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Abstract

Stimulated Raman scattering (SRS) is studied in plasmas relevant to
inertial confinement fusion (ICF) experiments. The excitation of au-
toresonant Langmuir waves in inhomogeneous plasmas is investigated
as a mechanism for the enhancement of SRS in the kinetic regime
(kLλD > 0.25). It is shown that weakly kinetic effects like electron
trapping, described via an amplitude-dependent frequency shift, may
compensate the dephasing of the three-wave resonance of SRS that
normally occurs in inhomogeneous plasmas. Under conditions rele-
vant to current and future ICF experiments (National Ignition Facil-
ity, Laser Mégajoule), a simple analytical model is found to predict
to good accuracy the observed growth, saturation and phase of Lang-
muir waves, in both three-wave coupling and kinetic (particle-in-cell)
simulations. Through autoresonance, observed SRS levels far exceed
the spatial amplification expected from Rosenbluth’s model in an in-
homogeneous profile [M. N. Rosenbluth, Phys. Rev. Lett. 29, 565
(1972)]. A potential application of autoresonance is proposed in the
form of a Raman amplifier.

La diffusion Raman Stimulée (DRS) est étudiée dans le contexte des
plasmas qui sont pertinents pour la Fusion par Confinement Inertielle
(FCI). Dans un plasma inhomogène le processus d’auto-résonance de
l’onde Langmuir, générée par DRS, peut se produire dans le régime
cinétique (kLλD > 0.25) et conduire à des amplitudes au delà du
niveau de l’amplification attendue due à l’inhomogénéité selon Rosen-
bluth [M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)]. On
démontre que des effets cinétiques faibles, comme le piégeage d’électrons
donnent lieu à un décalage de fréquence non-linéaire (dépendant de
l’amplitude), et peuvent compenser le déphasage de la résonance de
DRS des trois ondes, observé dans les plasmas inhomogènes. Un
modèle analytique du processus d’auto-résonance décrivant à la fois
la croissance, la saturation et la phase des ondes de Langmuir a été
développé. Ce modèle est en excellent accord avec les résultats des
simulations cinétiques (particle-in-cell) pour des paramètres proches
des conditions des plasmas des expériences de la fusion laser (Laser
Mégajoule, National Ignition Facility). Une application possible de
l’autorésonance est proposée sous la forme d’un amplificateur de Ra-
man.
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Overview

This thesis summarises a study of the impact of spatial autoresonance on the evo-
lution of stimulated Raman scattering in warm plasmas. Due to the high light
intensities encountered and the small temporal and spatial scales over which
inertial confinement fusion experiments are conducted, directly observing the
inner workings of laser-plasma interactions under such conditions is rarely possi-
ble. Various diagnostics present pieces of information that, when taken together,
present a picture that is at best incomplete. Much of the physics responsible
for experimental observations is poorly understood, but with the arrival of ever
higher-powered lasers and improved engineering techniques, progress in the field
of inertial confinement fusion is perhaps faster now than ever.

Kinetic simulations that model the behaviour of individual particles in plas-
mas provide a means to test our understanding of laser-plasma interaction and
offer the possibility of guiding experimental work down fruitful avenues. How-
ever, even these computational results frequently remain difficult to interpret.
Reduced models that strip away less important physical phenomena allow a con-
crete understanding of the key processes responsible for the behaviour of laser
light in plasma. While not intended as models of real experiments, they offer
invaluable insight into the relevant physics.

This thesis uses various models to demonstrate the possibility of autores-
onance in plasmas. With a few relatively simple equations, the behaviour of
complex kinetic simulations is reproduced, reflecting a good understanding of the
important physical process at work. This thesis is organised in the following way:

Chapter 1
The context of this thesis is presented. The importance of stimulated Ra-
man scattering in current ICF experiments is described, in addition to other
relevant wave interactions present in warm plasmas.

Chapter 2
The equations necessary to described stimulated Raman scattering and au-
toresonance in plasmas are derived.

Chapter 3
Autoresonance is demonstrated using Langmuir waves driven by a pre-
scribed ponderomotive force. A Hamiltonian approach is taken to explain
the key features of autoresonance.



Chapter 4
Autoresonance is demonstrated in three-wave coupling simulations in linear
and parabolic density profiles. Autoresonance is discussed in the context of
a Raman amplifier.

Chapter 5
The plasma reflectivity in density profiles that increase in the direction of
the high-frequency laser propagation is compared to the plasma reflectivity
in those that decrease in the same direction. Reflectivity enhancement due
to autoresonance is observed in kinetic simulations, and the results of kinetic
and fluid simulations are compared.

Chapter 6
The findings of this thesis are summarised and future work discussed.
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Chapter 1

Introduction to LPI and
autoresonance

1.1 Laser plasma interaction

Laser plasma interaction (LPI) describes the wide array of physical processes that
may take place as an intense electromagnetic wave propagates through plasma.
The electromagnetic waves may modify the plasma, driving matter waves and
reshaping the fluid-like distribution of ions and electrons that make up the plasma.
These changes in the plasma may then in turn alter the laser light, redirecting,
scattering or absorbing it, often leading to complex nonlinear phenomena.

Interaction between laser light and plasma arises in countless experiments
and industrial applications, either by design or to the detriment of the task at
hand. One field in which LPI plays both the role of hero and villain is inertial
confinement fusion (ICF): In laser-driven ICF schemes, the goal is to deposit laser
energy at a particular density in the plasma in order to drive the compression
and subsequent heating of a target pellet of hydrogen. If the target is compressed
sufficiently, it may undergo fusion, leading to the release of a large amount of
energy. However, the laser may interact with the plasma at a density different to
that which is intended, leading to myriad undesirable effects and preventing the
effective implosion of the target.

1.2 Fusion

The ultimate goal of fusion energy research is to achieve the net gain in energy
that is theoretically possible through the harnessing of the energy released by the
fusion of light nuclei. In order to bring the nuclei sufficiently close together that
they may undergo fusion, it is necessary to overcome the energy barrier posed by

1
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the Coulomb interaction. It is in fact sufficient for the nuclei to have a kinetic
energy that is close but inferior to this barrier, owing to the ability of the nuclei to
undergo quantum tunneling. The likelihood of two nuclei undergoing fusion at a
particular kinetic energy in the centre-of-mass frame is described by their “cross-
section”. This quantity is a useful measure of the viability of a particular fusion
process. The fusion of deuterium (D) and tritium (T) nuclei is known to have a
comparatively large cross-section at realistically achievable kinetic energies, and
releases a significant amount of energy. The mechanism is the following:

D + T −→ α(3.5 MeV) + n(14.1 MeV) (1.1)

where α is the alpha particle and n is the unbound ejected neutron. Other so-
called “advanced” fuel mixtures that when undergoing fusion release energy in
the more practical form of charged particles have been proposed. However, due
to the lower cross-sections of these mixtures at energies that can currently or
foreseeably be practically achieved, all major current ICF experiments use a DT
mixture.

The density, temperature control and symmetry required to fuse nuclei are
dauntingly difficult to realise. The Sun, like all active stars, achieves the necessary
density and confinement of the plasma through its crushing gravitational pressure;
the density and sheer size of the sun provide conditions conducive to the fusion
of an array of elements. These conditions are not reproducible on earth. Nor
indeed would doing so be useful since, at 276.5 Wcm−3, the net energy produced
per unit volume at the core of the Sun is equivalent only to that of a lizard’s
metabolism. The two methods of achieving fusion on earth that have gathered
most research interest and recent funding are magnetic confinement fusion, where
strong magnetic fields are used to balance the fluid pressure of the plasma, and
inertial confinement fusion (ICF), where typically laser energy is used to provide
the necessary compression of the plasma. It is this second method, laser-driven
ICF, that is the method to which the results of this thesis are applicable. Laser-
driven ICF, referred to henceforth in this thesis as simply ICF, may be further
subdivided into two approaches, called simply direct-drive and indirect-drive.

1.3 Direct- and indirect-drive ICF

In direct-drive ICF, a target is directly irradiated by laser light. The laser light is
typically applied in the form of a large number of beams in order to irradiate the
target as symmetrically as possible to ensure the efficient spherical compression
of the target. This method is currently employed on a number of laser facilities,
including the OMEGA laser in Rochester (USA) and the GEKKO/LFEX laser
in Osaka (Japan). At the LULI at École Polytechnqiue (Palaiseau, France),
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Figure 1.1: Cross-section of a hohlraum and target, designed for ignition at the
NIF. Figure adapted from Ref. [1].

Figure 1.2: (a) Simulation of a hohlraum undergoing laser irradiation. The figure
was generated with the radiative hydrodynamics LASNEX code at the NIF. (b)
The fuel pellet undergoing compression with a range of beam energy distributions.
Figure adapted from Ref. [2].
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Figure 1.3: The four stages of target implosion during laser-driven ICF. 1. The
target is irradiated (blue arrows) either directly by laser light or indirectly via
laser-generated x-rays, leading to the formation of a plasma corona. 2. Ablation
of high-temperature surface material (orange arrows), and compression of the
target (purple arrows). 3. The target size decreases rapidly and shock waves
converge at the core. 4. The remaining fuel undergoes fusion, releasing energy.
Figure adapted from Ref. [3].

direct drive experiments are performed in order to study fundamental physics.
The coming PETAL facility will provide the necessary laser intensities to study
a range of direct drive schemes, in particular so-called fast ignition.

The quality and uniformity of the high number of beams required for suffi-
ciently spherical irradiation of the target in direct-drive schemes poses a number
of engineering problems. A potential solution to these obstacles is proposed in
the form of a hohlraum. The hohlraum is a typically cylindrical high-Z metal
(such as gold) cage, with openings at both ends of its principle axis (see Fig. 1.1).
Laser light is then introduced through these openings, irradiating the inner walls
of the hohlraum and heating the metal. The heated walls generate large quanti-
ties of X-rays, with a radiation temperature of around 200 − 300 eV. Although
significantly less efficient than direct drive schemes due to the intermediate in-
teraction of the laser light with the hohlraum before reaching the target (and
the simple geometrical consideration that many X-rays miss the target), the ge-
ometry of the hohlraum may be fine-tuned so as to provide a highly symmetric
target irradiation. Indirect drive fusion is the primary approach to fusion being
investigated at the National Ignition Facility (NIF) in Lawrence Livermore Na-
tional Laboratories (LLNL), USA, and the Laser Mégajoule (LMJ) in Bordeaux,
France. A simulated cross-section of a hohlraum undergoing laser illumination is
shown in Fig. 1.2a, generated with the radiative hydrodynamics LASNEX code
at the NIF. Below (Fig. 1.2b), three figures show the target during implosion
for different beam configurations. The central image of implosion is the most
symmetric and therefore efficient result, producing the highest energy yield.

In both direct and indirect schemes, the eventual mechanism is identical:
Laser light, either directly or indirectly via the walls of the hohlraum, irradiates
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a cryogenically frozen DT pellet, encased in a thin shell of composite materials.
The laser is absorbed at the surface of the target, quickly forming a plasma corona
that surrounds the target. Ablation of the outer layer of the target drives the
compression of the remaining fuel through the rocket-like blow-off of hot surface
material, causing the density of the rapidly shrinking target to increase dramat-
ically. Shock waves then converge at the core of the target, finally producing
the conditions necessary for fusion. The remaining fuel then undergoes fusion,
releasing energy. The stages of implosion are shown in Fig. 1.3.

1.4 LPI in the corona

At the NIF, both direct- and indirect-drive experiments are performed in what is
initially a vacuum. The laser passes therefore from a vacuum through a plasma
of generally increasing density until it is absorbed or scattered out of the plasma.
For driving matter ablatively with laser beams, the preferred mechanism of en-
ergy deposition is inverse bremsstrahlung (commonly referred to as collisional
absorption) near the “critical density” nc, the density at which the laser inter-
acts resonantly with the plasma. Collisional absorption is desirable since the
deposited energy is thermalised locally (important for the precise timing required
for successful ICF), while other absorption or scattering mechanisms typically
drive waves that propagate before thermalising.

Near the critical density, two other classes of energy absorption in addition to
collisional absorption are typically defined: resonance absorption, and scattering
by wave excitation. The oblique incidence of laser light on a plasma with a
density gradient allows for resonance absorption, where the component of the
electromagnetic field parallel to the vector along which the gradient changes is
non-zero (in the maximal case, this is described as p-polarised light), resonantly
driving an electron-plasma wave at a density of nc sin

2 θ, where θ describes the
angle between the wave vector of the incident laser light and the density gradient
vector. Laser light may also drive a variety of electrostatic waves by coupling
to them through the “ponderomotive force”. These couplings are the basis of
parametric instability, and may occur at densities well below nc. Parametric
instabilities, and in particular stimulated Raman scattering, are discussed at
length later in the chapter.

In the 1980s, experiments testing the absorption of laser light were performed
using CO2 lasers, operating with a wave length of λ0 = 10 µm. These CO2 lasers,
such as the Antares laser (Los Alamos, USA) were attractive for a number of
reasons, including their relatively low cost, high efficiency and high repetition rate
of the pulses fired (see Ref. [8]). However, the long wavelength of these lasers meant
that their energy deposition in the plasma was poor; collisional absorption scales
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with λ−2
0 , and, furthermore, unwanted LPI scales with Iλ20. Unwanted LPI may

not only reduce the amount of light reaching the critical density (and therefore
driving the ablation of surface material) by scattering, but it may also generate
hot electrons. While a high target temperature (and therefore kinetic energy)
is ultimately necessary for fusion, a hot target is substantially more difficult
to compress than a cold one. Successful fusion therefore requires an element
of timing, where compression is begun before the target temperature becomes
too high. Hot electrons may propagate deep into the target before thermalising,
raising the temperature and preventing the successful compression of the target (a
process referred to as “pre-heating”). Together, these two effects, poor collisional
absorption and hot electron generation, class CO2 lasers as unsuitable for ICF
(an excellent summary of studies performed with CO2 lasers and their inherent
difficulties is given in Ref. [8]). In experiments, the principle problematic LPI
was deemed to be either backwards stimulated Raman scattering or Raman side
scattering (defined later in the chapter), or a combination of the two [9].

Consequently, many current or planned ICF experiments use Nd:glass lasers
with a fundamental wavelength of 1.057 µm. Experiments performed in the late
1970s and early 1980s using, for example, the Shiva laser system [10] showed per-
sistently high levels of stimulated Raman scattering (in particular, in the plasma
corona at a density of nc/4) in addition to the reduced operating efficiency of
the Nd:glass laser. As a result, laser light from Nd:glass lasers is often dou-
bled or tripled in frequency to 527 or 351 nm. The NIF and LMJ both employ
frequency-tripled Nd:glass laser systems.

Each pellet of fuel allows for a net gain in energy of approximately 100 MJ.
A 1 GW fusion reactor would therefore require 10 pellets per second to be ig-
nited, unachievable using current Nd:glass systems where the repetition rate is
limited to a few shots per hour. The drawbacks of Nd:glass-based laser systems
are sufficiently large that other sources of confinement are sought. Solid-state
pumped-diode KrF lasers, such as the NIKE laser at the Naval Research Labo-
ratory (NRL), have a higher repetition rate and shorter operating wavelength of
248 nm, thus reducing unwanted LPI, although the laser intensities so far achieved
are much weaker than those of Nd:glass lasers (of the order of kJs rather than
MJs). Heavy ion beams have also been considered as a method to efficiently
heat the hohlraum. Another method, known as the Z-pinch, uses a high current
dumped into an arrangement of wires to generate a magnetic field that inertially
confines the plasma. Research in all of these areas is ongoing.
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1.5 Parametric instability

In indirect-drive experiments, the expansion of the plasma generated by the heat-
ing of the hohlraum walls is undesirable. In order to slow the expansion of this
high-Z plasma, a light gas mixture (typically helium and hydrogen) is injected
into the hohlraum, with a density of up to 0.1nc. This mixture, in addition
to the outer surface of the target, quickly becomes a plasma under laser irra-
diation, meaning that the laser beams must propagate ∼ 3 mm through a low
density plasma before even reaching the hohlraum walls. In both direct- and
indirect-drive schemes, the expanding plasma corona surrounding the target is
mostly below critical density. Plasma densities below nc are typically referred to
as “under-dense”. As explained in the previous section, it is known from exper-
iments that LPI in under-dense plasmas is a significant source of efficiency loss
in ICF experiments. Near the entrance to the hohlraum and in the corona, the
plasma density is also significantly inhomogeneous (visible in Fig. 1.2a). Typ-
ically, laser light in ICF experiments will pass through a plasma of increasing
density as it propagates.

An electromagnetic wave with electric and magnetic field (E0,B0) travelling
through a plasma of increasing density will become evanescent when the electron
density ne nears the critical value nc. At this density, the electromagnetic wave
frequency ω0 is equal to the cold electron plasma frequency ωpe, where ωpe

2 =
nee

2/ε0me, and the incident wave is reflected or absorbed. This resonance results
in a “cut-off” in the frequencies that may propagate through the plasma, and is
applicable to both electromagnetic and electrostatic waves.

The simplest and most important LPIs take the form of three-wave interac-
tions: A transverse electromagnetic wave (the laser, often described as a“pump”
wave, since it is the laser that drives the interactions) decays into two daughter
waves. The three waves are nonlinearly coupled, where each of the two daughter
waves is driven by the beating of the other daughter wave with the pump wave.
The pump (ω0, k0) and two daughter waves (ω1,2, k1,2) will exchange energy res-
onantly when their frequencies and wave vectors satisfy the following conditions,
representing conservation of energy and momentum:

ω0 = ω1 + ω2, ~k0 = ~k1 + ~k2, (1.2)

where we define without loss of generality ω0,1,2 > 0 and k0 > 0. This widely-
studied parametric interaction is a mechanism of nonlinear mode conversion
in plasmas, from electromagnetic to electrostatic and high-frequency to low-
frequency waves.

We consider initially a plasma in which none of the waves are damped. In order
for an interaction to take place, an arbitrarily small “seed” (the seed being either
of the daughter waves) is necessary, typically provided by thermal fluctuations
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Figure 1.4: The regimes in which the various LPI take place.

in the plasma. The laser will then beat with the seed. The second daughter
wave will be resonantly driven by the beating of the laser and the first daughter
wave, causing it to grow. As a given daughter wave grows, its higher amplitude of
oscillation increases the coupling of the other daughter wave to the laser, and vice
versa in a positive feed-back loop. This process leads initially to the exponential
growth of both parametrically excited daughter waves. Without depletion of the
laser light or some other saturation mechanism, the daughter waves are said to be
unstable, since their growth is unbounded. Parametric excitation may be defined
as an amplification of an oscillation due to a periodic modulation of a parameter
that characterises the oscillation. Accordingly, we call this exponential process
a “parametric instability”. The various daughter waves that may be involved
are discussed in the following section. The impact of damping on parametric
instability is discussed in the next chapter.

1.5.1 Important three-wave interactions in ICF

Three-wave interactions of particular interest in ICF are listed below. The focus
of this thesis is stimulated Raman scattering in ICF, so it is with this in mind that
certain processes not relevant to stimulated Raman scattering are either briefly
summarised or neglected. The general regime in which the discussed scattering
processes are important is shown in Fig. 1.4.

Stimulated Raman scattering (SRS): An incident pump wave may scatter
off a perturbation of the electron density of the plasma (a plasmon). The ions
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provide a neutralising charge background, but do not make a significant contribu-
tion to the dynamics of the wave. The resultant scattered electromagnetic wave
beats with the pump wave, ponderomotively driving an electron plasma wave
(EPW), otherwise known as a Langmuir wave (LW). For all three waves to be
able to propagate, it is necessary that ω0,1,L > ωpe, where ωL is the Langmuir
wave frequency. From Eq. (1.2), this process may therefore occur only where
ω0 ≥ 2ωpe, or ne/nc ≤ 0.25. The electromagnetic wave may be scattered in any
direction, but the LW will grow fastest when the pump is scattered backwards
and parallel to its initial direction.

Stimulated Brillouin scattering (SBS): An incident pump wave may scatter
off of a perturbation of the ion density of the plasma (a phonon), resulting in an
ion-acoustic wave (IAW). The ionic mass determines the inertia of the motion,
while the pressure provides the restorative force. The electrons simply follow the
motion of the ions. The dispersion relation of the long-wavelength IAW is only
weakly dependent on the plasma density and therefore is not subject to the same
frequency cut-off of the electron plasma frequency. Thus, SBS may effectively
occur everywhere for which ω0 ≥ ωpe.

Two-plasmon decay (TPD): An incident pump wave may decay into two
plasmons (or LWs). Since ωL ≈ ωpe, this process generally takes place when
ω0 ≈ 2ωpe. TPD is interesting as a source of diagnostics in ICF experiments due
to the production of harmonics of the laser, scattered at predictable angles [11],
arising when a decay plasmon is “added” to a photon of laser light, resulting in
the 3ω0/2 harmonic. It is also a source of hot electrons, leading to unwanted
preheating of the plasma. The growth rate is maximised when the plasmons
propagate at 45◦ to k0 in the k0 − E0 plane.

Ion acoustic decay (IAD): An incident pump wave may decay into a plasmon
and a phonon. Due to the comparatively high mass of the ions upon which the
phonon frequency depends, the phonon frequency is small. Consequently, this
process occurs near the critical density where ω0 ∼ ωpe and is regarded as an
absorption mechanism, also acting as a source of hot electrons. IAD is often also
referred to as plasmon-phonon decay (PPD), or simply as parametric decay.

Plasmon decay: Any plasmon may itself decay into a phonon and another
plasmon, scattering in either the forwards or backwards direction. This process
is responsible for the Langmuir decay instability (LDI), in which the primary
Langmuir wave decays into another Langmuir wave and an ion acoustic wave.
If driven strongly enough, the daughter Langmuir wave may also parametrically
decay by the same process, resulting in a cascade until the last daughter Langmuir
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wave is below threshold for the LDI process. LDI acts therefore to saturate SRS.

1.5.1.1 Hot-spots and filamentation

In ICF experiments, the laser beam is processed a great deal before it reaches the
target, through several stages of amplification, polarisation, frequency doubling
or tripling, transportation and focusing. Consequently, the resultant beam does
not have a smooth spatial profile, or spot, and has instead regions of higher and
lower intensity. The high intensity regions in the beam are referred to as “hot-
spots”, which due to the raised laser intensity, are particularly susceptible to LPI.
A wide array of techniques, such as random and kinoform phase plates (RPPs and
KPPs), smoothing by spectral dispersion (SSD) in the longitudinal and transverse
directions, and polarisation smoothing (PS), are used to smooth the beam profile
or to shift the “speckle” pattern of laser intensity in space and time, thereby
reducing, on average, the spatial and temporal correlation of LPI processes. The
statistical properties of the smoothed beam profile are generally well-understood,
and the intensity within the laser spot in typical NIF experiments varies between
∼ 5 × 1014 and ∼ 1 × 1016 W/cm2, with an average power of 5 × 1015 W/cm2.
Hot-spots typically have a length of the order of 100 µm. In the future, a scheme
by which the laser power may be switched on and off in rapid succession to form
a series of pulses rather than a continuous beam [referred to as Spike Trains of
Uneven Duration (STUD)] may provide a means to dramatically reducing LPI in
ICF experiments [12].

SBS may drive zero-frequency density perturbations in the plane orthogonal
to the wave vector of the laser beam. These growing ponderomotively-driven
fluctuations, in addition to thermal and relativistic effects [13,14], may result in an
optical turbulence that is capable of both steering the beam and causing the beam
to undergo self-focusing, spoiling the precise pattern of laser light irradiation
required for symmetric target compression. The growing ponderomotively-driven
fluctuations, known as the “filamentation instability”, have a growth rate that is
typically small compared to SRS. However, the filamentation of the beam may
result in the formation of hot-spots, and the behaviour of convective instabilities
may become highly nonlinear [15].

1.5.2 Stimulated Raman scattering in experiments

As discussed earlier in the chapter, experiments conducted using a variety of laser
systems have shown that SRS is of great concern in ICF experiments across a
range of laser wavelengths. Classical models of SRS predict a Landau damp-
ing (discussed in the following chapter) of the Langmuir wave strong enough to
prevent the amplification of thermal fluctuations to levels consistent with ex-
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perimental observations. In experiments performed on the Nova laser at LLNL,
the level of SRS reflectivity was found to reach high levels (up to 50% of the
laser energy), while displaying a low sensitivity to the plasma conditions (i.e.,
the reflectivity varied weakly with kLλD)

[16], in stark contradiction with classical
predictions. Recent experiments at the NIF have also shown similarly high levels
of backwards SRS, in which SRS has been identified as the most deleterious of
the laser-plasma interaction processes [17].

Through nonlinear wave-particle interaction (or “kinetic effects”), Landau
damping may be reduced, thereby increasing the level of SRS in the plasma above
classically predicted levels. However, if the damping of the waves driven by the
laser were to be completely suppressed, this would lead to levels of reflectivity
higher still than those observed in experiments. Therefore, it is generally accepted
that two processes are at work: First, wave-particle interactions greatly reduce
the effectiveness of Landau damping, leading to a rapid growth in the scattered
light. Second, a nonlinear process (or processes) slows or even stops completely
the growth of the scattered light. In addition, the scattered light often displays
“bursty” behaviour, with strong, short-duration surges in the level of reflectivity.
This second process has been a subject of intense study over the last 15 years,
with many theories put forward. However, to date, no approach has offered
a satisfactory and comprehensive explanation of the observed behaviour of the
reflected light in experiments or indeed particle-in-cell simulations.

1.5.2.1 The kinetic frequency shift, inhomogeneity and autoresonance

The mechanism by which Landau damping is reduced by kinetic effects was de-
scribed by O’Neil (1965) [5]. Through the same mechanism, growing kinetic effects
in the plasma may herald the onset of a frequency shift in the driven Langmuir
wave. This frequency shift, predicted and calculated by Morales and O’Neil
(1972) [18] and Dewar (1972) [19], has been investigated as being the mechanism
responsible for the saturation of the growth of the scattered light: Through a de-
crease in the frequency of the driven Langmuir wave, the resonance between the
laser, scattered light and Langmuir wave may be lost, ending the process of pos-
itive feedback that provokes the rapid growth in scattered light. The magnitude
of this frequency shift is then dependent on the local Langmuir wave amplitude.

