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Introduction

Introduction

Cette thése porte sur I’étude de la distribution de processus stochastiques avec
absorption et de leur approximation. Ces processus trouvent des applications dans
de nombreux domaines, tels que 1’écologie, la finance ou les études de fiabilité.

Nous étudions en particulier I’évolution en temps long de la distribution de
processus de Markov avec absorption. Tandis que 1’évolution en temps long d’un
processus de Markov récurrent est bien décrite par sa distribution stationnaire, la
distribution stationnaire d’un processus de Markov dont ’absorption est presque
siire est concentrée sur ’ensemble des points absorbants, ce qui ne présente qu’un
faible intérét. En revanche, la distribution limite d’un processus conditionné & ne
pas étre éteint au moment ol on l'observe permet de décrire et d’expliquer des
comportesments non-triviaux, comme les plateaux de mortalité. Lorsqu’une telle
distribution existe, elle est appelée distribution limite conditionnelle, ou limite de
Yaglom si elle ne dépend pas de la position initiale du processus.

Dans le premier chapitre, nous montrons en toute généralité que ces distribu-
tions conditionnelles limites sont des distributions quasi-stationnaires, c’est-a-dire
des distributions qui sont stationnaires pour le processus conditionné & ne pas étre
absorbé au moment de ’observation. Nous démontrons également que 1'existence
d’une distribution conditionnelle limite implique la convergence en temps long du
taux d’absorption par unité de temps du processus. Enfin nous présentons des
méthodes pour prouver ’existence et 'unicité de telles distributions. Le principal
outil de ces preuves est un résultat qui lie la propriété de quasi-stationnarité a la
théorie spectrale du générateur infinitésimal du processus étudié.

Dans la grande majorité des cas, ces outils de théorie spectrale ne permet-
tent pas d’obtenir explicitement la valeur de la limite de Yaglom du processus
étudié. C’est afin de pallier cette difficulté que nous démontrons dans une grande
généralité une méthode d’approximation des distributions de processus de Markov
conditionnés & ne pas étre absorbés et de leur limite de Yaglom. Cette méthode,
introduite par Burdzy, Holyst, Ingermann et March en 1996 pour I’étude du cas
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brownien, est basée sur I’étude d’un systéme de particules en interaction de type
champ moyen. Les particules de ce systéme évoluent comme des copies indépen-
dantes du processus original avec absorption, jusqu’a ce que 'une d’entre elles soit
absorbée. A ce moment, la particule absorbée est remise en jeu a la position d’une
des autres particules. Puis le systéme évolue comme des copies indépendantes du
processus avec absorption jusqu’a ce que I'une d’entre elles soit absorbée, et ainsi
de suite. Nous montrons que, lorsque le nombre de particules de ce systéme tend
vers I'infini, sa distribution empirique converge vers la distribution conditionnelle
du processus et, en temps long, vers sa limite de Yaglom.

La méthode d’approximation démontrée dans cette thése associée a des méth-
odes de couplage nous permet d’obtenir de nouveaux résultats d’existence de
limite de Yaglom et des propriétés de mélange nouvelles pour des diffusions a co-
efficients inhomogeénes absorbées au bord d’un ouvert borné. Cette propriété de
mélange nous permet également de démontrer que la méthode d’approximation
converge uniformément en temps dans certains cas.

Les propriétés démontrées et les questions soulevées sont illustrées a 'aide de
simulations écrite en C++ durant la thése.

Distributions quasi-stationnaires et limites de Yaglom
Soit (Xt)¢>0 un processus de Markov évoluant dans un espace E U {0}, ou
0 ¢ E. Nous notons 7y le temps d’atteinte de 0 par X, qui est le temps d’arrét
défini par
T9 = inf{t >0, X? = 8}.

Ainsi, (X¢)e>0 est un processus avec absorption si et seulement s’il vérifie
X = X, Vt > 75 presque siirement.

Les trajectoires absorbées au temps d’absorption n’apportent pas d’information
pertinente sur le processus et nous nous intéresserons en particulier a la distri-
bution du processus X conditionné & ne pas avoir été aborbé, c’est-a-dire a la
distribution conditionnelle

P, <X1t8 et < Ta) ,

ou P, est la mesure de probabilité associée au processus X de distribution initiale
wsur E.

L’étude de tels processus trouve des applications dans de nombreux domaines,
dont, sans étre exhaustifs, ’écologie, la biologie, la finance, la chimie et les études
de fiabilité. Les objets mathématiques que nous allons introduire nous sont sug-
gérés par des problématiques concrétes. Observons par exemple I’évolution d’une
population, dont chaque élément est considéré comme un processus stochastique
qui cesse d’évoluer & sa mort. Une quantité qui présente un grand intérét pour
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les démographes et les biologistes est le taux de mortalité par tranche d’age dans
la population, c’est-a-dire la proportion d’individus d’une tranche d’age donnée
qui meurent avant d’atteindre la tranche d’age suivante. Cette quantité est facile-
ment observable et a été relevée dans différentes situation, y compris chez ’étre
humain - 'INSEE, par exemple, fournit ces données pour la France. Le taux
de mortalité par tranche d’age dépend évidemment de la tranche d’age consid-
érée: il y a statistiquement plus de risque pour un étre humain de 100 ans de
mourir dans ’année qui suit que pour un individu de 10 ans. Le graphique de
la figure 0.1 représente I’évolution du taux de mortalité en fonction de I’age chez
I'individu masculin en France, dans une échelle logarithmique. L’aspect linéaire
de la courbe aprés trente ans indique que le taux de mortalité évolue exponen-
tiellement avec ’age. Ce fait a également été énoncé comme une loi générale par
Gompertz en 1825 [36] d’aprés les données dont il disposait. En 1939, Greenwood
et Irwin ont remis en cause cette approche, leur étude faisant apparaitre que la
loi de Gompertz surestime le taux de mortalité de I’étre humain aux ages les plus
avancés. De plus, leurs observations suggérent que le taux de mortalité admet une
limite avec ’age. Ce phénoméne semble confirmé par des statistiques plus récentes
(cf. Li et Vaupel [60]) et apparait de maniére distincte chez certains animaux. En
effet, & travers des expériences effectuées en laboratoire, Carey, Liedo, Orozco et
Vaupel [15] ont mesuré le taux de mortalité de groupes de mouches en fonction
de leur age. Leurs résultats, reproduits ici sur les graphiques de la figure 0.2,
montrent sans ambiguité que les taux de mortalité mesurés décélérent apres un
certain age et méme se stabilisent aux ages les plus avancés. Ce phénomeéne, ap-
pelé plateau de mortalité en référence a sa représentation graphique, discrédite la
loi de Gompertz pour l'estimation du taux de mortalité chez les individus les plus
agés. D’un maniére plus générale, la stabilisation du taux d’absorption est un
phénomeéne courant. Ainsi, Aalen et Gjessing [1] citent le cas surprenant du taux
de divorce par nombre d’années de mariage, qui lui aussi présente un “plateau
d’absorption”, comme on peut I'observer sur le graphique 0.3.

L’existence de plateaux de mortalité nous suggére une forme de stabilisation de la
distribution des individus encore vivants & un age avancé. Dans notre cadre math-
ématique, ceci nous amene naturellement a I’étude en temps long de la distribution
conditionnelle P, (X; € |t < 7p) et justifie en particulier l'introduction des pro-
priétés suivantes, qui concernent la convergence en temps long de P, (X; € -t < 7p)
vers une distribution donnée. Soulignons que les définitions suivantes sont valables
pour des processus a temps discret et & temps continu.

Définition 1. Une distribution conditionnelle limite pour X est une mesure
de probabilité o sur E telle qu’il existe une mesure de probabilité u sur E vérifiant

alr) = E&Pu (X €|t <Ty).
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Figure 0.1: Quotients de mortalité par 4ge chez I'individu de sexe masculin en
France - Nombre de décédés pour 10000 personnes de ’age considéré au ler janvier
[8, p. 125]
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Figure 0.2: Taux de mortalité en fonction de 1’age chez la mouche, avec trois
conditions d’expériences distinctes.
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Figure 0.3: Taux de divorce en fonction du nombre d’années de mariage

Dans ce cas, nous dirons que la distribution conditionnelle o attire la distribution

wnitiale .

Comme nous le verrons, la distribution conditionnelle limite d'un processus
n’est pas nécessairement unique et peut donc dépendre de la distribution initiale
du processus. La définition suivante permet de distinguer les cas pour lesquels
il existe une distribution conditionelle limite qui ne dépend pas de la position
initiale du processus.

Définition 2. Une limite de Yaglom est une mesure de probabilité o sur E
telle que, pour tout x € E,

a(r) = tlgélo Py (Xt €t <75).

Comme lors de I’étude des processus de Markov non-absorbés, nous nous in-
téressons a la stationnarité de ces distributions conditionnelles limites pour le
processus conditionné, on parlera alors de quasi-stationnarité.

Définition 3. Une distribution quasi-stationnaire pour X est une mesure de
probabilité o sur E \ 0 telle que, pour toul tempst >0,

a() =Po (Xy €|t < 7).

L’étude de ces distributions limites a été initiée par le mathématicien russe éponyme
Yaglom [86] en 1947 pour des processus de Galton-Watson sous-critiques. Par ses
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travaux, le chercheur a initié un champ de recherche fertile, sujet d’une intense
investigation depuis un demi-siécle, comme l’illustre notamment la bibliographie
sur les distributions quasi-stationnaires maintenue par Pollett [69].

Le chapitre 1 de cette thése est consacré & 1’étude de ces objets limites, nous
y démontrons des propriétés générales et présentons des preuves d’existence et
d’unicité de ces limites. Il s’agit d’un travail en collaboration avec Sylvie Méléard,

destiné a étre soumis en tant que survey sur les distributions quasi-stationnaires.

Nous étudions dans un premier temps la relation entre les trois objets définis
ci-dessus. Deux implications sont immédiates au regard des définitions:

1. la limite de Yaglom pour X, si elle existe, est une distribution conditionelle
limite

2. toute distribution quasi-stationnaire o pour X est une distribution condi-
tionnelle limite. Elle vérifie en effet

alr) = tlgglo Py (X: € |t < 7o) .

Nous démontrons dans la partie 1 du chapitre 1 que toute distribution condition-
nelle limite est également une distribution quasi-stationnaire, ces définitions étant
par conséquent équivalentes. Nous donnerons également des exemples de modéles
dont les distributions quasi-stationnaires sont multiples, tandis que la limite de
Yaglom d’un processus est définie de maniére univoque. Nous en déduisons en
particulier qu’une distribution limite « conditionnelle n’est pas nécessairement
une limite de Yaglom.

Nous démontrons également en toute généralité des propriétés souvent utilisées
de maniére ad hoc dans la littérature sur les distributions quasi-stationnaires. La
premiére propriété concerne la distribution du temps d’absorption.

Proposition 1. Soit o une distribution quasi-stationnaire associée d un processus
X avec absorption presque sire (c’est-a-dire tel que Py(19 < +00) = 1). Alors

1. Il existe une constante 0(c) > 0 telle que
Po(t < 75) = e 0@t vt > 0.
2. De plus, pour tout v < 0(«) et a-presque tout x,
E; (770) < 400.

La deuxiéme partie de la proposition fournit en particulier une condition
nécessaire pour l'existence d’une distribution quasi-stationnaire. Ainsi un pro-
cessus de Galton-Watson critique est absorbé en temps fini presque stirement,
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mais son temps d’absorption vérifie E,(7,) = +o00 pour tout z > 1. Nous en dé-
duisons qu'un processus de Galton-Watson ne posséde pas de distribution quasi-
stationnaire.

Pour des modéles en temps continu, nous exposons sous une forme nouvelle la rela-
tion entre la propriété de quasi-stationnarité et la théorie spectrale du générateur
infinitésimal L, résumée dans la proposition suivante.

Proposition 2. Soit o une mesure de probabilité sur E. Supposons qu’il existe
un ensemble D de fonctions a valeurs réelles bornées, tel que D est dense dans
LY(E,a) et tel que Lf existe et est borné pour tout f € D. Alors a est une
distribution quasi-stationnaire si et seulement si il existe 0(a)) > 0 tel que

al = —0(a)a,

ot oL est la mesure finie L*a sur E definie par (aL)f = a(Lf), pour toute
fonction f € D. De plus, 6(«) est la méme constante qu’a la proposition 1.

L’existence de D est toujours vraie si I’espace E est discret, ou si F est un ouvert
de R% et Z une diffusion d’Ito & coefficients localement borneés.

Nous démontrons enfin que ’existence d’un distribution conditionnelle limite im-
plique Dexistence d’un plateau d’absorption dans une grande généralité. Ce type
de résultats ont également été étudiés par Steinsaltz et Evans [78] dans un cadre
différent. Nous renvoyons le lecteur & cet article et aux références qui 8’y trouvent
pour une étude avancée de la relation entre I'existence de plateaux de mortalité
en biologie et l'existence théorique d’un plateau d’absorption, sous ’hypothése
d’existence d’une distribution conditionnelle limite.

Une grande part des travaux existants sur les distributions conditionnelles limites
concerne les problémes d’existence et d’unicité de ces limites. Dans le chapitre 1,
nous rappelons un panel de preuves employées pour résoudre ces questions & partir
de quelques exemples détaillés.

Dans le cas d’un processus de Galton-Watson sous-critique de loi de reproduction
individuelle p, nous reprenons la preuve d’existence et d’unicité proposée par
Athreya et Ney [6], qui consiste & démontrer dans un premier temps que toute
fonction génératrice g d’une fonction conditionnelle limite vérifie, en notant g la
fonction génératrice de la loi de reproduction p et m < 1 sa moyenne,

g(g(s)) =mg(s) +1—m, Vs € [0,1]. (1)

La preuve est conclue par la démonstration de 'existence et de 'unicité de la solu-
tion & une telle équation. Les distributions quasi-stationnaires d’autres processus
de branchements ont également été étudiées. Signalons notamment les travaux de
Bansaye [7] pour des processus de branchement en environnement aléatoire, ou
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une équation similaire & (1) est obtenue. Nous renvoyons également le lecteur a
Particle de Klebaner, Sagitov, Vatutin Patsy et Jagers [52] et aux références qui y
sont données pour I’étude de ces objets dans un cadre d’écologie évolutive, ainsi
qu’aux travaux de Lambert [58].

Nous développons ensuite le cas des processus de Markov & espace d’états EU{0}
fini et en temps continu, étudiés initialement par Darroch et Seneta [22]. Dans
ce cas, si le processus peut passer d'un point & un autre de E en temps fini avec
une probabilité strictement positive, alors il existe une limite de Yaglom « pour
le processus, de plus cette limite attire toute distribution initiale:

ar) = tlggo P, (X € |t <Tg), Yp.

La preuve repose directement sur la caractérisation spectrale d’une distribution
quasi-stationnaire et sur le théoréme de Perron-Frobenius. Darroch et Seneta [21]
ont également traité le cas de I’étude des chaines de Markov en temps discret et &
espace d’états fini, avec des conditions d’irréductibilité similaires. Les résultats de
Van Doorn et Polett [82] généralisent ces résultats & des processus irréductibles.

L’existence d'une limite de Yaglom n’implique toutefois pas 'unicité de la dis-
tribution quasi-stationnaire. Le cas des processus de naissance et mort sur N,
développé par van Doorn [81] et présenté en détail dans le chapitre 1, est a ce
titre tres instructif. Certains de ces processus, comme la marche aléatoire sim-
ple tuée en 0, ne possédent pas de distribution quasi-stationnaire. A contrario
les processus de naissance et mort linéaires, dont les taux de naissance et mort
sont donnés par i\ et iy respectivement, possédent une limite de Yaglom et une
infinité continue de distributions quasi-stationnaires si et seulement si A < p. Les
processus de naissance et mort logistiques, dont les taux sont ceux du processus
linéaire auxquels sont ajoutés un terme de compétition quadratique, possédent
une limite de Yaglom qui est 'unique distribution quasi-stationnaire associée au
processus.

Pour I’étude des distributions conditionnelles limites de processus de naissance
et mort en temps discret, nous renvoyons au travaux de Seneta et Vere-Jones [76]
et, pour une approche différente, a un article de Ferrari, Martinez et Picco [31].
Signalons également les travaux de Pakes et Pollett [67] pour les processus de
naissance et mort avec catastrophes. Pour I’étude de processus en temps discret
plus généraux, voir Coolen-Schrijner et van Doorn [20].

Il existe d’autres situations, qui ne sont pas développées ici, dans lesquelle
le nombre de distributions quasi-stationnaires est infini. C’est notamment le cas
de certaines diffusions étudiées par Martinez, Picco et San Martin [64] ou du
processus d’Orstein-Uhlenbeck étudié par Lladser et San Martin [61], dont la
distribution conditionnelle limite dépend de fagon non-triviale de la distribution
initiale.
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Nous terminons le chapitre 1 par I’étude compléte du cas des diffusions de Feller
logistiques, ol nous exposons notamment les arguments de Cattiaux, Collet, Lam-
bert, Martinez, Méléard et San Martin [16]. Une diffusion de Feller logistique est
une diffusion d’It6 sur [0, + oo, qui vérifie I’équation différentielle stochastique

dX; = \/vX1dB; + (rX; — cX?), Xo =z > 0. (2)

oll B est un mouvement brownien uni-dimensionnel et v > 0, r > 0 et ¢ > 0 sont
trois constantes fixées (une telle diffusion est un modele de taille de population,
pour une population dont les individus sont en compétition, de trés petite taille et
dont les événements de naissance et mort se succédent a grande vitesse, r reflétant
une propriété de branchement et ¢ un terme de compétition quadratique). En
particulier, 0 est un point absorbant pour toute diffusion de Feller logistique. Nous
démontrons que le processus X admet dans ce cas une limite de Yaglom, qui attire
toute les distributions initiales et qui est par conséquent l'unique distribution
quasi-stationnaire associée au processus. La preuve utilise des arguments fins
de théorie spectrale du générateur infinitésimal associé & X et la caractérisation
spectrale de I’ensemble des distributions quasi-stationnaires de la proposition 2.
L’attraction de toutes les distributions initiales est obtenue grace a une propriété
de retour depuis l'infini vers les compacts, conséquence du terme quadratique
cX?. Cattiaux et Méléard [17] ont généralisé ces résultats et ces preuves a des
diffusions multi-dimensionnelles tuées au bord d’un ouvert et dont les drifts sont
également dégénérés.

Pour ’étude de distributions quasi-stationnaires de diffusions uni-dimensionnelles
avec des conditions d’entrées aux bords différentes; nous renvoyons aux travaux
de Steinsaltz et Evans [79] et de Kolb et Steinsaltz [54]. Des formules explicites
ont également été démontrées dans des cas de diffusions & coefficients dégénérés
par Huillet [46].

Les résultats exposés dans cette thése sont loins d’étre exhaustifs tant est fertile
le champ d’application et d’étude de la notion de distribution quasi-stationnaire.
Toutefois, nous ne pourrions conclure cette partie introductive sans faire référence
aux travaux fondateurs de Mandl [63] pour les diffusions uni-dimensionnelles et
Pinsky [68] pour des diffusions tuées au bord d’un ouvert borné et & leur général-
isation par Gong, Qian et Zhao [37]. Signalons également I’approche originale et
générale de Ferrari, Kesten, Martinez et Picco [29].

Avant de passer, dans la partie suivante, a I’étude de I'approximation des limites
de Yaglom et des distributions conditionnelles limites telles que définies ci-dessus,
signalons qu’il existe un autre type de conditionnement pour des processus de
Markov avec absorption, appelé le Q-processus. Le @Q-processus Y de X est défini
par ses marginales de la fagon suivante:

Pu(Yy, €Y, €)= lim P (Xy, €, Xy, €T < 719).

T—o00

n
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De maniére intuitive, le Q-processus est le processus X conditionné & ne jamais
étre absorbé, défini de facon trajectorielle, tandis que nous nous intéressons dans
cette thése a la distribution de X conditionné & ne pas étre absorbé quand on
I’observe, sans préjuger de son comportement futur. Dans le chapitre 1, nous
donnons pour illustration deux exemples de construction de ce (Q-processus, pour
les processus & espace d’états fini et pour les diffusions de Feller logistiques. Des
études approfondies du Q-processus peuvent étre trouvées dans [63], [68], [37], [21],
[22] cités ci-dessus, nous renvoyons également aux travaux de Collet, Martinez et
San Martin [19] et a Darticle de Lambert [58], ainsi qu’aux références qui s’y
trouvent.

Approximation des distributions conditionnelles et des distributions
quasi-stationnaires

Comme 1’a souligné Nasell [66], les méthodes de caractérisation des distribu-
tions quasi-stationnaires, telles que leur définition ou la propriété de caractéri-
sation spectrale ci-dessus, ne permettent pas, dans I'immense majorité des cas,
d’obtenir des données quantitatives sur les distributions étudiées. Pour cette rai-
son, étre en mesure de proposer des schémas d’approximation de la distribution
quasi-stationnaire est essentiel. Dans certaines situations, des méthodes ad hoc
peuvent étre développées, comme cela est le cas dans les travaux de Pollett et
Stewart [70], de Hart et Pollett [43]. Dans cette thése, nous nous intéressons a
une méthode d’approximation particulaire introduite par Burdzy, Holyst, Inger-
man et March [13] en 1996. Nous démontrons que cette méthode, introduite pour
I’étude des limites de Yaglom du mouvement Brownien, peut étre généralisée &
une grande classe de processus.

De plus nous démontrons que cette méthode permet ’approximation, en toute
généralité, de la distribution conditionnelle d’un processus en temps fini. Ceci est
d’une grande importance. En effet, nous savons que l'existence d’une distribu-
tion conditionnelle limite implique I'existence d’un plateau d’absorption et, d’une
maniére générale, la stabilisation aprés un certain temps ¢y de la distribution des
trajectoires non-absorbées. Mais en pratique, si la probabilité de non-absorption
est trop faible au temps ty, le nombre de trajectoires non-absorbées a observer
a ce moment est trop faible pour rendre compte statistiquement de la conver-
gence de la distribution conditionnelle. Dans 1’étude des plateaux de mortalité
chez 1’étre humain, Li et Vaupel [59] ont montré, en s’appuyant sur la base de
données Human Mortality Database [15], que le taux de mortalité humain tend a
se stabiliser aux alentours de 105 ans. Toutefois, les statistiques de 'INSEE du
graphique 0.1 ne font pas apparaitre de plateau de mortalité car il y a trop peu
d’individus francais maéales d’age supérieur & 105 ans. Comme nous 'expliquent
Li et Vaupel, si 'existence d’un plateau de mortalité chez ’étre humain n’a pu
étre mis en évidence de facon claire que trés tardivement, c’est parce que nous
manquons de données sur les centenaires. Ainsi nous apercevons nous avec Carey,
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Liedo, Orozco et Vaupel que, méme s’il existe un plateau de mortalité & des ages
avancés, il n’a qu’un impact limité sur les secteurs d’activité que ces domnnées
intéressent, tels 'actuariat ou la santé publique. Afin de déterminer l'intérét
pratique de 'existence d’une distribution conditionnelle limite, il nous faut donc
comparer la vitesse de convergence vers la distribution conditionnelle limite et
la vitesse d’absorption du processus. Cette comparaison nécessite d’'une part
I'approximation de la distribution quasi-stationnaire, d’autre part de la distribu-
tion conditionnelle du processus en temps fini, ce que permet la méthode étudiée
dans cette thése.

Avant de développer plus en avant notre méthode, remarquons que, dans des
cas suffisamment simples, il existe des outils efficaces pour résoudre numérique-
ment ’équation spectrale présentée ci-dessus. Si, par exemple, 'espace d’état F
est fini, alors la résolution numérique du spectre est possible et les problémes
soulevés précédemment peuvent donc étre résolus numériquement. En effet, dans
le cas oit E est fini, 'utilisation du logiciel scilab et de sa fonction spec(L),
nous permet d’obtenir tous les vecteurs propres et toutes les valeurs propres de
Popérateur L (qui est dans ce cas une matrice finie). De plus, le méme logiciel per-
met de calculer numériquement la distribution conditionnelle P, (X; € .|t < 79)
en calculant exp(tL)/exp(tL)1g. 11 est alors simple d’étudier le systéme dans sa
totalité (vitesse d’extinction, vitesse de convergence vers la limite de Yaglom et
valeur du plateau de mortalité par exemple). Des exemples de calculs numériques
utilisant cette méthode sont présentés dans le chapitre 1 pour des processus de
Markov & espace d’état finis.

Pour approximer directement la distribution conditionnelle P,(X; € .|t < 75),
sans passer par les méthodes spectrales décrites ci-dessus, une méthode bien con-
nue est la méthode dite de Monte-Carlo, qui utilise comme principe la loi des
grands nombres. Selon cette loi, la moyenne des résultats d’un grand nombre de
tirages d’une variable aléatoire approche ’espérance de cette variable aléatoire.
Ainsi, en lancant un grand nombre N > 1 de simulations indépendantes X?,
i € {1,...,N}, d'un processus de Markov absorbé X de position initiale z € F,
nous obtenons, pour tout ensemble mesurable A C E et tout temps t > 0,

1N

oD e o E(Lwea) = P (X € A) = By (X, € Alt < 7) Po (£ < 7).

i=1

De plus, d’aprés le théoréme de la limite centrale, I’erreur comimise entre les deux
quantités est d’ordre 1/ VN:

1
N—oo Py (t < Ta)'

N
1
VN |3 e — Bo (X, € At

NP, (1 < rp) & "xiea ~ Fe (Xe € Al <m0)

Si la probabilité de non-absorption P, (t < 75) est proche de 1, alors cette méthode
est bonne. Cependant, pour tous les modéles que nous étudierons, la probabilité
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Figure 0.4: Evolution du taux de mortalité d’un mouvement brownien absorbé en
0 et en 1, calculé & ’aide d'une méthode de Monte-Carlo de 100000 simulations.

de non-absorption au temps ¢ > 0 tend vers 0 quand le temps ¢ tend vers l'infini.
Cette propriété reflete le fait naturel qu'un individu finira par mourir, qu'une
population finira inexorablement par disparaitre et qu’un joueur de casino, ou
le casino lui-méme, finira par étre ruiné en temps fini. Ainsi pour des temps
trop importants, 'erreur de la méthode de Monte-Carlo est telle qu’elle nécessite
un nombre de simulations d’autant plus grand que 'on s’intéresse a des temps
lointains.

Sur la figure 0.4, nous représentons 1’évolution du taux de mortalité d’un
mouvement brownien uni-dimensionnel absorbé en 0 et en 1, et de position initiale
0.5. Nous utilisons pour cela la méthode de Monte-Carlo avec 100000 simulations,
et observons de maniére évidente la dégradation de la précision de cette méthode

au cours du temps.

Notre méthode d’approximation consiste a simuler des trajectoires dans un pre-
mier temps indépendantes, mais, au lieu d’abandonner les trajectoires absorbées,
nous les récupérons au moment de leur absorption et les remettons en jeu. La nou-
velle position d’une simulation qui vient d’étre absorbée est naturellement choisie
aléatoirement et uniformément parmis les trajectoires qui n’ont pas été absorbées.
Ainsi, I'algorithme est bagé sur la simulation d’un systéme de particules en in-
teraction dont le nombre de particules utiles reste constant au cours du temps.
Ferrari et Mari¢ ont appliqué cette méthode avec succés pour I’approximation de
chaines de Markov & espace d’états dénombrable vérifiant certaines conditions de
mélange. Elle a également été démontrée par Grigorescu et Kang [40], dont les
travaux ont inspiré certaines preuves de cette thése.

Soit N > 2 le nombre de particules dont sera constitué notre systéme. Nous
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Figure 0.5: Processus de type Fleming-Viot a 2 particules qui évoluent entre
leurs sauts comme des mouvements browniens absorbés en 0 et 1.

notons X' la i-éme particule de ce systéme. Chaque particule est & valeurs dans
I’'ensemble FE et le systéme entier (Xl,...,XN) évolue donce dans EV. Au temps
t = 0, chaque particule se trouve & un point x € F fixé, puis:

o Les particules évoluent indépendamment les unes des autres jusqu’a ce que
I'une d’entre elles soit absorbée. Ce temps de premiére absorption est noté

T1.

e La particule absorbée (nous supposons qu’elle est unique), est alors envoyée
instantanément a la position d’une des NV — 1 particules non-absorbées. A
la fin de cette opération, chacune des particules se trouve dans F.

e Ensuite, les particules évoluent indépendamment les unes des autres jusqu’a
ce que 'une d’entre elles soit absorbée. Ce temps de seconde absorption est
noté 7.

e Comme précédemment, la particule absorbée (supposée unique) est envoyée
instantanément & la position d’une des N — 1 particules non-absorbées.

o Ensuite, les particules évoluent indépendamment jusqu’au troisiéme temps
d’absorption et ainsi de suite.

Pour tout temps ¢ > 0, nous noterons AJ¥ le nombre (aléatoire) d’absorptions du
systéme de particules avant le temps ¢. La figure 0.5 est une illustration d’un tel
systéme avec deux particules évoluant entre leurs sauts comme un mouvement
brownien tué en 0 et en 1.
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Figure 0.6: Evolution du taux de mortalité d’un mouvement brownien absorbé
en 0 et en 1, calculé & ’aide de la méthode particulaire étudiée dans cette thése,

avec un systéme de 100000 particules.

Un des résultats principaux de cette thése est le suivant. Il généralise notamment

les résultats obtenus par Grigorescu et Kang [40].

Théoréme 1 (Théoréme 2.1 Chapitre 3).
Soit t > 0. Si les deux conditions suivantes sont vérifiées

1. a chaque temps d’absorption, la particule absorbée est unique,

2. la variable aléatoire AY est finie presque stirement pour tout N > 2,

alors, pour toul ensemble mesurable A C D,

N
1 loi

=1

Contrairement au cas de la méthode de Monte-Carlo, le nombre de particules non-
absorbées ne diminue pas au cours du temps. Ainsi, en utilisant cet algorithme
pour calculer ’évolution du taux de mortalité d’un mouvement brownien tué en
0 et en 1 au cours du temps, nous obtenons le graphique de la figure 0.6. On
observe en particulier que la qualité de la méthode ne se dégrade pas au cours du

temps.
Toutefois, les conditions (1) et (2) du théoréme de convergence ci-dessus font
chacune apparaitre une nouvelle difficulté.

La premiére difficulté concerne I’hypothése selon laquelle deux particules ne peu-
vent étre absorbées en méme temps. Si le processus X évolue en temps continu
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suivant une équation différentielle stochastique ou suivant un processus de saut
pur et & taux de saut borné, alors cette hypothése est en général vérifiée et ne
représente pas de réelle difficulté. Toutefois, si X est donné par un modéle en
temps discret, alors la probabilité que deux particules soient absorbées en méme
temps est a priori strictement positive a chaque temps t € N. Cette difficulté
réelle peut étre résolue par la construction d’un processus Y en temps continu tel
que, en chaque temps entier ¢ € N, la loi de Y est la méme que celle de X. Ce
nouveau processus autorise alors la simulation d’un systéme de particules en in-
teraction (Y'1,...,Y'V) et la généralité du théoréme de convergence énoncé ci-dessus
permet d’établir que, pour tout temps entier ¢ € N et tout ensemble mesurable
ACD,

N
%Z Lysen ——— Pa(Xe € Alt < 79).

i=1
La seconde difficulté concerne I’hypothése selon laquelle le nombre d’absorptions
est fini en temps fini presque sirement, c’est-a-dire P (Aiv < +oo) =1, pour tout
N > 2. Cette propriété est toujours vérifiée pour des processus & temps continu
qui ne peuvent étre absorbés qu’en des temps aléatoires de loi exponentielle & taux
borné, tels que les processus de Galton-Watson en temps continu ou les processus
de Markov & espace d’états fini.

En revanche, cette condition n’est pas toujours vérifiée pour des modéles en
temps continu et a espace d’états continu tels que les diffusions d’It6. Voici
un contre-exemple simple, pour lequel 'hypothése de non-explosion du nombre
d’absorption n’est pas vérifiée. Supposons que le processus X est un processus
de position initiale (0,0) qui se déplace dans F = R? avec une vitesse détermin-
iste dans la direction des ordonnées et selon un mouvement Brownien dans la
direction des abscisses. Supposons de plus que le processus est absorbé lorsqu’il
atteint ensemble {(z,y) € R?, tel que |x|+|y| > 2}. Dans ce cas, le systéme & N
particules (X1,...,X") effectuera un nombre infini de sauts avant que l’ordonnée
(déterministe) du processus n’atteigne 1, ce qui arrivera inexorablement en temps
fini. La trajectoire typique d’une particule pour ce systéme est représentée fig-
ure 0.7. Pour de tels processus, la méthode d’approximation présentée dans cette
thése n’est pas valable. Il importe donc de trouver des hypothéses suffisantes pour
la condition P (AY < +o00) = 1.

Dans le cas du mouvement brownien tué au bord d’un ouvert, le probléme a
été etudié par Burdzy, Holyst et March [14], par Bieniek, Burdzy et Finch [11],
par Lobus [62]. Le second article est le plus général et concerne le mouvement
brownien tué au bord d’un ouvert dont la frontiére est de régularité Lipschitz,
tandis que le premier et le troisiéme sont restreints & des bords plus réguliers
(de plus les auteurs du premier article ont signalé que la preuve proposée est
fondamentalement incompléte). Grigorescu et Kang [42] démontrent que la con-
dition de non-explosion P, (AN < +o00) = 1 est vérifite pour toute diffusion X a
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Figure 0.7: Si X est le mouvement avec absorption décrit & gauche, I’explosion du
nombre d’absorption en temps fini est presque stire pour le systéme de particules,
dont une particule et sa trajectoire sont représentées a gauche.

coefficients homogénes en temps, uniformément elliptiques et de classe C'*°, et ab-
sorbée au bord d’un ouvert au bord suffisamment régulier. Dans cette thése, nous
donnons un critére de non-explosion pour des mouvements browniens avec drift
éventuellement non-bornés et irréguliers (chapitre 2, qui est un article accepté
pour publication & Electronic Journal of Probability) et pour des diffusions avec
sauts évoluant dans un environnement aléatoire avec des coefficients irréguliers et
dépendant du temps (chapitre 3, qui est un article récemment soumis a ESAIM
Probability and Statistics).

Plus précisément, la situation du chapitre 2 est la suivante. Nous étudions un sys-
téeme de particules en interaction dont les particules sautent quand elles atteignent
le bord d’un ouvert (comme précédemment), & la différence que la destination de
leur saut peut étre choisie de facon beaucoup plus souple (ce qui généralise notam-
ment les résultats obtenus par Grigorescu et Kang [42]). Les particules évoluent
suivant un mouvement brownien drifté, c’est-a-dire qu’elle sont solution jusqu’a
I’atteinte du bord de I’équation différentielle stochastique

dX; = dB; + (J(Xt)dt, Xo=x €D,

ol B est un mouvement brownien d-dimensionnel et ¢ : D — R? est une fonction
mesurable bornée dans un voisinage de 9D. Nous supposons que la frontiére
D est de classe C?, de telle sorte que la distance d’une particule & la frontiére
est un mouvement brownien drifté, au moins quand la particule s’approche de la
frontiére (ceci est une conséquence immédiate du théoréme de régularité présenté
par Delfour |25, Chapter 5, Section 4] et de la formule d’It6).

La preuve s’effectue en deux temps. Nous montrons d’abord que I'explosion du
nombre de sauts du processus en temps fini implique qu’au moins deux particules
convergent vers la frontiére, c’est-a-dire que leurs distances a la frontiére tendent
vers 0 simultanément. Puis nous construisons un couplage entre les distances a la
frontiére des particules et un systéme de mouvements browniens & drifts bornés,
indépendants et réflechis en 0, noté (Y1,....YN) et tel que, pour tout temps ¢
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inférieur au temps d’explosion du nombre de sauts,
d(X},0D) > Y} (voir figure 0.8).

Ainsi, I’explosion du nombre de saut implique qu’au moins deux particules ten-

' [;.Dc_xi,_l)

Figure 0.8: La particule X' et son mouvement brownien réfléchi Y! couplé.

dent vers 0 simultanément, donc que deux mouvement browniens réfléchis in-
dépendant convergent vers 0 simultanément, ce qui arrive avec probabilité nulle
et nous permet de conclure la preuve.

Dans le Chapitre 3, nous nous intéressons & des diffusions plus générales, solutions
d’équations différentiells stochastiques inhomogénes en temps et dépendant d’un
environnement aléatoire. La preuve repose sur le méme principe, 4 savoir que
I’explosion du nombre de sauts implique la convergence simultanée vers la frontiére
de deux particules. Mais dans cette partie, nous montrons directement que leur
distance a la frontiére ne peut pas converger vers 0 simultanément en utilisant
un résultat original de non-atteinte de (0,0) pour des couples de semi-martingales
positives. Ce résultat de non-atteinte est prouvé par la définition d’une bonne
fonction puis, inspirée par les travaux de Delarue [24].

Revenons & présent & l'étude de la limite de Yaglom. Nous avons vu que le
systéme de particules de type Fleming-Viot ci-dessus permet I'approximation de
la distribution conditionnelle P, (X; € A|t < 79), pour des temps ¢ finis. Si la
limite de Yaglom existe, alors elle est donnée par la limite quand ¢ tend vers
I'infini de cette distribution conditionnelle. Or, une fois N > 1 fixé, nous pouvons
simuler pendant un temps long le systéme de type Fleming-Viot & N particules
(X1,...,.X"N). Par conséquent, une approximation de la limite de Yaglom peut étre
obtenue si le diagramme suivant peut étre inversé:
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¥l ——— Po(Xi €t <o)

N—+o0
dt—stoo oo (3)
? ——  limite de Yaglom
N—+00

Dans le chapitre 2, nous considérons une diffusion d’It6 X évoluant dans un ouvert
borné D C R d > 1, jusqu’a son absorption en dD. Le processus X est défini
jusqu’a son absorption par I’équation différentielle stochastique

dX; = dB; + q(Xt)dt, Xo=x €D,

ol B est un mouvement brownien d-dimensionnel et ¢ : D — R? est une fonction
C! bornée. Le processus X posséde une limite de Yaglom d’aprés les résultats
de Gong, Qian et Zhao [37]. D’aprés les résultats de non-explosion ci-dessus, le
systéme de particule de la méthode d’approximation effectue un nombre de sauts
fini en temps fini presque strement. De plus nous montrons que, pour tout N > 2,
le processus (X},...,X7 )i>0 & valeurs dans DV est exponentiellement ergodique,
c’est-a-dire qu'il existe une mesure de probabilité M sur DV et deux constantes
Cn N > 0 telles que, pour tout ensemble mesurable A C DY,

1P ((X},... X)) € A) — MN(4)] < Cye™".

La preuve de cette propriété, inspirée par [14] utilise & nouveau le couplage con-
struit ci-dessus et les résultats d’ergodicité de Down, Meyn et Tweedie [26].

En particulier, cela implique qu’il existe une mesure de probabilité aléatoire
XN sur D telle que, pour tout ensemble mesurable A C D,

t—o00

N
1 loi N
N Z 1X§6A > X7 (A).
i=1
Nous concluons en démontrant que

N4 L2 q,
N—oo
ol «v est la limite de Yaglom associée & X. En définitive, le diagramme (3) peut
étre inversé, ce qui répond au probléme d’approximation de la limite de Yaglom
pour le cas présenté ci-dessus.

Beaucoup de modéles, en dynamique des populations notamment, sont basés sur
des processus a taux de saut non-bornés ou sur des diffusions & coefficients non-
bornés. Dans ce cas, les critéres assurant P (Aiv < +oo) = 1 font défaut. Toute-
fois, nous présentons dans le chapitre 2 une méthode permettant de pallier cette
difficulté. La méthode employée consiste & approximer le processus original X par
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des processus a coefficients bornés (X (m))mzl, oll m est un paramétre tel que,
pour tout ¢t > 0,

X(m) loi X
t m——+00 b

Supposons par exemple que X est une diffusion de Feller logistique sur [0, 4 oo,
c’est-a-dire qu’il existe v > 0, r > 0 et ¢ > 0 tels que X est absorbé en 0 et
vérifie ’équation différentielle stochastique (2). D’apres les résultats de Cattiaux,
Collet, Lambert, Martinez, Méléard et San Martin [16], X posséde une limite de
Yaglom a. Cependant, les coefficients de 1’équation différentielle stochastique (2)
ne sont pas elliptiques et savoir si P (Affv < +oo) = 1 est & ce jour un probléme
ouvert. Afin de pallier cette difficulté, nous définissons le processus X (™ sur
[1/m,m] comme solution de I’équation différentielle stochastique (2) et absorbé
en {1/m,m}. Ce processus posséde une limite de Yaglom o™ d’aprés Pinsky [68].
A un changement de variable prés, X (M) est un mouvement brownien absorbé au
bord d’un ouvert borné, o™ peut donc étre approchée par la méthode particulaire
décrite ci-dessus. Nous concluons en prouvant que, pour tout ensemble mesurable
A CJ0, + oo,
Jim o™ (A) = a(A).

