
HAL Id: pastel-00673731
https://pastel.hal.science/pastel-00673731v1

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Level soc modeling and performance estimation
applied to a multi-core implementation of LTE enodeb

physical layer
Chafic Jaber

To cite this version:
Chafic Jaber. High-Level soc modeling and performance estimation applied to a multi-core implemen-
tation of LTE enodeb physical layer. Embedded Systems. Télécom ParisTech, 2011. English. �NNT :
�. �pastel-00673731�

https://pastel.hal.science/pastel-00673731v1
https://hal.archives-ouvertes.fr

2012-ENST-00xx

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Electronique et Communications »

présentée et soutenue publiquement par

Chafic JABER
le 27 Septembre 2011

Titre

Modélisation de haut niveau d’abstraction de systèmes
intégrés et estimation de performances. Application à une

implémentation multi-processeurs de la couche physique d’une
station de base LTE

Directeur de thèse : Renaud PACALET
Co-encadrement de la thèse : Ludovic APVRILLE, Amer BAGHDADI

Jury
M. Michel AUGUIN, Direteur de recherche, LEAT Président

M. Robert DE SIMONE, Directeur de recherche, AOSTE, INRIA Rapporteur

M. Bertrand GRANADO, Professeur des Universités, ETIS, INRIA Rapporteur

M. Martin BEUTTNER, Manager, Freescale Semiconductors Encadrant

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Abstract

The impressive technical and technological advances in both fields of
semi-conductors and software engineering enabled modern System-on-
Chip “SoC“ to host complex and interdependent applications. These ad-
vances are coupled with higher systems complexity and heterogeneity.
Thus, forcing designers to re-evaluate their design methodologies and to
raise the level of abstraction to the system level targeting the co-design of
the entire SoC rather than just individual components.

The objective of this Thesis work is to provide the system designer with
means (on the methodology and tools levels) to estimate system’s perfor-
mances and evaluate rapidly and very early the design decisions in the SoC
design flow.

Our work provides contributions in two main aspects: (1) On the Concep-
tual Level, we defined (using the UML meta-modeling concepts) model-
ing concepts to estimate shared resources impact on system’s overall per-
formances, by introducing the “virtual node” concept for scheduling and
shared resources access control. Furthermore, we introduced the ”Com-

munication Pattern” concept for modeling the interaction between archi-
tecture elements to ensure the orthogonalization of computation and com-
munication concerns. (2) On the Simulation Level: A SystemC simula-
tor was written to simulate the UML models. Simulation is done at a high
level of abstraction and runs faster than real time execution.

The usability and capabilities of our approach are shown with an indus-
trial use case. We modeled a Freescale multi-core DSP platform for LTE
base stations (LTE stands for Long Term Evolution is the 4G standard for
cellular networks). The comparison of modeling results with the real im-
plementation proved the accuracy of our approach.

Key themes: System level design and modeling, UML for embedded sys-
tems, Resources management and sharing, Communication modeling, Per-
formance estimation, Telecommunication systems

Abstract

Les impressionnantes avancées techniques et technologiques dans les deux
domaines des semiconducteurs et de l’ingénieurie logicielle ont permis
aux Système sur puces (System-on-Chip “SoC“) d’intégrer des applica-
tions complexes et interdépendantes. Ces progrès vont de pair avec la com-
plexité accrue des systèmes et de leur hétérogénéité. Ainsi, les concepteurs
ont été forcé à réévaluer leurs méthodes de conception et d’élever le niveau
d’abstraction au niveau système en ciblant la conception de l’ensemble du
SoC plutôt que des composants individuels.

L’objectif de ce travail de thèse est de fournir aux concepteurs systèmes les
moyens nécessaires (au niveau méthodologique et au niveau outils) pour
estimer les performances du système et évaluer rapidement les décisions
de conception, idéalement trés tôt dans le flot de conception.

Notre contribution portera sur deux aspects principaux: (1) L’aspect
conceptuel: où nous avons défini (en utilisant les concepts de méta-
modélisation UML) des concepts de modélisation permettant d’étudier
l’effet de la gestion et du partage des ressources sur les performances
globales du système (les “noeuds virtuels”) . En outre, nous avons
introduit le concept de ”Patron de communication” pour la modéli-
sation de l’interaction entre les éléments d’architecture afin d’assurer
l’orthogonalisation des concepts de l’exécution et de la communication.
(2)L’aspect simulation: Un simulateur en SystemC a été développé pour
simuler les modèles UML proposés. La simulation est faite à haut niveau
d’abstraction et elle est plus rapide que l’exécution en temps réel.

L’approche proposée a été appliquée pour la modélisation de la couche
physique du protocole de télécommunications mobile de 4ème génération
(LTE, Long Term Evolution) sur un DSP muli-core produit par Freescale.
Les résultats ont été validés en les comparant avec l’implémentation réelle.

Thèmes clés: Modélisation et conception au niveau système, UML pour
les systèmes embarqués, la gestion et le partage des ressources, la modéli-
sation de la communication, l’estimation des performances, les systèmes
de télécommunication

Acknowledgements

Over the last years that I have been working towards my PhD degree, I had
the opportunity to meet and co-operate with many bright people. I am very
indebted to these people, without their support and encouragement I would
not be able to make my accomplishments come true. their enthusiasm was
overwhelming. It is difficult to overstate my gratitude to my supervisors
Renaud PACALET, Ludovic Apvrille and Amer Baghdadi. I would like
to thank them for guiding and inspiring me and for showing me what re-
search is about. Thank you for being so open-minded, for your friendship,
your constant motivation and for sharing valuable technical insights for
my PhD.

I would like to express my special gratitude to Robert de Simone and
bertrand Granado, for showing keen interest in my work and for taking
their valuable time to evaluate my work and providing their feedback, re-
marks and possible enhancements. Many thanks to Michel Auguin for
presiding the jury.

I am also thankful to Martin Beuttner from Freescale, for giving me a
great opportunity to integrate his team. This project would have been very
difficult without his engagement. A special thank I need to give to the
members of his group: Jean-Paul, Peirre, Vincent, Samuel and Arnaud,
who since my arrival provided me with support, details and critical review
of my work.

This thesis benefited from continuous support of Andreas Kanstein and
Christopher Yasko, who even after leaving Freescale, continued to help
me. I also would like to thank ”les muchacho(a)s” at LabSoC: Jair,
Hocine, Feriel, Daniel and Gabriel who contributed significantly in mak-
ing so much nice the PhD adventure. My most warm thanks go for my
”French” friends: Omar, Alexandre, Mohamad, Sami, Maha, Céline, Ihab,
Aref, Bachar, Antoinette, Siwar, Chamesddine, Mustapha, Kawthar, Hadi,
Sébastien, Carina; who were alawys by my side. A special thank goes to
my ”french-familly” Roseline and Bruno Vidal for receiving me in their
house and introducing me to ”la France profonde”.

Lastly, I would like to thank my family for all their love, encouragement
and support. For my parents (Khoder and Nawal) who believed in me and

supported me in all my pursuits, thank you for giving me the opportunity
to be all that I am capable of being. For my brothers: Ali, Nizar and
Bassel and my sister Lara, for my grand-mother Hayyat (Oum Ali) and
my aunt Rabha, Thank you for your caring and support, you are my family
wherever I go.

Chafic JABER
Paris, September 2011

To my familly
To all who are dear to me

Contents

Contents 7

List of Figures 11

1 Introduction 13
1.1 Thesis Context . 13
1.2 Thesis Contributions . 14
1.3 Thesis Layout . 15

I PhD Domain Overview and State of the Art 17

2 System-on-Chip Design and Application Domains 19
2.1 Introduction . 19
2.2 LTE Standard for Mobile Communication: Higher Complexity for bet-

ter quality of services . 20
2.3 A SoC example for LTE implementation 22
2.4 System on Chip Design Complexity 23
2.5 System on Chip design flow . 24

2.5.1 SoC Design flow steps . 26
2.5.2 System Level Design . 26
2.5.3 Virtual prototyping . 26
2.5.4 Prototyping . 28

2.6 Summary . 28

3 System Level Design: Models, Methodologies and Trends 29
3.1 Introduction . 29
3.2 System Level Design: Concepts and Objectives 29

3.2.1 Modeling and abstraction . 30
3.2.2 Separation of concerns . 31
3.2.3 Design Space Exploration 31

7

CONTENTS

3.3 System Level Specification Languages 32
3.3.1 C/C++ based design languages 33
3.3.2 Synchronous Languages . 33
3.3.3 UML: Unified Modeling Language 34
3.3.4 Matlab/Simulink . 34
3.3.5 Discussion . 35

3.4 Survey of some Existing System Level Design Methodologies 35
3.5 DIPLODOCUS and Extensions: Yet Another System Level Design

Methodology for Early Design Analysis 38
3.5.1 Modeling Approach . 38
3.5.2 UML for SoC Modeling . 41
3.5.3 Shared Resources Contentions Modeling 44
3.5.4 Communication Modeling 45

3.6 Summary . 46

II PhD Contributions 47

4 Architecture and Application Modeling 49
4.1 UML the Unified Modeling Language: Models, Metamodels and Profiles 49
4.2 Application Modeling . 51

4.2.1 Application Structure Task Model 51
4.2.2 Application Structure Component Model 54
4.2.3 Application Behavior Model 58

4.3 Architecture Modeling . 63
4.3.1 Architecture Resources Model 63
4.3.2 Architecture Communication Interaction Model: “Communi-

cation Patterns” . 67
4.4 Summary . 71

5 System Mapping Modeling 73
5.1 Mapping motivational example . 73
5.2 Shared Resources Modeling . 76

5.2.1 Resource definition . 77
5.2.2 Shared Resources’ Control: The “Virtual Node” 78
5.2.3 Virtual Node vs Real Implementation 80

5.3 Execution Allocation . 82
5.4 Storage Allocation . 83
5.5 Communication Management Modeling 84
5.6 Mapping Validation . 85
5.7 Mapping overall scenario . 86

8

CONTENTS

5.8 System Mapping Example . 89
5.9 Summary . 90

6 Models Simulation for Performance Analysis 93
6.1 Introduction . 93
6.2 State of the Art on SystemC . 94

6.2.1 System’s Design in SystemC 95
6.2.2 Concurrency . 96
6.2.3 SystemC Simulation Kernel 96

6.3 A SystemC Simulation Environment for DIPLODOCUS models . . . 98
6.3.1 DIPLODOCUS SystemC simulator concurrency 99
6.3.2 System’s Timing: From DIPLODOCUS commands to physi-

cal time . 100
6.3.3 Simulation’s Timing semantics and Interruptions Support . . . 104
6.3.4 The simulator in a nutshell 105

6.4 Performance Monitoring . 110
6.4.1 Simulator Default monitoring 112
6.4.2 Personalized Performance Metrics: Observers 113

6.5 Summary . 114

III Approach’s Validation 115

7 Use Case Study: SoC Modeling for LTE Base Station 117
7.1 LTE: The Long Term Evolution Standard 117

7.1.1 Overall LTE Network Architecture 118
7.1.2 Key Technologies of the 3GPP LTE Air Interface 120
7.1.3 LTE Radio Link Protocol Layers 121

7.2 Use Case Modeling . 123
7.2.1 Scope of the use case . 124
7.2.2 Application Model: LTE Physical Layer 126
7.2.3 Architecture Model: Freescale MSC8156 Multi-Core DSP . . 127
7.2.4 Mapping Model . 130

7.3 Use case analysis . 133
7.3.1 Application Execution Performance Metrics 134
7.3.2 Comparison of simulation results to real implementation results 135

7.4 Use case study conclusion . 137

8 Conclusions and Perspectives 139

Bibliography 143

9

CONTENTS

A Résumé en français 151
A.1 Introduction . 151

A.1.1 Contributions de la thèse . 153
A.1.2 Plan de la thèse . 154

A.2 Complexité de la conception des systèmes sur puces 156
A.3 Flot de conception d’un système sur puce 158

A.3.1 Les étapes d’un flot de conception 160
A.3.2 Conception au niveau système 160
A.3.3 Prototypage virtuel . 162
A.3.4 Prototypage . 162

A.4 Contributions de la thèse . 163
A.4.1 Contrôle des ressources partagées: Le ”virtual node” 163
A.4.2 Modèle d’interaction des noeuds d’architecture Interaction

communication: ”les motifs de communication” 166
A.4.3 Comparaison des résultats de simulation aux résultats réels

d’implémentation . 168
A.5 Conclusions et perspectives . 168

10

List of Figures

2.1 Evolution of data versus voice transfer in US cellular networks 20
2.2 Evolution of cellular network’s throughput and protocols 21
2.3 The Freescale DSP based SoC for LTE physical layer 23
2.4 SoC Design Flow . 27

3.1 The Extended DIPLODOCUS methodology 40

4.1 DIPLODOCUS Application Modeling profile 51
4.2 Application Structure Task metamodel 54
4.3 A simple application modeled by DIPLODOCUS Task Model with TTool 54
4.4 The Component Modeling metamodel 57
4.5 The Component Modeling metamodel 59
4.6 The uplink physical layer of the LTE standard modeled using the pro-

posed DIPLODOCUS model . 60
4.7 Application behavior metamodel . 62
4.8 A simple application behavior modeled using the DIPLODOCUS Ap-

plication Behavior profile . 63
4.9 Architecture Modeling Profile . 64
4.10 Architecture Resources Metamodel 66
4.11 An example of a DIPLODOCUS Architecture Model with TTool . . . 67
4.12 An example of simple Communication Pattern 68
4.13 Communication Pattern metamodel 71

5.1 Mapping Demonstrative example . 74
5.2 DIPLODOCUS Mapping Modeling profile 76
5.3 A simple hierarchical scheduling example 79
5.4 A simple dynamic scheduling example 80
5.5 DIPLODOCUS Shared Resources Modeling profile 81
5.6 DIPLODOCUS Execution Mapping profile 83
5.7 DIPLODOCUS Storage Mapping profile 85
5.8 DIPLODOCUS Communication Management Modeling profile . . . 86
5.9 System Execution scenario after mapping 87

11

LIST OF FIGURES

5.10 System Mapping Example . 91

6.1 Simulation and formal verification with TTool 98
6.2 Calculation of the number of CPU’s cycles needed to execute a

DIPLODOCUS “Exec” command 103
6.3 Task Timing behavior . 106
6.4 The DIPLODOCUS Flow - Performance estimation and optimization

of system models . 107
6.5 An excerpt of the SystemC generated for the Application model . . . 108
6.6 An excerpt of the SystemC code generated for the Architecture model 109
6.7 An excerpt of the SystemC generated for the Mapping model 111
6.8 A VCD diagram of the task T1 execution and the evolution of its state

in time . 113

7.1 LTE Network . 119
7.2 LTE Data Flow through the protocol layers 123
7.3 LTE Physical Layer uplink flow . 124
7.4 LTE Generic Frame Structure . 125
7.5 The higher level of hierarchy in the LTE uplink physical layer model . 126
7.6 Application Structure Task metamodel 128
7.7 An excerpt of the Behavior of a Physical Resource Block (PRB) Task 129
7.8 An example of a DIPLODOCUS Architecture Model with TTool . . . 129
7.9 An example of a priority based access policy for a computation virtual

node . 131
7.10 Possible States of a task during its execution 132
7.11 Virtual nodes and their access policies 132
7.12 Excerpt of the Execution allocation of LTE uplink to the computation

Virtual nodes . 133
7.13 LTE uplink physical layer flow for one user 134
7.14 An excerpt of the execution of the PRB0 task 135
7.15 LTE uplink Tasks computation complexity 136
7.16 LTE Tasks execution performance metrics 136
7.17 Simulated MCPS compared to measured MCPS 137

A.1 Notre thèse dans le contexte de la méthodologie DIPLODOCUS . . . 153
A.2 Le DSP multi-coeur Freescale pour la couche physique du protocole LTE157
A.3 Flot de conception pour les systèmes sur puces 161
A.4 Un simple exemple d’ordonnacement hiérarchique 165
A.5 Un simple exemple d’ordonnacement dynamique 166
A.6 Un simple exemple de motif de communication 167
A.7 Les paramètres de performance des tâches LTE 168

12

Chapter 1

Introduction

1.1 Thesis Context

The development and evolution of modern System-on-Chip "SoC" can be character-
ized by its main target: miniaturization. Highly advanced features are associated with
targets in terms of performance, energy consumption, security, viability, and many
other. All of these features are mainly enabled by the impressive technical and techno-
logical advances in both fields of semi-conductors and software engineering.

On the other side, the development cycle becomes shorter to challenge the compe-
tition. Furthermore, to differentiate their product, industrials are integrating more and
more functionalities and hence increasing the design complexity. For instance, a mod-
ern mobile phone, in addition to the telecommunication standard, integrates a camera,
a music player, a GPS, Internet browsing tools and many other applications.

System’s higher complexity [40], [53] forced designer to re-evaluate their design
methodologies. Initially, design was performed at transistor level, and then it evolved
to the logic gate level and later to register transfer level (RTL). Tools developed at the
RTL level enabled designers to verify the system’s behavior. However, the increasingly
growing complexity and heterogeneity of electronics embedded system push designer
to raise the level of design abstraction to the system level that target the co-design of
the entire SoC, rather than just individual components.

In this context, many methodologies and approaches [28] are targeting system level
design. These methodologies provide designers with means to model the system and
then analyze and optimize it. System analysis could target various domains such as
functional verification, performance estimation, and power estimation. In addition,
higher levels of abstractions enable fast system evaluations and performance analysis.
However, the first challenge remains to choose the appropriate level of abstraction that
preserves the accuracy of results.

As most recent Systems-on-Chip (SoC) are meant to host complex and interdepen-

13

1. INTRODUCTION

dent applications at low cost (area, power) to the end user, the number of resources
must be minimized while increasing their utilization by sharing them between mul-
tiple applications. Such shared resources have a strong impact on SoC performance
because of the contention they typically induce. Indeed, end-to-end performance of
a given application is the sum of the time needed to execute that application with the
total contention delay of all involved shared resources. Shared resources contentions,
communication delays and many other factors play a role in the overall system per-
formances. Thus, identifying the main factors that influence the system’s performance
and how to model them constitute another challenge in performance analysis.

Once the performance metrics (such as latency, throughput, resource utilization,
etc.) identified and modeled, the designer can perform multiple system’s evaluation
(through simulation or other analysis mechanisms) to explore various combinations
of architecture (number of computation units, communication topology, etc.) and
application (number of tasks, parallelism between tasks, etc.). Ideally, s/he wants
to verify if the system’s performances satisfy the design requirement. Thus, rapidly
extracting the performance metric needed to perform the design analysis is a primor-
dial step in the system design. The system designer, can then choose among different
possible solution the one that is most adapted. Hence, a third challenge that needs to
be considered is how to analyze the extracted performance metrics of the modeled
system to verify its satisfaction to design requirements.

Thesis Objective. The objective of this Thesis work is to provide the system

designer with means (on the methodology and tools levels) to estimate system’s

performances and evaluate rapidly and very early the design decisions in the SoC

design flow. Specification of the abstraction level and methods for the analysis of

abstract models is the key for a successful system level design methodology. Modeling

at a high level of abstraction eases the system-level design decisions making process,

as the designer does not need to have detailed expertise on lower level software,

hardware, and design tools.

This thesis work is done in the framework of the DIPLODOCUS methodology
developed at Telecom ParisTech. DIPLODOCUS defines a UML profile [76] targeting
design space exploration at a high level of abstraction. The following section describes
briefly the contributions of our thesis.

1.2 Thesis Contributions

Towards the above mentioned objective, following are the proposed contributions of
this thesis, classified into three levels:

• Contribution on the Conceptual Level: Definition (using the UML meta-

14

modeling concepts) of modeling concepts to take in consideration:

– the shared resources impact on system’s overall performances, by defin-
ing the “virtual node” concept for scheduling and shared resources access
control.

– the orthogonalization of computation and communication concerns by
defining the Communication Pattern concept for modeling the interaction
between architecture elements.

• Contribution on the Simulation Level: A SystemC simulator was written to
simulate the UML models. Simulation is done at a high level of abstraction and
runs faster than real time execution.

• Contribution on the Experiment Level: The proposed approach was applied
on an industrial case study. A muli-core Freescale DSP platform for LTE base
stations was modeled and validated by comparison to the real platform to esti-
mate its accuracy and speed

1.3 Thesis Layout

This thesis report is divided into six chapters as follows:

• Chapter 2 provides an overview of the System-on-Chip design domain and the
increasing design complexity. It describes as well the typical SoC design flow,
that starts from the client specification and through various refinements results
in a functional SoC product. The flow covers both application and architecture
parallel development and their integration and validation.

• Chapter 3 presents the system level design domain concepts and objectives and
provides a survey of existing methodology. In a second part, this chapter de-
scribes the DIPLODOCUS methodology on which our research work is based
and compares it and the extensions added during this thesis with the state of the
art.

• Chapter 4 illustrates the DIPLODOCUS modeling of the application and the
architecture and presents the Communication patterns for communication mod-
eling. It provides the UML meta-models for the different modeling concepts.

• Chapter 5 presents the mapping process proposed to execute the application on
top of the architecture. It defines the concept of virtual node for shared resources
access control and how it could be used to develop useful access policies for
SoCs design. The mapping includes as well an allocation step that defines how

15

1. INTRODUCTION

the architecture resources (computation, communication and storage resources)
are allocated to application artifacts. An example is used to illustrate the different
steps of the mapping process.

• Chapter 6 describes the simulation environment developed and used to simulate
the DIPLODOCUS models and to extract performance metrics that will help
designers to make early design decisions.

• In Chapter 7 the methodology developed is used to model an industrial system,
the LTE uplink physical layer that will execute on a multi-core platform. The
simulation results are compared with the real implementation.

16

Part I

PhD Domain Overview and State of
the Art

17

Chapter 2

System-on-Chip Design and
Application Domains

This PhD work is done with the aim to develop a high level modeling methodology for
System-on-Chip (SoC) performance estimation. This chapter provides a global view
of the domain of the research work. It shows the complexity of the design of a SoC, by
using the example of the LTE (Long Term Evolution) standard for cellular networks
and an example of a real chipset designed for its implementation. Then, the second
part discuss the SoC design flow and steps and how this PhD work fits into it.

2.1 Introduction

Systems-on-Chips are omnipresent in the modern daily life and environment, like
Telecommunication systems and devices, automotive, avionics, multimedia devices,
etc. This evolution comes in pair with an evolution in the embedded hardware. In fact,
the computation power is growing rapidly following the Moore’s law. More sophisti-
cated and complex applications are introducing new functionalities and trying to cover
new markets, while increasing the complexity of the embedded hardware. Hence, The
design complexity of modern embedded systems is exploding due to the market de-
mand for more, increasingly complex features, and shorter time-to-market.

The objective of this chapter is two-fold. The first objective is to illustrate the com-
plexity of modern SoCs through an example on a wireless telecommunication stan-
dard (LTE), and its implementation in an industrial context. The second objective is to
present the conventional SoC Design flow and situate the topic of this PhD work.

This chapter is organized as follow. Section 2.2 presents the LTE wireless com-
munication protocol, with special focus on the throughput increase introduced in this
protocol and the inherent complexity needed to support this feature. Then section 2.3
takes the example of a SoC that supports the LTE standard and shows its main design

19

2. SYSTEM-ON-CHIP DESIGN AND APPLICATION DOMAINS

characteristics. The complexity of design of such systems, and the design challenges
that it imposes are presented in section 2.4. The section 2.5 describes the main steps
of the conventional SoC design flow that, through multiple iterations and refinement,
permits the creation of a SoC from the initial client specifications.

2.2 LTE Standard for Mobile Communication: Higher
Complexity for better quality of services

In the last two decades, the world wide cellular network utilization has evolved from
voice oriented to data oriented networks. In fact, Figure 2.1 compares the rapid growth
in wireless data traffic compared to voice traffic across multiple operators in the United
States [83]. This evolution is basically a structural one that affected the network in-
frastructure and came with new standards for supporting more quality of services.

Figure 2.1: Evolution of data versus voice transfer in US cellular networks

The mobile communication systems have evolved from 1st generation, which are
analog cellular systems and limited to voice transfer, through 2nd generation-known as
digital narrowband that introduced data transfer to cellular networks, to 3rd generation
(3G), with higher bandwidth radio interface and throughput. The latest commercial-
ized wireless network technologies, called High Speed Packet Access (HSPA)[32], is
currently deployed around the world. The evolution of 3G networks is under imple-
mentation and will be ready to be deployed in the following years. The standardization
work of the Long Term Evolution (LTE) [33], started from 2004, is close to comple-
tion. LTE provides higher data rate compared to previous standards, with the peak of
more than 300 Megabits per second in downlink and 50 Megabits per second in uplink.
Besides, it provides lower user costs, better spectrum efficiency, smaller latency and
many other advanced features. Figure 2.2 shows the evolution, over the last decade, of
throughput of the cellular network standards [10]. The throughput is increasing from
less than one Mbps in 2003 to more than 300 Mbps as expected by 2012. This dramatic

20

growth of throughput is mainly driven by the increasing demand for Internet connec-
tivity on mobile devices. Mobile Users are now expecting to have the same quality of
service (high throughput, stable connection, low latency, etc.) while accessing to their
requested multimedia contents, from anywhere and even when they are on the move.

Figure 2.2: Evolution of cellular network’s throughput and protocols

The evolution of cellular networks is becoming a cyclic process: Higher through-
put enables sophisticated mobile applications, and the later are requesting even more
higher throughput. The user’s experience and satisfaction depends on the quality of
services provided by the operator and by the quality of the mobile device s/he is using.
Hence the network infrastructure and the design of mobile devices become more com-
plex . So, The higher throughput comes with an increasing complexity of the devices
(software and hardware) that will implement the standards. In order to achieve the re-
quired performances, complex heterogeneous architectures are used, including many
processors, many hardware accelerated parts, specific communication infrastructure
and various input/output interfaces.

Another factor of complexity is that LTE itself was meant as an evolution and not a
revolution of the existing standards. It will co-exist and inter-work with the 3G system.
Thus, the LTE network base stations will be even more complex as they will support as
well the previous standards. In fact, multi-standard platforms are currently developed
by the principal platform companies (like Alcatel [12], Ericson [31], Huawei [44] and
others).

This increase in complexity is common between the different embedded application
domains, and the SoC implementation of all these applications share the following
trends:

1. New features and value added services, lead to the increase of processing and
communication requirements.

21

2. SYSTEM-ON-CHIP DESIGN AND APPLICATION DOMAINS

2. The standards are introduced more rapidly and become more sophisticated. This
calls for high flexibility of the SoC implementation to meet the resulting time-
in-market severe constraints.

3. The reuse of developed components is increased, to shorten time to market and
reduce production cost.

4. For mobile devices and sensors, reduced size and power efficiency become pre-
vailing cost factor and product differentiation.

2.3 A SoC example for LTE implementation

Industrial solutions for the embedded application reflect the application complexity.
Furthermore, heterogeneous multi-core SoC platforms are generally believed to meet
the above mentioned conflicting performance, flexibility and energy efficiency require-
ments of demanding embedded applications. The heterogeneity of SoC implementa-
tions is driven by the heterogeneity of the embedded applications, where each part of
the application has an inherent suitable implementation technology. Figure 2.3 depicts
the architecture of a DSP SoC, MSC8156 [73], produced by Freescale Semiconductor
[72], that targets among others the wireless broadband domain. This DSP is currently
used in industrial implementations of the base stations of the LTE standard developped
by companies like Alcatel. This SoC has been used to test and validate the methodol-
ogy developed in this thesis. More details on its modeling and performance estimation
of the implementation of the LTE physical layer are provided in Chapter 7.

The MSC8156 DSP delivers a high level of performance and integration. It com-
bines together six DSP cores, each running at up to 1 GHz, a hardware accelerator
(maple-B) that supports hardware acceleration for Turbo [55] and Viterbi [81] channel
decoding, in addition to DFT/iDFT and FFT/iFFT algorithms (these algorithms re-
quire high computation performances). It includes as well a high-performance internal
RISC-based (QUICC Engine) subsystem that supports multiple networking protocols
to guarantee reliable data transport over packet networks.

The MSC8156 embeds an on-chip memory (M3) of 1 MByte, and two interfaces
for off-chip DDR memories. In addition, each DSP core has its own internal L1 and
L2 caches. It supports a variety of advanced, high-speed interface types, including two
“RapidIO” interfaces, two Gigabit Ethernet interfaces for network communications, a
PCI Express controller, two DDR controllers for high-speed industry standard memory
interface. The set of all these integrated components are connected through a Chip-
Level Arbitration and Switching Fabric (the CLASS), that ensures non-blocking, fully
pipelined and low latency communication scenarios. The system is doted as well by
two DMA blocks to transfer the large quantity of processed data. To have an idea on
the data transfer performed and the complexity of the data processing, recall that this

22

Figure 2.3: The Freescale DSP based SoC for LTE physical layer

system is used to implement a part of the LTE standard, and it guarantees throughput
of more than 100 Mbps.

2.4 System on Chip Design Complexity

A System on Chip (SoC), like the one presented in the previous section, integrates soft-
ware and hardware jointly and is specifically designed to provide given functionalities
to the surrounding environment [40], [53]. The system must be able to continuously
react to stimuli in the desired way, i.e., within bounds on timing, power consumption,
and cost. As introduced in the previous sections, such systems are highly complex and
heterogeneous. In fact, the complexity of system design is dramatically increasing in
three dimensions:

1. Heterogeneity and complexity of the hardware architecture: New design tech-
nologies and higher integration density result in increasing the computational
power of modern SoCs which enables sophisticated functions to be embedded
in ever-smaller devices. A modern SoC may include general purpose processors
(GPP), Application-Specific Instruction-set Processors (ASIP), different com-
munication topologies, complex memory hierarchy, different Input/Output de-
vices ... The Freescale DSP MSC8156 presented in section 2.3 is a good example
of such architecture.

2. Heterogeneity and complexity of the embedded software: As the computational

23

2. SYSTEM-ON-CHIP DESIGN AND APPLICATION DOMAINS

power of SoCs grows, more advanced functionalities are introduced. Software is
taking the lion’s share of the implementation budgets and cost. For instance, in
a cell phone, more than one million lines of code are the standard today [69]. In
contrast with traditional software systems where the abstraction process leaves
out all the physical aspects of the systems as only the functional aspects of the
code matter, the embedded software is at least loosely coupled to the hardware
architecture which limits the code reuse when the system specifications evolve.
Furthermore, heterogeneous applications share the same hardware architecture:
a cell phone device must be able to handle simultaneous voice and data calls,
while also handling complex imaging tasks like image or video capture. This
heterogeneity increases the complexity of resource sharing and design optimiza-
tion.

3. Integration complexity: During the integration phase, software and hardware
components are integrated to create the SoC. As these components are usually
developed by different teams and sometimes in different countries (and/or by
different companies), this phase is of extreme complexity [41]. Verification and
re-engineering work done during this phase is time consuming and expensive.

2.5 System on Chip design flow

A System-on-Chip design is an iterative process, that aims the implementation of a
product based on the client specifications. A System-on-Chip design flow is a suc-
cession of refinements and optimizations steps to accomplish the system design. Each
step of the flow consists of modeling and/or implementation, verification and integra-
tion of hardware and software. The ideal design starts with a high level description of
the functionality and the architecture. The designer is expecting for the following from
SoC design flow:

1. Reuse of the existing code and models developed for previous products to fasten
the design cycle. One should note that usually new products are an evolution
of existing product and rarely a revolution. Hence, design reuse can lead for
considerable cost reducing factor.

2. Identify design decisions early in the design flow. Late design changes are ex-
pensive and time consuming, thus finding the bottlenecks and estimating the
system’s performances at early stages reduce the design’s cost and increase the
productivity.

3. Ensure a functioning product, that satisfies the client requirements. Thus, the
adopted verification and validation process should be correct and accurate in
order to lead to a correct product.

24

The design specification at each design step must cover the specification of the
functionality and the architecture of the system. Currently, there is no standard lan-
guage or format for design specification. In addition to specification, each level of the
SoC design flow should define verification and validation methodologies to verify the
satisfaction of the design with the requirements.

