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ABSTRACT 
 
 
 
 
 
 
  Sub-meter resolution satellite images, capture very detailed information, as for 
example, shape of buildings and industrial installations, detailed road and road 
furniture structures, vehicles, etc. Thus, their information content is incredibly rich 
and also complicated to be extracted. The classical image descriptors as spectral 
information, texture, shape, etc., are not any more sufficiently accurate to describe the 
image content.  The main purpose of the thesis is to propose descriptors for Sub-
meter resolution satellite images especially for those who contain geometrical or man-
made structures. Independent Component Analysis (ICA) is a good candidate for this 
purpose, since previous studies demonstrated that the resulted basis vectors contain 
some small lines and edges, the important elements in the characterization of 
geometrical structures. 
   As a basic analysis, a study about the effects of scale size and dimensionality of ICA 
system on indexing of satellite images is presented and the optimum dimensionality 
and scale size are found.  
   There are two view points for feature extraction based on ICA. The usual idea is to 
use the ICA coefficients (ICA sources) and the other is to use the ICA basis vectors 
related to every image. Based on the first point of view, an ordinary ICA source based 
approach is proposed for feature extraction. This approach is developed and 
modified through a Topographic ICA system to extract middle level features which 
leads to a significant improvement in results.  
    Based on other point of view, two methods are proposed. One of them uses the Bag 
of words idea which considers the basis vectors as visual words. Second method uses 
the lines properties inside the basis vectors to extract features. Also, using the lines 
properties idea, another method is developed which directly detects the line 
segments in the images.  
   Finally, the capabilities of proposed descriptors are compared through a supervised 
classification based on Support Vector Machine (SVM).      
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0  RESUME EN FRANÇAIS   
 
 

0.1 Introduction 
    
  Les images satellites haute résolution contiennent des informations très détaillées 
comme la forme des bâtiments, les zones industrielles, les structures des routes, les 
véhicules, etc.  Ainsi, leur contenu d'information est hyper riche, et aussi très 
compliqué à extraire.   Parmi les paysages différents, les zones urbaines et des 
structures géométriques sont les paysages plus compliqués  pour les différant 
domaines de recherches. 
    Nous allons extraire les indices intrinsèques des images satellite et proposer les 
descripteurs robustes. En utilisant ces descripteurs,  nous serions capables de 
reconnaître une variété des paysages, en particulier, les structures géométriques au 
sein des images satellite très haute résolution. Par exemple, nous pouvons trouver des 
zones urbaines similaires dans une image satellite très large.  
  Nous insistons sur les formes géométriques ou des structures artificielles comme les 
sujets de caractérisation, parce que normalement il n'ya pas des difficultés majeures 
pour la description des paysages naturelles. Figure 0.1 (a) montre une partie d’une 
forêt comme un exemple des paysages naturels. Normalement, les paysages 
naturels ont des propriétés qui nous permettent d'utiliser un certain nombre de 
caractéristiques de texture comme leurs descripteurs. Par exemple, les 
changements dans les paysages naturels normalement se produisent d'une manière 
quasi périodique et continue.  
   De plus, généralement, ils ne contiennent pas des lignes distinctes ou des 
objets géométriques. D'autre part, dans les structures artificielles nous trouvons 
souvent des objets géométriques, contenant des lignes et des bords, qui ne sont pas 
nécessairement distribuées d’une manière régulière. Ainsi, ce type d'images, en 
comparaison avec les paysages naturels, ne peuvent pas être décrits correctement 
avec les caractéristiques de texture. Figure 0.1 (b) montre une zone urbaine comme un 
exemple de structures artificielles. 
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L’Analyse en Composantes Indépendantes (l’ACI) est la base théorique de cette 
thèse. Bell et Senjowski [2] ont utilisé l'ACI pour les images naturelles et ont 
trouvé que les composantes indépendantes des images contiennent des lignes et les 
bords courts. Ceci est une propriété importante pour la caractérisation des structures 
géométriques, puisque les objets géométriques contiennent normalement des lignes et 
des bords. Donc, l'ACI est une candidate appropriée pour définir les descripteurs des 
patches des images satellite contenant des structures géométriques. 
   Dans la figure 0.1, il y a deux patches des images satellite, une de forêt et d'autres de 
la zone urbaine. Aussi, il y a des exemples des vecteurs de base de l'ACI qui 
sont obtenus pour chaque catégorie de données. La différence entre les deux 
ensembles des vecteurs de base est un signe de la capacité de d'ACI pour la 
caractérisation des images satellite. En particulier, les bords et les lignes dans les 
vecteurs de base de la région urbaine démontrent que l'ACI peut détecter les 
caractéristiques principales des structures géométriques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 0.2 montre un schéma des contributions de thèse. La première contribution de 
thèse est une investigation sur l’effet de la taille de l’échelle et la dimension d’un 
système de l’ACI qui est utilisé pour caractérisation des images satellite. Cela nous 
aide à choisir le framework de notre modèle de l’ACI pour extraire des 
caractéristiques. On propose deux groupes des descripteurs pour les images satellites 
haute résolution. Le premier groupe contient deux types des descripteurs qui sont 
basés sur les coefficients (les sources) de l’ACI ordinaire ou l’ACI topographique et le 

d 

a 

c 

b 

Figure 0.1 Un exemple de deux classes des images satellites et  les 
vecteurs de base d’ACI. (a): Forêt, typiques des paysages naturels, (b): 
Zone urbaine, typique des structures géométriques. (c) et (d): Vecteurs 
de base d'ACI obtenues pour deux classes.  Les vecteurs de base de 
zone urbaine contiennent des lignes, des bars, des bords, etc. Vecteurs 
de base de forêt sont plus homogènes. 
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deuxième contient deux types des descripteurs qui sont basés sur les propriétés des 
vecteurs de base de l’ACI. En se basant sur notre expérience en l’ACI, nous proposons 
un autre descripteur qui extrait les caractéristiques des lignes dans les images 
satellites. Finalement, les capacités des descripteurs proposés sont comparées grâce 
à une classification supervisée basée sur la Machine à Vecteurs de Support.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
 
 
 
 

0.2 Quels types de caractéristiques avons-nous besoin? 
 
  Les caractéristiques de texture présentent une interprétation universelle du paysage 
mais ne présentent pas des informations détaillées des objets dans le paysage. Au 
contraire, les descripteurs locaux et les opérateurs morphologiques sont des 
méthodes capables pour détecter les objets géométriques et caractériser la zone 

Figure 0.2 Un schéma des contributions de thèse. Il contient une 
investigation sur l’effet de la taille de l’échelle et la dimension d’un 
système de l’ACI, proposition des descripteurs basé sur l’ACI (ou 
l’ACIT) et vérification des descripteurs proposés grâce à une 
classification supervisée basé sur la Machine à Vecteurs de Support. 
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urbaine, mais ils sont souvent compliqués et avec des vecteurs caractéristique très 
grands. En effet, nous avons besoin des caractéristiques, ni exactement au niveau de la 
texture et ni au niveau des descripteurs locaux. En outre, les descripteurs locaux et les 
opérateurs morphologiques sont généralement utilisés pour détecter les objets, 
mais nous n'allons pas détecter des objets géométriques dans les images satellite. Le 
but principal de cette thèse est de proposer des descripteurs pour les patches des 
images satellite  contenant des paysages différents, en particulier, les 
structures géométriques ou artificielles. 
 
 

0.3 Images satellite optiques d’une résolution sub-métrique  
 
 Dans cette thèse, nous allons extraire les caractéristiques des images satellitaires 
optiques. Ces caractéristiques sont relatives aux propriétés spatiales des images et les 
caractéristiques des couleurs des images ne sont pas importantes. Ainsi, nous avons 
seulement besoin des images en niveaux de gris pour nos méthodes d’extraction de 
caractéristiques. En d'autres termes, les images satellites panchromatiques  
optiques sont convenables à  l’objective de notre recherche. Cependant, nous pouvons 
utiliser les images satellites multispectrales, mais d’abord, on les transforme en 
images en niveaux de gris.  
  La résolution spatiale est le paramètre le plus important des images satellitaires qui 
sont traitées dans cette thèse. Le but de thèse est de définir des descripteurs pour les 
images satellites contenants  des structures géométriques ou artificielles. Les détails 
de ce genre de structure ne sont pas visibles dans les images d’une résolution 
spatiale plus d’un mètre par pixel. Par conséquent, nous ne considérons que les 
images avec une résolution spatiale d’un mètre ou sub-métrique. Par exemple, les 
images de QuickBird d’une résolution spatiale de 60cm  ou des images Ikonos avec 
une résolution spatiale  d’un mètre sont convenables à nos besoins. 
 
 

0.3.1 Patch contextuel, Micro-patch   
  
   Les images satellite  ont normalement les tailles très larges et contiennent une variété 
de paysages artificiels ou naturels. Par conséquent, la définition des caractéristiques de 
ces grandes images n'est pas raisonnable. Pour l'extraction des caractéristiques, nous 
avons besoin des patches d’images plus petites, qui ne contiennent qu'un seul type de 
structure ou paysage. Bien que nous sommes capables d'extraire les 
caractéristiques pour les images contenant de nombreuses classes de paysages, 
ceci n'est pas souhaitable car chaque vecteur des caractéristiques est censé décrire une 
seule classe de paysage. 
   Nous devons considérer nos patches suffisamment grands afin qu'ils contiennent un 
certain nombre d'objets et un contexte clair. Autrement dit, ils doivent présenter un 
paysage significatif. Par exemple, si un patch contient un seul bâtiment ou une 
partie d'un immeuble sans un contexte clair, il pourrait être idéal pour le but de 
détecter des objets mais il n'est pas approprié pour l'objectif de notre travail. En outre, 
si notre patch est trop grand, il peut contenir plusieurs parties, chacune d'entre elles 
pourrait être individuellement considérée comme un paysage interprétable. 
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     Nous appelons les patches pour lesquelles nous allons définir les descripteurs les 
patches contextuels. En d'autres termes, nous cherchons des patches d'images qui 
peuvent présenter un certain nombre des formes géométriques comme les maisons, les 
immeubles et autres structures artificielles avec un contexte clair. Nous insistons sur 
le mot contexte pour séparer notre tâche de la détection des objets. Comme nous 
travaillons avec les images satellitaires avec la résolution sub-métrique, il semble 
que la taille des patches contextuels entre 100*100 pixels à 300*300 pixels soit 
raisonnable. Dans cette thèse, nous travaillons avec les patches contextuels de la taille 
de 200* 200 pixels. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  Néanmoins, les patches contextuels restent grands pour être utilisés directement dans 
certaines méthodes d'extraction des caractéristiques expliquées dans la thèse. Donc, 
nous recueillons un certain nombre de patches plus petits, Micro-patches,  
depuis chaque patch contextuel pour être traitées dans la procédure d'extraction des 
caractéristiques. Trois niveaux des images sont illustrés dans la Figure 0.3. 
 
 

0.4 Etat de l'art 
   
   L'idée de l'Analyse en Composantes Indépendantes (l'ACI) est de réduire la 
redondance de données sans perdre les caractéristiques importantes de données. 

Méthodes de 

l’extraction de 

caractéristiques  

basées sur l’ACI 

 Image satellite 

 Patch contextuel 

Micro-patch 

Figure 0.3  Trois niveaux des images qui sont utilisées dans cette 
thèse. Les images satellites initiales contiennent plusieurs classes 
de paysages. Les patches contextuels contiennent généralement une 
classe de paysage et conviennent à l'extraction de caractéristiques. Les 
Micro-patches extraits de chaque patch contextuel  sont utilisés 
dans les procédures d'extraction de caractéristiques basées sur 
l'ACI car les patches contextuels sont trop grands pour être utilisé 
directement dans la procédure de l'ACI. 
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Barlow [1] a mentionné que le cerveau humain mémorise des informations de 
l'environnement visible et  les utilise pour diminuer la redondance de données. Ici, la 
redondance a un sens de la dépendance statistique. Par exemple, si nous voyons une 
voiture, nous attendons de voir aussi une route. Autrement dit, il existe une 
corrélation statistique ou la dépendance entre la voiture et la route dans notre cerveau, 
parce que, habituellement, nous les voyons ensembles. L'idée initiale de l'ACI est 
similaire mais, ici la dépendance est mesurée entre les niveaux de gris des pixels d'une 
image qui sont considérés comme des variables aléatoires. 
   Séparation Aveugle de Sources a été l'un des premiers problèmes pour lequel l'ACI a 
été élaboré. De l’autre côte, il peut être considéré comme une forme généralisée de 
l'Analyse en Composantes Principales (l'ACP). 
   Une étude importante a été faite par Bell et Senjowski [2] qui ont utilisé l'ACI pour 
des images naturelles. Ils ont trouvé que les composants indépendants des images 
contiennent des lignes courtes et les bords. Olshausen et Field [3] ont démontré que 
des propriétés similaires peuvent être trouvées dans le système visuel humain. 
Existence des bords et des lignes dans les composants de l'ACI est aussi intéressante  
pour notre recherche. Parce que, nous cherchons certains modèles pour manipuler des 
caractéristiques de bords des objets dans les images satellites. 
    Plusieurs méthodes qui appliquent l'ACI pour les images existent. La plupart de 
ces méthodes utilisent des modèles simples de l'ACI, mais certains d'entre eux 
utilisent un modèle combiné de l'ACI comme la méthode proposée par Lee, Lewicki, et 
TJ Sejnowsk [4]. Un exemple de l’utilisation de l'ACI pour les données de 
télédétection est l'étude effectuée par Zhang, X. et CH Chen [7]. En outre, Zhang et 
al [8] a proposé une méthode basée sur l'ACI pour la classification des images de la 
télédétection.  Bien que l'ACI est fréquemment utilisé pour certains types d'images 
telles que des images naturelles, des images du texte et des images du visage, il n'a pas 
été très utilisé pour la caractérisation des images satellite. Ce dernier peut ouvrir un 
domaine de recherche, notamment, l’utilisation de l'ACI pour la caractérisation 
des images satellite. 
 
 

0.5 Fondements de l'Analyse en Composantes Indépendantes 
 

    Il est supposé qu'il y a un ensemble de n sources d'information  

( n21 s,...,ss , ), chacune d’entre elles est statistiquement indépendante par rapport 

aux autres. Autrement dit, la valeur de chaque source n'a aucun effet sur les 
valeurs d'autres sources. Du point de vue statistique, nous pouvons considérer ces 
sources comme des variables indépendantes aléatoires. L'ensemble de ces 
variables peuvent être indiquées avec un vecteur aléatoire qui est appelé le vecteur des 

sources (
T

n21 s,...,sss ],[ ). Ensuite, nous supposons que les composants 

indépendants sont combinés par un processus linéaire. En d'autres termes, nous avons 

un ensemble de variables observées, ( m21 x,...,xx , ) qui sont eux-mêmes des 

variables aléatoires parce qu'elles sont produites comme des combinaisons 
linéaires des variables aléatoires initiales. Nous noterons l'ensemble des variables 

aléatoires observées avec un vecteur aléatoire (
T

obs m21 x,...,xxx ],[ ) et nous 
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appelons ce vecteur vecteur observé ou signal observé:   
    

          
s

s

s

s

x

x

x

x

nmnmm

n

n

m
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




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22221

11211
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1
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aaa
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  La matrice A est appelée matrice de mixture, puisqu'elle mixe les sources 
indépendantes. Nous pouvons réécrire l'équation (0.1) comme suit: 
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    Les vecteurs naaa ,,, 21  ont la même dimension que le signal observé. Ces 

vecteurs peuvent être considérés comme les vecteurs de base d'un nouvel espace pour 
représenter nos données. Donc, ils sont appelés les vecteurs de base. 
   Si nous utilisons l'ACI pour les images, nos signaux observés peuvent être considérés 
comme des petites images (micro-patches) qui sont recueillies depuis des 
images initiales. Donc les vecteurs de base de l'ACI auraient la même taille que les 
micro-patches : 
     
 
     
    
  
 
 
 
   
 

    
   
 
 

(0.1) 

(0.2) 

Figure 0.4 : Les signaux observés et vecteurs de base  quant on 
applique l'ACI pour les images. 
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  L’Analyse en Composantes Indépendantes est la procédure d'estimation des vecteurs 
de base telle que les sources de l'ACI seraient les plus indépendants que possible. En 

d'autres termes, un ensemble des signaux observés, )(kobsx  , est donné et nous allons 

estimer la matrice de mixture, A ,qui contient les vecteurs de base, naaa ,,, 21  , et 

l'ensemble des sources pour chaque signal observé, )(,),(),( 21 kkk nsss   ,de telle 

sorte que ces sources seraient, statistiquement, les plus indépendantes possible. 
 
 

0.5.1 Mesure de l'indépendance statistique 
 
     Il n'existe pas un moyen simple pour mesurer l'indépendance parmi un ensemble 
des variables aléatoires. Théorème central limite sous certaines conditions peut nous 
aider à évaluer le montant de l'indépendance existant entre des variables aléatoires. Ce 

théorème exprime que si nous créons une combinaison linéaire de n variables 

aléatoires indépendantes, la distribution de nouvelle variable aléatoire tend vers 

une distribution Gaussienne si n tend vers l'infini. En d'autres termes, une somme de 

deux variables aléatoires indépendantes généralement a une distribution qui est plus 
proche de Gaussienne que chacune des deux variables aléatoires initiales. 

    Nous avons supposé que obsx  est une mixture des sources indépendantes. Nous 
définissons une nouvelle variable aléatoire, comme la combinaison linéaire des 

composantes de obsx  : 
                                   

                                                 obs

T

ii xwxw=z      

 

 west un vecteur qui détermine les coefficients de la combinaison linéaire. On peut 

remplacer obsx  par sA  : 
 

                               ii

TT

obs

T
sv=sv=sw=xw=z A  

 

  v est un nouveau vecteur  qui est défini comme w=v
T

A . Alors, z est une 
combinaison linéaire des sources indépendantes. Selon le théorème central 
limite, la variable aléatoire z  est plus Gaussienne que chacune des sources et elle 
devient moins Gaussienne quand il est égal à l'un des sources.  

    Dans ce cas, une seule composante de vecteur v est non nulle. Par conséquent, 

l'objectif est d'estimer vecteur w  telle qu'elle maximise le non-Gaussianité de z . Ce 

vecteur correspond à un vecteurv qui n'a qu'une seule composante non nulle. Ainsi, la 
procédure d'apprentissage peut commencer par la sélection d'une valeur initiale pour 

le vecteur w . Ensuit, dans les étapes d'apprentissage, nous essayons de trouver les 
maxima locaux de critère du non-Gaussianité  de la variable z . 
   Selon notre critère pour non-Gaussianité on peut établir un algorithme 
d'apprentissage. Dans cette thèse, nous utilisons l'algorithme FastICA [5] pour 
l'estimation les vecteurs de base de l'ACI.    

(0.3) 

(0.4) 
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0.6 ACI pour les images satellite: effets de taille des échelles 
et de dimension 
      
  Il ya une relation entre la taille des vecteurs de base de l'ACI et capacité du système 
pour la caractérisation des images satellite. Normalement, si on augmente la taille des 
vecteurs de base de l'ACI, notre système sera plus capable pour caractériser les images 
satellite. Par contre, le volume des calculs augmentera aussi. Ainsi, nous ne pouvons 
pas augmenter la taille des vecteurs de base de l'ACI sans limite.  
 
 
     
 
 
 
 
 
 
 
 
 
       
 
 
   Une relation similaire existe entre la dimension de système l'ACI  (le nombre de 
composants de l'ACI ) et la capacité du système pour caractérisation des images 
satellites. Notre but est de trouver les points optimaux pour la taille des vecteurs de 
base de l'ACI et le nombre de composants.  
 