As discussed previously, gradients in plasma density exist near the entrance
to the hohlraum in indirect-drive ICF experiments, while strong gradients are
inherent also to the expanding plasma corona that surrounds the irradiated target
in both direct- and indirect-drive schemes. In the absence of kinetic effects, SRS
was shown by Rosenbluth [20] (1972) to be saturated by a linear density gradient
that acts to shift the wave numbers of the laser, scattered light and Langmuir
wave as they propagate through the inhomogeneous plasma.
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Chapter 1. Introduction to LPI and autoresonance

In this thesis, a mechanism for the enhancement of SRS is proposed, whereby
the detuning from resonance caused by a density gradient in the plasma is counter-
acted by a frequency shift due to wave-particle interaction. During this process,
the Langmuir self-adjusts its frequency via its amplitude so as to cancel exactly
the wave number shift that would otherwise detune the resonance; this behaviour
is described as “autoresonance”. Since the wave number shift increases with dis-
tance from the initial three-wave resonance point, a Langmuir wave propagating
from this point will then grow rapidly in amplitude in order to remain phase-
locked to the electromagnetic waves. It is shown in the coming chapters that
autoresonance may provoke a growth in the daughter waves far above the level
predicted by Rosenbluth in the absence of kinetic effects. The combination of
density gradients and laser hot-spots may provide ideal conditions for growth of
this nature. It is also shown that autoresonance may occur in a broad range of
plasma conditions, and may be important in Raman amplifier designs.
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Chapter 2

Three-wave coupling in
stimulated Raman scattering

Stimulated Raman scattering (SRS) in warm plasmas is the parametrically un-
stable three-wave process describing the scattering of laser light from an electron
density fluctuation, or Langmuir wave. As discussed in the previous chapter, it
is of great interest in current inertial confinement experiments, where it provides
a potent scattering mechanism of laser light that acts to reduce the efficiency of
energy deposition at the precise spatial locations required for successful implo-
sion and ignition. From a purely academic perspective, SRS presents a canonical
example of three-wave coupling, and presents a rich range of interesting problems.

At its simplest, SRS is the inelastic scattering of a photon, named after its
discoverer Sir Chandrasekhara Venkata Raman, who observed inelastic photon
scattering in liquids in 1928 [21] (The independent work of Landsberg and Man-
delstam also identified inelastic photon scattering in crystals in the same year [22].
The Nobel Prize was awarded to Raman, however.). In 1965, Dubois and Gold-
man [23] discussed the possibility of the existence of radiation-induced plasma os-
cillations that could grow sufficiently quickly so as to overcome dissipation rates
and become parametrically unstable.

The importance in ICF experiments of various parametric instabilities, in-
cluding SRS, was identified in the 1960s by numerous authors. A great deal of
work was done in the 1960s and 1970s investigating the behaviour of parametric
instabilities, particularly the mechanisms by which the growth of the daughter
waves could be slowed or saturated. One such mechanism is inhomogeneity in
the electron density of the plasma: In SRS, the three-wave resonance required for
efficient coupling of the waves to each other may be detuned by the inhomogene-
ity. This detuning arises because the three waves, in particular the Langmuir
wave, are subject as they propagate to dispersion relations that vary with the
local value of the electron plasma frequency, itself a function of the local density.

13



Chapter 2. Three-wave coupling in stimulated Raman scattering

In 1972, Rosenbluth [20] calculated the impact of this detuning, most notably cal-
culating the amplitudes at which the daughter waves saturate in a linear density
profile. A string of subsequent publications (e.g. those of Liu, Rosenbluth and
White [24,25]; and DuBois, Forslund and Williams [26]) expanded upon this work,
and are relevant to modern day ICF experiments where the growth rates and
saturation levels of instabilities (diagnosed primarily through measured plasma
reflectivities) are of central importance.

A plasma may support a variety of matter waves (i.e. propagating perturba-
tions of the electron or ion densities). The constituent particles of the medium
through which the wave travels may themselves interact with this wave. The
resultant wave-particle interaction phenomena are broadly referred to as “kinetic
effects”, and are of great importance in modern ICF experiments. The most
well-known of these effects is “Landau damping”, describing the energy exchange
of the wave with particles in the plasma which have velocities near the phase
velocity of the wave. In plasmas with temperatures relevant to ICF (the veloc-
ity distribution of the particles is initially determined by the temperature of the
plasma), the particles drain energy from the wave, in effect damping the wave
and slowing its growth or even preventing parametric instability entirely. This
effect, although experimentally observed earlier, was studied analytically by Za-
kharov and Karpman in 1963 [27] and by O’Neil in 1965 [5]. A great number of
kinetic simulations, designed to describe the physical processes responsible for
Landau damping and other kinetic effects, have been performed since the work
of Forslund et al. (simulation results are given in Ref. [28] and the accompanying
theory in Ref. [29]) in which electron trapping and wave breaking (both defined
later in the chapter) were observed. Advances in the modelling of kinetic effects
are ongoing to this day.

In this chapter, the equations governing the propagation of electromagnetic
and electrostatic waves relevant to SRS are derived (the methods employed are
however applicable to a broad range of parametric instabilities), as well as the
growth rates of the daughter waves. The three principle equations of SRS, describ-
ing the propagation of incident laser light, scattered light and a driven electron-
plasma wave (the Langmuir wave), form the backbone around which a range of
nonlinear phenomena are introduced and explored in this thesis. Perturbations
to these equations are subsequently introduced in the form of terms incorporat-
ing the inhomogeneity of the plasma and the effects of wave-particle interactions.
With the introduction of these terms, the possibility of autoresonance in the
plasma is discussed, paving the way for further investigation in the following
chapters.
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2.1. Derivation of the three-wave equations

2.1 Derivation of the three-wave equations

We derive here the three coupled envelope equations that describe the interaction
of the pump, scattered and Langmuir waves in SRS. For simplicity, the following
derivation assumes that the transverse electromagnetic (EM) waves are linearly
polarised. The result however is equally applicable to circular polarisations. The
electrostatic (ES) Langmuir wave is longitudinal.

We take as the point of departure Maxwell’s equations, satisfied by waves
with electric field ~E = (Ex, Ey, Ez) and magnetic field ~B = (Bx, By, Bz):

∇ · ~E = ε−1
0 ρ, (2.1)

∇ · ~B = 0, (2.2)

∇∧ ~E = −∂t ~B, (2.3)

∇∧ ~B = µ0
~J + c−2∂t ~E, (2.4)

where ~J is the charged particle current. The general solution to Eqs. (2.2) and

(2.3) may be expressed in terms of the vector potential ~A = (Ax, Ay, Az) and the
scalar potential φ:

~E = −∇φ− ∂t ~A, (2.5)

~B = ∇∧ ~A, (2.6)

We work in the Coulomb gauge (∇ · ~A = 0). The light waves are thus purely

inductive (given by ~A) while the Langmuir wave is electrostatic (given by φ). In
the absence of a perturbation, the electron charge of the plasma is neutralised
by the ions. Since the ion mass is so much greater than the electron mass, the
ions are effectively stationary over the relevant timescales, thus we only consider
here perturbations of the electron density. Taking the divergence of Eq. (2.5), we
obtain Poisson’s equation,

∇2φ = −ε−1
0 ρ =

e

ε0
δne, (2.7)

where δne is a perturbation of the background electron density ne, such that the
total density is given by Ne = ne + δne.

2.1.0.2 The transverse electromagnetic waves

Inserting the potential expressions given by Eqs. (2.5) and (2.6) into Ampere’s
law Eq. (2.4), we find

∇∧∇ ∧ ~A = µ0
~J − c−2∂t∇φ− c−2∂tt ~A. (2.8)
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Chapter 2. Three-wave coupling in stimulated Raman scattering

In the Coulomb gauge, we have the vector identity ∇∧∇∧ ~A = ∇(∇· ~A)−∇2 ~A =

−∇2 ~A. We substitute this relation into Eq. (2.8) and rearrange to give

∂tt ~A− c2∇2 ~A = ε−1
0
~J − ∂t∇φ. (2.9)

We choose ~A = Ay(x, t)ŷ, giving

∂ttAy − c2∂xxAy = ε−1
0 jy, (2.10)

where jy is the transverse current induced in the plasma by the EM field. An
expression for the transverse current is obtained by considering the motion of
charged particles in the plasma due to the Lorentz force,

m
d~ve
dt

= q( ~E + ~ve ∧ ~B), (2.11)

where ~ve = (vx, vy, vz) is the electron velocity. Taking the longitudinal compo-
nents and inserting Eqs. (2.5) and (2.6), we find

m
dvy
dt

= −e(Ey − vxBz) = e(∂tAy + vx∂xAy) =
dAy

dt
, (2.12)

giving the conservation of transverse canonical momentum py = mvy − eAy (this
simply arises from translational symmetry in the transverse direction). Assuming
an initially stationary distribution of particles, it follows that

vy = eAy/m, (2.13)

giving a transverse electron current of the following form:

jy = −Neevy = −Nee
2

me

Ay. (2.14)

We see here that the contribution of the ions to the current is smaller by a factor
of the ratio of the ion mass to the electron mass. Inserting Eq. (2.14) into Eq.
(2.10) and writing Ne = ne + δne, we find:

∂ttAy − c2∂xxAy + ω2
peAy = −ω2

pe

δne

ne

Ay. (2.15)

The LHS of this equation is satisfied by the familiar complex travelling wave
solution Ay(x, t) = Ay0 exp[i(kx − ωt)], with dispersion relation ω2 = ω2

pe +
c2k2. The RHS of the equation shows the coupling between density fluctuations
(Langmuir waves) and EM waves, and will be developed later in this section.
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2.1. Derivation of the three-wave equations

2.1.0.3 The longitudinal Langmuir wave

We adopt a warm fluid model for the plasma. The high-frequency nature of Lang-
muir waves allows for the ions to be treated as a fixed, neutralising background.
We begin by writing the continuity and conservation of momentum equations for
the electrons, respectively, as

∂tNe +∇ · (Ne~ve) = 0, (2.16)

meNe [∂t~ve + (~ve · ∇)~ve] = −eNe( ~E + ~ve ∧ ~B)−∇pe. (2.17)

For the electron pressure pe, we have from the closure of the equation of state

pe
Nγ

= const. (2.18)

For Langmuir waves, the phase velocity vφ = ωL/kL is such that |vφ| � vth. We
thus consider the adiabatic equation of state, where γ = (D+2)/D), where D is
the number of degrees of freedom. For the 1-D wave propagation assumed here,
D = 1, giving γ = 3.

It is useful to separate the velocity ~ve into linear ~ve
l and nonlinear ~ve

nl parts,
such that ~ve = ~ve

l+ ~ve
nl. The electric ~E field may be decomposed into the applied

field arising from the electromagnetic waves ~EEM and a residual field ~Er, where
~E− ~EEM = ~Er. We assume that the only significant magnetic field is that which
is applied externally, ~BEM , thus ~B = ~BEM (i.e. magnetic fields generated by
the electron motion are negligible). In the absence of the electron pressure, the
response of the electrons to the applied transverse electric field is simply given by

me∂t~ve
l = −e ~EEM , (2.19)

and consequently, taking the vector curl of this expression,

me∂t∇∧ ~ve
l = e∂t ~B. (2.20)

Since ~ve
l = 0 in the absence of this field, we may write

me∇∧ ~ve
l = e ~B. (2.21)

We may now subtract the linear response of the electrons to the applied electric
field from Eq. 2.17 and insert Eq. 2.21 to give

meNe[∂t~ve
nl + (~ve · ∇)~ve

nl] = −Ne[e ~E
r +me~ve

l ∧ (∇∧ ~ve
l) +me(~ve · ∇)~ve

l]− ∂xpe.
(2.22)

The terms (~ve
nl ·∇)~ve

l and (~ve
l ·∇)~ve

nl are dropped due to being of higher order.
Using a well-known vector calculus expression, we find

me

[
~ve

l ∧ (∇∧ ~ve
l) + (~ve

l · ∇)~ve
l
]
≡ 1

2
me∇(~ve

l)2. (2.23)
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Chapter 2. Three-wave coupling in stimulated Raman scattering

This expression gives the nonlinear force acting on the electrons due to the elec-
tromagnetic waves and, in the case of transverse translational symmetry, acts
only along the x-axis. The residual field ~Er (primarily a response to the elec-
tron pressure) and nonlinear velocity ~ve

nl, then share this same axis. Taking the
longitudinal components of Eq. 2.22, we find the following:

meNe(∂tvx + vx∂xvx) = −NeeEx −
1

2
meNe∂xv

2
y − ∂xpe. (2.24)

The electric field component Ex is then the longitudinal field of the Langmuir
wave. This electrostatic wave satisfies Poisson’s equation, such that

∂xEx = −eδne

ε0
. (2.25)

For the term containing vy, we have using Eq. 2.13 the following:

− 1

2
me∂xv

2
y = −1

2
∂x
e2A2

y

me

. (2.26)

This nonlinear force acts to couple the Langmuir wave to the EM waves and is
responsible for driving the longitudinal density perturbation of the plasma. In
this approximation, the total nonlinear force is given by the sum of the advective
term and the electromagnetic coupling force. This force P is frequently referred
to as the “ponderomotive force”, as is given by the following equation:

P = −mevx∂xvx −
1

2
∂x
e2A2

y

me

. (2.27)

The nonlinear advective term vx∂xvx does not couple the electromagnetic
waves to the Langmuir wave; rather, it couples different harmonics of the Lang-
muir wave. While it is not essential in deriving the three-wave coupled envelope
equations (and is consequently neglected for the time being), it may play a sig-
nificant role as the Langmuir wave grows in amplitude. The implications of the
advective term are discussed later in the chapter.

We linearise all remaining terms in the following way:

∂tδne + ne∂xvx = 0, (2.28)

me∂tvx = −eEx −
1

2
∂x
e2A2

y

m
− ∂xδpe

ne

, (2.29)

δpe = γ
p0
ne

δne = 3Teδne, (2.30)
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2.1. Derivation of the three-wave equations

where the ideal gas law pe = neTe has been used in Eq. (2.30). We now insert
Eq. (2.25) into Eqs. (2.28) and (2.30) to obtain the following:

vx =
ε0
ene

∂tEx, (2.31)

δp = −3
ε0Te
e
∂xEx. (2.32)

These may in turn be used to eliminate the pressure and velocity terms from Eq.
(2.29), giving

∂ttEx − 3v2th∂xxEx + ω2
peEx = −1

2
ω2
pe∂x

eA2
y

m
. (2.33)

In the absence of the electromagnetic waves (i.e. a freely-propagating wave),
the LHS of Eq. (2.33) is satisfied by a longitudinal travelling wave of the form
Ex(x, t) = Ex0 exp[i(kx − ωt)], giving the well-known Bohm-Gross dispersion
relation ω2 = ω2

pe + 3v2thk
2.

2.1.1 Envelope equations

In the previous subsections, we derived equations governing the propagation and
nonlinear driving of the EM and ES waves. Using Eq. (2.25), we rewrite Eqs.
(2.15) and (2.33) to give

∂ttAy − c2∂xxAy + ω2
peAy =

e

m
Ay∂xEx, (2.34)

∂ttEx − 3v2th∂xxEx + ω2
peEx = −1

2
ω2
pe∂x

eA2
y

m
. (2.35)

As discussed earlier this chapter, energy will only efficiently be transferred be-
tween the modes when the three waves are in resonance. Components of the waves
that are far from resonance contribute little to the behaviour of the system, since
their effect will quickly average to zero after integration over a few complete cy-
cles of the wave. It is therefore convenient and useful to move to an envelope
formulation of the waves, and consider only small perturbations in frequency (or
wave number) from the resonant values. We label the forward-propagating and
backward-propagating EM wave envelope amplitudes A0 and A1, respectively,
and the Langmuir wave envelope amplitude EL.

For the EM waves, we write the vector potential Az as the sum of the counter-
propagating terms in the following way:

Az =
1

2

[
A0(x, t)e

i(k0x−ω0t) + c.c.
]
+

1

2

[
A1(x, t)e

i(k1x−ω1t) + c.c.
]
, (2.36)

19



Chapter 2. Three-wave coupling in stimulated Raman scattering

and for the Langmuir wave:

Ex =
1

2

[
EL(x, t)e

i(kLx−ωLt) + c.c.
]
. (2.37)

The linear dispersion relation for each of the three waves is now easily obtained by
neglecting the RHS wave coupling terms in Eqs. (2.34) and (2.35) and inserting
the Eqs. (2.36) and (2.37). After differentiation, we find for the frequencies ω0,1,L

and wave numbers k0,1,L the following linear dispersion relations:

ω2
0 = ω2

pe + c2k20, (2.38)

ω2
1 = ω2

pe + c2k21, (2.39)

ω2
L = ω2

pe + 3v2thk
2
L. (2.40)

These dispersion relations are plotted in Fig. 2.1 for both forward SRS (FSRS)
and backward SRS (BSRS), where k1 > 0, kL > 0 and k1 < 0, kL > 0, re-
spectively. The dispersion relations may be solved for given values of Te (where
v2th = kBTe/me, for which kB is Boltzmann’s constant) and ω2

pe/ω
2
0 = ne/nc in

order to determine ω1,L (and k0,1,L) relative to ω0 (and cω0). For k0, we have
simply

k0 = c−1
√
(ω2

0 − ω2
pe). (2.41)

For ω1,L > 0, solving simultaneously Eqs. (2.39-2.40) produces two solutions, one
corresponding to BSRS and the other to FSRS. It is not possible to succinctly
write down an exact analytic solution, but straight-forward solutions may be
approximated when vφ � vth. In this regime,

ωL ' ωpe ⇒ ω1 ∼ ω0 − ωpe, (2.42)

and then

k1 ' ±c−1
√

(ω0 − ωpe)2 − ω2
pe (2.43)

' ±c−1
√
ω2
0 − 2ω0ωpe, (2.44)

and thus, using k0 = k1 + kL,

kL ' k0 ∓ c−1
√
ω2
0 − 2ω0ωpe, ωL =

√
ω2
pe + 3v2thk

2
L. (2.45)

The values used for the wave numbers and frequencies in the coming chapters,
however, are calculated by solving the dispersion relation equations numerically
and are exact to an arbitrary precision.
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Figure 2.1: Dispersion relations for the electromagnetic and Langmuir waves for
both BSRS and FSRS.

We require the envelopes to vary slowly with respect to the phase of the waves,
such that |A0|−1∂x|A0| � |k0|, |A0|−1∂t|A0| � |ω0|, and likewise for A1 and EL.
Differentiating Eq. (2.36) and using the dispersion relation Eqs. (2.38) and (2.39)
to eliminate terms, we find:

1

2

[
(∂ttA0 − 2iω0∂tA0)e

i(k0x−ω0t) + c.c.
]
− 1

2
c2
[
(∂xxA0 + 2ik0∂xA0)e

i(k0x−ω0t) + c.c.
]

+
1

2

[
(∂ttA1 − 2iω1∂tA1)e

i(k1x−ω1t) + c.c.
]
− 1

2
c2
[
(∂xxA1 + 2ik1∂xA1)e

i(k1x−ω1t) + c.c.
]

=
1

4

e

me

[
(∂xEL + ikLEL)e

i(kLx−ωLt) + c.c.
]
× {
[
A0e

i(k0x−ω0t) + c.c.
]
+
[
A1e

i(k1x−ω1t) + c.c.
]
},

(2.46)

and similarly for the Langmuir wave. We multiply Eq. (2.46) by exp[−i(k0x−ω0t)]
(or exp[−i(k1x− ω1t)]) and average over the fast phase variation. The matching
conditions for resonant backscatter naturally emerge from this approach. The
result is an equation describing the envelope A0 (or A1). Assuming a slowly
varying envelope such that |∂ttA0| � |ω0∂tA0| (and likewise for A1, EL), we
neglect the second order derivatives in time and space, giving:

− 2iω0∂tA0 − 2ic2k0∂xA0 = i
e

2m
k0ELA1e

−i[(k0−k1−kL)x−(ω0−ω1−ωL)t], (2.47)

Rearranging this equation and repeating the same process for the scattered and
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Chapter 2. Three-wave coupling in stimulated Raman scattering

Langmuir waves, we finally arrive at the coupled three-wave equations:

L0A0 = − e

4me

kL
ω0

ELA1e
−iΨ, (2.48)

L1A1 =
e

4me

kL
ω1

E∗
LA0e

iΨ, (2.49)

LLEL =
e

4me

kL
ωL

ω2
peA

∗
1A0e

iΨ, (2.50)

where
L0,1,L = ∂t + c0,1,L∂x, (2.51)

are the linear propagation operators, for which the group velocities c0,1,L =
∂ω0,1,L/∂k0,1,L. The phase mismatch Ψ = (k0 − k1 − kL)x − (ω0 − ω1 − ωL)t
is discussed in the following sections.

2.2 Resonant growth rates

We consider now how the three coupled equations will evolve in a plasma that
is effectively infinite in extent. The growth rates discussed here are derived in
Ref. [30]. The pump wave is typically of high intensity compared to the daughter
waves, thus we assume here that it is not significantly depleted by the initial
growth of the daughter waves. The three waves will only efficiently exchange
energy when they are resonant or nearly resonant, i.e. when the Ψ ∼ 0. We
begin by considering a simplified case where the propagation of the waves is
unimportant to their growth, and allow a small frequency mismatch of the form

δω = ω0 − ω1 − ωL. (2.52)

We then write down the reduced two-wave coupling equations as the following:

∂tA1 =
e

4me

kL
ω1

E∗
LA0e

−iδωt, (2.53)

∂tEL =
e

4me

kL
ωL

ω2
peA

∗
1A0e

−iδωt, (2.54)

where the pump amplitudeA0 is fixed. Using the substitutionEL = ẼL exp(−iδωt)
and differentiating, we find

∂ttẼL − iδω∂tẼL − γ20ẼL = 0, (2.55)

where

γ0 =
1

4
kL

ωpe√
ωLω1

(
eA0

me

)
. (2.56)
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We find therefore the solution

EL, A1 ∼ exp

[(√
γ20 −

δω2

4
− i

δω

2

)
t

]
, (2.57)

for which growth requires
|δω|
2

< γ0. (2.58)

This inequality defines an effective bandwidth for the resonance and is an impor-
tant quantity when considering nonlinear effects later in the chapter.

The growth defined by EL, A1 ∼ exp(γ0t) is purely temporal, and in the case
of fixed pump amplitude, is also unbounded at every point in the plasma. We
refer to growth of this nature as “absolute”, for which EL, A1(x, t→ ∞) → ∞.

From Eq. 2.56, we see that the resonant maximum growth rate is proportional
to kL. From Fig. 2.1, we see that for given ω0, k0, the growth rate for BSRS is
consequently greater than that of FSRS. This is the case unless other processes
interfere, such as damping of the Langmuir wave; linear Landau damping, de-
scribed later in the chapter, increases with the parameter kLλD, thus FSRS may
become competitive with BSRS in certain regimes.

If we now allow the waves to propagate, the growth at every point in the
plasma remains absolute, but is reduced provided the two daughter waves are
counter-propagating (for copropagating waves, no absolute instability is possible).
We assume a backward-propagating seed of initially small and localised amplitude
in the form of a delta function at some point xs. In this case, the growth rate at
all points in the plasma is given by

γabs = 2γ0
|cLc1|1/2

|cL|+ |c1|
. (2.59)

At t = 0, this initial seed is the point at which the amplitude of A1 is a maximum.
We label this maximum in the amplitude of A1 as A

max
1 . Although all points will

experience absolute growth, Amax
1 will propagate at the convective growth velocity

cconv = (cL + c1)/2. We define the point xmax such that A1(x
max) = Amax

1 , and
xmax = xs+ cconvt. The propagating maximum grows according to the convective
growth rate γconv, where γconv = γ0. This propagating maximum therefore grows
faster compared to any fixed point in the plasma.

We may introduce damping to the wave equations. The light waves are
damped primarily via collisional inverse-bremsstrahlung, while the Langmuir
wave is primarily damped as a result of kinetic effects, discussed later in this
chapter. We assign a damping rate ν ′L to the Langmuir wave and ν ′1 to the
backscattered wave, formally included in the envelope equations by modifying
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Chapter 2. Three-wave coupling in stimulated Raman scattering

the momenta equations. A similar approach to deriving Eq. 2.57 yields, in the
limit ν ′0,1,L � ω0,1,L,

γνconv =

√
γ20 +

(ν ′L − ν ′1)
2

4
− (ν ′L + ν ′1)

2
. (2.60)

The threshold for convective growth is then simply

γ0 > γmin
conv ≡

√
ν ′Lν

′
0, (2.61)

for which it should be noted that convective growth is always possible if one of
the two daughter waves is undamped. For growth of an absolute nature, it is
necessary that the stricter condition

γ0 > γmin
abs ≡ |cLc1|1/2

2

(
ν ′L
|cL|

+
ν ′1
|c1|

)
, (2.62)

be satisfied. This damping results in a reduced absolute growth rate γνabs, such
that

γνabs = γabs

(
1− γmin

abs

γ0

)
. (2.63)

For given plasma conditions and daughter wave damping rates, the conditions
for SRS growth (convective or absolute) may be trivially rearranged to give a
threshold in laser intensity. In all studies conducted later in this thesis, the laser
intensity is well above threshold.

2.2.1 The spatial growth rate

Finally, in addition to the temporal growth rates, the spatial (convective) growth
rate will also be a useful quantity to consider in autoresonance later in this thesis.
The steady-state convective growth rate is easily obtained by assuming a fixed
pump wave and neglecting the temporal derivatives in Eqs. (2.49) and (2.50),
giving the following reduced set of equations:

c1∂xA1 =
e

4me

kL
ω1

E∗
LA0e

−iδωt, (2.64)

cL∂xEL =
e

4me

kL
ωL

ω2
peA

∗
1A0e

−iδωt. (2.65)

Substituting Eq. (2.65) into Eq. (2.64), we find the following spatial growth rate:

Kmax =
γ0

|cLc1|1/2
. (2.66)
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In the presence of damping (γconvmin < γ0 < γabsmin), this spatial growth rate is reduced
to

K =
γ20 − γmin

conv
2

|cLc1max(ν ′L/cL, ν
′
1/c1)|

. (2.67)

It should be noted that the summary here misses a great deal of detail with
regards to the subtleties of parametric instability. Indeed, for cLc1 < 0 (as is
the case for BSRS), the simple treatment here provides a spatial gain that is
imaginary: no growth is possible! One must perform careful contour integrals
of the coupled mode equations in the Fourier-Laplace domain and pay attention
to the branches of solutions found in order to retrieve the correct result. Such a
treatment is given in Ref. [31].

2.3 Effect of finite plasma length

The discussion of growth rates and the notions of convective and absolute instabil-
ity have up to this point been in the context of a plasma that is of infinite extent.
The notion of instability in a finite plasma is similar, but differs in that there
is no longer a truly convective instability, since Amax

1 must eventually propagate
out of the region in which the plasma exists (assuming that the group velocities,
hence also the convective velocity, are constant). This does not mean that spatial
growth is unimportant, since the convective growth may still have a significant
impact on the evolution of the system (for example, it may still be able to amplify
thermal fluctuations to an important, but not infinite, amplitude).

The analogue of absolute instability in an infinite plasma is then an instability
in a finite plasma for which a perturbation at any point (or a number of points)
may undergo growth to an unbounded amplitude. For a plasma of length L, we
define a critical length Lcrit. In the limit γ0 � γmin

abs , this critical length tends
irrespective of damping towards to Lc:

Lcrit → Lc ≡
π

2

(
γ0

|cLc1|1/2

)−1

, (2.68)

and provided L � Lcrit, the maximum growth rate tends towards γνabs. For
L > Lcrit, absolute growth is possible, and for L � Lcrit, the growth is indis-
tinguishable from an infinite plasma but for near the edges. The characteristic
length over which the growth is unchanged from an infinite plasma is given simply
by

Lcha =
|cLc1|1/2

γ0
, (2.69)

In contrast, in the limit that γ0 → γmin
abs , Lcrit → ∞.