Specification Languages

Many programming languages and modeling paradigms are used to specify the func-
tionality of a SoC. While embedded software is usually written in C, the functionality
could be described with a different paradigm: it could be directly written in C or spec-
ified using synchronous languages such as Esterel [21], Lustre/SCADE [39], Signal
[19], from which some tools can automatically generate C code and formally verify
the system. More recently UML is proposed to enable the specification of very com-
plex applications by providing a large set of language constructs. In addition UML has
the advantage of being implementation independent [58][56].

For hardware design, system level design relates to any level of abstraction that is
above the register-transfer-level (RTL). Transaction-level modeling (TLM) [37], be-
havioral, algorithmic, and functional modeling are terms often used to indicate higher
levels of abstraction in hardware design. Due to its popularity and efficiency, the C
programming language and its derived languages are gaining in the market. Many ap-
proaches and tools propose synthesis of C code into RTL code; Catapult C (Mentor)
[38], Handel-C [26] are well known examples of these approaches and tools. In ad-
dition new approaches are using UML for modeling of SoC hardware and software.
Simulation code, formal verification specification or synthesis code may be gener-
ated afterwards from the high level UML models; Gaspard2 [18][56], Koski [47], and
DIPLODOCUS methodology described and extended in this thesis [14][45] and many
other approaches has adopted this approach.

Ideally a specification language spans many abstraction levels so that it can be used
throughout the design process.

Verification and Validation

Verification and Validation is a phase of system development, that is performed at
the different levels of abstraction and where software and hardware are analyzed to
verify that they satisfy the desired properties. The most common techniques for design
validation and verification are simulation and formal verification. While simulation
permits the evaluation of large and complex systems, formal verification is a process
for checking whether a system satisfies a given property under all possible inputs, and
is applied to safety-critical subsystems to ensure correctness.

25

2. SYSTEM-ON-CHIP DESIGN AND APPLICATION DOMAINS

2.5.1 SoC Design flow steps

Figure 2.4 shows a typical SoC design flow. It starts from the client specification and
through various refinements its result is a SoC product, ideally ready for the market.
From the client specifications the experimented designers will gather design require-
ments and define a first draft of the system specification. Then, through three main
steps, the design will evolve from the client specification to a system level model than
through virtual prototyping a more thorough analysis is done to finally give the final
product with the prototyping phase. In each step software and hardware are ideally
developed/modeled in parallel and an integration step permits to evaluate the system
design progress and satisfaction to design requirements.

2.5.2 System Level Design

Approaches to raise the level of abstraction in SoC design are called “System-Level
Design Methodologies”. Their objective is to help designers to take and validate de-
sign decisions at early stages of system design. They permit designers to model, sim-
ulate, explore, verify and refine a system design. Some frameworks further provide a
design flow by integrating a set of refinements to transform a system-level model to an
implementation. Ptolemy [23], Artemis [66], CoFluent Studio [29], Metropolis [16],
Koski [47], Design Space Explorer (DSX) [57], Platform Architect (CoWare) [77],
SoC Designer (ARM - Carbon Design Systems) [25] and many others are well known
examples of system-level design frameworks and tools.

Most of these approaches adopt a clear separation between the application and the
architecture modeling. Thus, a mapping phase is needed to bind both models and to
define the execution of the application on the architecture. After Mapping, the system
is evaluated to test if it meets to design requirements. This phase is called: Design
Space Exploration. Its objective is to find an optimal model that fits the requirement.
Design choices like how many cores are needed or how much on-chip and off-chip
memories are required are ideally taken at this stage.

In figure 2.4, the system level design is the first step after the specification of the
system based on the client specifications. Application and architecture are modeled
first, then their mapping and the design space exploration phase. Based on the system
validation and test during this exploration, the designer can modify her/his models.

2.5.3 Virtual prototyping

Virtual prototyping is the second main step in the process of product development. Its
main objective is to validate a design before committing to making a physical proto-
type. In fact, the design process for SoC-based platforms suffers from productivity
issues due to the effort needed for verifying and validating the system. System veri-

26

Figure 2.4: SoC Design Flow

27

2. SYSTEM-ON-CHIP DESIGN AND APPLICATION DOMAINS

fication is typically carried out at an intermediate to lower level of abstraction: pro-
totype software implementations with transaction-level or register-transfer-level hard-
ware models. It is very expensive and time consuming to create these prototype system
models, and thus it is also expensive to revise system architecture decisions. Further-
more, because of higher system integration (and thus complexity), the design risk and
the associated verification cost are higher. Rapid virtual prototyping of the system can
verify the system in a real environment and identify potential implementation bottle-
necks, which could not be easily identified in the previous step. A working virtual
prototype can demonstrate to clients the feasibility and show possible technology evo-
lutions, thus significantly shortening the time to market.

Transaction level model (TLM [37]) is one of the most well-known models that can
serve as a virtual prototype. This step comes just after the system level design step.
The code is more mature and the designer can make more accurate analysis. Even
though, the simulation time is clearly higher than at system level design.

2.5.4 Prototyping

Prototyping corresponds to the integration of the optimized software during the pre-
vious design step on the final product hardware or on FPGA based platform that cor-
responds to actual hardware. Final verification are executed on the design and new
validation tests prepare for the final step of the SoC design corresponding to the cre-
ation of hardware masks that will be the base of the SoC silicon production. At this
step of the design flow, it is very expensive to make design changes. Hence, the vast
majority of tools and approaches are trying to validate the system at earlier steps.

2.6 Summary

The approach to cope with the increasing design complexity of SoCs is to raise the level
of abstraction, moving the development process from lines-of-code to coarser-grained
architectural elements. Modeling accurately the functionality and the candidate system
architectures at an early stage is becoming essential for a successful system design. In
addition, higher levels of abstractions enable fast system evaluations and performance
analysis. However, the challenge remains to choose the appropriate level of abstraction
that preserves the accuracy of results.

The system Level Design is a promising domain, that is used widely nowadays.
Many approaches are trying to take benefit from the system level to take early design
decisions. This PhD work fits into the system level design domain and has as a main
objective to estimate SoC’s performance at early design stages. The next chapter will
review the state of the art of system level design and presents the contributions of this
thesis.

28

Chapter 3

System Level Design: Models,
Methodologies and Trends

The previous chapter showed the design complexity of modern Systems on a Chip
(SoC) and the design flow used for their design, validation and implementation. De-
sign at system level proved to be a good solution to reduce complexity and early per-
formance analysis based on abstract models has already been demonstrated to increase
design efficiency [50; 67; 82]. System-level design frameworks are commonly based
on models meant to describe functions to be implemented by a set of candidate hard-
ware architectures.

The objective of this thesis is to develop a methodology for system level modeling
and early performance analysis of SoCs. Our approach is based on the DIPLODOCUS
UML profile. The main contributions of this thesis are a set of extensions for
DIPLODOCUS to model shared resources and ensure orthogonalization of the com-
munication and computation. A SystemC based simulator is developed as well to simu-
late and estimate models performances. After describing the concepts and objectives of
system level design, this chapter will position the proposed approach (DIPLODOCUS
plus the extensions) wrt to existing approaches.

3.1 Introduction

3.2 System Level Design: Concepts and Objectives

“System Level Design” refers to large set of design methodologies [36] that target the
design of the entire SoC, rather than just individual components. Such methodologies
provide designers with means to model the system (its functionality and architecture),
and then analyze and optimize it. It is worth noting that the system level design is a
large domain and various industrial and academic approaches exist to tackle different

29

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

aspects of design (functional verification, performance estimation, power estimation,
etc.). However all these approaches share some basic concepts: all of them target
modeling at a high level of abstraction, they adopt to some extent the separation (or-
thogonalization) of concerns to increase the modularity and re-usability and to reduce
analysis time. Furthermore, all of them are equipped with a design space exploration
process to analyze and to optimize the system level models

3.2.1 Modeling and abstraction

System’s complexity and heterogeneity are influencing the development of system
level design methodologies. As shown in section 2.4 of the previous chapter, the in-
creasing complexity can be identified on the application level, the platform level, as
well as on their integration. The ever increasing number of transistors on a die helps
by increasing the computation power and memory space. However, more advanced
methodologies on system level (application and platform) are required to better take
advantage of the added silicon. The design shift from super-scalar mono-processors
to multi-cores platforms (in the telecommunication, multimedia, networking and other
application domains) is confirming this trend for enhancing the utilization of the plat-
form. To cope with this increasing complexity a system level design approach proceeds
by modeling and abstraction of the system in order to analyze it.

A model by definition, is a “ representation of some phenomenon of the real world
made in order to facilitate an understanding of its workings. A model is a simplified
and generalized version of real events, from which the incidental detail, or ’noise’ has
been removed” [71].

An Abstraction(s) enables designers to understand (analyze) complex domains
of concern, like programs, software systems, and their application domains, which
contain a plethora of detail. It is a process of separating essentials from details, and
focusing on the former while ignoring, "abstracting away", the latter. Creating abstract
models help designer to better understand the system under design by reducing com-
plexity. Abstraction can be seen as the process of hiding aspects of the design in order
to increase the ability of the designer to only consider those which help to develop a
design at that particular stage. Examples of abstraction could be a set of transistors
being abstracted as logic gates, a set of bus transactions being reduced to an IP in-
terface, or a set of processor instructions (add, divide ...) being represented by their
computation complexity. For instance the DIPLODOCUS profile made a choice of
data abstraction to focus more on the control behavior of the system and to identify the
system execution to better estimate its performance.

Higher levels of abstraction allow designer to make early design decisions, as the
changes performed at these levels affect dramatically the overall design. However, the
designer has less insight into how precisely and accurately the changes brought about
this change. Thus, a system level methodology is the first step in the design flow and

30

is always followed by more optimizations and refinements of systems models.

3.2.2 Separation of concerns

The abstraction done at the system level design allows for a designer to think of tra-
ditional software and hardware aspects of the design separately. The Algorithmic part
is decoupled from the architectural elements which implement them. The Y chart in-
troduced in [50; 51] is widely adopted by system level methodologies. It consists of
modeling separately the application (what the system should do) and the architecture
(how it can do it), and then integrating both during a mapping phase. For instance, a
signal processing algorithm (FFT, Viterbi, ...) itself is well defined functionally, and
some Matlab/Simulink models may exist to simulate this functionality. However, the
architecture that will implement this algorithm may be DSP-based or a dedicated hard-
ware block. In the mapping phase the architectural element (the DSP or the Hardware
block) is allocated to the application. As the application and architecture concerns are
separated, models are reusable and so a designer can easily evaluate candidate archi-
tectures using the same application model. This separation also permits the exploration
of mapping of two different applications on a given architecture during first stages of
projects.

Furthermore, Keutzer et al. [50] extended the separation of concerns principal to
include the separation of computation and communication concerns. In other words,
the “how” the system computes should be separate from the “how” system’s compo-
nents interact.

The following subsection will describe the Design Space Exploration used for an-
alyzing and optimizing the system level models.

3.2.3 Design Space Exploration

”Design Space Exploration” (DSE) is the process of looking at a variety of designs
and using the results of simulation, verification, or other analysis methods to make
decisions regarding which design should be selected. These modifications that can be
made to a design to optimize its performance, and to observe potential design issues
that may have been overlooked during specification. The DSE process is done prior
to the development of implementation prototypes. It relies on the system level of
abstraction, where the models’ modification cost is smaller than on a low level of
abstraction. In fact, abstract models can be quickly changed in terms of structure,
behavior, design parameters and components to test new system configurations. These
higher-level abstractions enable a faster exploration of a larger design-space.

In general, the exploration process is a multi-objective one [48]. The list of sup-
ported objectives includes the SoC size, power consumption, execution speed, through-
put and many others. After a first analysis step the designer can optimize the system

31

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

model to satisfy one (or more) objective. To do so, s/he can modify the applica-
tion models (algorithmic decisions, task partitioning), the architecture models (number
of computation resources, memory hierarchy, communication infrastructure), and the
mapping decisions (tasks’ memory map, execution allocation of the computation archi-
tecture to the tasks, the scheduling decisions and choices). The consequent complexity
and size of the design space prevent an exhaustive search to find the optimal solution
satisfying all of the objectives. Hence, establishing a priority of the design objectives is
required, and the design exploration process tries to find one possible (not necessarily
the optimal) solution for the exploration problem with the specified priorities.

In the system level design literature, two explorations methods are widely used:
analytical and simulation-based methods. In general, analytical methods are used to
prune the vast design space rapidly but with very coarse models while simulation-based
methods explore in more details a part of the design space. Simulation models are well
suited to identifying characteristics of a dynamic system that are hardly predictable.
They can be used to explore the task scheduling (especially with interruption), com-
munication scheduling and dynamic input models. Analytical methods fit well for
application with limited dynamic behavior. Some approaches combine both methods
to exploit their best properties. In both types of methods, a major aspect of the design
space exploration process of a system level design methodology is the time required
to define the design objective and the time required to evaluate (explore) the system
model to validate its satisfaction to the objective.

3.3 System Level Specification Languages

In a system level design methodology, the choice of a suitable specification language
is primordial. Ideally, the language should support different abstraction levels and
capture the concurrency and timing of a SoC (the so called expressiveness of the lan-
guage). Furthermore, it should be supported by easy-to-use tools (compilers, modeling
tools, ...).

Various specification languages exists and often more than one language are used
in a SoC system design process. For instance, the embedded software is mainly writ-
ten in C and assembly, while VHDL[6] and Verilog[1] are largely used to describe the
hardware specification at register transfer level (prototyping phase as described in the
section 2.5 of the previous chapter). At the system level of abstraction the objective is
more to first model the system (software and hardware), then in a next step to generate
the code of it. The trend is to use the same language for the application and the archi-
tecture as the designer can easily master one language and take profit of already known
languages (such as C/C++, UML ...). The following the next subsections will present
some of the most used specification languages for software and hardware modeling.

32

3.3.1 C/C++ based design languages

C/C++ are popular for software development, and are familiar to an important part of
designers and engineers. Thus, many initiatives want to take advantage of this popu-
larity to introduce new system design languages with ideally a fast learning curve for
new designers/engineers. In this scope, the two major initiatives are SystemC that is
based on C++, and SpecC that is based on C. In both cases, the language is enriched
with concurrency and timing constructs to better model SoCs.

SystemC is a language proposed by the Open SystemC Initiative (OSCI) [43], and
had a large industrial and academic support. The language is standardized by the IEEE
standard 1666-2005 [4]. SystemC is used to describe the hierarchical structure and the
behavior of complex embedded systems. It can be used to describe the system at differ-
ent levels of abstraction. Using SystemC, a system can be described at functional level,
architectural level, and implementation level. SystemC is a C++ library that provides
the constructs needed to express hardware timing, concurrency, and reactive behavior
that are missing in standard C++. The OSCI simulation kernel (free download) is used
to simulate the SystemC models. Being an extension of C++, SystemC profits from all
the legacy compilers and tools developed for this language.

SpecC [34; 59] is a superset of the ANSI C programming language. It is devel-
oped at the University of California, Irvine, to address system level design. The SpecC
language and the underlying methodology were created by Rainer Domer and Daniel
Gajski. Similarly to SystemC, it enriches the C language with a system design library
addressing the timing and concurrency aspects. SpecC defines different levels of ab-
stractions to take in consideration the timing representation of the computation and the
communication.

3.3.2 Synchronous Languages

Synchronous languages [20] target the design of reactive systems. These systems are
interacting permanently with their environment. Their execution is a set of atomic
“instantaneous” reactions to inputs of the environment. A synchronous model is deter-
ministic, in contrast with the non-determinism of the classical sequential programming
and concurrent formalism such as Petri-nets. Thus, Synchronous languages are used
for development of safety-critical systems in avionics and industrial control. The syn-
chrony assumption of the synchronous models makes them particularly interesting for
hardware design. In fact, it is identical with the zero-delay model of electronic circuits.
Therefore, most synchronous languages provide automatic translation/generation in
VHDL. Esterel[21] and Lustre/SCADE [39] are well known synchronous languages.

Lustre/SCADE targets the dataflow programming. It is formally defined and con-
tinuously developed since 1984. A LUSTRE program is called a node. It is declared
with two sets of parameters: inputs and outputs, and the body of the node defines

33

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

the functional relationship between inputs and outputs. Variables in Lustre are data
streams. Calculations and data exchange between nodes are instantaneous. In 1993,
Lustre became a part of the industrial environment SCADE developed nowadays by
Esterel Technologies. One of Lustre/SCADE success stories is its adoption for mod-
eling safety critical parts of the A380 Airbus plane (the world passengers largest air
plane).

3.3.3 UML: Unified Modeling Language

The Unified Modeling Language (UML) [76], initially targeted complex software
modeling and was for example used for modeling banking systems. UML 2.0 (the
actual version of the UML standard) is a graphical specification language for object
modeling that captures the abstract system specifications. The main feature of UML
is its genericity, thus it is not limited to a specific domain. In fact the UML profiling
mechanism permits the extension of UML for modeling a specific domain. UML can
be considered as an emerging specification language for embedded systems, and many
UML profiles (some of these profiles are described in section 3.5.2) target the embed-
ded systems design specification. An important step for the UML adoption in embed-
ded systems design was the standardization of the Marte UML profile targeting em-
bedded and real time systems. Unfortunately, UML is still lacking full-interoperability
between tools. This limits the exchange of models between different companies or
teams and reduces the opportunity to build libraries of UML models as it is the case in
C++, Matlab and VHDL

3.3.4 Matlab/Simulink

Matlab is a mathematical environment used for algorithm development. Control The-
ory and digital signal processing are two main domains where Matlab is used to model
the underlined algorithms. These later can be simulated using the Simulink tool that
provides flexible simulation capabilities and a wide range of tools for visualizing re-
sults. Matlab/Simulink is largely used in industry and a large components legacy is
available. Thus, building new models is made simpler due to increased re-use. Both
continues time and discrete time models can be simulated using Matlab. In addition, it
is sometimes possible to generate C implementation of Matlab models. However, this
code does not take into consideration complex architectures with complex communi-
cation and memories infrastructure. The Matlab simulation is mainly useful to study
the modeled system at the algorithmic level.

34

3.3.5 Discussion

All the above presented specification languages target system level design. However,
some of them are textual while the others are graphic, some target reactive safety crit-
ical systems while others target signal processing systems, some rely on a formal se-
mantics while others are simulation based. A system level design methodology should
be generic and ideally target different design domains. Thus it could relies on one or
more specification languages. UML is generic and extensible (through the profiling
mechanism) to target different domains. In fact, it is common nowadays, to find ap-
proaches [18; 47; 82] where the system’s specification is done in UML and where
the performance analysis step uses a model translation/transformation into SystemC or
other simulation languages. This later approach is adopted for the work presented in
this thesis. It is possible as well to generate different simulation/analysis codes from
UML such as Matlab, and SCADE

3.4 Survey of some Existing System Level Design
Methodologies

The System Level design domain is a large and promoting domain. Several Industrial
and academic approaches are proposed and developed. Examples of such design
frameworks and languages are Ptolemy II [23], Metropolis [17] , Koski [47] and
MESH [22]. This section describes, briefly, some of these system level design
methodologies. The objective is not to provide an exhaustive list but rather to
introduce the relevant ones with this thesis work.

Metropolis [17] is based on a meta-model that supports multiple types of model
of computation and that can be extended to support others. It specifies applications
and architectures separately and the association (mapping) between them. The basic
modeling elements in Metropolis are processes, ports, media, quantity manager and
state media. Processes represent the system’s functionality and communicate through
ports. The ports are interfaced using media, and the quantity manager define the
scheduling scenarios. The Metropolis environment provides techniques and tools for
formal verification and for simulation of developed models.

Ptolemy II [23] is a meta-modeling framework, implemented in JAVA, for het-
erogeneous and hierarchical designs of embedded systems. It focuses on simulation
and the interaction between different models of computation. It uses tokens as the
underlying communication mechanism. Directors regulate how actors execute in the
design and how tokens are used to communicate between them. This mechanism
allows different models of computation to be constructed within Ptolemy. Hierarchical

35

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

composition is used to handle heterogeneity. Each level in a hierarchy has a director
that organizes the bring of the actors at that level. Ptolemy does not focus on
function-architecture separation and mapping.

Koski design flow [47] provides a single framework for modeling of applications,
automatic architectural design space exploration, automatic synthesis, programming,
and prototyping of selected MPSoCs. Koski’s design flow starts with the capturing,
in UML, of requirements for an application and architecture, including design
constraints, such as the overall maximum cost. The environment is doted with a UML
interface that handles the transformation of application and architecture models to an
abstracted model for fast architecture exploration. Particularly, the application model
is transformed to an abstract process network model. In addition, the UML interface
can back-annotate the UML design with performance information obtained from
lower-level simulations. The design space exploration process is composed of a static
(analytical) and a dynamic (simulation based) steps. Once an “optimal” system is
defined, the last step of the Koski framework is to automatically generate the low-level
code (software C code and hardware VHDL code).

MESH [22] stands for Modeling Environment for Software and Hardware. It
separates the design into three parts: the software layer (corresponding to functional
model), the hardware resource layer (corresponding to the architecture model) and
the scheduling layer between them (corresponding to mapping). Each layer provides
a set of services to the layer next above. The scheduling layer allocate an execution
resource to a software thread. Software threads are annotated with time budgets for
the corresponding hardware elements. This timing cost is extracted beforehand by
estimation or profiling.

Gaspard2 [18] is an environment providing designers with the following means:
a formalism for the description of embedded systems at a high abstraction level (based
on the Marte UML profile), a methodology covering all system design steps, and a
tool-set that supports the entire design activity. The model of computation adopted by
Gaspard 2 offers a very suitable way to express and manage the potential parallelism in
a system. Different automatic refinements steps from the high level of abstraction to-
wards the lower levels are defined: for simulation at different levels with SystemC, for
hardware synthesis with VHDL and for formal validation with synchronous languages.

Syndex [52] is a system-level computer Aided Design (CAD) software that enables
to quickly explore the solution space to extract an efficient solution and generate a real
time distributed executive without deadlock for multi-components architectures. It is
based on the AAA, Algorithm Architecture Adequation, methodology that aims to find
the best matching between an algorithm and an architecture, while satisfying design

36

constraints. AAA is based on graphical models that model both the potential paral-
lelism of the algorithm and the available parallelism in the architecture components.
The implementation consists in distributing and scheduling the algorithm data flow
graph on the architecture multicomponent while satisfying the real-time constraints.
This is formalized in terms of graphic transformations. Heuristics are used to optimize
real time performances and resource allocation for embedded real-time applications on
the SOC.

At an industrial level, there are as well many approaches for system level design
and virtual prototyping. Hereafter a brief description of two of these industrial ap-
proaches: Panama [75] and CoFluent [29].

Panama[75] is an in-house Freescale development, with the main objective of
enabling early analysis when some information is not yet available; namely lack of
software applications and stable hardware component definitions. It targets to reach
the desired accuracy while maintaining a good simulation speed. The application is
specified using the TML (Task Modeling Language) language that contains abstract
constructs to express an application flow with regards to its use of hardware resources.
The architecture is specified in SystemC at the cycle accurate level. After a first
analysis using the TML model, the modeling could be enriched using simulation
traces to increase the accuracy. It is worth noting that Panama does not describe
the application and architecture in an orthogonal fashion. In fact the task modeling
language includes details of the underlying architecture which mixes the architecture
and application models.

Cofluent tools [29] are based on the MCSE [64] methodology developed by the
reasearch team of professor Jean-Paul Calvez. It provides a graphical description
for the application and the architecture that resembles to UML and recentely a UML
profile for CoFluent has been defined [30]. An internal tool enables the automatic
generation of SystemC code from the graphical description in order to analyze
the behavior. The MCSE methodology covers the design flow from requirements
collection up to the prototyping.

Discussion

System Level Design methodologies represent a large umbrella of tools and ap-
proaches. The set of previously described approaches are few examples of existing
well-known approaches. In fact, even back in 2006, D. Densmore et al [28] counted
a 90 different academic and industrial system level design tool and/or methodology.
However, these tools are sharing some common trends and similarities:

• Separation of concerns: a vast majority of these tools separate application and

37

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

architecture concerns, and the separation of communication and computation is
becoming more popular

• Usage of the same specification language to specify the architecture and the
application. Usually this language should rely on a clear definition (meta-model)
of the modeled concepts. For instance Metropolis relies on a formal meta-model
and Gaspard2 and Koski rely on well defined UML profiles. UML is getting the
hype in this domain, especially that its semantic is generic and independent from
any particular implementation

• Increasing interest in formal verification techniques integration to design flows

• Code Generation for simulation and analysis from the high level models. Sys-
temC is largely the most preferred language due to its standardization and adop-
tion in industry.

3.5 DIPLODOCUS and Extensions: Yet Another Sys-
tem Level Design Methodology for Early Design
Analysis

The objective of this PhD work is to develop a methodology for performance esti-
mation of complex SoCs at a high level of abstraction and in early design stages;
ultimately, when software and hardware are not yet defined. Thorough architecture
performance exploration cannot be performed with cycle and bit accurate system mod-
els, because they are too detailed and thus very expensive to be built and require an
equally advanced software implementation. A general solution is to use abstract sys-
tem models for both application and architecture. The challenge remains to preserve
the accuracy of the performed estimations. Raising the level of abstraction will reduce
the time needed for developing models, thus reducing the effort before the first perfor-
mance estimations. The proposed approach extends the DIPLODOCUS UML profile
to model shared resources and communication architecture interactions. Performance
analysis and design exploration process are performed by using the SystemC based
simulator developed to simulate the SystemC code generated from the UML models.

3.5.1 Modeling Approach

Figure A.1 depicts our approach, the red boxes represent our contribution to the
DIPLODOCUS methodology. The numbers between brackets represent the section
or chapter that will describe the specific part of the approach. The “Application Mod-
eling” package specifies how the functionality of the system is captured. It provides

38

modeling constructs for modeling the structure (using a simple task model or a hier-
archical component model) and the behavior (using the UML activity diagram) of the
application. The “Architecture Modeling” package specifies the architectural resources
that will be used to execute the application and the communication schemes between
these resources through the “Communication Interaction Modeling” Package that de-
fines all the possible communication patterns in a specific architecture. During the
system modeling phase, application and architecture concerns are clearly separated,
thus a mapping phase is needed.

The “Mapping Package” defines how the application constructs are mapped and
executed on the architecture resources. It clearly defines:

• How the shared resources will be used and specifically how scheduling decisions
are taken (the “Shared resources Modeling” Package)

• The communication management policy used to select among the possible pat-
terns the one to use in a specific communication

• The storage allocation of the application’s constructs on the memories

• The execution allocation attaching application tasks to computation resources.

DIPLODOCUS main assumptions

DIPLODOCUS was created with the objective of performing early design analysis.
Thus, the designer could make design decisions early in the design process, even when
either the code and/or the architecture components are not yet available. To accomplish
this, the analysis phase should be as fast as possible, techniques like cycle accurate
simulations take long time for simulation and for building the model itself, and they
need the code and the architecture complete definition before being performed. In
DIPLODOCUS, and to speed up the analysis, data is abstracted. This means that tasks
are exchanging abstract data samples and not valued data, only the data size matters
and not the data itself.

Furthermore, DIPLODOCUS defines a clear separation between the concerns of
the application and of the architecture, thus designer could test the performance of an
application on many architectures and vice versa.

Models Processing and Analysis Approach

Our objective is to provide designers with tools that will help them to optimize the
application, architecture and mapping models. We provide a SystemC simulation en-
vironment to simulate modeled systems and to evaluate their performance (detailed in

39

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

Figure 3.1: The Extended DIPLODOCUS methodology

40

chapter 6). The environment takes DIPLODOCUS UML models (Application, Archi-
tecture and Mapping) as inputs. It generates automatically from them corresponding
SystemC code. The objective is to measure the performance metrics of the studied
system, for example latency, throughput, utilization, and contentions.

The following subsections will compare the extended DIPLODOCUS approach
with existing approaches and UML profiles.

3.5.2 UML for SoC Modeling

In recent years, UML increasingly has become known for its capability of unifying the
specification and the design of the hardware and software parts of electronic systems.
In a survey (back in 2007) organized at the margin of the 4th UML-SoC Workshop
[11], participants from both academia and industry answered the question “What is
the reason for your interest in UML tools and methodologies?”. A vast majority of
them expressed that they are considering UML to specify the system’s behavior and
interfaces, and to specify in a single environment systems which will involve different
disciplines (HW, SW, analog, digital domains). In addition to specification of these
heterogeneous systems, they were as well considering the usage of UML in the context
of analysis and design space exploration of the system’s architecture.

Several UML profile are proposed for SoCs modeling. Some of them are integrated
in a design methodology and tools. Hereafter an overview of five well known of these
profiles: TUT, UML-SoC, UML SPT, UML Marte, and the DIPLDOOCUS UML
profile extended and defined in this thesis.

TUT [54] Profile extends UML 2.0 to model mutli-processors SoCs. Its objective
is to enhance the support of external tools for automated analysis, profiling, and
modifying the UMLmodel of an embedded system. The TUT profile defines a set
of stereotypes for describing applications (including real-time requirements) and
architectures as well as their mapping. Application is modeled as a network of com-
municating processes (conforming to the Khan Process Network). Process’ behavior
is modeled using the UML state chart diagram. Platform description is done as well
at a high level of abstraction. However, for communication modeling some more
detailed models are used (a transaction level generator) to describe the interaction
between platform nodes. TUT is developed at the university Tampere, Finland, and
is supported by the Koski environment and is used as input format. The mapping
can be performed manually by the designer or assisted by the Koski environment tools.

UML-SoC [5] is an industry based UML profile. Proposed by Fujitsu Limited and
several other companies, it intends to model SoCs. UML-SOC extends UML2.0 to
propose an approach for the structural modeling, communication modeling, operation
and property modeling. In fact, the proposed concepts in the context of UML-SoC are

41

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

closely related to SystemC, making possible an automatic generation of SystemC code
from UML-SoC models. Unfortunately, the profile is more focused on architecture
modeling and application concerns are mixed with the architecture ones.

UML-SPT profile [2] was standardized by the OMG (Object Management Group
[61]) for modeling real-time systems. This profile does not only model the functional-
ity of a system, but add the notion of quality of service (QoS) to attach non-functional
information to UML models. SPT notion of QoS permits the quantification of
timing and resources. Resources’ performance is expressed in terms of performance
parameters such as capacity, availability and timing. Clients resource (users) require
a QoS from the resource they are using such as maximum deadline, and throughput.
The relationship between a client and a resource is called a QoS contract. SPT was
adopted by many industrial and academic approaches and several quantitative analysis
of SPT models are available, and that can be classified in two categories: performance
analysis and schedulability analysis. The first one uses stochastic techniques such
as queuing theory or Petri nets to calculate response times, delays and resources
requirements. Thus, they are aimed at determining the rate at which a system can
perform a function. On the other hand, schedulability analysis uses mathematical
methods such as RMA (Rate Monotonic Analysis) or holistic techniques, to predict
whether a set of software tasks will meet all its timing constraints. Then, they are
oriented to verify timeliness.

Marte [8] stands for “Modeling and Analysis of Real Time and Embedded

systems” is a standard UML profile adopted by the OMG to replace the UML-SPT
profile. It extends the possibilities to model the features of software and hardware parts
of a real-time embedded system and their relations. It also offers added extensions,
for example to carry out performance and scheduling analysis, while taking into
consideration the platform services (such as the services offered by an OS). The
profile is structured in two directions. First, the modeling of concepts of real-time and
embedded systems and second the annotation of the models for supporting analyses
of the system properties. The organization of the profile reflects this structure, by its
separation into two packages: the MARTE design model and the MARTE analysis
model respectively. These two major parts share common concepts, grouped in the
MARTE foundations package for expressing: non-functional properties (NFPs),
timing notions (Time), resource modeling (GRM), components (GCM) and allocation
concepts (Alloc). An additional package contains the annexes defined in the MARTE
profile along with predefined libraries.

DIPLODOCUS [82] stands for “DesIgn sPace exLoration based on fOrmal De-

scription teChniques, Uml and Systemc” is a UML profile proposed by Telecom Paris-
Tech. It targets the modeling of SoCs at a high level of abstraction with the objective

42

of performing early design analysis and design space exploration. It adopts the Y
modeling paradigm by separating the concerns of the application and the architecture.
The design space exploration in DIPLODOCUS is supported by an open source toolkit
named "TTool"[63], which could additionally generate documentation from developed
models. DIPLODOCUS has been created with the following assumptions:

• Application, architecture and mapping are modeled at a high level of abstraction
with the same language (UML) and in the same environment (TTool).

