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Résumé

Cette thèse présente la technique de navigation magnéto-inertielle (MINAV) qui utilise
les perturbations du champ magnétique en complément de capteurs inertiels (accéléromètres
et gyromètres) pour la localisation d’un corps rigide en mouvement. On étudie des règles
de conception, ainsi que des procédures opératoires nécessaires à la mise en pratique dans
des conditions réelles. Un exemple de système complet, le “podomètre magnéto-inertiel”,
permettant la localisation d’un piéton évoluant dans des zones où le GPS est indisponible,
est présenté.

Abstract

This thesis presents the magneto-inertial navigation technique (MINAV) using magnetic
disturbances and inertial sensors (accelerometers and gyrometers) to address the positioning
problem of a rigid body in motion. The manuscript provides design guidelines and procedures
enabling the creation of a system implementing this technique in real conditions. An
example of operational system, the “magneto-inertial pedometer”, providing a GPS-free indoor
navigation solution is presented.
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Introduction

L’émergence, puis la vulgarisation du GPS depuis le début des années 2000 a fortement
modifié la perception que le grand public a de la localisation et de la navigation. Il est
devenu quasiment inconcevable de ne pas pouvoir se localiser dans la vie de tous les jours.
Pourtant, en pratique, aucun système réellement universel n’existe, qui permettrait d’avoir
une information de position précise à un coût abordable quel que soit l’environnement. Parce
qu’elles utilisent des signaux radiofréquences, la plupart des technologies les plus courantes,
dont le GPS [67], présentent d’importantes faiblesses. Le GPS est ainsi insuffisamment
disponible, facile à brouiller, relativement imprécis et inutilisable pour les applications à
l’intérieur de bâtiments tels que les grands centres commerciaux, les parkings souterrains,
le métro, voire même en forêt, pour ne citer que quelques exemples.

De manière simultanée, le développement des capteurs MEMS (microsystèmes électromé-
caniques) leur a permis d’atteindre les marchés grand public. Des capteurs inertiels tels que
les accéléromètres et les gyroscopes, qui étaient, à l’origine, l’apanage des systèmes de haute-
précision à bord d’avions ou de sous-marins, se retrouvent maintenant dans de nombreux
appareils électroniques comme les téléphones portables, les appareils photo numériques ou
les consoles de jeu. Leur précision reste cependant loin des standards des techniques de la
navigation inertielle conventionnelle [25, 38, 39]. De coûteux capteurs de classe “navigation”
peuvent être utilisés pour obtenir des estimations de position, mais, sur le long terme,
les dérives sont inévitables. Avec des capteurs bas-coût, estimer la position n’est tout
simplement pas possible. En effet, les biais deviennent très vite prépondérants sur les signaux
utiles. Toutefois, l’attitude peut être (au moins partiellement) reconstituée [27]. D’autres
capteurs doivent être ajoutés pour réduire ou même borner les erreurs de navigation. La
plupart de ces capteurs complémentaires nécessitent le déploiement d’une infrastructure pour
être opérationnels. On peut citer à titre d’exemple les points d’accès Wifi, les marqueurs
visuels ou les amers magnétiques. Installer ces équipements avec une précision suffisante
et les maintenir en condition opérationnelle peut se révéler très lourd financièrement, et
le temps nécessaire à leur déploiement peut vite devenir prohibitif pour de nombreuses
applications. Dans cette thèse, nous considérons une technique de navigation, utilisant
des capteurs bas-coût ne nécessitant aucune infrastructure: la navigation magnéto inertielle
(MINAV) [109, 110, 111, 112].

Le manuscrit est organisé de la façon suivante. Le principe de la technique MINAV
est exposé en détail dans le Chapitre 2. Comme son nom l’indique, elle s’appuie sur une
combinaison de capteurs magnétiques et inertiels. On établira, avec des notations précises
et appropriées, que la dynamique du champ magnétique exprimée dans le repère des capteurs
s’écrit, sous une écriture simplifiée,

Ḃ =− Ω×B + J(B)V

xvii



Introduction

où B est le champ magnétique, Ω le vecteur rotation instantanée, J(B) la Jacobienne du
champs magnétique, i.e. la matrice composée des dérivées partielles du champ magnétique, et
V la vitesse que l’on souhaite estimer. En pratique, B et Ḃ sont déduits des mesures magné-
tiques, J(B) est mesurée par un gradiomètre ad hoc consistant en un jeu de magnétomètres
spatialement répartis, et Ω est mesuré par un gyroscope. Le seul terme inconnu dans cette
équation est la vitesse V , que l’on peut donc estimer lorsque les autres termes sont connus.

La conception d’un système de mesure adapté à l’implémentation de la technique MINAV
est étudiée en détail dans le chapitre 3. L’implémentation du gradiomètre magnétique ad
hoc pose certaines contraintes en termes de datation des mesures et d’espacement entre
les magnétomètres. On apporte des solutions pratiques à ces problèmes. Les impacts de
l’échantillonnage et de la discrétisation spatiale sont également analysés dans le cadre du
gradiomètre. Finalement, ces règles de conception sont appliquées à un système de mesure
complet, conçu pour la navigation du piéton en intérieur.

Le Chapitre 4 traite d’un problème qui revêt une importance pratique capitale: la
calibration du système de mesure. Chaque capteur 3-axes présente divers défauts, qui,
cumulés, ont des effets désastreux. L’orthogonalité entre les axes du capteur peut être prise en
défaut, les facteurs d’échelle peuvent varier d’un axe à l’autre, et des couplages entre les axes
peuvent apparaître. L’alignement de tous les repères est nécessaire, particulièrement lorsqu’il
s’agit de calculer précisément les gradients magnétiques. Toutes les solutions proposées dans
ce manuscrit pour minimiser l’impact de ces défauts ont en commun d’être assez facilement
utilisables sur le terrain, en suivant des procédures légères.

Enfin, le Chapitre 5 propose l’application de la technique MINAV à la navigation et à
la localisation du piéton en intérieur. Les spécificités de cette application et les principales
techniques concurrentes et complémentaires que l’on peut trouver dans la littérature sont
passées en revue avant de détailler plus avant l’implémentation de la technique MINAV. De
la réalisation matérielle à la modélisation retenue, un prototype complet, utilisé expérimen-
talement, est décrit: le “podomètre magnéto-inertiel”. Les résultats expérimentaux obtenus
sur plusieurs scenarii et dans divers environnements urbains soulignent la performance du
système présenté.
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The emergence and the later spread of GPS to a large public since the years 2000 has
deeply modified the general perception of positioning and navigation. In everyday’s life,
it has become hardly conceivable not to be able to locate oneself even if, in practice, no
universal system really exists that would yield accurate and affordable positioning solutions
in every possible type of environment. Because most current positioning technologies use
radio-frequency signals, GPS being a prime example [67], they have major vulnerabilities. In
particular, GPS is insufficiently available, easy to jam, relatively inaccurate and useless for
indoors applications in environments such as malls, parking lots, subways, or forests, to name
a few.

Meanwhile, the development of MEMS (Micro Electro-Mechanical Systems) sensors
has enabled them to reach mass markets. Inertial sensors such as accelerometers and
gyroscopes, which were originally devoted to high precision navigation tasks aboard aircrafts
or submarines, are now included in many electronic devices such as cellphones, digital
cameras, or game consoles. Their accuracy however is vastly below the standards of
conventional inertial navigation techniques [25, 38, 39]. Costly navigation grade sensors
can be used to generate position estimations but, in the long run, drifts are unavoidable.
With low-cost sensors, estimating the position is simply not possible. In facts, the drifts
are too overwhelming. Yet, the attitude can still be (at least partially) reconstructed [27].
Others sensors have to be added to reduce or even bound navigation errors. Most of these
additional sensors require the deployment of an infrastructure to operate. Examples are
WiFi-base stations, visual markers, magnetic portals among others. Deploying with a good
level of accuracy, and maintaining this infrastructure can reveal extremely costly, and the
induced set-up time can turn prohibitive in numerous cases of applications. In this thesis,
we consider a navigation technique using low-cost sensors, which does not require any sort of
such infrastructure: the magneto-inertial navigation (MINAV) [109, 110, 111, 112].

The manuscript is organized as follows. The principle of the MINAV technique is
explained in details in Chapter 2. As its name calls to mind, it relies on a combined usage
of magnetic and inertial sensors. One will establish, with appropriate and precise notations,
that the dynamics of the magnetic field expressed in the frame of the sensors writes, under a
form loosely reported here,

Ḃ =− Ω×B + J(B)V

where B stands for the magnetic field, Ω for the rate of turn, J(B) for the Jacobian of the
magnetic field, i.e. the matrix gathering the partial derivatives of the vector magnetic field,
and V the velocity one wishes to estimate. In practice, B and Ḃ are deduced by magnetometer
measurements, J(B) is measured by a custom-built magnetic gradiometer consisting of a set
of spatially distributed magnetometers, and Ω is measured by a gyrometer. The only unknown
term in this equation is the velocity V , which can thus be estimated based on the knowledge
of the other terms.

The design of a measuring system relevant to implement the MINAV technique is studied
in details in Chapter 3. The implementation of the custom-built magnetic gradiometer
sets requirements on the timing of the measurements, and on the spacing between the
magnetometers. Practical ways of solving these issues are provided. The achievable accuracy
of such a system is estimated. The impact of the sampling and of the spatial discretization
for the gradiometer is also investigated. Finally, a complete measurement system designed
for the application to indoor pedestrian navigation is studied as an example.
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Chapter 4 deals with a problem which reveals to be of paramount practical importance:
the calibration of the measurement system. Each individual 3-axis sensor presents various
flaws that, put together, can have disastrous effects. They can have defects in the
orthogonality between axes, the scale factors may vary from one axis to the other, and
cross-coupling between axes may occur. The alignment of all the sensor frames is required,
especially to compute accurate magnetic gradients. All the solutions proposed to minimize
the impacts of these flaws have in common to be rather easily achievable on-the-field according
to simple procedures.

Finally, in Chapter 5, the application to indoor pedestrian navigation and positioning is
reported. The specificities of this application and the possible competing and complementary
techniques found in the literature are mentioned before detailing the implementation of the
MINAV technique. From the modeling to the hardware, a complete prototype system, “the
magneto-inertial pedometer” is described, which is used experimentally. Results obtained in
several test-cases and urban environments stress the performance of the presented system.

xx



Nomenclature - Notations

∇B gradient of a scalar field B (column vector)(
∂B
∂X

)
Jacobian of the vector field B

Ri = (0i,Bi) inertial frame of reference

Rb = (0b,Bb) body frame of reference

Ωb/i vector rate of turn of Rb with respect to Ri
x (scalar) position

X vector position

(X)i coordinate of X in Ri
V velocity vector(
Bx By Bz

)T
vector of measurements along the x-axis, y-axis ans z-axis(

u v w

)T
vector of coordinates of the velocity vector projected onto Rb(

∂Bx

∂Bb

)
transpose of the gradient of the scalar field Bx projected onto Rb(

∂(B)b
∂Bb

)
Jacobian of the vector field B projected onto Rb

Pi→b matrix of the linear operator transforming the vectors of Bi into Bb(
p q r

)T
readings of the gyrometer embedded onto the body

[(Ω)b] matrix corresponding to the left-hand-side cross product by
(
p q r

)T
∆x,∆y,∆z distances between sensors along the x-axis, y-axis and z-axis

f sampling frequency

T sampling time

Mmin sensor resolution
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Chapter 1

Presentation of inertial navigation
principles

Présentation des principes de la navigation inertielle

Après avoir posé le problème général de la navigation en Section 1.1, ce premier
chapitre propose, en Section 1.2, une description succincte de la solution offerte par la
navigation inertielle haute-précision. Obtenir une estimation de position est possible, mais
les erreurs s’accumulent avec le temps. Pour la navigation inertielle avec des capteurs bas-
coûts, dont il est question en Section 1.3, les erreurs croissent si vite qu’il est impossible
d’utiliser cette seule technique pour obtenir une estimation de la position. En Section 1.4,
les principales méthodes de limitations de ces dérives inhérentes aux systèmes inertiels sont
présentées, illustrées par quelques exemples.

1.1 The navigation problem

Informally, the general navigation problem is to determine, over time, the position of a rigid
body with respect to an inertial frame of reference. As it concerns the general question
of positioning for a moving object, this problem is of practical interest in various fields of
engineering such as vehicular technology [103], aerospace [55], naval engineering [11, 87], and
in academia as wells, e.g. in robotics. Navigation information can be used for observation
purposes only, or, in a closed-loop approach to determine future decisions board autonomous
systems. In the problem stated above, various frames of reference can be considered. For
example, positioning information can be expressed with respect to known locations or objects,
defining problems of relative navigation.

Nowadays, numerous technologies are available to address navigation problems. We refer
the interested reader to [51, 68] for an overview of existing electronic systems (such as GPS,
radio-navigation, radar-navigation among others), and to [71] for an historical perspective on
this problem (dating back to the early days of celestial navigation).

1



Chapter 1. Presentation of inertial navigation principles

Mathematically, the navigation problem is relatively easy to describe. Let Ri = (0i,Bi)
be an inertial frame of reference, where Bi is a direct orthonormal triaxis equipped with the
Euclidean norm, and 0i is a fixed origin. Consider a rigid body, and a body frame of reference
Rb = (0b,Bb) attached to it, where 0b is a given point of the rigid body, and Bb is another
direct orthonormal triaxis. We note X = 0i0b the vector position of the rigid body, and note
Xi its coordinates in the inertial frame of reference. Define the rotation operator Ri→b as the
linear operator transforming the vectors of Bi into the vectors of Bb. The general navigation
problem is to determine both Xi and Ri→b, i.e. determine the position and orientation of the
rigid body with respect to the inertial frame of reference.

1.2 The solution of high-precision inertial navigation

One of the main technologies to solve navigation problems is high-precision inertial navigation.
Inertial navigation systems (INS) use a dead-reckoning (DR) type solution to solve the
problem described above. Dead-reckoning is the process of estimating the current position by
iteratively projecting course and speed from a known initial point. In inertial navigation, the
course and speed are determined by a process of integrating a combination of measurements
from embedded accelerometers and gyroscopes [90]. These inertial sensors are usually
included in an Inertial Measurement Unit (IMU). The main advantage of inertial navigation
is that only aboard measurements are used, so that no external information is required. Yet,
as is explained below, its main disadvantage is that inertial navigations errors are cumulative.

The main principle used in INS is to integrate the sensed accelerations of the rigid
body under consideration in order to obtain velocity and position based on initial conditions
(usually a known position and a zero velocity). In high accuracy INS, the gyroscopes of the
IMU provide the rigid body attitude and can be used to orient the accelerometers platform
(see [39]) in a conventional local coordinate frame (e.g., as explained in [39]). A key
point is that accelerometers do not sense accelerations, as could erroneously be deduced
from the terminology, but specific forces. In other words, accelerometers sense the sum of
external forces divided by the mass minus gravitational acceleration. This particularity
is the culprit for many problems. To determine the trajectory of the rigid body, the
gravitational acceleration must be added to the sensed acceleration. Therefore, all INS include
a compensation of gravity. In numerous applications of high accuracy inertial navigation,
gravity is not a constant, but depends on the position of the rigid body, which itself, is
unknown. As is exposed in [39], errors on the position propagates through the integration
process discussed above, in connection with projection errors, under the form of a forced
oscillating second order system, which frequency can be analytically determined, e.g. for
ballistic missiles [39] by the Schüler effect formula (T=84 min). Oscillations can be attenuated
using complementary information stemming from additional sensors such as Doppler radars
providing an estimate of the velocity [39].

In such high-precision INS, the position error steadily grows over time. The main limiting
factors are the biases of the accelerometers, while the biases of the gyroscopes play a role in
the oscillating dynamics of the stabilized platform INS (see [39, 90, 96]). Even though the
biases are small in high-precision IMUs, the drift is unavoidable. Typically, the position drift
increases by one nautical mile1 every hour.

1In details, the variance of uncertainty grows by one nautical mile each hour.
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1.3 Limitations of low-precision inertial navigation

Alternatively to the above presented stabilized inertial platforms, which are of common use in
accuracy demanding applications such as aeronautical or submarine navigation, other sensor
technologies have been considered.

By removing most of the mechanical complexity allowing inertial sensors to be mecha-
nically isolated from the rotational motion of the rigid body, the strapdown technology has
yielded substantial cost and size reduction, and improved reliability. As a result, small
and light weight INS are now incorporated in numerous applications ranging from military
vehicles [104], intelligent weapons, to robotics, UAVs [16] among others. We refer the reader
to [105] or [96], for a detailed presentation of the strapdown technology. As exposed in this
reference, strapdown technology suffers from several drawbacks among which is the increase
of computing complexity, which is only a relative issue as embedded computational power is
now relatively affordable.

In strapdown technology, numerous classes of sensors exists. Accelerometers can be
mechanical, solid-state, vibrating quartz, vibrating optic fiber. Gyroscopes can be vibratory,
electrostatic, optical. Further, in low-cost INS the sensors used, which are usually MEMS
sensors (Microelectromechanical systems), are by several orders of magnitude less accurate
than the previously discussed sensors. Besides, the rotational sensors must be capable of
measuring high rates of turn. As a result of this requirement and the previously mentioned
flaws, the gyroscopes are considered to be capable of providing only rate-of-turn information
and not rotation angles2. This fact introduces extra errors in the projection of accelerations
and in the DR process, in turn.

With MEMS INS, inertial navigation cannot be used to determine position of the rigid
body, due to overwhelming drifts. It can provide partial information on the attitude,
yet. As has been exposed in [74, 107], under the assumption that the rigid body is not
accelerating, readings from the accelerometers can be used to determine its inclination, i.e.
two independent angles of its attitude, while the heading information (which is given by the
measure of the rotation of the Earth in high-end INS) can not be obtained. Gyroscopes
can be used, in a complementary filter, to infer the attitude dynamics. This point is largely
described in [54].

As for high-end INS, the position error using low-cost MEMS INS grows over time. Again,
the main culprits are the biases of the accelerometers. The biases of low-cost IMUs are by
several orders of magnitude larger than those of high-end IMUs. Typically, the position drift
increases by several hundred meters each minute. Again, additional techniques must be used
to limit this detrimental effect.

1.4 Usually considered solutions to reduce or bound navigation
errors

As previously discussed, any INS drifts over time. It can be a matter of days (with high-
end IMUs) or seconds (with lower-grade IMUs) before the navigation estimates gets too
erroneous to be used in any way. Therefore, complementary solutions are required to prevent
this drift from becoming too large. All the complementary solutions add some information

2For this reason, they are often referred to as rate gyroscopes or gyrometers.
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Chapter 1. Presentation of inertial navigation principles

to the INS system, but in different ways. A first approach, pictured in Figure 1.1, consists
in regularly correcting (totally or partially) the position estimated by the DR system by
using a dependable position information. From this, the cumulative error of the DR system
can be reset, ideally to zero, or more often to a bounded value, as frequently as the new
information permits. Implicitly, the time horizon over which the DR error is integrated
is thus a lot shortened. Provided that this correction occurs often enough, the error
can be kept within certain bounds, virtually indefinitely. Illustrative examples are given
in Section 1.4.2. Between two corrections, however, the DR error is not improved. The
second and complementary approach is to add some information in the DR system itself, e.g.
by modeling the sensors biases, combining sources of information, or modeling the dynamics
of the body in motion. The error of the DR system can then be lowered further. As a result,
the position estimation keeps drifting, but at a slower rate. The error is thus kept under given
limits for a longer period of time. Examples are shown in Section 1.4.1. Both techniques are
not exclusive and complete each other very well.

Actual trajectory

Position information

DR position estimate

Correction

Figure 1.1: The DR estimate is regularly corrected by a position information.

1.4.1 Flaws minimization, data fusion, and dynamics modeling

Consider raw measurements of high-end INS sensors. Many techniques can be used to
improve the accuracy of the final position estimate. First, raw measurements can be partially
corrected. The sensors always present mechanical flaws resulting from the assembly. These
can be estimated and corrected up to a certain point. Due to setup or usage, their sensitivity
may become slightly altered overtime. Their responses often vary with the temperature
or even the pressure or the humidity. All those flaws may be partially accounted for by
relevant calibration techniques and procedures, which may require the use of other sensors
(e.g. temperature sensors) to serve as external references. Placing the sensors at one position
or another in the vehicle of interest may also impact its accuracy. Inertial sensors are, for
instance, most often (partially) isolated from vibrations.

Another classical source of improvement is data fusion. It consists in combining multiple
sources of information, having various uncertainties, to determine a potentially more accurate
position estimate. On many vehicles where inertial systems have been used for a long time,
velocity measurements have been added. Locks used aboard ships measure the fluid flow
velocity, i.e. the velocity of the ship with respect to the water. Aboard aircrafts, Pitot probes
have been added to measure air velocity. The error made by the DR system on the velocity

4



1.4. USUALLY CONSIDERED SOLUTIONS TO REDUCE OR BOUND NAVIGATION
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is thus reduced, and the error on position is lowered accordingly. In low-cost INS using IMUs
such as [5, 80, 115], the heading information cannot be obtained by the measurement of the
Earth rotation through the gyroscopes3. Their information can be integrated, but, as already
mentioned drifts significantly. The heading is also inferred from the readings of a compass
which is incorporated in the IMU.

Finally, some a priori knowledge can be incorporated in the DR estimation process by
modeling. Ships, aircrafts [2] and cars [91] have very different dynamics. Many forces and
torques can be derived from physical laws (e.g. from the fluid dynamics [79]) and from the
knowledge of input signals to the governing equations of the vehicle (e.g. steering angle,
propulsion) All this a priori knowledge can be gathered into a dynamical model describing
how the system evolves. The measurements (including the input signals) feed the model to
yield a more accurate estimation of the position. Improving the model may require additional
sensors. Aboard spacecraft for instance, a first approach would be to consider an uniform
gravitational field. However, it has been known for a long time that the gravity field is not
uniform. The Earth is not exactly a sphere, thus other terms (e.g. J2 harmonics, see e.g. [4]
for a precise model of the Earth gravity field) leading to more accurate model can be taken
into account. Models and tables have been built to estimate its value with various accuracy
depending on the position. But as neither the position estimate nor the model are perfect, it
has even be proposed to go further: measuring the variations of the gravitational field through
a gradiometer could reveal valuable to get a better interpretation of the accelerometers data
as proposed in [64, 97].

Numerous practical DR system incorporate one or several of the above presented
techniques. In some cases, blending these techniques can even allow to provide an interesting
position estimate by adding a few other low-cost sensors to low-end inertial sensors. In [18],
in the case of automotive vehicles, a magnetic velocimeter along with a fine modeling of
the various driving phases was proposed to significantly improve the position estimate. In
the case of autonomous UAV, embedded cameras have been added to an IMU to guarantee
self-stabilization properties [16].

1.4.2 Correction of DR position estimate with position information.

When position information is available, the DR can be more easily corrected. A very simple
case of DR, one can think of, is the one of a train traveling between two stations. After the
train departure and before the arrival, one may wish to have an estimation of its position,
e.g. for safety reasons, or to lower the energy consumption in an active control strategy
cutting down the propulsion to progressively slow down before the station. For this purpose,
a DR system can be mounted on the train. As cumulative errors of inertial navigation (or
odometry) quickly become large, magnetic anchors are put along the rails at known locations.
When the train arrives at one such anchor, the device is detected, which allows to correct
the position provided by the DR estimate since the last anchor. Thus, the position error can
be kept within limits provided the anchors are numerous enough. Figure 1.2 pictures the
position computed on a simplified simulation, with DR only, or with DR and the corrections
by the anchor positions.

3This is the technique of gyro-compass.
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Figure 1.2: The DR estimate is regularly corrected by a position information.

1.4.3 Application to indoor navigation

For indoor positioning applications, many corrections of the previous type can be performed.
Absolute positioning information can be obtained via optical systems (requiring markers
or projectors to be observed by cameras), radio-frequency (using fingerprinting from fixed
transmitters), Radio Frequency IDentification (RFID, fingerprinting from deployed nodes),
Ultra Wide Band (UWB, requiring fixed synchronized nodes), cellular networks (requiring
base stations as infrastructures), floor sensors (requiring the deployment of special floor tiles),
radar (usually requiring fixed transponders). We refer the interested reader to [77] and [76].

1.5 Conclusion on these solutions and presentation of the
contribution of this thesis

As has been detailed, most techniques commonly considered to reduce or bound the errors of
inertial navigation require some sort of infrastructure, anchors, additional sensors, or external
sources of information. These represent strong limitations on the usage of the resulting
positioning systems. In this thesis, we use existing sensors in a new way. Combining inertial
measurements to magnetic sensors (usually already present in INS), we show how the velocity
of a moving rigid body onto which this combined system is mounted can be estimated. This
is the MINAV (Magneto-Inertial) technique [109, 110, 111, 112]. Its principles are exposed in
the following Chapter 2. In Chapter 3, design rules are detailed. In Chapter 4, practical
procedures are exposed to enable usage of the necessary set of sensors. In Chapter 5,
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1.5. CONCLUSION ON THESE SOLUTIONS AND PRESENTATION OF THE
CONTRIBUTION OF THIS THESIS

experimental results using a navigation system implementing the MINAV technique are
reported.
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Chapter 2

Principles of magneto-inertial
navigation (MINAV)

Principes de la navigation magnéto-inertielle
(MINAV)

Ce chapitre propose, en Section 2.1, une présentation tutorielle de la navigation
magnéto-inertielle (MINAV) en commençant par le cas mono-dimensionnel d’un mobile se
déplaçant le long d’un axe, puis en introduisant les translations en trois dimensions, avant
de conclure, en Section 2.2, par le cas général d’un mobile à six degrés de liberté, pouvant
simultanément tourner et se translater dans l’espace. Un observateur simple est proposé
permettant d’estimer la vitesse du mobile à partir de mesures du champ magnétique et
de sa Jacobienne (matrices des gradients partiels), ainsi que des données d’un gyroscope.
Finalement, en Section 2.3, quelques propriétés du champ magnétique, intéressantes pour la
technique MINAV, sont étudiées.

In this chapter, we gradually expose the principles of magneto-inertial navigation
(MINAV), starting with a tutorial presentation, before addressing the general case and the
technique of velocity estimation by a state observer.

2.1 A tutorial presentation

2.1.1 The basic 1-dimensional problem

Following the navigation problem statement of §1.1, we consider, using the notations
previously introduced, a one dimensional problem of position estimation. Consider a scalar
field B depending on the position on an x-axis along an inertial frame of reference Ri.
Implicitly, this is a stationary field i.e. it does not depend on time. Consider a device moving
along this x-axis, and measuring this field B. Its position at time t is noted x(t) with respect
to the inertial frame of reference Ri. The variations of the sensed field can be obtained by a
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simple chain rule differentiation. One has

dB(x(t))

dt
=
dB

dx
(x(t))ẋ(t) (2.1)

In words, the time variation of the field seen by the moving device is directly related to
the gradient of the field dB

dx and to the speed ẋ , v of the device. Formally, if the
device can measure the field B and its gradient dB

dx , its speed can be reconstructed by
solving Equation (2.1) with respect to v. Practically, various sources of noise prevent one
to proceed this way, and rather, an asymptotic observer is used to determine the unknown
velocity v. Note Bx the measurement of the device, and dBx

dx the derivative of the reading of
the device with respect to the x-coordinate.