Ainsi, Papproximation de o™ pour m > 1 fournit une approximation de la
limite de Yaglom « recherchée. Dans le cas d’une diffusion de Feller logistique,
nous obtenons les limites de Yaglom représentées sur la figure 0.9 pour différentes
valeurs des paramétres r et c.

2

r=1,c=10 —
- ] em] = &

i | | : | |
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Figure 0.9: Limite de Yaglom pour une diffusion de Feller logistique, avec dif-
férentes valeurs de r et c.



22 CONTENTS

Comme nous le voyons, la méthode d’approximation proposée par Burdzy, Holyst,
Ingerman et March |13]| peut étre appliquée dans un cadre qui dépasse largement
celui du mouvement Brownien. Ainsi les problémes posés par I'étude de processus
avec absorption peuvent-il étre étudiés dans une grande généralité a ’aide de
simulations numériques du systéme de particules de type Fleming-Viot décrit ci-
dessus.

Propriétés de mélange pour des modéles inhomogénes en temps

Soit X un processus de Markov inhomogéne en temps évoluant dans un espace
E U {0} et absorbé en 0, i.e. tel que (¢,X;);>0 est un processus de Markov sur
[0, + oo[x E absorbé quand il atteint [0, 4+ co[x{0}.

Dans la situation ou le processus X est un processus absorbé par des obsta-
cles mous, c’est-a-dire g’il existe une fonction mesurable positive £ uniformément
bornée sur [0, + oo[x E telle que le temps d’absorption de X a une loi exponen-
tielle de parameétre x(t,X;), Del Moral et Miclo [23] et Rousset [75] ont montré
que la méthode d’approximation particulaire présentée ci-dessus converge vers la
distribution conditionelle du processus X.

Le théoréme de convergence 1 et le résultat de non-explosion du chapitre 3
nous permettent de généraliser leurs résultats a des diffusions d’It6 inhomogénes
en temps et dépendant d’'un environnement aléatoire, absorbées au bord d’un
ouvert borné de classe C?.

Un processus dont ’évolution dépend effectivement du temps ne peut pas posséder
de distribution quasi-stationnaire. Toutefois, des propriétés de mélange peuvent
étre établies, similaires aux propriétés de mélange établies pour des processus
non-conditionnés, voir par exemple Arnaudon, Coulibaly et Thalmaier [5]. Dans
le chapitre 5, fruit d’une collaboration avec Pierre Del Moral, nous étudions la dis-
tribution conditionnelle de processus X évoluant dans un ouvert borné D C RY,
d > 2, définis par une équation différentielle stochastique inhomogéne a coeffi-
cients périodiques en temps. C’est-a-dire qu’il existe deux fonctions mesurables
périodiques en temps

o : [0, + oo[xR% = R? x RY et b : [0, 4+ co[xR? — R?
telles que X vérifie ’équation différentielle stochastique
dX; = O'(t,Xt)dBt + b(t,Xt)dt,

oll B est un mouvement brownien d-dimensionnel. Le processus est absorbé
lorsqu’il atteint le bord de D et par des obstacles mous, définis par une fonc-
tion mesurable k uniformément bornée. Nous démontrons un critére suffisant
pour la propriété de mélange forte suivante: il existe deux constantes C' > 0 et
~v > 0 telles que, pour tout x,y € D,

[P (X¢ € -t < 79) — IEDg/()(wt €t < 7’8)HTV < Ce™. (4)
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La preuve de cette propriété repose sur trois outils importants: un résultat de
tension pour la mesure empirique des systémes de particules avec sauts depuis
la frontiére de D et démontré au chapitre 4, la méthode d’approximation décrite
ci-dessus et un couplage de diffusions multi-dimensionnelles démontré par Priola
et Wang [71].

Notre critére autorise en particulier les coefficients o et b a ne pas étre de
classe C'!'. Dans le cas homogéne, ce résultat fournit donc une généralisation des
résultats d’existence et d’unicité de la limite de Yaglom démontrés par Pinsky [68],
par Gong, Qian et Zhao [37]| et par Knobloch et Partzsch [53]. Dans le cadre
inhomogéne en temps, nous généralisons, en autorisant les obstacles durs, les
résultats obtenus par Del Moral et Miclo [23].

De maniére intéressante, la démonstration de la propriété de mélange forte utilise

la méthode d’approximation présentée ci-dessus. En retour, la propriété de mélange (4)
nous permet de démontrer que la méthode d’approximation converge uniformé-
ment en temps quand le nombre de particules tend vers +o0o. Ceci généralise les
travaux de Rousset [75] & des diffusions absorbées au bord d’un ouvert borné.

Programmation

Une part importante de cette thése a été consacrée a la réalisation de pro-
grammes en c++, dont les simulations présentées dans ce manuscrit sont issues.
La rapidité du langage compilé ainsi que la fine gestion de la mémoire qu’il au-
torise ont été un outil idéal pour écrire des programmes permettant de simuler
aisément des systémes avec plusieurs centaines de milliers (voire plusieurs mil-
lions) de particules dans des temps trés raisonnables. L’algorithme utilisé pour
simuler le systéme de particule est décrit dans le chapitre 6 avec des explications
sur le code et certaines fonctions utiles. Enfin, le code source est reproduit dans
I’annexe de ce dernier chapitre.






Chapter 1

Quasi-stationary distributions
and populations size models *.

This chapter is intended to be a survey on quasi-stationary distributions and most
of the results in this chapter have been already proved, but not necessarily at the
same level of generality. While the survey is by no mean exhaustive, it allows
us to present many of the technics usually used to prove the existence and the
uniqueness of quasi-stationary distributions.

1.1 Introduction

We are interested in the long time behavior of isolated biological populations with
a regulated (density-dependent) reproduction. Competition for limited resources
impedes these natural populations without immigration to grow indefinitely and
leads them to become extinct. When the population’s size attains zero, nothing
happens anymore and this population’s size process stays at zero. This point 0 is
thus an absorbing point for the process. Nevertheless, the time of extinction can
be large compared to the individual time scale and it is common that population
sizes fluctuate for large amount of time before extinction actually occurs. For
example, it has been observed that in populations of endangered species, as for
the Arizona ridge-nose rattlesnakes studied in Renault-Ferriére-Porter [73], the
statistics of some biological traits seem to stabilize. An other stabilization phe-
nomenon is given by the mortality plateau. While demographers thought for a
long time that rate of mortality of individuals grows as an exponential function
of the age, it has been observed that the rate of mortality slows at advanced
ages, or even stabilizes. To capture these phenomenons, we will study the long

*In collaboration with Sylvie Méléard
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time behavior of the process conditioned to non extinction and the related notion
of quasi-stationarity. In particular, we will see that a Markov process with
extinction which possess a quasi-stationary distribution has a mortality plateau.

In all the following we will assume that the population’s size process (Z;,t > 0)
is a Markov process which almost surely goes to extinction. We are interested
in looking for characteristics of the process that give more detailed information
than the fact that absorption is certain. One way to approach this problem is to
study the "quasi-limiting distribution" (QLD) of the process (if it exists), that
is the limit, as ¢ — 400, of the distribution of Z; conditioned on non-absorption
up to time ¢. This distribution, which is also called the Yaglom limit, provides
particularly useful information if the time scale of absorption is substantially
larger than the one of the quasi-limiting distribution. In that case, the process
relaxes to the quasi-limiting regime after a relatively short time, and then, after
a much longer period, absorption will eventually occur. Thus the quasi-limiting
distribution bridges the gap between the known behavior (extinction) and the
unknown time-dependent behavior of the process.

There is another point of view concerning quasi-stationarity. A quasi-stationary
distribution for the process (Z;,t > 0) denotes any proper initial distribution on
the non-absorbing states which is such that the distribution of Z; conditioned
on non-extinction up to time ¢ is independent of ¢,¢ > 0. If the distribution of
Zj is chosen to be any QSD, then the corresponding QLD exists and equals this
QSD. Hence, any quasi-stationary distribution is a quasi-stationary limit, but the
converse is not always true.

In Section 1.2 of this course, we will introduce the different notions of QSD
and state some general properties. In Section 1.3, we will study the simple case of
QSD for processes in continuous time with finite state space. Thus we will concen-
trate on QSD for several stochastic population models corresponding to different
scalings. We will underline the importance of spectral theory as mathematical
tool for the research of QSD, in these different contexts. In Section 1.4, we will
consider birth and death processes. We will state the results established by Van
Doorn [81], giving explicit conditions on the coefficients ensuring the almost sure
extinction of the process, and the existence and uniqueness (or not) of a QSD.
We will especially focus on the density-dependence case, when the death rate of
each individual is proportional to the population’s size (called logistic birth and
death process). We will show that in that case, the process goes almost surely to
extinction, and that there is a unique QSD, coinciding with the unique QLD.

If one assumes that the total amount of resources is fixed and that the initial
population’s size is large, then the biomass of each individual is small, and we are
led to renormalize the birth and death process. In Section 1.5, we show that as
the initial population’s size tends to infinity, the rescaled birth and death process
converges to the unique solution of the famous deterministic logistic equation. In
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that case the solution converges as time tends to infinity to a nontrivial limit called
carrying capacity. This model describes stable large populations whose size stays
essentially constant. Another asymptotic consists in assuming that the birth and
death rates are proportional to the population’s size in a way such that the growth
rate does not explode. Hence, as the initial population size increases, the rescaled
logistic birth and death process is close to the solution of a stochastic differential
equation, called logistic Feller equation. The randomness due to the accumulation
of the many birth and death events behaves as a Brownian term with 1/2-Hélder
diffusion coefficient (as in the Feller equation) and the density dependence appears
through a quadratic drift term. We prove that the unique solution of the logistic
Feller equation goes almost surely to zero, and that there is also a unique QSD,
equal to the Yaglom limit, obtained as eigenmeasure of the adjoint operator of
the killed semi-group. The proof, which is based on spectral theory for this
semi-group, is not constructive and cannot be quantitatively exploited. It is thus
useful to construct an algorithmic method to simulate the QSD. At this end, we
will give the main ideas of a work of Villemonais (|83]), describing a stochastic
particle method based on Fleming-Viot systems.

The size (Z;,t > 0) of the population will be modeled by a Markov process taking
values in a subset E of N or R, in a discrete or continuous time setting. If
the population is isolated, namely without immigration, then the state 0, which
describes the extinction of the population, is a trap. Indeed, if there are no more
individuals, no reproduction can occur and the population disappears. Thus if
the system reaches 0, it stays there forever, that is, if Z; = 0 for some ¢, then
Zs =0 for any s > t.

We denote by T the time of extinction, i.e. the stopping time
Ty = inf{t > 0,7y = 0} (11)

We will consider cases for which the process goes almost surely to zero, whatever
the initial state is, namely, for all z € F,

P,(Th < o0) = 1. (1.2)
Before extinction, the process takes its values in the space
E* = E\{0}.

Any long time distribution of the process conditioned on non-extinction will be
supported by E*.

Notations For any probability measure ¢ on E*, we denote by P, (resp. E,)
the probability (resp. the expectation) associated with the process Z initially
distributed with respect to p. For any x € E*, we set P, = P;, and E, = Es, .
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We denote by (P;):>0 the semi-group of the process Z killed at 0. More precisely,
for any z > 0 and f measurable and bounded on E*, one defines

P, f(2) =E.(f(Zt)licty)- (1.3)

For any finite measure 1 and any bounded measurable function f, we set

u(f) = : f(x)p(dx).
We also define the finite measure uP; by setting, for all bounded measurable
function f,

NPt(f) = N(Ptf> = E[L(f(Zt)1t<T0)'
1.2 Definitions, general properties and first examples

There are several natural questions associated with this situation.

Question 1 What is the distribution of the size of a non-extincted population at
a large time ¢ 7 The mathematical quantity of interest is thus the conditional
distribution of Z; defined, for any Borel subset A C E*, by

]P)V(Zt € A; Ty > t) . I/Pt(]_A>
Py(To > 1) vP(1p+)’

P,(Z, € ATy > t) = (1.4)

where v is the initial distribution of the population’s size Zy. We want to study the
asymptotic behavior of this conditional probability when ¢ tends to infinity. The
first definition that we introduce concerns the existence of a limiting conditional
distribution.

Definition 1.1. Let « be a probability measure o on E*. We say that it is a
quasi-limiting distribution (QLD) for Z, if there exists a probability measure
v on E* such that, for any measurable set A C E*,

tli}m P, (Z; € ATy > t) = a(A).

It is well known that in the ergodic situation, the long time distribution converges
and doesn’t depend on the initial state. This leads us to the following definition.

Definition 1.2. We say that Z has a Yaglom limat is there exists a probability
measure o on E* such that, for any x € E* and any measurable set A C E*,

lim P, (2, € ATy > 1) = a(A).

When it exists, the Yaglom limit is a QLD. The reverse isn’t true in general.

Question 2 As in the ergodic case, we can ask if this Yaglom limit has the condi-
tional stationarity property given by the following definition.



1.2. DEFINITIONS, GENERAL PROPERTIES AND FIRST EXAMPLES 29

Definition 1.3. Let a be a probability measure on E*. We say that o is a quasi-
stationary distribution (QSD) if, for allt > 0 and any measurable set A C E*,

a(A) =P, (Z; € AlTh > t).

The main questions are the existence and uniqueness of these QSD. We will study
examples where a QSD does not exist, or where there is an infinity of QSD, or
where there is a unique QSD. The relation between the existence of QSD, QLD
and Yaglom limit is clarified in Proposition 1.1 below. Namely, we will prove that

Yaglom limit = QSD < QLD.

Question 3 Since the processes that we are interested in become extinct in finite
time almost surely, the event ¢t < T becomes a rare event when ¢ becomes large.
An important question is then to know whether the convergence to the Yaglom
limit happens before the typical time of extinction, or if it happens only after
very large time periods, in which case the populations whose size are distributed
with respect to the Yaglom limit are very rare. Both situations can appear, as
illustrated by the simple example of Section 1.2.3.

Question 4 While most of theoretical results on QLD, QSD and Yaglom limits are
concerned with existence and uniqueness problems, it would be useful in practice
to have qualitative information on the Yaglom limit. We present here particle
approximation results and numerical computations of the Yaglom limit for some
population’s size models, providing some enlightenment on Question 3 above.

Question 5 Another mathematical quantity related to this conditioning is based
on a pathwise point of view. In the finite state space case of Section 1.3 and
the logistic Feller diffusion case of Section 1.5, we will describe the distribution
of the trajectories who never attain the trap. This will allow us to define a
process, commonly referred to as the Q process for Z. We will prove that the new
process defined by this distribution is ergodic, and that its stationary distribution
is absolutely continuous with respect to the QSD (but not equal).

The present section is organized as follows. In Subsection 1.2.1, we state general
properties of QLD’s, QSD’s and Yaglom limits. In Subsection 1.2.2, we develop
the case of the Galton-Watson process. This discrete time process is of historical
importance, since the notion of Yaglom limit has originally been developed for
this process by Yaglom itself (see [86]). In Subsection 1.2.3, we develop a very
simple example of a process evolving in a finite subset of N. For this process, one
can easily prove the existence of the Yaglom limit, the uniqueness of the QSD,
and compare the speed of extinction to the speed of convergence to the Yaglom
limit. We also provide a numerical computation of the relevant quantities.
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1.2.1 General properties

Most of the following results are already known by the community. In this section,
we emphasize their generality.

QSD, QLD and Yaglom limit

It is clear that any Yaglom limit and any QSD is also a QLD. We prove here that
any QLD is also a QSD. The reverse implication has been proved by Vere-Jones
[1969] for continuous time Markov chains evolving in a countable state space. The
following proposition extends this result to the general setting.

Proposition 1.1. Let « be a probability measure on E*. The distribution « is a
QLD for Z if and only if it is a QSD for Z.

Remark 1.1. When it exists, the Yaglom limit is uniquely defined, while there
are processes with an infinity of QSD’s (see the birth and death process case
of Section 1.4). We immediately deduce that there exists QSD’s which aren’t a
Yaglom limit.

Proof. (1) If v is a QSD then it is a QLD for Z starting with distribution c.

(2) Assume now that « is a QLD for Z and for an initial probability measure p
on E*. Thus, for any measurable and bounded function f on E*,

a(f) = lim E,(f(Z)To > 1)

lim E.(f(Z);To > t)
t—o00 P#(To > t)

Applying the latter with f(z) = P,(Tp > s), we get by the Markov property

P,.(To >t
lim—“( 0>1+5)

Let us now consider f(z) = P,(Zs € A, Ty > s), with A C E*. By the Markov
property, we can show that

]P)M(ZH-S S A,TO >t 4+ S)

P.(Z A; T, = 1
a(Zs € ATo>s) = lim Pu(To > 1)
—  lm Pu(ZtJrs e ATy >t+ 8) PH(TO >t+ 5)
IS PH(TO > 1+ 8) P“(To > t)

The term P”(%:fi’i;ﬁ;tﬂ) converges to a(A) by definition of the QLD a. The

% converges to P, (Tp > s) when ¢ tends to infinity. We deduce

that, for any Borel set A of E* and any s > 0,

term

a(A) =Py (Zs € ATy > s).

The probability measure « is then a QSD. O
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Exponential extinction rate

Proposition 1.2. Let us consider a Markov process Z with absorbing point 0
satisfying (1.2). Assume that « is a QSD for the process. Then there exists a
positive real number 0(«) depending on the QSD such that

Py (Tp > t) = e @), (1.5)

This theorem shows us that starting from a QSD, the extinction time has an
exponential distribution with parameter 6(«) given by

InP,(Ty >t
fa) = — P2 1)

which is independent of t.

Proof. By the Markov property,

Po (To >t+s) = Eqo(Pz(To > s)1ny>t)
= Pa(TO > t)Ea (PZt(TO > S)‘TO > t),

since Ty < t implies Z; = 0, and Py(Tp > s) = 0. By definition of a QSD, we get
E, (Pz,(Ty > s)|To > t) = Po(Ty > s)

Hence we obtain that for all s,t > 0,
Po(To > t+s) = Po(To > s)Po(Tp > t).

Let us denote g(t) = Py (To > t). We have g(0) = 1 and, because of (1.2), g(t)
tends to 0 as t tends to infinity. An elementary proof allows us to conclude that
there exists a real number 6(a) > 0 such that

Py (Th > t) = e @),

QSD and exponential moments

The following statement gives a necessary condition for the existence of QSD’s in
terms of existence of exponential moments of the hitting time Tj.

Proposition 1.3. Assume that « is a QSD. Then any 0 < v < 0(«) and for
a-almost all z,
E.(e7T) < 4o0. (1.6)

In particular, there exists a positive number z satisfying (1.6).
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Proposition 1.3 suggests that if the population can escape extinction for too long
times with positive probability, then the process has no QSD. This is the case for
the critical Galton-Watson process: its extinction time is finite almost surely, but
its expectation isn’t finite.

Proof. We compute the exponential moment in continuous and discrete time set-
tings. In both cases, it is finite if and only if 6(a) > 7.

In the continuous time setting, (1.5) says that, under Py, T has an exponential
distribution with parameter 6(a). We deduce that, for any 6(a) > ~,

0()
Eq (e770) = :
)= gy —

In the discrete time setting, (1.5) says that, under P, Ty has a geometric distri-
bution with parameter e=?(®). We deduce that

— et
E, (eﬂ{To) _ 1—e

eV — 6_9(04) ’

Since Eq(€770) is equal to [}, E.(e70)a(dz), the finiteness of the integral implies
the assertion.

O

A spectral point of view

This section is only relevant to the continuous time setting. We define the operator
L as the infinitesimal generator of the sub-Markovian semi-group (P;) associated
with the killed process Z. The following result links the existence of QSD’s for Z
and the spectral properties of the dual L* of the operator L.

Proposition 1.4. Let a be a probability measure on E*. We assume that there
exists a set D of bounded real valued functions such that Lf exists and is bounded
for any f € D and such that, for any measurable subset A C E*, there exists a
uniformly bounded sequence (f,) in D which converges point-wisely to 1 4.
Then « is a quasi-stationary distribution if and only if there exists 0(a) > 0
such that
a(Lf) = —b(a)a(f), Vf € D.

We emphasize that the existence of D is always true if the state space E* is
discrete. It is also fulfilled if E* is an open subset of R? and if Z is a diffusion
with locally bounded coeflicients.

Proof. (1) Let a be a QSD for Z. By definition of a QSD, we have, for every
Borel set A C E*,

OéPt(lA)

= R
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By Theorem 1.5, there exists #(«) > 0 such that for each ¢ > 0,
aPi(1p:) = Po(Ty > t) = e 0@t

We deduce that, for any measurable set A C E*, aP;i(14) = e ®a(A), which
is equivalent to aP, = e ?¥(®q. By Kolmogorov’s forward equation and by
assumption on D, we have

0P,
)

= |P.Lf(x)| < ||Lflloc < +o00, Vf € D.

In particular, one can differentiate aP;f = [. P, f(x)a(dz) under the integral
sign, which implies that

a(Lf) = —b8(a)a(f), Vf € D.

(2) Assume know that a(Lf) = —6(a)a(f) for all f € D. By Kolmogorov’s
backward equation and the same “derivation under the integral sign” argument,
we have da(Buf)
«
5 = a(LPf) = —0(a)aP(f), Vf € D.
We deduce that

aP,(f) = e " @a(f), Vf € D.

By assumption, there exists, for any measurable subset A C FE*, a uniformly
bounded sequence (f,) in D which converges point-wisely to 14. Finally, we
deduce by dominated convergence that

aPy(1,4) = e W@ (A).

This implies immediately that « is a quasi-stationary distribution for Z. O

Long time limit of the extinction rate

Another quantity of interest in the demography and population’s dynamics is
given by the long time behavior of the killing or extinction rate. In demography
setting, the process Z models the vitality of some individual and ¢ its physical
age. Thus Tj is the death time of this individual. This question has been studied
in detail by Steinsaltz-Evans [78] for specific cases.

The definition of the extinction rate depends on the time setting:

e In the discrete time setting, the extinction rate of Z starting from p at time
t > 0 is defined by

T,u(t) = ]P)M(T() =t4+ HTO > t).
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e In the continuous time setting, the extinction rate of Z starting from pu at
time ¢t > 0 is defined by

2P.(Ty > t)

rult) == P (Tp > t)

when the derivative exists and is integrable with respect to pu.

Historically (c¢f. [36]), demographers applied the Gompertz law meaning that
this extinction rate was exponentially increasing with time. However in 1932,
Greenwood and Irwin [39] observed that in some cases, this behavior was not
true. In particular there exist cases where the extinction rate converges to a
constant when time increases, leading to the notion of mortality plateau. This
behavior of the extinction rate has been observed in experimental situations (see
for instance [15]).

The QSD’s play a main role in this framework. By Proposition 1.2, if « is a QSD,
then the extinction rate r,(t) is constant and given by

_ 79(&) . . - .
ro(t) = { 1—e in the discrete time setting >0,

0(«) in the continuous time setting

We also refer to the introduction of Steinsaltz-Evans |78| for a nice discussion of
the notion of QSD in relationship with mortality plateaus.

In the next proposition, we prove that the existence of a QLD for Z started
from p implies the existence of a long term mortality plateau.

Proposition 1.5. Let a be a QLD for Z, initially distributed with respect to a
probability measure u on E*. In the continuous time setting, we assume moreover
that there exists h > 0 such that L(Py1p~) is well defined and bounded. In both
time settings, the rate of extinction converges in the long term:
li = : 1.
tggoru(t) 7(0) (1.7)
Proof. The first part of the proposition is a straight forward consequence of Propo-
sition 1.2, in both time settings.
Let us prove the second part of the proposition in the discrete time setting.
We have, by the semi-group property and the definition of a QLD,

P (P11g-)
P (1g+)

— 1 - oz(PllE*) = TQ(O).
t—+o00

ru(t) =1-

The limit is by definition the extinction rate at time 0 of Z starting from «, which
is r4(0).
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Let us now prove the second part of the proposition in the continuous time
setting. Thanks to the Kolmogorov’s backward equation, we have

0 x
aptﬂzlE*(x) = P L(Py1g-)(x), Vo € E”.

Since L(Pp1p+) is assumed to be bounded, we deduce that
0
ot brn(lp) = pRL(Pylpe).
Then

gl Prin(lp-) _ pPL(Pylp:)

pP(1ps)  uP(lpe)
—00

by the definition of a QLD and by Proposition 1.4. We also have

1(Pr4nlpe)
Prlp«).
,LL(Pt]_E*) t—o0 Oé( hE )
Finally, we get
0
sit(Prvnler)
ru(t+h) = -2 0(a),
N( ) M(Pt+h1E*) t—o00 ( )
which allows us to conclude the proof of Proposition 1.5. O

1.2.2 An historical example in discrete time: the Galton Watson
process

The Galton-Watson process is a population’s dynamics model in discrete time,
whose size (Zy,)n>0 evolves according to the recurrence formula Zp = 1 and

Zn,
Znir = &,
=1

where (fl(n))m is a family of independent random variables, identically distributed
with respect to a probability measure p on N with generating function g. As
defined, Z,, is the size of the n'* generation of a population where each individual
has a random number of children, chosen with respect to p and independently
of the rest of the population. This process has been introduced by Galton and
Watson (see [34]) in order to study the extinction of aristocratic surnames.

The case pu({1}) = 1 is trivial (each individual gives birth to exactly one
individual, which leads to a population of constant size 1), and we will assume in
the whole section, that

0 < p(0)+pu({1}) <1
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We denote by m = E(&EO)) the average number of children by individual in our
Galton process. By the branching property, the probability of extinction for the
population starting from one individual is given by

Pi(3neN, Z,=0) = lim E;(0%")
n—-+00
= lim go---0g(0) (n times).
n—oo

There are three different situations (see for instance Athreya-Ney [6]):

e The sub-critical case m < 1: the process becomes extinct in finite time
almost surely and the average extinction time E(Tp) is finite.

e The critical case m = 1: the process becomes extinct in finite time almost
surely, but E(Tp) = +oo.

e The super-critical case m > 1: the process is never extinct with a positive
probability, and it yields immediately that E(7p) = +oo.

Theorem 1.6 (Yaglom [86], 1947). Let (Zy,)n>0 be a Galton-Watson process with
the reproduction generating function g. There is no quasi-stationary distribution
in the critical and the super-critical case. In the sub-critical case, the Yaglom limit
exists and is the unique QSD of Z. Moreover, its generating function g fulfills

g(g(s)) =mg(s) +1—m, Vs € [0,1]. (1.8)

Proof. The proof is adapted from Athreya-Ney [6] p. 13-14. In the critical or the
super-critical case, we have E;(Tp) = 400, which implies that E(Ty) = +oo for
all probability measure o on N*. We deduce from Proposition 1.3 that there is
no QSD for the critical or super-critical case.

Assume now that m < 1. In a first step we fix an arbitrary probability measure
v on N* and we prove that there exists a QLD « for Z starting with distribution v.
We also prove that the generating function of « fulfills (1.8). In a second step, we
prove that there is at most one generating function which fulfills equation (1.8),
so that o doesn’t depend on v, concluding the proof of Theorem 1.6.

For each n > 0, we denote by g, the generating function of Z,:

gn(s) =E, (s7) . s € [0,1].

Let us also denote by g, the generating function of Z,, conditioned to {Z,, > 0} =
{T[) > n}:

R E,(s7"1z,%0)
n = E, Zn Zn, = =

_ EV(SZn) —Py(Z, =0)

- T 1-P,(Z,=0)

gn(s) — gn(0) —1 1 —gn(s)

g0 T T ga0) <
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We note that §,(0) = 0, which is quite natural since the conditional law doesn’t

charge 0.
We set, for a fixed s € [0,1), I'(s) = l_lgflés). Then we have, for all n > 0,
_ Tgn(s)) -
L=gn =y (L= 3n(s)).

Since g is convex, I' is non-decreasing. Moreover m < 1 implies that g,(x) > z,
so that g,(s) and 1 — g,(s) are non-decreasing in n. In particular, lim, oo Gn(s)
exists. Let us denote by g(s) its limit and by a the corresponding finite measure
(whose mass is smaller than one). In order to prove that « is a probability measure
on N* it is sufficient to prove that g(s) — 1 when s goes to 1. We have

[(gn(0)) (1 = Gny1(s)) = (1 = gn(91(s)))

Taking the limit for each size, where lim,, ;o (g, (0)) = I'(1) = m, we deduce
that

m(1—=g(s)) = 1= g(g1(s)),
which implies Equation (1.8). Since lims_1 g1(s) = 1 and m < 1, we deduce that
g(1) = 1. Finally, a is a QLD for Z starting with distribution v.

One could think a priori that the function g depends on the starting distribution
v. We prove now that it isn’t the case, so that there is a unique QLD, and then
a unique QSD, which is also the Yaglom limit of the process (indeed, one could
choose v = d,, v € N¥).

Assume that there exist two generating functions § and h which fulfill Equation
(1.8). By induction, we have, for all n > 1 and all s € [0,1],

9(gn(s)) =m"g(s) + (m" '+ +m+1) (m—1),

h(gn(s)) = m™h(s) + (m”_1 o+ m+1) (m—1).
We deduce that for s € [0,1]

3'(9n()) gn(s) =m"§'(s) ; W(ga(s)) gn(s) = m" /(s).

Since for the sub-critical case g,(0) 11 when n — oo, for any s € [0,1[ there will
be a k such that

gr(0) < 5 < gr41(0).

Hence,
9(s) _ §'(9n(9) _ §(Gnsr1(0) _ 9'(0) mGny(0) _g'(0) m
W(s)  W(ga(s) = W(9ask(0)  H(0) Gpsrr1(0)  7/(0) 9'(9n+x(0))
9'(s) < g '(0)

When n goes to infinity, we obtain The converse inequality is estab-

h'(s) = h'(0)
lished similarly. Since ¢ and h are generating functions of probability measures
on N*, we have §(0) = h(0) = 0 and §(1) = h(1) = 1. Finally, the two functions
g and h are equal, which concludes the proof of Theorem 1.6 . O
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1.2.3 The simple example of an ergodic process with uniform killing
in a finite state space

We present a very simple Markov process with extinction whose quasi-stationary
distribution, Yaglom limit, speed of extinction and speed of convergence to the
Yaglom limit are very easy to obtain.

Let (X¢)i>0 be an exponentially ergodic Markov process which evolves in the
state space E* = {1,--- ,N}, N > 1. By exponentially ergodic, we mean that
there exist a probability measure o on E* and two positive constants C,A > 0
such that, for all z € {1,--- N} and all £ > 0,

sup |P.(X; = 1) — a({i})| < Ce ™.

ick*
There is no possible extinction for (X¢). Let d > 0 be a positive constant and
let 75 be an exponential random time of parameter d independent of the process
(Xt). We define the process (Z;) by setting

X, if t <1y
Zt = .
0, lftz Td-

This model can be thought as a model for the size of a population which can not
be extinct, but at a catastrophic event which happens with rate d. Thus we have

P.(t < Tp) = e~ %, ¥t > 0.
The conditional distribution of Z; is simply given by the distribution of Xj:

We deduce that the unique QSD is the Yaglom limit o and that for all z € E*
and all ¢t > 0,

sup |P.(Zy = i|Ty > t) — a({i})| < Ce .
e B*

Thus in this case, the conditional distribution of Z converges exponentially fast to
the Yaglom limit a;, with rate A > 0 and the process becomes extinct exponentially
fast, with rate d > 0.

Hence the comparison between the speed of convergence to the Yaglom limit
and the speed of extinction will impact the observables of the process before

extinction:

(a) If A > d, then the convergence to the Yaglom limit happens before the
typical time of extinction of the population and the quasi-stationary regime
will be observable.

(b) If A < d, then the extinction of the population occurs before the quasi-
stationary regime is reached. As a consequence, we are very unlikely to
observe the Yaglom limit.



1.2. DEFINITIONS, GENERAL PROPERTIES AND FIRST EXAMPLES 39

9 l_n\/vv\)\)\)\)\)oo&)000000000000000000000000000(

| ' | | ' } | 009 T u T i !
o 5 10 15 20 5 20 35 40 [ 5 10 15 20 3 20

Survival Probability Distance to the Yaglom limit in the extinction's time scale.

Figure 1.1: Example 1. A numerical computation leads to A = 0.098. Three
different situations are observed, which leads to three very different patterns for
the speed of convergence to the Yaglom limit in the extinction’s time scale: (©)
A>d=0.001; (0) A < d=0.500; (-) A =d=0.098.

(¢) If A ~ d, the answer is not so immediate and depends on other parameters,
as in particular the initial distribution.

Example 1.1. The population size Z is described by a random walk in continuous
time evolving in E = {0,1,2,--- ,N} with transition rates given by

i — i+ 1 with rate 1, for all ¢ € {1,2,--- N — 1},
i — ¢ — 1 with rate 1, for all s € {2,3,--- |N},
i — 0 with rate d > 0, for all 4 € {1,2,--- ,N}.

The boundedness of the population size models a constraint of fixed resources
which acts on the growth of the population. We will see more realistic fixed
resources models including logistic death rate in the following. One can check
that the quasi-stationary probability measure of Z is given by o; = 1/N for all
1€ B,

Numerical simulations. We fix N = 100. Numerical computation using the
fact that A is the spectral gap of the generator of X gives A = 0.098. For
different values d = 0.001, d = 0.500 and d = 0.098, we compute numeri-
cally the mathematical quantities of interest: the extinction probability P,(Ty >
t) = e as a function of t (cf. Figure 1.1 left picture) and the distance
sup;ep+ |P2(Zy = i|Th > t) — a({i})| between the conditional distribution of Z;
and « as a function of —logP,(Ty > t), which gives the extinction’s time scale.

(cf. Figure 1.1 right picture).

We observe that the convergence to the Yaglom limit happens rapidly in the case
(0) A = 0.098 > d = 0.001, indeed the distance to the Yaglom limit is equal
0.05, while the survival probability can’t be graphically distinguished from 1. On
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the contrary, we observe that the convergence happens very slowly in the case
(O0) A =0.098 <« d = 0.500, indeed the distance to the Yaglom limit is equal to
0.05 when the survival probability appears to be smaller than e 1® ~ 3 x 1077,
The case (1) A = 0.98 = d is an intermediate case, where the distance to the
Yaglom limit is equal to 0.05 when the survival probability appears to be equal
to e™3 ~ 0.05.

1.3 The finite case, with general rate of killing

1.3.1 The quasi-stationary distributions

We generalize Example 1 to a more realistic case where the rate of extinction
depends on the size of the population. For instance, the probability of extinction
is often higher for a small population than for a big one. The results of this section
have been originally proved by Darroch and Seneta ([21] and [22]).

The Markov process (Z;):>0 evolves in continuous time in £ = {0,1,....N}, N > 1
and we still assume that 0 is its unique absorbing state. The semi-group (P;):>0
is the sub-Markovian semi-group of the killed process and we still denote by L the
associated infinitesimal generator. In the finite state space case, the operators L
and P, are matrices, and a probability measure on the finite space E* is a vector
of non-negative entries whose sum is equal to 1.

Theorem 1.7. Assume that Z is an irreducible and aperiodic process before ex-
tinction, which means that there exists to > 0 such that the matriz Py, has only
positive entries (in particular, it implies that P, has positive entries for t > ty).
Then the Yaglom limit o exists and is the unique QSD of the process Z;.
Moreover, there exists a probability measure m on E* such that, for any 1,5 €
E*,

A MNPy (Z, = §) = mia

and
i ]P)l(T() >t+ S) _ Ee_g(a)s.

t~>I£lo Pj (TO > t) Uy

The main tool of the proof of Theorem 1.7 is the Perron-Frobenius Theorem,
which gives us a complete description of the spectral properties of P, and L.
The main point is that the matrix P; has positive entries. For the proof of the
Perron-Frobenius Theorem, we refer to Gantmacher [35] or Serre [77].

Theorem 1.8 (Perron-Frobenius Theorem). Let (P;) be a submarkovian semi-
group on {1,--- N} such that the entries of Py, are positive for to > 0. Thus,
there exists a unique positive eigenvalue p, which is the mazimum of the modulus
of the eigenvalues, and there exists a unique left-eigenvector a such that o; > 0
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and Zf\;l a; = 1, and there exists a unique right-eigenvector m such that m; > 0
and Zf\il a;m; = 1, satisfying

aPto = pa; Ptoﬂ-:/n-r (19)

In addition, since (P;) is a sub-Markovian semi-group, p < 1 and there exists
0 > 0 such that p = e ?. Therefore

P = "AL9(e), (1.10)

where A is the matriz defined by A;j = maj, and x > 0 and 9(e™X') denotes a
matriz such that none of the entries exceeds Ce X!, for some constant C > 0.

Proof of Theorem 1.7. Tt is immediate from (1.10) that for any i,j € E*,
MPi(Zy = j) = P[Py = miaj + 9(e” X0, (1.11)
Summing over j € E*, we deduce that
MPi(Ty > t) = m + (e~ ), (1.12)
It follows that, for any 4,5 € E*,

Pi(Zy = j)
[P)i(To > t) t—o0

PZ(Zt = ]’To > t) = aj.
Thus the Yaglom limit exists and is equal to «. Since FE is finite, we have for any
initial distribution v on E*

lim Py, (Z; = j|Ty > t) = > u lim Py(Z; = j|Ty > 1) = > viaj =ay.
icE* icE*
We deduce that the Yaglom limit « is the unique QLD of Z, and thus it is its
unique QSD.

By Proposition 1.2, we have aP;(15+) = e~%(®. By (1.9), this quantity is also
equal to e~ so that @ = 6(a). The end of Theorem 1.7 is thus a straightforward
consequence of (1.11) and (1.12) O

Remark 1.2. One can deduce from (1.11) and (1.12) that there exists a positive
constant Cp, such that

sup | Pi(Zy = j|Z > 0) — ay| < Cpe X)),
JEE* icE*
where the quantity x — @ is the second spectral gap of L, i.e. the distance between
the first and the second eigenvalue of L. Thus if the time-scale xy — 6 of the
convergence to the quasi-limiting distribution is substantially bigger than the time
scale of absorption (x — 6(«a) > 0(«)), the process will relax to the QSD after a
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relatively short time, and after a much longer period, extinction will occur. On
the contrary, if x — 0(a) < 6(«), then the extinction happens before the process
had time to relax to the quasi-limiting distribution.

In intermediate cases, where A —6(a) ~ 6(«), the constant Cr,, which depends
on the whole set of eigenvalues and eigenfunctions of L, plays a main role which
need further investigations.

Let us now develop an example in which we can observe these three situations.

Example 1.2. Let Z be a Markov process which models a population whose
individuals reproduce and die independently, with individual birth rate A > 0
and individual death rate u, where p is set as 1 but then kept as arbitrary later.
In order to take into account the finiteness of the resources, the process is reflected
when it attains a given value N, that we choose here arbitrarily equal to 100. Thus
the process Z evolves in the finite state space {0,1,---,100}, and its transition
rates are given by

i — 1+ 1 with rate i, for all i € {1,2,--- ,99},
i — i — 1 with rate pi, for all ¢ € {1,2,3,--- ,100}.

The infinitesimal generator of Z is given by

Lig=-1—Xand L1 = A,

Liio1=14, Lij=—1+Xiand L;;+1 = \i, Vi € {2,--- 99},
L100,99 = 100 and Lygp,100 = —100,

Lij=0,Vij € {1,---,100} such that | —i| > 1.

The process Z clearly fulfills the conditions of Theorem 1.7. As a consequence,
it has a Yaglom limit «, which is its unique QSD. Moreover, the probability
measure « is the unique normalized and positive left eigenvector of L. Since L
is a finite matrix of size 100 x 100, one can numerically compute the whole set
of eigenvectors and eigenvalues of the matrix (L;;). This will allow to obtain
numerically the Yaglom limit «, its associated extinction rate 0(«), and the speed
of convergence x — 0(«). Moreover, for any ¢ > 0, one can compute the value
of e'f which is equal to P, (the semi-group of Z at time t). Hence, we may
obtain the numerical value of the conditioned distribution Pz, (Z; € .|t < Tp), for
any initial size Zy. Finally, we are also able to compute numerically the distance
between « and the conditioned distribution Py, (Z; € .|t < Tp), for any value of
A>0and Zy € {1,---,100}.

In Figure 1.2, we represent the Yaglom limit « for different values of A\, namely
A=0.9, A=1.0and A =1.1. Let us comment the numerical results.

(a) In the first case (A = 0.9), an individual is more likely to die than to
reproduce and we observe that the Yaglom limit is concentrated near the
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(a) (b) (c)

Figure 1.2: Example 2. Yaglom limits for different values of A\. The following
values of #(«) are obtained by numerical computation. (a) A = 0.9, 8(«) = 0.100;
(b) A= 1.0, 8(a) = 0.014; (c) A = 1.1, f(«) = 5.84 x 1075.

absorbing point 0. The rate of extinction 6(«) is the highest in this case,
equal to 0.100. In fact, the process reaches the upper bound 100 very rarely,
so that the behavior of the process is very similar to the one of a linear birth
and death process with birth and death rates equal to A and p respectively.
In Section 1.4, we study such linear birth and death processes. We show
that the Yaglom limit (which exists if and only if A\ < pu) is given by a
geometric law and 6(a) = u — .