• Application data is abstracted - by a concept of non-valued samples - leading to
very fast simulations and allowing the use of formal techniques.

• Architecture modeling is done as a composition of instances of execution nodes
(CPUs, DSPs, hardware accelerators ...), communication nodes (busses, routers,
switches ...) and storage nodes (memories). These components are abstract
generic ones and are specialized through a set of performance parameters.

• From UML DIPLODOCUS models, formal verification may be performed using
automatic code generation to LOTOS or UPPAAL.

Discussion

The above described UML profiles are well-known profiles in the SoC design and
modeling. All of them are adopted at a research or industrial level, and there are many
tools and methodologies supporting them. Table 3.1 presents a comparison of these
profiles.

The TUT, UML SPT, Marte and DIPLODOCUS profiles define a clear separation
between application and architecture, while the UML-SoC profile is closely related to
the SystemC language and focuses more on the architecture modeling rather than the
application. With respect to the formal foundation criterion, only the DIPLODOCUS
profile (among the profiles described above) present formal semantics (in LOTOS and
in UPPAAL).

As specifying a system is not sufficient to study and analyze it, the UML models
are used as en entry level specification in a high system level modeling approach. For
instance the Marte profile is used in the Gaspard2 [18] methodology, and a complete
flow is defined, starting from the Marte model down to hardware synthesis, including
SystemC code generation for simulation purpose. DIPLODOCUS and its extensions
presented in this thesis do not target synthesis, but rather focuses on system level anal-
ysis

Even though, the modeling contributions presented in this thesis, namely the
shared resources modeling and the communication modeling and management, are
generic and can be modeled using Marte or TUT; we made the choice to use the

43

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

Profile Name
Separation
of Concers

Formal
Semantic

Tool
Support

Development
Year

TUT
Yes (Y
chart)

No
Koski design
environment

2005

UML SOC
No (loosly
coupled to
SystemC)

No
Rational

Rose
2005

UMLSPT
Yes (Y
chart)

No
Rational

Rose
2005

Marte
Yes (Y
chart)

No
Papyrus,

Rhapsody
2007

DIPLODOCUS +
this thesis

Yes (Y
chart)

Lotos and
UPPAAL

TTool 2006

Table 3.1: Comparison of some UML profiles for SoC modeling

DIPLODOCUS profile. In fact, DIPLODOCUS, developed and maintained by Tele-
com ParisTech since 2006, is not simply a UML profile but it comes with a full tool
support with the TTool [63] toolkit. DIPLODOCUS and TTool enable designers to
model, generate formal specification and simulation code (the code generation for sim-
ulation is presented later in chapter 6), analyze the simulation/verification results with
the same environment. Furthermore, and due to the DIPLDOOCUS metamodels de-
veloped during this PhD work, a future feasible step is to use the model transformation
tools (such as kermeta [60]) to interchange models between DIPLODOCUS and other
well defined profiles (such as Marte).

3.5.3 Shared Resources Contentions Modeling

Most recent Systems-on-Chip (SoC) are meant to host highly complex and interdepen-
dent applications at low cost (area, power) to the end user. The number of resources
must be minimized while increasing their utilization by sharing them between multiple
applications. Such shared resources have a strong impact on SoC performance because
of the contention they typically induce. Indeed, end-to-end performance of a given
application is the sum of the time needed to execute that application with the total
contention delay of all involved shared resources.

Many design methodologies and supporting tools - including DIPLODOCUS
- propose a mapping phase once application and architecture models have been
performed [17]. Those methodologies extract shared resources impact on system’s
performances. Like our approach, some methodologies are more particularly focused

44

on early analysis and documentation of complex architectures, while functional
modeling and synthesis of implementations is the intent of others (e.g., [68]). The
following discussion compares our approach with other high-level methodologies that
attempt to estimate impact of shared resources on system performances.

The back annotation techniques like MESH [22] and the one proposed in Schnerr
& al. [70] extract performance latencies from a low-level simulator to annotate the
higher level model. They utilize analytical and simulation techniques to estimate
shared resources contention. Final code is used to estimate the performance. On the
contrary, our methodology is applied early in the design flow, and so before the code is
released. Also, above-mentioned techniques focus on the modeling of task scheduling
and extract contention attributes related to communication and memories from low
level simulations. In our approach, we extract this information from the high-level
simulation of our models.

Early architecture exploration methodologies like Sesame [46] offer a clear
distinction between application and architecture concerns, and facilitate flexible
system-level performance evaluation. Application is modeled as a set of Khan
processes while architecture is defined at a high level of abstraction in a similar
way to DIPLODOCUS. So far Sesame mapping models only provide schedulers to
allocate computation resources to the application Khan processes: it does not model
communication architecture arbitration nor memory mapping.

Kempf et al. [49] presents a simulation framework for MP-SoC platforms. They
use a virtual processing unit (VPU) to schedule the execution of tasks mapped to a
processor. The important difference to our approach is that we generalize the notion
of a virtual node to model accesses policies to any type of architecture resources, and
that we are able to extract performance result of any shared resource.

Panama [75] enable modeling at a high level of abstraction and they capture task
scheduling as well as the communication architecture and memory mapping modeling.
Unfortunately they do not define a clear separation between the application and the ar-
chitecture. Indeed, the language used to model tasks includes details of the underlying
architecture thus reducing the reusability of models.

3.5.4 Communication Modeling

In modern multi-core and/or heterogeneous architectures, communication becomes an
important issue for the the global performances as the communication infrastructure
is shared between the different cores. Thus, a system level design approach should
take into consideration the communication impact. Nevertheless, a communication

45

3. SYSTEM LEVEL DESIGN: MODELS, METHODOLOGIES AND TRENDS

analysis process at higher abstraction levels is not trivial. The main challenge is the
lack of timing information at these abstraction levels, which make it difficult to acquire
accurate estimations to guide the space exploration.

Our objective is to estimate communication performance at a high level of abstrac-
tion, and where the required timing details are not available. The two main challenges
are:

1. How to abstract the communication architecture features?

2. How to estimate the communication performances given the abstracted commu-
nication features?

In the system level modeling literature there is two main approaches for commu-
nication modeling. The first approach [18; 46; 47; 82] is based on the fact that the
application model (usually a set of communicating tasks) drives the architecture com-
munication behavior. For instance, a data transfer between two tasks executing on two
different cores, will induce a data transfer on the communication architecture and the
shared memory. As design is at a high level of abstraction, designer usually specifies
the amount of data transfered, so in the performance estimation this amount informa-
tion is used to calculate the communication latency while presenting some inaccuracies
because the exact timing information are not captured at the high level of abstraction.
The second approach is to use traces [75], in fact the communication architecture is
be modeled at a lower of abstraction than the computation architecture and the appli-
cation, than designers use traces (generated using traffic models of applications or the
execution of the real code of available on one core) to enhance the accuracy.

The communication modeling approach proposed in this thesis is following the first
approach and is based on a modeling construct, the Communication pattern. It’s objec-
tive is to separate the computation from the communication. It models the interaction
between the different architecture components following a communication protocol.
Once, a communication (data transfer) is requested, the communication pattern is exe-
cuted.

3.6 Summary

This chapter’s main focus was to describe the system level design methodologies, their
concepts and their trends. Few methodologies were described as well as the specifi-
cation languages widely used at the system level. In addition, this chapter introduced
the proposed approach (extensions to the DIPLODOCUS methodology) for modeling
shared resources and orthogonalization of concerns of the computation and the com-
munication. Our contributions to DIPLODOCUS will be detailed in the following
chapters (As depicted in figure A.1).

46

Part II

PhD Contributions

47

Chapter 4

Architecture and Application
Modeling

The DIPLODOCUS methodology is based on an UML profile targeting design space
exploration at a high level of abstraction. It adopts the Y modeling concept, and de-
fines a clear separation of concerns between the application and the architecture as well
as between the computation and the communication. This orthogonality of concerns
allows modifying one of the components, while keeping the rest at their previous (de-
fault) configuration. Thus, the mapping, for example, may be varied without touching
the application or architecture models. The objective of the previous chapter was to
compare the existing approaches and to introduce the contributions of this PhD thesisto
the DIPLODOCUS methodology. This chapter builds on the existing DIPLODOCUS
concepts introduced in [14] and [82], and defines the UML meta-models for the ap-
plication (section 4.2) and for the architecture (section 4.3). It enriches the existing
DIPLODOCUS with the concept of “Communication Patterns” to model the commu-
nication interactions performed by the architecture (introduced in section 4.3.2). A
hierarchical application modeling approach is defined as well to permits the modeling
of complex applications. This chapter provides a definition of the proposed concepts
through UML meta-models to describe how the DIPLODOCUS profile extends the
UML 2.0 standard. In addition, the defined profiles are illustrated by modeling exam-
ples. But first, section 4.1 presents the UML modeling basics.

4.1 UML the Unified Modeling Language: Models,
Metamodels and Profiles

A model is “a representation of some phenomenon of the real world made in order to
facilitate an understanding of its workings. A model is a simplified and generalized
version of real events, from which the incidental detail, or ’noise’ has been removed”

49

4. ARCHITECTURE AND APPLICATION MODELING

[71]. A meta-model is yet another abstraction highlighting properties of the model
itself. A meta-model is a model whose instances are the data types of another model.
This model is said to conform to its meta-model like a program conforms to the gram-
mar of the programming language in which it is written. The meta-model defines the
structure, semantics and constraints for the models.

UML 2.0 [61] is created to help designers to specify, visualize, and document mod-
els of software systems, including their structure and design. It defines thirteen types
of diagrams, divided into three categories: Six diagram types represent static applica-
tion structure, three represent general types of behavior; and four represent different
aspects of interactions:

1. Structure Diagrams include the Class Diagram, Object Diagram, Component
Diagram, Composite Structure Diagram, Package Diagram, and Deployment
Diagram.

2. Behavior Diagrams include the Use Case Diagram (used by some methodologies
during requirements gathering); Activity Diagram, and State Machine Diagram.

3. Interaction Diagrams, all derived from the more general Behavior Diagram, in-
clude the Sequence Diagram, Communication Diagram, Timing Diagram, and
Interaction Overview Diagram.

UML is a language with a very broad scope that covers a large and diverse set of
application domains. Not all of its modeling capabilities are necessarily useful in all
domains or applications. A UML profile is an extension of the UML meta-model to
model a specific domain. The extension mechanisms allow refining standard semantics
in a strictly additive manner, so that they cannot contradict standard semantics. By
definition [76], a UML profile is a specification that does one or more of the following:

• Identifies a subset of the UML metamodel.

• Specifies “standard elements” beyond those specified by the identified subset of
the UML metamodel. “Standard element” is a term used in the UML metamodel
specification to describe a standard instance of a UML stereotype, tagged value
or constraint.

• Specifies semantics, expressed in natural language, beyond those specified by
the identified subset of the UML metamodel.

• Specifies common model elements, expressed in terms of the profile.

The DIPLODOCUS UML profile is an extension of UML to model, at a high level
of abstraction, complex System-on-Chip (SoC). The extension mechanism through

50

Figure 4.1: DIPLODOCUS Application Modeling profile

profiling is restricted to the use and extension of an existing modeling language meta-
model without modifying the abstract syntax or semantics of the source modeling lan-
guage. This chapter is organized as follows: First section 4.2 defines the Application
Modeling profile that specifies the concepts for modeling the structure and the behav-
ior of the application. Then, section 4.3 presents the Architecture Modeling concepts
used to model the architecture that will execute the specified application

4.2 Application Modeling

A DIPLODOCUS Application represents the functionality that the modeled system
will accomplish during its execution. The system’s architecture will execute this ap-
plication after the mapping phase. DIPLODOCUS defines how the structure and the
behavior of the application should be modeled by extending the appropriate UML di-
agrams. The DIPLODOCUS “Application Modeling” sub-profile is depicted in fig-
ure 4.1. The Designer can choose to model the structure of the application using
the “Application Structure Task Model” or to use the hierarchical capabilities of the
DIPLODOCUS “Application Component Model”. It is worth noting that both models
are semantically equivalent. After defining the structure of the application, the de-
signer defines the behavior as specified in the “Application Behavior” sub-profile. The
following sections will detail these concepts.

4.2.1 Application Structure Task Model

The DIPLODOCUS Application is structured around the notion of “task” that holds a
functionality (task’s behavior). Tasks could communicate and exchange data through
communication connectors. The DIPLODOCUS task modeling was first introduced
by [14] and [82]. An application task model is a composition of a set of tasks and

51

4. ARCHITECTURE AND APPLICATION MODELING

all the communication connectors that are connecting them. In DIPLODOCUS the
parallelism is inter-task, if there is no data dependency tasks can execute in parallel if
they are later mapped on different computation nodes. However the behavior of a task
is sequential.

Each DIPLODOCUS task, t, is characterized by the following elements:

• A behavior that describe the task’s functionality (more details on that in section
4.2.3)

• A set of input communication connectors (where t is the destination task)

• A set of output communication connectors (where t is the origin task)

• A set of attributes, that are used by the task’s behvior. In DIPLODOCUS an
attribute can be integer or boolean

• A name that represents the identifier of the task. Task name must be unique.

On the other hand, the communication connectors in DIPLODOCUS are of two
types:

1. Data Exchange Connectors, channels, that represents a way for modeling data
exchange, without any knowledge about the implementation details of the un-
derlying communication infrastructure or the actual contents of the data,

2. Synchronization connectors are means for tasks to exchange signals to control or
request specific executions, there is two types of DIPLODOCUS synchroniza-
tion connectors: events and requests

Data Exchange Connectors: Channels

A channel is a connector that carries data samples between tasks. The behavior of
a task is affected when reading/writing in a channel, depending on the “type” of the
channel. A channel can be: 1- blocking on read, so a task cannot read from an empty
channel, 2- blocking on write, so a task cannot write to a full channel, or 3- non block-
ing on write or/and non blocking on read. Three types of channels are defined:

• BRBW channel: for Blocking Read/Blocking Write Channel: a task cannot read
from an empty channel nor write to a full channel. It represents a finite FIFO

• BRNBW channel: for Blocking Read/Non Blocking Write Channel: a task can-
not read from an empty channel but it’s never blocked on writing. It represents
an infinite FIFO

52

• NBRNBW channel: for Non Blocking Read/Non Blocking Write Channel: a
task is never blocked neither on read nor on write.

Each DIPLODOCUS channel has a name (identifier) and an origin (sender) and
a destination (receiver) task. It has a type (BRBW, BRNBW, or NBRNBW). The
designer should as well define the ”sample size”, in bytes, is the size of a sample of
data transfered on the channel and the maximum number of samples (MaxNbSamples)
that can be queued in a BRBW channel.

Synchronization Connectors: Events and Requests

The “Synchronization Connectors” (events and requests) are used to communicate con-
trol information to other tasks in the system. The destination task is blocked while
waiting on a synchronization connector. The origin task can be blocked while sending
an occurrence (writing in the event’s FIFO). Thus, for the events we have two types
of FIFOs: finite and infinite. On the other side, requests are always represented by
infinite FIFOs and they are not blocking on send. Both, “Events” and “Requests” may
carry some Parameters “P”

Each DIPLODOCUS synchronization connector (event or request) is defined by
its name, it has an origin (sender) and a destination (receiver) task. It has a type (fi-
nite FIFO, infinite FIFO). The designer should define the maximum number of event
occurrences (MaxNbOccurences) that can be queued in an finite FIFO event.

Application Task Model’s UML Representation

The DIPLODOCUS Task diagram that represents the application’s structure extends
the UML class diagram. The UML meta-model that defines this extension is depicted
in figure 4.2. Functionalities are organized under the notion of Task, that extends the
UML metaclass ”class”. Communication Connectors (channels, event and requests)
that connect DIPLODOCUS tasks extends the UML metaclass “Association Class”.
A task has a dedicated behavior that will define how it will execute and define its
communication scenario with the other tasks.

Task modeling example

Figure 4.3 depicts a simple application example modeled with the TTool toolkit. The
application in the example is the composition of a set of tasks (Task0, Task1, Task2)
and the set of Communication Connectors (ch1, evt1, done, reqTask2). The three tasks
functionalities are interdependent as each task is an origin and destination for differ-
ent communication connectors: Task0 exchange data with Task1 through the channel
“ch1”, but it is a destination for the event “evt1” sended by Task1. With the same
logic, Task1 request the execution of Task2 through the request “reqTask2” and it’s

53

4. ARCHITECTURE AND APPLICATION MODELING

Figure 4.2: Application Structure Task metamodel

destination for the event “done” sended by Task2 to confirm the reception (execution)
of the request by Task2. Moreover, Task0 has an attribute a of type Natural (integer),
initialized to 0. Later in the application behavior modeling we will show how the task
would manipulate the value of an attribute, send events or wait for events ...

Figure 4.3: A simple application modeled by DIPLODOCUS Task Model with TTool

4.2.2 Application Structure Component Model

The application structure modeling approach presented in the previous section has the
advantage of being semantically clearly defined. Formal descriptions in LOTOS or
UPPAAL[42], can thus be generated using the Turtle toolkit[63]. However it suffers

54

some drawbacks (detailed in the next subsection), namely in terms of complexity and
re-usability. To face these drawbacks and enhance the application DIPLODOCUS
modeling, we introduce a new Application Structure modeling diagram based on com-
ponent modeling approach. In fact, decomposing systems into individual modules for
flexibility, re-usability and comprehensibility is a technique long proposed for sys-
tem design. In component-based engineering, functionality is encapsulated in reusable
components. This increases the re-usability and reduces the implementation of new
applications by assembling existing components. It also makes programs more under-
standable, as design decisions that only affect a part of the application can be hidden
in a module or component.

Component Model’s Motivations

Models Complexity: the task modeling approach fits perfectly when the application
model is small, and involves a relatively small number of tasks and connectors, but
when the application is “complex” the task modeling will rapidly become cumber-
some and the designer will have some difficulties navigating in the complex model.
Thus, introducing the notion of hierarchical modeling aims at the models complexity
and open the window for the modeling of more and more complex applications (for
example the LTE application we modeled, for more details please refer to chapter 7).

Applications are inherently hierarchical: applications targeted by
DIPLODOCUS are usually hierarchical. For instance a telecommunication pro-
tocol is composed of many layers and inside each layer there is a set of smaller
entities that collaborate to accomplish the functionality of the layer. Thus a hierar-
chical DIPLODOCUS application model would reflect more appropriately the real
application.

Increase models re-usability: An important aspect of component-based modeling
is the reuse of previously constructed components[78]. A component can always be
considered an autonomous unit within a system or subsystem. It has one or more
interfaces (exposed via ports). Although it may be dependent on other elements in
terms of interfaces that are required, a component is encapsulated and its dependencies
are designed such that it can be treated as independently as possible. As a result,
components and subsystems can be flexibly reused by connecting them together via
their interfaces.

Enable collaborative development of models: As interfaces are clearly defined,
components may be modeled by different designers. For instance, each component can
be developed by an expert designer in the specific domain

Finally our component model has the same semantic as the task model and a trans-
lation from component to task model is provided.

55

4. ARCHITECTURE AND APPLICATION MODELING

Component Model’s definition

DIPLODOCUS Component Based Modeling (Figure 4.4) extends the UML compo-
nent diagram. It’s main characteristic is the support of hierarchical modeling, thus
enabling the encapsulation of functionalities in well structured groups (the composite
components). A CBD (Component Based Diagram) is assembled out of components.
There are two types of components: the primitive components (equivalent to tasks)
and the composite components that are composed of composite and/or primitive com-
ponents. The CBD is the composition of a set of primitive and composite components
connected through connectors and ports. The CBD itself is a composite component.

The set of primitive and composite component encapsulated by a composite com-
ponent defines a Hierarchical Level (HL). In a hierarchical level, a component’s name
is unique. The global component name is the composition of its name with the names
of composite components encapsulating it while going up in the hierarchy up to the
highest level (in other words up to the CBD).

A primitive Component is equivalent to a task in the Task Modeling approach pre-
sented in the previous section. Thus, it has behavior, a set of attributes (integer or
boolean) and the communication with other components is done through the primitive
ports attached to the primitive component.

A Primitive port pPort is an access point to the primitive component’s behavior, and
it has an identifier, a direction that represents the fact that the port is orgin or destination
of a communication and a type that represents the communication semantic of the port
(a port can be a channel, an event or a request). The communication semantic is the
same as defined in section 4.2.1

Components’ ports (primitiove and composite) are connected using connectors. A
connector, c, has an input port InPort and an output port OutPort. Both input and output
ports must be attached to different components, and can be primitive or composite
ports. Furthermore, a connector can not connect a port to itself.

When a primitive port of a primitive component is connected to a composite port
of an encapsulating composite component, the later inherits its type. The composite
component may later be connected to another composite port or to another primitive
port. The global connection must be valid: the primitive components on both sides
should be of the same type. To perform simulation and formal analysis a component
model is transformed into a task model. In fact we eliminate the hierarchy, primitive
components are transformed into tasks and connected ports (of the same type) are
transformed into channels, events or requests.

Component Model’s UML Representation

The proposed DIPLODOCUS component model extends the UML 2.0 component di-
agram. Figure 4.5 depicts its meta-model. It reproduces the mathematical concepts

56

Figure 4.4: The Component Modeling metamodel

57

4. ARCHITECTURE AND APPLICATION MODELING

defined earlier. It defines the relation between composite and primitive components
and their respective ports.

Component Modeling Example

Figure 4.6 depicts the upper hierarchical level model of the uplink physical layer of
the LTE telecommunication standard. This model is used as a case study for the ap-
porach presented in this thesis and is further detailed in chapter 7. The lime green
boxes are primitive components while the yellow box is a composite component. The
primitive component “SBL1_UL_Config” defines the environment of the model where
it specifies the number of processed packets and many other parameters that interfere
in the system execution. The “IF4” and “IF1” are representing the interfaces of the
modeled system (the uplink physical layer) to the other standard layers. The compos-
ite component “SBL1_UL” represents the physical layer and is encapsulating 54 other
components. It would have been extremely difficult to model all this number of tasks
using the task model.

4.2.3 Application Behavior Model

To define the behavior of a task (or of a primitive component), DIPLODOCUS extends
the UML activity diagram. A DIPLODOCUS behavior diagram is a set of commands
that fulfills the functionality of the task. DIPLODOCUS defines 4 types of commands:

1. Control Commands (ConCommands): this command’s set contains the basic
control structures, namely conditional execution (IF command), repetition struc-
ture (loop command), choice command, and sequence command (define a se-
quence of execution between different branches). It includes as well the action
command that changes the value of task’s attributes.

2. Communication Commands (CommCommands): these commands involve any
data or synchronization exchange between tasks. Commands are read/write to a
channel, send/wait an event and send a request, check if an event’s FIFO contains
occurrences (NotfiyEvent command), and wait on multiple events. Tasks execu-
tion can be blocked if the involved connector is blocking and and the event’s
FIFO is full.

3. Abstract Execution Commands (AbsExecCommands): this subset of commands
represents the computational complexity of the node while executing applica-
tions. The semantics and execution delay of these commands depend on the
underlying architecture.

4. Temporal Commands (TempCommands): the Delay command represents an ab-
solute delay.

58

Figure 4.5: The Component Modeling metamodel

59

4. ARCHITECTURE AND APPLICATION MODELING

Figure 4.6: The uplink physical layer of the LTE standard modeled using the proposed
DIPLODOCUS model

A DIPLODOCUS behavior command belongs to one the above defined types of
commands. In addition it has an execution attribute Commandatt. For instance, a
“send event” command has as attribute the name of the event it wants to send and the
number of occurrences. However, and in order to be semantically correct, the event
should belong to the set EVENTS that contains all the events of the task. Furthermore,
when using a variable in any of the commands it should be declared in the attribute list
of the task.

A DIPLODOCUS “Activity Diagram”, AD, for task’s behavior modeling is defined
as a tuple:

AD = (C0, C, E) (4.1)

Where

• C is a set of all AD commands

• C0 ∈ C is the initial command. There is only one initial command in an AD

60

• t is a commands typing function: t : C → Type with Type =
{ConCommands ∪ CommCommandss ∪ AbsExecCommands ∪ TempCommands}

• E is the set of edges connecting the AD commands.

An edge e ∈ E is a set of an input command u and an output command v:

e = {u, v}, where u, v ∈ C and u 6= v (4.2)

Some commands have only one successor, and by consequence they have only
one outgoing edge. Others may have a conditional execution, for example a choice
command has at least two execution successors (branches) depending on the choice
condition, and thus has multiple outgoing links. In the same logic a wait on multiple
event will wait for at least one event, will select the branch for this specific event and
execute it, while the others branches will not execute. Thus, each command has a set
of successors, this set could be empty if the command is the last command in a branch,
it can be composed of one or more successors for the other commands. succ(u) is the
set of the successors of the u command, and the following holds:

|succ(u)| =

= 0 if u is an end of branch command
= 1 if u is Send/wait event, read/write Channel,

action, abstract exec command
= 2 if u is a loop command
= ∗ if u is a choice command it could have multiple successors

(4.3)

Application Task’s Behavior UML Representation

The DIPLODOCUS application behavior profile is depicted in figure 4.7. This meta-
model takes the mathematical concepts defined earlier in this section and reproduces
them in UML constructs. The task’s behavior extends the UML activity diagram.
The meta-model defines the behavior commands as UML nodes that are connected
through edges extending the UML metaclass “Activity Edges”. It defines all the
DIPLODOCUS possible commands that can be used by the designer to define the
application’s behavior. The commands are grouped into the four groups identified in
the earlier section.

61

4.A
R

C
H

IT
E

C
T

U
R

E
A

N
D

A
P

P
L

IC
A

T
IO

N
M

O
D

E
L

IN
G

Figure 4.7: Application behavior metamodel

62

Application Behavior Example

Figure 4.8 depicts a simple application behavior example modeled with the TTool
toolkit. In fact this is the activity diagram of the task “Task0” used in the example
of section sec:AppTaskModelExample. It defines the sequence of commands that the
task will perform during it’s execution. The red box beside each of the DIPLODOCUS
behavior command shows its type.

Figure 4.8: A simple application behavior modeled using the DIPLODOCUS Appli-
cation Behavior profile

4.3 Architecture Modeling

A DIPLODOCUS Architecture is the set of hardware resources that will execute the
application modeled as in the previous section. The “Architecture Modeling” sub-
profile defines how a SoC architecture is modeled. Furthermore, section 4.3.2 in-
troduces the concept of “Communication Patterns” to model the interactions that are
handled by the architecture to perform communication operations. This modeling con-
cept enforces the separation of concepts between execution and communication and
enhances model’s re-usability and correctness. The following sections describe in
more details the architecture resources model and their interactions as captured by
DILPODOCUS

4.3.1 Architecture Resources Model

In DIPLODOCUS an architecture is modeled as a network of abstract physical re-
sources. The architecture model is not meant to execute real code, but rather the

63

4. ARCHITECTURE AND APPLICATION MODELING

Figure 4.9: Architecture Modeling Profile

DIPLODOCUS commands as defined in 4.2.3. The architecture model need to ac-
count, only, for the timing parameters as the functional behavior is already captured by
the application model which drives the simulation (the simulation process is described
in chapter 6).

A DIPLODOCUS architecture archi is the composition of set of architecture nodes
(that could be of three types: Computation, communication and storage node) and a
set of deployment links that relate the nodes. In addition, the Designer can as well
profit from the DIPLODOCUS architecture domain concept to structure more ade-
quately his/her model. In fact architecture resources could be grouped into domains
that are characterized by a clock speed. For example a mobile phone SoC architecture
is composed of two domains: 1) the Application Processor (AP) domain that executes
the designer’s applications and runs the phone operating system and 2) the Baseband
Processor (BP) domain that handles the used networking protocol (LTE, 3G ...). More-
over, the model could be developed by more than one designer, as each designer could
model the domain of his expertise, thus specifying more accurately the architecture’s
parameters.

Computation Nodes

A Computation Node, CN represents a processing device capable of executing program
code. Hence its fundamental service is to compute, it accesses the storage resources to
store or load data for the executing tasks. DIPLODOCUS allows the modeling of two
types of CN: CPUs and Hardware accelerators.

Each computation node has a set of parameters,CNParam. These parameters are
strictly performance related as the objective of DIPLODOCUS is to estimate the per-
formance on a high level of abstraction, and ultimately before the real code or the
architecture are developed. This set of parameters contains the number of computation
node cycles needed to execute an instrauction,CPI, the data and instruction cache miss
rates (estimated by the designer) and the running frequency of the computation node.

These parameters are used later on, during the performance estimation phase, to

64

calculate the performance metrics of the system such as latency and throughput, more
detailed analysis will be provided in section 6.3.2 of chapter 6

Cache Modeling

DIPLODOCUS is based on high level modeling of application, architecture and of
their mapping. Thus, an accurate model of caches is not feasible because application
details, such as instructions and data memory addresses, are not available (application
instructions are abstracted), the designer is not aware of specific memory regions ...
However, caches play a critical role in the system’s overall performance. Hence, a
methodology for system performance estimation must take the cache influence into
consideration.

The solution adopted in this thesis is based on the experience of the designer. In
fact, the designer estimates (based on her previous experiences) the cache miss rates
(data and instruction miss rates) that will be encountered during the system’s execu-
tion. These miss rates are used to calculate the system’s performance during simula-
tion. Thus, the calculated performance are function of the miss rates specified by the
designer that could optimize them when more details, on system, are available. The
miss rate specified at this level is to be considered as a requirement for the development
team.

Communication Nodes

A Communication Node CommN represents communication device capable of trans-
mitting data between the architecture nodes. Hence its fundamental service is data
transfer. DIPLODOCUS allows the modeling of Busses, bridges, crossbars, and DMA
. Their main objective is to carry data from/to computation nodes to the respective
storage nodes. Designer should as well specify a set of parameters for each node,
especially the data word size, the cost of the transfer of one word and the operating
frequency

Storage Nodes

A Storage Node SN represents storage device capable of storing application tasks data.
It could be on-Chip or off-Chip, shared or private, single access or dual access. They
are accessible through the communication nodes. Storage nodes has the following
parameters: Size (in MBytes), data word size, Latency, and frequency.

In DIPLODOCUS, architecture nodes are instantiated from a library of predefined
abstract models for architecture nodes that can be customized by setting the appropriate
performance parameters, thus reducing the modeling effort.

65

4. ARCHITECTURE AND APPLICATION MODELING

Architecture resources Model’s UML Representation

Figure 4.10 presents the DIPLODOCUS “Architecture Resources” meta-model. The
DIPLODOCUS architecture diagram extends the UML 2.0 deployment diagram. The
centric stereotype is “Architecture node” that is the generic type of all nodes. These
nodes are connected through architecture links. Even though not specified directly in
the meta-model, but a bus can not be connected to another bus.

Figure 4.10: Architecture Resources Metamodel

Architecture modeling example

Figure 4.11 depicts an example of a DIPLODOCUS architecture model modeled using
the TTool toolkit. In this example the architecture contains two computation nodes
“Core1” and “Core2” that can access the storage resources “M3” and “DDR1” either
directly or using the DMA1. The communication infrastructure includes in addition to
the DMA a CrossBar and a bridge as DDR1 is an off-chip memory.

66

Figure 4.11: An example of a DIPLODOCUS Architecture Model with TTool

4.3.2 Architecture Communication Interaction Model: “Commu-
nication Patterns”

The execution of the application on the architecture induces data exchanges between
architecture nodes. We distinguish two types of communication:

• Explicit Communications: results of the communication between tasks mapped
to different computation nodes. Consequently, a message exchanged via the
shared memory induces two explicit communications: one for writing into the
shared memory (by the sending node) and the other for reading from the memory
(by the receiving node).

• Implicit Communications: represent data and instructions that are fetched from
the memory (shared or private) during the execution of a task.