25



Chapter 2. Three-wave coupling in stimulated Raman scattering

For convective growth, in the regime γ0 > γmin
abs , c1cL > 0 it is necessary that

L > Lcha. For convective growth where γmin
abs > γ0 > γmin

conv, the length Lcha is
increased compared to that of absolute growth:

Lconv =
|c1cL|max(ν ′L/|cL|, ν ′1/|c1|)

γ20 − ν ′Lν
′
1

. (2.70)

Under the conditions typically used in this thesis, L� Lcrit, and the plasma
may be thought of as infinite with respect to the nature of the instabilities present.
It should again be noted that the situation is often more complex e.g. a reflection
at a boundary may allow a convective instability in a finite plasma to behave in
an absolute fashion as it bounces back and forth between boundaries.

2.4 Detuning mechanisms

In the previous section, the equations describing the resonant interaction between
the pump and daughter waves were derived. These equations provide the back-
bone necessary to describe a wide variety of nonlinear processes that may alter
SRS. Eqs. (2.48-2.50) describe the process by which laser light drives the growth
of backscattered light and a Langmuir wave. As the daughter waves grow, energy
will be drained from the laser. Thus, while the growth of the daughter waves
is initially exponential, their growth is quickly saturated by the total depletion
of the pump. In reality, this is seldom the case: nonlinear processes or physical
considerations typically act to saturate the growth of the daughter waves through
detuning the resonance or damping the daughter waves. However, in ICF exper-
iments, the level at which the daughter waves are saturated is still considerable
and is highly problematic.

We wish to model processes responsible for altering the growth rate and evo-
lution of SRS. A range of important processes are covered in the following sub-
sections.

2.4.1 Inhomogeneity

A wave propagating through an inhomogeneous medium will undergo a shift in
wave number. We take as a point of reference an assumed resonance in the plasma.
At this density, the matching conditions for resonance are satisfied. However, as
the waves propagate away from this point, this matching will be lost, ending
the process of positive feedback described earlier in the chapter that is necessary
for parametric instability. From continuity, we assume a free wave propagating
through an inhomogeneous medium will have a constant frequency. From the
dispersion relations given in Eqs. (2.38-2.40), it is clear that the local value of the
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wave numbers are thus dependent on the local value of the plasma frequency. This
effect is crucial to the mechanism of autoresonance, and thus features heavily in
this thesis. In the following chapter, the wave number shift due to inhomogeneity
is considered in both linear and parabolic profiles. We derive here therefore the
behaviour of the wave number shift in both of these cases.

At the resonance point in the linear case, ω0−ω1−ωL = δω = 0. Each of the
waves has phase ψ0,1,L(x, t) =

∫ x

xres
dx′k0,1,L(x

′) − ω0,1,Lt, such that Ψ = Ψ(x) =

ψ0 − ψ1 − ψL =
∫ x

xres
dx′∆k(x′), where ∆k(x′) ≡ k0(x

′)− k1(x
′)− kL(x

′) and xres
is the three-wave resonance point. For both clarity and simplicity of integration,
it is convenient to make the substitution EL = εLexp(iΨ). This substitution
eliminates the phase mismatch in Eqs. (2.48) and (2.49), and after differentiation
on the LHS of Eq. (2.50), gives the following set of equations:

L0A0 = − e

4me

kL
ω0

εLA1, (2.71)

L1A1 =
e

4me

kL
ω1

ε∗LA0, (2.72)

(LL + icL[∂x∆k(x)]x) εL =
e

4me

kL
ωL

ω2
peA

∗
1A0. (2.73)

The inhomogeneity is necessarily sufficiently weak such that [ωpe(x = xres)
−1∂xωpe] �

k0,1,L (slowly-varying envelope approximation).
In addition to detuning the three-wave resonance, inhomogeneity will cause

the group velocities of the three waves to vary with the local density as they
propagate. The basic conservation law for action density, valid for homogeneous
or weakly inhomogeneous media, is given simply by

∂tSi +∇ · (~ciSi) + 2ν ′iSi = 0, (2.74)

where the action Si of a wave labelled i is proportional to EiE
∗
i , ci is the local

group velocity and ν ′i is the rate of damping. We consider a simple example of an
undriven EM wave propagating through a plasma that is inhomogeneous along x,
from a lower density n1

e to a higher density n2
e. The local wave number of the EM

wave is then given by ki = (ωi/c)[1−ne(x)/nc]
1/2, and the local group velocity by

ci = c2ki(x)/ωi. In the absence of damping, the steady state solution will obey
the simple conservation of action flux, ∇ · (~ciSi) = 0, and ωi will be constant.
Thus, the action fluxes in the two density regions are equal: c1iS

1
i = c2iS

2
i . For

the electric field, we find E2
i = (c1i /c

2
i )

1/2E1
i . Since n

2
e > n1

e, we have c1i > c2i and
thus E2

i > E1
i . From this, we see that the EM wave slows as it propagates into

the higher density region and grows in amplitude. This is simply understood via
an argument from the conservation of photon number: as photons propagate to
higher densities, their wave length increases and their group velocity slows. The
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photon number fluxes must be constant (equivalent to the action density flux),
thus the number density at a given point must increase to conserve the flux.

In the coming chapters, where equations (2.71-2.73) are solved numerically,
using varying local values of the group velocities may provoke numeric instability
in three-wave coupling models. The inhomogeneity used is sufficiently weak that
the approximation that the group velocities are constant throughout the window
simulated is acceptable, and does not interfere with the physical discussion of
autoresonance. Furthermore, as will be demonstrated in a linear density profile
in Sec. 2.4.1.1, the product cL∂x∆k(x) describing the inhomogeneity does not
depend directly on kL and only varies weakly with x. However, in the kinetic
(particle-in-cell) simulations presented in Chapter 5, the group velocity varies
with the locally density.

2.4.1.1 Rosenbluth gain saturation

We define xres = 0 and assume first a linear electron density gradient,

ne = n0

(
1 +

x

L

)
(2.75)

where n0 is the density at the three-wave resonance point. Under these conditions,
ω2
pe = ω2

pe(x) = n0(1 + x/L)e2/meε0 and thus:

∂x∆k = κ′ =
ω2
pe(x = 0)

2L

(
1

3v2thkL
+

1

c2k1
− 1

c2k0

)
(2.76)

≈
ω2
pe(x = 0)

6v2thLkL
. (2.77)

Since 3v2th � c2 the total wave number shift is due solely to the propagation of
the Langmuir wave to a good approximation.

In the much-referenced seminal paper of LPI written by Rosenbluth (1972) [20],
the gain of an inhomogeneous plasma in the absence of nonlinear terms was
calculated. It was shown that in the absence of nonlinear terms, a linear density
profile does not support absolute growth, allowing only the convective growth
until saturation of the daughter waves. The typical situation is the following: A
plasma is bound by the limits [xL, xR] (for the solution to be exact, these points
lie at ±∞ on the x-axis). A forward-propagating pump wave is introduced at
x = xL with intensity I0, and a backward-propagating seed at x = xR with
intensity I1. The pump is of higher frequency than the seed, and the two EM
waves are resonant with the Langmuir wave at a point x = xres in a plasma of
linear density profile (the slope of the profile may be positive or negative). In a
linear profile, it was shown that the daughter waves grow to a stable solution,
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displaying only a convective growth restricted to the vicinity of xres. Provided
that the pump is not significantly depleted by the growth of the daughter waves
and that the plasma is large enough to allow the convective growth of the daughter
waves to saturate, the seed was shown to be amplified in the following way:

I1(xL) = I(xR)e
2GR , (2.78)

where GR is the Rosenbluth gain saturation coefficient, given by

GR =
πγ20

|cLc1κ′|
. (2.79)

The level of saturation is, remarkably, independent of the damping of either
daughter wave. For γ0 > ν ′L,1, the time taken to reach this saturation tsat is well
estimated by

tsat ≈
4γ0

|cLc1κ′|
. (2.80)

In the simulations presented in the coming chapters, this time is much smaller
than the times for which the simulations are run. Gain saturation due to inhomo-
geneity is therefore an important and identifiable phenomenon. As the damping
becomes large, so too does the time taken for the growth to reach saturation. In
the regime γmin

conv � γ0 < ν ′L,1,

tsat ≈
2max(ν ′L, ν

′
1)

|cLc1κ′|
. (2.81)

The key result given by Eq. 2.78 is valid only when L is sufficiently large so as
to contain the region around the resonance point over which there is significant
growth of the daughter waves (the case considered above being an infinite plasma).
The distance from resonance to the point at which the solution changes from being
growing to oscillatory, known as the “turning point”, is given by xt, where

xt =
±2γ0

|κ′||cLc1|1/2
, (2.82)

valid where γ0 > γmin
abs . In the regime γmin

conv � γ0 < γmin
abs , the distance is altered

to

xt =
±1

|κ′|
max

(
ν ′L
|cL|

,
ν ′1
|c1|

)
. (2.83)

These turning points lie either side of the resonance point, and together define
an interaction length of 2xt over which the daughter waves may grow. In the
simulations and studies performed here in this thesis, L � 2xt (for resonance in
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the centre of the plasma), thus the effects of finite plasma length on the validity
of this solution are not discussed. A full summary is given in Ref. [30].

For effective growth, we require GR > 1. This is often approximated as(vosc
c

)2
k0L > 1, (2.84)

where vosc = eA0/m, giving a threshold in laser intensity for SRS in inhomoge-
neous plasmas.

2.4.1.2 Growth in a parabolic density profile

In the following chapter, growth in a broad class of density profiles will be con-
sidered. We include here a discussion of the behaviour expected in a parabolic
profile of the form

ne = n0

[
1 +

(x
L

)2]
, (2.85)

giving rise to a wave number mismatch that is proportional to x2 as opposed to
x in the linear case. For the wave number mismatch gradient, we find:

∂x∆k = κ′′x =
ω2
pe

L2

(
1

3v2thkL
+

1

c2k1
− 1

c2k0

)
x (2.86)

≈
ω2
pe

3v2thL
2kL

x. (2.87)

This profile may support the absolute instability of counterpropagating daughter
waves provided that the condition

γ0 > γmin
abs , γinh (2.88)

is satisfied, where γinh is the inhomogeneous growth rate, given by

γinh ≡ |cLc1|1/2|κ′′|1/3

42/3
. (2.89)

In the regime γ0 > γmin
abs (where the growth is absolute), the turning points in this

case lie at

xt,abs = ±2

(
γ0

|κ′′||cLc1|1/2

)1/2

, (2.90)

In the regime γmin
conv � γ0 < γmin

abs , where the growth is convective only, the turning
points lie at

xt,conv = ±21/2

max
(

ν′L
cL
,
ν′1
c1

)
|κ′′|

1/2

, (2.91)
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Figure 2.2: Three regimes characterised by different dominant nonlinear processes
acting on the Langmuir wave, separated by distinct regions in (kLλD− εL) space,
as defined by Kline et al.. Figure adapted from Kline et al. (2006) [4].

Finally, in the regime of strong damping, close to the threshold for convective
growth where 0.5 � ν . 1, the turning points lie at

xt,thresh =
1

2

(
1− ν

ν

)1/4

xt,conv, ν ≡
(
γmin
conv

γ0

)2

. (2.92)

2.4.2 Nonlinearities and the importance of kLλD

The dimensionless parameter kLλD is widely recognised as being useful as a means
of theoretically determining which processes we expect to be dominant in the
plasma for a given laser wavelength, plasma density and electron thermal tem-
perature, where λD is the usual electron Debye length.

Kline et al. define by way of kLλD three distinct nonlinear regimes: Strong
Langmuir wave turbulence, weak Langmuir wave turbulence, and the kinetic non-
linear regimes [4]. The size and shape of the turbulent regions defined by Kline
et al. is based on theory and ionospheric [32,33] measurements. The onset and ex-
tent of the kinetic regime, however, are far from precisely defined, but based on
particle-in-cell simulations may be applicable from kLλD & 0.25. The processes
that we expected to be dominant across the (kLλD − εL) space are summarised
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in Fig. 2.2.
In the following chapter, autoresonance will be considered in two distinct

regimes, namely that of low kLλD, where we consider SRS in the range kLλD .
0.15, and the kinetic regime, where we consider SRS in the range kLλD & 0.25.
We summarise here the dominant nonlinear processes in the two regimes.

2.4.3 The fluid regime, kLλD . 0.15

Through various perturbative approaches, Dewar and Lindl [34], Coffey [35] and
Winjum [36] derived the correction to the Bohm-Gross relation arising from the
taking into consideration of the presence of harmonics of the fundamental fre-
quency of the Langmuir wave. Through the advective term in the ponderomo-
tive force in Eq. 2.27, harmonics of the Langmuir wave become more impor-
tant as the amplitude of the Langmuir wave grows, leading to a shift in fre-
quency. The first harmonic does not actually produce a shift in frequency; it is
necessary to calculate the second harmonic to arrive at a shift in frequency [36],
while the third harmonic produces a frequency shift that is smaller by a factor of
vosc/vφ = ekLεL/neω

2
L � 1, where vosc = eA0/m. To lowest order and for where

vth � vφ, the following shift is obtained due to the second harmonic, dependent
on the square of the Langmuir wave amplitude:

ω2
L = ω2

pe + 3v2thk
2
L +

15

2

v2th
v4φ

ω4
L

ω2
pe

(
e|εL|
mωpe

)2

, (2.93)

which, in the absence of a ponderomotive force or other nonlinear terms, gives[
LL + i

15

4

v2thc
2

v4φ

ω3
L

ω2
pe

(
e|εL|
mcωpe

)2
]
εL = 0. (2.94)

Relativistic considerations of the oscillation speed of the electrons give an addi-
tional term of similar magnitude and Langmuir wave amplitude dependence, but
of differing sign. Using the expression given by Rosenbluth and Liu [37], we have
for the relativistic correction[

LL − i
3

16
ωpe

(
e|εL|
mcωpe

)2
]
εL = 0, (2.95)

applicable when e|εL|/mcωpe � 1. Since both terms are applicable in roughly
the same regime, they were combined by Yaakobi et al. [38] to give the following
total shift in Langmuir wave frequency:

(
LL + iβ|εL|2

)
εL = 0, β ≡

(
15

4

v2thc
2

v4φ

ω3
L

ω2
pe

− 3

16
ωpe

)(
e

mcωpe

)2

(2.96)
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(a) (b) (c)

Figure 2.3: (a) A typical Maxwellian electron distribution function f0, indicating
the band ∆v of the distribution function that is resonant with the Langmuir wave
around vφ. (b) The separatrix in the Langmuir wave frame, showing trapped and
untrapped electron trajectories. (c) A band in phase space containing deeply
trapped electrons. All figures adapted from Ref. [5].

The impact of these frequency shifts will be discussed and applied to the propa-
gating Langmuir wave in the following chapter.

2.4.4 The kinetic regime, kLλD & 0.25

Landau damping describes a process by which energy is exchanged between a
wave with phase velocity vφ and particles in the plasma that interact resonantly
with the wave (i.e. those that have velocities close to vφ, shown in Fig. 2.3a).
Particles which have velocities slightly greater than vφ will lose energy, depositing
it in the wave, while particles with velocities slightly lower than vφ will drain
energy from the wave. Ignoring nonlinear effects, the rate of Landau damping is
determined solely by kLλD and, through the threshold of growth due to damping
given earlier in the chapter, is important in understanding the initial onset of
parametric instabilities. We parameterise Landau damping with the damping
rate νL.

While it was already known that Landau damping exhibited nonlinear be-
haviour when the elapsed time t was of the order t ∼ (m/ekLEL)

1/2, it was not
until O’Neil (1965) [5] provided analytical insight into the behaviour of trapped
particles that the mechanism was understood. In the so-called kinetic regime,
the dominant nonlinear process originates from electron trapping in the potential
well of the Langmuir wave. This electron trapping flattens the distribution of the
electrons in the vicinity of vφ, acting to reduce the strength of Landau damping.
Landau damping is therefore highly nonlinear, dependent in this regime on the
local degree of electron trapping and thus on the local amplitude of the Langmuir
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wave. It was shown by Vu et al. that linear models of Landau damping are inade-
quate to describe kinetic simulation results, and that a “kinetic inflation” of SRS
(where Landau damping is reduced due to trapping) was likely responsible for the
behaviour of the plasma reflectivity in the kinetic regime [39]. The transition from
linear to nonlinear Landau damping, and from a fluid regime to a kinetic regime,
was observed experimentally by Montgomery et al. [40] and Kline et al. [41] on the
Trident laser facility, and continues to be an area of much research interest [42].

We consider a potential of the form Ex(x, t) = EL sin(kLx − ωLt) (i.e. a
monochromatic travelling wave), as seen by a stationary observer in what is re-
ferred to as the “lab frame”. In the frame of the wave, the potential is stationary
and Ẽx = Ex(x + vφt, t) = EL sin(kLx). Electrons may be roughly divided into
two categories in x − ve phase space: trapped and passing. Trapped electrons
are those that do not have sufficient energy to escape the potential wells of the
sinusoidal stationary wave. Passing electrons are those that have sufficient kinetic
energy in the frame of the wave that they pass either forwards or backwards over
the peaks of the potential wells (in the lab frame, they are travelling too quickly
or too slowly, respectively, to be trapped by the wave). In the wave frame, deeply
trapped electrons appear to oscillate around a stationary point at the bottom
of a potential well, while being swept along at an average velocity vφ in the lab
frame. The separatrix in the wave frame is shown in Fig. 2.3b. To second order
in the wave frame, the energy W of the deeply trapped electrons (shown inside
the separatrix in Fig. 2.3c) is given by the following:

W =
1

2
mev

2
e +

1

2
ekLEL(x− x0)

2 + const. (2.97)

This equation is simply that of a harmonic oscillator with frequency

ωb =

√
ekLEL

m
. (2.98)

This deeply-trapped electron frequency is typically referred to as the “bounce fre-
quency”, related to the bounce time τb = 2π/ωb, and is useful in parameterising
the timescales relevant to electron trapping. At high Langmuir wave amplitudes,
ωb may grow to the order of the ωL. Large numbers of formerly non-resonant elec-
trons become trapped by the wave and are accelerated, rapidly draining energy
from the wave over timescales of the order of ω−1

b . Due to the sudden onset of this
loss in wave energy (and consequently amplitude), this phenomenon is referred
to as “wave-breaking”. In warm plasmas, wave-breaking occurs at a somewhat
lower amplitude than ωb ≈ ωL (the cold plasma limit) would suggest, since warm
electrons are more easily brought into resonance. Furthermore, the electron pres-
sure of the density perturbation of the wave provides an additional acceleration,
further reducing the amplitude at which wave-breaking occurs [35].
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In the regime ω2
b/ωL � νL � ωb � ωL (applicable to what we have described

as the kinetic regime) and in the absence of other nonlinear effects, the Lang-
muir wave tends towards an undamped mode asymptotically in time, predicted
in 1957 by Bernstein, Green and Kruskal [43], and commonly referred to as a BGK
mode. This process takes only a few bounce periods, after which the electrons
are fully sorted into being either trapped or untrapped and there is no longer a
net exchange of energy with the wave over a bounce cycle. Landau damping is
therefore not generally included in the equations governing the Langmuir wave
used in various discussions later in this thesis, since it quickly becomes insignifi-
cant for timescales of 1− 2 ps (although it is not omitted from 3-wave or kinetic
simulations).

2.4.4.1 The kinetic nonlinear frequency shift

In addition to altering the Landau damping rate, trapped particles in the kinetic
regime play another important role: Trapped electrons are effectively removed
from the bulk of the distribution, resulting in a localised drop in the electron
pressure (defined earlier in the chapter when deriving the equation governing the
propagation of the Langmuir wave). This modification of the electron distribution
function results in a negative frequency shift of the Langmuir wave that is propor-
tional to the square root of the Langmuir wave amplitude. The negative shift may
be intuitively understood simply by noting that since ωL ∼ ωpe =

√
ne/nc, a re-

duction of the local density will result in a lower plasma, and therefore Langmuir
wave, frequency.

The resultant nonlinear Langmuir wave frequency may be written as the sum
of its linear ωl

L and nonlinear δωnl components such that ωL = ωl
L−δωnl, where ωl

L

is given by the usual Bohm Gross relation. The nonlinear frequency component
was calculated by Morales and O’Neil [18] to be the following:

δωnl =
α

∂εL
∂ω

|ωL

ω2
pe

k2L
∆vt

∂2f0
∂v2

∣∣∣
vφ
, (2.99)

where εL is the dispersion relation of the Langmuir wave, ∆vt = 2ωb/kL is the
velocity of deeply trapped electrons and f0 is the unperturbed initial electron
distribution function, normalised to n0. The constant α is a numerically deter-
mined integral containing contributions αt and αnt from both trapped and nearly
trapped electrons, respectively, where α = αt + αnt = 0.705 + 0.117 = 0.823.

Using the approximated form of the dispersion relation εL ∼ 1− ω2
pe/ω

2 rele-
vant to a cold fluid and the numerical value of α, we arrive at the following for
the frequency shift:

δωnl = 0.83ωLv
2
φ

(
e|εL|
mkL

)1/2
∂2f0
∂v2

∣∣∣
vφ
, (2.100)
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This frequency shift, proportional to the square root of the Langmuir wave enve-
lope amplitude, is often written simply as the following:

δωnl = η̃|εL|1/2 (2.101)

= ηωL

∣∣∣∣δne

n0

∣∣∣∣1/2 , (2.102)

for which

η̃ ≡ 0.83ωLv
2
φ

(
e

mkL

)1/2
∂2f0
∂v2

∣∣∣
vφ
, η ≡ 1

ωL

√
n0e

ε0kL
η̃ (2.103)

where εL and δne/n0 are simply related via Poisson’s Law. There are several
known expressions for the parameter η, the choice of which depends on the type
of problem being considered (for example, whether the Langmuir wave is switched
on suddenly or whether it is switched on adiabatically). However, the differences
between these expressions are small, and all are consistent in predicting a negative
frequency shift of the form given by Eq. (2.102). For the purposes of discussion,
η is therefore held as a positive free parameter. To ensure the appropriate value
of η is used in calculations and simulations, η is measured directly from PIC
simulations in Chapter 5.

Similarly, kinetic effects in the evolution of IAWs are also important, but here
the situation is more complex since both electrons and ions contribute terms of
differing sign to the frequency shift [44]. Electron trapping may lead to a modu-
lational instability, [45] typically referred to as the Trapped Particle Modulational
Instability (TPMI). The importance of trapping has been observed in 2D [46] and
3D simulations [47]. In higher-dimension simulations (D> 1), LDI, self-focusing
and filamentation of the Langmuir wave are also of great importance [48,49], each
of which is affected by trapping.

Many attempts in the last 10 years have been made to better model kinetic
effects in fluid models owing to the relevance to current ICF experiments and the
difficulty of analysing kinetic simulations directly. Building on the theoretical
descriptions of electron trapping first proposed in the 1960s, the last ten years
has seen a large number of attempts to describe the results of kinetic simula-
tions. Using an expression for the kinetic nonlinear frequency shift equivalent
to that derived by Morales and O’Neil [18], Vu et al. (2002) [39] proposed a model
similar to that described in this thesis for SRS and found agreement with re-
duced PIC simulations. Rose and Russell (2001) [50] derived a model based on
the determination of the electron susceptibility in order to model kinetic effects,
and found that their model suggested that efficient SRS amplification was not
possible for kLλD & 0.53, although Vu et al. found significant SRS levels as high
as kLλD = 0.55. Lindberg et al. (2005) [51] developed a model in good agree-
ment with Vlasov simulations for kLλD < 0.3 through use of a carefully-chosen
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2.5. Autoresonance

phenomenological description of electron trapping effects based on measurements
taken from Vlasov simulations. In the context of Raman amplifiers, Yamplosky
and Fisch (2009) [52] derived an expression for the time-dependent nonlinear Lan-
dau damping. Bénisti et al. (2010) [53] have proposed a relatively unconventional
model that includes nonlinearity in the group velocity of the Langmuir wave and
found agreement with the initial SRS growth observed in Vlasov simulations.

Many other models have been proposed, often applicable to slightly different
regimes and with different purposes in mind. The approach in this thesis is most
similar to that taken by Vu et al., owing to its suitability for analytical study
(the relatively complex and highly nonlinear model suggested by Bénisti et al.,
for example, does not lend itself to analytic study). It should be stressed that
the model presented here is not an attempt to capture the broad range of physics
present in kinetic simulations or indeed experiments, but is meant instead to
illuminate the key processes responsible for the behaviour of SRS in the kinetic
regime.

2.5 Autoresonance

The various terms described at the end of this chapter all act to detune the three-
wave resonance. A natural question arises: what happens when two or more shifts
are combined? If the plasma is inhomogeneous and kinetic effects are important,
there will be a shift both in wave number and in Langmuir wave frequency. In
this instance, we write the following equation for the Langmuir wave, relevant to
a warm plasma with a linear density profile in the kinetic regime:(

LL + icLκ
′x− iη̃|εL|1/2

)
εL =

e

4me

kL
ωL

ω2
peA

∗
1A0 (2.104)

We consider the part of the plasma ahead of the resonance point, x > 0, towards
which a Langmuir wave generated resonantly at x = xres = 0 will propagate.
Initially, the Langmuir wave amplitude is zero. It is clear that if κ′ < 0, the two
shifts will add to produce a larger negative shift away from resonance. However,
if κ′ > 0, the two shifts will, partially or totally, cancel each other out.

As discussed earlier in the chapter, the Langmuir wave will undergo a shift in
wave number as it propagates away from the resonance point. At and around xres,
the Langmuir wave will experience a convective growth in the linear profile. As
the Langmuir wave amplitude grows, electron trapping will begin to modify the
distribution function, leading to a shift in the frequency of the Langmuir wave.
The two shifts are of opposing sign, so whatever their respective magnitudes, they
will at least partially cancel in the region x > xres.

It is instructive to consider the wave number shift as something that is ex-
ternally imposed upon the Langmuir wave. The ponderomotive force that drives
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Chapter 2. Three-wave coupling in stimulated Raman scattering

the Langmuir wave may be considered in this way to be swept in wave number
through space, much like a driver of a pendulum being swept in frequency through
time (in reality, it is the wave number of the Langmuir wave, not the driver, that
is swept). In the fluid regime, where the frequency shift of the Langmuir wave is
due to thermal and relativistic effects as opposed to electron trapping, Yaakobi
et al. [38] showed that the Langmuir wave can phase lock to the driver as it passes
through resonance. During phase-locking, the Langmuir wave may then self-
adjust its amplitude to maintain resonance with the driver as the Langmuir wave
propagates. This process of automatic (without feedback) amplitude adjustment
in order to maintain resonance is referred to as “autoresonance”. The amplitude
of the Langmuir wave must therefore grow in a predictable fashion, such that the
two shifts remain equal and of opposite sign.

In this thesis, autoresonance in the kinetic regime is explored in the context
of SRS. This phenomenon of cancellation between the two shifts forms the basis
of the autoresonance mechanism that is the focus of this thesis.