 

0.6.1 Effet de dimension  
 
    La dimension du système est exprimée par le facteur de réduction (r) qui est le 

nombre normalisé de composants  de l'ACI. Autrement dit, le nombre de 

composants de l'ACI divisé par n2 qui est la taille des vecteurs de base de l'ACI. Ça 

signifie que les vecteurs de base sont des fenêtres de n * n pixels. 

   Une façon d'évaluer l'efficacité d'un système de l'ACI est de comparer les  micro-

patches initiales ( x ) et leurs  micro-patches correspondants qui sont reconstruites en 

utilisant les coefficients de l'ACI ( x̂ ). Une approche habituelle pour comparer les 
deux micro-patches est l'erreur de reconstruction qui est calculé avec l'équation (0.5): 
       

                              )(/)ˆ(
22

)( xxxe meanmean  

  
  Nous devons considérer deux paramètres: l'erreur de reconstruction et le temps de 
calcul. Ceci peut être exprimé par l'optimisation d'une fonction de coût comme: 

+
 =

 
S1 S2 +

 Sn +
 . . . 

a1 a2 an 

+
 S’2 +

 S’m +
 . . . 

a’1 a’2 a’m 

=
 S’1 

Figure 0.5 : L’effet de la dimension et la taille des échelles du 
système de l'ACI sur la caractérisation des images satellite doivent être 
étudiées 

(0.5) 
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                                    )()1()()( rekrktrCF  

    

    r est le facteur de réduction  et k est un paramètre qui représente l'importance 

de temps de calcul (t) par rapport à l'erreur de reconstruction (e). L’idée est d’obtenir le  

temps du calcul  et l'erreur de reconstruction comme deux fonctions du facteur de 
réduction. La fonction de coût  est la combinaison de ces deux fonctions et le but est de 
trouver le minimum de cette fonction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Nous voyons que pour les valeurs raisonnables de k, le facteur de réduction optimal 
varie entre 0,08 et 0,14. 
 
 

(0.6) 

(a) (b) 

(c) 

Figure 0.6: Détermination du facteur de réduction optimal (la 
dimension optimal) (a): Temps de calcul  comme une fonction du 
facteur de réduction. (b): Erreur de reconstruction comme une 
fonction du facteur de réduction (c): Fonction de coût comme une 
fonction du facteur de réduction. 



18 

 

 

 

0.6.2 Effet de la taille d'échelle 
 
   Nous pouvons utiliser une approche similaire pour trouver la taille optimale des 
échelles.  Nous définissons une fonction de coût comme l'équation (0.6) mais, cette fois 
en fonction de la taille des vecteurs de base: 
         

                                      )()1()()( mekmktmCF  

  

 Pour des valeurs raisonnables de k, la taille optimale des échelles est obtenue autour 
de 16*16. 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.6.3  Filtres de Gabor comme une étape de prétraitement 
 
   Nous avons découvert que dans certains vecteurs de base de l'ACI, nous ne voyons 
que des petits changements au niveau des coins et le reste de la surface des vecteurs de 

(0.7) 

(a) (b) 

(c) 

Figure 0.7: Détermination de la taille optimale des échelles (a): Temps 
de calcul  comme une fonction de la taille des échelles. (b): Erreur de 
reconstruction comme une fonction de la taille des échelles. (c): 
Fonction de coût comme une fonction de la taille d'échelle. 
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base ne contient pas  d’information importante. Nous  proposons d'utiliser des 
filtres de Gabor-ondelettes pour mesurer la quantité des changements qui sont placés 
dans les parties centrales du patch d'apprentissage. Nous avons fourni un ensemble 
des 100 filtres de Gabor  situé en  10 échelles de l’angle et 10 échelles de la fréquence. 
 Pour chacun, le point d'origine est considéré comme le pixel central du filtre. Un 
patch d'apprentissage est sélectionné si son énergie correspondant à ce système est 
supérieure à un certain seuil.  
  
           
 
    
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Un exemple de résultat d’utilisation de cette étape de prétraitement est montré dans le 
Figure 0.9.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.8: Filtres de Gabor comme une étape de prétraitement. 

a b 

Figure 0.9: Résultat d’utilisation des filtres de Gabor comme une étape 
de prétraitement. (a) : Les vecteurs de base  qui sont obtenu 
avec une procédure ordinaire. 8 vecteurs de base présentent seulement 
les petits changements à leurs coins (b) : Les vecteurs de base  qui sont 
obtenu avec une étape de prétraitement  de filtres de Gabor. Nombre 
de tels vecteurs de base est réduit à 2. 
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   0.7  L’extraction de caractéristiques basée sur les sources de 
l’ACI 

     
     Il ya deux points de vue pour l'extraction de caractéristiques à l'aide de l'ACI. 
L'approche habituelle est basée sur les coefficients de l'ACI (les sources de l’ACI) et 
l'autre est basé sur les vecteurs de base de l'ACI. Dans ce chapitre, nous expliquons 
l'idée de l'extraction de caractéristiques depuis des coefficients de l'ACI. Cette idée est 
illustrée dans la Figure 0.10. Nous recueillons un nombre suffisant des micro-patches 
et les décomposons sur l'ensemble des vecteurs de base. Pour chaque micro-patch, 

nous obtenons un ensemble de n sources. Nous appliquons la moyenne 
quadratique sur les échantillons différents d’une source  et nous obtenons une 
caractéristique pour cette source. 
 
    
 
 
 
 
 
 
 
 
   
 
 
 

0.7.1  Amélioration de l'ensemble des vecteurs de base 
     
      Nous proposons une approche pour améliorer l'ensemble des vecteurs de base 
pour le cas où le but est de séparer la classe de zone urbaine  et la classe de zone non 
urbaine. Nous combinons les vecteurs de base les plus importants de chaque classe 
pour fournir un nouvel ensemble de vecteurs de base.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.10: L’extraction de caractéristiques basée sur les sources de 
l’ACI 
 

Figure 0.11: Nouvel ensemble de vecteurs de base. Les deux lignes 
supérieures sont les 12 vecteurs de base  les plus significatifs de la 
classe de la zone urbaine et les deux lignes inférieures sont les 12 
vecteurs de base  les plus significatifs de la classe de la zone non 
urbaine. 
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   0.8 Caractéristiques basée sur  l’ACI Topographique  
 
   L'indépendance entre les composantes de l'ACI complique l'utilisation des 
résultats de l'ACI, puisque nous ne connaissons pas la priorité et l'importance des 
composantes. L'ACI Topographiques est une version améliorée et généralisée de 
l'ACI. Cette dernière  nous conduit à réduire le nombre de caractéristiques qui 
sont extraites pour les images. Selon le modèle de l'ACI, les composants sont censés 
être indépendants et il n'ya aucune relation entre les composants différents. Par 
conséquent, nous devons considérer l'ensemble des composants comme le vecteur de 
caractéristiques. Cependant, en l'ACI Topographique (l’ACIT) [43] la dépendance 
entre deux composants est une fonction de leur distance dans la topographie. Ces 
dépendances peuvent être utilisées pour extraire des caractéristiques de niveau 
intermédiaire et de réduire la dimension du vecteur de caractéristiques. La procédure 
de génération des vecteurs de base de l’ACIT est un peu plus compliquée mais le 
résultat est bien effectif pour définir les caractéristiques.  Figure 0.12 montre la 
différence entre un ensemble des composants de l’ACI simple et un ensemble des 
composants de l’ACI Topographique. 
 
      
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Nous pouvons combiner un ensemble de composants de l'ACI,qui sont 
censés dépendants, pour produire une caractéristique de niveau intermédiaire.  Dans 
notre modèle, le voisinage du système de l'ACIT est 5 * 5 composants et nous 
prenons la moyenne des 25 caractéristiques ordinaires (composants de l'ACIT) comme 
une caractéristique de niveau intermédiaire. Figure 0.13 montre les régions de 
topographie qui génèrent les 9 caractéristiques de niveau intermédiaire. 

a b 

Figure 0.12: (a) L’ACI ordinaire. L’ordre des composants n’est pas 
important. Il n’y a aucune relation entre les composants (b) L’ACI 
Topographique. Chaque composant a une position spécifique dans la 
topographie. Les composant sont censées dépendants dans les  régions 
locaux.         
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0.9 Caractéristiques basée sur  les vecteurs de base de 
l’ACI: Sac de mots 
 
  Dans la littérature de l’ACI, les caractéristiques sont normalement obtenues par un 
traitement de sources de l’ACI. Dans la thèse, nous proposons des méthodes qui 
extraient les caractéristiques depuis les vecteurs de base de l'ACI. La première 
méthode utilise une modèle sac de mots pour traitement des vecteurs de base de l’ACI. 
   Le sac de mot est une modèle pour traitement des textes. Il représente un document 
de texte comme un histogramme qui montre les répétitions des mots de dictionnaire 
dans le document.  Alors, on doit déterminer une analogie entre les textes et  les 
images. Nous définissons les patches contextuels comme les documents visuels. Après 
une procédure d’apprentissage  de l’ACI pour chaque document (patch contextuel), les 
vecteurs de base correspondants sont obtenus et considérés comme les mots de 
document. 
  La prochaine étape est de définir le dictionnaire, un ensemble de tous les mots 
autorisés dans le modèle sac de mots. Nous proposons deux approches pour le définir. 
La première utilise une méthode de clustering  parmi tous les vecteurs de base. Pour 
chaque cluster on prend son centre comme un mot de dictionnaire. La deuxième 
approche fournie un ensemble de vecteurs de base pour chaque classe des images 
satellites et collecte ces ensemble de vecteurs de base. 
   La dernier étape  est l’étiquetage dans le quel pour chaque mot (vecteur de base) de 
document nous choisissons le mot de dictionnaire qui est le plus similaire au mot de 
document. Pour cela on utilise la corrélation entre les deux mots comme un critère de 
la similarité. Finalement, nous avons un descripteur pour chaque patch contextuel: 
l’histogramme qui montre les répétitions des mots de dictionnaire. Figure 0.14 est un 
schéma de la caractérisation des images satellite grâce à un modèle sac de mots pour 
les vecteurs de base des patches contextuels.  

Figure 0.13: Génération des  9 caractéristiques de niveau intermédiaire  
grâce à dépendance des composants de l’ACIT.  
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Document i 

 Dictionnaire 
 D1 

 D64 

 L’ histogramme 

Wi,1 

Wi,25 

 Les vecteurs de 
base de document 

 L’étiquetage 

Figure 0.14: Caractérisation des patches contextuels grâce à un modèle 
sac de mots pour les vecteurs de base des patches contextuels. Chaque 
patch contextuel est considéré comme un document et ses vecteurs de 
base comme ses mots. Le descripteur est l’histogramme qui montre les 
répétitions des mots de dictionnaire dans le document. 
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0.10 Caractéristiques basée sur  les vecteurs de base de l'ACI: 
les lignes des vecteurs de base 
  
    L’autre idée pour extraire les caractéristiques depuis les vecteurs de base de l'ACI 
est de détecter des contours dans les vecteurs de base et les modeler comme les lignes 
directes.  Les caractéristiques sont définies comme les propriétés des lignes des  
vecteurs de base. Figure 0.15 montre les étapes différentes de cette idée. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.15: Caractérisation des patches contextuels grâce 
aux propriétés des lignes des vecteurs de base. Les lignes approximé 
dans les vecteurs de base d’un patch contextuel peut être considérés 
une signature pour patch contextuel. 

Fournir les vecteurs de 
base de patch contextuel 

Detection des 
contours 

Approximation des 
lignes 

Longueur, Gradient, 
Angle  
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  Pour un patch contextuel, d’abord, on doit  fournir les vecteurs de base de l’ACI. 
Nous détectons les contours dans les vecteurs de base de l’ACI grâce à l’operateur 
Sobel qui est une méthode simple de gradient du premier ordre. Après, les contours 
doivent être modelés par des lignes directes. Les méthodes classiques d’estimation des 
lignes (Hough, par exemple) sont normalement lentes et compliquées. Nous 
proposons, donc, notre méthode pour estimation des lignes directes. Cette méthode 
estime les lignes de trois pixels et ajoute des pixels à deux cotés jusqu’à ce que la 
direction de ligne ne change pas. La longueur, l’amplitude de gradient, et l’angle des 
lignes sont pris comme les propriétés plus importantes. Pour chaque propriété on 
détermine les boîtes, chacune représente un certain intervalle, et on dépose chaque 
propriété de ligne dans la boîte correspondante. Le nombre des éléments dans chaque 
boite est définie une caractéristique de patch contextuel. 
 
 

0.11 Descripteur basé sur segments de lignes 

 
    D’après notre expérience sur l’ACI, on a trouvé les connexions entre l’ACI et les 
propriétés gradients  de l’image.  Par exemple, on a proposé un modèle qui utilise les 
lignes des vecteurs de base pour extraire des caractéristiques de l’image satellite qui 
sont liée aux propriétés gradients des vecteurs de base. On propose une idée similaire 
qui utilise directement les lignes de l’image satellite. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Pour la plupart des vecteurs de base, une ou plusieurs lignes compose leur structure 
principale et les autres parties des vecteurs de base ne contiennent pas d’information 
importante. Les vecteurs de base, normalement, ont des formes carrées. Cela signifie 

que pour représenter une ligne avec la longueur de n pixels nous avons besoin d'un 

vecteur de base de la taille de n*n pixels. Cependant, cette ligne peut être représentée 

par un segment de d*n pixels. Dans le quelle d est généralement  entre 3 et 5 selon la 
largeur de la ligne (Figure 0.16). En d'autres termes, nous pouvons utiliser directement 
les segments de ligne dans l'image pour caractérisation des images. Figure 0.17 montre 
les étapes différentes de cette idée de caractérisation.  
     

+
 . . . +

 
+

 
+

 

. . . 

Figure 0.16: Les segments contenant lignes au lieu des vecteurs de base 
de l’ACI pour modélisation des images satellite.  
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0.12 Evaluation des descripteurs 

 
     Pour chaque descripteur proposé, nous effectuons un clustering simple pour 
mesurer leur capacité. Néanmoins, nous avons besoin d'une vérification 
plus fiable. Ainsi, nous comparons les méthodes proposées par une classification 
supervisée basée sur la Machine à Vecteurs de Support (MVS).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.17: Caractérisation des patches contextuels grâce 
aux propriétés des segments de ligne 
 

Longueur, Gradient, 
Angle  

Précision  

& 

Rapell 

Figure 0.18: Détecter les classes grâce à un classificateur supervisé basé 
sur MVS 
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Figure 0.19: Les classes détectées. 2 patches contextuels sont présentés  
pour chaque classe.    
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Gabor  

L’ACIT  Sac de mots 

Lignes de vecteurs de base 

l’ACI 

Lignes de l’image 

Figure 0.20: Les précisions et les rappels obtenus pour 20 
classes détectées pour différents types de descripteurs. Les lignes 
rouges sont les précisions et les lignes bleues sont les rappels. 
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   Pour cela, nous fournissons un outil visuel de MATLAB, avec un noyau de MVS, qui 
permet à l'utilisateur de choisir les échantillons positifs et négatifs pour la 
détection d'une classe des patches contextuels. Nous choisissons un descripteur et  
essayons de détecter 20 classes montrées dans le Figure 0.19. Après, nous répétons 
l’expérience  avec les autres descripteurs proposés et aussi avec un descripteur de 
Gabor-Ondelette comme un descripteur typique de texture. 
   Pour 20 classes détectées nous calculons la précision et le rappel pour les différents 
descripteurs (Figure 0.20). Enfin, nous pouvons comparer l'efficacité des différents 
descripteurs selon leurs précisions -rappels, temps de calcul et longueur de 
descripteur. Tableau 0.1 présente un résumé de la comparaison des descripteurs.  
Nous voyons que les résultats de méthode Gabor n’est pas précis pour les classes 
contenant les objets géométriques.  Mais, pour quelques classes naturelles, elle 
présents la précision et le rappel  acceptable. Pour nos méthodes, il n’y a pas une 
différence entre les résultats de deux types de classes. Ça veut dire les méthodes 
proposées fonctionnent bien pour les classes contenant les objets géométriques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.13 Conclusions et perspectives   
  
  Dans cette thèse, nous avons essayé de présenter une méthodologie pour étudier la 
nature statistique des images satellite et d'extraire leurs signatures statistiques. Les 
images satellite sont considérées comme des signaux aléatoires multi-variables tels 
que chaque pixel peut être une variable aléatoire individuelle  et l'objectif est d'étudier 
les dépendances statistiques entre cette variable aléatoire (pixel) et les autres 

 

  
Moyen de précisions 

et rappels 

Moyen de temps de 

calcul 

Longueur de 

descripteur   

Gabor  
P=64.14% 

R=59.41% 
0.15 sec 27 

ACI 
P=75.79% 

R=72.29% 
0.15 sec 27 

ACIT 
P=91.39% 

R=86.57% 
0.21 sec 11 

Sac de mot 
P=81.01% 

R=73.68% 
0.82 sec 66 

Lignes de 

vecteurs de base  

P=94.87% 

R=87.54% 
0.96 sec 13 

Lignes de 

l’image 

P=93.37% 

R=88.63% 
0.59 sec 13 

 

 

                          

Tableau 0.1: Comparaison des descripteurs 
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variables aléatoires (pixels). L’Analyse en Composantes Indépendantes a été utilisée 
comme le base théorique de la thèse pour étudier les dépendances statistiques dans les 
images satellite. 
  L'objectif de la thèse est de présenter des descripteurs plus précis que les 
caractéristiques de texture et plus simples par rapport aux descripteurs locaux pour les 
images satellite haute résolution. Les descripteurs présentés sont placé quelque 
part entre les approches de texture et les approches  locaux. D'un côté, ils donnent une 
interprétation globale du paysage. De l'autre côté, ils traitent des 
propriétés gradient qui sont importants dans les structures d'objets géométriques. 
  Approches présentées pour définir les descripteurs sont des approches globales. En 
d'autres termes, ils ne sont pas dépendants au contenu, à la résolution ou type des 
images. Cependant, nous les avons utilisés pour les images satellites haute résolution. 
 Algorithmes d'extraction des caractéristiques présentées par la présente thèse peuvent 
être vérifiés avec les images satellitaires des autres capteurs et avec d'autres 
résolutions. Cela peut être une œuvre future prévue pour cette thèse. Ils peuvent 
également être vérifiés avec d'autres types d'images telles que des images 
médicales, des images naturelles, des images dans le domaine de l'astronomie, etc. 
   Nous avons proposé une classification supervisée pour évaluer les caractéristiques. 
Les classificateurs supervisés ont quelques désavantages. Par exemple, ils sont 
fortement dépendants au point de vue d’utilisateur. Ainsi,  autre  perspective de la 
thèse est de fournir une procédure standard pour l'évaluation des descripteurs afin de 
réduire les effets de point de vue d’utilisateur. 
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CHAPTER 1 
 

INTRODUCTION     
 
    
  In this chapter, as an introduction, we explain the motivations and the goals of the 
thesis.  In addition, we present a general overview of the thesis contributions. 