When a computation node is transferring data (implicit or explicit) to a memory,
the communication protocol is the same for all applications (or application’s tasks).
The communication cost depends on: 1) the amount of data to transfer, 2) the desti-
nation memory and 3) the set of communication nodes that will carry this data from
the computation node to the memory. During this data transfer, the computation node
may start the execution of another task while performing the data transfer requested by
the previous one. For example in a DMA data transfer context, the computation node

67

4. ARCHITECTURE AND APPLICATION MODELING

Figure 4.12: An example of simple Communication Pattern

programs the DMA for the data transfer and executes another task. We call “archi-
tecture communication behavior”, the sequence of communication operations needed
to complete a data transfer from a computation node to a storage node and involving
one or many communication nodes (DMA, Bus, crossbar ...). One should note that
different mechanisms may exist in an architecture to ensure the connection between
a computation node and a storage node. In modern embedded systems, communica-
tion standards are used to define the set of interactions to perform to complete a data
transfer: PCI express[65], AMBA bus[15] and Avalon[13] are examples of these com-
munication standards. Our objective in DIPLODOCUS is not to model these standards
in details and on low level of abstraction, but rather to capture the influence of com-
munication interaction on the overall system’s performance while preserving the high
level of abstraction.

Keeping in mind, the objective of separating the concerns of the computation and
the communication, we need to provide means to efficiently model the “architecture
communication behavior” and to capture its influence on the overall system’s perfor-
mance. To address this issue we introduce the concept of “communication patterns”,
that defines a scenario of communication that ensures the data transfer between a com-
putation node and an storage node. It should define all the exchanges (interactions)
needed between the architecture nodes (CPUs, busses, Crossbars, Memories ...) in-
volved in this scenario. An UML sequence diagram is traditionally used to represent
this kind of behavior. We extended the traditional UML sequence diagram to model the
communication patterns. A simple example of a communication pattern is shown in
Figure 4.12. where each vertical lines (lifelines in UML notation) represents one archi-
tecture node, and each arrow represents a message exchange between two architecture
nodes.

A Communication Pattern (CP) is defined as a tuple

CP = (N, c0, s0, E, Ops,≺E) (4.4)

68

Where

• N is a set of the architecture nodes that compose the pattern

• c0 is the execution node that start the communication interaction

• s0 is the destination storage resource where c0 wants to read/write data

• Ops is the set of all the operations that should be executed by all nodes of N
during the communication scenario.

• E is the set of events that composes the operations of Ops. An operation can be
a set of events.

• ≺E is a partial order relation between events of E. The order is partial between
events belonging to operations on different nodes, but it is total between the
events on the same node.

Nodes are categorized into sub-sets of "Computation Nodes" (CN), "Communica-
tion Nodes" (CommN) and "Storage Nodes"(SN), so that

N = {CN ∪ CommN ∪ SN} (4.5)

The c0 and s0 nodes should be of types Execution Node (EN) Storage Node (SN)
respectively, as defined in proporties (4.6) and (4.7)

c0 ∈ N and type(c0) = CN (4.6)

s0 ∈ N and type(s0) = SN (4.7)

The communication scenario starts when a computation node decides to perform a
data transfer to a storage node (explicit or implicit communications). The communica-
tion pattern involves only one computation node (en) and defines one of the possible
scenarios to access the specific storage node (sn). The set E represents the events that
nodes of N should perform. An event is related only to one node so that a message
between two nodes involves two events: one for sending the message and for receiving
it. An event evt∈E is defined as follow

evt = (node, type, param) (4.8)

Where node represents the architecture node that will execute the event, type rep-
resents the functionality of the event (detailed later) and param is an integer variable
that is needed for sending/receiving of the event. An operation in a communication
pattern may involve at least one event (on one node) and at most all the events (on all
the nodes)

69

4. ARCHITECTURE AND APPLICATION MODELING

In our Communication pattern, we assume (which is generally the case in real im-
plementation) that the computation c0 node should start the communication and though
the first event in a communication pattern should be executed by the only computation
node of a pattern.

We identified three categories of the "type" of an event "e": "Message
Events"(ME), "Execution specification Events" (ESE) and "Conditional Events"(CE).

∀evt ∈ E ⇒ type(evt) ∈ {ME, ESE, CE} (4.9)

Message Events

A Message Event (ME) represents a communication (data, event) between two archi-
tecture nodes: an origin node, and a destination node. A Message operation (MO)
involves two Message Events: the sender and the receiver, and is defined as

MO = {evt1, evt2} (4.10)

Where evt1 is the sender and evt2 is the receiver. We define four message events:
"Read", "Write", "DataTransferRequest" (when a CPU programs a DMA transfer for
instance) and "TransferDone" to signal the successful completion of the communi-
cation. These operators could be synchronous or asynchronous in the sense that a
computation node with synchronous messaging is blocked until the end of a Message
Operation . In contrast, an asynchronous messaging permits a non blocking execu-
tion scenario, during which the computation node could execute another task while
performing a communication operation (DMA transfer, caches ...).

Execution Specification Events

The second "type" of events is the Execution Specification Events. these events are
meant to model situations where nodes could set some architecture specific parameters
(e.g., a CPU needs some cycles to program a DMA). This consumed time is totally
independent from the application. We define two execution specification operators:
"Exec" which represents, in number of cycles, the cost of an execution on a compu-
tation node related to communication protocol, and "Delay" which is a time interval.
This type of operators involves only one architecture node. An Execution specification
Operator is composed of only one Execution specification event.

Conditional Events

Finally the third "type" of events is Conditional Events using the "loop" and "if". This
event type introduces a conditional behavior to the communication pattern. It repre-
sents a set of events that are executed if and only if the condition is satisfied.

70

Figure 4.13: Communication Pattern metamodel

Communication Patterns’ UML Representation

The DIPLODOCUS communication pattern sub profile meta-mdodel is depicted in
figure 4.13. It extends the UML sequence diagram and define all the possible message
that could be exchanged between architecture nodes (as described in the above section).

4.4 Summary

The objectify of this chapter is to define the application and architecture modeling in
DIPLODOCUS. The starting point of our work was the DIPLODOCUS methodology
introduced in [14] and [82]. We enriched the existing work by providing a mathemat-
ical and a UML definition for the application and the architecture modeling. Further-
more we added to the DIPLODOCUS methodology the component modeling diagrams
to reduce the models complexity and increase their re-usability.

Another major contribution of this chapter is the communication patterns that en-
force the separation of concerns of the computation and the communication in the
architecture. The next chapter will illustrate the system mapping (application mapping
onto the architecture) with special focus on shared resources modeling, communication
management and Memory mapping.

71

4. ARCHITECTURE AND APPLICATION MODELING

72

Chapter 5

System Mapping Modeling

After defining the application and architecture modeling in the previous chapter,
this chapter describes the mapping process. As one of the foundations of the
DIPLODOCUS profile is the separation of concepts between the application and the
architecture. A mapping phase is needed to define the binding of the concepts of the
application to the concepts of the architecture. the result of this process is a system on
which performance analysis will be performed.

The proposed DIPLODOCUS mapping model emphasizes on the resources sharing
and possible impact on overall performance metrics such as latency, throughput and
resources utilization. It introduces the ”Virtual Node” (VN) concept to model the
shared resources access control. Furthermore, it defines ”communication managers”

(CM) that will use the communication patterns defined in the previous chapter, and
define how after mapping a computation resource will access a storage resource to
read/write data related to an application task. The overall modeling methodology is
applied to a simple example to illustrate the modeling concepts presented so far. Before
describing the mapping process, this chapter starts with a simple example that shows
the needed concepts to be adopted in a modeling methodology to map the application
onto the architecture and to estimate the system’s overall performance.

5.1 Mapping motivational example

Consider a simple application example (upper part of Figure 5.1) composed of four
tasks: T1, T2, T3 and T4. T1 exchanges data with T4 through the channel “channel1”
and T3 exchanges data with T2 through channel “Channel2”. T1 and T4 are mutually
dependent as their execution depends on the communication between them. Same
for T3 and T2. The group (T1,T4) can execute in parallel (concurrently) with the
group (T2,T3). This is due to the fact that there is no data exchange (Channels) or
synchronization operators (Events or Requests) between the two groups.

73

5. SYSTEM MAPPING MODELING

This application will execute on an architecture (bottom part of Figure 5.1) com-
posed of two CPUs (CPU1 and CPU2), one DMA (DMA1), one Crossbar (CrossBar1),
an on-chip memory (M3) and an off-chip memory (DDR1) connected to the other ar-
chitecture components through a bridge (Bridge1). This is the same architecture used
in the example in section 4.3.1 (the architecture example in chapter 4). The two CPUs
with the DMA share the crossbar to access the memory M3 and share the bridge and
the crossbar to access the DDR.

The doted arrows in figure 5.1 depicts a “mapping scenario” of the application to
the architecture, where:

• T1 and T2 are mapped onto CPU1, while T3 and T4 are mapped onto CPU2.

• The “Channel1”, representing the data exchanged between T1 and T4. This data
exchange is done using the shared M3 memory. “channel2”, representing the
data exchanged between T2 and T3 using the DDR1.

Thus the first step in the mapping is the ”allocation” of the architecture resources
to the applications tasks and channels. In the mapping scenario presented above, when
T1 and T4 exchange data through “Channel1”, the data will be transfered to/from the
memory M3 through the CrossBar1. In a similar way when T2 and T3 exchange data,
the data will be transmitted using the CrossBar1 and the Bridge1 to reach the memory
DDR1.

Figure 5.1: Mapping Demonstrative example

As application’s tasks can run concurrently, an arbitration policy is needed for
each CPU to select a task to execute among the ready ones. For instance, if the schedul-
ing policy of CPU1 is priority based, and T1 is of higher priority than T2, then T1 will

74

be chosen to execute first. In this case, T2 execution is delayed until T1 finishes its
execution, including an additional cost due to communication with T4 (access cost
to the crossbar and to the memory). This concurrent execution of tasks is translated
into a concurrent access to the communication and storage nodes. Thus, a data ex-
change operation between two tasks, for example T1 writes data samples in Channel1
with destination T4, is translated after mapping as a communication between the two
CPUs, CPU1 and CPU2. This communication involves two shared architecture nodes,
the crossbar and the memory M3 (as “Channel1” is mapped to M3) whose access is
determined, as well, with access policies. Thus, it is primordial to define the resource
sharing techniques to capture correctly the system’s execution.

It is possible as well to imagine a communication scenario where the data is trans-
fered using the DMA. This means that the architecture provides two different paths to
transfer data between the CPUs and the memory M3: first path is direct through the
crossbar to M3, the second path involves a DMA data transfer. Hence, in a mapping
methodology, there should be a modeling component that defines how to manage the
communication in that case.

The overall latency of application’s execution on the architecture is equal to the
sum of:

1. Execution cost of the application functionalities (Tasks) on the computation re-
sources

2. Communication cost due to storage nodes access through the communication
nodes

3. Latency due to the contention on shared nodes. The contention’s cost depends
on the shared nodes involved in the execution and on the communication path
used for the data transfer.

Chapter Outline

The objective of the DIPLODOCUS Mapping modeling Profile (depicted in figure
5.2) proposed in this chapter is to define how the architecture resources are allocated
to the application constructs. The mapping modeling profile is composed of four sub-
profiles:

• Shared Resources Modeling (section 5.2): it defines the access control to shared
nodes. This control provides the designer ideas about bottle necks in the archi-
tecture, suitable scheduling policies on Computation nodes, suitable arbitration
policies for communication nodes ...

• Execution Allocation (section 5.3): it is a allocation function that specifies for
each task the computation node on which it will execute

75

5. SYSTEM MAPPING MODELING

Figure 5.2: DIPLODOCUS Mapping Modeling profile

• Storage Allocation (section 5.4): it is an allocation function that specifies on
which storage node the task’s data and code are stored. It defines as well where
the application channels (representing data exchange) data is mapped.

• Communication Management Modeling (section 5.5): it controls how a com-
putation node after mapping will transfer data to storage nodes, using the com-
munication patterns introduced in the previous chapter (section 4.3.2 of chapter
4). It defines as well a policy to choose, when possible, among different avail-
able paths to transfer the data (like the direct or DMA communication scenarios
presented in the above example).

The following sections will define each one of these sub-profiles with more details.
In addition, the example introduced in this section will be furthermore enriched with
the mapping modeling concepts.

5.2 Shared Resources Modeling

Application execution on top of the architecture will result in a concurrent access to
shared resources, thus a control access must be applied. In fact, in a modern SoC,
heterogeneous applications are running concurrently; they share the same computation
resources. It is common as well to have more than one computation resource (CPUs,
DSPs, Hardware accelerators, ASIP, etc.). These computation resources may share
the same communication and storage resources. Operating systems are controlling
the computation resources shared between the different applications; bus arbiters are
controlling the bus shared between different computation resources, and memory con-

76

trollers manage concurrent memory accesses. Thus providing a definition of shared
resources and of their access policies is primordial to accurately model the system.

5.2.1 Resource definition

A resource by definition is any physical or virtual entity that provides services (com-
putation for example) to accomplish an activity and achieve desired outcome (a task
execution for example). In the DIPLODOCUS context, architecture nodes are physi-
cal resources that will enable the correct execution of the application and they are of
three types: Computation, Communication and storage resources.

These physical resources are shared to optimize their utilization, and are accessed
through resources requests. In fact, during the execution of the application on the
architecture, three types of resource’s requests (not to be confused with the Request

connector used in the application) can be identified:

• Computation requests, ComputationReq, that are generated by application tasks
to execute on computation nodes (e.g. CPUs).

• Communication requests, CommReq, that are generated by computation nodes to
the communication nodes (e.g. Bus) in order to transfer data generated/requested
by tasks.

• Storage requests, StorageReq, that are generated by computation and communi-
cation nodes to storage nodes (e.g. memories)

A Resource Request should specify as well the:

• priority that is used, when the resource is shared using a fixed priority based
access policy. When dynamic priority scheduling is used, the priority is dynam-
ically calculated and this parameter is not specified.

• amount that specifies the resource’s amount that the requester needs. For in-
stance a computation node would request to write a data amount of size x to a
storage node.

• type of the request as identified above.

As each resource can be shared between different requesters, resources should have
an access policy that selects a request among pending ones. The next subsection intro-
duces the virtual node concept to control shared resources.

77

5. SYSTEM MAPPING MODELING

5.2.2 Shared Resources’ Control: The “Virtual Node”

The ‘‘Virtual Node” (VN) is defined as a generic modeling component that controls
the access to a resource by implementing an “access policy”. It allocates the controlled
resource to a requester, for example the VN of a CPU allocates the CPU to a task that
is ready to execute, or the VN of a bus allocates the bus bandwidth to a CPU that is
trying to reach the memory or other architecture nodes that are connected to the bus.
The Virtual Node has a three-steps execution semantic:

1. It waits for incoming Resources requests. The VN has a queue to store the
requests.

2. It selects a request among the possible ones, according to its allocation policy.
After the expiry of a switching delay (Context switch), the resource is allocated
to the requester.

3. It waits either for the selected request to finish its execution or for a new incom-
ing request. In that latter case, the allocation is re-evaluated (step 1).

In addition the virtual nodes has a type. It inherits the type of the resource it con-
trols. Hence, a Virtual Node could be a computation, communication or storage VN.
By controlling a shared resource, the virtual node divides the resource between the
requesters as if it creates a Virtual resource for each one of them. This virtualization
function permits the definition of classes of policy accesses, for instance, a computa-
tion node can be virtually allocated to two separate applications by using a time sharing
policy (as detailed in subsection 5.2.2), or many cores can be grouped into one virtual
resource in a dynamic scheduling scenario (as detailed in subsection 5.2.2). To control
both types of resources (physical and virtual), there is two categories of virtual nodes:
Local Virtual Node (LocalVN) that controls the access to a Physical Resource and a
Generic Virtual Node (GenericVN) that controls a Virtual Resource.

GenericVN can be stacked hierarchically, in such a way that a GenericVN could be
connected to another GenericVN that is connected to another GenericVN or a Local
VN. However, a GenericVN could be connected to only one LocalVN. Furthermore,
each physical resource is controled by one and only one Local virtual node. To further
illustrate this stacking mechanism, the following two sub-sections provide two exam-
ples on how to use the concepts introduced above on two well known resources sharing
that exists in the domain: the hierarchical and dynamic scheduling scenarios.

Hierarchical scheduling

Embedded systems can concurrently execute different real-time heterogeneous appli-
cations. For instance in a modern mobile device multimedia application such as video

78

or audio could execute concurrently with control applications (telecommunication pro-
tocols). These applications may have specific scheduling requirements (soft real time,
intensive data transfer or execution loop, etc). Furthermore, applying one access pol-
icy to all applications is not the optimal solution [74]. Using the Shared Resources
Modeling (SRM) presented in the previous section, designer can use a hierarchical
stacking of virtual nodes to optimize resources sharing when heterogeneous groups of
requesters request the resource. A main virtual node controls a hardware resource and
a secondary virtual node controls each group of requesters. This approach allows us
to optimize the access policies to satisfy requirements of all groups. This hierarchical
composition of virtual nodes can be used for computation, communication and storage
resource sharing.

Figure 5.3: A simple hierarchical scheduling example

The left part of figure 5.3 shows an example of a hierarchical scheduling of two
classes of applications; "App1" is controlled using a round robin policy while "App2"
is controlled by a priority based policy. The CPU is shared between the two applica-
tions by a time sharing policy implemented by the main VN (LocalVN), VN4CPU. It
allocates a time slot of the CPU time to each one of the two applications. The generic
virtual Nodes VN4App1 or VN4App2, controlling respectively the applications App1
and App2, allocate the available execution time (a time slot) to one or more tasks de-
pending on its access policy.

The right part of figure 5.3 shows an execution scenario of this hierarchical schedul-
ing model. The CPU’s time is divided into periods “P”, using the “Time Sharing pol-
icy” of the local virtual node. In this example each application gets half of the CPU’s
time. The generic virtual nodes choose which tasks of the applications will execute

79

5. SYSTEM MAPPING MODELING

during the available execution time.

Dynamic scheduling

In modern SoCs, it is common to find multi-core processors and/or multiple compu-
tation resources. To optimize the utilization of these resources dynamic scheduling
techniques are generally used. All tasks compete for execution on all processors and a
global scheduler controls the set of available cores (a virtual resource) and dispatch the
ready for execution tasks on the available cores using it is defined access policy. Each
one of the local cores is controlled by a Local Virtual node that will define which one
of the dispatched tasks will execute at an instant t.

Figure 5.4: A simple dynamic scheduling example

Figure 5.4 shows an example of a global Virtual Node (GlobalVN) that is dipatch-
ing the application’s tasks (T1 ... T5) on two local Virtual Nodes (VN4Core1 and
VN4Core2), each one of them is controlling a core (Core1 and Core2 respectively).
The global virtual node uses a “Least used Core” policy, where it dynamically forward
the incoming requests from application tasks to the Core that is available or is less
used. The time chart on the right part of the figure shows the dynamic execution of
the tasks on the cores. T1 is first executed on Core1 but on its second execution it was
executed on Core2, as the later was available while Core1 was executing T3.

5.2.3 Virtual Node vs Real Implementation

The virtual node concept ensures the modularity of scheduling. By simply changing
the access policy of a virtual node, the designer can evaluate the impact of the new ac-

80

Figure 5.5: DIPLODOCUS Shared Resources Modeling profile

81

5. SYSTEM MAPPING MODELING

cess policy on the overall system. However, one may think: What is the equivalent of
a virtual node and of the shared resources model in a real implementation? and the an-
swer is that a virtual node is the abstract model of scheduler for computation resources,
and of arbiter for communication resources, and of memory controller for storage re-
sources. Which means, that it abstracts both software and hardware access policies.
Finally, one can think of the virtual node as the scheduling part of the operating system
that will run the architecture.

UML Representation

The DIPLODOCUS Shared Resource metamodel is depicted in figure 5.5. This meta-
model reproduces the concepts defined earlier with UML constructs. The Virtual Node
is materialized by the stereotype “VirtualNode” which extends the the UML metaclass
“artifact” that will be attached to an architecture node in the architecture deployment
diagram. The “VirtualNode” owns an “AccessPolicy” that in it turns has an “Ac-

cessPolicyBehavior”. This latter will define how the virtual node will choose, among
the requesters, the one who will access the resource.

The virtual node can control Physical and virtual resources resources. Thus, two
sterotypes: “LocalVN” and “GenericVN” extend the virtual node to control respec-
tively the physical and virtual resources.

To model the hierarchical and dynamic scheduling scenarios, virtual nodes (Local
and generic) are stacked; and generic virtual nodes controls the virtual resources cre-
ated by the local virtual nodes. The stereotype “VNStack” models these scenarios. It
models a set of Generic and Local virtual nodes.

5.3 Execution Allocation

Each computation node is controlled by a local computation virtual node, that in its
turn may create computation virtual resources (for example the case of hierarchical
and dynamic scheduling scenarios presented in the previous section). These virtual
resources will be controlled by generic computation virtual nodes. The Execution

Allocation view of the DIPLODOCUS mapping profile bind a task to a computation
virtual node (generic or local). Each task is in concurrence with the other tasks mapped
on the same virtual node to access the computation resource.

The Task Execution Allocation is set of mappings of all application’s tasks to com-
putation virtual nodes. For each task t, a taskExecAlloc function is defined. This
function specifies the virtual node that will control the execution of the task t by allo-
cating the computation resource using its access policy and the priority that is specified
when the resource is shared using a fixed priority based access policy. When dynamic
priority scheduling is used, the priority is dynamically calculated and this parameter is

82

Figure 5.6: DIPLODOCUS Execution Mapping profile

not used.
Example Consider the mapping scenario of the simple example of the section 5.1.

Tasks T1 and T3 will execute on CPU1 and CPU3 respectively. The task T1 is mapped
to the virtual node controlling the CPU1 with a priority 2, and task T3 is mapped to the
virtual node controlling the CPU2 with a priority 1. The Execution Allocation of this
application is: ExecutionAllocation = {{T1, V N4CPU1, 2}, {T3, V N4CPU2, 1}}

UML Representation

The DIPLODOCUS Execution Allocation profile is depicted in figure 5.7. The main
stereotypes defined is: TaskExecutionAllocation, it extends the UML metaclass artifact

of the UML deployment diagram. The Execution allocation in DIPLODOCUS will be
performed on the computation virtual nodes (Local or generic).

5.4 Storage Allocation

In the application modeling presented in section 4.2 of Chapter 4, “tasks” exchange
data through “channels”. After mapping, this data is stored on shared memories. In
addition, tasks have their code and data stored on storage nodes. The Storage Alloca-

tion View of the DIPLODOCUS mapping profile represents the memory distribution
of application’s tasks and channels on Storage nodes.

The Task Storage Allocation, TaskStorageAllocation, is a set of all the mappings
of all the application tasks’ code and data to storage nodes. For each task the taskStor-

83

5. SYSTEM MAPPING MODELING

ageAlloc defines on which memory the code and data are mapped. Furthermore it
definesCodePer and DataPer are integers, specifying respectively the percentage of
Code and of data of the task t mapped on sn. A task’s code and data could be dispersed
on different memories.

Example Consider the simple application introduced at the beginning of this
chapter. The tasks T1 and T4 are exchanging data through the channel Channel1.
T1 executes on CUP1 while T4 executes on T4. The DDR1 and M3 are two
accessible shared memories for both CPUs. Let’s consider in this example that the
code of the task T1 is stored in the memory M3 while the data is distributed on
both memories M3 and DDR1 equally. The same distribution is applicable for task
T4. The Task Storage Allocation of this application is: TaskStorageAllocation =
{{T1, M3, 100, 50}, {T1, DDR1, 0, 50}, {T4, M3, 100, 50}, {T4, DDR1, 0, 50}}

The Channel Storage Allocation, ChannelStorageAllocation, is the set of the map-
pings of all application channels to storage nodes. Channels carry data samples be-
tween tasks, and this samples are stored on shared memories. For each channel the
channelstorageallocation specifies the memory where the channel data is stored

Example In the previous example, consider that the data exchanged between tasks
T1 and T4 is stored on the memory M3. The Channel Storage Allocation of this
application is: ChannelStorageAllocation = {Ch1, M3}

UML Representation

The DIPLODOCUS Storage Allocation profile is depicted in figure 5.7. This meta-
model takes the mathematical concepts defined earlier in this section and reproduce
them in UML constructs. Two main stereotypes are defined, the TaskStorageAllocation

and the ChannelStorageAllocation, to model the constructs introduced in definition 8
and definition 9. Both stereotypes extends the UML metaclass artifact of the UML
deployment diagram. The storage allocation in DIPLODOCUS will be performed on
the architecture diagram that extends the UML deployment diagram. The multiplicity
associations taskStorageMapping and channelStorageMapping specify that a task or a
channel’s data can be stored on at least one memory.

5.5 Communication Management Modeling

The Communication Manager (CM) is a mapping component that controls the commu-
nication between a computation node and a storage node. A Computation node’s CM

has a list of all the communication patterns (as defined in section 4.3.2 of Chapter
4) that the computation node can use. This list permits to the CM to know all the stor-

84

Figure 5.7: DIPLODOCUS Storage Mapping profile

age nodes that the computation node can access. In addition, the CM has a selection
function that selects the communication pattern to be used if more than one pattern are
available. The selection function could be for example: select the pattern with the least
contention, or select the pattern with the highest data rate. It could be as well fixed by
the designer, where only one specific pattern is always used.

UML Representation

The Communication management concepts are represented as well in the
“DIPLDOOCUS Communication Management” profile (depicted in figure 5.8). The
stereotype CommunicationManger is attached to Computation node. It owns a list of
all the communication patterns available for the node, represented by the UML at-
tribute patternsList. The operation PatternSelect defines how the computation node
will transfer the data to destination using the available communication patterns.

5.6 Mapping Validation

The DIPLODOOCUS mapping in four views as defined in the previous section, takes
in consideration the shared resources and communication management aspects and
binds the application constructs to the architecture resources. In order that the map-

85

5. SYSTEM MAPPING MODELING

Figure 5.8: DIPLODOCUS Communication Management Modeling profile

ping performed is valid, the following properties should be satisfied:

Property1: if two communicating tasks T1 and T2 are mapped on two different com-
putation nodes, then these computation nodes should at least have one shared memory
on which the channels are mapped. In other words, in the communication patterns lists
of the Communication managers of both CPUs there should be a pattern where the
destination is the memory where the channel is stored.

Property2: If a task t is mapped on a computation node, and its data are on a
memory M, then the Communication Manager of this computation node should have
in his communication pattern list a Communication Pattern that has as destination the
memory M.

5.7 Mapping overall scenario

Once the designer(s) completed his system model and specified the four views of the
mapping, as defined in the earlier sections. The system is now ready for analysis
through simulation (as defined in chapter 6) and/or formal verification (using the UP-
PAAL and LOTOS specifications generated automatically from the DIPLODOCUS
UML models using teh TTool toolkit [63]).

Figure 5.9 depicts one possible execution scenario of the system after mapping.
This scenario is as follow:

86

Figure 5.9: System Execution scenario after mapping

87

5. SYSTEM MAPPING MODELING

1. A ready for execution task, t1, will issue an execution request to the computa-
tion virtual node ComputationVN where it is mapped (As specified in the Task
Allocation Mapping in section 5.3)

2. The virtual node, through its defined access policy, will decide if it will allocate
the resource (the computation resource) to the requesting task t. It may interrupt
the execution of another task.

3. The task t will start the execution. The Task’s behavior may include a data
exchange (through channels) with other tasks, it may as well, need to fetch data
or code from the memory. Thus, invoking an access to the storage nodes.

4. The task t1 generates a communication request that has as destination, the stor-
age node where the data should be stored/fetched. The storage allocation view
defined in section 5.4 specifies on which storage node (memory), the data/code
of the task exists and the channel’s data sample are stored. It calls the com-
putation node’s Communication Manager, CM, (section 5.5) to control the data
transfer.

5. The “Communcation Manager” searches in its Communication pattern’s list, the
communication pattern that can routes the data to the specified Storage node (as
specified in the communication request). There should be at least one communi-
cation pattern that satisfy the request. If there is more then one communication
pattern, than the communication manager runs a selection function to choose
one of them.

6. After specifying the communication pattern to be used, the Communication
Manager, CM, transfers the communication request to the following node as
defined in the communication pattern. The communication request waits for the
communication virtual node to get the access to the communication resource.
The request should access all the communication nodes that are relating the com-
putation node to the storage node, as defined by the communication pattern.

7. Meanwhile, the computation virtual node can start the execution of another
runnable task, while the data belonging to task t1 are in transfer phase.

In the above scenario, contention on shared resources is not represented. However,
when multiple tasks are executing concurrently on multiple computation nodes and
data transfer (the communication interaction of the platform modeled by the different
communication patterns); the execution scenario becomes quickly more complex. The
execution time of a task is the sum of its execution on the computation node, the
memory access cost (due to communication with other tasks or due to data load/store
from the memory), and the contention cost on the shared resources.

88

5.8 System Mapping Example

This section reproduces the example presented in section ??, and enrich it with the
mapping components and specification defined in this chapter. Figure 5.10 depicts this
example. It shows the system model on three layers: Application (blue), Architecture
(yellow) and Mapping (green).

The application task model is composed of tasks: T1, T2, T3 and T4, and of two
channels: Channel1 (carrying data from T1 to T4) and Channel2 (carrying data from
T3 to T2). This application will execute on top of an architecture composed of two
CPUs (CPU1 and CPU2), one DMA, one bridge, one bus and two memories (M3
and DDR1). The communication patterns model how the architecture nodes inter-
acts to accomplish data transfers from computation nodes to storage node. For in-
stance,”CPU1DMAM3” is the communication pattern that defines how the CPU1 will
transfer data to the memory M3 using the DMA. The other Communication patterns
are: CPU2DMAM3, CPU1M3, and CPU2M3.

The mapping layer ensures the binding of the architecture resources to the applica-
tion constructs. As defined earlier in this chapter, the DIPLODOCUS mapping consists
in four components:

• Shared Resources Modeling SRM = {VN4CPU1, VN4CPU2, VN4DMA,
VN4Bus1, VN4Bridge1, VN4M3, VN4DDR1} is the set of all the virtual nodes
that will control the architecture resources. The computation, communication
and storage queues (c1, c2, com1, com2, com3, s1, s2) stock the respective re-
quests. The virtual nodes will access these queues to choose the next executable
resource request.

• Communication Management is ensured by the communication managers. Each
computation node has one and only one communication manager. In this exam-
ple, CM4CPU1 and CM4CPU2 are the communication managers of CPU1 and
CPU2 respectively. Each one of these CM owns a list of all possible communi-
cation paths

• Execution Allocation = {{T1, VN4CPU1, 1}, {T2, VN4CPU1,2}, {T3,
VN4CPU2,2}, {T4, VN4CPU2,2}}.

• Storage Allocation

1. TaskStorageAllocation = {{T1, M3, 10, 20}, {T1, DDR, 90, 80}, {T2, M3,
100, 100}, {T3, M3, 100, 100}, {T4, DDR1, 100, 100}}

2. ChannelStorageAllocation = {{Channel1, M3}, {Channel2, DDR1}}

89

5. SYSTEM MAPPING MODELING

5.9 Summary

The objective of this chapter was to define the Mapping modeling in DIPLODOCUS.
The main contributions were the definition of the Virtual Node concept to model the
resource sharing and of the communication manager to control data transfer in the sys-
tem. In addition, an allocation process is defined to allocate computation resources
and storage resources to the the application artifacts. Once the system mapping is per-
formed (like the example in the previous section), The system designer could generate
a SystemC code for simulation,in order to analyze the system’s performance. The pro-
posed mapping is applied to an industrial size model (the LTE physical layer uplink
model) in chapter 7.

The following chapter will describe the SystemC simulation environment devel-
oped for DIPLDOOCUS models simulation. A definition of the simulation model of
computation is provided, especially how concurrency and timing are taken in con-
sideration to simulate accurately the system modeled using the DIPLODOCUS UML
profile as defined in this chapter and in the previous one.

90

Figure 5.10: System Mapping Example

91

5. SYSTEM MAPPING MODELING

92

Chapter 6

Models Simulation for Performance
Analysis

The DIPLODOCUS UML profile, and its extensions presented in the previous chap-
ters, provide the designer with constructs to model separately the application and the
architecture. It ensures, as well, the orthogonalization of the communication and com-
putation concerns. The mapping process binds the application to the architecture, and
permits the modeling of shared resources and of communication management. The
following logical step is to analyze the modeled system and extract performance met-
rics. A performance analysis process based on simulation is presented in this chap-
ter. Notably, a SystemC simulation environment is developed for models performance
estimation. Performance metrics such as latency, throughput, utilization, scheduling
policies impact and many others are extracted using observers to guide the designer in
the Design Space Exploration process.