In the second case (A = p = 1), we observe that a decreases almost linearly
from a; to ajgp and the upper bound N = 100 plays a crucial role. In fact,
letting N tend to 400, one would observe that for any ¢ > 1, a; decreases
to 0. The extinction rate 6(«) which is equal to 0.014 for N = 100) would
also go to 0. The counterpart of this phenomenon for the linear birth and
death process studied in Section 1.4 is that the Yaglom limit doesn’t exist
when p = A

In the third case (A = 1.1), the Yaglom limit « is concentrated near the
upper bound 100, while the extinction rate is 6(a) = 5.84 x 107°. The
comparison with the linear birth and death process is no more relevant,
since the important factor in this case is the effect of the upper bound
N =100, which models the finiteness of the resources in the environment.

In Figure 1.3, we study the effect of the initial position and of the value of the

parameter A on the speed of convergence to the Yaglom limit and on the speed of

extinction. We choose the positions Zy = 1, Zp = 10 and Zy = 100, and we look

at the two different cases A = 0.9 and A\ = 1.1, which correspond to the subcritical

case (a) and to the supercritical case (c) respectively. We represent, for each set

of values of (A,Zp), the distance to the Yaglom limit sup;e(; ... 100} [Pz, (Z¢ = it <

Tp) — «| as a function of the time, and the same distance as a function of the

logarithm of the survival probability —logPz,(t < Tp) (i.e. the extinction time

scale). By numerical computation, we also obtain that
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(c) Distance to the Yaglom limit in the extinction's time scale

Figure 1.3: Example 2. Pictures (a) and (c) correspond to different values of A
(the following values of 6(a)) — x have been obtained by numerical computation):
(a) A = 0.9, 0(a) = 0.100, O(a) — x = 0.102; (c) A = 1.1, f(a) = 5.84 x 1075,
0(a) — x = 0.103; each curve corresponds to a given initial size of the population:
() Zg=1; (<>) Zy = 10; (D) Zy = 100.

(c) Distance to the yaglom limit

(a) A=10.9: () = 0.100 and 0(cr) — x = 0.102.

(¢) A=1.1: §(a) = 5.84 x 107 and (a) — x = 0.103.

In the case (a), we have 6(«) = 0.100 ~ x — 6(«) = 0.102 and we observe that the
speed of convergence depends on the initial position in a non-trivial way: while
the survival probability is smaller for the process starting from 10 than for the

process starting from 100, the convergence to the Yaglom limit in the extinction’s
time scale happens faster in the case Zy = 10.

In the case (c), we have (o) = 5.84 x 107° < x — f(a) = 0.103. The speed of
convergence to the Yaglom in the extinction’s time scale depends on the initial
position: if (O) Zy = 100, then it is almost immediate; if (¢) Zy = 10, the distance
between the conditional distribution and the Yaglom limit is equal to 0.05 when
the survival probability is around e~ ~ 0.61; if (-) Zg = 1, then this distance is
equal to 0.05 when the survival probability is around e=24 ~ 0.091.
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1.3.2 The Q-process

Let us now study the marginals of the process conditioned to never be extinct.

Theorem 1.9. Assume that we are in the conditions of Theorem 1.7. For any
10,01, - .tk € B, any 0 < s1 <---, 8, <t, the limiting value

limy oo Piy (Zs, =41, -+, Zs, = i|To > t) exists.

Let (Yi,t > 0) be the process starting from ig € E* and defined by its finite
dimenstonal distributions

PZ’O(YZ‘M =11, ,Ysk = Zk) = tli>r£1OPi0(Zsl =11, ,Zsk = ik|T0 > t). (1.13)

Then Y is a Markov process with values in E* and transition probabilities given
by
-
Pi(Y; = j) = € = Py(1).
Ty

It is conservative, and has a unique stationary probability measure (o;m;);.

Remark that contrary to intuition, the stationary probability measure is not the
QSD but is absolutely continuous with respect to the QSD.

Proof. Let us denote () by 6 for simplicity. Let ig, i1, ,ix € E* and 0 < 81 <
- < 8 < t. We introduce the filtration Fs = 0(Z,,u < s). Then

Piy(Zsy =1, -+ Zs, =i s To >t) = By (1Z51:i17"‘7zsk:ik Eiy <1T0>t‘f5k))
= Ei(1z, =i, .2, =i, Bip, (L1py>t—s,))

( by Markov property)
= Pio (ZS1 =11, 7Zsk = Zk) sz (TO >t — Sk).

By Theorem 1.7,
Pik(TO >t — Sk) _ Tix _Bsy,

lim =
t—o0 PiO(TO > t) Tig
Thus
. . . . .\ T
lim Py, (Zs, = i1, , Zg, = ig|To > 1) = Pi(Zsy = i1, , Lo, = ip) —H&014)
t—o0 o
Let us now show that Y is a Markov process. We have
P(Y. =41.--. Y., =i,..Y, = 1) = etﬂp, [ N R R
ZO( s1 — 11, s s = Uk, t_]) = € = lo( s1 — 1, s Lsy, = Uk, t_])
io
—  Ht=sk) sk T Ty, Piy(Zs, = i1, - D, = ix)
Ty, Mg

XP;, (Zi—s, = j) (by Markov property of Z)
= ]P)io(szl = il, tee aYtSk = Zk) Pik(Y;*Sk = ])’
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and thus P(Y; = j|Ys, = i1,---,Ys, = ix) = Pi, Yies, = J)-
By (1.14) and Theorem 1.7, we have

. 4 . 4
Pz(}/t = j) = 7['7] ]P)i<Zt = j) eat —>t—>+oo 7'TJ Qj T = QT
% %

Moreover let us compute the infinitesimal generator L of Y from the infinitesimal
generator L of Z. We have for j # 1,

~ X A~ s
Lij = llir(l) Pl'j(S) = 7?] LZ]

i

For j =1,
L. = fhml_ipii(s)_fhmﬂ
wo s—0 S o s—0 S
1— Os Os 1 — 1.
i SO
s—0 S

Let us finish the proof by showing that the process Y is conservative.

Z IAJZ‘J- = Z %Lij+9.

JEE* jeE= "

Since Lm = —0m, then ZjeE* mjL;j = —6m; and thus ZjeE* i}ij =0. O

1.4 QSD for birth and death processes

We are describing here the dynamics of isolated asexual populations, as for exam-
ple populations of bacteria with cell binary division, in continuous time. Individ-
uals may reproduce or die, and there is only one child per birth. The population
size dynamics will be modeled by a birth and death process in continuous time.
The individuals may interact, competing (for example) for resources and there-
fore the individual rate of death will depend on the total size of the population.
In a first part, we recall and partially prove some results on the non-explosion
of continuous time birth and death processes. We will also recall conditions on
the birth and death rates which ensure that the process goes to extinction in
finite time almost surely. In a second part, we concentrate on the cases where the
process goes almost surely to zero and we study the existence and uniqueness of
quasi-stationary distributions.

1.4.1 Birth and death processes

We consider here birth and death processes with rates (A;); and (u;)q, that is N-
valued pure jump Markov processes, whose jumps are +1 or —1, with transition
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rates given by:

i — i4+1 withrate M\,

i — +—1 withrate py,

where \; and p;, ¢ € N, are non-negative real numbers.

Knowing that the process is at state ¢ at a certain time, the process will wait for
an exponential time of parameter )\; before jumping to ¢ + 1 or independently,
will wait for an exponential time of parameter p; before jumping to ¢ — 1. The
total jump rate from state ¢ is thus A\; + p;. We will assume in what follows that
Ao = po = 0. This condition ensures that 0 is an absorbing point, modeling the
extinction of the population.

The most standard examples are the following ones.

1. The Yule process. For each i € N, A\; = Ai for a positive real number A,
and p; = 0. There are no deaths. It’s a fission model.

2. The linear birth and death process, or binary branching process.
There exist positive numbers A and p such that A\; = A\i and p; = pi. This
model holds if individuals reproduce and die independently, with birth rate
equal to A and death rate equal to u.

3. The logistic birth and death process. We assume that every individual
in the population has a constant birth rate A > 0 and a natural death rate
> 0. Moreover the individuals compete to share fixed resources, and each
individual j # 4 creates a competition pressure on individual ¢ with rate
¢ > 0. Thus, given that the population’s size is i, the individual death rate
is given by c¢(i — 1) and the total death rate is p; = pi + ci(i — 1).

In the following, we will assume that A; > 0 and p; > 0 for any 7 € N*.

We denote by (7,,), the sequence of the jump times of the process, either births
or deaths. Let us first see under which conditions on the birth and death rates
the process is well defined for all time ¢ > 0, i.e. 7 = lim,, 7,, = +00 almost surely.
Indeed, if 7 = lim,, 7,, < oo with a positive probability, the process would only be
defined for ¢t < 7 on this event. There would be an accumulation of jumps near 7
and the process could increase until infinity in finite time.

Let us give a necessary and sufficient condition ensuring that a birth and death
process does not explode in finite time. The result is already stated in Ander-
son [4], but the proof that we give is far much shorter and easier to follow.
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Theorem 1.10. The birth and death process does not explode in finite time,
almost surely, if and only if Y, ry, = +00, where

1 S kil e
rn=—+ + :

Proof. 1) Let us more generally consider a pure jump Markov process (X, ¢t > 0)
with values in N, and generator (L;j,i,j € N). We set ¢; = —Lj;. Let (7,),, be
the sequence of jump times of the process and (S,,), the sequence of inter-times
defined by

Sn=Tn—Tn_1, Vn>1, 1 =0 Sy=0.

We also set Too = limy, 00 7 € [0, + 00]. The process does not explode in finite
time almost surely (and is well defined for all time ¢ € R ), if and only if for each
1 €N

P; (Too < OO) =0.

Let us show that this property is satisfied if and only if the unique non-negative
and bounded solution x = (x;);eny of La = x is the null solution.

For any i, we set hl(-o) =1 and for n € N¥ hl(-n) = E;(exp(— Y _p_; Sk)). For any
n € N, we have

ZOEEDY q” B Ei(exp(—S1)).
g

Indeed, the property is true for n = 0 since ), £ q” = 1. Moreover, by condi-

tioning with respect to 51 and using the strong Markov property, we get
n+1
K, <exp > s

since the jump times of the Si-translated process are the 7, — S1,n € N*. We

M=

) = exp(—51) Exg, (exp(— Sk)), (1.15)

k=1

have
E; (Exsl (exp(—ZSk)>> = > Pi(Xs, =) »<exp 25k>
k=1 e
= 3 e 3 50)
i & k=1

since P;(Xg, =j) =
that

we deduce from (1.15)

ntl ..
E; (exp(—ZSk)) = Z& E; (exp ZSk ) E; (exp(—S7)) .

j#i
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AS oo
Eiesp(=50) = [ g terds = A
it turns out that L.
hf.”“) _ Z ﬁ h§n>‘ (1.16)
j#i ‘

Let (x;); be a nonnegative solution of Lz = x bounded by 1, then x; = Zj Lijxj =
Liiwi + 3,4 Lijry = —qiwi + 3254, Lijaj, so that

Lij
5Uz‘:z ;. (1.17)

~Tj
R

Slnceh()—1>xl_
(1.16) and (1.17) that hz( n) 2 X 2 (), for any n € N.

1,7 € E, we deduce by iteration from

Let us in another hand define for any j the quantity z; = E;j(e™">°). Using

Too = lim, 7, and 7, = Ezzl Sk, we deduce by monotone convergence that
i,

zj = lim,, :

n)

If the process does not explode a.s., then 7, = oo a.s., and lim,, hg =z = 0.

(n)

Since h; ' > x; > 0, we deduce that x; = 0. Thus, the unique nonnegative

bounded solution of Lx = x is zero.

If the process explodes with positive probability, then there exists ¢ such that
Pi(Too < 00) > 0. Making n tend to infinity in (1.16), we get

z; = — Zi.
' Z 1+¢ ™’
J#i
Since z; > 0, z is a positive and bounded solution of Lz = z.

2) Let us now apply this result to the birth and death process with A\g = o = 0.
We have, for ¢ > 1, Lmqu =\, Li,ifl = Wi, Li,i = _()\z + ,ul) The equation
Lx =z is given by 29 = 0 and for all n > 1 by

)\nl'nJrl - (>\n + /Ln)xn + UpTp—1 = Tp

Thus, if we set A,, = x,, — T,,_1, we have Ay = z1 and for n > 1,

Hn 1
A =A, — + —x,.
n+1 n )\n + )\n n
Let us remark that for any n, A,, > 0, and thus the sequence (z,,), is nondecreas-

ing. If 1 = 0, the solution is zero. If not, we get by induction

n—1

1 :uk+1 n Ml Hn
A .. L U
n+l = fb’n + Z N >\k+1 T + )\1 N, 1
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Letting
. :1+”§_:1 ket g
" )\n =1 )\kAlH»l e )\n )\1 T An’

we deduce that
Tn 1 < An—&—l < 7Tn Tn.

Then

n
z1(l+ri+-rp) <zpgpr < a1 H(1 + 7).
k=1

The boundedness of the sequence (zy,), is thus equivalent to the convergence of
the series ), 7. O

Corollary 1.11. Let us consider a BD-process with birth rates (\;);. If there

exists a constant A > 0 such that
Ai < A,
then the process is well defined on R .

The proof is immediate. It turns out that the linear BD-processes and the logistic
processes are well defined on R .

Let us now study under which assumption a BD-process goes to extinction almost
surely.

Proposition 1.12. The BD-process goes almost-surely to extinction if and only
if

© ...
BEER o, (1.18)
Y

It yields that the condition for extinction is given by

1
AL TR

= 4-00.

Proof. Let us introduce the quantity
u; = P(Extinction|Zy = i) = P;(Ty < 00),

which is the probability to attain 0 in finite time, starting from i. We have denoted
as before by Ty the extinction time. Then, using the Markov property and the
fact that the jumps have amplitude £1, we get the induction formula

i Wit — (N + i) wi + pg wi—1 =0, Vi > 1.



1.4. QSD FOR BIRTH AND DEATH PROCESSES o1

To resolve this equation, we firstly assume that the rates A;, y; are nonzero until
some fixed level I such that A\; = uy = 0. Let us define for each 1, ugl) =Pi(Th <

Tr). Thus u; = limy_e0 ugl). If we define

Hy- e pg
Ur = —_
I Z YESY
an easy computation shows that for i € {1,--- . I — 1},

-1
)] —1 B ik
u ' =(1+U —_
i (1+Ur) Z/\l...)\k
k=i
In particular, ugl) = 15{11.
any extinction probability u; is equal to 1. If (Ur) converges to a finite limit U,
then for i > 1,

Hence, if (Ur); tends to infinity when I — oo, then

[ee)
U; = (1+Uoo)_1 %,
k=i 1Tk

which is strictly less than 1. O

Corollary 1.13. 1. The linear BD-process with rates \i and pt goes almost
surely to extinction if and only if A < pu.

2. The logistic BD-process goes almost surely to extinction.

Proof. 1) If A\ < p, i.e. when the process is sub-critical or critical, we obtain
Ur > 1—1for any I > 1. Then (Ur); goes to infinity when I — oo and the
process goes to extinction with probability 1. Conversely, if A > u, the sequence
(Ur)r converges to ﬁ, and an easy computation gives u; = (\/p)°.

2) Here we have
XNi= AN o =pi+ci(i—1). (1.19)

It is easy to check that (1.18) is satisfied. O

1.4.2 Quasi-stationary distributions for birth and death processes

We consider a BD-process (Z;) with almost sure extinction. A probability mea-
sure o on N* ig given by a sequence («a;);>1 of non-negative numbers such that
Z §>1 a5 = 1.

Our first result is a necessary and sufficient condition for such a sequence
(aj)j>1 to be a QSD for Z. Thereafter we will study the set of sequences which
fulfill this condition (we refer the reader to Van Doorn [81] for details).

Theorem 1.14. The sequence (o;);>1 s a QSD if and only if
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1. a; >0, Vj>1,and 3 ;5 a5 =1
2. ¥ j>1,

Ajorejo1 = (A + 1) e + g = —ponay;

—(AM 4 p1)ag + pgag = —,uloz%. (1.20)

The next result follows immediately.

Corollary 1.15. Let us define inductively the sequence of polynomials (Hy,(x))n
as follows: Hy(x) =1 for all x € R and

Form>2 X\, Hypv1(x) = (An+pn — ) Hy(x) — pin—1 Hp—1(x);
)\1 HQ(H?) = )\1 + pup — . (1.21)

Then, any quasi-stationary distribution («;); satisfies for all j > 1,
aj = a1 mj Hj(pmen),

where \ )
m=1; m,=2_2r"1 (1.22)
/1/2 .. .Mn

Proof of Theorem 1.1/. By Proposition 1.4 and for a QSD «, there exists 6 > 0
such that
al = —0a,

where L is the infinitesimal generator of Z restricted to N*. Taking the ;'
component of this equation, we get

Aj—re—1 — (A + pj)ay + i = —0aj, Vj > 2
— (M + ) + peas = —0 .

Summing over j > 1, we get after re-indexing

0=> Naj =\ + )y +pjag = =0 aj+ mar.
j>1 Jj=1

We deduce that 6§ = pjaq, which concludes the proof of Theorem 1.14.
O

The study of the polynomials (H,) has been detailed in Van Doorn [81]. In

particular it is shown that there exists a non-negative number £; such that

x <& <= Hp(r) >0, Vn>1.
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By Corollary 1.15, oj = a1 m; Hj(pio). Since for any j, a; > 0, we have
Hj(pio) > 0 for all j > 1 and then

0 < prag <&

We can immediately deduce from this property that if & = 0, then there is no
quasi-stationary distribution.

To go further, one has to study more carefully the spectral properties of the
semi-group (P;) and the polynomials (H, ), as it has been done in [51], [38] and
[81]. From these papers, the polynomials (H,), are shown to be orthogonal with
respect to the spectral measure of (P;). In addition, it yields a tractable necessary

and sufficient condition for the existence of QSD based on the birth and death
1

rates. The series (S) with general term S, = ~—

Y ie i1 T Plays a crucial role.

Remark that (S) converges if and only if 7 | 7, (ﬁ + 2?2—11 ﬁ) < 4o00.
Theorem 1.16. (/81], Theorems 3.2 and 4.1). We have the convergence
. . 1
Jim Py(Z, = j|To > 1) = ™ & Hj(&).
In particular, we obtain
& = lim Py (2, = j|Tp > 1) (1.23)
t—o0

1. If & =0, there is no QSD.
2. If (S) converges, then & > 0 and the Yaglom limit is the unique QSD.

3. If (S) diverges and & # 0, then there is a continuum of QSD, given by the
one parameter family (6;(x))o<z<e, -
1

6@(1’) = I T X HJ(QS)

Let us now develop some examples.

The linear case. We assume A\; = A\i; p; = pé and A < p. In that case, the
BD-process is a branching process, where each individual reproduces with rate A
and dies with rate u. A straight forward computation shows that the series (.5)
diverges. Setting f, : k — s¥, we get by the Kolmogorov forward equation,

aPtfs(l)

5 = HPfs(0) = (A P fi(1) + AP f(2).
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But the branching property of the process implies P;f(2) = (Ptfs(l))Q, while
fs(0) =1 so that

0P, fs(1
U ki PA) + MR
Setting m = Qﬁ, we deduce that for s < 1,
Pfi(1) =1 2(1-s)(2m —1)

(ms +m — 2)e=Atmm=1t 4 (1 — g)m’

In particular, we deduce that the generating function £ : s — E(s%¢|Z; > 0) of
Zy conditioned to Z; > 0 converges when ¢ goes to infinity:

_ Bf(1) = Pfo(1) (A —ps
Ft(s) - 1-— Ptfo(lg) t—oo  A§ — 1% ’

We deduce that the Yaglom limit of Z does not exist if A = g and is given by the
geometric distribution with parameter % if A<

() 0-3)

An easy computation yields & = u — A, since by (1.23), ag = % But the series

(S) diverges so that for A < p, & > 0 and there is an infinite number of QSD. If
A= p, & = 0 and there is no QSD.

The logistic case. We assume \; = \i ; pu; = pi + ci(i — 1). Because of
the quadratic term, the branching property is lost and we can not compute the
Yaglom limit as above. Therefore, we have no other choice than to study the
convergence of the series (5).

We have
o) o0 i—1 [es} n—+p
A 1 A 1
Yrs Y (3) i=2() aoewm
i=n+1 i=n+1 ¢ v p=0 ¢ (TL +p + 1)
M"Y L AN\"1 A
< — —_ — = — €ec,
- \c (n—l—l)!pzo c) p c) (n+1)!
: 1)! —~
since (Tgi—;-i-)l)' < 1% Thus as % <C(£)" nl, we get
JR _C 1 A
< ———— €c°.
AnTn S ‘T enn+1)

Hence the series converges. Thus the Yaglom limit exists and is the unique quasi-
stationary distribution.
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Figure 1.4: Example 3. A random path of a logistic birth and death process with
initial size Zy = 1 and with parameters A =10, y=1and c =1

In the logistic case, we’re not able to compute explicitly the Yaglom limit. How-
ever, one can obtain substantial qualitative information by looking closer to the
jump rates of the process. For instance, (A — u)/c is a key value for the process.

Indeed, given a population size ¢, the expectation of the next step is equal to
i(A—p—c(i—1))
Nitpitci(i—1)
with respect to (A — p)/c:

. Then the sign of this expectation depends on the position of ¢ — 1

e If i < (A—pu)/c+ 1, then the expectation of the next step will be positive.
o If i =(\—p)/c+1, then it will be 0.
o Ifi> (A—pu)/c+ 1, then it will be negative.

We deduce that the region around (A — p)/c is stable: it plays the role of a
typical size for the population and we expect that the mass of the Yaglom limit
is concentrated around it. The value (A — p)/c is called (by the biologists) the
charge capacity of the logistic BD-process with parameters A, p and c¢. In the
next section, we consider processes with large populations, which means that we
study logistic BD-processes with large charge capacity.

Example 1.3. We develop now a numerical illustration of the logistic BD-process
case. Across the whole example, the value of the charge capacity ’\%“ is fixed,
arbitrarily chosen equal to 9.

In order to illustrate the concept of charge capacity, we represent in Figure 1.4
a random path of a logistic birth and death process with initial size Zyg = 1 and
with parameters A = 10, 4 = 1 and ¢ = 1. We observe that the process remains
for long times in a region around the charge capacity. Moreover, we see that the
process remains mainly below the charge capacity; this is because the jumps rate



CHAPTER 1. QUASI-STATIONARY DISTRIBUTIONS AND POPULATIONS SIZE
o6 MODELS

012 @)

0.10 -

0.08 -

0.06 -

0.02 |

0.04 |

0.03 |

0.02 -

0.01 -

Figure 1.5: Example 3. The Yaglom limits of two logistic birth and death pro-

cesses with the same charge capacity /\%“ =9 (a) A=10, p =1 and ¢ = 1; (b)
A=10, p=7and c=1/3.

are higher in the upper region, so that it is less stable than the region below the

charge capacity.

Let us now compare the Yaglom limits (which are numerically computed using
the approximation method studied in the following chapters of this thesis) of two
different logistic BD processes whose charge capacity is equal to 9 (see Figure
1.5):

(a) Z@), whose parameters are A\=9, y =1 and ¢ = 1,

(b) Z® whose parameters are A = 10, = 7 and ¢ = 1/3.

We observe that the Yaglom limits of Z(®) and Z(®) are supported by a region
which is around the charge capacity, this was expected because of the definition of
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Figure 1.6: Example 3. Evolution of the distance between the conditioned distri-
bution and the Yaglom limits of two logistic birth and death processes with the
same charge capacity /\_TM =9 (a)A=10,pu=1landec=1;(b) A=10, u =7
and ¢ = 1/3.

the charge capacity. We also remark that the Yaglom limit of the process Z ®) has
a more flat shape than the Yaglom limit of Z (@), This is because the competition
parameter of Z(® is small in comparison with the birth and death parameters, so
that the drift toward the charge capacity is small to, both above and below the
charge capacity.

We compute now the distance between the conditioned distribution and the Ya-
glom limit for the two processes Z(® and Z(® for different values of the initial
state, namely Zg = 1, Zp = 10 and Zy = 100. The numerical results are repre-
sented Figure 1.6. We observe a strong dependence between the speed of conver-
gence and the initial position of the processes. In the case of Z(®) it takes only
a very short time to the process starting from 100 to reach the charge capacity,
because the competition parameter is relatively high and so is the drift downward
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the charge capacity. On the contrary, in the case of Z(®), it takes a longer time
for the process to come back from 100 to the charge capacity, so that the speed
of convergence to the Yaglom limit is slow. In both cases, the convergence to the
Yaglom limit happens very rapidly when starting from the value 10, because it is
near the charge capacity.

1.5 The logistic Feller diffusion process

1.5.1 A large population model

We are now considering logistic birth and death processes modeling a large popu-
lation with small individuals, that is with a large starting size and a large charge
capacity assumption. We introduce a parameter K € N* and assume that the
individual’s weights (or biomasses) are equal to % We also assume that the ini-
tial population size Z¥ is of order K and we study the limiting behavior of the
total biomass Z/ /K when K tends to infinity. Such a rescaling is classical and
we recall here the methods used to prove it. In what follows, A, p and ¢ are fixed
positive constants.

In Subsection 1.5.1, individual birth and death rates are assumed to be con-
stant and the competition rate depends linearly on the individual biomass % In
Subsection 1.5.1, we investigate the qualitative differences of evolutionary dynam-
ics across populations with allometric demographics: life-lengths and reproduction
times are assumed to be proportional to the individual’s weights.

In both cases, the charge capacity of (ZX) will be (A — u)K/c.

Convergence to the logistic equation

Given a parameter K which scales the population’s size, we consider the logistic
BD-process ZX with birth, death and competition parameters A\, p and ¢/K
respectively. We assume that the initial value of Z¥ is of order K, in the sense
that there exists a non-negative real random variable X such that

ZK
0 Xy with E(XJ) < +oo.
K Koo

We consider the total biomass process defined by X* = ZX /K for all K > 1 and
are interested in the limit of X® when K — oco. The transitions of the process
(XK t > 0) are the following ones:

1+ 1

)
ith rate Ai = AK —;
with rate A\¢ I7a

SIEES

— 27 Withrate,ui—k%i(z’—l):[{% <M+C(IZ(_K)>'
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Theorem 1.17. Assume that Xy is a positive number xg. Then, the process
(XKt > 0) converges in law in D([0,T],R) to the unique continuous (in time)
deterministic function solution of

¢
x(t) = zp + / (N —p— cx(s))x(s)ds.
0
Remark 1.3. The function x is thus solution of the ordinary differential equation
i=(\—pz—cx®; x(0) =z, (1.24)

called the logistic equation. This equation has been historically introduced as the
first macroscopic model describing populations regulated by competition between
individuals (Verhulst 1938). In Theorem 1.17 above, it appears as the limit of
properly scaled stochastic jump models.

Remark that the function x solution of (1.24) hits 0 in finite time if A < p,
while it remains positive forever if A > pu, converging in the long term to its unique
stable equilibrium /\%“, also called charge capacity. Thus at this scale extinction
does not happen.

Proof of Theorem 1.17. The Markov process (X/<,¢t > 0) is well defined and its
infinitesimal generator is given, for any measurable and bounded function ¢, by

Lio(z) = MKz (¢<w ) - ¢<x>) (1.25)
+K(px + cx(x — %)) (d)(m - %) — qﬁ(:v)) . (1.26)

Hence, we deduce by Dynkin’s theorem (|28] Prop. IV-1.7) that
o8 = o) = [ Lol x2)ds (1.27)

is a local martingale, and a martingale, as soon as each term in (1.27) is integrable.
In particular, taking ¢(x) = z leads that (X/,¢ > 0) is a semimartingale and
there exists a local martingale M X such that

¢ 1
XtK:X§+MtK+/XSK<)\—M—C<XSK—K>>CZ5. (1.28)
0
Since zg is deterministic and using a localization argument, we deduce that

E(sup(X/)?) < oc.
t<T

Moreover, taking ¢(z) = 22 applied to (1.27), and comparing with It6’s formula
applied to (X%)2, we deduce that (MX) is a square-integrable martingale with
quadratic variation process

(MEY, = ;{/Ot <)\ Fute (XSK - ;)) XK ds. (1.29)
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We now study the convergence in law of the sequence (XX), when K tends to
infinity. For any K, the law of XX is a probability measure on the trajectory space
D7 = D([0,T], Ry ), that is the Skorohod space of left-limited and right-continuous
functions from [0,77] into R4, endowed with the Skorohod topology. This topology
makes Dy a Polish state, that is a metrizable complete and separable space, which
is not true if Dy is endowed with the uniform topology. See Billingsley [12] for
details.

The proof of Theorem 1.17 is obtained by a compactness-uniqueness argument.
The uniqueness of the solution of (1.24) is immediate.

By a natural coupling, one may bound the birth and death process X* stochas-
tically from above by the Yule process Y started from zg, which jumps from z to
T+, at the same birth time than X It is easy to show that supx E(sup,<p(Y)?) <
oo, thus it turns out that
sup E(sup(X/)?) < oco.
K  t<T
From this uniform estimate, we deduce the uniform tightness of the laws of X%
(as probability measures on D7), using the Aldous criterion (cf. Aldous [2], Joffe-

Métivier [49]). By Prokhorov’s theorem, the compactness of the laws of (X ) is
thus proved. To get an intuition of the limit, we can firstly remark that

1
K K
sup | X, — X 2| < —.
th| i 1<%
Since the function z + sup;<r |z¢ — 24| is continuous on D7, we may conclude
that each limiting value (in law) of the sequence (X*) is a pathwise continuous
process. In addition using (1.29) and (1.5.1), we easily get that

lim E((M¥),) =o0.

K—oo
The random fluctuations disappear when K tends to infinity and the limiting
values are deterministic functions. Now it remains to show that these limiting
values are solutions of (1.24), which can be done similarly to the proof of Theorem
1.18 (4) stated below. O

The logistic Feller diffusion process

In this section, we study the logistic BD-processes Z with birth and death rates
given by v K + A and v + p respectively. Here v, A and p are still positive
constants. We assume that the competition parameter is given by ¢/K, so that
the charge capacity of Z¥ is still (A — u)K/c.

Remark 1.4. This BD-process (ZE); can also be interpreted as a time-rescaled
BD-process Ylg, whose birth, death and competition parameters are given by ~v +
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MK, v+ u/K and ¢/K? respectively, that is a critical BD-process with small
pertubations.

We consider the sequence of processes XX defined for all t > 0 by

XK:Zi(.
t K

The transitions of the process are given by

. o
% . % with rate vKi + \i (1.30)

,— 1
% — z7 with rate yKi + ui + %z(z -1)
Formula (1.28) giving the semi-martingale decomposition of X* will stay true
with a martingale part N¥ such that

1 [t 1
(NK>t_K/O(2ny+)\+u+c<X;K—K> XEKds.

One immediately observes that the expectation of this quantity will not tend
to zero as K tends to infinity. Hence the fluctuations will not disappear at infinity
and the limit will be random. Let us now state the theorem.

Theorem 1.18. i) Consider the sequence of processes (X)) with transitions
(1.30) and initial condition Xo such that E(X3) < oo. It converges in law in
P(Dr) to the continuous process X, defined as the unique solution of the stochas-
tic differential equation

dXy = /27 XedBy + (A — p) Xy — ¢X7) dt, Xo €]0, + oo, (1.31)

where (Bt)ie(o,4+o0[ 18 @ standard Brownian motion.
i1) Let introduce for each y > 0 the stopping time

Ty = 1nf{t S R+, Xy = y} (132)

For any x > 0, we get
Px(To < OO) =1.

When ¢ = 0, Equation (1.31) is the Feller stochastic differential equation. In the
general case where ¢ # 0, it will be called logistic Feller stochastic differential
equation following the terminology introduced by Etheridge [27] and Lambert
[57]. Let us remark that the solution of (1.31) is non-negative, and that 0 is an
absorbing point.
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Remark 1.5. Theorem 1.18 shows that the accumulation of a large amount of
birth and death events creates stochasticity, often called by biologists ecological
drift or demographic stochasticity. Contrarily to the previous case (Theorem
1.17), the limiting process suffers extinction almost surely.

Proof. As for Theorem 1.17, the proof is based on a uniqueness-compactness

argument.

(1) The uniqueness of the solution of (1.31) follows from a general existence
and pathwise uniqueness result in Ikeda-Watanabe [47] Section IV-3 or Karatzas-
Shreve [50]. For a stochastic differential equation

dXt = O'(Xt)dBt + b(Xt)dt,

with ¢ and b smooth enough, the existence and pathwise uniqueness are deter-
mined thanks to the following scale functions: for = > 0,

IR A CIC) R AeTe SO
Q@) = — [ Zlay: a@ = [ @

n(z) = /1 * QW) < /1 ’ eQ(z)dz> ay. (133)

More precisely, it is proved that (i) Vz > 0, P,(Ty) < Tw) = 1 and (ii) A(4+o00) =
oo ; K£(0F) < 400 are equivalent. In that case, one has pathwise uniqueness of

the process, and then uniqueness in law.
In our situation, the coefficients are given by

o(x) = \/2ya ; b(x) = (A = p)z — ca?,

so that the functions A and k satisfy (ii). Thus the SDE (1.31) has a unique
pathwise solution which reaches 0 in finite time almost surely.

(2) Let us assume that E(X{) < oo and let us prove that

sup E(sup(X/)?) < oc.
K <T

The generator of XX is given by

Lxole) = (e aa)K (oo + ) - o))

+(vKz + p + ca(z — %))K <¢(x A ¢>(z)> . (1.34)
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With ¢(x) = 23, we obtain that
K\3 3 K I K, 1 ’ K ’ K\3
X = Xj+ M, KX X = - Xy —=] — (X
(t) 0+ t+/0'ﬂy s <S+K> <S K> (S) ds
K, 1 ’ K\3
Xo+ % — (X)) | ds

[t - [ (- ) 7 s

t
+ / AKXE
0

where M is a local martingale. Using a standard localization argument and that

1\? 1\° 3 XK
(x§<+K> —(XSK—K> - (8 =6

we get
t
B((X/)%) < BOX) + € [ B((XI))ds,
0
where C is independent of K. By Gronwall’s lemma, we deduce that

supsup E(| XX ?) < oo. (1.35)
t<T K

Now, thanks to this result and to Doob’s inequality, we may deduce from the
semi-martingale decomposition of (X/€)? (obtained using ¢(x) = x?), that

sup E(sup | X5 %) < oo. (1.36)
K t<T

(3) The uniform tightness of the laws of (X) is obtained, thanks to (1.36), using
as before the Aldous criterion [2]. Then the sequence of laws is relatively compact
and it remains to characterize its limit values.

(4) As in the proof of Theorem 1.17, we remark that the limiting values only
charge the set of continuous trajectories, since sup,<p IAXE] < % Let Q €
P(C([0,7],R4+)) be a limiting value of the sequence of laws of the processes
XK. We will identify Q as the (unique) law of the solution of the logistic Feller
stochastic differential equation and the convergence will be proved. Let us denote
Cr = C([0,T],R+) and define, for ¢ € CZ and t > 0, the function

¢t:CT - R

X o $(X) - d(Xo) - /O (7Xo6"(X0) + (A — p)Xe — eX2)@(X,)) ds,

which is continuous Q-a.s.. Our aim is firstly to show that the process (1:(X)):
is a Q-martingale.



CHAPTER 1. QUASI-STATIONARY DISTRIBUTIONS AND POPULATIONS SIZE
64 MODELS

For z € Ry, let us define

Lo(x) = yad" () + (A — p)z — ca®)¢/ (x).

Using the Taylor expansion, we immediately get (where L has been defined in
(1.34))

B+ =) + 0z — ) — 20(2) — 756"(2)

Lxd(@) — L) = K o |ola+ N

FAK 2|0z + 52) — 6(2) — 2-8/(2)

¢'(x)

+K (px + cx(x — 1)) ‘d)(a: - %) —o(x) + %

c
< % (% 4+ 1), (1.37)

where C' doesn’t depend on z and K. By (1.36), we deduce that E <|[~/K¢)(XtK) - qu(XtK)|>
tends to 0 as K tends to infinity, uniformly for ¢ € [0,T7].

For s1 < -+ < s < s < t, for g1,--- , g1 € Cp, we introduce the function H
defined on the path space by

H(X) = g1(Xs,) - gre(Xs,) (e (X) — 1s(X)).
Let us show that
Eg(H(X)) =0, (1.38)

which implies that (1¢(X)); is a Q-martingale.

By construction, ¥ (X5) = ¢(X[J) — ¢(Xo) — fg Li¢(XK)ds defines a martin-
gale, then
E [g1(X30) -+ g(X5y) (8 (X7) = " (XF)] = 0.

In another way, this quantity is equal to

E [g1(XE) - gr(XE) (0 (XT) = I (XF) = hp(XT) 4+ 4p5(XF))]
+E [g1(XE) - gi(XE) (he(XF) = 0o(X5)) — 91(Xs,) -+ gi(X ) (06(X) — 1h5(X))]
+E [91(X31) o 'gk(Xsk) (wt(X) - ¢8(X))] .

The first term is equal to E {gl(XSIf) (XL fot (£K¢(X§) — Lgb(XSI()) ds]
and tends to 0 by (1.36) and (1.37).

The second term is equal to E(H(X®) — H(X)). Since X — H(X) is continuous
and since H(X) < C (1 + f;(l + Xg)du) and is therefore uniformly integrable
by (1.35), this term tends to 0 as K tends to infinity.

Then (1.38) is fulfilled and the process ¥ (X) = ¢(X;) — d(Xo) — fg Lo(Xs)ds is
a Q-martingale.
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(5) The last step consists in proving that under Q, the process X is solution
of the logistic Feller stochastic differential equation (1.31). By (1.36) and taking
¢(x) = zleads to X; = X0+Mt+f0t(()\—u)Xs—cXS2)ds, where M is a martingale.
Taking ¢(x) = 22 in one hand and applying It6’s formula for X? in another hand
allows us to identify

t
<M>t :/ 2’)/ Xs ds.
0

By the representation theorem proved in [50] Theorem III-4.2 or in [47], there
exists a Brownian motion B such that

t
Mt:/ /27X, dB,.
0

That concludes the proof.

1.5.2 QSD for logistic Feller diffusion processes

We are now interested in studying the quasi-stationarity for the logistic Feller
diffusion process solution of the equation

dZ; = \/ZdBy + (rZs — cZ2)dt, Zy >0,

where the Brownian motion B and the initial state Zy are given, and r and ¢
are assumed to be positive. (We have assumed that v = 1/2). The results and
proofs that are presented in this section have been obtained by Cattiaux, Collet,
Lambert, Martinez, Méléard and San Martin in [16].

The main theorem of this part is the following.

Theorem 1.19. Assume that Zy, r and c are positive. Then the Yaglom limit o
of the process Z exists and is the unique QSD of Z.
Moreover, there exists a positive function n1 on RY such that

1.
—Q(x)
o da) = D
f]Rj_ m (y)e—Q(y) dy

dz, (1.39)

2. Vo € R, limyo0 e¥P,(Ty > t) = mi(z),
3. there exists x > 0 such that, Vo € RY,

lim e 0@t p (X, € ATy > t) — a(A)| < +oc.

t—-+o0

4. the QSD « attracts all initial distribution, which means that o is a QLD for
Z starting from any initial distribution.
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Remark 1.6. The theory studying the quasi-stationary distributions for one-
dimensional diffusion processes started with Mandl [65] and has been developed
by many authors. See in particular [19], [65], [79], [53]. Nevertheless in most of
the papers, the diffusion and drift coefficients are reqular and the "Mandl’s con-
dition" k(+00) = oo (see (1.33)) is assumed. This condition is not satisfied in
our case because of the degeneracy of the diffusion and the non boundedness of the
drift coefficient.

Theorem 1.19 differs from the results obtained in case of smooth drifts or going
slower to infinity. For example, Lambert [58] proves that if c =0 and r < 0, then
either 1 = 0 and there is no QSD, or r < 0 and there is an infinite number of
®QSD. Lladser and San Martin [61] show that in the case of the Ornstein- Uhlenbeck
process

dY; = dB; — Yidt,
killed at 0, there is a continuum of QSD.

In the logistic Feller diffusion situation as in the logistic BD-process, the unique-

ness is given by the competition term ¢ X? induced by the ecological constraints.

The proof of Theorem 1.19 will be declined in the next subsections.

spectral theory for the killed semi-group

We firstly make a change of variable. Let us introduce the process (Xy;,t > 0)
defined by X; = 24/Z;. Of course, X is absorbed at 0 (like Z) and the research
of QSD for Z will be easily deduced from the one obtained for X.