Choosing a vector state with the magnetic field and the velocity
(
Bx v

)T
and assuming

a null dynamic for the device, and a constant gradient
dv

dt
=
∑

forces per unit of mass = 0

the considered dynamical system writes in the (autonomous) state-space form

d

dt

Bx
v

 =

0 dB
dx

0 0

Bx
v

 (2.2a)

y =
(

1 0

)Bx
v

 (2.2b)

The gradient of the field dB
dx is considered as a measured input, and the measured output is

simply the value of the field Bx.
Straightforwardly, the observability matrix O of this state-space representation is

O =

1 0

0 dBx
dx


The system is thus observable wherever the gradient of the field is non trivial. The unknown
state v can be reconstructed by means of an asymptotic observer. This means that the velocity
can be estimated solely from the measurements of the field (and its gradient) wherever the
gradient is non trivial. No further requirement has been made on the non-uniform field under
consideration. This scalar field can, in practice and among other possibilities, be a component
of the magnetic field or of the electric field, the temperature, the ambient light intensity or
the pressure. The precision of the estimated velocity will, obviously, depend greatly on the
accuracy of the sensors with respect to the variations of the field along the direction of move.
This point is particularly discussed in Section 3.3.

We now go one step further and propose a simple observer to actually estimate the velocity
of the device in this one dimensional configuration.

Proposition 1: Consider the following observer for the system (2.2)

˙̂
Bx =

dBx
dx

[
v̂ − `1

dBx
dx

(
B̂x − y

)]
˙̂v =− `2

dBx
dx

(
B̂x − y

)
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where `1 > 0 and `2 > 0 are arbitrary constant gains. This observer asymptotically converges
towards the actual field and velocity governed by the dynamics (2.2), provided that dBx

dx 6= 0.

Proof: Consider the candidate Lyapunov-function W

W =
1

2

(
B̂x −Bx

)2
+

1

2`2
· (v̂ − v)2

Its time-derivative is

Ẇ =(B̂x −Bx)

[
dBx
dx

(
v̂ − `1

dBx
dx

(B̂x −Bx)

)
− dBx

dx
v

]
− (v̂ − v)

dBx
dx

(B̂x −Bx)

This gives,

Ẇ = −`1
(
dBx
dx

)2

(B̂x −Bx)2

Choosing `1 > 0 guarantees that Ẇ is negative semidefinite. If the set Ẇ contains no
other trajectory except the trivial one (B̂x −Bx, v̂− v) = (0, 0), then, according to LaSalle’s
invariance principle [69], the origin of the error dynamics is globally asymptotically stable.
Let us verify that the invariant set is, in fact, reduced to the origin. Trajectories lying in the
set Ẇ = 0 are such that

dBx
dx

(
B̂x −Bx

)
= 0

By assumption, dBxdx is non-zero, i.e. the field B is non-uniform, we obtain

˙̂
Bx − Ḃx = 0

This can be expressed as follows

˙̂
Bx − Ḃx =

dBx
dx

[
v̂ − `1

dBx
dx

(B̂x −Bx)

]
− dBx

dx
v

which yields, in the set B̂x −Bx = 0,

0 = v̂ − v

To conclude, if the gradient dBx
dx is non-zero, and in practice it usually is since the field is

assumed to be non-uniform, the observer asymptotically converges towards the actual value
of the field and the velocity.

The principle presented above allows to estimate the velocity of a device translating along
a single axis by solely measuring any non-uniform field and its gradient along the direction
of movement. No inertial measurement is even necessary. In practice, the gradient can be
estimated using two sensors aligned with the direction of movement at a known distance
one from the other1. A simulation of the field and the velocity reconstruction with noisy
measurements is presented in Figure 2.1. The device is translated of 1 cm every 4 s. The
estimated speed is noisy but accurate. Once integrated (which partially gets rid off the noise),
it provides a reliable position estimate.

1A method to accurately identify this distance for a given apparatus is given in Section 3.2.
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Figure 2.1: Simulation results - The platform is translated step by step in the direction
sensors are lined up. One step of 1 cm is made every 4 s.

2.1.2 The general 3-dimensional problem

To extend the principle exposed above in the simple 1-dimensional case to the more general
case of a device which can actually rotate and translate in a 3-dimensional space, we proceed
in two steps. First, the problem is extended to a device that can translate in all 3 directions.
Then, rotations are taken into account.

Translations

Consider a device that can translate in a classical 3-dimensional space. First, a scalar field
is considered. In theory, any scalar field such as the temperature, the pressure or the light
intensity (see [116]) could be considered. However, the inadequacy of the scalar field will
be pointed out, and vector fields will be used instead. From a practical point of view, and
considering the sensing technologies available, the magnetic field ranges among them.

Scalar field Consider a scalar field B depending on the position X in a 3-dimensional
space with respect to an inertial frame of reference Ri, and a device that can freely translate
in any direction. We note Rb the body frame of reference attached to the device. Without
loss of generality, it can be assumed that the axes of Ri and Rb coincide since no rotation is
permitted. The position of the device at time t is denoted X(t). We note V (t) its velocity
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with respect to Ri. By a simple chain rule, one has the vector equation

dB(X(t))

dt
= (∇B(X(t)))T V (t) (2.3)

where ∇B is the gradient of B. This expression is similar to Equation (2.1).
A scalar measurement is performed with the device. Without loss of generality, we note

it Bx. Further, we note
(
u v w

)T
the vector containing the coordinates of V projected in

Rb.
Considering the state vector

(
Bx u v w

)T
, one can write the dynamics under the

state-space form, assuming the body velocity is constant

d

dt


Bx

u

v

w

 =

 0 ∂Bx
∂Bb

03×1 03×3



Bx

u

v

w



y =
(

1 0 0 0

)

Bx

u

v

w


where ∂Bx

∂Bb is the transpose of the gradient of the scalar field Bx projected onto the body
reference frame Rb.

Considering this system as autonomous, the observability matrix O of the system is

O =


1 0

0 ∂Bx
∂Bb

0 0

0 0


which is obviously of rank 2 when the field is non-uniform and of rank 1 when the field is
uniform. The full state cannot be observed, which means that the velocity vector cannot
be correctly estimated solely from one scalar measurement. This single measurement is not
sufficient to distinguish between the contribution of the three components of the velocity.
One has to add other measurements, which naturally leads to the consideration of vector
fields.

Vector field Consider a three dimensional vector field B depending on the position X in a
3-dimensional space equipped with an inertial frame of reference Ri. Consider a device that
can freely translate in any direction. We note Rb the body frame of reference attached to
the device. Again, it is considered that the axes of Ri and Rb coincide since no rotation is
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permitted. The position of the device at time t is denoted X(t). We note V (t) its velocity
with respect to Ri. By a simple chain rule, one has the vector equation

dB(X(t))

dt
=

(
∂B(X(t))

∂X

)
V (t)

where
(
∂B
∂X

)
is the (matrix) Jacobian of B. This expression is similar to Equation (2.1)

and Equation (2.3).

A 3-dimensional measurement is performed with the device. We note it
(
Bx By Bz

)T
.

Again, we note
(
u v w

)T
the vector containing the coordinates of V projected in Rb.

The state gathers the measured components of the field and the velocity,(
Bx By Bz u v w

)T
. Under the state-space form, one considers

d

dt



Bx

By

Bz

u

v

w


=

03×3

(
∂(B)b
∂Bb

)
03×3 03×3





Bx

By

Bz

u

v

w


(2.4a)

y =
(
I3 03

)


Bx

By

Bz

u

v

w


(2.4b)

where
(
∂(B)b
∂Bb

)
is the Jacobian of the magnetic field projected onto the body reference frame,

i.e. the term (1, 2) of
(
∂(B)b
∂Bb

)
, for instance, is the derivative of the component Bx of the

magnetic field with respect to the second base-vector of the body frame.
Considering this system as autonomous, the observability matrix O of the system is now

O =


I3 03

03

(
∂(B)b
∂Bb

)
012×3 012×3


which is obviously of rank 6 whenever the Jacobian

(
∂(B)b
∂Bb

)
is full-rank. In that case, the

state is fully observable and the velocity can be reconstructed.
In practice, the field under consideration can be the magnetic field, the electric field. . . or

even any combination of three independent scalar fields. As in the 1-dimensional case, a
simple asymptotic observer can be proposed to estimate the velocity.
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Proposition 2: Consider the following observer for the autonomous system (2.4)

˙̂
B =

(
∂ (B)b
∂Bb

)[
V̂ − `1

(
∂ (B)b
∂Bb

)T
(B̂ − y)

]
˙̂
V = −`2

(
∂ (B)b
∂Bb

)T
(B̂ − y)

where `1 > 0 and `2 > 0 are constant gains. This observer asymptotically converges towards
the actual field and velocity satisfying (2.4a), provided that

(
∂(B)b
∂Bb

)
is non-singular.

The proof of this result is a subcase of the proof of Proposition 3 derived in Section 2.2.
Earlier, Proposition 1 estimated the scalar velocity of a device translating along a single

axis by measuring a scalar field and its gradient along that axis. The scalar field was not
sufficient to extend this result to 3-dimensional translations. The measurement of a vector
field is necessary in that case. Proposition 2 proposes to reconstruct the velocity in such a
case by solely measuring a vector field and its non singular Jacobian.

Accounting for rotations

The last step to generalize the result is to allow rotations. Due to the rotations, the axes
of Ri and Rb do not coincide anymore. We note Pi→b the matrix of the linear operator
transforming the vectors of Bi into the vectors of Bb, and Ωb/i the vector rotation of Rb with
respect to Ri. To measure this rotation, the device is complemented by a rigidly attached
gyrometer measuring rates of turn in the Rb reference frame. A chain rule differentiation
with respect to Ri, i.e. considering the vectors of Ri as constant, yields

dB

dt

∣∣∣∣
Ri

=

(
∂B

∂X

)
V

where

V =
dX

dt

∣∣∣∣
Ri

The dynamics can be transposed with respect to the body frame Rb. One has, when
differentiation is performed by considering the vectors of Rb as constant,

dB

dt

∣∣∣∣
Rb

=− Ωb/i ∧B +
dB

dt

∣∣∣∣
Ri

Finally,

dB

dt

∣∣∣∣
Rb

= −Ωb/i ∧B +

(
∂B

∂X

)
V (2.5)

In this equation,
(
∂B
∂X

)
is the Jacobian of the magnetic field, while V is the velocity with

respect to Ri, and finally dB
dt

∣∣
Rb

is the time derivative of the vector B at constant Rb. The
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Chapter 2. Principles of magneto-inertial navigation (MINAV)

projection of this vector equation onto the Rb reference frame gives


Ḃx

Ḃy

Ḃz

 = −


p

q

r

 ∧

Bx

By

Bz

+

(
∂ (B)b
∂Bb

)
u

v

w

 (2.6)

In this expression, the vector
(
p q r

)T
contains the readings of the embedded gyro-

scope,
(
Bx By Bz

)T
is the vector containing the readings of the embedded magnetometer,(

∂(B)b
∂Bb

)
is the matrix containing the partial derivatives of the readings of the embedded

magnetometer with respect to the body reference frame Rb,
(
u v w

)T
is the vector

containing the coordinates of V projected in Rb.

The motion of the device is expressed in the body frame by Newton’s law. The body
frame can rotate with respect to the inertial frame, so one has

V̇ = −Ωb/i × V + Fm (2.7)

where Fm is the total force per unit of mass applied to the device. As in the case where only
translations were considered, one can model the total force with zero mean, i.e. Fm = 0.
Other modeling choices are possible (e.g. in Chapter 5). Projecting this vector equation onto
the Rb reference frame yields


u̇

v̇

ẇ

 = −


p

q

r

×

u

v

w


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2.1. A TUTORIAL PRESENTATION

For sake of observability analysis, the chosen state is unchanged,
(
Bx By Bz u v w

)T
,

and the system writes

d

dt



Bx

By

Bz

u

v

w


=

− [(Ω)b]
(
∂(B)b
∂Bb

)
03×3 − [(Ω)b]





Bx

By

Bz

u

v

w


(2.8a)

y =
(
I3 03

)


Bx

By

Bz

u

v

w


(2.8b)

where [(Ω)b] is the matrix corresponding to the left-hand-side cross product by
(
p q r

)T
,

i.e.

[(Ω)b] =


0 −r q

r 0 −p

−q p 0

 (2.9)

Considering the system as autonomous, the observability matrix O of the system is

O =


I3 03

− [(Ω)b]
(
∂(B)b
∂Bb

)
[(Ω)b]

2 −2 [(Ω)b]
(
∂(B)b
∂Bb

)
...

...


which is obviously of rank 6 whenever the Jacobian is full-rank. In that case, the state is
fully observable and the velocity can be reconstructed.

In summary, in the most general case of a rigid body which can simultaneously rotate
and translate in a 3-dimensional space, the velocity is observable from the measurements of a
non-uniform (stationary) vector field and its gradient, and, to take the rotations into account,
the knowledge of the rate of turn of the rigid body is also required.

As a vector field, the magnetic field is a suitable field for the presented velocity
reconstruction technique for several reasons: its availability almost everywhere, the vast
range of measurement systems that can be found on-the-shelf, and the fact that it is very
often spatially non-uniform, especially in places where radio-frequency signals (e.g. GPS) are
unavailable.
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Chapter 2. Principles of magneto-inertial navigation (MINAV)

2.2 Asymptotic reconstruction of velocity in the general case

In the previous introductory discussion, we have shown that the velocity of a rigid body
moving in a 3-dimensional space area where a 3-dimensional vector field is spatially disturbed
is observable from embedded measurements of the field and its Jacobian, provided that the
rate of turn of the rigid body is known. We now make a formal statement of this result
summarizing the MINAV approach. An example of realization is schematically pictured
in Figure 2.2.

The magneto inertial technique (MINAV) addresses the problem of estimating the motion
of a rigid body with respect to an inertial frame of reference Ri. In this technique, the rigid
body is equipped with an embedded magnetic field gradiometer, and an inertial measurement
unit (IMU).

Body frameR

Magnetometers

Body frame Rb

[ ]Tzyx BBB ,,

Gradiometer

y

( )
b

b

B∂
∂ B

Gyrometer

bB∂



••

Building (inertial reference frame)
Ri

Figure 2.2: Reference frames and measurements in the case of pedestrian walking indoor.

Proposition 3: Consider a rigid body moving in a 3-dimensional space equipped with
an inertial frame of reference Ri. Consider a body frame of reference Rb attached to the
rigid body. The rigid body is equipped with a gyrometer producing a vector of readings(
p q r

)T
, a sensor measuring the three components of a field (e.g. the magnetic field)

projected onto the body reference frame Rb,
(
Bx By Bz

)T
, and a gradiometer of this
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2.2. ASYMPTOTIC RECONSTRUCTION OF VELOCITY IN THE GENERAL CASE

field whose reading is
(
∂(B)b
∂Bb

)
, the matrix containing the partial derivative of these three

components. The vector (V )b =
(
u v w

)T
, which is the projection of the velocity V with

respect to the inertial reference frame Ri onto the Rb frame, can be reconstructed by the
following observer

˙̂
B = −


p

q

r

× B̂ +

(
∂ (B)b
∂Bb

)V̂ − `1
(
∂ (B)b
∂Bb

)T
(B̂ −


Bx

By

Bz

)

 (2.10a)

˙̂
V = −


p

q

r

× V̂ − `2
(
∂ (B)b
∂Bb

)T
(B̂ −


Bx

By

Bz

) (2.10b)

where `1 > 0 and `2 > 0 are constant gains, as this observer constitutes with (2.8a) an error
dynamics that is asymptotically converging to 0 when the matrix

(
∂(B)b
∂Bb

)
is non-singular.

Proof: Again, the system is considered autonomous. Consider the candidate Lyapunov
function W

W =
1

2

∥∥∥∥∥∥∥∥∥B̂ −

Bx

By

Bz


∥∥∥∥∥∥∥∥∥

2

+
1

2`2
·

∥∥∥∥∥∥∥∥∥V̂ −

u

v

w


∥∥∥∥∥∥∥∥∥

2

Its time derivative can be written under the form

Ẇ = −`1(B̂ −


Bx

By

Bz

)T

[(
∂ (B)b
∂Bb

)(
∂ (B)b
∂Bb

)T]
︸ ︷︷ ︸

Q

(B̂ −


Bx

By

Bz

)

`1 > 0 is arbitrarily chosen, and Q is positive definite, thus Ẇ ≤ 0. If the setẆ
B̂ −


Bx

By

Bz

 , V̂ −


u

v

w


 = 0


contains no other trajectory except the trivial oneB̂ −


Bx

By

Bz

 , V̂ −


u

v

w


 = (0, 0)
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Chapter 2. Principles of magneto-inertial navigation (MINAV)

then, from LaSalle’s invariance principle [69], the origin is globally asymptotically stable.
Indeed, the invariant set is reduced to the origin. Trajectories lying in the set Ẇ = 0 are

such that

(
∂ (B)b
∂Bb

)T
(B̂ −


Bx

By

Bz

) = 0

Assuming
(
∂(B)b
∂Bb

)
has full rank, i.e. there are enough magnetic disturbances, one obtains

d

dt
B̂ − d

dt


Bx

By

Bz

 = 0

However, this quantity can be expressed as follows

d

dt
B̂ − d

dt


Bx

By

Bz

 =

(
∂ (B)b
∂Bb

)
(V̂ −


u

v

w

)− `1
(
∂ (B)b
∂Bb

)(
∂ (B)b
∂Bb

)T
(B̂ −


Bx

By

Bz

)

which yields, using B̂ −
(
Bx By Bz

)T
= 0,

0 = V̂ −


u

v

w


To conclude, if the Jacobian

(
∂(B)b
∂Bb

)
is non singular, and in practice it usually is due to the

magnetic field disturbances, the observer reconstructs the value of the field
(
Bx By Bz

)T
and the velocity

(
u v w

)T
expressed in the body frame of coordinates Rb.

The proposed state observer (2.10) reconstructs the magnetic field and most importantly
the velocity, both expressed in the body frame Rb. The required measurements are: the
magnetic field (output measurement), the Jacobian of the magnetic field in the body reference
frame (input measurement) and the rate of turn of the rigid body with respect to the inertial
reference frame (input measurement). All of them are also expressed in the body frame
Rb, which means that the sensors are strapdown sensors aboard the rigid body. One shall
note that the observer proposed above can also be studied in non-autonomous cases, i.e.
accounting for the time-dependence of the dynamics. Following [69], invariance principle
can be invoked, but trajectories of the system are not invariant sets. Another argument
of uniform observability must be used, which can be established from uniform complete
observability arguments steeming from uniform bounds on the observability Grammian, or
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Attitude 
Estimation

Velocity
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magnetometers
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Inertial position

Initial
heading

Initial position

Figure 2.3: Trajectory reconstruction with a MINAV system.

arising from differential observability properties [19]. Such a proof of convergence accounting
for the time-dependence of the dynamics is proposed in Appendix C.

The actual objective is to determine the trajectory of the rigid body in the reference
frame Ri. However, the body velocity cannot be processed by a numerical integration
directly in the inertial reference frame. The proposed filter estimates (V )b =

(
dV
dt

∣∣
Ri

)
b
.

It has to be first expressed in Ri. Attitude information is necessary to appropriately project
the velocity in the reference frame. Estimating the attitude from MEMS inertial sensors
measurements (accelerometers and gyroscopes) is a classic problem that have already been
thoroughly studied (see e.g. [12, 27, 54, 75]). The ground principles of such an attitude
reconstruction can be found in Appendix F. However, as mentioned in Section 1.3, with low-
precision inertial sensors, the heading is unobservable. It has to be integrated from a known
initial heading provided by the user or given by a magnetometer when the Earth magnetic
field is not disturbed (which is not so simple since the disturbances are required to get a
velocity estimate). The attitude is then used to convert the body velocity to a velocity in the
inertial reference frame where it can be integrated from an initial position provided by the
user to get a position in that frame. Figure 2.3 details the successive steps of the trajectory
reconstruction.

One can note that the velocity reconstruction described in this chapter does not require
any a priori knowledge (such as a map) about the magnetic field nor its spatial variations. In
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Place Magnetic field Magnetic gradient Magnetometer technology

Geo Transfer Orbit
(i.e. about 600 km of altitude)

0.1 G 100 nG/m SQUIDs

Drilling wells 0.5 G 10 µG/m Fluxgate

Street, boulevard 0.5 G 50 mG/m Magneto-resistive / GMR

Office building 0.5 G 50 mG/m Magneto-resistive / GMR

Table 2.1: Magnetic field and gradient in various places.

this aspect, the presented technique differs greatly from the principle of magnetic anchors [15]
or magnetic mapping [50, 102] that is often associated to navigation using magnetic fields
(see also Chapter 5)

2.3 Properties of the magnetic field of importance for the
MINAV technique

2.3.1 A disturbed field with easily measurable gradients

According to the principles of Magneto-Inertial Navigation (MINAV) presented in Section 2.2,
one could have chosen any vector field to implement the velocity reconstruction technique
presented, provided it is a non-uniform field in the area of interest (i.e. its Jacobian is nowhere
singular in this region). However, not all field are as adapted as the magnetic field. It is a
field that can be measured by many different techniques at various scales: at the surface of
the Earth, in low-altitude orbit, or in deep off-shore wells (see e.g. [94] for more insight into
the existing measurement techniques). Very importantly, the magnetic field presents spatial
variations at these different scales, and the sensors to measure them are available. Table 2.1
reports some examples and details the observed magnitude of the magnetic field, its gradients
and relevant sensors.

Interestingly, the price of the sensors is well-suited with the envisioned applications.
Available magnetic sensor technologies are of various types. A list of them along with their
ranges of measurement is reported in Figure 2.4 (found in [72]). In this figure, E stands for
the Earth magnetic field. We refer the reader to [72, 94] for a complete description of the
various types of sensors, which are each exploiting a distinct type of connection between
magnetic and electric phenomena. Among these technologies, the Anisotropic Magneto
Resistance (AMR), considered in the application of this thesis, is a rugged, reliable and
cheap choice, capable of providing an accurate estimate of the vector components of the
ambient magnetic field and their gradients, which are required for pedestrian navigation (in
buildings and streets). On the other hand, the SQUIDs magnetometers are more expensive
and more difficult to use, but lie in the price range usually considered for orbital navigation.
Section 2.3.4 provides more insight into the application of MINAV to that particular field.
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TECHNIQUE

Figure 2.4: Various magnetometer technologies and their sensitivity. Source: [72]
E : Earth magnetic field
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2.3.2 Differential calculus properties

As shown in Section 2.2, any non-uniform vector field can be used to estimate the body
velocity. The magnetic field is not only a suitable choice since its gradients can be measured
at different scales for different applications as mentioned in Section 2.3.1, but it also has some
properties that can be used to simplify the measurement system. The magnetic is governed
by Maxwell’s equations [40, 41, 62, 78] (as well as the electric field). In the case of stationary
vector fields considered so far, and in absence of electric charges (for the case the electric field
is considered), the divergence of both electric and magnetic field are zero.

∇ ·B =0

∇ · E =0

It means that the trace of their respective Jacobian matrix is zero. The number of independent
terms in the Jacobian matrix of B is thus down from 9 to 8.

The other two Maxwell’s equations express the curl of the magnetic and electric fields
with respect to the time-derivative of the electric and magnetic fields, respectively.

∇× E =− ∂B

∂t

∇×B =µ0j +
1

c2

∂E

∂t

where j stands here for the current density and c for the velocity of light. In the case of
stationary fields, and in absence of currents within the measurement area, both curls are zero

∇× E =0

∇×B =0

This last property on the curl yields that the Jacobian matrix is symmetric in the case of
stationary fields and in absence of current in the measurement area. In addition to the null
trace given by the zero divergence, the number of independent terms in the Jacobian matrix
is now down from 8 to 5. Notice that, if all the gradients with respect to any two space
coordinate are known, the gradients with respect to the last space coordinate are computable
from the other gradients.

2.3.3 Relations with the electric field

The assumption that the perturbed magnetic field is stationnary can be considered, in some
applications, as restrictive. There are two main cases that can be readily addressed though.
We now detail them.

Time-periodic perturbed magnetic field

In the close vicinity of electric sources, the magnetic field can contain a relatively dominant
periodic component at the 50 Hz frequency (60 Hz in the USA). This is also true for the
electric field as has been experimentally studied in [66]. Therefore, one has to deal with a
field of the form

B(X, t) = A(X) cos(wt+ φ(X))
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where w is the pulsation corresponding to 50 Hz, A(X) is the space-dependent vector
magnitude of the field, and φ is an unknown phase. Electric sources being quite synchronized
(the speed of propagation between them being the speed of light), the phase φ is almost
uniform and is therefore considered as constant. The w pulsation being known, it is relatively
easy to extract the magnitude A(X) from it. We take as simplifying assumption that A(X)
is always positive 2. Then, the chain-rule differentiation formula at constant Ri gives

dA

dt

∣∣∣∣
Ri

=

(
∂A

∂X

)
V

with

V =
dX

dt

∣∣∣∣
Ri

However, the derivative of A is more useful in the reference frame of the sensors, Rb. One
has

dA

dt

∣∣∣∣
Rb

= −Ωb/i ∧A+
dA

dt

∣∣∣∣
Ri

which yields

dA

dt

∣∣∣∣
Rb

= −Ωb/i ∧A+

(
∂A

∂X

)
V

with

A(X) =

√
2

T

∫ t

t−T
B(X,u)2du

component-wise, where T = 1/50.
The observer developed earlier for the steady magnetic field can be readily generalized

to the magnitude A. Several sensors can be used to measure A at distributed locations,
permitting to evaluate the Jacobian of this variable.

Another generalization is possible, directly working on the sensed field, and not on the
magnitude, but accounting for the periodic nature of the sensed field. We now briefly expose
it. Considering, as a simplifying assumption, a null phase, then one has

B(X, t) = A(X) cos(wt)

which gives, by a time derivation

dB

dt

∣∣∣∣
Ri

=

(
∂A

∂X

)
V cos(wt)−A(X)w sin(wt)

dB

dt

∣∣∣∣
Rb

=− Ωb/i ×A(X) cos(wt) +

(
∂A

∂X

)
V cos(wt)−A(X)w sin(wt)

2In the general case where the components A(X) are not always positive, their sign can be recovered
thanks to the time origin chosen, by looking directly at the components of B at the beginning of each period.
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It can be shown, using Barbalat’s lemma to address the time-varying Lyapunov analysis, that
the asymptotic observer permits to reconstruct the velocity

A(X) =

√
2

T

∫ t

t−T
B(X,u)2 (component− wise)

˙̂
B = −Ωb/i × B̂ +

(
∂ (A)b
∂Bb

)
V̂ cos(wt)−A(X)w sin(wt)− `1(B̂ − (B)b)

˙̂
V = −Ωb/i × V̂ − `2

(
∂ (A)b
∂Bb

)T
cos(wt)(B̂ − (B)b)

The vector A is computed by the time-average of measurements performed at any particular
point. Implicitly, it is assumed that the motion of the rigid body under consideration in the
navigation problem is slow compared to the 50 Hz oscillations (this is quasi-static motion
assumption). As in the usual case, the Jacobian

(
∂(A)b
∂Bb

)
can be calculated using a set of

spatially distributed sensors. The preceding analysis can be readily transposed to a set of
electrometers [66].