6.1 Introduction

The objective of this PhD work is to develop a methodology for performance estima-
tion of complex SoCs at a high level of abstraction and in early design stages. After
modeling the system using the extended DIPLDOOCUS UML profile (as presented in
chapter 4 and 5), a performance analysis step is needed to check whether the system
satisfies the design’s objectives. As the application and architecture models are totally
independent from each other, so a designer can easily evaluate candidate architectures
using the same application model. This separation of concerns permits the exploration
of the mapping of two different applications on a given architecture during first stages
of projects. Thus, the designer can identify and make design decisions.

The performance analysis process presented in this chapter consists is based on a
SystemC simulation environment for DIPLODOCUS UML models. The simulation’s

93

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

objective is to rapidly estimate the system’s performance, with a special focus on the
capture of the impact of shared resources and communication process on the over-
all performances. The described simulation environment takes DIPLODOCUS UML
models (Application, Architecture and mapping) as inputs. It generates automatically
from them corresponding SystemC code.

The simulation semantics defined in this chapter target a SystemC code that is at
the same level of abstraction as the UML model. The final objective is to perform early
performance estimations and not to generate implementation code. The ideal would be
to analyze systems when neither the software or hardware implementations exist. The
Design decisions taken at this stage will guide the implementation.

Chapter Outline

Section 6.2 is dedicated to the SystemC language. It briefly describes its objectives,
than details the model of time on which it relies and how it is used for system de-
sign. It describes as well the SystemC simulation kernel responsible of management
of concurrency and of timing. Than, section 6.3 describes the proposed simulation en-
vironment, based on SystemC, for the simulation of DIPLDOCOCUS UML models.
It defines how concurrency and timing are taken in consideration in order to simulate
the Application, Architecture and mapping models. Section 6.4 presents the perfor-
mance metrics extraction from the simulation. In a first step some predefined metrics
are automatically calculated during the simulation, than in a second more advanced
step, Observers are introduced to capture additional performance metrics. Observers
are defined by the designer. The simulation environment presented in this chapter is
used for the simulation of an industry size application example (LTE uplink physical
layer) in chapter 7.

6.2 State of the Art on SystemC

SystemC is a modeling language created by the Language Open Group of the Open
SystemC Initiative (OSCI) [43]. It supports different models of computation and al-
lows the design of heterogeneous systems [79], [27]. Furthermore, it can be used to
describe the hierarchical structure and the behavior of complex embedded systems.
SystemC can be used to describe the system at different levels of abstraction. Using
SystemC a system can be described at functional level, architectural level, and imple-
mentation level.

The SystemC language is described in IEEE standard 1666-2005 [4]. It defines a
C++ library that consists of classes, macros, and templates which can be used to model
a concurrent system using hardware-oriented data types and communication mecha-
nisms. OSCI provides an open-source implementation of the SystemC framework.

94

Using this implementation, a SystemC model can be compiled by standard compliant
C++ compilers and can be executed. This execution simulates the model and provides
information and traces that can be used to analyze and validate the model.

6.2.1 System’s Design in SystemC

Complex systems consist of many independently functioning components. These com-
ponents may represent hardware, software, or any physical entity. In SystemC, These
components are represented by Modules. In fact, a system model is structured by using
modules. A SystemC module SC_MODULE encapsulates a part of the system which
is being modeled and may has communication ports to communicate with other mod-
ules within the model. The designer can use C++ function calls to specify the modules
inter-communication and is not forced to use the SystemC constructs. As SystemC
supports modules hierarchy, a module can contain other modules as well.

SystemC processes are used to define the behavior of a SystemC modules. Because
the behavior of the model is defined in C++ member functions, all valid C++ language
constructs can be used. For example, the behavior of a module can be described by
using advanced data structures and algorithms from the standard C++ library or any
other C++ library. The process is the basic unit of execution in SystemC.

Each process has a sensitivity list which is a list of SystemC events. An event
is something that happens at a specific point in time, for example a change of value
on an input port. A SystemC process is defined in the form of a C++ member func-
tion that is registered with the SystemC simulation kernel by using the SC_THREAD,
SC_CTHREAD, or SC_METHOD macros. Each type of these SystemC processes has
a defined semantic:

• SC_Method: An SC_METHOD process is started by the SystemC simulation
kernel whenever one of the events on its sensitivity list occurs. It always runs to
completion before it returns control to the simulation kernel.

• SC_THREAD: An SC_THREAD relies on the “Wait()” method to suspend its
execution. When wait() executes, the state of the current thread is saved (context
switch). The SC_THREAD process is resumed by the simulation kernel at the
specified time, or when one of the events on its sensitivity list occurs.

• SC_CTHREAD: An SC_CTHREAD process is a special kind of SC_THREAD
which is only sensitive to a certain edge of a clock input port. This explains the
extra C in the macro name SC_CTHREAD.

95

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

6.2.2 Concurrency

SystemC is developed with the aim to model and simulate complex systems. These
systems are the composition of many hardware and software blocks and many things
that may run in parallel and access concurrently to shared resources. For example, in
a embedded system, two CPUs execute in parallel and may request access to a shared
memory through a shared bus. In this simple example the two CPUs the memory and
the bus are executing in parallel.

To model concurrency SystemC uses processes to model concurrency. As with
most event-driven simulators, concurrency is not true concurrent execution. In fact,
simulated concurrency works like cooperative multi-tasking. In other words, the con-
currency is not preemptive. Each process in the simulator executes a small chunk of
code, and then voluntarily releases control to let other processes execute in the same
simulated time space. The SystemC simulation kernel is responsible for starting pro-
cesses and managing which process executes next. Due to the cooperative nature of
the simulator model, processes are responsible for suspending themselves to allow ex-
ecution of other concurrent processes.

Events are used as well to handle the concurrency in SystemC is handled by using
processes and events (more details on subsection 6.2.3). An event is something that
happens at a specific point in time. It has no value and no duration. SystemC uses the
sc_event class to model events. This class allows explicit launching or triggering of
events by means of a notification method. Once it occurs, the processes waiting for
it (using the sensitivity list) become ready to execute. Programmer can perform only
three actions with an sc_event: wait for it (using the SystemC Wait() method, or as an
event in the sensitivity list), initiate it (using the SystemC notify() method), or cancel
it (using the SystemC cancel() method).

6.2.3 SystemC Simulation Kernel

The SystemC simulation kernel provided by the OSCI open-source implementation,
defines how the SystemC code is simulated. It manages namely the concurrency and
the timing aspects. It adopts an event-driven process scheduler that mimics the passage
of simulated time and allows parallel processes to synchronize and communicate in
order to model the hardware and “software” components of a system. The SystemC
scheduler is non-preemptive, and is deterministic with reference to events occurring
and different simulation times. It is not deterministic with reference to events that
occur at the same simulation time.

Once the SystemC code is available the designer can simulate the model using the
OSCI SystemC simulation. The simulation process is divided into two phases: the
elaboration phase and the simulation phase:

1. During the Elaboration phase the modules are instantiated and initialized by

96

executing their constructors. During this initialization the connections between
the modules are set up. Because the modules are instantiated and connected by
executing C++ code any valid C++ language construct can be used. During
this phase, all processes are placed initially into a ready pool. Once this phase
terminated, the simulation kernel is invoked, and the system simulation can now
start.

2. During the Simulation phase the model is simulated according to the SystemC
simulation kernel semantic. The kernel controls the timing and the order of ex-
ecution of the SystemC processes. One by one processes are randomly taken
from the ready pool by designating them as running and invoked. Each pro-
cess executes until it either completes (e.g., via a return) or suspends (e.g., calls
wait()). During execution, a process may invoke immediate event notification
(i.e., event.notify()) and possibly cause one or more waiting processes to be
placed in the ready state. It is also possible to generate delayed or timed event no-
tifications. Completed processes are discarded. Suspended processes are placed
into a waiting pool. Simulation proceeds until there are no more processes ready
to run. Than the simulation kernel enters in the waiting state. At this point, three
possible options are available: waiting processes or events that are zero time
delayed, non-zero time delayed, or neither.

• There may be processes or events waiting for a delta cycle delay (.no-
tify(0)). In this case, waiting pool processes with zero time delays are
placed back into the ready pool. Zero time events originating from delayed
notifications may cause processes waiting on those events to also be placed
into the ready pool. In this case the kernel will check for ready processes
and execute them. Time is not incremented.

• There may be processes or events, scheduled for later, waiting for a non-
zero time delay to occur. In this case, time is advanced to the nearest time
indicated. Processes waiting on that specific delay will be placed into the
ready pool. If an event occurs at this new time, processes waiting on that
event are placed into the ready pool. Another round of evaluation occurs if
any processes have been moved into the ready pool.

• It is possible that there were no delayed processes or events. Since there
are no processes in the ready pool, then the simulation simply ends.

Discussion

The simulation environment presented in this chapter focuses on the simulation and
performance estimation of the DIPLODOCUS models. Its main objective is to calcu-
late performance metrics at a high simulation speed to enable the designer to rapidly

97

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

Figure 6.1: Simulation and formal verification with TTool

evaluate different design decisions. This simulation environment is based on SystemC
is used as simulation language. However, when it’s possible C++ constructs are used
as they they simulate faster than SystemC constructs. In difference with the existing
SystemC simulation kernel, the described simulator supports interruptions.

6.3 A SystemC Simulation Environment for
DIPLODOCUS models

The DIPLODOCUS UML profile is supported by an open source toolkit, TTool[63].
In addition to DIPLODOCUS, TTool supports other UML profiles such as Turtle and
AVATAR. After modeling the system using one of the supported profiles, TTool can
generate formal specifications (UPPAAL [42] and LOTOS [3]) of the models to enable
formal verification using external tools (the CADP toolkit [35] for the LOTOS specifi-
cations and the UPPAAL toolkit for the UPPAAL specifications). Simulation code can
be generated as well for simulation purposes. The new SystemC simulator presented
in this chapter comes with a generator of SystemC code from DIPLODOCUS mod-
els. the other profiles can have as well their own generators for simulation code, for
instance Turtle models can be translated to a JAVA code for execution.

Figure 6.1 describes the TTool modeling, and simulation code, and formal specifi-
cation generation. The formal specification and the simulation code are used to evalu-
ate the system. Formal verification will primely verify the functionality of the system

98

as they cover all the design space. Hence, when the system is complex, formal veri-
fication process could reach its limits (state explosion scenarios). Simulation’s main
objective is to estimate the system’s performance. The simulation environment pre-
sented in this chapter does not intend to cover all the design space, but to estimate the
performance of one mapped system. After system’s evaluation phase, designer could
optimize the system model, by changing the mapping, the application and or the archi-
tecture. The following subsections present the SystemC simulation environment for
DIPLODOCUS and how it supports concurrency, timing and interruptions, and how it
extracts performance metrics of system’s models using performance observers. This
performance estimation process is not targeting, for the time being, the system’s power
estimation. This PhD work can be extended to integrate the power estimation in the
estimation process.

6.3.1 DIPLODOCUS SystemC simulator concurrency

The concurrency in the system is due to the concurrent execution of different tasks
on the computation resources. In fact, when a task is in the “ready to execute” state
it will request the computation virtual node on which it is mapped. As tasks can run
concurrently, multiple computation requests are treated simultaneously in the system
(more details on this were provided in section 5.1 of chapter 5). These concurrent
computation requests will generate concurrent communication requests to access to
storage resources to read/write data (data exchanged between tasks or tasks’ data and
instructions). Hence, in a system there are three concurrency types:

1. Tasks concurrent access to a computation resource: when multiple ready to exe-
cute tasks request the same computation resource.

2. Communication resources concurrent access: when computation resources exe-
cuting different tasks are trying to access the storage resources using the shared
communication resources.

3. Storage resources concurrent access: when a storage resource is shared between
multiple computation resources that are trying to access it through multiple com-
munication resources.

The access to shared resources is controlled by the virtual nodes. Each architec-
ture resource has one virtual node (or more than one in the dynamic and hierarchical
scheduling scenarios), that runs in concurrency with all the other virtual nodes. In ad-
dition, all the application’s tasks can run concurrently. As Concurrency in SystemC
is modeled using the “SC_MODULE” construct and its processes, DIPLODOCUS
“Tasks” and “Virtual Nodes” are modeled as SystemC modules.

Furthermore, “Communication managers” control the data transfer from compu-
tation nodes to storage nodes and they run in parallel to tasks and virtual nodes. In

99

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

fact, the extended DIPLODOCUS presented in this thesis advocates a clear separation
between the execution and communication using the communication patterns and the
communication managers. The communication managers are as well modeled using
the SystemC modules.

DIPLODOCUS UML Construct SystemC/C++ construct

Application

DIPLODOCUS Task SC_Module
Application Task Behavior Command C++ class

Application Channel C++ class
Application Events and Requests C++ class

Architecture
HW_Resources C++ class

Architecture communication pattern C++ class

Mapping
Virtual Node SC_Module/Sc_Thread
Access Policy C++ class

Communication Manager SC_Module/Sc_Thread

Table 6.1: DIPLODOCUS UML constructs and their corresponding SystemC con-
structs

Table 6.1 shows the translation of DIPLODOCUS UML constructs into SystemC
constructs. The concurrent constructs (Tasks, Virtual Nodes, Communication man-
agers) are translated into SystemC modules, while the other DIPLODOCUS constructs
are translated into normal C++ classes.

6.3.2 System’s Timing: From DIPLODOCUS commands to phys-
ical time

In the system performance estimation process the central issue is that computation
has no timing behavior as long as the target platform is unknown. Thus, it becomes
primordial to define the timing behavior of the system and especially how this behavior
is determined.

DIPLODOCUS application’s tasks represent the system desired functionality, their
behavior is modeled through a set of commands (as described in section 4.2.3 of chap-
ter 4). These commands could be of four types:

1. Control Commands: that represent basic control structures (if, loop ...), and the
action command that could change the value of task’s attributes. Their execution
on a DIPLODOCUS computation node is done in zero-delay and does not count
in the computation complexity.

2. Communication Commands: These commands involve any data or synchroniza-
tion exchange between tasks. Commands are here for read/write to a channel

100

and send/receive an event or a request (sending an event is done in zero delay).
the execution of these commands involves an access to the communication re-
sources in order to read/write data from storage nodes. In addition to a cost due
to cache misses.

3. Abstract Execution Commands (Exec): this subset of commands represents the
computational complexity of the node while executing applications. The seman-
tics and execution delay of these commands depend on the underlying architec-
ture. Furthermore, they contribute to the communication cost as their execution
may induce cache misses, and consequently access to communication and stor-
age resource. These commands represent the abstraction of the real code of
tasks.

4. Temporal Commands: the Delay Command represents an absolute delay. During
the simulation, the execution of this command is equivalent to putting the task
on hold during the specified delay, once the delay expires the tasks returns to
ready state.

In other words, the execution of a DIPLODOCUS command could be performed in
a zero delay (the control commands), or may induce a computation complexity and/or
communication complexity. A methodology for performance’s estimation should be
capable of calculating these complexity metrics based on the DIPLODOCUS UML
models. The following discussion will detail how to calculate the physical time needed
for the execution of DIPLODOCUS commands based on the parameters of the execu-
tion platform.

The transformation process from DIPLODOCUS command to physical time is
done in two steps: calculation of computation timing cost and calculation of com-
munication timing cost. Both types of timing are functions of the modeling parameters
specified in the DIPLODOCUS application model, of the architecture performance
parameters specified in the DIPLODOCUS architecture model and of contention on
shared resources (monitored using the mapping constructs of virtual node and commu-
nication managers).

Computation Timing Cost

This corresponds, in a first step, to the calculation of the number of cycles needed to
execute an Abstract Execution Command (Exec) on a computation node without the
communication cost that it may induce. The first parameter used in the calculation
of this cost is the number of “Abstracted Instructions” (nbAbsIns) specified by the
designer. For instance, “Execi 100” corresponds to the abstraction of the execution of
100 abstract instructions. The second parameter is the number of cycles per instruction
(CPI) needed by the computation node to execute an instruction. This parameter is

101

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

specified when modeling the architecture.

The Number of cycles (NbCyclesPerExec) required to execute a number nbAbsIns

of abstract instructions of a task mapped on a computation node that can execute an
instruction in a CPI cycles is calculated as follows:

NbCyclesPerExec = nbAbsIns ∗ CPI (6.1)

Once the required number of cycles is calculated it is easy to calculate the time
needed to perform the execution. In fact, the computation frequency is specified in
the architecture model. However, the execution may take longer than this calculated
number if contention on the computation resource occur during the execution (the Sys-
temC simulator presented in this chapter supports interruptions). Furthermore another
computation cost must be added to the total time, which is the context switch time. In
fact, each time a task starts or resumes its execution after interruption, the scheduler
needs to execute (context switch). This time is fixed and depends only on the used
scheduler (computation virtual node Access Policy)

Communication Timing Cost

The execution of the application on the architecture introduces two types of commu-
nication: Explicit communication resulting from the inter-task communication (using
the DIPLODOCUS channels) and Implicit communication resulting from the need of
tasks to fetch instructions and data from storage resources to accomplish their execu-
tion. In both types the time required to perform the data transfer is a function of: the
data amount to transfer, the sum of data transfer cost on each communication resource
on the selected communication pattern and finaly the access cost to the storage node.

In the case of channels reading/writing the data amount (DataAmount) is specified
by the designer. In fact, the designer defines a write or read with a specific number of
samples and s/he specifies the size of samples in byte (more details in section 4.2.3
of chapter 4). However in the case of implicit communication (data and instruction
cache miss) the data amount depends on the cache miss percentage and cache line
size. Once the DataAmount is specified, the data transfer cost on a communication
node is defined as follows:

The transfer cost (TransferCost) of an amount of data, DataAmount, on a communi-
cation resource with a word size WordSize that could be transfered without interruption
(nor cache mechanism interference) in a delay of TransferCostOneWord is calculated
as follows:

TransferCost = (DataAmount/WordSize) ∗ TransferCostOneWord (6.2)

102

This transfer cost should be done for all the communication nodes on the selected
communication pattern. Finally the access cost to the storage node is calculated in a
similar way To that time one should add the contention cost due to contention on the
communication and storage resources using to perform the data transfer. One should
add to this cost the ContextSwitchTime due to the change of the requester on com-
munication and storage ressources.

Figure 6.2 shows the calculation of CPU’s cycles required for the execution of 600
abstract instructions on a CPU where data is stored on an external memory. The fi-
nal time encapsulate both computation timing and communication timing. Data and
instructions are stored on an external memory “M3” accessible through a bus. The
Read/write of a word to that memory costs 40 CPU cycles. The cache miss percent-
ages are specified by the designer in the architecture model. The execution of these
600 abstract instructions consumes 2664 CPU cycles. This calculation is done with-
out the possible contentions (these contentions and possible interrupts are detailed in
section 6.3.3) . Note that this calculation is done in the simulator directly and for each
execution.

Figure 6.2: Calculation of the number of CPU’s cycles needed to execute a
DIPLODOCUS “Exec” command

103

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

6.3.3 Simulation’s Timing semantics and Interruptions Support

The previous section showed how to calculate the required time for computation and
communication without contention. The next step is to define the timing semantic of
the system during simulation. Mainly how simulation time is advanced on computation
and on communication, how interruptions are taken in consideration, and how timing
is recalculated after an interruption.

The simulator presented here is based on SystemC, so it uses the SystemC kernel
to manage time. SystemC provides two ways to advance simulation time: the “Wait”

construct that suspends the execution of a thread during a specific time, and the more
implicit “sc_event” construct, where an event can be notified for a future time. The
event can see its future notification canceled (event.cancel()) or its notification’s time
changed. The SystemC kernel (its simulation behavior is described in section 6.2.3)
executes all modules ready at a specific time and advances the simulation time to the
next event.

Timing semantic in this context refers to who and how time will be managed. For
who question, there is two possible solutions: first solution is that a centric simulation
unit plays the interface between the simulation constructs and the SystemC simulation
kernel, the second solution is that each concurrent construct (namely: tasks, virtual
nodes and communication managers) manages its time. Besides, interruptions are
always possible where computation virtual nodes can interrupt tasks’ execution and
communication managers can be interrupted by communication and storage virtual
nodes. The second solution is adopted as it fits with the DIPLODOCUS concurrency
as described in section 6.3.1. The following two subsections will describe how the
computation and communication timings are managed.

Computation timing

During its execution, the task manages its time. In fact each SystemC/DIPLODOCUS
task has a “Timer()” method that is sensitive to an sc_event, “TimerEvent”. When a
command, that needs time to execute (Abstract execution commands or reading/writing
a channel or a delay command) starts its execution, it fires the task’s timer with the time
needed, “Delay”, calculated as described in the previous section. The timer notifies
the “TimerEvent” with the specified time (TimerEvent.notify(Delay)).

Once the time elapsed, the SystemC kernel fires the event, “TimerEvent”, and the
task’s Timer method is activated as it is sensitive to the firing of the event. The timer in
its turn notifies the command when the requested time is reached. Then, the command
execution is finished and the next command can start its execution. If the task has
finished its execution or it is blocked waiting for an event or for data on a channel, it
signals its new state to the computation virtual node that in its turn can select another
task to start its execution. The scenario presented above, is depicted in the upper part

104

of the sequence diagram in figure 6.3.
The lower part of the sequence diagram depicts the scenario when the task’s ex-

ecution is interrupted by the virtual node. In fact, when an interruption occurs, the
computation virtual node sends the preemption signal to the task. Then the task calls
its interrupt method, that cancels the timer event and calculates the elapsed time and
subtracts it from the total needed time. The subtraction’s result is the remaining needed
time to complete the execution of the command. Once the scheduler reselect the task
to resume its execution the already calculated remaining time is re-injected to the timer
to complete the execution of the command.

There is another timing effect to take in consideration, which is the context switch
cost. In fact, when a computation node is executing a task and wants to start the
execution of another task there is a cost to pay representing the storing of the state of
the task and the execution of the system scheduler to select the next running task. This
time is modeled using the wait constructs and it is non interruptible.

Communication Timing

Communication timing behavior is managed by the communication manager. It has
its own “Timer” that controls time in a similar way to tasks’ timing presented above.
In fact, when a communication request is created by the task to access a storage node
the communication manager selects the communication pattern that will transfer the
data. Then, it transfers the communication request to each communication node in the
pattern to acquire access to them. The time needed to perform the transfer without
preemption is calculated as defined in the previous section. Then the communication
manager’s timer notifies a “timer event” with the calculated time. When an interruption
occurs (a higher priority computation node wants to use one of the communication
nodes or one of the communication nodes uses a time sharing policy and the time
accorded to the request is finished), the data amount transfered before the interruption
is calculated, as well as the remaining amount and updates the request with it. Once
the interruption finishes the communication manager could resume the transfer if it
succeeds to acquire all the resources in the pattern.

6.3.4 The simulator in a nutshell

After modeling the application and the architecture and defining the mapping the de-
signer uses the provided simulation environment to analyze and optimize the sys-
tem. This flow of modeling, simulation, analysis and optimization adopted by
DIPLODOCUS and its extensions is presented if figure 6.4. The simulator is an event
driven simulator and works at a high level of abstraction and is faster than the real
time execution (chapter 7 presents an industrial case study where more information on
simulation speed are provided).

105

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

Figure 6.3: Task Timing behavior

106

Figure 6.4: The DIPLODOCUS Flow - Performance estimation and optimization of
system models

The first requirement of a simulation environment that is meant to simulate
DIPLODOCUS models is that the simulation code should be equivalent to the
DIPLODOCUS UML models. Thus, it should first defines the SystemC/C++ con-
structs for all the DIPLODOCUS UML constructs. The SystemC representation of
DIPLODOCUS application architecture and mapping is provided in the following sub-
sections.

Application

A DIPLODOCUS application represents the system desired functionality. It is a set
of communicating “tasks”, each has a behavior composed of a set of commands that
could be communication, control, execution abstraction and delay commands (as de-
scribed in section 4.2.3). Tasks exchange data samples through communication “chan-

nels” and exchange synchronization information through “events” and “requests”.
Figure 6.5 depicts the C++/SystemC code representing the DIPLODOCUS appli-

cation. The left part of the figure is an excerpt of the application file where tasks,
channels, events, requests and task observers are instantiated. This file specifies as
well how the communication connectors are bound and attached to tasks. The upper
right part of the figure is an excerpt of the task T3 code. It instantiates the commands
(task’s behavior) and then it defines how their execution order (the Tasks Command

107

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

Figure 6.5: An excerpt of the SystemC generated for the Application model

Flow section). Finally the lower right part of the figure is the DIPLODOCUS UML
diagram that represents the same task T3.

Architecture

DIPLODOCUS architecture model (as described in section 4.3) is meant to execute
the application. It is a set of two main profiles

• Architecture resources which are Computation, communication and storage re-
sources. They are characterized by performance parameters. These parameters
are used to calculate the system’s execution time as described in this chapter.

• Communication patterns, defining how data will be transfered from computation
nodes to storage nodes through communication nodes. Hence, modeling the
communication protocols implemented in the architecture

Figure 6.6 shows an excerpt of the SystemC/C++ code for the modeled architec-
ture, where each resource is specified with a set of performance parameters. The bot-
tom part of the figure presents the code for a communication manager transferring data
from a computation node to a storage node using a crossbar. In the architecture speci-
fication file, this could pattern in instantiated for each computation node that wants to
access a memory using the crossbar.

108

Figure 6.6: An excerpt of the SystemC code generated for the Architecture model

109

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

Mapping

As defined in Chapter 5, the mapping process binds the application constructs to the
architecture nodes and defines the access policies used to access shared resources. The
mapping should define teh followwing components:

• Virtual nodes, which control the access to shared resources and where each re-
source has at least one virtual node.

• Access Policy where each node has an access policy that specifies which re-
quester will acquire the resource

• Communication managers, to control the communication and data transfer from
computation nodes to storage nodes.

• Task execution allocation, where tasks are mapped to computation virtual node
where they will execute

• Storage allocation, where data and instructions of tasks are stored

Figure 6.7 shows an excerpt of the mapping file in the SystemC simulator, where
all the mapping steps are showed. add comments on this mapping file

6.4 Performance Monitoring

High level Performance estimation and monitoring can assist in detecting potential
performance problems during early development stages and identifying alternative so-
lutions. Performance metrics are extracted during the system simulation. They help
designer to understand the performance interrelationships within their design prior to
deployment and to answer the following questions(among many others):

1. How does the architecture affect response times and throughputs for the modeled
application?

2. How does the allocation of architecture resources to application influences per-
formance?

3. How does the access policies adopted to access shared resources influence per-
formance?

4. How does the system perform if the input throughput changes?

Our simulator targets the extraction of three types of performance metrics : La-
tency, Throughput and Mapping Efficiency.

110

Figure 6.7: An excerpt of the SystemC generated for the Mapping model

111

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

Latency metrics

Latency is the time interval during which the response to an event must be executed. In
DIPLODOCUS, latency is the time required to execute a task or a group of tasks (the
application itself is a set of task), or to read/write a data sample on a channel. Some
application have strict latency constraints, for example the LTE mobile communication
protocol requires that the execution done on a data packet do not exceed 1 ms time
frame [33].

Throughput metrics

Throughput, by definition, is the average rate of message delivery. In DIPLODOCUS,
throughput is the average rate of data transfered on a communication pattern during the
system’s execution (in byte/second). Another category of throughput is the application
throughput, which represent the average rate of data transfered between tasks during
their execution.

Mapping Efficiency metrics

The efficiency metrics contains the resources utilization and the resources’ access con-
tention. Resource utilization refers to the capability of the modeled system to use
efficiently the architecture resources (for instance a CPU is over-charged used while
another one is under charged) . However, utilization is affected by access contention
to shared resources. If the mapping is not appropriate or if execution needs are under
estimated the resources’ utilization will not be “optimal”.

6.4.1 Simulator Default monitoring

By default the simulator extracts a set of performance metrics and saves them into a
simulation log. The first performance monitoring means provided by the simulator is
the VCD (Value change dump) waveforms. These waveforms provides an overview
of the system’s execution, task’s interdependency, utilization of computation resources
and can be used by the designer to detect some execution anomalies like tasks exceed-
ing their execution deadlines or tasks blocked waiting for another task execution while
they are mapped on different computation nodes. Figure 6.8 provides an example of a
waveform depicting a part of the execution of a task “T1”. Designer can identify when
the task is ready to execute but waiting to get get access to the resource, or when the
task execution is causing a cache miss. In fact, all the execution states of all tasks dur-
ing the simulation are logged into the VCD file, and be studied by the designer using
any VCD standard complaint tool. In this study, the free tool “GTKWave” [24] is used.

After over-viewing the system’s execution the designer, can study more detailed ex-
tracted metrics. For instance, after simulation, the simulator generates for each task the

112

Figure 6.8: A VCD diagram of the task T1 execution and the evolution of its state in
time

individual execution time of each of its execution, and the total number of instructions
and cycles. On the architecture side, the utilization of architecture resources (CPUs,
busses, memories ...) is generated as well as the contention on each of this resources.
Finally the throughput (average rate of data transfer) of each communication pattern
as well as the contention are provided to enable the designer to identify the communi-
cation bottlenecks. For an example on the use of these metrics please refer to chapter
7 where they are extracted for an industrial use case.

6.4.2 Personalized Performance Metrics: Observers

The previous subsection showed the default metrics extracted during the system simu-
lation. However, sometimes the designer is interested in investigating in more details
some modeling aspects. For example, s/he can be interested by the latency of execution
of two dependent tasks, or for example in a telecommunication protocol case the total
latency of execution on a specific packet of data by a set of tasks (the protocol stack
for instance). s/he can be interested as well by monitoring the execution of a part of
a task. Thus, a more personalized mean for performance monitoring is required. The
solution proposed here is to use observers.

Observers are attached to a system to estimate its internal state. In the
DIPLODOCUS context an observer is an object that monitors the execution of the
system to extract its performance parameters. It is a C++ class that executes in zero
delay (does advances the simulation time). The execution of an observer does not
change the state of the simulated system, however, it increases the simulation time.

An observer has two plugs (C++ class methods): the “Start Observation point”

and the “End Observation point”. These plugs could be attached to tasks, for instance
an observer “start observation point” attached to a task task1 first command and its
“end observation point” to another task task2 last command, measures the time needed
to execute both tasks . In fact using the observers designer can monitor the timing
execution of a task or of a group of tasks. The observer code is designer defined, thus
she has the freedom to observe the execution parameters she wants.

113

6. MODELS SIMULATION FOR PERFORMANCE ANALYSIS

6.5 Summary

This chapter presented a performance analysis simulator for the DIPLODOCUS UML
models. The SystemC simulation code is generated from UML models using the TTool
toolkit and a model translator (written in JAVA) for this purpose. Concurrency and
timing issues are modeled using the SystemC constructs (modules, events) in order
to use the SystemC simulator kernel to manage the simulation timing. Furthermore,
performance Observers are defined to monitor the system’s execution and gets the
advanced performance metrics.

The next chapter will present the modeling of an industrial system, LTE protocol’s
physical layer implemented on a Freescale multi-core platform. The complete system
is modeled using the DIPLODOCUS profile and its extensions presented in the previ-
ous chapters. The performance estimation is done using the simulator described in this
chapter and promising results shows that the global approach is efficiently usable in a
design methodology.

114

Part III

Approach’s Validation

115

Chapter 7

Use Case Study: SoC Modeling for
LTE Base Station

This chapter is dedicated to the validation of the proposed system-level modeling ap-
proach described in the previous chapters. The contribution of this thesis work is
demonstrated by applying the proposed modeling concepts to a LTE communications
system. First, a brief description of the LTE standard is presented. Then a discussion
on the design challenges imposed by the standard in terms of throughput and process-
ing power requirements. This chapter describes the use case study modeling. It is
considered the physical layer of LTE to exemplify the proposed methodology. The
execution platform is a (or architecture) is a six-core DSP communicating via a matrix
interconnect and a three-level memory hierarchy: cache, on-chip memory, and off-chip
memory. The mapping defines the scheduling and arbitration policies to access the re-
sources (using the virtual node concept) and the allocation of architecture resources
for the application. The modeled system is simulated using the SystemC simulator
described in chapter 6. The simulation results, including performance metrics and pa-
rameters extracted using the observers (such as the time required to process a packet
received by the LTE physical layer) are compared with an existing implementation of
the LTE platform.