2.6 Normalisation

We include here a brief note on normalisation in the coming chapters. It is
convenient both in numeric simulations and calculations to normalise time and
space by t′ = ω0t and x

′ = k0x, respectively, and to normalise all fields by E0, the
maximum electric field amplitude of the pump wave at the LHS boundary of the
simulation window. The quoted values of various parameters will be presented
as unitless quantities normalised in this way unless the units are explicitly given.
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2.7. Chapter summary

2.7 Chapter summary

In this chapter, the three equations governing the propagation of an incident
electromagnetic wave (the laser), a scattered electromagnetic wave and a driven
electron-plasma wave (the Langmuir wave) through an inhomogeneous electron
plasma density profile were derived. To these equations, wave-particle interac-
tions, or kinetic effects, were subsequently introduced in the form of Landau
damping and a nonlinear frequency shift that varies with the local amplitude of
the Langmuir wave. Individually, the wave number shift of the three waves due to
the inhomogeneity of the plasma and the nonlinear frequency shift due to kinetic
effects both act to detune the three-wave resonance and saturate the growth of
the Langmuir wave. Together, however, there is the possibility that these two
effects may negate each other either partially or totally, allowing for the onset of
autoresonance.

The autoresonant behaviour of the Langmuir wave, and the resultant impact
on the behaviour of the electromagnetic waves, is explored in the following chap-
ters, first analytically and subsequently in simulations.
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Chapter 3

Autoresonance

In this chapter, the mechanism of autoresonance is discussed in detail. The sim-
plest example is perhaps the driven pendulum, and it is this weakly nonlinear
oscillator that is first used to introduce autoresonant behaviour and to demon-
strate phase-locking between a nonlinear oscillator and its driver. Beginning
from the equation governing the propagation of the Langmuir wave in a warm
inhomogeneous plasma derived in the previous chapter, the impact of additional
nonlinear terms is considered. Through the use of examples in the kLλD . 0.15
regime, where the dominant frequency shift of the Langmuir wave arises due to
fluid effects, and examples in the regime kLλD & 0.25, where the dominant fre-
quency shift is due to kinetic effects, the robustness of autoresonance is explored.
Autoresonance is shown to be a possible mechanism of Langmuir wave growth,
which may far exceed the linear response to a fixed driver. Autoresonance is
shown to be possible in any density profile that is of a positive gradient, and is
shown to display a low sensitivity to nonlinear Landau damping in the kinetic
regime.

An analytic model describing the behaviour of the autoresonant Langmuir
wave is developed that is shown to be in agreement with numerical solutions to
the Langmuir wave equation. Although the analysis and simulations presented
here are 1D, studies by Frièdland [54] have shown that autoresonance is not sus-
ceptible to weak transverse nonuniformity in the interacting waves. Additionally,
autoresonance was demonstrated in the fluid regime in 3D systems [55].
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Figure 3.1: (a) A pendulum of natural frequency ω0, driven at a swept frequency
ωD. The pendulum oscillates at a frequency that decreases as the amplitude of
oscillation grows. (b) The response of the pendulum to varying driver strengthsD
and driver frequency sweep direction α, showing linear responses below threshold
(blue dashed lines) and autoresonance above threshold (red solid line). Also
shown is the non-autoresonant response of the pendulum to a driver that is swept
in frequency in the opposite direction (green dotted line).

3.1 Introduction to autoresonance

3.1.1 The pendulum

How can a nonlinear oscillator be driven to high amplitude without feedback? We
consider first the simple case of a driven pendulum. If a drive of fixed frequency is
applied to the pendulum, the amplitude of oscillation will initially increase. How-
ever, as the amplitude of the oscillation grows, the oscillation frequency will fall
and the pendulum will quickly dephase from the driver, saturating the growth in
amplitude. The result is a weak linear response to the driver, with the amplitude
performing oscillations around a small and constant average value.

Consider now a driver frequency that is swept in time, decreasing and pass-
ing through the natural frequency ω0 of the pendulum (see Fig. 3.1a). Under
certain conditions, the pendulum may phase-lock to the driver. This well-known
phenomenon is described in detail in Ref. [56]. During phase-locking, the pendu-
lum will self-adjust its instantaneous amplitude in order to maintain resonance
with the driver, allowing for the efficient exchange of energy between driver and
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3.1. Introduction to autoresonance

pendulum.
We take as our point of departure the equation of a pendulum driven at a

frequency ωD that decreases according to ωD = ω0 − αt, where t is the time,
beginning at t� 0:

θ̈ + ω2
0 sin θ = D̄ cos(ω0t− αt2/2), (3.1)

for which θ is the angle between the pendulum and the vertical and D̄ parame-
terises the driver strength. In the weakly nonlinear limit,

θ̈ + ω2
0

(
θ − θ3

6

)
= D̄ cos(ω0t− αt2/2) = D̄Re[ei(ω0t−αt2/2)]. (3.2)

We begin by making the substitution θ = Re(A). In the weakly nonlinear limit,
A should have a frequency that remains close to ω0. We therefore split A into
slowly- and quickly-varying components, such that

A = Ase
iω0t, (3.3)

where |A|−1 ˙|A| � ω0. The detuning of A from its linear frequency is now con-
tained in the slowly-varying phase of As, and

Ȧ =
(
Ȧs + iω0As

)
eiω0t, (3.4)

Ä =
(
Äs − ω2

0As + 2iω0Ȧs

)
eiω0t (3.5)

≈
(
2iω0Ȧs − ω2

0As

)
eiω0t. (3.6)

Upon substitution into Eq. 3.2, we find

Ȧs + i
ω0|As|2

16
As = −iDe−iαt2/2, (3.7)

where the approximation θ3 ≈ Re[(3/4)|As|2As exp(iω0t)] has been used and D =
D̄/2ω0 is the real normalised driver strength. Making the substitution as =
As exp(iαt

2/2), we may then write the following equation for the weakly-nonlinear
pendulum:

ȧs + i

(
ω0|as|2

16
− αt

)
as = −iD. (3.8)

In Eq. (3.8), the term iαt is due to the frequency shift of the driver, while
−i(ω0/16)|as|2 is the nonlinear frequency shift of the pendulum. During au-
toresonance, these two terms must cancel, allowing the efficient driving of θ by
D̄. Solutions to this equation are plotted in Fig. 3.1b for a range of parameters.
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It is clear that in order for autoresonance to take place, α > 0, and for exact
cancellation of the frequency shifts we expect

|as| =
(
16α

ω0

)1/2

t1/2. (3.9)

When α < 0, the pendulum responds essentially linearly (Fig. 3.1b, green dotted
line). For α > 0, the pendulum exhibits a sharp threshold behaviour: When the
drive is below this threshold, autoresonance is not possible and the pendulum
responds linearly to the drive (Fig. 3.1b, blue dashed lines). Above this thresh-
old, autoresonance is observed, and the solution does not change significantly as
the driver strength is increased further still (Fig. 3.1b, solid red line) until the
pendulum leaves the weakly nonlinear regime. The observed autoresonant solu-
tion matches closely the curve expected if the cancellation between the frequency
sweeping of the driver and the nonlinear frequency shift of the oscillation of the
pendulum were exact, given by Eq. (3.9) (Fig. 3.1b, black dashed line). This
behaviour is explained later in the chapter.

The equation governing the slowly-varying amplitude of the pendulum, Eq.
(3.8), differs only trivially from the time-stationary equation of the Langmuir
wave in the regime where the dominant nonlinear frequency shift arises due to
fluid effects and the driving term is constant. This equation is similar also to
the time-stationary equation of the Langmuir wave in the kinetic regime. While
Langmuir waves evolve both in time and space, characteristics of the equation
governing the propagation of the Langmuir wave in either regime may be con-
structed so that the resultant behaviour is analogous to the pendulum.

3.1.2 Autoresonance in other contexts

In addition to the simple pendulum, autoresonance may be observed in a wide
variety of systems and is important in many experiments. It is particularly useful
due to the absence of feedback in maintaining resonance; feedback in many situa-
tions is simply impossible to obtain and respond to with the necessary speed and
precision required to maintain resonance artificially. Autoresonance was observed
in electron beams in accelerators as early as 1945 [57,58], and is used in modern ac-
celerators to prepare the beam, where autoresonance in the cyclotron motion [59]

of electrons in a magnetic field is utilised as a means of acceleration. Autores-
onance has been observed in superconducting Josephson junctions [60], and the
threshold effect may have useful applications to quantum state measurements.

Many applications of autoresonance have been considered in plasmas. At high
Langmuir wave amplitudes, relativistic effects become important as the oscilla-
tion frequency of the electrons approaches c (discussed previously in Sec. 2.4.3),
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3.2. Autoresonance at low kLλD

leading to the detuning of the Langmuir wave from a fixed-frequency driver [37].
In order to maintain resonance, a method of using a “chirped” driver, in which
the frequency was decreased rapidly in time, was investigated for the first time by
Ghizzo et al. [61]. In Vlasov simulations, the relativistic shift was seen to phase-lock
to the chirping of the drive, allowing the driving of Langmuir waves to unconven-
tionally high amplitudes with a view to particle acceleration. Autoresonance has
also been used in experiments such as those conducted by Andresen at al. [62] in
which a chirped frequency drive was used to autoresonantly excite an antiproton
plasma in order to drive anitprotons into positrons to form antihydrogen.

The impact of autoresonance in SBS was discussed by Maximov et al. [63], then
investigated by Williams et al. [64]. In the case discussed by Williams, trapping
alters the frequency of the ion acoustic wave. In the presence of a plasma flow,
such as that which might exist near the entrance to a hohlraum, the autoresonant
behaviour of the ion acoustic wave may alter the energy transferred between the
crossing beams, and is thus of relevance to ICF experiments.

Despite the success and wide use of BGK models for plasma waves, direct
observation of such a wave has proved difficult. Autoresonance has been proposed
as a mechanism by which such a wave could be excited and directly observed in
a controlled fashion, rather than via instabilities such as SRS. Khain et al. [65]

recently built on a model proposed by Frièdland [66] where a “hole” in phase space
may be autoresonantly excited in the plasma through the use of a chirped drive,
forming a BGK mode that could then be driven to high amplitude and directly
observed.

3.2 Autoresonance at low kLλD

Autoresonance in SRS was investigated by Yaakobi et al. [38] in a regime where
the dominant nonlinear frequency shift was due to harmonics of the Langmuir
wave and relativistic effects. In this regime, a growing Langmuir wave undergoes
a shift in frequency that is proportional to the square of its amplitude. While
the parameters used by Yaakobi are not of relevance to ICF experiments, this
regime provides a useful introduction into the mechanism of autoresonance, and
has interesting similarities and differences to the kinetic regime that is the focus
of this work.

Derived in the previous chapter, the equation governing the motion of the
Langmuir wave through a linear density profile in this regime is the following:(

LL + iβ|εL|2 + icLκ
′x
)
εL = P. (3.10)

where P = (ekLω
2
pe/4meωL)A

∗
1A0 is the ponderomotive drive for which the EM

wave envelope amplitudes are prescribed (constant). Prescribing the amplitudes
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A0,1 allows the phenomenon of autoresonance to be investigated and analysed
separately from SRS. The results of this analysis are later be applied to full
three-wave coupling in the following chapters.

The strength of the nonlinear fluid frequency shift is parameterised by β, for
which

β ≡

(
15

4

v2thc
2

v4φ

ω3
L

ω2
pe

− 3

16
ωpe

)(
e

mcωpe

)2

(3.11)

The parameter β is composed of two terms of differing sign. The term that
dominates (and therefore the sign of β) is dependent on the values of ωL, kL and
thus may change depending on whether FSRS or BSRS is considered. Typically,
β > 0 for BSRS and β < 0 for FSRS. The parameter κ′, parameterising the
wave number detuning due to propagation through a linear density profile ne =
n0(1+ x/L) and defined in Eq. 2.77, is of a sign that depends on the direction of
the density gradient: For L > 0 (referred to as a positive density profile), κ′ > 0;
for L < 0 (referred to as a negative density profile), κ′ < 0. As in the case of the
pendulum in the previous section, it is clear that autoresonance requires the wave
number shift and the fluid nonlinear frequency shift to be of differing sign. Thus,
for autoresonance to occur, the density gradient must be negative in the case of
BSRS and positive in the case of FSRS1. Since the Langmuir wave propagates
in the positive x-direction, autoresonance may only occur to the right (x > 0) of
the resonance point x = xres = 0.

The case considered by Yaakobi is applicable to a CO2 laser (i.e. a laser
wavelength much longer than the Nd:glass laser wavelength used in current ICF
experiments and throughout this thesis). With the usual normalisation, Eq.
(3.10) was solved under the following conditions: n0 = 5.6×1017 cm−3 [or ne(x =
0)/nc = 0.05], Te = 0.1 keV, λ0 = 10 µm, I0 = 2×1013 Wcm−2, and I1 = 1.8×108

Wcm−2, where I0,1 are the intensities of the pump and seed that ponderomotively
drive the Langmuir wave, here switched on at time t = 0 and constant throughout
the simulation window. The plasma was chosen to have an electron density profile
of the form ne = n0(1+x/L), where L = ±1 cm. Using these parameters, at x = 0
we find ωL = 0.23, kL = 1.714, kLλD = 0.11, P = 1.4× 10−5 and β = 1.5× 10−2

for BSRS, and ωL = 0.22, kL = 0.23, kLλD = 0.014, P = 1.9 × 10−6 and
β = −1.2 × 10−3 for FSRS. It can be seen in Fig. 2.2 that this is far from the
kinetic regime.

While autoresonance in both the BSRS and FSRS cases is possible, only BSRS
is typically important. This is due to two reasons: First, the Langmuir wave group
velocity cL is significantly smaller in the FSRS case. Since the growth of the Lang-
muir wave is tightly bound to the velocity at which the autoresonant wave front
may propagate, the growth rate in the FSRS case is greatly reduced compared to

1The reverse is erroneously stated in Ref. [38].
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Figure 3.2: (Left) The envelope amplitude of the autoresonant Langmuir wave
in the regime where the dominant frequency shift arises due to fluid effects. The
black dashed line indicates the amplitude expected from an exact cancellation of
the fluid frequency shift and the wave number shift due to inhomogeneity. (Right)
The phase of the Langmuir wave, showing phase-locking around φL = −π/2. The
phase-locked region extends in tandem with the autoresonant wave front.

the BSRS case (in the case considered here, cBSRS
L /cFSRS

L ≈ kBSRS
L /kFSRS

L = 7.4).
Second, in the regime considered here where fluid nonlinear effects are dominant,
the value of ωL lies very close to ωpe. In the FSRS case, the density gradi-
ent must be positive, and thus ωpe increases as a function of distance. Since
kL = [ω2

L − ω2
pe(1 + x/L)], kL quickly approaches zero and the Langmuir wave

becomes evanescent.

3.2.1 The method of characteristics

In order to solve Eq. (3.10), we employ the method of characteristics and a simple
finite difference scheme. The characteristics of equation (3.10) are the straight
lines x = (cL/c0)t+s∗ in the (x, t)-plane, intercepting the x-axis at s∗, where s∗ is
real and of fixed value along a given characteristic. We make now the substitutions
t = (c0/cL)(s− s∗) and x = s, where s is a real variable. Therefore, along a given
characteristic with a constant value of s∗, we may use the total derivative of εL
with respect to s to rewrite equation (3.10) as the ordinary differential equation(

d

ds
+ iβ|εL|2 + icLκ

′s

)
εL = P. (3.12)
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Figure 3.3: The envelope amplitude of the autoresonant Langmuir wave in the
regime where the dominant frequency shift arises due to fluid effects. The black
dashed line indicates the amplitude expected from an exact cancellation of the
fluid frequency shift and the wave number shift due to inhomogeneity. A sharp
threshold in driver strength is present at P/P0 ∼ 0.9.

The characteristic of the Langmuir wave evolution is analogous to the equation
governing the behaviour of the weakly nonlinear pendulum, Eq. (3.8).

We consider a plasma with the LHS and RHS boundaries xL, xR. A prescribed
ponderomotive drive P = P (t) = P0H(t) is applied, where H is the Heaviside
function and P0 is a constant, and the system is solved up to a time tmax. Equation
(3.12) is easily solved numerically with boundary conditions εL(s = xL) = 0
and εL, P = 0 for s < s∗. By solving in the domains s ∈ [xL, xR] and s∗ ∈
[xL − (cL/c0)tmax, xR], the full spatio-temporal evolution of εL may be recovered
up to time tmax. By simply neglecting the temporal derivative ∂t in Eq. (3.10), the
time-stationary case (t → ∞) may also be obtained, towards which the system
evolves.

The solution to Eq. (3.12) in the BSRS case is shown in Fig. 3.2. As the Lang-
muir wave propagates from the point of resonance x = 0, it grows in amplitude
in a predictable fashion, namely that which would be expected if the cancella-
tion of the nonlinear fluid frequency shift and the wave number detuning due to
inhomogeneity were exact, or

iβ|εL|2 = icLκ
′x =⇒ |εL| =

(
cLκ

′

β

)1/2

x1/2. (3.13)

In this case, the autoresonant wave front simply propagates at the group velocity
cL. This exact cancellation is also plotted in Fig. 3.2 (black dashed line). The
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phase of the Langmuir wave φL is also shown in Fig. 3.2. The phase is observed
to oscillate around a constant average value of φL = −π/2 over a region that
extends at the group velocity, corresponding to the distance propagated by the
autoresonant wave front (In the FSRS case, the phase is locked at φL = +π/2.
Taking the conjugate of Eq. (3.12) transforms between the two cases, hence the
change of sign in φL.).

Autoresonance of this type exhibits a sharp threshold phenomenon in the
strength of the driver. A detailed explanation of this phenomenon is given later
in the chapter. In Fig. 3.3, the response of the Langmuir wave to drives of various
strengths in shown. For P = P0 and below, the system is not autoresonant and the
amplitude quickly saturates at a comparatively low level (the threshold is found
at P/P0 ∼ 0.9). Below threshold, it is clear that halving the driver strength
will halve the response in amplitude of the Langmuir wave. We identify this as
the “linear regime”. After the threshold in P is passed, increasing the drive has
no significant impact on the behaviour of the Langmuir wave compared to the
P = P0 case, unless the linear response is greater still than the amplitude that
would otherwise be reached through autoresonance. Also shown in Fig. 3.3 is the
BSRS case when the gradient is of the incorrect (positive) sign for autoresonance
to arise. Linear behaviour is once again observed.

3.2.2 Growth rate of fluid-type autoresonance and rele-
vance to the NIF

By making the substitutions ζ =
√

|κ′|x, τ = cL
√
|κ′|t and |β|ε2L = cL

√
|κ′|G2,

Eq. 3.10 may be renormalised such that there is only a single free parameter. In
the case of BSRS (and therefore a negative density profile), we find(

∂τ + ∂ζ − iζ + i|G|2
)
G = Υ, (3.14)

where Υ =
√
β/(cLκ

′)3/2P . The threshold for whether autoresonance occurs is
then only dependent on this single parameter Υ. It is shown later in the chapter
that the critical value in driver strength, Υc, is simply given by Υc = (1/3)3/4.
It is clear that given sufficient driver strength, autoresonance may occur for a
very wide range of parameters. However, in full three-wave coupling, other pro-
cesses may dominate the autoresonant growth. The important question, then,
is whether the autoresonant growth rate is greater or smaller than other growth
rates, particularly the convective growth rate γ0 of SRS, and whether the satu-
ration level of other growths is high enough to mask the effect of autoresonance.

We make here a general remark about spatially autoresonant growth in the
low kLλD regime. For the reasons given earlier in the chapter, autoresonance in
FSRS is unlikely to be significant in determining the behaviour of the Langmuir
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wave and ultimately the reflectivity of the plasma. Autoresonance in BSRS, while
capable of provoking a significant growth in the Langmuir wave, may only arise
in a negative density profile, essentially limiting the relevance for ICF to indirect-
drive schemes where the density gradient in the plasma inside the hohlraum is
less certain to be increasing over the whole of the path that the laser beam
travels. In the low kLλD regime, the autoresonant wave front propagates at the
group velocity of the Langmuir wave. Consequently, the temporal growth rate
of the autoresonant solution is bound to the group velocity of the Langmuir
wave (there are exceptions to this in three-wave coupling in the kinetic regime,
discussed in the following chapter). Indeed, since the position of the wave front
is given approximately by cLt (where t = 0 coincides with the laser beam passing
through the resonance point), we may write for the autoresonant Langmuir wave
amplitude

|εL| =
(
cLκ

′

β

)1/2

(cLt)
1/2, (3.15)

and, for temporal growth rate of the maximum instantaneous amplitude (i.e. the
amplitude at the autoresonant wave front) |εL|max, we may write

d|εL|
dt

=
1

2

(
cLκ

′

β

)1/2 (cL
t

)1/2
(3.16)

Since the group velocity is given by cL = 3v2thkL/ωL = 3vth(kLλD), low values of
kLλD (or even simply Te) result in a slow autoresonant growth rate. For these
reasons, autoresonance in the fluid regime is unlikely to be of relevance to the
NIF.

3.3 Autoresonance in the kinetic regime

We consider now the regime discussed at the end of the previous chapter, where
the dominant nonlinear frequency shift of the Langmuir wave is due to kinetic
effects. The frequency shift in this case is proportional to the square root of the
amplitude of the Langmuir wave, and we write the following for the Langmuir
wave: (

LL + icLκ
′x− iη̃|εL|1/2

)
εL = P. (3.17)

As discussed in the previous chapter, ICF experiments may provide conditions
where autoresonance is strongly driven, with laser light encountering a relatively
high-amplitude back-scattered beam near the entrance to a hohlraum and pro-
viding the ponderomotive drive. Autoresonance may also arise in a much more
weakly-driven case, instead growing out of thermal noise in the plasma. For
simplicity, we begin by discussing the strongly-driven case.
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Figure 3.4: Electron density profile of the plasma used in simulations where the
Langmuir wave has a prescribed driver for linear (red solid line) and parabolic
(blue dashed line) density profiles. The density scale length L is equal in both
cases.

We wish first to demonstrate that autoresonance is possible in the kinetic
regime. Furthermore, we wish also to show that the phenomenon of autoresonance
is not unique to a linear density profile. To this end, we define a positive linear
density profile,

ne = n0(1 + x/L), (3.18)

and a parabolic density profile,

ne = n0[1 + (x/L)2], (3.19)

It will be shown later, however, that cubic and higher powers still permit autores-
onance. The Langmuir wave is initially resonant with the drive at x = xres = 0
in both density profiles, shown in Fig. 3.4. We again restrict our discussion to
BSRS; in addition to the lowering of cL, the low values of kLλD associated with
FSRS mean that kinetic effects are not usually significant.

For the linear profile, we have as before the following equation describing the
envelope of the Langmuir wave:

(∂t + cL∂x + icLκ
′x− iη̃|εL|1/2)εL = P, (3.20)

Defining k0 − k1 − kL = ∆k = κ′x, we find κ′ = ∂x∆k ∼ ω2
pe0/6Lv

2
thkL, for which

ωpe0 = ωpe(x = 0). Specifically, in this linear profile case, κ′ is only dependent on
x through kL, thus varies weakly in space until kL approaches its vanishing point.
The cancellation between the wave number detuning and the kinetic nonlinear
frequency shift thus leads to a parabolic growth in the Langmuir wave envelope
amplitude, or ∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′ωLη

)2

x2 =

(
cLω

2
pe0

6Lv2thkLωLη

)2

x2, (3.21)
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Figure 3.5: (a) Envelope amplitude of the Langmuir wave in a linear profile with a
prescribed driver, shown at a series of times, t = 0.5, 1, 1.5, 2 ps. The steady state
solution (t → ∞, cyan line) amplitude is also shown (upper figure) in addition
to the Langmuir wave phase (lower figure). Due to phase-locking, the phase is
constant at−π/2 behind the wave front where the wave is autoresonantly growing.
Ahead of the wave front, the phase changes rapidly. (b) Envelope amplitude of the
Langmuir wave in a parabolic profile with a prescribed driver. The steady state
solution (t→ ∞, cyan line) amplitude is also shown (upper figure) in addition to
the Langmuir wave phase (lower figure). The phase is approximately constant at
−π/2 over the region of growth. Outside of this autoresonant region, the phase
changes rapidly.

where εL, η̃, δne/n0 and η are related by the expressions given in Eqs. (2.102-
2.103) in the previous chapter. For the parabolic profile, we write the following
similar equation:

(∂t + cL∂x + icLκ
′′x2 − iη̃|εL|1/2)εL = P, (3.22)

Defining k0 − k1 − kL = ∆k = κ′′x2/2, we find κ′′ = ∂xx(k0 − k1 − kL) ∼
(ω2

pe0/3L
2v2thkL). In this parabolic profile case, the cancellation between the wave

number detuning and the kinetic nonlinear frequency shift leads to a growth in
the Langmuir wave envelope that scales with x4, or∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′′ωLη

)2

x4 =

(
cLω

2
pe0

3L2v2thkLωLη

)2

x4. (3.23)
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To isolate the behaviour of autoresonance, we study Eqs. (3.20) and (3.22) in
the absence of SRS by prescribing the drive of the Langmuir wave. The prescribed
drive P is switched on suddenly at t = 0 in a plasma where εL(x, t = 0) = 0, hence
P = P0H(t), where H(t) is the Heaviside step function and P0 is a constant that
describes the product of the electromagnetic (pump and seed) wave amplitudes,
here constant throughout the simulation window.

In order to discuss autoresonance in the context of current ICF experiments,
we choose parameters appropriate to plasma conditions at the NIF and a laser
wavelength corresponding to a frequency-tripled Nd:glass laser. The solutions to
Eqs. (3.20) and (3.22) are generated using identical laser parameters and plasma
conditions (calculated here at x = 0) and differ only in density profile: λ0 = 351
nm, I0 = 5 × 1015 Wcm−2, I1 = 1.1 × 1012 Wcm−2, n0 = 4.5 × 1020 cm−3

(ne/nc = 0.05), Te = 1 keV, L = L0 = 100 µm and η = 0.25, where I0 represents
the laser beam intensity and I1 the counter-propagating electromagnetic wave (as
discussed in the following chapter, these may be assigned to, for example, laser
light from the inner cone encountering counterpropagating backscattered light
from the hohlraum wall due to laser light from the outer cone, or vice versa). The
value of η is obtained from particle-in-cell simulations and is discussed further
in the following chapter (here, η = η0 = 0.25). Using these parameters, we find
kLλD = 0.33 and P0 = 3.5× 10−5.

The solutions to Eqs. (3.20) and (3.22) are shown in Figs. 3.5(a) and 3.5(b), re-
spectively. Both solutions clearly exhibit phase-locking and autoresonant growth
along a curve that closely matches the growth expected if the cancellation be-
tween the kinetic nonlinear frequency shift and the spatial wave number detuning
arising from inhomogeneity were exact (Eqs. (3.21) and (3.23)).

The autoresonant behaviour displayed here in the kinetic regime differs strongly
from the autoresonant behaviour in the fluid regime (and pendulum) earlier in
the chapter:

1. Autoresonance will always begin; there is no threshold in the driver strength,
regardless of the parameters chosen.

2. Autoresonance will always end. Regardless of the parameters chosen, the
Langmuir wave envelope amplitude will eventually saturate, coinciding with
a transition from phase-locking to rapid phase change.