An elementary computation using It6’s formula shows that

where the function ¢(x) is given by

1 re  cx®

=5 "5t g
Such a process X driven by a Brownian motion is called a Kolmogorov diffusion
process. Let us remark that the function ¢ is continuous on R* but explodes

at 0 as % and at infinity as §x3

. The strong (cubic) downward drift at infinity
will force the process to live essentially in compact sets. That will provide the

uniqueness of the QSD, as seen below.

Let us study the Kolmogorov diffusion process (1.40). As before we are interested
in the semi-group of the killed process, that is, for any « > 0, for any ¢ > 0, for
any f € Cb(Rj—)a

Ptf(x) = Ex(f(Xt)1t<To)’ (1'41)
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with the associated infinitesimal generator given for ¢ € C2((0, + o)) by

Lo = 50" 0.

We are led to develop a spectral theory for this generator. Firstly, we introduce
the measure u, defined by
p(dy) = e Wy,

where @ is defined by

c

16(y4 —1). (1.42)

y

Qy) = / 2(2)dz = Iny + (1 —3) +
In particular —Q)/2 is a potential of the drift —g. Let us remark that in our case,
the measure p is not finite. Nevertheless, through the unity function 1 does not
belong to L?(y), this space is the good functional space in which to work. The
key point we firstly show is that, starting from x > 0, the law of the killed process
at time t is absolutely continuous with respect to u with a density belonging to
L2(u). The first step of the proof is a Girsanov Theorem.

Proposition 1.20. For any bounded Borel function F' defined on 2 = C([0,t],R% )
1t holds

B, [F@)tienyo] = B [F@) e e (5000) - 50 3 [ (@ = d)was )]

where EWV= denotes the expectation with respect to the Wiener measure starting
from x and w the current point in §Q.

Proof. 1t is enough to show the result for non-negative and bounded functions F.
Let € € (0,1) and 7. = Tx A Ty/.. Let us choose some 1. which is a non-negative
C* function with compact support included in Je/2,2/¢[ such that ¢ (u) = 1 if
e <u < 1/e. For all z such that e < & < 1/e the law of the diffusion (1.40)
coincides up to 7. with the law of a similar diffusion process X¢ obtained by
replacing g with the cutoff function g. = qv.. For the latter we may apply Novikov
criterion (cf. [74] p.332), ensuring that the law of X¢ is given via Girsanov’s
formula. Hence

B [F)biero] =B [P ticn e ([ —actarton— 3 [ @wnas)]

r t 1 t
—EW= F(w) 1ycr () €xp </ —q(ws)dws — 3 / q2(ws)ds>}
L 0 0

=5 [P ticr o (300 - 30 - 3 [0 = s )]

integrating by parts the stochastic integral. But 1;,. is non-decreasing in € and
converges almost surely to 1,7, both for W, and for P, (since P, (Tp < o00) = 1)).
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Indeed, almost surely,

lim X; =lim X, =lime=0

e—0 e—0 e—0
so that lim._,g7. > Tp. But 7. < T yielding the equality. It remains to use
Lebesgue monotone convergence theorem to finish the proof. O

Theorem 1.21. For all z > 0 and all t > 0 there exists a density function r(t,x,.)
that satisfies

+oo
Bf(X) Dl = [ f)r(tan) utdy)
for all bounded Borel function f. In addition, for allt > 0 and all x > 0,

+oo
/ r2(ta,y) p(dy) < (1/27t)7 e Q)
0

where

C =—inf(*(y) — d'(y)) < +o0.
y>0

Proof. Define

G(w) = 1iery(w) €xXP <; Q(wo) — %Q(wt) - % /0 (q2 - q’)(ws)ds> .

Denote by

N2
e v(tay) — (27?2?)_% €xp ((thy)>

the density at time t of the Brownian motion starting from z. According to
Proposition 1.20, we have

Er (f(X0) Liers) = B (f(wr) B (Gleo)
+oo
= /0 F@)EY (Glay = y) e 5 ¥) dy

+o0
= [ (Gl = ) 500 ()

because EV= (Glw; = y) = 0 if y < 0. In other words, the law of X; restricted to
non extinction has a density with respect to u given by

r(ta,y) = EV (Glw; = y) e V(LT y)+QY)

Hence

+0o0 +o0o
/ T2(t7$ay) M(dy) = / (]EWQC (G|wt = y) 6—v(t,x,y)+Q(y))
0 0

X e—Q(y)-H’(tLy) e—v(t,x,y) dy
2
EWZ <6v(t,m,wt)+Q(wt) <EWZ (G|wt)> >

EWm (e—v(t7$,wt)+Q(wt) EWz (GQ |wt)>

< Q@) EWe (1t<T0 (o €V ¢ Jo <q2—q')<ws)ds)

2

IN

I
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where we have used Cauchy-Schwarz’s inequality. Since e~¥(:%) < (1/27rt)%, the
proof is completed. O

Thanks to Theorem 1.21, we can show, using the theory of Dirichlet forms (cf.
Fukushima’s theory [33]) that the infinitesimal generator L of X, defined by
(1.5.2), can be extended to the generator of a continuous symmetric semi-group of
contractions of ?(11) denoted by (P)t>0. Then we can develop a spectral theory
for L and P, in L?(u). In all what follows, and for f,g € IL?(u), we will denote

<fag>u = f(x)g(w)ﬂ(dx)
Ry
The symmetry of P, means that

(Pefy9)u = (f, Peg) -

In Cattiaux et al. [16], the following spectral theorem in L?(p) is proved.

Theorem 1.22. The operator —L has a purely discrete spectrum 0 < A1 < g <
-+ Furthermore each \; (i € N*) is associated with a unique (up to a multiplica-
tive constant) eigenfunction n; of class C%((0,00)), which satisfies the ODE

1

5772, —qn = —Xin;. (1.43)

The sequence (1;)i>1 is an orthonormal basis of L?(11) and n1(z) > 0 for all z > 0.
In addition, for each i, n; € L'(p).

The proof of this theorem is based on a relation between the Fokker-Planck op-
erator L and a Schrédinger operator. Indeed, let us set for g € L?(dx),

Pg=e 9% P(g 9?).

P is a strongly semi-group on L?(dx) with generator defined for g € C°((0,+00))
by

~ 1 1
Lg=-Ag—=(¢*-¢) g.
9=589-5(@~4d)yg
The spectral theory for such Schrédinger operator with potential @ on the

line (or the half-line) is well known (see for example the book of Berezin-Shubin
[10]), but the potential (‘72%/) does not belong to LjS as generally assumed.
Nevertheless, in our case inf(q?> — ¢’) > —o0o, which ensures the compactness of
these operators.

The following corollary of Theorem 1.22 is a generalization of the Perron-

Frobenius Theorem in the infinite-dimensional case.
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Corollary 1.23. For all bounded and measurable function f, we have

Pif =r2gy e i f)u i (1.44)

1EN*

Proof. Fixt > 0 and let f be a bounded measurable function on R* . Let us first
prove that P, f belongs to L2(x). On the one hand, we have

+o0 00
[ s < 151 [ e @i < o
1 1
On the other hand, by Proposition 1.20, we have, for all z € R,

Pif(a) < [flet @ ATETS 1, gy e300

1 2
1 1 o e 2 (y—7)
< ezQ(ﬂf)'i‘th/ e 2R d.
But the function
g 30w = L —s0-)-g iy
VY

is integrable on ]0, + oco[. Since e~2e@W)* < 1 we deduce that there exists a
constant K; > 0 independent of x and f such that

Pf(x) < K| f]|oe2?®),
and thus
1
/O (Puf(2))2du(z) < K2 £

Finally (P.f)? is integrable with respect to p, so that P, f € L2(u).
Now we deduce from Theorem 1.22 that

B f =12 Z(Ptf, i) i (1.45)

1EN*

If f belongs to L?(y), then the symmetry of P; implies that

(Pefsmiyy = (f, Pmi)p
eiAit <f7 77i>/4~

Since n; € L' (1), we deduce from the Dominated Convergence Theorem that the
equality (P;f,n;), = e ' (f,m;), extends to all measurable bounded functions.
This and the equality (1.45) allow us to conclude the proof of Corollary 1.23. [



1.5. THE LOGISTIC FELLER DIFFUSION PROCESS 71

Existence of the Yaglom limit

By Corollary 1.23, we have for any bounded and measurable function f,

1 Pof = (m, HymlEzgy = D e T f) P
i>2

< e 2(t=1)(A2—A1) Z 672()\17)\1)‘<7]i7f>|2
1eEN*
< e 2000 ) 2\ p g2,

Using Cauchy-Schwartz inequality, we deduce that, for any function h € L2(u),
[N PLR) = {0, £) o | < € XTI [ Blagy . (146)

By Theorem 1.21, §, Py has the density 7(1,z,.) € L?(u) with respect to u, so that

4P @) = 1, £ (L) < €2 DO (1)

By definition of 0y, we have (n1,7(1,2,")), = e Mn1(x). Thus we have

' Py f(x) T s e M ()
and
eAltPtHle () m (M, 1R1>u 6_/\1771 ()
Finally, n1(z) being positive,
P (a) D _ iy

Rgler (ZC) t—+o0 <771, 1]R:>,u
where « is defined in (1.39). We conclude that « is a Yaglom limit for Z. We
also deduce parts (2) and (3) of Theorem 1.19.

Attractiveness of any initial distributions

We begin by showing the attractiveness of compactly supported probability mea-
sures. Let v be a compactly supported probability measure on (0, + c0). By
Theorem 1.21, y — [p. 7(1,z,y)dv(x) is the density of v P with respect to pu. By
[16, Lemma 5.3], there exists a locally bounded function © such that

r(Lz,y) < O(z)m(y), Y,y € (0, + 00).

In particular, h : y — [. 7(1,2,y)dv(z) belongs to L?. Then we deduce from
(1.46) that

vPii1(f)
VPt+1 (1E*) t—o0

E, (F(Xer)| To > t+1) = a(f).
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We conclude that « attracts any compactly supported probability measure.

Let us now prove that « attracts all initial distributions v supported in (0,00),
which means that, for any probability measure v on R* | for any Borel set A, we
get

tlggo P,(X; € ATy > t) = a(A). (1.47)

This is part (4) of Theorem 1.19 and it clearly implies the uniqueness of the QSD
for Z.

Proposition 1.24. For any a > 0, there exists y, > 0 such thal sup,~.,, E,(e*Tva) <
0.

Proof. Let us remark that

/ eQ(y)/ e Q%) dz dy < 0.
1 Y

Let a > 0, and pick x, large enough so that

/ eQ(I)/ e Q@) dy da < %.

Let J be the nonnegative increasing function defined on [z4,00) by

J(x) :/ eQ(y)/ e~ Q@) dz dy.
Za Yy

Then check that J” = 2¢J’ — 1, so that LJ = —1/2. Set now y, = 1 + x4, and
consider a large M > z. 1t6’s formula gives

tATn ATy
E, (e®®" ) J(Xynry,ay, ) = J () + By ( / e (aJ(X,) + LJ (X)) d5> :
0

But LJ = —1/2, and J(X;) < J(oc0) < 1/(2a) for any s < T,,, so that
Ex(ea(t/\TM/\Tya) J(Xt/\T]bI/\Tya )) < J(x) :

For & > 4, one gets 1/(2a) > J(x) > J(yq) > 0. It follows that E, (e?\TrATva)) <
1/(2aJ (ya)). Letting M — oo then t — oo , we deduce E,(e?Tva) < 1/(2a.J(y,)),
by the monotone convergence theorem. So Proposition 1.24 is proved. 0l

Proving that « attracts all initial distribution requires the following estimates

near 0 and oo.
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Lemma 1.25. For h € LY(p) strictly positive on (0,00) we have

IS h(@)Pa(Ty > t)p(dz)
i timsup "o h( )]P’ To > Ouide) (1.48)
I h@)Po(To > tp(dz)

lim lim sup (1.49)

Too  t—oo

0 h( >Px<To > )u(dz)

Proof. We start with (1.48). Using Harnack’s inequality (see [80, Theorem 1.1]),
we have for € < 1 and large ¢

JE W) (Ty > ) (dx) . Pl(To>t JE h(z)(dz)
Jree h( VP (Th > ) C [P h(z dm)Pl(TO >t—1)
then
2 (To > t)u(d Pi(To > t) wu(d
lim sup fo (To > Hp(de) < limsup 312( 0= fo (dz)
too [ h(x To > t)u(dz) to0 f / (dm)}P’l(To >t—1)
I L
C f3/2 dx)’

and the first assertion of the lemma is proved.

)\1Ty

For the second limit, we set Ay := sup Ez(e” **1) < oo, where y,, is taken

T>Yx,
from Proposition 1.24. Then for large M > y,,, we have

t
PL(Ty > 1) = / By (To > )P (T € d(t — ) + Po(Tyy > 1).
0
Using li_>m eMUP, (Th > u) = m1(70)(m,1) 4, we obtain
U—r0Q

By :=sup e)‘WIP’wO (To > u) < oc.

u>0
Then
t
P, (To >t) < BO/ e MUP (T € d(t — u)) + Pp(Tyy > t)
0
< By e~ Mt Ez(eAlTIO) + e Mt Ez(eAlTIO) < e_AltAo(B() + 1),
and (1.49) follows immediately (since x > g > yn, = Tiy < Ty, )- O

Let v be any fixed probability distribution whose support is contained in (0,00).
We must show that the conditional evolution of v converges to a. We begin by
claiming that v can be assumed to have a strictly positive density h, with respect
to p. Indeed, let

+oo
Uy) = /0 r(l,x,y)v(dx).
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Using Tonelli’s theorem we have

/Om/;oor(l,a:,y)z/(dx)u(dy) = / = r(1,z,y) p(dy) v(dz)

0

+oo
= /0 P, (Tp > 1)v(dx) <

which implies that [ r(1,2,y)v(dz) is finite dy—a.s.. Finally, define h = ¢/ [ {dpu.
Notice that for dp = hdu

Py(Xt_HE"Tg>t+1):PP(Xt€"TQ>t),

showing the claim.

Consider M > ¢ > 0 and any Borel set A included in (0,00). Then

IP Xt e ATy > t)h(l’) M( ) f P, Xt e ATy > t)h(l‘) /L( )
JBo(To > t)h(z) p(da) JM BTy > t)h(z) p(dz)

is bounded by the sum of the following two terms

o~ | [P € ATy > () p(dx) M Pu(X € ATy > t)h(x) p(dx)
J Pa(To > t)h(x) p(da) J Po(To > t)h(x) p(d)

I JUP(Xs € ATy > h(x) p(da)  [M Pu(X € A, Ty > t)h(z) p(d)
J B (To > t)h(z) p(da) JM BTy > t)h(z) p(dz) |

We have the bound

(To > t)h(z) p(dz) + [37 Pa(To > t)h() p(da)

Jo Pe
nvi2< S Pu(To > t)h(x) p(dx)

Thus, from Lemma 1.25 we get

lim T sup [Po(Xy € A, Ty > t)h(z)p(dz)
el0, Mtoo  t—00 IPIE(TO > t) ( )/.L dﬂj’)

S P(Xy € ATy > Hh(x)p(dx)
JH BTy > )h(z)p(dz)

=0.

On the other hand we have

JMPo(Xy € ATy > th(z) p(dz) [y m(2)p(dz)

% M BTy > h(z) p(dz) e m(2)nldz) = o)

since « attracts any compactly supported probability measures , and the result
follows.
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Figure 1.7: Example 4. A random path of a logistic Feller diffusion process with
initial size Zy = 1 and with parameters r =9 and ¢ =1

Example 1.4. We develop now a numerical illustration of the logistic Feller
diffusion process case. As in the logistic birth and death process case (see Example
3, Section 1.4), the value of the charge capacity % will remain across the whole
example equal to the fixed value 9.

We begin by showing in Figure 1.7 a random path of a logistic Feller diffusion
process with initial size Zyp = 1 and with parameters r = 9 and ¢ = 1. We observe
that the process quickly attains the value of the charge capacity and remains
around it for a long time.

We compare now the Yaglom limits of two different logistic Feller diffusion pro-
cesses whose charge capacity is equal to 9 (see Figure 1.8):

(a) Z(@ whose parameters are 7 = 9 and ¢ = 1,
(¢) Z® whose parameters are 7 = 3 and ¢ = 1/3.

As for the logistic BD-processes, we observe that the three Yaglom limits are
centered around the charge capacity. But as a consequence of the relatively weak
noise around the charge capacity, the Yaglom limit have clearly a smaller variation
around this value in the logistic Feller diffusion case than in the logistic BD process
case. We also observe that the smaller are the parameters, the flatter is the Yaglom
limit and the explanation is the same as in the logistic BD-process case: the drift
toward the charge capacity is smaller in the case of Z(), because the competition
parameter is also smaller in that case than for Z(@ (while the charge capacities
are the same).

We observe now the distance between the conditional distribution of Z(@ and
Z®) and their respective Yaglom limits, for different initial states, namely Zy = 1,
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Figure 1.8: Example 4. The Yaglom limits of two logistic Feller diffusion processes
with the same charge capacity: (a) r =9 and ¢ =1; (b) r =3 and ¢ = 1/3.

Zy = 10 and Zy = 100. The results, computed with the help of the approximation
method studied later in the manuscript, are represented on figure 1.9. For both
Z@ and Z®, the speed of convergence is the highest for Zy = 10, which is
quite intuitive since the value of the charge capacity is 9, and it is higher for the
processes starting from 100 than from 1. In particular, this behavior is different
than in the logistic birth and death process case.

1.5.3 The Q-process

Let us now describe the law of the trajectories conditioned to never attain 0.

Theorem 1.26. Let us fiz a time s and consider B a measurable subset of
C([0,s],R4). Then for any v € R,

lim P,(X € Bjt < Tp) = Q.(X € B),
t—0o0
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Figure 1.9: Example 4. Evolution of the distance between the conditioned dis-

tribution and the Yaglom limits of two logistic Feller diffusion processes with the
same charge capacity Z =9: (a) r =9 and ¢ =1; (b) r =3 and c = 1/3.

where Q. 1s the law of a continuous process with transition probabilities given by
a(s.2,y)dy, where
s M) —QW)

T r(s,z,y) e )

871.? —
q(s,r,y) (@)

Proof. Since r(s,x,y) e~ QWdy is the law of X, started from x before extinction,
we have to prove that

Q.(X € B) =E, <1B(X) ”;f()i)) 1T0>8> .

We have, for t > s,

P.(X € B;Top >t) Pu(X € B;Ty > s;Ex, (To >t —s))

P.(To >t) P.(To > t) ’
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and we have proved that

i PvlTo>t—s) s my)
t—00 PZ»(T() > t) 771(.%)

Then,

. P(XeB;Ty>t) eMs 1 (Xs)
| _ P, (15(X 1ros ) .
e Py(Tp > 1) m(z) 5(X) m(z) 77

Corollary 1.27. For any Borel set A C (0,00) and any z,

§—00

lim Q(X;s € A) = /Anf(y)u(dy) =<, 1>y /Am(y)a(dy)-
Proof. Since 1411 € L2(u), thus

M) QulX € 4) = [ 1a(0) mln) N r(s.o) p(dy)
converges to n1(z) [zni(y)u(dy) as s — +oo, since eM*r(s,z,.) converges to
m (@) m(.) in L2(dp). -

Remark 1.7. The stationary measure of the Q-process is absolutely continuous
with respect to a, with Radon-Nikodym derivative < ny,1 >, .



Chapter 2

Interacting particle systems
and Yaglom limit
approximation of diffusions
with unbounded drift *

Abstract

We study the existence and the exponential ergodicity of a general in-
teracting particle system, whose components are driven by independent dif-
fusion processes with values in an open subset of R¢, d > 1. The interaction

occurs when a particle hits the boundary: it jumps to a position chosen with
respect to a probability measure depending on the position of the whole sys-

tem.

Then we study the behavior of such a system when the number of par-
ticles goes to infinity. This leads us to an approximation method for the
Yaglom limit of multi-dimensional diffusion processes with unbounded drift
defined on an unbounded open set. While most of known results on such
limits are obtained by spectral theory arguments and are concerned with
existence and uniqueness problems, our approximation method allows us to

get numerical values of quasi-stationary distributions, which find applica-

tions to many disciplines. We end the paper with numerical illustrations
of our approximation method for stochastic processes related to biological

population models.

*Published in Electronic Journal of Probability [85]
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2.1 Introduction

Let D C R be an open set with a regular boundary (see Hypothesis 2.1). The
first part of this paper is devoted to the study of interacting particle systems
(X1,...,.XN) whose components X* evolve in D as diffusion processes and jump
when they hit the boundary 0D. More precisely, let N > 2 be the number of
particles in our system. Let us consider N independent d-dimensional Brown-
ian motions B',...,.BN and a jump measure JO) : 9(DN) — M (DY), where
M (DY) denotes the set of probability measures on DY. We build the interacting
particle system (X',...,X") with values in D? as follows. At the beginning, the
particles X evolve as independent diffusion processes with values in D defined
by

(N)

dx" = dBi + ¢ (x")at, x{" € D, (2.1)
()
7

plode in finite time. When a particle hits the boundary, say at time 7y, it jumps

where ¢;~ is locally Lipschitz on D, such that the diffusion process doesn’t ex-

to a position chosen with respect to J) (Xil_,...,Xi\lf_). Then the particles evolve
independently with respect to (2.1) until one of them hits the boundary and so
on. In the whole study, we require the jumping particle to be attracted away
from the boundary by the other ones during the jump (in the sense of Hypothesis
2.2 on J™ in Section 2.2.2). We emphasize the fact that the diffusion processes
which drive the particles between the jumps can depend on the particles and their
coefficients aren’t necessarily bounded (see Hypothesis 2.1). This construction is
a generalization of the Fleming-Viot type model introduced in [14] for Brownian
particles and in [42] for diffusion particles. Diffusions with jumps from the bound-
ary have also been studied in [9], with a continuity condition on J®) that isn’t
required in our case, and in [41], where fine properties of a Brownian motion with
rebirth have been established (see also the recent works of Kolb and Wiirkber
[56], [55])-

In a first step, we show that the interacting particle system is well defined,
which means that accumulation of jumps doesn’t occur before the interacting
particles system goes to infinity. Under additional conditions on qu) and D,
we prove that the interacting particle system doesn’t reach infinity in finite time
almost surely. In a second step, we give suitable conditions ensuring the system
to be exponentially ergodic. The whole study is made possible thanks to a cou-
pling between (X1,...,X") and a system of N independent 1-dimensional reflected
diffusion processes. The coupling is built in Section 2.2.3.

Assume that D is bounded. For all N > 2, let J@®) be a jump measure
and (qi(N))lgig ~ a family of drifts. Assume that the conditions for existence and
ergodicity of the interacting process are fulfilled for all N > 2. Let M" be its
stationary distribution. We denote by XV the associated empirical stationary
distribution, which is defined by XN = % sz\il 8z, where (z1,...,zy) € DV is
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distributed following M. Under some bound assumptions on (qi(N))lgig N2<N
(see Hypothesis 2.4); we prove in Section 2.2.4 that the family of laws of the
random measures X'V is uniformly tight.

In Section 2.3, we study a particular case: qZ(N) = g doesn’t depend on i,N
and 1
TN (z1,...zn) = i ;5%, x; € OD. (2.2)
JF#i

It means that at each jump time, the jumping particle is sent to the position of
a particle chosen uniformly between the N — 1 remaining ones. In this situation,
we identify the limit of the family of empirical stationary distributions (X™)x>o.
This leads us to an approximation method of limiting conditional distributions
of diffusion processes absorbed at the boundary of an open set of R?, studied by
Cattiaux and Méléard in [17] and defined as follows. Let U, C R be an open
set and P be the law of the diffusion process defined by the SDE

dX° = dBy + VV(X®)dt, X € Us (2.3)

and absorbed at the boundary dU,,. Here B is a d-dimensional Brownian motion
and V € C?(Us,R). We denote by 75 the absorption time of the diffusion process
(2.3). As proved in [17], the limiting conditional distribution

Voo = lim P° (X[ € .|t < 75) (2.4)
t—o00

exists and doesn’t depend on x € Uy, under suitable conditions which allow the
drift VV and the set Uy to not fulfill the conditions of Section 2.2 (see Hypothesis
2.5 in Section 2.3). This probability is called the Yaglom limit associated with
P°. Tt is a quasi-stationary distribution for the diffusion process (2.3), which
means that P{° (X{° € dx|t < 79) = v for all £ > 0. We refer to [16, 54,
61| and references therein for existence or uniqueness results on quasi-stationary
distributions in other settings.

Yaglom limits are an important tool in the theory of Markov processes with
absorbing states, which are commonly used in stochastic models of biological pop-
ulations, epidemics, chemical reactions and market dynamics (see the bibliography
[69, Applications|). Indeed, while the long time behavior of a recurrent Markov
process is well described by its stationary distribution, the stationary distribution
of an absorbed Markov process is concentrated on the absorbing states, which is
of poor interest. In contrast, the limiting distribution of the process conditioned
to not being absorbed when it is observed can explain some complex behavior,
as the mortality plateau at advanced ages (see |[1] and |78]), which leads to new
applications of Markov processes with absorbing states in biology (see [60]). As
stressed in [66], such distributions are in most cases not explicitly computable.
In [17], the existence of the Yaglom limit is proved by spectral theory arguments,
which doesn’t allow us to get its explicit value. The main motivation of Section
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2.3 is to prove an approximation method of vy, even when the drift VV and the
domain Uy, don’t fulfill the conditions of Section 2.2.

The approximation method is based on a sequence of interacting particle sys-
tems defined with the jump measures (2.2), for all N > 2. In the case of a
Brownian motion absorbed at the boundary of a bounded open set (i.e. ¢ = 0),
Burdzy et al. conjectured in [13] that the unique limiting measure of the sequence
(XN)NE]N is the Yaglom limit vo. This has been confirmed in the Brownian mo-
tion case (see [14], [40] and [62]) and proved in [30] for some Markov processes
defined on discrete spaces. New difficulties arise from our case. For instance,
the interacting particle process introduced above isn’t necessarily well defined,
since it doesn’t fulfill the conditions of Section 2.2. To avoid this difficulty, we
introduce a cut-off of Uy near its boundary. More precisely, let (Up,)m>0 be an
increasing family of regular bounded subsets of Uy, such that VV is bounded on
each U, and such that Us, = J,,>0 Um- We define an interacting particle process

(X1 X™N) on each subset UY, by setting qZ(N) =VVand D =U,, in (2.1).
For all m > 0 and N > 2, (X™! .. X™N) is well defined and exponentially
ergodic. Denoting by X™ its empirical stationary distribution, we prove that

lim lim xX™N = v,..
m—00 N—o00

We conclude in Section 2.3.3 with some numerical illustrations of our method
applied to the 1-dimensional Wright-Fisher diffusion conditioned to be absorbed
at 0, to the Logistic Feller diffusion and to the 2-dimensional stochastic Lotka-
Volterra diffusion.

2.2 A general interacting particle process with jumps
from the boundary

2.2.1 Construction of the interacting process

Let D be an open subset of R? d > 1. Let N > 2 be fixed. For all i € {1,....N},
we denote by P? the law of the diffusion process X ®, which is defined on D by

)

dX) = dBi — ¢ (xMyat, X\ = 2" e D (2.5)

and is absorbed at the boundary dD. Here B!,....BY are N independent d-
dimensional Brownian motions and qi(N) = l(f),...,qgi\l[)) is locally Lipschitz. We
assume that the process is absorbed in finite time almost surely and that it doesn’t
explode to infinity in finite time almost surely.
The infinitesimal generator associated with the diffusion process (2.5) will be
denoted by Ez(-N) , with
£ :;ijz_qglj)a
@ 7 Oxj

Jj=1
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on its domain DL(M'
For each i € {1,...,N}, we set

D; = {(z1,....,xx5) € O(DY), such that x; € D, and, Vj # i, xj € D}.

We define a system of particles (X!,..., X ") with values in DV, which is cadlag and
whose components jump from |J; D;. Between the jumps, each particle evolves
independently of the other ones with respect to P?.

Let JWN) . vazo D; — Mi(D) be the jump measure, which associates a
probability measure J™)(z1,....xx) on D to each point (z1,....zx) € Uf\il D;.
Let (X{,....,XJY) € DV be the starting point of the interacting particle process
(X1,...,XN) which is built as follows:

e Each particle evolves following the SDE (2.5) independently of the other
ones, until one particle, say X%, hits the boundary at a time which is
denoted by 7. On the one hand, we have 71 > 0 almost surely, because
each particle starts in D. On the other hand, the particle which hits the
boundary at time 7; is unique, because the particles evolves as independent
Ito’s diffusion processes in D. Tt follows that (X1 X2 ) belongs to D, .

TL-9"")

e The position of X% at time 7 is then chosen with respect to the probability
measure J ) (X1 .,Xﬁ_).

T1-7""

e At time 7 and after proceeding to the jump, all the particles are in D. Then
the particles evolve with respect to (2.5) and independently of each other,
until one of them, say X, hits the boundary, at a time which is denoted
by 7. As above, we have 7 < 15 and (X%_,...,Xg_) € Dj,.

e The position of X2 at time 75 is then chosen with respect to the probability
measure 7N (X1 LX),

To-3""

e Then the particles evolve with law P? and independently of each other, and
SO on.

The law of the interacting particle process with initial distribution m € M (D)
will be denoted by PY, or by PN if m = §,, with z € DV. The associated
expectation will be denoted by En]\{, or by E, if m = §,. For all 8 > 0, we denote
by Sg = inf{t > 0, |(X},...., X]}V)| > B} the first exit time from {z € D, |z|> < 8},
where | - | denotes the Euclidean norm. We set So = limg_,o 5.

The sequence of successive jumping particles is denoted by (ip)n>1, and

O<n<m<...

denotes the strictly increasing sequence of jumping times (which is well defined for
all n > 0 since the process is supposed to be absorbed in finite time almost surely).
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Thanks to the non-explosion assumption on each P?, we have 7, < So foralln > 1
almost surely. We set 7o, = limy, oo T < Soo. The process described above isn’t
necessarily well defined for all ¢ € [0,5»[, and we need more assumptions on D
and on the jump measure J@) to conclude that 7o = So almost surely.

In the sequel, we denote by ¢p the Euclidean distance to the boundary 9D:

= inf — f 11 D.
¢p(x) yle%D‘y x|, for all z €

For all r > 0, we define the collection of open subsets D, = {z € D, ¢p(z) > r}.
For all > 0, we set Bg = {z € D, |z| < 8}.

Hypothesis 2.1. There exists a neighborhood U of 0D such that
1. the distance ¢p is of class C* on U,

2. forall B >0,
inf EZ(-N)QSD(:I:) > —00.
z€UNBg, i€{l,..,N}

In particular, Hypothesis 2.1 implies
|Vop(x)| =1, Vz e U. (2.6)

Remark 2.1. The first part of Hypothesis 2.1 is fulfilled if and only if D is an
open set whose boundary is of class C? (see [25, Chapter 5, Section 4]).

The following assumption ensures that the jumping particle is attracted away
from the boundary by the other ones.

Hypothesis 2.2. There exists a non-decreasing continuous function fV) : Ry —

R wanishing at 0 and strictly increasing in o neighborhood of O such that, Vi €
{1,...,N},

inf TN (2. an){y €D, ¢ply) > min fN (6p(x;))}) = pi,
(z1,...,xzN)ED; jF#i

péN) > 0 s a positive constant.

Informally, f(")(¢p) is a kind of distance from the boundary and we assume
that at each jump time 7,, the probability of the event "the jump position X;: is
chosen farther from the boundary than at least one another particle” is bounded
below by a positive constant p(()N) .

Remark 2.2. Hypothesis 2.2 is very general and allows a lot of choices for
TN (x1,....xx). For instance, for all u € M;(D), one can find a compact set
K C D such that u(K) > 0. Then JW)(x1,....xx5) = p fulfills the assumption

with pi) = u(K) and f™(¢p) = ¢p A d(K,0D).



2.2. A GENERAL INTERACTING PARTICLE PROCESS WITH JUMPS FROM
THE BOUNDARY 85

Hypothesis 2.2 also includes the case studied by Grigorescu and Kang in [42],
where
TN (g1, xN) = Zpij(xi)éxj, Y(z1,...,xN) € D;.
J#i
with Z#ipij(xi) = 1 and infieqy, . Ny j2iaicop Pij(zi) > 0. In that case, the
particle on the boundary jumps to one of the other ones, with positive weights.
Tt yields that Hypothesis 2.2 is fulfilled with p{") = 1 and f®™)(¢p) = ¢p. In

Section 2.3, we will focus on the particular case

1
j(N)(xl,...,l‘N):m | Z ‘ ‘(5m].,V(.’L'1,...,JEN) € D,.
]:1""7N7 ]?éz
That will lead us to an approximation method of the Yaglom limit (2.4).

Finally, given a jump measure J ) satisfying Hypothesis 2 (with p(()N) and

f)), any o) Ui\io D; — My (D) and a constant «¥) > 0, the jump measure
JéN)(xl,...,xN) = oMITM (21, an)+1—a"Ne™) (z1,....zn), Y(z1,....2N) € D,

fulfills the Hypothesis 2.2 with p{") = a™p™ and £ (¢p) = ™) (¢p).

0,0 —

Finally, we give a condition which ensures the exponential ergodicity of the
process. In particular, this condition is satisfied if D is bounded and fulfills
Hypothesis 2.1.

Hypothesis 2.3. There exists a > 0, t(()N) > 0 and a compact set KSN) C D such

that
1. the distance ¢p is of class C* on D \ D2y and

LMep(z) > —cc.

m
€D\ Daq, 1€{1,...,N}

2. foralli € {1,...,N}, we have

N
pM = Hl dnt ]P;(ng)v) e kM) > 0.

Theorem 2.1. Assume that Hypotheses 2.1 and 2.2 are fulfilled. Then the process
(X1,....XN) is well defined, which means that Too = So almost surely.

If Hypothesis 2.2 and the first point of Hypothesis 2.3 are fulfilled, then 7o =
Seo = +00 almost surely.

If Hypotheses 2.2 and 2.5 are fulfilled, then the process (X',..,XN) is expo-
nentially ergodic, which means that there exists a probability measure MY on DN
such that,

t
1PN (X} XY € ) = MY ||y < () (p(N)> ,Vz € DV, Vvt € Ry,

where CWN)(x) is finite, p\N) < 1 and ||.||rv is the total variation norm. In
particular, MY is a stationary measure for the process (X*,...,.XV).
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The main tool of the proof is a coupling between (tha--thN)te[o,Sﬁ} and a sys-

tem of N independent one-dimensional diffusion processes (Kf’l,...,}@ﬂ’N)te[o’SB},
for each 8 > 0. The system is built in order to satisfy

0 <Y/ < ¢p(X)) as.

for all t € [0,756 A Sg] and each i € {1,...,N}. We build this coupling in Subsection
2.2.2 and we conclude the proof of Theorem 2.1 in Subsection 2.2.3 .

In Subsection 2.2.4, we assume that D is bounded and that, for all N > 2,
we're given J@) and a family of drifts (ql-(N))lgigN, such that Hypotheses 2.1,
2.2 and 2.3 are fulfilled. Moreover, we assume that « in Hypothesis 2.3 doesn’t
depend on N. Under some suitable bounds on the family (qz(N))lgigN, N>2, We
prove that the family of laws of the empirical distributions (X)n>2 is uniformly
tight. In our case, this is equivalent to the property: Ve > 0, there exists a
compact set K C D such that E(XYN(D\ K)) < ¢ for all N > 2 (see [48]). In
particular, this implies that (X")y>2 is weakly sequentially compact. Let us
recall that a sequence of random measures (yy)y on D converges weakly to a
random measure v on D, if yn(f) converges to y(f) for all continuous bounded
functions f : D — R. This property will be crucial in Section 2.3.

2.2.2 Coupling's construction

Proposition 2.2. Assume that Hypothesis 2.1 is fulfilled and fix 8 > 0. Then
there exists a > 0, a N-dimensional Brownian motion (W*',... W) and positive
constants Q1,...,QnN such that, for eachi € {1,....N}, the reflected diffusion process
with values in [0,a] defined by the reflection equation (cf. [18])

Y =Y e W - Qi+ L - L Y = min(ap(X)  (27)

satisfies
0< Y <¢p(X)) Aa as. (2.8)

for all t € [0,700 A Sg| (see Figure 2.1). In (2.7), L*® (resp. L»®) denotes the
local time of YP at {0} (resp. {a}).

Remark 2.3. If the first part of Hypothesis 2.3 is fulfilled, then the proof remains
valid with 8 = 0o and a = « (where o > 0 is defined in Hypothesis 2.3). This
leads us to a coupling between X and Y valid for all ¢ € [0,700 A Soo[= [0,700 -

Proof of Proposition 2.2 : The set Bg\ U is a compact subset of D, then there
exists a > 0 such that Bg \ U C Da,. In particular, we have Bg \ Dy, C U, so
that ¢p is of class C? in Bg \ Dag.
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Figure 2.1: The particle X! and its coupled reflected diffusion process Y'!

Fix i € {1,..,N}. We define a sequence of stopping times (6?), such that
X} € Bg\ Dy for all ¢ € [05,,64,. [ and X; € D, for all t € [0}, .05, 5. More
precisely, we set (see Figure 2.2)

6% = inf {t € [0, + oo, X} € Bg\ Do} A Too A Sp,
0} = inf {t € [to, + oo[, X} € D2y} A T A S5,

and, for n > 1,

eén = inf {t € [ténfla + OO[, XZ € BB \ Da} A Too N 867
eén—i-l = inf {t € [ ’énv + OO[, XZ € D2(L} N Too N\ S,B
The sequence (65,) is non-decreasing and goes to To A Sg almost surely.

Let v be a 1-dimensional Brownian motion independent of the process (X*,...,X™)
and of the Brownian motion (B!,....BY). We set

W} =i, for t € [0,6)],

and, for all n > 0,
Wi =Wy + [ Vop(Xy)-dByfort €05,,05,.1];
" O5n

Wtz = W;%wrl + (’7; - ’yééwrl) for t € [6§n+1’9%n+2[’

where fén Vop(X:)-dB has the law of a Brownian motion between times 65,
and 605, ,, thanks to (2.6). The process (W?',..,W?) is yet defined for all t €
0,700 A Sg[. We set

Wi = W’:ioo/\Sﬁ— + (v - ’YiooASB) for t € [7e0 A Sp, + 00|



CHAPTER 2. INTERACTING PARTICLE SYSTEMS AND YAGLOM LIMIT

88 APPROXIMATION OF DIFFUSIONS WITH UNBOUNDED DRIFT
/
Do) 4 (XD
/\“/\ //
2a \\ \ J‘\//
—————— T
. \ /
(N \/
~
,‘\ \//\\
o \\- V/'r\\
................. N N
VI . \\\ A
Dt ‘ IV NZAVAN
\Y, \\/\
0 -
6o 6 0y 05 t

Figure 2.2: Definition of the sequence of stopping times (6%),>0

It is immediate that (W?,.... W) is a N-dimensional Brownian motion.
Fix i € {1,...,N}. Thanks to Hypothesis 2.2, there exists QEN) > 0 such that

inf £ p(x) > -
x€Bg\Day

Let us prove that the reflected diffusion process Y% defined by (2.7) fulfills in-
equality (2.8) for all t € [0,756 A Sg].

We set ¢ =inf 40 <t < oo A S, Y > qSD(Xg)} and we work conditionally
to ¢ < 7o A Sg. By right continuity of the two processes,

0< qu(Xé) < YC’B’i < g a.s.
One can find a stopping time ¢’ €]¢,7o0 A Sg[, such that X doesn’t jump between
¢ and ¢’ and such that Ytﬁ’l > 0 and X} € Bg\ Dy, for all t € [(,{'] almost surely.

Thanks to the regularity of ¢p on Bg \ Da,, we can apply Ité’s formula to
(6D (X}))teic,c and we get, for all stopping time ¢ € [¢,('],

op(X}) = dp(XD) + /< Von(Xi)-dBi + /< £ o (XT)ds,

But ¢ and (¢’ lie between an entry time of X? to Bs \ D, and the following entry
time to Da,. It yields that there exists n > 0 such that [¢,('] C [05,.05,,1[. We
deduce that

op(XH) YT = op(X) Y+ / (LM op(xD) + QM) ds— Ly + L+ Ly~ LY,
¢
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where EZ(N)¢D(X§) + QZ(»N) >0, (L5")s>0 is increasing and L = LZ’O, since YA+
doesn’t hit 0 between times ¢ and t. It follows that, for all ¢ € [(,('],

¢p(X]) =Y > ¢p(X)) - V!
> ¢D(X27) - Ygﬂj > 0.

where the second inequality comes from the positivity of the jumps of ¢p(X?)
and from the left continuity of Y#7, while the third inequality is due to the
definition of ¢. Then ¢p(X?) — YP7 stays non-negative between times ¢ and ¢/,
what contradicts the definition of ¢. Finally, ( = 7o A Sg almost surely, which
means that the coupling inequality (2.8) remains true for all ¢ € [0,700 A Sg[. O

2.2.3 Proof of Theorem 2.1

Proof that (X*,...,X) is well defined under Hypotheses 2.1 and 2.2. Let N > 2
be the size of the interacting particle system and fix arbitrarily its starting point
z € DN. Thanks to the non explosiveness of each diffusion process P?, the
interacting particle process can’t escape to infinity in finite time after a finite
number of jumps. It yields that 7o, < Seo almost surely.