Compensating magnetic field unsteadiness with electric field measurement

When no particular periodicity of the time-varying magnetic field signal can be assumed, it
is possible to compensate its unsteadiness by an extra measurement. According to a chain
rule differentiation, one has, for the sensed magnetic field B

dB(X(t), t)

dt

∣∣∣∣
Ri

=

(
∂B(X(t), t)

∂X

)
V +

∂B(X(t), t)

∂t

∣∣∣∣
Ri

dB(X(t), t)

dt

∣∣∣∣
Rb

=− Ωb/i ×B(X(t), t) +

(
∂B(X(t), t)

∂X

)
V +

∂B(X(t), t)

∂t

∣∣∣∣
Ri

Similarly, for the sensed electric field, one has

dE(X(t), t)

dt

∣∣∣∣
Rb

=− Ωb/i × E(X(t), t) +

(
∂E(X(t), t)

∂X

)
V +

∂E(X(t), t)

∂t

∣∣∣∣
Ri

These two equations can be related thanks to Maxwell’s equations of electromagnetism
(see e.g. [40, 41, 62])

(∇× E) = − ∂B

∂t

∣∣∣∣
Ri

(∇×B) = µ0ε0
∂E

∂t

∣∣∣∣
Ri

Then, one gets

dB

dt

∣∣∣∣
Rb

= −Ωb/i ×B +

(
∂B

∂X

)
V −∇× E

This shows that the extra term in the equations governing the time variations of the
measurements of magnetometers can be deduced from a reading of the electric field. A
combination of distributed magnetometers and an electric field sensor could then be used to
address the navigation problem in an unsteady disturbed magnetic field.
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2.3.4 A field exploitable at various spatial scales

To illustrate the versatility of the MINAV methodology, we now consider a relatively
extreme case, dealing with a spacecraft. As will appear, the magnetic field of the Earth
can be exploited for the navigation problem of space vehicles orbiting or transiting in the
neighborhood of this celestial body (typically, at a distance below 36 000 km). According to
the literature on modeling the Earth magnetic field [85, 106], e.g. IGRF-2011 [42], the field
is time invariant in the Earth frame of reference which is rotating with the Earth along a
known axis. We refer the reader to [85, 89], for a description of the Earth magnetic field as
an internal source model expressing the field as the gradient of a scalar potential given under
the form of a spherical harmonic expansion with respect to spherical geocentric coordinates.
To account for the rotation of the Earth, an additional frame of reference is introduced.

Consider an Earth attached frame of reference, referred to as Rt = (0i,Bt) where Oi is
the center of an inertial frame of reference Ri, and Bt is a direct orthonormal triaxis rotating
with the Earth. We consider Ri = Rg the inertial frame of reference (geocentric) and Rb, and
the body frame of reference, respectively. The time variations of the sensed magnetic field
are given by the projection of the following chain-rule vector equation onto the Rb reference
frame

dB

dt

∣∣∣∣
Rb

+ (Ωb/i − Ωt/i) ∧B =

(
∂B

∂X

)
(V − Ωt/i ∧X)

where Ωb/i and Ωt/i (a known constant vector) are the vector rotation of Rb with respect to
Ri and the vector rotation of Rt with respect to Ri, respectively. In this equation, ∂B∂X is the
Jacobian of the magnetic field, while V is the velocity with respect to Ri. The projection of
this vector equation onto the Rb reference gives

Ḃx

Ḃy

Ḃz

+



p

q

r

− Pi→b


0

0

ωt


 ∧


Bx

By

Bz

 =

(
∂ (B)b
∂Bb

)

u

v

w

− Pi→b



0

0

ωt

 ∧

x

y

z




(2.11)

In this expression, the vector
(
p q r

)T
contains the readings of the embedded gyroscope, ωt

is the scalar defining the rotation rate of the Earth,
(
Bx By Bz

)T
is the vector containing

the readings of the embedded magnetometer,
(
∂(B)b
∂Bb

)
is the matrix containing the partial

derivatives of the readings of the embedded magnetometer with respect to the body reference

frame Rb,
(
u v w

)T
is the vector containing the coordinates of V projected in Rb, and(

x y z

)T
is the vector containing the coordinates of X the position of the rigid body with

respect to Ri projected onto Ri. The matrix Pi→b is the transition matrix from Ri to Rb.
To obtain the above equation, three frames of reference have been used. Compared to the

other applications where only Ri and Rb are considered, it has been necessary to introduce
the Rt reference frame to invoke the stationarity of the Earth magnetic field, which holds
only in this frame of reference and not in Ri.
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Chapter 2. Principles of magneto-inertial navigation (MINAV)

The equation relating the readings of magnetometers and gyroscopes is more complicated
than usual. The rotation of the Earth is accounted for through the term ωt. Another variable
also come into play: the position. In the application envisioned in [89], this information is
provided by the reference IMU of the space vehicle. In this case, the principle of MINAV
applies, as Equation (2.11) is used once again to estimate the velocity V . This represents a
new form of hybridation of sensors aboard a space vehicle.

A complete evaluation of the benefits of the application of MINAV for a heavy launcher
(e.g. Ariane 5) along a typical Geosynchronous Transfer Orbit (GTO) is provided in [89],
which shows that using highly sensitive magnetic sensors (in particular SQUID technology)
the velocity could be estimated with an error below 1 m/s during the whole flight mission. In
turn, this could improve the current launch vehicle navigation accuracy by a factor of 10 to
100. The potential gain is related to the magnitude of the magnetic field gradient observed
along the trajectory, and the accuracy of the employed magnetic and inertial sensors.
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Chapter 3

Design of MINAV systems

Conception de systèmes MINAV

Ce chapitre s’intéresse à la conception d’un système MINAV. L’un des points clés est
la mesure du la Jacobienne du champ magnétique. En effet, c’est par elle que la vitesse
est observable. En pratique, cette Jacobienne est calculée par différences finies à partir
des mesures d’un jeu de magnétomètres spatialement répartis. La synchronisation de ces
mesures et la connaissance précise de la distance entre les capteurs sont primordiales. Il faut
pouvoir distinguer si l’écart entre les mesures de deux magnétomètres est dû à une variation
spatiale du champ ou bien à des données prises à des instants différents lors du déplacement.
La Section 3.1 traite ce problème de datation des données. L’évaluation précise de la distance
entre les capteurs est explicitée en Section 3.2.

Nous nous intéressons ensuite au dimensionnement du système, c’est-à-dire au choix de
la fréquence d’échantillonage, à la précision des capteurs et à leur espacement en fonction
des plages de valeurs attendues pour les gradients magnétiques et la vitesse. Une analyse de
l’erreur est conduite en Section 3.3.

L’introduction du schéma de différences finies entraîne l’apparition de singularités près
des points où le champ magnétique présente des extrema. L’impact de ces singularités est
étudiée en Section 3.4.

Enfin, un système de mesure complet et adapté à un système MINAV est présenté
en Section 3.5.

The principles of magneto-inertial navigation (MINAV) have been detailed in Chapter 2.
Their practical implementation raises some important issues that are addressed in this
chapter.

According to Proposition 3 of Chapter 2, the measurements that are necessary to
implement the MINAV method are: one output measurement, the magnetic field vector, and
two input measurements, the (vector) rate of turn, and the Jacobian of the magnetic field.
We make the distinction of input versus output measurement, due to their respective roles in
the proposed velocity reconstruction observer detailed in Proposition 3. In practice, a 3-axis
gyrometer is used to measure the rate of turn and a set of spatially distributed magnetometers
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Chapter 3. Design of MINAV systems

is used to derive both the magnetic field and its Jacobian matrix. The measurement of this
Jacobian is a key-point since the velocity owes its observability to it. In practice, the nine
partial gradients of the Jacobian are estimated with an array of magnetometers and a finite
difference scheme. The properties of the magnetic field mentioned in Section 2.3.2 allows
to compute only 5 terms out the 9 and to determine the remaining ones knowing that the
Jacobian matrix is symmetric and that its trace is zero. In particular, a complete column of
this matrix can be reconstructed, allowing to distribute the sensors only in a plane, reducing
greatly the space required for the measurement system. Here, however, we consider that all
the terms are measured in a way similar to the following 2-dimensional example.

X

Y Z

IMU

MAG2

MAG3

MAG1

X

Y

Z
y

x

X

X X

Z

Z

Z

Y

Y

Y

Figure 3.1: Schematic of a 2-dimensional sensing module, with three 3-axis magnetometers
and an inertial measurement unit (IMU) gathering a 3-axis gyrometer and a 3-axis
accelerometer.

In a simple 2-dimensional case, the 2×2 Jacobian is computed from the measurements of
the three magnetometers. DenoteMi = (Mi,x,Mi,y) the values given by the ith magnetometer
(in the body frame). For example, the three magnetometers are located according to the
schematic on Figure 3.1. A first approximation of the Jacobian is then

J =

M3,x−M1,x

∆x
M2,x−M1,x

∆y

M3,y−M1,y

∆x
M2,y−M1,y

∆y

 (3.1)
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3.1. PRELIMINARY REQUIREMENT: TIMESTAMPING OF THE DIGITAL
MEASUREMENTS

where ∆x is the distance between the sensors of magnetometers 3 and 1 which are both
aligned on the x-axis, and ∆y the distance between the sensors of magnetometers 2 and 1
which are aligned on the y-axis.

Having a precise estimation of the Jacobian through such a finite difference scheme
requires to take care of the synchronization between the sensors and to have a precise
knowledge of the distance between the sensors. Those two key points are detailed
in Section 3.1 and Section 3.2.

Once one knows how to precisely estimate the Jacobian of the magnetic field, attention
is given to the dimensioning of the system, which consists in choosing a proper sampling
time, appropriate sensors sensitivity, and the right spacing to account for the fact that the
magnetic gradients and velocity to estimate take values in a given and known range. An error
analysis is performed in Section 3.3.

As will appear, the introduction of spatial finite differences schemes introduces singulari-
ties near extremal points of the fields. Their impact is investigated in Section 3.4.

Finally, a full measurement system suitable for a MINAV system is presented in Sec-
tion 3.5.

3.1 Preliminary requirement: timestamping of the digital
measurements

In most embedded positioning devices (see e.g. [20]), information is repeatedly collected from
the sensors at successive time steps. Data is processed in a main loop and little care is given
to the time delays between the various sensors. Implicitly, those delays are assumed to be
negligible. In a MINAV system, however, the set of magnetometers is used to compute the
Jacobian of the magnetic field by use of a finite difference scheme. More than the value of
the field, the key information lies in its variations, and the difference of values sensed by
the sensors of the set. Therefore, it is of paramount importance to distinguish between the
variations due to the fact that the sensors are indeed positioned at slightly different places,
and the variations due to measurements being taken at different dates during the movement.

To illustrate this point, assume that there are only 2 sensors moving one behind the other
along a straight line. The distance between the two sensors is about 10 cm, the velocity of the
system is about 1 m/s, and measurements are taken at 50 Hz. If the measurements are not
performed on both sensors at the same time, the time interval between the 2 measurements
can be up to 1/50 = 20 ms which represents a displacement of 2 cm, i.e. twenty percents
of the distance between the sensors, leading to an error close to 20 percent on the computed
gradient. A better precision can be reached by taking care of the measurement date.

Depending on the sensors available, whether they are analog sensors or digital sensors,
several techniques may be envisioned to determine the date of the measurements. One of the
worst case scenario appears when the set of sensors consists of digital sensors, each one of
them running its own clock without any external trigger. Note that many low-cost sensors
present such a behavior, even if it is not obvious at first sight. Some of them indeed provide
a misleading “upon request” operating mode. This terminology is misleading because one
would assume that, in this mode, the measurement tasks are performed exactly when they
are asked. However, careful investigation of a few sensors revealed a different mechanism. The
sensor continuously performs periodic measurements, and delivers the latest one whenever a
data request is made. The date may thus vary within a time-interval as large as the period
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of the sensors internal clocks, which is what one wishes to avoid. HMR magnetometers from
Honeywell [57] or Microstrain’s IMU [80, pp 9-10], for instance, present such a behavior.
With such sensors, data synchronization is almost impossible.

The approach proposed hereafter is a robust way to deal with such sensors by assigning a
timestamp to each measurement, while being careful of not overwhelming the microcontroller
which gathers all the measurements. Such overwhelming of the microcontroller would
inevitably bring new dating issues or even data losses. The sensors are set to a continuous
output mode in which they continuously deliver measurement information as soon as it is
available (i.e. right after the physical measurement). Provided that the microcontroller reacts
at the exact time when this information is received (at least a time small before the accuracy
of the dating one wishes to achieve), and stores the date of reception as a timestamp along
with the data, then there is no uncertainty in the actual timestamping of the measurements.
A reaction from the microcontroller at the exact time the information arrives is not achievable
because of timing jitter at the microcontroller level. The jitter depends on the interrupt model
but is still present. However, a lower precision can be achieved which is already better than
1/10 of the sensor period (a few tenth of milliseconds instead of several milliseconds in the
system presented in Section 3.5). The method is now detailed a bit further on an example
with a set of HMR magnetometers from Honeywell and an IMU from Microstrain.

Unlike the magnetometers, the IMU, which can be considered as a regular clock, provides
accurate timing information, included in its output message. The IMU is taken as a reference
clock (if it is not the case, any internal or external clock can be used). Next, we proceed in
two steps. i) whenever a sensor (excluding the IMU) measurement has been received, the
microcontroller measures the time elapsed from the latest IMU measurement. This timestamp
is then included in the output message of the microcontroller along with the value of the
measurement,ii) the timestamp is then corrected depending on the sensor. There is indeed a
certain amount of time elapsed between the actual measurement at the sensor level and the
arrival of a message with that measurement at the microcontroller level. These two steps are
now detailed.

Timestamping at the microcontroller level

The reference clock is the IMU clock. The IMU tick count is included in its messages. The
microcontroller clock is used to measure the time elapsed between an IMU message and the
reception of measurements from all the magnetometers. The information from all sensors is
obtained under the form of messages received through various UART ports using dedicated
interrupt handler routines.

To maximize performance, the task performed inside the interrupt handler routines is
limited to the following: to get the data and store the timestamp (for the first byte of
data of each message only). The interrupt subroutine, which is pictured in Figure 3.2, is
exited as soon as possible, allowing other interrupts to come into play. Further tasks are
done afterwards in the main loop. These include checking the validity of the message when
a checksum is available, and converting the stored acquisition timestamps into timestamps
relative to the IMU clock. Finally a single output message containing both sensors data
and their timing information is formulated. The main software architecture is detailed in
Figure 3.3. The gathered message contains: i) data collected from the various sensors.
ii) an absolute timestamp given by the IMU reference clock. iii) a relative timestamp for
every sensor data. This represents the time difference between the reception of the sensor
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Interruption raised
Enter interruption mode

Determine the responsible sensor
Interruption table

Store a timestamp 
in its input buffer

Store the data 
in its arrival buffer

Exit the interruption mode

Add data 
to their right buffer

Add data 
to their left buffer

B = ?

Check if first byte of data
Time elapsed - Nb of bytes received

First
Byte

Store data and 
timestamp in

 their right buffer 

B = ?

Store data and
 timestamp in

 their left buffer 

End of the process
related to the interruption

Yes

No

B* = left B* = right B* = left B* = right

Last
Byte

Change B
from left to right or reverse 

Rise a flag for main loop
Complete data frame received

Yes

No

Figure 3.2: Interrupt management: the interrupt mode is left as soon as possible in order to
avoid delaying another interrupt. Two buffers (left and right) are used. At any given time,
one is full of available data (the last complete data frame received) and ready to be read,
whereas the other is being written with new data.
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Main loop

Start

Flag 
magnetometer

i

Flag 
IMU

Routine magnetometer

Clear flag

Clear flag

Routine 
Format and send data

End

Routine sensor

Checksuminvalid valid

Routine sensor

Flag on

Flag on

Routine Format and send data

Compute differential 
timestamps

Concatenate data

Add checksum

Initiate queued 
serial transfert

Start

End

Routine sensor

B = ?

Start

Store left buffer 
 into output buffer
(data + timestamp)

B* = left B* = right

Store right buffer 
 into output buffer
(data + timestamp)

End * There is one B for
   each sensor

Figure 3.3: Software main loop. Three buffers are used for each sensor: buffer_right,
buffer_left, and buffer_output. The first two are used so that the last complete frame
is stored in one of them while the other one is being written or ready to be written. When an
IMU frame is complete, the last available data from each sensor is stored in the corresponding
output buffer. This is a way to freeze all of the values that will be sent while the differential
timestamps are computed and the output message is concatenated.

measurements by the microcontroller and the acquisition of the data from the IMU contained
in the same output message.
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Figure 3.4: Two sensors aligned in the direction of the rail. The sensing parts of each axis
are at distinct locations of the outer box.

Delay between measurement and acquisition

Physically, an additional pure delay due to the sensor itself has also to be taken into account.
This delay is caused by internal computations performed at the sensor level to compensate
for drift due to temperature changes, conversion of voltages into variables of interest, and
transmission delays. This point is supported by an experiment where the sensors have
been moved quickly from one steady position to another. Data sheets can provide a first
estimate of this delay, but large deviations are expected (at least for low-cost sensors). For
the magnetometers, an offline identification easily yields an estimate of this delay. The
magnetometer responds in a few tenths of a millisecond, and the IMU reacts slightly later.
The delay between the IMU and the magnetometers can be easily determined.

Finally, note that no real, absolute time information can be obtained. The internal clock
of the IMU, which was taken as a reference, is accessible after a delay which can be estimated
but not completely determined. There remains a small uncertainty in the origin of the time
scale. However, an accurate relative timing of all the measurements can be achieved with this
method. Those relative dating is the one that really matters when it comes to computing the
Jacobian of the magnetic field by a finite difference scheme.

3.2 Identification of the distance between sensors

In Equation (3.1), now that the measurements have been synchronized, it is necessary to know
∆x and ∆y to estimate the Jacobian. These parameters need to be well identified, otherwise
the true terms of the Jacobian will be always overestimated or underestimated. A rough
estimate of the spacing between the sensors is naturally given by the distance between the
outer box of the two sensors. However, performing an accurate measurement of the distance
that way can reveal rather inaccurate, and knowing precisely where the sensing part of the
sensor lies, for a given axis, is not truly possible. We propose hereafter a simple method to
estimate these parameters.
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Consider a straight rail and set the system on the rail such that the two sensors are aligned
in the direction of movement along the rail as depicted in Figure 3.4. In that configuration,
one of the sensors follows the other one as the system is translating along the rail. The
measurements made by the two sensors are thus the same with a shift in time. This time shift
has to be converted in a distance. One can proceed as follows. Every 4 seconds, the platform
is moved 1 cm (or less)1 forward until the end of the rails is reached. By identification of the
sensors output records, it is thus easy to eliminate the time and get the profile of the field as
measured by each sensor along the rail direction. To get better results, some pre-treatments
are performed to eliminate as much noise as possible. We now detail them.

• A zero-phase digital filter [86] is applied to the set of data to lower the level of noise by
smoothing them but without introducing detrimental delays.

• A value is associated to each step (one step every centimeter or less) for each sensor.
This step simultaneously converts the time shift between the measurements into a
distance and lowers the level of noise a bit further by averaging the measurements over
a couple of seconds.

Finally, the distance between the sensors can simply be read as the shift between two curves,
as illustrated on Figure 3.5.

3.3 Error analysis of velocity equation

A few simple guidelines are provided in this Section for a proper dimensioning of the system.
They are based on an error analysis of Equation (2.6) where the velocity naturally appears.
The first point to notice is that, the Jacobian of the magnetic field being computed by
a finite difference scheme from a set of magnetometers, the sensors have to be accurate
enough to measure not only the value of the field, but, more importantly, the small variations
between the magnetometers around this value. Denote J0 the smallest value of the gradient
that has to be measured. Note that the value of the field is not monotonous, which means
that the gradient vanishes sometimes. The impact of those points will be further analyzed
in Section 3.4. If two single-axis sensors giving measurements M1 and M2 are distant of ∆x
and have a resolution of Mmin, the smallest measurable gradient is

Mmin

∆x

It yields the following constraint on the precision of the magnetometers

Mmin

∆x
≤ J0

Consider the case of a pedestrian walking in an office building, where the typical order
of magnitude of the gradient is 50 mG/m. One should be able to measure significantly
smaller variation and thus choose a J0 not greater than 10 mG/m. Then, depending on the

1The value of the step has to be known, but can possibly vary from one step to another. The smaller and
the more accurate the step is, the more precision on the spacing one obtains.
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Figure 3.5: A board of two magnetometers is moved along the direction of alignment by small
increments (here of 1 cm). This permits to construct two “magnetic maps” from the data of
the two sensors. The distance between the sensors is the space-shift in their measurements.
Results are reported for 2 sensing axes of the sensors.
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resolution of the sensors available (e.g. 1 mG), a lower bound to the distance between the
magnetometers is obtained.

∆x ≥ Mmin

J0
(3.2)

∆x ≥ 0.1 m

Inversely, in case of constraints on the size of the system (i.e. δ has to remain small), the
requirement (3.2) bears on the resolution of the sensors.

To evaluate the accuracy of the velocity reconstruction, we now consider an error analysis.
In the considered 1-axis case, Equation (2.6) writes

Ḃ =JBV (3.3)

Taking the logarithm of Equation (3.3) and differentiating it yields the uncertainty equation

∆Ḃ

Ḃ
=

∆JB
JB

+
∆V

V

One obtains, for absolute errors,

∆V =V

(
∆JB
JB

+
∆Ḃ

Ḃ

)
(3.4)

The first term is an error due to the gradient reconstitution while the second term depends
on the estimation of the time derivative of magnetic field. The error ∆JB on JB is essentially
due to the resolution of the magnetometers used for the finite difference scheme, and the
distance ∆x between them

∆JB ≈
2Mmin

∆x

Let us now focus on the second term of Equation (3.4). Given noisy measurements of B
performed at discrete times, a question is to quantify the uncertainty ∆Ḃ of reconstruction of
Ḃ. This is a problem of differentiation of a noisy signal. A possible solution to this question is
brought by [22] under the assumption that B is a variable driven by an underlying continuous
time dynamics fed with noise. Measurements of this continuous variable are performed at
discrete times with additive noise. This is a mathematical problem statement representative
of our case, since the encountered magnetic field is varying, and that the time variations can
be modeled under the discussed form with a noise power that can be tuned to account for
typical envisioned applications.

Applying the result of [22] to a double integrator fed with white noise with spectral density
λc
2 , measured at a sample rate f , with a corrupting white noise of variance λv << λc, the
minimal estimator error variance (obtained by an optimal differentiation filter) is, neglecting
aliasing phenomenon, given by the formula

E2 ≈ λc

4
√

3f
+ 6

(√
3− 1

)
λvf

2 (3.5)
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Proof: According to the [22, corollary 1], one has

E2 =
λc
2iπ

∮
|z|=1

LcLc∗τββ∗︸ ︷︷ ︸
I

+ η
MM∗P22

τββ∗︸ ︷︷ ︸
II

 dz

z
(3.6)

where Lc is solution of a linear polynomial equation involving Pi,j , N , β∗ and D. (M,N)
is the discrete transfer function modeling the dynamic measurement noise. Here, one has
(M,N) = (1, 1). (C,D) is the transfer function of the double integrator driven by the white
noise modeling B. β and the scalar τ are defined by a spectral factorization involving N , D,
M , and Pi,j . These Pi,j are themselves defined with respect to H, the measurement transfer
function, C, and R, the discrete covariance matrix of the dynamics of the continuous variable
the derivative is being estimated. Finally, if q−1 is the backward shift operator, one notes
u∗(q

−1) = u(q). In the integral, z is substitute for q.
The first term (I) of Equation (3.6) accounts for the lag in the tracking of Ḃ by the

optimal differentiator, the second term (II) is related to the measurement noise. Both terms
can be evaluated when η = λv

λc
<< 1, i.e. when the measurement noise is much smaller than

the noise driving the dynamics of B. One has, with δt the sampling rate,

M = N = 1

D = (1− q−1)

P11 =
δt3

6

(
q−1 + 4 + q

)
P22 = δt

(
−q−1 + 2− q

)
τββ∗ =

δt3

6

(
q−1 + 4 + q

)
+ η

(
2− q − q−1

)2 (3.7)

When η << 1, the term (II) is thus

(II) ≈ λv
2iπ

∮
|z|=1

(
δt(−z−1 + 2− z
δt3

6 (z−1 + 4 + z)

)
dz

z
≈ 6

(√
3− 1

) λv
δt2

β, and then L have to be evaluated prior to estimate the term (I) in Equation (3.6). β
is the result of a spectral factorization. Yet, closed-form expressions exist for second-order
spectral factors [88]. In particular, [23, (3.7)] provides the expression in our particular case
of interest. When η << 1, one obtains

β(q) = 1 +
1

2
√

3
· q

Evaluating (3.7) at q = 1 yields

τ =
2 +
√

3

6
δt3

One can thus form the polynomial equation satisfied by L

δt2

2
q(1 + q−1)− τ

(
1 +

1

2 +
√

3
q

)
Q0 = q

(
1− q−1

)
(L0 + L1q)
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Evaluating this polynomial at q = 1 yields

Q0 =
3 +
√

3(
2 +
√

3
)
δt

By identifying the coefficients of the two polynomials, one gets

L = L0 =
δt2

2
√

3

The term (I) of Equation (3.6) can now be computed, still under the assumption that η << 1

(I) ≈ 3λcL
2
0

iπδt3

∮
|z|=1

dz

z2 + 4z + 1
≈ λcδt

4
√

3

Finally,

E2 ≈ λcδt

4
√

3
+ 6

(√
3− 1

) λv
δt2

, η << 1 (3.8)

Error estimate Gathering Equation (3.3), Equation (3.5) and Equation (3.8), one finally
obtains the error estimate.

∆V ≈ V

(
2Mmin

JB∆x
+

1

Ḃ

√
λc

4
√

3f
+ 6

(√
3− 1

)
λvf2

)
(3.9)

This formula will be exploited in Section 3.5 on a particular case of application.

3.4 Impact of the time-discretization

In this section, we wish to stress the impact of evaluating the gradient of the magnetic
field through a finite difference scheme. As will appear, this approximation plays a
relatively involved role as singularities appear. Fortunately, this possibly malicious effect
is circumvented by another source of approximation which is the time sampling. As a result
of the cancellation of these effects, we formulate a rule of thumb for selecting the distance
between sensors: the distance between two sensors should be chosen such that, at all times,
at most one extremum of the sensed field can be located in between the sensors.

To illustrate this rule of thumb, we consider again a simple 1-dimensional case and
establish an error estimate for the time sampled evaluation of an integral that equals the
theoretical value of the displacement. Depending on the choice of the relative distance
between the sensors, time sampling provides either a converging estimate or a diverging
one. This problem is as follows.

The gradients of the magnetic field are measured thanks to a set of magnetometers by
a finite difference scheme as the one proposed in Equation (3.1). To ease the analysis, it is
assumed that the rigid body is moving (along a single axis) with a constant velocity of, e.g.
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1 m/s. The position at T=1 s can be computed by Equation (2.6). which yields, after an
integration

x(1)− x(0) =

∫ 1

0

d
dt (B(x(t)))

∇B(x(t))
dt (3.10)

where x(0) = 0 is the initial condition. In practical applications, the gradient ∇B(x) is
(approximately) evaluated using two magnetometers. Those sensors are assumed to be ideal
and flawless. We note ∆x > 0 the distance between the two sensors.