In the full three-wave case, it is known that a parabolic profile may support
absolute growth of the daughter waves [20]. In the parabolic case, the regime con-
sidered here has a growth rate above the threshold required for absolute growth,
and autoresonance may compete with or even enhance this growth. We wish at
this stage simply to show that autoresonance does not require a specific density
profile and is a robust phase-locking mechanism.
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3.4 A pseudoparticle model for autoresonance

We wish to understand the mechanism of the observed phase-locking in the kinetic
regime and to be able to explain its key features, namely the absence of a threshold
in driver strength and the finite spatial extent over which autoresonant occurs.
We begin by permitting a generalised density profile of the following form:

n0 = ne(1 +
n∑
1

anx
n

n
), (3.24)

where an is a constant. Neglecting the derivatives of k0,1 and assuming ωL is
constant as before, we find

∂x(−kL) = α
d

dx

n0

ne

= α
n∑
1

anx
n−1, (3.25)

where α ≡ ω2
pe0/6v

2
thkL. We thus write for the equation governing the Langmuir

wave the following:(
∂t + cL∂x + icLα

n∑
1

anx
n − iη̃|εL|1/2

)
εL = P. (3.26)

We consider the time-stationary case and so neglect the temporal derivative.
We adopt an action-angle (I, φL) formulation of the problem and accordingly
make the substitutions εL = |εL| exp(iφL) and |εL|2 = I, giving, after separating
real and imaginary parts,

dI

dx
=

2P

cL
I1/2 cosφL, (3.27)

and
dφL

dx
= −α

n∑
1

anx
n +

η̃

cL
I1/4 − P

cL
I−1/2 sinφL. (3.28)

This method is derived from the variational principle applied to nonlinear os-
cillators as developed by Witham [67]. It was applied to a broad class of nonlinear
waves by Frièdland, and was shown to be applicable to multidimensional wave
problems [68]. Frièdland applied the method to a variety of nonlinear phenomena
including Kirchhoff vortices [69], Diocotron modes in accelerators, planetary mo-
tion, and the canonical example of the pendulum [56], and it is this action-angle
approach that we take as our point of departure in modelling the behaviour of
the autoresonant Langmuir wave.

During autoresonance, the phase φL should perform small oscillations around
a constant average value [68]. In Figs. 3.5(a) and 3.5(b), we see that this is indeed
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3.4. A pseudoparticle model for autoresonance

the case and that, during phase-locking, φL ∼ π/2. We consider an average
solution, with action Ī and phase φL = π/2, for which the phase-locking is exact.
During phase-locking, the action of the observed solution I, may be written as
the sum of the average action and a small deviation σ, such that I = Ī + σ.
Starting from the initial point of resonance, the average action should thus grow
slowly with respect to the scale on which σ varies. Since the phase should be
constant along the average solution, we write

0 = −cLα
n∑
1

anx
n + η̃Ī1/4 − P Ī−1/2. (3.29)

Differentiating this expression, we find

dĪ

dx
=

α

M

n∑
1

annx
n−1, M ≡ η̃

4cLĪ3/4
+

P

2cLĪ3/2
, (3.30)

where M is a slowly-varying parameter. Expanding Eqs. (3.27) and (3.28) to
lowest order around Ī, we find for σ:

dσ

dx
=

2P

cL
Ī1/2 cosφL − α

M

n∑
1

annx
n−1, (3.31)

and for φL
dφL

dx
= σM. (3.32)

3.4.1 The pseudopotential

Eqs. (3.31) and (3.32) form a Hamiltonian system H = H(φL, σ, x). Taking the
Hamiltonian equations

dφL

dx
=
∂H

∂σ
,

dσ

dx
= − ∂H

∂φL

,

we integrate to find

H =
Mσ2

2
+

(
α

M

n∑
1

annx
n−1φL − 2P

cL
Ī1/2 sinφL

)

=
1

2M

(
dφL

dx

)2

+ V (φL). (3.33)

Eq. (3.33) may be interpreted as a Hamiltonian that describes a pseudoparticle
of effective pseudomassM , moving in a pseudopotential V . For autoresonance to
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occur, the pseudoparticle must remain trapped by the pseudopotential, resulting
in small oscillations around a constant value of φL. For trapping to take place,
we require a pseudopotential that possesses a minimum at the point of resonance.
We may write V as a sum of two terms: a linear term Vl = (α

∑n
1 annx

n−1/M)φL

and an oscillatory term Vo = (2P/cL)Ī
1/2 sinφL. For a minimum in the pseu-

dopotential to exist, the following condition must be satisfied:∣∣∣∣ dVodφL

∣∣∣∣
max

>

∣∣∣∣ dVldφL

∣∣∣∣ , (3.34)

or, using the expressions for Vo and Vl,

2P

cL
Ī1/2 >

α

M

n∑
1

annx
n−1. (3.35)

When this condition is satisfied, the pseudopotential takes the form of a series
of wells superimposed on a linear slope. As x approaches the point of resonance
x = 0, all terms for which n > 1 in Eq. (3.25) disappear. Thus, we expect the
linear component of the gradient to dominate in the region close to the point of
resonance.

This pseudoparticle trapping is analogous to the trapping mechanism respon-
sible for the kinetic nonlinear frequency shift in the plasma. In the kinetic nonlin-
ear frequency shift, particles with velocity near vφ become trapped in a travelling
wave and bounce back and forth in a local potential well. During autoresonance,
the phase of the wave front of the Langmuir wave is trapped in a local pseu-
dopotential, causing the phase, or pseudoparticle, to bounce back and forth and
oscillate around a fixed value. This process maintains resonance beyond a single
point in space, and allows the Langmuir wave envelope amplitude to grow beyond
the linear response.

We are now in a position to explain the observed behaviour of the Langmuir
wave. In both the fluid and kinetic regimes, we begin by considering the limit
I → 0 (or εL → 0) at the resonance point from which autoresonance may begin.
For the kinetic case, we see in Eq. (3.35) that as I → 0, the RHS of the equation
decreases faster than the LHS, i.e. the inequality becomes more easily satisfied.
This means that at x = 0 (and I(x = 0) ∼ 0), the system will begin in a
phase-locked state. This is true for all values of an. Thus, assuming that the
system is driven from the initial state εL(x = 0) = 0, any profile described by a
polynomial with a positive gradient at x = 0 may undergo autoresonance in the
kinetic regime.

However, as I (or εL) grows, the RHS of Eq. (3.35) begins to grow more
quickly than the LHS. Therefore, as the Langmuir wave propagates from x = 0
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Figure 3.6: Development of the pseudopotential V = Vl + Vo throughout au-
toresonance in a linear density profile. At (a), V is dominated by the oscillatory
term Vo and the pseudoparticle describing the Langmuir wave envelope phase
φL is deeply trapped, oscillating about φL = π/2 (mod 2π). As the Langmuir
wave propagates and grows along the parabola to (b), the linear component Vl
increases more quickly than Vo and the trapping becomes weaker. At (c), the
pseudopotential wells disappear. At this point, trapping is lost and the phase
decreases rapidly, ending the efficient transfer of energy to the Langmuir wave
and resulting in a plateau in amplitude.

and grows, the trapping of the pseudoparticle becomes progressively weaker. At
the point at which ∣∣∣∣ dVodφL

∣∣∣∣
max

≈
∣∣∣∣ dVldφL

∣∣∣∣ , (3.36)

the gradient of Vo is no longer sufficient to cause an oscillation in the overall sign
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of dV/dφL and the pseudopotential wells disappear. The phase φL is therefore no
longer trapped and decreases rapidly, ending the efficient transfer of energy be-
tween the Langmuir wave and the driver. The Langmuir wave envelope amplitude
then oscillates around a plateau, propagating with a near-constant amplitude.
Each stage of this process is shown in detail in Fig. 3.6.

To a good approximation, for the parameters given earlier,

M =
η̃

4cLĪ3/4
+

P

2cLĪ3/2
≈ η̃

4cLĪ3/4
. (3.37)

For a linear density profile (a1 = 1/L, an6=1 = 0), we therefore simplify the condi-
tion given by Eq. (3.35) to the following:

Ī1/4 <
1

2

η̃P

κ′c2L
. (3.38)

This equation is easily solved to find a maximum value of Ī (and thus |δne/n0|)
permissible by the condition that the pseudopotential must be able to trap the
pseudoparticle (a more practical version of this equation is provided in the chapter
summary). For the parameters used here, doing so gives |δne/n0| ≈ 0.21. This
value is in close agreement with the level of the plateau in the Langmuir wave
envelope amplitude observed in Fig. 3.6 (in this figure, the plateau is reached at
|δne/n0| ≈ 0.22).

While autoresonance may arise for any values of the parameters η̃, κ′ and P ,
both the spatial extent over which autoresonance will be maintained and the even-
tual saturation amplitude of the Langmuir wave are sensitive to the parameters
chosen: Increasing κ′ (i.e. steepening the density gradient) will steepen the gra-
dient of the parabola along which the Langmuir wave grows, but will also reduce
the final saturation amplitude; decreasing η̃ will steepen the parabola while again
reducing the saturation amplitude; and increasing P will increase the saturation
amplitude while leaving the gradient of the parabola unchanged.

The absence of a threshold in driver strength and the loss of autoresonance at
high Langmuir wave envelope amplitude are both phenomena that are not present
in the case where fluid effects provide the dominant frequency shift discussed
earlier in the chapter and by Yaakobi et al. in Ref. [38]. A derivation of the
threshold in this case is given in Ref. [56], and is simply obtained by following the
pseudoparticle treatment of the Langmuir wave phase above with a fluid-type
nonlinear frequency shift in place of the kinetic-type term used here. However, the
difference in the autoresonant behaviour in the kinetic and fluid regimes may be
intuitively understood. In the fluid case, close to the resonance point, the spatial
growth gradient of the Langmuir wave is at a maximum: If the fluid nonlinear
frequency shift exactly cancels the wave number detuning due to inhomogeneity,
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3.4. A pseudoparticle model for autoresonance

then εL ∼ x1/2 and ∂xεL ∼ x−1/2. Thus, in the fluid case, the Langmuir wave
must adapt to the density profile most quickly near the point of resonance. If
the Langmuir wave is driven sufficiently strongly to do so, the system will enter
autoresonance. As the Langmuir wave grows, the rate of change in amplitude
required to maintain resonance decreases, and the system remains autoresonant
until pump depletion or other effects dominate.

In the kinetic case, close to the resonance point, the spatial growth gradient
of the Langmuir wave is at a minimum: If the kinetic nonlinear frequency shift
exactly cancels the wave number detuning due to inhomogeneity, εL ∼ x2 and
∂xεL ∼ x. At resonance, this gradient is therefore at a minimum, and increases
as the Langmuir wave propagates. The Langmuir wave envelope amplitude then
grows until it is unable to adapt its amplitude rapidly enough to maintain the
cancellation of the wave number detuning, and resonance is lost.

3.4.2 Driver threshold in the fluid regime and generalisa-
tion of the frequency shift

For completeness, we may we define a nonlinear frequency shift of general form
such that

(∂t + cL∂x + icLα

n∑
1

anx
n + iξ|εL|m)εL = P. (3.39)

In the kinetic regime, ξ = −η̃, m = 1/2, while in the fluid regime, ξ = β, m = 2.
The pseudoparticle mass is now generalised to the form

M =
mξĪm/2−1

2cL
+

P

2cLĪ3/2
(3.40)

The pseudopotential will be of a similar form to Eq. (3.34), but care must be
taken when finding the point at which the Langmuir wave is resonant with the
drive (for example, in the fluid regime, resonance is found at φL = −π/2 rather
than φL = π/2 in the kinetic regime, changing the sign of the driver).

We begin at the resonance point, where Ī ≈ 0. Regardless of the form of
the nonlinearity (i.e. for all values of m > 0 and ξ, including the absence of a
nonlinearity), as Ī → 0, the second term on the RHS of Eq. 3.40 is dominant,
Eq. (3.34) is satisfied and there will be resonance. For 0 < m < 2, as Ī grows,
the RHS of Eq. (3.34) tends towards a growth rate that is higher than that of
the LHS of Eq. (3.34). Thus, a loss of autoresonance is unavoidable. Physically,
however, the value of Ī must remain less than 1, thus the limit on the saturation
amplitude of the Langmuir wave may come from other sources (pump depletion,
wave breaking etc . . . ). For m > 2, there is a threshold, representing the point at
which Eq. (3.34) is most difficult to satisfy. Provided that Eq. (3.34) is satisfied
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at this critical point, autoresonance will be maintained to arbitrarily high values
of Ī.

For m = 2, M tends towards a constant value. The threshold in this case
can be easily calculated in order to give the threshold driver strength required to
produce autoresonance, relevant to both the pendulum and the Langmuir wave
in the fluid regime: Setting ξ = β, m = 2, a1 = −1/L, an6=1 = 0, it is clear that
there is a value Īc at which Eq. (3.34) is hardest to satisfy. In the fluid regime,

M =
β

cL
+

P

2cLĪ3/2
, (3.41)

where we note that the first term is now independent of Ī. By differentiating
MĪ1/2 and looking for the turning point, we find

Īc =

(
P

β

)2/3

, (3.42)

giving, by substitution into Eq. (3.34), a critical driver strength Pc of the form

Pc =
c
3/2
L

β1/2

(
κ′

3

)3/4

. (3.43)

Thus, autoresonance is assured provided that P > Pc. In the case that κ′, β, cL =
1, the system is normalised to Eq. 3.14, and Pc = (1/3)3/4 = 0.44, in agreement
with Ref. [38]. For the values given in Sec. 3.2, Pc = 1.6× 10−5. From simulations,
we find Pc ≈ 1.2 × 10−5. While reasonably accurate, the pseudoparticle model
outlined above is generally observed to overestimate Pc. This overestimation has
two likely causes: The model involves a series of approximations, such as the
smallness of the amplitude near resonance. In reality, the linear response of the
oscillator means that this approximation is somewhat violated. Furthermore,
the oscillator may still grow in amplitude just after the potential wells have
disappeared, but before the gradient of the pseudopotential becomes very steep.

In the kinetic regime, where δω = η̃|εL|1/2, there may be small fluctuations
in the dependence of δω on εL. The analysis above provides assurance that a
perturbation in m away from m = 1/2, where δω = η̃|εL|m, will not greatly
alter the behaviour of the autoresonant Langmuir wave. Thus, autoresonance is
robust to small variations in both the density gradient and the dependence of the
frequency shift on the Langmuir wave amplitude.

3.4.3 Damping in autoresonance in the kinetic regime

We consider now a damping υ of the Langmuir wave. This term is introduced to
Eq. (3.17) to give the following:

(∂t + cL∂x + icLκ
′x− iη̃|εL|1/2 + υ)εL = P. (3.44)

60



3.4. A pseudoparticle model for autoresonance

In Fig. 3.7, the impact of a fixed damping on the saturation amplitude of the
autoresonant Langmuir wave envelope amplitude is shown, for both linear and
parabolic profiles. While reducing the saturation amplitude of the Langmuir
wave, the presence of damping does not alter the curve along which the autoreso-
nant wave front grows. In the following chapter, the prescribed drive P is replaced
by full three-wave coupling. In this case, both daughter waves may grow, leading
to the enhancement of the local value of P that drives the Langmuir wave. This
strengthening of the local ponderomotive drive suggests that the effect of damp-
ing is even less than that shown in Fig. 3.7, and that weak damping is not likely
to prevent autoresonance in the kinetic regime.

In the regime considered here, Landau damping is initially the principle source
of attenuation of the Langmuir wave. As discussed in the previous chapter, this
damping is not constant in time: as electron trapping effects increase, the damp-
ing of the Langmuir wave by resonant particles is quickly reduced, resulting in a
negligible residual damping after a few bounce periods of the trapped electrons.
In Fig. 3.8, the impact of this type of damping on the growth of the autoresonant
Langmuir wave is shown. Starting from the linear value of the Landau damping
νL, the Landau damping is decreased in time in a prescribed fashion. Despite the
initial damping, the saturation amplitude of the Langmuir wave is unchanged.

Figs. 3.7 and 3.8 demonstrate the robustness of the phase-locking between
the Langmuir wave and the drive in the presence of damping. This result allows
one to expect a growth that closely follows the curve suggested by an exact
cancellation of the kinetic frequency shift and the wave number detuning due
to inhomogeneity, even in an environment where the damping of the Langmuir
wave is not constant. Thus, the autoresonant growth rate should be independent
of the damping, and if the drive P is sufficient to allow autoresonance in the
presence of the damping, the growth rate is also independent of P . Finally, the
saturation amplitude of the autoresonant Langmuir wave envelope is unaffected
by the presence of Landau damping, provided that the Landau damping is reduced
in time (artificially or as a result of the growth of the Langmuir wave).

3.4.4 The parameter space and growth rate of autoreso-
nance in the kinetic regime

In Sec. 3.2.2, it was shown that the equation describing the evolution of the
Langmuir wave in the fluid regime could be normalised in such a way that there
was only a single free parameter. This may also be done in the kinetic regime: By
making the substitutions ζ =

√
|κ′|x, τ = cL

√
|κ′|t and η̃ε1/2L = cL

√
|κ′|Y 1/2, the

equation describing the evolution of the Langmuir wave through a linear density
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Figure 3.7: Impact of a fixed damping on the saturation amplitude of the au-
toresonant Langmuir wave envelope, shown for both (a) linear and (b) parabolic
profiles. The curve along which the autoresonant wave front amplitude grows is
unchanged by the strength of damping.
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of the autoresonant Langmuir wave envelope amplitude. If the damping is
switched off, the saturation amplitude of the Langmuir wave is unchanged from
the undamped case.
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profile in the kinetic regime,(
∂t + cL∂x + icLκ

′x− iη̃|εL|1/2
)
εL = P, (3.45)

may be normalised to the following:(
∂τ + ∂ζ + iζ − i|Y |1/2

)
Y = Υ, (3.46)

where Υ = (η̃2/c3Lκ
′3/2)P . Solutions to the steady-state equation,(

d

dζ
+ iζ − i|Y |1/2

)
Y = Υ, (3.47)

all show growth along the parabola simply given by Y = ζ2 and differ only in
the level at which saturation in Y is reached. Varying the driver strength P (and
hence Υ) changes the saturation level according to the Eq. (3.38), which after
normalisation may be written simply as Y < Υ2/4. Varying L, however, changes
both the value of Υ and how Y and εL are related. When considering the impact
of changing the gradient of the plasma, it is therefore more instructive to retain
the form of the equation governing the evolution of the Langmuir wave before
normalisation to a single parameter. Solutions to the steady-state of Eq. (3.45)
are shown in Fig. 3.9, with varying values of P , η and L. In each figure (left,
centre and right), the solid red line shows the solution obtained using reference
values of P = P0, η = η0 and L = L0 (defined in Sec. 3.3). In Fig. 3.9, all
parameters take these reference values unless explicitly stated otherwise. It can
be seen that the approximate condition for the saturation of autoresonance given
in Eq. (3.38) is valid here; increasing P0 by a factor of 1.25 results in an increase
in saturation amplitude of 1.252 ∼ 1.5.

It has been demonstrated in Sec. 3.4.1 that autoresonance in the kinetic regime
may occur for any choice of the parameters P , η and κ. The question is not there-
fore whether autoresonance may arise, but whether it will give rise to a significant
growth in the Langmuir wave sufficiently quickly that it is not dominated by other
growth processes.

Assuming the Langmuir wave propagates at cL, the growth rate of the maxi-
mum of the autoresonant wave front in a linear profile should be given by

d

dt

∣∣∣∣δne

n0

∣∣∣∣
max

=
d

dt

(
cL
ωLη

α

n∑
1

an(cLt)
n

)2

, (3.48)

or, for a linear density profile,

d

dt

∣∣∣∣δne

n0

∣∣∣∣
max

= 2

(
c2Lκ

′

ωLη

)2

t. (3.49)
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Figure 3.9: Steady-state solutions to Eqs. (3.45), showing the spatial growth
and saturation of the autoresonant Langmuir wave. In each figure [(a), (b) and
(c)], the solution depicted by the solid red line is obtained using reference values
P = P0, L = L0 and η = η0. All other solutions are calculated using parameters
that are unchanged but for that which is explicitly stated.

Thus we see that the growth rate is zero initially but increases rapidly with time.
As discussed in the previous chapter, in the full three-wave coupling case, a

linear profile will not support absolute growth of the daughter waves in the ab-
sence of kinetic (or other non-linear) effects, giving rise only to a stable convective
growth. It will be shown in the following chapter that, for the ICF-relevant pa-
rameters used here, autoresonance in a linear profile is the dominant process in
the determination of the Langmuir wave envelope amplitude. However, as dis-
cussed in Sec. 2.4.1.2, a parabolic profile may support absolute growth in the
absence of kinetic effects, provided that the damping of the daughter waves is
sufficiently small (or the laser sufficiently intense). In the absence of kinetic ef-
fects and damping, for the parameters given here, the growth rate is above the
threshold required for absolute growth. Although the Langmuir wave here grows
under a fixed-amplitude driver (i.e. the scattered wave is not amplified), a similar
threshold is observed in Fig. 3.7b, where the linear response varies greatly with
the damping (this is not the case in Fig. 3.7a, where the density profile is linear).
The question is then whether the autoresonant growth rate is greater than or in-
ferior to the absolute growth rate. Initially, the growth rate due to autoresonance
is zero, but this rate increases quickly (particularly true for parabolic profiles).

For fusion-relevant parameters, it is not clear by simply comparing these
growth rates whether the growth will be absolute or not, since kinetic effects
may stabilise a growth that would otherwise be absolute. It seems likely that a
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3.4. A pseudoparticle model for autoresonance

purely parabolic profile that has a growth rate γ0 far above the threshold for ab-
solute growth (γ0 � γabsmin, γinh, defined in Sec. 2.4.1.2) will support a growth that
is dominated by the absolute growth rate rather than the autoresonant growth
rate. However, the presence of damping may stabilise the absolute growth while
still allowing a significant autoresonant growth, or kinetic effects may indeed be
strong enough to stabilise the growth. Three-wave coupling simulations of growth
in parabolic density profiles are presented in the next chapter.
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3.5 Chapter summary

From the results of this chapter, it is clear that a driven nonlinear oscillator pro-
vides a suitable description of the behaviour of the prescriptively driven Langmuir
wave. When the Langmuir wave is subject to a nonlinear frequency shift, under
appropriate conditions, it may phase-lock to a driver that is swept in wave number
as a function of space (or, as in the case of the pendulum, swept in frequency as
a function of time), permitting an efficient exchange of energy between oscillator
and driver and a growth in amplitude beyond the linear average value.

It was shown that autoresonance is possible for a broad class of nonlinear oscil-
lators. In the kinetic regime (kLλD & 0.25), where the nonlinear frequency shift is
proportional to the square root of the amplitude of the Langmuir wave envelope,
it was shown that autoresonance is always possible (i.e. there is no threshold in
the strength of the driver), provided that the gradient of the density profile is
positive. Furthermore, it was observed in simulations and explained analytically
that autoresonance will be lost for sufficiently high Langmuir wave amplitudes,
but that these amplitudes may be so high that other saturation mechanisms, such
as wave-breaking or depletion of the pump wave, will be the determining factor in
saturating the Langmuir wave amplitude. In a linear density profile that increases
in the direction in which the Langmuir wave propagates, the exact cancellation
of the kinetic nonlinear frequency shift and the wave number detuning due to
inhomogeneity results in a growth in the Langmuir wave amplitude that follows
a parabola: ∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′ωLη

)2

x2. (3.50)

The maximum Langmuir wave amplitude that may be reached via autoresonance
before phase-locking is lost is given by the following:∣∣∣∣δne

n0

∣∣∣∣
max

=
kLε0
n0e

(
1

2

ωLηP

κ′c2L

)2

. (3.51)

While damping may reduce the saturation amplitude of the autoresonant
growth, the form of the parabola along which the Langmuir wave grows is un-
changed from that defined above. For parameters relevant to ICF, a nonlinear
Landau-type damping that is reduced in time does not affect the saturation am-
plitude.

Since the autoresonant growth rate is dependent on the group velocity of the
Langmuir wave (and hence kL), autoresonant BSRS is likely to be of much greater
importance than FSRS. With regards to autoresonance in the regime dominated
by fluid effects (kLλD . 0.15), the timescales over which the autoresonant Lang-
muir wave growth might achieve a significant amplitude are likely to be too long
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to be of relevance to the NIF. In contrast, autoresonance in the kinetic regime
displays a fast, important growth over timescales that suggest autoresonance may
provide a significant mechanism for the enhancement of Langmuir wave ampli-
tudes (and hence scattered light).

The results of this chapter provide motivation for further study of autoreso-
nance in the kinetic regime. While it is clear that autoresonance is possible under
the action of a fixed driver, it must now be shown that autoresonance may arise
in three-wave coupling, where the amplitudes of the electromagnetic waves are
not fixed.
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Chapter 4

Autoresonance in three-wave
interactions

It was shown in the previous chapter that autoresonance is possible in the kinetic
regime when the Langmuir wave is driven by a prescribed (constant) ponderomo-
tive force. We wish now to show that these results apply equally to full three-wave
coupling. To this end, a three-wave fluid code was written to solve simultaneously
the equations governing the evolution of the EM waves and the Langmuir wave.

We begin the chapter by seeding the three-wave system with a single frequency
at a level that is consistent with the level of thermal noise expected in the plasma.
In this situation, both SRS and autoresonance are possible only at a single point
in the plasma. Later, we examine the effect of a broad-band seed, closer to that
which would be present in experiments, on the growth of the Langmuir wave.
This seed, if sufficiently broad in frequency, will allow SRS and autoresonance to
begin at every point in the plasma.
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Figure 4.1: Linear density profile of the plasma used in three-wave coupling
simulations. The red and blue lines give the density profiles for the autoresonant
and non-autoresonant cases, respectively, while the black dashed line shows the
damping νw that was applied to the edges of the simulation window to prevent
Langmuir wave propagation into the vacuum.

4.1 Solving the three-wave equations

We solve the following three-wave system of equations derived in Chapter 2,
relevant to SRS in warm plasmas with a linear density profile in the kinetic
regime:

L0A0 = − e

4me

kL
ω0

εLA1, (4.1)

L1A1 =
e

4me

kL
ω1

ε∗LA0, (4.2)(
LL + icLκ

′x− iη̃|εL|1/2
)
εL =

e

4me

kL
ωL

ω2
peA

∗
1A0. (4.3)

The finite difference scheme used to solve these equations is given in detail in
Appendix 6.2. In brief, the three waves are integrated using an adaptation of
the method developed by Crank and Nicholson [70], combining both forward and
backward Euler schemes. To minimise numeric damping, the EM waves and
Langmuir wave were integrated using different spatial meshes, each tailored to
the specific group velocity of the waves. The coupling terms on the RHS of Eqs.
(4.1-4.3) were then calculated using interpolation between the different spatial
meshes.