7.1 LTE: The Long Term Evolution Standard

The first mobile communication protocol (GSM) was circuit switched and voice ori-
ented, however, it provided some data services such as text messaging. Later on, the
first 3G networks were based on circuit switched data, with packet-switched services
as an add-on. It was until the 3G evolution into HSPA and later LTE/LTE-Advanced
that packet-switched services and IP became the main objective of protocol’s design.
The voice services provided by the earlier protocols remain in LTE but they will be

117

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

provided over IP. The main drivers of LTE are:

• Data rate: Voice services still have high priority in LTE. However they require
lower data rates. Data applications such as web-browsing, streaming and file
transfer drive the data rates for mobile systems, from orders of kbit/s in 2G
networks to orders of Mbit/s in 3G, getting even close to Gbit/s in 4G networks.
The higher data rate services drive the design of the radio interface.

• Delay: Interactive services such as real-time gaming, but also web browsing
and interactive file transfer, have requirements for very low delay. There are,
however, many applications such as e-mail and television where the delay re-
quirements are not as strict. One of the major quality of services provided by
LTE, is the guarantee of a small delay of data transfer.

• Capacity: From the mobile system operator’s point of view, it is not only the
peak data rates provided to the end-user which are important, but also the total
data rate that can be provided on average from each deployed base station site per
hertz of licensed spectrum. This measure of capacity is called spectral efficiency.
In the case of capacity shortage in a mobile system, the Quality-of-Service (QoS)
for the individual end-users may be degraded.

7.1.1 Overall LTE Network Architecture

Figure 7.1 describes the LTE architecture and network elements. This figure shows
as well the division of the architecture into two main high level domains: Evolved
UTRAN (Evolved Universal Terrestrial Radio Access Network E-UTRAN) and
Evolved Packet Core Network (EPC). The high level architectural domains are func-
tionally equivalent to those in the existing 3GPP systems. The new architectural de-
velopment is limited to Radio Access and Core Networks, the E-UTRAN and the EPC
respectively.

E-UTRAN and EPC together represent the Internet Protocol (IP) Connectivity
Layer. This part of the system is also called the Evolved Packet System (EPS). The
main function of this layer is to provide IP based connectivity. All services are offered
on top of IP, and circuit switched nodes and interfaces seen in earlier 3GPP architec-
tures are not present in E-UTRAN and EPC at all. IP technologies are also dominant
in the transport, where everything is designed to be operated on top of IP transport.

Evolved Packet Core Network (EPC)

The Evolved Packet Core (EPC) also known as core network, enables packet commu-
nication with the Internet. The Serving Gateways (S-GW) and Packet Data Network
Gateways (P-GW) ensure data transfers and Quality of Service (QoS) to the mobile

118

Figure 7.1: LTE Network

user equipment (UE). The Mobility Management Entities (MME) are scarce in the
network. They handle the signaling between UE and EPC, including paging informa-
tion, UE identity and location, communication security, and load balancing. The radio-
specific control information is called Access Stratum (AS). The radio-independent link
between core network and UE is called Non-Access Stratum (NAS). MMEs delegate
the verification of UE identities and operator subscriptions to Home Subscriber Servers
(HSS). Policy Control and charging Rules Function (PCRF) servers check that the QoS
delivered to a UE is compatible with its subscription profile. For example, it can re-
quest limitations of the UE data rates because of specific subscription options.

One of the big architectural changes in the core network area is that the EPC does
not contain a circuit switched domain, and no direct connectivity to traditional circuit
switched networks is needed in this layer. Functionally, the EPC is equivalent to the
packet switched domain of the existing 3GPP networks. There are, however, significant
changes in the arrangement of functions and most nodes and the architecture in this part
should be considered to be completely new.

The Evolved Universal Terrestrial Radio Access Network (E-UTRAN)

The E-UTRAN is responsible for all the radio-related functionality of the overall net-
work, including for example, scheduling, radio-resource handling, re-transmission pro-
tocols, coding, and various multi-antenna schemes. The EPC is responsible of func-
tions that are not related to the radio interface but which are needed for providing
a complete mobile-broadband network. This includes for example: Authentication,
charging functionality, and setup of end-to-end connections. Handling these functions
separately, instead of integrating them into the RAN (Radio Access Network). This
is beneficial as it allows to serve several radio-access technologies with the same core

119

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

network.
The development in E-UTRAN is concentrated on one node, the evolved Node B

(eNodeB). All radio functionality is collapsed there, i.e. the eNodeB is the termina-
tion point for all radio related protocols. As a network, E-UTRAN is simply a mesh
of eNodeBs connected to neighboring eNodeBs. An U-UTRAN manages the radio
resources and ensures the security of the transmitted data. It is composed entirely of
eNodeBs. One eNodeB can manage several cells. A cell is usually three-sectored with
three antennas (or antenna sets), each covering 120 degrees. The user mobile terminals
(commonly mobile phones) are called User Equipment (UE). At any given time, a UE
is located in one or more overlapping cells and communicates with a preferred cell;
the one with the best air transmission properties. LTE is a duplex system, as commu-
nication flows in both directions between UEs and eNodeBs. The radio link between
from eNodeB to the UE is called the downlink and the opposite link between UE and
its eNodeB is called uplink. These links are asymmetric in data rates as most Internet
services require higher data-rates for the downlink than for the uplink. Fortunately, it
is easier to generate a higher data rate signal in an eNodeB than in an UE, which is
powered by a battery.

7.1.2 Key Technologies of the 3GPP LTE Air Interface

OFDMA for Downlink Multiple Access

OFDMA, Orthogonal Frequency-Division Multiple Access, is a digital multi-carrier
modulation method OFDM used for 3GPP LTE and several other radio-access tech-
nologies, such as WiMAX [9] and DVB broadcast technologies [7]. OFDMA is a
technology that has been shown to be well suited to the mobile radio environment for
high rate and multimedia services [80].

OFDM achieves high data rate and efficiency by using multiple overlapping carrier
signals instead of just one carrier. The key advantage of OFDM over single carrier
modulation schemes is the ability to subdivide the bandwidth into multiple frequency
sub-carriers which carry the information streams. These sub-carriers are orthogonal to
each other delivering higher bandwidth efficiency. Therefore, a guard time is added
in each OFDM symbol to combat the channel delay spread, this guard time is called
cycle prefix.

OFDM signal generation consists of multiplexing the original data stream into Nc

parallel data streams; each one of these data streams is modulated with a different
sub-carrier frequency using linear modulation. Then, the resulting signals are trans-
mitted together in the same band. Correspondingly, the receiver consists of Nc parallel
receiver paths because of the Nc equally spaced orthogonal sub-carriers of OFDM
symbol behaves as Nc independent narrow-band flat fading channels. In short, OFDM
converts the wide-band frequency selective fading channel into Nc narrow-band flat

120

fading channels thus the equalization can be performed in the frequency domain by a
scalar division carrier-wise with the sub carrier related channel coefficients. This fact
reduces dramatically the equalization complexity.

While OFDMA is adopted for the LTE downlink multiple access, SC-FDMA (a
technique built over OFDM modulation) is a new multiple access technique that uti-
lizes single carrier modulation, DFT spread orthogonal frequency multiplexing, and
frequency domain equalization. It has a similar structure and performance as OFDM.
SC-FDMA is currently adopted as the uplink multiple access scheme for 3GPP LTE.

MIMO

Multiple-Input Multiple-Output (MIMO) is a technique based on the use of multiple
antennas at both the transmitter and receiver to improve radio link communication
performance. MIMO technology is considered in the new wireless communications
standards such as 3GPP LTE or WIMAX since it offers significant increases in data
throughput and link range without additional bandwidth or transmit power. It achieves
this by higher spectral efficiency (more bits per second per hertz of bandwidth) and
link reliability or diversity (reduced fading).

MIMO can be split into transmit diversity and spatial multiplexing techniques and
it depends on the channel condition which MIMO technique to select. Transmit diver-
sity increases coverage and quality of service (QoS) because it relies on transmitting
multiple redundant copies of a data stream to the receiver; while spatial multiplexing
increases the spectral efficiency because it transmits independent and separately data
streams from each of the multiple antennas.

MIMO systems present two modes of operation: Open-loop and closed-loop.
While open loop MIMO systems only knows the channel state information (CSI) at
the receiver side, closed-loop MIMO systems also knows the CSI at the transmitter
side and it can improve the throughput and reliability of a MIMO system.

The MIMO technique combined with OFDM (MIMO-OFDM) [84] have demon-
strated to deliver high spectral efficiency. This is appropriate for wide-band systems
because OFDM simplifies the receiver structure. This is achieved by decoupling selec-
tive flat fading MIMO channels into sub-carriers. Then the fading process experienced
by each sub-carrier is close to frequency flat, and therefore, it can be modeled as a con-
stant complex gain. This consideration allows to obtain the MIMO channel matrix of
transmission coefficients per sub-carrier and simplify the implementation of a MIMO
scheme provided this is applied on a each sub-carrier.

7.1.3 LTE Radio Link Protocol Layers

The information sent over an LTE radio link is divided in two categories: The user-
plane, which provides data and control information, irrespective of LTE technology.

121

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

The second category is the control-plane information, which gives control and signal-
ing information for the LTE radio link. The protocol layers of LTE are displayed in
Figure 7.2 and are subdivided in:

1. Packet Data Convergence Protocol (PDCP) performs IP header compression to
reduce the number of bits to transmit over the radio interface. PDCP is responsi-
ble for ciphering and, for the control plane, integrity protection of the transmitted
data, as well as in-sequence delivery and duplicate removal for handover. The
service provided by PDCP to transfer IP packets is called a radio bearer. A radio
bearer is defined as an IP stream corresponding to one service for one UE.

2. Radio-Link Control (RLC) performs the data concatenation and then generates
the segmentation of packets from IP-Packets of random sizes, which comprise a
Transport Block (TB) of size adapted to the radio transfer. The RLC layer also
ensures ordered delivery of IP-Packets; Transport Block order can be modified
by the radio link. Finally, the RLC layer handles a re-transmission scheme of
lost data through a first level of Automatic Repeat reQuests (ARQ). The RLC
provides services to the PDCP in the form of radio bearers. There is one RLC
entity per radio bearer configured for a terminal.

3. Medium-Access Control (MAC) handles multiplexing of logical channels,
hybrid-ARQ re transmissions, and uplink and downlink scheduling. The MAC
provides services to the RLC in the form of logical channels. Finally, the MAC
layer contains the scheduler that is the decision maker for both downlink and
uplink radio parameters.

4. Physical layer (PHY) handles coding/decoding, modulation/demodulation,
multi-antenna mapping, and other typical physical-layer functions. This layer
creates physical channels to carry information between eNodeBs and UEs and
maps the MAC transport channels to these physical channels. The use case mod-
eled in the following sections focuses on the physical layer with no distinction
drawn between user and control planes. The physical layer manipulates bit se-
quences called Transport Blocks.

An example of the LTE Data Flow through the protocol layers

During the data transmission flow, the data block are segmented and concatenated layer
after layer, all the way from the original data in IP packets to the data that is sent over
the air. Figure 7.2 illustrates this flow for the downlink, it shows an example of three
IP packets (two on one radio bearer and one on another radio bearer). It summarizes
these block operations.

122

Figure 7.2: LTE Data Flow through the protocol layers

The data flow in the case of uplink transmission is similar. The PDCP performs (op-
tionally) IP-header compression, followed by ciphering. A PDCP header is added, car-
rying information required for deciphering in the terminal. The output from the PDCP
is forwarded to the RLC. The RLC protocol performs concatenation and/or segmenta-
tion of the PDCP SDUs and adds an RLC header. The header is used for in-sequence
delivery (per logical channel) in the terminal and for identification of RLC PDUs in
the case of re transmissions. The RLC PDUs are forwarded to the MAC layer, which
multiplexes a number of RLC PDUs and attaches a MAC header to form a transport
block. The transport-block size depends on the instantaneous data rate selected by the
link adaptation mechanism. Thus, the link adaptation affects both the MAC and RLC
processing. Finally, the physical layer attaches a CRC (Cyclic Redundancy Check) to
the transport block for error-detection purposes, performs coding and modulation, and
transmits the resulting signal, possibly using multiple transmit antennas.

7.2 Use Case Modeling

The following sub-section will describe briefly the LTE uplink physical layer signal
processing part and its modeling using the extended DIPLODOCUS methodology.
Our objective is to study its execution on a Freescale multi-core platform and analyze

123

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Figure 7.3: LTE Physical Layer uplink flow

the global performances as shown in section 7.3). Our objective is to compare the
modeling results to the existing implementation.

7.2.1 Scope of the use case

The scope of this modeling effort, made to validate the modeling approach presented in
the earlier chapters, is illustrated in figure 7.3. It concentrates on the uplink LTE physi-
cal layer in the eNodeB (in other words the signal processing part of the LTE standard).
While, the downlink baseband process is itself divided into channel coding that pre-
pares the bit stream for transmission and symbol processing that adapts the signal to
the transmission technology, the uplink baseband process performs the corresponding
decoding (figure 7.3). The physical layer uplink and downlink baseband processing
must share the eNodeB digital signal processing resources which requests a high com-
putational power. The objective of this study is to model the most computationally
demanding use cases of LTE, i.e, the high uplink bandwidth (20 MHz).

An eNodeB can have up to 4 transmit and 4 receive antenna ports. For each of these
antenna a symbol processing based on FFT is executed (The RSP: Reference Symbol
Processing). The eNodeB controls both uplink and downlink time and frequency al-
locations. The allocation base unit is a block of 1 millisecond (corresponding to the
Transmission Time Interval: TTI). Figure 7.4 depicts the LTE frame structure. LTE
frames (Transport Blocks) are 10 msec in duration and are segmented into byte aligned

124

Figure 7.4: LTE Generic Frame Structure

segments with a maximum information block size of 6144 bits. They are divided into
10 subframes, each sub-frame being 1.0 msec long. Each sub frame is further divided
into two slots, each of 0.5 msec duration. Slots consist of either 6 or 7 OFDM sym-
bols, depending on whether the normal or extended cyclic prefix is employed. The
OFDMA symbol structure consists of three types of sub-carriers, data sub-carriers for
data transmission, pilot sub-carriers for estimation and synchronization purposes and
Null sub-carriers for no transmission. OFDMA may support frequency reuse of one,
i.e., all cells/sectors operate on the same frequency channel to maximize spectral effi-
ciency.

The smallest amount of resources that can be allocated in the uplink or downlink
to a user is called a resource block (RB). An Physical RB (PRB) is 180 kHz wide and
lasts for one 0.5 ms time slot. For standard LTE, an RB comprises 12 sub-carriers at
a 15 kHz spacing (cyclic prefix). The maximum number of RBs supported by each
transmission bandwidth is 200 resource blocks for a bandwidth of 20 MHz. PRB main
functions are SNR (Signal to Noise Ratio) estimation and MMSE equalization. One
resource block can contain data related to one or two users.

The PRBs are mapped to a Virtual Resource Blocks (VRB) in a localized or dis-
tributed manner. The frequency and time allocations to map information for a certain
user to PRBs is determined by the eNodeB scheduler depending on the actual radio
channel and transmission traffic.

Figure 7.3 represents the data flow processing of the LTE uplink physical layer. For
each antenna, there is a reference symbol processing task (RSP), then for each resource
block allocation (number of allocation can be up to 200) a Physical Resource block is
executed, and then, depending if the resource block is allocated to one or two users, a
VRB or two respectively are executed.

125

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Figure 7.5: The higher level of hierarchy in the LTE uplink physical layer model

7.2.2 Application Model: LTE Physical Layer

The modeling of an application in DIPLODOCUS starts with the modeling of its struc-
ture. We used the DIPLDOCUS Application component model to model the LTE up-
link physical layer. The component diagram, due to the hierarchy it defines, permits to
model complex applications. In fact, it would have been very difficult to model this use
case using the simple task model. Components’ ports provide interfaces to describe the
connections between the application parts.

The Top level of the structure hierarchy is depicted in figure 7.5. The different
components composing the application have the following functionalities:

• IF4-UL is the input interface with a buffering large enough to allow layer 1
uplink processing of the sub frame N, while SC-FDMA symbols of the sub frame
N+1 are being received and OFDMA symbols of the sub frame N-1 are being
sent. Typically, a double buffering mechanism is selected which allows coping
with up to 1 ms processing uplink and downlink latency inside the layer.

• IF1_UL is the output interface of Layer 2 towards higher protocol level (the
MAC layer) .

• SBL_Uplink_config is the component that define the models parameters such
as the number of LTE sub-frames for the input, number of users per allocation,

126

etc. By modifying the behavior of this component the designer can test different
execution scenarios.

• The composite component SBL1_UL represents the uplink model itself. It en-
capsulates the set of components that are needed to process a sub frame.

The data flow of the protocol goes through components ports through
DIPLODOCUS channels. On the other side synchronization information are trans-
ferred via events and requests. Figure 7.6 depicts the DIPLODOCUS model of an
LTE allocation. As defined in the previous section, the data processing starts with the
physical resource block (PRB) for each allocation (up to 200 possible allocation) then
each resource block could have data belonging to two different user equipment. The
events (purple component ports) carry the actual processed sub-frame helping to trace
the data processing. This information is used later by observers to calculate the overall
time needed to execute an LTE sub-frame.

Data belonging to different users can be processed in parallel by different cores,
thus, the tasks and the channels and the events are duplicated for each user (as well for
each allocation) which increase the complexity of the model. We made the choice to
model only two allocations and there are two users for each allocation.

The behavior of tasks and primitive components in DIPLODOCUS is described
using the DIPLODOCUS activity diagrams as defined in section 4.2.3 in Chapter
4. Figure 7.7 depicts an excerpt of the activity diagram that models the behavior of
one of the PRB tasks. The task starts executing after receiving a request from the
SBL1_UL_config, then for each user (one or two possible users, this number is pa-
rameter defined as well by SBL1_UL_config), the PRB task calculates the number of
cycles to execute (PRBExec) and the data samples size it will exchange (read or write)
with the other tasks (through the channels).

Number of cycles of the abstract execution commands

The number of cycles to execute by the tasks in the LTE use case is based on the
number of bits it receives multiplied by the number of cycles needed by the task to
perform the processing of one bit. This number is either estimated, called as well
intelligent guess based on the expertise of the designer, or it is known as in our case
where Freescale designers provided us with this number. In fact, the code representing
the LTE uplink physical layer exists and after its execution on the platform (without
cache misses and contentions) we calculated the number of cycles.

7.2.3 Architecture Model: Freescale MSC8156 Multi-Core DSP

The main objective of this use case study is not to perform an architecture exploration
but rather to test if the DIPLODOCUS model and the analysis performed on it match

127

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Figure 7.6: Application Structure Task metamodel

128

Figure 7.7: An excerpt of the Behavior of a Physical Resource Block (PRB) Task

the real implementation. Thus, the architecture was chosen to be an existing Freescale
LTE implementation. Figure 7.8, represents the DIPLODOCUS model of the Freescale
MSC8156 DSP that is integrated in a vast spectrum of LTE base stations.

Figure 7.8: An example of a DIPLODOCUS Architecture Model with TTool

This architecture contains six DSP cores connected through a ”non-blocking” com-
munication matrix (called CLASS). A hardware accelerator (the Maple) that performs

129

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

the most expensive (in computing power) tasks (such as the FFT and the CRC). The
memory system is a three level hierarchy, where each DSP has its own memory, and
there is an on-chip shared memory (M3) and two off-chip shared memories (DDR1
and DDR2). DSP cores and Maple can access the shared memories directly using the
CLASS or via the system DMA. The DSP cores communicate with the Maple via its
own memory accessible via the Maple DMA.

After specifying the architecture resources and their parameters (frequency, data
size etc.), we defined the communication patterns for of the computation resources
(the six DSP cores and the Maple accelerator).

Cache effect estimation

The DSP cores are doted with L1 caches for both data and instruction. The presence
of these caches is an additional factor that affects the estimation accuracy. The main
objective of cache memory is to reduce the total amount of application cycles, since
there are fewer stalls caused by communication with memory. However, they make
system analysis more complex due the induced non-determinism.

In this use case, the cache miss ratio was provided as input to the DIPLODOCUS
architecture model by system engineers based on their knowledge of the LTE protocol
and the DSP implementation. The objective is to quantify and model the variation of
an application execution time in a system with cache.

7.2.4 Mapping Model

After defining the application and architecture models of the use case, this section
describes the mapping model that enables the execution of the application on the ar-
chitecture.

Shared resources modeling and access policies

The modeling of shared resources is done using the concept of virtual node. Each
virtual node has an access policy that determines at each time for which requester the
shared resource will be allocated. Figure 7.9 presents the SystemC code of a priority
based access policy for a computation virtual node. It returns a pointer to the highest
priority task that is ready to execute. By redefining the C++ method "<SchedPolicy">
the designer can redefine her/his own (new) access policy.

A task can be in different scheduling states (depicted in figure 7.10) depending on
its internal execution sequence or on the access policy decisions, these states are:

1. Idle: This execution is the first or a new one of the task

2. Ready: Task is ready to execute and wait to be selected by the access policy

130

Figure 7.9: An example of a priority based access policy for a computation virtual
node

3. Running: task is executing its sequential behavior (DIPLODOCUS commands)

4. Preempted: Task execution is preempted by the access policy because other(s)
task(s) with higher priorities are ready to execute. During this state the task
is ready to run. We choose to not merge the preempted and the ready state to
facilitate further analysis especially this help to know the time during which the
task was preempted.

5. Blocking: Task is blocked while trying to read/write on a communication chan-
nel (DIPLODOCUS events or channels)

6. Terminated: Task has finished its execution. If task is periodic or requested by
other tasks the next state will be the idle state

Table 7.11 depicts the set of virtual nodes used to control the architecture nodes,
as well as their access policies. Each architecture node is controlled by a virtual node.
The computation virtual nodes had a priority based access policy, as the one described
above, while communication and storage virtual nodes use a first come first served
policy.

131

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Figure 7.10: Possible States of a task during its execution

Figure 7.11: Virtual nodes and their access policies

Use Case Execution and Storage Allocation

The execution allocation corresponds to define for each task which virtual node will
control its access to the computation resource. In this case study a one level scheduling

132

hierarchy (no scheduling or dynamic scheduling is adopted). Figure 7.12 depicts an
excerpt of the SystemC code representing this step. For intance the task IF1_UL is
mapped to the virtual node of the core 1, while the task CBP_0 is mapped to the virtual
node of the core 2.

Figure 7.12: Excerpt of the Execution allocation of LTE uplink to the computation
Virtual nodes

After defining the execution allocation, the next step is to define the storage allo-
cation. In other words to define on which memories is located the data and the code of
tasks and the data corresponding to application channels. We reproduced the same stor-
age allocation as done in the Freescale implementation. Tasks’ code was distributed
between the on-chip memory M3 (70% of the data) and on the off-chip memory DDR
(the remaining 30 %) while tasks’ data was on the DDR. Channels samples were mem-
ory mapped on the M3 and on the DDR memories.

7.3 Use case analysis

This section details the results of the LTE uplink physical layer case study. After
describing the application and architectures models in the previous section, this section
presents the results of the mapping and the performance estimation calculated using the
simulation environment described in chapter 6. All results are gathered on a 2.53 GHz
Intel i5 core laptop running Windows 7 with 4GB of RAM.

Table 7.1 resumes the use case parameters. It has been assumed an uplink band-
width of 20 MHz, and a MIMO configuration of 2 antennas at the receiver. The use
case intends to model the processing of ten LTE sub-frames, each sub-frames contains

133

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Parameter Value
Carrier Frequency 2.14 GHz
Uplink Bandwidth 20 MHz
MIMO receivers 2

Transmission Time Interval: TTI 1 ms
Sub-frame duration 0.5 ms

OFDM symbols per TTI 14
Number of PRB allocation per sub-frame 2

Number of sub-carriers per PRB 12
Number of uplink users per allocation 2
Use case total number of sub-frames 10

Use case total number of users 20

Table 7.1: LTE uplink physical layer use case parameters

two PRB allocations. The number of uplink users per allocation is two, thus this use
case model the data transmission and processing of 20 users.

7.3.1 Application Execution Performance Metrics

The UML models of the use case are transformed to SystemC code and simulated using
the simulation environment presented in chapter 6. Figure 7.13 shows a sample of the
execution flow of the LTE uplink physical layer tasks on the modeled architecture. The
IF4_UL interface sends the data relative to each sub-frame, then the reference symbol
processing is done (the FFT and RSP tasks). The figure depicts the execution of data
related to only one user (the use case covers 4 users). The PRB tasks forward the data
related to the user to the other tasks (IDFT, VRB, DCDemux, and CBP). IF1_UL waits
until all the processing for all of the users (4 in this case) is done representing the end
of the processing on the relative sub-frame. For instance, the red line (between 1 ms
and 2 ms) represents the end of the processing of the first sub-frame.

Figure 7.13: LTE uplink physical layer flow for one user

Figure 7.14 traces the execution of the task PRB_0 during the first sub-frame.

134

At the beginning, it was blocked, PRB_0_Blocked, waiting for data from the ref-
erence symbol processing part (FFT and RSP). Then, once the data is available
the task changes of state to access the channel and read the corresponding data
(PRB_0_AccessChannel). Then the task is now allowed to execute its computation
part (PRB_0_Running), an execution that supposes that instructions and data are
in the cache. However, as defined earlier, the cache miss ratio is set for this use
case at 4%, thus, there is a cost to pay for fetching data from external memories
(PRB_0_CacheMiss). Then, the task will write data relative to the following tasks in
the flow (as showed in figure 7.13) and its state passes again to PRB_0_AccessChannel,
once this data exchange accomplished the task is again blocked waiting for new data
to process.

Figure 7.14: An excerpt of the execution of the PRB0 task

After examining the LTE uplink execution flow using the VCD diagrams, figure
7.15 shows the percentage of computation taken by each group of tasks on the overall
execution time. The ”PRB” part, represents the sum of time consumed by the two allo-
cations, is the most demanding on computation resources. The previous figures enable
the designer to quickly evaluate the execution of the system, identify the computation
demanding tasks, and validate that the processing flow is executing as desired.

7.3.2 Comparison of simulation results to real implementation re-
sults

Given that the execution of the real LTE uplink physical layer code on the Freescale
DSP platform is very accurate, it is used as a reference for validation. The results are
reported in table 7.16. This table validates the accuracy of our models. It shows for
each group of tasks the simulated and the measured MCPS (Millions of Cycles per
second) consumed to accomplish its execution. The approach presented in this PhD
work proved its accuracy as the error percentage is less than 10%. Thus the designer
can be confident of the modeling results.

In addition to the total number of MCPS, the above table provides as well a com-
parison of the number of MCPS consumed for memory access (Memory MCPS). This
metric represents the total number of cycles consumed when the application tasks were
exchanging data or suffering from cache misses and the architecture computation nodes
were performing this exchange of data (through access to communication resources).

135

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

Figure 7.15: LTE uplink Tasks computation complexity

Figure 7.16: LTE Tasks execution performance metrics

The last metric shown in this table is the ”Core MCPS” that represents the total number
of cycles consumed by computation resources to execute application tasks but without
the communication cost.

Figure 7.17 depicts the comparison between the number of MCPS measured on
the real implementation and the number of MCPS extracted using the DIPLODOCUS
UML models and SystemC simulator. One should note that the simulation time needed
to perform the model’s simulation is faster than the real time execution. In fact, this
use case represents the processing of ten LTE sub-frames that need to be executed in
less than 1 ms for each, thus 10 ms for the sub-frames. the model’s simulation took 4

136

Figure 7.17: Simulated MCPS compared to measured MCPS

ms.

7.4 Use case study conclusion

The modeling approach proposed in this PhD thesis was applied to a real implementa-
tion example. The comparison of the modeling/simulation results with the real imple-
mentation confirmed the accuracy and efficiency of our approach. The case study in the
previous section proved that using the input and help of design engineers and feeding
the DIPLODOCUS models with good estimates about the tasks execution complexity
enabled us to obtain an accurate estimation the system’s global performances.

However, one should ask how good are the data. What happens if the complexity
estimates proved to be wrong or far from the real results. Furthermore, DIPLODOCUS
models are ideally created earlier in the design flow, so what if the designers integrated
new functionalities or architecture elements that were not modeled. The answer to
these questions would be that the designer should keep her/his models updated with the
latest implementation results. A perspective research step is to connect DIPLODOCUS
to the design flow and automatically update the models with new results.

137

7. USE CASE STUDY: SOC MODELING FOR LTE BASE STATION

138

Chapter 8

Conclusions and Perspectives

This thesis began with the statement that system level design and high level analysis is
the solution to the increasing complexity of modern SoC. Abstraction, by hiding some
aspects of the design, helps the designer to only consider those which help her/him to
take early design decisions. Abstraction coupled with modeling reduce the complexity
and enable faster system analysis. However, the challenge remains to preserve the
analysis results accuracy.

This thesis presented our contributions for a system level design methodology for
SoC performances estimation. Those contributions were on both methodology and
tools levels. These include the definition of modeling constructs with UML meta-
models and thus participating to the definition of the DIPLODOCUS methodology
developed by Telecom ParisTech, a SystemC simulation environment to analyze the
UML models and the modeling of an industrial use case to validate the proposed ap-
proach.

Firstly, new UML modeling components, the communication patterns, were de-
fined to ensure the separation of concerns of the computation and the communication.
They enable the modeling of the communication interactions between the architecture
resources to deliver (read or write) application data to storage resources. Secondly,
virtual nodes were defined to capture the shared resources impact on the overall sys-
tem performances, they allow the modeling of access policies that control the shared
resources.

While the DIPLODOCUS UML high level modeling is used to model the system,
a SystemC simulation environment is used to analyze its performance. UML models
are transformed into SystemC code that capture the concurrency and timing behavior
of the models and use them to extract performance metrics such as latency, throughput
and end-to-end delays. The proposed simulation is proven faster than the real-time
execution.

Even though the proposed modeling approach is targeting system design at high
level of abstraction, the presented contributions demonstrate promising results and the

139

8. CONCLUSIONS AND PERSPECTIVES

comparison of the modeling/simulation results with the real implementation confirmed
the efficiency and accuracy of our approach.

Limitations and possible enhancements

Chapter 7 proved that the methodologies proposed and developed in this thesis disser-
tation is capable of correctly estimating system’s performance when the computation
complexity of system’s tasks is approximatively known, or proposed by the imple-
mentation engineers due to their experience. However, what if this information is not
available in advance? The system designer using DIPLODOCUS and its extensions
will use some estimates, called in the industry ”intelligent guess” to build the model.
Thus, the estimates may vary from the real implementation results. In addition, with
advances of the design project, the designer will have newer estimates and needs to
re-inject these estimates in the model. If not, the model will be outdated. A possi-
ble enhancement to the DIPLODOCUS methodology is to integrate a feedback loop
(back annotation) to update the model estimates with new experimental results when
available.

Perspectives

Power consumption estimation. The simulation environment presented in this thesis
is mainly dedicated to extract temporal performance metrics. Thus, the utilization
(number of executed cycles and the number of idle cycles) of architecture nodes. Tak-
ing into consideration this metric, the designer can estimate the power consumption
estimation of the system. In fact, designers has some good estimates on the energy
consumption of a resource (a processor for example) to execute one cycle, as well
as the energy consumed when the node is idle. Hence, it is possible to get some
energy estimates for the DIPLODOCUS model. In addition, as the virtual nodes can
easily implement new access policies, one can imagine that some energy aware access
policies will be modeled and used in DIPLDOOCUS models.

Models transformation and exchange with other UML standard profiles.
DIPLODOCUS is a UML profile that extends UML 2.0 to model SoCs on a high
level of abstraction. It comes with a toolkit (TTooL [63]) that permits the generation
from the UML models of simulation code (C++ and SystemC code) and of formal
specifications (LOTOS and UPPAAL). However, DIPLODOCUS is not the only
UML profile to target the SoC modeling, as some other profiles and particularly the
Marte OMG profile had a similar objective. Some initiatives, such as open embedd
[62], are trying to define a complete design flow starting from Marte models down to
the implementation. Thus, one possible enhancement of the DIPLODOCUS UML

140

environment is to use model transformations tools (such as Kermeta [60]) to transform
DIPLODOCUS UML models to Marte (or other UML profiles) and thus permits the
use of their advantage. The transformations can be done in both ways so the other
UML profiles can re-use the DIPLODOCUS environment.