Since we chose a unit velocity, at any given time t, the first sensor measures
B
(
x(t) + ∆x

2

)
= f

(
t+ ∆x

2

)
and the second one B

(
x(t)− ∆x

2

)
= f

(
t− ∆x

2

)
as pictured

in Figure 3.6.
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Figure 3.6: The different points of interest around the extremum.

With such a set-up, Equation (3.10) can be approximated in several ways (discretization
schemes) parametrized by µ ∈ [0; 1]∫ 1

0
fµ(t)dt = ∆x

∫ 1

0

ḟ(t+ µ∆x/2)

f(t+ ∆x/2)− f(t−∆x/2)
dt (3.11)

The parameter µ ∈ [0; 1] is used to express how the numerical scheme is centered. Negative
values of µ could be considered as well by symmetry, but do not bring anything to the
discussion. We are now interested in the integral (3.11) and we wish to determine conditions
under which it is a good approximation of (3.10). In Equation (3.11), the denominator can
vanish due to the presence of an extremum of f , which is assumed to be a smooth function
R→ R. This singularity is first studied in terms of singularity in the function fµ.
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3.4.1 Order of the singularity created by the spatial discretization

When the magnetic field has a local extremum, the denominator of fµ can vanish near the
extremum. If ∆x is small enough to have at most one extremum in any interval of length
δ, it is always the case. Denote t0 this extremum (of f) and ts the point (singularity) where
the denominator D of fµ vanishes, i.e. where fµ is singular. One has t0 ∈

[
ts − ∆x

2 ; ts + ∆x
2

]
.

We parametrize under the form

t0 = ts + ε
∆x

2
, with ε ∈ [−1; 1].

Now expand the denominator D of fµ near the singularity

D(t) =f(t+
∆x

2
)− f(t− ∆x

2
)

=D(ts)︸ ︷︷ ︸
=0

+(t− ts)
(
∂D

∂t

)
t=ts

+O
(
(t− ts)2

)
=(t− ts)

(
ḟ(ts +

∆x

2
)− ḟ(ts −

∆x

2
)

)
+O

(
(t− ts)2

)

This gives

fµ(t) =
∆xḟ(t+ µ∆x/2)

(t− ts)
(
ḟ(ts + ∆x/2)− ḟ(ts −∆x/2)

)
+O ((t− ts)2)

(3.12)

From Equation (3.12), one has to distinguish several cases to determine the order of the
singularity

• Case A: If µ = ε, i.e. ḟ(ts + µ∆x/2) = 0, then a further expansion of the numerator
yields

fµ(t) =
∆xf̈(ts + µ∆x/2) +O (t− ts)

ḟ(ts + ∆x/2)− ḟ(ts −∆x/2) +O (t− ts)

A.1 If there is no other extremum over the interval [ts − ∆x/2; ts + ∆x/2], then the
first term of the denominator ḟ(ts + ∆x/2) − ḟ(ts −∆x/2) 6= 0, and fµ has a (finite)
limit in ts. The function fµ is thus integrable over [0; 1].

A.2 However, if there is one or more other extrema over [ts −∆x/2; ts + ∆x/2], then
the first term of the denominator ḟ(ts + ∆x/2)− ḟ(ts −∆x/2) can vanish. Under this
assumption, fµ presents a singularity at least of order 1 in ts.

• Case B: If µ 6= ε, i.e. ḟ(ts + µ∆x/2) 6= 0, then, according to Equation (3.12), the
function fµ presents a singularity at least of order 1 in ts.

B.1 If there is no other extremum over the interval [ts − ∆x/2; ts + ∆x/2], then the
first term of the denominator ḟ(ts + ∆x/2)− ḟ(ts −∆x/2) 6= 0 and the singularity of
fµ is exactly of order 1.
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3.4. IMPACT OF THE TIME-DISCRETIZATION

B.2 If there are one or more other extrema over the interval, then the denominator can
vanish. The singularity is then of order higher than one.

In practice, if the spacing between the sensors is small enough with respect to the
variations of the magnetic field, there is at most one extremum over every interval of length
∆x. Thus, case B.1 is the most common, and case A.1 may exceptionally arise when the
gradient estimated by the finite different scheme and the temporal derivative of the magnetic
field vanish at the same point (just as if a punctual magnetic gradiometer was available).
This is hardly the case.

To move on to the evaluation of the integral of fµ, we assume that case B.1 holds and
note

f?µ(t) = (t− ts) fµ(t)

where f?µ is smooth at ts (and smooth over [0; 1]).

3.4.2 Evaluation of the integral through Euler-MacLaurin formula

In absence of singularity

In practice, the integral (3.11) is evaluated from sampled data. For smooth integrands,
sampling provides accurate solutions, provided that the sampling is thin enough. The error is
evaluated using the Euler-MacLaurin formula (3.13). According to [36, 37], if fn−1

µ ∈ C0[0; 1]
and fnµ is integrable over [0; 1], and in absence of singularity, the integral giving the position
writes

I1 =

∫ 1

0
fµ(t)dt = Q1 −M1 + E1 (3.13)

where

Q1 =
1

m

m−1∑
j=0

fµ

(
j + tν
m

)

M1 =

n∑
j=1

B̄j (tν)

j!

f
(j−1)
µ (1)− f (j−1)

µ (0)

mj

E1 =
1

mn

∫ 1

0

f
(n)
µ (t)B̄n(tν −mt)

n!
dt

where B̄i, i ∈ N are the periodic Bernoulli functions2. The sum (3.13) gives an
exact evaluation of I1 in terms of the sum of samples of the integrand over the grid

2We take the same notations as in [1, 36]. For all i ∈ N, the Bernoulli polynomials of degree j are defined
via a generating function as

text

et − 1
=

∞∑
i=0

Bj(x)
ti

i!

for |t| ≤ 2π. For any i ∈ N, the corresponding periodic Bernoulli function is defined by

B̄i(x) =Bi(x) , for 0 ≤ x < 1 , B̄i(x+ 1) = B̄i(x) , ∀x ∈ R

It is a function of period 1 taking the same values as the corresponding Bernoulli polynomial over [0, 1).
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[
tν
m

1+tν
m . . . 1 + −1+tν

m

]
(m > 0) and residuals. The parameter tν which defines the

sampling grid is, without loss of generality, written as

tν =
ν + 1

2
with − 1 ≤ ν ≤ 1

The term Q1 corresponds to the classical evaluation of the integral from the sampled signal.
M1 is a correcting term taking into account the values at the boundaries. E1 is the residual
error. We now investigate further the two errors terms M1 and E1. When the function fµ is
smooth, one can choose an arbitrary integer n0 ≤ n to evaluate the error terms. One obtains

M1 =

n0∑
j=1

B̄ (tν)

j!

f
(j−1)
µ (1)− f (j−1)

µ (0)

mj
=

n0∑
j=1

O

(
1

mj

)
= O

(
1

m

)
On the other hand, the residual error term writes,

|E1| =
1

mn0

∣∣∣∣∣
∫ 1

0

f
(n0)
µ (t)B̄n0(tν −mt)

n!
dt

∣∣∣∣∣ ≤ 1

mn0

∫ 1

0

∣∣∣∣∣f (n0)
µ (t)

n0!

∣∣∣∣∣ dt max
t∈[0;1]

(∣∣B̄n0(tν −mt)
∣∣)

since B̄ is continuous and f (n0) integrable. This gives

E1 =O

(
1

mn0

)
Gathering these estimates of M1 and E1, we deduce that

I1 =Q1 +O

(
1

m

)
The error made when evaluating the integral I1 from the samples is of the same order as

the sampling interval.

With a first order singularity

As we have shown in Section 3.4.1, the integrand fµ has, in many cases of practical interest,
a singularity of order 1. In the presence of a first order singularity in ts, according to [36, 37]
that both refer to [73], the Cauchy principal value integral can also be approximated3 in a
similar way, while the standard integral

∫ 1
0 fµ(t)dt is ill-defined. In this case, the following

relation holds, [36, 37] giving an estimate of I2, the principal value of I1

I2 = −
∫ 1

0
fµ(t)dt = Q2 − S2 −M2 + E2

3Consider h a continuous function over [0; 1] and s ∈ [0; 1]. The following limit exists

Ic = lim
ε→0

∫ s−ε

0

h(x)

x− sds+

∫ 1

s+ε

h(x)

x− sds

It is the principal value. We note it

Ic = −
∫ 1

0

h(x)

x− sds
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Figure 3.7: Sampling

where

Q2 =
1

m

m−1∑
j=0

fµ

(
j + tv
m

)
S2 =

π

tan (π(tν −mt))
f?µ(ts)

M2 =

n∑
j=1

B̄j(tν)

j!

1

mj

(
f j−1
µ (1)− f j−1

µ (0)
)

E2 =
1

mn

∫ 1

0

dn

dyn
(fµ(y)− πfµ(ts)(y − ts)cot(π(y − ts)))

B̄n (tν −my)

n!
dy

where B̄i is again the periodic Bernoulli function of degree i. tν is a parameter accounting
for the centering of the sampling grid

[
tν
m

1+tν
m . . . 1 + −1+tν

m

]
(m > 0). As in the case of

a smooth integrand previously addressed, Q2 corresponds to the classical computation of the
integral from sampled measurements. S2 is a term added to account for the singularity. M2

accounts for the boundary values, and E2 is the residual error. To evaluate the error terms
M2 and Q2, we proceed as earlier. Since f?µ is smooth, M2 is evaluated using an arbitrary
integer n0 ≤ n.

M2 =

n0∑
j=1

B̄ (tν)

j!

f
(j−1)
µ (1)− f (j−1)

µ (0)

mj
=

n0∑
j=1

O

(
1

mj

)
= O

(
1

m

)
(3.14)

Evaluating E2 is a bit more involved. In details

E2 =
1

mn

∫ 1

0

dn

dyn

(
f?µ(y)

y − ts
− πf?µ(ts)cot(π(y − ts))

)
B̄n (tν −my)

n!
dy = O

(
1

mn

)
(3.15)
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Proof: According to [1, §4.3.70,p.75]

cot(π(y − ts)) =
1

π(y − ts)
− 1

π

∞∑
j=1

(2π)2j |B2j |
(2j)!

(y − ts)2j−1

which yields

E2 =
1

mn

∫ 1

0

dn

dyn

 f?µ(y)

y − ts
−
f?µ(ts)

y − ts
+

∞∑
j=1

(2π)2j |B2j |
(2j)!

(y − ts)2j−1

 B̄n (tν −my)

n!
dy

Again according to [1, §23.1.15,p.805], the following inequality holds

|B2j | ≤
2(2j)!

(2π)2j

1

1− 21−2j

(2π)2j |B2j |
(2j)!

≤ 2

1− 21−2j

The radius of convergence of the series
∑∞

j=1
(2π)2j |B2j |

(2j)! (y− ts)2j−1 is equal or greater than 1.
As y− ts takes value in [0, 1], the function smooth. The only term left under the integral sign
is a continuous function over [0, 1]. For any n, it can be bounded above by its maximum on
the interval independently of m, which leads to Equation (3.15).

Equation (3.14) and Equation (3.15) show that the two error termsM2 et E2 vanish when
the sampling interval gets null.

Finally, we wish to take a look at the term S2 stemming from the singularity. In ts,

S2(ts) =
π

tan (π(tν −mts))

∆xḟ
(
ts + µ∆x

2

)
(
∂D
∂t

)
t=ts

+ o(1)

However ts+µ∆x/2 is close to the extremum (which is in t0 = ts+ε∆x/2). The numerator
can thus be expanded near the singularity

ḟ

(
ts +

µ∆x

2

)
=0 +

[(
ts +

µ∆x

2

)
−
(
ts +

ε∆x

2

)]
f̈

(
ts +

ε∆x

2

)
+ o (∆x)

=(µ− ε)∆x

2
f̈

(
ts +

ε∆x

2

)
+ o (∆x)

And the expansion of the denominator around the singularity yields(
∂D

∂t

)
t=ts

=ḟ

(
ts +

∆x

2

)
− ḟ

(
ts −

∆x

2

)
ḟ

(
ts +

∆x

2

)
=0 + (1− ε)∆x

2
f̈

(
ts +

ε∆x

2

)
+

1

2

(
(1− ε)∆x

2

)2 ...
f

(
ts +

ε∆x

2

)
+ o

(
∆x2

)
ḟ

(
ts −

∆x

2

)
=0− (1 + ε)

∆x

2
f̈

(
ts +

ε∆x

2

)
+

1

2

(
(−1− ε)∆x

2

)2 ...
f

(
ts +

ε∆x

2

)
+ o(∆x2)(

∂D

∂t

)
t=ts

=∆xf̈

(
ts +

ε∆x

2

)
+ o(∆x2)
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Finally,

S2(ts) =
π · cot (π(tν −mts))

2

(µ− ε)∆x2f̈
(
ts + ε∆x

2

)
+ o

(
(µ− ε)∆x2

)
∆xf̈

(
ts + ε∆x

2

)
+O(∆x2)

=
π · cot (π(tν −mts))

2
·
(
(µ− ε)∆x+O(∆x2)

)
The error term S2 due to the singularity is thus the product of a term proportional to

the spacing ∆x between two sensors4 by a term which depends on the sampling grid. The
term cot (π(tν −mts)) is indeed a comparison between the centering of the grid parametrized
by tν and the singularity. It evaluates the distance between the singularity and the closest
point of the sampling grid. The function is π-periodical. So evaluating cot (π(tν −mts)) is
equivalent to evaluate all cot (π(j + tν −mts)) at once. Moreover cot (π(j + tν −mts)) gets
infinitely large when ts gets close to any point j+tν

m of the sampling grid. Interestingly, taking
a thiner sampling grid has no reason to improve the result. However, if the sampling grid is
perfectly centered around the singularity, i.e. tν −mts ∈ N, the error is in O

(
1
m

)
and thus

tends toward 0 with the sampling interval.
Gathering the estimates of M2, E2 and S2 above, we obtain

I2 = Q2 +O

(
1

m

)
+O (∆x)

3.4.3 Importance of the Cauchy principal value integral

We consider further the case B.1 with a first-order singularity. It is assumed that the distance
between the two sensors is such that there is at most one extremum of the magnetic field
in any interval of length ∆x. For sake of easiness, we consider that here there is only one
extremum of f over [−1; 1]. We now verify on an example, that the Cauchy principal value
corresponds indeed to the motion of the rigid body.

Consider the function

f(t) = t4

The reconstructed velocity is given by

fµ(t) = ∆x
4 ·
(
t+ µ∆x

2

)3

(
t+ ∆x

2

)4 − (t− ∆x
2

)4 =

(
t+ µ∆x

2

)3

t
(
t2 + ∆x2

4

)
which has a single singularity on [-1;1]. It is a first order singularity, we are thus, as desired,
in the case B.1.

One can evaluate by two means the integral of fµ over the path C represented in Figure 3.8,
which consists of half the circle of radius R = 1 centered in (0,0), C1, the two segments [-1;-r]

4To be more accurate, S2 is proportional to the distance between the point where the temporal derivative
is evaluated at the singularity and the point where the temporal derivative vanishes (see Figure 3.6). In
particular, if the gradient could be evaluated at a single point by an ideal gradiometer, and not by a finite
difference scheme, it would yield (µ − ε)∆x = 0. According to the list of the possible singularities provided
above, one would thus switch from case B.1 (first order singularity) to a case A.1 without singularity, which
concords with the fact that the term S2 due to the singularity vanishes.
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Figure 3.8: Poles of fµ and integration path.

and [r;1], and half a circle of radius r centered in (0,0), Cr. The value of interest is when r
gets to 0. One has∮

C
fµ(z)dz = 2iπRes

(
fµ, i

∆x

2

)
=

∫
C1

fµ(z)dz︸ ︷︷ ︸
I1

+−
∫ 1

−1
fµ(z)dz︸ ︷︷ ︸
I2

+ lim
r→0

(∫
Cr

fµ(z)dz

)
︸ ︷︷ ︸

I3

where one wishes to evaluate I2 by computing every other terms.
Starting with I3, the integral can be re-parametrized in the angle θ.

I3 = lim
r→0

∫ 0

+π
fµ

(
reiθ

)
rieiθdθ

The limit and integral signs can be inverted, which yields

I3 =

∫ 0

+π
lim
r→0

∫ 0

+π

(
reiθ + µ∆x

2

)3
rieiθdθ

reiθ
(
r2e2iθ + ∆x2

4

)
 = −µ

3∆xiπ

2
(3.16)

The same kind of re-parametrization can also be done for I1 with R = 1. It gives

I1 =

∫ π

0
fµ

(
eiθ
)
ieiθdθ =

∫ π

0

(
eiθ +

µ∆x

2

)3

· 1

1 + ∆x2e−1iθ

4

· e−2iθidθ
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By taking a Taylor expansion formula for small ∆x, one finally obtains

I1 = −2 +
3µ∆xiπ

2
+O

(
∆x2

)
(3.17)

The last term to evaluate is Res
(
fµ, i

∆x
2

)
. One has∮

C
fµ(z)dz = 2iπRes

(
fµ, i

∆x

2

)

= 2iπ lim
t→i∆x

2


(
t+ µ∆x

2

)3

t
(
t+ i∆x

2

)
 =

π∆x

2

(
3µ2 − 1

)
− iµ∆x

2
µ
(
µ2 − 3

)
(3.18)

Finally, putting all terms (3.16), (3.17) and (3.18) together yields

−
∫ 1

−1
fµ(z)dz =

∮
C
fµ(z)dz − I1 − I3 = 2 +

(
3µ2 − 1

)
π

2
·∆x+O

(
∆x2

)
=

∫ 1

−1
(v(t) = 1) dt+O (∆x)

The real trajectory is thus reconstructed with an error of order ∆x. The Euler-MacLaurin
discretization scheme bypasses the singularity and provides an estimate of the traveled
distance up to order 1 in ∆x.

Conclusion

The position of a rigid body moving along a single axis can be evaluated thanks to the
variations of the magnetic field by computing the integral (3.10) reproduced below

x(1)− x(0) =

∫ 1

0

Ḃ(x(t))

∇B(x(t))
dt (3.10)

Estimating the gradient of the magnetic field can be achieved by a simple finite difference
scheme with two magnetometers such that∫ T

0
fµ(t)dt = ∆x

∫ T

0

ḟ(t+ µ∆x/2)

f(t+ ∆x/2)− f(t−∆x/2)
dt (3.11)

When the magnetic field presents an extremum, this can lead to integrate a function
presenting a singularity.

As explained in Section 3.4.1, if the sampling grid is thin enough with respect to the
variations of the field, there is at most one extremum between the two sensors used to
estimate the gradient. Either the estimation of the gradient and the time-derivative vanish
at the same point (case A.1 ), in which case there is no singularity, or, and it is the mostly
encountered case, the gradient and the time-derivative vanish in separate points. In that
case, the function fµ to be integrated presents a first order singularity near the point where
the gradient vanishes. Then, as has been illustrated by the treated example in Section 3.4.3,
the position integrated from the samples is of the form

Computed position = true position +O

(
1

m

)
+O (∆x)
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When the sampling time goes to zero (or when the speed goes to zero, i.e. one performs
a quasi-static move), there is still an error of order ∆x. In practice, the distance between
the sensors is constrained by the size of the sensors, their mutual influence upon each other,
and their resolution with respect to the magnitude of the gradient to measure. A trade-off
with Equation (3.9), and Equation (3.2) has to be considered.

3.5 One Practical Implementation: the magneto-inertial pe-
dometer

The principles of magneto-inertial navigation have been presented in Chapter 2. Several
important points in the design of a measurement system suitable for implementation of a
MINAV navigation system have been analyzed earlier in this chapter. The system requires
a 3-axis accelerometer and a 3-axis gyrometer to perform the attitude estimation. A set of
spatially distributed magnetometers and a 3-axis gyrometer are necessary to estimate the
velocity in the body frame. The Jacobian matrix of the magnetic field is estimated from the
set of magnetometers. Section 3.2 and Section 3.4 gives insights into choosing the distance
between the sensors of the set. The measurement system now presented complies with all
these recommendations formulated in this chapter:

1. the sensors data have to be time-stamped,

2. the distance between the sensors has to satisfy the “rule of the thumb”: at all times, at
most one extremum of the magnetic field can be located in between the sensors,

3. the inter-sensor distance has to be known accurately,

4. the sample rate, the sensor resolution and the noise level have to be chosen according
to the (conservative) error estimate (3.9).

The MINAV system under consideration (it is detailed further and tested in Chapter 5)
is pictured in Figure 3.9. It incorporates spatially distributed magnetometers and an IMU.

Six HMR2300 three-axis magneto-resistive magnetometers from HoneywellTM are used.
Their range is ± 2 G and they have a 70 µG resolution. The distances between the sensors
are approx. 10 cm one from each other. As discussed in Section 3.2, these positions have
been carefully identified to 9.5 cm and 10.5 cm respectively. This distance is compliant with
the “rule of thumb” formulated in Section 3.4 for typical indoor environments.

Alternately, these magnetometers could be replaced by Philipps KMZ10B magneto-
resistive sensors, or fluxgate sensors like the FLC3-70 from Stefen Mayer Instrument.

The IMU under consideration is a 3DM-GX1 from MicrostrainTM. It includes three
angular-rate gyroscopes, three orthogonal single-axis magnetometers, and three single-axis
accelerometers, along with 16 bit A/D converters and a microcontroller. In the setup, the
IMU is asked to deliver temperature-compensated sensor data at a rate of 76 Hz, its fastest
output rate.

Alternately, this IMU could be replaced by other models such as the Adis16405 from
Analog Devices which is less costly (approx. half prize ≈ 600 USD). This last device provides
only raw data (and not reconciliated measurements), and it belongs to the same class of
sensors in terms of short term bias stability of the gyroscopes (which is a critical factor for
attitude estimation). Performance of the built-in accelerometers are also alike.
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3.5. ONE PRACTICAL IMPLEMENTATION: THE MAGNETO-INERTIAL
PEDOMETER

As is detailled in Chapter 5, the sensors communicate through a datation module
implementing the time-stamping technique of Section 3.1. It relies on a micro-controller
MPC555 from Motorola, which serves as an interface for the sensors.

Conservative estimate of error of the considered MINAV system

The precision achievable with this system can be evaluated according to Equation (3.9).
During the motion, it is assumed that JB ≈ 5.10−2G.m−1, V ≈ 1 m.s−1. This gives Ḃ ≈
5.10−2G.s−1. A signal of this form can be generated by integrating twice B̈ = c, where c
is a white noise with spectral density λc

2π (or noise power λc
2 ) with λc ≈ 5.10−6G.s−3. The

magnetic sensor under consideration has a variance λv ≈ 2.10−9G2 and operates at a frame
rate f = 76 Hz.

E2 =
5.10−6

4 ·
√

3 · 76
+ 6 ·

(√
3− 1

)
2.10−9 · 762 ≈ 10−8 + 5.10−5

The minimal estimation error variance is thus driven by the noise of the sensor (and not
by the lag due to tracking the underlying dynamics governing the sensed variable).

As a result, the error introduced under the form ∆Ḃ
JB

is approximately 0.14 m.s−1. The
second error term, ∆JBV

JB
, accounting for the spatial differentiation and the sensors resolution,

is approximately 0.04 m.s−1. Using Equation (3.9), the total error is 0.18 m.s−1. This is
a conservative estimate which allows to assess that the set-up is relevant for the pedestrian
positioning application.

Figure 3.9: Schematic representation of the sensor module.

51





Chapter 4

Alignment and calibration of MINAV
sensors: problems and methods

Alignement et calibration des capteurs MINAV: pro-
blèmes et méthodes

Jusqu’à présent, les capteurs ont été considérés comme des tri-axes idéaux, alignés
avec le repère de référence Rb. En pratique, et particulièrement avec des capteurs bas-
coûts, les capteurs ne sont pas aussi parfaits. Ce chapitre propose une modélisation de ces
erreurs, en Section 4.1, et des méthodes pratiques pour calibrer les capteurs, i.e. estimer
les paramètres dans le modèle d’erreur. Les erreurs prises en compte sont essentiellement
celles qui sont dues aux non-orthogonalités, aux erreurs d’alignement, aux facteurs d’échelle
et aux biais constants. Les problèmes dus aux dérives à long terme, à la compensation
en température, à la sensibilité aux radiations ou aux défauts de la conversion analogique
numérique ne rentrent pas dans le cadre de ce travail. La calibration d’un capteur seul,
magnétomètre ou accéléromètre, est détaillée en Section 4.2, puis une méthode pour calibrer
un gyroscope au moyen d’un accéléromètre préalablement calibré est exposée en Section 4.3.
La Section 4.4 traite de la calibration et de l’alignement d’un jeu de magnétomètres répartis
dans l’espace. Enfin, l’harmonisation (i.e. l’alignement) des blocs inertiel et magnétique
est étudiée en Section 4.5, avant de proposer une procédure opérationnelle de calibration du
système complet en Section 4.6, qui reprend les différents éléments présentés dans ce chapitre.

The principles of MINAV and rules for design of its applications have been exposed
in Chapter 2 and Chapter 3, respectively. We now get in more details into hardware related
issues. So far, the sensors have been seen as perfect orthonormal triaxis, aligned with the
body reference frame Rb. In practice, sensors (especially low-cost sensors) do not appear
under this idealized form. The sources of errors and their role in the constituted navigation
system are discussed in this chapter. We propose a set of solutions to, sequentially, calibrate
them. The problem treated are essentially related to non-orthogonalities, misalignments, scale
factors, and constant biases. The problem of long term drift, temperature compensation [35],
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sensitivity to radiations, defects of analog to digital conversion are out of the scope of this
work.

4.1 Errors model for the 3-axis sensors under consideration

Consider a 3-axis sensor. Its sampled measurements are denoted yi (3 × 1 vector), where i
stands for the sampling index, whereas the actual value of the sensed field is denoted Yi (3×1
vector). These measurements are collected in y = (yi)i=1,...N , where N is the total number
of samples.

To improve the accuracy of raw sensor data y, especially when dealing with low-cost
sensors, mathematical models must be built to take into account the various sources of
errors [95]. Some, such as scale-factors, misalignment and the resulting cross-coupling of
axes, apply to all kinds of sensors (and in particular to gyroscopes, accelerometers and
magnetometers which are used in the presented MINAV system) while some others only
apply to a particular class of sensors.

In the case of magnetometers which is of particular interest here, there exist additional
specific sources of errors, mainly hard and soft iron errors (see [48, 94]). Hard iron errors
are induced by permanent undesired fields. They are generated by ferromagnetic materials
attached to the magnetometer frame (typically the structure or the equipment installed near
the magnetometer, or even non-varying current in close-by wires). They result in a bias. Soft
iron errors are induced by materials that generate magnetic fields in response to externally
applied magnetic fields. The model presented in this chapter takes only into account the
proportionality of this error to the applied external field. The constant of proportionality is
referred to as the magnetic susceptibility of the material considered. Soft iron errors generally
present a hysteresis which is often small enough to be neglected.

To cover most cases of interest, we consider a bias vector β = [β1 β2 β3]T , scale-
factors represented by a diagonal matrix α, and misalignments terms represented by a skew-
symmetric matrix R, e.g. under the micro-rotation form as used in the CORDIC navigation
algorithm.