 
 

1.1 Motivations and goals of the thesis 
 

   Sub-meter resolution satellite images, capture very detailed information, as for 
example, shape of buildings and industrial installations, detailed road and road 
furniture structures, vehicles, etc. Thus, their information content is incredibly rich, 
and also complicated to be extracted. The classical image descriptors as spectral 
information, texture, shape, etc., are not any more sufficiently accurate to describe the 
image content. 
   Recently, many researches are being done to study, develop, and elaborate 
algorithms for extraction of information from high resolution optical satellite images. 
Among different scenes in the satellite imagery, urban areas and geometrical 
structures have been the most interesting ones for many applications and studies. We 
are going to extract the intrinsic cues of satellite images and to propose robust 
descriptors so that using these descriptors we would be able to recognize a variety of 
the scenes, especially the geometrical structures, among the VHR (Very High 
Resolution) satellite imagery.  For example, using these descriptors, we would be able 
to find the similar urban zones in different parts of a large satellite image.  
  Here, we insist on the geometrical shapes or the urban areas or the man-made 
structures inside the satellite images, as the zone of our research, because normally 
there is no major difficulty in the natural scenes description and recognition. Usually, 
images from natural landscapes have some properties which let us use a number of 
texture-like features as their descriptors. They correspond to a specific range of 
frequency and changes in their spatial domain happen in a continuant and also, 
usually, in a quasi periodic manner. In addition, usually they don't contain distinct 
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lines, edges or geometric objects. Figure 1.1(a) shows a part of forest as an example of 
natural landscapes. On the other side, in the man-made structures we usually find 
geometrical objects, containing separating lines and edges, which are not necessarily 
distributed in a regular manner inside the image. Thus, this kind of images, comparing 
with natural landscapes, cannot be described properly with the textural features. 
Figure 1.1(b) shows an urban area as an example of man-made structures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  Texture-like features give a universal interpretation from the scene but don't present 
detailed information about the objects inside the scene. On the other side, local 
descriptors and morphological operators are capable methods for detecting the 
geometrical objects and urban area characterization, but they are usually time 
consuming and complicated methods with very long feature vectors. Actually, we 
need some features neither exactly in the level of texture and nor in the level of local 
descriptors. Moreover, the local descriptors and morphological operators are usually 
used in the object detection algorithms but in many applications we are not going to 
detect geometrical objects. In fact, in a lot of applications we don’t need to detect 
particular objects or zones, but the objective is to give a semantic interpretation from 
the scenes containing different landscapes, particularly man-made structures. The 
principal purpose in this thesis is to propose  patch descriptors which are capable for 
geometrical structures characterization with regards to the context of the satellite 
image patches.   
   Independent Component Analysis (ICA) is the theoretical basis of the thesis. Here, 
we just express the principal property of ICA which motivates us to use it for satellite 

Figure 1.1: Examples of two classes of satellite images and ICA basis 
vectors obtained for them. (a): Forest, typical of natural landscapes, 
(b): Urban area, typical of geometrical structures. (c) and (d):  ICA 
basis vectors obtained for two classes. Urban area basis vectors 
contain lines, bars, edges…but forest basis vectors are more 
homogeneous. 
 

d 

a 

c 

b 
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image characterization.  Details of ICA come in chapter 5.  
  Bell and Senjowski [2] used ICA for natural images and found out that the 
independent components of images include short lines and edges. This is an important 
property for geometrical structure characterization, since the geometrical objects 
normally consist of lines and edges. Thus, ICA could be a suitable candidate to define 
descriptors for satellite image patches containing geometrical structures.  
    In Figure 1 we see two satellite image patches, one from forest and other from urban 
area. Also, we see examples of ICA basis vectors which are obtained for each class of 
data. The difference between the two sets of basis vectors is a sign of ICA capability for 
satellite image characterization. Particularly, the edges and lines in urban area basis 
vector demonstrate that ICA can detect the principal characteristics of geometrical 
structures.  
   During the thesis we try to extract features related to Independent Components 
Analysis from VHR optical satellite images. These features are supposed to be able to 
characterize this kind of images especially those who contain the man-made or 
geographic structures.   
 
 

1.2 Overview of thesis contributions 
         
  The main purpose of the thesis is to propose descriptors for optical satellite image 
patches. A descriptor, simply, can be defined as a vector of features and every feature 
is supposed to describe one characteristic of image or a pattern inside the image. 
Previously, many methods are presented by researchers to extract features from 
images. In chapter 2 we give definitions and notations for different image features, as 
well as the feature extraction methods. We will mostly focus on the methods which are 
related to our work. 
  On the other side, our research domain is strongly related to the Earth Observation 
(EO) and Remote Sensing (RS). So, in Chapter 3 we introduce the basic concepts, goals 
and challenges related to Earth Observation and Remote Sensing. In addition, we 
explain what kinds of satellite images are used in the thesis.   
  Then, in Chapter 4, we will review previous studies related to our work to illuminate 
the atmosphere of researches around the main aspects of the work. Since our objective 
is to characterize geometrical or man-made landscapes, it is strongly related to urban 
area detection and we initially investigate the related works around urban area 
detection and classification. We also review state of art of Independent Component 
Analysis (ICA) and its applications on satellite image processing. 
  Since   Independent Component Analysis (ICA) is the theoretical framework of the 
thesis, it is suitable to explain its fundamentals, concepts and algorithms in a separate 
chapter, i.e. Chapter 5.  
  We started our practical work on ICA with a study about the effect of scale size and 
dimensionality of ICA system when it is used for satellite image indexing. There is a 
relation between the size of ICA basis vectors and the capability of ICA for 
characterization of satellite images. Normally, if we increase the size of ICA basis 
vectors then our ICA system will be more capable to index satellite images. But the 
volume of computations will grow as well. Thus, we are not able to increase the size of 
ICA basis vectors limitlessly.  
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  Similar relation exists for the dimensionality of ICA system or the number of ICA 
components. Usually the dimensionality is expressed as the reduction factor which is 
the normalized number of ICA components. That is, the ratio of ICA components to 

n2, where n is the size of ICA basis vectors. The purpose of Chapter 6 is to find the 
optimum point for the size of ICA basis vectors and the number of components. We 
define the reconstruction error as a criterion of ICA system’s capability for image 
characterization. In addition, we consider the computation time for obtaining the basis 
vectors as the other criterion. Using the cost functions which are combinations of these 
two criterions we conclude that the optimum point for the reduction factor is placed 
between 0.08 and 0.14 and the basis vectors with the size of 16*16 is the most suitable 
case for our work.  
  In addition, in chapter 6, an approach is proposed to reduce the redundancy in a set 
of basis vectors. We propose to use a set of Gabor-wavelet filters to choose the 
optimum learning micro patches. In other words, we choose the micro patches which 
have the higher energy in a set of Gabor filters.  
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Figure 1.2:  Study of dimensionality and scale behavior of ICA 
components which are used for satellite image characterization is 
important for choosing the framework of ICA system. 

Figure 1.3:  Using a set of Gabor wavelet filters to choose the optimum 
learning micro patches in order to reduce the redundancy in a set of 
basis vectors   
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 There are two points of view for feature extraction based on ICA. The usual approach 
is to use ICA coefficients (ICA sources) and the other is based on the ICA basis vectors 
related to every image. In Chapter 7 we explain the idea of extracting features from the 
ICA coefficients. This idea is illustrated in Figure 1.4. We gather a sufficient number of 
micro patches and decompose them onto the set of basis vectors and for each of them 
we obtain a set of sources. Applying the root mean square over the same sources of 
different sampled micro patches we obtain the ICA features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  In Chapter 7 we also propose an approach to improve the set of basis vectors when 
we are going to separate the urban area class from non-urban area class. We combine 
the most important basis vectors of each class to make a new set of basis vectors: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  The independence of ICA components can make it difficult to use the results of ICA, 
since we don’t know the priority and importance of the components. Topographic ICA 
is a generalized and also improved version of ICA. It leads us to reduce the number of 
features which are extracted from the image. In ICA model, the components are 
supposed to be independent and there is no relation among different components. 
Therefore, we have to consider the set of all components as the feature vector. 
However, in TICA the dependency between two components is a function of their 
distance in the topography. These dependencies can be used to extract some middle 
level features and reduce the dimension of feature vector. This is shown in Figure 1.6.  
In other words, TICA has the capability of combining a number of low level features to 
provide some middle level features. The principals of Topographic ICA and the 

Figure 1.4:  ICA source based feature extraction   

Figure 1.5:  Improved set of basis vectors. The two upper rows are 
the 12 most significant basis vectors of urban area and the lower two 
rows are the 12 most significant basis functions of non-urban area. 
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method that uses Topographic ICA for feature extraction is explained in Chapter 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 The second viewpoint for feature extraction is to consider the ICA basis vectors which 
are obtained for each image. Actually, we are going to work with the characteristics of 
basis vectors related to each image. This idea is explained in Chapter 9. Moreover we 
use the Bag of words model and a Bayesian approach to make it easier to extract 
features. In this model we consider each satellite image as a visual document and its 
related basis vectors as its visual words.  
   Figure 1.7 illustrates the principles of ICA words idea for satellite image 
characterization. Initially, we have to apply the ICA learning procedure for one image 
to extract the related basis vectors as its visual words. We also need a dictionary in 
which all possible visual words are placed. Two approaches are proposed in chapter 9 
for defining the dictionary. At last, a histogram is made which shows the number of 
each dictionary’s word repeats in the document (satellite image). In addition we 
propose a Bayesian approach which helps us to classify different visual documents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6:  In a set of TICA basis vectors we are able to combine a 
number of low level features because of existing dependencies 
among the components. 

  Histogram 

 Dictionary  

Figure 1.7:  Bag of words model for satellite image characterization. 
We consider each satellite image as a visual document and its 
related basis vectors as its visual words.   
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In Chapter 10, we try to extract features from a set of basis vectors, using the 
characteristics of lines which are detected in each basis vector. The idea is shown in 
Figure 1.8: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  There are several steps, such as obtaining basis vectors, edge detections and line 
approximation. For line approximation a new approach is proposed in chapter 10. 
Finally, for each line, we put each of its characteristics (length, average of gradient 
magnitude and angle) into the corresponding bin in order to make a feature vector.

 

   In Chapter 11, we introduce a method whose idea is taken, during the thesis, from 
ICA basis vectors. Using a line detection method and considering the variation around 
each line, we define new components (segments) to describe the image. In fact, we 
apply the edge detections and line approximation directly for a satellite image: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  For every proposed descriptor in chapters 7 to 11 we perform a simple clustering to 
demonstrate their capability for VHR satellite image characterization. However, in 
chapter 12, to have a more reliable verification, we compare the proposed methods 
through a supervised classification. This supervised classification is based on the 
Super Vector Machine (SVM). For that, we provide a visual relevance feedback tool 
which allows the user to choose the positive and negative samples for detecting a 
class.  

Figure 1.8:  Feature extraction from basis vectors of a satellite image, 
using their lines properties. 

Figure 1.9:  Feature extraction from a satellite image patch, using its 
lines properties. 
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For 20 detected classes we calculate the precision and recall for different descriptors. 
Finally, we are able to compare efficiency of different descriptors regarding to their 
calculated precisions and recalls.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 1.10:  Detecting classes through a supervised classification 
based on SVM 
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CHAPTER 2 
 

 

FEATURE EXTRACTION METHODS  
 
    
 
   According to the previous chapter, we aim to define some reliable descriptors for 
satellite images. A descriptor is usually a vector of features and every feature is 
supposed to describe one characteristic of an image or a pattern inside the image. In 
other words, a descriptor could be considered as a signature of an image. In the 
literature, there are many methods to extract features from images. In this chapter we 
study some of related textural and local descriptors and explain the required 
properties of a VHR satellite image descriptor which is supposed to characterize the 
geometrical structures. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   The goal of Feature extraction is to transform our data with an initial dimensionality 
into another space with a reduced dimensionality in order to simplify its process and 
analysis. The new representation of data is usually called a feature vector. In fact, the 
initial data is so large to be processed and also is usually redundant. Here, redundancy 
means that we will not lose important information if we carefully reduce the 
dimensionality of data. For different tasks, we may extract different features from a set 

Figure 2.1: Feature extraction transforms the data with a large 
dimensionality into a feature vector with a reduced dimensionality. 
In this example, the initial space of data representation is a matrix of 
200*200 pixels which is transformed to a shorter vector of features 
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of data. Regarding to a desired task, we have to choose some features such that the 
feature vector perfectly works with the specific task. When the initial data are images, 
the features are used to represent an image instead of using the original pixel values. 
In many cases, as in this thesis, image features have strong links with the image 
semantic properties.  
   Many feature extraction methods are presented by researcher for different types of 
images. We can cluster different features from many points of view. When we are 
working with satellite images, a simple way is to cluster the feature types into 3 main 
groups: image intensity features, texture features and local features.  
 
 

2.1 Image intensity features 
  
     Image intensity features are the basic features which are widely used to describe 
any types of images. They give a very general description of an image and are 
computed based on statistical moments such as central moments of the first (mean 

value) and second order (standard deviation).  Here we suppose that image Ι is a 

square matrix which has rN  pixels of rows from top to bottom and cN of columns 

from left to right: crrc NcNriI ,...,1,,...1: .  

    Where Lirc ,...,0 is the gray level of a pixel which is placed in row r and 

column c and L is the number of gray levels.  A mean value of gray level intensity of 

image Ι is: 
 
      
 
   
 
  This feature helps us to have a common sense about the brightness or darkness of a 
satellite image patch. 
  The other feature, Standard deviation of intensity level, is obtained as: 
 
 
 
 
 
   
 
  This feature is generally known as an indicator for the amount of gray levels variation 
in an image patch. The standard variation of a satellite image patch is low if the image 
seems to be homogenous. Contrary, it is high for images whose gray level values of 
pixels obviously differ from one pixel to another one.  For example if we have two 
satellite image patches, one from an urban area and other from a sea, which are taken 
with the same sensor and same resolution, we logically expect that the urban area has 
a higher standard variation.  

(2.1) 

(2.2) 



41 

 

 

3

1 1

13

2

3

1 r cN

r

N

c

rc

cr

fi
fNN

f

4

1 1

14

2

4

1 r cN

r

N

c

rc

cr

fi
fNN

f

1

0

5 )log(
L

l cr

l

cr

l

NN

N

NN

N
f

   Some higher order statistical features may be extracted from the image. For example 
the Skewness is obtained as: 
 
 
 
 
And the Kurtosis is defined as: 
 
 
 
 
 
 If we consider each image pixel as an observed sample of a random variable, then the 
image patch could be the set of our variable’s observations. So we can define another 
useful feature, the entropy, as: 
 
 
 
 
 

 Where lN  is the number of pixels with the gray level )10( Lll . Entropy is a 

measurement of the unpredictability of a random variable. The entropy for an image 
shows how much its pixels gray levels are distributed in a random manner.   
 
 

2.2 Texture features 
   
  In the field of image processing there is no a clear-cut definition for texture.  
Available texture definitions are based on texture analysis methods and the features 
which are extracted from the image. However, texture can be considered as the 
repeated patterns of pixels over a spatial domain. But the textures usually appear to be 
random and unstructured because in their model it is supposed that an amount of 
noise is added to the patterns and also the repetition frequencies changes from an area 
to another one.  
   Regularity, directionality, smoothness and coarseness are different examples of 
texture properties which are perceived by the human eye. Texture analysis has been 
extensively used to characterize and classify the remotely sensed images. In this sub 
chapter we study Haralick and Gabor-wavelet features, as the typical texture features 
to investigate the properties of textural analysis.       
 
 

 2.2.1 Haralick features 
   
  Haralick features [44] are one of the well known features for describing the textures 
presented by an image. These features are calculated based on the second-order 
histogram of a matrix which contains the joint probability distribution of pairs of 
pixels in the image. This matrix is called as co-occurrence matrix and could be 

(2.3) 

(2.4) 

(2.5) 



42 

 

 

m n

bnmamnba lilill ),(),(P ,0,

computed for several directions which are indicated by their angles with respect to the 
horizontal axis ( ). If, for example, 0 , the matrix computes the number of 
occurrences for the pairs of pixels that are separated by pixels in horizontal 

direction, that is, the pixels with coordinates ),( nm  and ),( nm , that have the 

specific gray levels:  
 

                  
  
    

In which, ba ll , are two arbitrary gray levels ( 1,0 Lll ba ) and ),(P ba ll is 

the co-occurrence matrix for the arguments ba ll ,  which shows the number of 

occurrences amn li  and bnm li , . Usually, can take some units and takes 

four angles 0°, 45°, 90° and 135°. For example, if we are going to obtain the co-

occurrence matrix in vertical direction, i.e.  


90 , then co-occurrence matrix is 
defined as: 
 

             
m n

bnmamnba lilill ),(),(P ,90,                       

 
   The co-occurrence for other directions is obtained to have more robustness with 

respect to the rotation of image. If ijP  is an element of this matrix then the 

corresponding element in normalized co-occurrence matrix, ijp , is defined as  

 

                                            
ji

ijijij PPp
,

/   

      
  Several Haralick features could be extracted from the normalized co-occurrence 
matrix. For example, the Angular second moment could be obtained as: 
        

                                             
ji

ijpf
,

2

6                                                     

   And the Contrast is calculated as: 
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 2.2.3 Gabor wavelet features 
 
 Gabor wavelet [46] filters represent models of visual perception of a texture and are 
widely studied and applied for texture modeling and classification. Moreover, there is 
another motivation for us behind the Gabor-wavelet filters. As we will see, some of 
them are visually similar to some of ICA basis vectors.  

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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   Gabor filters are usually considered as two dimensional functions of x and y and can 

be achieved from a general relation as:   
                                               
 
 
In which: 
 
                                               
 
 
 

 In equation 2.11, λ represents the wavelength of the cosine factor, θ represents the 

orientation of the Gabor function and σ is the sigma of the Gaussian envelope. 

Usually, in a set of Gabor filters, σ is constant but θ and λ take some scaled levels. 

Number of Gabor filters is a function of the number of scales which are considered for 

θ and λ.  
Another point in Gabor-wavelet filters is to choose the size of each filter. This is 
strongly depended on the application. Generally, smaller filters could detect the 
detailed characteristics and bigger filters give more general features in an image. 
Moreover, using smaller filters makes the feature extraction faster.  Figure 2.2, as an 
example, shows a set of 16*16 Gabor filters.  
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

We took σ as 5 and change the θ in 10 scales and also the λ in 10 scales in order to 

produce a set of 100 filters. θ varies from 0 to 180 by a step of 18 degrees. λ  is obtained 

from an exponential equation as 
n

2.1 , in which n varies from 1 to 10. So, λ varies from 

(2.11) 

(2.12) 

Figure 2.2: A set of 16*16 Gabor filters. We used 10 scales for 
frequency (wavelength) and 10 scales for the orientation (angle). 

 
 

http://en.wikipedia.org/wiki/Gabor_function
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1.2 to 6.2.  Figure 2.2 shows the obtained set of 100 Gabor filers in which θ increases 

from left to right and λ increases from up to down.  

   Extracting features from an image using a set of Gabor filters is similar to the feature 
extraction using a set of ICA basis vectors which is explained in chapter 7. Briefly, we 
gather a sufficient number of samples from initial image and decompose them into the 
set of filters. Using a specific function (for example root square average) upon all 
coefficients (obtained from decomposition of all samples) corresponding to one filter 
we obtain the feature which is related to that filter.    
 
 

2.3 Local Features 
   
    The local approaches are mostly used for the purpose of object detection in image 
processing. They try to detect some features which are able to characterize existing 
objects in the image.  According to this goal, local descriptors are usually robust to the 
rotation, scale and illumination. But they contain some complexities comparing with 
textural methods. 
    Scale Invariant Feature Transform (SIFT) [47] and Speeded Up Robust Features 
(SURF) [48] are two well known local approaches which are used by researches to 
model the images. Here, we are going to study the principles of local features in order 
to compare it with our requirements for satellite image descriptors. In the following, 
we study the SIFT model to show the principles and the complexities of local 
descriptors.  
 
 

2.3.1 Scale Invariant Feature Transform 
     
    SIFT features are supposed to be scale invariant. Here, scale means the level of 
clearance of image. In other words, we want some features that are able to detect the 
objects regardless to their details. These details appear differently in different levels of 
clearance. So we have to provide some scale invariant features. The first step is to 

provide a scale-space of the image. Given an image, ),( yxI  , we initially provide its 

corresponding octaves. An octave is obtained by dividing the dimensions of images by 
1, 2, 4, etc. Then for each octave we obtain some blurred versions of image using a 
convolution between the image and Gaussian filters: 
      

 

                       
 
Where 
                       
  
 

  If we use the Gaussian filters with different scales of , we will have some blurred 
images which make the scale space of original image. An example is shown in Figure 
2.3. 
 