70



4.1. Solving the three-wave equations

The parameters with which the three-wave equations were solved were again
chosen so as to be relevant to the NIF. A linear density profile was chosen for
clarity in determining autoresonance and reducing possible complications arising
from absolute growth, contained within a simulation window of LHS and RHS
boundaries [xL, xR]. The plasma was chosen to be of length 100 µm, with 10 µm
vacuum spaces at each boundary, with the three waves resonant in the centre
of the plasma at x = xres = 0. This length corresponds to the approximate
expected size of a “hot-spot” in laser intensity, defined in Sec. 1.5.1.1. A pump
with intensity I0 was injected at xL, while a seed of intensity I1 was injected at
xR. An artificial damping νw was applied to the edges of the simulation window
in order to contain the Langmuir wave (i.e. to prevent it propagating into the
vacuum). The plasma profile (both positive and negative density gradients) and
damping window used to prevent the propagation of the Langmuir wave into the
vacuum are shown in Fig. 4.1.

The parameters used to solve Eqs. (4.1-4.3) were the following: λ0 = 351 nm,
I0 = 5× 1015 Wcm−2, I1 = 5× 109 Wcm−2, n0 = 4.5× 1020 cm−3 (ne/nc = 0.05),
Te = 1 keV, L = ±100 µm and η = 0.25 (or η = 0), giving kLλD = 0.33. All
parameters were calculated at x = xres = 0 and all were taken to be constant,
although the variation in the wave coupling strength, due to the inhomogeneous
density profile, on the RHS of Eq. 4.3 was included. The solutions to Eqs. (4.1-
4.3) under these conditions are shown in Figs. 4.3, 4.2 and 4.4.

In Fig. 4.3, the plasma reflectivity (left) and the Langmuir wave amplitude
(right) are shown. In both the left and right figures, the autoresonant case (L =
+100 µm, green line), the non-autoresonant case (L = −100 µm, blue line) and
the Rosenbluth saturation case (L = +100 µm, η = 0, red line) are given. The
reflectivity R is calculated by measuring the intensity of the reflected pump wave
(or, equivalently, the amplified seed) at xL.

4.1.0.1 Rosenbluth saturation in three-wave coupling simulations

In the Rosenbluth saturation case, defined in Chapter 2, kinetic effects are ne-
glected and the RHS seed is amplified by a factor of exp(GR) (or exp(2GR)
in intensity) as it passes through xres, where GR = 1.26 and the amplifica-
tion takes place over the length defined approximately by the turning points
xt = xres ± 2.7 µm, calculated using Eq. (2.82). The agreement between the
analytic result and the numerical solution, shown in Fig. 4.3 (left, red line),
demonstrate that the level of numeric damping and general inaccuracy of the
integration scheme are both low (the value of saturation is in agreement with the
analytic result to 4 significant figures). An estimation of the time taken for the
reflected light to reach saturation after the pump wave has reached the resonance
point tsat is given by Eq. (2.80). For the parameters used here, tsat = 0.06 ps.
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Figure 4.2: Rosenbluth saturation observed in three-wave coupling simulations
after the system has reached a steady state. (Green solid line) The seed injected
at xR undergoing amplification. (Blue dashed line) The seed strength after spatial
averaging. (Red solid line) The amplitude of the Langmuir wave envelope. The
turning points are shown at x = ±xt, where by calculation xt = 2.6 µm. The
grey region is the approximate spatial extent over which amplification occurs.
The pump is essentially constant across the window.

The pump wave requires approximately 0.26 ps to reach the resonance point after
being injected at xL, and the scattered wave requires a similar time to propagate
from the resonance point to xL, thus we expect saturation of the reflected light
as measured at xL to occur at approximately 0.6 ps, in agreement with Fig. 4.3
(left, red line). In Fig. 4.2, a solution is given at t = 8 ps, well after saturation
of the reflected light. At this time, the Langmuir wave has propagated from its
point of origin x ∼ 0 to the edge of the plasma, where it is subsequently damped.
In this figure, the location of the turning points is shown, clearly identifying the
region over which growth occurs in the case where η = 0.

4.1.0.2 The impact of kinetic effects on three-wave coupling simula-
tions at low seed strengths

In Fig. 4.3, solutions to the autoresonant case (L = +100 µm, green line), the
non-autoresonant case (L = −100 µm, blue line) are shown. In the case where
the gradient is of an incorrect sign to produce autoresonance (L = −100 µm), it is
observed with these parameters that not only is no autoresonant growth possible,
but that the response of the Langmuir wave to the EM waves is lower than the
case where there is no kinetic nonlinear frequency shift. This is simply explained:
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Figure 4.3: (Left) BSRS reflectivity of the plasma taken from solutions to the
three-wave equations. In the case η = 0, Rosenbluth gain saturation limits the
growth of the daughter waves, quickly saturating the reflectivity (the sign of L
does not change the result in this case). In the autoresonant case η = 0.25,
L = +100 µm, there is a cancellation between the kinetic nonlinear frequency
shift and the wave number detuning due to inhomogeneity, leading to a growth in
Langmuir wave amplitude well above the Rosenbluth result. In the case η = 0.25,
L = −100 µm, autoresonance is not possible and the kinetic nonlinear frequency
shift enhances the effect of the wave number detuning, in this case saturating the
daughter waves at a level below the Rosenbluth result. (Right) Langmuir wave
envelope amplitude at a series of times (∆t = 0.5 ps), taken from solutions to
the three-wave equations. The parabola (black dashed line) plots the Langmuir
wave envelope amplitude corresponding to an exact cancellation between the two
shifts. Other than those stated, the parameters are identical in each case and are
calculated at x = 0. The three cases have been spatially offset for clarity.

The initial growth of the Langmuir wave is at xres, unchanged from the growth
in the absence of kinetic effects. However, as the Langmuir wave grows, so too
does the frequency shift due to kinetic effects. Cancellation between the kinetic
nonlinear frequency shift and the wave number detuning due to inhomogeneity is
still possible, but it is now behind the point of initial resonance in the negative
density profile and travels in the negative x-direction as the Langmuir wave (and
frequency shift) grows. Since the Langmuir wave propagates in the positive x-
direction, autoresonance is not possible. As a result of this process, the region in
space over which the Langmuir wave is resonant with the EM waves is reduced
compared to the case where kinetic effects are suppressed, and consequently there
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is an overall reduction in the growth of the daughter waves.
In the case where the gradient is of the correct sign to produce autoresonance

(L = +100 µm), we see that both daughter waves grow well beyond the values
observed during Rosenbluth saturation. Thus, we see that autoresonance is an
effective mechanism for increasing the reflectivity of the plasma, and is by no
means limited to being driven in a prescribed fashion. In Fig. 4.4, the Lang-
muir wave envelope amplitude and three-wave phase difference are shown at a
series of times. Instead of merely the Langmuir wave phase being constant as
in the prescribed driver case discussed in the previous chapter, it is the envelope
phase difference φ = φ0 − φ1 − φL ≈ π/2 that must remain constant during au-
toresonance. The phases are calculated by taking the argument of the complex
envelope amplitude of the three waves and unwrapping it over 2π to reconstruct
the full behaviour of the phase. The phase-locked region is observed to propagate
at the same velocity as the autoresonant wave front, extending in space as the
wave front propagates away from the initial point of resonance. These results
show a remarkable agreement with prescribed driver simulations, indicating that
autoresonance under these conditions is the dominant growth mechanism and is
the principle factor in determining the behaviour of both of the daughter waves.

These results are applicable to the seed and pump strengths used here, where
the seed intensity is of the order of thermal noise that we expect in the plasma.
If the pump (or seed) is increased significantly in intensity, the solution may
eventually become destabilised. This is discussed further later in the chapter.

4.1.1 The effect of pump strength

In Fig. 4.5, the reflectivity R of the plasma obtained by solving the three-wave
equations is shown for a range of pump intensities (1.25×1015, 2.5×1015, 5×1015,
1 × 1016 and 2 × 1016 Wcm−2). The seed was introduced as before at x = xR,
the RHS boundary of the simulation window, with intensity I1/I0 = 1 × 10−6.
The plasma conditions and profile were identical in each case to those given in
Sec. 4.1.

In each case, the initial fast growth and subsequent plateau (although short-
lived at higher pump intensities) is described by Rosenbluth saturation [20]: In the
absence of kinetic effects or pump depletion, the seed saturates at I1(x = xL) =
I1(x = xR) exp(2GR), for which GR is proportional to the pump intensity, as
described by Eq. (2.79). In Chapter 3, it was shown that the curve along which
the Langmuir wave grows is independent of the strength of the ponderomotive
drive (and thus laser intensity). However, it was also shown that the level at
which growth saturates is highly dependent of the strength of the ponderomotive
drive. For pump intensities of 5 × 1015 Wcm−2 and weaker, the Langmuir wave
solution is essentially completely determined by autoresonance. The wave evolves
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Figure 4.4: (Left) Solution to the three-wave equations showing the autoresonant
Langmuir wave envelope amplitude at a series of times, t = 0.8, 1.4, 2.0, 2.6
ps. The single-frequency seed I1/I0 = 1 × 10−6 (I0 = 5 × 1015Wcm−2) in this
case is relatively weak, approximately at the level of thermal noise. (Right) The
phase difference between the three wave envelopes. Phase locking occurs at −π/2,
modulo 2π.

in a predictable fashion, growing in amplitude as it propagates. The cancellation
between the wave number shift due to inhomogeneity and the kinetic nonlinear
frequency shift is almost exact, leading to a parabolic growth in Langmuir wave
envelope amplitude, as defined in Eq. (3.21). As predicted, the autoresonant
growth is greater (and saturates later in time) with increasing pump strength.

For pump intensities of over 5× 1015 Wcm−2, the situation is more complex.
For I0 = 1 × 1016 Wcm−2, shown in Fig. 4.6, the solution is autoresonant until
t ∼ 1.5 ps. Up to this time, the Langmuir wave is strongly phase-locked and
the behaviour of the Langmuir wave is predictable. Shortly after 1.5 ps, the
autoresonant solution becomes unstable behind the wave front, and behaves for a
period of time in an absolutely unstable fashion. At later times, the growth of the
Langmuir wave becomes saturated by the depletion of the pump wave, and the
solution is chaotic and maintains a reflectivity close to R = 1, i.e. nearly all pump
energy is reflected. For I0 = 2×1016 Wcm−2, the situation is similar, but absolute
growth and the subsequent saturation is achieved more quickly. By reducing the
seed strength, the transition from autoresonant behaviour to absolute growth
may be delayed, but the behaviour of the reflectivity is not significantly altered
(This is the valid unless the seed strength is reduced so much that there is no
significant autoresonant growth. In this case, Rosenbluth saturation is observed
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Figure 4.5: Reflectivity of the plasma under a range of pump intensities, taken
from solutions to the three-wave equations. The solid lines represent the solutions
obtained when kinetic effects are included (η = 0.25), while the dashed lines show
Rosenbluth saturation, obtained when kinetic effects are neglected (η = 0). Pump
strengths of I0 = 1 × 1016Wcm−2 and above display autoresonant behaviour for
a limited duration before an absolute growth dominates the evolution of the
daughter waves.

and the solution is stable.).
These findings are summarised in Fig. 4.7, where the gain of the plasma

(equal to (1/2) log(R/I1)) is plotted as a function of the Rosenbluth gain factor
GR. The reflectivity shown is the value at saturation. In the case of gains of
1.26 and below (here equivalent to powers of 5 × 1015 Wcm−2 and below), the
saturation of the reflectivity is a result of the loss of autoresonance due to the
growth of the Langmuir wave causing a dephasing from the drive, as discussed
in the previous chapter. In Fig. 4.7, gains above 1.26 are annotated with a pair
of numbers in brackets. The first number in this pair is the time up to which
the behaviour of the Langmuir wave is determined by autoresonance, or the time
at which absolute growth of the Langmuir wave begins. The second number is
the time at which the reflectivity reaches saturation due to the depletion of the
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Figure 4.6: Solution to the three-wave equations showing the Langmuir wave
amplitude at a series of times, t = 0.6, 0.9, 1.2, 1.5, 1.8 ps, driven by a pump
of intensity 1 × 1016 Wcm−2. The solution is governed by autoresonance until
t ∼ 1.5 ps, after which the Langmuir wave experiences an absolute growth behind
the autoresonant wave front.

pump wave, after which the reflectivity chaotically oscillates around an average
value of R ∼ 0.3. The shaded region indicates the range of gains attained in
the plasma after Rosenbluth saturation has taken place but before the gain has
become saturated. The shade region is bound by the saturation gain.

From Fig. 4.7, it is clear that there is a range of gain factors (0.75 < GR < 6)
spanning laser intensities of 2.5 × 1015 Wcm−2 to 2.5 × 1016 Wcm−2 in which
autoresonance and later absolute instability greatly enhances SRS. The size and
shape of this region is of course sensitive to other parameters, such as η̃ and
the plasma conditions. However, the figure shown indicates that for parameters
relevant to ICF experiments, autoresonance may be of great importance.

4.1.1.1 The propagation of the kinetic nonlinear frequency shift

The Langmuir wave phase velocity vφ, and hence the velocity around which par-
ticles are trapped, is significantly greater than cL (for the parameters used here,
vφ/cL = 4.0). This raises an important question: At what velocity does the
Langmuir wave propagate in the kinetic regime? In a series of recent publi-
cations, Bénisti et al. [71,72,73,74] proposed a new model for the Langmuir wave
in an attempt bring theoretical predictions of the group velocity and nonlinear
behaviour of the Langmuir wave in the kinetic regime closer to observations in
Vlasov simulations. In summary, Bénisti et al. argued that the Langmuir wave
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Figure 4.7: The reflectivities of Fig. 4.5 expressed as a gain factor plotted against
the corresponding Rosenbluth gain factor. The black dashed line shows the ana-
lytical prediction of Rosenbluth gain saturation, in the absence of kinetic effects
(η = 0). The red triangles indicate the saturation reflectivities obtained us-
ing the three-wave code, again in the absence of kinetic effects. The inverted
blue triangles indicate the results of the three-wave code, including kinetic effects
(η = 0.25). Where given, the pairs of numbers in brackets indicate the time
at which autoresonance no longer dictated the evolution of the Langmuir wave,
followed by the time at which growth became saturated.

is best modelled by considering the trapped and untrapped electron populations
somewhat separately, and suggested that the observed velocity of propagation of
a Langmuir wave (driven, or initially driven and then freely propagating) is best
described by a weighted average of the velocities of the trapped and untrapped
electrons, depending on the degree of trapping present. In the model constructed,

[∂t + cL∂z + C(|εL|)(∂t + vφ∂z)] εL = P, (4.4)

where C is a slowly-varying function of the Langmuir wave amplitude. Using this
model, the resultant Langmuir group velocity vC is therefore a mix of cL and vφ,
such that

vC = (cL + C(|εL|)vφ)/(1 + C), (4.5)

where in this case cL is the driven group velocity in the absence of trapping,
described in detail in Ref. [74]. The group velocity observed by Bénisti et al. varied
strongly as a function of the strength of the local electric field, with the degree of
sensitivity dependent upon kLλD. For example, for Te = 2 keV, kLλD = 0.3 and
ε̃L = eεL/kBTe ∼ 0.3, where kB is Boltzmann’s constant, it was observed that
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vC/cL ∼ 2.5, where the driven value of cL is smaller than the undriven value (i.e.
the value obtained by differentiation of the Bohm-Gross relation) by a factor of
0.7.

Since Morales and O’Neil published their paper on the frequency shift of an
electron plasma wave in the kinetic regime [18], most three-wave treatments have
adopted a purely perturbative approach, where the effect of particle trapping is
strictly to shift the frequency of the natural mode of the Langmuir wave enve-
lope (in addition to reducing the Landau damping strength). This perturbative
approach was adopted in this thesis, but with an additional consideration: In the
three-wave simulations presented in this paper, the frequency shift was propa-
gated separately from Langmuir wave envelope at vφ, rather than cL.

In three wave coupling simulations in this thesis, the local shift is equal to
whichever is greater out of the following:

1. The local amplitude of the Langmuir wave envelope propagated at cL, such
that δωnl = η̃|εL|1/2.

2. The shift generated at an earlier time behind the point in question, propa-
gated at vφ.

We label the velocity of the kinetic nonlinear frequency shift propagation vK .
While it is only the frequency shift, and not the Langmuir wave envelope, that
propagates at this raised velocity (i.e. the velocity in the operator LL, and hence
in the finite difference integration scheme of the Langmuir wave, remains equal to
cL), there is an observable impact on the propagation of the autoresonant wave
front of the Langmuir wave. This difference is however only observable when the
Langmuir wave is strongly driven; in the examples earlier in the chapter, where
the seed strength is such that I1/I0 = 1× 10−6, there is no discernable difference
between solutions to obtained using vK equal to either cL or vφ.

In contrast, when the seed is increased such that, for example, I1/I0 = 0.002,
a number of interesting things occur: First, at early times, the response of the
Langmuir wave to the large ponderomotive drive provided by the strong pump
and seed is sufficiently fast that the Langmuir wave front is tied to the propagation
of the pump wave, i.e. the maximum in Langmuir wave envelope amplitude is at
the front of the pump wave, thus the speed of Langmuir wave propagation is
temporarily close to c0. This is visible in Fig. 4.8, where the blue lines indicate
the times at which the Langmuir wave is still affected by the group velocity of
the pump (times t = 0.3 and 0.5 ps). It is also clearly apparent in Fig. 4.9, where
the steep gradient in Langmuir wave propagation velocity is visible at the start
of the Langmuir wave growth.

After the pump has crossed the simulation window, the Langmuir wave begins
to grow autoresonantly, and it is now that the impact of differing values of vK
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Figure 4.8: Langmuir wave envelope amplitude, obtained by solving the three
wave equations. In both cases, the parameters are identical but for the velocity
at which the kinetic nonlinear frequency shift propagates, vK . (Left) Solution
obtained for vK = vφ. (Right) Solution obtained for vK = cL. In both cases, the
blue lines indicate the initial response of the Langmuir wave to the passing of the
pump wave. The red lines indicate the subsequent autoresonant evolution of the
envelope amplitude. The interval between solutions is given by ∆t = 0.2 ps, and
both figures left and right show solutions in the range t = 0.3− 1.1 ps.
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Figure 4.9: As above, but with the Langmuir wave envelope amplitude displayed
as a function of both space and time. The case where vK = vφ displays a signifi-
cantly increased autoresonant wave front velocity.
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may be observed. Essentially, the velocity of propagation of the autoresonant
Langmuir wave front is increased when vK is increased. This effect is shown in
Fig. 4.8, where both left and right figures have been generated using identical
parameters but for the value of vK , and are displayed for the same range of times
(t = 0.3 − 1.1 ps, with sampling interval ∆t = 0.2 ps). After 1.1 ps has elapsed
in both simulations, the autoresonant wave front has propagated a significantly
greater distance in the case vK = vφ. This phenomenon is shown in detail in Fig.
4.9, where it is clear that in the case vK = vφ the speed of propagation of the
autoresonant wave front lies roughly midway between cL and vφ, while in the case
vK = cL, the speed of propagation of the autoresonant wave front is equal to cL.

The important result of these simulations is the following: During autoreso-
nance, the observed speed of propagation of the autoresonant Langmuir wave is
not necessarily equal to the group velocity of the Langmuir wave, and for high
pump intensities (i.e. pump intensities that generate a strong linear response in
Langmuir wave amplitude), the speed of propagation may lie close to the phase
velocity of the Langmuir wave. This phenomenon was not captured by the sim-
ple prescribed drive models used in the previous chapter, and is important in
discussing the results of PIC simulations.

4.1.2 Autoresonance with three-wave coupling in a parabolic
profile

In Sec. 3.4.4, autoresonance in a parabolic profile was demonstrated for a Lang-
muir wave driven by a prescribed (constant) ponderomotive force. While Rosen-
bluth [20] showed that a parabolic density profile was capable of supporting abso-
lute growth for sufficient laser intensity, Picard and Johnston (1983) [75,76] showed
that all non-linear inhomogeneous profiles were capable of doing so for a sufficient
laser intensity (or sufficiently shallow gradient curvature). The presence of non-
linear effects greatly complicates the issue of so-called “gradient stabilisation”,
and it is known that the inclusion of decay processes such as LDI may destabilise
what would otherwise be a stable profile [77].

We once more consider a laser encountering backscattered light in an inhomo-
geneous profile (such as may be the case near the entrance to a hohlraum) and
analyse the amplification of this light. The equations describing the system are
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Figure 4.10: Parabolic density profile of the plasma used in three-wave coupling
simulations. The red solid line shows the local electron plasma density, while the
dashed black line shows the damping υw that was applied to the edges of the
simulation window to prevent Langmuir wave propagation into the vacuum.
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Figure 4.11: (a) The amplitude of the Langmuir wave envelope showing autoreso-
nant growth without absolute growth in a parabolic density profile in the kinetic
regime. The black dashed line shows the exact cancellation of the kinetic non-
linear frequency shift and the wave number detuning due to inhomogeneity. (b)
The three-wave phase difference, corresponding to the same series of times as (a).
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Figure 4.12: The Langmuir wave envelope amplitude, exhibiting initially absolute
growth in a parabolic density profile. In the absence of kinetic effects (η = 0),
the growth is stabilised by pump depletion. The turning points x = ±xt defined
by Eq. (2.90) are also shown.
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Figure 4.13: As Fig. 4.11, but with a higher pump strength. (a) There is now a
strong growth behind the resonance point in addition to in front of it that begins
at the turning point x = −xt (see Fig. 4.12) and grows convectively. (b) The
phase is once more locked at Φ = −π/2 mod(2π), but there is now an additional
region of constant phase behind the resonance point.
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In Fig. 4.11, we demonstrate autoresonance in three wave coupling in a parabolic
profile without absolute growth. Here, λ0 = 351 nm, I0 = 5 × 1014 Wcm−2,
I1 = 5× 1012 Wcm−2, n0 = 4.5× 1020 cm−3 (ne/nc = 0.05), Te = 1 keV, L = 100
µm and η = 0.25, where the density profile is given by ne = n0[1+(x/L)2] and the
three waves are initially resonant at x = xres = 0. The evolution of the Langmuir
wave is qualitatively unchanged from the ponderomotively driven example given
in the previous chapter in Fig. 3.5b. The three-wave phase difference (Fig. 4.11b)
once more shows phase locking at Φ = −π/2 mod(2π), leading to a growth
in Langmuir wave amplitude that reaches |δne/n0| ≈ 0.12 before encountering
the edge of the plasma. In the absence of kinetic effects, the pump strength
would, according to Eq. (2.89), be high enough to provoke an absolute growth:
γ0 � γabsmin, γinh, where for these parameters γ0 = 1.4 × 10−3, γinh = 8.8 × 10−4

and, because there is no damping, γabsmin = 0 (this absolute growth would be
saturated by pump depletion, however). Despite being above this threshold, the
nonlinear shift is sufficient to prevent (or reduce until not significant over the
relevant timescales) absolute growth in this case, and autoresonant growth is
dominant. There is also a growth behind x = 0. This growth is possible since
the kinetic nonlinear frequency shift may cancel the wave number shift due to
inhomogeneity either side of the resonance point, but only to the side towards
which the Langmuir wave propagates is autoresonance possible.

We now increase the pump strength to I1 = 1 × 1015 Wcm−2 while keeping
the seed at I1 = 5 × 1012 Wcm−2. In Fig. 4.12, the absolute growth of the
Langmuir wave in the absence of kinetic effects (η = 0) is shown, in addition
to the turning points defined by Eq. (2.90). This growth is eventually stabilised
by pump depletion. In Fig. 4.13, the evolution of the Langmuir wave amplitude
and phase are shown, where kinetic effects are included. There is now a strong
growth in Langmuir wave amplitude either side of the resonance point. This
growth is accompanied by a region of constant phase at π/2 mod(2π) (shown
in Fig. 4.13b). The peak behind the resonance point appears to be growing
convectively over the region defined by the turning points x = ±xt = ±9.2 µm,
with amplification beginning at x = −xt (compare Fig. 4.13a with 4.12). The
growth then continues until x = +xt, after which the peak propagates without
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growing. In contrast, the autoresonant growth is not bound by the region defined
by the turning points, instead provoking strong growth far from the resonance
point. We see therefore that in this case, while absolute instability is not obviously
restored by the increase in pump strength, that the convective growth rate γ0 is
important. The convective growth behind the resonance point is not present
in prescribed drive simulations of any pump intensity. If the pump strength is
increased still further (I0 ≈ 5×1015 Wcm−2 and above), it is difficult to determine
the nature of the growth: There is a rapid and peaked growth in the Langmuir
wave behind the resonance point and the model quickly reaches the limits of its
validity (e.g. |δne/n0| approaches and rises above 1).

In the context of the work of Picard and Johnston discussed earlier in this sec-
tion, a kinetic nonlinear frequency shift appears to stabilise growth in a parabolic
profile, with certain caveats. For sufficient laser intensities, the autoresonant
growth of the Langmuir wave and the corresponding growth behind the linear
three-wave resonance point are significant. While the growth in reflectivity is
slower than that which would arise in the absence of a nonlinear frequency shift,
it remains substantial: for I0 = 5 × 1015 Wcm−2, reflectivities observed were in
the region of R = 0.1 after 2 ps, and tended towards the pump depletion limit
(R ∼ 0.3) at later times. For laser intensities of I0 = 1 × 1015 Wcm−2 and be-
low, however, the growth was far slower, with reflectivities only of the order of
R ∼ 0.03 after 5 ps.

4.1.3 A broadband seed

Generating suitable noise is rarely simple. While many methods were tried, the
simplest method to produce satisfactory results is summarised here.

Noise may be introduced to the three-wave equations in the form of either
electromagnetic noise or electrostatic noise. Past unpublished studies have indi-
cated that noise entering into the three-wave equations via the equation of the
Langmuir wave in the form of electromagnetic noise more closely matches PIC
simulations, thus it is this approach that is adopted here. The noise generated
must be sufficiently broad in frequency so as to be able to drive all possible modes
of Langmuir waves in the plasma (or, if introduced as electrostatic noise, to be
able to drive all possible modes of backscattered light), even after a significant
phase shift due to inhomogeneity and kinetic effects has been applied. In addi-
tion, in the absence of a varying wave coupling strength, no frequency should be
preferentially driven. Thus, the noise frequency spectrum must also be flat in
amplitude.

To this end, noise was generated with a Langevin equation of the form

dA1(xR)

dt
= −A1(xR)

τ
+
S

τ
, (4.9)
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where |S| is the seed amplitude at the RHS boundary and arg(S) = 2Ξπi, for
which Ξ is a random number in the interval [0, 1], and τ parameterises the spread
in the frequency (and thus wave number) of the noise. It is also possible to write
Langevin equations for both space and time and generate noise at every spatial
point in the plasma. This was also done, but the results were observed to be ef-
fectively identical to simulations where the noise was generated at the boundary
and propagated through the plasma. The parameter τ must provoke a noise that
accounts for the largest frequency and wave number shifts. The maximum possi-
ble frequency shift of the Langmuir wave from the natural mode of the envelope is
given by ηωL|δne/n0|1/2max, where |δne/n0|max = 1. The maximum shift due to in-
homogeneity that we consider is given by cLκ

′xmax, where xmax = max(|xL|, |xR|).
Eq. (4.9) generates a noise about a central frequency and wave number peaked at
zero that is symmetric, allowing for frequencies (and wave numbers) both greater
and smaller than the natural mode of the envelope. Typically, in the three-wave
simulations performed here, τ was a factor of 5 greater than necessary, ensur-
ing that the spread of frequencies and wave numbers generated by the Langevin
equation was effectively flat across the range relevant to the simulation window.