Yi = αRyi + β

with R =


1 ψ −θ

−ψ 1 φ

θ −φ 1

 , α =


α1

α2

α3


However, due to the use of low cost sensors, substantial misalignments and errors must
be considered, and, additionally, significant non-orthogonality between axes may arise.
Therefore, no possibly simplifying assumption on the magnitude of the errors is made. All
these factors are gathered into a general matrix A, and a bias vector B. With these notations,
the error model is

Yi = Ayi +B (4.1)

The calibration problem consists in determining A and B. This is generally addressed
using an external reference, e.g. a calibration table. We wish to avoid this cumbersome
equipment, and propose a different approach. By keeping the sensors at the same place, but
along various orientations, at steady state, the magnetic and gravitational fields are constant
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and should produce a measurement vector of constant norm. This constant may be chosen
equal to 1 (for magnetometers) without any loss of generality1. The calibration technique
that we propose all exploit this property.

4.2 Individual 3-axis sensor calibration

4.2.1 Background on table-free calibration methods

In classic inertial navigation, there exist various methods for three-axis sensors calibration.
Most of them have an important drawback in common. They require expansive tools to
acquire the data and compare them against a fixed reference, and, quite often, a high degree
of expertise to process the data. Usually (see e.g. [25]), IMUs calibration is achieved using
a well-instrumented mechanical platform (called calibration table) whose varying orientation
is precisely measured. The platform is rotated to various precisely controlled orientations
which serve as comparisons against the orientations determined from the IMU sensors.
The rotational velocities are accurately controlled as well. Magnetometers calibration is
usually performed using a similar approach in magnetically shielded facilities to provide a
known uniform field (see e.g. [94]). Similarly, measurements are then performed with precise
knowledge of sensors orientation.

The recent development of micro-electro mechanical systems (MEMS) and other low-cost
sensors has led to a paradox. Due to their relatively low quality, these low-cost sensors
are in great need of a calibration procedure (much more than higher-end sensors), but the
cost of the traditional calibration procedures may exceed by several orders of magnitude
the cost of developing and constructing the sensors themselves. Moreover, as the cost of
the sensors are decreasing, their use is spreading. This yields a great interest in developing
new “simple but effective” calibration procedures that do not require any high degree of
expertise nor any expensive hardware to be put into practice. Lately, a new paradigm for
such sensors calibration has emerged. Some procedures and algorithm have been proposed
(see [13, 44, 100]) and a few for magnetometers calibration (see [45, 48, 92, 108]). They all rely
on the fact that the force field under consideration (the gravitational field for accelerometers
and the Earth magnetic field for magnetometers) corresponds to a sensed vector having, in
theory, a constant and known norm. The strategy is to identify and remove the measurement
errors. No specific calibration hardware is required.

The measurement errors are represented by the constant coefficients of the vector affine
transformation (4.1). The calibration problem is recast into the determination of an inverse
affine transformations maximizing a performance index. This index involves the norm of the
reconstructed data and a comparison against its theoretical (scalar) constant value.

This method requiring a constant force field cannot be applied to the gyrometer
calibration. Without using any expensive calibration table, the only constant rotation rate
is the rotation of the Earth, which is below the precision of the class of sensors under
consideration. Another method is thus proposed. It simultaneously calibrates the gyrometer

1The norm of the gravity field can be obtained from dependable look-up tables [9]. Outdoor, the norm of
the Earth magnetic field can also be found in tables [42]. But as for the norm of the magnetic field in buildings,
there is no such table. However, the norm of the magnetic field does not play any roll in a magneto-inertial
system: the entire dynamics of the magnetic field as in Equation (2.5) is proportional to that norm. One can
thus get rid off it and take the norm equal to one without impacting the system.
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and performs the alignment with an already calibrated magnetometer or accelerometer by
using the dynamics of the field seen from the sensors (rotations).

4.2.2 Classical two-step algorithm for magnetometers and accelerometers
calibration

Here, we briefly recall the two-step calibration algorithm originally proposed in [45, 48]. As
the norm of the sensed field is assumed to be constant, ‖Yi‖2 = 1, for all i = 1, ..., N , the
sensed field vectors yi should all be located on the unit sphere. Due to errors, this is not
the case, as already discussed. It is desired to find A and B in Equation (4.1) such that the
values Ayi +B are as close as possible to this sphere. Equivalently, one can seek for a matrix
M and a bias vector N such that the values M (yi −N) are as close as possible to the same
sphere. In details, P and Q have to yield a fair approximation of ‖P (yi −Q)‖2 = 1 for
every sample i = 1, ..., N . To this end, P and Q are defined as the minimizers of the following
cost function (4.2)

g (P,Q, y) =

N∑
i=1

(
‖P (yi −Q)‖2 − 1

)2
(4.2)

Once expanded, it becomes

g (P,Q, y) =

N∑
i=1

(
yTi P

TPyi − 2QTP TPyi + (QTP TPQ− 1)
)2

Here, P is sought after under the form of an upper triangular matrix, implicitly leaving out
any rotation matrix which leaves the cost g invariant. The parameters to be determined
through the minimization procedure are the components of P and Q, i.e. 9 parameters. The
cost function (4.2) is quartic in these parameters. Yet, as proposed in [45, 48], a two-step
estimation using a least squares method can be performed. Note

P =


p11 p12 p13

0 p22 p23

0 0 p33

 , Q =


q1

q2

q3


First, the following change of variables is performed


a =p2

11

b =p2
12 + p2

22

c =p2
13 + p2

23 + p2
33

d =2p11p12

e =2p12p13 + 2p22p23

f =2p11p13

g =− 2 (aq1 + dq2 + fq3)

h =− 2 (dq1 + bq2 + eq3)

i =− 2 (fq1 + eq2 + cq3)

j = aq2
1 + bq2

2 + cq2
3 + 2dq1q2 + 2eq2q3 + 2fq1q3 − 1

These last 10 variables are normalized to 9 variables by considering the 9-dimensional
vector of ratios r = (a/b, c/b, d/b, e/b, f/b, g/b, h/b, i/b, j/b). Then, a new optimization
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problem (4.3) is formulated.

min
r

N∑
i=1

∥∥∥∥y2
i1

y2
i2

· a
b

+
y2
i3

y2
i2

· c
b

+
yi1 · yi2
y2
i2

· d
b

+
yi2 · yi3
y2
i2

· e
b

+
yi3 · yi1
y2
i2

· f
b

+
yi1
y2
i2

· g
b

+
yi2
y2
i2

· h
b

+
yi3
y2
i2

· i
b

+
1

y2
i2

· j
b
− 1

∥∥∥∥2
(4.3)

This new (quadratic) problem is solved by a least-squares method. Finally, inverse algebraic
transformations permit to recover the 9 coefficients of A and B from the 9 ratios. The
optimization problem (4.3) is not equivalent to the minimization of the original cost function
g in (4.2). The reason why is that, as appeared when introducing the vector or ratios r, the
(not unique) normalization of the variables yielding the reduction to a classic least-squares
problem, has introduced a non uniform weighting of the various measurements (see (4.3)). In
theory, it would have been possible to consider any of the 9 variables a, b, ..., j to normalize
the problem. Similarly, this would have led to nonequivalent optimization problems though.
The original optimization problem with cost function (4.2) has thus been “distorted”. In some
extreme cases this can be a problem.

Figure 4.1: Comparison of the norm of raw and calibrated data.

Figure 4.1 presents results obtained with this algorithm. The statistics of both raw and
calibrated data sets of a magnetometer HMR2300 and of the magnetometer of the IMU are
presented reported in Table 4.1 along with the time elapsed during the computation of the
algorithm on a Intel Core 2 Duo 2.6GHz.
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IMU Magnetometer Raw data Calibrated data

Mean 5.099327e− 1 5.139927e− 1

Deviation 1.077045e− 2 1.223969e− 3

Samples 120000 120000

Time - approx.1.2 s

HMR2300 Raw data Calibrated data

Mean 5.090592e− 1 5.139977e− 1

Deviation 9.846039e− 3 6.878812e− 4

Samples 120000 120000

Time - approx.1.2 s

Table 4.1: Raw data and calibrated data (through the 2-step algorithm) for two magnetome-
ters.

4.2.3 An iterative algorithm for magnetometers and accelerometers cali-
bration

We now develop an alternative technique. Consider a step in the iterations, say the kth.
Following the idea of [45, 48] presented earlier, we wish to account for the fact that the
sensed field is constant. Consider the N data yi,k, i = 1, ..., N , which are initialized at step
k = 0 with the measurements yi. First, we formulate the following cost to be minimized

h(A,B, k) =
N∑
i=1

∥∥∥∥(Ayi,k +B)−
yi,k
‖yi,k‖

∥∥∥∥2

(4.4)

This function is quadratic with respect to the coefficients of A and B. In view of algorithmic
minimization, this is an advantage over the cost presented in [45] which is quartic with respect
to these same variables. We note the uniquely defined solution

(Ak+1, Bk+1) = argmin
A,B

h(A,B, k)

which can be obtained by a classic least-squares approach. Then, we use these matrices to
update the data as follows

yi,k+1 = Ak+1yi,k +Bk+1

After k such iterations, a matrix Ãk and a vector B̃k are obtained recursively by{
Ãk =AkÃk−1

B̃k =AkB̃k−1 +Bk

They relate yi,k to the raw measurements yi. In details,

yi,k = Ãkyi + B̃k

We can now summarize the method
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Algorithm 1 (Proposed algorithm):

1. Initialize k = 0, yi,0 = yi for all i = 1, ..., N

2. Compute (Ak+1, Bk+1) = argminA,B h(A,B, k) by a least-squares method (where h is
given in Equation (4.4))

3. Update the data yi,k+1 = Ak+1yi,k +Bk+1

4. Increase k by 1 and return to step 2

A limited number K of iterations is usually considered. Then the data yi,K , i = 1, ..., N are
the "calibrated data".

Figure 4.2: Calibrated data matching the sphere.

In words, this algorithm solves a sequence of least square problems in which the input data
are iteratively calibrated using the successively determined calibration matrices and vectors.
Figure 4.2 shows calibrated results in 3-dimension, obtained with the presented algorithm.
We now prove two properties of the proposed algorithm 1. For sake of conciseness, we note
yk = (yi,k)i=1,...,N .

Proposition 4 (calibration improvement): The data generated by the Algorithm 1 satisfy
the following decrease property:

f(yk+1) ≤ f(yk)

where

f(yk) =

N∑
i=1

(1− ‖yi,k‖)2

Further, (f(yk))k∈N decreases and is positive, so it converges to a limit ` ≥ 0.
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This property shows that, in the sense detailed by the function f , the data are better and
better calibrated as the iterations are pursued.

Proof: By construction, Ak and Bk are such that h(Ak, Bk, k) is minimal. In particular,
one can compare them against the identity matrix and the zero vector

h(Ak+1, Bk+1, k) ≤ h(I3, 0, k)

Replacing Ak+1yi,k +Bk+1 by yi,k+1 yields

N∑
i=1

∥∥∥∥yi,k − yi,k
‖yi,k‖

∥∥∥∥2

≥
N∑
i=1

∥∥∥∥yi,k+1 −
yi,k
‖yi,k‖

∥∥∥∥2

(4.5)

or

N∑
i=1

(
yi,k ·

(
1− 1

‖yi,k‖

))2

≥
N∑
i=1

∥∥∥∥yi,k+1 −
yi,k
‖yi,k‖

∥∥∥∥2

which gives, by triangle inequality on the right term,

N∑
i=1

(1− ‖yi,k‖)2 ≥
N∑
i=1

(
‖yi,k+1‖ −

∥∥∥∥ yi,k
‖yi,k‖

∥∥∥∥)2

(4.6)

Finally,

f(yk) ≥ f(yk+1)

which concludes the proof.
Proposition 5 (alignment): The data generated by Algorithm 1 satisfy the following

alignment property

lim
k→+∞

(
yi,k+1

‖yi,k+1‖
−

yi,k
‖yi,k‖

)
= 0

This property shows that, as the iterations are pursued, the calibrated data make little
progress in orientation.

Proof: First, we perform a preliminary decomposition of the objective function h

h(k) ,h(Ak+1, Bk+1, k)

=

N∑
i=1

(
‖yi,k+1‖2 + 1− 2

〈yi,k+1|yi,k〉
‖yi,k‖

)
which can also be written under the form

h(k) = f(yk+1) +

N∑
i=1

(
2 ‖yi,k+1‖ − 2

〈yi,k+1|yi,k〉
‖yi,k‖

)

= f(yk+1) + 2

N∑
i=1

‖yi,k+1‖
(

1−
〈

yi,k+1

‖yi,k+1‖
|
yi,k
‖yi,k‖

〉)
(4.7)
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Consider again Equation (4.5) and Equation (4.6), one obtains

f(yk) ≥ h(k) ≥ f(yk+1)

From Proposition 4, we know that f(yk) converges to a limit ` as k → +∞. Therefore,
from the preceding inequalities, we conclude that h(k) converges to the same limit. Then,
from Equation (4.7), we deduce

lim
k→+∞

(
N∑
i=1

‖yi,k+1‖
(

1−
〈

yi,k+1

‖yi,k+1‖
|
yi,k
‖yi,k‖

〉))
= 0

All the terms under the
∑

sign are positive or zero, therefore we conclude that, ∀i = 1, ..., N ,

lim
k→+∞

(
‖yi,k+1‖

(
1−

〈
yi,k+1

‖yi,k+1‖
|
yi,k
‖yi,k‖

〉))
= 0

lim
k→+∞

(
‖yi,k+1‖

〈
yi,k+1

‖yi,k+1‖
|
(

yi,k+1

‖yi,k+1‖
−

yi,k
‖yi,k‖

)〉)
= 0 (4.8)

Now, to conclude, note
ui,k =

yi,k+1

‖yi,k+1‖
−

yi,k
‖yi,k‖

and decompose it under the form

ui,k = (1− αi,k)
yi,k+1

‖yi,k+1‖
− βi,k

y⊥i,k+1∥∥∥y⊥i,k+1

∥∥∥
where y⊥i,k+1 is directly orthogonal to yi,k+1, and with

α2
i,k + β2

i,k = 1

We deduce from Equation (4.8) that

lim
k→+∞

αi,k = 1, lim
k→+∞

βi,k = 0

Finally, this gives

lim
k→+∞

(
ui,k =

yi,k+1

‖yi,k+1‖
−

yi,k
‖yi,k‖

)
= 0

which concludes the proof.
The interested reader can refer to Appendix A for further conclusions on the asymptotic
behavior of the iterative calibration procedure in a particular plane case.

4.3 Calibration of a 3-axis gyrometer with respect to an
accelerometer

Classically (see [26, 54], and the references therein), the attitude of a rigid body (described by
a rotation matrix for instance) can be estimated using a (3-axis) accelerometer and a (3-axis)
gyrometer. This point is of particular importance in aerial robotics (see [55]). The reader can
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report to Appendix F for a discussion on these methods. As detailed in Section 2.2, in MINAV
systems, the attitude is used to project the velocity from the body frame onto the inertial
frame of reference. Integration of the inertial frame velocity provides the trajectory. Since
small angular errors in the attitude estimation give linearly growing errors in the trajectory,
the attitude estimation is also a key task of our system. Calibration and harmonization of
the accelerometers and gyrometers is then of paramount importance.

The accelerometer, which measures (at rest) the Earth gravity field (which is by
assumption of constant norm in a neighborhood of the rigid body), can be calibrated using the
exact same technique as the one presented for magnetometers. Because gravity is a constant
field at the spatial scale of a laboratory, the calibration method consisting in orienting the
sensing device in all possible directions is very easy to apply. Bias and scale factors are then
identified and removed. However, this method is not suitable for gyrometer calibration. The
culprit is that having some precisely controlled rotation rate is very difficult during in-the-
field experiments. This results in a sensed field that does not have a constant norm, which
totally discards the previously presented methods.

The method proposed below uses the relation between the accelerometer measurements
and the rate of turn, as given by the chain rule differentiation. Compared to other methods
(as e.g. [44]), the dynamic is not integrated, and the equation are kept under their differential
expressions. The result of this calibration procedure is that the gyrometer is calibrated and
harmonized with the accelerometer.

Let us define the calibration problem we wish to address.
Problem Statement

Consider a rigid body equipped with a (3-axis) gyrometer and a (3-axis) accelerometer.
The accelerometer is calibrated (in the sense of Section 4.2), i.e. the matrices A and b
in Equation (4.1) have already been identified, but the gyrometer is not. It is desired to
calibrate the gyrometer in the frame of the accelerometer. Let Ω be the vector rotation rates,
Ωacc the components of Ω in the accelerometer frame, Ωgyr the readings of the gyroscope,
Racc the rotation matrix from the inertial frame of reference Ri to the accelerometer frame
of reference Racc. After this calibration, one should be able to read the variable

Ωacc = RaccΩ

In other words, considering that, by default, one has

Ωacc = A0Ωgyr +B0

it is desired to identify A0 and B0.
Proposition 6: Assuming that a properly calibrated accelerometer is available which

delivers the measurements γacc and dγacc
dt in its own frame Racc. The readings satisfy

γacc = Raccg where Racc is the rotation from Ri to Racc, g is the gravity (this is only
true if the accelerometer is rotated with zero velocity, i.e. it is always on the rotation axis).

Then, the following properties hold:

• the readings from the accelerometer and from the gyrometer are related through the
relation

dγacc
dt

= −Ωacc × γacc (4.9)

where Ωacc = RaccΩ
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• the calibration matrix A0 and bias B0 such that

Ωacc = A0Ωgyr +B0 (4.10)

can be estimated from the knowledge of Ωgyr, γacc and dγacc
dt .

This proposition states that the gyrometers can be calibrated in the accelerometer frame
with a procedure which, in fact, does not require any expansive equipment and can be
performed in-the-field by any operator. As will appear, the platform has simply to be rotated
in every direction around the accelerometer.

Proof: By making a cross product by γacc on the right side of Equation (4.9), and
expanding the right-hand triple product according to the triple product expansion formula
(a.k.a. Lagrange formula), one obtains

dγacc
dt
× γacc = ‖γacc‖2 Ωacc −

(
ΩT
accγacc

)
γacc (4.11)

Ωacc can be split into the sum of Ω
‖
acc parallel to γacc, and Ω⊥acc orthogonal to γacc.

Then, Equation (4.11) yields

dγacc
dt
× γacc = ‖γacc‖2 Ω⊥acc = g2Ω⊥acc (4.12)

where g is the norm of the gravity.
This means that, for a given sample, Ω⊥acc can be determined from the knowledge of γacc

and dγacc
dt . In other words, Ω⊥acc is observable from the measurement γacc. According to the

error model of the sensor given in Equation (4.10), this projection can be expressed in terms
of the sought after calibration parameters A0 and B0 as

Ω⊥acc = Pγ (A0Ωgyr +B0) (4.13)

where Pγ is the projector on the plane orthogonal to γacc.
Gathering Equation (4.12) and Equation (4.13) yields Equation (4.14) for a given set of

measurements, say the kth.(
dγacc
dt

)
k
× γacc

‖(γacc)k‖
2︸ ︷︷ ︸

known with the accelerometer

= (Pγ)k︸ ︷︷ ︸
known with the accelerometer

A0 (Ωgyr)k︸ ︷︷ ︸
measured by the gyrometer

+B0

 (4.14)

By introducing the vectors Xk depending only on the gyrometer measurement (Ωgyr)k
and Yk depending only on the accelerometer measurements (γacc)k

Xk =

(Ωgyr)k

1


Yk =

(
dγacc
dt

)
k
× (γacc)k

‖(γacc)k‖
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the equation can be simply rewritten under the linear form (in 0A and B0)

Yk = (Pγ)k [A0 B0]Xk

Gathering a set of data (indexed by index k), the parameters A0 and B0 can then be
computed in a least square sense of the former equality. A0 and B0 are thus defined as the
parameters minimizing the following cost function J

J(Ã, B̃) =
K∑
k=1

∥∥∥Yk − (Pγ)k

[
Ã B̃

]
Xk

∥∥∥2
(4.15)

Algorithm 2: Denote (Ei)i=1..12 a canonical base of M3,4(R) with

E1 =


1 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


0 0 0 0

1 0 0 0

0 0 0 0

 , . . .

and use them to linearly decompose the two terms appearing in the sum (4.14) Denote

X = [xi,j ]i=1..12,j=1.12 and Y = [yi]i=1..12

the following projections on the canonical base (Ei)i=1..12

∀j,
K∑
k=1

(Pγ)kEjXkX
T
k =

12∑
i=1

xi,jEi

K∑
k=1

(Pγ)kYk(Xk)
T =

12∑
i=1

yiEi

Assuming X is invertible 2, the cost function J(Ã, B̃) has a unique minimum in (A0, B0)
defined by

[A0 B0] =


m1 m4 m7 m10

m2 m5 m8 m11

m3 m6 m9 m12

 (4.16)

where (
m1 m2 . . . m12

)T
= X−1Y (4.17)

This algorithm is further studied in Appendix B. It concludes the proof of Proposition 6
and gives an analytical expression (see Equation (4.16) and Equation (4.17)) of the sought
after calibration matrix A0 and bias B0.

2This point is still being investigated, as this assumption seems to always hold in practice.
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4.4 Calibration of a set of 3-axis magnetometers

We now address the problem of calibrating the array of magnetometers necessary to the
implementation of the MINAV technology. The calibration of the sensor array consists in
determining Ap and Bp for each sensor, such that

• each sensor considered separately is well calibrated, i.e. its norm is constant if it is
rotated in a constant field,

• and all the sensors have the same output when they are put at the same location, i.e.
their measurements should have the same norm and the same orientation.

An important issue is to get a data set where, for each sample, all the sensors measure the
same field. This assumption may seem trivial, but in fact it implies two strong constraints
on data acquisition: both sensors have to actually be exposed to the same field at the same
date so that data from both sensors can be compared.

As all the sensors cannot be placed at the exact same location with perfect coincidence,
data have to be acquired at a location where the sensed field is uniform. The impact of the
presence of a gradient is discussed later on in Section E.3.

Secondly, both sensors have to make their measurements at the same dates. However,
it is often not possible when using off-the-shelf digital sensors as discussed in Section 3.1.
There are two ways to get round this difficulty. The first one is to wait for a short period of
time after each measurement point, i.e. to have quasi-static displacements that can be easily
identified in each data set. This allows to pick up at least one sample for each sensor at
each measurement point. Such a procedure has a harmful impact on the duration of the data
acquisition phase. The second way consists in interpolating the measurements. This requires
that sampling dates are precisely known. This is possible using the technique detailed in §3.1.

To perform the calibration, several methods can be envisioned. The presented one extends
the one proposed in [32] for a single 3-axis sensor and presents two advantages: it avoids
having any sensor playing a particular role, and it uses only one single optimization problem
to solve. The iterative calibration is performed simultaneously for the two three-axis sensors.
Consider a step in the iterations, say the kth. We wish to account for the fact that the
sensed field is constant and that it is the same for both sensors. Consider the N data yp,k(i),
i = 1, . . . , N for the pth magnetometer. They are initialized with the measurements at step
k = 0. First, we formulate the cost function to be minimized for sensor p, p = 1, 2.

fp,3(A,B, yk) =
N∑
i=1

∥∥∥∥(Ayp,k(i) +Bp,k(i))−
y1,k(i) + y2,k(i)

‖y1,k(i) + y2,k(i)‖

∥∥∥∥2

As in the method proposed for calibrating a single sensor, in Section 4.2, the cost function
used is quadratic with respect to the coefficients of A and B, yielding easy computation of the
solution of the minimization of fp,3 with respect to these two arguments. For each sample,
the value of the field taken as reference (the same for all magnetometers of the set) is the

normalized average
(

y1,k(i)+y2,k(i)

‖y1,k(i)+y2,k(i)‖

)
. We note the uniquely defined solution

(Ap,k+1, Bp,k+1) = argminA,Bfp,3(A,B, yk)
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Figure 4.3: The X-Components of 9 magnetometers calibrated separately in a place where
the magnetic field is almost uniform. Inconsistencies can be observed.

which is obtained by a classic least-squares solver. Then, we use these matrices to update
the data corresponding to each sensor p as follows

yp,k+1(i) = Ap,k+1yp,k(i) +Bp,k+1, ∀i = 1, . . . , N

Again, after k such iterations, a matrix Ãp,k and a bias vector B̃p,k are obtained recursively
for each sensor through

Ãp,k = Ap,kÃp,k−1

B̃p,k = Ap,kB̃p,k−1 +Bp,k

They relate the calibrated data yp,k(i) to the raw measurements yp(i). Precisely,

yp,k(i) = Ãp,kyp,k(i) + B̃p,k

This method have been applied on a set of eight HoneywellTM HMR2300 magnetometers
and one 3DMG-X1 from MicrostrainTM together and had the full system travel along
an horizontal a-magnetic rail. Prior to this, the magnetometers had all been calibrated
separately. The data collected during this experiment are reported in Figure 4.3. They are
inconsistent although the sensors were separately calibrated. This stresses the need of a joint
calibration. Then, the same experiment was conducted with sensors that were calibrated
using the iterative method above. The results obtained during this second experiment are
reported in Figure 4.4. In this case, the results are consistent.

4.5 Harmonization of inertial and magnetic sensors

Here, the problem we wish to address is to estimate the harmonization matrix (totally or
at least its most impacting terms) between the frame where the velocity is measured or
estimated (the frame of the set of spatially distributed magnetometers) and the one in which
the attitude is known (the IMU frame).

Consider the following systems, each being attached to a coordinate frame:
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Figure 4.4: The X-Component of 9 magnetometers calibrated all together in a place where
the magnetic field is almost uniform. The data are consistent.

• a building considered as the inertial frame of reference Ri (with its horizontal plane
denoted x-y and z pointing upward);

• a pedestrian moving in the building with an attached frame Rped whose x and y-axis
are horizontal and x is pointing forward;

• a subsystem providing an inertial speed expressed in its own coordinate frame Rvel;

• an IMU providing the attitude of its own coordinate frame RIMU with respect to the
inertial frame of reference Ri. The attitude is initialized such that the gravity is on the
vertical axis 3.

Indices ped, vel, IMU and I refer to which frame the corresponding quantity is expressed in.
For instance, Vvel is the speed expressed in Rvel, whereas VIMU is the same speed expressed
in RIMU . Figure 4.5 pictures the introduced coordinate frames and indicates the rotation
matrices between them. The ones of interest are:

• Rplane = Rped→I , rotation matrix from the pedestrian frame to the inertial frame
(unknown)

• RTbody = Rped→vel, rotation matrix from the pedestrian frame to the velocity sensor
frame (unknown)

• Rharmo = Rvel→IMU , rotation matrix from the velocity sensor frame to the IMU frame
(unknown, to be identified)

• Ratt = RIMU→I , rotation matrix from the IMU frame to the inertial frame (measured
by the IMU).

3 The yaw angle is left free to allow a later absolute alignment (e.g. using a map if one is available).
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Pedestrian
Rped

Rbody
(unknown)

Vvel
( d)

Velocity sensor
Rvel

Rped(unknown)(measured)

Rvel

Rharmo

Inertial measurement Unit

(unknown)

Inertial measurement Unit
RIMU

Rplane
(unknown)

••Ratt
(measured)

Building (inertial)
RI

Figure 4.5: Diagram representing the various coordinate frames and rotation matrices of
interest in the harmonization problem. The speed Vvel is measured in the velocity frame Rvel.
The rotation matrix RIMU→I = Ratt is measured. The rotation matrix Rharmo is to be
identified.