Fix § > 0 such that = € B and define the event Cg = {7oc < Sg}. Assume
that C'z occurs with positive probability. Conditionally to Cjg, the total number
of jumps is equal to +oo before the finite time 7. There is a finite number of
particles, then at least one particle makes an infinite number of jumps before 7.
We denote it by ig (which is a random index).

For each jumping time 7,, we denote by o the next jumping time of ig, with
T < J;O < Teo- Conditionally to Cg, we get Jflo — 7n — 0 when n — oo. For
all C? function f with compact support in ]0,2a[, the process f(¢p(X%)) is a
continuous diffusion process with bounded coefficients between 7,, and ¢%0-, then

sup [f(ép(X°)| = sup |f(6p(X;")) — f(ép(X%, ) 7= 0, a.s.

te[Tn,U:LO [ tE[Tn:O"fLD [

Since the process ¢p(X%) is continuous between 7, and 00—, we conclude that
¢D(Xi2) doesn’t lie above the support of f, for n big enough almost surely. But
the support of f can be chosen arbitrarily close to 0, it yields that ngD(Xig) goes
to 0 almost surely conditionally to Cg.

Let us denote by (70),, the sequence of jumping times of the particle i9. We
denote by A, the event

Aw = {3i # o] o0(Xy) < FV(ep(X5 )}

%
Tno
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where f(N) is the function of Hypothesis 2.2 . We have, for all 1 < k < [,

I+1 I+1
P (ﬂ A;) —FE (E (H T4 | (XQ,...X,{V)OSKT;%))
n=~k n=k

l
B 1 N .
— E (H 1acE <]lAlc+1 (X, X )ogt<n’£1>> ’
n==k

where, by definition of the jump mechanism of the interacting particle system,

Ti+1

1 N N 1 N
E <]lAlC+1 ‘ (Xt 7"'Xt )0<t<7';_(~)_1> = j( )(X iQ 7...,XT;£1) ( lc+1)

by Hypothesis 2.2. By induction on [, we get

l
P (ﬂ A;) <(1-p™MiF vi<k<l
n=~k

Since p(()N) > 0, it yields that

P UﬁAg =0.

k>1n=~k

It means that, for infinitely many jumps 7,, almost surely, one can find a particle
j such that fO) (¢p(XL)) < ¢p(X). Because there is only a finite number of
other particles, one can find a particle, say jo (which is a random variable), such
that

FM(pp(X)) < pp(X2), for infinitely many n > 1.

In particular, lim, o (ng(Xig),f(N)(qSD(Xﬁg))) = (0,0) almost surely. But

(fO)~1 is well defined and continuous near 0, then
lim (¢p(X2).0p(XE)) = (0,0) as.

Using the coupling inequality of Proposition 2.2, we deduce that

Cr < { Jim (77 = 00y
Then, conditionally to Cpg, Y50 and Y7o are independent reflected diffusion
processes with bounded drift, which hit 0 at the same time. This occurs for two
independent reflected Brownian motions with probability 0, and then for YA
and Y#9 too, by the Girsanov’s Theorem. That implies P, (Cj) = 0.

We have proved that 7o, > Sg almost surely for all 8 > 0, which leads to
Too = Soo almost surely. Finally, we get 7.0 = Soo almost surely.
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If the first part of Hypothesis 2.3 is fulfilled, one can defined the coupled
reflected diffusion Y>> which fulfills inequality (2.8) with a = « and for all
t € [0,700 A Soc[= [0,7sc[. Then the same proof leads to

[e5s}

{1 < +oc) € { Jim (7=07%) = 0.0)}.

Finally, we deduce that 7o, = oo almost surely. O

Remark 2.4. One could wonder if the previous coupling argument can be gener-
alized, replacing (2.5) by uniformly elliptic diffusion processes. In fact, such argu-
ments lead to the definition of Y as the reflected diffusion Y}’ = fg H(XE)dW! —
Qit+LY— L, where ¢ is a regular function. In our case of a drifted Brownian mo-
tion, ¢ is equal to 1 and Y is a reflected drifted Brownian motion independent of
the others particles. But in the general case, the Y are general orthogonal semi-
martingales. It yields that the generalization of the previous proof reduces to the
following hard problem (see [74, Question 2, page 217| and references therein):
"Which are the two-dimensional continuous semi-martingales for which the one
point sets are polar 7". Since this question has no general answer, it seems that
the previous proof doesn’t generalize immediately to general uniformly elliptic
diffusion processes.

We emphasize the fact that the proof of the exponential ergodicity can be gen-
eralized (as soon as 7o, = Seo = +00 is proved), using the fact that (Y},...,Y;V);>0
is a time changed Brownian motion with drift and reflection (see [74, Theorem
1.9 (Knight)]). This time change argument has been developed in [42], with a
different coupling construction. This change of time can also be used in order to
generalize Theorem 2.3 below, as soon as the exponential ergodicity is proved.

Proof of the exponential ergodicity. It is sufficient to prove that there exists n > 1,
€ > 0 and a non-trivial probability ¥ on D¥ such that
Po((XY (nysen XN w)) € A) > €d(A), Yz € Ko, A € B(DY), (2.9)

ntg nty
N
with Ky = <K8N)> , Where t(()N) and K[SN) are defined in Hypothesis 2.3, and
such that

sup E(k7) < o0, (2.10)
zeKy

where £ is a positive constant and 7/ = min{n > 1, (X:Lt(N“"’XrJZ(N))”EN € Ko}
0 0

is the return time to Ky of the Markov chain (X:Lt(N),...,X:i(N))neN. Indeed,

0 0
Down, Meyn and Tweedie proved in [26, Theorem 2.1 p.1673] that if the Markov

chain (X:Lt(N) ,...,XZ(N)),LG]N is aperiodic (which is obvious in our case) and fulfills
0 0

(2.9) and (2.10), then it is geometrically ergodic. But, thanks to [26, Theorem
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5.3 p.1681], the geometric ergodicity of this Markov chain is a sufficient condition
for (X1,...,X) to be exponentially ergodic.

We assume without loss of generality that KSN) C D,/ (where o is defined
in Hypothesis 2.3). Let us set

[, infrep, , PI(X D, € AnK(Y)
I(A) = ;

. ; 7 N
1Y, infeep, , IPZ(X:(()])V) e KiM)

Thanks to Hypothesis 2.3, ¥ is a non-trivial probability measure. Moreover, (2.9)
is clearly fulfilled with n =1 and e = [[Y, infyep, ]PZ(X(()V) e k™).

Let us prove that 3k > 0 such that (2.10) holds. One can define the N-
dimensional diffusion (Y°%!,...,Y°>") reflected on {0,a} and coupled with (X*,.... X V),
so that inequality (2.8) is fulfilled for all ¢ € [0, + oo and @ = a. For all 29 € DV,
we have by the Markov property

Poo (X, ov X)) € Ko ) 2 Py (Xix) € Do, ¥i) inf Py(X] ) € K™ vi)
0 0

2t zeDY ,
A (N)
. ; N
> Py (Xjom € Do /Q,W)Zﬂlxégf Po(Xy) € Ko ')

> IPazo(Xz(N) € Da/27Vi)p(1 )7
0

where pgN) > 0 is defined in Hypothesis 2.3. It yields that

Pay (X500 X 00) € KG) 2 0 Py (00 (X)) > /2.)

H]Pyooz YOOZ >a/2)
=1

thanks to Proposition 2.2. A comparison argument shows that IPYOOZ(Y(()Z; >

a/2) > Po(Y>>" > a/2). Then
N
N
inf P (X, 0 Xpjo0) € K0) 2 0 [P0V > a/2) >

xro€D 2tO —1
1=

thanks to the strict positivity of the density of the law of Y;C(’;)Z, foralli € {1,....N}.
Using the Markov property, we get, Vn > 1, ’
P > 20ty > (1= inf Poy (XL )0 XViy) € KN)P(7! > 2(n — 1))
zo€D Qto 2t0
. 1 N N
> (1- xt%fDIPxo((théma-wXQtéN)) € Kq'))",

where 0 < infg,ep Pxo((X;t(Nw"'ng(N)) € K{¥) < 1. It yields that there exists
% > 0 such that (2.10) is fulfilled. O
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2.2.4 Uniform tightness of the empirical stationary distributions

In this part, the open set D is supposed to be bounded. Assume that a jump

measure JW) and a family of drifts (qu))i:L...,N are given for each N > 2.

Hypothesis 2.4. Hypotheses 2.1 and 2.2 are fulfilled for each N > 2 and Hy-
pothests 2.5 is fulfilled with the same « for each N > 2. Moreover, there exists
r > 1 such thatl

N
1 (N)y2
72 Q)
sup i < 400,
Nz2 N =

where QEN) = —infzep\p, EEN)ng(x).

For all N > 2, we denote by m" € My(D") the initial distribution and

by ™ (t,dz) the empirical distribution of the N-particles process defined by the
(N

jump measure JN) and the family (g; ))Z-e{l’_”,N}. Its stationary distribution is

denoted by M¥ and its empirical stationary distribution is denoted by X'V:

N = lzNja
— .,
Nizl

! N is a random vector in DV distributed following MY .

where (z',...,z
Theorem 2.3. Assume that Hypothesis 2./ is fulfilled. For all sequence of mea-
sures m~N € My(DN) and all t > 0, the family of laws of the random measures
(pN(t,dx))N>2 1s uniformly tight. In particular, the family of laws of the empirical

stationary distributions (XN) s uniformly tight.

N>2

Proof. Let us consider the process (X',...,X") starting with a distribution m®~

and its coupled process (Y°>!,... ) Y°V) Forall t € [0,75[, we denote by /N (t,dx)

the empirical measure of (V! ¥;>*"). By the coupling inequality (2.8), we
get

p (,D7) < W™ (t[0,r]), ¥r € [0,0].

Using the Markov property, we deduce that, for all s < t,

Exi..xy (,uN(t —s,Df)) < Eysoi  yoon (M’N(t —5,[0,7])) a.s.

-----

Then, by a comparison argument,

< NZPO(YH’ <r)as. (2.11)

Thanks to the Girsanov’s Theorem, we have

PV < 1) = Ey (5

t—s

Nt (024 3024
wiyie_pio ([0])e winam (@ s>) e2 (@ ) (E=s),
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where (w!,...,w") is a N-dimensional Brownian motion. By the Cauchy Schwartz

inequality, we get

00,1 2 (M yi (@™ . 9
PO(Y;S s < T) \/EO <<6wt +Lifs_Lifs([0’TD) > Ey <<6QL i QM2 )> ),
= \/EO (6w%_s+Lif*,L;fs([0,r]))

where the second inequality occurs, since 0 < (5

L ag*Li’_Os([O’r]) < 1 almost

i (N)y2, . . i
surely and the process e2Q0wi=2(Q:" )% ig the Doleans exponential of 2Q§N)w§,
whose expectation is 1. Taking the expectation in (2.11), it yields that

N
1 302
B (1 (,D5)) < \/ Po (85 pppe—pio (001)) 3 Do e3 @70, w0 < s <.

i=1
(N)
Thanks to Hypothesis 2.4, there exists sg €]0,¢[ such that + Z e3(Q7 ) (t=s0)
is uniformly bounded in N > 2. But Fy ((5 I —LE0 ) goes to 0
t—sg
when r — 0, so that the family of the laws of random measures (p* (t,dz))n>2 is

uniformly tight.

If we set m” equal to the stationary distribution M?, then we get by sta-
tionarity that XV is distributed as pV(t,.), for all N > 2 and ¢t > 0. Finally,
the family of laws of the empirical stationary distributions (X') N>2 is uniformly
tight. 0

2.3 Yaglom limit’s approximation

We consider now the particular case 7N (z1,....xx5) = T Zk 1 ki Omy, at each
jump time, the particle which hits the boundary jumps to the position of a particle
chosen uniformly between the N — 1 remaining ones. We assume moreover that
ql(N) = ¢ doesn’t depend on 7,N. In this framework, we are able to identify the
limiting distribution of the empirical stationary distribution sequence, when the
number of particles tends to infinity. This leads us to an approximation method
of the Yaglom limits (2.4), including cases where the drift of the diffusion process
isn’t bounded and where the boundary is neither regular nor bounded.

Let Uy be an open domain of R?, with d > 1. We denote by IP™ the law of

the diffusion process defined on Uy by
dX° =dBy — VV(X°)dt, X =2 € Ux (2.12)

and absorbed at the boundary dU,. Here B is a d-dimensional Brownian motion
and V € C?(Ux,R). We assume that Hypothesis 2.5 below is fulfilled, so that
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the Yaglom limit
Voo = lim PP (X €.t <my),Vz € Usx (2.13)
t—+o0

exists and doesn’t depend on z, as proved by Cattiaux and Méléard in |17, Theo-
rem B.2]. We emphasize the fact that this hypothesis allows the drift VV of the
diffusion process (2.12) to be unbounded and the boundary 0Us to be neither
of class C? nor bounded. In particular, the results of the previous section aren’t
available in all generality for diffusion processes with law P>°.

Hypothesis 2.5. We assume that
1. PX(7y < 400) = 1,
2. 3C > 0 such that G(x) = |VV|*(z) — AV (z) > —C > —o0, Vz € U,

3. G(R) — 400 as R — oo, where

G(R) = inf {G(2);|z| > R and x € Uy},

4. There exists an increasing sequence (Up)m>0 of bounded open subsets of
Uso, such that the boundary of U, is of class C? for all m > 0, and such
that UmZOTm =U.

5. There exists Ry > 0 such that

e 2V (@) dy < 0o and

/ </ pgj‘x’ (:E,y)dy) e V@ dr < co.
UsoN{d(2,0Usc)<Ro} Uso

/Umm{d(x,@Uoo)>Ro}

Here py> is the transition density of the diffusion process (2.12) with respect
to the Lebesgue measure.

According to [17], the second point implies that the semi-group induced by P
is ultra-contractive. The assumptions 1-4 imply that the generator associated with
P> has a purely discrete spectrum and that its minimal eigenvalue —\, is simple
and negative. The last assumption ensures that the eigenfunction associated with
— oo is integrable with respect to e=2Y (@) dz. Finally, Hypothesis 2.5 is sufficient
for the existence of the Yaglom limit (2.13).

Remark 2.5. For example, it is proved in [17] that Hypothesis 2.5 is fulfilled
by the Lotka-Volterra system studied numerically in Subsection 2.3.3. Up to a
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change of variable, this system is defined by the diffusion process with values in
Us = Ri, which satisfies

1 yl 3 vyl (vy2 2
dY}/l _ dBtl L (7‘1;@ _ 011718( t ) G272 158 ( i ) _ 2}1/’1 dt
2 2\ 3 2 1\2 t (214)
Y, Y- (Y,
dY}?:dBtQ—&— r2Y; _02272(t) 1Mty (t) _ 12 &t
2 8 8 2Y;

and is absorbed at OU,,. Here B!, B? are two independent one-dimensional Brow-
nian motions and the parameters of the diffusion process fulfill condition (2.30).

In order to define the interacting particle process of the previous section, we
work with diffusion processes defined on U,,, m > 0. More precisely, for all m > 0,
we denote by P™ the law of the diffusion process defined on U, by

dX/™ = dBy — qu(XP™)dt, XY =2 € U, (2.15)

and absorbed at the boundary OU,,. Here B is a d-dimensional Brownian motion
and ¢, : Uy — R is a continuous function. We denote by £™ the infinitesimal
generator of the diffusion process with law P™. For all m > 0, the diffusion
process with law IP" clearly fulfills the conditions of Section 2.2. For all N > 2, let
(X™1 ..., X™N) be the interacting particle process defined by the law P between
the jumps and by the jump measure 7N (z1,...,zx) = ﬁ Z,iV:Lk# 0z, By
Theorem 2.1, this process is well defined and exponentially ergodic.

For all m > 0 and all N > 2, we denote by ™ (t,dx) the empirical distribu-
tion of (Xtm’l,...,Xtm’N), by M™N the stationary distribution of (X™1! ..., X™N)
and by X™" the associated empirical stationary distribution.

We are now able to state the main result of this section.

Theorem 2.4. Assume that Hypothesis 2.5 is satisfied and that ¢m = VV1gG—
for allm > 0. Then

lim lim X™N =g,
m—00 N—00

in the weak topology of random measures, which means that, for all bounded con-
tinuous function f: Usx — Ry,

lim lim E(&X™N(f) = veo(f).

m—00 N—00

In Section 2.3.1, we fix m > 0 and we prove that the sequence (X™)y>o
converges to a deterministic probability v, when N goes to infinity. In particular,
we prove that v, is the Yaglom limit associated with P™, which exists by [17].
In Section 2.3.2, we conclude the proof, proceeding by a compactness/uniqueness
argument: we prove that (vp,)m>0 is a uniformly tight family and we show that
each limiting probability of the family (v4,)m>0 is equal to the Yaglom limit vu.
The last Section 2.3.3 is devoted to numerical illustrations of Theorem 2.4.
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2.3.1 Convergence of (X™")ysy, when m > 0 is fixed

Proposition 2.5. Let m > 0 be fived and let ¢, : Uy, — R be a continuous func-
tion. Assume that p™"N (0,dx) converges in the weak topology of random measure
to a random probability measure i, with values in M1(U,,), when N — oo. Then,
for all T > 0, u™N(T,dx) converges in the weak topology of random measure to
PR (X1 € .| X1 € Up,) when N goes to infinity.

Moreover, if there ezists vy, € M1(Uy,) such that

Vi = lim P (XtUm e |XUn ¢ Um) Vi€ My(Uy), (2.16)

then the sequence of empirical stationary distributions (Xm’N)NZQ converges to
Um0 the weak topology of random measures when N goes to infinity.

Remark 2.6. In Proposition 2.5, v, is the Yaglom limit and the unique quasi-
stationary distribution associated with IP"". For instance, each of the two following
conditions is sufficient for the existence of such a measure:

L. If g = 15 VV, by [17]. This is the case of Theorem 2.4.
2. If g, belongs to C1*(U,,) with o > 0, by [37].

Proof of Proposition 2.5. We set

N—-1\"
N(t7dx) - <N) :um7N(t7dm)7

where AN =Y

ne1 L, <t denotes the number of jumps before time ¢. Intuitively,

we introduce a loss of 1/N of the total mass at each jump, in order to approximate
the distribution of the diffusion process (2.15) without conditioning. We will come
back to the study of ™" and the conditioned diffusion process by normalizing
v™ N (a similar method is used in [40], with a different value of V).

Similarly to [40, Proposition 1], we apply the Itd’s formula to the semi-
martingale p™ (t,) = ZZ LV "), where ¢ € C2(Uy,,R) vanishes at 9D.

We get

t
Nitw) = p™N(04) + /O pm™N (s,LMp)ds + MCvN@,w) + MIN ()
N_1 Z w Tn W), (2.17)

0<r, <t

where M%¥ (t,3)) is the continuous martingale

1 m,i 7,7
NZZ::/ Bx](X )dB:
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and M7 (t4)) is the pure jump martingale
1 N . N .
2 X (v - g,
i=10<ri<t

Applying the Ité’s formula to the semi-martingale v™" (¢,4)), we deduce from
(2.17) that

N _ .m,N ¢ m,N m ! N-1 = c,N
) =m0+ [ Vseroas+ [(BE) T ame s
+ Z mN Tnﬂ/} - VmN(Tn 7¢))

0<m, <t

Where we have

1y
(o) =V ) = (S ) ) = )

+ "N (- 00) <<N]\_[ 1>A4Vn - <NJ\;1>ANH) .

But

N(Tnvw) - Mm7N(Tn'7w) = ﬁ#m’N(Tn'ﬂﬁ) + Mj,N(Tnaw) - Mj,N(TnWw)
and

N-1\* (N-1\* 1 (N-1\"
) %) = ()

Then

N m,N N -1\ i\N i\N

(Tnﬂ/}) -V (Tn_ﬂ/}) = N) (M], (Tnﬂvb) - M7 (Tn_ﬂ/})) .
AT
- ()T ) - N )

That implies

N _.m,N _ ! m,N m t<N_1)A£V c¢,N
() = (00) = [ semiyds+ (S ) aMeN (sw)

N-1 N1\ ‘
TN > (Jvl) (MIN (1,00) = MIN (1,-0)).

0<rn <t
It yields that, for all smooth functions ¥(¢,x) vanishing at the boundary of U,,,

N(t’qj(t")) - Vm’N(O,\I’(O,.)) = ' ym7N(S’ M
0 0s

AN (2, 0) + NN (8,),

+ L7"Y(s,.))ds
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where NV (¢,0) is the continuous martingale
N d ¢ AN
1 N—-1\" oV NP
N2 / <N> g, X ABS

and NN (¢,0) is the pure jump martingale

N

N AN
1 N — 1)\ i yi N  mN i i
2 X (B (v - e et )

=1 0<ri <t

Let T > 0 be fixed. For all § > 0, define Uo(t,x) = P ,PMf(z), where
f € C*(U,,) and (P™)s>p is the semigroup associated with P™ : P™f(x) =
E,(f(XYn)). Then ¥’ vanishes on the boundary, is smooth, and fulfills

iqﬁ(s,x) + %A\pé (5,) + g () VI (s,2) = 0,

thanks to Kolmogorov’s equation (see [28, Proposition 1.5 p.9]). It yields that

v N (B0 (t,) — N (0,89(0,.)) = NN (£,8°) + NN (,0°). (2.18)
Since (%)Ag <1 as., we get
E(WNTwR) < CIVEE
T c (2.19)
<< = 1£1%
TN\ J(T-t+6 N1

where ¢, > 0is a positive constant. The last inequality comes from |71, Theorem
4.5] on gradient estimates in regular domains of RY. The jumps of the martingale
MIN (£, 0°) are smaller than 2|/ V||, then

N —1\*4m, . 2
E| Y <N> (M%N(Tn,qf&(m,.))—M%N(Tn-,qﬁ(fn-,.)))]
o<, <T
4 s N — 1) 24
<wlvike| 3 (Y5)
o<, <T
452
< — |03
< 1%l
Then 4 4
E (NN T)?) < — |02 < —||f|I%. 2.20
(A ,))_NH e < FII£1I5 (2.20)

Taking t = T and § = 3, we get from (2.18), (2.19) and (2.20) that

2
eI + 4
E< ) < T

m,N m —_ 3m,N m
v (trpﬁf) v (07PT+%f)

VN
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Assume that f vanishes at dU,,, so that f belongs to the domain of £™. Then
|PTf = flloo < %Hﬁmfﬂoo and we have
N

e + 4 2. oo
VE (@ - om0 ) < [2T A o 27 e 22250
(2.21)

By assumption, the family of random probabilities (1™ (0,.)) y>2 = (L™ (0,.)) y>2
converges to fimy,. We deduce from (2.21) that

VN f) —— (P ), (2.22)

for all f € C%(U,,) vanishing at boundary. But the family of laws of (um’N(T,.))N>2
is uniformly tight by Theorem 2.3 . It yields from (2.22) that its unique limiting
distribution is pu, (Pf*.). In particular,

(N (T, U ™ N (T,.)) —2 (i (P L, ) st (PE-)) -

N—oo

But p,, (Pp*1y,,) never vanishes almost surely, so that

Vm’N(Ta') law :U’m<P7Y“n) __ mm
vN(T\Up) Nooo  pim(PRly,,) ~ Hm

™ N(T,) = (xUm e |xUm e U,,).

(2.23)
The family of laws of the random probabilities (X™) ¢ is uniformly tight,
by Theorem 2.3. Let X™ be one of its limiting probabilities. By definition, there

exists a strictly increasing map ¢ : IN — IN, such that xme(N)

converges in
distribution to X™ when N — oo. By stationarity, X”¥(V) has the same law as
p™?N)(T,.), which converges in distribution to P (XUm € .|X¥m € Up,), thanks
to (2.23). But P2.(X2m € .|XZ™ € U,,) converges almost surely to v, when
T — o0, by (2.16). We deduce from this that X™ has the same law as v,,. As a
consequence, the unique limiting probability of the uniformly tight family (X™)y

iS vy, which allows us to conclude the proof of Proposition 2.5. O

2.3.2 Convergence of the family (v,,)m.>0

Proposition 2.6. Assume that Hypothesis 2.5 is fulfilled and that g, = VVig—.
Then the sequence (Vm)m>0 converges weakly to the Yaglom limit voo when m —
0.

Remark 2.7. Since ¢, = VV 1, the operator L™ is symmetric with respect to

2V(#)dg, but this isn’t directly used in the proof of Proposition 2.6.

the measure e~
We mainly use inequalities from [17] that are implied by the ultra-contractivity of
P> and the third point of Hypothesis 2.5. However, it seems hard to generalize

this last hypothesis and its implications to diffusions with non-gradient drifts.
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Proof of Proposition 2.6. For all m > 0 and m = oo, it has been proved in [17]
that —L£"* has a simple eigenvalue A, > 0 with minimal real part, where £™*
is the adjoint operator of £L™. The corresponding normalized eigenfunction 7, is
strictly positive on U,,, belongs to C2(U,,,R) and fulfills

L™ N = —Amhm and / nm(x)2da(az) =1, (2.24)

where
do(z) = e 2V @)y

The Yaglom limit v, is given by

B Nm 1y, do
fUm N (z)do ()

In order to prove that (v, )m>0 converges to Voo, we show that (A, )m>0 converges

dVm, ,Ym >0 or m = oo.

to Aso. Then we prove that (9,1y,,do),,~, is uniformly tight. We conclude by
proving that every limiting point ndo is a nonzero measure proportional to Ndo.

For all m > 0 or m = oo, the eigenvalue \,, of —L™* is given by (see for
instance [87, chapter XI, part 8|)

A inf AL 0D

m pu—
SECE (Unm), (6.8)gm=

where C§° (Upy,) is the vector space of infinitely differentiable functions with com-
pact support in Uy, and (f,9), ,, = fUm f(u)g(u)do(u). For all ¢ € C° (Us), the
support of ¢ belongs to Uy, for m big enough, then C§° (Ux) = U,,>0 C5° (Um)
since the reverse inclusion is clear. Moreover, if ¢ € C§° (Uy,), then L%(z) =
L™ ¢(x) for all x € Up,. Finally,

Ao = inf inf L™ ¢,0)
m>0 ¢€COOO(UM)7 <¢7¢>07m:1 < ¢ ¢> ’
= lim \ A

Let us show that the family (7,1y,,do)m>0 is uniformly tight. Fix an arbi-
trary positive constant € > 0 and let us prove that one can find a compact set
K. C Uy which fulfills

/ emly, do < e Ym > 0. (2.25)
Uso\Ke

Let Ry be the positive constant of the fifth part of Hypothesis 2.5. For all compact
set K, we have

/ nm 1y, do —/ Nmdo +/ Nmdo.
Uso\K {d(2,0Um)>Ro}NUnm\K {d(z,0Um)<Ro}NUm \ K
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From the proof of [17, Proposition B.6], we have on the one hand

/ mdo <[ [ o2V da,
{d(z,0Um)>Ro }NUn\K {d(2,0Uc0)>Ro }NUco \ K

which is smaller than €/2 for a good choice of K, say K/, since the integral at the
right-hand side is finite by Hypothesis 2.5. On the other hand

/ Nmdo < e“/2erm / ( / Py (w,y)dy> dz,
{d(2,0Um)<Ro U\ K {d(2,0U00) < Ro }NUso \ K o
(2.26)

where £ = sup,,5q [|7me " [loc < 0o thanks to [17], and Ay < A for all m > 0.
But the integral on the right-hand side is well defined by Hypothesis 2.5, then
one can find a compact set K/ such that (2.26) is bounded by €/2. We set
K. = K[ UK/ so that (2.25) is fulfilled. Since inequality (2.25) occurs for all
e > 0, the family (9,do)m>0 is uniformly tight. Moreover, n,,do has a density

V' uniformly in

with respect to the Lebesgue measure, which is bounded by ke~
m > 0. Then it is uniformly bounded on every compact set, so that every limiting
distribution is absolutely continuous with respect to the Lebesgue measure.

Let ndo be a limiting measure of (7,,do)m>0. For all ¢ € C§°(Us,R), the

support of ¢ belongs to Uy, for m big enough, then
<777 EOO¢>(;7OO = n}grloo <77m7 £m¢>g’m
= lim <£m*,'7m’ ¢>o’,m

m—0o0
= n}gnoo _)\m <77m7 d)>o'7m
= _)\OO <777 ¢>o’7oo .

Thanks to the elliptic regularity Theorem, 7 is of class C? and fulfills £y =
—Aso”)- But the eigenvalue A\ is simple, then 7 is proportional to 7. Let 8 >0
be the non-negative constant such that n = 1. In particular, there exists an
increasing function ¢ : IN — IN such that 7y, do converges weakly to Sn.cdo.
Let us prove that § is positive. For all compact subset K C U, we have

5<770076V]1K>07002 lim <T]¢>(m)7]lK6V>U’¢(m)

m—r0o0

) 1
> lim f<n¢(m)a]1K77¢(m)>a,¢>(m)

m—oo K

1
>=(1- 1 , 2.27
> = < sup (n Um\Knm>g7m) (2.27)

where £ = sup,,,> [|7me " [|oc < 00. For all m >0 and all R > 0,

1
<77m’ﬂUm\K’7m>a,m = a(R) <77m7]1\x|2RG77m>U’m + <77m>]1{\x|<R}\K77m>U,ma
(2.28)
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where G and G are defined in Hypothesis 2.5. Let us prove that (nm,Gnm%,m is
uniformly bounded in m > 0. For all x € Uy, (2.24) leads to

1 1
S G () = () + 56V O A (e ) ().
Then

1 Ve -
Gt = Ao i+ [ (@)™ O A ™) )

=\ / |V77m(:c)e_v(x)|2d:c
Um
<A,

where the second equality is a consequence of the Green’s formula (see |3, Corol-
lary 3.2.4]). But G(R) goes to +oo when R — oo, then there exists Ry > 0
such that ﬁ <77ma]1|:c\2R1G77M>0,m < %. Since £ = sup,,>q Hnme*V”OO < 00,
we deduce from (2.28) that

1
<77m,]1Um\K?7m>o7m < Z + KQ/U ]1{|x\<Rl}\Kd$

But one can find a compact subset K1 C Uy such that ono L{e)<rip\K, dz < #,
then we have from (2.27)
1
B{nolk), > o
It yields that 8 > 0 and Proposition 2.6 follows. O

2.3.3 Numerical simulations
The Wright-Fisher case

The Wright-Fisher with values in ]0,1[ conditioned to be absorbed at 0 is the
diffusion process driven by the SDE

dZy = \/Z(1 — Zy)dBy — Zydt, Zy = z €]0,1],

and absorbed when it hits 0 (1 is never reached). Huillet proved in [46] that the
Yaglom limit of this process exists and has the density 2 — 2x with respect to the
Lebesgue measure. In order to apply Theorem 2.4, we define P as the law of
X = arccos(1 —2Z7)). Then P is the law of the diffusion process with values
in Uy, =]0,7], driven by the SDE

1 — 2cos X°
dX>® = dB; — 08 24

—— Lt dt, X° = 0
2sin Xfo ) 0 Z 6] ,7'['[,

absorbed when it hits 0 (7 is never reached). One can easily check that this
diffusion process fulfills Hypothesis 2.5. We denote by v its Yaglom limit.
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For all m > 1, we define U, :]%,ﬂ' - %[ Let P™ and v, be as in Section

2.3. We proceed to the numerical simulation of the N-interacting particle system
(XmL L X™NY) with m = 1000 and N = 1000. This leads us to the computation
of E(X™N), which is an approximation of v,. After the change of variable
Z. = 2cos(X.), we see on Figure 2.3 that the simulation is very close to the
expected result (2 — 2x)dz, which shows the efficiency of the method.

{) | | | | | | | | |
0 0.1 02 03 04 05 06 0.7 0.8 0.9 |

Figure 2.3: E(X™") in the Wright-Fisher case

The logistic case

The logistic Feller diffusion with values in ]0, 4+ oo[ is defined by the stochastic
differential equation

dZy = \/Z4dBy + (rZy — ¢Z2)dt, Zo = = > 0, (2.:29)

and absorbed when it hits 0. Here B is a 1-dimensional Brownian motion and
r,c are two positive constants. In order to use Theorem 2.4, we make the change
of variable X. = 2v/Z.. This leads us to the study of the diffusion process with
values in Uy =0, + oo[, which is absorbed at 0 and satisfies the SDE

1 rX©  e(X°

)3
dX>® = dB, — - dt, X° = ool.
! ! <2Xt°° 5 T4 » Xo” =2 €0, + oo

We denote by P its law. Cattiaux et al. proved in [16] that Hypothesis 2.5 is
fulfilled in this case. Then the Yaglom limit v associated with P> exists and
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one can apply Theorem 2.4 with U, z]%,m[ for all m > 1. For all N > 2, we
denote by P™ the law of the diffusion process restricted to U, and by X™ the
empirical stationary distribution of the N-interacting particle process associated
with P™.

We’ve proceeded to the numerical simulation of the interacting particle process
for a large number of particles and a large value of m. This allows us to compute
E(X™N) which gives us a numerical approximation of v, thanks to Theorem
2.4.

In the numerical simulations below, we set m = 10000 and N = 10000. We
compute E(X™N) for different values of the parameters r and ¢ in (2.29). The
results are graphically represented in Figure 2.4. As it could be wanted for,
greater is c, closer is the support of the QSD to 0. We thus numerically describe
the impact of the linear and quadratic terms on the Yaglom limit.

2 T T T T T ]
r=1,c=10 ——
-~ =, =] mEEE -
r=10,c=1 -
l - -
0 il | | \l"u ! | # g i
0 1 2 3 4 7] 6 7 8

Figure 2.4: E(X™) for the diffusion process (2.29), with different values of r
and ¢

Stochastic Lotka-Volterra Model

We apply our results to the stochastic Lotka-Volterra system with values in D =
R?% studied in [17], which is defined by the following stochastic differential system

dZ} = \JmZtdBy + (12} — en(Z))? — c12Z) Z}) dt,

dZ} = \[72Z3dB} + (r2Z} — enZ} Z} — can(Z})?) dt,
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where (B,B?) is a bi-dimensional Brownian motion. We are interested in the
process absorbed at 0D.

More precisely, we study the process X = (Y1Y?2) = (2,/Z1/71,21/Z2/72),
with values in Us, = R?, which satisfies the SDE (2.14) and is absorbed at 0Ux.
We denote its law by P*°. The coefficients are supposed to satisfy

c11,e21 > 0, c1272 = c2171 < 0 and c11¢92 — c12¢21 > 0. (2.30)

In [17], this case was called the weak cooperative case and the authors proved that
it is a sufficient condition for Hypothesis 2.5 to be fulfilled. Then the Yaglom limit
Voo = limy_y 400 P° (X € .|t < 1) is well defined and we are allowed to apply
Theorem 2.4. For each m > 1, we define U, as a rectangle whose angles have
been rounded in a C? way, as it is described on Figure 2.5. With this definition,
it is clear that all conditions of Theorems 2.1 and 2.4 are fulfilled.

TN o ——

[“ m

/. :\
1/mieeaee

1/m m

X!

Figure 2.5: Definition of U,

We choose m = 10000 and we simulate the long time behavior of the inter-
acting particle process with NV = 10000 particles for different values of c19 and
c21- The values of the other parameters are ry =1 =ry=1,¢c11 =co =1, 11 =
~v9 = 1. The results are illustrated on Figure 2.6. One can observe that a greater
value of the cooperating coefficients —c19 = —co;1 leads to a Yaglom limit whose
support is further from the boundary and covers a smaller area. In other words,
the more the two populations cooperate, the bigger the surviving populations are.
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Figure 2.6: Empirical stationary distribution of the interacting particle process

for different values of c19 = ¢91






Chapter 3

Interacting particle processes
and approximation of Markov
processes conditioned to not

be killed *

Abstract

We prove an approximation method for general strong Markov processes
conditioned to not be killed. The method is based on a Fleming-Viot type
interacting particle system, whose particles evolve as independent copies of
the original strong Markov process and jump onto each others instead of
being killed. We only assume that the number of jumps of the Fleming-
Viot type system doesn’t explode in finite time almost surely, and that the
survival probability at fixed time of the original process is positive. We also
give a speed of convergence for the approximation method.

A criterion for the non-explosion of the number of jumps is then given
for general systems of time and environment dependent diffusion particles,
which includes the case of the Fleming-Viot type system of the approxima-
tion method. The proof of the criterion uses an original non-attainability of
(0,0) result for a pair of non-negative semi-martingales with positive jumps.

3.1 Introduction

Let F' be a Banach space and 0 be a point which doesn’t belong to F. Let P
be the semi-group of a strong Markov process Z which evolves in F'U {0} and

*submitted to ESAIM Probability and Statistics in June 2011.
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denote by 7y the hitting time of {9}. We assume that 0 is a cemetery point for
Z, which means that Z; = 0 for all t > 79, and we call 15 the killing time of Z.

Killed Markov processes are commonly used in a large area of applications
in biology, demography, chemistry or finance, where there is two natural ways of
killing a Markov process, which correspond to different interpretations. The first
way is to kill the process when it reaches a given set. For instance, a demographic’s
model is stopped when the size of the population hits 0, since it corresponds to
the extinction of the population. The second way of killing a process is to stop
it at an exponential time. For example, a chemical particle typically disappears
by reacting with another one after an exponential time, whose rate depends on
the concentration of reactant in the medium. If the killing time 7 is given by
the time at which the process reaches a set, we call it a hard killing time. If
it is given by an exponential clock, we call it a smooth killing time. While the
distribution of the process after its killing time is of poor interest, numerous
studies concentrate on the behavior of the process conditioned to not be killed
(see [16] and references therein). The main motivation of this paper is to provide
an approximation method for the distribution of Markov processes evolving in a
random/time dependent environment and conditioned to not be killed.

The main tool of the approximation method is given by a Fleming-Viot type
interacting particle system introduced by Burdzy, Holyst, Ingermann and March
in [13] and [14]: the N particles of the system evolve as independent Brownian
motions in an open subset D of R?, and, when a particle hits the boundary 9D, it
jumps onto the position of an other particle chosen uniformly between the N — 1
other ones; then the particles evolve as independent particles and so on. When N
goes to infinity, the empirical measure of the process converges to the distribution
of a standard multi-dimensional Brownian motion conditioned to not be killed at
the current time. Such an approximation method has been proved by Grigorescu
and Kang in [40] for a standard multi-dimensional Brownian motion, in [85] for
Brownian motions with drift and by Del Moral and Miclo for smoothly killed
Markov processes (see [23] and references therein). Let us also mention the work
of Ferrari and Maric [30], which regards continuous time Markov chains in discrete
spaces.

In Section 3.2, we prove that this method works in a very general setting.
Namely, let (ZVV) N>2 be a sequence of strong Markov processes which evolve in
FU{0}, where 0 is the cemetery point for each ZV. We fix T > 0 and we assume
that the sequence (Z:]FV)N converges to Z7 in the sens of Hypothesis 3.1 . For each
N > 2, we build a Fleming-Viot type system of N interacting particles as above:
the particles evolve as independent copies of ZV until one of them is killed; at
this time, the killed particle jumps onto the position of another particle, chosen
between the N — 1 remaining ones. We assume that the number of jumps in the
N particles system doesn’t explode up to time 7', and we prove in Theorem 3.1
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that the associated sequence of empirical stationary distributions converges when
N — o0 to the distribution of the process Z conditioned to not be killed at time
T. We also give a speed of convergence for the method, which only depends on
the survival probability of the Markov processes ZV, N > 2.

This result comes as an important generalization of the previously cited ones.
Firstly, we allow both hard and soft killings, which is a natural setting in applica-
tions: typically, a species can disappear because of a lack of born of new specimens
(which corresponds to a hard killing at 0) or because of a brutal natural catas-
trophe (which typically happens following an exponential time). Secondly, we
implicitly allow time and environment dependency, which is also quite natural in
applications, where individual paths are influenced by external stochastic factors
(as the weather) whose distribution varies with time (because of the seasons by
instance). Finally, we allow the process ZY which drives the particles to de-
pend on N, and we only require the non-explosion of the number of jumps of the
Fleming-Viot type system build on ZV. As a consequence, one can apply the
approximation method to a process Z, without requiring that the Fleming-Viot
process based on Z is well defined. This is typically the case for degenerate diffu-
sions, or for diffusions with hard killing at the boundary of a non-regular domain,
or for Markov processes with smooth killing given by an unbounded rate function.
In our case, the three irregularities can be combined, by successive approximations
of the coefficients, domain and rate of killing respectively.