4.1.3.1 Results

We solve now the three-wave equations using a broadband noise to seed the
system. As before, the seed was introduced at xR and allowed to propagate fully
throughout the simulation window before the pump was switched on. In Fig.
4.14, the reflectivity of the plasma for the autoresonant case (η = 0.25, blue line)
and the case where kinetic effects are suppressed (η = 0, red line) are shown.
The case where kinetic effects are suppressed displays an initial growth followed
by saturation at a low value of R. We attribute this growth to Rosenbluth gain
saturation, as observed earlier with a single-frequency seed.

The broad-frequency nature of the seed makes a direct comparison with single-
frequency results difficult in the case η = 0.25, but for η = 0, the situation is
essentially unchanged. In the envelope approximation, all parameters are calcu-
lated at a reference density, since the group velocities must be fixed for reasons of
numeric stability. The coupling strength is however be allowed to vary, since this
is strongly dependent on the local density. If instead all parameters are deter-
mined locally (and no natural mode is assumed), the gain factor GR is in fact only
weakly dependent on the local density: all factors of ωpe and ωL (i.e. parameters
that vary strongly with density) in Eq. (2.79) cancel out, and the inhomogeneity
of GR is mostly due to the dependence of GR on k2L. For the parameters used here,
this means that the gain factor only varies in the range 1.261 < GR < 1.265 across
the whole length of the simulation window. However, given the envelope forma-
tion adopted, the dependence of GR on the local density is somewhat stronger,
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Figure 4.14: Reflectivity of the plasma, obtained by solving the three wave equa-
tions seeded with a broadband noise. The reflectivity of the plasma is greatly
enhanced (red line) above the level reached in the absence of kinetic effects (blue
line).
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Figure 4.15: Solution to the three-wave equations showing the autoresonant Lang-
muir wave amplitude and phase at time t = 2.9 ps, at the end of the first growth
in reflectivity shown in Fig. 4.14. (Left) Langmuir wave envelope amplitude and
phase, solved in the absence of kinetic effects (η = 0). The phase changes rapidly
and there is little growth in the Langmuir wave. The growth observed is consistent
with Rosenbluth gain saturation. (Right) Langmuir wave envelope amplitude and
phase, solved with kinetic effects (η = 0.25). The region of constant phase (light
grey rectangle) corresponds closely to the region in the plasma experiencing a sig-
nificant growth in Langmuir wave envelope amplitude, suggesting the importance
of phase-locking in the determination of the behaviour of the Langmuir wave.
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and consequently the gain varies in the range 0.63 < GR < 1.89 across the win-
dow. Since the seed is injected with an amplitude of I1(xR)/I0(xL) ∼ 1 × 10−6,
this is in agreement with Fig. 4.14 (red line), where the noise is amplified to
I1(xL)/I0(xL) ∼ 1 − 2 × 10−5. Thus, we see that the Rosenbluth solution is
stable and accurate even with a broad-frequency noise. In Fig. 4.15 (left figure,
red line), we see that the Langmuir wave envelope amplitude saturates at a level
determined by the local gain factor (thus saturating at a level that increases with
density). Also shown in Fig. 4.15 (left figure, green line), the three-wave phase
difference Φ is observed to grow rapidly across the simulation window in an ap-
proximately linear fashion with no evidence of regions of constant phase (compare
to Fig. 4.15, right figure, green line).

The case where η = 0.25 displays starkly different behaviour. In Fig. 4.14
(blue line), the reflectivity of the plasma quickly rises above the level of Rosen-
bluth saturation until it is stabilised by depletion of the pump wave. The Lang-
muir wave envelope amplitude shown in Fig. 4.15 (right figure, blue line) displays
rapid growth over regions of constant phase. After 2.9 ps, the amplitude of
the Langmuir wave is greater by a factor of ∼ 10 compared to the case where
η = 0 (note also the smaller range over which Φ varies). Growth occurs at
Φ = (2n− 1/2)π, where n is an integer, and ends where the phase is observed to
change rapidly. Although the growth appears absolute, there are strong similar-
ities between the simulations when resonance occurs at a single point (where the
seed is of a single frequency) and the simulations presented here where the seed
is of a broadband nature.

4.2 A Raman amplifier

From the results of Chapter 3, it is clear that autoresonance may arise in a
wide range of plasma conditions and may therefore be present in many plasma
experiments. We consider in this section one such experiment.

In ICF experiments, SRS is a highly undesirable process, and consequently
an array of techniques are employed to mitigate it and other scattering processes.
As discussed earlier in this chapter, SRS of laser light may be seeded by thermal
fluctuations in the plasma. However, it is also quite possible to drive SRS delib-
erately using a second laser beam: By selecting the operating wavelengths of the
two lasers, a single Langmuir wave mode may be resonantly driven at a particular
frequency (and thus density) in the plasma. Under these conditions, the laser of
lower frequency will be amplified by the SRS process. This arrangement forms
the basis of an amplifier, typically referred to simply as a “Raman amplifier”.

Shvets et al. [78] described how an initially short (< 1/ωpe) laser pulse can be
superradiantly amplified by a counterpropagating long low-intensity pump while
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remaining ultrashort. Malkin, Shvets and Fisch [79] subsequently described how
laser light may be strongly compressed by SRS in a plasma over a timescale
that is sufficiently short such that filamentation instabilities do not have time to
develop. The compression of laser light in this way would permit the generation
of multi-MJ, multi-exawatt laser pulses more easily than by other current means;
many pulse compression schemes already exist, but ultra-high laser intensities are
damaging to the optics required during amplification. Plasma thus provides an
attractive alternative, both in terms of cost and simplicity.

In Ref. [6] (described further in Ref. [80]), significant advances were made over
previous attempts at pulse amplification. In previous experiments, amplification
efficiencies had been of the order of 1%, but recent advances have progressed
to 6.4%, with pulse amplifications of two orders of magnitude above the pump
intensity (2 × 104 times greater than the initial pulse): Over a 2 mm plasma,
intensities of the order of 1020 Wcm−2 were achieved, with a planned target in-
tensity in future experiments of 1025 Wcm−2. The generated plasma was strongly
inhomogeneous over certain regions, and employed a unique “double pass” system
where the pulse passed through the plasma twice used to achieve the amplifica-
tion levels reported (future experiments using many passes through the plasma
are envisaged).

The limiting effects of Raman amplification are summarised in Ref. [81], namely
frequency detuning due to the chirp of the pump wave (though this a smaller
concern for longer pump durations), frequency detuning due to compression of
the pulse wave, wave number detuning due to inhomogeneity, wave breaking of
the Langmuir wave and Landau damping.

In Fig. 4.16, the “ideal” case of Raman amplification is shown. At the RHS
of the window, a pulse of I1 = 1 × 1015 Wcm−2 is injected into an oncoming
pump wave of equal intensity that has already crossed the window from the
LHS where it is injected to the RHS. The plasma has a temperature of 1 keV
and a homogeneous density profile, for which ne/nc = 0.05. The pump wave
has wavelength λ0 = 351 nm, while the pulse wavelength is chosen so that the
linear dispersion relations of the three waves are satisfied throughout the plasma.
Spatial amplification of the pulse leads to an efficient growth in the pulse intensity
as it crosses the window, with only pump depletion limiting the growth; while
nonlinear Landau damping and kinetic effects were included, these did not play
a significant role in the evolution of the pulse. The Langmuir wave reached
amplitudes of approximately |δne/n0| ∼ 0.2. In a similar experimental case (or
in full kinetic simulations), increasing the pump intensity would not necessarily
result in a significant increase in amplification due to the onset of wave breaking.

The inhomogeneous plasma generated during the amplification experiments
of Ref. [6] is depicted in cross-section in Fig. 4.17. The density gradient is approx-
imately linear at the edges of the plasma, with a scale length of L ∼ 250 µm. Ra-
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Figure 4.16: A series of snapshots showing Raman amplification of a short pulse
after a single passage across the plasma. The amplified pulse is introduced at the
RHS of the window with an intensity of 1, normalised to the LHS pump intensity
I0.

man amplification in inhomogeneous plasmas in the absence of kinetic effects was
considered by Malkin et al. [82], who reported that inhomogeneity was desirable
under certain conditions: by performing the amplification in an inhomogeneous
density profile, a reduction in potentially problematic interaction of the pump
wave with thermal noise rather than with the pulse is possible. Yampolsky and
Fisch [52] considered a reduction in the nonlinear Landau damping due to kinetic
effects. In Ref. [83], the same authors considered both a nonlinear Landau damp-
ing and a kinetic frequency shift due to trapping. Brief mention is made in this
article of the possibility of compensating the kinetic nonlinear frequency shift
with a wave number shift arising from inhomogeneity, and it is with this same
concept in mind that autoresonance is sought in this section.

In Ref. [6], the first pulse entering the plasma is of a duration of 500 fs, and is
injected at an intensity below that of the pump wave. Since the pulse undergoes
significant compression during amplification (down to the order of 30 fs in Ref. [6]),
longer initial seed pulses are generally desirable, permitting a greater amount of
energy to be carried in the final pulse. The pulse is then passed through the
plasma a second time, now having a higher intensity. We therefore look at two
cases: the passage of a weak pulse (I1 � I0) through an inhomogeneous density
profile and a stronger pulse (I0 = I1) through the same profile. The impact of
autoresonance will then be determined by comparing results from positive and
negative profiles.
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Figure 4.17: Typical density profile used in Raman amplifier experiments.
Adapted from Ref. [6].

In Fig. 4.18, an example of the passage of a pulse through a linearly inho-
mogeneous (L = ±250 µm) density profile is shown. In the figures shown here,
kLλD ≈ 0.36, in agreement with the range of values of kLλD used in experi-
ments (see Ref. [81] and references therein). Using pump and pulse intensities
of I0 = 1 × 1015 and I1 = 1 × 1013 Wcm−2, respectively, the resulting trans-
mitted pulse is shown in Fig. 4.18(a). Simulations performed with a higher
seed intensity are shown in Fig. 4.18(b), where pump and pulse intensities of
I0 = I1 = 1× 1015 Wcm−2 were used.

The positive density gradient is associated with a raised amplification of the
pulse in both cases compared to the negative gradient. However, the quality of
the pulse is somewhat negatively affected, with a loss of temporal confinement,
but this may be of little importance after the pulse undergoes compression during
subsequent amplification across the more homogeneous parts of the plasma. The
difference between positive and negative density profiles in Fig. 4.18(a) is smaller
than that in Fig. 4.3 owing to the comparatively short seed pulse duration in
Raman amplifiers. However, this larger difference may be recovered in future
experiments employing longer seed pulses. Current experimental techniques in-
volve the repeated passing of the pulse through the plasma, providing multiple
chances for autoresonance to take place. Further studies are planned to bet-
ter examine autoresonance in Raman amplifiers; through control of the density
profile produced, autoresonant effects could be enhanced or suppressed accord-
ingly. The interplay between the bandwidth-broadening effects of amplification
and autoresonance should also be investigated.

Although not of relevance to ICF, lower electrons temperatures such as Te =
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Figure 4.18: Pulse amplification in a Raman amplifier in inhomogeneous plasmas.
(a) At initial low pulse intensities (I1/I0 = 0.01), the pulse gains a significantly
greater amount of energy when propagating through a positive density profile
compared to a negative density profile. (b) At higher pulse intensities (I1 = I0),
there is little amplification in either profile, but high-amplitude oscillations in the
pulse are observed in the positive density profile case.

200 eV may be found in Raman amplifier experiments (although these may rise
significantly due to thermalisation of decay waves and scattering), while still
being in the kinetic regime [81]. In this case, the Langmuir wave does not prop-
agate a significant distance over the relevant timescales. At first inspection, an
effectively stationary Langmuir wave would seem to make spatial autoresonance
impossible. However, simulations indicate that, while not identical to the autores-
onance mechanism discussed in Chapter 3, a spatial cancellation of the kinetic
nonlinear frequency shift and the wave number mismatch due to inhomogeneity
is still possible. This is demonstrated in Fig. 4.19, where the two curves show
the Langmuir wave response to a Gaussian pulse (FWHM width ∆τ = 500 fs)
in a plasma where Te = 200 eV, ne/nc = 0.01, kLλD ≈ 0.37, I0 = 1 × 1015

and I1 = 1 × 1013 Wcm−2. The plasma gradient scale length was chosen to be
L = ±250 µm. Since cL∆τ is small compared to the size of the simulation win-
dow (and the region over which the Langmuir wave may interact with the EM
waves), the group velocity of the Langmuir wave is negligible and the equation
governing the Langmuir wave evolution is flipped about x = 0 under a change of
sign of L, producing the mirror-image solutions for the Langmuir wave growth
in the two cases shown in Fig. 4.19 (The reflection is not perfect since cL is not

92



4.2. A Raman amplifier

|δ
n e

/n
0|

x (µm)

L=+250 µmL=-250 µm

0.00

0.05

0.10

0.15

0.20

-100 -80 -60 -40 -20  0  20  40  60  80  100

Figure 4.19: Langmuir wave envelope amplitude after passage of a Gaussian pulse
through an inhomogeneous profile. In this case, the plasma temperature is suffi-
ciently low that the Langmuir wave group velocity is negligible. The dashed line
indicates the growth expected for an exact cancellation of the kinetic nonlinear
frequency shift and wave number detuning due to inhomogeneity. The time step
between snapshots is ∆t = 0.2 ps, taken over an interval 0 < t < 1.2 ps. In both
cases, growth begins at x = 0 and propagates away from the resonance point.

exactly zero. The symmetry is further broken by the asymmetry in the electro-
magnetic wave propagation.). Similar to the discussion of velocity in Sec. 4.1.1.1,
this effect is only observed at higher ponderomotive drive strengths; decreasing
the seed pulse amplitude to I1 = 1 × 109 Wcm−2 simply results in the resonant
growth remaining stationary around x = 0.
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4.3 Chapter summary

The results presented in this chapter show that autoresonance is possible in
three-wave coupling. In a linear profile, autoresonance may provoke a growth
in Langmuir wave amplitude and scattered light far greater than the level at
which saturation would be expected in the absence of kinetic effects calculated
by Rosenbluth [20], and greater also than the level observed when the gradient is
of the incorrect sign to allow the cancellation of the kinetic frequency shift and
the wave number shift due to inhomogeneity.

When a pump wave encounters a low-amplitude seed in a linear plasma den-
sity profile, we expect that the amplitudes of the daughter waves will saturate
at a level determined by the gain coefficient of the plasma, as calculated by
Rosenbluth [20] (assuming that pump depletion is not significant). The presence
of kinetic effects permits an autoresonant growth in the Langmuir wave amplitude
that enhances the reflectivity of the plasma. Following a period of autoresonant
behaviour, kinetic effects may also destabilise the system and provoke an abso-
lute growth in the daughter wave amplitudes, further enhancing the reflectivity of
the plasma. In parabolic density profiles, autoresonance in three-wave coupling
is still possible. However, the solutions obtained display a lower stability than
those obtained in a linear density profile. In the following chapter, particle-in-cell
simulations are used to confirm these findings.
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Chapter 5

Autoresonance in PIC
simulations

In the previous chapters, a theoretical model for three-wave coupling and autores-
onance was presented. Simulations were performed using a fluid code, so-called
because the plasma was modelled as a charged fluid. In these fluid simulations,
autoresonance was observed in both linear and parabolic density profiles, and was
shown to be robust to a nonlinear Landau-type damping. The collective results
of these studies points to the possibility of spatial autoresonance in SRS in the
kinetic regime, acting to enhance the growth of the Langmuir wave and scattered
light to levels of relevance to ICF.

To move closer to experimental conditions, we now look for autoresonance in
particle-in-cell (PIC) simulations. PIC simulations are a direct and powerful tool
for investigating a wide range of phenomena in plasmas. The basic methodology
is straight-forward: the motion of the individual charged particles that constitute
the plasma is numerically modelled in self-consistent electric and magnetic fields.
First, the positions and velocities of the particles are used to calculate the cur-
rent and charge densities on a spatial mesh fine enough to resolve the collective
behaviour (typically, the Debye length λD must be resolved). The self-consistent
electric and magnetic fields are then computed using Maxwell’s equations. These
fields, in addition to any externally applied fields, are then used to advance the
positions and velocities of the particles, using a time step small enough to resolve
the highest frequencies present.

If the number of particles is not sufficient or the spatial mesh and time step
are too coarse, PIC codes are susceptible to detrimental numerical noise and
instability [84]. Consequently, the number of particles used in PIC simulations is
large (in the simulations presented here, up to 6×103 particles per cell were used
in over 5×104 cells, although higher resolutions were used to check convergence).
The high particle number coupled with the fine spatial mesh and small time
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step size required to correctly resolve the particle motion means that PIC codes
are computationally expensive. Under conditions similar to those used in this
chapter, Masson-Laborde et al. [46] recently found that the evolution of the Raman
instability was dominated by one-dimensional (1D) effects, and two-dimensional
(2D) processes were only important after the first saturation of the reflectivity.
This study also supports the use of a kinetic nonlinear frequency shift in three-
wave coupling models of the form described in Chapter 2, Sec. 2.4.4.1. Thus, we
restrict our treatment here to the use of the 1D PIC code emi1d, developed by
Anne Héron and Jean-Claude Adam.

PIC codes incorporate a much broader range of physical phenomena than fluid
codes, thus better represent experimental conditions. Consequently, however,
the results are often difficult to interpret. The comparison between fluid codes
and PIC codes is therefore an extremely useful one, since the physical processes
present in fluid are simply those that are written into the code as additional
terms in the envelope equations of the three waves. In this chapter, a range
of PIC simulations results are presented. First, SRS levels in inhomogeneous
plasmas of varying density gradient are presented, generated by the interaction
of a laser with broadband noise (In PIC codes, this noise originates primarily from
the granularity of the particle representation and is proportional to N−1/2, where
N is the simulated number of particles per cell. This noise should correspond
to thermal fluctuations in the plasma.). Next, the value of η that parameterises
the kinetic nonlinear frequency shift used throughout this thesis is calculated.
Finally, an unambiguous example of autoresonance in PIC simulations is sought
by driving a Langmuir wave using counter-propagating beams, and results are
compared to fluid simulations carried out under equivalent conditions.
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5.1 PIC simulations of SRS in inhomogeneous

plasmas using a single laser

We begin by considering a single laser propagating through a plasma. In PIC
simulations, a wide array of laser-plasma interactions are possible. At a plasma
density of ne/nc ∼ 0.05 and in the regime kLλD ∼ 0.33, we expect backward
SRS to be the dominant scattering process of the laser. This should be clearly
apparent in the spectrum of light reflected (and transmitted) by the plasma: For
a given laser frequency ω0 and local plasma frequency ωpe, the dispersion relations
of the three waves defined in Eqs. (2.38-2.40) may be solved, and the mechanism
responsible for scattering the laser light confirmed.

As discussed in fluid simulations in Sec. 4.1.3, the laser may resonantly drive
SRS at every point in the plasma due to the broad spectrum of noise present in
the simulation. Autoresonance is consequently possible throughout the plasma.
Since growth is possible at all points in the plasma, no apparent parabolic spatial
growth in Langmuir wave amplitude is expected. However, as found in fluid
simulations, we would expect the reflectivity of the plasma to be higher when
the density gradient increases in the direction of propagation of the BSRS-driven
Langmuir wave, allowing the cancellation of the wave number detuning due to
inhomogeneity and the nonlinear frequency shift due to electron trapping.

In Figs. 5.1(a)-5.1(f), a range of linear density profiles are shown. In each
case, the plasma conditions are identical, where Te = 1 keV and at the centre of
the plasma, ne/nc = 0.05. In total, six cases are presented, differentiated by the
value of the density gradient parameter L = [(1/n0)dne/dx]

−1 used to generate
the density profile: L = ±100, ±200 and ±300 µm, where ne = n0(1 + x/L).
Laser light of intensity 5×1015 W/cm2 and wavelength 351 nm is then introduced
at the LHS of the simulation window.

The resulting reflectivity of the plasma, collected at the LHS of the window
(and after spectrally filtering out laser light reflected without scattering by the
discontinuity in density at the vacuum-plasma boundaries), is presented in Fig.
5.3. Figs. 5.3(a)-5.3(f) are the reflectivities of the plasma profiles 5.1(a)-5.1(f).
The reflected light was found to be of a frequency within the range expected
due to SRS, broadened by the range of densities present and the frequency shift
due to kinetic effects. In each case, it is clear that the reflectivity is significantly
increased when the density gradient is positive (for L = ±400 µm, this is true until
after the first saturation of the reflectivities, after which the eventual saturation
values are approximately equal). The negative density profile reflectivities reach
saturation sooner, and in the case L = −400 µm, the initial growth is faster that
the case L = +400 µm (this is simply because the SRS growth rate is highest at
the maximum density, thus when the gradient is negative, the laser encounters
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the maximum density after propagating a shorter distance).
The difference between positive and negative density profiles is greatest when

the gradient is steepest i.e. for the values presented here, L = ±100 µm. This is
as expected: using the relation∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′ωLη

)2

(x− xres)
2, (5.1)

it is clear that decreasing L (and therefore increasing κ′) will result in a more
rapid growth in Langmuir wave amplitude. It was also demonstrated in Sec. 3.4.4
that while increasing the rate of autoresonant growth, decreasing L lowers the
level at which autoresonant growth of the Langmuir wave saturates. However,
as the level of reflected light throughout the plasma increases (due to resonant
SRS or autoresonance), the strength of the ponderomotive force that drives the
autoresonant Langmuir wave will increase, rasing the level at which saturation
due to the loss of autoresonance occurs.

These findings are supported by studies performed by Strozzi [7], shown in Fig.
5.2. These simulations, performed using the Vlasov code ELVIS, were carried
out under similar conditions: Te = 3 keV, ne/nc = 0.1, a plasma length of
100 µm, and L = ±167, ±250 and ±500 µm. Here, I0 = 2 × 1015 W/cm2,
λ0 = 351 nm for the laser, and I1 = 2× 1010 W/cm2, λ0 = 574 nm for the seed,
and kLλD ∼ 0.36. Qualitatively, the same behaviour as that which was found
in the PIC simulations presented here is observed, with the plasma reflectivity
showing significant enhancement when the gradient is positive as opposed to
negative. Indeed, the effects of autoresonance may be greater in this regime
than in the regime discussed earlier, since the higher electron temperature and
consequently the higher Langmuir wave group velocity result in a significantly
higher autoresonant growth rate.

While these findings agree with the behaviour predicted by autoresonance,
it is not possible to say with certainty which mechanism is responsible for the
enhancement of the reflectivity in the simulations presented here, since autoreso-
nance does not provide an obvious signature in the reflected light of the plasma.
It is desirable therefore to arrange conditions favourable to autoresonance so that
its presence in kinetic simulations may be unambiguously established. This is
performed later in the chapter.

5.1.1 Calculating η

Throughout this thesis, the free parameter η has been used in analytic calculations
and three-wave coupling models in order to determine the size of the kinetic
nonlinear frequency shift δω = −iηωL|δne/n0|1/2. The accurate determination
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Figure 5.1: Plasma density profiles used in PIC simulations where a single laser
is used to drive SRS. All parameters but the density gradient parameter L are
identical in each case.
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Figure 5.2: SRS reflectivities calculated using the Vlasov code ELVIS, written
and run by D. Strozzi [7]. SRS levels are significantly raised when the gradient
increases in the direction of propagation of the Langmuir wave resonantly driven
by the laser (here, k0 is the Langmuir wave vector, and the only parameter varied
between each simulation is the density gradient parameter Ln ≡ L). The plasma
parameters are similar enough to allow qualitative comparison with Fig. 5.3.
Figures adapted from Ref. [7].
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Figure 5.3: Plasma reflectivity from PIC simulations where a single laser is used
to drive SRS. Each simulation is performed with identical laser parameters and
under identical plasma conditions, but for the density gradient parameter L. The
density profile used in each case corresponds to those shown in Fig. 5.1. In each
case, it is clear that the reflectivity of the plasma is greater when the gradient
increases in the direction of propagation of the BSRS-driven Langmuir wave.
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Figure 5.4: (a) The flat density profile used in PIC simulations to determine
η. (b) The Langmuir wave amplitude at t = 1 ps, where only the LHS laser is
applied.
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5.1. PIC simulations of SRS in inhomogeneous plasmas using a single laser

of η is therefore important. As discussed in Chapter 2, Sec. 2.4.4.1, several
theoretical methods for calculating η are known that are applicable in different
circumstances. Since we wish to compare and contrast PIC simulation results
with analytic calculations, it is desirable to measure directly the value of η that is
present in the PIC simulations (and indeed to confirm the presence of the assumed
frequency shift due to kinetic effects). Recording δω using the longitudinal field
in the plasma is not practical, since this requires recording the field throughout
the plasma with a high time resolution.

The fastest growing mode in the plasma is the resonant mode. Since the
laser frequency is fixed at the boundary, the δω shift of the Langmuir wave fre-
quency may be determined by analysing the corresponding frequency shift of the
scattered light. Thus, reflected light may be collected at the boundary of the
simulation window, and the frequency shift of the Langmuir wave determined by
the analysing the behaviour of the scattered light frequency.

Attempting to measure the frequency shift in an inhomogeneous plasma is dif-
ficult due to the broad resonant frequency spectrum present; laser light will scatter
from density fluctuations (noise) at all points in the plasma simultaneously. Fur-
thermore, the growth rate of the scattered light is greater at higher densities, thus
scattering from higher densities dominates the frequency spectrum. Therefore,
in order to isolate the frequency shift of a single Langmuir wave frequency in the
plasma, we consider a plasma of homogeneous density such that ne/nc = 0.05
everywhere within the plasma (shown in Fig. 5.4, left). We then introduce laser
light at the boundaries of the simulation window as before. As described earlier,
we choose laser parameters and plasma conditions of relevance to NIF experi-
ments, where λ0 = 351 nm, I0 = ILHS = 5× 1015 Wcm−2, n0 = 4.5× 1020 cm−3

(ne/nc = 0.05) and Te = 1 keV. So far, laser light has only been applied at the
LHS boundary, but later in this chapter, counter-propagating beams will be used
to drive autoresonance. In Fig. 5.5, the reflectivity of the plasma is shown in these
two cases: The uppermost figure shows the reflectivity of the plasma, collected at
the LHS of the simulation window, when only the LHS laser is switched on. In
this case, the frequency of the reflected light increases slowly as a function of time
as the Langmuir wave grows, until an eventual plateau. The dashed line indicates
the reference frequency ωref

1 , equal to the frequency at which the backscattered
light will be produced in the absence of a nonlinear frequency shift [calculated by
solving the linear dispersion relations, Eqs. (2.38-2.40)]. The result is as we ex-
pect: The laser frequency ω0 is determined at the LHS boundary. The frequency
of the Langmuir wave ωL decreases as its amplitude grows due to kinetic effects.
The frequency of backscattered light ω1 that is resonant with the Langmuir wave
therefore increases in time in order to fulfill the three-wave resonance condition
ω0 = ω1 + ωL.

