attention recently [83, 84, 85]. In
most cases, mail traffic is classified based on the legacy mailprotocols : IMAP, POP3 and SMTP.
Concerning webmail, the following identification techniques have been proposed :

1) Map the destination IP address with a list of URLs of popular webmail providers [86] 2)
Combine the previous method of URL matching with keyword matching (based on unique key-
words that appear in the packets payload that can identify webmail traffic) [81] 3) Use statistical
methods [82].

In this paragraph, we adopted the second approach to detect webmail traffic : we first extract
HTTP requests with webmail key words, then we identified the connections corresponding to
these requests. To identify mail traffic for the upload and download, we use TCP port numbers and
remote address resolution.

3.3.2 Usage and Popularity

Using the detection method presented in the previous paragraph, we extracted mail and web-
mail traffic from our trace. It turns out in our trace that mailand webmail represent about 5% of
all flows and 17% of overall traffic volume.

Tables 3.1 and 3.2 summarize characteristics of mail and webmail connections, including num-
ber of connections, volumes uploaded and downloaded in terms of total amount of bytes at the IP
layer and in terms of data packets, number of servers, and number of clients.

Concerning mail (see Table 3.1), we observe that Post Office Protocol version 3 (POP3) and
POP Secure (POPS) dominate downloads while Simple Mail Transfer Protocol (SMTP) and SMTP
Secure (SMTPS), obviously, dominate uploads. Internet Message Access Protocol (IMAP) and
IMAP Secure are the most popular service in terms of number ofestablished TCP connections,
followed by POP3/POPS and finally SMTP/SMTPS. The smaller number of mails uploaded as
compared to mails downloaded is likely to be due to the limited capabilities of devices (most
of them are smart phones and not PC with USB pluggable 3G modems as we will see soon) as
compared to legacy wired access with desktops and laptops, which feature convenient displays
and also store data that can be used as attachments, as opposed to smart phones in general3.

SMTP/SMTPS POP3/POPS IMAP/IMAPS
Nb cnxs 7330 51202 64493

Upload (MB) 116.1 5.7 59.8
Download (MB) 1.2 1741.6 853.8

Upload (Data Pkts) 78631 261828 731616
Download (Data Pkts) 10130 1523961 1270844

Nb Servers 360 1578 883

TABLE 3.1 – Mail Traffic Characteristics

Table 3.2 shows general information about webmail traffic inour trace. We observe similar
results as for mail : users tend to download more than they upload. We hypothesize again that it
is a result of the limited capacities of devices in general. Our point of view was that this trend is
strongly correlated with mobile devices limitation, because until now, not all existing devices offer

3. Our experience with wired traces of DSL and FTTH accesses shows that email traffic is also asymmetric in
wired accesses, e.g., because of mailing lists and wanted orunwanted advertisements ; but the extent of asymmetry is
far smaller than in Cellular networks.
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the possibilities to send mails with one or more attached documents. Hence, Cellular user, using
their mobile devices, tend to write short mails without attached files.

Cellular
Nb Cnxs 16275

Upload (MB) 1364.4
Download (MB) 7169.8

Upload (Data Pkts) 1712270
Download (Data Pkts) 2022705

Nb Servers 528

TABLE 3.2 – Webmail Traffic Characteristics

Comparing mail and webmail volume statistics, we observe that webmail is much more popu-
lar than classical mail. Concerning connection sizes, a number of webmail connections are smaller
in size as compared to mail transfers.

At this stage a natural question is : Why Cellular users tend to use more webmail than classical
mail ? We can envisage several options :

1) Cellular users prefer webmail at the expense of legacy mail 2) Webmail services offer in
general better performance than mail 3) Cellular devices are more adapted to webmail usage.

Option 1 stems from two intuitions. First, the natural intuition that the complexity of confi-
guring a POP/IMAP client as compared to using a Webmail access is a barrier for a lot of users.
Second, the intuition that users prefer to have a mail account from a mail service provider that
is not their network provider in order to keep the account even if the network provider changes.
Though mail service providers offer in general POP/IMAP interfaces, Web based interfaces, i.e.,
webmail, is by far the most popular way to reach those services.

We gathered also statistics on webmail servers, client devices and their OSs, and clients brow-
sers, taking advantage of the presence of many key information in the HTTP fields. Figure 3.3
reports the percentage of transfers per webmail service providers (for the most popular ones). We
observe a dominance of Hotmail, Gmail and Yahoo. Only after we find webmail services offe-
red by network providers like Orange, Tele2 and Alice. Theseresults show that webmail service
providers that propose free mail boxes are much more popularthan the corresponding services
offered by network providers. The latter means that hypothesis 1) mentioned above plays a role in
the higher popularity of webmail at the expense of traditional mail.

Let us now focus on devices and their Operating Systems (OSes). Figure 3.4 shows that among
the currently popular devices and OSs, we find iPhone at the first position followed by Microsoft
OSs (Vista, XP and CE). MacOS, Linux and other mobile devicesremain marginal in our data
set. The above result was obtained for clients using webmailand not for clients using mail, as we
have no access to similar information in the latter case. We can however conjecture that the trends
(OS shares) for these other clients be similar. More generally, the above observation is in line with
current market trends that shows that, at least in France, the Iphone is the dominating smart phone
at the moment. The small fraction of OSes of laptops suggeststhat devices connected with USB
pluggable 3G modems are still marginal in the Cellular network we study.

Operating systems and Web browser can impact network performance through several para-
meters and especially the number of connections established to the Web server they connect to.
To assess if there was significant difference in the strategyused by the different OS/device in our
data set, we report in Table 3.3 the mean numbers of connections per webmail session. A session
consists of all the connections between a specific pair of client and server IP addresses in our trace.
The results in Table 3.3 suggest a similar behavior for the dominant OSes/devices we observe in
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OS/Device NB Cnxs NB Sessions NB Cnxs/Session
Iphone 9780 2562 3.81

Windows Vista 1283 304 4.22
Windows XP 1170 376 3.11
Windows CE 290 140 2.07
Macintoch 169 55 3.07
Symbian 138 50 2.76

Linux 22 12 1.83
Others 326 126 2.58

TABLE 3.3 – Webmail Connections and Sessions

our trace. Main observations here was that Microsoft Vista users were characterized by highest
number of connections per session and Iphone devices generate more connections compared to
Windows CE and Symbian operating systems.
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FIGURE 3.3 – Webmail Service Provider
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FIGURE 3.4 – OS and Devices for Webmail Traffic

3.3.3 Application Level Throughput

Throughput is an important metric for a lot of applications.Common practice is to use through-
put for applications generating bulk transfers, while response time is used for interactive applica-
tions. Mail traffic in general appears to be a mixed application, generating interactive and bulk
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transfers. Bulk transfers are generated by large mails (with attachments), while interactive trans-
fers are due to mailbox checking and the sending/reception of small mails. In this section, we use
the throughput to compare the performance of mail and webmail. Our purpose here is to show that
the access technology influences the throughput but is not the only factor. Congestion, transport
layer details or the application on top (e.g., rate limitersin p2p applications) can also impact the
observed throughput.

We have shown in Chapter 2 that a straightforward estimationof throughputs where the amount
of bytes transfered at the TCP layer is divided by the total duration between the first packet (first
SYN) and last packet of the connection (e.g., FIN) provides abiased view of the throughput
perceived at the user side. The tear down of a connection, that we define as the time between
reception of the last data packet and the last control packetcan be extremely high due to numerous
reasons : the application, the server implementation or theoperating system. We thus introduced
in 2 the notion of Application-Level (AL) throughput where the amount of bytes transfered at the
TCP layer is divided by the total duration between the first packet (first SYN) and lastdatapacket
of the transfer.
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FIGURE 3.5 – Application Level Throughput

In Figure 3.5, we report the AL throughput for mail and webmail connections. A first striking
observation is that webmail offers significantly higher throughputs than mail. More than 75% of
webmail connections achieve a throughput higher than 10 kb/s, unlike mail where the equivalent
portion is only 20%. Several factors can explain this discrepancy. In the following section, we
explore in more details mail and webmail traffic characteristics, in order to find which parameters
degrade mail performance. We focus on volumes of data exchanged, application impact, and time
spent to recover from losses.

3.4 Detailed Performance Comparison

3.4.1 Connections Size

Figure 3.6 depicts the cumulative distribution of well-behaved (see Section 2.2) mail and web-
mail connection size in bytes. It appears that mail transfers are clearly smaller than webmail trans-
fers. This observation is in line with the results in Tables 3.1 and 3.2 where we noticed the smaller
number of webmail connections but the larger amount of data exchanged. We believe that two
factors explain this observation : (1) webmail applications not only convey data related to the
mailbox of the user but also data related to the HTTP frame of the Web page in which the content
of the mailbox is displayed, (2) web(mail) applications usepersistent connections unlike legacy
mail protocols (POP, SMTP - but not IMAP), which results in longer transfers. A smaller amount
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of data to transfer leads inevitably to a smaller throughputwith TCP on average, which is a first
explanation behind the observation of mail achieving smaller throughputs than webmail. Howe-
ver, different connection size is not the only factor that explains the lower throughput of mail as
compared to webmail.
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FIGURE 3.6 – Connections Size

3.4.2 Impact of Application on Top
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FIGURE 3.7 – Exchanged Trains Size

For client/server applications, one generally observes that even if the server is sending a large
amount of bytes/packets, the actual data exchange is fragmented : the server sends a few packets
(hereafter called train), then waits for the client to post another request and then sends its next
answer 2. If such a behavior is predominant, it can have a detrimental impact to TCP if the train
size is too small, as it prevents TCP from performing FR/R in the case of losses.

We evaluate here the distribution of train sizes for mail andwebmail transfers. For the connec-
tions for which synchronism could not be rejected, we lookedat the distribution of the size of the
trains of packets sent. We distinguish between the initiator of the connection, which is in our case
the Cellular client and the remote party, which is the mail orwebmail server.

Figure 3.7 reports the distribution of train sizes for webmail and mail transfers. We observe
that :

– Trains sent by servers (remote party) are larger than thosesent by the initiator (local client) ;
– Webmail trains are larger than the ones of mail traffic, for both initiator and remote party. In

fact, more than 38% of webmail initiator trains are larger than 2 data packets, unlike mail
where it is only 16%.
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– More than 99% of initiator mail and webmail trains are smaller than 3 data packets, which
leaves TCP unable to trigger any Fast Retransmit, even if Limited Transmit is used [87].
This might lead to performance issues during mail uploads.

– More than 92% of remote party trains are also smaller than 3 data packets, compared to only
70% for webmail. This again leaves TCP unable to trigger a fast recovery/retransmit, even
if Limited Transmit is used in a lot of case. Mail is more affected than webmail though.

A conclusion of the above analysis is that both mail and webmail throughputs are affected by
the behavior of the application on top of TCP with a potentially more detrimental effect for mail
than for webmail transfers. Smaller train sizes tend to slowdown TCP, as it prevents the protocol
from opening its congestion window, but can also lead to longer recovery time during loss events.
We turn our attention to this specific issue in the next paragraph.

3.4.3 Losses

To assess the impact of TCP loss retransmission times on the performance of mail and web-
mail, when we observed throughput estimation in Figure 3.5 ,we developed an algorithm to detect
retransmitted data packets, which happen between the capture point and the server or between the
capture point and the client. This algorithm4 is similar to the one developed in [75].

If ever the loss happens after the observation point, we observed the initial packet and its
retransmission. In this case, the retransmission time is simply the duration between those two
epochs5. When the packet is lost before the probe, we infer the epoch at which it should have been
observed, based on the sequence numbers of packets. We try toseparate real retransmission from
network out of sequence events by eliminating durations smaller than the RTT of the connection.

Note that computations of all those durations are performedat the sender side, as time series
are shifted according to our RTT estimate. For our trace it iseasier to detect losses for the second
case, because in case of packet loss the retransmitted data packet is seen twice. But, when the loss
happened between the capture point and the distant server, we are only able to detect an out of
sequence packets.
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FIGURE 3.8 – Retransmission Times per Loss Event

We define the retransmission time as the time elapsed betweentwo duplicate TCP data packets
or the moment where we observe6 a decrease of the TCP sequence number and the first time where
it is reaches a value larger than the largest sequence numberobserved so far. Once losses are

4. The used loss’ detection algorithm is available on http ://intrabase.eurecom.fr/tmp/papers.html. People are invited
to check the correctness of our algorithm to detect losses

5. Those epochs are computed at the sender side by shifting the time series according to our RTT estimate.
6. at the sender side – time series are shifted according to our RTT estimate.
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identified with (i) data packet retransmission and (ii) out of sequence data packet, we compute for
each TCP connection retransmission time for each loss event. We do not distinguish between out of
sequence data packets and retransmitted data packets. We will only use the term "retransmission".

Figure 3.8 plots the cumulative distribution of retransmission time per each loss event, for
mail and webmail traffic. As expected from our study of train times, mail traffic experiences larger
recovery times than webmail traffic.

We can further notice two thresholds of common retransmission times at 400 ms and 1 seconds
for webmail and mail respectively. This in in-line with workin [56, 88] of RTO estimation for
Cellular networks, where authors show that RTO bound has been shortened in modern widely
spread TCP implementations for Cellular networks.

In summary, several factors contribute to the degradation of mail performance as compared to
webmail. Some of these factors are driven by clients usage while others are more fundamentally
related to the way those different mail implementations work and their interplay with the transport
layer.

3.5 Conclusion

In this Chapter we have reported some observations about theInternet traffic of a Cellular
network with users connected via handsets or USB pluggable 3G modems. The predominance of
Iphone however suggests that the first category of users actually dominates over the second one,
for the ISP we consider. We have highlighted that measurements from passively collected traces
can be biased by specific technologies implemented in Cellular networks to boost performance
and control users activity. RTT, which is a key metric, is especially affected by those network
appliances.

We cast a first look to mail and webmail traffic in Cellular networks. We found that mail seems
to be less popular than webmail as the majority of mail data istransfered using webmail.

A first explanation to this difference in usage is the high popularity of free webmail service
providers like Google, Yahoo !, Hotmail, etc. We indeed observed that those providers are much
more used than the webmail services offered by the network providers. This is presumably because
users want an email account that is independent of their network provider, in case they switch to
another network provider.

We further observed that webmail performance outperforms the one of mail. We demonstrated
that several factors lead mail to offer smaller throughputsthan webmail, especially, the size of
the transfers, the application semantics which leads to smaller data exchange phases, which slows
down TCP in general and prevents fast retransmit if losses are detected.

In the next Chapter, we presented a first look of a methodologyin order to compare perfor-
mance of different accesses technologies. We focus on usualsuspects indicators that can influence
client perceived performance.
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Conclusion of Part I

In Part I of this thesis, we first revisited main research works related to our objectives of TCP
performance analysis for the case of Internet and enterprise traffics. Our main observation was
that focusing on the impact of new applications, client behavior and server impacts, has been
often overlooked in the literature. To perform our traffic analysis, we used a traces collected from
heterogeneous wireless and wired environments, which highlight the wide scope of our study
of traffic analysis performance. Our traffic analysis study is based on a DBMS approach, which
allows to manage collected dumps into a database.

We presented an overview of the impact of the application on top of TCP. With our connec-
tion time break-down, we showed that while losses can have a detrimental impact on short TCP
transfers, the application significantly affects the transfer time of almost all short and long flows
in a variety of way, e.g. tear down and short exchanged train size of data.

Our study of a Cellular trace with users connected via handsets or USB pluggable 3G modems
highlighted that measurements, e.g. RTT estimation, from passively collected traces can be bia-
sed by specific technologies implemented in Cellular networks to boost performance and control
users activity. To study the application impact we performed a first study of mail and webmail
applications. Mainly we observed that webmail performanceoutperforms the one of mail. We de-
monstrated that several factors lead mail to offer smaller throughputs than webmail, especially, the
size of the transfers and the application semantics.

In Part II, we introduce an analysis method that uncovers theimpact of each layer that contri-
butes to the overall data transfer time, namely the application, the transport layer, and the end-to-
end path. The analysis method that we use consists in two steps. First, the transfer time of each
TCP connection is broken down into several factors that we can attribute to different causes. Se-
cond, we use a clustering approach to uncover the major trends within the different data sets under
study.
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Part II

A New Approach to Performance
Analysis of TCP Transfers



50



51

Overview of Part II

In the previous part, we have underscored both the crucial impact of the applications on top of
TCP and also, for the case of the Cellular technology, the impact of some technological choices
on the metrics typically used to assess performance levels.In part II of the thesis, we present a
method that drills down into the data transfer of each well-behaved connection, which is the main
contributions of this thesis. The approach developed is exemplified with the set of traces collected
on the Cellular/FTTH and ADSL backbones of Orange.

In Chapter 4, before turning our attention only on the data transfer phase, we explore several
factors that are classically used to assess the performanceof TCP connections, namely RTT and
losses. The crucial impact of those parameters are formallyknown since the derivation of the well-
known TCP throughput formula [89]. We discuss the derivation of those parameters for the case
of our traces. At the end of this chapter, we illustrate shortly the fact that RTT and losses are not
enough to characterize TCP connection in the wild, justifying our efforts in Chapter 5 of drilling
down into the data transfer phase.

In Chapter 5 we propose a new analysis method that uncovers the impact of specific factors like
the application and the interaction with user, and thus informs the comparison of heterogeneous
access technologies. The analysis method that we use consists of two steps. In the first step, the
transfer time of each TCP connection is broken down into several factors that we can attribute to
different causes, e.g., the application or the end-to-end path. In a second step, we use a clustering
approach to uncover the major trends within the different data sets under study.

In Chapter 6, we address the problem of comparing the performance perceived by end users
when they use different technologies to access the Internet. Users primarily interact with the net-
work through the networking applications they use. We tackle the comparison task by focusing on
several Internet key services such as Google search and mail. This is because we focus on user
perceived performance and users do not care about raw performance metrics. They care about the
performance of the applications they use. We then apply our data time break-down approach, ba-
sed on a fine-grained profiling of the data time of transfers that sheds light on the interplay between
service, access and usage, for the client and server side. Weuse clustering approaches to identify
groups of connections experiencing similar performance over the different access technologies.

In Chapter 8 we present characteristics of some salient aspects of enterprise traffic. Our goal
is to provide an overview of the problem faced when performing measurements in such environ-
ments such as basic RTT estimation. We also present a fine-grained profiling of the most popular
applications used in the network we measure.
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Chapter 4

A First Look on Key Performance
Parameters

4.1 Introduction

The study of TCP behavior, specifically its performance in terms of delay, losses and through-
put, has been studied since its emergence for specific environments and users. However, compa-
ring and understanding key parameters that influence perceived performance from different access
technologies such as Cellular, FTTH and ADSL traffics becomes difficult when it is interacting
with the application layer above and the network layer below. Here after we report a classical
approach to compare performance of different access technologies in order to conclude if clients
fully benefit from their broadband access. In this Chapter, we first assess the stability of the traffic
for the trace that we have to study. Then we briefly analyse usual suspects that can impact the
results of different accesses. We also provide a systematicstudy of the tear-down phase of the
well-behaved connections that highlight the diversity of scenarios observable in practice. Finally,
we illustrate shortly the fact that RTT and losses are not enough to characterize a TCP connection
in the wild, justifying our efforts in chapter 2 of drilling down into the data transfer phase.

4.2 Traffic Stability

4.2.1 Data Volume

In this part, we assess the stability of the traffic for the second datasets, which we introduced
in 1 and consists of traces captured under different environments : Cellular, FTTH and ADSL.
For this purpose, we observe the time series of traffic volumeand the number of active flows.
The objective is to assess if several regimes exist in our data, which would require to analyze
the performance within each corresponding time interval. As we will see, it is apparently not the
case with our trace. This justifies our approach in this Chapter, where we will look at marginal
distributions of different metrics where all samples of thetrace are grouped together to form those
distributions.

Figures 4.1, 4.2 and 4.3 shows the evolution of traffic volumeand the number of active flows
for the upload and the download directions. To obtain those figures, we broke up our trace into
short time windows of 30 seconds and we compute the number of active flows and the exchanged
data volume for each direction in each window. Note that a flowis considered active for a given
time slice if it transmits at least one data packet during theslice.
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FIGURE 4.1 – Upload and Download Data Volume Evolution : Cellular
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FIGURE 4.2 – Upload and Download Data Volume Evolution : FTTH
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FIGURE 4.3 – Upload and Download Data Volume Evolution : ADSL

Figures 4.1(a), 4.2(a) and 4.3(a) show that traffic is qualitatively more bursty in the download
than the upload direction. This is presumably because bursts are shaped by the limited uplink
capacity implemented by the operator. Another immediate observation is the difference of uplink
and downlink capacity between observed accesses. FTTH traffic is characterized by higher values
of exchanged data in terms of bytes and active flows.

Concerning active flows, Figures 4.1(b), 4.2(b) and 4.3(b) demonstrate that they do not vary
drastically over time, further reinforcing the idea that traffic is stable over the time span of our
trace.

The study of the evolution of exchanged data volume and number of active flows did not reveal
any abnormal phenomenon or anomalies in our traces. Hence, further analysis will be based on all
identified well behaved connections.
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4.3 Usual Suspects

4.3.1 Exchanged Data Volume

Figure 4.4 depicts the CDF and Complementary CDF (CCDF) of connection size in terms of
bytes, for Cellular, ADSL and FTTH traces. Only well behavedconnections are considered. We
observe that FTTH and ADSL traces offer a similar connectionprofiles that significantly differs
from the radio access. For instance 30% of ADSL and FTTH traces are less than 1kbytes and 55%
are between 1kbytes and 10 kbytes, unlike Cellular which offers larger values at similar connection
percentiles.

The inspection of CCDF, shows that the probability to obtaintransfers with 1 Megabyte is
very low (under 0.01). It reveals that while the majority of Cellular connections did not target p2p
ports Cellular users are able to perform as large connections as wired accesses.
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FIGURE 4.4 – Connection Size (bytes)

In fact, several explanations can be found for this observation. For instance, the usage of per-
sistent HTTP connections (more than 84% of Cellular traffic target HTTP(s) ports). Also, the usage
of new applications or services in new devices like the download of applications from ’Apple Sto-
re’ or ’Android Market’ and the increase of streaming applications (Youtube, etc) explain the
higher values of connections size for Cellular access compared to FTTH and ADSL.

The main conclusion from this paragraph is that, nowadays, Cellular users tend to use their
handsets to perform a new usage different from the simple call or Short Message Service (SMS)
send, in line with the increase of display and Central Processing Unit (CPU) capacities of smart-
phones This means that Cellular access is not used for a limited period or nomadic usage but for a
current uses.

4.3.2 Access

We observed that both RTT estimation methods with SYN-/SYN-ACK or DATA-ACK lead to
a same estimate of the round trip time for ADSL and FTTH traces, while we observe differences
for Cellular access because of a Performance Enhancing Proxy (PEP) and APN, as presented in
Section 3.2.

We thus rely on the DATA-ACK method to estimate RTTs over considered traces. Figure 4.5
depicts the resulting RTT estimations for the three traces.It clearly highlights the impact of the
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access technology on the RTT. FTTH access offer low RTT in general – less than 110 ms for more
than 60% of connections. This finding is in line with the characteristics generally advertised for
FTTH access technology. On other hand, RTTs on the Cellular technology are notably longer than
under ADSL and FTTH, in line with intuition.
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FIGURE 4.5 – RTT Estimation

4.3.3 Data Packet Retransmission

To assess the impact of TCP losses on the performance of considered access, we based our
study on approach presented in 3.4.3.
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FIGURE 4.6 – Retransmission Time

We do not distinguish between out of sequence data packets and retransmitted data packets.
We will only use the term "retransmission". We try to separate real retransmissions from network
out of sequence events by eliminating durations smaller than the RTT of the connection. Once
losses are identified with (i) data packet retransmission and (ii) out of sequence data packet, we
compute total retransmission time for each TCP connection.

Figure 4.6 depicts the cumulative distribution of retransmission time per connection, for consi-
dered accesses. The main observation is that retransmission ratio is higher for Cellular with more
than 28.6% and only less than 9% for ADSL and FTTH accesses. Italso demonstrates that loss
ratio decreases with high bandwidth. An intuitive explanation of such observation may lay in the
difference of reliability between Cellular and wired accesses.

From previous works, we noticed that authors presented several factors that influence loss ratio
for Cellular access. In fact, in [90] authors recommend to use a loss detection algorithm, which
uses dumps of each peer of the connection (this algorithm is not adapted for our case because our
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measurements have been collected at a GGSN level) to avoid spurious Retransmission Timeouts
in TCP. In addition, authors report in [56] that spurious retransmission ratio in Cellular networks is
higher for Google traffics than other ones, due to short implemented Timeouts in Google servers.

4.4 How Applications Free TCP Connections ?

4.4.1 FIN vs RST flags

Closing TCP connection is an operation which means that the closing side has no more data to
send. The notion of closing a full-duplex connection is subject to ambiguous interpretation [73],
since it may not be obvious how to decide to the receiving sideof the connection.

The final flag is the FIN flag, standing for the word finished. This flag is used to tear down the
virtual connections created using an established connection.

It is important to note that when a host sends a FIN flag to closea connection, it may continue
to receive data until the remote host has also closed the connection, although this occurs only
under certain circumstances.

In other hand, upon reception of RST segment, the receiving side will immediately abort the
connection. This statement has more implications than justmeaning that each side will not be able
to receive or send any more data to/from this connection.

Once the connection is liberated by both sides, the buffers associated on each end for the
connection are released. Previous work on TCP performance and the application layer did not
cover or focus on the step of tearing down a connection.

In 2.4.1 we defined the tear-down as the time between receiving the last data packets and the
last FIN or RST control packets. We have shown that the tear-down phase in itself often represents
the majority of the connection time. Hence, large tear-downtimes can alter throughput estimation
by largely underestimating actual throughput, i.e., the throughput perceived by the application.

Note however, that the tear-down time should have no impact on the performance perceived by
the client, as the data transfer is completed. Client and server are more interested by data exchange
time than time to free TCP connection. In contrast large tear-down times can be penalizing for
the server in terms of allocated resources, memory and processes. In fact, servers are in general
configured to have a limited number of connections that are allowed to connect from clients.

FIN RST
Traces % AL TH(Kbts) % AL TH(Kbts)

Cellular 92.42 28.74 7.57 9.73
FTTH 92.96 77.25 7.04 57.58
ADSL 89.91 71.62 10.08 66.96

TABLE 4.1 – Tear-down Flags

For instance, the default value for an Apache server is 300 connections. The objetive is to
avoid exhaustion of memory resource at the server side as might for instance occur during a SYN
DoS attack.

We present in Table 4.1 the percentage of connections and Application Level Throughput, for
each access, that perform tear-down with FIN or RST flags. In all traces, results show that ended
TCP connections with FIN flag are characterized by higher throughput than ones finished with
RST flag. It suggests that connections ended with RST flag offer worst performance and can be
characterized as connections that are not finished correctly and probably having an anomaly.
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Also, Table 4.1 demonstrates that more than 89% of TCP connections were finished with FIN
flags and less than 10% with RST flags. This further enforces the hypothesis of an anomaly that
triggered the sending of RST flags.
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FIGURE 4.7 – FIN/RST Flags Distribution

Figure 4.7 shows distributions of exchanged FIN and RST flags. We find that connections that
finish correctly exchange a median values of 2 FIN data packets : one per side, in line with [73].
Median value of RST control packets. Also, more than 80% of connections that finish correctly,
have less than 2 FIN control packets.

More than 72% of up to the remaining connections were finishedwith a median of one RST
flag. It is important to note that we noticed several high values of exchanged RST flags which
could reach up to 100 for Cellular and 46 for ADSL accesses.

A worth to investigate hypothesis that connections with large number of tear-down control
packets probably correspond to an applicative anomalies.

FIN RST
Trace Init (%) Rem (%) Init (%) Rem (%)

Cellular 85.96 14.03 49 52
FTTH 48.71 51.28 72.72 27.27
ADSL 44.11 55.88 83.09 16.9

TABLE 4.2 – Tear Down Side Initiation - Percentages

Table 4.2 depicts the percentage of clients and servers thatfinish TCP connections with FIN
or RST flags. The main observation here is the difference between connections depending on
the underlying access technology. However, for FTTH and ADSL we observe in Table 4.2 that
between 51% and 55% of TCP connections are closed by the server, with FIN flags, which means
that approximatively we find the same ratio of TCP connections closed by each side. While only
14% of Cellular connections are closed by the server with FINflags.

A basic explanation for this observation is that Cellular users are limited by their devices, in the
sense that after performing a browsing (which is the main user activity as described in paragraph
1.7.2.1 user closes immediately the Internet browser afterthe end of browsing in order to switch to
other activity or to lock their phone. While, for FTTH and ADSL, client keeps the browser opened
in the background and can do other activities at the same time.

However, the study of RST flag shows that FTTH and ADSL users are more frequently closed
by the client with more than 72% of connections. For Cellulartrace, result are more balanced with
49% of connections are closed by the client while 52 are closed by the server.
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FIN RST
Trace Init (ms) Rem (ms) Init (ms) Rem (ms)

Cellular 2000 6000 154.79 36000
FTTH 55.54 8528 39148 40854
ADSL 80.46 516.08 702.31 25444

TABLE 4.3 – Tear Down Side Initiation - Median Times

Table 4.3 shows the median of tear down values found in each case of figures. We distinguish
cases where the initiator or the remote side of the connection sends FIN or RST flags. Our main
observation is that tear down times are higher when the remote side initiate tear down step. This
suggests that remote server close the current opened connections once the client is idle for a period
higher than the maximum time-out.

4.4.2 Diversity of Thresholds

Based on the previous analysis and in order to further investigate these results, we categorize
tear-downs in several classes based on FIN and RST flags. Tear-down times are defined as the
time between the last data packet and the first FIN/RST control packet. The idea here was to check
if different behaviors exist when connection is liberated,depending on the application on top of
TCP. We expect to observe specific time-out values when a TCP connection is finished with FIN
or RST for each considered service or application.
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FIGURE 4.8 – Cellular : Heterogeneous Tear-down Times
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FIGURE 4.9 – FTTH : Heterogeneous Tear-down Times

In Figures 4.8, 4.9 and 4.10 we present tear down times for different TCP services and for our
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FIGURE 4.10 – ADSL : Heterogeneous Tear-down Times

Cellular, FTTH and ADSL traces. For each access we distinguish between connections finished
with RST or FIN flags. Main observations are :

– 87% of IMAPS Cellular connections, finished with FIN flag show a tear-down time-out of
200 ms

– Few ADSL and FTTH connections using POP3 and Emule finish TCPconnection with RST
flags, the majority of connections are closed using FIN flags

– Large variability of tear-down times within observed application, finished with FIN or RST
flags

– FTTH and ADSL accesses show similar tear-down values for Emule connections finished
with FIN flag

– Even for the same service, we observe different distributions for tear-down times for connec-
tions finished with RST or FIN flags.

From this study, we see that connection tear-down times depend on several factors. (1) The
flag : tear-down values are higher for connections finishing with RST flags than with FIN flags.
(2) and the used application used on top of TCP.

Our study was mostly descriptive. A primary reason for it is that, to the best of our knowledge,
no research work so far as paid attention to the tear down-phase. We have only scratched the
surface of the problem. More work needs to be done. We have notdone much in the context of
this thesis as our focus is on the client performance and somehow, the tear down phase does not
impact the client. The latter is true if the connection finishes correctly from the TCP viewpoint,
i.e. with a FIN and not a RST flag. This further justifies our choices of focusing on well behaved
connections.

4.5 Performance Comparison Challenge

Our purpose here is to show that the access technology influences the throughput, but it is not
the only factor. Congestion, transport layer details or theapplication on top (e.g., rate limiters in
p2p applications) can also impact the observed throughput.We base our estimation of throughput
on the definition presented in Section 2.4.1 where throughput corresponds to the amount of bytes
transferred at the TCP layer, divided by the total duration between the first packet (first SYN) and
lastdatapacket of the transfer. Formally, this is what we called the application layer throughput.

In Figure 4.11(a), we report CDF of AL throughput for our traces. A first striking observa-
tion is that FTTH and ADSL accesses offer significantly higher throughputs than Cellular. As we
presented previously in Section 4.3.2, we can confirm that this observation is a consequence of
the RTT available for each used access. On the other hand, we can notice that AL throughput for
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FIGURE 4.11 – Application Level Throughput

ADSL and FTTH often similar(up to the 50th percentile), in contrast with what end users expect.
A first explanation of this fact, was the RTT distribution forADSL and FTTH.

In order to avoid the mixed results of AL throughput for shortand large connections, we plot
in Figure 4.11(b) median values of AL throughput per connection size in terms of data packets.
It shows that higher values of AL throughout were obtained with FTTH connections. But in other
hand, it confirms results observed in Figure 4.11(a) : throughput for FTTH, ADSL and Cellular
are not as different as one can expect, when we focus only on RTT, loss and connection size.