(2.13) 

(2.14) 
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 Then we apply the Difference of Gaussian ( DoG ) operator for different scales of blurred 
image in order to obtain some new images, usually called DoG  images.  

 
 
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 

Figure 2.3: Obtaining scale space of original image using the 
Gaussian filters with different scales for 3 octaves. 

 
 

Figure 2.4: Applying the DoG operator on the blurred images of 
scale space 
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   DoG  is defined as an operator which calculates the difference of two consecutive 
scales of blurred image : 
 
                      
 
   
 The results of applying this operator is shown in figure 2.4. In fact, we only use the 
differences of blurred images in order to remove the details of objects in the image so 
that the resulted features would be invariant with respect to different scales of 
blurring. keypoints in the SIFT framework are known as local maxima or minima of the 
images which are obtained after applying the DoG  operators on the scales of blurred 
images. The pixels in such images will be compared with their 8 neighbours at the 
same scale, in addition with the 9 corresponding neighbours in two consequence 
scales. If the pixel is a local maximum or minimum, it is selected as a candidate 
keypoint. If some of these candidates are placed on one of the edges, or don’t have 
enough contrast, they are not useful and will be removed.  
   We need some features which are invariant with respect to the details of objects 
(scale invariant) and also to the rotation. Detected keypoints in different scales of 
blurred image guaranties the scale invariance of our features. The next step is to 
determine an orientation for each keypoint to provide the rotation invariance. The idea 
is to obtain the most significant orientation(s) around each keypoint. We calculate the 
gradient angles and gradient magnitudes in a neighbourhood of each keypoint. Then, 
a histogram is created for the orientations according to their magnitudes. Based on this 
histogram we choose the most orientation(s) around the keypoint. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
   
   
 

Figure 2.5: Generating the keypoint descriptors. A window of 16*16 
pixels is considered around the keypoint and is divided to sixteen 
4*4 region. In each of 16 regions, the gradient orientations are placed 
in a histogram of 8 bins to provide a vector of 128 elements. Then the 
keypoint’s orientation will be subtracted from each 128 number to 
achieve rotation independence.  
 

(2.15) 

http://www.aishack.in/2010/07/histograms-from-simplest-to-the-most-complex/
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  Next step is to define a descriptor for each keypoint. To do this, a 16*16 window 
around the keypoint is considered. This 16*16 window is divided into sixteen 4*4 
windows. In every 4*4 window, we calculate the gradient magnitudes and gradient 
angles (orientations) for each of sixteen pixels. Then, we again create a histogram of 
gradient angles containing 8 bins of 45 degrees and for each gradient angel we add a 
number to the corresponding bin. This number depends on the magnitude of the 
gradient and also depends on the distance of pixel from the keypoint. If we do the 
same procedure for all sixteen 4*4 regions we will have a set of 16*8 = 128 numbers 
corresponding to the gradient orientations for each keypoint. This set of 128 numbers 
will be normalized at the end of this procedure. 
   Then, to obtain the rotation independence, the keypoint’s orientation(s) is removed 
from each of these 128 gradient orientations. Thus, each gradient orientation will be 
relative to the keypoint’s orientation. In addition, If we threshold the numbers that are 
big, we can achieve illumination independence. So, if for example one of the 128 
values is greater than 0.15, it will be changed to 0.15.  Finally, each keypoint is 
uniquely identified by its feature vector of 128 elements.  
 
 
      

2.4 What kind of features do we need? 
 
   During this chapter we studied the principles of some texture and local descriptors. 
Each of texture or local features has its own properties, advantages or disadvantages. 
Table 2.1 present a comparison between the texture and local features. It also explains 
that what we expect from the features which are supposed to be defined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
   

 

  Texture Features Local Features Needed Feature 

Objective of 

features in 

remote sensing 

Characterization of natural 

landscapes or scenes of 

man-made structures that 

are homogenous. 

 Geometrical objects or 

urban area detection, etc 

Characterization of scenes 

specially those who contain 

geometrical structures 

General or 

detailed  

description 

Give a general description 

of the image 

Give a description of 

geometrical details of  

the image 

Give a general description 

of the image but is able to 

distinguish some of 

important geometrical 

characteristics of the image 

Length of 

feature vector 
Usually not long Usually very long Preferably,  not long 

Complexity  Usually simple   complex As simple as possible 

Computation 

Time 
Usually fast slow As fast as possible 

 

 

                          

Table 2.1:  Comparison of texture and local features with the needed features  
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  We could say that our needed features are placed somewhere between textural and 
local features. Local features are mostly used for the goal of object detection which is 
different with respect to our objective in this thesis. We are not going to detect objects 
from the satellite images but we want to define features which are able to describe all 
scenes, especially those who contain geometrical objects.  Although, the needed 
features seem to be closer to the textural features in the sense of presenting a general 
description of the image instead of presenting the geometrical details of the image, 
they are supposed to be able to distinguish some of important geometrical 
characteristics of the image.  
    In other words, we need some features which are more precise for geometrical 
characteristics in comparison with the textural features. In this sense, we move from 
the origin of textural features toward the local features. Simultaneously, we are 
supposed to keep the advantages of texture features like simplicity, short feature 
vector and being fast in computation.     
  In chapter 12 we compare all features which are defined in the thesis. Also we 
compare them with Gabor features as a typical texture features.   
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CHAPTER 3 

 

SATELLITE IMAGES PROPERTIES  
 
 
    
   
  Our research domain is strongly related to the Remote Sensing. So, in this chapter we 
introduce the basic concepts related to the Earth Observation and Remote Sensing. In 
addition, we explain what sorts of satellite images are being processed during the 
thesis.   
   Remote Sensing is referred to the set of methods and techniques by which we are 
able to gather and process the data from the Earth surface for many applications.  The 
data used for the remote sensing is obtained from the scenes which are sensed by 
instruments of measurements at remote distance, such as cameras or sensors which are 
installed at planes or satellites.  
    
 

3.1 Active and passive sensors  
    
      Remote sensing sensors receive the electromagnetic waves that are reflected from 
the Earth’s surface and convert them into a data form, usually an image, which can be 
processed by a machine or a specialist to obtain a variety of information from the 
Earth’s surface.  
 There are active and passive remote sensing sensors. Active sensors send an 
electromagnetic pulse and process the reflected pulse. However, Passive sensors 
collect the electromagnetic waves emitted from the Sun and reflected by the Earth’s 
surface. 
   Every sensor is supposed to work in a specific range of electromagnetic wavelengths. 
Particularly, optical sensors that belong to the passive group are sensitive principally 
to the electromagnetic wavelengths in the range of 0.4 μm to 0.75 μm . This is the same 
range of wavelengths to which the human eye is sensitive.  
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   Thermal and Hyperspectral sensors are two other examples for passive systems. 
Thermal sensors measure the electromagnetic radiations reflecting from the Earth’s 
surface in the thermal region.  Hyperspectral sensors work with the electromagnetic 
radiations in the infrared, visible and ultraviolet regions.  They collect electromagnetic 
waves using very narrow bands (e.g. 10 nm) as opposed to the wide bands (e.g. 250 
nm) optical sensors. 
  RADAR (RAdio Detecting And Ranging) and LIDAR (LIght Detection And Ranging) 
are two examples for active sensors. These sensors send different types of pulses and 
process the reflected pulse also the time for each pulse to be received back at the 
sensor.  

 

 

3.2 Optical satellite sensors 
   
  In this thesis we work with the optical satellite images, so we focus on this type of 
satellite images and study some of their important properties. 

 

 

3.2.1 Resolution 
   
   Three types of resolution are defined in the field of remote sensing: Spatial resolution, 
radiometric resolution and temporal resolution. 
  Spatial resolution determines the actual dimensions of a pixel in an image on the 
Earth’s surface. For example, for a satellite image with 1m resolution, each pixel 
represents an area of 1m*1m on the Earth’s surface. 
  Temporal resolution refers to the time it takes for the satellite to return to the same 
orbit. The time it takes for the satellites to return to exactly the same orbit (usually 
called the revisit time) depends on the altitude of the satellite, which can vary from 
400km to 800km above the Earth. In other words, this term is used to describe the time 
interval in which the same area on the Earth can be seen by the sensor using a different 
view angle.  
  Radiometric resolution refers to the range of numbers that can be stored in a single 
pixel which is described using bits. For example, an 8 bit image stores numbers 
between 0 and 255 (28) and an 11 bit image stores numbers between 0 and 2047 (211) for 
each pixel.  

 

 

3.2.2 Panchromatic or Multispectral  
 
  Depending on the number of bands by which a sensor takes images from the Earth’s 
surface, we have Panchromatic or Multispectral satellite images. The panchromatic 
sensors collect the electromagnetic radiations for the full range of the visible spectrum 
and give a grayscale image.  Multispectral images are given by sensors working with 
several (normally four) bands. Each band covers a slice of the visible spectrum, 
normally the blue, green, red and infrared portions. Usually the features which are 
related to the spatial or shape characteristics of satellite images are extracted from the 
panchromatic images. Multispectral images are often used for objectives such as land 
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cover classification. This is possible due to the fact that objects on the Earth’s surface 
react differently to various wavelengths of electromagnetic radiations.  
 
 

3.3 Sub-meter optical satellite images  
   
   In this thesis we are going to extract the features from the optical satellite images. 
These features are related to the spatial characteristics of the images, so the color 
characteristics of the images are not important.  
Thus, we only need gray scale images for our methods. In other words, the panchromatic 
optical satellite images are suitable for the purposes of our works. However, we can use 
multispectral or colored satellite images, but we transform them to gray scale images 
at the beginning.   
   Temporal resolution of satellite images is not our concern, because every received 
satellite image can be considered as the object of feature extraction, regardless to the 
previous or next received images.   
  Radiometric resolution is not a critical point for us. It is possible to work with both of 
11 bit and 8 bit images. 11 bit images have more accuracy but take more memory and 
time to be processed. It is important especially when we have to apply some learning 
or training methods such as the ICA learning procedure which is used during the 
thesis. On the other side, the accuracy of 8 bit images is usually enough for us and our 
proposed methods work accurately with this kind of images. So we prefer to use the 8 
bit satellite images to avoid more computational problems. Although, the proposed 
methods are able to work with the 11 bit images, we initially transform them to 256 
grayscale level images to keep the same format of images during the thesis. 
     Spatial resolution is the most important characteristic of satellite images which are 
processed in this thesis.  As it is mentioned before, the purpose of the thesis is to define 
some descriptors for satellite images containing various landscapes especially the 
geometrical or man-made structures. Details of this kind of structures are not visible in 
images which are taken with a spatial resolution over 1m.  Therefore, during the thesis 
we consider only images with spatial resolution about one meter or under meter. For 
example, the QuickBird images with 60cm spatial resolution or Ikonos images with 1m 
spatial resolution are suitable for our purposes.  
      In figure 3.1 we show some samples of satellite images with the resolution of 60 cm 
which are used in the thesis containing a variety of natural and man-made landscapes. 
These images are transformed to 256 gray scale level images. 

 
   

3.4 Contextual image patches for feature extraction 
    
   Satellite images which are shown in Figure 3.1 have sizes around 3000*3000 pixels 
and each of them contain a variety of man-made and natural landscapes. 
Consequently, defining features for such big images doesn’t seem to be logical. For the 
purpose of feature extraction we need some smaller image patches which contain only 
one type of structure or landscape. Although we are able to extract features from 
images containing many classes of landscapes, this is not desirable because every 
vector of features is supposed to describe only one class of landscape. 
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Figure 3.1:  Samples of satellite images with the resolution of 60cm.. Images  
have sizes around 3000*3000 pixels, so they cover a surface about 2km*2km. 
(a) Factory in Arak (Iran) , (b) Houses, farms, sea in Spain  (c) Port of 
Piraeus (Greece) , (d) Small town , Guam  , (e) City in china,  (f) Village in 
Austria. Images contain a variety of man-made and natural landscapes.  

a b 

c d 

e 

f 



53 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

            

 

 

                                  

 

 

 

 

 

 

 

 

 

  
   
   

Figure 3.2: Test set, Samples of contextual image patches with the size 
of 200*200 pixels which are clustered in 8 classes of natural and man-
made landscapes. For each class we prepared 100 samples.  

Class1: Factory   

Class2: Farm   

Class3: Village  

Class4: City-1  

Class5: Forest 

Class6: City-2 

Class7: Town 

Class8: See 
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  Here, a class of landscape is the set of landscapes that present similar characteristics 
to user so that he or she can identify them as the same type of landscape. Defining the 
classes of landscapes and structures, itself, is a challenge because it is depended on the 
users’ point of view. Everyone may determine a definition for a class of image which 
differ from other definitions. In this thesis, the class definition is not our concern 
because classification is not our main task; however we use classification to evaluate 
the capability of extracted features. 
    To illustrate what is called a class of landscapes in this thesis, we selected 8 classes of 
various landscapes from initial satellite images shown in Figure 3.1. For each class we 
prepared 100 image patches with the size of 200*200 pixels. We show 5 samples of 
every class in Figure 3.2. This set of 800 samples of 8 classes is used during the thesis to 
examine the proposed methods and we call it as test set. 
  The principal purpose of our work is to propose the patch descriptors which are 
capable for characterization of different landscapes specially the geometrical structures 
with regards to the context of the image patch. We have to consider our image patches 
to be enough large so that they contain a number of objects and a clear context. In 
other words, they must present meaningful scenery. For example, if an image patch 
contains only one building or a part of a building without any context, it may be ideal 
for the purpose of object detection, but it is not suitable for the goal of our work.  In 
addition, if our image patch is too large then it may contain several parts that each of 
them could be individually considered as interpretable scenery.   

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
  During the thesis, we call the image patches for which we are going to define the 
descriptors as contextual patches. In other words, we are looking for image patches that 

Feature 

extraction 

methods 

based on 

ICA  

Initial satellite image 

Contextual image patch 

Micro image patch 

Figure 3.3: Three levels of images which are used in the thesis: Initial 
satellite images contain many classes of landscapes. Contextual patches 
usually contain one class of landscape and are suitable for feature 
extraction. Micro patches extracted from each contextual patch are used 
in the feature extraction procedures based on ICA because the 
contextual patches are too large to be used directly in ICA procedure. 
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may present a number of geometrical shapes such as houses, buildings and other man-
made structures with a clear context. We emphasise on the word context to separate 
our task from the object detection. Since we are working with the satellite images with 
the sub-meter resolution, it seems that a size of patches between 100*100 pixels to 
300*300 pixels is reasonable. In this thesis we work with the contextual patch with the 
size of 200*200 pixels regarding to our considerations.  
   The 200*200 contextual patches are too large to be used directly for many feature 
extraction methods explained in the thesis. So we have to gather a number of smaller 
patches, called micro patches, from each contextual patch to be processed in feature 
extraction procedure. Details of this issue are explained in chapter 6. Here, we just 
mention that we have three levels of images in the thesis: Initial satellite images that are 
big images and contain a lot of landscapes. These images are not suitable for feature 
extraction.  Contextual patches with the size of 200*200 which are extracted from the 
initial satellite images are those for whom the descriptors are defined. Micro patches are 
small image patches which are extracted from each contextual patch and are used in 
the procedure of extracting features from the contextual patch. These three levels of 
images are illustrated in Figure 3.3. 
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CHAPTER 4 
 

STATE  OF  THE  ART 
 
 
 
  In this chapter, we will review previous studies related to our work to illuminate the 
atmosphere of researches around the main aspects of the work. First, we have a look at 
the related works around urban area detection and classification, because one of the 
goals of the thesis is to extract features and to define descriptors which are able to 
characterize geometrical structures in satellite images. 
  On the other hand, methods presented during the thesis for extracting features from 
satellite images are strongly related to Independent Component Analysis (ICA). So, we 
will also review the history of Independent Component Analysis and its applications 
on image processing.  

 

 

4.1 Urban area characterization state of the art   
 
    Nowadays a lot of satellite images are being received every day from several 
satellite sensors and with different resolutions. These images, especially Very High 
Resolution (VHR) satellite imagery (such as Ikonosand and Quickbird, etc) provide 
valuable information for researchers for different applications. 
   However, during last years the volume of these remotely sensed data has been 
rapidly grown and makes it impossible for a researcher or an expert to extract 
manually the valuable information from these remotely sensed data. So we have to 
apply some automated techniques and methods to extract this information. 
Unfortunately, developing such automated techniques is not straightforward since 
classical image processing and pattern recognition methods are not sufficient for this 
purpose. We need some new and more complicated techniques which benefits of 
many sources of data and a combination of feature extraction methods and 
classification approaches to extract important information from high resolution 
satellite imagery. 
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  Among different landscapes in the satellite imagery, urban areas have attracted 
especial attention of researchers from different fields of science and engineering. This 
is because urban zones are rich of information and important from different points of 
view and also because of the complexity and difficulty of the modeling and 
characterization methods which are used for them. 
     On the other side, obvious improvement in sensors’ resolution caused the content of 
satellite imagery to present the details of objects that makes it more difficult to 
characterize different landscapes, especially urban areas, by traditional methods. In 
fact, in the satellite images with low level of resolution, different scenes, even from the 
urban areas, could be seen as a kind of texture and could be modeled using textural 
approach. The images in Figure 4.1 show the differences between the properties of an 
urban area at 10m resolution and details of the same area at 1m resolution. We can see 
that at 10m resolution the image can be modeled as some kinds of textures but when 
the resolution is improved to 1m, objects (buildings, roads, trees, etc.) clearly appear in 
the image and make it difficult to consider the scene as a texture.  
     
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
   
 
 
     
 
 
 
   Even if a scene in such high resolution images could be estimated by a texture, the 
majority of landscapes and objects would be much more complex, and difficult to be 
analyzed with texture based methods because of the non-homogeneity. Actually, it is 
supposed to apply some more complicated methods which are able to take into 
account such details of objects and structures inside urban area scenes taken from high 
resolution satellite images. Recently, a wide variety of methods and techniques are 
used by researchers for characterization and indexing of urban areas in high resolution 
satellite images. 