Integration in a Design Flow. The model transformation enables the transforma-
tion of models build on a specific hypotheses (abstraction of some aspects of the system
for instance) into models that focus on other aspects of the design. The transforma-
tion process can be as well from system level models to a lower level of abstraction.
In the DIPLODOCUS context, this transformation consists first of all at enriching the
DIPLODOCUS models with the lower level details, it can be on multiple steps and
not completely automatic as the designer can use predefined libraries (RTL or TLM
libraires). Thus, enabling the integration of DIPLODOCUS in a SoC design flow.

141

8. CONCLUSIONS AND PERSPECTIVES

142

Bibliography

[1] IEEE standard verilog hardware description language. IEEE Std 1364-2001,
pages 0_1 – 856, 2002. 32

[2] Object management group, uml profile for schedulability, performance, and time.
2005. Version 1.1. 2005. OMG document: formal/05-01-02. 42

[3] Information processing systems – open systems interconnection – lotos – a formal
description technique based on the temporal ordering of observational behaviour.
ISO 8807:1989, 2006. 98

[4] IEEE standard systemc language reference manual. IEEE Std 1666-2005, pages
0_1 –423, 2006. 33, 94

[5] Object management group, uml profile for system on a chip (soc). 2006. Version
1.0.1. OMG Document, 06-08-01. 41

[6] IEEE standard vhdl language reference manual. IEEE Std 1076-2002, pages c1
– 626, 2008. 32

[7] Digital video broadcasting (dvb): Framing structure, channel coding and modu-
lation for digital terrestrial television, 2009. ETSI standard ETS EN 300 744 v.
1.1.2. 120

[8] Object management group, uml profile for modeling and analysis of real time and
embedded systems. 2009. MARTE specification version 1.0. OMG document:
formal/2009-11-02. 42

[9] Mobile wimax part i: A technical overview and performance evaluation, August
2006. WiMAX Forum. 120

[10] 3rd Generation Partnership Project: 3GPP. The mobile broadband standard, 2011.
http://www.3gpp.org. 20

[11] 4th UML-SoC Workshop. Uml for soc design. http://websrv2.c-lab.
de/uml-soc/uml-soc07/survey2007.pdf. 41

143

http://www.3gpp.org
http://websrv2.c-lab.de/uml-soc/uml-soc07/survey2007.pdf
http://websrv2.c-lab.de/uml-soc/uml-soc07/survey2007.pdf

BIBLIOGRAPHY

[12] Alcatel-Lucent. Lte products. http://lte.alcatel-lucent.com/. 21

[13] ALTERA. Avalon interface specification, 2011. http://www.altera.

com/literature/manual/mnl_avalon_spec.pdf. 68, 167

[14] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. A
uml-based environment for system design space exploration. In Electronics, Cir-

cuits and Systems, 2006. ICECS ’06. 13th IEEE International Conference on,
pages 1272 –1275, dec. 2006. 25, 49, 51, 71, 159

[15] ARM. Amba bus specification, 1999. http://www.arm.com/products/
system-ip/amba/amba-open-specifications.php. 68, 167

[16] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design
environment. Computer, 36(4):45 – 52, april 2003. 26, 160

[17] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design
environment. Computer, 36(4):45 – 52, april 2003. 35, 44

[18] Rabie Ben Atitallah, Philippe Marquet, Éric Piel, Samy Meftali, Smail Niar,
Anne Etien, Jean-Luc Dekeyser, and Pierre Boulet. Gaspard2: from MARTE
to SystemC Simulation. In Proceeedings of the DATE’08 workshop on Modeling

and Analyzis of Real-Time and Embedded Systems with the MARTE UML profile,
Washington, États-Unis, 2008. 25, 35, 36, 43, 46, 159

[19] A. Benveniste, P. Bournai, T. Gautier, M. Le Borgne, P. Le Guernic, and H. Marc-
hand. The signal declarative synchronous language: controller synthesis and sys-
tems/architecture design. In Decision and Control, 2001. Proceedings of the 40th

IEEE Conference on, volume 4, pages 3284 –3289 vol.4, 2001. 25, 159

[20] P.; Edwards S.A.; Halbwachs N.; Le Guernic P.; de Simone R. Benveniste,
A.; Caspi. The synchronous languages 12 years later. Proceedings of the IEEE,
2003. 33

[21] G. Berry. The constructive semantics of pure esterel, 1999. 25, 33, 159

[22] A. Bobrek, J.J. Pieper, J.E. Nelson, J.M. Paul, and D.E. Thomas. Modeling shared
resource contention using a hybrid simulation/analytical approach. In Design,

Automation and Test in Europe Conference and Exhibition, 2004. Proceedings,
volume 2, pages 1144 – 1149 Vol.2, feb. 2004. 35, 36, 45

144

http://lte.alcatel-lucent.com/
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

BIBLIOGRAPHY

[23] C. Brooks, E.A. Lee, and S. Tripakis. Exploring models of computa-
tion with ptolemy ii. In Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, pages 331
–332, oct. 2010. 26, 35, 160

[24] Tony Bybell. Gtkwave: a vcd waveforms wiewer, 2011. http://gtkwave.
sourceforge.net/. 112

[25] Carbon. Soc designer plus: Rapid development of virtual platforms. http://
www.carbondesignsystems.com/soc-designer-plus/. 26, 162

[26] Celoxica. Handelc language reference manual, 2005. http://babbage.cs.
qc.edu/courses/cs345/Manuals/HandelC.pdf. 25, 159

[27] Bill Bunton Anna Keist David C. Black, Jack Donovan. SystemC: From the

Ground Up. Kluwer Academic Publisher, 2 edition, 2009. 94

[28] D. Densmore and R. Passerone. A platform-based taxonomy for esl design. De-

sign Test of Computers, IEEE, 23(5):359 –374, may 2006. 13, 37

[29] CoFluent Design. Cofluent, cofluentstudio. http://www.

cofluentdesign.com/index.php/cofluent-studio. 26, 37,
160

[30] CoFluent Design. Cofluent studio extension for sysml and marte.
http://www.cofluentdesign.com/index.php/ja_JP/

solutions/uml-sysml-marte.html. 37

[31] Ericsson. Lte products. http://www.ericsson.com/ourportfolio/
products/lte-radio-access-network-products?nav=fgb_

101_220. 21

[32] 3GPP Releases for HSPA. The hspa broadband standard, 2011. http://www.
3gpp.org/HSPA. 20

[33] 3GPP Releases for LTE. The lte broadband standard, 2011. http://www.

3gpp.org/LTE. 20, 112

[34] Jianwen Zhu Domer R. Gerstlauer A. Shuqing Zhao Gajski, D.D. SpecC: Spec-

ification Language and Methodology. Kluwer Academic Publishers, 1 edition,
2002. 33

[35] Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe. Cadp
2006: A toolbox for the construction and analysis of distributed processes. In

145

http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/
http://www.carbondesignsystems.com/soc-designer-plus/
http://www.carbondesignsystems.com/soc-designer-plus/
 http://babbage.cs.qc.edu/courses/cs345/Manuals/HandelC.pdf
 http://babbage.cs.qc.edu/courses/cs345/Manuals/HandelC.pdf
http://www.cofluentdesign.com/index.php/cofluent-studio
http://www.cofluentdesign.com/index.php/cofluent-studio
http://www.cofluentdesign.com/index.php/ja_JP/solutions/uml-sysml-marte.html
http://www.cofluentdesign.com/index.php/ja_JP/solutions/uml-sysml-marte.html
http://www.ericsson.com/ourportfolio/products/lte-radio-access-network-products?nav=fgb_101_220
http://www.ericsson.com/ourportfolio/products/lte-radio-access-network-products?nav=fgb_101_220
http://www.ericsson.com/ourportfolio/products/lte-radio-access-network-products?nav=fgb_101_220
http://www.3gpp.org/HSPA
http://www.3gpp.org/HSPA
http://www.3gpp.org/LTE
http://www.3gpp.org/LTE

BIBLIOGRAPHY

Werner Damm and Holger Hermanns, editors, Computer Aided Verification, vol-
ume 4590 of Lecture Notes in Computer Science, pages 158–163. Springer Berlin
/ Heidelberg, 2007. 10.1007/978-3-540-73368-3_18. 98

[36] A. Gerstlauer, C. Haubelt, A.D. Pimentel, T.P. Stefanov, D.D. Gajski, and J. Te-
ich. Electronic system-level synthesis methodologies. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 28(10):1517 –1530,
oct. 2009. 29

[37] Frank Ghenassia. Transaction-Level Modeling with Systemc: Tlm Concepts and

Applications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. 25, 28, 159, 162

[38] Mentor Graphics. Catapultc an eda tool for full-chip high-level synthesis. http:
//www.mentor.com/esl/catapult/overview. 25, 159

[39] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991. 25, 33, 159

[40] T.A. Henzinger and J. Sifakis. The discipline of embedded systems design. Com-

puter, 40(10):32 –40, oct. 2007. 13, 23, 156

[41] Thomas Henzinger and Joseph Sifakis. The embedded systems design challenge.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: For-

mal Methods, volume 4085 of Lecture Notes in Computer Science, pages 1–15.
Springer Berlin / Heidelberg, 2006. 10.1007/11813040_1. 24, 158

[42] Anders Hessel, Kim Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,
and Arne Skou. Testing real-time systems using uppaal. In Robert Hierons,
Jonathan Bowen, and Mark Harman, editors, Formal Methods and Testing, vol-
ume 4949 of Lecture Notes in Computer Science, pages 77–117. Springer Berlin
/ Heidelberg, 2008. 10.1007/978-3-540-78917-8_3. 54, 98

[43] Open SystemC Initiative homepage. System level design with systemc. http:
//www.systemc.org. 33, 94

[44] huawei. Lte products. http://www.huawei.com/radio_access_

network/lte.do. 21

[45] Chafic Jaber, Andreas Kanstein, Ludovic Apvrille, Amer Baghdadi, Patricia Le
Moenner, and Renaud Pacalet. High-level system modeling for rapid hw/sw ar-
chitecture exploration. In Proceedings of the 2009 IEEE/IFIP International Sym-

posium on Rapid System Prototyping, RSP ’09, pages 88–94, Washington, DC,
USA, 2009. IEEE Computer Society. 25, 159

146

http://www.mentor.com/esl/catapult/overview
http://www.mentor.com/esl/catapult/overview
http://www.systemc.org
http://www.systemc.org
http://www.huawei.com/radio_access_network/lte.do
http://www.huawei.com/radio_access_network/lte.do

BIBLIOGRAPHY

[46] S Jaddoe, M Thompson, and A. D Pimentel. Signature-based calibration of an-
alytical performance models for system-level design space exploration. Trans-

actions on High-Performance Embedded Architectures and Compilers (Trans. on

HiPEAC), 4(4), 2009. 45, 46

[47] Tero Kangas. Methods and Implementations for Automated System on Chip

Architecture Exploration. PhD thesis, Tampere University of Technology, 29
September 2006. 25, 26, 35, 36, 46, 160

[48] T. Kempf, G. Ascheid, and R. Leupers. Multiprocessor Systems on Chip: Design

Space Exploration. Springer, 2011. 31

[49] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, and B. Van-
thournout. A modular simulation framework for spatial and temporal task map-
ping onto multi-processor soc platforms. In Design, Automation and Test in Eu-

rope, 2005. Proceedings, pages 876 – 881 Vol. 2, march 2005. 45

[50] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: orthogonalization of concerns and platform-based design.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 19(12):1523 –1543, dec 2000. 29, 31

[51] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf. An approach
for quantitative analysis of application-specific dataflow architectures. In
Application-Specific Systems, Architectures and Processors, 1997. Proceedings.,

IEEE International Conference on, pages 338 –349, jul 1997. 31

[52] R. Kocik and Y. Sorel. A methodology to reduce the design lifecycle of real-
time embedded control systems. In Proceedings of European Simulation and

Modelling Conference, ESM’04, Paris, France, October 2004. 36

[53] Hermann Kopetz. The complexity challenge in embedded systems de-
sign. In Proceedings of the 11th IEEE International Symposium on

Object/Component/Service-Oriented Real-time Distributed Computing (ISORC

2008), Orlando, Florida, USA, May 2008. IEEE Computer Society. 13, 23, 156

[54] P. Kukkala, J. Riihimaki, M. Hannikainen, T.D. Hamalainen, and K. Kronlof.
Uml 2.0 profile for embedded system design. In Design, Automation and Test in

Europe, 2005. Proceedings, pages 710 – 715 Vol. 2, march 2005. 41

[55] C. Laot, A. Glavieux, and J. Labat. Turbo equalization: adaptive equalization and
channel decoding jointly optimized. Selected Areas in Communications, IEEE

Journal on, 19(9):1744 –1752, September 2001. 22

147

BIBLIOGRAPHY

[56] Sebastien Le Beux, Laurent Moss, Philippe Marquet, and Jean-Luc Dekeyser.
A high level synthesis flow using model driven engineering. In Guy Gogniat,
Dragomir Milojevic, Adam Morawiec, and Ahmet Erdogan, editors, Algorithm-

Architecture Matching for Signal and Image Processing, volume 73 of Lecture

Notes in Electrical Engineering, pages 253–274. Springer Netherlands, 2011.
10.1007/978-90-481-9965-5_12. 25, 159

[57] Lip6. Dsx: Desidn space explorer. https://www-asim.lip6.fr/trac/
dsx. 26, 160

[58] G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded uml: a merger of real-
time uml and co-design. In Hardware/Software Codesign, 2001. CODES 2001.

Proceedings of the Ninth International Symposium on, pages 23–28, 2001. 25,
159

[59] W. Mueller, R. Domer, and A. Gerstlauer. The formal execution semantics of
specc. In System Synthesis, 2002. 15th International Symposium on, pages 150
–155, oct. 2002. 33

[60] Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On Executable
Meta-Languages applied to Model Transformations. In Model Transformations

In Practice Workshop, Montego Bay, Jamaïque, October 2005. 44, 141, 170

[61] OMG. Object management group, 2011. http://www.omg.org/. 42, 50

[62] OpenEmbeDD. Open source platform for model driven engineering. http:

//openembedd.org/home_html. 140, 170

[63] TELECOM ParisTech. TTool toolkit, 2011. http://labsoc.comelec.

enst.fr/turtle. 43, 44, 54, 86, 98, 140, 170

[64] O. Pasquier, F. Muller, J. P. Calvez, D. Heller, and E. Chenard. The MCSE ap-

proach for system-level design, pages 213–224. Kluwer Academic Publishers,
Norwell, MA, USA, 2001. 37

[65] PCI-SIG. Pci express base specification, 2011. http://www.pcisig.com/
specifications/pciexpress/. 68, 167

[66] A. D Pimentel. The artemis workbench for system-level performance evaluation
of embedded systems. Journal of Embedded Systems, 3(3):181–196, 2008. 26,
160

148

 https://www-asim.lip6.fr/trac/dsx
 https://www-asim.lip6.fr/trac/dsx
http://www.omg.org/
http://openembedd.org/home_html
http://openembedd.org/home_html
http://labsoc.comelec.enst.fr/turtle
http://labsoc.comelec.enst.fr/turtle
http://www.pcisig.com/specifications/pciexpress/
http://www.pcisig.com/specifications/pciexpress/

BIBLIOGRAPHY

[67] A.D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring
embedded system architectures at multiple abstraction levels. Computers, IEEE

Transactions on, 55(2):99 – 112, feb. 2006. 29

[68] Katalin Popovici, Xavier Guerin, Frederic Rousseau, Pier Stanislao Paolucci, and
Ahmed Jerraya. Efficient software development platforms for multimedia appli-
cations at different abstraction levels. Rapid System Prototyping, IEEE Interna-

tional Workshop on, 0:113–122, 2007. 45

[69] A. Sangiovanni-Vincentelli. Quo vadis, sld? reasoning about the trends and
challenges of system level design. Proceedings of the IEEE, 95(3):467 –506,
march 2007. 24, 158

[70] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-performance timing
simulation of embedded software. In Design Automation Conference, 2008. DAC

2008. 45th ACM/IEEE, pages 290 –295, june 2008. 45

[71] Ulf Schünemann. Modeling and abstraction, 2004. http://web.cs.mun.

ca/~ulf/mod/rel.html. 30, 50

[72] Freescale Semiconductor. Freescale embedded processing solutions. http:

//www.freescale.com/. 22

[73] Freescale Semiconductors. Freescale msc8156: Six core high performance dsp,
2011. DSP Data Sheet. 22

[74] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for virtual
clustering of multiprocessors. In Real-Time Systems, 2008. ECRTS ’08. Euromi-

cro Conference on, pages 181 –190, july 2008. 79, 164

[75] M. Silbermintz, A. Sahar, L. Peled, M. Anschel, E. Watralov, H. Miller, and
E. Weisberger. Soc modeling methodology for architectural exploration and soft-
ware development. In Electronics, Circuits and Systems, 2004. ICECS 2004.

Proceedings of the 2004 11th IEEE International Conference on, pages 383 –
386, dec. 2004. 37, 45, 46

[76] OMG specification for UML. Unified modeling language resource page, 2011.
http://www.uml.org/. 14, 34, 50

[77] Synopsys. Platform architect for soc architecture performance anal-
ysis and optimization. http://www.synopsys.com/Systems/

ArchitectureDesign/pages/PlatformArchitect.aspx. 26,
160

149

http://web.cs.mun.ca/~ulf/mod/rel.html
http://web.cs.mun.ca/~ulf/mod/rel.html
http://www.freescale.com/
http://www.freescale.com/
http://www.uml.org/
http://www.synopsys.com/Systems/ArchitectureDesign/pages/PlatformArchitect.aspx
http://www.synopsys.com/Systems/ArchitectureDesign/pages/PlatformArchitect.aspx

BIBLIOGRAPHY

[78] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley, 2 edition, novembre 2002. 55

[79] Grant Martin Stuart Swan Thorsten Grötker, Stan Liao. System Design with Sys-

temC. Kluwer Academic Publishers, 2002. 94

[80] 3GPP TR 25.892 V6.0.0. Feasibility Study for Orthogonal Frequency Division

Multiplexing (OFDM) for UTRAN enhancement (Release 6), 2004. 120

[81] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260 – 269,
April 1967. 22

[82] M. Waseem, L. Apvrille, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. Abstract
application modeling for system design space exploration. In Digital System

Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO

Conference on, pages 331 –337, 0-0 2006. 29, 35, 42, 46, 49, 51, 71

[83] RYSAVY Research white paper. Hspa to lte-advanced: 3gpp broadband evolu-
tion to imt-advanced (4g), September 2009. http://www.3gamericas.

org/documents/3G_Americas_RysavyResearch_HSPA-LTE_

Advanced_Sept2009.pdf. 20

[84] Hongwei Yang. A road to future broadband wireless access: Mimo-ofdm-based
air interface. Communications Magazine, IEEE, 43(1):53 –60, jan. 2005. 121

150

http://www.3gamericas.org/documents/3G_Americas_RysavyResearch_HSPA-LTE_Advanced_Sept2009.pdf
http://www.3gamericas.org/documents/3G_Americas_RysavyResearch_HSPA-LTE_Advanced_Sept2009.pdf
http://www.3gamericas.org/documents/3G_Americas_RysavyResearch_HSPA-LTE_Advanced_Sept2009.pdf

Appendix A

Résumé en français

A.1 Introduction

Le développement et l’évolution des systèmes sur puces modernes (System-on-Chip
“SoC”) peuventêtre caractérisés par leur principale finalité qui est la miniaturisation.
Des caractéristiques trés avancées sont associées à cette finalité en termes de perfor-
mance, de consommation d’énergie, sécurité, viabilité et bien d’autres. Toutes ces
caractéristiques sont réalisables grâce aux impressionnantes avancées techniques et
technologiques dans les deux domaines des semi-conducteurs et de l’ingénieurie logi-
cielle.

Par ailleurs, le cycle de développement devient de plus en plus court pour pouvoir
confronter la concurrence. De plus et pour différencier leurs produits, les industriels
intègrent plus de fonctionnalités ce qui augmente la complexité de conception. Par
exemple, un téléphone mobile intègre aujourd’hui, en plus du protocole de télécom-
munication, un appareil photo, un lecteur de musique, un GPS, des outils de navigation
sur Internet et de nombreuses autres applications.

Cette complexité de concpetion accrue oblige les concepteurs à re-évaluer leur
méthodologies de conception. Initialement, la conception se faisait au niveau tran-
sistor, puis elle aévolué au niveau des portes logiques et enfin au niveau de transfert
de registres (RTL: Register Transfert Level). Les outils développés au niveau RTL
permettent la vérification de comportement du système. Cependant, la complexité et
l’hétérogénéité croissantes des systèmes sur puces poussent les concepteurs àélever le
niveau d’abstraction au niveau système afin de cibler la conception de l’ensemble du
système, plutôt que de se focaliser sur les composants individuels.

Dans ce contexte, de nombreuses méthodes et approches de conception au niveau
systèmes ontété proposées. Ces méthodologies fournissent aux concepteurs les moyens
pour modéliser les systèmes, puis pour les analyser et les optimiser. L’analyse
du système peut cibler différents domaines tels que la vérification fonctionnelle,

151

A. RÉSUMÉ EN FRANÇAIS

l’estimation des performances et l’estimation de la consommation d’énergie. En outre,
les niveauxélevés d’abstraction permettent uneévaluation plus rapide des performance
du système. Toutefois, le premier défi reste à définir le niveau d’absatrction approprié
qui préserve la précision des résultats.

Comme les systèmes sur puce (SoC) les plus récents sont destinés à accueillir
des applications complexes et interdépendantes à faible coût (surface, puissance) pour
l’utilisateur final, le nombre de ressources doitêtre minimisé tout en augmentant leur
utilisation en les partageant entre plusieurs applications. Ce partage de resources a
un fort impact sur les performances à cause des contentions qu’il induit générale-
ment. En effet, les performances globales d’une application donnée dépendent de la
somme du temps nécessaire pour l’exécuter plus le temps de contention pour l’accès
aux ressources partagées. La contention des ressources, les délais de communication
et de nombreux autres facteurs ont un effet considérable sur les performances globales
du système. De ce fait, l’identification des principaux facteurs critiques pour la perfor-
mance du système et comment les modéliser constituent d’autres défis majeurs dans
l’analyse des performances.

Une fois les métriques de performance (tels que la latence, le débit, l’utilisation
des ressources, etc) identifiées et modélisées, le concepteur peutévaluer le système
en cours de conception (par le biais des mécanismes de simulation et/ou d’analyse
formelle) afin d’explorer diverses combinaisons d’architecture (nombre d’unités
de calcul, topologie de communication à utiliser, hiérarchie de la mémoire, etc) et
de définir les applications à considérer (nombre de tâches, parallélisme entre les
tâches, etc.). L’objectif du concepteur est de vérifier si les performances du système
satisfassent les exigences de conception. Ainsi, l’extraction rapide des métriques de
performance nécessaires pour effectuer l’analyse du système est uneétape primordiale
dans la conception. Le concepteur pourrait alors choisir, parmi différentes solutions
possibles, celle qui est la plus adaptée. Ainsi le troisième défi à considérer concerne la
façon d’analyser les métriques de performance du système à concevoir afin de vérifier
le respect des exigences de conception.

Objectif de cette thèse. L’objectif de ce travail de thèse est de fournir aux

concepteurs systèmes les moyens nécessaires (au niveau méthodologique et au niveau

outils) pour estimer les performances du système etévaluer rapidement les décisions

de conception, idéalement trés tôt dans le flot de conception. La définition du niveau

d’abstraction et des méthodes pour l’analyse des models abstraits constituent la

clé pour une méthodologie résussie de conception au niveau système. La modéli-

sation à haut niveau d’abstraction facilite les prises de décisions de conception au

niveau système puisque le concepteur n’a pas besoin d’avoir une expertise appro-

fondie des logiciels à bas niveau d’abstraction, du matériel et des outils de conception.

Ce travail de thèse se situe dans le cadre de la méthodologie DIPLODOCUS

152

Figure A.1: Notre thèse dans le contexte de la méthodologie DIPLODOCUS

développée à Télécom ParisTech, qui définit un profil UML ciblant l’exploration de
l’espace de conception à haut niveau d’abstraction. La figure A.1 présente nos con-
tributions (encadrées en rouge) à la méthodologie DIPLODOCUS. Les numéros entre
parenthèses spécifient le chapitre ou la section où chaque contribution est définie et
expliquée. La section suivante décrit brièvement les différentes contributions de notre
thèse.

A.1.1 Contributions de la thèse

Afin d’atteindre les objectifs identfiés ci-dessus, la thèse présente des contributions
qui peuventétre classées en trois catégories:

• Contributions au niveau conceptuel: Définition du profile UML (les méta-
modèles) DIPLODOCUS et surtout en enrichissant l’éxistant avec:

– La modélisation des resources partagées: Permettant d’étudier l’effet de

153

A. RÉSUMÉ EN FRANÇAIS

ce partage sur les performances globales du système.

– L’Orthogonalisation des concepts de l’exécution et de la communication
pour mieuxévaluer le coût des communications.

• Contributions au niveau de la simulation: Un simulateur en SystemC aété
développé pour simuler les modèles UML proposés. La simulation est faite à
haut niveau d’abstraction et elle est plus rapide que l’exécution en temps réel.

• Contributions au niveau expérimental: L’approche proposée aété appliquée
sur uneétude de cas industriel. L’implémentation de la couche physique du
protocle de télécommunication mobile de 4ème génération (LTE; Long Term
Evolution) sur un DSP muli-core produit par Freescale aété modélisé en
utilisant notre apporche et les résultats ontété validés en les comparant avec
l’implémentation réelle, afin estimer la précision.

A.1.2 Plan de la thèse

Le rapport de thèse est divisé en six chapitres:

Le chapitre 2 donne un aperçu du domaine de la conception de systèmes sur
puce. Il décrit la complexité accrue de la conception qui se manifeste au niveau de
l’architecture matérielle, logicielle ainsi que dans leur intégartion. Il décrit aussi le
flot de conception typique qui, en partant des spécifications client et moyennant divers
raffinements (modèle niveau système, prototype virtuelle, prototype physique), aboutit
à un SoC fonctionnel. Ce flot couvre à la fois l’application et l’architecture ainsi que
leur intégration et validation.

Le chapitre 3 a pour objectif de situer la methodologie DIPLODOCUS ainsi que
ses extensions présentées dans cette thèse par rapport aux autres méthodologies de
conception niveau système. Après une brève description des objectifs et concepts
niveau système (notamment la modélisation et l’abstraction, la séparation des concepts
de l’application et de l’architecture, et l’exploration de l’espace d’architecture), il
décrit les langages de spécifications les plus utilisés ainsi que quelques méthodologies
existantes. Puis, dans une deuxième partie, ce chapitre compare les méthodologies
existantes à celle que nous proposée. Ainsi une comapraison avec les autres profils
UML est fournie.

Le chapitre 4 fournit une définition sous forme de meta-modèle UML du
profil DIPLODOCUS. Il définit ainsi le sous profil ”ApplicationModeling” pour
modéliser la structure (en modèle de taches ou en composants) et le comportement

154

(en diagramme d’activité UML) de l’application. Ensuite, il définit le sous profil
”ArchitectureModeling” qui dans une première partie permet la modélisation des
resources de l’architecture (resources d’exécution, de communication et de stockage)
puis dans un deuxième temps introduit le concept de ”motif de communication”
(Communication pattern en anglais) pour modéliser l’interaction des resources
d’exécution avec les resources de stockage à travers les resources de communication.
En fait, un noeud d’exécution lorsqu’il essaie d’accéder (en lecture ou enécriture) à
une resource de stockage, il suit un protocol bien déterminé qui est indépendant de
l’application qui s’exécute. Ainsi pour séparer l’exécution de la communication, les
motifs de communications définissent le protocol (ou les protocols) qu’une resource
d’exécution pourra utiliser pour communiquer. De ce fait, et gréce au simulateur
présenté au chapitre 6, le concepteur peut identifier le débit sur un motif d’exécution,
l’utilisation des resources de communication et les possibles goulots d’étrangelement
dus aux contentions. Les motifs de communication sont une extension du diagramme
UML de séquence.

Le chapter 5 propose un processus de ”mapping” de l’application sur l’architecture
(modélisé comme décrit dans le chapitre 4). Le mapping définit comment l’application
va s’exécuter sur les resources de l’architecture. Etant donné, que dans un système
sur puce moderne, des applications hétérogènes concourent pour accéder aux mêmes
ressources d’exécution. Ces derniers partagent la même infrastructure de communica-
tion et des ressources de stockage. Les systèmes d’exploitation contrôlent l’exécution
des applications sur les ressources d’exécution; les arbitres des bus assurent le contrôle
des bus entre les différentes ressources d’exécution, et les contrôleurs de mémoire
gérent les accès rivaux aux mémoires. Ainsi, la performance globale du système
dépend des politiques d’accès aux ressources partagés. Le choix d’une politique
d’accès peut affecter les performances du système complet. Ce chapitre propose le
concept du ”Virtual Node” (VN) pour analyser l’effet du partage des ressources sur
les performances du système. Le VN est un composant de modélisation générique
qui contrôle l’accès à une ressource partagée selon une politique d’accès (qui peutétre
défini par le concepteur sous forme d’un diagramme d’activité UML). Il alloue la
ressource partagée à un demandeur d’accès (par exemple le VN d’un CPU alloue le
CPU pour une tache pour s’exécuter en la choisissant parmi toutes les taches prétes
à s’exécuter). D’autre part, et afin de controler la communication des resources
d’exécution, nous proposons le concept ”gestionnaire de communication” qui gère
la communication d’une entité d’exécution avec les autres entités de l’architecture.
Un gestionnaire de communication possède une liste de toutes les resources de
stockage à lesquelles une resource d’exécution peut accéder ainsi qu’une liste des
motifs de communication (définis dans le chapitre 4) qui décrivent les protocoles de
communications. Ce chapitre fini avec un simple exemple de modélisation qui illustre
les différents concepts de modélisation introduits précedemment.

155

A. RÉSUMÉ EN FRANÇAIS

Le chapter 6 se focalise sur l’analyse et l’estimation des performances des sys-
tèmes modélisés en utilisant les concepts proposés dans les chapitres 4 et 5. Après une
description du langage SystemC et de la manière avec laquelle il gère la concurrence,
le chapitre présente un simulateur développé en SystemC qui permet de simuler
les modèles UML DIPLODOCUS et d’en extraire des métriques de performances
(latence, débit, utilisation, contention sur les resources patagées, ...) ainsi que des
graphiques au format VCD qui illustrent l’évolution de l’exécution de l’application sur
l’architecture. Le simulateur permet aussi l’utilisation des observateurs, développés
(en C++), par l’utilisateur pourétudier l’exécution d’une partie de l’application. Par
exemple, un observateur peut calculer le tempsécoulé entre la réception des données
et le traitement de ces derniers par une tâche ou encore le temps d’ecxcution de deux
tâches, etc.

Le dernier chapitre, chapter 7 est dédié à la validation de l’approche de mod-
élisation proposée. Il représente la contribution au niveau expérimental de la thèse
par application des concepts développés à un système de communication LTE. Après
une bréve description du protocole LTE et des défits qu’il impose au niveau de la
conception mais surtout aux niveaux du débit et de la puissance de traitement, ce
chapitre décrit la modélisation du système. L’application considérée est la couche
physique de LTE. L’architecture est UN DSP à six coeur communiquant via une
matrice et une hiérarchie mémoire à trois niveaux: cache, mémoire sur la puce, et
mémoire à l’extérieur accessible via un bus. Le mapping contient des politiques
d’ordonnencements et d’arbitrage d’accès aux ressources. Ensuite, le chapitre présente
les résultats de simulation, notamment les métriques de performances comme définis
dans le chapitre 6, et des paramètres extraits grâce aux observateurs (comme le délai
nécessaire au traitement d’un paquet LTE reĉu par la couche physique). Ces paramètres
sont comparés avec l’implémentation réelle de la plateforme LTE.