To compare performance of different Internet accesses technologies, we started with a classical
approaches based on the study of the two key factors that influence the throughput of TCP transfers
(see the TCP throughput formula [89]), namely loss rate and RTT. It suggests that the performance
over FTTH should significantly outperform the one of ADSL, which should in turn outperform the
one of Cellular. But, it turns out that reality is slightly more complex as can be seen from Figure
4.11(a). Indeed, while the Cellular technology offers significantly small AL Throughput, in line
with RTT and loss factors, FTTH and ADSL have much closer performance than RTT and loss
were suggesting.

Next in our work, we present a new method to uncover the impactof the application and to
better explain the differences or lack of differences between the access technologies. By applica-
tion, we mean the way applications work, and also the way the user interacts with the application,
as the latter directly impacts the way that data is deliveredto the transport layer. In addition of
the user behavior, which is a function of the access technology. For instance, large file downloads
might be rare on Cellular technology unlike wired technologies.

4.6 Conclusion

In this section, we have applied a somewhat classical methodology in order to compare per-
formance of different accesses technologies. We first reported the stability of the traffic within the
trace that we study : Cellular, FTTH and ADSL. The objective was to assess if several regimes
exist in our data, which would then require to analyze performance within each corresponding
time interval. We focused then on key parameters that can influence client perceived performance.
Specially emphasized the importance of the time to recover from losses and to free TCP connec-
tions.

From the study of tear down process, we uncovered a high diversity in terms of observed time-
out and times to liberate TCP connection. We demonstrate that connection tear-down time depends
on several factors. Especially, the used flags : SYN or RST, the used application on top of TCP
and the access technologies (user behavior depends on the used device)
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We conclude that the observed values of loss recovery times and RTT are not sufficient to
explain the observed performances, specially, FTTH and ADSL have much closer performance
than RTT and loss were suggesting.

In the next Chapter, we propose a new analysis method that uncovers the impact of specific
factors like the application and the interaction with user,and thus betters informs the comparison
of access technologies.
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Chapter 5

Methodology : The Interplay Between
Application, Behaviors and Usage

5.1 Introduction

Our study of the key factors that influence the throughput of TCP transfers, namely, connection
size, loss rate and RTT. RTT suggested that FTTH should significantly outperform the one of
ADSL, which should in turn outperform Cellular. It turns outthat reality is slightly more complex
as seen in Section 4.5. Indeed, while the Cellular technology offers significantly longer response
time, in line with RTT and loss factors, FTTH and ADSL have much closer performance than RTT
and loss were suggesting.

In this Chapter, we propose a new analysis method that uncovers the impact of specific fac-
tors like the application on top of TCP and the interaction with the user, in order to inform the
comparison of different access technologies.

The analysis method that we use consists in two steps. In the first step, the transfer time of each
TCP connection is broken down into several factors that we can attribute to different causes, e.g.,
the application or the end-to-end path. In a second step, we use a clustering approach to uncover
the major trends within the different data sets under study.

5.2 Methodology

In this paragraph, we introduce a methodology that extends what has been introduced in Sec-
tion 2.4. The objective is to reveal the impact of each layer that contributes to the overall data
transfer time, namely the application, the transport, and the end-to-end path (network layer and
layers below) between the client and the server.

We perform a break down of the duration of the data transfer phase of a TCP connection,
which we termdata time, i.e., excluding the connection establishment and tear down phases.

The starting point is that the vast majority of transfers consist of dialogues between the two
sides of a connection, where each party talks in turn. This means that application instances rarely
talk simultaneously on the same TCP connection [91]. We callthe sentences of these dialogues
trains.

For instance, as explained in Section 2.6 we observe that even if the server is sending a large
amount of bytes/packets, the actual data exchange is fragmented : the server sends a few data
packets (one train), then waits for the client to post another request and then sends its next answer,
i.e. the next set of packets (another train).
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FIGURE 5.1 – Data Time Break-Down

We term A and B the two parties involved in the transfer (A is the initiator of the transfer)
and we break down the data transfer into three components : Warm-up time, Theoretical time and
Pacing time. Figure 5.1 illustrates this break down in the case of a Google search where A is a
client of the ISP and B is a Google server.

A Warm-up corresponds to the time taken by A or B before answering to the other party. It
includes durations such as thinking time at the user side or data preparation at the server side. For
our use case, a Warm-up of A corresponds to the time spent by the client to type a query and to
browse through the results before issuing the next query (ifany) or clicking on a link, whereas
a Warm-up of B corresponds to the time spent by the Google server to prepare the appropriate
answer to the request.

Theoretical time is the duration that an ideal TCP transfer would take to transfer an amount
of packets from A to B (or from B to A) equal to the total amount of packets exchanged during
the complete transfer. Theoretical time can be seen as the total transfer time of this ideal TCP
connection that would have all the data available right at the beginning of the transfer. For this
ideal transfer, we further assume that the capacity of the path is not limited and an RTT equal to
RTTA−B (orRTTB−A). We depict in Table 5.1 an example of Theoretical time computation.

Round Current Window Data Sent
1 2 2
2 3 5
3 3 8
4 5 13
5 6 19
6 8 23

TABLE 5.1 – Example : Theoretical Time Computation(Data packets=23, Cwnd initial= 2, ACK
for 2 data packets)
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Theoretical times can be seen, for example, as the durationsthat FTP transfers would take to
complete when neglecting the dialogue between A and B, i.e.,the application impact. For our case,
let us assume, that we have 4 data packets sent by our client (connects to Google server + Performs
a query + request part 1 + request part 2). Then our client Theoretical data time will correspond to
the time spent by a TCP model [92] to send 4 data packets with a certain initial congestion window
(already estimated from the initial congestion window).

Once Warm-up and Theoretical times have been substracted from the total transfer time, some
additional time may remain. We term that remaining time Pacing time. Theoretical time can be
attributed to characteristics of the path, Warm-up time to applications and/or user, and finally
Pacing is due to the access link and the application on top of TCP. Indeed, as we assume in the
computation of Theoretical time that A and B have infinite access bandwidth, we in fact assume
that we can pack as many MSS size packets within an RTT as needed, which is not necessarily true
due to a limited access bandwidth. In this case, the extra time will be factored in the Pacing time.
Similarly, if the application or some middle-boxes are throttling the transmission rate, this will
also be included in the Pacing time. A contextual interpretation that accounts for the access and
application characteristics is thus needed to uncover the cause behind an observed Pacing time.
The above breakdown of the total transfer time is computed for each side A and B separately.

Note that to obtain accurate estimations of those durationsthat are related to the sender or
receiver side, we have to shift in time the time-series of packets received at the probe. Specifically,
we assume that a packet received from A at probe P was sentRTTP−A

2
in the past and will be

receivedRTTP−B

2
in the future, whereRTTP−A (resp.RTTP−B) is the RTT between P and A

(resp. B). While doing this operation, we assume that the RTTof the transfer stays constant.
The above breakdown strategy results in a complete partition of the total transfer time.

5.3 How to Present Results ?

5.3.1 Crude Representation

After performing data time break-down, each well-behaved connection is transformed into a
point in a 6-dimensional space (Pacing, Theoretical and train time of the client and the server).

We report in Figure 5.2 a representation of the data time break down for Cellular, FTTH and
ADSL traces. Figures 5.2 shows the breakdown per direction and per access technology with, for
each case, the median of each component in relative (left y axis - relative to total data time) and
absolute values (right y axis - in seconds). Medians enable to eliminate potential outliers.

The first observation from FTTH and ADSL data time break down is that they feature similar
duration in terms of percentage (and approximatively the same in terms of seconds), in line with
the similarity between the two traffics in terms of usage and basic characteristics (connections size,
destination port and traffic volume distribution,etc..)

From Figure 5.2, we observe that 45.4% of data time of the Cellular transfers is spent on
Warm-up time at the client side, against only 30.6% for all Theoretical data transfer time (client
and server). We notice that Pacing is more important on the server side (13.1%) than the client
one. It suggests that Cellular users were more affected by server policies/performance and remote
network side impact, than throughput limitation on the client side. FTTH and ADSL have the
same Warm-up B (a median value of 50 ms). This suggests that servers do not distinguish between
ADSL and FTTH servers, which corresponds to intuition as we expect to observe similar usage of
users in both environments. Warm-up B values is more important for the Cellular access. We note
the same observation for warm-up A.
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FIGURE 5.2 – Data Time Break Down

The main conclusions, at least at this stage from this data time break down, is that more
than 55% of data time is spent during data preparation on the server side (Warm-up B), client
interaction/thinking (Warm-up A) and Pacing times. It is clear from the comparison of Theoretical
times that performances are better for fast accesses, but their impact is not as important as Warm-
up or Pacing times.

5.3.2 Clustering Approach

Here-after we use clustering approaches to obtain a global picture of the relation between the
service, the access technology and the usage.

After performing data time break-down, each well-behaved connection is transformed into a
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point in a 6-dimensional space (Pacing, Theoretical and train time of the client and the server). To
mine this data, we use a clustering techniques to group connections with similar characteristics.

We use an unsupervised clustering approach, namely the Kmeans algorithm. A key issue when
using Kmeans is the choice of the initial centroids and the number of clusters targeted. To assess
the number of clusters we use a test and trial approach were westart with an initially large number
of clusters and then reduce this number as long as insignificant (i.e., too small) clusters remain.
Concerning the choice of the centroids, we perform one hundred trials and take the best result
(i.e., the one that minimizes the sum over all clusters of thedistances between each point and its
centroid). Note that we use the Matlab implementation of Kmeans [93].

To assess the number of used clusters, we rely on a visual dimensionality reduction technique,
t-Distributed Stochastic Neighbour Embedding (t-SNE) [94]. t-SNE projects multi-dimensional
data on a plane while preserving the inner neighbouring characteristics of data.

A straightforward application of the 6-dimensional pointsobtained from the 2-step approach
presented above, bears a difficulty. Indeed, the per dimension values tend to be highly dependent
on the connexion size. For instance, the warm-up A value is the sum of all warm-up periods over
the whole duration of the transfer (for the A to B direction).Theoretical and Pacing time depend
on the total number of packets to send. Then it is important when presenting results to keep a look
on connection size, because it is more probable that large connection size have largest Warm-up
and Pacing times (but also as we can notice in our further analysis that this assumption is not
always true due to several parameters to be detailed next in this work).

Finally, to present results, we use boxplots1 to obtain compact representations of the values
corresponding to each dimension. On the top of each cluster we put the median size of grouped
connections, cluster ID and for each trace the percentage ofconnections. This percentage is com-
puted as the number of connections in a cluster over the totalnumber of connection for a trace,
i.e., an access technology. It is important to note that whenperforming clustering, we use the same
number of connection form each trace.

For each clustering case, we use the same number of samples per access technology to prevent
any bias in the clustering. Note that connections were chosen randomly among the ones in each
traces.

5.4 Conclusion

We presented in this Chapter our methodology to reveal the impact of each layer that contri-
butes to the overall data transfer time, namely the application, the transport, and the end-to-end
path. We focused on the duration of the data transfer phase ofa TCP connection, which we term
data time, i.e., excluding the connection establishment and tear down phases.

After performing data time break-down, each well-behaved connection is transformed into a
point in a 6-dimensional space (Pacing, Theoretical and train time of the client and the server). A
warm-up corresponds to the time taken by each side involved in a TCP transfer before answering
to the other party. It includes durations such as thinking time at the user side or data preparation at
the server side. Theoretical times can be seen, as the time needed by an optimal TCP algorithm to
transfer an amount of data computed for each studied connection. Once warm-up and Theoretical
times have been substracted from the total transfer time, some additional time may remain. We
term that remaining time Pacing time.

To mine this data, we discussed different approaches to present data time break-down results.

1. boxplots are compact representations of distributions :the central line is the median and the upper and lower of
the box the 25th and 75th quantiles. Extreme values - far fromthe waist of the distribution - are reported as crosses.
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First we plot for Cellular, FTTH and ADSL trace median valuesobtained from data break-down
values in relative and absolute values. It allows to have a global picture of the impact of access
technologies through Theoretical times, client and serverbehaviors with Warm-up times and fi-
nally Pacing, which merges application and access limitation.

To go farther in our analysis we proposed clustering techniques to group connections with si-
milar characteristics. Through this clustering technique, we plane to tackle the issue of comparing
networking applications over different access technologies. It automatically extracts the impact of
Warm-up, Pacing and Theoretical times from passively observed TCP transfers and group together,
with an appropriate clustering algorithm, the transfers that have experienced similar performance
over the three access technologies.

In the next Chapter, we validate key elements of our analysismethod of data time break down
time and clustering. This validation is achieved through simulations carried out using mixed sce-
narios with one or more applications. Then, we test the ability of the proposed clustering methods
to lead to clusters that can be easily related to the expectedbehavior of the service under study.
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Chapter 6

Validation of Data Time Break-down
and Clustering Techniques

6.1 Introduction

The main objective of this chapter is to validate key elements of our analysis method, namely
the data time breakdown approach and the clustering technique, introduced in Chapter 5. This
validation is achieved through simulations carried out using the Qualnet simulator1.

As the data time breakdown (see Chapter 5) relies on the estimation of the RTT, we also
validate our RTT estimation technique, introduced in Chapter 3.

We create a variety of scenarios, which correspond to different link latencies or client think
times (time spent at the client side to interact with the application and to perform queries) using
several TCP application models available in Qualnet : FTP, TELNET and HTTP. In particular, we
show that our clustering approach naturally groups clientswith similar profiles at the application
(e.g. similar Warm-up or Pacing) or network layers (e.g. similar RTT).

Those controlled experiments also allow to illustrate the different throughput definitions that
we introduced : the Application Layer (AL) and the Effective-Exchange (EE) throughputs.

6.2 Network Setup

We designed several scenarios to reflect different Internetuser behaviors like varying thinking
times (time needed at the client side before performing a request to the server) or network condi-
tions like rate limitation or large RTT. Simulations were carried out under a Fedora Linux (kernel
2.6.22) environment, using the QualNet 4.5.1 simulator.

As shown in Figure 6.1, the reference topology is a wired network comprising two sites : a
local site, which consists exclusively of client machines with wired access to the network and a
remote site with application servers and also wired and wireless clients. On the two sites, access
points, wired clients and servers are inter-connected using a switch directly connected to a global
router, in order to ensure inter-site connectivity.

We vary parameters like latency, access link capacity and other configuration parameters de-
pending on the simulation scenario.

1. QualNet is a commercial simulator. It is based on GloMoSimdeveloped at the University of California, Los
Angeles (UCLA). GloMoSim uses the Parallel Simulation Enviroment for Complex Systems (PARSEC) for basic ope-
rations. QualNet has a graphical user interface for creating the model and its specification [95].
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In all scenarios, tcpdump traces are collected at the serverside. It is an advantage of Qualnet to
generate tcpdump traces. However, the latter can be captured at a device that feature a TCP layer,
i.e. a client or a server only.

FIGURE 6.1 – Used Simulation Network

6.3 Macroscopic Connection Time Break-down : Set-up and Data
Time

Our objective here is to assess the ability of our techniquesto assess the set-up and data times
of the transfers. These are relatively easy tasks, which do not represent a major challenge for our
tools, but it also enabled us to validate the way the simulator is working.

In this scenario, we use File Transfer Protocol (FTP), HTTP and TErminal NETwork (TEL-
NET) servers and wired clients, which post requests to thoseservers resulting in different connec-
tion sizes. We tune link latencies so that 20 clients on the local site observe respectively 30, 50
and 100 milliseconds when accessing HTTP, FTP and TELNET servers. The duration of HTTP
session (consisting of a single transfer) was set to 180 seconds, while the durations of FTP and
TELNET connections were set to 600 seconds.
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FIGURE 6.2 – Connection Time Break Down

Figure 6.2 shows the connection break-down results for eachof the 20 clients. From the left
plot, we notice that set-up time (time between the first SYN packet and first data packet) is strongly
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correlated with RTT for all observed protocols. It means that FTP, HTTP and TELNET clients tend
to start data transmission just after the TCP connection establishment, in line with what is observed
in the wild.

The right plot shows effective data transmission time, i.e., time between the first and the last
transmitted data packet. We notice, for all clients and observed protocols, that due to short set-
up values, the connection time corresponds approximatively to data transfer time. To finish with
connection time break-down, we note that we omit to report tear-down here, which is defined as
the time between the last data packet and the last control (ingeneral FIN or RST) control packet,
due to the way tear down phases are implemented in Qualnet. For instance, with QualNet doing
an experiment with HTTP connection of 180 seconds means thata client establishes connection
and sends data until the end of 180 seconds without closing the connection at the end.

In the next section, we start zooming into the data time of thetransfer.

6.4 Microscopic Connection Time Break-down : Think and DataPre-
paration Time

We address the problem of validating our data-time breakdown approach using simulation
results and also measurements collected in the wild. While Qualnet allows to mimic specific users
and servers behaviors, some details concerning the underlying distributions used to implement
those behaviors are not externally visible. For instance, while one can specify different maximum
thinking time, the distribution of thinking time is not specified in the Qualnet manual. In such a
context, we use an indirect approach to validate our approach by varying some parameters, e.g.
the link latency, while leaving other constant, e.g., the maximum thinking time, and check that our
estimation of the constant parameters is unaffected by the variation of the other parameters.

We further present, in a second part of this section, some results obtained in the wild where
we observe that some parameters, e.g. the server behavior, is unaffected by the type of clients (we
consider clients using different access technologies : Cellular, ADSL and FTTH) that make the
request. While indirect, we believe that this approach greatly increases the confidence one can
have in our analysis tools.

6.4.1 Simulation results

We consider the topology of Figure 6.1 with 20 clients (on thelocal site) targeting a single
Web server (on the remote site).

We first vary the link latency in the following range of values: 1, 10, 70 and 100 milliseconds.
The maximum thinking time is kept fixed at 10 seconds. Duration of each simulation was 600
seconds.
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Figure 6.3, shows results of estimated think time at the client side (Warm-up A) and processing
time at the server side (Warm-up B) for the different link delay values. Values for Warm-up A and
B were computed for each exchanged train of data, see Section5.2.

Results in Figure 6.3(a) irrespectively show the link delays, the distributions of computed
think time on the client side remains the same (it looks approximatively as a uniform distribution
between 0 and the maximum thinking time, which is 10 s here). This constitutes a strong argument
for our methodology for computing Warm-up A values.

To get a clearer picture of what is happening on the server side, we computed (using our data
time break-down methodology) the processing time on the server side, for each transmitted train of
data. These results are plotted in Figure 6.3(b). Again, we observe that the estimated distribution
remains the same for all link latencies, which complies withthe idea that server thinking time is a
property of the application and not of the link characteristics.
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FIGURE 6.4 – Different Think Time

In a second stage, we used the same simulation setup but we nowset the link delay to 10
milliseconds and we varied the think time of web clients. Recall that a web session lasts 600s
and consists of a single long connection, where clients postrequests and the web server sends the
corresponding objects. Thinking and processing times are shown in Figure 6.4. These new expe-
riments are consistent with our earlier results. Figure 6.4(a) shows that for clients with different
think time, we obtain different distributions of computed Warm-up A, each following approximati-
vely a uniform distribution. As for processing time, we observe in Figure 6.4(b) same distributions
of Warm-up B irrespectively of the client behavior. The short estimated processing times (less than
a millisecond) on the server side further underscore the accuracy of our approach for estimating
Warm-up times.

6.4.2 Real-life Traces

In the above section, we observed that absolute values of Warm-up B should not be correlated
neither with user think time nor with link latency. This is inline with intuition and with what
should be observed for real traffic : if we assume an homogeneous implementation of a service
and similar load conditions at the server side, Warm-up at the server side should have a similar
distribution.

We present measurements obtained from the study of traces collected by Orange for different
heterogeneous environments : ADSL, Cellular and FTTH. Our focus is on the study of POP3
traffic for Orange clients and Orange’s mail servers.

We report in Figure 6.5, CDFs of each Warm-up at server side (time to prepare the answer for
the client) for each access technology. It shows that, despite the diversity in access technology,
using our data time break-down methodology, we are able to retrieve very similar distributions of
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data preparation for each technology. Note that the traces that we focus on, were not captured at
the same time period and thus, the load conditions might explain the little differences observed in
the CDFs.
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FIGURE 6.6 – Warm-up Time Series : POP3 Orange

To better understand the root cause of the peaks in the distributions in Figure 6.5, we inspected
the time series of Warm-up B values. Figure 6.6 depicts the time series of warm-up for each access
technology. A key observation is that the presence of peaks in Figure 6.5. They do not seem to
be time dependent (because of load variations) but rather application dependent, as we believe it
represents the service times of different type of interactions between the client and the server, e.g.,
authentication, (empty) mail box checking, etc.

To sum up, we have presented in this section different results obtained through simulations or
real-life examples that validate, even if indirectly, our data-time breakdown methodology. We next
turn our attention to our clustering approach.
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6.5 Clustering Validation

6.5.1 Single Application Scenario

In this section and in the remaining of this chapter, we present validation results obtained using
simulation and the network topology of Figure 6.1. In this section, we consider exclusively Web
traffic. Twenty Web clients on the local site are interactingwith a Web server on the remote site.

We implemented different scenarios corresponding to different client behaviors, different net-
work conditions, or different transport layer parameters.These scenarios are detailed in Table 6.1.
Each scenario is executed sequentially in order to avoid server or network overload. For a given
scenario, several connections from the different clients are simultaneously active but the global
load remains moderate and we observed no impact in terms of losses or time-outs at the TCP
layer.

Once each scenario has been executed, we group all the tracesinto a unique trace consisting
of all the observed connections. We next apply our data time break down technique : each well-
behaved HTTP connection is transformed into a point in a 6-dimensional space (Pacing, Theore-
tical and Warm-up time of the client and the server). We then apply our clustering technique on
the aggregate trace. To avoid biases introduced by think time at the client side, we omit to use
Warm-up A values in the clustering. Indeed, thinking time atthe client side represent large values
as compared to the other dimensions and tend to dominate in the clustering phase.

Our clustering technique is unsupervised. We use the K-means algorithm. A key issue when
using K-means is the choice of the initial centroids and the number of clusters targeted. To address
the problem of the choice of the initial centroids, we run theK-means algorithm several times
(100 times, which is considered as a good practice) with different initial centroids and pick the
best results in terms of distance between clusters. To guidethe choice of the number of centroids,
we consider two options : either we use a test and trial approach were we start with an initially
number of clusters and then reduce this number as long as insignificant clusters remains ; or we
rely on a dimensionality reduction technique, t-SNE, that projects multi-dimensional data on a two
dimensional plane. Figure 6.7(b) shows the application of t-SNE on the global trace (we explain
the colors later) and suggest that 3 to 6 clusters are presentin our aggregate trace.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
Application HTTP HTTP HTTP HTTP HTTP HTTP

Connection Time (sec) 600 600 600 180 600 600
Bandwidth (Mbps) 10 10 10 10 1 10
Link Delay (ms) 50 50 10 10 100 wifi(802.11b)

MSS 1460 1460 1460 1460 1460 1460
Sender Buffer Size 64500 64500 16000 64500 64500 64500

Receiver Buffer Size 64500 64500 16000 64500 64500 64500
Think Time (sec) 2 10 10 10 10 10

TABLE 6.1 – Scenarios Configuration : Different Delays

We focus hereafter on the clustering with 6 clusters, equal to the number of scenarios we have.
Figure 6.7(a) depicts the characteristics of the 6 clustersobtained with K-means. We use boxplots
to obtain compact representations of the values corresponding to each dimension. We indicate,
on top of each cluster, to which scenario the connections in the cluster correspond to, and the
median size of the number of data packets from and to the clients. We first observe by inspecting
those labels that each identified cluster corresponds to a unique scenario. Cluster 1 corresponds
to scenario 3 and groups connections characterized by largePacing B due to sender and receiver
buffer size limitation. Cluster 3 aggregates connections from scenario 6, with short Pacing and
Theoretical times. Those are penalized by large processingtime at the server side. Cluster 4 groups
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FIGURE 6.7 – HTTP scenarios : Data Clustering

connections with large Theoretical and Warm-up B times, which are the connections in scenario
5 that correspond to slow access links (1Mb/s) with high latency (100ms). Cluster 6 groups the
shortest connections corresponding to scenario 5.

Figure 6.7(b), that present the projection obtained by t-SNE, further demonstrates that t-SNE
and K-means are in are in good agreement as the data samples inthe figure are indexed using their
cluster identifier obtained from K-means.

The above results were obtained for a number of clusters thatcorresponds to the exact num-
ber of scenarios. We also tested what happens if we reduce thenumber of clusters in K-means
(remember that t-SNE suggested that it should not be larger than 6).

If we decrease the number of cluster to 4, we also obtain satisfying results : in this case,
clusters 1, 3 and 4 remain unchanged and clusters 2,5 and 6 will be grouped together. This is
because clusters 2, 5 and 6 have similar absolute times alongeach dimension of the data time
break-down procedure.



76 6. VALIDATION OF DATA TIME BREAK-DOWN AND CLUSTERING TECHNIQUES

6.5.2 Heterogeneous Scenario

In this section, we continue the validation of our clustering technique that we started in the
previous section. We consider again the topology in Figure 6.1. We created classes of users corres-
ponding to different applications. We employed a sensitivity analysis, which exposes the capacity
of our methodology in finding significant categories of traffic and delineates performance problem
from an original mixed traffic.

Table 6.2 summarizes the key characteristics of the 3 classes (FTP, TELNET and HTTP) of
users we use. HTTP and TELNET traffic is bi-directional in Qualnet while FTP traffic is uni-
directional. For all classes of clients, the duration of each connection is set to 600 seconds, the
access bandwidth to 10 Mbps and the link delay to 30 ms. For each application, we designed
two cases. An optimal case where the parameters of client/connection (MSS and client/server
buffer size) allow to reach good performance and a non-optimal case where we limit the MSS and
client/server buffer size.

users 1 users 2 users 3 users 4 users 5 users 6
Application FTP FTP TELNET TELNET HTTP HTTP

Connection Time (sec) 600 600 600 600 600 600
Bandwidth (Mbps) 10 10 10 10 10 10
Link Delay (ms) 30 30 30 30 30 30

MSS 1460 1460 1460 65 1460 1460
Sender Buffer Size 64500 64500 64500 64500 64500 16000

Receiver Buffer Size 64500 16000 64500 64500 64500 16000
Think Time (sec) - - - - 2 2

TABLE 6.2 – User Classes

Figure 6.8 presents the clustering results using K-means and the projection obtained via t-SNE.
The first observation here is that the clusters obtained withK-means are in good agreement with
the projection obtained by t-SNE as indicated in Figure 6.8(b), where data samples are indexed
using their cluster identifier in K-means.

Before moving to the interpretation of the individual cluster, we observe that two of them
gather the interactive traffic while the two other ones gather the bulk transfers. Indeed, Figure
6.8(a) shows that cluster 2 and 3 correspond exclusively to HTTP and TELNET connections while
clusters 1 and 4 correspond to FTP traffic with median transfer size of 50000 data packets. Cluster
1 corresponds to FTP connections characterized by large Pacing A value due to the limited receiver
buffer size for users of class 1. Cluster 2 groups TELNET and HTTP connections with large Pacing
A and B values : in fact users of class 4 were penalized by very short MSS size and users of class
6 by limited client and server buffer size. Let us now consider clusters 3 and 4. Those clusters
correspond to shorter data time break-down values, while they present the same amount of data as
in clusters 1 and 2 respectively. Cluster 3 shows that Web andTELNET connections are feature
high Warm-up B when MSS as their sender/receiver buffer sizeare optimal. It means that when
connection is optimally tuned, the impact of processing times is more important than Pacing and
theoretical times. Finally cluster 4 corresponds to FTP transfers with low Pacing A as those users
have large sender/receiver buffer size.

Overall, we observe our clustering method, when applied to traffic profiles with different
connections parameters, lead to clusters that can be easilyrelated to the expected behavior of
the service under study (clusters 3 and 4) while some others will relate to anomalous behavior
because of non optimal setting of some parameters (clusters1 and 2).
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FIGURE 6.8 – Heterogeneous Traffic : Data Clustering

6.6 Comparison with RCA Technique

In [2], the authors develop a methodology similar to ours. They identify four types of through-
put limitations for connections : (i) unshared bottleneck limitation that corresponds to the case
where a single connection uses the full capacity of the bottleneck link, (ii) shared bottleneck li-
mitation, which occurs when several connections share a bottleneck link. (iii) receiver window
limitation, if ever the receiver window is too small as compared to the bandwidth-delay product of
the path, which prevents the sender to achieve a higher throughput and finally (iv) sender buffer
limitation, if the sender buffer is too small (rare case in practice).

In our simulations in Sections 6.5.2 and 6.5.1 we reproduceddifferent scenarios of perfor-
mance limitation. To degrade client throughput, we modifiedlink capacity/latency, MSS, sen-
der/receiver buffer size and think time for HTTP client.
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We observed that, for HTTP transfers, connections with small receiver buffer size feature an
increase of Pacing A and large value of Pacing B and globally fewer data than connections with
buffer size of 64500 bytes. Small sender buffer size leads also to an increase of Pacing A and large
Pacing B. This means that our technique can not distinguish these two cases – receiver or sender
window limitations. We note that in QualNet, for the case of HTTP transfers, if we focus on the
number of exchanged data, the server sends more data packetsthan the client, which explains the
large values of Pacing B. In contrast, when we perform experiments with FTP traffic from the
client to the server (upload), results show that small receiver and sender buffer size lead to large
Pacing A.

Hence, we conclude that (i) if more data is transferred from the client to the server, small
sender/receiver buffer size lead to large Pacing A (ii) if more data is transferred from the server to
the client, small sender/receiver buffer size lead to largePacing B.

Simulations of unshared bottleneck limitation show that for this case, TCP connections present
large Pacing values. Finally, with shared bottleneck limitation, as defined in [2], connections ex-
perience a high loss ratio and are penalized by large retransmission time. In our simulations we
excluded the recovery time from the data transfer time to avoid biases when we compute Theo-
retical, Pacing and Warm-up times. However, we account for this metric in our global connection
time break-down, and we are thus also able to infer this limitation.

6.7 Throughput Computation Methods

This last section does not present any validation result butrather illustrates the different me-
trics we have proposed to measure the throughput using simulation, which offers a controlled
environment.

We use the same architecture as presented in Figure 6.1. We simulate two scenarios of Web
clients with different think time values, respectively 2 and 10 seconds. Table 6.3 presents the
main configuration parameters for each scenario. We use 20 clients interacting concurrently with
a single Web server. Consequently, the client perceived performance can depend on the load at the
Web server and also the bottleneck link load. The purpose of this experiment was to compare the
performance of users with different think times and the sameamount of exchanged bytes. Since
users in scenario 2 have 10 seconds of think time limit, against only 2 seconds for scenario 1,
Table 6.3 shows that we used longer connections for scenario2.

Scenario 1 Scenario 2
Application HTTP HTTP

Connection Time (sec) 600 2500
Bandwidth (Mbps) 10 10
Link Delay (ms) 30 30

MSS 1460 1460
Client Data Packets (mean) 1343 1477
Server Data Packets (mean) 9955 10849

Think Time (sec) 2 10

TABLE 6.3 – Scenarios Configuration : Different Think Times

Figure 6.9 presents performance results for each scenario.For all configurations, we report
two metrics related to the throughput of the transfers : (i) AL throughput, which corresponds to
the amount of bytes transferred at the TCP layer, divided by the total duration between the first
packet (first SYN) and last data packet of the transfer ; (ii) the EE throughput that corresponds to
the amount of bytes transferred at the TCP layer, divided by the total duration between the first
packet (first SYN) and last data packet of the transfer minus the cumulated think time at the client.
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A comparison of AL throughput in Figure 6.9 shows that user throughput in scenario 1 clearly
outperforms the throughput in scenario 2, which was to be expected from its definition as the AL
throughput is sensitive to the end user behavior. On the other hand, the EE throughput conveys the
message that the performance achieved during the actual transfer times is essentially the same in
both scenarios.

6.8 Conclusion

We validated the ability of our approach of data break-down to study the interplay between
TCP connection factors such as : the applications on top of TCP, clients behavior, the application
usage, and the access technology. We designed several scenarios to reflect different Internet user
behaviors with the Qualnet Simulator. We based our analysison a topology comprising two sites :
a local site, with wired client machines and a remote site with application servers and also wi-
red and wireless clients. We then vary network parameters like latency, access link capacity and
client/application server configuration parameters depending on the simulation scenario.

First, we validated the process of computing thinking time at the server side (what we called
previously in 5.2 Warm-up B) for each transmitted train of data. Through different results from
simulations or real-life examples, we show that the estimated distribution of thinking time at the
server side remains the same for all link latencies and access technologies, which complies with
the idea that for a considered service, server thinking timeis a property of the application and not
of the link characteristics.