Figure 4.1: An example of urban area which may be considered as a 
texture model at 10m resolution and appears as a set of objects and 
geometrical shapes at 1m resolution. 
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   The schema in Figure 4.2 illustrates a general procedure of what is usually done for 
urban area characterization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Characterization of satellite imagery, including urban areas, is usually done based on 
two main levels of activities. On one hand, a variety of researches have been done to 
extract features from the scenes and to model them using several approaches. Different 
types of features and descriptors may be extracted from satellite images. However, 
two types of features can be seen more or less in the literature: the texture-like features 
and the local features. As it was mentioned, textural approaches are not anymore 
efficient to perfectly characterize VHR satellite images who present the details of 
objects. Particularly, the urban areas contain some geometrical structures that could be 
hardly modeled by texture-like features. Although local descriptors are capable for 
such a purpose but they have some disadvantage such as complexity and being time 
consuming. Extracted features and descriptors may be used by different approaches 
like bag of words, graph theory,… to provide a model giving a semantic interpretation 
of the scene.   
   On the other hand, the extracted features can be used for classification and 
segmentation of satellite images. The goal of such activities is to distinguish different 
classes of landscapes and structures on the Earth’s surface. Results of classification is 
not only used for urban area characterization but also could be considered as a 

Features 
BasisVectors 

Urban area 
characterization 

Feature 
extraction and 

modeling 

Classification, 
Segmentation 

Geographical 
information, 

maps, etc  

Validation 
BasisVectors 

Satellite images  

Figure 4.2: A general illustration of procedure which is performed 
for urban area characterization.   
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feedback for feature extraction which shows the efficiency of the feature extraction 
method. Researchers usually benefit two important sources of data and information 
for urban area characterization. The main source is satellite images but some methods 
use also the geographical information like maps as the extra source of data and 
information which themselves benefit of the results of urban area characterization.  
    Here we review some of previous studied which have been done for 
characterization of satellite images specially the urban areas. 
  Scale-Invariant Feature Transform (SIFT), explained in chapter 2, provides a set of 
local features which is widely used for urban area detection.   Sırmac and Unsalan, [12] 
proposed a method based on SIFT key-points for urban area and building detection on 
very high resolution satellite images. Their approach also benefits multiple sub graph 
matching, and graph cut methods. They picked two template building images, one 
representing dark buildings and the other representing bright buildings and obtained 
their SIFT keypoints. Also, SIFT keypoints are obtained for the test image. Then, by 
applying multiple sub graph matching between template and test image SIFT 
keypoints, urban area are detected in the test image. Finally, from the detected urban 
area, separate buildings are detected using a graph cut method. They obtained a 
89.62% correct urban area detection performance with a 8.03% false alarm rate and 
88.4% correct building detection performance with a 14.4% false alarm rate. But their 
building detection method may not detect buildings if the contrast between their 
rooftop and the background is low. 
   Among texture-like methods, Gabor features are known as effective descriptors for 
urban areas. Yang and Newsam [11] compared two classification methods and two 
feature extraction methods for labeling and indexing different classes and structures 
inside the satellite images such as residence area, forest, roads, etc. As the feature 
extraction, they applied Gabor texture features and SIFT descriptors and as the 
classification method, they used Super Vector Machine (SVM) and Maximum A 
Posteriori (MAP) classifier to evaluate the results of feature extractions. Their work is 
interesting because they compared a texture-like descriptor with a local descriptor.  
They presented their results as the following table:  
 
 
 
 
 
 
 
 
 
 
 
  
   
  Principal Components Analysis (PCA), sometimes called Karhunen-Loève Transform 
(KLT), is another method which has been used by researchers to characterize the 
satellite images.  KLT or PCA, in some pattern recognition methods, is used to reduce 
the images dimensionality without losing the important information. In a KLT 
procedure, eigenvectors of covariance matrix is calculated as new orthogonal basis 

Table 4.1: Results of Yang and Newsam. Comparison of SIFT and 
Gabor, using MAP and SVM 
   

  

  SIFT Gabor 

MAP 84.5%  73.9% 

SVM 76.9% 89.9% 
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vectors for describing data. Quintiliano and Santa-Roza [9] proposed a target detection 
approach, based on KLT, in order to detect streets, using very high resolution 
multispectral or hyperspectral satellite images. They transformed the data from 
multispectral images to some large vectors and computed eigenvectors of their 
covariance matrix as new basis vectors.  They applied positive and negative training, 
for detecting asphalt street (what is asphalt street and what is not asphalt street), and 
reported very better results when they used only positive training. 
   Since different types of features may be used in urban area characterization, in many 
cases, feature selection methods are applied to find the optimum features. Tuia et al 
[17] used a feature selection method based on SVM called Recursive Features 
Elimination (RFE) to search among the morphological features to find an optimal set of 
features based on the importance of the features in the classifier. An important 
challenge in their work is that the input space could become rapidly untreatable since 
it is possible to extract many morphological features by simply using different filters 
or by changing size and shape of the structuring elements. 
  Nowadays, some text retrieval approaches are used by researchers to model different 
types of images including remotely sensed images. Bag of words approach tries to 
model each image patch as a document containing some visual words. Then some 
topics are extracted using these words and a semantic interpretation of the documents 
is presented.  In this model, a document is viewed as an un-ordered set of words and 
is statistically modeled as a frequency of occurrence histogram along the dictionary. 
Weizman and Goldberger [14] proposed an approach which is based on the idea of 
bag of words for modeling of satellite images. Here we explain some aspects of their 
works because we also use the bag of words model in chapter 9. They needed a visual 
analogy of word and a visual analogy of dictionary that contains a list of all possible 
words. They used image patches with the size of 10*10 pixels and applied PCA 
transformation to the patches to reduce the dimensionality from 100 to 7 and used a 
clustering algorithm to the data vectors to group the patches into clusters. The mean of 
every cluster was defined as a dictionary’s visual word. Next step was to provide a 
histogram of words repetitions for urban and non-urban areas. They extracted all the 
patches from the manually labeled training images and normalized the patches, 
applied PCA and found the nearest word from the dictionary. Then, they built a 
histogram which displays the frequency of every visual word in urban areas. A similar 
histogram was built for the non-urban areas. Then the words that best differentiate 
urban areas from the non urban areas were found. As a result, a set of “urban 
detection words” was defined. For a new unlabeled test image, they selected the 
patches that correspond to urban detection words as a first detection step for urban 
areas. Then, as a post-processing step they applied spatial consistency constraints on 
the detected urban patches to obtain a global decision on urban regions.    
  Methods based on graph theory are also important for urban area characterization. 
Dogrusoz and Aksoy [10] introduced a graph-theoretic method for analyzing land 
development in high-resolution satellite imagery in terms of spatial arrangements of 
buildings. Buildings are detected using spectral classification and morphological post-
processing. These buildings form the nodes of a graph where the edges are 
constructed using the Voronoi tessellation of the scene. Building groups are formed by 
thresholding the minimum spanning tree of this graph. These groups are classified as 
organized or unorganized by examining the distributions of the angles between 
neighboring nodes of the clusters. Their experiments for detecting the urban area show 
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an accuracy of about 80%. They proposed to incorporate new properties of building 
groups into the graph to improve the clustering stage. 
   As an example of using the geographical information and maps in urban area 
characterization, we can mention the work of Newsam and Yi Yang [13]. They 
proposed a method which uses gazetteers and remote-sensed imagery, 
simultaneously, to improve the level of characterization.  
    Beside the urban area detection and characterization, Building extraction has been 
one of the interesting zones for researchers in the field of satellite image processing. 
Mayunga et al. [31] proposed a semi-automatic method based on the edge 
characteristics of estimated polygons to extract buildings from high resolution 
panchromatic imagery. Their method benefits of a snake algorithm to approximate 
buildings with some polygons. They reported a result of 91% for their experiments of 
building extraction from a variety of tested satellite images. An improved version of 
snake algorithm is also used by Peng et al. [32] to detect buildings. However they used 
their method for colored satellite images instead of panchromatic images. They also 
reported good detection results with their method.  
    There are many other interesting and valuable works and studies which have done 
by researchers in the field of urban area detection and characterizations. Some of them 
are mentioned in the bibliography. See for example references from [18] to [30]. 
 
 

4.2 ICA State of the art  
 
  Visual data that can be obtained from all around us has certain characteristics like 
other measured signals. They contain for example different textures, specific bands of 
frequencies and also edges, lines which are related to objects and their properties. An 
efficient processing system which is supposed to operate in such environment should 
utilize these characteristics. 
    The idea of Independent Component Analysis (ICA) is to reduce the redundancy of 
data without losing the important characteristics of data.  Barlow [1] proposed that 
human brain memorizes some information about all visible environments and use it 
when we are looking to an environment to decrease the redundancy of the data. Here, 
the redundancy has a meaning of statistical dependency. For example, if we see a car 
we expect to see also a street or a road. That is, there is a statistical correlation or 
dependency between the car and the street in our brain because we usually see them 
together. The initial idea of ICA is the same but here the dependency is measured 
between the gray levels of different pixels of an image which are considered as some 
random variables. 
    Fundamentals of ICA are explained in chapter 5. Blind Source Separation was one of 
the first problem for which the ICA was developed. In addition, it may be considered 
as a generalized form of Principle Component Analysis (PCA). The difference is that in 
PCA the components are supposed to be statistically uncorrelated, however, in ICA, 
the components are statistically independent. We know that statistical independence is 
a generalized form of being uncorrelated. That is, two independent random variables 
are certainly uncorrelated. But if two random variables are uncorrelated they may be 
not independent.   
     An important study was done by Bell and Senjowski [2] who used ICA for natural 
images and found out that the independent components of images contain short lines 
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and edges. Olshausen and Field [3] showed that similar properties can be found in 
human visual system. Existence of edges and lines in ICA components is interesting 
for us as well, because we are looking for some models to deal with the edge 
characteristics of objects in the satellite images. 
    Recently, several methods have been proposed which apply ICA for image data. 
Some of these methods use simple ICA models, but some of them use an ICA mixture 
model like the method proposed by Lee, Lewicki, and T. J. Sejnowsk [4].  
  An example of using ICA for remotely sensed data is the study which is done by 
Zhang, X. and C. H. Chen [7]. Also, Zhang et al [8] proposed a method based on ICA 
for classification of remotely sensing images. 
  Although ICA is frequently used for some types of images such as natural images, 
text images and face images, but it has not been widely used for satellite image 
characterization and there are many aspects to be investigated by researchers. This is 
another reason which motivates us to work on the ICA for satellite image 
characterization in this thesis. 
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CHAPTER 5 
 
 

PRINCIPLES  OF  INDEPENDENT 
COMPONENT ANALYSIS 
  
    
     Independent Component Analysis is the principal framework upon which several 
methods are proposed during the thesis to extract features from high resolution 
satellite images. In this chapter we illustrate fundamentals, concepts and algorithms of 
Independent Component Analysis.  
 
 

5.1 Why ICA for satellite images? 

     The initial question in this chapter could be around the motivation which leads us 
to use Independent Component Analysis for VHR satellite image characterization. 
Although reader could find the motivations behind the idea of using ICA for  atellite 
image characterization during the thesis, for more illustrations, here we give some 
explanations. 
  We know that Bell and Senjowski [2] used ICA for natural images and found out that 
the most of independent basis vectors of images include short lines and edges. This is 
an important property for satellite image characterization especially for those who 
contain geometrical structures, because the geometrical objects normally contain lines 
and edges. We show in Figure 5.1 some of ICA basis vectors which are obtained for 
four of classes of contextual satellite image patches shown in Figure 3.2. Here, the size 
of ICA basis vectors is 32*32 pixels. Later, we explain about the size of ICA basis 
vectors.  
     It is clear that the ICA basis vectors which are obtained for one class differs from the 
other classes. For example the basis vectors which are obtained for class of City contain 
both of long and short lines, but the basis vectors of class of Village contain only the 
short lines in several directions. We also see some types of smooth edges inside the 
basis vectors which are obtained for class of Sea which are probably because of the 
existing waves in the scenery. But for class of Forest we hardly could find the lines or 
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edges in its basis vectors. They present some special structures which are completely 
different from other classes. However, the ICA basis vectors of classes Forest and Sea 
which can be called as natural landscapes are, in general, more homogenous 
comparing with the basis vectors of classes City and Village which are man-made 
landscapes and include the geometrical structures. ICA basis vectors of such classes 
usually contain obvious lines and edges.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Figure 5.1:  ICA basis vectors differ from one class to other class. For 
every class we show a sample of its contextual patches and also 10 
samples of its obtained basis vectors. The size of contextual patches is 
200*200 and the size of basis vectors is 32*32 pixels and their scales are 
proportional in this figure. The basis vectors of classes Forest and Sea, as 
natural landscapes, are more homogenous comparing with those of 
classes City and Village, as man-made landscapes. ICA basis vectors of 
classes City and Village (Man-made landscapes), contain obvious lines 
and edges. The difference among the ICA basis components which are 
obtained for different classes is a sign of ICA capability for satellite 

image characterization. 
 

Class6: City-2 Class3: Village  

Class5: Forest Class8: See 
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  Actually, it seems that the ICA basis vectors carry the important characteristics of 
every class of images and the difference among the obtained basis vectors for different 
classes of satellite images can be interpreted as ICA capability for satellite image 
characterization. In this chapter we are going to present the theoretical fundamentals   
and concepts of Independent Component Analysis including some necessary 
assumptions and some pre-processing steps.    
 
 

5.2 Fundamentals of Independent Component Analysis   
 
     Independent Component Analysis (ICA) is a method that initially developed to deal 
with problems close to source separation or cocktail-party problem. In such problems, 
we have some observed signals which are combined from a number of signal sources 
that are simultaneously generating its own signals. For example, in a cocktail party, 
where many people are talking simultaneously, we are going to separate the different 
speeches.  In this example, each person in cocktail party is a source which is generating 
its own information independently. Human brain, naturally, is able to perform a kind 
of source separation. That is why we can follow somebody’s speech among other 
speeches in a cocktail party.  

     In ICA, it is assumed that there are a set of n sources of information 

( n21 s,...,ss , ) which are statistically independent with respect to each other. That is, 

the value of each source does not have any effect on other sources values. From the 
statistical point of view we could consider these sources as the independent random 
variables.  The set of these variables could be denoted with a random vector 

T

n21 s,...,sss ],[ which is called the source vector.  Then we suppose that the 

original independent source components are combined via a linear process. In other 

words, we have a set of observed variables, ( m21 x,...,xx , ) which are themselves 

random variables because they are produced as linear combinations of the initial 
random variables: 
 

             

nmnmmm
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sssx

sssx
sssx

aaa
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22221212

12121111
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  We denote the set of observed random variables with a random vector 

T

obs m21 x,...,xxx ],[ and call this vector as observed vector or observed signal. 

As an example, when we apply ICA to images, each image patch is considered as our 

observed signal, obsx , in which m21 x,...,xx , are the pixels of image patch.  More 

details about ICA for image data are explained in Chapter 6. Notice that the dimension 

of the observed signal, obsx , (that here is m) is not necessarily equal to the dimension 

of the source vector, s , (that here is n).  

(5.1) 
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   Since the process is assumed to be linear, the relation between obsx and s can be 

modeled as a matrix form: 
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 Here, the matrix A  is called as mixing matrix, since it mixes the independent sources. 
We can also rewrite equation (5.2) as: 
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  In which the vectors naaa ,,, 21  are with the same dimension as observed signal 

(which here is m). These vectors can be considered as the basis vectors of a new space 
for representing our data. So, they are usually called the basis functions or the basis 
vectors.  When we use ICA for image data, our observed signals could be considered as 
small image patches (micro patches) which are gathered from the initial images. So the 
ICA basis vectors would be with the same size as the micro patches.   
 
 
 
 
 
 
 
 
 
 
   
 
 
 

(5.2) 

(5.3) 

Figure 5.2:  when we use ICA for image data, observed signals are small 
image patches which are gathered from the initial images and the basis 
vectors obtained with the same size.
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    In fact, the initial space for representing data are some orthogonal basis vectors that 
have just one non-zero element. This is expressed with the equation (5.4): 
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   Through ICA we transfer our data into a new space whose basis vectors are 

naaa ,,, 21  . It is important to notice that the dimension of initial space (m) could 

be different from the dimension of ICA space that is the number of sources (n). This 

can be considered as dimension reduction step, a pre-processing step, which is 
explained in sub chapter 5.4.1.  

  Independent Component Analysis or ICA is defined as the procedure of basis vectors 
estimation such that the ICA sources will be as independent as possible. In other 

words, having a set of d observed signals, )(kobsx , ,d1,k  ,we are going to 

estimate mixing matrix, A , which includes the basis vectors, naaa ,,, 21   and 

the set of sources for each observed signal, )(,),(),( 21 kkk nsss  , ,d1,k   such 

that these sources would be, statistically, as independent as possible.  
      The main goal of ICA is to estimate the mixing matrix. Once we estimate the 
mixing matrix, we are able to obtain the corresponding source vector for each 
observed signal according to the equation (5.2).  Actually, since the columns of mixing 

matrix A , are the n basis vectors which have n different directions, the rank of A  is 

equal to n. Thus the matrix A  would be left invertible. It means that we are able to 

find matrix W such that: 
        

                                                            nIWA   

   
  So the source vector could be easily obtained by multiplying two sides of equation 

(5.2) into W : 
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(5.4) 

(5.5) 

(5.6) 
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,n1,i 

,n1,i 

 Matrix W  is called separating matrix since it helps us to separate the sources which 
are mixed through the observed signals.  
 
 

5.3 Assumptions for the mean and variance of sources 
 
 When we are working with ICA, it would be very useful if we assume that the mean 
values of sources are zero:   
 

                                            0iSE ,   

 
  This assumption makes the learning procedure easier to be performed. If the mean 
values of sources are equal to zero then according to equation (5.1) the mean value of 
every component of observed signal would be zero because they are the linear 
combinations of independent sources whose mean values are zero. So, at the 
beginning of learning procedure we remove the mean value from each element of 
observed signal. 
     We have to consider another assumption to solve the problem of estimation of ICA 
components. The reason is that we cannot determine the variances of the independent 

sources. In fact, according to equation (5.2) both s  and A  are unknown and must be 

estimated. So, if one of the sources is  is multiplied by a scalar, and the corresponding 

column ia  of A  is divided by the same scalar the equation is still satisfied.  

Consequently, it is reasonable that we assume all sources have a constant variance 
which is usually considered equal to one: 
                                                        
 

                                          1var iS ,    

 

 Then the matrix A  will be obtained in the ICA learning procedure regarding to this 
assumption.  
 
 

5.4 Pre-processing steps 
  
   The theoretical fundamentals of Independent Component Analysis are explained 
during last sub-chapters. Before an ICA learning algorithm, we usually apply some 
pre-processing steps on our data which make the learning procedure easer and cause 
better results. In this sub-chapter, we explain some general pre-processing techniques 
that usually are used for all types of data which must be processed by ICA. Then in 
next chapter, we introduce another pre-processing step which could be used 
exclusively for the image data.  
 
 

(5.8) 

(5.7) 
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5.4.1 Dimension reduction 
  
  When we apply ICA for multi-dimensional data, it is very useful if we eliminate the 
dimensions in which the variance of data is very low. It is illustrated in Figure 5.3 with 
an example.  In this example our data is defined in three-dimensional space. However, 
the most important variations happen in a two-dimensional plate and the variation of 
data out of this plate is not significant. So, if we consider the variation of data just in 
two dimensions corresponding to this plate we will not loss important information but 
on the other side the data processing will be really simpler.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
This step is usually done simultaneously when we are performing the Principal 
Component Analysis pre-processing step which is explained later in this chapter. In 
other words, this step usually is not performed independently.  

 

5.4.2 Removing mean vector  
 
   Data which is processed by ICA are considered as the several samples of a random 
vector and in ICA we deal with the statistical properties of such data. So, every pre-
processing step that reduces the statistical complication of data would be useful. As a 
pre-processing step to simplify the problem we can center our data. This means 

removing the mean vector of obsx  ( obsxEx ), in order to have a zero mean 

random vector. Figure 5.4 shows this pre-processing step. Consequently, the mean 

value of source vector ( s ) obtained through ICA learning procedure would be zero as 
well. This can be verified according to both sides of Equation. (5.2). Thus, the first 
assumption in sub-chapter 5.3 is satisfied.  If it is needed, using equation (5.6), we are 
able to estimate the mean value of sources as well. When we obtain the separating 

matrix, W , (and the mixing matrix, A ) through a learning procedure with centered 

data, we can estimate the mean vector of s  using the following equation: 

 

Figure 5.3:  Example of dimension reduction. It is reasonable to 
reduce the data dimension from 3D to 2D, since the variance of data 
out of a two-dimensional plate is not important.  



70 

 

 

xs W
                                                         
 

 In which s is the mean of source vector: sEs  

 

 

 

 

 

 

 

 

 

 

 

 

 
   
  

5.4.3 Principal Component Analysis step 
 
  In ICA we aim to transfer data into a new space in which the component would be 
mutually independent. If we initially transfer our data into a space in which the 
components are uncorrelated, it reduces many statistical complications. This is the goal 
of Principal Component Analysis (PCA) which could be considered as one of the basic 
ideas for Independent Component Analysis. In fact, the statistical independence is a 
generalized form of being uncorrelated. When two random variables are statistically 
independent, it implies that they are uncorrelated as well. But if these random 
variables are uncorrelated, we cannot conclude that they are necessarily independent.  
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
 

Figure 5.4:  Centering as a preprocessing of data means that we 
subtract the mean vector of observed signal. 