Since the method works in a very general setting, it only remains us to prove
the non-explosion of the number of jumps. This problem is studied in Section 3.3.
Such non-explosion results have been recently obtained by Lébus in [62] and by
Bienek, Burdzy and Finch in [11] for Brownian particles killed at the boundary of
a given open set, by Grigorescu and Kang in [42] for time-homogeneous particles
driven by a stochastic equation with regular coefficients killed at the boundary of
a non-smooth domain (a survey of the previous results is done in the introduction
of [42]) and in [85] for Brownian particles with drift. Other models of diffusions
with jumps from a boundary have been introduced in [9], with a continuity con-
dition on the jump measure that isn’t fulfilled in our case, in [41], where fine
properties of a Brownian motion with rebirth have been established, and in [55],
[56], where Kolb and Wiikber have studied the spectral properties of this model.
In Section 3.3, we state the non-explosion of an interacting particle process, whose
construction is a generalization of the previous ones. Indeed we consider particles
which evolve as Ito diffusion processes in a random/time dependent environment
with both hard and soft killings, with a different space of values for each particle.
Moreover, at each killing time, we allow very general jump locations for the killed
particle. In particular, this validates the approximation method described above
for time/environment dependent diffusions with hard and soft killing.

The proof of the non-explosion is based on an original non-attainability of
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(0,0) result for semi-martingales, which is stated in the last section of this paper.

3.2 Approximation of a Markov process conditioned to
not be killed

Let F be a polish space and let Z be a cadlag strong Markov process which evolves
in F until it is killed. When it is killed, it jumps to a cemetery point 9 ¢ F. The
killing time is denoted by 79 = inf{t > 0, Z; = 9}. In this section, we fix T' > 0
and we prove an approximation method for the distribution of the process Zp
starting with distribution ug € M7 (F') and conditioned to the event {T' < 15}.

The approximation method is based on a sequence of Fleming-Viot type sys-
tems XWV) = (XL(N),...,XQ’(N)) with values in FN¥, N > 2. A natural choice
for the dynamic of X)), N > 2. should be the following: the particles evolve
independently as N independent copies of Z until one of them is killed; at this
time, the killed particle jumps from O to the position of one of the N — 1 re-
maining particles; then the particles evolve as N independent copies of Z until
one of them is killed and so on. Unfortunately, for a general choice of Z, the
number of jumps of the system could explode in finite time, or the N particles
could be killed at the same time (see [11, Example 5.3] for an example of ex-
plosion in a non-trivial setting). When this happens, the approximation method
can no longer operate. In order to overcome this difficulty, we assume that we’re
given a sequence (ZN ) N>o Of strong Markov processes which converges to Z at
time T' (Hypothesis 3.1 below) and such that, for all N > 2, the Fleming-Viot
system with N particles driven by ZV between the killings doesn’t explode before
time T' (Hypothesis 3.2). Theorem 3.1 below states that the empirical measure
at time T of the system X(™) (whose particles are driven by ZV between the
killings) converges, when N goes to infinity, to the distribution of Z conditioned
to {T < 7p}. A rate of convergence of the approximation method is also given,
which only depends on the survival probability of ZY at time T > 0.

Let (ZN)N>2
in FU{0}, where 0 is a cemetery point for each ZV. We denote the killing time
of ZN by 7 = inf{t > 0, Z) = 0}. For each N > 2, we define the interacting
particle system XV = (XL XN:(N)) with values in FN as follows:

be a sequence of cadlag strong Markov processes which evolve

o Let mN) € M, (FN) be the initial distribution of the system.

e The N particles evolve as N independent copies of ZY until one of them is
killed. This killing time is denoted by 7\

e At time TI(N), the process is modified:

(N)

— If there exists more than one particle which is killed at time 7"/, we
stop the interacting particle system itself and this time is denoted by
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(V)

stop (In fact, we will assume that this kind of event doesn’t happen

almost surely).

— Otherwise the unique killed particle jumps instantaneously onto the
position of another particle, chosen uniformly between the N — 1 re-
maining ones.

o At time TI(N) and after proceeding to the jump, the process lies in FV. Then

the system evolves as N independent copies of Z¥, until the next killing
: (N)
time, denoted by 75" 7.
e At this time, the process jumps with the same mechanism as above (and

could be stopped at a time denoted by V)

stopr 5 above).

e Then the particles evolve as N independent copies of ZV, and so on.

We set TS()fXI)) = 400 if X*W) and XM are never killed at the same time, for all
i # j. On the event {TS(tJX; = +o00}, we denote by TI(N) < TQ(N) <<iM <
the sequence of jump times and we set
TCEON) = JL%OTQN). (3.1)

If 7'5(5\02 < 400, we set TCEON) = +4o00. The interacting particle system is then well
defined for all time ¢ < ng; A T(EON).

We denote by Ai’(N) the number of jumps of the " particle up to time t,
t < TS(iX; A TO(ON). We denote the total number of jumps of the system by AgN):

N
N i, (N
Az(f ):ZAt( )7
=1

and by ,ugN) the empirical distribution of XEN):

N
1
,uEN) = N Z(SXZ',(N) S Ml(F),
i=1

where M (F') denotes the space of probability measures on F'.

The first assumption concerns the convergence of ZI starting with initial
random distribution ,u(()N) to Zp starting with (possibly random) distribution puyg.
Hypothesis 3.1. We assume that, for all bounded and continuous functions f :

FU{0} — Ry such that f(0) =0,
law
M(()N) (P%Vf) mMO(PTf)-

where PN (respectively P) denotes the semi-group of the process with killing ZN
(respectively Z ).
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Remark 3.1. A typical situation where Hypothesis 3.1 is fulfilled is the following:
we're given pg, Z, and a sequence ZV such that, for all € F and all continuous
and bounded function f: F — R,

Py f(x) ——— Prf(z). (32)
If we assume that m(®Y) = ,ugaN , then Hypothesis 3.1 is fulfilled. Indeed, we have
N ( L - (V) (V)
PTf :NZ[Pfoz ,UJO(PT f>]+NO<PT f>7

where (z;);>1 is an #id sequence of random variables with law p9. By the law
of large numbers, the first right term converges to 0 almost surely. By the con-
vergence assumption (3.2) and by dominated convergence, the second right term
converges almost surely to o (Prf), so that Hypothesis 3.1 is fulfilled.

The second assumption concerns the non-explosion of the number of jumps
for the system with N particles driven by ZV between the killings.

Hypothesis 3.2. We assume that, for all N > 2, the process X~ is well defined
up to time T, which means that
P~ (T < Tstop N T(goN)) =1.

Hypothesis 3.2 is clearly fulfilled if ZV is only subject to smooth killing events
happening with uniformly bounded killing rates (the question has not been an-
swered to in the case of unbounded killing rates). In the case of an It6’S diffusion
driven by time-homogeneous stochastic differential equations and hardly killed
when it hits the boundary of an open set, the problem is much harder and has
been extensively studied recently (see [85], [42| and references therein for differ-
ent and quite general criteria of non-explosion). The case of It6 diffusions driven
by stochastic differential equations with time/environment dependent coefficients
subject to soft and hard killings is treated in Section 3.3 of this paper.

Theorem 3.1. We assume that the survival probability of Z at time T is strictly
positive, which means that

wo (Prlp) > 0, almost surely. (3.3)

Assume that Hypotheses 3.1 and 3.2 are fulfilled. Then, for any continuous and
bounded function f: F — R,

(N) law o (Prf)
S po (Prlp)
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Moreover, for any bounded measurable function f : F — R4, we have the inequal-
1ty

(N) ( p()
() w” (P1) < Al | 5 1

E | |pp (f)_uéN)<P}N)1F> - VN (u(()N)(P%V]lF))z

Remark 3.2. In Section 3.3, we give a non-explosion criterion for systems whose
particles are driven by diffusions evolving in a random/time dependent environ-
ment, killed after exponential times or when they hit the boundary of a given
open set. In particular, this criterion requires that the rate of killing is bounded
and that the killing boundary and the coefficients of the diffusions are smooth.
If Z is a diffusion in random environment, with unbounded killing rate, irregular
coefficients and non-smooth killing boundary, one can define a sequence of strong
Markov processes (ZV )n>2 which approximates Z and fulfills the criterion of
Section 3.3 for all N > 2, proceeding by successive approximations of the rate
of killing, the killing boundary and the coefficients of the diffusion Z. It yields
that Theorem 3.1 gives an approximation method for Z conditioned to {T' < 75},
while Z is degenerate. This example illustrates that allowing an approximat-
ing sequence ZV for Z gives a great generality to the approximation method of
Theorem 3.1.

Remark 3.3. In the particular case of a process Z with a uniformly bounded
killing rate and without hard killing, a uniform rate of convergence over all times
T can be obtained, using the stability of the underlying Feynman-Kac semi-group
(we refer the reader to Rousset’s work [75] and references therein).

Proof of Theorem 3.1. The proof consists of three steps. In a first step, we fix

N > 2 and we prove that, for any bounded and measurable function f: F'U {90}

such that f(0) = 0, there exists a martingale Mt(N) such that

N Ai’(N)
(N) (pN ¢y _ (V) (pN wy, 1 1 N 5(N)
Hi (PT—tf) = Ho (PT f)"‘Mt +N Z Z N_1 Z PT—T;L';(Mf(Xi,";(N))
i=1 n=1 jF#i
. (3.4)
where Tf;(N) is the n'” killing time of the ¥ particle. In a second step, we define

the measure Vt(N) on F' by

N -1\ A
N - N
™ (dz) = (N) ™ (d),

where a loss of mass is introduced at each jump, in order to compensate the
last right term in (3.4): we prove that V;N) (f) — ,uéN) (PN f) is the sum of two
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martingales. Then we prove that the L? norm of each of these martingales is
bounded by || f|leo/VN, which yields us to

\/E (|4 - e[ ) < 2,

In the third step of the proof, we remark that VFEFN) and H(TN) are proportional

measures, which allows us to conclude the proof of Theorem 3.1 by renormalizing

Vi(p ) and ué ) (PF}V)

Step 1:  Fix N > 2 and let f : FU {0} — R4+ be a measurable bounded
function such that f(0) = 0. Let us prove (3.4). We define, for all ¢t € [0,7] and
z € FU{0},

Vi (2) = Py f(2).

The process (MV( ))te[o 7] is a martingale which is equal to 0 at time Tév almost

surely, as soon as 7'3 < T. Indeed, for all s,t > 0 such that s+¢ < T, we have by
the Markov property and the fact that PV is a semi-group:

B (02N (BY) seppq) = B0l (Y = 0l (@),
Moreover 0 is an absorbing state and f(9) = 0, then

w%VAT( N/\T) ¢N ( ) Tp<T T wi\gV(Zé’v)ﬂTpT = w%v (Z:]FV)]IT3>T-

Fix i € {1,...,N} and denote by Tf;(N) the n*" jump time of the particle 7. For

all n > 0, we define the process (IM;’”’(N)> by
t€[0,T]
Mt ]lt< i, (N) w Tn+]¥) (XtATZ’iIY>) /(/)t/\T,:'L’<N) (Xt/\f;—:;’(N)) (Wlth TO O )

Since X*(V) evolves as ZV in the time interval [Tn’(N),T _(H)[, ]Mi’(N)’" is a mar-

tingale which fulfills almost surely
—7/}]\1[(1\7) (le(f\zfv))) if n < Az (N)
Tn Tn
‘7 ’ N ‘7 N M '7 N
thn( = @ZJN( )_¢ﬁ,(N)(Xii€(]J))7lfn:Ai( )7
0,ifn> AN,

i(N) -

since n < A,
(N
B (N)

i(N)
n+1

> t. Summing over all jumps, we get

is equivalent to T, < t, while n > Ai’(N) is equivalent to

A 4B

N () = wo(xg™) + 3T Y Z oo (XIR)- (35)
n=0
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Defining
4B

= ¥ M and M) = %ZM?(N)

and summing over i € {1,...,N}, we get
1(N)

My = 1 ) + MY ¢ = Zzzmm )

zlnl

i,(N)

At each jump time 7,;""’, the position of the particle X*(™) after the jump is cho-
sen with respect to the empirical measure of the other particles. The expectation

of w ! <N>( fp)) conditionally to the position of the other particles at the jump

time is then the average value i Zj# ). (X] ) ) ). We deduce that

N A i,(N)

N i,(N
Z Z wTi,(N)(X Z(N) - Zw z(N> v(N))
=1 n=1 j;ﬁz

is a local martingale. We finally get

AB)
) = i) MM S ST ) )]
i=1 n=1 j#i

(3.6)
which is exactly (3.4).
Step 2:  Let us now explain why V (N) (wN (N)) — VéN)(zpéV) is the sum of two
martingales. Since N is fixed and in order to clarlfy the calculus, we remove the
superscripts N and (N) when there is no risk of confusion. Denoting by IM® the
continuous part of M = M) we deduce from (3.6) that

T /N -1\ r
ortin) = i) = [ (S5 ) T ANE 4 S () = o),
0 N n=1
Let us compute each term in the right side sum. For all n > 1,

Arp,
Vr, (Yr,) = V- (Y7,-) = (-N]\;l> (tor (7)) = pr-(r,2))

N—1\*" (N -1\
+ prn-(r,-) ((N) - <N> ) .
On the one hand, we have

N—-1\* (N—-1\* 1 N1\
N N ~ N-1\ N
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On the other hand, denoting by 7 the index of the killed particle at time 7, we

have
() = pir (m) = oS (X0, ) + My, — M+ My, — M
lu’Tn Tn lu‘Tn‘ Tn- - N(N—l) - T,;’l- 7-71;‘_ Tn Tn- Tn Tn-?
J#i
where
S (XD ) = iy () — o (X )
NN —1) & " I Ll O VIO A D R s
and, by the definition of M = IM®),
1 ) 1
_ — 1, (X! )= —+o- (M, — M, ).
We then have
(bra) = b (r) = oty (tr) + e (M, — My, ) + My, — M
lu’Tn Tn lu‘Tn‘ Tn- - N _ 1/’1’7'71— Tn- N -1 Tn Tn- n Tn-9

Finally, we get

N — 1\ N — 1\
) = () = ()0 =+ (M) M - ).

The process v (1) — v9(1o) is then the sum of two local martingales and we have
T At— T At_
N -1 N -1 N -1
— = —_— dM d 3.7
ontin) =i = [ (S5) e T (EE) ame )

Let us bound both terms on the right-hand side (where N is still fixed). We
do not have any control on the moments of the number of jumps, while we would

like to deal with real martingales instead of local ones. In order to do this, we fix

an integer o > 1 and we stop the interacting particle system when the number
()

of jumps A; reaches «, which is equivalent to stop the process at time 7, = T,
By the optional stopping time theorem, the processes IM and M stopped at time
V) are true martingales, almost surely bounded by «/|| f||so-

On the one hand, the martingale jumps M, — M. _ are bounded by || f||/IV,

while the martingale is constant between the jumps, then

] 2 ArAa As,,
N —1 TNATa N —1 Ay T N -1 2A-, )
E E—— — d = F — Tn Tn-
‘N/O(N)Mt ;(N)wnMn)
1£113
< . .
< Wl (3:9)

On the other hand, we have

f((07 () ) ) <o)
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where

o
E( %“ATQIM%V\TQ) = Z E (MZTZT/?\%TQM%&T&> :

m=0,n=0

If i # j, then the expectation of the product of the martingales M*" and IM7™
is 0, since the particles are independent between the jumps and do not jump
simultaneously. Assume ¢ = j and fix m < n. By definition, we have

Mi,m _ Mi,m

TATq TATa /\7';“'71+1 )

which is measurable with respect to Xpa A o then

i,m i,n ) _ i,m i,n ]
E (MT/\TDL MT/\TQ ‘XT/\TQ/\T;’”_,'J) - MT/\TO‘/\TvinJrl E (MT/\TDL ‘XT/\TQ/\T;’,HJ)

_ Mi,m Mi,n _ O,

- T/\Ta/\T,rin+1 T/\’ro(/\TfnJrl

using the optional sampling theorem with the martingale M%KTQ and the uni-
formly bounded stopping time T A 7, A 5. We deduce that

B ((,,)7) = 8 (Z (a2’

n=

<FE (Z Yrari (Xé“/\‘r;L)Q)
n=0

<118 (3 )
n=0
By (3.5), we have
E (Z zz)TM;L(X%M;;)) <[ £lloos
n=0

and we deduce that
i 2
B ((Mir)") < I1F1E

O e A R N 4
E (/0 <N> d]Mt) < Wl (3.9)

The formula (3.7) and inequalities (3.8) and (3.9) lead us to

Finally, we have

) () 2\ 2] flleo

The number of jumps of the interacting particle system remains bounded up to

time T" by Hypothesis 3.2, so that T'A TéN) is equal to T for « big enough almost
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surely. As a consequence, making « go to infinity in the inequality above, we get
by the dominated convergence theorem

\/ (‘ (V) (¢ (PNf)’> fyﬁuw (3.10)

Step 3: Let us now conclude the proof of Theorem 3.1. By Hypothesis 3.1,

u(()N)(P%V .) converges in distribution to po(PY.). Tt yields that, for each con-

tinuous and bounded function f : F — Ry, the sequence of random vari-

ables ( (N)(PNlp) (N)(PNf)> converges in distribution to the random vari-

able (uo(PTlp) (PTf)). By (3.10), we deduce that the sequence of random

variables <1/T (1p)vp ( )) converges in distribution to the random variable
)

(to(Prlp), po(Prf
we get

). Flnally, using that uo(Prlp) never vanishes almost surely,

(N)
Ny Y () taw  po(Prf)
ur ()= y:(,,N)(lp) N—oo puo(Prlr)’

for any continuous and bounded function f : F' — R, which implies the first
part of Theorem 3.1.
We can also deduce from (3.10) that

(V) 2

N -1 Ar (N) / pN 2
(|5 e ) < 2,

IN

then

2 A
\/ E (\MSN)(P%V o)™ (1) = s (PR )| > < 'fNi .

Using the Cauchy Schwartz inequality, we deduce that

“

which concludes the proof of Theorem 3.1 . O

(N)(PNf)

) < E (,LL(()N) (ijyﬂp)>2 \/N )

3.3 Ciriterion for the non-explosion of the number of
jumps
Fix N > 2. The aim of this section is to give a criterion for the non-explosion

assumption of Hypothesis 3.2 (Section 3.2) when the process Z¥ is driven by a
stochastic differential equation in a random time/dependent environment, with
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a uniformly bounded smooth killing rate and a hard killing set given by the
boundary of an open set. While this problem is the main motivation for proving
our non-explosion result, Theorem 3.2 below is stated in a far more general setting.
Firstly, we do not require that the particles follow the same dynamic between the
killings: the i** particle will be driven by the dynamic of a strong Markov process
ZHN " q priori different for each i € {1,...,N}. Secondly, the jump position of the
killed particle is chosen with respect to a general jump measure, not necessarily
supported by the positions of the N — 1 remaining particles.

For all i € {1,...,N}, we assume that the process Z*" is a strong Markov
process equal to a 3-tuple (t,e%,Zf)te[Oﬁa[ up to its killing time, where ¢ is the
time, e} is the environment and Z; is the actual position of the diffusion. The
environment e evolves in an open set E; C R% (d; > 1), the position Z} evolves
in an open set D; C R% (d} > 1), and we assume that there exist four measurable
functions

S; : [O,T] X E; X Dj — ]Rdi X Rdi
m; . [O,T] X El X Dz — Rdi
o;: [O,T] x F; % Di — Rd’li X Rd’li
i [0,7] x E; x D; — R%,
such that Z4N = (.,e!,Z%) fulfills the stochastic differential equation
dei = Si(tveiaZZ)dﬂz + mi(t’eiazz)dta 66 € L,
dZ} = o' (t.e}, Z])dB; + ' (t.ei,.Z;)dt, Zj € Dy,
where (8%,B%) is a standard d; + d} Brownian motion. We also assume that the

process 2%V is hardly killed when Z} hits D; and smoothly killed with a rate of
killing &;(t,et,Z) > 0, where

Kt [O, + OO[XE,L x Dy — Ry

is a measurable function. We recall that the distribution of the smooth killing
time produced by the rate of killing k; is given by

P (TngOth > t) - E (6_ fot ni(ggvl\’)d8> )
Each particle in the system is a 3-tuple (¢,0%,X}) € [0, + oco[x E; x D; and we
denote the whole system by (¢,04,X;), where

O; = (o},....0N) € E el E; x ... x En and

X, = (X! XM e DY Dy x ... x Dy,

denote respectively the vector of environments and the vector of positions. Let
S : [0, + co[xEN x DN — My(EN x DV) and H : [0, + co[xEYN x 9(DV) —
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My (EN x DV) be two given measurable jump measures, which will be used to
choose the jump location after the smooth killing and hard killing respectively. We
define the dynamics of the system (¢,0:,X¢) starting from (0,00,Xy) as follows:

e For all i € {1,...,N}, the 3-tuple (¢,0},X}) starts from (0,0§,X¢) and evolves
as ZHN = (€', Z%) independently of the rest of the system until one of the
particles is killed. This first killing time is denoted by 7.

e At time 71, the process jumps to a new position, whose choice depends on
the kind of killing (the time component isn’t changed):

— if it is a smooth killing event, then the process jumps to a position
chosen with respect to the jump measure S(7,0,.,X;.),

— if it is a hard killing event and there exists one and only one element
i1 € {1,...,N} such that X“_ belongs to dD;,, then the position of
(0,X) at time 71 is chosen with respect to the probability measure
H(1,0..,X.).

— if it is a hard killing event and there exist more than one element which
hits its corresponding boundary 0D;, we stop the process and this time
is denoted by 7y (in fact, we will prove that this kind of event doesn’t
happen almost surely under our hypotheses).

e At time 71 and after proceeding to the jump, the process lies in {71} x Ex D.
Then each 3-tuple (¢,0°,X") evolves as (.,e",Z%) starting from (71,0% X% ),

independently of the rest of the system and until one of them is killed. This
second killing time is denoted by 7.

e At this time, the process jumps with the same mechanism as above (and
could be stopped at a time denoted by Typ, as above).

e Then each 3-tuple (¢,0°,X") evolves as (.,¢',Z") starting from (72,0%,,X%),

independently of the rest of the system, and so on.

We set Tstop = +o0 if (X*,X7) never reaches dD; x dD;, for all i # j. On the
event {Tsop = +00}, we denote by 7 < 7o < ... < 7, < ... the sequence of jump
times and we set

Too = lim 7,. (3.11)
n—o0

The number of jumps of the system explodes in finite time if and only if 7o, < +00.
We prove in Theorem 3.2 below, that this doesn’t happen almost surely under
the two following conditions: Hypothesis 3 and Hypothesis 4.

In the following hypothesis, the function ¢; is the Euclidean distance from the
boundary 0D;, which means that

¢i() Zgggi\x z|, Vo € D;,
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where |.| denotes the Euclidean distance. For all @ > 0, D¢ will denote the
boundary’s neighborhood

Df’ = {SC e D, qbl(x) < CL}.

Hypothesis 3.3. We assume that, for alli € {1,...N} and all T > 0, there exists
a > 0 such that

1. ¢; s of class C’b2 on D7,
2. the smooth killing rate k; is uniformly bounded on [0,T] x E; X D;
3. si,0i,m; and p; are uniformly bounded on [0,T] x E; x D,

4. there exist two measurable functions f; : [0,T] x E; x D} — Ry and g; :
[0,7] x E; x D{ — R such that V(t,e,z) € [0,T] x E x D¢,

Z gj; gi; )[Uz'ffﬂkl(t@z) = fi(t,E,Z) + gi(t,6,2>, (312)

and such that

a) f; is of class C* in time and of class C? in environment/space, and
the derivatives of f; are uniformly bounded,

b) there exists a positive constant kg > 0 such that, for all (t,€,z) € [0,T] x
E; x DY,
‘gi(t7€,2)‘ < k9¢l(z)7

c¢) there exists two positive constants 0 < ¢y < Cp such that, for all
(t,e,2) € [0,T] x E; x D¢,

cr < filte,z) + gi(t,e,2) < Cr.

The last point of Hypothesis 3.3 says that the term (3.12), which naturally
appears in the quadratic variation of ¢;(Z}), is well approximated by a smooth
positive function f; near the boundary 0D;. However, we do not require any strict
regularity assumption on o;, since g; is only required to be measurable.

Remark 3.4. 1. We recall that the C* regularity of ¢; near the boundary is
equivalent to the C* regularity of the boundary dD; itself, for all k > 2 (see
[25, Chapter 5, Section 4]).

2. In particular, if each D; is bounded and has a boundary of class C2, and if
o; is of class C?, then the first point and the last point of Hypothesis 3.3
are fulfilled. Indeed, the regularity of D; implies that ¢; is of class C® on a
neighborhood of 0D;, and the regularity of o; implies that (3.12) happens,
with g; = 0.
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We introduce now a condition on the jump measure H, which will ensure that
Too < +00 implies that at least two particles converge to the boundary when the
time goes to To,. we denote by D; the set

Di = D1 X ..o X Di—l X 8D1 X Di—i—l X ..o X DN.

Since we decide to stop the process when more than two particles hit simultane-
ously their corresponding boundaries, it is sufficient to define the jump measure
H on UY, D;.

Hypothesis 3.4. 1. There exists o non-decreasing continuous function h :
R+ — Ry wvanishing only at O such that, Vi € {1,....N},

inf H(t,e,x1,....xn)(E X A;) > po,
(tye,(z1ye.,x N ))E[0,400[X EXD; ( ! N)( ) Po

where pg > 0 s a positive constant and A; C D is the set defined by
A ={(y1,...yn) € D|3j # i such that ¢;(y;) > h(P;(y;))} .

2. We have

inf H(tearan)(Ex By o) =1,
PR - SR LLCL TR 21etn)

where
Bey,.ozn = {(W15--yn) € D[V, ¢i(yi) > ¢di(x4)}

Informally, h(¢;) is a kind of distance from the boundary and we assume in
the first point that, if all the not-killed particles are far from their respective
boundaries at time 7,, then the jump position Xin is chosen far from 0D; with
probability pg > 0. The second point ensures that each particle lies farther from
its boundary after than before a hard killing jump.

Remark 3.5. 1. The model of interacting particles system introduced above
is very general, even if e’ is required to be continuous up to the killing time.
Indeed, it also includes the case of a diffusion evolving in an environment
given by a continuous time Markov Chain. By instance, if one set s; and
m; equal to 0, k; equal to 1 and § = % ((5(,5,6#1,%) + 5(,5761._17%)), then the
particle X* will evolve as a diffusion with an environment o’ defined as a
simple continuous time random walk.

2. Hypothesis 3.4 is very general and allows a lot of choices for H. For instance:

a) For all p € M (F x D), one can find a compact set K C E x D such
that p(K) > 0. Then H = p fulfills the assumption with pg = p(K)
and h(gf)]) = qu Nd(K,E x D).
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b) Hypothesis 3.4 also includes the case studied by Grigorescu and Kang
in [42|, where

H = Zpij(l'i)émja V(l‘l,...,ZL‘N) € D;.
J#i
with 3. pij(2:) = 1 and infie(y . Ny j#iacop Pij(®i) > 0. In that
case, the particle on the boundary jumps to the position of another
one, with positive weights. It yields that Hypothesis 3.4 is fulfilled
with pg = 1 and h(¢;) = ¢;. This is also the case for the Fleming-Viot
type system used in the approximation method proved in Section 3.2.

We're now able to state the main result of this section:

Theorem 3.2. Assume that Hypotheses 5.3 and 3.4 are satisfied. Then 7o = +00
almost surely.

Remark 3.6. Another model of diffusions killed at the boundary of an open set
can be defined as follows: the particle is reflected on the boundary until its local
time on this boundary reaches an independent exponentially distributed random
variable, then it is killed. We emphasize that the statement of Theorem 3.2
is still valid if the particles are driven by such diffusions with reflecting/killing
boundaries. Indeed, the only difference with our proof is that the reflection on the
boundary makes appear an additional increasing local time in the decomposition
of the semi-martingale Y (see (3.14) in the proof).

The long-time behavior of diffusions with reflecting /killing boundaries condi-
tioned to not be killed has been studied in [54] by Kolb and Steinsaltz and in |[79]
by Evans and Steinsaltz. The approximation method proved in Section 3.2 can be
used to compute the distribution of diffusions with reflecting/killing boundaries
conditioned to not be killed.

Proof of Theorem 5.2. Since k; is uniformly bounded for all i € {1,...,N'} in finite
time almost surely, there is no accumulation of soft killing events almost surely.
As a consequence, we only have to prove the non-accumulation of hard killing
events and we assume until the end of the proof that x; = 0 for all i € {1,...,N}.

The proof is organised as follows. For each particle X?, we compute the Ito’s
decomposition of the semi-martingale ¢;(X*) when X? is in DZ. Then we prove
that Tgop A Too < +o00 implies that at least two particles Xti and th converge to
their respective boundaries when ¢ — 7Ts0p A Too. Denoting by

Ty = inf{t > 0, ¢i(X}]) = ¢;(X]) =0},
we deduce that

P(Tstop N Too < +OO) < Z P (Téj < +OO)
1<i<j<N
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This allows us to reduce the problem of non-explosion of the number of jumps to a
problem of non-attainability of (0,0) for a pair of semi-martingales.(¢;(X?),¢;(X7))
fulfills a criterion which implies its non-attainability of (0,0) in finite time al-
most surely, concluding the proof of Theorem 3.2. The above-mentioned criterion
of non-attainability is proved in the last section of the present paper (Proposi-
tion 3.3).

By definition, if 740, < 400, then at least two particles X' and X0 hit their
respective boundaries at time Tg0p. It yields that (,bi(X;'mp_) = ¢j(Xﬁstop_) = 0.
Now, we define the event

E = {7oc < T and Ty0p = +00}.

Conditionally to &, the total number of jumps of the system goes to +oo up to
time 7. Since there is only a finite number of particles, at least one of them,
say 40, jumps infinitely many times up to time 7. For each jumping time 7,,
we denote by ¢ the next jump time of ig, with 7, < 0% < 7. Conditionally
to the event &, we get 0 — 7, — 0 when n — oco. Let 7 :]0,a[— Ry be a C?
function with compact support in ]0,a[. The It6’s formula applied to the semi-
martingale v(¢;(X%)) and Hypothesis 3.3 immediately imply that ~y(¢;(X%))
is a continuous diffusion process with bounded coefficients between 7,, and oo-.
Moreover, ¢;(X°) goes to 0 when ¢ goes to ¢?0, then ’y(gbi(X;Oio_)) = 0. We deduce
that "
sup  Y(@i( X)) = sup y(di(X%)) = v(¢i( X5 ) —— 0, a.s.
tE[Tn,O':LO[ tE[Tn,U:LO[ "

Since the process ¢;,(X%) is continuous between 7, and 09—, we conclude that
bio (Xig) doesn’t lie above the support of v, for n big enough, almost surely. But
the support of 7 can be chosen arbitrarily close to 0, it yields that ¢, (X;?L) goes
to 0 almost surely conditionally to £. Let us denote by (70),, the sequence of
jumping times of the particle ig. We denote by A, the event

A= {35 # 0| 610(X2,) = hl6;(X2,) }
T T
where h is the function of Hypothesis 3.4. We have, for all 1 < k <1,

+1 +1
P (ﬂ Ag) =) (E (H 14 | (X§,...X§)0<t<7;£1))
n=~k

n==k

l
_E (H Ly E <IL,4;+1 | (th,...XgV)OSKT;El)) .
n=k

By definition of the jump mechanism of the interacting particle system and by
the first point of Hypothesis 3.4,
1 N

E <1Af+1 | (Xy,... X, )O§t<7_i0

+1

) = A0 X ) (45)

1 T+

S 1_p07
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where A;, and pg are defined in Hypothesis 3.4. By induction on [, we get
!
P (ﬂ A;;) <(1-p) Tt Vi<k<lL
n=k

Since pg > 0, it yields that

oo

PllJN A | =0
k>1n=k

It means that, for infinitely many jumps 7,, almost surely, one can find a particle
j such that ¢;,(X2) > h(¢;(XZ,)). Because there is only a finite number of other
particles, one can find a particle, say jo (which is a random variable), such that

Gio (X10) > h(j, (X)), for infinitely many n > 1.
In particular, lim, . ¢j, (Xf-fb) = 0 almost surely. We deduce that

(60 (X10),055(X22)) = (0,0).

lim
n—oo
This immediately imply that
(‘bio(Xigo-%(pjo (X‘?'go-» = (070)
We finally conclude that

P (Tstop N Too < +00) < Z P (Téj < +oo> . (3.13)

1<i<j<N
Fix i # j € {1,...,N} and let us prove that P (ng < +oo) = 0. We begin to
divide the time into a sequence of intervals [t,,t,+1[ such that, for each interval,
or the pair (¢;(X?),¢;(X7)) is far from (0,0), or the distance functions ¢; and ¢;

are of class C? (which will allow us to use the Itd’s formula). Let (t,),>0 be the
sequence of stopping times defined by

to = inf{t € [0,7stop A Toc[, ¢'(X)) + ¢ (X]) < a/2}
and, for all n > 0,

tont1 = il’lf{t € [t2n77_stop A TOO[7 ¢Z(XZ) + d)j (Xg) > (Z}
tont2 = inf{t S [t2n+177—stop A Too]> ¢2(XZ) + ¢j (Xg) < CL/Q}

By construction, we have for all n > 0,

gf)l(Xz) < a and gb](Xg) < a, Vt € [tgn,t2n+1[,
$i(X}) > a/2 or ¢j(X]) > a/2 otherwise.
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We emphasize that Téj ¢ [ton+1,tant2| almost surely, while, for all t € [to,,ton+1],
¢; and ¢; are of class C? at X} and Xt] , which will allow us to use the It6’s formula
during these intervals of time. In particular, Hypothesis 3.3 and the It&’s formula
immediately implies that ¢;(X?)+¢;(X7) is an It6 diffusion process with bounded
coefficients between times to,, and t2, 1 for all n > 0. Since ¢;(X?) + ¥ (X7) goes
from a/2 to a between times to, and ton41, we deduce that (¢,),>0 converges to
400 almost surely. We deduce that

—+00
P (1 <) < 50 (1 ).
n=0

It remains us to prove that P (Téj c [t2n,t2n+1[) =0 for all n > 0.
Fix n > 0. We define the positive semi-martingale Y by

thi _ (ﬁi(Xan.;_t) i.f t < t2n+1 - t2n7 (3.14)
CL/2 + |th| ift > topt1 — ton,

where W' is a standard one dimensional Brownian motion, which allows us to
define Y} for all time t € [0, + oo[. We define similarly the semi-martingale Y.
It is clear that

P(Téj € [t2n7t2n+1D < P(Elt Z O’ (Yx’Yt?) - (070))

The problem of non-explosion of our interacting process is then reduced to the
problem of the attainability of (0,0) by a given semi-martingale. In order to
prove the non-attainability of (0,0) by (Y% Y7), we need to compute the Ito’s
decomposition of Y* and Y7.

Let us set

7Ti . fz<t70%7XtZ)7 if t< t2n+1 - th, and pz o g(t701%:7X1;£)7 if t < t2n+1 - t2n7
t . t .
1, ift > ton1 —ton 0, if t > ton1 — ton,

where f; and g; are given by Hypothesis 3.3. By the Ito’s formulas applied to Y?,
we have
dY} = dMj + bjdt + dK} + Y} — Y,

where M* is a local martingale such that
(M), = (m + pp)dt,

b is the adapted process given by

d/' 8 i . . . d’L 62 . . . .
bi _ Zkil 8;& (Xg)[ﬂl]k(tvoian) + %ZkJ:l xkgxl (th)[o-io-;]kl(tvoi7XtZ)a if t < t2n+1 — ton,
o i1 > ton1 — ton,
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and K' is a non-decreasing process given by the local time of |W;| at 0 after time

4th

topt+1 — ton. By the point of Hypothesis 3.3, we have, for all ¢ > 0,

cx N1 <74 pi < Cr V1, and |pi| < koY (3.15)

The regularity of ¢; in D, (1% point of Hypothesis 3.3) and the boundedness of
pi,o; (3™ point of Hypothesis 3.3), implies that there exists by, > 0 such that,
for all t > 0,

bi > —boo. (3.16)

Similarly, we get the decomposition of Y7, with 77, p/ and &’ fulfilling inequalities
(3.15) and (3.16) (without loss of generality, we keep the same constants ¢, Cr,
ko and bu).

The previous decomposition isn’t a priori sufficient to prove the non-attainability
of (0,0) by (Y,Y7): we also need to compute the decomposition of 7! and 77. We
deduce from the It6’s formula that there exists a local martingale N* and a finite
variational process L‘ such that, for all ¢t > 0,

dri = dN} + dL} + 7t — 7.

We emphasize that we do not need the explicit computation of L?. Let us set, for
all t < topq1 — ton,

d; f
Z (1,04, X0) o (101 X7 [sisilua (.0}, X7)
" of, of;
3 far oL XD g (o), Xloiot (0, X))
k= 1l

and, for all t > ton 11 — ton, gg’ = 0. Then we have
(N'); = &dt.

Thanks to the regularity assumptions on f; and the boundedness of s;,0;, there
exists C¢ > 0 such that
& < Ce. (3.17)

Of course, the same holds for 77.
Since the particles are independent between the jumps, we have for all ¢ # 7,

(M*, M7) =0 and (N*,N7) =0 a.s. (3.18)

We claim that the decompositions of Y?, Y7 x¢ 7 together with the in-
equalities (3.15), (3.16), (3.17) and equation (3.18), imply that (Y',Y2) never
converges to (0,0) almost surely. This is proved in the next section, where a cri-
terion for non-attainability of (0,0) for semi-martingales is given (Hypothesis 3.5
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and Proposition 3.3 of Section 3.4). In particular, we deduce that Téj ¢ [ton,tont1]
almost surely, for all n > 0.
We then have 77 = 400 almost surely, for all i # j € {1,...,N'}, which imply,
by (3.13), that Tstop A Tinpty = +00. This concludes the proof of Theorem 3.2.
O

3.4 Non-attainability of (0,0) for semi-martingales

Fix T > 0 and let (Y{");c[o77, @ = 1,2, be two non-negative one-dimensional semi-
martingales such that,

dY} = dM} + bidt + dK! + I} — IL, Yi > 0,

where (M{)iejo7) is a continuous local martingale , (b});c(o,7] is an adapted pro-
cess, (K{)iepo,r] is a continuous and non-decreasing adapted process, and I} is a
pure-jump cadlag process. The aim of this section is to give some conditions,
which ensure that (Y'!,Y2) doesn’t hit (0,0) up to time 7. The problem has been
solved for time homogeneous stochastic differential equations by Friedman [32],
Ramasubramanian [72] and the proof of Proposition 3.3 below is inspired by the
recent work of Delarue [24], which obtains lower and higher bound for the hitting
time of a corner for a diffusion driven by a time homogeneous SDE reflected in
the square. In our case, time-dependency is allowed and we don’t require any
Markovian property. This generalization finds an important application in the
previous section, where the non-explosion of a very general interacting particle
system with jumps from a boundary is proved.

Hypothesis 3.5. For each i = 1,2, there exists a non-negative local semi-martingale
7 such that
dmy = dN{ +dLy + J{ — J; ,

where N° is a continuous local martingale and L' is a continuous finite variational
adapted process and Ji is a pure-jump cadlag process. Moreover, there exist two
adapted processes p. and &i, and some positive constants boo,k0,¢r,Cr, Ce such
that, almost surely,

1. d(M"), = (7} + pi.)dt and d (N*), = & dt,
2. cx <4 pi < Cr, |p}| < koYy, & < Cg¢ and by > —bs for all t € [0,T]
3. <M1,M2> and <N1,N2> are Non-inNcreasing Processes.

4. I' and J* are such that, for all jump time t of the processes I and J,
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The third point of Hypothesis 3.5 has the following geometrical interpretation:
when an increment of M is non-positive (that is when M?! goes closer to 0),
the increment of M? is non-negative (so that M? goes farther from 0), as a
consequence (M, M?) remains away from 0. A nice graphic representation of
this phenomenon is given by Delarue’s |24, Figure 1].

Remark 3.7. An example of a pair of semi-martingales which fulfills Hypothesis
3.5 is given in the proof of Theorem 3.2 in Section 3.3, where (Y'1,Y2) is given by
a smooth function of a pair of diffusion processes. In this typical case, checking
the validity of our assumption is a simple application of the It6’s formula.

The process

1 Yl 2 Y2 2
2 m i

goes to infinity when (Y;},¥;?) goes to (0,0), since 7} is uniformly bounded below
by ¢r. For all € > 0, we define the stopping time 7T, = inf{t € [0,T], ®; >
€ 1}. We denote the hitting time of (0,0) by Ty = inf{t € [0,7], (Y},Y}?) =
(0,0) or (Y;1,Y;?2) = (0,0)}. In particular, we have

Ty = lim T¢, almost surely.
e—0
We are now able to state our non-attainability result.