Then, we test the ability of used clustering methods to lead to clusters that can be easily related
to the expected behavior of the service under study. To do that, we implemented different scena-
rios corresponding to different client behaviors, different network conditions or different transport
layer parameters. Results show that clusters obtained withK-means are in good agreement with
the projections obtained by t-SNE.

Finally, we compare results of our data time-break down methodology with the RCA Tech-
nique. We discuss how limitations identified in RCA are handled with our methodology. We pro-
pose different metrics : the Application Layer (AA) and the Effective-Exchange (EE) throughputs,
to measure the throughput and to avoid biases introduced by the time introduced by the client to
interact with the application/service.

In the next chapter, we apply our methodology to real traffic traces. In particular, we focus on
the Google Web search service, being accessed by different access technologies.
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Chapter 7

A Fine Grained Analysis of TCP
Performance

7.1 Introduction

Telecommunication operators offer several technologies to their clients for accessing the In-
ternet. We have observed an increase in the offering of Cellular and FTTH accesses, which now
compete with the older ADSL and cable modem technologies. However, until now it is unclear
what are the exact implications of the significantly different properties of these access technolo-
gies on the quality of service observed by clients.

In this chapter, we address the problem of comparing the performance perceived by end users
when they use different technologies to access the Internet. Users primarily interact with the net-
work through networking applications they use. We tackle the comparison task by focusing on
several Internet key services such as Google search and mail. This is because we focus on user
perceived performance and users do care about raw performance metrics. They care about the per-
formance of the applications they use. Similarly to what we did for the overall traffic in Chapter
4 we first demonstrate when focusing on Google search traffic that RTT and packet loss alone are
not enough to fully understand the observed differences or similarities of performance between the
different access technologies. We then apply our data break-down approach, detailed in Chapter
5, based on a fine-grained profiling of the data time of transfers that sheds light on the interplay
between service, access and usage, for the client and serverside. We use clustering approaches,
introduced in Chapter 5, to identify groups of connections experiencing similar performance.

7.2 The Case of Google Search Traffic

7.2.1 Problem Statement

Cellular FTTH ADSL
Well-behaved Cnxs 29874 1183 6022

Data Packets Up 107201 2436 18168
Data Packets Down 495374 7699 139129
Volume Up(MB) 74.472 1.66 11.39

Volume Down(MB) 507.747 8 165.79

TABLE 7.1 – Google Search Traffic

To identify traffic generated by the usage of Google search engine, we adopted the following
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approach : we first extract HTTP requests containing the string www.google.com/fr in their HTTP
header.

We paid attention to excluding requests to or from other services offered by Google like gmail,
Google map, etc. This first step provides a set of pairs of IP addresses and source/destination ports
identifying the local client and the remote Google Web server. We then flagged all connections
between those pairs of IP addresses and source/destinationports, as Google Web search traffic.
To identify Google search traffic for the upstream and downstream directions, we use TCP port
numbers and remote address resolution (Nslookup). Table 7.1 summarizes the amount of Google
search traffic we identified in our traces.

7.2.1.1 Connection Size

Figure 7.1 depicts the cumulative distribution of well-behaved Google search connection size
in bytes. It appears that data transfer sizes are very similar for the three access technologies.
This observation constitutes a good starting point since the performance of TCP depends on the
actual transfer size. RTTs and losses also heavily influenceTCP performance, as the various TCP
throughput formulas indicate [89, 96]. Also, the availablebandwidth plays a role. With respect to
these metrics, we expect the performance of a service to be significantly influenced by the access
technology since available bandwidth, RTTs1 and losses are considerably different over ADSL,
FTTH and Cellular. However, as we demonstrated in Chapter 4 and in the remaining of this section,
those metrics alone fail at fully explaining the relative performance observed in our traces.
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FIGURE 7.1 – Connection Size

7.2.1.2 Latency

Figure 7.2 depicts the resulting RTT estimations for the 3 traces, connecting only to the Google
Web search service. It clearly highlights the impact of the access technology on the RTT. FTTH
access offer very low RTT in general – less than 50 ms for more than 96% of connections. This
finding is in line with the characteristics generally advertised for FTTH access technology. In
contrast, RTTs on the Cellular technology are notably longer than under ADSL and FTTH.

7.2.1.3 Packet Loss

Figure 7.3 depicts the cumulative distribution of retransmission time per connection for each
trace. Retransmissions are clearly more frequent for the Cellular access with more than 35% of

1. As noted in several studies on ADSL [29]. See also AppendixA where we contrast what we call local and remote
RTT (see Figure A.1) and Cellular networks [56], the access technology often contributes a significant part of the overall
Round Trip Time.
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transfers experiencing losses compared to less than 6% for ADSL and FTTH accesses. From
previous works, we noticed that several factors explain thehigher loss ratio for Cellular access.
Note again that the metric we consider here is not the loss rate but the fraction of connections that
experience losses. The overall loss rates are small, in the order of a few percent at most on all access
technologies here. In fact, in [90] authors recommend to usea loss detection algorithm, which
uses dumps of each peer of the connection (this algorithm is not adapted for our case because our
measurements have been collected at a GGSN level) to avoid spurious Retransmission Timeouts
in TCP. In addition, authors report in [56] that spurious retransmission ratio in Cellular networks
is higher for Google servers than others. For Google servers, authors show short retransmission
timeouts.

Most of the transfers are very short in terms of number of packets and we know that for such
transfers, packet loss has a detrimental impact to the performance presented in Chapter 2. Thus,
the performance of these transfers are dominated by the packet loss. It is important to note that
using our data time break-down approach, we analyze all connections, including the ones that
experience losses by first removing recovery times from their total duration.

7.2.1.4 Application Level Performance

Our study of the two key factors that influence the throughputof TCP transfers, namely loss
rate and RTT, suggest that, since Google Web search transfers have a similar profile on the 3
access technologies, the performance of this service over FTTH should significantly outperform
the one of ADSL, which should in turn outperform the one of Cellular. It turns out that reality is
slightly more complex as can be seen from Figure 7.4 where we report the distribution of transfer
times. Throughput analysis is qualitatively similar, but we prefer to report transfer times since Web
search is an interactive service. Indeed, while the Cellular technology offers significantly longer
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FIGURE 7.4 – Google Transfer Time

response time, in line with RTT and loss factors, FTTH and ADSL have much closer performance
than RTT and loss were suggesting.

In the next section, we apply our data time break-down approach to uncover the impact of
specific factors like the application and the interaction with user, and thus informs the comparison
of access technology, for Google search traffic.

7.2.2 Break-down Results

The analysis method that we use consists in two steps as described in Chapter 5. In the first
step, the transfer time of each TCP connection is broken downinto several factors that we can
attribute to different causes, e.g., the application or theend-to-end path.

At the end of step 1, each well-behaved Google search connection is transformed into a point
in a 6-dimensional space (pacing, theoretical and train time of the client and the server). To mine
this data, we use in a second step, a clustering approach to uncover the major trends within the
different data sets under study.

Application of t-SNE to our 6-dimensional data leads to the right plot seen in Figure C.17(a).
This figure indicates that a natural clustering exists within our data. In addition, a reasonable value
for the number of clusters lies between 5 and 10. Last but not least the right plot of Figure C.17(a)
suggests that some clusters are dominated by a specific access technology while some others are
mixed. We picked a value of 6 for the number of clusters in Kmeans.

Figure C.17(b) depicts the 6 clusters obtained by application of Kmeans. We use boxplots2

to obtain compact representations of the values corresponding to each dimension. We indicate, on
top of each cluster, the number of samples in the cluster for each access technology. We use the
same number of samples per access technology to prevent any bias in the clustering, which limits
us to 1000 samples, due to the short duration of the FTTH trace. The ADSL and Cellular samples
were chosen randomly among the ones in the respective traces. In Figure 7.6(b) we plot the size
of the transfers of each cluster and their application layerthroughput3.

We first observe that the clusters obtained with Kmeans are ingood agreement with the pro-
jection obtained by t-SNE as indicated in the left plot of Figure C.17(a), where data samples are
indexed using their cluster id in Kmeans.

Before delving into the interpretation of the individual clusters, we observe that three of them
carry the majority of the bytes. Indeed, Figure 7.6(a) indicates that clusters 1 and 2 and 6 represent

2. Boxplots are compact representations of distributions :the central line is the median and the upper and lower of
the box the 25th and 75th quantiles. Extreme values -far fromthe waist of the distribution - are reported as crosses.

3. We compute the throughput by excluding the tear down time,which is the time between the last data packet and
the last packet of the TCP connection



85

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

 

 

ADSL 

CELL

FTTH

(a) T-SNE

Th B W−up B  Pacing B Th A W−up A  Pacing A
0

1000

2000

3000

4000

5000

Cluster 6−− CELL=33−− FTTH=325−−ADSL=160

Th B W−up B  Pacing B Th A W−up A  Pacing A
0

20

40

60

80

100

120

Cluster 3−− CELL=0−− FTTH=280−−ADSL=247

Th B W−up B Pacing B Th A W−up A Pacing A
0

20

40

60

80

100

120

Cluster 4−− CELL=5−− FTTH=72−−ADSL=117

Th B W−up B  Pacing B Th A W−up A  Pacing A
0

0.5

1

1.5

2

x 10
4Cluster 2−− CELL=291−− FTTH=4−−ADSL=64

Th B W−up B  Pacing B Th A W−up A  Pacing A
0

100

200

300

Cluster 5−− CELL=11−− FTTH=293−−ADSL=317

Th B W−up B  Pacing B Th A W−up A  Pacing A
0

500

1000

1500

2000

2500

Cluster 1−− CELL=685−− FTTH=51−−ADSL=120

(b) K-means

FIGURE 7.5 – Google Search Engine Clusters

83% of the bytes. Let us first focus on these dominant clusters.
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FIGURE 7.6 – Google Search Engine Parameters

Clusters 1, 2 and 6 are characterized by large warm-up A values, i.e., long waiting time at the
client side in between two consecutive requests. The warm-up A values are in the order of a few
seconds, which are compatible with human actions. This behavior is in line with the typical use of
search engines where the user first submits a query then analyzes the results before refining further
her query or clicking on one of the links of the result page. Thus, the primary factor that influences
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observed throughputs in Google search traffic is the user behavior (how the client interact with the
application). In fact, identified values in clusters 1, 2 and6 of Warm-up A are in line with results in
[97] of the time between query submission and first click, where authors identified different users
trends.

We can further observe that clusters 1 and 2 mostly consist ofCellular connections while
cluster 6 consists mostly of FTTH transfers. This means thatthe clustering algorithm first based
its decision on the Warm-up A value ; then, this is the access technology that impacts the clustering.
As ADSL offers intermediate characteristics as compared toFTTH and Cellular, ADSL transfers
with large Warm-up A values are scattered on the three clusters.

Let us now consider clusters 3, 4 and 5. Those clusters, whilecarrying a tiny fraction of traffic,
feature several noticeable characteristics. First, we seealmost no Cellular connections in those
clusters. Second, they total two thirds of the ADSL and FTTH connections, even though they are
smaller than the ones in clusters 1, 2 and 6 – see Figure 7.6(b). Third, those clusters, in contrast
to clusters 1, 2 and 6 have negligible Warm-up A values. From atechnical viewpoint, Kmeans
separates them based on the RTT as cluster 5 exhibits larger ThA and ThB values and also based
on Pacing B values. A deeper analysis of these clusters revealed that they correspond to very short
connections with an exchange of 2 HTTP frames. In fact, cluster 3 corresponds to cases when
a client opens the Google Web search page in his/her Internetbrowser without performing any
search request, then after a time-out of 10 seconds, the Google server closes the connection. On
the other hand, cluster 4 and 5 correspond to GET requests andHTTP OK responses with an
effective search, the main difference between cluster 4 and5 being RTT and connection size.

FIGURE 7.7 – Overview of Google Clusters

Our clustering results thus comply with intuition : in a Cellular environments, there is no -at
the moment and in our trace - default opening of pages like Google search unlike for computers
where this is often the default case. In the latter case, a time out occurs after a long idle period
when the server decides to close the HTTP connection. This leads to clusters 3, 4 and 5 that we
observe on ADSL and FTTH only. Cellular environments are optimized differently and it is only
when the user issues a query that the Google server is accessed. Our clustering technique enables
to pinpoint those different usages by a precise profiling of what is happening at the client and
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server side.
Finally, to wrap-up results of data time break-down methodology, we present in Figure 7.7 the

main characteristics and features that differentiate eachcluster. As we can see, user behavior is the
main discriminant factor between clusters 1,2 and 6 on the one hand and on the other hand clusters
3,4 and 5 followed respectively by the usage and access impact.

To consolidate our finding we report in Figure 7.8(a) response times for clusters 1, 2 and 6
without Warm-up A. Also, we report in Figure 7.8(b) responsetimes for clusters 3, 4 and 5. The
two figures match with each other and feature a similar shape as RTT distributions.
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FIGURE 7.8 – Computation of Response Time Without Warm-up A

More generally, we expect that our method, when applied to profile other services, will lead to
some clusters that can be easily related to the behavior of the service under study while some others
will relate anomalous or unsual behaviors that might require further investigation. For the case of
Google search engine, we do not believe clusters 3,4 and 5 being anomalies that affects the quality
of experience of users since the large number of connectionsin those clusters would prevent the
problem from flying below the radar. We found only very few cases where the server’s impact
to the performance was dominating and directly impacting the quality of experience of the end
user. Observing many such cases would have indicated issues, e.g., with service implementation
or provisioning.

Clustering results show that Warm-up A influences response time estimation and represents
the most discriminant clustering parameter. In order to avoid the bias introduced by user behavior,
we limit next our break down study to Warm up B, Pacing A/B and Theoretical A/B. As for
previous results, we obtain 6 clusters and we observe that clusters obtained with Kmeans are in
good agreement with the projection obtained by t-SNE.

We summarize in Figure 7.9 characteristics of each identified cluster, when performing clus-
tering without taking into account Warm-up A.

A comparison of generated data volume per cluster, depictedin Figure 7.10(a) shows that
cluster 5 contains the highest volume of data, while clusters 1, 2, 3 and 4 have between 12 % and
19 % of data volume, cluster 6 contains only 5% of generated Google Web search traffic.

Figure 7.9 shows that like for clusters presented previously (with Warm-up A) we have two
classes of cluster with short and large transfers. Then large transfers are more penalized by Pacing
B since they are more affected by access and application on top. It is important to note that we
identified 3 categories of clusters based on their Warm-up B values. In fact from Figure 7.10(b) we
observed 3 profiles of Warm-up B distributions, corresponding to : (i) short transfers (ii) Mobile
devices with windows CE and iPhone and finally (iii) client with windows machines. This suggests
that Google Web search Engine adapts content for mobile device. This hypothesis will be studied
with more details in next Section 7.3.
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FIGURE 7.9 – Overview of Google Clusters Without User Behavior Impact
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FIGURE 7.10 – Google Clusters Parameters (without Warm-up A)

A comparison of clustering results with and without taking into account Warm-up A shows
that while we obtain the same number of clusters, we obtain differences in cluster characteristics.
Results show that user behavior plays an important role and corresponds to the discriminant para-
meters for first results in Figure 7.7. In the other hand, by factoring out client behavior impact, we
noticed from Figure 7.7 that server policy, with an adaptation of data preparation time becomes
the discriminant parameter in obtained clusters.

7.3 Contrasting Web Search Engines

The main idea in this section is to contrast Google results with others Web search services. For
the case of our traces, we observed that the second dominant Web Search engine is Yahoo, with
few connections. This low number of samples somehow limits the applicability of our clustering
approach as used in the Google case. We restrict our attention to the following questions : (i) Do
the two services offer similar traffic profile ? (ii) Are services provisioned in a similar manner ?
The architecture of Google and Yahoo data-centers are obviously different but they must both obey
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the constraint that the client must receive its answer to a query in a maximum amount of time that
is in the order of a few hundreds of milliseconds [98]. We investigate the service provisioning by
analyzing the Warm-up B values offered by the two services.

7.3.1 Traffic Profiles
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FIGURE 7.11 – Yahoo vs. Google Web Search Services

Figure 7.11(a) shows CDFs of data connections size for Cellular, FTTH and ADSL traces for
both Google and Yahoo. We observe for our traces that Yahoo Web search connections are larger
than Google ones. An intuitive explanation behind this observation is that Yahoo search pages
contain, on average, more photos and banners than ordinary Google pages.

Figure 7.11(b) plots cdfs of RTTs. We can observe that RTT values on each access technology
are similar for the two services, which suggests that the servers are located in France and that it is
the latency of the first hop that dominates.

We do not present clustering results for Yahoo due to the small number of samples we have.
However, a preliminary inspection of those results revealed the existence of clusters due to long
Warm-up A values, i.e., long waiting times at the client side– in line with our observations with
the Google Web search service. In the next section, we focus on the waiting time at the server side.

7.3.2 Data Preparation Time at the Server Side
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FIGURE 7.12 – Warm-up B

Figure 7.12(a) presents the cdf of warm-up B4 values for both Yahoo and Google for the
ADSL and Cellular technology (we do not have enough samples on FTTH for Yahoo to present

4. We have one total warm-up B value per connection, which is the total observed warm-up B for each train.
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them). We observe an interesting result : for both Yahoo and Google, the time to craft the answer is
longer for Cellular than for the ADSL technology. It suggests that both services adapt the content
to Cellular clients. A simple way to detect that the remote client is behind a wired or wireless
access is to check its Web browser-User Agent as reported in the HTTP header. This is apparently
what Google does as Figure 7.12(b) reveals (again, due to a low number of samples on Yahoo,
we are not able to report a similar breakdown). Indeed, Cellular clients featuring a laptop/desktop
Windows operating system (Vista/XP/2000) experience similar warm-up B as ADSL clients while
clients using iPhones or a Windows-CE operating system experience way higher warm-up B. As
the latter category (esp. iPhones : more than 66% of Google connections) dominates in our dataset
they explain the overall Cellular plot of Figure 7.12(a). Note that further investigations would
be required to fully validate our hypothesis of content adaptation. We could think of alternative
explanations like a different load on the servers at the capture time or some specific proxy in the
network of the ISP. In [99] authors show that market leaders in mobile data services (T-Mobile
and Vodafone) intercept the response from the Web server andsecretly infiltrate into Web page’s
JavaScript code and forward responses to the correspondingclient. However, it is a merit of our
approach to pinpoint those differences and attribute them to some specific components like the
servers here.

7.4 Conclusion

In this chapter, we tackled the issue of comparing networking applications over different access
technologies : FTTH, ADSL and Cellular. We focused on the specific case of search services. First,
we showed that packet loss, latency, and the way clients interact with their mobile phones all have
an impact on the performance metrics of the three technologies.

Second, we applied our technique of data time break-down that presented in Chapter 5. It au-
tomatically extracts the impact of each of these factors from passively observed TCP transfers and
then group together, with an appropriate clustering algorithm, the transfers that have experienced
similar performance over the three access technologies.

Application of this technique to the Google Web search service demonstrated that it provides
easily interpretable results. It enables us for instance topinpoint the impact of usage or of raw
characteristics of the access technology. We demonstrate that user behavior dominates clusters
with large volume of data packets and connections. This explains the similar behavior of FTTH
and ADSL as response time is dominated by Warm-up A. Clustering results without taking into
account Warm-up A suggest that clusters depend mainly on connection size and access impact. We
observe for identified clusters different data preparationtimes at the server side, depending on the
terminal used by the end user. Especially, Cellular connections from mobile devices like iPhone
and Windows CE have larger data preparation time at Google’sservers than on Windows devices.

To provide evidence for these observations, we further compared Yahoo and Google Web
search traffic and provided evidences that they are likely toadapt content to the terminal capability
for Cellular clients which impacts the performance observed. Indeed, Cellular clients featuring
a laptop/desktop Windows operating system (Vista/XP/2000) experience similar warm-up B as
ADSL clients while clients using iPhones or a Windows-CE operating system experience way
higher warm-up B.

In the next chapter, we characterize a number of the most salient aspects of enterprise traffic.
The idea is to present an overview of some problems faced whenperforming measurements such as
basic RTT estimation, and then investigate performance of main used application in the considered
enterprise network using our break-down and clustering approaches.
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Chapter 8

A First Characterisation of an
Enterprise Traffic

8.1 Introduction

Enterprise networks have a complexity that sometimes rivalthe one of the larger Internet.
The characteristics of traffic inside enterprises remain almost wholly unexplored. Nearly all of the
studies of enterprise traffic available in the literature are well over a decade old and dedicated to
individual Local Area Networks (LANs) rather than whole sites.

In this chapter we present a broad overview of traffic traces collected from a medium-sized
site with heterogeneous characteristics in terms of clientaccess link (wired, wireless and VPN
accesses) and client usage (student, staff and nomad). The packet traces span one day of capture,
over which we observed a total of 345 clients and 56 internal servers .

The main idea here is to characterize a number of the most salient aspects of enterprise traffic.
Our goal is to provide an overview of some problems faced whenperforming measurements such
as basic RTT estimation, and then present a fine-grained profiling of popular applications.

8.2 Overall characteristics

In this section we first examine some basic characteristics of TCP connections in our dataset.
Secondly, we describe problems faced when we inferred RTT measurement.

For our measurements, we observe different classes of traffic inside Eurecom traffic. It involves
DMZ, sever to server and client to server.

8.2.1 Backup Traffic Impact

We start with the study of the time series of traffic volume, tocheck if several regimes exist
in our data. To distinguish upload and download flows, we consider the client as the initiator of
TCP connection and the server as the remote part. The initiator corresponds mostly to a regular
end user machine, but it can also be a server requesting service from another server as we will
see soon. Based on this assumption, we display in Figure 8.1 the evolution of traffic volume and
number of active flows for upload and download directions. From Figure 8.1(a) we observe that
upload traffic volume is characterized by two high peaks. After investigation we concluded that
(i)the first peak corresponds to the usage by the client of their homes directory to store data (ii)the
second one which happens at night, precisely at around 10 pm corresponds to backup traffic.
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FIGURE 8.1 – Data Volume and Nb Flows Stability

On the other hand, Figure 8.1(b) shows that the number of active flows vary during the capture
time for two periods of times. The first period is between 7 :35am and 6 :45am : which is the time
where Eurecom employees are in their office. The second period, as we have identified in Figure
8.1(b) on data volume, corresponds to flows generated by backup traffic.

8.2.2 Connection Characteristics
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FIGURE 8.2 – Connection Size

Figure 8.2 shows the distribution of the total number of bytes, in both directions, transferred
across each connection in our dataset, for each class of traffic and well-behaved TCP connections.

It appears that client/server traffic is larger than other transfers. In other hand, we shows that
server to server traffic is characterized by shorter TCP connections.

A comparison between median transfers size, for connections between clients and servers, and
median transfers size for internet traffic presented in Figure 4.4, shows that client/server traffic
inside enterprise is larger than Internet ones. A first explanation of this observation is the diffe-
rence of used applications and services. In these environements as one finds in enterprise networks
some applications like network file systems applications (NFS, SMB) which involve massive data
transfers.

8.2.3 Throughput for Enterprise Traffic

The estimation of throughput of enterprise traffic is important for a broad class of applications.
We focus in this paragraph on results obtained with AL throughput estimation method, introdu-
ced previously in Section 2.4.1, in order to avoid TCP tear-down impact. We first classify TCP
throughput estimation into different categories, depending on the class of traffic.
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Figure 8.3 shows cumulative distributions of Application Level throughput for Eurecom In-
ternal traffics. We observe that identified classes of trafficpresent approximatively similar AL
throughput with a little advantage for server to server traffic. This is in line with the usage inside
Eurecom and also in enterprise traffic in general where one generally caps end hosts capacity to
100 Mb/s (even though they might have 1 Gb/s) while servers are set up with 1 Gb/s access. Still,
the rates observed are modest as compared to those capacities, highlighting again the impact of
the application in actual data exchanges.

8.2.4 Tear-down Analysis
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FIGURE 8.4 – Tear-Down Times

Before examining different facets of TCP connection closing methods within an enterprise, we
recall that we define the tear-down as the time between the last sent data packet and last control
packet. The last control packet corresponds to a packet withFIN or RST flag.

Flag Tear-Down Tear-Down>1 seconds
FIN (%) 62.36 85.71
RST (%) 37.63 14.28

TABLE 8.1 – Tear-Down Flags

We examine in Table 8.1 the percentage of TCP connections finished with FIN or RST flags.
In our dataset, we observe that 62% of all TCP connections arefinished with FIN flag. Then it
is important to note that this percentage increases to reach85% for connections with tear-down
values more than one second.
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Figure 8.4(a) shows cumulative distributions of time needed to perform tear-down. We dis-
tinguish between two exiting TCP connection tear-down methods : with FIN or RST flags. From
this figure we can notice that more than 33% of tear-down timesusing FIN flags are larger than
using RST ones. At this stage it is a bit early to present a finalconclusion about the comparison of
tear-down methods.

To go farther in our analysis of TCP tear-down methods, we focus in Figure 8.4(b) only on
connections with large tear-down : more than 1 second. Figure 8.4(b) shows that a large fraction
of connections finished with FIN flag tend to have large tear-down than ones finished with RST
flag.

Additionaly, Figure 8.4(b) shows for connections finished with FIN flag several peaks, e.g,
at 10 or 100 seconds. We conjecture that they could be due to internal timers in servers/services
set-ups.

The next step was to identify prevalent applications and services with large tear-down values.
To do that, we report in Figure 8.5 statistics about targetedports and the corresponding number of
TCP connections. Figure 8.5 shows for connections finished with FIN flags, that the most targeted
ports are ports HTTP, End-Point Mapper (EPMAP), SMB and 1035(used for windows Remote
Procedure Call (RPC)). In contrast, for connections with RST flags we find as target ports : HTTP,
SMB (445), 8014 (used by SYMANTEC) and 9154.

It thus appears that different liberation methods correspond to different services or different
regimes (normal, abnormal) within an applications.
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FIGURE 8.5 – Connection With Large Tear-Down : Destination Ports

We assessed in this paragraph characteristics of connection liberation methods with FIN or
RST flags. We observed that most connections are closed with FIN flags, the ’usual way’ to close
correctly a current TCP connection. While we are focusing onan environment with short latency
we observed high values of tear-down times, especially for FIN flag. The study of high FIN tear-
down times reveals several peaks that presumably correspond to time-outs at the application layer.

We did not continue this study further as we expect that in an enterprise network, actual tear-
down times are loosely if at all related with clients performance.

8.3 RTT Estimation in Enterprise Network

One likely reason why enterprise traffic has gone unstudied for so long is that it is technically
difficult to measure. Enterprise networks, unlike a site’s Internet traffic, which we can generally
record by monitoring a single access link, the capture process is more difficult within an enterprise
with different sub-networks.
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In the case of Eurecom network, the small size of the network,presented in Chapter 1 as
considerably simplified the capture process for us. The small time scales values appears to be
challenging in a typical enterprise networks. However the problem of RTT estimation is raised.

The RTT measurements are composed of several delays, e. g., transmission delay or propaga-
tion delay, but also queuing delay at various network elements and end hosts. Network measure-
ments usually include all of these delays. However, for end-to-end measurements, most of tools
and researchers assume that local processing and queuing delays are negligible and interpret their
results without considering local delays.

In this paragraph, we compare different RTTs estimations method in order to identify a me-
thod that allows to minimise biases introduced within measurement process. On the other hand it
is important to note that our setting – a mirror port connected to a collection machine that uses tcp-
dump – is de facto weak as compared to hardware methods that rely, e.g., on Data Acquisition and
Generation (DAG) cards which are Network Interface Card (NIC) dedicated to capturing traffic,
where time stamping is handled directly at the NIC level witha precision higher than any software
(tcpdump, windump) method.

To estimate RTT, we adopted two techniques already presented for Internet traffic in Section
3.2.1. The first method is based on the observation of the TCP 3-way handshake. The second
method is similar but applied to TCP data and acknowledgement segments transferred in each
direction1.

Figure 8.6 shows RTT estimations for each class of traffic. From theses figures we can observe :
– RTT using DATA-ACK estimation method are larger than ones with three way handshake,
– Majority of RTT are very short,
– RTT values inside Eurecom network can reach 100 ms. In fact,we have noticed that these

cases correspond to several clients connected to Eurecom network using Virtual Private
Network (VPN) connections. Clients connected via VPN access were characterized by large
latency due to their localisation outside the enterprise building,

– Large RTT were computed for traffic between DMZ zone and servers.
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FIGURE 8.6 – RTT Estimations

In Figure 8.7 we compare RTT estimation methods, for each RTTside. We divide RTT esti-
mation in two values. For each RTT estimation approaches, wecompute : first, the time elapsed
between connection initiator and the probe, second, the time elapsed between the probe and the
distant side.

A first observation is that RTT estimation using DATA-ACK method provide larger RTT es-
timates for all observed traffics. A possible explanation for the introduced delay by DATA-ACK

1. For our case we focus only on well-behaved transfers with aminimum of one data packet exchanged in each
direction.
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FIGURE 8.7 – RTT : Detailed Comparison

method, was the small number of data packets of these connections. In fact, delays added by de-
layed ACKs timer (maximum 500 ms [73]) can increase the time to sent data packet and to receive
the corresponding ACK. Indeed, we have observed that difference between RTT estimation me-
thods :RTTDATA-ACK −RTTSYN-SYN/ACK-ACK was less than 400 ms that could confirm the hypothesis of
delayed ACKs.

Further, to investigate differences between RTT estimation methods, next in our experiments
we restrict our analysis on client server traffic.

8.3.1 Short Connection Impact

We focus in this paragraph on connections where theRTTDATA-ACK − RTTSYN-SYN/ACK-ACK is lar-
ger than 10 ms. Our purpose is to validate the hypothesis presented in the previous paragraph :
observed differences between RTT estimations is especially present for short TCP connections.

We report in Figure 8.8(a) the scatter plot ofRTTDATA-ACK − RTTSYN-SYN/ACK-ACK more than 10
ms on the x-axis and corresponding connection size in terms of data packets.

Figure 8.8(b) shows the CDF of connections size in terms of data packets, withRTTDATA-ACK −

RTTSYN-SYN/ACK-ACK more than 10 ms.
A first observation from Figure 8.8(b) was that 92 % of connections with RTTDATA-ACK −

RTTSYN-SYN/ACK-ACK more than 10 ms are less than 10 data packets. It confirms the assumption for
RTT over estimation using DATA-ACK method for short transfers. Figure 8.8(a) shows two high
values corresponding to the differenceRTTDATA-ACK −RTTSYN-SYN/ACK-ACK with 425 ms. These values
are obtained with connections of 3 and 6 data packets.

At this stage of analysis we can conclude that RTT estimationis more accurate with three way
hand shake method. To fully validate that RTT was better estimated using the 3-way handshake
method, we compared values obtained with this method to actively inferred latency measurements
with ping.
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8.3.2 A comparison with Active Measurements

In this paragraph we compare controlled experiments of RTT estimation with Internet Control
Message Protocol (ICMP) messages and three way handshake method, to examine the accuracy
of our selected RTT estimation method.

We base our experiments on the estimation of RTT using ping message sent from client to
server. The purpose here is to estimate RTTs from client to a remote host using ICMP packets. This
measurement technique involves sending an ICMP Echo Request packet, receiving an ICMP Echo
Reply packet, and recording the elapsed time between the twoevents. We applied this technique,
for the case of two different pairs of client and server, where we had, for each case, enough samples
obtained with the SYN/SYN-ACK-ACK method (i.e., cases for which we observed a large number
of connections between the client and one server).
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FIGURE 8.9 – A comparison with Active Measurement

We plot in Figure 8.9 RTT estimations with tree way handshake, a classical ping and a ping
message with 1500 octets of payload. The first observation here is that RTTs are very low and
close to the precision of tcpdump (10 microseconds). RTT estimation with three way handshake
and classical ping are similar for the two observed couples of clients and servers. Experiments
show different results for full sized ICMP message with largest RTT values. We believe that the
observed difference is due to data sending and receiving process.

In summary, RTT estimation is challenging in an enterprise environment when the estimation
is done using legacy NIC and tcpdump like methods as the values are close to the precision of
the timestamping achieved with this technique. The latencyis also such that the packet processing
time plays a role as well as the delay-ack mechanism whose timer value is very large as compared
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to the observed RTT. At the end of the day, we obtained (see Figure 8.1(b) for instance) that the
RTT estimation can lead to errors up to 100%. Still, the orderof magnitude (a fraction of a ms) is
correct. When applying our profiling technique based on a data time breakdown, the precision will
turn out to be large enough as the other phenomena that we wantto measure, esp. the application
and users delays are working at a time scale of a few ms or even 10s of milliseconds, ie. one order
of magnitude larger than the RTT. Clearly more accurate method of RTT estimation should be
developped for RTT estimation in enterprise networks, thatwe leave for future work.