In Fig. 5.5, the lower figure shows the reflectivity of the plasma when both the
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Figure 5.5: The reflectivity of a plasma of homogeneous density profile (Fig. 5.4,
left) showing the kinetic nonlinear frequency shift, measured using PIC simula-
tions. (a) The reflectivity obtained when only the LHS laser is switched on. (b)
The reflectivity obtained when both LHS and RHS lasers are switched on. While
the frequency shifts are similar, the timescales differ greatly.
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5.2. Driving autoresonance using counter propagating beams

LHS and RHS lasers are applied, where I1 = IRHS = 1× 1013 Wcm−2. As in the
previous case where only the LHS laser was applied (Fig. 5.5, top), both lasers will
scatter from density perturbations in the plasma. However, since the amplitude
of the field fluctuations present in the plasma is much lower than that of the
lasers, the growth of scattered light due to the noise will be much slower than
the interaction between the two fixed-frequency lasers and the plasma, resonant
at x = xres ≈ 78 µm. The direction and plateau amplitude of the frequency shift
are essentially unchanged from the previous case. It is a useful and important
result that the kinetic nonlinear frequency shift is applicable to both a Langmuir
wave that grows slowly from noise and to a Langmuir wave that is strongly driven
by counter-propagating laser beams.

Since autoresonance driven by counter-propagating occurs over timescales of
around 1 ps, we will measure η at this time in the driven case. At 1 ps, we
observe a frequency shift of δω ∼ 0.03. At this time, we see in Fig. 5.4 (right)
that the Langmuir wave envelope amplitude is of the order |δne/n0| ∼ 0.2 in
the growing region of the plasma (i.e. the region which is responsible for the
majority of the backscattered light). Using the expression for the frequency shift
δω = −ηωL|δne/n0|1/2, we find a value of η ∼ +0.25. It should be stressed
that while this value is approximate, three-wave simulations using the fluid code
generally display a low sensitivity to variations of η in the range 0.2 < η < 0.3.
Measurements of η at densities near ne/nc = 0.05 showed little variation. It is
this value of η = 0.25 that was used in all simulations in this thesis.

5.2 Driving autoresonance using counter prop-

agating beams

The enhancement of plasma reflectivity levels in positive density profiles com-
pared to negative density profiles was established in Sec. 5.1. We wish now to
provide a clear, unambiguous example of autoresonant Langmuir wave growth
using PIC simulations. In PIC simulations, the noise level may be lowered only
by increasing the particle number for given physical conditions in the plasma.
However, a second source of laser light, introduced at the RHS of the simulation
window, may be used to strongly drive a Langmuir wave at a particular point
in space and with a particular frequency and wave number (before nonlinear
effects shift these values). Using a seed that is significantly stronger than the
noise present in the plasma should allow the generation of autoresonant Lang-
muir waves similar to those presented in the previous chapter using a fluid code
(or indeed a prescribed drive model for autoresonance).
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Figure 5.6: Electron plasma density profile for L = +100 µm (positive density
profile, red solid line) and L = −100 µm (negative density profile, blue dashed
line). The two counterpropagating laser beams with intensities ILHS and IRHS are
introduced in vacuo at the LHS and RHS boundaries of the simulation window,
respectively.

5.2.1 Langmuir wave amplitude and three-wave phase dif-
ference in inhomogeneous plasmas

We now once again introduce a linear density gradient to the plasma of the form

ne = n0

(
1 +

x− xres
L

)
, (5.2)

for which L = ±100 µm for positive and negative density gradients, respectively.
The plasma parameters are kept identical to those used in PIC simulations in Sec.
5.1 (Te = 1 keV, n0/nc = 0.05, kLλD = 0.33), while the LHS and RHS lasers have
intensities I0 = ILHS = 5× 1015, I1 = IRHS = 1 × 1013 W/cm2 and wavelengths
λ0 = 351, λ1 = 473 nm (ω1/ω0 = 0.74), respectively. The LHS and RHS lasers
are switched on at t = 0, meeting at the resonance point x = xres ≈ 78 µm. Since
ω0 > ω1, the LHS laser acts as a pump and the RHS laser as a seed, initially
resonant with a Langmuir wave at xres. The initial electron density profile is
shown in Fig. 5.6.

After the lasers are switched on, they propagate through the plasma until
they meet at xres and begin to resonantly drive a Langmuir wave at this point.
The evolution of this Langmuir wave is shown in Fig. 5.7 at a series of instances
in time. Below, in Fig. 5.8, three-wave coupling simulation results are shown,
generated using the same set of parameters as the PIC results above. There is
clear autoresonance visible in the PIC simulation results: The amplitude of the
Langmuir wave grows along a parabola defined by the cancellation of the wave
number detuning due to inhomogeneity and the kinetic nonlinear frequency shift,
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where ∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′ηωL

)2

(x− xres)
2. (5.3)

While the parabola plotted in Fig. 5.7A provides reasonable agreement with the
observed growth of the Langmuir wave, the Langmuir wave growth in PIC simula-
tions is slightly steeper than the given parabola. This is not surprising, given the
approximate nature of η, but may also be due to a reduction in ωL due to trapping
leading to a steepening of the parabola [the value of ωL used in calculating cL in
Eq. (5.3) is simply the constant linear value]. Additionally, the parabola plotted
is offset from its expected position, with growth beginning slightly behind the
intended resonance point. To a lesser extent, this phenomenon is reproduced in
three-wave coupling simulations (Fig. 5.7B), caused by the inexact cancellation of
the wave number detuning and the kinetic nonlinear frequency shift: The linear
growth of the daughter waves is faster than the autoresonant growth until the
linear growth becomes saturated, after which autoresonance determines the evo-
lution of the daughter waves. SRS (autoresonant or not) occurs throughout the
plasma, but grows more quickly in the region of higher Langmuir wave amplitude
produced by the autoresonant growth. Additionally, other frequency shifts are
likely present in the plasma (fluid effects such as harmonics, for example), which
complicate the situation compared to the simple three-wave coupling model used
here.

The three-wave envelope phase difference Φ = φ0 − φ1 − φL plotted in Fig.
5.7B was calculated by Fourier analysing each wave. For the Langmuir wave,
this process was straight-forward: The real longitudinal field Ex(x) was trans-
formed into k-space. The complex amplitude of the wave was then determined
by selecting one half of the distribution in k-space (since the wave propagates
in the positive direction, kL > 0 was chosen). The result was then transformed
back into x-space and multiplied by the conjugate of the quickly-varying phase
of the wave using the linear value of kL at x = xres, giving the complex envelope
amplitude of the Langmuir wave. The phase of this wave was then determined by
simply taking the argument of the complex envelope and unwrapping the result
over the 2π phase range.

The phase of the electromagnetic waves is slightly more difficult to determine,
since both real transverse fields overlap in space. The process was similar to
that of the Langmuir wave: The real transverse total field (including ILHS, IRHS,
all scattered light and noise) was transformed into k-space. The wave numbers
of ILHS and IRHS, set at the boundaries of the plasma, were then sufficiently
distinct that they could be separated in k-space, in effect isolating each of the
forward and backward propagating waves, with care taken to include the shifted
wave numbers of the scattered light. The complex wave amplitudes were then
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Figure 5.7: The Langmuir wave en-
velope amplitude and three-wave
envelope phase mismatch, calcu-
lated from PIC simulations. The
Langmuir wave grows along the
parabola expected when the non-
linear frequency shift cancels the
wave number detuning due to in-
homogeneity over a region is space.
At xres, kLλD = 0.33.
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Figure 5.8: The Langmuir wave en-
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lated using a three-wave fluid code.
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nonlinear frequency shift cancels
the wave number detuning due
to inhomogeneity over a region is
space. The three-wave model re-
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multiplied by the conjugate of their quickly-varying phases, giving the complex
envelope amplitudes. The phases were then determined by the same method as
that used for the Langmuir wave.

The resultant three-wave phase difference is plotted in Fig. 5.7B. Clear phase-
locking is visible over a region that extends in space as the autoresonant wave
front propagates away from the initial point of three-wave resonance. It should
be noted that the apparent glitches in the unwrapping of the phase in Fig. 5.7B
are smooth transitions with intermediate points, and are in fact not errors. The
qualitative behaviour of the phase is essentially unchanged from the that of the
three-wave simulations: The three-wave coupling simulation results presented
in Fig. 5.8 clearly reproduce the principle features of the kinetic simulations
presented in Fig. 5.7, with good agreement found in both the timescale over which
the Langmuir wave grows and the amplitude that the Langmuir wave envelope
has at a particular time.

In Figs. 5.9 and 5.10, the same quantities are plotted as in Figs. 5.7 and 5.8.
All parameters are identical in the two cases but for the profile density, resulting
in a different value of kLλD at xres; Figs. 5.9 and 5.10 were generated using a
profile with kLλD = 0.37 at xres. The resulting autoresonant Langmuir wave is
qualitatively unchanged from the case discussed previously where kLλD = 0.33
at xres.

5.2.1.1 The electron distribution function during autoresonance

In order to better understand the kinetic processes happening in the plasma, we
analyse the distribution of electrons in (x, ve)-space, where ve is the local electron
velocity. During trapping, we expect that the initially Maxwellian distribution
of electrons will form a plateau around the phase velocity vφ at which trapping
occurs. The degree of trapping, and the amplitude of this plateau in (x, ve)-
space, should therefore increase with the local amplitude of the Langmuir wave.
In Fig. 5.11, the electron distribution function (EDF) is plotted (the local number
density has been normalised to 1 in order to remove the change in number density
due to the spatial gradient of the electron plasma density) at an instant in time,
t = 0.931 ps. Due to trapping, the initially Maxwellian distribution is no longer
symmetric around ve = 0: at ve = vφ ≈ 0.15, the distribution function is flattened
to form a plateau in (x, ve)-space, confirming the presence of electron trapping.
Beginning just behind the resonance point xres, the plateau increases in size as
a function of space, corresponding to the parabolic growth in Langmuir wave
amplitude due to autoresonance. In Figs. 5.11B, 5.11C and 5.11D, detail of the
distribution function is given. In Fig. 5.11B, the trapping separatrix of the type
shown in Fig. 2.3 is visible, showing the closed electron orbits of trapped electrons
(compare to Fig. 2.3). This is the case up to and including the autoresonant wave
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Figure 5.11: The electron distribution function with local normalised particle
number N at time t = 0.931 ps, calculated from PIC simulations.

front, Fig. 5.11C, where the local Langmuir wave amplitude is at a maximum.
Beyond the autoresonant wave front, shown in detail in 5.11D, the phase of the
electrons is mixed, signalling the abrupt end of the autoresonant region in phase
space.

It is instructive to integrate the EDF over regions in space in order to see a
cross-section of the distribution at various points. The integrated EDF is shown
in Fig. 5.13, where the integration has been performed over the spatial ranges
given in square brackets. It is here clear that both the length in ve and amplitude
in electron number of the plateau increase as a function of distance up until the
autoresonant wave front, after which they begin to drop. Inset in Fig. 5.13, the
distribution at the autoresonant wave front is shown where the plateau is at its
greatest.

5.2.2 Comparison of positive and negative density profiles

Earlier in the chapter in Sec. 5.1, it was confirmed that under the irradiation
of a single laser beam, the reflectivity of the plasma is greater when the density
increases in the direction in which the laser light propagates, compared to a
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range over which the integral was performed.

density profile which decreases in the same direction. This behaviour should
be observable when, as in the previous section, two laser beams are used to
preferentially drive a single autoresonant Langmuir wave envelope.

In Fig. 5.13, the reflectivity of the two plasmas shown in Fig. 5.6 is pre-
sented. In Fig. 5.13, the time-averaged reflectivity 〈R〉t = (1/t)

∫ t
dt′R is shown

for positive (red) and negative (blue) density profiles, while inset, the corre-
sponding instantaneous reflectivities are shown. Inset, the seed level injected
at the RHS is shown (lower black dashed line), as well as the expected level of
the seed after Rosenbluth amplification has taken place near xres (upper black
dashed line). Similar to the findings of Sec. 4.1.0.1 (in particular, Fig. 4.3), when
the slope of the gradient is negative, the seed intensity IRHS is amplified to a
level below the level predicted by Rosenbluth in the absence of kinetic effects,
I0(x = xL) = IRHS exp(2GR). When the gradient is positive, the reflectivity
is significantly enhanced above the level predicted by Rosenbluth, in agreement
with the results of Sec. 5.1 when only the LHS laser was switched on.

Beyond ∼ 1.2 ps, the autoresonant wave front shown in Fig. 5.7A does not
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plasma with respect to the LHS laser, measured at the LHS of the simulation
window as a function of time for positive (red solid line) and negative (blue
dashed line) density profiles. Inset, the instantaneous reflectivity is shown.

continue to grow in amplitude as it propagates. Instead, rapid growth is observed
over the whole region behind the autoresonant wave front, leading to a further
rise in the reflectivity of the plasma (i.e. an increase in addition to the increase
occurring during the autoresonant growth of the single strongly-driven mode).
The maximum amplitude attainable due to autoresonance of a single mode in
kinetic simulations may be limited due to a number of causes, such as:

1. A loss of phase-locking due to the growth of the Langmuir wave, as observed
in prescribed drive and three-wave coupling models

2. Damping of the Langmuir wave, as in Fig. 3.4.3

3. Wave breaking, described in Sec. 2.4.4

4. The vanishing of the value of kL as the Langmuir wave propagates to higher
densities

In the autoresonant case, increasing the strength of the LHS (or RHS) laser by
a factor of 2 increased the amplitude at which the autoresonant Langmuir wave
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saturated by a factor of ∼ 1.2. In Sec. 3.4.1, an analytic expression for the point
at which autoresonance is expected to saturate was derived. Solving Eq. 3.38,
we find that we expect no saturation of the autoresonant Langmuir wave due to
the disappearance of pseudopotential wells; the Langmuir wave is too strongly
driven for the wells to disappear for physical values of the wave amplitude (i.e.
|δne/n0| < 1). This, however, assumes that the damping is negligible, which is
almost certainly not the case. It is thus likely that the loss of autoresonance
here is due to a combination of factors, such as damping and the onset of wave
breaking.

5.3 Chapter summary

For fusion-relevant parameters, the plasma reflectivity is observed to be higher in
the kinetic regime when the density increases in the direction in which the pump
wave propagates. This holds true whether the pump interacts with noise in the
plasma, or whether a high-amplitude counter-propagating seed is used to drive
a particular Langmuir wave mode in the plasma. This phenomenon is observed
in fluid models, PIC simulations and Vlasov simulations, for a range of densities
and plasma conditions. In the case where a single Langmuir wave mode is driven
by counter-propagating beams, excellent agreement, both in amplitude and time,
is found between kinetic and fluid simulations. The spatial transition from a
phase-locked region to a region where the three-wave phase is not locked has also
been observed in kinetic simulations.
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Chapter 6

Findings and future work

In this chapter, the results of this thesis are summarised. The implications of
the findings of this thesis and the future work that these findings motivate is
discussed.

6.1 Findings

The mechanism of autoresonance
Spatial autoresonance in SRS in warm plasmas may arise when a nonlinear
frequency shift in the frequency mismatch between the coupled waves al-
lows the waves to become phase-locked to the wave number detuning due to
the inhomogeneity of the plasma. By modelling the three-wave mismatch
in phase in SRS as a particle, the phase-locking mechanism of spatial au-
toresonance may be understood via an analysis of the Hamiltonian of the
particle. In the regime dominated by kinetic effects, it may be shown that
any profile with a gradient that increases in the direction in which the
driven Langmuir wave propagates (a positive density profile) may support
autoresonant Langmuir wave growth.

In the fluid regime, where harmonics of the Langmuir wave provide the dom-
inant shift in frequency away from the linearly resonant mode, a threshold
in driver strength (laser intensity) is observed and predicted analytically.
Autoresonant growth in this regime, however, is not believed to be of rel-
evance to ICF experiments. In contrast, using parameters corresponding
to current ICF experiments at the NIF, autoresonance in the regime where
the dominant shift is due to kinetic effects is found to be both possible and
potentially important as a mechanism of enhanced Langmuir wave growth,
thereby increasing the plasma reflectivity and the generation of hot elec-
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trons. Autoresonance in the kinetic regime displays no threshold in driver
strength, and may occur in any positive density profile regardless of the
plasma conditions.

In the kinetic regime, the cancellation of the wave number detuning due
to a linearly inhomogeneous density profile and a nonlinear frequency shift
due to electron trapping leads to the parabolic spatial growth of a single
mode of the Langmuir wave of the following form:

∣∣∣∣δne

n0

∣∣∣∣ = (cLκ′ωLη

)2

x2.

The spatial extent of the region over which phase-locking may occur, and
consequently the region over which autoresonant growth of the Langmuir
wave is possible, is determined by the plasma conditions, density profile
and laser intensity. However, regardless of the initial parameters chosen,
sufficient growth in Langmuir wave amplitude will cause a loss of phase-
locking, but for sufficient driver strength, the level at which this occurs
may be so high as to not pose a physical limit on autoresonant growth. For
typical parameters relevant to ICF, the amplitude at which autoresonant
growth saturates is given by

∣∣∣∣δne

n0

∣∣∣∣
max

=
kLε0
n0e

(
1

2

ωLηP

κ′c2L

)2

.

In three-wave coupling, the reflected light may grow, causing P to increase
and further raising the maximum attainable amplitude.

Damping reduces the saturation amplitude of the autoresonant growth. A
Landau-type nonlinear damping that decreases in time to zero will however
not change the eventual saturation amplitude of the Langmuir wave.

Autoresonance in three-wave coupling
Autoresonance does not require a prescribed (constant) driver. In three-
wave fluid simulations, autoresonance may arise in a linear density profile,
leading to a growth in Langmuir wave amplitude above that which is ex-
pected in the absence of nonlinear effects based on Rosenbluth’s analysis [20].
At sufficient laser intensities, autoresonant growth is followed by an abso-
lute growth in the plasma, leading to high reflectivities (R ∼ 0.3) saturated
by pump depletion. In a parabolic density profile, autoresonance may also
arise. However, at sufficient laser intensities, convective growth other than
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autoresonance is possible, leading to a strong growth in reflectivity.

The plasma reflectivity
The reflectivity of the plasma is clearly and significantly enhanced when
the density gradient increases in the direction of propagation of the high-
frequency laser (and thus the direction of propagation of the most strongly-
driven Langmuir modes) compared to simulations where the density gra-
dient decreases in the direction of the high-frequency laser propagation.
This is observed in simulations both where SRS grows out of noise only
and where a single Lanmguir wave mode is driven by counter-propagating
beams of differing wavelength. The enhancement in reflectivity is observed
in fluid, Vlasov and PIC simulations for a wide range of laser intensities and
plasma conditions in the kinetic regime. This enhancement is likely to be
present in ICF experiments, where reamplification of scattered light occurs
in weakly inhomogeneous plasmas in the hohlraum.

6.2 Future work

Beyond the weakly kinetic regime
Autoresonance and the enhancement of plasma reflectivity in positive den-
sity profiles has been observed in the regime 0.3 < kLλD < 0.37. Further
studies are required to determine whether the enhancement of plasma reflec-
tivity persists at higher values of kLλD, well beyond the regime typically
regarded as weakly kinetic. Kinetic simulations at lower values of kLλD
(e.g. kLλD < 0.15) would also be interesting; it is possible that other non-
linear frequency shifts may produce enhancements in the plasma reflectivity
similar to those found in the kinetic regime.

Beyond 1D simulations
PIC simulations in 1D and 2D performed by Masson-Laborde et al. [46] sug-
gest that the early evolution of the plasma reflectivity in the kinetic regime
is dominated by 1D effects, supporting the 1D treatment given in this thesis.
Recent studies by Yaakobi and Frièdland [55] provide examples of autoreso-
nance in 3D in a fluid-like regime, while previous studies by Frièdland [54]

have shown that autoresonance is not susceptible to weak transverse non-
uniformity in the interacting waves. 2D studies of inhomogeneous plasmas
would allow insight into the behaviour of autoresonance in higher dimen-
sions beyond the first saturation (∼ 1 ps) in reflectivity. A 2D fluid code
is currently being written and tested, while 2D PIC simulations will be
performed in the near future.
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Chapter 6. Findings and future work

The recent work of Albrecht et al. (2007) [85], Vu et al. (2005) [86] and Bénisti
et al. (2010) [87] indicate the presence in plasmas of what is referred to by
Bénisti as “self-optimisation”, Here, a shift in frequency δω is partially
matched by a shift in wave number δk in homogeneous plasmas under cer-
tain conditions such as a laser intensity that decreases as a function of
distance. Many models have been proposed and continue to be developed
in order to better describe kinetic effects and find agreement with kinetic
simulations, such as those put forward in the last 10 years by Rose and Rus-
sell [50], Vu et al. [39], Lindberg et al. [51] and Bénisti et al. [53]. The approach
taken in this thesis was similar to that adopted by Vu et al., owing to its
suitability for analytic study.

The basic three-wave equations used in this investigation into autoresonance
are sufficient for reproducing the initial Langmuir wave growth in kinetic
simulations and demonstrating the potential effectiveness of autoresonance.
Beyond the first saturation of the reflectivity, the agreement found with
kinetic simulations was qualitative at best (a common problem in similar
models). Further improvements to the model, drawing on other recent
works, and potentially the inclusion of other saturation mechanisms are
necessary to move closer an adequate description of the physics contained
in kinetic simulations.

Raman amplification
Plasma conditions typical of Raman amplification experiments are such
that nonlinear kinetic effects are likely to be of importance. Steep inho-
mogeneous plasma profiles, of a sort well-suited to the generation of au-
toresonant Langmuir waves, are also present in experiments. The impact
of autoresonance in this case is currently unclear: amplification may be
enhanced, but the quality of the amplified pulse may be decreased. Cur-
rent experimental techniques involve repeatedly passing a pulse through
the inhomogeneous plasma, providing many opportunities for autoresonant
growth. Future work should address whether considerations of autoresonant
behaviour should dictate the shape of the plasma profile.
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Appendix

We solve the following three-wave system of equations, relevant to a warm plasma
with a linear density profile in the kinetic regime:

L0A0 = − e

4me

kL
ω0

εLA1, (1)

L1A1 =
e

4me

kL
ω1

ε∗LA0, (2)(
LL + icLκ

′x− iη|εL|1/2
)
εL =

e

4me

kL
ωL

ω2
peA

∗
1A0. (3)

The integration of this system of equations poses a number of problems. First, the
three waves propagate at different group velocities. For typical ICF parameters,
the Langmuir wave group velocity is much smaller than the group velocity of the
EM waves, such that cL/c0 ∼ 0.05. We consider first a reduced problem of the
form

LLεL = 0. (4)

Discretising the derivatives, we write

εL
t+∆t
x = εL

t
x −

(
cL∆t

∆x

)
(εL

t
x − εL

t
x−∆x). (5)

The temporal and spatial steps are given by ∆t and ∆x, respectively, and the
superscripts and subscripts of εL denote the points in time and space that are
being considered. The quantity typically used to parameterise the accuracy of a
finite difference scheme is cL∆t/∆x, where convergence requires cL∆t/∆x ≤ 1.
If cL∆t/∆x � 1, there is a strong numeric damping in the system: in this case,
each step forward in time will require the averaging of the complex amplitude
at x and x ± ∆x (depending on the direction of propagation of the wave and
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the numeric scheme employed). This damping is particularly detrimental when
the propagating wave is shifted in frequency with respect to the frequency of
the envelope, as is the case when the profile is inhomogeneous or kinetic effects
are included. Indeed, for typical parameters such as those used in this thesis, a
Langmuir wave beginning with an amplitude of |δne/n0| = 1 may only propagate
as little as a few microns before being fully damped. Since the length scales over
which we require accuracy are of the order of 100 µm, this is clearly unacceptable.
The point at which cL∆t/∆x = 1 is a special value, since at this point, there is
no numerical damping in the propagation of the wave: the value of εt+∆t

x is
simply equal to εtx−∆x, and the scheme is exact. This special case is thus highly
desirable. However, since cL is very different to c0,1, it is necessary to use two
different spatial meshes for the integration of the EM waves and the Langmuir
wave (or two different temporal meshes). The strong frequency shifts used in this
work meant that cL∆t/∆x had to be extremely close to 1 (Even, for example,
cL∆t/∆x = 0.99 was deemed to have an unacceptably strong numeric damping.
A value of cL∆t/∆ effectively equal to 1 was used in simulations.).

Due to the differing spatial meshes, the coupling term on the RHS of Eq.
(3) was necessarily calculated using interpolation. While this again involves av-
eraging two terms of different phase (thereby artificially lowering the strength
of the coupling terms), the phase of the EM waves varies slowly in comparison
to the Langmuir wave, and the resulting interpolation gives an acceptable level
of numeric inaccuracy (this was extensively tested using known results, such as
reproducing the analytic result of Rosenbluth gain saturation [20] to within an
accuracy of 4 significant figures).

The equation used to solve the equation for εL between the boundaries xL
and xR was the following:

εL
t+∆t
x=xL

= 0, (6)

εL
t+∆t
xL<x≤xR

= [(1− cL∆t/∆x)εL
t
x + (cL∆t/∆x)εL

t
x−∆x

− (∆t/2)(γL
t+∆t/2
x−∆x/2εL

t
x−∆x)

+ ∆tΓLx(f1xA0
t
x′
1
A∗

1
t
x′
1
+ f2xA0

t
x′
2
A∗

1
t
x′
2
]

/[1 + (∆t/2)γL
t+∆t/2
x−∆x/2], (7)

where γL is the sum of the real damping υL and the imaginary frequency shift δω.
When the Langmuir wave is at position x, the values of the EM waves used in the
RHS coupling must be interpolated. The nearest values of A1,0 lie just behind and
just ahead of the Langmuir wave at x′1 and x

′
2, respectively. The relative fractions

f1,2 relating to positions x′1,2 are such that f1+f2 = 1. ΓLx = (ekL/4meωL)ω
2
pe(x)
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is the strength of the coupling at position x. The EM waves were then solved
using the well-known Crank-Nicholson method [70].

In the absence of coupling to the electromagnetic waves and damping, but
retaining the frequency shift such that γL = δω, this system reduces to

εL
t+∆t
xL<x≤xR

=

(
1− (∆t/2)γL

t+∆t/2
x−∆x/2

1 + (∆t/2)γL
t+∆t/2
x−∆x/2

)
εL

t
x−∆x, (8)

where cL∆t/∆ = 1. Thus, in this case, |εLt+∆t
x | = |εLt

x−∆x|, as required. The
term gamma must be calculated midway between time and spatial steps to fulfill
this condition.
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[60] O. Naaman, J. Aumentado, L. Frièdland, J. S. Wurtele, and I. Siddiqi, Phys.
Rev. Lett. 101, 117005 (2008). 44

[61] A. Ghizzo, P. Bertrand, J. Lebas, T. W. Johnston, and M. Shoucri, Phys.
Plasmas 5, 4041 (1998). 45

[62] G. B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011). 45

[63] A. V. Maximov, R. M. Oppitz, W. Rozmus, and V. T. Tikhonchuk, Phys.
Plasmas 7, 4227 (2000). 45

[64] E. A. Williams et al., Phys. Plasmas. 11, 231 (2004). 45
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