Figure 5.5:  Whitening is transferring the data into a space such that 
the components are uncorrelated and with the same variance. In this 
pre-processing step, by transferring the original basis vectors, we 
obtain the PCA basis vectors (orange) which are orthogonal. The 
ICA basis vectors (red) are not necessarily orthogonal and make a 
space in which the components are independent 

(5.9) 
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  This preprocessing step, sometimes, is called whitening. In whitening, as a pre-

processing step, we aim to transform the observed vector obsx  linearly so that we 

obtain a new vector obsx~  which is white.  That is, the components of obsx~  are 
supposed to be uncorrelated. In addition, we expect that their variances would be the 
same (usually equal to one).  
 In other words, we are looking for a transformation of original data such that the 

covariance matrix of obsx~  will be equal to the identity matrix: 
 

                                               IxxE
T

obsobs
~~                                          

 
  To transform data to such space we could perform the eigenvalue decomposition of 
the covariance matrix of original data. This decomposition is always possible because 

the covariance matrix ( cov ) is a Hermitian matrix (
T

covcov ). So we are able to 

find real matrix E  and such that: 
 

                                              
TT

obsobs xxE EE  

  

Where E is the orthogonal matrix of eigenvectors ( neee ,...,, 21 ) of covariance matrix 

and  is the matrix of its eigenvalues ( n,...,, 21 ) which is the diagonal matrix: 

 

                                               ],...,,[E 21 neee  

                                              ],...,,[ 21 ndiag  

 

Then we define the transformation matrix ( Q ) as: 

                                             

                                                
T

EEQ
1/2-

 

 
And the whitened data is obtained as:  
 

                                               obs
T

obsobs xxx EEQ~ 1/2-
 

 

Now, if we multiply two sides of equation (5.11) by Q  from left and by 
T

Q from 

right, we will have: 
 

                 IxxE
TTTT

obsobs )EE(EE)EE(QQ
2/12/1T

                                              

(5.10) 

(5.11) 

(5.15) 

(5.12) 

(5.13) 

(5.14) 

(5.16) 
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And if in this equation we replace obsxQ  with obsx~ , we exactly obtain equation (5.10). 

As it is illustrated in Figure 5.5, by performing whitening step we make a new space 
whose basis vectors are PCA basis vectors that are orthogonal. However, ICA basis 
vectors are not necessarily orthogonal.  
  When we transfer our data into the whitened data, the mixing matrix will be 

transferred into a new matrix ( A
~

) which could be obtained by replacing equation 
(5.2) into equation (5.15) : 
 

                                                 ssx obs A
~

AQ~
 

 
 In other words: 
                              

                                                AEEQAA
~ 1/2- T

   

 

 Multiplying two sides of this equation by 
T

EE
1/2

 we obtain:  
                                                 

                                               A
~

EEA
T1/2

                     
 
 Based on assumption which expressed by equation (5.8), we can show that: 
 

                                  IxxEssE
T

obsobs

T ~~A
~

A
~

A
~

A
~ TT

                   

  This means that A
~

is orthogonal. It is important because estimation of an orthogonal 

matrix is absolutely simpler. After obtaining A
~

in an ICA learning procedure, we can 

easily obtain A , using equation (5.19) which is not necessarily orthogonal.                      
 As it was mentioned in sub-chapter 5.4.1 during whitening we could eliminate the 
dimensions of data that don’t contain important information. We can easily do this by 
eliminating very small eigenvalues and their corresponding eigenvectors from 
equations (5.12) and (5.13) 
 
 

5.5 Measurement of statistical independence  
 
   In ICA we aim to estimate basis vectors such that sources would be statistically 
independent. So we have to create a criterion to measure the independence among the 
random variables which are called sources. Usually, there is no straightforward way to 
measure the independence among a set of random variables.  Central Limit Theorem 
under certain conditions could help us to see how much a set of random variables are 
mutually independent. This theorem expresses that if we create a linear cobination of 

n independent random variables, the distribution of new random variable tends 

toward a Gaussian distribution if n tends to infinity.   In other words, a sum of two 

(5.17) 

(5.18) 

(5.20) 

(5.19) 
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independent random variables usually has a distribution that is closer to Gaussian 
than any of the two initial random variables. 

    We assumed that the data vector obsx  is a mixture of independent sources. Now, We 

define a new random variable, z , as the linear combination of components of obsx  : 
 

                                             obs

T

ii xwxw=z  

 

  Where w  is a vector which determines the coefficients of the linear combination. 

According to equation (5.2) we can replace obsx  with sA  :  
 

                              ii

TT

obs

T
sv=sv=sw=xw=z A   

 

   Here v is a new vector which is defined as w=v
T

A . In other words, z is a linear 

combination of independent sources ( is ) as well, with weights which are given by 

components of vector v  .  
 
    Based on Central Limit Theorem, the sum of independent random variables is more 
Gaussian than the original variables. So we can conclude that the random variable 

svz
T

 is more Gaussian than each of the is .  We also can conclude that this 

variable becomes least Gaussian when it equals one of the is . In this case, only one of 

the components iv  of v is nonzero. Therefore, the goal is to estimate vector w  such 

that it maximizes the non-Gaussianity of obs

T
xw . This vector corresponds to a vector 

v which has only one nonzero component.  

    So, the learning procedure could start with selecting an initial value for vector w . 
Then through the learning steps we try to find the local maxima of non-Gaussianity 

criterion for the variable obs

T
xw .   

  It is clear that we can use non-Gaussianity to measure the level of mutual 
independence among a set of random variables. Now, the question is how to measure 
the non-Gaussianity. It is supposed to find a quantitative criterion which shows how 
much a probability distribution is close to (or far from) the Gaussian distribution.   
Kurtosis or the fourth-order cumulant is the most usual way to measure the non-
Gaussianity. The kurtosis of a Gaussian distribution is equal to zero and when a 
probability distribution tends toward a Gaussian form; its kurtosis tends toward zero. 
So, it could be used as a criterion to measure the non-Gaussianity of a distribution. 
However, in practice, estimation of Kurtosis is not easy and encounters some 
problems. Thus, we have to search for another quantitative criterion which is more 
practicable.  
   We know from information theory that a random variable has the largest entropy if 
its distribution is Gaussian comparing with all other possible distributions with the 
same variance.  

(5.21) 

(5.22) 
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  This means that entropy could be used as a measurement of non-Gaussianity. The 
entropy of a random variable expresses the level of its unpredictability. When we have 
a random variable with high level of entropy it means that we hardly could predict the 
value of random variable for next instant.                                    
   Since the entropy for the Gaussian variable is maximum, it is reasonable to define a 
new function called negentropy as the difference between the entropy of our random 
variable and the entropy of a Gaussian random variable with the same variance [6]:  
           

                                         )()()( zHuHzNeg  

 

   Here H stands for entropy and u is a Gaussian random variable with the same 
variance of z  .thus, the negentropy is always non-negative, and it is zero if and only if 
z  has a Gaussian distribution.  
   Based on our criterion for negentropy, we are able to design an algorithm for 

learning which estimate the w  that minimize the non-Gaussianity of obs

T
xw=z . In 

this thesis we use the Fast-ICA algorithm [5] for estimating the ICA basis vectors. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5.23) 
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CHAPTER 6 
 

ICA FOR SATELLITE IMAGES: SCALE AND 
DIMENSIONALITY BEHAVIOR  

 
 
   In this chapter we are going to perform an investigation about the advantages and 
challenges of applying Independent Component Analysis for VHR satellite image 
characterization. We explain the details of applying ICA for image data. Then, we 
study the scale and the dimensionality behavior of an ICA system. The goal is to find 
the optimum points for the scale and the dimensionality of an ICA system when it is 
applied for VHR satellite images. 
    We also propose an extra pre-processing step based on using Gabor-wavelet filters 
which leads to remove some unwanted redundancies in the set of ICA basis vectors.  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 6.1:  Different steps of applying ICA for image data 
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6.1 ICA for image data 
      
 In chapter 5 we explained the basics of Independent Component Analysis. In an ICA 
learning procedure, the inputs are the observed signals which are considered as 
vectors of random variables. But, when we are working with the images, we are 
dealing with matrices of data instead of vectors. In other words, we have two-
dimensional observed signals instead of one-dimensional ones. So, the question is that 
how we can adapt the ICA methods to the image data.  
    Another problem is the large volume of data belongs to every image which must be 
processed during the ICA procedure. Actually, if we have an image with the size of 
n*n pixels it means that we have n2 random variables to be processed by ICA in the 
same time. So if n gets larger the amount of computations increase with the rate of n2 . 
Thus, the ICA procedure gets difficult when the size of image patches increases and it 
gets impossible for the size of contextual satellite image patches.   
    In Figure 6.1, different steps for applying ICA to the image data are illustrated. At 
the beginning, for each image we rescale it such that its variance will be equal to one. 
Then we gather some smaller patches (micro patches) from initial images which are 
not enough small to be processed by ICA. Next step is to transform the image patch 
matrices to the vectors. Then we perform the PCA pre-processing step before starting 
the ICA learning procedure. At the end we have to transform the resulted basis vectors 
which are obtained in the form of vector to the form of matrix. In the following, we 
explain the details of these steps.  
 
 

6.1.1 Image rescaling 
     
      In chapter 5, it is explained that in ICA system the input observed signals are 
supposed to be transferred such that the variance of each element of observed signals 
will be equal to one (See Equation 5.10). If we have a set of initial images to be sampled 
for ICA learning procedure and divide every image to its norm, it helps us to have 
sampled learning micro patches whose pixels variances are approximately equal to 
one. 
 

 

6.1.2 Micro patches 
    
   It was mentioned in sub-chapter 3.4 that the objective of thesis is to define the 
descriptors for contextual patches with the size of 200*200. When we are going to 
apply ICA for these contextual image patches, ICA has to process 40000 random 
variables in the same time. This is impossible with the existing normal computer 
systems.  
    The solution is to gather some smaller patches from the contextual image patches to 
make it possible to be processed by ICA. Figure 6.2 demonstrates an example of 
gathering smaller image patches from the larger contextual patches. During the thesis 
we call these smaller image patches on which the ICA learning procedure is performed 
as micro patches. It is important not to mix up the contextual patches and the micro 
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patches. The contextual patches are the image patches for which we are going to define 
the descriptors and during the thesis we get their size as 200*200 pixels (see chapter 
3.4). However, the micro patches are the smaller image patches which are sampled from 
contextual patches and are used by ICA learning procedure. 
     The size of micro patches is an important issue which is explained in sub-chapter 
6.3. If we get it very small then the results don’t preset necessary characteristics of the 
contextual patches. And if we get it too large, we will have the same problem with the 
contextual patches, i.e. the computational problem. In the literature, researchers 
usually get the size of such micro patches between 8*8 and 32*32. In the example of 
Figure 6.2, the size of micro patches is considered as 8*8 pixels and their scales are 
proportional to the initial contextual image patches in the figure. 
    When we are gathering the micro patches from the initial contextual patches, 
another important issue is the number of sampled micro patches. The number of micro 
patches must be enough large to cover all important events and variations inside the 
images. For example, if we have 200*200 contextual patches and we want to gather 8*8 
micro patches, it is reasonable to gather at least 100 to 200 samples from every 
contextual patch. 
   If we increase the number of sampled micro patches, the results will be more reliable 
but we have to take care about the total number of samples. If there are many 
contextual patches to be sampled, there may be some computational problems because 
the total number of learning micro patches may be very high for ICA learning 
procedure. After gathering the micro patches, we have to remove their mean values 
according to the ICA supposition.  
 
 
  

 

 

 

 

 

 

 

 

 

 
 
 

6.1.3 Micro patch conversion to the vector form 
    
   From chapter 5 we know that ICA works with the vectors of random variables. But 
here, the micro patches are in the form of matrix. Thus, we have to transform the 
matrices related to the micro patches to the vectors. Actually, images present their 

Figure 6.2: Gathering the micro patches from contextual patches. 
Here, the size of contextual patches is 200*200 and the size of micro 
patches is 8*8 pixels and their scales are proportional in the figure.

 



78 

 

 

information in two-dimensional format. In other words, in the images the position of 
every pixel is important. However in ICA the order of pixels is not important. ICA 
considers each pixel as a random variable and tries to find dependencies between this 
pixel (random variable) with other pixels (random variables).   
 
 
 
 
 
 
 
 

 

 

 

 

 

 

  
    
  Therefore, the arrangement of the random variables in the input vectors is not 
significant for ICA. Consequently, we can convert the matrix of an image to the vector 
just by placing its pixels beside each other with an arbitrary arrangement. Of course, 
we have to respect the same arrangement for all micro patches which contribute in the 
ICA procedure.  Usually, we put each row of the matrix beside the previous one to 
make a vector from the matrix. This is shown in Figure 6.3. 
 
 

6.1.4 Principal Components 
    
   The ICA learning procedure usually begins with whitening step (sub-chapter 5.4.3) 
that includes a PCA procedure to obtain the principal basis vectors. In PCA we are 
going to find the new basis so that the components of data in new basis will be 
uncorrelated. This can help us in ICA which aims to find new basis such that the 
components of data in new basis are independent. In addition, through this step, we 
are able to reduce the dimensionality of the data. This issue is explained in sub-chapter 
6.2. Here, as an example we obtained the principal basis vectors without any reduction 
in dimensionality for the set of test contextual patches shown in Figure 3.2.  We use the 
micro patches with the size of 8*8 pixels and initially remove the mean value from 
micro patches. The normal dimensionality i.e. without any reduction for such a system 
is 64. If we perform PCA or ICA without any reduction in dimensionality, one of 
resulted basis vectors is the DC component which presents the mean value of micro 
patches. But we already removed the mean values of micro patches, so the maximum 
possible dimensionality is 63.  The result is seen in Figure 6.4. The basis vectors are 

Figure 6.3: Converting of every micro patch matrix to the vector. 
Here, the size of micro patches is 8*8. The usual approach is to put 
each row of the matrix beside the previous one to make a vector 
from the matrix.  
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converted from the vector form to the matrix form respecting the same arrangement 
which is used for converting the matrix form to the vector form. 
  
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: The set of 63 principal basis vectors with the size of 8*8 
pixels which are obtained for the set of test contextual patches 
shown in Figure 3.2. The basis vectors are converted from the 
vector form to the matrix form.

 

Figure 6.5: The set of 63 ICA basis vectors with the size of 8*8 pixels 
which are obtained for the set of test contextual patches shown in 
figure 3.2. The ICA basis vectors are converted from the vector form 
to the matrix form. These are the basis vectors for new space of data. 
These basis vectors obviously contain some types of lines or edges. 
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6.1.5 ICA basis vectors  
   
     Finally, we obtain the ICA basis vectors from the whitened learning micro patches 
through a learning ICA procedure which is explained in chapter 5. At the end we 
convert them to the matrix form respecting the same arrangement which was used for 
converting the matrix form to the vector form. Here, we obtained the 63 ICA basis 
vectors for the set of test contextual patches explained in Figure 3.2, for which we 
already obtained the PCA basis vectors demonstrated in Figure 6.4. The result is 
shown in Figure 6.5.  
    It is interesting to compare structures of ICA basis vectors (Figure 6.5) with PCA 
basis vectors (Figure 6.4). The most important difference between the two sets of 
components is that in the set of ICA basis vectors there are some components which 
obviously contain some types of lines or edges.  
 
 

6.2 Dimensionality behavior of ICA components 
  
      If the size of micro patches is mm  pixel, it means that in the initial space, our data 
are represented using n2 basis vectors.  In other words, each pixel represents a basis 
vector. This is shown in Figure 6.6. In fact, in every basis vector of initial space of 
micro patches, only one pixel is equal to one and other pixels are zeros. 
   
    
 
 
    
 
 
 
  As it was mentioned in chapter 5, through the whitening pre-processing step, we are 
able to reduce the dimensionality of the data. We find the eigenvectors and 
eigenvalues of covariance matrix and then we choose the n eigenvectors that 
correspond to the highest eigenvalues and eliminate the others. So we define the PCA 
basis vectors for the data as remained eigenvectors (see Figure 6.4 for example). Using 
the ICA system we transfer our data into a newer space of basis vectors, i.e. ICA basis 
vectors. (See Figure 6.5 for example). If we are working with an ICA system with m 
components we define the Reduction Factor as: 
 

                                                              2
m

n
r  

 
The Reduction factor is greater than zero and less than one because the number of 
components, m, cannot be selected over the dimensionality of initial space of data, i.e. 
n2. Moreover, as it is mentioned before, if we have an ICA system without any 
reduction in dimensionality, one of resulted components is the DC component which 
presents the mean value of micro patches. But we already removed the mean values of 

(6.1) 

Figure 6.6:  Initial space for micro patches. In each basis vector only 
one pixel is equal to one and other pixels are zeros 
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micro patches, so the maximum possible dimensionality for an ICA system that works 
with nn  micro patches is n2-1.   
    
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
     
     
 
   
 
   
  
We already obtained the set of 63 ICA components with the size of 8*8 pixels for our 
set of test contextual patches (see Figure 6.5). This is an example of ICA system 
without any reduction in dimensionality. To make a comparison, we obtained the ICA 
components with other reduction factors in Figure 6.7. We see that when the 
dimensionality increases, more various types of lines or edges appear in the set of 

Figure 6.7: Six sets of ICA basis vectors with six different reduction 
factors. These basis vectors are obtained for the set of test contextual 
patches in figure 3.2. The size of basis vectors is 8*8 pixels. It is 
interesting to compare the structures of basis vectors in different sets. 
When the dimensionality increases, more various types of lines or 
edges appear in the set of basis vectors. 

Number of components = 4 

Reduction factor = 0.0625 

Number of components = 6 

Reduction factor = 0.0938 

Number of components = 8 

Reduction factor = 0.125 

Number of components = 12 

Reduction factor = 0.1875 Number of components = 16 

Reduction factor = 0.25 

Number of components = 32 

Reduction factor = 0.5 
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basis vectors. It is a good sign for capability of ICA basis vectors for characterization of 
geometrical structures. But on the other side, when the dimensionality increases, the 
time of learning procedure increases as well. In the Table 6.1 we see the times which 
are computed for the learning procedures which are used for obtaining different sets 
of ICA basis vectors.  
 
 
   
 
 
 
 
 
 
 
 
 
 
 The question here is that how much we are able to reduce the dimensionality of the 
data without losing the important information of images. In other words, we are going 
to know how many basis vectors are necessary to be produced by ICA learning 
procedure. Answering to this question is dependent on the application for which we 
produce the ICA basis vectors. Here, we aim to use the ICA basis vectors and ICA 
sources to extract features from the contextual image patches. So our criterion for the 
dimensionality may differ from other applications (for example data compression) 
which may use ICA basis vectors and sources. However, generally we expect that the 
important information existing inside the image must be held when we decompose 
our image into the ICA basis vectors and reconstruct it back. This leads us to use the 
reconstruction error as the criterion. 
 