A.2 Complexité de la conception des systèmes sur
puces

Un système sur puce (SoC) intègre des composantes logiciels et matériels et il est
conçu pour fournir des fonctionnalités spécifiques à l’environnement [40], [53]. Le
système doit être capable de réagir à des stimuli en continu et avec le comporte-
ment souhaité par le concepteur, c’est à dire, en satisfaisant des contraintes de temps
d’exécution, de la consommation d’énergie, et du coût. Tels systèmes sont de plus
en plus complexes et hétérogènes. La mise en oeuvre des SoC pour les applications
modernes dans les différents domaines partage les tendances suivantes:

156

Figure A.2: Le DSP multi-coeur Freescale pour la couche physique du protocole LTE

1. Les nouvelles fonctionnalités et services à ajoutée conduisent à l’augmentation
de traitement et les exigences de communication.

2. Les normes sont introduites plus rapidement et deviennent plus sophistiquées.
Ceci exige une flexibilité accrue de la mise en oeuvre des SoC pour introduire
els systèmes plus rapidement aux marchés.

3. La ré-utilisation des composants développés est augmenté, afin de raccourcir les
délais de commercialisation et de réduire les coûts de production.

4. Pour les périphériques mobiles et les capteurs, une taille réduite et un meilleur
rendement énergétique deviennent des facteurs de coût qui aident à la différen-
ciation des produits.

En fait, la complexité de la conception du système a considérablement augmenté
dans les trois dimensions suivantes:

1. L’hétérogénéité et la complexité de l’architecture matérielle: les nouvelles tech-
nologies de conception et la grande densité d’intégration ont augmenté la puis-
sance de calcul des SoC modernes, ce qui permet à des fonctions encore plus
sophistiquées à être enfouis dans des puces de plus en plus petites. Un SoC
moderne peut intégrer des processeurs à usage général (GPP), des processeurs
dédiés (ASIP), des topologies de communication différentes, une hiérarchie mé-
moire plus complexe, d’entrée différente et dispositifs de sortie ... Le Freescale
DSPMSC8156 (figure A.2) est un bon exemple d’une telle architecture.

157

A. RÉSUMÉ EN FRANÇAIS

2. l’hétérogénéité et la complexité du logiciel embarqué: Comme la puissance de
calcul des systèmes sur puce grandisse, des fonctionnalités plus avancées sont
introduites. Le développement logiciel consomme actuellement une grande par-
tie du budget de mise en oeuvre des SoC. Par exemple, plus d’un million de
lignes de code sont intégrées aujourd’hui dans un téléphone mobile [69]. En
contraste avec les systèmes logiciels traditionnels où le processus d’abstraction
laisse de côté tous les aspects matériels du système et que seuls les aspects fonc-
tionnels du code comptent, le logiciel embarqué est plus couplée à l’architecture
matérielle ce qui limite la réutilisation du code, lorsque les spécifications du
systèmeévoluent. En outre, des applications hétérogènes partagent la même ar-
chitecture matérielle: par exemple, l’architecture matérielle d’un téléphone mo-
bile doit être capable de gérer simultanément les appels vocaux et l’échange de
données, tout en traitement des tâches complexe de traitement d’images comme
la capture vidéo. Cette hétérogénéité augmente la complexité du partage des
ressources et de l’optimisation de la conception.

3. La complexité de l’intégration: Au cours de la phase d’intégration, des com-
posants logiciels et matériels sont intégrés afin de créer le SoC. Comme ces
composants sont généralement développés par des équipes différentes et parfois
dans des pays différents (et / ou par des sociétés différentes), cette phase est
d’une extrême complexité [41]. Le travail requis pour la vérification et la modi-
fication au cours de cette phase est couteux et nécessite beaucoup de temps.

A.3 Flot de conception d’un système sur puce

La conception d’un système sur puce est un processus itératif, qui vise la mise en oeu-
vre d’un produit basé sur les spécifications du client. Un flot de conception du système
sur puce est une succession d’étapes d’améliorations et d’optimisations pour aboutir
à la conception du système. Chaque étape du flot se décompose en la modélisation et
/ ou la mise en oeuvre, la vérification et l’intégration des matériels et logiciels. Un
flot idéal commence par une phase de description de haut niveau de la fonctionnalité
et de l’architecture. Le concepteur s’attend à ce que le flux de conception de SoC lui
permette de:

1. Ré-utiliser le code existant et les modèles développés pour les produits précé-
dents pour accélérer le cycle de conception. Il faut noter que, généralement,
les nouveaux produits sont uneévolution des produits existants et rarement une
révolution. Par conséquent, la réutilisation des conceptions peuvent entraîner
des réductions considérables du facteur coût.

158

2. Identifier les décisions de conception le plus tôt possible dans le flot de con-
ception. Les modifications dans les phases ultérieures de conception sont coû-
teuses. Pour cela, le fait de trouver les goulets d’étranglement et d’estimer les
performances du système tôt permettent de réduire le coût de la conception et à
augmenter la productivité.

3. Fournir un produit fonctionnel, qui satisfait les exigences des clients. Ainsi, le
processus adopté pour la vérification et la validation doitêtre correct et précis
afin d’aboutir au produit exigé.

La spécification de la conception à chaque étape doit couvrir les spécifications de
la fonctionnalité et de l’architecture du système. Actuellement, il n’ya pas un langage
ou un format standard pour la spécification de la conception. En plus de la spécifi-
cation, chaque niveau du flot de conception des SoC devrait définir des méthodes de
vérification et de validation pour vérifier la satisfaction de la conception aux exigences.

Langages de spécifications

Plusieurs langages de programmation et de paradigmes de modélisation sont utilisés
pour spécifier les fonctionnalités d’un SoC. Bien que le logiciel embarqué est générale-
ment écrit en C, la fonctionnalité pourrait être décrite avec un paradigme différent: elle
pourrait être directementécrites en C ou spécifiée en utilisant les langages synchrones
comme Esterel [21], Lustre/SCADE [39], Signal [19], à partir de laquelle certains
outils peuvent générer automatiquement du code en C et de vérifier formellement le
système. Plus récemment, UML est proposé pour permettre la spécification des ap-
plications très complexes en fournissant un large éventail de constructions de langage.
En outre UML a l’avantage d’être indépendant de l’implémentation [58][56].

Pour la conception de l’architecture matérielle, la conception au niveau système
revient à n’importe quel niveau d’abstraction qui est au-dessus du niveau de transfert
de registre (RTL). La modélisation au niveau transaction (TLM) [37], la modélisation
comportementale, algorithmique, et fonctionnelle sont des termes souvent utilisés pour
indiquer des niveaux plus élevés d’abstraction dans la conception du matériel. En
raison de sa popularité et son efficacité, le langage de programmation C et ses langues
dérivées gagnent du marché. De nombreuses approches et outils proposent la synthèse
de code C en code RTL; Catapult C (Mentor) [38], Handel-C [26] sont des exemples
bien connus de ces approches et d’outils. En outre, de nouvelles approches basées
sur UML visent la modélisation du matériel et du logiciel des SoC. Où le code de
simulation, la spécification de vérification formelle ou un code de synthèse peuvent
être générée des modèles UML de haut niveau; Gaspard2 [18] [56], Koski cite Kangas,
ainsi que la méthodologie Diplodocus décrite et étendue dans cette thèse [14][45].

159

A. RÉSUMÉ EN FRANÇAIS

Idéalement, un langage de spécification devrait couvrir plusieurs nombreux
niveaux d’abstraction de sorte qu’il peut être utilisé tout au long du processus de con-
ception.

Vérification et Validation

La phase de vérification et validation est une phase du développement du système, qui
est effectué aux différents niveaux d’abstraction et où le logiciel et le matériel sont
analysés pour vérifier qu’ils remplissent les propriétés et exigences souhaitées. Les
techniques les plus courantes pour la validation et la vérification de conception sont
la simulation et la vérification formelle. Bien que la simulation permet l’évaluation
des systèmes complexes, la vérification formelle est un processus pour vérifier si un
système satisfait une propriété donnée en vertu de toutes les entrées possibles, et
elle est appliquée aux systèmes avec des contraintes critiques de surêté pour garan-
tir l’exactitude.

A.3.1 Les étapes d’un flot de conception

La figure A.3 montre un flot typique de conception de SoC. Il commence à partir de la
spécification du client et aboutit après diverses améliorations à un produit, idéalement
prêt pour le marché. A partir des spécifications du client, les concepteurs expérimentés
déduisent les exigences de conception et définissent un premier projet de la spécifica-
tion du système. Puis, à travers trois étapes principales, la conception va évoluer de la
spécification du client à un modèle au niveau système qui par le prototypage virtuel et
une analyse plus approfondie aboutira au produit final avec la phase de prototypage.
Dans chaque étape, le logiciel et le matériel sont pas idéalement développé/modélisé
en parallèle et une étape d’intégration permet d’évaluer les progrès de la conception et
la satisfaction aux exigences.

A.3.2 Conception au niveau système

Les approches pour élever le niveau de l’abstraction de la conception des SoC sont
appelés ”méthodologies de conception au niveau système”. Leur objectif est d’aider
les concepteurs à prendre et à valider les décisions de conception à un stade précoce
de la conception du système. Ils permettent aux concepteurs de modéliser, de simuler,
d’explorer, de vérifier et d’affiner une conception du système .Certains frameworks,
en outre, fournissent un flot de conception en intégrant un ensemble de raffinements
pour transformer un modèle au niveau système à une implémentation. Ptolemy [23],
Artemis [66], CoFluent Studio [29], Metropolis [16], Koski [47], Design Space Ex-
plorer (DSX) [57], Platform Architect (CoWare) [77], SoC Designer (ARM - Carbon

160

Figure A.3: Flot de conception pour les systèmes sur puces

161

A. RÉSUMÉ EN FRANÇAIS

Design Systems) [25] et beaucoup d’autres sont des exemples bien connus de frame-
work et d’outils de conception au niveau système.

La plupart de ces approches adoptent une séparation claire entre la modélisation de
l’application et celle de l’architecture. Ainsi, une phase de mapping est nécessaire pour
intégrer les deux modèles et pour définir l’exécution de l’application sur l’architecture.
Après la phase de mapping, le système estévalué afin de vérifier s’il répond aux exi-
gences de conception. Cette phase est appelée: l’exploration de l’espace de conception.
Son objectif est de trouver un modèle optimal qui correspond aux exigences. Les choix
de conception comme le nombre de processeur nécessaires ou combien de mémoires
on-chip et off-chip sont nécessaires, sont idéalement prises à ce stade. Dans la figure
A.3, la conception au niveau système est la premièreétape après la spécification du
système basé sur les spécifications du client. L’application et l’architecture sont mod-
élisées d’abord, puis leur mapping et la phase d’exploration de l’espace de conception.
En se basant sur la validation et le test du système au cours de cette exploration, le
concepteur peut modifier ses modèles. Notre thèse se situe Ã ce niveau d’abstraction.

A.3.3 Prototypage virtuel

Le prototypage virtuel est la deuxième étape principale dans le processus de développe-
ment d’un SoC. Son objectif est de valider une conception donnée avant de s’engager à
faire un prototype physique. En fait, le processus de conception souffre de problèmes
de productivité dus à l’effort nécessaire pour vérifier et valider le système. La vérifica-
tion du système est généralement effectuée à un niveau intermédiaire jusqu’à un faible
niveau d’abstraction: les implémentations des prototypes logicielles au niveau des
transactions et des modèles de l’architecture matérielle au niveau transfert de registres.
Le prototypage rapide virtuel participe à la validation du système et à l’identification
des goulots d’étranglement potentiels dans l’implémentation qui ne pouvaient pas être
facilement identifiés dans l’étape précédente. Un prototype virtuel peut démontrer aux
clients la faisabilité et de montrer l’évolution des technologies possibles, et donc de
manière significative réduire le temps de mise sur le marché.

La modélisation au niveau transactionnel (TLM [37]) est très utilisée pour créer
des prototypes virtuels. Cette étape intervient juste après l’étape de conception au
niveau du système. Le code est plus mature et le concepteur peut faire une analyse
plus précise. Même si, le temps de simulation est nettement plusélevé que lors de la
conception au niveau système.

A.3.4 Prototypage

Le prototypage correspond à l’intégration du logiciel optimisé lors de l’étape de con-
ception précédente sur le matériel du produit final ou sur une plateforme FPGA qui

162

correspond au matériel réel. Les derniers tests de vérification et de validation prépar-
ent pour l’étape finale de la conception de SoC correspondant à la création des masques
matériels qui seront la base de la production en silicium du SoC. à cette étape du flot
de conception, il est très coûteux de faire des changements de conception. Par con-
séquent, la grande majorité des outils et des approches tentent de valider le système
lors des étapes précédentes.

A.4 Contributions de la thèse

A.4.1 Contrôle des ressources partagées: Le ”virtual node”

Le ”noeud virtuel” (VN pour Virtual node en anglais) est défini comme un composant
générique de modélisation qui contrôle l’accès à une ressource en mettant en oeuvre
une politique d’accès. il alloue la ressource contrôlée à un demandeur, par exemple,
le VN d’un CPU alloue le CPU à une tâche qui est prête à s’exécuter, ou le VN d’un
bus alloue la bande passante du bus à un CPU qui tente d’accéder à la mémoire ou à
d’autres noeuds de l’architecture qui sont connectés au bus. Le noeud virtuel dispose
d’une sémantique d’exécution en troisétapes:

1. Il attend les requêtes des ressources. Le VN les stocke dans une file d’attente.

2. Il sélectionne une requête en fonction de sa politique d’accès. Après
l’écoulement d’un délai (le context switch), la ressource est allouée au deman-
deur.

3. Il attend que soit la demande sélectionnée termine son exécution ou qu’une nou-
velle requête soit arrivée pour réévaluer l’allocation (étape 1).

Le noeud virtuel a un type qu’il hérite du type de la ressource qu’il contrôle. Par
conséquent, un noeud virtuel pourraitêtre un VN d’exécution, de communication ou
de stockage. En contrôlant une ressource partagée, le noeud virtuel divise la ressource
entre les demandeurs, comme s’il crée une ressource virtuelle pour chacun d’eux.
Cette fonction de vitalisation permette la définition des classes de politique d’accès,
par exemple, un noeud d’exécution peutêtre virtuellement allouée à deux requêtes
distinctes en utilisant une politique d’accès de partage du temps,ou plusieurs noeuds
d’exécution peuventêtre regroupées en une seule ressource virtuelle dans un scénario
d’ordonnancement dynamique. Pour contrôler les deux types de ressources (physiques
et virtuels), il ya deux catégories de noeuds virtuels: le noeud virtuel local (LocalVN)
qui contrôle l’accès à une ressource physique et le noeud virtuel générique (Gener-

icVN) qui contrôle une ressource virtuelle.

163

A. RÉSUMÉ EN FRANÇAIS

Les GenericVN peuvent être empilés de façon hiérarchique, de telle sorte qu’un
GenericVN peutêtre connecté à un autre GenericVN qui est connecté à un autre Gener-
icVN ou à un LocalVN. Toutefois, un GenericVN pourrait être relié à un seul Lo-
calVN. En outre, chaque ressource matérielle est contrôlée par un et un seul noeud
local virtuel. Pour mieux illustrer ce mécanisme d’empilement, les deux sous-sections
suivantes fournissent deux exemples sur la façon d’utiliser les concepts présentés
ci-dessus sur deux politiques de partage des ressources bien connues: les scénarios
d’ordonnancement hiérarchique et dynamique.

Ordonnancement hiérarchique

Les systèmes embarqués peuvent exécuter en temps réel et simultanément des appli-
cations hétérogènes. Par exemple, dans un téléphone mobile modern, des applications
multimédias comme la vidéo peuvent être exécutées en parallèle avec des applications
de contrôle (protocoles de télécommunication). Ces applications peuvent avoir des ex-
igences spécifiques d’ordonnancement. En outre, l’application d’une seule politique
d’accès à toutes les applications n’est pas la solution optimale [74].

Avec le concept des noeuds virtuels présenté ci-dessus, le concepteur peut utiliser
un empilement hiérarchique de noeuds virtuels pour optimiser le partage des ressources
lorsque des groupes hétérogènes demandent les ressources. Un noeud virtuel princi-
pal contrôle une ressource matérielle et un noeud secondaire contrôle une ressource
virtuelle pour chaque groupe de demandeurs. Cette approche nous permet d’optimiser
les politiques d’accès pour mieux répondre aux exigences de tous les groupes. Cette
composition hiérarchique de noeuds virtuels peut être utilisée pour le partage des
ressources de l’exécution, de la communication et du stockage.

La partie gauche de la figure A.4 montre un exemple d’un ordonnancement hiérar-
chique de deux classes d’applications : "App1" est contrôlée à l’aide d’une politique
”round robin” alors que "App2" est contrôlée par une politique basée sur la priorité.
Le CPU est partagée entre les deux applications par une politique de partage du temps
(”time sharing”) mise en oeuvre par le VN principale (LocalVN),VN4CPU. Il alloue
un intervalle du temps CPU à chacune des deux applications. Les noeuds virtuels
génériques VN4App1 etVN4App2, en contrôlant respectivement les requêtes provi-
ennent des App1 et App2, allouent le temps d’exécution disponibles (un intervalle de
temps) à une ou plusieurs tâches selon la politique d’accès.

La partie droite de la figure A.4 montre un scénario d’exécution de ce modèle
d’ordonnancement hiérarchique. Le temps CPU est divisé en périodes ”P”, en utilisant
la politique ”Time Sharing” du noeud local virtuel. Dans cet exemple, chaque applica-
tion obtient la moitié du temps du CPU. Les noeuds virtuels génériques choisissent les
tâches des applications qui vont s’exécuter pendant l’intervalle d’exécution disponible.

164

Figure A.4: Un simple exemple d’ordonnacement hiérarchique

Ordonnancement dynamique

Dans les SoC modernes, il est fréquent de trouver des processeurs multi-noyau et/ou
des ressources de calcul multiples. Pour optimiser l’utilisation de ces ressources,
des techniques d’ordonnancement dynamiques sont généralement utilisées. Toutes
les tâches sont en compétition pour s’exécution sur tous les processeurs et un ordon-
nanceur global contrôle l’ensemble des coeurs disponibles (une ressource virtuelle) et
expédie les tâches prêtes sur les noyaux disponibles en appliquant sa politique d’accè.
Chacun des noyaux locaux est contrôlé par un noeud local virtuel.

La Figure A.5 montre un exemple d’un noeud virtuel global (GlobalVN) qui est ex-
pédie les tâches de l’application (T1 ... T5) sur deux noeuds virtuels local (VN4Core1
et VN4Core2), chacun d’entre eux contrôle un noyau d’exécution (Core1 et Core2
respectivement). Le noeud virtuel global utilise une politique d’accès ” le moins
utilisé”, où il expédie dynamiquement les requêtes entrantes provenant des tâches de
l’application vers le noyau le moins utilisé. Le diagramme de temps sur la partie droite
de la figure montre l’exécution dynamique des tâches sur les noyaux. T1 est d’abord
exécuté sur Core1 mais pendant sa deuxième exécution elle aété exécutée sur Core2,
quiétait disponible alors que Core1 a été en train d’exécution T3.

165

A. RÉSUMÉ EN FRANÇAIS

Figure A.5: Un simple exemple d’ordonnacement dynamique

A.4.2 Modèle d’interaction des noeuds d’architecture Interaction
communication: ”les motifs de communication”

L’exécution de l’application sur l’architecture induit deséchanges de données entre les
noeuds de l’architecture. Nous distinguons deux types de communication:

• Les communications explicites: dues à la communication entre les tâches map-
pés à différents noeuds de calcul. Par conséquent, par l’intermédiaire d’un mes-
sageéchangé la mémoire partagée induit deux communications explicites: un
pour l’écriture dans la mémoire partagée (par le noeud d’envoi) et l’autre pour
la lecture de la mémoire (par le noeud de réception).

• Les communications implicites: représentent des données et des instructions
qui sont lues/écrites de la mémoire (partagée ou privée) au cours de l’exécution
d’une tâche.

Lorsqu’un noeud d’exécution effectue unn transfert de données (implicite ou ex-
plicite) à une mémoire, le protocole de communication est le même pour toutes les
applications (ou les tâches de l’application). Le coût de la communication dépend de:
1) la quantité de données à transférer, 2) la mémoire de destination et 3) l’ensemble
des noeuds de communication qui porteront ces données à partir du noeud d’exécution
à la mémoire. Au cours de ce transfert de données, le noeud d’exécution peut com-
mencer l’exécution d’une autre tâche tout en effectuant le transfert de données de-
mandé par la précédente. Par exemple, dans un contexte de transfert de données DMA,
le noeud d’exécution programme le DMA pour le transfert de données et exécute une

166

Figure A.6: Un simple exemple de motif de communication

autre tâche. Nous appelons ”le comportement de communication de l’architecture”,
la séquence d’opérations de communication nécessaires pour compléter un transfert
de données à partir d’un noeud de calcul à un noeud de stockage et impliquant un ou
plusieurs noeuds de communication (DMA, Bus ...). Il convient de noter que différents
mécanismes peuvent co-exister dans une architecture pour assurer la connexion entre
un noeud de calcul et un noeud de stockage. Dans les systèmes embarqués modernes,
les normes de communication sont utilisés pour définir l’ensemble des interactions
à effectuer pour compléter un transfert de données: PCI Express [65], AMBA bus
[15] et Avalon [13] sont des exemples de ces normes de communications. Notre ob-
jectif dans Diplodocus n’est pas de modéliser ces normes dans les détails et à faible
niveau d’abstraction, mais plutôt de saisir l’influence de l’interaction de communica-
tion sur la performance du système dans son ensemble tout en préservant le haut niveau
d’abstraction.

Gardant à l’esprit, l’objectif de séparer les concepts de l’exécution et de la commu-
nication, nous devons donner les moyens de modéliser efficacement ”le comportement
de communication de l’architecture” pour capturer son influence sur les performances
du système global. Pour résoudre ce problème, nous introduisons le concept de ”mo-
tifs communication”, qui définit un scénario de communication qui assure le transfert
de données entre un noeud d’exécution et un noeud de stockage. Il convient de définir
tous leséchanges (interactions) entre les noeuds nécessaires (processeurs, bus, des mé-
moires ...) impliquées dans ce scénario. Un diagramme de séquence UML est tradi-
tionnellement utilisé pour représenter ce genre de comportement. Nous avons étendu
le diagramme de séquence UML traditionnel pour modéliser les scénarios de commu-
nication. Un simple exemple d’un motif de communication est illustré à la figure A.6.
Où chacun des lignes verticales (lignes de vie dans la notation UML) représente un
noeud d’architecture, et chaque flèche représente unéchange de messages entre deux
noeuds d’architecture.

167

A. RÉSUMÉ EN FRANÇAIS

A.4.3 Comparaison des résultats de simulation aux résultats réels
d’implémentation

L’exécution du code réel LTE de la couche physique sur la plate-forme Freescale DSP
est utilisé comme une référence pour la validation de notre approche. Les résultats
sont rapportés dans le tableau A.7. Ce tableau confirme l’exactitude de nos modèles.
Il indique pour chaque groupe de tâches les MCPS mesurées (millions de cycles par
seconde) consommés pour accomplir son exécution. L’approche présentée dans ce
travail de thèse a prouvé sa précision en affichant un taux d’erreur inférieur à 10%.
Ainsi, le concepteur peut être confiant des résultats de la modélisation.

Figure A.7: Les paramètres de performance des tâches LTE

En plus du nombre total de MCPS, le tableau ci-dessus fournit aussi une compara-
ison du nombre de MCPS consommées pour accéder à la mémoire (Memory MCPS).
Cette métrique représente le nombre total de cycles consommés lorsque les tâches de
l’application ont échangé de données ou lorsqu’elles étaient bloquées pendant un acc
ès à la cache. La derni ère métrique dans ce tableau est le ”Core MCPS” qui représente
le nombre total de cycles consommés par les ressources d’exécution pour exécuter les
tâches de l’application, mais sans le co ût de communication.

A.5 Conclusions et perspectives

Cette thèse a commencé avec l’affirmation que la conception au niveau système et
l’analyse à haut niveau d’abstraction est la solution face à la complexité croissante des
SoC modernes. L’abstraction, en masquant certains aspects de la conception, aide le
concepteur à ne considérer que ceux qui l’aident à prendre des décisions tôt dans le
flot de la conception. L’abstraction couplée avec la modélisation permet de réduire la

168

complexité et d’analyser rapidement le système. Cependant, le défi reste de garder la
précision des résultats de l’analyse.

Cette thèse a présenté nos contributions pour développer une méthodologie de con-
ception au niveau du système pour l’estimation des performances des SoC. Ces contri-
butions sont à la fois au niveau méthodologie et au niveau outils. Il s’agit notamment
de la définition des concepts de modélisation avec des méta-modèles UML et leur inté-
gration dans Diplodocus, qui est une méthodologie développée par Télécom ParisTech.
Nous avons aussi développé un environnement de simulation SystemC pour analyser
les modèles UML. La validation de l’approche proposée est faite grâce à la modélisa-
tion d’un cas d’utilisation industriel.

Tout d’abord, de nouveaux composants de modélisation UML ont été définis, les
motifs de communication, afin d’assurer la séparation des concepts de l’exécution et
de la communication. Ils permettent la modélisation des interactions de communi-
cation entre les ressources de l’architecture pour délivrer (lire ou écrire) des données
de l’application aux des ressources de stockage. Deuxièmement, les noeuds virtuels
ontété définis pourévaluer l’impact des ressources partagées sur les performances glob-
ales du système, ils permettent la modélisation des politiques d’accès qui contrôlent les
ressources partagées.

Bien que la modélisation UML Diplodocus à haut niveau est utilisé pour mod-
éliser le système, un environnement de simulation SystemC est utilisé pour analyser
les performances. Les modèles UML sont transformés en code SystemC qui capturent
le comportement concurrentiel et temporel des modèles et de les utiliser pour extraire
des mesures de performance telles que les latences et le débit de bout en bout. La
simulation proposée est plus rapide que l’exécution en temps réel.

Même si l’approche de modélisation proposée vise la conception du système
à un niveauélevé d’abstraction, les contributions présentées démontrent des résul-
tats prometteurs et la comparaison des résultats de la modélisation/simulation avec
l’implémentation réelle a confirmé l’efficacité et la précision de notre approche.

Perspectives

Estimation de la consummation de l’énergie. L’environnement de simulation
présenté dans cette thèse est principalement dédié à l’extraction des mesures de
performance temporelles comme l’utilisation des ressources de l’architecture qui cor-
respond au ratio entre nombre de cycles exécutés et le nombre de cycles d’inactivité.
En prenant en considération cette mesure, le concepteur peut estimer la consommation
d’énergie du système. En fait, les concepteurs ont quelques bonnes estimations
sur la consommation d’énergie d’une ressource (un processeur par exemple) pour
exécuter un cycle, ainsi que de l’énergie consommée lorsque le noeud est inactif. Par
conséquent, il est possible d’obtenir quelques estimations d’énergie pour les modèle
Diplodocus. En outre, comme les noeuds virtuels peuvent facilement mettre en oeuvre

169

A. RÉSUMÉ EN FRANÇAIS

de nouvelles politiques d’accès, on peut imaginer que certaines politiques d’accès qui
visent la réduction de la consommation seront modélisées et utilisés dans les modèles
DIPLDOOCUS.

Transformation de modèles et d’échange avec d’autres profils standard UML.
Diplodocus est un profil UML qui étend UML pour la modélisation des SoC à un
niveauélevé d’abstraction. Il est livré avec une trousse à outils (TTooL[63]) qui permet
la génération des modèles UML de code de simulation (C + + et SystemC code) et
de spécifications formelles (LOTOS et UPPAAL). Toutefois, Diplodocus n’est pas le
seul profil UML qui cible la modélisation des SoC, et d’autres profils, et en particulier
le profil OMG Marte, ont un objectif similaire. Certaines initiatives, telles que
openembedd[62], tentent de définir un flot de conception complet à partir de modèles
haut niveau Marte pour arriver à l’impléméntation. Ainsi, un éventuel renforcement
de l’environnement Diplodocus UML sera d’utiliser des outils de transformations
de modèles (comme Kermeta[60]) afin de transformer les modèles diplodocus en
modèles UML Marte (ou d’autres profils UML) permettant ainsi l’utilisation de leur
outils dédiés. Les transformations peuventêtre fait dans les deux sens, ainsi les autres
profils UML peuvent ré-utiliser l’environnement de Diplodocus.

L’intégration dans un flot de conception. La transformation du modèle permet
la transformation, en s’appuyant sur une hypothèse spécifique (abstraction de cer-
tains aspects du système par exemple) des modèles vers d’autres modèles qui met-
tent l’accent sur d’autres aspects de la conception. Le processus de transformation
peutêtre bien aussi à partir de modèles au niveau système vers un niveau inférieur de
l’abstraction. Dans le contexte Diplodocus, cette transformation consiste tout d’abord
à enrichir les modèles diplodocus avec les détails de niveau inférieur, elle pourraitêtre
faite sur plusieursétapes et sans forcementêtre complètement automatique. Le concep-
teur peut utiliser des bibliothèques prédéfinies (RTL ou libraires TLM). Ainsi, perme-
ttant l’intégration de Diplodocus dans un flot de conception SoC.

170

	Contents
	List of Figures
	Introduction
	Thesis Context
	Thesis Contributions
	Thesis Layout

	I PhD Domain Overview and State of the Art
	System-on-Chip Design and Application Domains
	Introduction
	LTE Standard for Mobile Communication: Higher Complexity for better quality of services
	A SoC example for LTE implementation
	System on Chip Design Complexity
	System on Chip design flow
	SoC Design flow steps
	System Level Design
	Virtual prototyping
	Prototyping

	Summary

	System Level Design: Models, Methodologies and Trends
	Introduction
	System Level Design: Concepts and Objectives
	Modeling and abstraction
	Separation of concerns
	Design Space Exploration

	System Level Specification Languages
	C/C++ based design languages
	Synchronous Languages
	UML: Unified Modeling Language
	Matlab/Simulink
	Discussion

	Survey of some Existing System Level Design Methodologies
	DIPLODOCUS and Extensions: Yet Another System Level Design Methodology for Early Design Analysis
	Modeling Approach
	UML for SoC Modeling
	Shared Resources Contentions Modeling
	Communication Modeling

	Summary

	II PhD Contributions
	Architecture and Application Modeling
	UML the Unified Modeling Language: Models, Metamodels and Profiles
	Application Modeling
	Application Structure Task Model
	Application Structure Component Model
	Application Behavior Model

	Architecture Modeling
	Architecture Resources Model
	Architecture Communication Interaction Model: ``Communication Patterns''

	Summary

	System Mapping Modeling
	Mapping motivational example
	Shared Resources Modeling
	Resource definition
	Shared Resources' Control: The ``Virtual Node''
	Virtual Node vs Real Implementation

	Execution Allocation
	Storage Allocation
	Communication Management Modeling
	Mapping Validation
	Mapping overall scenario
	System Mapping Example
	Summary

	Models Simulation for Performance Analysis
	Introduction
	State of the Art on SystemC
	System's Design in SystemC
	Concurrency
	SystemC Simulation Kernel

	A SystemC Simulation Environment for DIPLODOCUS models
	DIPLODOCUS SystemC simulator concurrency
	System's Timing: From DIPLODOCUS commands to physical time
	Simulation's Timing semantics and Interruptions Support
	The simulator in a nutshell

	Performance Monitoring
	Simulator Default monitoring
	Personalized Performance Metrics: Observers

	Summary

	III Approach's Validation
	Use Case Study: SoC Modeling for LTE Base Station
	LTE: The Long Term Evolution Standard
	Overall LTE Network Architecture
	Key Technologies of the 3GPP LTE Air Interface
	LTE Radio Link Protocol Layers

	Use Case Modeling
	Scope of the use case
	Application Model: LTE Physical Layer
	Architecture Model: Freescale MSC8156 Multi-Core DSP
	Mapping Model

	Use case analysis
	Application Execution Performance Metrics
	Comparison of simulation results to real implementation results

	Use case study conclusion

	Conclusions and Perspectives
	Bibliography
	Résumé en français
	Introduction
	Contributions de la thèse
	Plan de la thèse

	Complexité de la conception des systèmes sur puces
	Flot de conception d'un système sur puce
	Les étapes d'un flot de conception
	Conception au niveau système
	Prototypage virtuel
	Prototypage

	Contributions de la thèse
	Contrôle des ressources partagées: Le ''virtual node''
	 Modèle d'interaction des noeuds d'architecture Interaction communication: ''les motifs de communication''
	Comparaison des résultats de simulation aux résultats réels d'implémentation

	Conclusions et perspectives