Proposition 3.3. Assume that Hypothesis 5.5 is fulfilled. Then (Y'Y?) doesn’t
go to (0,0) in [0,T] almost surely, which means that Ty is equal to +oo almost
surely.

Moreover, there exists a positive constant C which only depends on boo,ko,cr,Cr, Ce
such that, for all e > ®y,

1
el — (I)o
where |L|7 is the total variation of L' at time T and ® is defined in (3.19).

P(T.<T)< C (E(|LY + |L?7) + T),

Proof of Proposition 5.5: Let (0),)nen and (0)),en be two increasing sequences
of stopping times which converge to T' such that (M}),co,0,) and (Nf)iejo0,] are
true martingales and such that 6/ = inf{t € [0,T], foex d|Lily > n} AT. The
whole proof is based on an application of the It6’s formula to the semi-martingale

Dy
(/ exp(eCFe")du> ,n'n" €N,
0 te[O,TE/\eg,/\eg,,}

where C'r > 0 is a constant which only depends on the parameters be,ko,¢7,Cr,Ce.
We prove that, for a good choice of Cr, there exists a constant C' which doesn’t
depend on ¢, n’ and n” such that

(I)TE/\G’//\(-)”// c 1 9
E / " exp(e e " )du | < C(E(|L |gr, + |L7gn,) +T). (3.20)
@0 n n
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Assume that this inequality has been proved. We notice that ®,,7, o7, 197, Teaches

e 1 if and only if T. < 0/, A0, then, by the right continuity of Y'!, Y2, 7! and

72,

P (T6 < 07,1’ A 9;{”) = P (‘I)Te/\e’,/\e”/, — %o 2 el - ‘I)(J)
<I>T€/\0:l,/\9;’,, Cr —u .
< P exp(e“Fe ")du > e ' — ®q |,
$9

since r — q < fqr exp(e€Fe ")du for all 0 < ¢ < r. Finally, using the Markov
inequality and (3.20), we get, for all =1 > @,

1

P(TE S 9;11 /\0;;//) S m

C (BE(L gy, + L) + T) .

Letting n’ go to oo, then € go to 0 and finally n” go to oo, we deduce that
P(Ty <T) = 0, which is the first point of Proposition 3.3. Since 6/, and 67,
converge to T almost surely, letting n’ and n” go to oo implies the second part of
Proposition 3.3, which concludes the proof.

It remains us to prove inequality (3.20). We assume in a first time that
(M*',M?) = (N',N?) = 0. We define the function

®: R} xRLxRi xR —R

o} | 73
(a1,00,21,22) = —log(t+42 ).

We have ®; = &(7},72,Y;},Y;?). We will apply the Ito’s formula to the semi-
martingale (®¢);cjo,m. 00,107, The successive derivatives of the function ® are

0P _ >*® _
3 = —q Lye?®, 2 —a; Le2® 4 20 Qw?e@,
€Ty x5
fokin 1 _ 9*® _ -
9 5%‘ 2:6'1262@, 90z —qy 33?1262@ + o 43:?‘64@,
i oy
0%® _ _ 0?P 1 c
5 = q 2p,e?® — Q; 31’?64@, Froie —a; lozj 2xix?e4¢ with i #£ j.
T;04 L5005
In particular, one can check that
9*® :
— (me 7, Y, Y ). = 0, almost surely.
o2 (T Vi YE)m, = 0, almost surely
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Using the previous equalities and the 1t0’s formula, we get

_ Y o220 0 [ Ytz)2 2%t NI _ E 2®, 70
APy =— > LMy + Z AN — Y “Le*dK]
i

i=1,2 i i=1,2 (7@2 i=1,2
yi)2
Q(I’t 7 t ) 2‘13‘1 7
_121:2 bidt + Z 2 I
1 1 V)2
! <_ < WP > »
2 i=1,2 Ty (Trt)
. (3.21)
1 ( )2 20, (V) 40 ) :
+ = — bl et®t AL o2t ) J (N
2 20\ (@) (xi)? (N,
1 Y} v/ -
+ = ( Zt 262(1% . ( tZ)3 64C1>t> d<M7,’NZ>t
2 i—1.2 () ()
1 Y(Y{)? -
-= > Me“’td(MZ,Nﬂ) + &, — O
2 ()2 ¢
i#Aj€{1,2} T
and
Y1) 40 Y)" a0
d(P), = . t(py + mp)dt td(N*
(0= 2 g T 2 e N
i3 , i(y7)2 S
— (Yti)ge@td<M’,N’>t Z Y ) ,(Ytj)Qe@td<M17Nj>t-
1=1,2 Q(Wt) i#je{1,2} 27rt(7rt)

Let Cr > 0 be a positive constant that will be fixed later in the proof and define
the function F': R — R by

F(r)= / exp (Cpe ) ds.
0
We check that
r < F(r),1 < F'(r) <eF and F"(r) = —Cpe "F'(r), Vr € R,.

We deduce from Itd’s formula that

F(®,)—F(®) :/Ot F’(cbs)dcbgc;F/t e F(0,)d (D) + Y F(P,)—F(P,.),

0 0<s<t

(3.22)
where d®¢ is the continuous part of d®,.
Using equation (3.21), we begin to prove a higher bound for fg F'(®4)dde.
We define the local martingale

Z / s 2<I>5F/ sz

1=1,2 i=1,2

Qq’SF’(@S)dN;.
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Since K" is non-decreasing, we have

ty? .
-y e F'(9,)dK® < 0.
i=1,270 Wg

One can easily check that, for all t € [0,Ty[, Yie®t < \/n, then

Since b > —b, for all t € [0,Tp][, we have

_Z/ YF/ )e2®pids < =2 2000 / e® F'(®,)ds.
Ver

0
The inequality F'(®,) < eF yields to

o285 i ecr 1 2
F(®@s)dLy < 5— (I e+ |L7]e) -

1=1,2

We deduce from
Ipie®t < koYie® < koy/mi < koy/Cr
that

Z/( 1 2‘1’S+2((17:§))22 S>ﬂiF’(<I>s)d ?’BCFkOF/ e F!(®,)ds.

z12

Since d(N*); = &idt, with 0 < & < Cg, we have

1 Z / ( 37: oo gf))ze@s) Fl(@)d(N'), < —

212 s

By the Kunita-Watanabe inequality (see [74, Corollary 1.16 of Chapter IV]), we
get, for all predictable process hsg,

t o ¢ ¢ t
he <MZ,NJ>S‘ < \// h <Mi>s\// hy (N9)_ < ,/cwcg/ hyds,
0 0 0 0

so that
(Y;)?’ P 2 CWC% t
23 [ (e - ) pagarwy, < 2ECE [N as
i=1,2 s er ’
and
1 tyi YSJ 2 . . Cﬂ—C t
-5 2 / “1(7]»)2@4@5F’(<I>5)d<M1,N1>S£ T / e F'(Dy)ds.
2#]'6{1,2} 0 my(m) o ’
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We finally get

t t eCF BCFC%t
/F’(<I>s)d<I>§§Mt+C’/ e%F’(@s)derf(yL1|t+|L2|t)+ = . (3.23)
0 0 ™ T
where
20 . Bkov/Cr = 34/C:C
C' = 4+ 20 + £

Ver Cr C?T/2
We prove now a lower bound for fg e P F'(®4)d (P),. We have

20, yi)2 90205 '
eC < ((7;))2 2P < ec , T > ¢ and pl > —kor/Cre™®s
i i=1,2 \'8 &
then
t Y 2 . - t 2k \/CG
/ ) ) 0 (4 e B (@ )ds > 2 [ e F/(@,)ds — 220V Cr oy,
0 12172 (ﬂ-s) C”7'1' 0 cﬂ'

The process (N*) being non-decreasing, we have

L e
3 [ dge F@e (e, z o
1=1,2

The same argument as above leads us to

t(}2)3 " ) . Vﬁf;ig
— LA 1 (P )e P d (MU NT) > — eCrt
i=Zl,2/0 2(m3)° ) < ) &
and
t vi(vI)2
_ }/S (}/S ) €4¢)SF/((I)3)€_<I>Sd <MZ,N‘7> Z _ (;7;05 GCFt.
0 2mi(ml)? s i

i#je{1,2}
We finally deduce that

t t VO,  2,/C:C
/ e P F(,)d (D), > = [ P F(D,)ds — (%O Cn + 5) eCrt
0

s = (jﬂ 0 Cr Ci/Q
(3.24)
Since the jumps of ®; are negative and F' is non-decreasing, we get
> F(®,) - F(®.) <0. (3.25)

0<s<t

By (3.23), (3.24) and (3.25), we deduce from (3.22) that

Crex [t Cr
F(®) — F(®g) < M, + <C/_ 22 )/0 6<I>SF/((I)s)ds+;?ﬂ(|L1|t+|L2‘t)

. (Q  2koCrVCr CF\/OW(,*E) Cry

2 3/2
c2 2¢x &/
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Choosing Cp = 2C;C" /¢, we've proved that there exists C' > 0 such that
F(®,) — F(®g) < My + C (|L'y + |L?|; + 1) .

This yields to (3.20), since the process M; stopped at T, A 0], A 0 is a true
martingale. The proposition is then proved when <M1,M2> = <N1,N2> =0.

Assume now that <M1,M2> and <N1,N2> are non-increasing. We define @}
as the process starting from ®g and whose increments are defined by the right
term of (3.21). On the one hand, the same calculation as above leads to

F(®}) < M; + ec— (\Ll\e,,ﬂ + yL2|9,,,,) + <eCFC' + 2%’”) t. (3.26)

On the other hand,

AP, = d@’+827q)(771 T2 Y Y2 d (M M?) + e
t 6%18%’2 trt ottt ot ) t 8@18@2

(ﬂ-tlaﬂtQ?thl?Y?)d <N17N2>t ’

2 2
and we can check that 22 and ~2-2
Ox10x2 Oa1 0

from the third point of Hypothesis 3.5 that ®; < ®,. But F is increasing, so that
(3.26) leads us to (3.20) in the general case. O

are non-negative functions. We deduce



Chapter 4

Uniform tightness for time
iInhomogeneous particle
systems

Abstract

In the previous chapter, we proved an existence result for a general class
of interacting particle systems, whose particles evolve as diffusion processes
in a random environment and jump when they hit the boundary of an open
set. In the present section, we consider sequences of such interacting particle
systems and we prove a criterion for the uniform tightness of the family of
laws of their empirical distributions at any time ¢ > 0.

Let Ey and Dy be two bounded open subsets of R% and R%. For all N >
2, let ZLN . ZNN he g famlly of N strong Markov processes , each of them
being equal to a 3-tuple (t,e; 7ZZ’N)te[0,r@[ which evolves in R x Ey x Dy as
a time 1nhomogeneous environment dependent diffusion process. In the 3-tuple
(et Zy, the parameter ¢ denotes the time, e/ denotes the environmental
dynamics and Z N denotes the actual position of the diffusion.

By a time inhomogeneous environment dependent diffusion process, we mean
that, for any N > 2 and any ¢ € {1,...,N}, there exist four measurable functions

sN 1 [0,T] x Eg x Do — R% x R%
:[0,T] x Ey x Dy — R%

oN . [0,T] x Ey x Dy — R% x R%

nN :[0,T] x Eg x Dy — R%,

N
m;
N

137
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such that 2%V = (b, Z5N) fulfills the stochastic differential system

dei’N sf-v(t,ei’N,Zf’N)dBZ’N + mi(t,ei’N,ZZ’N)dt, eé’N € Ey,
dziN = N (et Z0dBPN + N (4N Z0NVdt, 25N e Dy,

where (85, B%V) is a standard do + dj Brownian motion. Each process Z¥
is hardly killed when ZZ’N hits 0Dy and smoothly killed with a rate of killing
/if-v(t,ei’N,ZZ’N) > 0, where

kN [0, + 0o[xEy x Dy — R

is a uniformly bounded measurable function. We emphasize that, contrarily to
the case of the previous chapter, each process Z%V evolves in the same state space
R x Ey x Dg, for any ¢,N.

In order to build an interacting particle system with N particles as in Section
3 of Chapter 3, we assume that, for any N > 2, we're given the measurable jump

measures
SN [0, 4+ oo[xEY x DY — My(EY x DY)

and
HY 1[0, 4+ oo[x EY x d(DY) = My (EY x DY).

As in Section 3 of Chapter 3, we define, for any N > 2, the interacting particle
system (.,(D(N),X(N)) whose particles evolve as independent copies of Z%V, i =
1,...,N, jump with respect to S when one of them is smoothly killed and jump
with respect to HV when one of them is hardly killed. For any N > 2 and any i €
{1,...,.N}, we denote by (.,0%" ,X*N) the i*" particle of the system (.,(D(N),X(N))

and by pi¥ the empirical distribution of XEN), defined by

N
1
,Uiv = N E 1 (SX;L,N S Ml(DQ),
1=

where M (Dp) denotes the set of probability measures on Dy. In Theorem 4.1,
we give a sufficient criterion for the family of laws of the random probability
measures (1" ) y>2 to be uniformly tight.

Before turning to the statement of the theorem, let us define our main assumption.
In particular, it will ensure that, for any N > 2, the number of killing/jumps of
(-,0M) X)) remains finite in finite time almost surely, which is necessary for
(t,(D,EN) ,XEN)) to be well defined at any time ¢t > 0. In what follows, ¢o denotes
the Euclidean distance to the boundary 9Dy, defined for all € R% by

r)= inf |z — ,
bo(a) = int o=yl

where ||.||2 denotes the Euclidean norm of R%.
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Hypothesis 4.1. We assume that there exists a > 0 such that
1. ¢g is of class C? on D& = {z € Dy, ¢o(z) < a},
2. for all N > 2, SN and HYN fulfill Hypothesis 3.2 of Chapter 3.

8. kYN is uniformly bounded on [0, + oco[x Eg x Do and s ,oN mY and n¥
uniformly bounded on [0, + co[xEy x D§. These umform bounds are also
supposed to be uniform in N > 2 and i € {1,...,N},

4. for all N > 2 and i € {1,...,N}, there exist two measurable functions fZ»N :
[0, + co[xEg x D¢ — Ry and gV : [0, + oo[xEy x D¢ — R such that
V(t,e,z) € [0, + oo[x Ey x D§,

Z gf}i ngf; 2oy o u(te,z) = [N (tez) + g (te2), (4.1)

and such that

a) fiN is of class C' in time and of class C? in environment/space, and
the derivatives of fN are uniformly bounded in [0, + co[xEy x Dg,
uniformly in N > 2 and i € {1,...,.N},

b) there ezists a positive constant kg > 0 such that, for all (t.e,z) € [0, +
oo[x Ey x D§,
’g;-lv(t,e,z)‘ < kg(b@(z)?

¢) there exists two positive constants 0 < ¢y < Cy such that, for all
(t,e,z) € [0, + co[x Ey x D§,

co < fN(te,2) +g)" (te,z) < Co.
We emphasize that kg, co and Co are required to not depend on i,N .

We're now able to state our tightness result. In the next chapter, Theorem 1
will be used in the proof of a strong mixing property for time inhomogeneous
diffusions conditioned to not be killed.

Theorem 4.1. Assume that Hypothesis 4.1 is fulfilled. Then, for all ¢ > 0 and
all to > 0, there exists oy, > 0 and Ne > 2 such that

E(u (D§)) <€, Vt>tg YN > N,

independently of the sequence of initial empirical distributions (,U,éV)NZQ.

As a consequence, for any sequence of initial distributions m" € My (D) and
all t > 0, the family of laws of the random measures (,uN(t,da:))
tight.

N>o 0 uniformly
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Proof of Theorem 4.1. By Theorem 3.1 of Chapter 3 and by Hypothesis 4.1, the
interacting particle process (-,(D.(N),X.(N)) is well defined at any time for all N > 2.

Fix € > 0 and T" > 0. Assume in a first time that the killing rate /{ZN is equal to
0, forall N > 2 and i € {1,...,N}. For any N > 2 and any a > 0, we have

E (1Y(DY))? < E (1)(D§)?)

1 (0% 2 1 (63 (07
<E (1\72 3 (5X%N(DO)) o5 2 Oy (D8 (DF)
)

i=1 1<i#j<N
1 (0% 1 o (0%
< FEWDD) + 53 D B (0 (D9 (D))
1<i#j<N
1 ; }
< 5 E (e (D)) +  max P (d)O(XT’N) < a and ¢o(XEV) < a) .

Fix N >2andi# j € {1,..,N}. For all v € [0,5], we define the stopping time
SN =inf{t > 0, go(X; V) > 7).

We need the following Lemma, whose proof uses Proposition 4.1 of Chapter 3 and
1té’s calculus and is postponed to the end of this section.

Lemma 4.2. There exists a positive constant C' > 0, independent of i,j,N and
7, such that for all o € [0,7],

i .7 cT
P (3t € [S37.T], 00(X]N) + 60 (XF™) <) < log (2)

We immediately deduce from Lemma 4.2 that, for all o € [0,7v/2],

P (¢o(XEN) < d go(X:N) < a) < ———— 1+ P(SEN > T).
(905 < @ and w(XF™) < 0) < g + PS> D
In particular, we deduce that
a2 _ 1 o cT ;
E (u7' (D))" < B (47 (D)) + + max P(SMN >T).  (42)

log (5£)  1<i<N

Now, we use the following lemma, whose proof uses a coupling argument and is
postponed to the end of this section.

Lemma 4.3. There exists a constant v. > 0 such that, for oll N > 2 and all
i€ {l,...N}, we have
P (SN > 1T) < e/3, (4.3)

independently of the sequence of initial distributions.
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By (4.2), we deduce that, for all « € [0,7/2],

1

o cT
NE (Mg(Do)) + ‘

log () 3

Fix an integer N, > 2V % We thus have, for all N > N,

E(u) (DY)’ <

1 o €
NE (N?(Do)) < 3

Let ae > 0 be a positive constant such that log ( o ) < 3(CTe)~!. We then have

200
N Qe 2
E (pp (D§<))” <€, VN > N,
independently of the sequence of initial distributions.

Fix t > T. Since the previous inequality doesn’t depend on the distribution

of the initial position (Xé’N,...XéV’N), it can be applied to the process initially
distributed with the same distribution as (th;]:\ﬂ,...ij:\;). By the Markov property

of the interacting particle system, we thus obtain

E () (Dge))? < ¢, N > N..

N—=0

This allows us to conclude the proof of the first part of Theorem 4.1 when x;' =

forall N >2and i€ {1,....N}.

Fix N > 2 and assume now that (Hgv)ie{l,...,N} isn’t equal to 0. Fix i,j €
{1,....,N}. For any v > 0, we define the stopping time Sfy’N as above. We also
denote by 7m0 the first smooth killing time of XN or X7V after SLN

ijo"th = inf{t > Sf;N, XN or X3V is smoothly killed at time ¢}.

The same proof as the proof of Lemma 4.2 leads us to the following inequality

4 ) C
smooth N N
P (3t €[S, AT, 0(X ™) + 90(XP™) < a) < log ()

In particular, we deduce that

P (go(X5") < o and go(X4") < a)
. ¢
" log (2)

By Hypothesis 4.1, the killing rates K)ZN and /ij.v are uniformly bounded by a

+ P(S, > T and 75" > T) 4 P(r5"" < T).

constant ko > 0. As a consequence, there exists Ty > 0 such that, for all T < T}
and all v > 0,

P<T’§mooth < T) <

IS
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We emphasize that T is chosen so that it only depends on the uniform bound
Koo- Assume that T < Ty. By the same arguments as in the proof of Lemma 4.3,
we can find 7. > 0 such that

P(SEN > T and 75m" > T) <

NI

Finally, choosing . small enough, we deduce that

4 . 3
P (60(X3") < ac and go(X3Y) <) <
Proceeding as in the first part of the proof, we deduce that the first part of

Theorem 4.1 holds for all T' €]0,Ty[. Thus it clearly holds for any 7" > 0.

The uniform tightness property is immediately deduced from the tightness crite-
rion proved by Jakubowski in [48]: the family of laws of the random measures
,uév is uniformly tight, if, Ve > 0, there exists a compact set K. C Dy such that
E(u¥ (Do \ K.)) < € for any N > 2. This conclude the proof of Theorem 4.1. [

Proof of Lemma J.2. Fix v € [0,a/2] and let us prove that, for all a € [0,7],

. i : cT
P (3t 2 15971 o) + n(FY) < ) < E

Let (tn)n>0 be the sequence of stopping times defined by
to = inf{t € [TV, T], ¢o(X;™) + do(XPY) <a/2} AT
and, for all n > 0,
tons1 = inf{t € [ton,T), do(XPN) + (XN > al AT
tonta = nf{t € [ton1,T], 0(X;™) + 60(XP™) < a/2}AT.

It is immediate that t,, converges almost surely to T. By construction, we have
for all n > 0,

$o(X;N) < a and ¢o(X7V) < a, Yt € [tan,tonsal,
do(XN) > a/2 or ¢o(XI™) > a/2 otherwise.

In particular, by the first point of Hypothesis 4.1, ¢ is of class C? at XZ’N and
th ’N, for all t € [ton,ton+1] almost surely. This will allow us to compute the Itd’s
decomposition of ¢g(X*V) and ¢o(X7V) during this interval of time, at any time
t € [ton,tont1], using 1t6’s formula.

For all n > 0, we have

P (3t € [tans1tontal, ¢o(X;™) < o and go(X7Y) < a) =0, Va < a/2. (4.4)
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Fix n > 0 and let us now prove that there exists a constant C' > 0 such that

Z» - ¢
P <Elt € [tantantil, do(XN) < & and (X7 < a) < @E (tant1 — ton) -

We define the positive semi-martingale Y by

N .
i { ¢0(Xz‘2"+t) it <tont1 — ton,

— ‘ 4.5
a/2—|—|WZ| iftZthJrl—th, ( )

: =

where W' is a standard one dimensional Brownian motion independent of the rest
of the process. The extension after time to,11 — to, allows us to define Ytz at any
time ¢ € [0, + co[. We define similarly the semi-martingale Y7. In order to apply
Proposition 4.1 of Chapter 3 to the pair of semi-martingales (Y*,Y7), we need the
It6’s decompositions of V¥ and Y7. Let us set

i, N Y :
i SN (ton + tiog,, 0 X0 4e), 1f 0 <t < topp1 — ton,

T, i 4> ton i1 — ton

and
N N .
b= g (ban + 1,0, 1. X0 1y), i <tong1 — ton,
0, if t > t2n+1 — ton,
where fiN and giN are given by Hypothesis 4.1. By the It6’s formula applied to
Y, we have
dY)} = dM} + bidt + dK; + Y} = Y],
where M* is a local martingale such that
d(M")y = (m} + p})dt;

b is the adapted process given, if t < ton41 — tan, by

d'i

, 99; , i,N N i, N N
b= 3 o (K )l eltan + 0 XE)
k=1

dv
1~ 99 N\ _N_N« N i N
t5 > (Xigo) (07 07 " Tha(ton + .08, 10, X45 1t)

and, if t > to,11 — ton, by bf; =0; K'isa non-decreasing process given by the
local time of |[W;| at 0 after time tg,11 — t2,,. By the 4" point of Hypothesis 4.1,
we have, for all £ > 0,

co N1 <m+pi <CoV1,and |p| < kY, (4.6)

By Hypothesis 4.1, ¢q is of class C? on D§ and an,JN are uniformly bounded.

7

This implies that there exists bs, > 0 such that, for all ¢ > 0,

b > —boo. (4.7)
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Similarly, we get the decomposition of Y7, with 77, p/ and &/ fulfilling inequalities
(4.6) and (4.7) (without loss of generality, we keep the same constants cg, Co, k
and by ).

Let us now compute the It6’s decompositions of 7% and 77. We deduce from
the Ito’s formula that there exist a local martingale N* and a finite variational
process L' such that, for all ¢t > 0,

drl = dN} + dLi 4 7! — 7t

where, for all ¢ € [0,t2,4+1 — ton],

) t 8fN do o N
] 7 (3
Ly = /0 E (ton, + s ot2n+s,Xt2n+s + g 8 k (ton + s 0t2n+8,Xt2n+s) ds.

By Hypothesis 4.1, the derivatives of f/¥ are uniformly bounded, so that there
exists a constant C, such that

E (IL |13 1-t22) < CLE (tant1 — tan) - (4.8)

Let us set, for all ¢t < top41 — ton,

d; afN
N XNy 2 i,N yri,N N i, N
Z o X 2 4 0 s o o )
d, 8fN N wiN afN N wiNe N N Ny
? 2 2 z i %
+ Z 8.;k (1‘:’0157 7Xt7 ) a';l (taot’ ’Xt’ )[U 0- *]kl(t,ot7 ’Xt, )
k=1,

and, for all t > tg,11 — tan, & = 0. Then we have
(N, = £ldt.

Thanks to the regularity assumptions on fiN and the boundedness of sfv ,O'ZN , there
exists C¢ > 0 such that

& < Ce. (4.9)
The same decomposition and inequalities hold for 7/, with the same constants

Cr and C¢. We emphasize that these constants are chosen independently of 4, j
and N, since the bounds that we used are by assumption uniform in ¢,5,/V.

We define the process

)2 72
ot 1log<<ml> +m;)

2 m} i

and we set, for all € > 0, T, = inf{t € [0,T], ®; > ¢ 1}. By the previous [td’s
decompositions, one can apply Proposition 4.1 of Chapter 3 to the pair of semi-
martingales Y1 Y2, Applying minor changes in the proof of Proposition 4.1, one
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can replace T by any stopping time 6 in the statement of the proposition, which

yields to

1

P(T. <0) < mc (E(|LZ|9 + \Lj\e) + E(Q)) .

Applying this result to 0 = to,+1 — to, (which is a stopping time for the filtration
of the process (X»N, X5N) after time t,) and using (4.8), we deduce that there
exists a constant C’ > 0, which only depend on the constants beo,kg,c0,Co,Ct,
such that

P (Te S [0,t2n+1 — tgn]) < C,<2 Cr + 1)E (t2n+1 — tzn) . (4.10)

el — (I)O

We have, for all ¢ € [0,t2,,+1 — t2,[ and by definition of @,

(9;)? (‘I’t)2>
_l’_

€o €o

o, > —10g<

In particular we have

+
Co Co

iz g ({8 P

If to, > S5, then by definition of ta,, we have ¢o(X,\) > a/2. But ¢o(XN)

is discontinuous only at times ¢ > 0 such that ¢0(XZ_’N) = 0, so that

By = do(X) = do(XN) > a/2 > .

ton-

If £y, = S5, then, by right continuity of ¢o(X?) and by the definition of 5%,
we deduce that &g = gbo(XZ;]:) > ~. Finally, we have

2
Py < —log <’Y) .
co

Thus we deduce from (4.10) that
N S
el +log (%)

which is by definition equivalent to

P (T¢ € [0,tan+1 — tan]) <

0(2 CL + 1)E (t2n+1 — t2n) .

. . 1
P (Elt € [thatZTLJrl]v ¢0(XZ7N)2 + ¢0(X1‘€77N)2 < 60€_€>

1
< ——5xCQ2CL+1)E (tang1 — ton) -
e +log <Z—O)

For all a > 0 small enough, replacing e~! by —log(a?/cp), we deduce that

c2CrL+1)

E (topo1 — ton) .
2log(%) (tant+1 — ton)

P (3t € [tan,tan+1], ¢0(XZ’N)2 + ¢0(X5’N)2 < 042) <
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Summing over n > 0 and using equality (4.4), we deduce that

i,IN\2 i, IN\ 2
P (3t € 18,71, 60(X;™)? + do(XPN) 20g (1)

By equivalence of the norms (z,y) — /22 + y? and (z,y) — |z| + |y|, we deduce
Lemma 4.2. ]

Proof of Lemma /.3. In order to prove Lemma 4.3, we build a coupling between
#o(X") and a time changed reflected Brownian motion with drift.
Let (65)n>0 be the sequence of stopping times defined by

0o = inf{t € [0.7), do(X) + éo(X]) < a/2} AT
and, for all n > 0,
Oons1 = inf{t € (020,77, do(X}) + dpo(X?) > a} AT
Oana = if{t € [B2n1,T], do(X7) + do(X]) < a/2} AT.
It is immediate that (6,) converges almost surely to 7" and that
do(XPN) > g Vit € [0,00] and V¢ € U o[04 1,02n42]
$o(X;N) < a, Yt € UpZ[Ban.Ban 1]

Let I" be a 1-dimensional Brownian motion independent of the process (.,(D(N),X(N)).
We set
Mt = Pt, fort € [0,90[,

and, for all n > 0,

Mt M92n /
9271 k=1

My = M92n+1 (Ft - F92n+1) for t € [92n+17‘92n+2[7

8 Th Uz kl( ,0 ;N XZ N)d[B;]l for t € [02n702n+1[7

Informally, M is a square-integrable martingale which is parallel to the martingale
part of ¢o(X»Y) when this one is near 0, and equal to an independent Brownian
motion when ¢o(X»") is sufficiently far from 0. By [74, Theorem 1.9 (Knight)], M
is a time changed Brownian motion. More precisely, there exists a 1-dimensional
Brownian motion W such that, for all ¢ > 0,

e

By It6’s formula, we have

oMy | NN XYY 4 g(tol™ XN if 3n > 0 such that ¢ € [fan,02n11],
ot 1if 9n > 0 such that ¢t € [‘92n+1792n+2['
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By Hypothesis 4.1, we deduce that

oAl < %<M>t§00\/1. (4.11)

By Hypothesis 4.1, there exists a positive constant C7; > 0 such that, for all
t € [O2n,02n41],

-C <§: 6%0 [JN (UN)*} (t,op™ XN
! Py 6a:kaxl ! ! kl oo
do
0o, iNy [ N N i, N
> Gy K1) ] ™ XE)

Let U be the diffusion process reflected on 0 and a, defined by

C
co N

dU; = dW; — dt +dLY — dL¢, Uy = 0,

where LY (resp. L?) is the local time of U on 0 (resp. a). In particular, we have

Cl a 0 a
where, by the fourth point of Hypothesis 4.1 and inequality (4.11),

do 2
Ch Z 0 ¢0 [ N/ N *} iN i,N
. L L t ) K bl
co N1 t M), < 2 Oxk&xl 7 (Uz ) k:l( o X )

9¢0 , i.N N i N

+27(XZ7 ) [nzN]k(taO? a)(tz7 )a

k=1 "k
which is the drift part of the semi-martingale ¢o(X; b N) Informally, Uiy, evolves
as ¢o (X, ) but with a stronger drift toward 0 when it is away from the boundary;
Uiy, is reflected on 0 while qﬁg( ’N) makes positive jumps when it hits 0; Uy,
is reflected on a while qSO(XZ’N) can become greater than a. As a consequence
(see Proposition 2.2 of Chapter 2 for a rigorous proof), we have

0 < Upny, < ¢o(XPY), ¥t € [0,1],
Then, for all v > 0,
{(ﬁo(Xf’N) > 7} > {Unny, =27},

where (M); € [~4+,—t=] by inequality (4.11). It yields that

CoV1> Co/\l

: T
{3t € 0.TNIo(x;™) 27} > {Ht € [0,——] such that U > v, } ,

€0
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which implies that

: T
P(SYN <T)> P (3t e€[0,——] such that Uy >~ | .
Y 1

co
The process (Uy)i>o is a reflected Brownian motion with bounded drift, whose
law doesn’t depend on i,N. As a consequence, there exists 7. > 0 independent
of i,N such that P (Eit € [O,CO%] such that U; > 75) > 1 —¢/3. This implies
inequality (4.3) of Lemma 4.3. O



Chapter 5

Strong mixing properties for
time inhomogeneous diffusion
processes with killing *

Abstract

We prove a strong mixing property for elliptic time inhomogeneous dif-
fusion processes with periodic coefficients, with smooth and hard killings.
We use the approximation method based on the Fleming-Viot type inter-
acting particle system of the Chapter 3. We also use a generalization in
the inhomogeneous setting of a coupling built by Enrico Priola and Feng-Yu
Wang.

We also prove that the approximation method described in Chapter 3
converges uniformly in time for some time inhomogeneous diffusion processes
with hard and soft killings.

5.1 Introduction
Let D be a bounded open subset of R?, d > 1, such that its boundary 0D is of
class C2. Let

[0, + co[xR? — R? x RY ud p. 0 oo[xR4 — RY
(t,x) — o(t,r) C (tx) = o(t,T)

be two bounded measurable functions. We consider the following stochastic dif-
ferential equation:

dZ; = O'(t,Zt)dBt + b(t,Zt)dt, Zog €D, (51)

*In collaboration with Pierre Del Moral.
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where B is a standard d dimensional Brownian motion.

Our first hypothesis concerns the regularity of the coefficients of the stochastic
differential equation.

Hypothesis 5.1. We assume that o and b are continuous uniformly Lipschitz in
x, uniformly in t. This means that there ezists a constant Cy > 0 such that

lo(t,x) — o(ty)ll + |b(t,z) — b(t.y)| < Colz — yl.
We also assume that o and b are periodic, with period II.

Under this hypothesis, the above stochastic differential equation has a solution
since o and b are assumed to be continuous and bounded (see |28, Theorem 3.10,
Chapter 5]). Moreover, the solution is pathwise unique up to time 7p = inf{t >
0, Zt ¢ D} (see |28, Theorem 3.7, Chapter 5|), which denotes the time when the
solution hits the boundary.

For all s > 0 and any probability distribution p on D, we denote by (Zﬁ /)t>s the
unique solution to this stochastic differential equation starting at time s > 0 with
distribution p, killed when it hits the boundary and killed with a rate x(t,25,) >
0, where

k[0, 4+ oco[xD — Ry

is a bounded measurable function. By “the process is killed”, we mean that the
process is sent to a cemetery point 9 ¢ D, so that the killed process is cadlag
almost surely. If there exists x € D such that yu = §,, we set (Zév,t)tzs = (Zgﬁ)tzs-
When the process is killed by hitting the boundary, we say that it has been hardly
killed; when the process is killed strictly before reaching the boundary (because
of the rate of killing k), we say that it has been smoothly killed. We denote the
killing time by 75 = inf{t > s, Zgﬁ = 0}.

Let (Qst)o<s<t be the semi-group defined, for all 0 < s < ¢, x € D and any
bounded measurable function f : RY U {9} — R which vanishes outside D, by

Qsif(2) = E (f(2)1i<r,) = E (f(25)) -

We emphasize that, for any probability measure p on D, the law of Zﬁ,f , 1s given
by the probability measure @, ¢, defined by

1Qua(f) = /D Qo f(2)dp(x).

In this chapter, we're interested in the long time behavior of the distribution
of Zéf , conditioned to t < 7y. For any initial distribution p, the conditional
distribution is given by

MQs,t(')

(e S s AN
IP’(ZSJ €t <Ty) 0. (1)’ (5.2)
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As explained in Chapter 1, the long time behavior of such conditioned distribu-
tions has been widely studied when x = 0 (i.e. there is no soft killing) and when
the coefficients of the stochastic differential equation (5.1) are time-homogeneous
and of class C'. In that particular case, the conditioned distribution (5.2), which
only depends on the difference ¢ — s and on pu, converges when ¢ goes to +00 to a
limiting distribution on D, called the Yaglom limit (see for instance Pinsky [68]
and Gong, Qian and Zhao [37]). A recent result from Knobloch and Partzsch [53]
shows that under additional assumptions, the convergence holds exponentially
fast: there exists two constants C' > 0 and v > 0 such that, for any probability
measure py and pg on D,

H ule,t N ﬂQQs,t
mQsi(1p)  12Qs:(1p)

As an immediate consequence of Section 1.5 of Chapter 1, this property is also ful-

< Ce . (5.3)
TV

filled by logistic Feller diffusion processes, where D =|0, + oo without soft killing,
and whose conditional distribution has been originally studied by Cattiaux, Col-
let, Lambert, Martinez, Méléard and San Martin [16]. If D = RY, so that there is
no hard killing, if ||k|lcc < 400 and if the solutions to the stochastic differential
equation (5.1) without killing fulfill some mixing properties, then the conditional
distribution of the process with smooth killing also fulfills the exponential mixing
property (5.3) (see for instance Del Moral and Miclo [23]).

The main result of this paper is Theorem 5.3, which generalizes the mixing prop-
erty (5.3) to time inhomogeneous diffusion processes with both smooth and hard
killings. The main tools of our proof are the approximation method proved in
Chapter 3 and the coupling construction developed by Priola and Wang in [71].

Our mixing property criterion is composed of the two following assumptions,
where ¢p : D — R, denotes the euclidean distance to the boundary 0D:

¢p(x) = d(z,0D) = ZggD lz —yl,

|| - || being the Euclidean norm. For all a > 0, we define the open subset D* C D
by
D® = {x € D such that ¢p(z) < a}.

Hypothesis 5.2. We assume that D is bounded and that there exists a > 0 such
that ¢p is of class Cg on the boundary’s neighborhood D*.

By [25, Chapter 5, Section 4], Hypothesis 5.2 is fulfilled if and only if D is a
bounded open set whose boundary 0D is of class C?. The last hypothesis will
allow us to use the approximation method of Chapter 3 and to build a coupling
as in [71].

Hypothesis 5.3. We assume that
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1. K is uniformly bounded in (z,t),
2. there exists a constant co > 0 such that

coly| < |o(t,x)y|, ¥(t,z,y) € [0, + oo[x D x RY.

3. there exist two measurable functions f : [0, + co[xD® — R4 and g : [0, +
o0o[xD?* — R such that V(t,x) € [0, 4+ co[x D%,

5 G ) g () = 1021+ 0,

and such that

a) f is of class C' in time and of class C? in space, and the derivatives
of f are uniformly bounded,

b) there exists a positive constant kg > 0 such that, for all (t,x) € [0, +
oo[x DY,
lg(t.x)| < kg¢p (),

We prove the mixing property in Section 5.2 and Section 5.3. In Section 5.2,
we recall the approximation method of Chapter 3. We also deduce that the
conditioned distribution (5.2) is uniformly tight. In Section 5.3, we generalize
the coupling construction of [71] in our time-inhomogeneous setting and we state
some estimates on the coupling time. Then we prove the mixing property (5.3)
under Hypotheses 5.2, 5.1 and 5.3.

An interesting consequence of the mixing property is deduced in Section 5.4: we
prove that the approximation method proved in Chapter 3 converges uniformly in
time under Hypotheses 5.2, 5.1 and 5.3. This result generalizes a result obtained
by Rousset [75] in a situation without hard killing.

5.2 Approximation method and uniform tightness of
the conditioned distribution

We present in this section the approximation method proved in Chapter 3. This
method has been introduced by Burdzy, Holyst, Ingerman and March [13] for stan-
dard Brownian motions and studied later by Burdzy, Holyst and March [14| and
by Grigorescu and Kang [40] for Brownian motions, by Del Moral and Miclo [23]
and by Rousset [75] for processes with smooth killings, Ferrari and Maric [30]
for Markov processes in countable state spaces, in [85] for diffusion processes and
in [84] for general Markov processes.
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The approximation method is based on a sequence of Fleming-Viot type in-
teracting particle systems, whose associated sequence of empirical distributions
converges to the conditioned distribution (5.2) when the number of particles tends
to infinity. Fix N > 2 and let us define the Fleming-Viot type interacting particle
system with N particles. The system of N particles (Xsly’tN,...,Xﬁ’N)tzs starts
from an initial state (X;V’év,...,ngN) € DV, then:

L N
e The particles evolve as N independent copies of Zj . X2 until one of them, say
XN s killed. The first killing time is denoted by 7'1 We emphasize that
under our hypotheses, the particle killed at time TlN is unique (Theorem 3.1,

Chapter 3).

e At time TiN, the particle XV jumps on the position of an other particle,
chosen uniformly among the N — 1 remaining ones. After this operation,
the position X A v isin D, forall i € {1,....N}.

$,71
Xi,NN .
e Then the particles evolve as N independent copies of Z I until one of

7

them, say X% is killed. This second killing time is denoted by 74¥. Once
again, the killed particle is uniquely determined.

o At time 7’2N, the particle X2V jumps on the position of an other particle,
chosen uniformly among the N — 1 remaining ones.

zN

e Then the particles evolve as independent copies of Z " and so on.
We denote by 0 < TlN < 7'2N < .. < 1N < ... the sequence of killing/jump times
of the process. By Hypotheses 5.3 and 5.1, the assumptions of Theorem 3.1

of Chapter 3 are fulfilled, so that

lim TN = +00, almost surely.
n—o0

In particular, the above algorithm defines a Markov process (X;&N,...,Xﬁ’N)tZO.

For all N > 2 and all 0 < s < ¢, we denote by ui\jt the empirical distribution of
(X;ftNa---ant’N), which means that

,Ust NZ(SXLN EMl(D>a

where M (D) denotes the set of probability measures on D.