8.4 Service Profiling

We first take in Section 8.2 a broad look at the protocols present in our trace. We examined in
previous sections of this Chapter several parameters of enterprise traffic performance.

We noticed from Table 1.6 that SYMANTEC and LDAP(S) generatethe largest number of
TCP connections, but not the largest volume of data. On the other hand largest volumes of data
were obtained respectively with NFS and SMB, used by client to access files over a network in a
manner similar to the way local storage is accessed.

Before proceeding further, we need to present statistics about machines and classes of clients
for the present trace. Next in our analysis, we focus only on client/server traffic. Table 8.2 shows
the percentage of generated connections per class of users.It depicts that the enterprise trace
consists of 3 categories of users (based on IP address identification) : staff with 73.9% , student
with 21.6% and finally nomad users and external users with thelowest percentage - we group the
last classes into the Others class.

Client Connection (%)
Student Eurecom 21.6

Staff Eurecom 73.96
Others 4.42

TABLE 8.2 – Eurecom Clients

In addition to the knowledge of clients classes, we succeeded to identify clients operating sys-
tem and the nature of his machine : personal computer or laptop. We figured out that the majority
of connections were established from Windows machine with 66%, Linux with 16%, laptop with
4.6% and the remaining is a mix of non classified connections.

We report in Figure 8.10 data time break down for traffic between eurecom’s client and servers.
We plot results for all transfers. Figure 8.10 shows the breakdown per direction and per access
technology with, for each case, the median of each componentin relative (left y axis - relative to
total data time) and absolute values (right y axis - in seconds). The first observation is that data
time transfer is dominated by data preparation time at the server side. Median data transfers time
are very short, due to access characteristics.

A comparison of data time beak down results in Figure 8.10 andresults with Internet traffic
in Figure 5.2 shows different transfer profiles. First, datatransfers for enterprise traffic are shorter
than Internet ones, due to each access characteristic.

While for enterprise and Internet traffics, we observe that Theoretical times represent approxi-
matively between 35% and 50% of data transfers time, we notice different impact for server side.
In fact, enterprise traffic is dominated by data preparationtime at the server side and without Pa-
cing A and B, while for Internet Traffic Warm-up A is larger than Warm-p B. An explanation for
this observation is that Web traffic, which implies interaction between client and servers (some
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time clients take large time to think and perform a request),dominates Internet traffic. Also, for
Internet traffic we showed that Pacing represents between 20% and 42% of data transfer time

To go deeper in enterprise characteristics and to highlightserver, application and usage im-
pacts, we focus in the next paragraphs on LDAP and SMB traffic.

8.4.1 LDAP

In our trace, LDAP(S) is a key protocol that email and other programs use to look up informa-
tion from a server. LDAP is not limited to contact information, or even information about people.
It is used to look up encryption certificates, pointers to printers and other services on a network,
and provide "single sign-on" where one password for a user isshared between many services. We
shows in Section 8.2 that it represent a large amount of TCP connections due to its importance and
its usage by key enterprise applications.

To investigate the performance of LDAP protocol our strategy was to apply our data time
break-down and clustering approaches, in order to propose afine grained study an to shed light on
the interplay between service, access and usage, for the client and server side.

Figure 8.11 depicts the 4 clusters obtained by application of Kmeans. The value of 4 clusters
was obtained by inspection of the projection obtained with t-SNE. We indicate, on top of each
cluster, the median connection size, the percentage of involved connections and clients.

In order to have an idea about how LDAP exchanged data is allocated over identified clusters,
we present in Figure 8.12 data volume distribution per cluster. We observed, in the one hand, two
dominant clusters : 1 and 2 with 99% of data and in other hand clusters 3 and 4 with less than 1%
of data.

A first observation from Figure 8.11 is that three of the identified clusters (Cluster 1, 2 and
3) are characterized by a dominance of data preparation timeat the server side, what we defined
as Warm-up B. Inside these clusters we identified 2 categories of servers. In fact in clusters 1
and 2, with majority of clients, we observed that clients establish connections to Active Directory
Domain Controller, while in cluster 3 we identified only LDAPservers for Linux machines.

Cluster 4 contains only 1% of LDAP connections and 8% of clients and it was characterized
by large Theoretical times A and B. Clients in this cluster corresponds to ones with Wifi and VPN
access, which explains high theoretical times.

A characterisation of LDAP traffic reveals a strong correlation with the target servers. Data
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Warm-up times on the server side dominate data transfers times for the majority of transfers in
clusters 1, 2 and 3. Connections to LDAP servers from Linux machines in clusters 3 are short
compared to ones in the remaining clusters, which can highlight different LDAP policies between
Linux and Windows machines. We summarize in Table 8.3 the characteristics of each identified
clusters.

Cluster 3 Cluster 1 Cluster 2 Cluster 4
LDAP Server for Linux Domain Controller - Active Directory

Majority of Connections Large Transfers Large RTT

TABLE 8.3 – Clusters Characteristics : LDAP

In summary, our data time breakdown and clustering technique reveals that for internal clients,
the major source of delay was the server data preparation time. Still, the values of the warm-up are
small in most cases, and we do not see any highly visible performance anomaly in LDAP for the
Eurecom network.
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FIGURE 8.13 – K-means Clusters : SMB

8.4.2 SMB

Server Message Block (SMB) traffic is an application-level network protocol typically used
for file and printer sharing. It represents the largest volume of data in our trace. It also provides an
authenticated inter-process communication mechanism. Dominant usage of SMB involves com-
puters running Microsoft Windows. We present in the following paragraph an analysis of regimes
that we observe in SMB traffic. Figure 8.13 shows clustering results for SMB connections. As
for LDAP clustering cluster 4 corresponds to connection with large RTT, and groups SMB users
connected via Wifi and VPN accesses.
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FIGURE 8.14 – Data Distribution per Cluster : SMB

The study of targeted servers shows two categories of clusters. Cluster 1 corresponds to servers
that contain client data such as homes folders and data. On the other hand, clusters 2, 3 and 4
correspond to connections towards Active Directory domaincontrollers. Figure 8.13 depicts large
Warm-up B for cluster 1. We noticed large Pacing B for cluster2 - a median over 10 s, probably
due to the chatty nature of SMB protocol [100]. Cluster 3, that contains the majority of exchanged
bytes, as plotted in Figure 8.14, involves most of SMB clients. It presents reasonable values of
data time break down with a dominance of Warm-up B.
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The study of SMB application shows 4 categories of clusters.We observed that cluster 4
corresponds to clients with large RTT via VPN and Wifi accesses. On the other hand server cha-
racteristic plays an important role for the remaining clusters. We summarize in Table 8.4 the main
characteristics of each SMB clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Server for Homes Data Domain Controller - Active Directory

High Number of Trains Moderate values Large RTT

TABLE 8.4 – Clusters Characteristics : SMB

8.4.3 Discussion

To study the performance of enterprise traffic we selected two interesting protocols in terms
of service presented to client and their usage in enterpriseenvironment. While SMB and LDAP
applications have different strategies we noticed similarities in terms of behaviours. In particular
we identified between 6 and 8% of clients with VPN and Wifi access localized in cluster 4 for
LDAP and SMB. It does not reveal an RTT anomaly but it highlights the impact of low access
bandwidth. For the case of LDAP, we shows that the Domain Active Directory Controller plays
an important role for these protocols in the way that it was characterized by short think times
compared to Linux ones. Finally, we noticed large Pacing B values for SMB traffic in cluster 2 ;
It could be classified as an application anomaly ; SMB is a verychatty protocol and performs a
large number of data exchanges. In summary, our methods helpto identify key regimes due to the
characteristics of the access technology used by the end user or the server type/provisioning.

8.5 Conclusion

The study of Enterprise network performance has been neglected in the modern literature
compared to Internet accesses measurements. Our major contribution in this Chapter is to provide
a first characterization for several aspects of enterprise network traffic.

Our investigation covers topics previously studied for wide-area traffic. Through the study of
traffic stability we pinpointed the impact of backup processwith an increase of exchanged data
volume and RTT. At the connection level, we concentrated on several key indicators such as data
transfers, throughput and RTT. Through the study of RTT we highlight the difficulty observed in
order to accurately estimate this metric, first due to short absolute RTTs (close de the timestamping
accuracy) and second the impact of TCP mechanism like duplicates ACK, which can introduce
biases especially for short transfers. For RTT estimation we selected the most accurate method
(three way hand shake) that we can use for our case, but for future measurements we recommend
to perform measurements with DAG cards.

Then we investigated performance of main used application in our enterprise network using
our break-down and clustering approaches.

Our investigation is only an initial step in enterprise traffic analysis. Our in depth profiling of
two key services has underscored the ability of our breakdown/clustering approach to pinpoint the
different types of usage of these applications. It enables us to obtain clusters that correspond to the
baseline regime of the application, e.g. clusters 1 and 2 forLDAP and cluster 3 for SMB. Also, our
technique has enabled to identify a potential anomaly - cluster 2 in SMB. There exist two natural
extensions to this work.



103

First, one could collect several days of data, cluster each active period (day time) separately
and seek if the baseline regimes persist and identify anomalies as minor clusters, which feature
high values on some our metrics. A second extension would be to focus specifically on anomalies
by filtering out potential candidate connections, e.g. connections that feature high values on some
or all of the metrics obtained during the data time breakdown. Due to the lack of time the first
extension, will be presented as a future work for this thesis. On the other hand, we investigated
further the case of anomalies for Internet, but also enterprise traffic in the next chapters.
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Conclusion of Part II

In this part, we compared the performance from different access technologies such as Cellular,
FTTH and ADSL. We showed that this task becomes difficult as the transport layer is interacting
with the application layer above and network layer below. Weexplored several factors that are
classically used to assess the performance of TCP connection, namely RTT and losses. The cru-
cial impact of those parameters is formally known since the derivation of the well-known TCP
throughput formula. We discussed the derivation of those parameters for the case of our traces. We
illustrated shortly the fact that RTT and losses are not enough to characterize TCP connection in
the wild.

To overcome to this problematic, we propose a new analysis method that uncovers the impact
of specific factors to inform the comparison of different access technologies. The analysis method
that we used consists of two steps. In the first step, the transfer time of each TCP connection is
broken down into several factors that we can attribute to different causes, e.g., the application or
the end-to-end path. In a second step, we used a clustering approach to uncover the major trends
within the different data sets under study.

Application of this technique to the Google Web search service demonstrated that it provides
easily interpretable results. It enables for instance to pinpoint the impact of usage or of raw cha-
racteristics of the access technology. We demonstrated that user behavior dominates clusters with
large volume of data packets and connections. This explainsthe similar behavior of FTTH and
ADSL as response time is dominated by Warm-up A.

Using the example of the Eurecom network, we also characterized a number of the most salient
aspects of enterprise traffic, and we presented a fine-grained profiling of two popular applications.
We obtained clusters that correspond to the baseline regimeof the application, e.g. clusters 1 and
2 for LDAP and cluster 3 for SMB. Our technique has allowed to identify a potential anomaly,
cluster 2 in SMB.

The next part of this thesis presents how our fine grained approach of performance analysis can
be used to detect anomalous TCP connections. We aim at detecting and uncovering the reason be-
hind ill-behaved TCP transfers, where a ill-behaved connection here is a functionally correct TCP
connection – normal set-up/tear-down and actual data transfer – that experienced performance
issues, e.g. losses or abnormally long waiting times at the server side.
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Part III

Profiling Anomalous TCP
Connections
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Overview of Part III

Traffic anomaly detection has received a lot of attention during last years, but understanding
the nature of these anomalies and identifying the flows involved is still a manual task, in most
cases. Several traffic anomaly detection methods have been proposed, (i) e.g. DDoS [48, 49, 50,
51, 52], or (ii) traffic feature distributions [53], or (iii)segments that have a sequence number
different from the expected one [55], etc.

On the other hand only few works [3, 57] have tried to address the problem of detecting traffic
anomalies introduced by performance problems of distant server, upper layer application or service
usage.

In this part we focus on the issue of profiling anomalous TCP connections that are defined
as functionally correct TCP connections but with abnormal performance. Our method enables
to pinpoint the root cause of the performance problem, whichcan be either losses or some idle
times during data preparation or transfer. To study the latter type of anomaly, we use a variant
of the method developped in 5 to profile all connections of some traces, irrespectively of their
anomalous nature.

In Chapter 9 we apply our method to the case of residential traffic, using the same set of traces
(FTTH, ADSL,Cellular) as before.

In Chapter 10 we apply a methodology similar to the one proposed in Chapter 9 to the case of
TCP traffic anomalies for enterprise traffic.
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Chapter 9

Pinpointing and Understanding
Anomalous TCP Connections in
Residential Traffic

9.1 Introduction

Several access technologies are now available to the end user for accessing the Internet, e.g.,
ADSL, FTTH and Cellular. Those different access technologies entail different devices, e.g.,
smartphones equipped with dedicated OS like android. In addition, a different access technolo-
gies also imply a different usage, e.g., it is unlikely that p2p applications are used as heavily on
Cellular than on wired access. Even if we consider ADSL and FTTH, which are two wired tech-
nologies, some differences have been observed in terms of traffic profile [27].

Despite this variety of combinations of usage and technology, some constant factors remain in
all scenarios like the continuous usage of email or the use ofTCP to carry out the majority of user
traffic. This predominance of TCP constitutes the starting point of our study and our focus in the
present work is on the performance of TCP transfers.

In this chapter, we aim at detecting and uncovering the reason behind ill-behaved TCP trans-
fers, where a ill-behave connection here is a functionally correct TCP connection – normal set-
up/tear-down and actual data transfer – that experienced performance issues, e.g. losses or ab-
normally long waiting times at the server side. Note that this a different objective from the de-
tection of traffic anomalies, where the focus is to detect threats against the network, e.g. DDoS
[49, 50, 48, 51, 52].

Our main contributions are as follows (i) we demonstrate that wired (ADSL and FTTH) and
wireless (Cellular) technology adopt different strategies to recover from packet losses, especially
under time out conditions (time outs being prevalent in all environments over fast retransmits),
and that the strategies observed on the Cellular technologyseem more efficient than on ADSL
and FTTH, (ii) we show that our methodology for profiling the transfers (or parts of transfers)
unaffected by losses is able to uncover various types of anomalies, some being related to the
configuration of servers and some other being shared by several services.

9.2 On the Impact of Losses

TCP implements reliability by detecting loss of data segments and retransmitting lost seg-
ments. Unfortunately, the loss detection/recovery mechanism can be penalising due to high re-
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transmission times : it is generally known that segment losses can adversely impact the duration
of TCP connections,especially short ones.

In this section, we address this issue by evaluating the impact of TCP loss detection/recovery
mechanisms (presented in Section 4.3.3), with the study of loss recovery approaches, on the per-
formance of real-world TCP connections collected from different Internet accesses.

9.2.1 Identifying RTO and FR/R

TCP detects and recovers from losses using two basic types ofmechanisms : retransmission-
timeouts (RTO) and fast retransmit/recovery (FR/R).

In a nutshell, RTO can be seen as a safety mechanism that is slow but can recover from losses
in any scenario, provided that the network offers enough resources to carry the segment. On the
other hand, FR/R does not work in any situation but in the majority of them and provides faster
recovery time than RTO. FR/R triggers retransmission as soon as 4 ACKs with the same sequence
number are observed. This figure of 4 ACKs, represents a trade-off between accuracy and speed
of reaction as a lower value would lead to false positives if packet reordering occurred.

Two important parameters guide the design of TCP loss detection/recovery mechanisms. First,
TCP should accurately identify segment losses. In particular, if TCP erroneously inferred that a
segment was lost, it would unnecessarily invoke loss recovery and increase the connection dura-
tion. Second, TCP should quickly identify segment losses. Alonger detection period adversely
impacts connection duration as well. However, a quick inference of segment loss would also be
erroneous when segments (or their ACKs) are not lost but merely delayed or reordered in the net-
work. To achieve high loss-estimation accuracy, therefore, TCP has to wait longer for ACKs that
may merely be delayed.

More generally, this fundamental trade-off between accuracy and timeliness is controlled by
several design parameters associated with RTO and FR/R based loss detection. These include
the duplicate ACK threshold, the minimum RTO, the RTT-smoothing factor, the weight of RTT
variability in the RTO-estimator, and the RTO estimator algorithm itself. While the proposed stan-
dards for TCP recommend values for each of these design parameters, TCP implementations in
prominent operating systems differ, sometimes significantly, in the values used.

The invoking of loss detection/recovery can thus be quite costly in terms of connection dura-
tion. The exact cost depends on the choice of values for each of the parameters associated with
loss detection such number of duplicate ACK, minimum RTO andTCP stack parameters on used
client and servers.

9.2.2 Retransmissions in the Wild

We first report, in Table 9.1, on two metrics : the average lossrate and the average fraction of
connections affected by loss events for the three traces (results are based on loss detection/recovery
algorithm presented in Section 3.4.3).

Cellular FTTH ADSL
Loss rate 4% 2% 1.2%

% of connections 29% 9% 5%

TABLE 9.1 – Overall Loss Rates

We observe from Table 9.1 that while loss rates are quite low (our traces are too short to draw
general conclusions on the loss rates in each environment),the fraction of connections affected
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by losses are quite high, esp. for the Cellular technology. Apossible reason is that losses are due
to actual wireless channel conditions with the Cellular technology, which may result in small loss
episodes that affect connections irrespectively of their status (duration, rate).

We next turn our attention to the way losses are recovered by TCP. We suppose that RTO (resp.
FR/R) correspond to recovery periods with strictly less than (resp. greater or equal to) 3 duplicate
acknowledgments. This definition leads to a striking result: for our traces, more than 96% of loss
events are detected using RTO. Two factors contribute to this result. First, most transfers are short
and it is well-known that short transfers, which do not have enough in flight packets to trigger a
FR/R revert to the legacy RTO mechanism. Second, long connections must often rely on RTO as
the transfer, while large, consists of a series of trains (questions and answers of the application
layer protocol) whose size is not large enough, in almost 50%of the cases in our traces, to trigger
a FR/R (see next section for more details).
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FIGURE 9.1 – Retransmission Time

Figure 9.1 plots the distribution of data retransmission time for FR/R and RTO based retrans-
missions (only for connections that experience losses). A first observation is that ADSL and FTTH
show similar behavior to recovery from losses. We observe that :

– FR/R retransmission times are shorter than RTO, as expected, for all access technologies.
Still, the difference is larger for the FTTH trace than for the Cellular trace. This apparently
reveals different implementation strategies in a cellularenvironment.

– A significant number of Cellular TCP retransmission resultfrom losses at the beginning of
the respective TCP connections, where the RTO is primarily governed by the initial RTO. It
results in 5 easily identifiable peaks in the RTO values at 400ms, 800ms, 1600ms, 3200ms
and 6400ms.

The research question we target is the identification of anomalous TCP connections in a set
of environments that reflect user typical experience nowadays. We observe from the above results
that manufacturers apparently take advantage of the leewayin the specification of TCP to try to
optimize performance in some environments, esp. the Cellular environment. For the latter case, it
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results in RTO performance close to the FR/R performance in cellular environment. As cellular
environment features higher RTTs, in the order of 200 ms as compared to less than 70 for ADSL
and FTTH cases, the optimization process has possibly reached its limit in this environment with
the current technology constraints. Optimizing the RTO mechanism is a strategy that pays offs
as the vast majority of TCP transfers rely on RTO. If we arbitrarily set a threshold in terms of
anomaly to 1s of recovery period, we observe that with the current optimization, the fraction of
anomalous recovery time is about 20% smaller in Cellular than in ADSL and FTTH scenarios.

9.2.3 Studying Impact on Short and Large Transfers

It is well-known that packet losses can adversely affect theconnection duration of TCP connec-
tions. However, what is not fully understood is how short andlarge transfers deal with losses.

Figure 9.2 plots the distribution of retransmission time for ADSL trace and for short and large
transfers. We find that : a significant fraction of large transfers retransmission time is similar to
short transfers retransmission time. Moreover, the tail ofdistributions show that large transfers are
more penalized by consecutive retransmissions.

This is against intuition as it suggests that large transfers should recover from loss using FR/R.
Also, when focusing on short transfers, we notice that more than 50% of RTO are less than 1s
which is the recommended minimum RTO threshold [13]. Also, short and large transfer retrans-
mission times apparently show new RTO thresholds. For instance, Figure 9.2 shows that 7% of
RTO short transfers are equal to 300 ms which suggests a new RTO threshold implemented in
new TCP stack generation. The explanation behind the bad performance of long transfers lies, as
already pinpointed in Chapter 3 in the impact of the application on top of TCP.
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Indeed, one often observes that even if the server is sendinga large amount of bytes/packets,
the actual exchange is fragmented : the server sends a few packets that we called a train of packets,
then waits for the client to post another request and then sends its next answer. If such a behavior
is predominant in TCP transfers, it can have a detrimental impact if ever the train size is too small
as it might prevent TCP from performing FR/R in cases of losses.

Table 9.2 summarises the distribution of train sizes for short and large transfers. We use our
definition presented in Section 2.3 to classify short and large transfers, . We distinguish between
the initiator of the connection, which is generally the client and the remote party which corres-
ponds to the server. We differentiate between trains less ormore 3 data packets. In fact trains with
more than 3 data packet are able to recover using FR from loss only when the first data packet is
lost and the recommended duplicate ACK is equal to 2 duplicate ACK. This depends on the actual
implementation of the OS as the default standard is 3 duplicate ACK. Here we observe that :
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Short Transfers Large Transfers
Initiator Remote Initiator Remote

Trace <=3 >3 <=3 >3 <=3 >3 <=3 >3
CELL 98% 2% 98% 2% 65% 35% 68% 32%
FTTH 90% 10% 92% 8% 47% 53% 49% 51%
ADSL 92% 8% 92% 8% 64% 36% 76% 24%

TABLE 9.2 – Train Size Distribution

– Trains sent by servers (remote party) are larger than thosesent by the initiator (local client),
in line with our hypothesis that the remote party is the server ; Remember that in the Cellular
network we observe only the mobile hosts can initiate connections to the outside : they can
not be reached from the outside,

– More than 90% of short Remote and Initiator transfers are less than 3 data packets, which
confirms our definition of short transfers (see Chapter 2). Thus long connections are often
not able to trigger FR/R,

– The focus on large transfers shows that more than 47% of observed trains are less than 3
data packets. This again leaves TCP unable to trigger a fast recovery/retransmit, even if Li-
mited Transmit is used. Hence, large transfer with short trains size can be penalizing and
have a detrimental impact on recovery time.

The main conclusion from this study is that while short TCP transfers are penalized by TCP
strategy which requires enough duplicates ACK to trigger its fast retransmission strategy (note
that we use the term ’penalyzing’ but no better strategy has been proposed in the literature). Long
transfers are penalized by the application that sends too small burst of packets. Again, for the latter
case, it is difficult to prescribe any improvement to this problem.

9.3 Anomalies within Data Transfers

9.3.1 Methodology

We next turn our attention to connections (or part of connections) that are not affected by
retransmissions. We are left with the set-up, data transferand tear-down times. We did not observe,
in our data sets long set-up times, due, for instance, to the loss of the SYN or SYN-ACK packets.
We thus do not consider this portion of connections in our analysis. On the other hand, tear-down
durations arguably do not affect client perceived performance, though their actual value might be
extremely large as compared to the set-up time. To highlightthis fact, we present in Figure 9.3 the
legacy throughput (total amount of bytes divided by total duration including tear down) and what
we call the Application-Layer (AL) throughput where tear-down is excluded. We already see a
major difference between those two metrics. If we are to reveal the actual performance perceived
by the end user, we further have to remove the durations from the epochs where the user has
received all data she requested from the server (which we detect as no unacknowledged data from
the server to the client in flight) and the epochs where she issues her next query. We call this metric
the Effective Exchange (EE) throughput. Those three metrics (throughput, AL throughput and EE
throughput) are presented in Figure 9.3 and we can see that they present highly different views
of the achieved performance and question the choice of a threshold to consider if we are to select
anomalous connections based on a throughput metric only.
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We build on the previous observation to derive a methodologythat takes as input the actual
duration of transfers and output 6 durations that sum the total transfer durations (complete par-
tition). These are first the client1 and serverWarm-up times, where either the client is thinking
or the server is crafting data, and theTheoretical times computed on the client and server side
which represent the time an ideal TCP connection acting on the same path (same RTT but infi-
nite bandwidth) would take to transfer all data from one sideto the other. The difference between
the transfer in one direction (say client to server) and the sum of thinking time and Theoretical
time is due to some phenomenon in the protocol stack, e.g. theapplication or the uplink/downlink
capacity that slowed down the transfer. We callPacingthose remaining durations.

The above methodology was presented in Chapter 5 to profile all client transfers. We aim here
at using it to isolate abnormal connections. We adopt a simple approach : we isolate as potential
anomalies connections that feature high values in (at least) one of the above dimensions. We
exclude from our next analysis the think time at the client side, as client can spend large times
to interact with the application on top of TCP. All the results presented here were obtained with
a threshold vector formed by the 85-th quantile in all dimensions, i.e., a connection is flagged if
its values in one or several dimensions is higher than the 85-th quantile in those dimensions. With
this threshold, we restrict the analysis to 5% of the initialdata volume. To discuss the choice of
the quantile we report in Figure 9.4 the volume of data associated to each threshold.
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The application of the methodology to our traces will thus isolate connections that apparently
miss-perform in (at least) one of the above dimensions. We need to make two important remarks :
first, when a connection is flagged, it is not necessarily a real anomaly and some further analysis

1. The client is for us, the initiator of the transfer.
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might be required. Second, to soften the previous point, themethodology we apply has the merit
to not only isolate blindly a set of potential anomalous candidates but also to uncover the origin
of the problem through the set of dimensions that were affected. We build on this richness of the
methodology to cluster the a priori anomalies together, mixing all candidate connections on all
access technologies. The idea is to observe if anomalies areshared or not and to categorize them.
We use Kmeans to cluster those connections (again, for spaceconstraint, we leave apart important
details like the choice of the number of clusters) and represent the clusters we obtained in terms
of boxplots - see Figure 9.6 – enriched with additional information on top of each plot like the
fraction of connection for each access technology and also the median size of the transfers.

9.3.2 Results

Figure 9.5 enables a quantitative comparison of the clusters : one clearly sees that we have
three large clusters in terms of bytes and connections, and one smaller cluster (cluster 2).
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FIGURE 9.5 – Overall Characteristics of Clusters

Figure 9.6 depicts boxplot representations of the clustersand the distributions of port numbers
in each cluster. It enables a qualitative comparison of the clusters by comparing the relative size
and position of boxplots. With this approach, we observe twogroups of clusters : clusters 1 and 3
and clusters 2 and 4. The main factor that differentiate clusters within each group is the Pacing A
value, which are higher in clusters 1 and 4.

Let us first focus on clusters 2 and 4. There are only few connections in those clusters for
Cellular and ADSL technologies, while for FTTH, it is only cluster 2 that is small as cluster 4
aggregates 42% of FTTH samples. Let us first consider cluster4, where TCP connections are
characterized by extremely high Warm-up B and Pacing B values (median of several seconds).
This suggests that the anomaly is located at the server side.However, we observe a predominance
of port 1863 that corresponds to Microsoft Messenger. This application is highly interactive as
it involves two humans, and we can conclude here that the anomaly is a false positive as what
we believe to be servers or an application with low response times is in fact a human with long
response times (time to read, think and write).

On the other hand, cluster 2 corresponds mostly to IMAP traffic. IMAP is used to download
messages, hence there is little traffic from the client to theserver, which results in negligible
Pacing A in cluster 2. Cluster 2, unlike cluster 4, could thusrepresent a problem (cluster 4 with
a majority of Microsoft Messenger connections correspondsto a false positive) where insufficient
server resources have been allocated or alternatively a protocol anomaly.

Let us now turn our attention to clusters 1 and 3, which gatherconnections from the three
access technologies. They are characterized by quite largevalues – median in the order of one to
two seconds – on every dimension, except Pacing A for cluster3. When looking at the port number,
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we can see that cluster 1 corresponds mostly to HTTP traffic while cluster 3 corresponds mostly to
a mix of applications (based on port numbers) : HTTP, HTTPs, POP and SMTP. Large Warm-up B
and Pacing B values indicates that the server is taking some time to prepare its response and also
is slow to send packets. Again, this is a hint that there is some performance problem on the server
side.

As for cluster 1, we observe that Th A and Th B on one side, and Pacing A and Pacing B
on the other side are similar, which hints that the Web usage consists not only of pure downloads
from the server to the client but a mix of uploads and downloads. We indeed observe a significant
fraction of Facebook transfers in this cluster, which is a typical Web site involving more symmetric
transfers.

9.3.3 Zoom on clusters 1 and 3

Clusters 1 and 3 have both a dominant application : HTTP for cluster 1 and IMAP for cluster 2.
The question we address here is to quantify the extent of the anomaly. We can only rely on indirect
means as we do not have access to those Web and IMAP servers. Weproceeded as follows : we
count, for each server, the total number of connections in our traces and the fraction of these
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FIGURE 9.7 – Anomalies Locality

connections that have been declared anomalous. Results arereported in Figure 9.7. Let us first
focus on the IMAP case. Focusing on the left plot, where each bar corresponds to a server, we can
see it is a all or nothing situation : either all the connections of the server are anomalous according
to our algorithm, or only a small fraction. This suggests theexistence of configuration problems on
the servers where almost all connections affected. For the other cases, this might just be transient
phenomena. The right plot for IMAP shows that those servers (with 100 % of anomalies) are
clearly unpopular as compared to the ones with only a small fraction of connection affected. We
observe a similar situation for the HTTP case where have a setof fully anomalous servers, a set
of transient anomalies and a class of servers in between (roughly, servers with id 20 to 40). Again,
we observe that the fully anomalous servers are the less popular ones.

9.4 Conclusion

In summary, our clustering approach enables to narrow down the set of candidates when loo-
king for anomalies in residential traffic. In addition, it provides for every connection flagged as an
anomaly , a precise identity card of the connection to understand if the problem comes from the
client side, the server side or the network. Clustering further enables to detect if groups of anoma-
lies are spanning over several access technologies and applications or not. Clearly, our approach
is not immune to false positives and requires to hand over to experts, once the location of the pro-
blem has been identified, but we believe that it is already a valuable tool that does a good job at
narrowing down the crime scene. It could constitute a valuable tool for ISP and network engineers
to quickly detect potential weaknesses in their network.
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Chapter 10

Proposal to Locate Application Layer
Anomalies in an Enterprise
Environment

10.1 Introduction

Localizing performance problems in enterprise networks ischallenging and difficult because
little is known about enterprise characteristics and also available studies are made for specific
enterprise networks. On the other hand, establishing ground truth, for some applications is complex
as they are often not well documented and unlike Internet protocols. A typical example is Windows
services and Enterprise Resource Planning (ERP) applications.

Nowadays, modern networks have many components/services that interact in complex ways.
Client connectivity (VPN, Wifi, Ethernet,etc) and network architecture makes the task of traffic
analysis more complex, since we have to deal with each case and to take into account constraints
of network topology.

As Little is known about anomalies detection inside enterprise networks [58, 43], we propose
in this chapter approaches to detect performance anomaliesfor enterprise networks. After a first
overview of our Eurecom enterprise traces study in Chapter 8we propose two approaches to
differentiate anomalous connection from normal ones.

We show that the most popular applications such as SYMANTEC,SMB, LDAP and mail
applications present problems of performance due mainly tothe server side. We discuss results
from each anomalies detection approaches.

10.2 Study Challenge

10.2.1 Client Access

We presented in Chapter 8 an overview of traffic analysis of the traffic traces we collected
from the Eurecom network. We distinguished between 3 classes of traffics : client/server, DMZ
and server to server. In this chapter we focus on client/server traffic analysis, since it corresponds
to the majority of enterprise connections and traffic volume(see Section 1.7.3).

For the case of our trace, we identified 4 categories of clients, according to the user class or the
type of its access link. Inside Eurecom we have student users, Staff users and Wifi users with their
laptops ; On the other hand employers located outside the enterprise can use VPN connections to
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access the enterprise servers and Intranet. Staff and students represent the majority of clients with
respectively 70% and 26% of clients, while VPN and Wifi clients represent 4% of clients.

Figure 10.1 shows RTT distribution for the different clients classes. We group students and
staff in the same category, since they use similar Ethernet access. We observe different RTT dis-
tributions for each class of client access. Inside the enterprise students and staff are characterized
by short RTT, while VPN users have large ones similar to RTT for Internet traffic (see Chapter 4).
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FIGURE 10.1 – Several Client Accesses

High RTT for VPN and Wifi users can bias the anomaly detection process, since we reproduce
the approach presented in Chapter 9. In this case we will observe connections with high theore-
tical times A and B, in the same cluster could mistakenly be taken as an anomaly. To avoid this
false positive impact, we concentrate our next analysis on traffic inside the enterprise from wired
students and staff classes.