The following useful relations hold

VI = RattRharmo Vvel︸︷︷︸
speed which is measured

(4.18)

Vvel = RTbodyVped

and

I3 = RattRharmoR
T
bodyR

T
plan

which yields

VI = RplanRbodyVvel (4.19)

The most interesting frame to express the speed in is the inertial frame Ri. Indeed, in
this frame, it is possible to integrate it to obtain the trajectory of the pedestrian in the
building. However, the speed is measured in the velocity frame Rvel. The matrix Rbody is
unknown and is relatively uncertain because, each time the pedestrian uses the navigation
system, it could be put into a slightly different orientation. Finally, Rplane is unknown as
well. Therefore, the easiest way to express the speed in the inertial frame is to determine
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the harmonization matrix Rharmo between the velocity frame and the IMU-frame, and thus
exploit Equation (4.18) and not Equation (4.19). This matrix depends only on the relative
orientations of the two sensor subsystems. The positions and orientations of the subsystems
being constant, Rharmo needs to be identified only once and for all.

The relative position at any current time T , P (T ) − P (0), with respect to an inertial
position P (0) is given through

P (T ) = P (0) +

∫ T

0
RattRharmoVveldt (4.20)

Ideally, the harmonization matrix Rharmo should be close to identity, but errors of a few
degrees cannot be avoided in the actual set-up of the subsystems when off-the-shelf packaged
sensors are used. In the following, we model the impact on trajectory reconstruction when
this matrix is omitted. Then, we show how to compensate for this error.

4.5.1 Identification and correction of trajectory errors due to an harmo-
nization error

Trajectory errors: the shape of the trajectory is altered

For sake of illustration, we consider a particular case where the pedestrian is walking with a
speed of constant norm, and, for simplicity, in the forward direction (i.e. along the x-axis of
Rped). First, we assume that the pedestrian frame, the velocity frame and the IMU frame
are identical, i.e. that Rharmo = Rbody = I3. So, we have

Vped = Vvel = VIMU =


V0

0

0


Further, we assume that the pedestrian is walking in an horizontal plane over the time

interval [0, T ]. The IMU attitude is thus expressed using a single angle α(t)

Ratt(t) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 = R (α(t)) (4.21)

Through Equation (4.20), one gets

P (T ) = P (0) +

∫ T

0
R(α(t)) · VIMU · dt = P (0) + V0

∫ T

0


cos(α)

sin(α)

0

 · dt
Now, assume that the pedestrian has walked along a closed-curve. Then, P (T ) = P (0). From
the previous equality, we deduce that 4∫ T

0
cos(α(t))dt =

∫ T

0
sin(α(t))dt = 0

4One shall note that this last property is true even if the velocity VIMU is not aligned with the x-axis but
belongs to the x− y plane (see Section 4.5.2).
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Now, we introduce an harmonization error, i.e. there is now a rotation Rharmo 6= I3

between the coordinate frame where the speed is measured in (Rvel) and the one where the
attitude is measured in (RIMU ). We split up Rharmo into three successive canonical constant
rotations (roll φ, pitch θ, and yaw ψ in this order from RIMU to Rvel) and note RTharmo

c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1



c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)




1 0 0

0 c(φ) −s(φ)

0 sφ) c(φ)


where c(.) and s(.) stands for cos(.) and sin(.) respectively.

Assume that the velocity frame Rvel has been slightly rotated. The speed VIMU =(
V0 0 0

)T
in the IMU-frame is unchanged, but the speed measured in the velocity frame

Rvel now writes

Vvel =RTharmo


V0

0

0

 = V0


c(θ) · c(ψ)

c(θ) · s(ψ)

−s(θ)

 6= VIMU

If the harmonization error is not taken into account in the trajectory reconstruction, one
obtains

Pr(T )− P (0) =

∫ T

0
Ratt(t)Vvel · dt (4.22)

=V0 ·
∫ T

0


c(α(t)) −s(α(t)) 0

s(α(t)) c(α(t)) 0

0 0 1



c(θ) · c(ψ)

c(θ) · s(ψ)

−s(θ)

 · dt

=


0

0

−T · V0 · sin(θ)


T

6= 0 = P (T )− P (0) (4.23)

where the vector
[
c(θ) · c(ψ) c(θ) · s(ψ) −s(θ)

]T
has been put outside the integral since it

is constant.
According to Equation (4.23), the reconstructed position will then slightly, but constantly,

drift downward (or upward depending on the signs of θ and V0) as illustrated in the simulation
presented in Figure 4.6. In Figure 4.7, the same drift can be observed on experimental data
obtained with one implementation of the MINAV system (presented in details in Chapter 5.
As a consequence, even if closed paths are followed, the estimated trajectory will not go back
to the starting point as it should. Interestingly, one can note that the two other angles have
no impact on Equation (4.23). Only the pitch angle θ alters the shape of the reconstructed
trajectory. The trajectory will simply be rotated if the yaw angle is not zero (as illustrated
in Figure 4.6 where only the pitch angle is corrected). The roll angle does not have any effect
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since the movement is performed along its rotation axis. Note that the error in Equation (4.23)
is proportional to the traveled distance V0 · T . An angle as small as 3 degrees leads to an
error of more than 5% of the traveled distance.
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Figure 4.6: Simulation results - The harmonization angles are given on the right of the
figure. Neglecting the harmonization, even for low pitch angles, can generate important
drifts. Performing the harmonization with only a pitch-angle eliminates the closure error.

Figure 4.7: Experimental results - Many laps (each being about 90 m long) are performed
in the same loop-shaped corridor during about 45 minutes, for a total length of 3 km. The
drift, due to the altitude deviation being projected, is clearly visible.

Proposed harmonization procedure (preliminary version)

We have just explained how even a small pitch angle error could alter the shape of the
trajectory at a macroscopic scale. A first calibration procedure is proposed in this section. It
takes advantage of this property. From the measurements, both the traveled distance V0 · T
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and the reconstructed trajectory neglecting the harmonization matrix (Equation (4.22)) are
easily computable. They lead to the following simple calibration procedure:

1. Walk along any closed-loop trajectory in the horizontal plane with the following
constraints: the speed direction must be kept along the x-axis of the IMU, the velocity
should be constant, and the IMU must be kept horizontal (i.e. its z-axis should be kept
vertical).

2. Compute the naively reconstructed trajectory according to Equation (4.22) recalled
below. Note Pr(T ) the final point.

Pr(T )− P (0) =

∫ T

0
Ratt(t)Vvel · dt (4.22)

3. Identify the pitch angle θ thanks to Equation (4.23).

sin(θ) = ‖Pr(T )− P (0)‖ · −1

V0 · T

This calibration procedure identifies the incriminated angle rather straightforward. Some
of the constraints may seem hard to fulfill. However, most of them will be relaxed in
Section 4.5.2.

4.5.2 Practical calibration results and limitations

The example of Section 4.5.1 shows a particular case where a single angle is responsible for
the non-closing of the reconstructed trajectory. We now present another viewpoint which will
allow us to take some further errors in the trajectory reconstruction into account, and remove
some constraints from the proposed calibration procedure. We assume that the pedestrian
is performing a closed-loop trajectory with the time-varying speed in a constant direction in
its own frame Rped (forward for instance, as in Section 4.5.1). The speed direction is then
constant in the three frames Rped, Rvel, and RIMU (but the speed directions do not have
the same expressions in the three frames).

Again, from Equation (4.20), we have

P (T )− P (0) =

∫ T

0
Ratt(t)RharmoVvel(t)dt

The speed direction being constant in the velocity frame, it can be put outside the integral
sign, allowing to put the constant matrix Rharmo outside the integral sign too. Denote Vvel

‖Vvel‖
the constant speed direction in the velocity frame, and vvel(t) = ‖Vvel(t)‖ its magnitude.
Then, one gets

P (T )− P (0) =

∫ T

t0

vvel(t)Ratt(t)dt︸ ︷︷ ︸
M

Rharmo
Vvel
‖Vvel‖

(4.24)

If the path followed by the pedestrian is a closed-loop trajectory, P (T ) = P (0), which means
that M has not full rank and Rharmo must send Vvel

‖Vvel‖ in the kernel of M . Further, M has
the following property.
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Proposition 7: Consider a plane closed trajectory followed with a constant speed direction
in the Rped frame of reference (without spinning around that direction), starting at time t=0
and ending at time t=T. Denote the speed magnitude

vvel(t) = vIMU (t) = ‖Vvel(t)‖

Then, the 3x3 matrix

M =

∫ T

0
vIMU (t)Ratt(t)dt

has rank 1, and its only non-zero singular value is the traveled distance.
Proof: First assume that the IMU has its x and y axis in the horizontal plane. The

attitude is then a simple rotation around the vertical z axis defined by a single angle α(t) as
already defined in Equation (4.21).

Ratt(t) =


cos(α(t)) − sin(α(t)) 0

sin(α(t)) cos(α(t)) 0

0 0 1

 (4.21)

For any constant speed direction

VIMU

‖VIMU‖
=


vx

vy

0


chosen in the horizontal plane of the IMU-frame, as long as the starting point and the end
point are identical, we get

0 =


∫ T

0
vIMU (t)


c(α) −s(α) 0

s(α) c(α) 0

0 0 1

 dt



vx

vy

0

 (4.25)

where vIMU (t) = ‖VIMU (t)‖. Equation (4.25) gives a linear equation in
(
vx vy

)T
∫ T0 vIMU (t)c(α) −

∫ T
0 vIMU (t)s(α)∫ T

0 vIMU (t)s(α)
∫ T

0 vIMU (t)c(α)


︸ ︷︷ ︸

A

vx
vy

 =

0

0



As (vx, vy) 6= (0, 0), we deduce that A has not full rank. Yet,

det(A)︸ ︷︷ ︸
=0

=

(∫ T

0
vIMU (t)c(α)dt

)2

+

(∫ T

0
vIMU (t)s(α)dt

)2
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which is null if and only if both squared terms are null, i.e.∫ T

0
vIMU (t)c(α)dt = 0 and

∫ T

0
vIMU (t)s(α)dt = 0

Replacing those quantities in Equation (4.25) yields

M =


0 0 0

0 0 0

0 0
∫ T

0 vIMU (t)dt


which shows that M is of rank 1.

The starting frame on the right side of Rα and the arrival frame on the left side of Rα
can be rotated by some orthogonal matrices P and Q, taking into account the fact that the
IMU is not horizontal anymore (P ) and that the coordinate frame of the inertial frame is
arbitrary (Q).

We can get rid off P and Q under the integral sign since they are constant. This yields

M =

∫ T

0
vIMU (t)QT


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

Pdt = QT


0 0 0

0 0 0

0 0

∫ T

0
vIMU (t)dt︸ ︷︷ ︸

traveled distance

P

which is the sought after singular value decomposition of M with the traveled distance as
only non-zero singular value.

According to Equation (4.24), to close the reconstructed trajectory, and thus correct the
pitch angle discussed in Section 4.5.1, one simply has to find an harmonization matrix that
sends Vvel

‖Vvel‖ in the vector space of the null singular value of M . For instance, a rotation
matrix that sends Vvel

‖Vvel‖ on the direction of its projection on the plane of null singular value
is a solution 5.

Accounting for experimental data errors

In practice, the actual attitude and the actual velocity are almost never known, but estimated.
Information about those quantities is provided through sensors, either directly or, more often,
through data filtering. Denote by index f the corresponding filtered quantities that are
available. By integration, one gets the reconstructed position Pr(t)

Pr(T )− P (0) =

∫ T

0
vfvel(t)R

f
att(t)dt︸ ︷︷ ︸

Mf

Rharmo
V f
vel∥∥∥V f
vel

∥∥∥
As stated in Proposition 7, M has a plane of null singular values and its only non-zero
singular value is the traveled distance. Due to the limited bandwidth of the sensors and

5Note that this plane corresponds to the degree of freedom left by the yaw angle ψ in Section 4.5.1.
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the filters, Mf does not have a plane of perfectly null singular value. As a consequence, the
reconstructed trajectory cannot be made perfectly closed thanks to an harmonization matrix.
However, Mf is not very different from M . Experiments show that the singular values of
Mf are close to those of M : two are close to zero (almost identical), and a third one is close
to the traveled distance. The closure error can be minimized by choosing an Rharmo sending
V fvel∥∥∥V fvel∥∥∥ in the vector space of the two smallest singular values. If the speed direction has been

kept perfectly constant in the pedestrian frame Rped, the smallest singular value is indeed
the lowest closure error that can be achieved by choosing Rharmo.

Proposed harmonization procedure

A first calibration procedure has been proposed in Section 4.5.1. Some constraints, potentially
hard to fulfill without dedicated equipment were required to perform that procedure. The
approach presented above allows to remove or weaken most of them in a new calibration
procedure. We now present this procedure.

1. Walk along any closed-loop trajectory in the horizontal plane with the following
constraint: the speed direction must be kept along the x-axis of the IMU.

2. Compute the matrix

Mf =

∫ T

0
vfvel(t)R

f
att(t)dt

3. Identify the plane of smaller singular values of Mf (supposed to be identical).

4. Find a rotation matrix Rharmo which sends the speed direction Vd =
V fvel∥∥∥V fvel∥∥∥ to its

projection P (Vd) = P

(
V fvel∥∥∥V fvel∥∥∥

)
/

∥∥∥∥∥ V fvel∥∥∥V fvel∥∥∥
∥∥∥∥∥ in that plane of singular values, for instance

thanks to Olinde Rodrigues’ formula.

N =
P (Vd)× Vd
‖P (Vd)× Vd‖

=


N1

N2

N3


α = arccos

(
V T
d P (Vd)

)
Rharmo = cos(α)I3 + (1− cos(α))NNT + sin(α)


0 −N3 N2

N3 0 −N1

−N2 N1 0


Compared to the preliminary version of the procedure in Section 4.5.1, two requirements have
been removed: keeping the speed constant and the z-axis vertical. The required trajectory
is now simply the one naturally performed by any pedestrian walking, for instance, in a
loop-shaped corridor. This allows the system to be calibrated very easily in the field by any
operator.
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Figure 4.8: Experimental data - The pitch-angle has been corrected. The trajectory does not
drift downward anymore.

4.6 Proposed operational procedure to calibrate a MINAV
system

In summary of this chapter, we propose here an operational procedure to calibrate a MINAV
system. We consider the application described in Chapter 3, the MINAV pedometer. As
pictured in Figure 5.1, this system is constituted of two sensing modules (velocity sensor and
IMU) that are rigidly attached to a rigid body, and then carried by a pedestrian one wishes
to estimate the motion of.

To calibrate the MINAV systems, three steps have to be performed. They constitute the
following procedure.

1. Calibrate the IMU

• Calibrate the 3-axis accelerometer, use Algorithm 1 in Section 4.2.3.

• Calibrate the 3-axis gyroscope with respect to the 3-axis accelerometer, use Al-
gorithm 2 in Section 4.3.

2. Calibrate the velocity sensor, i.e. calibrate each magnetometer and simultaneously
harmonize the set of magnetometers, use the algorithm described in Section 4.4.

3. Harmonize the velocity sensor and the IMU, use the “Harmonization procedure”
of Section 4.5.
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Chapter 5

Real case study: the MINAV
pedometer

Cas d’étude réel: le podomètre MINAV

Ce chapitre est consacré à une application particulière de localisation de piétons
dans les bâtiments, même si, comme les résultats présentés dans ce chapitre le montrent,
la technique MINAV permet aussi la navigation dans les rues, et à l’extérieur des bâtiments.
Ces zones, où l’on ne peut utiliser le GPS, présentent un terrain particulièrement favorable
à la technique MINAV. Les bâtiments présentent de nombreuses sources de perturbation du
champ magnétique. Le béton armé des murs, les cadres de portes, les forts courants électriques
environnants en font partie. Il en résulte un champ magnétique avec de fortes variations,
qui peuvent être mesurées par des magnétomètres relativement bas-coûts. De nombreuses
techniques de positionnement dans les bâtiments ont vu le jour ces dernières années. Les
principales d’entre elles sont passées en revue en Section 5.1. Nous proposons ensuite,
en Section 5.2, un système MINAV pour le piéton, tant du point de vue matériel que du
point de vue des algorithmes. Enfin, le système est évalué dans des environnements urbains
variés en Section 5.3.

The principles of MINAV have been explained in Chapter 2. A suitable measurement
system and its calibration have been detailed in Chapter 3 and Chapter 4, respectively.
Finally, in this chapter, we present an application to indoor pedestrian navigation, i.e.
navigation of a pedestrian inside buildings, even if, as will appear in the results, reliable
position estimates can also be obtained outside buildings, in the streets. These GPS-denied
areas are ideally suited for MINAV. Buildings provide countless sources of stationary magnetic
field distortions. The reinforced concrete used in walls, the door frames, the strong electric
currents, for instance, range among them. Their contributions result in a magnetic field with
spatial variations that can be easily measured by rather low-cost magnetometers.

After briefly reviewing the main navigation techniques that are currently envisioned for
indoor navigation in Section 5.1, our proposed MINAV system for pedestrians is detailed
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in Section 5.2 both from the hardware and software points of view. Finally, in Section 5.3,
the system is evaluated in various environments.

5.1 State of the art of indoor positioning and navigation
techniques

As already discussed in the introduction of this thesis, localization technologies have become
available to the general public thanks to the widespread use of GPS receivers. However, some
limitations were quickly pointed out: the accuracy significantly drops in many places where
satellites coverage is not necessarily reliable. In cities, the accuracy drops even more with
the many reflections (multipaths) and the GPS signals can even be completely lost in urban
canyons, and, obviously, in buildings or underground. Many works has been conducted in
the past decade to overcome this limitation, both by improving the GPS receivers (enhanced
handling of low signal to noise ratio, compensation for signal multipaths, among others) and
by developing alternate techniques.

The positioning solutions envisioned by research teams are numerous and several criteria
can be used to classify them. For pedestrian navigation, one can first distinguish between
solutions where the positioning estimate is computed at the level of the receiver and solutions
where this computation is done externally, for instance at the level of a network of sensors
tracking the pedestrian who can be requested to wear a tracking beacon. Further, the type
of sensors used vary from one technique to another. The technologies involved can be passive
or active. They can consist in cameras, lasers, inertial sensors, magnetometers, ultrasound
devices, or most often radio-frequency receivers designed for signals of various range: Ultra-
Wide Band (UWB) [49], Wifi (IEEE 802.11b), Bluetooth (IEEE 802.15), GSM [21, 53],
RFID (Radio-Frequency IDentification, or even pseudolites (GPS-like signals emitted by
ground stations). The signal metrics used for the radio signals can be the most common
Receiver Signal Strength (RSS), the Time of Arrival (ToA), the Time Difference Of Arrival
(TDoA), or (less often) the Angle of Arrival (AoA). Finally, one criterion of importance
for many applications is the need for pre-installed infrastructure (visual markers, radio
emitters, magnetic beacons to name a few) We now present briefly some of the most common
techniques.

Most of the network based positioning techniques rely on radio-frequency signal, and
almost all the radio-frequency approaches are using a network, whether dedicated to the
positioning solutions, or shared with other usages, pre-installed in the building or deployable
at the time of the positioning needs. The transmission of the radio signal indoor is altered by
the many obstacles and reflections, which has a detrimental effect on the resulting accuracy of
the system. Ultra-wide band signals are spreading since they can lower the cuts that occurs
at some frequencies depending on the building.

Some of those techniques can achieve very accurate positioning provided the network is
sufficiently dense. However, deploying and maintaining this network can reveal extremely
costly. In many applications, such as those for first responders, one cannot afford to deploy
such networks in advance. Self-deployable networks are possible, but the process can be time
consuming, suffer from the relative inaccuracy of the deployed nodes, and the risk of not
covering the entire targeted area remains.
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Cell-ID Almost all the radio-frequency approaches rely on a network of devices to
estimate the position of moving pedestrians. A first and easy approach consists in identifying
the pre-installed network node in range and, knowing its position, associate the position of
the pedestrian to the cell associated to the node. This can, for instance, be achieved by
means of magnetic beacons, RFID tags [52], Bluetooth or GSM cells, ultrasound emitters or
visual markers [83]. The accuracy and the number of nodes to deploy directly depend on the
range of the emitters (or the line of sight of the marker). A single GSM emitter can cover a
rather wide area outdoor, while RFID tags only range from several centimeters for passive
tags to a few meters for active tags. Overlapping of cells, often happens in GSM networks.
This permits to refine the position by intersecting areas of possible position. RFID tags are
rather inexpensive but have to be deployed in large numbers to cover an area. Bluetooth cells
can provide a limited communication channel but are rather expansive. GSM cells have the
advantage of being already deployed for mobile phone applications and also provide limited
communication capabilities. However, their wide range intrinsically limits their accuracy.

Traveled distance estimation Thanks to propagation models, the Receiver Signal
Strength (RSS), the Time of Flight (ToF) or the Time of Arrival (ToA) for synchronized
devices, can be associated to a distance between the emitter and the receiver. When only one
emitter is detected, it can only be known that the receiver lies somewhere on a sphere around
the emitter. When at least three emitters are in range, the position can be computed. This
technique yields more precise results than simple Cell-ID positioning, and can be applied to
various signals, for instance ultrasound, GSM, Wifi, UWB, or even to magnetic nodes [15].
These techniques perform well in open-space, but indoor, they are subject to many reflections
and attenuations that are very difficult to model, and, which, in turn, dramatically limit their
accuracy.

Lateration A pulse emitted by a node arrives at slightly different times at two (or
more) spatially distributed receivers. This Time Difference of Arrival (TDoA) is related to
the distance between the emitter and the two receivers being slightly different. Given one
emitter and two receivers, it can be established that the locus of the emitter relatively to
the receivers lies on an hyperboloid. Having either more emitters or receivers permits to
fully determine the relative location of the emitter, or inversely, to determine the position
of the receivers with respect to the known position of the node. This can be (easily) used
with ultrasound since the velocity of the sound is rather slow (compared to the velocity of
light). Inversely, two or more signals emitted from spatially separated but well-synchronized
nodes arrive at a single receiver location with TDOA allowing similar computation. Such
techniques can be used with UWB, pseudolites or Wifi signals for instance. Wifi stations have
the advantage of providing interesting communication capabilities but are rather expansive
and their range is much shorter than UWB, whose large spectrum of emission permits to
limit the signal strength attenuation compared to the other radio signals.

Fingerprinting The fingerprinting technique consists in building a map of the area
where the position has to be estimated later, and associate to each location (each room for
instance) all signals received and their strength, with gives a supposedly unique fingerprint
of the location, for instance the available Wifi, GSM or WLAN networks or even FM-radios
and their strength. Those data are stored in a database. When the pedestrian equipped with
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the positioning system moves in the area, the signals and their strengths are measured again
and compared against the database. Providing that the available signals and their strengths
do not vary too much, there is a match in the database that gives the current location. Used
with Wifi signals and smartphones, it yields rather inexpensive positioning solutions and is
particularly adapted to leader-follower scenarii. Yet, its accuracy, and its availability cannot
be guaranteed, since the fingerprint can change over time, which completely discards the
method for many applications. This fingerprinting technique however, does not necessarily
rely on a base station network. The fingerprint can take part of the environment. It has, for
instance, also been applied with camera by extracting main features of pictures.

Magnetic map matching The usually considered application of magnetometers is
called magnetic field navigation [102]. It completely differs from the MINAV approach
presented in this thesis. This method uses the variations of the magnetic field to identify
users position using a map-matching technique. It assumes that a map of the magnetic field
has been previously obtained and uses current measurements to establish the position on
this map according to a maximum likelihood criterion. Magnetic map matching techniques
exploit the fact that, as has been noted by practitioners, for indoor environments in particular,
the magnetic maps feature distinctive spatial variations that can be matched with a priori
information using the previously mentioned maximum likelihood technique [50]. In practice,
anchors or magnetic material can be installed in the building to help distinguish between
several possible signatures.

More generally, map matching consists in identifying some precise location both on an
a priori given map and in the embedded positioning system to be able to pin-point the
exact location on the map and thus correct the drift that has occurred until that point. The
features used to identify a location can be stairs or corners for instance [24]. A complementary
approach is to simply prevent pedestrian from crossing walls as proposed in [114].

Optical system Optical positioning covers various techniques. Markers (bar codes for
instance) permits to act like in the case of cell-ID, and if the size of the tag is normalized,
one can compute an estimate of the distance (and even, in some cases, an orientation) from
the embedded sensor to the tag. Without markers, the fingerprinting technique can be
used. Pictures taken beforehand (or the main features extracted from them) can be used
as signatures. Other methods rely on geometric analysis of collections of successive images
to estimate the motion [82]. Used alone, these methods, often complemented by a laser to
estimate the depth of the picture, drift just like any other dead reckoning system. Finally,
some systems build metric or topological [70] representations or maps of the user’s exploration
path as it is explored, performing a Simultaneous Localization And Mapping (SLAM) [28,
29, 47]. The map is built with the drift inherent to the method used in dead reckoning, but
as long as one remains in the explored map, the drift of the positioning solution theoretically
stops growing.

ZUPT Probably, the philosophy most similar to the one we consider in the MINAV
technique is the ZUPT method. This similarity stems from the fact that this method does
not use any exterior source of information and aims at resetting the velocity estimate. Yet,
the way this reset is performed is very different from the continuous update produced by the
observability of the body velocity variable granted by the magnetic field spatial variations

80



5.2. IMPLEMENTING THE MINAV METHODOLOGY

information in the MINAV technique. The ZUPT consists in using a zero-velocity update
(ZUPT). In [24, 46], an IMU is placed on the shoe of the pedestrian for which the navigation
problem is to be solved. The IMU is used in a conventional DR approach. Periodically,
the velocity estimate is reset when the foot touches the ground. Detection is performed by
investigating noise levels of the IMU sensors (see [101] for a comparison of different criteria).
Very good performance have been reported by several teams [24, 46, 65, 84]. The method
has been extended to attitude update (AUPT) [24].

Many systems are proposed that complement the short term accuracy of inertial
navigation with other previously mentioned techniques to lower or even bound the position
error. One can for instance mention the coupling of inertial and optical measurements [7],
the use of inertial navigation to deploy a network of RFID tags [93], or inertial navigation
coupled with ultrasound nodes [43].

5.2 Implementing the MINAV methodology

5.2.1 Hardware

We consider the sensors setup presented in Section 3.5. Their design complies with the
guidelines of Chapter 3.

Keeping the considerations of real-time implementation discussed in Section 3.1 in mind,
a robust two-processor embedded system has been developed (see [20, 58] for further detail on
embedded software design). Each processor runs a distinct software and the two communicate
via a simple RS232 serial link. The first processor is used to gather data from the sensors,
while the second one performs the data fusion calculation. It is fast enough to run a low-
dimensional EKF algorithm at 76 Hz. The advantages of this architecture are as follows:
i) task-scheduling is easily programmed since only one of the processors is in charge of
handling the various sensors; ii) new data fusion algorithms can be easily uploaded, because
the scheduling of tasks is not impacted; iii) depending on the computational requirements,
the computation board can be replaced and upgraded without interfering with the data
acquisition process and its task-scheduling; iv) finally, the measurement system is quite low-
cost, since it relies on off-the-shelf components and can be easily maintained.

As exposed in Figure 5.1, this (modular) embedded measurement system consists of four
modules.