 
6.2.1 Reconstruction  
       
  When we finish  ICA learning procedure we have the mixing matrix and the separating 

matrix. The mixing matrix, A , includes the ICA basis vectors as its columns and 

separating matrix, W , includes the inverse filters as its rows.  Now, we are going to 
decompose the micro patches into the set of ICA basis vectors. Here, decomposition 
means obtaining the ICA coefficients (ICA sources) in the space of ICA basis vectors 
for every micro patch. According to chapter 5, ICA sources can be computed using the 

separating matrix, W , as it is stated in the equation (6.2): 
 

                                                        0xs W                                                                         

  In which 0x  is the micro image patch from which the mean value is removed and  

s is the vector of ICA coefficients i.e. ICA sources. In other words, given a micro 

(6.2) 

 

Number of 

components  
  4            6            8           12        16        32        63 

Reduction 

factor 
0.0625     0.0938      0.125      0.1875      0.25        0.5       0.9844 

Time (sec)   1.8        2.7         3.7         6.2       11.8     24.2     56.3 

 

 

                          

Table 6.1: Computation times of learning procedures for obtaining 8*8 ICA 
basis vector. Number of learning micro patches is 15000  
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image patch and also the separating matrix, W , (and the set of basis vectors, A ), it 
is possible to obtain the set of ICA coefficients (ICA sources). In fact, the vector of ICA 

coefficients, s , is the projection of the micro patch into the space of ICA basis vectors. 
Reconstruction is the inverse operation of decomposition. That is, given the set of ICA 
basis vectors and the set of ICA coefficients related to one micro image patch, we are 
supposed to reconstruct the micro image patch. This can be expressed by equation 
(6.3): 

 

                                                              
 

In which ia is one of the ICA basis vectors that corresponds to the source i
s . So we 

are able to reconstruct a micro patch if we are given its corresponding ICA coefficients 
and also the set of ICA basis vectors. Dividing a contextual patch to several micro 
patches we are able to produce the reconstructed contextual patch.  Figure 6.8 is an 
illustration of reconstruction procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(6.3) 

Figure 6.8:  Reconstruction of a contextual patch by dividing it to the 
micro patches. Then each micro patch could be reconstructed based 
on its ICA coefficients (ICA sources). Finally, the reconstructed image 
patch will be replaced in the contextual image patch. 
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6.2.2 Reconstruction error  
 
      When we are working in the space of a set of ICA basis vectors, we expect that it 
holds the important information of input signals (here, the micro image patches), in its 
corresponding ICA coefficients (ICA sources). A way to evaluate the efficiency of an 
ICA system is to compare the initial micro patch and its corresponding micro patch 
which is reconstructed given the ICA coefficients, to see how much the reconstructed 
micro patch is similar to the initial one. A usual approach to compare the two micro 
patches is the error of reconstruction which is computed with the equation (6.4): 
 

                            )(/)ˆ(
22

)( xxxe meanmean  

     

 Where x  is the initial micro patch, x̂  is the reconstructed micro patch and e is the 
reconstruction error. The idea is to calculate the reconstruction error as a function of 
dimensionality of ICA system, i.e. the number of ICA basis vectors. Table 6.2 contains 
the average of reconstruction error for different reduction factors when we use 8*8 
basis vectors. These results are obtained for a set of 10000 micro patches which are 
randomly gathered from the set of test contextual patches.  
 
 
       
  
 
 
 
 
 
 
 
 
 
 

6.2.3 Optimum reduction factor 
 
  The objective is to select the optimum number of components for an ICA system. For 
that, we have two criteria to be considered: the computation time and the 
reconstruction error.  It could be seen as an optimization problem with a Cost Function 
(CF) like the following equation: 
 

                                        )()1()()( rekrktrCF  

 

   Where r is the reduction factor and 10 k  is a parameter which represents the 

importance of computation time (t) with respect to the reconstruction error (e). If k is 

zero, it means that t is not important at all; so the cost function is exactly equal to e. 

(6.4) 

 

Number of 

components  
  4            6            8           12        16        32        63 

Reduction factor 0.0625     0.0938      0.125      0.1875      0.25        0.5       0.9844 

Reconstruction 

error (%) 
  36.1     26.9       23.1        20.2     17.6     12.7    1.1 

 

 

                          

Table 6.2: Average of reconstruction error for different reduction factors 
which are obtained for 10000 of 8*8 gathered micro patches.  
 

(6.5) 
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When k is increasing to one the importance of t will be increasing with respect to e 

and for 1k  the cost function is exactly equal to t. It is possible to define other 

forms for the cost function; however, it must be an increasing function with respect to 

e and t, because we expect that both of e and t are in their minimum levels. Equation 

(6.5) is a simple form for such a cost function. Parameter k is adjusted regarding to the 

variation ranges of e and t and, of course, the importance of t comparing with e in 

the application. In our work both of e and t are important so k must not be very close 

to zero or one.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9 (c) shows the cost function for 3 values of k. The optimum point is the local 

minimum of cost function. We see that for 3 values of k, the optimum point differs 

between 0.1 and 0.12. In general, for an interval of 0.3 around 0.5, the optimum 

Figure 6.9:  (a): Reconstruction error as a function of reduction factor. 
(b): Computation time as a function of reduction factor. (c): Cost 
function as a function of reduction factor. Here, the size of basis 
vectors is 8*8 pixels. 

(a) (b) 

(c) 
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reduction factor could be found somewhere between 0.08 and 0.14. This result is 
obtained for an ICA system with the 8*8 basis vectors. However, we performed similar 
experiments for the cases 16*16, 32*32, 48*48, 64*64 and we found very similar results 
for all cases. 
 
 

6.3 Scale behavior of ICA components 

 
   Choosing the size of basis vectors for an ICA representation which here is called as 
scale size is very important in our work. The ideal case is when the size of contextual 
patches, for which we are going to extract features, is equal to the size of basis vectors. 
But usually it is not possible because of the computational problems. For example, we 
have 200*200 contextual patches but an ICA learning procedure with such a big size is 
not possible. Therefore, we have to use some smaller learning micro patches which 
lead to a set of basis vectors with the same size.  
  When the size of basis vectors is getting larger, we could see more various forms of 
edges, lines and other structures. This is shown in Figure 6.10.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Thus, we expect better results when we use larger basis vectors but in the same time 
we have more computational problem. We could use a similar approach to find the 
optimum scale size. We define a cost function like the equation (6.5) but as a function 
of the size of basis vectors: 
 

                               )()1()()( mekmktmCF  

 

    Where m is the size of basis vectors. We calculated the cost function for 5 different 
scale sizes: 8*8, 16*16, 32*32, 48*48 and 64*64. For all cases we selected the number of 
basis vectors such that the reduction factor is (exactly or very close to) 0.1 and the 
number of learning samples is 8500. In Figure 6.11(c) we could see this cost function 

for 3 different values of k. For small k the optimum point converges to 32m (That 

is equivalent to size of 32*32) because the importance of time is little with respect to 

Figure 6.10:  Samples of basis vectors for different scale sizes  
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(6.6) 
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the reconstruction error. When k increases, the optimum point moves to 16m . 

   In our work, both of time and the efficiency of ICA system (which here is 
represented by reconstruction error) are important so it seems that the ICA basis 
vectors with the size of 16*16 could be the optimum point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
   
 
    
 
 

6.4 Gabor filters pre-processing step 
    
     During our experiments with ICA we noticed that in some of ICA basis vectors we 
see only small changes at their corners and the rest of the basis vector’s surface does 
not contain important information (see Figure 6.12(a)). Our experiments show that 
such of these basis vectors do not play important role in image characterization, 
because they cannot present significant character of the image. The reason of 
appearing such basis vectors is that many micro patches that are gathered randomly 
for learning procedure, present only very small parts of a structure at their corners. 

(a) (b) 

(c) 

Figure 6.11:  (a): Reconstruction error as a function of size of basis vectors. 
(b): Computation time as a function of size of basis vectors. (c): Cost 
function. We calculated the cost function for 5 different scale size: 8*8, 
16*16, 32*32, 48*48 and 64*64. For all cases, the reduction factor is 0.1 and 
the number of learning samples is 8500 
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Therefore, the large parts of these micro patches do not contain important information. 
This causes our model to present a kind of redundancy. On the contrary, the learning 
image patches that all parts of their surfaces, in particular the central parts, contain 
structures, shapes, edges, etc, contain more information from the scene and make the 
model more reliable. The idea is to increase the number of these learning image 
patches with respect to the first group. In other words we expect that our learning 
micro patches present their information in their central parts as much as possible.  
   We propose to use Gabor-wavelet filters to measure how much of information are 
placed in the central parts of learning image patch. We provide a set of 100 Gabor 
filters with 10 scales in angle and 10 scales in frequencies, but for all of them the origin 
point is considered as the central pixel of filter (see Figure 6.13). Details of this Gabor 
system is explained in sub chapter 2.2.2. 
  To verify if a learning image patch present enough information, we project it into the 

set of Gabor filters and obtain coefficients 
nggg ,..., 21

and compute the sum of their 

squares as the energy of image patch in the Gabor system: 
 

                                            
22

2

2

1 ngggG               

 

 We call this value as G parameter of the micro patch. So, the micro patches with 

higher G parameters present more information in their central parts. 
   In Figure 6.12 we show an example of two sets of ICA basis vectors. One of them is 
obtained with a Gabor filtering pre-processing filters and the other is obtained with an 
ordinary procedure.  Both of these sets contain 49 components. When we don’t apply 
the Gabor pre-processing step, 8 of these basis vectors present only very small changes 
in their corners. However, when we use Gabor-wavelet filters as a processing step, the 
number of such basis vectors reduces to two. Although this is an example of effect of 

Figure 6.12: Example of effect of Gabor pre-processing filters onto a set 
of 49 ICA basis components. (a) is obtained with an ordinary 
procedure. 8 of basis vectors present only small changes at their 
corners (b) is obtained with a Gabor filtering pre-processing. Number 
of such basis vectors reduces to 2. 
   

 

a b 

(6.7) 
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Gabor filtering step on the ICA basis vectors, the same effect happens for the TICA 
basis vectors (explained in chapter 8) if we apply Gabor filtering step. In our work, 

after randomly gathering 2L micro patches, we selected L of them which have higher 

G parameters as the learning micro patches. 

 
 
  
 
 
    
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
  This step could be considered as a pre-processing step for the ICA learning 
procedure. It is not mandatory and is not used in the usual ICA approach in the 
literature. So we didn’t bring it as the other pre-processing steps in sub-chapter6.4 and 
preferred to explain it as an individual sub-chapter to introduce it as new approach for 
reducing the redundancy in the ICA basis vectors.  However, it helps us for 
characterization of satellite images especially when we are going to extract features 
from the basis vectors (chapters 9 and 10).   
 
 

6.5 Conclusions 

 
   In this chapter we explained the technical details for applying ICA for satellite 
images. Moreover, we studied the scale and dimensionality behavior of an ICA system 
when we use it for VHR satellite images. We found that the optimum reduction factor 
could be detected somewhere between 0.08 and 0.14. In addition, the basis vectors 

Figure 6.13:  Gabor filtering as a pre-processing step for selecting 
optimum leaning micro patches. We project the learning micro patch 
into the set of Gabor filters and obtain the coefficients. Then we 
compute the energy of micro patch in the Gabor system (G parameter) 
as the criterion which shows how much of changes appear in the 
central part of learning micro patch. 
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with the size of 16*16 and 32*32 pixels are more efficient according to their results and 
their computation times. Between the two choices, the size of 16*16 seems to be more 
suitable for our work. These optimum points were obtained regarding to two criteria: 
the time of computation and the reconstruction error.   
   In addition we introduced an approach to reduce the redundancy in a set of basis 
vectors. We proposed to use Gabor-wavelet filters to choose the optimum learning 
micro patches.  
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CHAPER 7 

 

FEATURE EXTRACTION FROM ICA SOURCES      
 
 
 
   There are two points of view for feature extraction using ICA from image data. The 
usual approach is to use the ICA coefficients (ICA sources) and the other is to use the 
ICA basis vectors which are corresponding to every image. In this chapter we 
concentrate on extracting features from the ICA coefficients for every contextual image 
patch.We initially explain that how we can define features for micro image patches 
with the size of given basis vectors, then we generalize our approach for larger image 
patches, particularly for contextual image patches.  In addition we introduce a simple 
clustering approach to evaluate the efficiency of the features. 
 
 

7.1 Features for a micro patch 
 
     From previous chapters we know how to obtain the basis vectors through an ICA 
learning procedure. Here, we suppose that a set of ICA basis vectors is given. It means 

that we have the mixing matrix A , and the separating matrix W . The objective is to 
define features for a test image patch using the set of ICA basis vectors. The size of 
image patch is important for feature extraction.  Usually our image patches for which 
we are going to extract features are larger than given basis vectors. This case is 
explained in next sub-chapter. However, if our image patch is with the same size as 
given basis vectors, we can simply decompose the image patch onto the given basis 
vectors using the equation (6.2). Then we define the features as the ICA sources which 
are obtained for our image patch. 
  There are two technical points when we are obtaining the corresponding ICA sources 
given a set of ICA basis vectors. The first point is about the mean value of our test 
micro patch.  Referring to the Chapters 5 and 6, we remove the mean value from each 
of learning micro patches at the beginning of learning procedure. Thus, here it is 
reasonable to remove the mean value of our test micro patch before decomposing it 
onto the ICA basis vectors. 
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  The other point is related to the normalizing of basis vectors.  In sub-Chapter 5.3 we 
assumed that each of ICA sources has unit variance. See equation (5.8). So, the matrix 

A is adapted in the ICA learning procedure such that this assumption will be 

satisfied. In fact, the basis vectors, ia , are obtained with different norms so that the 

variances of ICA sources  would be the same. In other words, the norm of every basis 

vector, ia , gives some information about the variation of data around the direction of 

the basis vector, ia i. Normally, a basis vector with a larger norm is a sign of larger 

variation of data around its direction.  
   However, when we use ICA sources as features, they carry the information from the 
image patches and we don’t expect that different sources have the same variance. 
Moreover, when we are going to represent our data in an arbitrary space of basis 
vectors it is reasonable that the basis vectors have the same norms. Consequently, for 
obtaining the ICA sources as the features of a test micro patch, we initially normalize 

the basis vectors (the columns of matrix A  ) and their corresponding filters in 

separating matrix, i.e. the rows of matrix W . The procedure of obtaining the source 
based features for a test micro patch is illustrated in Figure 7.1. We call these features 
as micro features. 
 
 

7.2 Features for contextual patches  
 
     If our image patch for which we are going to extract features is larger than given 
basis vectors, as in the case of contextual patches, we have to sample sufficient number 
of micro patches with the same size as basis vectors, then we remove their mean 
values and decompose them onto the set of given basis vectors.  

     Thus for every sampled micro patch we obtain a set of n sources. n is the number of 
basis vectors. If, for example, we gather d micro patches for our contextual patch, then 

Figure 7.1:  Obtaining the source based features for a test micro 
patch when mixing matrix and separating matrix are given. We 
decompose the micro patch onto the set of basis vectors. These 
features are called micro features. 
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for each is , ni ,,2,1   we have d samples ( )(,),2(),1( diii sss   ) and we 

have to find a way to define only one feature for every is . 

  We can conclude from sub-chapter 5.3 that the sign of ICA sources is not important 
because both of sources and basis vectors are supposed to be estimated and the sign of 
a source can be canceled by the sign of corresponding basis vector . So, a simple way is 

to apply a root mean square over the d samples of the same is to define the 

feature if : 

       
 
 
 
   This procedure is shown in Figure 7.2.   
 
 
   
 
 
   
 
 
 
 
 
  
 
 
 
 
 
 
 
     
 
   
 
 
 
 
 
          
 The basis vectors which are used for feature extraction were already obtained through 
a learning procedure which takes 10000 micro patches with the size of 16*16 from all 
types of classes as learning samples. We used a reduction factor of 0.098 for the 
dimensionality of ICA system that is equal to obtaining 25 basis vectors. Therefore, the 
number of features for each contextual patch is 25. The set of these basis vectors is 
shown in Figure 7.3. 

Figure 7.2:  Defining contextual features for a contextual image 
patch when mixing matrix and separating matrix are given. We 
gather a sufficient number of micro patches and decompose them 

onto the set of basis vectors and for each we obtain a set of n sources. 
Applying the root mean square over samples of a specific source we 
obtain the corresponding feature. 
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There are other ways to define feature if from the samples of is . For example, we 

may count the number of sampled micro patches for which the value of is is the 

maximum comparing with the other sources. We experimentally found that the two 
ways works with a similar level of efficiency but the idea of using root mean square 
over the samples of a specific source, sometimes, works a little better. So, we decided 
to use this idea to define the corresponding ICA feature. We call these features as 
contextual features. 
   Here is also another technical point. As it was mentioned in sub-Chapter 6.1.1, In an 
ICA learning procedure, before gathering micro patches; we rescale the contextual 
patches such that their norm is equal to one. So our basis vectors are obtained with 
such condition from contextual patches. Therefore, it is reasonable to do the same 
when we are going to extract features from contextual patches. 
   In Figure 7.4 we see the obtained ICA features for the test contextual patches which 
are classified in 8 classes (See Figure 3.2). From each class we selected the first 10 
contextual patches for feature extraction.  Then we gathered 1000 micro patches from 
each contextual patch to be decomposed onto the set of basis vectors. In sub-Chapter 
7.4 we explain about the number of micro patches that must be sampled from each 
contextual patch.   
  Looking to the produced features for different classes in Figure 7.4, we could see 
similarities among the features which are obtained for 10 images of one class and also 
differences among the features which are obtained for images from different classes. In 
addition, we could see that when two classes are close to each other, their features are 
more similar. For example look at the features which are obtained for class 7 (Town) 
and the class 6 (City-2).  
All of these observations from Figure 7.4 could be good news for us because we expect 
the same roles for a descriptors or a set of features. However, we may have concerns 
about confusing between similar classes and also about classes whose contextual 
features have larger variances. For example look at contextual features which are 
obtained for class 2 (Farm). 

Figure 7.3:  Set of 25 ICA basis vectors with the size of 16*16 pixels 
which are obtained from a set of 10000 learning micro patches 
gathered from all types of classes. The basis vectors are sorted 
ascending by their mean frequencies from left to right and up to 
down.    



95 

 

 

 
 
 
    
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
         
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Class1: Factory   Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town 
Class8: Sea  

Figure 7.4:  ICA features for 8 classes of contextual patches. From each 
class, 10 contextual patches are selected for feature extraction.   
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7.2.1 Number of sampled micro patches   
     
 The number of sampled micro patches is selected experimentally. In fact, in similar 
approaches in the literature, for each pixel of image, they gather one micro patch to be 
decomposed. For example for this case we would have 200*200=40000 samples. Here, 
we found that if we randomly sample a number of micro patches the resulted feature 
vector does not change significantly. We performed an experiment: For some 
contextual patches, we tried to extract features. We started from the 40000 samples and 
reduced the number and for each step we verified the changes of feature vectors. We 
found that if we use 600-1000 samples the changes in the feature vector is not 
significant.     
  