By Theorem 2.1 of Chapter 3, we have, for any measurable bounded function

f:D—R,
1 v 6YQu) | A= )] ( 1 )
: N;f(Xs’t) 1N Qst(1p) VN 8 1Y Qst(1p) )
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N . P . . 1 1
If pug. ¢ is deterministic, one can replace the expectation E (ué\,’st,tlr)) by 1Y.0uiin

in the right term. Thus we have the following result for non-deterministic values
of pfs.

Proposition 5.1. Under Hypotheses 5.2, 5.3 and 5.1, we have

E( ‘ N> o 4= 9)fls

s,s | = )
\/ Nu2Qs . (1p)

In order to prove the strong mixing property announced in the introduction of

almost surely.

N
1 Z f(Xi’N) _ Né\fst,t(f)
N i=1 8t /’L:]s'\,[sQS,t]-D

(5.4)

this paper, we also need the following uniform tightness result.

Proposition 5.2. For all ¢ > 0 and all ty > 0, there exist a positive constant
ae > 0 and a number N > 2 such that, V0 < s < s+ ty < t,

E (ply(D*)) <€, VN > N, s+t < t,

independently of the initial distribution ué\fs,
Moreover, if MQTS converges to a probability measure i on D, then we have, for
all 0 < s < s+tg <t and any probability measure pu on D,

NQS,?&(DQF)
1Qui(1p) = ©

Proof. The first part of the proposition is exactly Theorem 1 of Chapter 4.
We assume that ug\sf) converges almost surely to a probability measure . By
the convergence result of Proposition 5.1,

WD)
10a(1p) B (D))

This and the first part of Proposition 5.2 allows us to conclude the proof. O

5.3 Strong mixing property

Let us now state our main result.

Theorem 5.3. Assume that Hypotheses 5.1, 5.2 and 5.3 are fulfilled. Then there
exist two constants C' > 0 and v > 0 such that

< Cce T,
TV

sup
wi,u26EMq (D)

‘ mQor  peQor
u1Qorlp  p2Qorlp

We prove Theorem 5.3 in the following subsections. In Subsection 5.3.1,
we present the coupling for multi-dimensional time-inhomogeneous diffusion pro-
cesses. In Subsection 5.3.2; we derive from this coupling two intermediate results
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which are key steps for the proof of Theorem 5.3. The first result (Lemma 5.5)
concerns the existence of a family (xs;)o<s<¢ and a constant 79 > 0 such that

1
inf Qsi1p(x) > =||Qs1p]|oc, VO < s+ 114+ 1 < ¢,
x€B(xs,t,70) 2

where we recall that II is the time-period of the coefficients ¢ and b. The second
result (Lemma 5.6) states the existence of a constant 5 > 0 and a family of
probability measures (Vgl’m)szo,(zl,xg)erD such that, for all s > 0, all (z1,z2) €

D x D and any non-negative measurable function f,

Qs,s—i—lf(xi)
Qs,s+1 ]-D(xz)

We conclude the proof of Theorem 5.3 in Subsection 5.3.3, showing that Lemma 5.5

> BUE(f), i = 1,2.

and Lemma 5.6 imply the strong mixing property.

5.3.1 Coupling

In this section, we present a coupling for multi-dimensional time-inhomogeneous
diffusion processes.

Proposition 5.4. For all s > 0 and all (y*,y?) € D x D, there ezists a diffusion
process (Y4, Y2 )i>s such that

1. (Y})i>s has the same law as (Zilé)tz&
2. (Y?,t)tZS has the same law as (Zgzt)tzs;
3. Yslt and th are equal almost surely after the coupling time
T2 =inf{t > 0,Y, = Y2},
where inf ) = +00 by convention.

4. There exists a constant ¢ > 0 which doesn’t depend on s,t such that

clyr — yo

VIA(t=s)

where 7'(% and 7'82 denote the killing times of Y1 and Y? respectively.

Pt <7V 71h and TS >t ATHNTS) <

The proof of the existence of the coupling essentially follows the ideas intro-
duced in |71] adapted to the time-inhomogeneous case. So we do not write the
proof in details. Nevertheless, let us recall the idea behind the coupling construc-
tion.

By Hypothesis 5.3, there exists A\g > 0 such that oo™ — Aol is definite positive
for all t,z. Let og := v/oo* — Aol be the unique symmetric definite positive matrix
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function such that o2 = oo* — A\gI. Without loss of generality, one can choose g
small enough so that o is uniformly positive definite. We define

k(lz —yl)(z —y)
(k(|z = y[) + )|z — y|

u(:c,y) = and Ct(:vay) = Ao (I - 2u(:c,y)u(a:,y)*)—|—oo(t,fﬁ)cro(t,y)*,

where k(r) = (kor?/2 V r)i. Before the coupling time, the coupling process is
generated by

l\.’)\r—t
M&

8?2 8?2
Li(z,y) = tx)ot2)ija—m— tloty)oty)lija—m—
by { O0x;0x; 0y;0y;
& d 9 d
PO o | + 3 bl +bilb g |

The coefficients of L; are continuous and bounded over R, then, for all s > 0
and = = (y',y?) € D x D, there exists a not necessarily unique process (XZ;);>0
with values in R?? to the martingale problem associated with (L;);>s (see [47,
Theorem 2.2, Chapter IV]). We set XZ, = (Y/},Y/3) and we consider the coupling
time 7. of X, which is defined by

T = inf{t > s, such that Ysli = YS’%}
We define Y! and Y? as follows:

Yi _ }/t/i7 t S TC/S’
O v esTr
t c

Moreover, each marginal process Y, i = 1,2, is killed either when it hits the
boundary 0D or with a rate k.

The proof of the 4" statement of Proposition 5.4 requires fine estimates and
calculus which are plainly detailed in [71].

5.3.2 Intermediate results

In this section, we prove the two following lemmas, which are essential for the
proof of Theorem 5.3. We recall that II denotes the period of the coefficients
and we emphasize that Lemma 5.5 is the only step which requires the periodicity
assumption.

Lemma 5.5. Let us denote by xs; the point at which Q,:1p is maximal. There
exists a positive constant ro > 0, such that, denoting by B(xs4,m0) the ball of
radius ro centered on sy, we have

1
i Quiln(®) = 5l|Quilplloe VO < s < s+ I+ 1<,

IGB($5¢77‘0)
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Proof of Lemma 5.5. Fix s > 0 and let (YSI,YSQ) be the coupling of Proposition
5.4, starting from to points y; and yo in D. From the properties (1) and (2) of
the proposition, we deduce that, for any measurable bounded function f which
vanishes outside D, we have

|Qss411f (") — Qs s f (W) SE|f(Voin) — F(YEein)]

where f(Ysl,erH) = f(YS?SJrH) = 0if s +1II > 74 V 73 and, by property (3) of
Proposition 5.4, Y23+H = YS%SJFH itT? <s+1IIA T(% A 7'82. Thus we have

S,

}Qs,erHf(yl) - Qs,s+Hf(y2)‘ < [fllP (S +1< T(% v Tg and T¢ > s + 1T A T(% A Tg)
clyr — y2
< Itz 55

by property (4) of Proposition 5.4.

By Proposition 5.2 with € = 1/2 and to = 1, there exists ap > 0 such that, for all
0<s<s+1II+1<H,

QS+H,t1D(x) < 2QS+H,t1(DD‘O)C (:[,‘)7

where (D) ={z € D, ¢p(z) > ap}. We emphasize «y does not depend on s,t.
Since the coefficients of the SDE (5.1) and the killing rate x are assumed to be
uniformly bounded on D, there exists a positive constant c,,, such that, for any
t>0,

inf 1p > coy, > 0.
xE(DO‘O)CQt’t+H D > Cag
In particular, we have
Qt+1lp
l(DaO)c(m) < = (z).

Cayg

We deduce that, forall 0 < s < s+I1+1<t,

Qtt+11lp
Qsrmelp(2) € 2Qsm———2 (),
o
so that
2
Qssmme (D) lo < 7"@s+ﬂ,t+H1D||m
o

2
< —|Qs¢1plle,
Can
by the periodicity assumption of Hypothesis 5.1. Applying inequality (5.5) to
[ = Qqy11¢ (1p) and using the semi-group property of (Qs¢)s<¢, we deduce that,
forall s <s+1I+1<t,

1,2
Qs f(y") = Quaf (V)] < 2cly” — ¢

<2 —vli0, 1p).
e T 0setollee
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Forany 0 < s < s+1Il+1 <t let 254 be such that Qs+1p(xss) = ||Qst1D|loo-
We have by the previous inequality,

2C‘Is,t - y‘

CaoV/T A (t = 9)[1Qs1Dl0o

. C . -
Choosing rg = 2, one obtains Lemma 5.5.

Qstf(y) 2 |Qs.t1plloo =

Yy € D.

O

Lemma 5.6. There exist a constant 5 > 0 and a family of probability measures
denoted by (V5™ 550, (21,22)eDx D Such that, for all s > 0, for all (x1,22) € Dx D
and for any non-negative measurable function f,

Qs,s-&-lf(xi)

Qs,erllD(xi) Z ﬁVSL z(f)

Moreover, for any r1 > 0, we have for all x € D

inf 22 (B(x,ry) N D) > 0.
>0, (ac11,I;tlg)ED><D Vs ( (:I: 7’1) )

Proof of Lemma 5.6. Let us first prove that there exist a constant py > 0 and
a fixed point z¢p € D such that, for any (y1,y2) € B(xo,p0) X B(zo,p0) and any

s > 0, there exists a probability measure p2"*%? which fulfills
E(f(Z,,,)) > () (56)

s+2,54+17 | = 2“8 ’ )
Fix xg € D and s > 0. Let pg be a positive constant which will be fixed later in
the proof. Let yi,y2 be two elements of B(xg,po) and let (Y;Jrg .,erg ) be the
37 ER

coupling of Proposition 5.4 starting from (y1,y2) € D x D at time s + % We
define the event £ by

E={s+1VThNnT] OI“TCSSS-Fl/\Tal/\TaQ},

where 77 is the coupling time of Proposition 5.4, and 7'31 and Tg the killing times
of Y! and Y? respectively. By definition of the killing time, s + 1 > 7'(% \% Tg
= v!

implies Y! = 0. Moreover, by the coupling property (3) of

s+%,s+1 s—i-%,s—&—l
TEPN s 1ToA 250 1 1 _v2 :
Proposition 5.4, T? < s + 1 A 75 A 75 implies Ys+§,s+1 = Ys+§,s+1' Finally,
1 _ 2
&C {Yts—i-%,s—‘rl - Ys+§,s+1} )
so that

E (f(Y;2+§ﬁH)|5) =E (f(Ysig,sH)’g) :
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We have then (the first equality being a consequence of Proposition 5.4 (1)), for
any measurable function f which vanishes outside D,

E <f(231§§+4)> - E:(f(yj+§§+4)>
E(f(Y},2,,1)IE) P(€)

> E(f(V)2,.,)IE)B(E).

AV

But Proposition 5.4 (4) implies
P(E) > 1-3cly1t —y2| > 1—6cpo
so that
B (120 ,,0) 2 B (10075 L IE) (- bemu (1) vi =12, (51
where the probability measure p2"¥? on D is defined by
E(f(r} £)
P2 (f) = I 5"%75"‘1)‘
Y :
E (1 p(Y! )|8>

s—i—%?s—‘rl

It remains to bounds by below E <1D(Ysl+2

2 sH)]S) to conclude that (5.6) holds
37

for a well chosen py. We have

B (100730 )I) = e (100%00) = Tpe B (1007, IE°)
1 1 1 - P(€)
> g () <

6cpo
Y1
> E <1D(Zs+g,s+1)> ~1—6epy

The coefficients of the SDE (5.1) and the killing rate x are uniformly bounded on
D, thus, for a fixed point x¢ and pg > 0 small enough,

def . .
= inf f E(1p2" > 0.
€0 ;1210 y1€l§1(1x0,p0) < D( 3+§,S+1)>

Finally, we deduce from (5.7) that

v 6cpo
Yi ,
E(ﬂaﬁﬁg>z<m—1_&m)u—&WM%wux

for any non-negative measurable function which vanishes outside D. In particular,
choosing pg small enough, we deduce that, for all i € {1,2},

B (120, ,0) = Jurr) (5.38)
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Let us now conclude the proof of Lemma 5.6. By Proposition 5.2 with u = d,
there exists a constant a; > 0 such that, for all s > 0 and all z € D,

1

Qsorilpenye(z) 2 5Q,111p(2)
1
> §Qs,s+11D($)- (59)

Since the coefficients of the SDE (5.1) and the killing rate x are uniformly bounded,
we clearly have

def .
€1 = inf ] ) > 0.
! 8207x€(D01)°Q8+§75+§ B(xowo)( )

In particular, we deduce from (5.9) that, for all z € D,

Qs,s—l—%lB(fEmpo)(‘r) = Qs,s-i—% (Qs-&-%,sﬁ-%lB(mo,Po)) (‘T)
Z €1QS7S+%1(DQ€)C($)
€
> S Qusnlp() (5.10)

Finally, we have, for all 1,29 € D x D,

Quoi1 f(mi) > /B o Quzend00) [0 Queg] ()
Z0,P0
1

Qs+ 2 1B(zo.00) (22)

QS s f(yl) 5m QSS 2 ®5$ st 2 (dyl,d?ﬁ)
/B(xovp()) /;(l’o,po) +37 +1 |: ! ’ +3 2 s +3i|

€0
2Q5>3+§1B(TO,PO)($2)

/ / ugt Y2 (f) [5z1Q3,8+2 ® 5;52Q878+2} (dy1,dy2) by (5.8)
B(z0,p0) ¥ B(z0,p0) 3 3

st ngm, (‘7}1)
L

X

X

> €

Z1,T2

where vg is the probability measure on D defined by

_ JB20.p0) JB(0.00) 4  (f) Oy Qg 542 ® 51’2Qs,5+%] (dy1,dy2)

QS,S+§ 1B(20,00) (xl)Qs,er% 1B(2,0) (22)

v ()

This and Inequality (5.10) allow us to conclude the proof of the first part of
Lemma 5.6.
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Fix r1 > 0 and let us prove the second part of the lemma. We have, for all
(y1,y2) € (B(x0,00))? and all z € D,

E (13(1‘,7“1) (Y;{F%,SJA) ’g>
B (10073, )€)

E (Lnn (V2 ,00) = (1= P(E))
52;1 Qs+%73+1(3<1’77“1)) — 6¢pg.-

Since the value of pg > 0 is arbitrarily determined, one can choose pg small

/’LgLyQ (B(I’,Tl)) =

Y]

Vv

enough so that ¢p(xg) > 2pp. We emphasize that the the boundedness and the
regularity of D force B(z,r1) N D to have a strictly positive minimal Lebesgue
measure. Then, since the coefficients of the SDE (5.1) and the killing rate s are
assumed to be uniformly bounded, we clearly have

def .
€9 = inf 2 1 1) > 0.
520, .’EGD, yleB(%PO) QS+37S+1 B(I7T1)(y )

We deduce that
W (B(1,1)) > €2/2.

The same construction as above (with our new and smaller py > 0) implies that
viY(B(x,r1)) > €2/2, Vo € D.

This concludes the proof of Lemma 5.6. O

5.3.3 Conclusion of the proof of Theorem 5.3

In this section, we conclude the proof of Theorem 5.3. Let us define, for all
0 < s <t <T the linear operator Rz:t by

T _ Qsi(fQir1p)(T)
Rs,tf(x) - QS,T]-D('I)

for all x € D and any bounded measurable function f. Let us remark that the
value RY,f(x) is the expectation of f(ZZ;) conditioned to T' < 7y. Indeed we
have

E (f(Z§t>1Z§,TeD>
E(T < 75)
2 (12502 re10]22)
Qs,r1p(7)

E ZEJE(1 ze Z7
(rezzom (1,2, 22 )

Qs 11p(z) ’

E(f(2Z2)|T<m) =
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by the Markov property. Finally, since E <1Zzgt D[Z;”t) = Qi171p(Z2%,), we get
SJ—Z c B )

the announced result.

For any T' > 0, the family (th)ogsgtST is a semi-group. Indeed, we have for all

O0<u<s<t<T

T T _ Qu,s(Rg:ths,TlD)(fE)
Ru,s(Rs,tf)(x> - Qu,T]-D(x)

where, for all y € D,

Rg,tf(?J)Qs,Tlp(y) = Qs (fQu,r1D)(y),

then
T T Qu,s(Qsﬂf(th,TlD))(x)
RU,SRSatf(x) Qu,TlD('r)
Qui(fQirlp)(x)
Qurlp(z) Ruef (@)

where we have used that (Qs¢)s<¢ is a semigroup.
In order to prove the strong mixing property of Theorem 5.3, we need the
following lemma, whose proof is postponed to the end of this subsection.

Lemma 5.7. There exists a constant 3’ > 0 such that, for all 0 < s <T —11—2,
we have

RY i fae) > B (f), i =12,

for all (x1,x2) € D x D and any non-negative measurable function f.

For any orthogonal probability measures p1,u2 on D, we have

IR — Rl oy = sup mRL . (f) — peRE 1 (f)
fEBl(D)
< s [ |RDf@) - R )] o padady),
feB(D) ) DxD

where B (D) denotes the set of measurable functions f such that ||f||cc < 1, and
|| - |7y the total variation norm for signed measures. For any z,y € D x D and
any f € Bi(D), we have by Lemma 5.7, for all s <T — 11 — 2,

|Ri a1 f(@) = Ry f)| = [(BL o f (@) = B05Y(f)) — (Bi g fy) = B (f))]
< 2(1-7).

Since pp and po are assumed to be orthogonal probability measures, we have
|1 — p2l|l7v = 2, so that

1 RS g1 = p2 Ry gallrv < (1= Bl — pzllrv-
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If 41 and po are two different but not orthogonal probability measures, one can

apply the previous result to the orthogonal probability measures % and
(p1—p2)—
(=) (D) Lben
(B —p2)+  or (1 — p2)-  p
—RS S - —RS S TV
H(Ml_NQ)—&-(D) ,s+1 (,U/ _,UQ)—(D) ,+1H
( H ( )+ (/1‘1 — Mz)—

) D) ) D)

But (u1 — p2)+ (D) = (u1 — p2)—(D) since puq (D) = pe(D) = 1, then, multiplying
the obtained inequality by (u1 — p2)+ (D), we deduce that

(1 — p2) 4 RE g1 — (1 — p2) Ryl <0 (1= 81 — p2) s — (pa — p2)—[|7v-
Since (p1 — p2)+ — (1 — p2)— = p1 — p2, we obtain

i RY oy — paRE g illrv < (1= 8l — p2ll 7y
In particular, using the semigroup property of (RL t)s.t, we deduce that

H5:vR0T,T—H—2 - 5yRoT,T—H—2HTV = H5wRO,T—H—SRT—H—3,T—H—2 - 5yRO,T—H—3R%—H—3,T—H—2HTV

IN

(1= BB r-11-3 — 6y R r_11_sllv
< 21— )2

where [T' — II — 2] denotes the integer part of 7' — II — 2. Theorem 5.3 is thus
proved for any pair of probability measures (d,,0,), with (z,y) € D x D, for a
good choice of C' and ~.

Let © be a probability measure on D and y € D. We have

5yQO,T(f)
3,Qo1(1p)

5yQ0,T(f)

5,001 (1p) @)

pQo,r(f) — pQor(1p) /D Qorf(x) —0,Qo,r(1p)
< / C'eﬂT%Qo,T(lD)dM(SC),
D

by the mixing property proved above. Dividing by uQo,r(1p) = [p 6:Qo,r(1p)du(z),
we deduce that

pQor(1p)  6yQor(1p)
for any f € Bi. The same procedure, replacing d, by any probability measure,

‘ pQor(f)  6yQor(f) <201 - g

leads us to Theorem 5.3.

Proof of Lemma 5.7. By Lemma 5.6, there exist 8 > 0 and a family of probability
measures denoted by (vs'* ?)s>0, (z1,22)eDx D such that, for any (z1,2z2) € D x D

and any s > 0, we have for all ¢ € {1,2}

Qs,erlf(xi) > Qs,s+11D($i)/8Vs$1’$2(f)a
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for any non-negative measurable function f. Then we have

Qs,s+1(fQst1,71D)(25)
Qs,71p(x;)
BUst ™ (fQs1,71D)Qs,s+11D(5)
Qs,71p(x;) ‘

Rl f(zi) =

>

Since s + 1+ 11+ 1 < T by assumption, we deduce from Lemma 5.5 that there
exist Ts3417 € D and rg > 0 such that

. 1
inf Qs+1,71p(7) > 5[Qs+1,71D |- (5.11)
2€EB(Ts41,7570 2
By the second part of Lemma 5.6, vs """ (B(zs,1,70)) is uniformly bounded below

L1,T2

by a constant € > 0 which only depend on ry. The probability measure 7 is
defined, for any measurable subset A C D, by

sV (ANB
e (a) L P )
Vs (B(‘rs,T,TO))

In particular we have, for any bounded measurable function f,

vt P2 (f) > eengt "2 (f).
We deduce that

%77?@2 (f)Qs,s+11p(21)]|Qs+1,71D] 00

T
Ry f(x1) > Qs1r1p(z1)

€
> guE ()

This concludes the proof of Lemma 5.7.
O

5.4 Uniform convergence of the approximation method

In this section, we prove that the approximation method described in the intro-
duction converges uniformly in time to the conditioned distribution, which is an
improvement of Inequality (5.4). We use the same notation as in Section 5.2.

Theorem 5.8. Assume that Hypotheses 5.1, 5.2 and 5.3 hold. Assume that
the family of empirical distributions (ué\;)sza N>2 of the initial distributions of
(~,X£¥,)N22 is uniformly tight. Then

N
lim sup sup E Mé\,[t(f) — M —0.

N—=00 5<t€[0,+00[ fEBL(D) M(])VQs,t(lD)
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Proof. Fix € > 0 and let us prove that there exists N. > 2 such that, for all
N > N, and all measurable function f: D — R such that || f|leo <1,

N
M8,8Q575+t(f)
sup E|ple (f) -

——— | <e (5.12)
t€[0,400[ NéYSQs,s+t(1D)

Let v be the constant of Theorem 5.3 and fix g > 1 such that 2~ t07/2 < €/3.

Fix o/ > 0 such that E(ué\fs(Da/e)) < € for all N > 2 (this is feasible since the
sequence of initial distributions is assumed to be uniformly tight). We set

Be = inf Qsstt11p(2).
CCE(DO‘€)

Since the coefficients of the SDE (5.1) and the killing rate s are uniformly bounded,
we clearly have . > 0. We have for all ¢ € [0ty + 1]
| uﬁ,@)] :

NéYst,s-&—t(f) _E [E (
where, by Proposition 5.1,
1 4t
N
< .
| ”) N\ W Goere(in) VN

M{sYsQS,S-‘rt(lD)

Né\fst,s-i-t(f)

E o T v
Né\,{st,s—&-t(lD)

Mé\(s—&-t(f) - N?,fert(f) -

Né\,[s+t(f) -

E ( Mé\,[st,s—&-t(f)

Mé\,fstjert(lD)
Since || f|loo < 1, we have
that

éVsQS,S f
ué\{ spt(f) — AZNST;E(ILE)) < 2 almost surely. We deduce

Né\fststrt(f)

E o T v
,U?,[st,s+t(1D)

Mi\,[s—i-t(f) -

€ 1 €
< — 4 2P| 4t > —
> ( \/ NN, Qesri(10) 2)

€ 64¢>
B +2P </~Li\,[st,s+t(1D) < 62]\7>

IN

But 1, Qu.ste(1p) > ¥, (D)) B, thus

N 2
Hs SQS S+t(f) € < N / 64t
E 4 B A ) (Da60>§7
:U's,s—l—t(f) ,UéYSQs,s+t(1D) 9 :us,s ( ) GQNBG
€ N / 64(to + 1)
< -+ 2P (D"‘E) >1— ——
€ ]. /
S Rl CACR)
1= =Ng,
< fho !

92 64(to+1)2 O
1= =oNe
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where we have used 0 <t < tp + 1 and Markov’s inequality. Finally, there exists
N! > 2 such that, VN > N/,

N
N Hs st,s+t(f)
sup  sup B \pug o (f) — 77 5| <
520 te[s,s+to) et Mé\,[st,s—i-t(lD)
Fix now t >ty + 1. We have
E ,uN (f) . M{SYSQS,S-Ft(f) NN (f) . M{s\,fs—f—t—ton—i-t—to,s—&-t(f)
st 1N Qs,5++(1p) e 1ttty Qstt—to,s+t(1D)
Mé\,[ert—to Qs+t—to,s+t(f) H£5Q3,3+t(f)
+ E| 4 - .

M575+t_t0Qs+t7to,s+t(1D) /‘s,st,S-ﬁ-t(lD)

By Proposition 5.2, there exists o > 0 and N/ > 0 such that for all t > ¢p + 1
and all N > N/,

E (Mgs+t—to(Da€ )) < e

. one can assume without restriction that o, = o/. With the

Since ol and o,

same calculation and using the Markov property, we deduce that, for all N > 2,

E|uY, () - 1ot Qstt—to,s+t(f) <9 1 .
7t J— .
° M£s+t—ton+t—to,S+t(1D) 2 1-— %

By Theorem 5.3, we also have

ué\,fs—i-t—to Qs,ert(f) Ms,st,s-ﬁ-t(f)

E
Ns+t—ton,s+t(1D) :U’{Q\,ISQS,S-H(]'D)

<2770 = ¢/3.

Then there exists N/” > 2 such that, VN > N/,

,Ué\,fs Qs,s+t (f)

E o2 T T
MéYsQSyS-H(]-D)

Né\,[sﬂf (f) -

Setting N. = N/ V N!', we have proved (5.12), which concludes the proof of

Theorem 5.8. O



Chapter 6

Simulations

Abstract

In this chapter, we focus on the simulation part of the thesis. In particu-
lar, we present in detail the general algorithm used in the different numerical
illustrations of chapters 1 and 2. We also describe the C++ functions that
have been created in order to implement this algorithm and present how to
use it in some simple examples.

6.1 Algorithm

6.1.1 Preliminaries

Let (Z)¢>0 be a pure jump strong Markov process which evolves on a state space
E until it is absorbed, that is until it reaches a cemetery point 0 ¢ E. The
absorbing time of Z is

To = inf{t >0, 2, = 0}.

We also assume that two independent copies of Z cannot be absorbed at the same
time almost surely. For any probability measure p on E, the law of Z starting
with distribution p will be denoted by P, and its associated expectation by E,.
If there exists x € F such that u = ¢, this objects are respectively denoted by
P, and E,.

In Section 2 of Chapter 3, we built a sequence of Fleming-Viot type interacting
particle systems (X)) x> in order to approximate the conditional distribution

P, (2 € |t <Ty).
The value of IV is fixed across the whole section and we show how to compute
(Xg)tG[O,T]a Vi € {]-a-“’N}a

167
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where T is also fixed.

6.1.2 Theoretical description

Let (X{,....,XJ") € EY be the initial state of the interacting particle system. This
is an input of the algorithm.

We will build by iteration a sequence of indexes (i,)n>0 € {1,...,N} and a se-

quence of families of times (s},...,sY )0 € ([0, + 0o[V)N such that
i

e The sequence (s},

{1,...N}.

) is non-decreasing and converges to 4o0o, for any i €

e the index i, is the smallest index for the relation <" defined by

i<"j & [(s; < s)) or (s' = s) and X;'% =0)

or (s, = s and X!, # 9 and i, < 1)
By instance, ig = 1 is the smallest index for <Y.

Informally, s, will be the nezt jump time of the particle X*. As a consequence, X"
will be the next jumping particle and, if two or more particles jump simultaneously
at time s’ i, is the index chosen so that:

e cither its position after the jump is @ (which means that the i¢" particle has
been absorbed), such a particle being unique by assumption,

e or, if none of the jumping particles are absorbed at time si, X% has the
smallest index among the jumping particles (this choice is arbitrary).

Elementary step n > 1

Fix n > 0 and assume that the finite sequences (i;)o<;<pn and (3117--~731N)0§l§n are
built.

If X;?n = 0, we choose randomly and uniformly an index j, among {1,..., N }\ {i, }
and we set
Xir,'b — X]n
S

in in*
n Sn

After this step, Xz?n belongs to F, since X;,’;n = Xj;; = 0 could only happen if
two independent copies of Z are absorbed simultaneously (at time si), which is
forbidden by our assumptions.

Then we compute the next jump time of the " particle, which is denoted by

s, 1, and the position of the next jump, which is X;?nH. We also set s%,,, = s,
n



6.1. ALGORITHM 169

for any i # i,. We define 4,11 as the smallest element of {1,...,N} for the relation
<",

By induction, we have defined the sequences i, and s, and it is clear that the

sequence s!, converges to 400.

We repeat the previous elementary step many times, and we stop as soon as
st > T for any i € {1,...,N}. Thus we've got computed

(Xti)te[QT]a Vi e {1,....N}.

One of the main interests of this algorithm is that we only have to keep in memory
the position of each particle XZ" at times s, and sﬁlﬂ, in order to compute the
position of the system at time s, .

6.1.3 Container of the set of particles: a complexity issue

The main difficulty concerns the implementation of the vector of particles. At
the beginning of an elementary step n > 1 (n is fixed in this section), this vector
has to contain the position of each particle at times s!, and sﬁl 11 and the times
themselves. We denote by V this container and assume that, for all : € {1,...,N'},
V[i] is an object with elements a, b, pa and pb such that, at the beginning of the

nth step,
V[i].b= s},
V[i] .pa= X7,
Sn—1

V[i] .pb= X;Z .
At each elementary step, we need
1. the index in= 4, of the smallest particle for <",

2. if the position V[in] .pb is equal to d, we need to get the value of V[jn] .pa,
where jn= j, is the index of a randomly chosen particle, different from i,,.

The following requirements for the type of V are directly derived

1. we need an efficient method to access the element V[in], that is to access
the <"-smallest element of the array V,

2. we need an efficient method for random memory access.

Efficient vector implementations already exist in the C++ standard library, which
will be denoted by std (we refer the reader to the web site cplusplus.com [44],
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where a systematic description of this library is provided). The three main vec-
tor containers of the C++ standard library are std::list, std::vector and
std: :set.

The first one, std::list, is implemented so that it is easy to insert or remove
elements; we won’t use these features since the size of our container V will remain
constant, equal to N. Moreover, lists lack direct access to the elements by their
position, which is our second requirement.

The second one, std: :vector, allows access to individual elements by their po-
sition index in constant time; we need this feature in the second requirement.
However, in order to access the first element in the sense of <™ (which is needed
at each elementary step), one has to iterate along the elements of the vector,
which is done in linear time. As a consequence, std::vector doesn’t entirely
fulfills our requirements.

The third one, std: :set, contains elements which are always sorted from lower to
higher following a specific strict ordering criterion; we will use this feature to sat-
isfy our first requirement. However, random memory access in std: : set is poorly
efficient (linear time), and in particular doesn’t fulfill our second requirement.

The original solution that is used here is to combine both the std::vector and
std::set in one new container type, which will be called o_vector (as “ordered
vector”). An ordered vector V will have two elements:

e 3 std::set of pointer to the particles ordered following <™, called V.set,
e a std::vector of pointer to the particles, called V.vector.

At the end of the early computation, we force the pointer to the particles in the
V.set to be ordered. We proceed as follows:

e At the beginning of the n'" elementary step, we choose the first pointer
to a particle of V.set, which points to the i particle of the process by
construction of V.set. This gives us access to i particle in constant time.

e If the particle has been killed, then we choose randomly and uniformly an
index j, between 0 and N —1, different from i,,. The corresponding particle
is pointed to by V.vector[j_n]. This allows us to obtain the new position
of the i" particle in constant time.

e Then we proceed to the increment of the path of the i/ particle, still in
constant time.

e At this moment, the first element of V.set points to the i particle, which
is no more the first one in the sense of <. We need to re-order this element,
which is done in In N time.
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An elementary step is thus achieved in In IV time.

The number of elementary steps required for the whole simulation is clearly pro-
portional to the number of particles. As a consequence, time length of the whole
algorithm is proportional to N In N (for a fixed time 7). Using one of the prede-
fined vector containers of the std would lead us to a time length proportional to
O(N?).

6.2 C++4 functions and some examples

6.2.1 C+4+ functions

In this subsection, we describe the important functions implemented in C' + +
during the thesis. We assume that we’re dealing with a pure jump Markov pro-
cess which evolves in a state space E, the state space being numerically im-
plemented in the type STATE_SPACE. By instance, if F = R, one could choose
STATE_SPACE=double; if £ = N, one could choose STATE_SPACE=int.

The container

We present the way of building an interacting particle X system of type
Fleming-Viot with N particles, each of them starting from a point x¢. The type
of X is IPS_FV_pj<STATE_SPACE>.

Assume for instance that N = 1000, STATE_SPACE=int and x¢ = 7, then X is built
as follows:

IPS_FV_pj<int> X(1000,7);

The dynamic of the particles between the jumps

The process which drives each particle is an object, whose type has to be
derived from the purely virtual class dynamic<STATE_SPACE>. The only purely
virtual method of dynamic<STATE_SPACE> is

bool increment (STATE_SPACE& x, double& t)=0;

Given a position € E and a time ¢t > 0, which are passed by address in order
to be modified during the execution of the function, the method increment gives
the (random) position and the (random) time of the next jump of the process Z
starting from x at time t. These values are returned by modifying x and t. If the
new position z is 0 (that is if the particle has been absorbed), then the function
returns true. It returns false otherwise.

By instance, if the process is a linear birth and death process with birth and death
parameters equal to b=1 and d=2 respectively (see the definition of the linear birth
and death process in Section 4 of Chapter 1), then the process object is defined
as follows (where gsl_ is a reference to the GNU Scientific Library):
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class BD_process : public dynamic<int>{
public:

BD_process(O{}

“BD_process () {}

bool increment(int& x, double& t){
double b_rate=1*((double) x);
double d_rate=2*((double) x);
// In the following line, we pick a random value whose distribution is
// the exponential law with rate d_ratet+b_rate, using the GSL library:
double dt=gsl_ran_exponential(this->r,1/(b_rate+d_rate));
t+=dt;
if(x>= 0)
{
// In the following line, we pick a random value whose distribution is
// a Bernoulli law with parameter b_rate/(b_rate+d_rate)
double test(gsl_ran_bernoulli(this->r,b_rate/(d_ratet+b_rate)));
test==1 7 x++ : x--;
}
else
{
x=0;
}
return x==0;

}
s
BD_process a_bd_process(); //this is a BD_process object

We tell the interacting particle system X to use birth_and_death_process during
the increments by using

X.set_dynamic(&a_bd_process);

Simulation of the interacting particle system: a complete example
We now have all the elements to compute the position at time 10 of the inter-
acting particle system X whose 1000 particles start from 7, evolving as a_bd_process.

#include "IPS.h" //contains all the required classes

class BD_process : public dynamic<int>{
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public:
BD_process (O {}
“BD_process () {}

bool increment(int& x, double& t){
double b_rate=1%((double) x);
double d_rate=2*((double) x);
double dt=gsl_ran_exponential(this->r,1/(b_rate+d_rate));
t+=dt;
if (x>= 0)
{
double test(gsl_ran_bernoulli(this->r,b_rate/(d_ratet+b_rate)));
test==1 7 x++ : x--;
+
else
{
x=0;
s
return x==0;

Y
};

VEZEE R

* main function
Kokokkokokokkokk /

int main(){
// Definition of the GSL random generator
const gsl_rng_type * T;
gsl_rng_env_setup();
T=gsl_rng_default;
gsl_rngx r=gsl_rng_alloc(T);
gsl_rng_set(r,1);
// Definition of the process
BD_process a_bd_process();
a_bd_process.set_rng(r); // the process uses the random generator r
// Definition of the interacting particle system
IPS_FV_pj<int> X(1000,7);
X.set_rng(r); // the process uses the random generator r
X.set_dynamic(&a_bd_process);
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// Simulation
// In what follows, X.current_time() is the time b
// of the next jumping particle
double T(10);
while(X.current_time ()<T)
{
X.increment(); //one elementary step

}

// Display the result

// X[i] is the i-th particle accessed by address

// (X[i]) [T] is the position of this particle at time T

for(int i=0; i<1000; i++)

{
std::cout << "\n" << i << "-th particle at time T: " << (X[i])[T];
}

return O;

}

6.2.2 An example of program

Many programs have been written during this thesis in order to illustrate or
understand the behavior of conditioned diffusions. The following example has
been used to compute the Yaglom limits of the logistic birth and death processes
studied in Section 4 of Chapter 1.

The job of the program is to compute the position of an interacting particle system
whose particles evolve as a logistic birth and death process, to save the positions in
a file and to produce an histogram that can be drawn using the program gnuplot.

Here is the code, where logistic_BD_process_ct denotes a predefined process
class (which is derived from dynamic<int>) and int is the state space of the
process Z.

#include "IPS.h"

typedef logistic_BD_process_ct PROCESS;
typedef int STATE_SPACE;

int main(int argv, charx* argc)

{
simulation_pj_1D<PROCESS,STATE_SPACE>(argv,argc);
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The compilation of the program is made as follows in a Linux shell

$ g++ -o program main.cpp -1gsl -1lgslcblas

The resulting program, called here program can be used in a Linux shell as follows:

$ ./program --process file.proc --init 10000 7 --duration 10
--output data --hist -0.5 100.5 101

where

e --process file.proc means that we use the process described by file.proc,
where file.proc is an existing file taken as an input and which described
the parameters of logistic birth and death process to be used in the simula-
tion. In our case, it is a common text-file which contains

B

# Name of the process

# logistic_BD_process_ct

# Comment

# Process used as an illustration
EE s s s s

S s
#

# Number of parameters

3

# Birth parameter

11

# Death parameter

1

# Competition parameter

1

#
s

e --init 10000 7 means that the system has 10000 particles, each of them
starting from the position 7,

e --duration 10 means that the simulation will last 10 units of time,

e --output data means that the final position of the particles will be saved
in an output file data.
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e —-hist -0.5 100.5 101 means that a file data.hist will be created, which
will contain an histogram of the final positions of the particles. This his-
togram will have 101 uniform ranges between -0.5 and 100.5.

Once the program is launched, the following message appears in the terminal:

load initial position...

simulation: 250/1000 (elapsed time: 8s, remaining time -~ 245:.

It indicates the proportion of the simulation that has been run up to now (250/1000
here), the elapsed time and the estimated remaining time.

Once it is finished, one can represent graphically the result, using the software
gnuplot on Linux, and then the plot function:

$ gnuplot
Terminal type set to ’wxt’
gnuplot> plot "./data.hist" with boxes

This produces the following graph:

1200 — T T T T
" fdata.hist" C—

1000

800 .
600 .

400 | -

200 ’Id -
0 I 1 1 I I

-20 0 20 40 60 80 100 120

An other example

Other examples can be immediately produced using pre-existing process types.
By instance, here is a program for the simulation based on a logistic Feller diffusion
(see Section 5 Chapter 1)

#include "IPS.h"

typedef logistic_Feller_diffusion_process PROCESS;
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typedef double STATE_SPACE;

void main(int argv, charx* argc)

{
simulation_pj_1D<PROCESS,STATE_SPACE>(argv,argc);
}

The same command lines as above could be used to compile and to run the
program, with the only difference that the process file would be

HHEHHHHEHEE R

# Name of the process

# logistic_Feller_diffusion_process
# Comment

# Process used as an illustration
R

HHE
Number of parameters

#
#
5
# maximal size of the time increment (dt)
0.001

# lower killing boundary

0.01

# upper killing boundary

100

# paremeter $r$

1

# parameter $c$

0.1

#

HudHHH SRR AR H SR AR

Other programs Other programs have been written during this thesis.

e A program which computes and represents graphically the animated par-
ticles of interacting particle system based on a 3-dimensional process Z.
Many interacting particle systems can be run simultaneously, starting from
different positions. This program gives a great illustration of the conver-
gence to the Yaglom limit, independently of the initial position. It uses the
3D-library Coin3D, which is based on OpenGL. Here is a screen shot of one
simulation.
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e A program to compute and represent graphically the evolution of the dis-
tance between the distributions of two conditioned pure jump Markov pro-
cesses, using the approximation method studied in this thesis. This program
can be used to illustrate the mixing property proved in chapter 5. It has
been used to describe the convergence to the Yaglom limit of some Feller
logistic diffusion processes in Chapter 1, with the following output.

* * 1,4
" 20= 10
18 * a
’ (a) s

os 1 15 time 2

e A program to compute and represent graphically the evolution of the ab-
sorption rate of an absorbed Markov process, using the interacting particle
system studied in this thesis. It has been used in the introduction in order
to compute the absorbing rate of a Brownian motion absorbed at 0 and 1,

starting from 0.5.

taux de mortalité

0 os 1 15 2 25 temps 3
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Code source

The code source is too large to be reproduced here (more than 40 pages for a
non-commented version of the code). However, latest versions of the whole
project, pieces of code and functional programs can be obtained directly
from the author, by e-mail or on his professional web page.
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