10.2.2 How to Define Anomalous Behavior

Before presenting results we note that, as we did for the Internet traffic, we have no prior
knowledge of the threshold to consider in order to identify anomalies. As the Eurecom network
is well dimensioned (at least short RTTs) we adopted an aggressive approach and we set the
anomalies threshold to the 99-th quantile .

The research question that we target is the identification ofanomalous TCP connections in
enterprise environments that highlight factors that influence client perceived performance. The
first parameter to investigate is connection reliability interms of loss rate. We have observed in
Chapter9 that invoking of loss detection/recovery mechanisms can be quite costly for TCP in terms
of connection duration.

We observed for our trace that 0.5% of TCP connections experience loss/retransmission, which
is a low compared to loss Internet accesses ratios presentedin Section 9.2.2. In fact, enterprise and
Internet traffic present different characteristics in terms of architecture and traffic load. This figure
is in line with what has been observed in other studies [35].

We can conclude that only a small amount of traffic is affectedby losses, and loss does not
constitute the first factor that penalizes users in our enterprise trace. We next turn our attention to
connections (or part of connections) that are not affected by retransmissions.

To investigate anomalies on application layer for enterprise traffic, we base our study on the
methodology presented in Chapter 5 to profile all client transfers. We aim here at using it to isolate
abnormal connections.

In Chapter 9, we adopted a basic approach to isolate a normal connection from an anomalous
one. A Connection with potential anomalies corresponds to one that features high values in (at
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least) one of the dimensions : : theoretical A/B, pacing A/B,warm-up A/B. We exclude the client
side thinking time (warm-up A) as large thinking time at the client side do not mean anomalies.

10.3 High Quantile Metric

All the results presented here have been obtained with a threshold vector formed by the 99-th
quantile in all dimensions, i.e., a connection is flagged if its values in one or several dimensions is
higher than the 99-th quantile in those dimensions. With this threshold, we restrict the analysis to
9% of the initial data volume.

Figure 10.2(a) depicts the 6 clusters obtained by application of Kmeans and the distributions
of port numbers in each cluster. We indicate, on top of each cluster, median connection size,
percentage of samples in the cluster (compared to connection higher than 99-th quantile) and
percentage of servers and clients. We notice 3 clusters (3, 4and 6) with more than 28 data packets,
while clusters 1, 2 and 6 correspond to short transfers with less than 8 data packets of connection
size.

Before beginning to the interpretation of the individual clusters, we observe that clusters 3, 5
and 6 are identified by higher break-down values, while clusters 1, 2 and 4 present moderate ones.
We use the percentage of active clients and servers to evaluate the popularity of the identified
phenomenon and if it affects isolated clients/servers or not.

Let us focus on clusters 3, 5 and 6 where data transfers time isdominated by data break-down
values on the server side. In cluster 5, Warm-up B dominates data transfers, while in clusters 3 and
6 we notice that Pacing B dominates.

Connections in these clusters represent 48% of connectionsidentified with anomalies (higher
than 99-th quantile).

From Figure 10.2 we observe that Cluster 5 corresponds to short connections with 2 data
packets, it represents connections with large data preparation time at the server side. Destination
ports results in Figure 10.2(b) shows that connections in cluster 5 corresponds to SYMANTEC
traffic. Clients connect to the antivirus server in order to load updates for local virus list or to
perform a check for their status, which generates several operations at the server side.

Clusters 3 depict large connections with higher Pacing B values. It corresponds mostly to
LDAPS, SMB and IMAP traffics. These large Pacing B could thus represent a problem of per-
formance, especially for IMAP where client need to upload mail without high waiting time. One
explanation for this observation are application impact (large transfers with short train size) or
insufficient server resources have been allocated for clients.

On the other hand, cluster 6 corresponds to connections withlarge Pacing B, with mostly
LDAPS transfers. In this cluster we identified 8% of anomalous connections. While cluster 3 and
6 have are characterized by large Pacing B values, cluster 6 is identified by Warm-up B values.

Let us now turn our attention to clusters 1, 2 and 4, which gather short and large transfers.
A common characteristics of these clusters is the quite short median values on each dimension,
compared with cluster 3, 5 and 6. We wonder if these clusters correspond to anomalies.

We noticed that cluster 1, with a median size of 7 data packets, is characterizes by large Pa-
cing A. Port distribution in Figure 10.2(b) shows that traffic in cluster 1 corresponds mainly to
SYMANTEC and SMTP. Probably large Pacing A in SMTP traffic corresponds to an application
anomaly.

Cluster 4 corresponds to large connections, from a diversity of Intranet applications such as
HTTP, SSH and IMAP. It is characterized by large values of Warm-up/Pacing B and Pacing A, but
with median values clearly smaller in clusters 3, 5 and 6.
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FIGURE 10.2 – Anomalies Clustering

In Cluster 2 we observe shortest break-down values, compared to previous ones. It corres-
ponds to mainly to SYMANTEC traffic. Median values of data times values do not exceed 15
milliseconds, a priori it does not influence client perceived performance.

To quantify the extent of impacted clients and servers with anomalies in each cluster, we
proceeded as follows : for each cluster we compute the percentage of clients or servers that are
present in a considered cluster and are not in the rest of samples. We obtain the two following
vectors, one for clients and one for servers :
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Client

(

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
1.6949 0 2.22 2.38 0 0

)

Server

(

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
0 0 20 21.42 0 0

)

Results show that a small fraction of clients in clusters 1, 3and 4 does not exist in the rest
of data, while clients in clusters 2, 5 and 6 are included in the rest of traffic. It does not seem
significant enough to draw any conclusions.

On the other hand, the server vector shows interesting results ; We notice that 20% of servers in
cluster 3, where connections are characterized by large Pacing B (several seconds of magnitude),
are not included in the rest of transfers. As in clusters 3 and6 users use approximatively same
applications (mainly LDAPS and SMB) results in server matrix are different, one explanation is
that this is the IMAP servers in cluster 3 suffer from an anomaly that generates large Pacing B.

Also, for cluster 4 we notice that about 21% of servers are unique and not included in the rest
of data. This cluster includes different applications suchas HTTP, SSH, IMAP and LDAP, with
high values of Warm-up and Pacing B.

Those results would need more investigations. However, we ran out of time and were not able
to confirm those results with the IT service of Eurecom.

Results from a comparison of affected clients and servers show that identified anomalies can be
identified on specific servers, such as in clusters 3 and 4, while others not and observed anomalies
depends more on others parameters (such as traffic load or others factors) that needs a more fine
grained approach.

Finally, we report in Figure 10.3 the client OS or operating system, that we are able to distin-
guish using client IP address (a specific naming convention at Eurecom). The striking conclusion
here is that, except for cluster 6, the majority of connections are established from laptop machines
connected through their wired connections. This can suggest that laptop users are more prone to
performance problems due to limited capacity of laptops in terms of processing compared with
personal computers for the case of Eurecom users.

10.4 Outliers in Data Time Beak-down Values

In this section we discuss a second approach to detect anomalous connections. We adopt an
approach similar to the one presented in the previous section with some differences in terms of
computation of the upper bound limit of the normal behavior.

We define anomalous connections here as, outliers that feature, at least, along one of the di-
mensions a values higher than the upper bound limit (75-th quantile + 1.5 * interquartile range of
the dimension to study) for each dimensions from data time break-down that identify each TCP
connection. Note that this approach is similar to the one used in boxplot representations to identify
outliers.

Also, as the same as the first approach, we exclude the client side thinking time as large
thinking time at the client side do not mean anomalies.

Through this definition of abnormal connections, we intend to extract only high extreme be-
haviors that deviate from median and the range of most available values. With this threshold, we
restrict the analysis to 5% of connections and 10% of the initial data volume.
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Figure 10.4 shows data volume and number of connections per each cluster. We notice that
clusters 2, 4 and 6 represent majority of data volume, while cluster 1 aggregates 25% of connec-
tions and only 6% of data volume.
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FIGURE 10.4 – Overall Characteristics of Outliers Clustering

We report in Figure 10.5(a) clusters obtained by the application of Kmeans and the distribu-
tions of port numbers in each cluster, for identified anomalous connections.

The first observation here is that we recognize in Figure 10.5clusters 3 and 5 already identified
with the first approach in Section 10.3, also in clusters 3 and5. They are characterized respecti-
vely by (i) large Pacing B for the case of LDAP, SMB and IMAP and(ii) large Warm-up B for
SYMANTEC flows.

On the other hand we find in cluster 1 connections identified bylarge theoretical times for a
short amount of data packets (median size of 4 data packets),which suggests large RTT for these
connections. A further investigation show that these connections correspond to ones established
during backup process (see Section 8.2.1). This can highlight a problem of latency due to traffic
over load. This phenomena covers 25% of selected anomalous connections and a majority of
clients.

Cluster 2 is characterized by several hundreds of milliseconds of Pacing. For the case of this
cluster we notice from Figure 10.5(b) that some of the popular applications in our trace are affec-



127

Th B W−up B  Pacing B Th A  Pacing A
0

500

1000

1500

M
ill

is
ec

on
ds

Size dpkts4−−Cluster 1−−cnxs(%)=25−−Srv(%)=55−−Cl(%)=71

Th B W−up B  Pacing B Th A  Pacing A
0

1000

2000

3000

4000

5000

6000

M
ill

is
ec

on
ds

Size dpkts20−−Cluster 2−−cnxs(%)=30−−Srv(%)=81−−Cl(%)=86

Th B W−up B  Pacing B Th A  Pacing A
0

1

2

3

4

5

x 10
7

M
ill

is
ec

on
ds

Size dpkts49−−Cluster 3−−cnxs(%)=3−−Srv(%)=38−−Cl(%)=30

Th B W−up B  Pacing B Th A  Pacing A
0

0.5

1

1.5

2

2.5

x 10
5

M
ill

is
ec

on
ds

Size dpkts25−−Cluster 4−−cnxs(%)=9−−Srv(%)=43−−Cl(%)=40

Th B W−up B  Pacing B Th A  Pacing A

0.5

1

1.5

2

2.5

3

3.5

x 10
5

M
ill

is
ec

on
ds

Size dpkts2−−Cluster 5−−cnxs(%)=5−−Srv(%)=5−−Cl(%)=46

Th B W−up B  Pacing B Th A  Pacing A
0

5

10

15

x 10
4

M
ill

is
ec

on
ds

Size dpkts29−−Cluster 6−−cnxs(%)=29−−Srv(%)=71−−Cl(%)=72

(a) K-means

 

11%2%

Cluster: 1

76%

2%9%

 

SYMANTEC SEP
7938
9154
SMB
Others

 

13%

35%

13%

Cluster: 2

19%

20%

 

SYMANTEC SEP
SMB
LDAP
HTTP
Others

 

28%

15%

Cluster: 3

9%1%

46%

 

IMAP
LDAPS
SMB
HTTP
Others

 

25%

9%

Cluster: 4

6%7%

53%

 

HTTP
HTTPS
LDAPS
SMB
Others

 

99%

Cluster: 5

< 1%
< 1%

 

SYMANTEC SEP
7937
9862

 

13%

18%

24%

Cluster: 6

22%

23%

 

HTTPS
IMAP
27000
SSH
Others

(b) Port Number

FIGURE 10.5 – Clusters : Threshold at 75-th quantile + 1.5 * interquartile range

ted, e.g. SYMANTEC, SMB, and LDAP. In this cluster data time values appear reasonable and do
not reveal, according to us, real performance problems.

Cluster 4 corresponds to a majority of Web applications, with less than 5% of data volume.
This clusters have large preparation times and Pacing at theserver side. While this behavior covers
9% of connections, it affects more than 40% of clients and servers. This cluster is in line with
our experience of the internal Web server of Eurecom, which is connected to complex back-end
applications and which is often quite slow.

Finally, in clusters 6 we have connections with large volumeof data, with a majority of
HTTPS, IMAP and IMAP transfers characterized by large Pacing A. This cluster involves 70% of
clients ad servers. We hypothesize that these are fat transfers that are identified because of their
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size and not because of their performance problem.
The study of client operating systems and machines, shows that in all clusters the majority of

connections are established from laptop machines ; It confirms observations presented in Section
10.3.

10.5 Discussion

We proposed in this chapter 2 approaches based on different definitions of threshold in order
to detect anomalous connections in enterprise environment. The first approach was based on selec-
ting high quantiles for vector formed by data time break downvalues. We defined an anomalous
connection, as connection where one or several dimensions is higher than the 99-th quantile in
those dimensions. This approach allowed us to identify in clusters 3, 5 and 6 large times of Pacing
and Warm-up in the server side.

The second approach is based on the study of outliers using the same approach as in boxplot
representation. An anomalous connection features at least, one of data time break-down dimension
values, that identify each TCP connection, higher than the upper bound limit (75-th quantile + 1.5
* interquartile range of the dimension to study). With this approach we recognised in cluster 3
and 5 two clusters identified with the first approach. Also, the rest of clusters depicts the impact of
backup process in increasing RTT values, high Pacing A due limited performance for uplink traffic
to servers : HTTPS and IMAP, and on the other hand client in cluster 4 with HTTP(S), LDAPS
and SMB are penalized by large waiting time for response fromthe servers.

To wrap up, with these two anomalies detection approaches weidentified different pheno-
mena, several ones can be assimilated to anomalous service primitives, e.g. large Warm-up B for
SYMANTEC traffic, and others with less degree of criticality, where the total connection time
does not exceed hundred of milliseconds, e.g cluster 1 in Figure 10.2.

The impact of large Warm-up B in cluster 5 in Figures 10.2 and 10.5 can be expected not to
be be very penalizing for client performance if the interaction with the SYMANTEC server is
executed as the background tasks. On the other hand if this large treatment time on the server,
is recurrent for the case of several requests at the same timefor different users, it can globally
increase server response time and the server/application setting needs to be re-evaluated

On the other hand, others identified phenomena can be more critical. We show that large mail
(using imap), LDAP and file sharing (SMB) traffics depicted incluster 3 in Figures 10.2 and 10.5
present large Pacing B. This suggests problem of performance on the server side in addition of the
chatty characteristics of SMB protocol [100]. Cluster 6 in Figure 10.5, with higher data volume,
shows large Pacing A values for several key applications, such as HTTPS and IMAPS. We high-
lighted in Figure 10.5, with a majority of SYMANTEC traffic, the impact of the traffic load, which
generated large RTT.

At this stage, we can conclude that with the presented anomalies detection approaches we suc-
ceed to identify several behaviors of anomalous connections, with different degrees of criticality.
The task of the definition of anomalous behavior was complex compared to the one presented
in Chapter 9 mainly due to the enterprise environment characterized by specific applications,e.g
SYMANTEC, RPC,etc. The main difference with Internet traffic is that the knowledge of each
application behavior is very important (executed in background or not, etc). Presented approaches
are not immune to false positives and require to hand over to experts, once the location of the
problem has been identified, but we believe that it is alreadya valuable tool that does a good job
at narrowing down several abnormal behaviors.
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10.6 Conclusion

We tried in this chapter to propose approaches to detect anomalous connections, where an
anomalous connection here is a functionally correct TCP connection – normal set-up/tear-down
and actual data transfer – that experienced performance issues, e.g. losses or abnormally long
waiting times at the server side. We succeeded to identify several phenomena, where some were
common between the two approaches, especially large Pacingand Warm-up B and others not. We
pinpointed factors that explain large observed RTT, Pacingand Warm-up B.

In the future, it would be interesting to consolidate the choice of anomaly threshold and to
automatize the process of selecting anomalous clusters from normal ones. Also, it would be better
to perform the study on a larger set of traffic traces, for example that spans over several days.
Such analysis would help to understand how the client behavior and their performance limitations
evolve over a large time scale. While the study over a single day presented in this chapter brings
many useful insights and highlights performance problems for non trivial applications, it cannot
be considered, alone, fully representative. The main goal of this study was to show how proposed
approaches can be applied to produce the first results to guide further research in enterprise traffic
analysis.
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Conclusion of Part III

In Part III we focused on the issue of profiling anomalous TCP connections. Our method en-
abled to pinpoint the root cause of the performance problem,which can be either losses or some
idle times during data preparation or transfer. We applied this methodology to several traces cor-
responding to Internet and enterprise traffics. We demonstrate the existence of specific strategies
to recover from losses on Cellular network that seem more efficient than what is done currently
in wired networks. When focusing on the transfers or parts ofthe transfers that are not affected
by losses, we demonstrate that our approach is able to detectand classify different classes of ano-
malies, especially anomalies due to transient or persistent - provisioning - problems at the server
side.

In the last concluding chapter of the thesis, we reevaluate the thesis claims made in the begin-
ning and evaluated how we fulfilled those claims. We also discuss the possible future directions of
research for which this thesis has laid the basis.
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Thesis Conclusions and Perspectives

Internet performance has been measured in various ways since its inception as the ARPANET
in 1969. There have been a number of trends that have affectedthe way the Internet has been
measured over this span of time. Some trends depend on the technology improvement : Internet
technology has changed over time, which has made some measurements more difficult and some
measurement easier to obtain. Other trends are matters of scaling : the prodigious growth of the
Internet has changed metrics to measure for performance evaluation, and has triggered the deve-
lopment of new measurement methods and statistical tools. Finally social trends, the transition of
the Internet from government funding to private operation and the economic significance of Inter-
net communication have altered the kinds of measurements needed and the extent to which certain
measurements can be made.

These trends have been driven by the interplay between measurement goals and measurements
difficulties. In this thesis, we reviewed different difficulties that can face experts when collecting
data with new available architectures (Internet and enterprise environments) and then, we proposed
a new methodology to highlight new parameters that can influence client perceived performance.
Finally, we discussed approaches to detect anomalies in Internet and enterprise environments.

In this final chapter we seek to synthesize some salient characteristics of Internet and enter-
prise traffic measurement to show problematics where we succeed to progress, and where more
efforts have to be performed. We now revisit the thesis claims and discuss the thesis work in ge-
neral, highlighting the main contributions. Finally, we give our vision on how this research could
be extended in the future.

Short Transfers and Application.
While analyzing the performance of TCP transfers, we focused on the connections that corres-

pond to valid and complete transfers, from the TCP perspective, that fulfill the following criteria :
a complete three-way handshake, at least one TCP data segment in each direction, and the connec-
tion must finish either with a FIN or RESET flag.

In Chapter 2, we introduced a first definition of a short TCP connection, which is commonly
used in the literature.A short TCP connection is a well behaved connection unable toperform fast
retransmit/recovery (FR/R), after a packet loss detection. We presented an overview of the impact
of the application, on the TCP transfers. We showed that while losses can have a detrimental
impact on short TCP transfers, the application significantly affects the transfer time of almost all
short - and even long - flows in a variety of way.

We demonstrated that the sensitivity to loss concerns also many long transfers as many of
them are a sequence of alternate exchanges and the vast majority of these bursts are less than 3
packets. Such a feature has a direct influence on the ability of TCP to recover from a loss using
Fast Retransmit. We observed that the application can induce extremely large tear-down times and
it can also slow the rate of TCP transfers.
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ISP Architecture have to be Taken in to Account. In Chapter 3, we highlight that in mo-
dern Cellular networks, estimating latency turns out to be acomplex task. We demonstrated that
latency can be under estimated due to the use of new mechanisms or services, like proxies for
content adaptation or applications acceleration. We investigate how these mechanisms impact our
measurements and the performance perceived by end users. The key message here, was that seve-
ral specific devices might affect classical performance metrics in Cellular networks, which should
be taken into account when performing measurement studies.

Usual suspects are not enough to explain Performance. We used in Chapter 4 a classical
approach to compare performance of different access technologies : Cellular, FTTH and ADSL
in order to conclude if clients fully benefit from their broadband access. We focused on the two
key factors that influence the throughput of TCP transfers (TCP throughput formula [89]), namely
loss rate and RTT, that suggest that the performance over FTTH should significantly outperform
the one of ADSL, which should in turn outperform the one of Cellular. It turned out that reality
is slightly more complex. While the Cellular technology offers significantly smaller throughput,
in line with RTT and loss factors, FTTH and ADSL have much closer performance that RTT and
loss were suggesting. We conclude that focusing on classical parameters of performance analysis
does not lead to a full understanding of client perceived throughput.

Fine Grained Analysis. We proposed mainly in Part II a method that drills down into the data
transfer of each well-behaved connection. The developed approach is exemplified with the set of
traces collected on the Cellular/FTTH and ADSL backbones ofOrange. Proposed data time break-
down approach automatically extracts the application, access, server and client behavior impacts
from passively observed TCP transfers and then group together, with an appropriate clustering
algorithm, the transfers that have experienced similar performances.

Application of this technique to the Google Web search service demonstrated that it provides
easily interpretable results. It enables for instance to pinpoint the impact of usage or of raw cha-
racteristics of the access technology. We demonstrated that user behavior dominates clusters with
large volume of data packets and connections. This explainsthe similar behavior of FTTH and
ADSL as response time is dominated by Warm-up A.

Also, we further compared Yahoo and Google Web search trafficand provided evidences
that they are likely to adapt content to the terminal capability for Cellular clients which impacts
the performance observed. Cellular clients featuring a laptop/desktop Windows operating system
(Vista/XP/2000) experience similar warm-up B as ADSL clients while clients using Iphones or a
Windows-CE operating system experience way higher warm-upB.

Proposal of Approaches to detect Anomalous Behaviors. We profiled in Part III anomalous
TCP connections that are defined as functionally correct TCPconnection but with abnormal per-
formance. Our method enabled to pinpoint the root cause of the performance problem, which can
be either losses or some idle times during data preparation or transfer. We applied this methodo-
logy to several traces corresponding to Internet and enterprise traffics.

We demonstrated that common wired (ADSL and FTTH) and wireless (Cellular) technology
adopt different strategies to recover from packet losses, especially under time out conditions (time
outs being prevalent in all environments over fast retransmits), and that the strategies observed on
the Cellular technology seem more efficient than on ADSL and FTTH.

We showed that our methodology for profiling the transfers (or parts of transfers) unaffected
by losses is able to uncover various types of anomalies, somebeing related to the configuration of
servers and some other being shared by several services.
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On the other hand, through the study of an enterprise environment, we argued two anoma-
lies detection approaches. We succeed to identify several behaviors of anomalous connections,
with different degrees of criticality. The task of the definition of anomalous behavior was complex
compared to the Internet one, mainly due to the enterprise environment characterized by speci-
fic applications,e.g SYMANTEC, RPC,etc. The main difference with Internet traffic is that the
knowledge of each application behavior is very important (executed in background or not,etc).

Finally, the approaches presented are not immune to false positives and requires to hand over
to experts, once the location of the problem has been identified, but we believe that it is already a
valuable tool that does a good job at narrowing down several abnormal behaviors.

On the other hand, we identify future research tasks and directions in three categories : first,
related to the methodology, second, the scale of analysis and, finally, the architecture of the used
approach.

Leaving the connection level of analysis. In this thesis and in the thesis of Matti Siekkinen
[101], the emphasis was put on the analysis of individual connections. While it turned out to be a
rich and complex topic, which enables to obtain many insights concerning the performance per-
ceived by the end users, it bears specific limitations. A crucial one is that the dependency between
flows is not taken into account. Trivial but important examples are the case of DNS queries prior
to a lot of application specific connections in IP context or parallel HTTP or P2P transfers. Some
techniques [66] have been proposed to automatically extract connections inter-dependency, which
is a valuable approach as, similarly to what we do, the application semantic can be ignored, i.e. no
details about the specific application needs to be cast in thealgoritm. Also, a lot of works have pro-
posed graph approaches [65, 102, 83] to identify application or user behaviors. Such approaches
are interesting as they provide high level overview of clients and application behaviors. However,
it is difficult to troubleshoot the network with those techniques. An interesting continuation of this
work, could be to combine those types of approaches (at the session or application or user level)
with our low level approach at the connection level to betterinform the results obtained during the
clustering process we use.

Large scaled analysis. We faced, in our work a problem that is common to a lot of traffic
analysis study : we spent a lot of time developing and calibrating our analysis techniques and due
to the limited size of our traces, our results are not established on a fully solid ground. We mean
that it is difficult to know if our results are limited to the setting of the network for which we have
traces or if it general for the technology we consider, e.g.,ADSL or Cellular. In our opinion, this
weakness does not affect enterprise as the latter is by definition, specific to a location. However,
in the latter case, the advantage is that, in some cases (likethe Eurecom network) all the network
and all the traffic can be simultaneously observed, which is obviously more difficult at the Inter-
net scale. We expect that a continuation of the present work will be on applying the methods we
developed on large variety of traces, e.g. several Cellulartraces from the same GGSN or several
days/weeks of enterprise traffic.

Cloud computing. Cloud computing is not only a buzz word of the moment but is likely to
become the future of the data network in a lot of scenarios. Insuch context, remote servers are ac-
cessed by end users and pinpointing the performance problems becomes crucial in these complex
environments both from a networking but also from a system point of view, e.g. server conso-
lidation with virtualization. We hope and expect that the method we developed could constitute
valuables tools to diagnose the performance issues in this context.
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Appendix A

RTT Stability for the Cellular, FTTH
and ADSL Traces

The RTT stability measurement methodology works as follows: we compute for each slice of
30 seconds, the median values of local and remote RTT, we use data/ack estimation method. Re-
member that the syn/acka approach was not appropriate for the Cellular scenario and that syn/ack
and data/ack approaches were giving comparable results forthe other access technologies.
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FIGURE A.1 – RTT median : over time windows of 30 seconds

FigureA.1 s that local RTT values constitute a signature of each network access impact. For
instance, lower values of local RTT were detained respectively by FTTH, ADSL and finally Cel-
lular.

Unfortunately we can not draw conclusion from the comparison of remote RTT due to several
factors, the fact that traces haven’t been simultaneously collected (not the same client and server
load) and specific handling in Core Network between FTTH/ADSL on one hand and Cellular on
the other hand.
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Figure A.1 shows that 3G remote RTT is more unstable and variable than in FTTH and ADSL
access. In fact we can perceive high and periodic fluctuations of 3G remote RTT in the temporal
profile : for each slice of 10 minutes we observe two peaks of 105ms. After further explorations
we found that this phenomenon was previously observed in 3G Cellular networks [103] : They
found that the primary causes of remote RTT spikes are scanners. The probe traffic generated by a
sequential high rate scanning source causes an arrival ratepattern at the peering link. It mirrors the
address space allocation of the local network. If the scanner source keeps cycling into the address
space, such patterns will appear periodically. We did not investigate further this problem and we
were not able to confirm or deny this hypothesis of scanning activity.

After focusing at local RTT, it is interesting to note that FTTH access offer shorter and stable
local RTT (between 3 and 4ms) compared to ADSL and radio access, which is a consequence of
the used architecture in each access. Fiber client access isbased on Ethernet unlike ADSL which
uses ATM until Orange’s core network.
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Appendix B

Data Time Break-down for Mail and
Webmail Traffic

B.1 Webmail : Clustering Results

Figures B.1(a) and B.1(b) present results for Orange Webmail clusters, with Kmeans and a
graphical representation using T-SNE method.

As a general remark, we noticed a good match between clustersidentified with Kmeans algo-
rithm and T-SNE, presented in Figure B.1(b). In fact, we observe that Kmeans clusters, showed in
the left plot of Figure B.1(b) are easily identified using their cluster ID from Kmeans. We noticed
a number of clusters between 4 and 6. After several trails attempts we fixed the number of clusters
to 4.

The main observation from this clustering is that the majority of clusters are short sized, except
cluster 6 with 33 data packets of median connection size. We compare in Figure B.2(a) CDFs of
Warm-up B for obtained clusters. We noticed similar values of Warm-up B (which approves our
break down methodology : for the same service we have a high probability to obtain the same
server response time for different client accesses). It wasnot the case of cluster 3, because it
corresponds to shortest connections with a median size of three data packets.

To better understand the main discriminant parameters thatinfluence the obtained clusters,
we investigate clusters obtained with t-SNE algorithm and depicted in Figure B.1(b). This figures
indicate three categories of clusters according to the spatial distributions of plotted connections.
We see that clusters 1, 4 and 6 are situated on the same area. Then, clusters 3 and 5 are very close
and have common border. While cluster 6 is far from others clusters which leads us to think that it
can reveal an non-trivial behavior.

From the study of clusters 3 and 5, as we observe from the median connection size, they
corresponds to the shortest connections respectively with3 and 4 data packets and distributed
equitably from each used trace, for the two clusters. Next, we compare in Figure B.2(a) Warmu-
up B values for each cluster, we see that cluster 3 is identified by shortest ones - that suggest a
common usage of this class of connections for different users and it is not correlated with the used
access. In fact after further investigation we noticed thatconnections in this clusters correspond to
very short connections used for users authentication or images download.

To describe clusters 1, 4 and 6 we will base our analysis on pacing values. In fact these clus-
ters have similar Warm-up B and theoretical transfers times. Cluster 1 and 6, with a majority of
connections from Cellular and ADSL accesses, group Webmailconnections with Pacing A values.
Which highlights throughput limitation over the uplink access, while cluster 4 shows no Pacing A.
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FIGURE B.1 – Clusters : Webmail Traffic

Cluster 1 and 6 have similar behavior in terms of Theoreticaltimes, Warm-up B and Pacing A, but
on the other hand they present different connections size with large connection size for cluster 6,
and different Pacing B values (no Pacing B for cluster 1).

Finally, cluster 2 is an interesting cluster, because it groups connections from all accesses,
characterized by a high Pacing B.

We noticed that connections in this cluster are mainly from Cellular and FTTH accesses and
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FIGURE B.2 – Webmail : Warm-up B and Trains

target Gmail servers. Then in order to understand the observed high values of Pacing times, located
on only Gmail Webmail server, we analyse connections with this feature. We observed that Gmail
server adds a large delay between TCP segments in a same trainof data, which highlights the
service impact.

We summarize in Figure B.3 the main characteristics of each identified clusters and the com-
mon features and differences.

FIGURE B.3 – Overview of Webmail Clusters

We present in Figure B.4 the scatter plot of each connection start time versus the cluster ID.
It shows that Webmail connections are spread over the capture time of each considered trace.
It indicates that clusters are not located over a specific slice of time but equitably distributed in
Celllar, FTTH and ADSL captures.

Figure B.4 shows that anomaly corresponding to connectionswith large Pacing B (Gmail
delay TCP segments) in cluster 2 are displayed over all captures. It excludes that this performance
problem is correlated with the server or network load.



144 B. DATA TIME BREAK-DOWN FOR MAIL AND WEBMAIL TRAFFIC

0 1 2 3 4 5 6

x 10
6

5

3

4

1

2

6

Trace − CELL(ms)

C
lu

st
er

s

 

 

Cluster 5
Cluster 3
Cluster 4
Cluster 1
Cluster 2
Cluster 6

0 0.5 1 1.5 2 2.5

x 10
6

5

4

4

2

6

Trace − FTTH(ms)

C
lu

st
er

s

 

 

Cluster 5
Cluster 3
Cluster 4
Cluster 2
Cluster 6

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

5

3

4

1

2

6

Trace − ADSL(ms)

C
lu

st
er

s

 

 

Cluster 5
Cluster 3
Cluster 4
Cluster 1
Cluster 2
Cluster 6

FIGURE B.4 – Webmail : Clusters vs Time-stamp

B.2 Orange Mail Service

We illustrate the issue of comparing access technologies with the case of email traffic. Before
going into the details of email traffic in our traffic traces, we note that :

– Mail is a key application from the end user point of view and while most of the work has
focused on trendy applications, e.g., p2p or social networks, mail has received little attention
in previous works ;

– Mail is a versatile application as it can run over HTTP (Webmail) or through direct interac-
tions between the users and the mail servers using POP3 or IMAP (from the server to the
client) and SMTP (in the opposite direction). From now on, wewill refer to mail traffic to
denote POP3/IMAP/SMTP only and distinguish it from Webmail.

– Mail is a rich application from the traffic analysis point ofview as the interactions between
the user and the mail server can be interactive (mail checking with no available mail, mail
headers download via IMAP or small mail downloads via POP), or can be considered as
bulk transfers (large mail uploads/downloads).

We take a stance in this work to focus on mail traffic because (i) Mail traffic can be readily
identified using port numbers unlike Webmail, which needs further filtering heuristics to delineate
Webmail from Web traffic and (ii) it is easy to categorize mailexchanges from client to server
and from server to client because different protocols are used. The characteristics of mail traffic
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in our traces are presented in Table B.1. We restricted our study to POP3 traffic in the down link
direction and SMTP in the up link direction. Indeed, IMAP andIMAPS are popular on the Cellular
access only. We also notice that SMTP traffic appears more popular for FTTH and ADSL than for
Cellular access. This might be attributed to the fact that the users tend to use their Cellular access
to check their mail but defer the answering of those mails to the moment in which they will have
a more convenient wired access.