The first module is the sensor module consisting in a rigid body with strapdown
magnetometers and inertial sensors. The sensors have been described in Section 3.5. An
electric hub connects all the in and out wires to a single connector. This connector is linked
to the data acquisition module..

The core of this acquisition module is an MPC555 microcontroller from MotorolaTM. This
microcontroller has substantial computational capabilities and a large number of versatile
and programmable input/output ports. In particular, an extensive use of UARTs is made
(QSCI1, queued serial communication interface, and SCI2), TPUs (time processing units used
as customized additional UARTs, see [81]), i.e. in total 8 UARTs. Finally, it is small (credit
card format) and has a low weight.

The data acquisition software running on the microcontroller is event-driven, driven by
the IMU messages, which are 31 bytes long. Magnetometers measurements are received at
154 Hz and are buffered until a message from the IMU is received and validated by the
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Sensor Board Acquisition Board Computation Board Display Module

Figure 5.1: Schematic view of the multi-module system.

microcontroller. Information from the magnetometers is then picked up in the data buffers.
Those pieces of information are then gathered together into a 116 byte message containing
all of the on board measurements and sent through a serial port.

The output message of the measurement module is detailed in Table 5.1.
This message is received by the computation board where the velocity and position

estimation is actually performed. Then, estimates are sent to a display module for real-time
reporting of position data. We now describe these two modules further.

The computation board consists in a PC running a customized Linux distribution based on
a Debian kernel. The PC board was selected among numerous models based on computational
power, energy consumption, toughness, size and price. The chosen calculation board has a
standard pico-ITX PC architecture. Its processor is a 1.2 GHz C7-M from VIA designed for
embedded applications. It can perform 1500 MIPS and presents classic PC I/O ports such has
two UARTs (used as main data links with the acquisition module and the display module),
an Ethernet board (not used here), a VGA output (which turns out to be convenient for
monitoring purposes during debugging phases of the software and hardware development), a
keyboard, and several USB ports (which may be considered for plugging future devices such as
cameras). The operating system is installed on a 1 Gbyte disk-on-chip system which prevents
all possible mechanical failure associated to traditional hard-drives. This flash memory device
is directly connected to the mother board through its IDE port. A pico-PSU device is used
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Bytes Data Description

1-3 0xFC FB FA Headers

4-11 QUAT Attitude quaternion

12-17 ACC Accelerometers measurements

18-23 GYR Gyrometers measurements

24-25 TT Timer Tick of the IMU

26-31 LMAG1 Last measurements of the 1st magnetometer

32 LTSM1 Timestamp of the last measurement of the 1st magnetometer

33-38 LMAG2 Last measurements of the 2nd magnetometer

39 LTSM2 Timestamp of the last measurement of the 2nd magnetometer

40-45 LMAG3 Last measurements of the 3rd magnetometer

46 LTSM3 Timestamp of the last measurement of the 3rd magnetometer

47-52 LMAG4 Last measurements of the 4th magnetometer

53 LTSM4 Timestamp of the last measurement of the 4th magnetometer

54-59 LMAG5 Last measurements of the 5th magnetometer

60 LTSM5 Timestamp of the last measurement of the 5th magnetometer

61-66 LMAG6 Last measurements of the 6th magnetometer

67 LTSM6 Timestamp of the last measurement of the 6th magnetometer

68-73 PMAG1 Penultimate measurements of the 1st magnetometer

74 PTSM1 Timestamp of the penultimate measurement of the 1st magnetometer

75-80 PMAG2 Penultimate measurements of the 2nd magnetometer

81 PTSM2 Timestamp of the penultimate measurement of the 2nd magnetometer

82-87 PMAG3 Penultimate measurements of the 3rd magnetometer

88 PTSM3 Timestamp of the penultimate measurement of the 3rd magnetometer

89-94 PMAG4 Penultimate measurements of the 4th magnetometer

95 PTSM4 Timestamp of the penultimate measurement of the 4th magnetometer

96-101 PMAG5 Penultimate measurements of the 5th magnetometer

102 PTSM5 Timestamp of the penultimate measurement of the 5th magnetometer

103-108 PMAG6 Penultimate measurements of the 6th magnetometer

109 PTSM6 Timestamp of the penultimate measurement of the 6th magnetometer

110-111 CHKSUM Checksum

Table 5.1: Output of the measurement system. This message of 111 bytes is delivered at
76 Hz.
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Bytes Data Description

1 0xFC Header

2-7 Px, Py, Pz Position with respect to the starting point
(Inertial reference frame)

8-13 u, v, w Body velocities
(Body reference frame)

14-21 Q0,Q1,Q2,Q3 Attitude quaternion
(Body reference frame)

22-23 TT Timer Tick

24-25 CHKSUM Checksum

Table 5.2: Output of the computation board. This message of 25 bytes is delivered at 76 Hz.

as power supply. The computation softwares are written in C and can be updated directly on
the board, where a compiler is available, or uploaded in as already executable file. Customs
scripts (e.g. makefiles) for compiling and deploying the executable code and configuration files
are an efficient way to upgrade the software during development and testing. Two SD cards
slots have been added to record all data coming in (measurements described in Table 5.1) and
out (position estimates described in Table 5.2) of the module, which is very convenient not
only during development and debugging phases, but also to record all the scenarii performed
with the system.

Finally, the display module implements all the user interface software. The user can
provide a starting point and an initial attitude which are required to compute a position.
The current position is then displayed on screen in real time. Saved past scenarii can also be
replayed for further analysis. From the hardware point of view, this display module simply
consists in a tablet PC1.

5.2.2 Software

Model We now detail the implementation of the principles of MINAV thoroughly explained
in Chapter 2 for a pedestrian positioning system. The state considered gathers the magnetic
field B and the velocity V , both expressed in the body reference frame. According
to Section 2.1, the dynamics of the magnetic field, projected in the body frame of reference,
writes


Ḃx

Ḃy

Ḃz

 = −


p

q

r

 ∧

Bx

By

Bz

+

(
∂ (B)b
∂Bb

)
u

v

w

 (2.6)

1As a trade-off between cost, ease of use and . . . design, we chose an eeePC from Asus, which looks like
a tablet, but whose screen hides a true keyboard very helpful when it comes to debugging or showing some
more figures at the end of an exhibition.
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In Chapter 2, we considered the rigid body to be subject to a zero-mean total force. In the
case of the pedestrian, we use a different model and consider the velocity to be an unknown
constant in the body frame. This is a modeling consistent with [6], where it is shown that
the velocity expressed in the body frame of reference usually keeps a constant direction in
turns. The dynamics of the the velocity could be modeled a bit further. Some works have
been conducted in biomechanics about the move of the different body segments with respect
to the others, but few results have emerged at the macroscopic scale, the human body being
largely over actuated. This is a point for future investigations.

Accounting for the equation 
u̇

v̇

ẇ

 =


0

0

0


finally, the system to be observed writes

d

dt

(B)b

(V )b

 =

− [(Ω)b]
(
∂(B)b
∂Bb

)
03×3 03×3

(B)b

(V )b

 , A

(B)b

(V )b

 (5.1a)

y =
(
I3 03

)(B)b

(V )b

 , C

(B)b

(V )b

 (5.1b)

Filter Observability of (5.1) has been studied in Section 2.1, where a non-linear observer
has been proposed. For sake of performance and ease of tuning, we chose to implement a
Kalman filter (KF). The matrix A is determined from the measurements of the measurement
system (see Table 5.1). Classically, this filter proceeds in two steps. In the prediction step,
the state is propagated at the next time step by integrating the dynamics. Quantities with
index p are relative to this prediction step. In the estimation step, mentioned by index e, the
measurements are taken into account to correct the prediction. For convenience, we recall
here the main equations of these two steps. (The reader can refer to [63] for background on
this algorithm.)

At the discrete time k, using the time step δt, consider X̂p [k] the vector containing
estimates at index k of (B)b and (V )b, and X̂e [k] a vector of the same size 6 × 1. Denote
Σp the 6 × 6 covariance matrix of the state used for prediction and Σe the 6 × 6 covariance
matrix of the state used for estimation. The 6× 6 covariance matrix of the noise dynamics is
denoted Mη, and the 3× 3 covariance matrix of the measurement noise is Mρ. The updates
are as follows

X̂p [k + 1] = (I +Aδt) X̂e [k]

Σp [k + 1] = (A+A · δt) Σe [k] (I +A · δt)T +Mη

K = Σp [k + 1]CT
(
CΣp [k + 1]CT +Mρ

)−1

X̂e [k + 1] = X̂p [k + 1] +K
(
Y − CX̂p [k + 1]

)
Σe [k + 1] =

(
Σp [k + 1]−1 + CTM−1

ρ C
)−1
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Integration scheme The data fusion algorithm is implemented on board a PC based
system which performs the successive updates detailed above. Surprisingly enough, this (one
step forward Euler) integration scheme exposed in the update above can reveal troublesome,
and can be the cause of unexpectedly misleading results.

Simple investigations reveal that, more generally, usual explicit or implicit Euler numerical
schemes are unable to reproduce pure rotational terms in the dynamics (2.6). For instance,
a direct computation shows that, in the absence of any source term, while the analytical
solution of

d

dt


Bx

By

Bz

 = −


p

q

r

×

Bx

By

Bz


has a constant norm, solutions determined using Euler schemes do not and, rather, feature
clearly wrong values of this norm. An explicit Euler numerical scheme indeed yields

(B)b [tn+1] =(B)b [tn] +
d

dt
(B)b [tn] δt

(B)b [tn+1] =(B)b [tn]−
(
Ωb/i

)
b
× (B)b [tn] δt

The norm of the integrated magnetic field thus evolves according to

‖(B)b [tn+1]‖2 = ‖(B)b [tn]‖2 + δt2
∥∥∥(Ωb/i

)
b
× (B)b [tn]

∥∥∥2

Whenever the rotation rate is not null, one thus has

‖(B)b [tn+1]‖ > ‖(B)b [tn]‖

In the data fusion algorithm, this numerical effect is promptly interpreted as a fictitious
variation of the magnetic field, wrongly attributed to a displacement of the rigid body.

To address this problem, we have realized that one can simply use a numerical scheme
well-suited for rotational dynamics such as the ones developed in celestial mechanics studies.
One can for instance use a Gauss-Jackson scheme (see e.g. [10, 14, 98]). An alternative is to
consider higher order schemes as Adam-Bashforth’s extrapolation formula [1, §25.5.4, p.896].
This integration scheme is detailled in Appendix G.

5.3 Experimental results

5.3.1 1-dimensional in-lab experiments

1-dimensional experiments have been conducted to validate the accuracy of the velocity
estimation. First, the MINAV system has been translated back and forth along an a-magnetic
rail, by small increment of 1 cm every 5 s. The results are presented in Figure 5.2. The
increment are clearly visible on the estimated velocity. This estimates reacts quickly to the
small impulsion and comes back quickly to zero afterwards. Integrating this velocity provides
an estimate of the position. The reconstructed position reproduces the steps rather accurately
going over 5 cm in 5 steps, forward as well as backward.

To validate more accurately the estimated velocity obtained with the system, the MINAV
system has been translated in a long corridor. The platform has been moved back and
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Figure 5.2: Experimental results. The platform is translated step by step in direction sensors
are lined up. One step of 1 cm is made every 5 s, first forwards then backwards, after a rest
of 20 s.

forth along a simple straight path in front of a reference laser telemeter. This allows to
precisely evaluate the representativeness of the velocity estimate, and of the subsequent
relative position reconstruction. The corresponding data are represented in Figure (5.3).

One can clearly see the very good quality of the velocity estimate, which, in particular,
kindly reproduces the sharp accelerations. The position obtained by integration of the
estimated velocity match the one provided by the laser telemeter with a precision of a few
percents.

5.3.2 3-dimensional experiments in various urban environments

The previous 1-dimensional experiments against known, accessible and accurate references
have validated that the velocity estimation is rather accurate, and that the subsequent
relative position obtained by integration is relevant. Figure 5.4 where a pedestrian goes
some stairs up two levels in an office building, stresses that the MINAV system can also
provide interesting 3-dimensional trajectories reconstruction. Generally, getting accurate
references for 3-dimensional in-the-field experiments is not as easy as in the 1-dimensional
case in laboratory. Nonetheless, two types of reference can be used to evaluate the accuracy
of the reconstructed position. Maps, when available, provide a first reference all along the
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Chapter 5. Real case study: the MINAV pedometer

Figure 5.3: Experimental results - Velocity (and integrated position) in a long straight
corridor. The estimated velocity (and position) are compared against a laser telemeter.

trajectory. Loop-shaped trajectories, on the other hand, can be used to evaluate the error
after a certain time. When the trajectory comes back to its starting point, a “closure error”
can be measured as the distance between the starting point and the end point. For every 3-
dimensional trajectory presented now onward, at least one of these two references is available.

Depending on the type of buildings (e.g. freestone buildings, prefabs, traditional
reinforced concrete buildings) and their usage (e.g. family housing, offices, buildings open
to the public like supermarkets), one could have assumed they would present a more or
less suitable ground for MINAV. Experiments reveals that magnetic disturbances are strong
enough in all those buildings to allow the use of the “magnetic pedometer” described earlier.
Figure 5.5 reports results obtained outdoors, close to buildings. The path is performed
between the streets Auguste Comte and Michelet in Paris, France.

Figure 5.6 reports indoor results obtained around the main lecture hall at (Amphitheatre
Poincaré) at MINES ParisTech, France.

Figure 5.7 reports experimental indoor results obtained in a long corridor (round trips)
with intermediate path in an open space. The experiment was conducted in the tower “Tour
de l’Horloge” above Gare de Lyon train station in Paris.

Figure 5.8 reports experiments conducted at EADS Cassidian main offices in Élancourt
during a project review meeting of Locindoor project.
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5.3. EXPERIMENTAL RESULTS

(a) View from the side. (b) View from the top (i.e. trajectory in the
horizontal plane)

Figure 5.4: Experimental result. Pedestrian walking stairs two levels up in an office building.

Finally, Figure 5.9 reports results obtained in the CNIT building at La Défense. It is a
high ceiling building with large open spaces and more narrow corridors and halls.
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Figure 5.5: Experimental results in streets. Closed-path between the streets Auguste Comte
and Michelet in Paris, France.
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5.3. EXPERIMENTAL RESULTS

Figure 5.6: Experimental results in a freestone building (MINES ParisTech, 60 Bd St Michel,
Paris). Distance: 373 m. Final error: 9.5 m
Starting in (0,0), the pedestrian walks about 2.5 laps in a loop-shaped corridor, then turns
backs and gets back to (0,0) after about 1.5 laps and stops.
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Chapter 5. Real case study: the MINAV pedometer

Figure 5.7: Experimental results in a prefab corridor at the Tour de l’Horloge above Gare de
Lyon train station, in Paris, France. Distance: 217 m. Final error: 10 m
The pedestrian walks two round-trips in a corridor. During one of these round-trips, a small
excursion in small open-space is made on both ways.
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Figure 5.8: Experimental results in a modern traditional office building with reinforced
concrete in Élancourt, France. Final error: 7 m.
Starting from (0,0), the pedestrian walks through the huge open-space to (-40,-8). Then he
climbs the stairs one level up and crosses above the open-space to (3,40). Afterwards, he goes
along the offices. When he is above the starting point, he crosses again above the open-space,
goes the stairs one level down, and crosses once again the open-space to stop at the starting
point.
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Figure 5.9: Experimental results inside and outside a shopping mall, the CNIT building in
La Defense, France. The two trajectories (red and green) start in (0,0) at the entrance of
the building, follow the first corridor, turn left and exit the building. The green trajectory
turns left again and joins the starting entrance by the outside. The red trajectory goes in
the opposite direction to find another entrance of the building and gets back to the starting
point by crossing the entire building.
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Appendix A

Unbiased calibration problem of a
single sensor in 2-dimensions

Problème de la calibration d’un capteur non-biaisé en
2 dimensions

The propositions presented in Section 4.2 provide theoretical insight into the progression of
the algorithm along the iterations: the data are better and better calibrated (Proposition 4),
and make few progress in rotation (Proposition 5). It is in fact possible to go a bit further in
the analysis. Let us now focus on a specific 2-dimensional case (i. e. where the measurements
are performed in 2 dimensions), and further, let us make the following notational simplifying
assumptions. We consider that the measurements constitute a closed and centered ellipse (i.e.
that there is a continuum of data, and that a preliminary debiasing has been performed).
The measurements are noted y(θ), θ ∈ [0, 2π[, and the iteratively calibrated data are yk(θ),
θ ∈ [0, 2π[. Then, we assume that no misalignment is present and consider only scale factors.
Therefore, the measurements satisfy

Y (θ) = Ay(θ)

where A is an unknown diagonal matrix. By analogy to equation (4.4), the cost to be
minimized at iteration k is

h(A, k) =

∫ 2π

0

∥∥∥∥Ayk(θ)− yk(θ)

‖yk(θ)‖

∥∥∥∥2

dθ

Note Ak+1 the solution of this minimization problem, i.e.

Ak+1 = arg min
A diagonal

h(A, k)

Iteratively, the data are calibrated using yk+1(θ) = Ak+1yk(θ). At step k, let us note the
inverse calibration equation

yk(θ) =

 αk 0

0 βk

Y (θ)
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Appendix A. Unbiased calibration problem of a single sensor in 2-dimensions

With the notation

f(yk) =

∫ 2π

0

∣∣∣1− ‖yk(θ)‖2∣∣∣ dθ
a reasoning similar to the one in the proof of Proposition 5 directly yields

f(yk) ≥ h(Ak+1, k) ≥ f(yk+1)

Further,

f(yk) = 2π

(
1 +

α2
k

2
+
β2
k

2

)
− 2

∫ 2π

0
‖y(θ)‖ dθ

= 2π

(
1 +

α2
k

2
+
β2
k

2

)
− 2P (α, β)

(A.1)

where P (α, β) is the perimeter of an ellipse having 1/αk and 1/βk as semi-axis. We wish

to show that the inverse calibration matrix

 αk 0

0 βk

 tends to the identity as k tends to

infinity, i.e. that the proposed algorithm converges to exact calibration of the data. Similarly
to Proposition 4, one can readily show that f decreases along the iterations and goes to a
limit ` ≥ 0. Using an estimate for (A.1), it is possible to deduce convergence information on
αk and βk. To simplify the exposition, let us first consider that this limit is ` = 0.

Consider in equation (A.1), f as a function of (αk, βk). It can be proved that f has
(1, 1) as unique local minimum (in a rather large neighborhood) and that its value there is
0. To prove that, one can simply use Peano’s approximation of the perimeter of an ellipse [8]
reproduced in Equation (A.2). This approximation is always over-estimating the true value.

P (α, β) ≈ π
(

3

2
(α+ β)−

√
αβ

)
(A.2)

Accounting for the approximation implied by this formula, one can compute the following
exact decomposition of f under the form

f(αk, βk) = f1(αk, βk) + f2(αk, βk)

where

f1(α, β) = 2π

(
1 +

α2

2
+
β2

2

)
− 2π

(
3

2
(α+ β)−

√
αβ

)
(A.3)

and where f2(αk, βk) is strictly positive away from αk = βk and zero there. f1, given in (A.3),
is convex on the considered domain [3/4 4/3]2 (its Hessian is given in (A.4)), is strictly positive
away from (1, 1) and zero there. Therefore, (1, 1) is the only zeroing point of f , and one can
conclude that (αk, βk) converges to (1, 1). This estimate reveals handy in experimental results
where ` can be evaluated numerically.

∇2f1(α, β)

2π
=

 1− β
4α
√
αβ

1
4
√
αβ

1
4
√
αβ

1− α
4β
√
αβ

 (A.4)
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Now, let us extend the analysis to the case ` > 0. A local expansion of f for (α, β) about
(1, 1) yields the following inequalities

(
α− 1 β − 1

) 3 1

1 3


 α− 1

β − 1


16 ≤ ` ≤

(
α− 1 β − 1

) 3 1

1 3


 α− 1

β − 1


4

and we deduce the estimation, where d is the distance of (α, β) to (1, 1),
√

2

4
d ≤
√
` ≤ d

meaning that both αk and βk approach 1 as the square root of ` approaches 0.
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Appendix B

A technical result

Un résultat technique

To minimize the convex function (4.15), its derivative is required. The following lemma
is useful.

Lemma 1: Denote y ∈ Rm, x ∈ Rn and S ∈ Sn(R) a skew symmetric matrix. Define
f : M ∈Mm,n(R) −→ ‖y − SMx‖2. Then, f is differentiable and its derivative is

Df(M) =

[
∂f

∂Mi,j

]
i=1..m
j=1..n

= −2 · S(y − SMx)xT

Proof: First, one shall expand the expression of f ,

f(M) =
∑
i

yi −∑
j,k

Si,jMj,kxk

(yi −∑
p,q

Si,pMp,qxq

)

=
∑
i

y2
i − 2 ·

∑
i,j,k

yiSi,jMj,kxk +
∑

i,j,k,p,q

xTkMj,kSi,jSi,pMp,qxq

Then, for any (u, v) ∈ [1,m]× [1, n], the derivative of f(M) with respect to any component
Mu,v is

∂f

∂Mu,v
(M) =− 2 ·

∑
i

yiSi,uxv +
∑
i,p,q

xvSi,uSi,pMp,qsq +
∑
i,j,k

xkMj,kSi,jSi,uxv

Because S is skew symmetric,

∂f

∂Mu,v
(M) =− 2 ·

(∑
i

Su,iyi

)
xv + 2

∑
i,p,q

Su,iSi,pMp,qxq

xv

=− 2 · (Sy)u xv + 2 ·
(
S2Mx

)
u
xv

=− 2 · (S(y − SMx))u xv
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which yields

Df (M) =

[
∂f

∂Mu,v

]
u=1..m,v=1..n

− 2 · S (y − SMx)xT

J(Ã, B̃) is a convex and differentiable function. It thus reaches its minimum when its
derivative is zero. As (Pγ)k is an orthogonal projector, its matrix is skew symmetric. Lemma 1
applies, leading to

0 = −2 ·
K∑
k=1

(Pγ)k (Yk − (Pγ)k [Ab]Xk) (Xk)
T

and, thus

K∑
k=1

Yk(Xk)
T =

K∑
k=1

(Pγ)k [Ab]XkX
T
k (B.1)

Using the canonical base (Ei)i=1..12 of M3,4(R) defined in Lemma 2, and writing [A b]
under the form

[A b] =


m1 m4 m7 m10

m2 m5 m8 m11

m3 m6 m9 m12

 =

12∑
j=1

mjEj

The relation (B.1) can be rewritten as

K∑
k=1

YkX
T
k︸ ︷︷ ︸∑12

i=1 yiEi

=

12∑
j=1

mj ·

(
K∑
k=1

(Pγ)kEjXkX
T
k

)
︸ ︷︷ ︸∑12

j=1 xi,jEi

This yields

yi =
12∑
j=1

xi,jmj , ∀i = 1..12

Y = X
(
m1 m2 . . . m12

)T
Under the assumption that X is invertible, one obtains(

m1 m2 . . . m12

)T
= X−1Y

which concludes the proof.
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Appendix C

Proof of convergence in the linear
time varying case

Preuve de convergence dans le cas linéaire avec
dépendance en temps

In Section 2.2, we consider a linear time-varying system whose dynamics is given
by Equation (2.10). These equations are of the form studied below, with J = ∂(B)b

∂Bb .
Consider the LTV error dynamics with state (B̃, Ṽ )T ∈ R6

˙̃X =

 −Ω(t)− l1J(t)J(t)T J(t)

−l2J(t)T −Ω(t)

 X̃ = Ã(t)X̃ (C.1)

With l1 > 0, l2 > 0, we know that W (X̃) = 1
2

∥∥∥B̃∥∥∥2
+ 1

2l2

∥∥∥Ṽ ∥∥∥2
is such that

Ẇ = −l1B̃TJ(t)J(t)T B̃ = −l1X̃T C̃T (t)C̃(t)X̃

with C̃ = [J(t)T 0].
It is known (see [69, ex. 8.11]), that the global exponential stability of this LTV error

dynamics with state X̃ is guaranteed under the assumption of Uniform Observability (UO)
of the pair (Ã, C̃).

As has been shown in [19, thm4], Differential Observability (DO) implies Uniform
Complete Observability (UCO) which implies UO. Therefore, we now investigate the DO
property of the pair (Ã, C̃).

For this, we consider the matrix [Q0(t), Q1(t), ...Qn(t)] composed using

Q0(t) = C̃(t)T , Qi+1(t) = Q̇i(t) + Ã(t)TQi(t)

The DO property holds if
∑m

i=0Qi(t)Qi(t)
T ≥ µI > 0 for some µ > 0, some m ∈ N.

As will be shown, this property holds for m = 1.
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Consider Q0(t) = C̃(t)T =

 J(t)

0

, and Q1(t) =

 J̇(t) + ΩJ − l1J(t)J(t)TJ(t)

J(t)TJ(t)

.

Finally, constitute

Qo = [Q0(t)Q1(t)] =

 J(t) J̇(t) + ΩJ − l1J(t)J(t)TJ(t)

0 J(t)TJ(t)

 (C.2)

We now wish to establish that this matrix is such that

Qo(t)Qo(t)
T ≥ µI > 0

for some µ > 0 to be determined.
Qo(t) is of the triangular form  M(t) B(t)

0 N(t)

 (C.3)

for which we have the following result, where we note here ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij | the
max row sum norm.

Lemma 2: Consider a 2n × 2n matrix P (t) of the form (C.3) where M(t)TM(t) ≥ µ1I,
N(t)TN(t) ≥ µ2I, ‖B(t)‖∞ ≤ γ, then the lowest singular value of P (t) is uniformly lower-
bounded by √µ with

µ =

(
max

(
1

µ1
,

1

µ2

)
+ γ

n3/2

µ1µ2

(√
µ1 + γ

√
n
))−1

Proof: The largest singular value of P equals ‖P‖2. The singular values of P−1 are the
inverse of the singular values of P . Then, one has

‖P‖2 ≥
1

‖P−1‖2

The inverse P−1 is  M(t)−1 −M(t)−1B(t)N(t)−1

0 N(t)−1


Then,

∥∥P−1
∥∥

2
can be upper-bounded as follows∥∥P−1

∥∥2

2
= max
‖x‖=1,x∈R6

xTP−1(t)P−T (t)x (C.4)

Noting that

P−1(t)P−T (t) =

 M−1M−T +M−1BN−1N−TBTM−T −M−1BN−1N−T

−N−1N−TBTM−T N−1N−T


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Then, one has

xTP−1(t)P−T (t)x = xT

 M−1M−T 0

0 N−1N−T

x

+ xT

 M−1BN−1N−TBTM−T −M−1BN−1N−T

−N−1N−TBTM−T 0

x

We now wish to consider this value for ‖x‖ = 1, to evaluate the sought after norm.
Remembering that, by assumption1

∥∥M−1
∥∥

2
≤ 1
√
µ1
,
∥∥N−1

∥∥
2
≤ 1
√
µ2

and that for every n× n matrix G, one has

‖G‖∞ ≤
√
n ‖G‖2

which gives
∥∥M−1

∥∥
∞ <

√
n
µ1
,
∥∥N−1

∥∥
∞ <

√
n
µ2
. Further, the ‖·‖∞ norm is consistent because

it is a subordinate matrix norm (see [56, p.327]), i.e. ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞, for all matrices
A and B. Besides, for all matrix M , for all ‖x‖ = 1, one has xTMx ≤ ‖M‖∞. Finally, for
all matrices A, B, C, D, one has∥∥∥∥∥∥

 A B

C D

∥∥∥∥∥∥
∞

≤ max (‖A‖∞ + ‖B‖∞ , ‖C‖∞ + ‖D‖∞)

Then, one obtains

∥∥P−1
∥∥2

2
≤ max

(
1

µ1
,

1

µ2

)
+ γ

n3/2

µ1µ2

(√
µ1 + γ

√
n
)

From this lemma, we can now formulate the main result
Lemma 3: Consider l1 > 0, l2 > 0, and assume that J(t) is such that there exists µ1, γ1

such that for all t, J(t)TJ(t) ≥ µ1I, ‖J(t)‖∞ ≤ γ1,
∥∥∥J̇(t)

∥∥∥
∞
≤ γ′1 and that Ω(t) is such that

‖Ω(t)‖∞ ≤ γ2 for all t, then there exist µ > 0 such that

Qo(t)Qo(t)
T ≥ µI > 0

This shows that the pair (Ã, C̃) is DO, then it is UCO, then it is UO. Then, the error
dynamics (C.1) is globally exponentially stable.