Cellular FTTH ADSL
SMTP 4988 (4.05%) 11364 (65.52%) 7555 (29.69%)
POP3 44200 (35.92%) 5125 (29.55%) 17295 (67.96%)
IMAP 35431 (28.79%) 97 (0.55%) 254 (0.99%)

SMTPS 2342 (1.9%) 37 (0.21%) 4 (0.01%)
IMAPS 29062 (23.62%) 172 (0.99%) 153 (0.60%)
POP3S 7002 (5.69%) 547 (3.15%) 185 (0.72%)

TABLE B.1 – Mail Traffic

B.2.1 ASP Mail service : a First Look

Throughput is an appealing candidate to compare implementations of a service over different
access technologies. Even though we pinpointed that email is a complex application that mixes
interactive and bulk-transfers usage, we can expect that throughput allows us to draw first conclu-
sions on the impact of the access technology.

Figure B.5 shows cumulative distribution functions of the application level throughput, for
the considered traces, in both uplink (SMTP) and downlink (POP3) directions. We also present
in Figure B.6, the size of transfers in data packets (bytes profiles are similar to packet profiles).
Based on these figures, we formulate two hypotheses :

Hypothesis 1 :Distributions of the amount of packets transferred per connection in the down
direction (over POP3) are similar for the three access technologies. Therefore, the observed diffe-
rence in throughput should be a function of the latency of thepath as well as of the application.
Indeed, the low rates observed clearly suggest that the raw capacity of the access technology is not
the dominant factor that is limiting the performance. Also,as transfers are small in size, we cannot
expect TCP to fully utilize the link capacity.

Hypothesis 2 :Distributions of the amount of packets transferred per connection in the uplink
direction (over SMTP) differ between the three technologies. Transfers are small for the Cellular
and FTTH traces, while they can be fairly large over ADSL. This means that a priori three factors
influence the observed throughputs : Latency and the application for all three technologies and
possibly the raw capacity for the case of ADSL.
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FIGURE B.6 – POP3 vs SMTP for Orange server : Connection Size

Throughput and transfer sizes alone are clearly not enough to validate Hypotheses 1 and 2.
Scatter plots of throughput and transfer sizes could help totake usage into account, but they are
difficult to interpret in practice. We apply in the next section, our break-down method presented in
Chapter 5 that is fully application agnostic but nevertheless allows to assess the relative impacts
of application and access technology, at the two sides (client and server) of a transfer.
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FIGURE B.8 – POP3 - ADSL
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FIGURE B.9 – POP3 - FTTH
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FIGURE B.11 – SMTP - ADSL
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FIGURE B.12 – SMTP - FTTH

Let us now focus on the relative values observed per access technology and mail direction. For
the case of POP3, it is almost exclusively the theoretical and warm-up times that explain the total
data time. As noted above, warm-ups are similar for the threetraces. Our methodology enables to
observe the relative shares of theoretical times and warm-ups. Clearly, these relative values vary
according to the latency of the access technology : For FTTH,the warm-up at the server side
dominates, while in the case of Cellular access, the theoretical times are much higher because of
larger latencies. The share of Pacing is negligible, most likely because a majority of downloaded
mails are short or there is no mail to transfer. In summary, path latency (a clear function of the
access technology) and server response times (i.e., the application) dominate in POP3 transfers.

As for SMTP, one would expect theoretical times and possiblypacing on the client side (A) to
play a more important role, especially for ADSL and Cellularaccess due to the low uplink capacity
offered by those technologies. Also warm-ups on the server side should be significantly smaller as
this is mostly the client side that does the job, i.e.,pushing the mail up to the server. This is indeed
what we observe with ADSL where the Pacing-A is increased compared to POP3. In the case of
FTTH, latency dominates (note that mail transfers are smallover FTTH as can be seen in Figure
B.6) as opposed to the other costs, which is visible as high theoretical times. Cellular access, on
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the other hand, provides a very different picture with a highand unexpected cost due to pacing on
the server side.

B.2.2 SMTP : Clustering Results
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FIGURE B.13 – SMTP Orange Clusters

Figure B.13(a) depicts 4 clusters obtained with Kmeans. We first observe that, theses clusters
coincide with the projection obtained by t-SNE as indicatedin the left plot of Figure B.13(b),
where data samples are indexed using their cluster ID in Kmeans.

Before going into the interpretation of the individual clusters, we observe that two of them
carry the majority of the bytes. Indeed, Figure B.2.2 indicates that clusters 1 and 2 represent 89%
of bytes. Let us first focus on these dominant clusters.
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The first observation from clustering results is that clientaccess is the main discriminant pa-
rameter. For instance, we find all FTTH connections in cluster 3, 13% of Cellular connections in
cluster 4, while in clusters 1 and 2 we identify ADSL and Cellular connections.

Cluster 1 corresponds to the largest connections, comparing to the reset of clusters with a mean
value of 24 data packets. Connections in this cluster were identified by a large Pacing A. In fact,
we expected to find pacing values on the uploading (data sent from the client to the server) due to
the limited capacity of the Cellular and ADSL accesses. Also, one other parameter can explain this
Pacing, if we look to the number of exchanged trains in FigureB.15(a) we notice that connection
in this cluster were characterized by highest number of exchanged trains. In other hand, cluster 2
represents the majority of Cellular and ADSL short connections, when connection is going well :
no pacing A and B. Warm-up B are similar to the ones obtained for clusters 1 and 3, showed in
Figure B.15(b).
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Cluster2: 21%

Cluster1: 68%

Cluster3: 10%

 

FIGURE B.14 – SMTP : Data Volume per Cluster

Cluster 3 corresponds only to FTTH connections. As we can notice connections in this cluster
are penalized only by the response time on the server side, because large FTTH throughput allows
users to send mails more faster than ADSL and Cellular users.In fact, Figure B.16(a) shows that
RTT are very low for these clusters, which generates low Theoretical times A and B. Identified
Warm-up B are similar to ones in clusters 1, 2 and 3 (Figure B.15(b))
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FIGURE B.15 – SMTP : Warm-up B and Trains

We can further observe that Cluster 4 is only from Cellular connections with 10 seconds of
Pacing B. After the investigation of exchanged data packetsin theses connections, we found that
phenomenon was due to an anomaly in Orange SMTP servers.

Investigation results shows that problem was not related toone server, but servers with dif-
ferent IP addresses and only for Cellular connections. Figure B.16(b) shows pacing B values for
connections in this cluster over the Cellular trace. We observe that high Pacing B values were not
limited to a period of the capture.
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FIGURE B.16 – SMTP : RTT and Pacing B

We summarize in Figure B.17 the characteristics of SMTP clustering. We observe two catego-
ries of clusters corresponding to short and large transfers. Then we show that access technology
is the main discriminant factor while since cluster 3 corresponds to FTTH connections with short
RTT and cluster 4 correspond to Cellular connections. On theother hand, clusters 1 and 2 present
a mix of ADSL and Cellular connections.

FIGURE B.17 – Overview of SMTP Clusters

B.2.3 POP3 : Clustering Results

Figure B.18(a) shows boxplots of 4 clusters obtained with Kmeans algorithm. We obtain the
same number of clusters, like computed for SMTP Orange traffic. We have also reasonable results
with the t-SNE clustering method. In fact, clusters obtained with Kmeans are in good agreement
with the projection obtained with t-SNE as indicated in the left plot of Figure B.18(b), with data
samples indexed using their cluster ID in Kmeans.

Figure B.2.3 indicates that clusters 2 and 3 correspond to the majority of data with 81% of
bytes. While, cluster 4 has more connections and only 15% of exchanged bytes.
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FIGURE B.18 – POP Orange Clusters

Overall, clusters were divided in two categories : Cluster 1and 2 correspond to large connec-
tions, while 3 and 4 correspond to short ones. Figure B.20(a)depicts Warm-up B distribution for
POP traffic. It shows approximatively the same Warm-up B distributions for identified clusters.

Based on the presented results in Figure B.18(a), we can drawsome conclusions for the main
clustering parameters. We have seen that cluster 1 and 3 correspond exclusively to Cellular and
FTTH connections, while cluster 2 and 4 group ADSL and Cellular ones. This first observation
highlights the access impact for clustering results. Cluster 3 was identified by short Theoretical
times A/B and null Pacing A and B. It shows that due to high throughput available in FTTH
access, users are able to download data from POP3 server morefaster than in ADSL and Cellular
without Pacing values.

In Cluster 1, we show large Cellular connections, with a meansize of 16 data packets, charac-
terized by a large Pacing A (median value=240 ms). Figure B.20(b) shows that cluster 4 presents
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FIGURE B.19 – POP : Data Volume per Cluster

the largest RTT, which in part explains the noticed Pacing A.As we can notice from Figure B.21,
more than 98% of connections in this cluster exchange seven trains. We observe in Figure B.18(a)
that they represent only 4% of all generated Orange POP data traffic. An explanation for this
observation is that the observed traffic corresponds to a specific one like the one used for the
authentication step or exchanged POP messages used in orderto check mail boxes.

Clusters 2 and 4 with ADSL and Cellular connections, two clusters have similar RTT values
as it is shown in Figure B.20(b), but with different connections size. The main conclusion here is
that ADSL and Cellular accesses offer approximatively similar performances.
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FIGURE B.20 – POP : W-up B and RTT
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FIGURE B.21 – POP : Client Trains

Although clusters 3 and 4 have the same connection size and Warm-up B, FTTH access seems
to be more penalized by data preparation in the server side than the Cellular and ADSL accesses.

We summarize in Figure B.22 the main characteristics of identified clusters. The study of
Orange POP traffic shows that RTT is the main parameter when performing clusters, presented in
Figure B.20(b). Cluster 3 is distinguished from other clusters by short RTTs because it corresponds
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to FTTH connections, while cluster 1 corresponds to Cellular connections with largest RTTs. Then,
clusters 2 and 4 with connections from Cellular and ADSL present the same RTT distribution, but
different connections size : Large connections in cluster 2are characterized by the highest number
of exchanged trains, contrariwise, the cluster 4 has connections with the smallest ones.

FIGURE B.22 – Overview of POP Clusters
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Appendix C

Résumé en Français

C.1 Introduction

De nos jours, nous remarquons que TCP/IP (Transmission Control Protocol / Internet Proto-
col) est le protocole dominant de transfert des données dansles réseaux locaux et étendus. Les
protocoles TCP/IP ont été initialement développés dans le cadre de réseaux de recherche. A la
fin des années 1960, l’ARPA (Advanced Research Projects Agency, maintenant appelée DARPA)
du département américain de la Défense a mis en place un partenariat avec des universités améri-
caines, la communauté de recherche et certaines entreprise, pour la conception de protocoles et de
standards pour le cas de réseaux hétérogènes. Internet et TCP / IP sont si étroitement liés par leur
histoire qu’il est difficile de parler de l’un sans parler de l’autre. Ainsi, au fil des années, TCP/IP
a continué à évoluer pour répondre aux besoins de l’Internetet également pour le cas de réseaux
privés.

Au cours des 15 dernières années, l’intérêt pour la collectedes données, la mesure et l’analyse
de trafic ont augmenté d’une façon constante. Des progrés significatifs ont été réalisés sur plusieurs
fronts. Ainsi, des aspects importants de l’architecture d’Internet ont été mesurés, pour faciliter la
compréhension du fonctionnement de ces réseaux, comme par exemple la mesure de la bande
passante disponible, la classification de trafic et la mesurede la capacité disponible. Cependant,
il reste encore quelques pièces manquantes dans ce puzzle. En particulier, il y a un besoin pour
les fournisseurs de services Internet (FSI) de mesurer la qualité des services offerts à leurs clients
finaux. Ceci permettra aux FSIs de diagnostiquer les problèmes de réseau et d’améliorer leurs
performances.

Alors que le trafic Internet a été très bien étudié depuis de nombreuses années, les caractéris-
tiques des réseaux d’entreprises restent presque totalement inexplorées. Nous avons observé dans
la littérature que pratiquement toutes les études disponibles sur le trafic entreprise se focalisent sur
des cas particuliers d’environnement et d’architecture deréseaux. Une des raisons probables pour
laquelle le trafic entreprise n’a pas été étudié pendant si longtemps, est qu’il est techniquement
difficile à mesurer. Contrairement au trafic Internet, que nous pouvons généralement collecter sur
un lien d’accès unique, la collecte du trafic entreprise nécessite un processus de mesure plus com-
plexe.

Dès le début, l’Internet avait pour but de fournir une infrastructure générale sur laquelle une
large gamme d’applications pourrait fonctionner. La conception d’Internet prévoit deux sortes
d’objectifs en même temps : la capacité à supporter une largevariété d’applications est essentielle,
mais c’est aussi la capacité de fonctionner sur une gamme de nouvelles technologies émergentes
d’accès aux réseaux tels que les réseaux cellulaire, la fibreet l’ADSL classique.

Avec l’émergence de ces nouvelles technologies d’accés à Internet, on constate une émergence
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de nouvelles applications et services. Les services qui étaient auparavant conçus pour les lignes
ADSL sont maintenant utilisés dans les réseaux avec une latence faible ou élevéé.

Nous développons dans cette thèse une méthodologie globalepour étudier les performances
des technologies d’accès hétérogènes et pour connaitre lesproblèmes de performance perçus par
le client, c’est à dire évaluer séparément pour les caractéristiques spécifiques de la technologie
d’accès, aux comportementx des serveurs, ou aux comportements des clients. C’est en effet une
tâche difficile, étant donné que peu de travaux [2, 3] se sont focalisés sur ce problème et ont
développé des méthodes d’analyse, qui permettent aux utilisateurs de déterminer à partir de traces
les causes de la limitation de débit. Les travaux de Matti Siekkinen ont constitué un point de
départ de notre analyse des performances TCP, ainsi sa méthodologie était dédiée aux connexions
TCP qui transportent au moins 130 paquets de données. Comme les petits transferts constituent la
majorité des flux TCP, nous avons décidé de concevoir une méthodologie générique de profilage
des connexions TCP, indépendamment de leur taille.

Pour s’attaquer au problème de l’analyse de perfomance, nous adoptons une approche "diviser
pour régner", où nous nous sommes d’abord concentrés sur lespertes, qui sont sans doute une
cause majeure de problèmes de performance pour le protocoleTCP. Ensuite, nous analysons les
transferts ou les parties de transferts qui ne sont pas affectés par des pertes. Nous utilisons une mé-
thodologie fine et de nous discutons de la façon dont certaines anomalies peuvent être découvertes
en appliquant cette technique.

Pour notre travail, nous avons recueilli plusieurs traces de différents milieux : le trafic Internet
du réseau d’un ISP européen (cellulaire, FTTH et ADSL), un hotspot sans fil, un laboratoire de
recherche et une trace du trafic entreprise. Ces traces ont été recueillies au cours de différentes
périodes de temps. L’intérêt de cette diversité est d’éviter que les résultats obtenus soient biaisés
par la localisation ou par les aspects temporels. Nous avonsl’intention de proposer une approche
agnostique et globale d’analyse de performances avec un large champ d’application.

C.2 Description des Traces

Nous avons utilisé, tout au long cette thèse, trois ensembles différents de traces, dont nous
présentons un aperçu dans la partie qui suit.

C.2.1 Environnements Hétérogènes

Le tableau C.1 résume les principales caractéristiques destraces, au niveau des paquets, uti-
lisées pour notre travail. Ces traces ont été recueillies dans différents environnements : le réseau
DSL à partir d’un FSI européen, un point d’accès sans fil à Portland et notre laboratoire de re-
cherche (Eurecom). Ces traces sont intéressantes en raisonde leur diversité en termes de techno-
logies d’accès et également en termes d’applications. Par exemple, les transferts P2P sont interdits
sur le réseau Eurécom, alors qu’ils représentent une fraction importante des octets pour la trace
DSL. Un point d’accès sans fil devrait différer d’un réseau DSL : dans les réseau DSL les utili-
sateurs ont tendance à se concentrer davantage soit sur des applications interactives soit à géné-
rer d’importants transferts, par exemple, les mises à jour des applications ou des transferts P2P.
Comme présenté dans le tableau C.1, ces traces présentent plusieurs différences concernant la date
de capture, leur emplacement, la nature du trafic, ainsi que le type d’utilisateurs sélectionnés. Nous
détaillons par la suite la définition des connexions TCP bienformées.
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Date de capture Durée de Nb de NB de connexions Taille Nombre
la capture connexions bien formées en MB de paquets

ADSL 2005-05-31 1 min and 29 s 37790 5873 357.51 743683

Portland 2007-09-14 2 h and 20 min 5051 3798 174.13 352569
Hotspot
Research 2008-10-20 1 h and 1 min 32153 26837 1567.42 2867321

Lab

TABLE C.1 – Environnements hétérogènes : Description

C.2.2 Des Traces du FSI Orange

Dans cette partie, nous étudions trois traces, au niveau paquet, pour des utilisateurs finaux ap-
partenant à un FSI français, utilisant différentes technologies d’accès : ADSL, cellulaire et FTTH.
Les Traces ADSL et FTTH correspondent à l’ensemble du trafic de connexions ADSL et FTTH,
tandis que la trace cellulaire est recueillie sur un GGSN de niveau 3, qui est l’interface entre le
réseau mobile et l’Internet. Le tableau C.2 résume les principales caractéristiques de chaque trace.
Notez que ces mesures ont été effectuées à différentes périodes de la journée afin de comparer
la stabilité du trafic et d’obtenir des conclusions indépendantes d’une période de temps ou des
comportements des utilisateurs. En conséquence, il est important de noter la grande variabilité et
la diversité de nos ensembles de données, accentuée par les différences de comportements des
utilisateurs ainsi que les cactéristiques du réseau d’accès.

Par exemple l’accès cellulaire devrait différer de FTTH et ADSL en terme d’utilisation, car
les utilisateurs de l’accès cellulaire ont tendance à en faire un usage spécifique et rapide tel que la
consultation du courrier électronique ou la navigation Web. On peut s’attendre aussi à de nouveaux
changements avec l’introduction des téléphones intelligents (smartphones) et l’utilisation des clefs
3G pour le cas de réseaux cellulaires.

Cellulaire FTTH ADSL
Date 2008-11-22 2008-09-30 2008-02-04

Début de la capture 13 :08 :27 18 :00 :01 14 :45 :02 :03
Durée 01 :39 :01 00 :37 :46 00 :59 :59

NB Connexions 1772683 574295 594169
cnxs bien formées 1236253 353715 381297
Volume UP(GB) 11.2 51.3 4.4

Volume DOWN(GB) 50.6 74.9 16.4

TABLE C.2 – Des traces du FSI Orange : Description

Dans le présent travail, nous nous concentrons sur les applications aux dessus de TCP, ce
protocole transporte l’immense majorité des octets dans nos trois traces, et presque 100% pour
la technologie cellulaire. Nous limitons notre analyse auxconnexions qui correspondent à des
transferts a priori compléts, que nous appelons connexionsbien formées (qui seront détaillées par
la suite). Ces connexions transportent entre 20 et 125 Go de trafic pour le cas de nos traces (voir
tableau C.2).
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C.2.3 Trafic Entreprise

Notre dernière capture consiste en une seule trace recueillie dans un environnement de ré-
seau d’entreprise, composé d’un ensemble de machines qui peuvent communiquer soit avec des
serveurs internes soit avec des machines sur Internet.

La Figure C.1 présente une vue globale de notre réseau. Cetteinfrastructure se compose d’en-
viron 800 postes de travail équipés d’une variété de systèmes d’exploitation. Le réseau est organisé
en plusieurs sous réseaux locaux virtuels (VLAN) : les serveurs, le personnel, DMZ, connectés via
un commutateur Cisco. Nous nous focalisons sur les flux TCP, car ils représentent plus de 97%
des flux dans chaque trace, et ils transportent plus de 99% desoctets.

FIGURE C.1 – Architecture de notre réseau d’entreprise

Le tableau C.3 résume les principales caractéristiques de notre trace du réseau d’entreprise.
La trace peut être divisée en plusieurs sous-classes de trafic, selon la source et la destination des
machines. Comme le montre le tableau C.3, nous remarquons que le trafic client/serveur domine
en proportion de connexions bien formées ainsi que pour les volumes de données échangés.

Serveur/DMZ Client/Serveur Serveur/Serveur
Bien formées 57348 128237 52333
connections

Volume UP(GB) 8.581 127.061 76.290
Volume DOWN(GB) 6.651 114.054 76.365

Volume UP(data packets) 10,798,530 153,704,391 61,114,981
Volume DOWN(data packets) 9,268,532 145,712,454 61,198,436

TABLE C.3 – Trace Entreprise : Description

C.3 Revisiter les Performances des Transferts TCP

Dans cette partie, nous mettons en évidence l’interaction entre le protocole TCP et l’applica-
tion. Nous allons d’abord discuter de la définition communément faite des transferts TCP courts,
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qui ne peuvent pas compter sur le mécanisme Retransmission Rapide (FR/R) - même avec l’émer-
gence de nouveaux mécanismes comme le ’limited transmit’. Notre principale contribution est de
présenter un aperçu de l’impact de l’application, sur les transferts TCP. Nous montrons que si
les pertes peuvent avoir un impact négatif sur les transferts TCP courts, l’application affecte de
manière significative le temps de transfert de presque toutes les connexions TCP (longs et courts).

En outre, l’application peut aggraver l’impact des pertes en empêchant TCP d’envoyer de gros
blocs avec assez de paquets (groupe de paquets de taille suffisante pour que le FR/R puisse s’appli-
quer). Nous adoptons une approche agnostique d’application : nous ne faisons aucune hypothèse
sur la façon dont l’application fonctionne, afin de développer un ensemble de techniques qui déli-
mitent l’impact de l’application à d’autres causes qui expliquent la durée de transfert de données,
y compris le transfert de données lui-même et le temps de récupération, le cas échéant.

Nous illustrons nos résultats avec l’ensemble des traces décrites à la section C.2.1, qui incluent
la trace ADSL, un point d’accès Wifi et finalement notre laboratoire de recherche.

C.3.1 Connexions Bien Formées

Tout en analysant les performances des transferts TCP, nousnous sommes concentrés sur les
connexions qui correspondent à des transferts valables et complets du point de vue TCP. Plus
précisément, les connexions TCP bien formées doivent remplir les conditions suivantes : (i) une
étape complète d’établissement de la connexion TCP, (ii) aumoins un segment de données TCP
dans chaque direction, (iii) la connexion doit finir soit avec un drapeau FIN ou RESET.

Lors de l’application de cette heuristique pour nos traces,nous nous retrouvons avec un total
de connexions TCP bien formées de plus de 35.000 connexions.La trace DSL est celle qui offre
la plus petite fraction des connexions bien formées, plus 377905873 connexions, en raison d’un
grand nombre de transferts unidirectionnels (SYN sans réponse). La courte durée de la trace a
aussi un impact, car pour un grand nombre de cas, nous n’observons pas le début ou la fin (ou les
deux) de la connexion.

Les applications P2P ont tendance à générer de telles connexions anormales (serveur P2P
indisponible pour télécharger un contenu) ainsi que des activités malveillantes.

La Figure C.2 représente la distribution cumulative de la taille de connexion pour les connexions
bien formées en termes d’octets et de paquets de données pourles trois traces. Nous observons
que les traces d’Eurecom et de Portland offrent un profil de connexion similaire qui différe sensi-
blement de la trace DSL. Par exemple, 65% des connexions ADSLont moins de 1 Ko et 25% sont
comprises entre 1 Ko et 1 Mo, contrairement à Portland et au trafic Eurecom qui présentent des
tailles plus grandes aux mêmes percentiles. Une raison derrière cette observation est de nouveau
la petite durée de la trace DSL. Dans cette partie, nous nous concentrons sur les transferts courts.
Nous avons aboservé que la trace DSL offre des données différentes des deux autre traces, alors
que les traces d’Eurecom et Portland présentent à peu-près la même distribution cumulative des
octets.

En se concentrant sur la performance des transferts TCP, le nombre de paquets de données à
transférer est un élément clé à considérer, car il impacte lacapacité de TCP à récupérer après un
évenement de pertes à l’aide du mécanisme Fast Retransmit. Nous pouvons déjà observer dans la
Figure C.2 que indépendamment de la trace, une partie importante des connexions (entre 53% et
65%) ont moins de 7 paquets de données.
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FIGURE C.2 – Tailles des Connexions du Milieu Hétérogène

C.3.2 Transferts Courts : Définition

Dans cette section, nous introduisons une première définition d’une connexion TCP courte, ce
qui est communément utilisé dans la littérature.

Une connexion TCP courte est une connexion bien formée, incapable d’accomplir un FR/R,
après une détection de perte de paquets.

Bien que simple, la définition ci-dessus ne conduit pas à une valeur seuil unique en termes
de nombre de paquets de données pour définir un court transfert TCP. En effet, les différentes
implémentations TCP ainsi que ses différentes implémentations peuvent affecter cette définition :
la fenêtre de congestion initiale, l’utilisation du mécanisme de l’acquittement retardé, le nombre
d’acquittements (ACK) dupliqués qui déclenche un FR/R. Parexemple, Windows Vista implé-
mente le Limited Transmit, ce qui signifie que seulement 2 ACKsont suffisants pour déclencher
un FR.

Trace Initiateur Partie Distante
1 pkt 2 pkts > 2 pkts 1 pkt 2 pkts > 2 pkts

DSL 99% 1% 0% 80% 18% 2%
Portland 82% 17% 1% 64% 24% 2%
Eurecom 90% 10% 0% 65% 24% 1%

TABLE C.4 – Estimation de la Fenêtre de Congestion Initiale

Nous avons estimé pour les trois traces, le nombre de segments observés dans une durée égale à
un RTT, après l’envoi du premier paquet de données, et ce pourchaque la direction - voir le Tableau
C.4. La valeur obtenue donne une limite inférieure de la taille de la fenêtre de congestion initiale,
puisque dans certains cas l’application au dessus de TCP peut ne peut pas fournir suffisamment de
données à TCP pour les envoyer au début du transfert. Cela estparticulièrement vrai pour le côté
initiateur dans le cas des transferts Web, où la requête GET pourrait tenir dans un seul paquet de
données. Globalement, on observe que les valeurs de 1 et 2 (MSS et les valeurs éventuellement
plus élevées) semblent être les tailles communes de la fenêtre de congestion initiale. Les tailles de
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fenêtres de congestion initiale de plus de 2 MSS (nous avons observé des valeurs allant jusqu’à 12
SMS) pourraient être dues à des optimisations spécifiques des systèmes d’exploitation [71].

Compte tenu de la fenêtre de congestion initiale estimée du Tableau C.4, nous présentons dans
le Tableau C.5 les principaux scénarios pour trouver le seuil pour le nombre de paquets de données
qui déclenche un FR/R. Une connexion courte est donc, pour chaque scénario, une connexion
avec un nombre de paquets strictement inférieur au seuil. Ces scénarios couvrent, étant donné nos
connaissances actuelles, tous les cas de figures les plus fréquents.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
cwnd Initial 1 1 2 2

Delayed ACK no yes yes yes
ACK Duppliqués 3 3 3 2

Taille de connexion Minimum 7 9 8 7
size (paquets de données)

TABLE C.5 – Taille de Connexion minimum necessaire pour un FR/R

Sur la base des résultats présentés dans le tableau C.5, nousobservons que :
– différents scénarios conduisent à des seuils différents,de 7 à 9 paquets de données ;
– Une connexion de moins de 7 paquets de données ne peut pas appliquer le FR après une

perte de paquets, quel que soit le scénario ;
– Lorsque l’on considére un scénario donné et dont la taille de connexion est plus grande que

le seuil, on observe que cette connexion est en mesure d’effectuer un FR/R pour seulement
un seul paquet dans son dernier bloc de données. La perte de tout autre paquet ne mènera
pas à un FR/R. Une connexion n’est donc pas toujours en mesured’effectuer un FR/R si sa
taille est supérieure au seuil.

Basé sur le résultat obtenu à partir de cette section, nous adoptons une première définition
des transferts TCP courts, c’est un transfert dont la tailleest inférieure à 7 paquets de données.
Cette définition, bien que simple, repose sur l’hypothèse implicite que l’application sur le dessus
de TCP n’a pas d’impact sur la façon dont TCP envoie des paquets. Comme nous le verrons dans
la section C.5, cette hypothèse peut être trop forte, en pratique, puisque même les long transferts
TCP peuvent être divisés en petits blocs (dus à l’application au dessus de TCP) qui empêchent le
déclenchement du FR/R en cas de pertes.

C.4 Décomposition des Délais de Transfert

Pour comprendre les facteurs qui affectent les performances des transferts TCP, nous nous ap-
puyons sur la décomposition suivante dans la figure C.3 de chaque transfert TCP en 3 phases :

Le délai d’établissement :C’est le temps entre le premier paquet de contrôle et le premier
paquet de données. Puisque nous ne considérons que les transferts qui ont une étape d’établis-
sement de connexion complète, le premier paquet est un paquet SYN alors que le dernier est un
ACK pur en général. Le temps d’établissement de la connexionest fortement corrélé au RTT de
la connexion. Pour les trois traces que nous considérons, nous avons un coefficient de corrélation
de 70 % pour la trace DSL, 60 % pour la trace de Portland, et 39 % pour la trace Eurecom.

Le délai de transfert des données :C’est le temps entre le premier et le dernier paquet de
données de la connexion. Il comprend aussi les durées de recouvrement des pertes, le cas échéant.
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FIGURE C.3 – Décomposition du Temps de Transfert

Le délai de libération : C’est l’intervalle de temps entre le dernier paquet de données et le
dernier paquet de contrôle de la connexion. Nous imposons, comme expliqué dans la section C.3.1,
qu’au moins un FIN ou un RESET soit observé, mais il peut y avoir de multiples combinaisons
de ces drapeaux à la fin du transfert. Contrairement à l’initialisation, la phase de libération de la
connexion TCP ne dépend pas seulement du RTT de la connexion,mais aussi de l’application au
dessus de TCP. Par exemple, le réglage par défaut d’un serveur Web Apache est de permettre des
connexions persistantes, mais avec une durée maximale d’inactivité de 15 secondes, ce qui signifie
que si l’utilisateur ne poste pas une nouvelle requête GET après 15 secondes, la connexion est fer-
mée. On trouve dans nos traces une faible corrélation entre le temps de libération de la connexion
TCP et son RTT : 40% pour la trace DSL (qui est encore assez élevé), 0,7% pour la trace de Port-
land, et -2% pour la trace Eurecom.

En utilisant la décomposition ci-dessus, nous analysons ensuite l’impact des pertes (section
2.4.1) et de l’application (section C.5) sur le temps de transfert des données.

C.4.1 Retransmission et Libération des Connexions TCP

Comme expliqué plus haut, le temps de transfert de données comporte éventuellement les
délais de retransmission des paquets perdus. Nous estimonsle temps passé par le protocole TCP
dans la récupération des pertes en mesurant les délais de recouvrements .

Plus précisément, pour un transfert donné, chaque fois que le numéro de séquence dans le flux
de paquets de données diminue, on enregistre la durée entre cet évènement et l’observation du pre-
mier paquet de données dont le numéro de séquence est plus grand que le plus grand numéro de
séquence observée jusqu’ici. Par exemple, nous présentonsdans la Figure C.4 un exemple d’une
connexion TCP avec la perte de deux paquets de données. En supposant que nous associons un
numéro de séquence unique à chaque paquet, si l’on observe laséquence 1,2,3,4,7,6,5,6,8, nous
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FIGURE C.4 – Récupération suite à la détection de Perte

allons enregistrer la durée entre le paquet 7 et le paquet 8. Cette durée est ajoutée à la période de
récupération du transfert. Pour filtrer les phases de ré-ordonnancement dans le réseau, nous élimi-
nons chaque fois les temps de récupération inférieur à un RTT. Rewaskar et al.[72] ont développé
des algorithmes pour évaluer si les évènements de perte peuvent être attribués à un temps-mort
ou un FR/R. Nous n’étions pas en mesure d’utiliser cette technique car elle nécessite d’effectuer
une connaissance de l’OS de l’expéditeur des données. Cependant, dans nos traces, la plupart des
pertes sont survenues dans les flux de données émis par la partie distante et non pas pour les clients
locaux.

La Figure C.5 présente les résultats de décomposition des transferts TCP pour les petites et les
grandes connexions, pour le cas de nos trois traces. Nous observons tout d’abord dans la Figure C.5
que les temps d’établissements sont toujours petits pour toutes les traces et les tailles de transferts ;
Les temps de libération peuvent atteindre des valeurs trés élevées, entre 2,5 et 27,5 secondes en
moyenne.

La phase de libération, représente souvent la majorité du temps de connexion. Notez cepen-
dant, que le temps de libération de la connexion TCP ne devrait avoir aucun impact sur la perfor-
mance perçue de l’application quand le transfert des données est terminé.

Quant aux pertes, nous présentons deux valeurs distinctes pour le temps de récupération :
le temps moyen de récupération conditionnel et le temps moyen de récupération. Ce dernier est
calculé sur tous les transferts de la catégorie alors que le premier est calculé uniquement pour les
transferts avec au moins un évènement de récupération de perte. Etant donné que seulement une
petite fraction de transferts ont des pertes (9,4% pour DSL trace, 13,2% pour Portland et 6,8%
pour Eurecom), le temps moyen de récupération conditionnelle est souvent beaucoup plus grand
que le temps de transfert moyen. Cet impact est nettement plus marqué pour les petits que pour les
grands flux, dans les trois traces, probablement en raison dela prédominance de temps morts pour
les transferts de courte durée.

Pourtant, d’un point de vue du serveur qui sert simultanément un grand nombre de clients,
comme un serveur Web, des temps longs de fin de connexion, qui peuvent affecter la qualité de
service. Un effet secondaire de ces grands temps de fin de connexions est lors de l’estimation du
débit des transferts.

Si on divise le nombre total d’octets de données par la durée totale de la connexion TCP, on
peut sous-estimer le débit réel perçu par l’utilisateur et l’application. La figure C.6 présente pour
le cas de la trace Eurecom, le débit calculé lorsqu’on considère le temps total de connexion d’un
coté et d’un autre côté le débit calculé lorsqu’on considèreuniquement le temps d’établissement
et le temps de transfert de données. On appelle ce dernier ”débit au niveau applicatif” (il est
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FIGURE C.5 – Décomposition du Temps Total de Transfert

étiqueté AL), car il représente le taux auquel les données sont envoyées ou reçues au niveau de
la perspective de l’application. La figure C.6 montre une différence significative entre les deux
métriques pour le cas des courts et longs tranferts.
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La principale conclusion de l’étude ci-dessus est que les pertes se produisent rarement, mais
ont un effet trés préjudiciable. Une deuxième remarque est que le temps de libération de la
connexion TCP doit être retiré lors du calcul du débit car il peut conduire à une sous-estimation
considérable du débit perçu au niveau de l’application. Parexemple pour le cas de la trace Eure-
com, le débit médian des petits (respectivement grands) transferts obtenus lorsqu’on considére le
temps de libération, est de 34 kbits/s (resp. 8,7), tandis qu’elle est de 67 kbits/s (respectivement
88) lorsque le temps de libération de connexion est éliminé du temps total de connexion.

C.5 Impact de l’Application

Dans cette section, nous allons évaluer l’impact de l’application sur le temps de transfert d’une
connexion TCP. Il y’a plusieurs façons grâce auquelles l’application peut influencer le débit auquel
les flux de données sont acheminés dans un réseau. Premièrement, l’utilisateur peut être impliqué
dans le transfert, comme dans le cas d’une connexion persistante HTTP, où le téléchargement
d’une nouvelle page est déclenché par une requête HTTP GET émis par le client. Deuxièmement,
l’application peut limiter la vitesse à laquelle les informations sont envoyées à la couche TCP. C’est
typiquement ce que les applications P2P font pour limiter l’encombrement sur la liaison montante
de l’utilisateur. Une troisième possibilité est que la génération de données se fasse en ligne. Par
exemple, lors de l’interrogation de Google pour un mot clé spécifique, implique plusieurs dizaines
de machines. De la discussion ci-dessus, nous observons quel’application peut affecter le transfert
des données de différentes façons. Une première évaluationsimple de l’impact de l’application sur
un transfert TCP, est de calculer la fraction des paquets avec des drapeaux PUSH [73]. Le drapeau
PUSH est une façon pour l’application de spécifier qu’elle n’a pas d’octets à transmettre pour le
moment à la couche TCP et que celle-ci peut envoyer les données sur le réseau. Nous présentons
dans la Figure C.7 le ratio de drapeaux PUSH en fonction de la taille des transferts pour les trois
traces. Nous observons que l’impact de l’application diminue avec la taille de transfert jusqu’à un
certain seuil dépendant de la taille de connexion. Pour les connexions courtes, la proportion des
drapeaux PUSH est extrêmement élevéé, entre 74% et 86%.
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FIGURE C.7 – Ratio conditionnel de drapeaux Push

Dans les prochaines sections, nous évaluons plus en détailsla façon dont l’application in-
fluence le temps de transfert. Nous montrons que l’application a tendance à fragmenter le transfert
en petits groupes de paquets TCP qui empêchent de se fonder sur FR / R en cas de pertes.
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C.6 Notions de Synchronisme et de Pertes de Paquets

Pour les applications client/serveur, on constate souventque même si le serveur envoie une
grande quantité d’octets/paquets, l’échange réel est fragmenté : le serveur envoie un groupe de
quelques paquets (appelés ci-après train de paquets), puisattend que le client poursuive par une
autre requête et envoie ensuite sa réponse suivante.

Si un tel comportement est prédominant dans les transferts TCP, il peut avoir un impact néfaste
sur les performances lorsque la taille des trains est trop petite, car il peut empêcher d’accomplir le
FR/R en cas de pertes de paquets.

Quand on observe passivement une connexion, nous voyons desdonnées circulant alternative-
ment dans les deux directions ; chaque direction envoie à sontour un train de paquets. Ce n’est pas
nécessairement dangereux si les deux parties ne sont pas synchrones, c’est à dire si une partie n’a
pas besoin de recevoir des paquets de l’autre partie avant d’envoyer son prochain train de paquets.
Toutefois, nous avons observé que les deux parties sont apparemment pour la plupart du temps
synchronisées, c’est à dire qu’elles n’envoient pas simultanément des trains de paquets.
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FIGURE C.8 – Distribution cumulative de la taille des trains de données

La question que nous soulevons est donc la suivante : Est-ce que les deux parties impliquées
dans un transfert sont synchronisées ou non ? Prouver cette synchronisation nécessite une connais-
sance a priori de la sémantique de l’application. On peut cependant prouver que l’hypothèse de
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synchronisation ne peut pas être rejetée comme suit : pour untransfert de donnée, chaque fois
que nous observons une transition d’un côté qui envoie des paquets, par exemple A, à l’autre côté,
disons B, si le premier paquet de B valide la réception du dernier paquet de A. Si ce n’est pas
le cas, alors il n’y a pas de synchronisation, sinon, le synchronisation ne peut pas être rejeté. En
appliquant cette méthodologie pour les trois traces, nous avons obtenu que pour chaque trace, la
fraction de connexions pour lesquelles le synchronisme ne pouvait pas être rejeté est extrêmement
élevée : 88,6% pour la trace ADSL, 94,4% pour la trace de Portland et de 95,3% pour la trace
d’Eurecom.

Pour les connexions pour lesquelles la synchronisation ne pouvait pas être rejetée, nous avons
examiné la distribution de la taille des trains de paquets. Nous avons distingué entre l’initiateur de
la connexion et la partie distante. Comme nous attendons pour ce dernier, qui est aussi dépendant
du type de la connexion, dans une grande partie des cas il doitcorrespondre à une sorte de serveur
qui envoie habituellement une plus grande quantité de paquets que l’initiateur de la connexion qui
fait juste des requêtes. Comme illustré par la Figure C.8 :

– Les tailles de trains envoyées par l’hôte distant sont plusgrandes que ceux envoyés par l’ini-
tiateur, ce qui concorde avec notre hypothèse (la partie distante correspond à un serveur) ;

– Plus de 97 % des trains de l’initiateur ont moins de 3 paquetsde données, ce qui laisse TCP
incapable de déclencher une retransmission rapide, même siLimited Transmit est utilisé ;

– Plus de 75 % des trains de l’hôte distant ont moins de 3 paquets de données, ce qui laisse
à nouveau TCP incapable de déclencher la retransmission rapide, même si le Limited Re-
transmit est utilisé.

C.7 Approche Classique pour la Comparaison de Performance

L’étude du comportement de TCP, en particulier ses performances en termes de délais, des
pertes et de débit, a été étudié depuis son émergence dans desenvironnements spécifiques et dif-
férents type d’utilisateurs.

Toutefois, la comparaison et la compréhension des paramètres clés qui influencent les perfor-
mances perçues de différentes technologies d’accès tellesque le cellulaire, le FTTH et l’ADSL
deviennent difficiles quand il est en interaction avec la couche application au dessus de TCP.

Ci-après, nous commençons par présenter une approche classique pour comparer les perfor-
mances des différentes technologies d’accès, afin de conclure si les clients profitent pleinement de
leur accès Internet offert par leur FSI.

Ensuite, nous proposons une nouvelle méthode d’analyse quipermettera de révèler l’impact
de certains facteurs spécifiques, comme l’application au dessus de TCP, son interaction avec l’uti-
lisateur pour faciliter la comparaison des performances dedifférentes technologies d’accès.

La méthode d’analyse que nous utilisons consiste en deux étapes. Dans la première étape, le
temps de transfert de chaque connexion TCP est décomposé en plusieurs détails que nous pouvons
attribuer à des causes différentes, par exemple, l’application ou le chemin de bout en bout. Dans
une deuxième étape, nous classons les connexions pour découvrir les grands types de connexions
présentées dans nos traces.

C.7.1 Principaux Suspects

C.7.1.1 Volume de Données

La Figure C.9 présente la CDF (Fonction de répartition) et laCDF complémentaire (CCDF)
de la taille des connexions en termes d’octets, pour les traces cellulaires, ADSL et FTTH. Seules
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les connexions bien formées sont prises en considération. Nous observons que les traces FTTH
et ADSL offrent des profils similaires qui diffèrent sensiblement de l’accès radio. Par exemple 30
% de traces ADSL et FTTH sont inférieurs à 1 koctets et 55 % ont entre 1koctet et 10 koctets,
contrairement à la trace cellulaire qui offre des valeurs plus grandes aux même percentiles.

L’étude de la CCDF, montre que la probabilité d’obtenir des transferts avec 1 Megaoctets est
trés faible (moins de 0,01). Ces résultats révèlent aussi que, tandis que la majorité des clients
cellulaires ne font pas du P2P (limitation au niveau des téléphones), ils sont capables de générer
des connexions larges comme pour les accès filaires (FTTH et ADSL).
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FIGURE C.9 – Taille des Connexions(Octets)

En fait, plusieurs explications peuvent être trouvées pources observations. Par exemple, l’uti-
lisation de connexions HTTP persistantes (plus de 84% des connexions cellulaires ciblent des
ports HTTP (s)). En outre, l’utilisation de nouvelles applications ou de nouveaux services avec
l’émergence des nouveaux mobiles, tels que le téléchargement d’applications de ’Apple Store’ ou
’Android Market’ et l’augmentation des applications de streaming (Youtube, etc), expliquent les
valeurs des grandes tailles de connexions pour l’accès cellulaire par rapport à FTTH et ADSL.

La principale conclusion de ce paragraphe est que, de nos jours, les utilisateurs du réseau cellu-
laire ont tendance à utiliser leurs mobiles pour un usage différent du simple appel téléphonique ou
du SMS à envoyer, en concordance avec les améliorations de l’affichage et la capacités des smart-
phones. Cela signifie que l’accès cellulaire n’est pas limité à un usage pour de courtes périodes ou
à une utilisation nomade, mais pour un usage similaire à celui d’un accès fixe.

C.7.1.2 La Latence de l’accès

Nous avons observé que les deux méthodes d’estimation du RTTavec SYN/SYN-ACK ou
DATA-ACK conduisent pratiquement à une même estimation du temps d’aller-retour pour les
traces l’ADSL et FTTH, tandis que nous observons des différences pour l’accès cellulaire à cause
du ’Performance Enhancing Proxy’ (PEP) et d’un APN (Access Point Name).

Nous allons donc nous fonder sur la méthode de DATA-ACK pour estimer la latence sur les
traces considérées. La Figure C.10 représente les estimations de RTT pour les trois traces. Elle
met clairement en évidence l’impact de la technologie d’accès sur la latence de chaque accès.
L’accès FTTH offre un RTT faible en général - à moins de 110 ms pour les plus de 60 % des



167

connexions. Cette conclusion est en accord avec les caractéristiques généralement annoncés pour
la technologie d’accès FTTH. D’un autre côté, la latence surla l’accès cellulaire est notamment
plus longue que pour l’ADSL ou FTTH.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Temps d’Aller−Retour (Millisecondes)

C
D

F

 

 

Cellulaire
FTTH
ADSL

FIGURE C.10 – Estimation du Temps d’Aller-Retour(RTT)

C.7.1.3 Temps de Retransmissions

Nous avons développé un algorithme pour détecter les paquets de données retransmis, qui se
produisent entre le point de capture et le serveur ou entre lepoint de capture et le client.

Cet algorithme1 est similaire à celui développé dans [75].
Si jamais la perte a eu lieu après le point d’observation, nous pouvons observer le paquet initial

et sa retransmission. Dans ce cas, le délai de retransmission est tout simplement la durée entre ces
deux instants2. Lorsque le paquet est perdu avant la sonde, nous en déduisons l’instant auquel il
aurait dû être observé, sur la base des numéros de séquence des paquets. Notez que les calculs de
toutes ces durées sont effectués, côté expéditeur, nous nous basons sur les séries chronologiques
(nous décalons nos calculs selon nos estimations du RTT). Pour nos traces, il est plus facile de
détecter des pertes où le paquet de données est vu à deux reprises. Mais, lorsque la perte s’est
passé entre le point de capture et le serveur distant, nous sommes seulement en mesure de détecter
un paquet dé-séquencé.
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FIGURE C.11 – Temps de Retransmission des Paquets de données

1. L’algorithme de détection de perte utilisée est disponible sur http ://intrabase.eurecom.fr/tmp/papers.html. Les
lecteurs sont invités à vérifier l’exactitude de notre algorithme pour détecter les pertes

2. Ces instants sont calculés du point de due émetteur en décalant les séries chronologiques selon nos estimations
RTT.
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Pour le calcul des temps de retransmissons, nous ne distinguons pas entre les séquences de
paquets hors-séquencé et les paquets de données sont observées plus d’une fois. Nous utiliserons
pour ces deux cas de figures le terme "retransmission". Nous essayons de séparer les retrans-
missions réelles des fausses retransmissions en éliminantles délais plus petits que le RTT de la
connexion. Une fois que les pertes sont identifiés avec (i) laretransmission de paquets ou (ii) les
paquets hors-séquencés, nous calculons le temps de retransmission total pour chaque connexion
TCP.

La Figure C.11 représente la distribution cumulative des délais de retransmission par connexion,
pour les accès considérés. La principale observation est que la proportion des connexions obser-
vant des pertes est plus élevé dasn la trace cellulaire avec plus de 28,6 % et seulement moins de
9 % pour ADSL et FTTH. Ceci démontre que la proportion des connexions observant des pertes
diminue lorsque la capacité augmente. Une explication pourcette observation peut résider dans la
différence de fiabilité entre les accès cellulaire et filaires.

Dans les précédents travaux, nous avons remarqué que les auteurs ont présenté plusieurs fac-
teurs qui influencent les taux de pertes pour l’accès cellulaire. En fait, dans [90] les auteurs recom-
mandent d’utiliser un algorithme de détection des pertes, qui utilise des traces de chaque connexion
(cet algorithme n’est pas adapté à notre cas, parce que nos mesures ont été recueillies au un niveau
d’GGSN) pour éviter de fausses retransmissions de TCP. Aussi, les auteurs dans [56] ont montré
que le taux de retransmission dans les réseaux cellulaire est plus élevé pour les trafics Google que
les autres, en raison de courts délais d’attente mis en oeuvre dans les serveurs de Google.

C.7.2 Comment Comparer les Performances ?

Notre but ici est de montrer que la technologie d’accès influce le débit, mais que ce n’est pas le
seul facteur. La congestion, les détails de la couche transport ou de l’application (par exemple des
limiteurs de débit, dans les applications P2P) peuvent également influencer sur le débit observé.

Nous fondons notre estimation de débit sur la définition présentée dans la section C.4.1 où le
débit correspond à la quantité d’octets transférés à la couche TCP, divisé par la durée totale entre
le premier paquet (premier SYN) et le dernier paquet du transfert. Formellement, c’est ce que nous
appelons le débit applicatif.
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FIGURE C.12 – Débit au Niveau Applicatif

Dans la Figure C.12(a), nous présentons la CDF de débit applicatif (AL) pour nos traces. Une
première observation frappante est que les accès FTTH et ADSL offrent des débits nettement plus
élevés que dans l’accès cellulaire. Comme nous l’avons présenté précédemment dans la section
C.7.1.2, nous pouvons confirmer que cette observation est une conséquence des différences de RTT
disponibles pour chaque accès utilisé. D’autre part, on peut remarquer que les débits applicatifs
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de la trace ADSL et pour FTTH sont souvent similaires (jusqu’au 50ème percentile), en contraste
avec que les utilisateurs finaux peuvent s’attendre. Une première explication de ce fait, est la
distribution de RTT pour l’ADSL et la FTTH.

Afin de mieux comprendre ces courbes de débits pour les connexions courtes et longues, nous
avons tracé dans la Figure C.12(b) les valeurs médianes du débit applicatif relatif à chaque taille
de connexion. Ceci montre des valeurs plus élevées de l’AL obtenues avec des connexions FTTH.
Mais en revanche, elle confirme les résultats observés dans la Figure C.12(a) : les débits pour
le accès FTTH, ADSL et cellulaires ne sont pas aussi différents que l’on aurait pu s’y attendre,
lorsque nous nous concentrons uniquement sur les RTTs, la perte et la taille de connexion.

Pour comparer les performances d’Internet pour différentes technologies d’accès, nous avons
commencé avec une approche classique basée sur l’étude des deux principaux facteurs qui in-
fluencent le débit des transferts TCP (voir la formule débit TCP [89]), le taux de perte et l’RTT.
Ceci suggère que la performance sur FTTH devrait sensiblement surpasser celle sur ADSL, qui
devrait à son tour surpasser celle du cellulaire. Mais, il s’avère que la réalité est plus complexe
comme on peut le voir sur la Figure C.12(a). En effet, tandis que la technologie cellulaire offre
débits applicatif sensiblement plus petits, en ligne avec les facteurs : RTT et perte, FTTH et ADSL
ont des performances beaucoup plus proches que ce que le RTT et les pertes le suggèrent.

Dans ce qui suit, nous présentons une nouvelle méthode pour découvrir l’impact de l’appli-
cation et pour mieux expliquer les différences ou l’absencede différences entre les technologies
d’accès. Par application, nous entendons la manière dont les applications fonctionnent, et aussi la
façon dont l’utilisateur interagit avec l’application. Enplus du comportement des utilisateurs, qui
est fonction de la technologie d’accès. Par exemple, les téléchargements de fichiers volumineux
peuvent être rares sur la technologie cellulaire, contrairement aux technologies filaires.

C.8 Méthodologie Proposée : Etude de l’Interaction entre l’Applica-
tion, le Comportement et l’Utilisation

C.8.1 Décomposition du Temps de Transfert de Données

Dans ce paragraphe, nous introduisons une méthodologie quicomplète ce qui a été introduit
dans la section C.4. L’objectif ici est de révèler l’impact de chaque couche qui contribue aux délais
de transferts de données, à savoir l’application au-dessusde TCP, le transport, et le chemin de bout
en bout entre le client et le serveur.

Nous effectuons par la suite une décomposition de la durée dela phase de transfert de données
d’une connexion TCP, que nous appelonstemps de effective de transfert des données, c’est à dire,
nous excluons le temps d’établissement et de libération desconnexions.

Le point de départ de notre étude est que la grande majorité des transferts se composent de
dialogues entre les deux parties d’une connexion à tour de rôle. Cela signifie que les instances
d’application parlent rarement simultanément sur la même connexion TCP [91]. Nous appelons
les phrases de ces dialogues destrains.

Par exemple, comme expliqué dans la section C.6 on observe que même si le serveur envoie
une grande quantité d’octets/paquets, l’échange de données réel est fragmenté : le serveur envoie
quelques paquets de données (un train), attend ensuite que le client formule une autre demande,
puis envoie sa réponse suivante, à savoir la prochaine sériede paquets (un autre train).

Nous appelons A et B les deux parties impliquées dans le transfert (A est l’initiateur du trans-
fert) et on décompose le transfert des données en trois composantes : le délai de préparation, le
délai théorique et le délai résiduel. La Figure 5.1 illustrecette rupture dans le cas d’une recherche
sur Google, où A est un client et B est un serveur de Google.
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FIGURE C.13 – Décomposition du Temps Effectif de Transfert de données

Le délai de préparation (Warm-up) correspond au temps pris par A ou B avant de répondre à
l’autre partie. Il comprend des durées telles que le temps pris par l’utilisateur pour réfléchir ou pour
préparer les données côté serveur. Pour notre cas d’utilisation, un warm-up de A correspond au
temps passé par le client pour taper une requête et á naviguerà travers les résultats avant d’émettre
la requête suivante (le cas échéant) ou en cliquant sur un lien, alors que warm-up B correspond au
temps passé par le serveur de Google pour préparer la réponseappropriée à la demande.

Le temps théorique est la durée idéale qu’un transfert TCP mettrait pour transférer un nombre
de paquets donné de A vers B (ou de B vers A) égal au nombre totalde paquets échangés pendant
le transfert complet. Le temps théorique peut être vu comme le temps de transfert total de cette
connexion TCP théorique. Pour ce transfert théorique, noussupposons en outre que la capacité du
lien n’est pas limité.

C.8.2 Présentation des Résultats

Lors de notre analyse, nous avons eu recours à des techniquesde clustering pour obtenir une
image globale de la relation entre le service, la technologie d’accès et l’usage.

Après avoir décomposé le temps effectif de transfert, chaque connexion bien formée est repré-
sentée par un point dans un espace de 6 dimensions (le temps résiduel, le temps théorique et le
temps de préparation des données au niveau du client et du serveur). Pour comprendre ces don-
nées, nous utilisons une techniques de regroupement de connexions pour assembler les connexions
avec des caractéristiques similaires.

Nous utilisons une approche de clustering non supervisé, à savoir l’algorithme Kmeans. Une
question clé lors de l’utilisation Kmeans est le choix des centroïdes initiaux et le nombre de
clusters ciblés. Pour évaluer le nombre de clusters, nous utilisons une approche de tests et d’es-
sais. Nous avons commencé avec un nombre important de pôles d’abord, puis nous déduisant ce
nombre.

Concernant le choix de centroïdes, nous effectuons une centaine d’essais pour finalement
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prendre le meilleur résultat (c’est à dire, celui qui minimise la somme sur tous les clusters des
distances entre chaque point et son centre de gravité). Notez que nous utilisons l’implémentation
de Kmeans dans Matlab [93].

Pour évaluer le nombre de clusters utilisés, nous nous appuyons sur une technique de réduction
de dimensionnalité visuelle, t-Distributed Stochastic Neighbour Embedding (t-SNE) [94].

Les valeurs de chaque dimension ont tendance à être très dépendantes de la taille des connexions.
Par exemple, le warm-up est une valeur qui représente la somme de toutes les périodes de prépara-
tion sur toute la durée du transfert. Le temps théorique et letemps résiduel dépendent du nombre
total de paquets à envoyer. Ensuite, il est important lors dela présentation des résultats de garder
un oeil sur la taille des connexions, car il est plus probableque les grandes connexions aient le
plus grand temps de préparation des données et le plus grand temps résiduel.

Enfin, pour présenter les résultats, nous utilisons les boîtes à moustaches3 pour obtenir des
représentations compactes des valeurs correspondant à chaque dimension.

Au-dessus de chaque cluster nous avons mis la taille médianedes connexions dans chaque
groupe, l’identifiant de chaque accès (ID) du cluster et pourchaque trace le pourcentage de
connexions. Ce pourcentage est calculé comme le nombre de connexions dans un cluster sur le
nombre total de connexions pour une trace, pour chaque technologie d’accès. Il est important de
noter que lors de l’exécution de ce clustering, nous utilisons le même nombre de connexions de
chaque trace.

Pour chaque cas de clustering, nous utilisons le même nombred’échantillons par technologie
d’accès (prendre le minimum du nombre de connexions)pour empêcher toute partialité dans le
regroupement. Notez que les connexions ont été choisies au hasard parmi celles dans chaque trace.

C.8.3 Validation par des Traces Réelles

Sur des simulations(pour plus de détails, voir Chapitre 6),nous avons observé que les valeurs
absolues de Warm-up B ne doivent pas être corrélées ni avec l’utilisateur, ni avec le lien. Ceci est
en accord avec ce qui devrait être observé pour le trafic réel :si nous supposons une mise en oeuvre
homogène d’un service et des conditions de charge similaires sur le côté serveur, le warm-up sur
le côté serveur doit avoir une distribution similaire sur différents accès.

Nous présentons les mesures obtenues par l’étude des tracesrecueillies par Orange pour diffé-
rents environnements hétérogènes : ADSL, cellulaire et FTTH. Nous nous concentrons sur l’étude
du trafic POP3 pour les clients Orange et les serveurs de messagerie d’Orange.

Nous rapportons dans la Figure C.14, la distribution de chaque temps de préparation des don-
nées côté du serveur (le temps de préparer la réponse pour le client) pour chaque technologie
d’accès. Ceci montre que, malgré la diversité de la technologie d’accès, en utilisant notre métho-
dologie de décomposition du temps de transfert, nous observons des distributions similaires de
préparation des données pour chaque technologie. Notez queles traces sur lesquelles nous nous
concentrons n’ont pas été capturées à la même période de temps et donc, les conditions de charge
pourraient expliquer les écarts de différences observées dans les CDF.

Afin de mieux comprendre les causes des pics élevés dans les distributions de la Figure C.14,
nous avons inspecté la série temporelle des valeurs de warm-up B. La Figure C.15 représente
les séries temporelles de warm-up pour chaque technologie d’accès. Une observation clé est la
présence de pics dans la Figure C.14. Ces pics ne semblent pasêtre dépendants du temps (à cause

3. boxplots sont des représentations compactes des distributions : la ligne centrale est la médiane et la partie supé-
rieure et inférieure de la boîte représente respectivementles 25 ème et 75 ème quantiles. Les valeurs extrêmes - loin de
la taille de la distribution - sont signalées par des croix
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FIGURE C.14 – Temps de Préparation des Donnés : Cas du Service POP de Orange

0 1 2 3 4 5 6
x 10

6

0

50

100

150

200

250

300

Temps depuis le Début de la Trace (Millisecondes)T
em

ps
 d

e 
P

ré
pa

ra
tio

n 
B

 (
M

ill
is

ec
on

de
s)

 

 

(a) Cellular

0 0.5 1 1.5 2
x 10

6

0

50

100

150

200

250

300

Temps depuis le Début de la Trace (Millisecondes)T
em

ps
 d

e 
pr

ép
ar

at
io

n 
B

 (
M

ill
is

ec
on

de
s)

 

 

(b) FTTH

0 0.5 1 1.5 2 2.5 3 3.5
x 10

6

0

50

100

150

200

250

300

Temps depuis le Début de la Trace (Millisecondes)

T
em

ps
 d

e 
pr

éa
ra

tio
n 

B
 (

M
ill

is
ec

on
de

s)

 

 

(c) ADSL

FIGURE C.15 – Series Temporelle des Temps de préparation des donnés: POP3 d’Orange

des variations de charge), mais plutôt de l’application et précisément de la nature de la requête,
comme par exemple, l’authentification, vérification de la boîte aux lettres, etc.

Pour résumer, nous avons présenté dans cette partie des résultats différents qui valident, mais
indirectement, notre méthodologie de décomposition du temps de transfert de données.

C.9 Application pour le cas de Recherche sur Google

C.9.1 Comparaison des Débits Applicatifs

Notre étude des deux facteurs clés qui influencent le débit des transferts TCP, à savoir le taux de
perte et la latence, suggèrent que, puisque les requêtes de recherche Google ont un profil similaire
sur les trois technologies d’accèfs, la performance de ce service sur le FTTH devrait sensiblement
dépasser celle de l’ADSL, qui devrait à son tour surpasser celle du cellulaire. Il s’avère que la réa-
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FIGURE C.16 – Google Transfer Time

lité est plus complexe comme on peut le voir sur la Figure C.16où nous rapportons la distribution
des temps de transfert de données.

L’analyse du débit est qualitativement similaire, mais nous préférons nous concentrer sur les
temps de transfert de donnés puisque nous regardons un service interactif avec un faible volume
de données échangé. En effet, tandis que la technologie cellulaire offre un temps de réponse signi-
ficativement plus long, en accord avec les facteurs de RTT et de la perte, FTTH et ADSL ont des
performances beaucoup plus proches que ne le suggère l’étude du RTT et des pertes.

Dans le prochain paragraphe, nous appliquons une approche plus fine pour la décomposition
des temps de transferts, pour le cas du trafic de recherche Google. Le but ici est de découvrir l’im-
pact des facteurs spécifiques comme l’application et l’interaction avec l’utilisateur, et d’informer
ainsi la comparaison des technologies d’accès, pour le trafic de recherche Google.

C.9.2 Résultats

La méthode d’analyse que nous utilisons consiste en deux étapes. Dans la première étape, le
temps de transfert de chaque connexion TCP est décomposé en plusieurs délais que nous pouvons
attribuer à des causes différentes, par exemple, l’application ou le chemin de bout en bout.

A la fin de l’étape 1, chaque connexion bien formée associée à une recherche Google, elle est
transformée en un point dans un espace de 6 dimensions (tempsde préparation des données, le
temps théorique et le temps résiduel pour chacun du client etdu serveur).

Pour comprendre ces résultats, nous utilisons dans une deuxième étape, une approche de grou-
pement pour découvrir les grandes tendances observables sur nos différentes traces.

L’application des t-SNE à nos données à 6 dimensions conduitaux résultats de la Figure
C.17(a). Ces résultats indiquent qu’un regroupement naturel existe dans nos données. En outre,
une valeur raisonnable pour le nombre de clusters se situe entre 5 et 10. La droite de la Figure
C.17(a) suggère que certains groupes sont dominés par une technologie d’accès spécifiques tandis
que d’autres sont mixtes. Nous avons fixé le nombre de groupesdans l’algorithme de Kmeans à 6.

La Figure C.17(b) illustre les 6 clusters obtenus par application de Kmeans. Nous utilisons
les boîtes à moustaches pour obtenir des représentations compactes des valeurs correspondantes
de chaque dimension. Nous indiquons, sur le dessus de chaquegroupe, le nombre d’échantillons
dans le cluster pour chaque technologie d’accès.

Nous utilisons le même nombre d’échantillons pour chaque technologie d’accès pour empê-
cher toute partialité dans le regroupement, ce qui nous limite à 1000 échantillons, en raison de la
courte durée de la trace FTTH. Dans la Figure 7.6(b) nous avons tracé la taille des transferts de
chaque cluster et leur débit applicatif.
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FIGURE C.17 – résultat des Groupement du Traffic de Recherche de Google

Nous observons que les clusters obtenus avec Kmeans correspondent à peu près la projec-
tion obtenue par le t-SNE, comme indiqué dans la partie à gauche de la Figure C.17(a), où des
échantillons de données sont indexés à l’aide de leur identifiant dans les clusters dans Kmeans.

Avant de plonger dans l’interprétation des différentes groupes, nous observons que trois d’entre
eux représentent la majorité des octets. En effet, la Figure7.6(a) indique que les clusters 1 et 2 et
6 représentent 83 % des octets. Nous commençons d’abord par nous concentrer sur les groupes
dominants.

Les groupes 1, 2 et 6 sont caractérisés par des grands temps depréparation des données du
côté client, c’est à dire de longs temps d’attente du côté client entre deux requêtes consécutives.
Ces valeurs de temps d’attente sont de l’ordre de quelques secondes, ce qui est compatible avec les
actions humaines. Ce comportement est en corrélation avec l’utilisation les moteurs de recherche
typique, où l’utilisateur soumet d’abord une requête analyse ensuite les résultats avant une pour-
suite sa requête ou en cliquant sur un des liens de la page de résultat.

Nous pouvons également observer que les clusters 1 et 2 se composent principalement de
connexions cellulaires tandis que le cluster 6 se compose essentiellement de transferts FTTH. Cela
signifie que l’algorithme de clustering a d’abord basé sa décision sur le warm-up, puis sur la tech-
nologie d’accès. Comme l’ADSL offre des caractéristiques intermédiaires par rapport aux traces
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FIGURE C.18 – Principaux Paramêtres du Traffic de Recherche de Google

FTTH et cellulaire, les transferts ADSL offrent des grands warm-up dispersés sur les groupes 1, 2
and 6.

Considérons maintenant les groupes 3, 4 et 5. Ces groupes représentent une petite fraction
des transferts, et sont caractérisés par plusieurs caractéristiques notables. Premièrement, nous ne
trouvons presque pas de connexions cellulaires dans ces clusters. Deuxièmement, ils totalisent les
deux tiers des connexions ADSL et FTTH, même si elles sont plus petites que celles dans les
groupes 1, 2 et 6 - voir la Figure C.18(b).