Proof: The assumption that l1 and l2 are positive are required for W to be a Lyapunov
function. We know from (C.2) that Lemma 2 applies with µ1, µ2 = µ2

1, γ = γ′1 +γ1(γ2 +l1γ
2
1),

which gives the sought-after µ.
1 1

‖M−1(t)‖
2

is the smallest singular value of M(t). Thus, there exists a vector Z(t) such that

Z(t)TM(t)TM(t)Z(t) = 1

‖M−1(t)‖2
2

. Following the hypothesis of the lemma, one thus has 1

‖M−1(t)‖2
2

≥ µ1.
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Appendix D

Observability of accelerometer biases

Observabilité des biais des accéléromètres

As mentioned in Section 1.3, in low-cost inertial navigation, accelerometers drifts are
a major source of error. Monitoring the variations of the magnetic field and its Jacobian
is however a powerful tool that makes accelerometers biases observable, reducing greatly
the drifts in low-cost inertial systems. We adopt here the same notations as in Chapter 2,

noting B the vector magnetic field and
(
Bx By Bz

)T
, X the position of the rigid body in

Ri, V = dX
dt

∣∣
<i

the velocity of the rigid body in the Ri reference frame, and Ωb/i the vector

rotation ofRb with respect to theRi reference frame. Denote
(
Bx By Bz

)T
,
(
u v w

)T
,

and
(
p q r

)T
the respective projections of B, V , and Ωb/i onto the Rb reference frame.

From Chapter 2, one has the following dynamics for the magnetic field and the velocity
dB

dt

∣∣∣∣
Rb

=− Ωb/i ∧B +
∂B

∂X
V (2.5)

V̇ =− Ωb/i × V + Fm (2.7)

Since accelerometers readings are available, the total forces per unit of mass Fm can be
split in two parts, the specific acceleration Γ and the gravity g.

V̇ = −Ωb/i × V + Γ + g

Once projected onto Rb, it yields

d

dt


u

v

w

 = −


p

q

r

×

u

v

w

+


Γx

Γy

Γz

+


gx

gy

gz


where

(
Γx Γy Γz

)T
and

(
gx gy gz

)T
are the projection of Γ and g respectively onto the

Rb reference frame.
(

Γx Γy Γz

)T
corresponds to the measurements of the accelerometers

attached to the rigid body. We note
(
bΓx bΓy bΓz

)T
the biases of theses accelerometers.

105



Appendix D. Observability of accelerometer biases

The system writes in the state-space form

d

dt


Bx

By

Bz

 = −


p

q

r

×

Bx

By

Bz

+

(
∂ (B)b
∂Bb

)
u

v

w


d

dt


u

v

w

 = −


p

q

r

×

u

v

w

+


Γx

Γy

Γz

+


gx

gy

gz


d

dt


Γx

Γy

Γz

 = 0

d

dt


bΓx

bΓy

bΓz

 = 0

yB =


Bx

By

Bz



yΓ =


Γx

Γy

Γz

+


bΓx

bΓy

bΓz


The matrix of the dynamics A and the measurement matrix C of the system are thus.

A =


− [(Ω)b]

(
∂(B)b
∂Bb

)
03 03

− [(Ω)b] 03 I3 03

03 03 03 03

03 03 03 03


C =

I3 03 03 03

03 03 I3 I3



where [(Ω)b] is the matrix corresponding to the left-hand-side cross product by
(
p q r

)T
(see Equation (2.9)).
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It yields the following observability matrix O

O =



I3 03 03 03

03 03 I3 I3

− [(Ω)b]
(
∂(B)b
∂Bb

)
03 03

03 03 03 03

[(Ω)b]
2 −

(
∂(B)b
∂Bb

)
[(Ω)b] −

(
∂(B)b
∂Bb

)
[(Ω)b]

(
∂(B)b
∂Bb

)
03

03 03 03 03
...

...
...

...


Provided that

(
∂(B)b
∂Bb

)
has full rank, i.e. that the vector field is sufficiently non-uniform,

the observability matrix O has rank 12 because the block lines 1,2,3 and 5 are independent.
The state is thus fully observable. In particular, the accelerometer biases are observable.
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Appendix E

More on sensor set calibration

Compléments sur la calibration d’un jeu de capteurs

In this appendix, we consider a set of two 3-axis sensors (here magnetometers) to be
calibrated, and expose two calibration methods. The methods discussed here can easily
be extended to a wider array of sensors. The aim is to generalize the previously exposed
(see Section 4.2) simple but effective on-the-field calibration procedure used for a single
sensor to an array of sensors.

The calibration of the sensor array consists in determining calibration parameters (a
matrix and a vector) for each sensor, such that, once these parameters are used as
compensations,

• each sensor considered separately is well calibrated, i.e. its norm is constant if it is
rotated in a constant field,

• and all the sensors have the same output when they are put at the same location, i.e.
their measurements should have the same norm and the same orientation.

E.1 Method 1: first sensor taken as reference

This method proceeds in two steps. First, one of the two magnetometers is calibrated as
a single sensor (following, e.g. one of the methods presented in Section 4.2. Note A1 and
B1 its calibration parameters. Then, the second magnetometer is calibrated using the newly
calibrated measurements from the first sensor as references. The sought-after calibration
parameters are noted A2 and B2. This second step is performed by minimizing the following
cost function

f1(A2, B2) =

N∑
i=1

‖A2y2(i) +B2 − (A1y1(i) +B1)‖2

This is a classical least-squares problem which, despite the large number N of data, can
be solved easily and promptly. The first table-free calibration is run only once for the sensor
taken as reference (resulting in the parameters A1 and B1). Then, a simple least-square
algorithm is used for the second sensor. In the general case of an array of sensors, the least
square-algorithm is run once for each sensor of the array.
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Appendix E. More on sensor set calibration

E.2 Method 2: two independent calibrations followed by an
harmonization step

Another method is as follows. First, both sensors are calibrated separately. Then, an
harmonization step is performed so that both frames of coordinates have the same orientation.
In other words, a rotation matrix relating the measurements from the calibrated sensors is
calculated. In this last step, the function to minimize is detailed below in Equation (E.1). O12

is the sought after rotation matrix, whereas A1, B1, A2 and B2 are the calibration parameters
preliminarily obtained.

f2(O12) =
N∑
i=1

‖O12(A2y2(i) +B2)− (A1y1(i) +B1)‖2 (E.1)

E.3 Impact of experimental inaccuracies

M 1M 1 M 2

SensorSensor

Figure E.1: When calibrating two sensors, rotations are performed around one of the sensor,
while the other one is moving on a sphere (around the first sensor. The gradient of the sensed
field has thus an impact on the measurements of the second sensor.

The previous presented methods give good results in theory. Yet, several practical issues
must be considered. In particular, in view of actual on-the-field magnetometers calibration
which may be performed in slightly (or worse) magnetically perturbed areas, it is important
to determine whether this disturbances will significantly impact on the calibration results.
We now investigate the impact of a non-zero magnetic gradient being at the place the
calibration measurements are performed. For sake of simplicity, we consider that two 3-axis
magnetometers are used. Except when explicitly mentioned, we assume, without any loss of
generality, that the sensor 3-dimensional rotations are made around the first magnetometer,
as pictured in Figure E.1. This magnetometer is rotated strictly around a fixed point.
Therefore, it senses the exact same field during the rotations. By contrast, magnetometer 2,
which is attached on the same board as magnetometer 1, is moving on a sphere centered on
magnetometer 1. For this reason, magnetometer 2 does not measure the exact same field
during the calibration experiment because of the presence of the field gradient.
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E.3. IMPACT OF EXPERIMENTAL INACCURACIES

Figure E.2: Measurements and calibrated data for the two magnetometers. Sensor 1 is placed
at the center of rotation whereas sensor 2 is rotated around sensor 1. Due to the nature of the
center of rotation during the calibration, sensor 1 is well-calibrated while sensor 2 remains
slightly ill-calibrated.

E.3.1 Method 1

As previously discussed, both sensors do not measure the exact same value of the field when
its gradient is not zero. Consider x1(i) and x2(i) the (three dimensional) location of the
sensors where the ith measurement is performed. According to the discussed calibration
procedure, x1 is constant while x2 is moving on a sphere. Note the vector

δ12(i) = x2(i)− x1(i)

and the radius δ = ‖δ12(i)‖.
Note H the (vector) sensed field which is not spatially constant. We have

H(x1(i)) = H(x2(i)− δ12(i)) = H(x2(i))− ∂H

∂X
δ12(i) + o(δ2)
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The cost function to be minimized can be rewritten as follows

f1(A2, B2) =
N∑
i=1

‖A2y2(i) +B2 −H(x1(i))‖2

=
N∑
i=1

∥∥∥∥A2y2(i) +B2 −H(x2(i)) +
∂H

∂X
δ12(i)

∥∥∥∥2

+ o(δ2)

=

N∑
i=1

‖A2y2(i) +B2 −H(x2(i)) + ε12(i)‖2 (E.2)

with

ε12(i) =
∂H

∂X
δ12(i) + o(δ)

Let us note (A∗2, B
∗
2) the parameters minimizing f1 when δ is zero, i.e. the (ideal) calibration

parameters when the field value is known at the precise location of the sensor. It is assumed
to satisfy the following equation

A∗2y2(i) +B∗2 = H(x2(i)), ∀i = 1, . . . , N

A substitution in Equation (E.2) yields

f1(A2, B2) =
N∑
i=1

‖(A2 −A∗2)y2(i) + (B2 −B∗2)− ε12(i)‖2

Consider

E =



y2(1)T 0 0

0 y2(1)T 0 I3

0 0 y2(1)T

...
...

...
...

y2(N)T 0 0

0 y2(N)T 0 I3

0 0 y2(N)T


and, with A′ = A−A∗ and B′ = B −B∗, consider the vector of their components

Z ′ =
(
a′1,1 a

′
1,2 a

′
1,3 a

′
2,1 . . . a′3,3 b

′
1 b
′
2 b
′
3

)T
Then, with

Σ =
(
ε12(1)T ε12(2)T . . . ε12(N)T

)T
+ o(δ)

the cost function to be minimized can now be written

f1 =
∥∥EZ ′ − Σ

∥∥2
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which is minimized by

Z ′ =
(
ETE

)−1
ETΣ (E.3)

This last equation simply implies that the coefficients of the calibration parameters (A2, B2)
differ from the optimal ones (A∗2, B

∗
2) (determined when the gradient of the sensed field is

zero) by terms that are proportional to
∥∥∂H
∂X

∥∥.
E.3.2 Method 2

In the second method, both sensors are first calibrated separately before the harmonization
step is performed. This requires two sets of data instead of a single one. The first set
is obtained by rotating the system around magnetometer 1 and is used to calibrate this
magnetometer, whereas the second set of data is acquired when rotating the whole system
around magnetometer 2 in order to calibrate it. Of course, this procedure is more time-
consuming, but it cancels the impact of the disturbances of the sensed field onto the separate
calibration of the sensors. Yet, the following harmonization step still suffers from the
presence of a gradient, because the two distinct sets of data under consideration are slightly
inconsistent. Further, we shall note that, in view of practical implementation, this method has
two drawbacks. First, the time spent to acquire data for the calibration phase is proportional
to the number of sensors in the array (which can be as large as 9 in the application considered
in Chapter 5). Including the necessary position shifts of the center of rotation of the whole
system, this tedious work can take several hours. Secondly, it is difficult to perform the
full rotations exactly around the center of each of the sensors, especially with custom built
systems.

For these two reasons, we often prefer to leave out this second method in practical
applications.

E.3.3 Global iterative method

A last method is the one presented in details in Chapter 4.4. When the second magnetometer
does not see a field of constant norm during the rotations the error propagates through the
formula (

y1,k(i) + y2,k(i)

2 · ‖y1,k(i) + y2,k(i)‖

)
= H(x2(i)) + ε2,k(i)

where ε2,k(i) vanishes when x2(i) = x1(i). Both magnetometers are thus impacted by the
sensed field disturbances in a way similar to magnetometer 2 in method 1 (but with a lower
magnitude because of the averaging).

E.3.4 Comparison of the proposed methods

Method 1 leads to the quickest computation among the three candidate methods. It requires
only one set of experimental data. However, the sensor taken as reference plays a special
role. Changing this reference sensor leads to different calibration parameters. Method 2 is
the longest one to put into practice: one set of data has to be acquired for each sensor.
Moreover, it is difficult to actually make the rotations exactly around one sensor. But, if
carefully performed, it can more accurate, at least regarding the bias. Finally, the iterative
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method requires only one set of data but lasts a bit longer than method 1. However, all
sensors play similar roles. The method is completely symmetric.

In summary, method 1 or the iterative one can be preferred, to minimize tedious
calibration experiments, provided that the gradient of the sensed field remains reasonably
small in the area where the sensors are to be calibrated. The effects of this gradient is also
diminished if the sensors are located close to one another, as shown in Equation (E.3), though
this is not always possible to set them up like this in practice. With these methods, an array of
sensors can be efficiently and quickly calibrated using a single acquisition of data. A pictorial
representation of the calibration results for method 1 is presented in Figure E.2. In this
simplified planar scheme, two sensors are considered and a full rotation is performed. Raw
data which suffer from bias and misalignments take the form of two ellipses. The first sensor,
which is the one around which the rotation is performed, can be completely calibrated. This
yields a circle of calibrated measurements. On the other hand, due to presence of a non-zero
gradient of the sensed field, the data of the second sensor can not be perfectly calibrated. This
results is a close to circular set of calibrated data. The results presented here were obtained
in simulation. The errors have been magnified to stress the role of the field disturbances.
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A Kalman filter for attitude
determination

Un filtre de Kalman pour la détermination d’attitude

In this section, we detail an algorithm to estimate the attitude of a rigid body from two
or three sources of measurements. In the case where accelerometers and gyrometers are used,
only two of three attitude angles can be obtained. As is well known (see Wahba’s problem [113]
and a survey of solutions [59, 60] for a complete description), a second independent vector
measurement is needed to fully determine the orientation. This very simple algorithm, which
is presented here in a tutorial spirit, is the basis of many other implementations accounting for
biases and misalignments, models of noises, nonlinearities. . . Extensions and other approaches
are presented in [27, 75]. Magnetometers are often added to estimate the heading. However,
their use in building where there are magnetic disturbances can reveal erroneous. This case
of particular interest is addressed in [3].

The principles of the discussed attitude estimation problem (i.e. the orientation of
the body frame Rb with respect to Ri) is to present the attitude by a quaternion Q =(
q0 q1 q2 q3

)T
(see [99] for alternate representations of the attitude) and to assume that

accelerometers embedded onto the rigid body measure the opposite of the gravity vector(
0 0 g

)T
, here expressed in Ri, projected onto Rb. The embedded gyroscopes, whose

reading are
(
p q r

)T
, are used to account for the rotation dynamics.

The model of the rigid body rotation is

Q̇ =
1

2
M(p, q, r)Q
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where

M =


0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0


The accelerometer readings are

Y = −R(Q)


0

0

g


where

R(Q) =


2 ·
(
q2

0 + q2
1

)
− 1 2 · q1 · q2 + 2 · q0 · q3 2 · q1 · q3 − 2 · q0 · q2

2 · q1 · q2 − 2 · q0 · q3 2 ·
(
q2

0 + q2
2

)
− 1 2 · q2 · q3 + 2 · q0 · q1

2 · q1 · q3 + 2 · q0 · q2 2 · q2 · q3 − 2 · q0 · q1 2 ·
(
q2

0 + q2
3

)
− 1


To estimate the attitude using a KF, one simply has to linearize the equations above

(dynamics and measurement equation). At the discrete time k, using the time step δt,
consider X̂p [k] the vector containing estimates at index k of the quaternion Q, Σp [k] a 4× 4
matrix being the estimate of the covariance of X̂p [k], X̂e [k] a vector of the same size as X̂p [k]
and Σe [k] a matrix of the same size as Σp [k].

Update (propagate) X̂p and
∑

p as follows

X̂p [k + 1] = (I +A · δt) X̂e [k]

A =
1

2
M(p, q, r)

Σe [k + 1] =
(

Σp [k + 1]−1 + CTM−1
ρ C

)−1

Mη is a constant symmetric semi-definite 4 × 4 matrix standing for the covariance of
uncertainties on the dynamics equation.

Update (using measurements)

K = Σp [k + 1]CT
(
CΣp [k + 1]CT +Mρ

)−1
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Mρ is a constant symmetric definite 3× 3 matrix standing for the covariance of uncertainties
on the measurements

C = −2 · g ·


−q2 q3 −q0 q1

q1 q0 q3 q2

2q0 0 0 2q3


X̂e [k + 1] = X̂p [k + 1] +K

(
Y − CX̂p [k + 1]

)
Σe [k + 1] =

(
Σp [k + 1]−1 + CTM−1

ρ C
)−1
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Details on Adams-Bashforth
integration scheme

Détails sur le schéma d’intégration d’Adams-
Bashforth

In this Appendix, we detail the integration scheme used for discrete time implementation
of the filter equations. A point of particular interest is that the risks of divergence
that normally arise with explicit or implicit Euler schemes applied to rotational dynamics
(producing on the simple equation Ẋ = −Ω × X a diverging or a converging spiraling

trajectory, e.g. with Ω =

 0 1

−1 0

), the integration scheme must be of order higher than 1.

Due to its ease of implementation, the Adams-Bashforth scheme [1, §25.5.4, p.896] is a very
good choice. Analytic formulas for the weight of past values of the derivatives are available
in the literature, e.g. in [1, §25.5.4, p.896], but when one sample is missing, as can occur in
real-time implementation, other formulas, dealing with non-uniform time grids, can be used.
They are derived here.

Adams-Bashforth integration scheme uses an extrapolation technique from the knowledge
of past values of the right-hand side of the differential equation.

G.1 General principle

Consider a function y and its time derivative f such that

ẏ(t) = f(t)

One wishes to extrapolate the value of y at time t4 from y(t3) = y3 with t3 < t4, and past
values of f at time t0, t1, t2 and t3, i.e. estimate the integral

y4 = y3 +

∫ t4

t3

f(t)dt (G.1)
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In the Adams-Bashforth integration scheme, the function f is first approximated by a
Lagrange polynomial of degree 4 (in the case of the integration scheme of the 4th order),
denoted p(t). It takes the values f0 = f(t0), f1 = f(t1), f2 = f(t2) and f3 = f(t3) at
previous times t0 < t1 < t2 < t3. y3, f0, f1, f2 and f3 are assumed to be known.

The Lagrange polynomial writes

p(t) =

3∑
i=0

fi ·

 3∏
j=0,j 6=i

t− tj
ti − tj


Integral (G.1) can thus be approximated by replacing the function f(t) by the polynomial

p(t). One has

y4 = y3 +

∫ t4

t3

p(t)dt

With the notations

βi =
3∏

j=0,j 6=i

1

ti − tj
(G.2)

and

αi = βi ·

 t44 − t43
4
− t34 − t33

3
·

 3∑
j=0,j¬i

tj

 +
t24 − t23

2
·

 3∑
j=0,j¬i

3∏
k=0,k /∈i,j

tk


− (t4 − t3) ·

 3∏
j=0,j¬i

tj

 (G.3)

giving for instance

α0 = β0 ·
[
t44 − t43

4
− t34 − t33

3
· (t1 + t2 + t3) +

t24 − t23
2

· (t1 · t2 + t2 · t3 + t3 · t1)− (t4 − t3) · (t1 · t2 · t3)

]
︸ ︷︷ ︸

A

(G.4)

one obtains

y4 = y3 +

3∑
i=1

αi · fi

The coefficients βi, which depends on the time grid, correspond to the denominator of
the Lagrange polynomial. They can be computed for any time grid through Equation (G.2)
and only serve as intermediate variables in the computation of the coefficients αi. These
coefficients can be computed for any time-grid from Equation (G.3). The computation of one
such coefficient will now be exposed in the particular case of a uniform time grid.

G.2 Determining the weights for a regular time grid

Over a regular time grid, one has

δt = t4 − t3 = t3 − t2 = t2 − t1 = t1 − t0

120



G.3. COEFFICIENTS IN CASE OF A MISSING SAMPLE

Then Equation (G.3) can be rewritten in terms of t31 and δt only. It yields

t44 − t43
4

=
12 · t33 · δt+ 18 · t23 · δt2 + 12 · t3 · δt3 + 3 · δt4

12
t34 − t33

3
· (t1 + t2 + t3) =

36 · t33 · δt− 24 · t3 · δt3 − 12 · δt4

12
t24 − t23

2
· (t1 · t2 + t2 · t3 + t3 · t1) =

36 · t33 · δt− 54 · t23 · δt2 − 60 · t3 · δt3 + 12 · δt4

12

(t4 − t3) · t1 · t2 · t3 =
12 · t33 · δt− 36 · t23 · δt2 + 24 · t3 · δt3

12

The factor A in Equation (G.4) thus writes

A =
12 · t33 · δt+ 18 · t23 · δt2 + 12 · t3 · δt3 + 3 · δt4

12
− 36 · t33 · δt− 24 · t3 · δt3 − 12 · δt4

12

+
36 · t33 · δt− 54 · t23 · δt2 − 60 · t3 · δt3 + 12 · δt4

12
− 12 · t33 · δt− 36 · t23 · δt2 + 24 · t3 · δt3

12

=
27 · δt4

12

On the other hand

β0 =
1

(t0 − t1) · (t0 − t2) · (t0 − t3)
=
−1

6 · δt3

which finally gives

α0 =
−1

6 · δt3
· 27 · δt4

12
=
−9

24

Coefficients α1, α2, α3 can be computed in similar ways. The explicit formula for the 4th

order Adams-Bashforth integration scheme is simply (as given in [1, §25.5.4, p.896])

y4 = y3 +
δt

24
· (55 · f3 − 59 · f2 + 37 · f1 − 9 · f0)

As exposed in [61], the error of the sth order Adams-Bashforth scheme is of order O (δts).

G.3 Coefficients in case of a missing sample

Equation (G.2) and Equation (G.3) allow to compute the coefficients involved in the
integration scheme for any grid. We provide here the result, useful in practice, of a uniform
grid where one sample is missing. The position of the missing sample yields different
coefficient sets, used the one after the other as the missing sample gets in the past.

Sample missing between t3 and t4 In this case, one has t3 − t2 = t2 − t1 = t1 − t0 = δt
but t4 − t3 = 2 · δt, and the corresponding integration scheme is

y4 = y3 +
δt

3
· (27 · f3 − 44 · f2 + 31 · f1 − 8 · f0)

1The choice of t3 is arbitrary, one could have chosen any other point in the time grid.
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Appendix G. Details on Adams-Bashforth integration scheme

Sample missing between t2 and t3 In this case, one has t4 − t3 = t2 − t1 = t1 − t0 = δt
but t3 − t2 = 2 · δt, and the corresponding integration scheme is

y4 = y3 +
δt

96
· (161 · f3 − 206 · f2 + 200 · f1 − 59 · f0)

Sample missing between t1 and t2 In this case, one has t4 − t3 = t3 − t2 = t1 − t0 = δt
but t2 − t1 = 2 · δt, and the corresponding integration scheme is

y4 = y3 +
δt

144
· (293 · f3 − 206 · f2 + 94 · f1 − 37 · f0)

Sample missing between t0 and t1 In this case, one has t4 − t3 = t3 − t2 = t2 − t1 = δt
but t1 − t0 = 2 · δt, and the corresponding integration scheme is

y4 = y3 +
δt

96
· (211 · f3 − 200 · f2 + 94 · f1 − 9 · f0)
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Appendix H

Publications

Conference paper

[1] Eric Dorveaux, Thomas Boudot, Mathieu Hillion, and Nicolas Petit. Combining inertial
measurements and distributed magnetometry for motion estimation. In Proc. of the 2011
American Control Conference, 2011.

[2] Eric Dorveaux and Nicolas Petit. Harmonization of a multi-sensor navigation system. In
Proc. of the 2nd Indoor Positioning & Indoor Navigation Conference, 2011.

[3] Eric Dorveaux, David Vissière, Alain-Pierre Martin, and Nicolas Petit. Iterative
calibration method for inertial and magnetic sensors. In Proc. of the 48th IEEE Conf. on
Decision and Control, pages 8296 –8303, dec. 2009.

[4] Eric Dorveaux, David Vissière, Alain-Pierre Martin, and Nicolas Petit. Time-stamping for
an array of low-cost sensors. In Proc. of the PDES 2009, IFAC workshop on Programmable
Devices and Embedded Systems, 2009.

[5] Eric Dorveaux, David Vissière, and Nicolas Petit. On-the-field calibration of an array of
sensors. In Proc. of the 2010 American Control Conference, 2010.

Journal paper

[1] Pierre-Jean Bristeau, Eric Dorveaux, David Vissière, and Nicolas Petit. Hardware
and software architecture for state estimation on an experimental low-cost small-scaled
helicopter. Control Engineering Practice, 18(7):733–746, 2010.
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Navigation Magnéto-Inertielle
Principes et application à un système podométrique indoor

Résumé: Cette thèse présente la technique de navigation magnéto-inertielle (MINAV)
qui utilise les perturbations du champ magnétique en complément de capteurs inertiels
(accéléromètres et gyromètres) pour la localisation d’un corps rigide en mouvement. On étudie
des règles de conception, ainsi que des procédures opératoires nécessaires à la mise en pratique
dans des conditions réelles. Un exemple de système complet, le “podomètre magnéto-inertiel”,
permettant la localisation d’un piéton évoluant dans des zones où le GPS est indisponible, est
présenté.
Mots clés: navigation inertielle, navigation dans les bâtiments, positionnement dans les
bâtiments

Magneto-Inertial Navigation
Principles and application to an indoor pedometer

Abstract: This thesis presents the magneto-inertial navigation technique (MINAV) using
magnetic disturbances and inertial sensors (accelerometers and gyrometers) to address the
positioning problem of a rigid body in motion. The manuscript provides design guidelines and
procedures enabling the creation of a system implementing this technique in real conditions.
An example of operational system, the “magneto-inertial pedometer”, providing a GPS-free
indoor navigation solution is presented.
Keywords: inertial navigation, indoor navigation, indoor positioning
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