Troisièmement, ces clusters, contrairement aux groupes 1,2 et 6 ont des valeurs négligeables
de temps de préparation des données du coté client.

Une analyse plus approfondie de ces groupes a révélé qu’ils correspondent à des connexions
très courtes avec un échange de deux trames HTTP. En fait, le groupe 3 correspond aux cas où un
client ouvre la page de recherche Google Web dans son navigateur Internet sans effectuer aucune
demande de recherche, puis après un temps-mort de 10 secondes, le serveur de Google ferme la
connexion. D’autre part, les clusters 4 et 5 correspondent àdes requêtes GET et des réponses OK,
correspondant à une recherche effective, la principale différence entre les groupes 4 et 5 étant les
valeurs de RTT et la taille de connexion.

FIGURE C.19 – Vue Global des Groupes
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Plus généralement, nous pensons que notre méthode, lorsqu’elle est appliquée au profilage
d’autres services, permettra d’identifier des groupes qui peuvent être liés au comportement du ser-
vice à l’étude, tandis que d’autres concerneront les comportements anormaux ou inhabituels. Ces
dernier pourraient nécessiter par la suite une étude plus approfondie. Pour le cas du moteur de re-
cherche Google, nous ne croyons pas que les groupes 3, 4 et 5 correspondent à des anomalies qui
affectent la qualité de l’expérience des utilisateurs. Nous avons trouvé que très peu de cas où l’im-
pact du serveur a été dominant sur les performances et sur la qualité d’expérience de l’utilisateur
final.

C.10 Conclusion

Les performances d’Internet ont été mesurées de diverses façons depuis sa création par le ré-
seau ARPANET en 1969. Un certain nombre de tendances ont affecté la façon dont Internet a été
mesuré dans ce laps de temps. Certaines tendances dépendentde l’amélioration de la technologie :
la technologie Internet a changé au fil du temps, ce qui a renducertaines mesures plus difficiles
à obtenir et d’autres plus faciles. D’autres tendances sontdes questions d’échelle : le prodigieux
essor de l’Internet nous a forcé à faire évoluer les métriques pour mesurer l’évaluation des per-
formances, et a déclenché le développement de nouvelles méthodes de mesure ainsi que les outils
statistiques. Enfin les tendances sociales (réseaux p2p, sociaux) et l’importance économique de la
communication sur Internet, ont modifié la nature des mesures nécessaires pour l’évaluation de
performance.

Principalement, ces tendances découlaient de l’interaction entre les objectifs de mesure et
de ses difficultés en même temps. Dans cette thèse, nous avonsexaminé différentes difficultés
que peuvent rencontrer les experts lors de la collecte de données avec les nouvelles architectures
disponibles (spécialement avec l’usage d’APN, proxy et lesréseaux d’entreprises) et ensuite, nous
avons proposé une nouvelle méthodologie pour mettre en évidence de nouveaux paramètres qui
peuvent influencer la performance perçue par le client. Enfin, nous avons discuté des approches
pour détecter des anomalies dans Internet et les environnements d’entreprise.

Dans ce dernier chapitre, nous cherchons à modéliser quelques caractéristiques importantes
d’Internet, la mesure de trafic entreprise et á montrer les problématiques où nous réussissons à
progresser, et où plus d’efforts doivent être effectuées. Nous allons maintenant revoir les points
abordés par cette thèse et ainsi présenter nos principales contributions. Enfin, nous donnons notre
vision sur la façon dont ces recherches pourraient être étendues dans l’avenir.

Défnition des Petits transferts et Impact de l’Application.
Tout en analysant les performances des transferts TCP, nousnous sommes concentrés sur les

transferts qui correspondent à des transferts bien formés et complets, du point de vue TCP, et
qui remplissent les critères suivants : une étape complète d’établissement de connexion, au moins
un segment de données TCP dans chaque direction, et la connexion doit se terminer soit par un
drapeau FIN ou RESET.

Nous avons introduit aussi une première définition d’une connexion TCP courte, concept cou-
ramment utilisé dans la littérature.Une courte connexion TCP est une connexion bien formée
incapable d’accomplir un FR/R, après une détection de pertede paquets.Nous avons présenté un
aperçu de l’impact de l’application, sur les transferts TCP. Nous avons montré que si les pertes
peuvent avoir un impact négatif sur les transferts TCP courts, l’application affecte de manière
significative le temps de transfert de presque toutes les connexions.

Nous avons démontré que la sensibilité à la perte concerne aussi les grands transferts dont la
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taille des trains échangés fait moins de 3 paquets. Une tellecaractéristique a une influence directe
sur la capacité de TCP à se remettre d’une perte á l’aide d’uneretransmission rapide.

L’architecture de l’opérateur doit être prise en compte Nous avons souligné que, dans les
réseaux modernes comme les réseaux cellulaires, l’estimation de latence se révéle complexe. Nous
avons démontré que la latence peut être sous-estimée en raison de l’utilisation de nouveaux mé-
canismes ou de services, comme l’adaptation de contenu ou del’accélération des applications.
Nous étudions comment ces mécanismes impactent nos mesureset la performance perçue par les
utilisateurs finaux. Le message clé ici, est que plusieurs dispositifs spécifiques pourraient affecter
les mesures de performance dans les réseaux cellulaires classiques. Certains doivent être pris en
compte lorsque nous effectuons les études de mesure.

Les suspects habituels ne suffisent pas à expliquer les performances. Lors de notre analyse
nous avons utilisé une approche classique pour comparer lesperformances des différentes techno-
logies d’accès : cellular, FTTH et ADSL, afin d’évaluer si lesclients profitent pleinement de leur
accès à large bande. Nous nous sommes concentrés sur les deuxfacteurs clés qui influencent le
débit des transferts TCP (formule de débit TCP [89]), le tauxde perte et la latence, qui suggèrent
que la performance de FTTH devrait sensiblement surpasser celui de l’ADSL, qui devrait à son
tour surpasser celui des la trace cellulaire. Il s’est avéréque la réalité est plus complexe. Bien que
la technologie cellulaire offre un débit nettement plus petit, en accord avec le RTT et les taux de
perte, FTTH et ADSL ont des performances beaucoup plus proches que ce que le RTT et les pertes
suggèrent. Nous concluons que se concentrer sur les paramètres classiques d’analyse de perfor-
mance ne conduisent pas à une pleine compréhension débit perçu par les client.

Analyse plus fine des performance. Nous avons proposé une méthode de décomposition des
transferts de données pour chaque connexion bien formée. L’approche développée est illustrée
avec l’ensemble des traces recueillies. Notre approche permet d’extraire automatiquement l’im-
pact de l’application, l’accès, le serveur et le comportement du client.

L’application de cette technique pour le service de recherche Google a démontré qu’elle fournit
des résultats facilement interprétables. Elle permet par exemple de localiser l’impact de l’utilisa-
tion ou les caractéristiques de la technologie d’accès.

Proposition d’approches pour détecter les comportements anormaux. Notre méthode a
permis d’identifier les causes de certains problèmes de performance, qui peuvent être soit des
pertes soit quelques moments d’inactivité pendant la préparation des données ou du transfert. Nous
avons appliqué cette méthodologie à plusieurs traces correspondant à des trafics Internet ou entre-
prise. Nous avons démontré que les accès filaire (ADSL et FTTH) et sans fil (cellulaire) adoptent
des stratégies différentes pour récupérer des pertes de paquets, et que les stratégies observées sur
la technologie cellulaire semblent plus efficaces que sur l’ADSL et l’FTTH.

Nous avons montré que notre méthode de profilage des transferts (ou des parties de transferts)
affectés par des pertes est en mesure de découvrir différents types d’anomalies, certaines étant
liées à la configuration des serveurs et d’autres partagés par plusieurs services.

D’autre part, à travers l’étude d’un environnement d’entreprise, nous avons proposé deux ap-
proches de détection d’anomalies. Nous réussissons à identifier les comportements de plusieurs
connexions anormales, avec différents degrés de criticité. La tâche de la définition du comporte-
ment anormal est plus complexe que dans le cas Internet, principalement à cause de l’environne-
ment d’entreprise caractérisé par des applications spécifiques, par exemple, SYMANTEC, RPC,
etc.
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La principale différence avec le trafic Internet est que la connaissance du comportement de
l’application est très important (exécuté en arrière-planou non, etc.) pour pouvoir mieux interpré-
ter les résultats.

Enfin, les approches présentées ne sont pas à l’abri de faux positifs et nécessitent de remettre
en oeuvre des experts, une fois le problème identifié. Mais, au final, nous croyons que nous avons
déjà un outil qui fait un bon travail pour détecter certains comportements anormaux.

Dans les paragraphes suivants, nous identifions les futurs axes de recherche et les orientations
possibles dans trois catégories : premièrement, la méthodologie, deuxièmement, l’échelle d’ana-
lyse et, enfin, l’architecture de l’approche utilisée.

Quitter le niveau connexion. Dans cette thèse et la thèse de Matti Siekkinen [101], l’accent
a été mis sur l’analyse des connexions individuelles. Alorsqu’il s’est avéré être un sujet riche et
complexe, ce qui permet d’obtenir de nombreuses réflexions sur la performance perçue par les
utilisateurs finaux, ces analyses comportent des limitations spécifiques. Une question cruciale est
que la dépendance entre les flux n’est pas prise en compte. Ainsi, beaucoup de travaux ont proposé
des approches graphe [65, 102, 83] pour identifier l’application ou les comportements des utili-
sateurs. De telles approches sont intéressantes car elles fournissent un aperçu de haut niveau des
clients et du comportement des applications. Une poursuiteintéressante de ce travail, pourrait être
de combiner ces types d’approches avec notre approche de basniveau, au niveau de la connexion,
afin de mieux documenter les résultats obtenus pendant le processus de regroupement que nous
utilisons.

Analyse à grande échelle. Nous avons été confrontés, dans notre travail à un problèmequi est
commun à beaucoup d’études d’analyse de trafic : nous avons passé beaucoup de temps à déve-
lopper et à calibrer nos techniques d’analyse. De plus, en raison de la taille limitée de nos traces,
nos résultats ne sont pas établis sur une base entièrement solide. Nous nous attendons à ce que la
poursuite de ce travail voit l’application des méthodes quenous avons développées sur une plus
grande variété de traces, par exemple, plusieurs traces cellulaires du même GGSN ou plusieurs
jours/semaines de trafic entreprise.

Cloud computing. Le cloud computing n’est pas seulement un mot à la mode du moment,
mais susceptible de devenir l’avenir du serveurs de donnéesdans un grand nombre de scénarios.
Dans un tel contexte, les serveurs ou services distants sontaccessibles par les utilisateurs finaux et
le problème de performance devient crucial dans ces environnements complexes à la fois au niveau
réseau, mais aussi d’un point de vue du système. Nous nous attendons à ce que la méthodologie
que nous avons développée constitue un point de départ pour diagnostiquer les problèmes de
performance dans ce contexte.



179

Bibliography

[1] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu. Cha-
racterizing residential broadband networks. InProceedings of the 7th ACM SIGCOMM
conference on Internet measurement, IMC ’07, pages 43–56, New York, NY, USA, 2007.
ACM.

[2] Matti Siekkinen, Denis Collange, Guillaume Urvoy-keller, and Ernst W. Biersack. Perfor-
mance limitations of adsl users : A case study. InIn Proceedings of the 8th Passive and
Active Measurement Conference (PAM), 2007.

[3] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the characteristics and origins
of internet flow rates.SIGCOMM Comput. Commun. Rev., 32 :309–322, August 2002.

[4] Marco Mellia, Ion Stoica, and Hui Zhang. Tcp model for short lived flows. IEEE Commu-
nications Letters, 6 :85–87, 2002.

[5] Nadia Ben Azzouna and Fabrice Guillemin. Analysis of adsl traffic on an ip backbone
link. In Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE, volume 7,
pages 3742 – 3746 vol.7, dec. 2003.

[6] Urtzi Ayesta, Konstantin E. Avrachenkov, France Telecom RD, and Rue Albert Einstein.
The effect of the initial window size and limited transmit algorithm on the transient behavior
of tcp transfers, 2002.

[7] Ayesta Ab Avrachenkov, U. Ayesta Ab, K. E. Avrachenkov B,E. Altman, C. Barakat, and
P. Dube C. Multilevel approach for modeling short tcp sessions.

[8] Neal Cardwell, Stefan Savage, and Tom Anderson. Modeling the performance of short tcp
connections. Technical report, 1998.

[9] Nea Cardwell, Stefan Savage, and Tom Anderson. Modelingtcp latency. InINFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 3, pages 1742 –1751 vol.3, mar 2000.

[10] Chadi Barakat and Eitan Altman. Performance of short tcp transfers. Technical report.

[11] Shirin Ebrahimi-taghizadeh, Ahmed Helmy, and SandeepGupta. Tcp vs. tcp : a systematic
study of adverse impact. Inof Short-lived TCP Flows on Long-lived TCP Flows ?, IEEE
INFOCOM, pages 926–937, 2005.

[12] Martin Arlitt, Balachander Krishnamurthy, and Jeffrey C. Mogul. Predicting short-transfer
latency from tcp arcana : a trace-based validation. InProceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, IMC ’05, pages 19–19, Berkeley, CA, USA,
2005. USENIX Association.



180 BIBLIOGRAPHY

[13] Vern Paxson and Marck Allman. Computing tcp’s retransmission timer, 2000.

[14] Hari Balakrishnan, Hariharan S. Rahul, and SrinivasanSeshan. An integrated congestion
management architecture for internet hosts. pages 175–187, 1999.

[15] Xuan Chen and John Heidemann. Preferential treatment for short flows to reduce web
latency, 2003.

[16] Janardhan R. Iyengar, O L. Caro, and Paul D. Amer. Dealing with short tcp flows : A survey
of mice in elephant shoes.

[17] Bob Braden. T/tcp – tcp extensions for transactions functional specification, 1994.

[18] Roy Thomas Fielding, U. C. Irvine, J. Gettys, Jeffrey C Mogul, Henrik Frystyk Nielsen,
and Tim Berners-Lee. Transfer protocol – http/1.1, 1997.

[19] J. Touch. Tcp control block interdependence, 1997.

[20] Venkata Narayana Padmanabhan and Venkata Narayana Padmanabhan. Addressing the
challenges of web data transport, 1998.

[21] Venkata N. Padmanabhan and Randy H. Katz. Tcp fast start: A technique for speeding up
web transfers. pages 41–46, 1998.

[22] Yin Zhang. Speeding up short data transfers : Theory, architecture support, and simulation
results. Inin Proc. NOSSDAV 2000, Chapel. Chapel Hill, 2000.

[23] Mark Allman, Sally Floyd, and Craig Partridge. Increasing tcp’s initial window, 2002.

[24] Marco Mellia, Michela Meo, and Claudio Casetti. Tcp smart-framing : using smart seg-
ments to enhance the performance of tcp. InGlobal Telecommunications Conference, 2001.
GLOBECOM ’01. IEEE, volume 3, pages 1708 –1712 vol.3, 2001.

[25] Liang Guo and Ibrahim Matta. The war between mice and elephants. InNetwork Protocols,
2001. Ninth International Conference on, pages 180 – 188, nov. 2001.

[26] Amit K. Jain, Sally Floyd, and Draft amit-quick-start .Txt Sally Floyd. Quick-start for tcp
and ip, 2002.

[27] Gullaume Vu-Brugier. Analysis of the impact of early fiber access deployment on residen-
tial internet traffic. InTeletraffic Congress, 2009. ITC 21 2009. 21st International, pages 1
–8, sept. 2009.

[28] Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki, and Akira Kato. The impact and implications
of the growth in residential user-to-user traffic. volume 36, pages 207–218, New York, NY,
USA, August 2006. ACM.

[29] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. On dominant characteris-
tics of residential broadband internet traffic. InProceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, IMC ’09, pages 90–102, New York, NY,
USA, 2009. ACM.

[30] Gregor Maier, Fabian Schneider, and Anja Feldmann. A first look at mobile hand-held
device traffic. InProceedings of the 11th international conference on Passive and active
measurement, PAM’10, pages 161–170, Berlin, Heidelberg, 2010. Springer-Verlag.



181

[31] Young J. Won, Byung-Chul Park, Seong-Cheol Hong, KwangBon Jung, Hong-Taek Ju,
and James W. Hong. Measurement analysis of mobile data networks. InProceedings of the
8th international conference on Passive and active networkmeasurement, PAM’07, pages
223–227, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] Philipp Svoboda, Fabio Ricciato, Werner Keim, and Markus Rupp. Measured web per-
formance in gprs, edge, umts and hsdpa with and without caching. In World of Wireless,
Mobile and Multimedia Networks, 2007. WoWMoM 2007. IEEE International Symposium
on a, pages 1 –6, june 2007.

[33] Louis Plissonneau and Guillaume Vu-Brugier. Mobile data traffic analysis : How do you
prefer watching videos ? InTeletraffic Congress (ITC), 2010 22nd International, pages 1
–8, sept. 2010.

[34] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z. Morley Mao,Ming Zhang, and Paramvir
Bahl. Anatomizing application performance differences onsmartphones. InProceedings
of the 8th international conference on Mobile systems, applications, and services, MobiSys
’10, pages 165–178, New York, NY, USA, 2010. ACM.

[35] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tierney.
A first look at modern enterprise traffic. InProceedings of the 5th ACM SIGCOMM confe-
rence on Internet Measurement, IMC ’05, pages 2–2, Berkeley, CA, USA, 2005. USENIX
Association.

[36] Godfrey Tan, Massimiliano Poletto, John Guttag, and Frans Kaashoek. Role classification
of hosts within enterprise networks based on connection patterns. InProceedings of the
annual conference on USENIX Annual Technical Conference, pages 2–2, Berkeley, CA,
USA, 2003. USENIX Association.

[37] Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveiling core network-wide communication
patterns through application traffic activity graph decomposition. In Proceedings of the
eleventh international joint conference on Measurement and modeling of computer systems,
SIGMETRICS ’09, pages 49–60, New York, NY, USA, 2009. ACM.

[38] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding data
center traffic characteristics.SIGCOMM Comput. Commun. Rev., 40 :92–99, January 2010.

[39] David Kotz and Kobby Essien. Analysis of a campus-wide wireless network. InIn Procee-
dings of ACM Mobicom, pages 107–118. ACM Press, 2002.

[40] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C. Snoeren. Ip fault
localization via risk modeling. InProceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2, NSDI’05, pages 57–70, Berkeley,
CA, USA, 2005. USENIX Association.

[41] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chiang,
Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating cross-layer diagno-
sis of enterprise wireless networks. InProceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications, SIGCOMM ’07,
pages 25–36, New York, NY, USA, 2007. ACM.



182 BIBLIOGRAPHY

[42] Amit P. Jardosh, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M. Belding-
Royer. Understanding link-layer behavior in highly congested ieee 802.11b wireless net-
works. InProceedings of the 2005 ACM SIGCOMM workshop on Experimental approaches
to wireless network design and analysis, E-WIND ’05, pages 11–16, New York, NY, USA,
2005. ACM.

[43] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Padhye, and
Paramvir Bahl. Detailed diagnosis in enterprise networks.pages 243–254, 2009.

[44] Sangho Shin and Henning Schulzrinne. Measurement and analysis of the voip capacity
in ieee 802.11 wlan.IEEE Transactions on Mobile Computing, 8 :1265–1279, September
2009.

[45] Frederic Giroire, Jaideep Chandrashekar, Gianluca Iannaccone, Konstantina Papagiannaki,
Eve M. Schooler, and Nina Taft. The cubicle vs. the coffee shop : behavioral modes in
enterprise end-users. InProceedings of the 9th international conference on Passiveand
active network measurement, PAM’08, pages 202–211, Berlin, Heidelberg, 2008. Springer-
Verlag.

[46] Boris Nechaev, Vern Paxson, Mark Allman, and Andrei Gurtov. On calibrating enterprise
switch measurements. InProceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, IMC ’09, pages 143–155, New York, NY, USA, 2009. ACM.

[47] Boris Nechaev, Mark Allman, Vern Paxson, and Andrei Gurtov. A preliminary analysis
of tcp performance in an enterprise network. InProceedings of the 2010 internet network
management conference on Research on enterprise networking, INM/WREN’10, pages 7–
7, Berkeley, CA, USA, 2010. USENIX Association.

[48] Augustin Soule, Kavé Salamatian, and Nina Taft. Combining filtering and statistical me-
thods for anomaly detection. InProceedings of the 5th ACM SIGCOMM conference on
Internet Measurement, IMC ’05, pages 31–31, Berkeley, CA, USA, 2005. USENIX Asso-
ciation.

[49] Paul Barford, Jeffery Kline, David Plonka, and Amos Ron. A signal analysis of network
traffic anomalies. InProceedings of the 2nd ACM SIGCOMM Workshop on Internet mea-
surment, IMW ’02, pages 71–82, New York, NY, USA, 2002. ACM.

[50] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic
anomalies. InIn ACM SIGCOMM, pages 219–230, 2004.

[51] Bernhard Tellenbach, Martin Burkhart, Didier Sornette, and Thomas Maillart. Beyond
shannon : Characterizing internet traffic with generalizedentropy metrics. InProceedings
of the 10th International Conference on Passive and Active Network Measurement, PAM
’09, pages 239–248, Berlin, Heidelberg, 2009. Springer-Verlag.

[52] Fernando Silveira, Christophe Diot, Nina Taft, and Ramesh Govindan. Astute : detecting a
different class of traffic anomalies. InProceedings of the ACM SIGCOMM 2010 conference
on SIGCOMM, SIGCOMM ’10, pages 267–278, New York, NY, USA, 2010. ACM.

[53] Antoine Scherrer, Nicolas Larrieu, Philippe Owezarski, Pierre Borgnat, and Patrice Abry.
Non-gaussian and long memory statistical characterizations for internet traffic with anoma-
lies. IEEE Trans. Dependable Secur. Comput., 4 :56–70, January 2007.



183

[54] Thomas Dubendorfer and Bernhard Plattner. Host behaviour based early detection of worm
outbreaks in internet backbones. InIn Proceedings of 14th IEEE WET ICE / STCA security
workshop. IEEE, 2005.

[55] Marco Mellia, Michela Meo, Luca Muscariello, and DarioRossi. Passive analysis of tcp
anomalies.Comput. Netw., 52 :2663–2676, October 2008.

[56] Peter Romirer-Maierhofer, Fabio Ricciato, Alessandro D’Alconzo, Robert Franzan, and
Wolfgang Karner. Network-wide measurements of tcp rtt in 3g. In Proceedings of the
First International Workshop on Traffic Monitoring and Analysis, TMA ’09, pages 17–25,
Berlin, Heidelberg, 2009. Springer-Verlag.

[57] Matti Siekkinen, Guillaume Urvoy-Keller, Ernst W. Biersack, and Denis Collange. A root
cause analysis toolkit for tcp.Comput. Netw., 52 :1846–1858, June 2008.

[58] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A. Maltz,
and Ming Zhang. Towards highly reliable enterprise networkservices via inference of
multi-level dependencies.SIGCOMM Comput. Commun. Rev., 37 :13–24, August 2007.

[59] Simona Brugnoni, Guido Bruno, Roberto Manione, EnricoMontariolo, Elio Paschetta, and
Luisella Sisto. An expert system for real time fault diagnosis of the italian telecommuni-
cations network. InProceedings of the IFIP TC6/WG6.6 Third International Symposium
on Integrated Network Management with participation of theIEEE Communications So-
ciety CNOM and with support from the Institute for Educational Services, pages 617–628,
Amsterdam, The Netherlands, The Netherlands, 1993. North-Holland Publishing Co.

[60] Mike Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pinpoint :
Problem determination in large, dynamic internet services. In DSN, pages 595–604. IEEE
Computer Society, 2002.

[61] Alice X. Zheng, Jim Lloyd, and Eric Brewer. Failure diagnosis using decision trees. In
Proceedings of the First International Conference on Autonomic Computing, pages 36–43,
Washington, DC, USA, 2004. IEEE Computer Society.

[62] William Aiello, Charles Kalmanek, Patrick Mcdaniel, Subhabrata Sen, Oliver Spatscheck,
and Jacobus Van Der Merwe. Analysis of communities of interest in data networks. InIn
PAM, 2005.

[63] Su Chang and Thomas E. Daniels. Correlation based node behavior profiling for enterprise
network security. InProceedings of the 2009 Third International Conference on Emer-
ging Security Information, Systems and Technologies, SECURWARE ’09, pages 298–305,
Washington, DC, USA, 2009. IEEE Computer Society.

[64] Patrick Drew McDaniel, Subhabrata Sen, Oliver Spatscheck, Jacobus E. van der Merwe,
William Aiello, and Charles R. Kalmanek. Enterprise security : A community of interest
based approach. InNDSS’06, pages –1–1, 2006.

[65] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher, Sumeet
Singh, and George Varghese. Network monitoring using traffic dispersion graphs (tdgs).
In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC ’07,
pages 315–320, New York, NY, USA, 2007. ACM.



184 BIBLIOGRAPHY

[66] Srikanth Kandula, Ranveer Chandra, and Dina Katabi. What’s going on ? : learning com-
munication rules in edge networks.SIGCOMM Comput. Commun. Rev., 38 :87–98, August
2008.

[67] Siekkinen Matti. Intrabase.
http://intrabase.eurecom.fr/tmp/index.html.

[68] Matti Siekkinen, Ernst W. Biersack, Guillaume Urvoy-Keller, Vera Goebel, and Thomas Pe-
ter Plagemann. Intrabase : integrated traffic analysis based on a database management sys-
tem. InEnd-to-End Monitoring Techniques and Services, 2005. Workshop on, pages 32 –
46, may 2005.

[69] Marcin Pietrzyk, Jean-Laurent Costeux, Guillaume Urvoy-Keller, and Taoufik En-Najjary.
Cha0llenging statistical classification for operational usage : the adsl case. InProceedings of
the 9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09, pages
122–135, New York, NY, USA, 2009. ACM.

[70] Hyun chul chul Kim, kc c claffy, Marina Fomenkov, DhimanBarman, Michalis Faloutsos,
and KiYoung Lee. Internet Traffic Classification Demystified: Myths, Caveats, and the
Best Practices. InACM SIGCOMM CoNEXT, New York, NY, Dec 2008. ACM SIGCOMM
CoNEXT.

[71] Tom Dunigan. Tcp auto-tuning zoo. 2006.
http://www.csm.ornl.gov/~dunigan/netperf/auto.html.

[72] Sushant Rewaskar, Jasleen Kaur, and F. Donelson Smith.A passive state-machine approach
for accurate analysis of tcp out-of-sequence segments.SIGCOMM Comput. Commun. Rev.,
36 :51–64, July 2006.

[73] Transmission control protocol, 1981.

[74] Srinivas Shakkottai, R. Srikant, Nevil Brownlee, Andre Broido, and kc claffy. The rtt dis-
tribution of tcp flows in the internet and its impact on tcp-based flow control, 2004.

[75] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don Towsley. Mea-
surement and classification of out-of-sequence packets in atier-1 ip backbone.IEEE/ACM
Trans. Netw., 15 :54–66, February 2007.

[76] Hao Jiang and Constantinos Dovrolis. Passive estimation of tcp round-trip times.SIG-
COMM Comput. Commun. Rev., 32 :75–88, July 2002.

[77] Bryan Veal, Kang Li, and David Lowenthal. New methods for passive estimation of tcp
round-trip times. InIn Proceedings of the Passive and Active Measurement Workshop,
2005.

[78] ZhenYu Liu, ShengLi Xie, and Yue Lai. A fast bloom filtersmethod in apn filtering. In
Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and
Industrial Application - Volume 02, pages 145–150, Washington, DC, USA, 2008. IEEE
Computer Society.

[79] Naimul Basher, Aniket Mahanti, Anirban Mahanti, CareyWilliamson, and Martin Arlitt. A
comparative analysis of web and peer-to-peer traffic. InProceeding of the 17th international
conference on World Wide Web, WWW ’08, pages 287–296, New York, NY, USA, 2008.
ACM.



185

[80] Atif Nazir, Saqib Raza, and Chen-Nee Chuah. Unveiling facebook : a measurement study of
social network based applications. InProceedings of the 8th ACM SIGCOMM conference
on Internet measurement, IMC ’08, pages 43–56, New York, NY, USA, 2008. ACM.

[81] Sirikarn Pukkawanna, Vasaka Visootfiviseth, and Panita Pongpaibool. Classification of
web-based email traffic in thailand. InCommunications and Information Technologies,
2006. ISCIT ’06. International Symposium on, pages 440 –445, 18 2006-sept. 20 2006.

[82] Marcin Pietrzyk, Guillaume Urvoy-Keller, and Jean-Laurent Costeux. Revealing the unk-
nown adsl traffic using statistical methods. InProceedings of the First International Work-
shop on Traffic Monitoring and Analysis, TMA ’09, pages 75–83, Berlin, Heidelberg, 2009.
Springer-Verlag.

[83] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc : multilevel
traffic classification in the dark. InProceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications, SIGCOMM ’05,
pages 229–240, New York, NY, USA, 2005. ACM.

[84] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave Salama-
tian. Traffic classification on the fly.SIGCOMM Comput. Commun. Rev., 36 :23–26, April
2006.

[85] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. Transport layer
identification of p2p traffic. InProceedings of the 4th ACM SIGCOMM conference on
Internet measurement, IMC ’04, pages 121–134, New York, NY, USA, 2004. ACM.

[86] Bowei Du, Michael Demmer, and Eric Brewer. Analysis of www traffic in cambodia and
ghana. InProceedings of the 15th international conference on World Wide Web, WWW
’06, pages 771–780, New York, NY, USA, 2006. ACM.

[87] Mark Allman, Hari Balakrishnan, and Sally Floyd. Enhancing tcp’s loss recovery using
limited transmit, 2000.

[88] Mats Folke, Sara Landstroem, and Ulf Bodin. On the tcp minimum retransmission timeout
in a high-speed cellular network. pages 1 –6, april 2005.

[89] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp throughput :
a simple model and its empirical validation.SIGCOMM Comput. Commun. Rev., 28 :303–
314, October 1998.

[90] Luigi Alfredo Grieco Antonio Barbuzzi. Desrto : An effective algorithm for srto detection
in tcp connections. 2010.

[91] Aymen Hafsaoui, Denis Collange, and Guillaume Urvoy-Keller. Revisiting the performance
of short tcp transfers.8th International IFIP-TC 6 Networking Conference, Aachen, pages
260–273, May 2009.

[92] W. Richard Stevens. Tcp slow start, congestion avoidance, fast retransmit, and fast recovery
algorithms, 1997.

[93] Mathworks. Marlab product documentation.
http://www.mathworks.com/help/toolbox/stats/kmeans.html.



186 BIBLIOGRAPHY

[94] Laurens J.P. van der Maaten. t-distributed stochasticneighbor embedding.
http://homepage.tudelft.nl/19j49/t-SNE.html.

[95] Scalable Networks. Qualnet. 2011.
http://www.scalable-networks.com/products/qualnet/.

[96] François Baccelli and David R. McDonald. A stochastic model for the throughput of non-
persistent tcp flows. InProceedings of the 1st international conference on Performance
evaluation methodolgies and tools, valuetools ’06, New York, NY, USA, 2006. ACM.

[97] Sofia Stamou and Lefteris Kozanidis. Impact of search results on user queries. InPro-
ceeding of the eleventh international workshop on Web information and data management,
WIDM ’09, pages 7–10, New York, NY, USA, 2009. ACM.

[98] Abhinav Pathak, Y. Angela Wang, Cheng Huang, Albert Greenberg, Y. Charlie Hu, Randy
Kern, Jin Li, and Keith W. Ross. Measuring and evaluating tcpsplitting for cloud services.
In Proceedings of the 11th international conference on Passive and active measurement,
PAM’10, pages 41–50, Berlin, Heidelberg, 2010. Springer-Verlag.

[99] Christoph H. Hochstatter. Internet per umts : So falschen deutsche provider webinhalte.
http://www.zdnet.de/magazin/41515603/.

[100] SNIA. Common internet file system (cifs)technical reference revision : 1.0.
http://www.scribd.com/doc/52514900/CIFS-TR-1p00-FINAL.

[101] Matti Siekkinen. Root cause analysis of tcp throughput : Methodology, techniques, and
applications.
http://users.tkk.fi/~siekkine/pub/Phd_Thesis_final.pdf.

[102] Marios Iliofotou, Hyun chul Kim, Michalis Faloutsos,Michael Mitzenmacher, and George
Varghese. Graption : A graph-based p2p traffic classification framework for the internet
backbone.Comput. Netw., 55 :1909–1920, June 2011.

[103] Fabio Ricciato, Eduard Hasenleithner, and Peter Romirer-Maierhofer. Traffic analysis at
short time-scales : an empirical case study from a 3g cellular network.Network and Service
Management, IEEE Transactions on, 5(1) :11 –21, march 2008.