 

7.3 Simple clustering for evaluation 
 
    To evaluate the efficiency of such features for separating different classes, we 
perform a simple clustering that is based on Euclidean distance measurement.  This is 
not a perfect evaluation of features but is useful to observe how they work. In chapter 
12 we will perform a perfect evaluation for each kind of descriptors. The idea is to put 
every test contextual image patch in a cluster whose members are more similar to that 
contextual patch. One way to measure this similarity is to compute the distance of new 
sample from the center of each cluster.  Then we put new sample in a cluster whose 
distance from the sample, i.e. the distance of its center from the new sample, is 
minimum. The question here is to define center for a cluster. Usually, we consider the 
mean of existing members as the center of a cluster. In a clustering problem, 
sometimes we do know the initial positions of cluster centers and sometimes we don’t. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

Clusters  
  Class1     Class2     Class3     Class4     Class5     Class6      Class7     Class8      Total 
  Factory     Farm      Village     City-1      Forest       City-2      Town        Sea 

1 

2 

3 

4 

5 

6 

7 

8 

    61           8            6           3           4            8            0            1           91 

     4           44           4           0           4            4            7           13          80 

     5            6           66          2           2            2            7            0           91  

     6            1            0          67          4            7            4            8           97 

     0            10          1           4          67           0            2            8           92 

     8            6            6           2           1           64           5            0           92 

     6            4            7           5           2            0           65           0           89 

     0           11           0           7           6            5            0           60          89 

Total     90          90          90         90         90          90           90         90         720 

 

 

                          

Table 7.1: Results of simple clustering. We used the ICA source based feature 
vectors  
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   Here, we are going to perform a clustering with 8 clusters and we supposed that 
initial values of clusters’ centers are the mean value of 10 contextual patches for which 
we obtained the features in Figure 7.4. Consequently, for each class of test set 90 
contextual patches remain to be clustered, that is, totally 720 samples. For each of these 
samples we compute the Euclidean distance from every cluster centers and put it into 
the cluster which has the minimum distance from the sample. Then we could change 
the center of cluster regarding to the new member of the cluster.  
    Table 7.1 shows that from which classes samples of each cluster come, however, 
Table 7.2 presents the same results in the percent format. In fact, the bold diagonal 
numbers in these tables show the amount of samples which are classified correctly.  
This is usually known as the Precision value. According to Table 7.2 we have an 
average of 68.6 % for this case.  We present the results for other feature extraction 
approaches in next chapters in the same format.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.4 Dimensionality and Scale size effects 
 
  In chapter 6 we studied the effects of dimensionality and scale size of basis vectors in 
an ICA system which is used for satellite image characterization. We defined the 
reconstruction error as the criterion for capability of ICA system. Here, we are going to 
verify the previous results with a new criterion: average of precision.  
  For that, we have to repeat the same clustering experiments with different reduction 
factor and scale sizes. We also need a new definition for our cost function: 
                                 

                                   )100)(1( PkktCF  

 

Table 7.2: Results of simple clustering in the percent format.  

 

Clusters  
  Class1       Class2      Class3      Class4      Class5      Class6       Class7       Class8       
  Factory      Farm        Village      City-1       Forest       City-2        Town          Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  67.7        8.9         6.7        3.3        4.4         8.9           0           1.1            

   4.4        48.9        4.4          0         4.4         4.4         7.8        14.4           

   5.5         6.7        73.3       2.2        2.2         2.2         7.8            0            

   6.7         1.1          0         74.4       4.4         7.8         4.4          8.9           

     0         11.1        1.1        4.4      74.4          0           2.2          8.9            

   8.9         6.7         6.7        2.2        1.1        71.1        5.5           0            

   6.7         4.4         7.8        5.5        2.2           0         72.2          0                           

    0          12.2          0         7.8        6.7          5.5          0          66.7           

 

 

                          

(7.2) 
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  Where P  is the average of precision. If we compare equation (7.2) with the equations 

(6.5) and (6.6), we find that the reconstruction error is replaced by the term P100 . 
Initially, we take the size of basis vector as 16*16 and perform the clustering 
experiments using different reduction factors. The result is shown in Figure 7.5(a). 
Then we take the reduction factor as 0.098 (equivalent to 25 basis vectors) and repeat 
the experiments for different sizes of basis vectors. The result is shown in Figure 7.5(b). 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
   
 
 
 
 
 
    Comparing the results in Figure 7.5 with the Figures 6.9(a) and 6.11(a), we could 
conclude that the variation of term 100-P is very similar to the variation of 
reconstruction error. Thus the same results for the optimum dimensionality and scale 
size in chapter 6 could be validated.  
 
 

7.5 Basis vectors improvement 

 
   As it was mentioned in chapter 4, the main goal in many applications is to detect the 
urban zones. In other words we are going to separate the class of urban area from 
other classes. Here we propose an approach to improve the basis vectors for such a 
purpose. Suppose that we have two classes: the urban area and none-urban area. Here, 
to simplify the problem we take class2 (City-1) as the urban area and class5 (Forest) as 
the none-urban area.  
   The idea is to choose the most important basis vectors from each class and bring 
them together to make a new set of basis vectors. In the ICA learning procedure, the 
basis vectors of each class are obtained such that the ICA sources can be considered as 
independent random variables with the same mean (usually equal to zero) and the 
same variance (usually equal to one). Thus, if we project some training micro patches 

from a specific class onto its basis vectors and obtain ICA sources ( is ) then we 

Figure 7.5:  Dimensionality and scale size effects on results of 
clustering. (a):The size of basis vectors is taken constant (16*16) and 
100-precision is obtained for different reduction factors. (b):The 
number of basis vectors is constant (25) and 100-precision is obtained 
for different scale sizes.  
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compute the probabilities of the squared ICA sources ( )(
2

isP ), we expect a flat curve, 

i.e. )()(
2

2

2

1 sPsP . However, if we project micro patches from a specific class 

onto the basis vectors of another class, we don’t expect a curve being as flat as the 
previous one. We see this in Figures. 7.6(c) and 7.6(d).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7.6:  Providing a new set of basis vectors by collecting the most 
important ones. (a) and (b):  Initial basis vectors for forest and urban 
area (c): Probability of ICA sources for patches projected onto urban 
area basis vectors. (d):  Similar curves for the projection onto basis 
vectors of forest. (e): New set of basis vectors. The two upper rows are 
the 12 most significant basis vectors of urban area and the lower two 
rows are the 12 most significant basis functions of forest. 
 

e 

d 

c 

b 
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  In this example, initially we obtain 32 basis vectors for each class. Using these curves, 
we can choose the most important basis vectors for each class. For example, for the 

urban area class, we select a basis vector if )(
2

isP for the urban area is obviously 

higher than )(
2

isP  for other class. As an example, see the 25th basis component of an 

urban area in Figure 7.6(c). In other words, we can say that these basis vectors 
faithfully represent the urban area class in comparison with the class of forest. The 
new set of basis vectors is made by combining the most important basis functions from 
two classes. We have selected the 12 most important basis functions for each class in 
the example of Figure7.6.  
   The new combined set of basis vectors is shown in Figure 7.6(e). Our clustering 
experiments show that this set of basis vectors has a better result in comparison with 
the ordinary basis vectors in Figure 7.3 for the goal of separating the urban area from 
forest images. The results are summarized in Tables 7.3 (a) and 7.3(b). 
 
     
 
 
 
 
 
 
 
 
 

 
 
 
 
7.5 Conclusions 
 
   In this chapter we explained the approach for extracting features from contextual 
patches, based on ICA sources. In this approach we initially need to generate a set of 
basis vectors using learning micro patches which are gathered from some initial 
contextual patches. Then, we generated 25 features for each contextual patch. We 
verified the feature vector through a simple clustering method.  The results show the 
significant capability of features for separating the 8 classes of VHR satellite images. In 
terms of computation time, if we have already produced the set of ICA basis vectors, it 
averagely takes just 0.15 sec to generate a feature vector for a contextual patch. 
   We also proposed an approach to improve the set of basis vectors for the purpose of 
separating urban area from other classes. This approach is based on choosing the most 
important basis vectors from each class and bringing them together to make a new set 
of basis vectors. 
    
 
  

 

Clusters  
  Class4       Class5       
  City-1       Forest        

1 

2 

  84.4      18.9          

  15.6       81.1         

 

 

                          

 

Clusters  
  Class4       Class5       
  City-1       Forest        

1 

2 

  90         15.6          

  10          84.4         

 

 

                          

Table 7.3: Results of clustering in the percent format for separating 
the urban area from the forest. (a) Result of ordinary set of basis 
vectors. (b) Results of the new set of basis vectors combined from the 
most important basis vectors of two classes. 

 
(a) 

 

(b) 
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CHAPTER 8 

 

MIDDLE LEVEL TOPOGRAPHIC ICA FEATURES 
 
 
 
  In ordinary ICA, the components are assumed to be completely independent, and 
they do not necessarily have any meaningful order relationships. Notice that we 
usually talk about the dependency of two basis components, but we mean the 
dependency of their corresponding sources. The independence of ICA components can 
make it difficult to use the results of ICA, since we don’t know the priority and 
importance of the components. On the other hand in practice, however, the estimated 
“independent” components are often not perfectly independent. Topographic 
Independent Component Analysis (TICA) is a method which uses these residual 
dependences to define a topographic order for the components [43].  
   Moreover, an important empirical motivation for this kind of dependency can be 
found in feature extraction. In ICA model, the components are supposed to be 
independent and there is no relation among different components. Therefore, we have 
to consider the set of all components as the descriptor. However, in TICA the 
dependency between components can be used to extract some middle level features 
and to reduce the dimension of feature vector. In this chapter we initially illustrate the 
principles of Topographic ICA, then we explain the procedure of generating the TICA 
basis vectors and finally we explain how to extract mid-level TICA features.  
 
 

8.1 Principles of Topographic ICA 
 

   In TICA model, the observed variables obsx are generated as a linear transformation 

of the sources is  just as in the basic ICA model. The point is that the sources are not 

assumed to be completely independent. We assume that there are dependencies 
between every two sources. These dependencies define the topography. Topography is 
known as the arrangement of the basis components in which the distance of two 
components is proportional to the dependencies of their corresponding sources (as an 
example see Figure 8.4(b)). Actually, the topography is defined by simultaneous 
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activations of two sources. In ICA it is supposed that variances 
iσ of the is are the 

same. However, in TICA they are not constant and are assumed to be random 
variables which are generated using a specific model. After generating the variances, 

the variables is  are generated independently from each other. In other words, the is  

are independent given their variances: 
 

                                                        iii ys  

                                                         

  In which iy  is a zero-mean independent variable. Dependence among the is is 

implied by the dependence of their variances. According to the principle of 
topography, the variances corresponding to near-by components are supposed to be 
correlated, and the variances of components that are not close should be almost 
independent. 
   To specify the model for generating the variances 

iσ , we initially need to define the 

topography. The first step to do that is to determine a neighborhood 

function, ),( jinb , like the following relation, which expresses the proximity between 

the i-th and j-th components: 
 
 
               
 
   
 
 
  Here, ),( jid  is the distance of i-th and j-th components in the topography and 

L defines the width of the neighborhood. That is, the neighborhood of the component 
with index i consists of those components whose distances are less than 

L components. Using the topographic relation ),( jinb , many different models for 

generating the variances i could be used. A simple way is to define them in such a 

nonlinear function: 
 
                                
 
  

  Where iu  are the “higher-order” independent components used to generate the 

variances 
iσ , and φ is the nonlinearity function.  

   The resulting topographic ICA model is summarized in Figure 8.1. Note that the two 
stages of the generative model can be expressed as a single equation, as follows: 
 

                                          iki yukinbs
k

)),((φ  

  Where iy is a random variable that has the same distribution as is if iσ is fixed to 

(8.1) 

(8.2) 

(8.4) 

(8.3) 
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unity. The iu and the iy are all mutually independent.  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
   
   An important different between TICA and ICA is that TICA components are 
represented in a specified topography. In other words, the result of a TICA learning 
procedure is not only the basis components but also their positions in a specified 
topography. This means that we are not allowed to change the positions of the 
components because the topography of components specifies which components are 
statistically depended to each other.  However, the result of an ICA learning procedure 
is just the basis components and their positions are not important at all. Usually, the 

TICA components are represented in a square topography. That is, if we have 
2

n  TICA 
components, they are represented in a n*n topography. More details of the TICA 
model which is used in this paper are explained in [43]. 

   When we apply ICA or TICA to the images, our observed data ( obsx ) are 

considered as small patches gathered from big original images. Basis vectors resulted 
in the learning procedure will be also some small patches with the same size of 
observed patches. Actually, at the beginning of the learning procedure, we transform 
the matrix related to each image patch to a vector by placing the rows of matrix 
besides each other and after obtaining the basis components we transform them from a 
vector form to a matrix form, using the inverse logic. Before gathering small patches 
from one original big image, we usually remove the mean value of the original image 
and rescale it so that the variance of image pixels will be normalized to one. This can 
balance the roles and contributions of different original big images in obtaining basis 
components. In addition, as it is explained in chapter 6.2 we remove the mean value 
from each learning patch. This is done because of a theoretical assumption in a TICA 
(or ICA) algorithm. Later we perform the whitening pre processing step before starting 
the learning procedure. 

Figure 8.1: Generating the sources in a Topographic ICA model. The 

first step is to generate the higher order variables iu . These 

variables are generated randomly. They are then mixed linearly 
inside their topographic neighborhoods. The mixtures are then 

given to the functionφ to produce the local variances 2

i . 

Components is  are then generated by multiplying 
i
 and a random 

variable iy .  

   

 

 

     

 Um-1 Um Um+1  
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    Notice that just like the ICA learning procedure, small patches (micro patches) 
which are used in a TICA learning procedure differ from 200*200 contextual patches 
for which we are going to define the descriptors. In fact, we are not able to apply TICA 
directly for the 200*200 contextual patches because of the huge dimension of the data. 
So we need other small patches which can be used by a TICA algorithm. 
 
     

8.2 TICA basis vector production 
 

  In this sub-chapter the technical details of obtaining the TICA components are 
outlined. Initially we have to choose the scale size and dimensionality of TICA system, 
in addition, the dimensionality and the neighborhood for corresponding topography: 
 
 

8.2.1 Scale size of TICA system   
 
     For choosing the size of micro patches, we have to respect two considerations. First 
consideration is related to computational aspects. In chapter 6 we performed a study 
for the effect of the size of ICA components on the satellite image indexing. We 
demonstrated that the results would be improved when the size of components 
increases, however the computational problems would be rising exponentially as well. 
During our experiments for TICA we have found similar results. We found out that a 
TICA learning procedure with the 16*16 micro patches is about 8 times faster than a 
learning procedure with the 32*32 micro patches and 100 times faster than a learning 
procedure with the 64*64 micro patches. Over this size (64*64 pixels) the computation 
is almost impossible because of the huge dimension of the data. Regarding to all of 
these considerations we chose the size of basis vectors as 16*16 pixels.  
 
 

8.2.2 Dimensionality of TICA components 
   
      In chapter 6, we studied the effect of the dimensionality of ICA components on the 
satellite image indexing. We demonstrated that the optimum reduction factor is usually 
between 0.08 and 0.14. In chapter 7 we used a set of 16*16 basis vectors with a 
reduction factor about 0.1 (25 the basis vectors).  
    For TICA we chose the size of basis vectors equal to 16*16 pixels.  Therefore, 
initially, it seems to be reasonable if we choose the same number of components for 
TICA system. But here we decide to increase the number of components to 100. The 
reason is that in an ICA system, as it was mentioned, we don’t have any relation or 
priority between the components. So we have to consider all of them as the features. 
Thus, if we use an ICA system with 100 basis vectors, the feature vector will be too 
long. However, for TICA system, as it will be explained in sub-chapter 8.3, it is 
possible to mix the components to make a very shorter feature vector. This is an 
important property for TICA because it permits us to increase the number of 
components which leads to a very better accuracy and in the same time we have a 
short feature vector.   
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8.2.3 Topography dimensions  
 

  Topography in a TICA system determines arrangement of the components. If two 
dimensions of topography are equal, dependencies among the components can be 
used more effectively for extracting middle level features.  So, here we simply choose 
our topography as 10 components by 10 components.  
 
 

8.2.4 Neighborhood dimensions 
  
  Neighborhood in a specific topography of TICA components specifies depth of 
dependence. In other words, it determines the size of region in which the components 
are supposed to be statistically depended. For example, if we have a TICA system with 
a 5*5 neighborhood, it means that the TICA components placed in every arbitrary 
region of 5*5 components in the topography are statistically depended (see Figure 
8.2(b)).We cannot conclude that two components whose distance is out of the region 
5*5 components are not depended but the dependency rapidly decreases when their 
distance gets larger. The TICA system with a neighborhood of 1*1 is equal to ICA 
system because it implies independence for every component (see Figure 8.2(a)).  
  We examined different neighborhoods from 3*3 to 7*7. Our experiments show that 
for neighborhood of 5*5 components, comparing with other cases, the extracted 
features are more capable to separate different classes of landscapes. Thus, we choose 
it as the neighborhood for our TICA system. 
 
 

8.2.5 Pre-processing steps  
   
  The Pre-processing steps for TICA learning procedure is the same as ICA. The first 
step is to collect enough number of micro patches for learning procedure. We gather 
randomly 20000 micro patches from initial images. Then in next step we selected 10000 

of them which have the higher G parameter as learning micro patches. As it was 
mentioned in chapter 6, before gathering learning micro patches from one original big 
image, we remove the mean value of the original image and rescale it so that the 
variance of image pixels will be normalized to one. Then, we also remove the mean 
value from each learning micro patch. The last pre-processing step is the centering and 
whitening which are explained in chapter 5. 
 
 

8.2.6 TICA learning procedure  
 

   Now, we are ready to start the TICA learning procedure. The TICA learning rules are 
different from the ICA learning rules from some points of view because here we have 
a specific topography for the components. The details of TICA learning procedure are 
explained in [43]. Input of the learning procedure is the set of 10000 learning micro 
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patches selected by Gabor filters as the optimum samples and the output is the set of 
100 TICA components represented in a specified 10*10 topography with the 
neighbourhood of 5*5 which are shown in Figure 8.2(b). Closer components are 
supposed to be statistically more depended. We see the similarity between close basis 
vectors in Figure 8.2(b).  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 8.2:  (a) TICA system with the 1*1 neighborhood and 100 basis vectors. It 
is equal to an ICA system. Order and positions of basis vectors are not important. 
However, we sort them based on their mean frequencies from left to right and up 
to down. (b) TICA system with 100 basis vectors and a topography of 10 
components by 10 components and also a neighborhood of 5 components by 5 
components. Closer components are supposed to be statistically more depended. 
In particular, the components placed in a region of 5*5 components are 
statistically depended (For example, the region surrounded by red or green or 
orange lines).  
   

 

a 

b 
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   To have a better comparison, we also preformed the learning procedure with 1*1 
neighbourhood. The output is a set of 100 components which can be considered as ICA 
components. They are shown in Figure 8.2(a). For this case, orders and positions of 
components are not important. However, we sort them based on their mean 
frequencies from left to right and up to down.  TICA basis vectors which are obtained 
in this sub-chapter will be used in next sub-chapter for extracting features from 
contextual patches. 
 
 

8.3 Middle-level TICA features 
  
  In previous sub-chapter, the procedure of generating the TICA basis vectors is 
explained. In this sub-chapter we explain how to define the features for contextual 
patches using these TICA basis vectors.  Figure 8.3 presents a general illustration of the 
TICA features generation procedure. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

Figure 8.3: Illustration of different steps for generating the middle 
level TICA features for contextual patches. We gather a set of micro 
patches (with the size of 16*16) and apply a TICA learning procedure 
including a Gabor pre-processing step to produce the TICA 
components. To define a feature vector for each 200*200 contextual 
patch, we project its related micro patches into TICA components to 
obtain 100 low level features. Then using the dependencies among the 
TICA sources, we produce 9 middle level TICA features.  
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8.3.1 Low level TICA features generation 
 
  The procedure of the low level TICA features generation is very similar to the 
generating of ICA source based features which is explained in sub-chapter 7.2, except 
here we use the set of 100 TICA basis vectors instead of 25 ICA basis vectors. So each 
low level feature is obtained as : 
      
    
 
  
 
 
   In Which n is a number between 1 and 100. Thus, for each contextual patch we obtain 
100 low level TICA features.  
 
 

8.3.2 Middle-level features definition 
      
  Now, using the low level features, we aim to define the middle level features for each 
contextual patch.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
  
 

 

 

 

Figure 8.4: Defining middle level TICA features. We are able to 
combine a number of components that are supposed to be mutually 
dependent in a group, in order to provide a set of middle level 
features. In our TICA system, the neighborhood is 5*5. So, we average 
low level features related to a set of 5*5 components to produce one 
middle level feature. In our work we define 9 middle level features 
from 5 regions of topography which are specified in this figure. 

 

(8.5) 

F1 F3 
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Class1: Factory Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town Class8: Sea  

Figure 8.5: TICA mid level features for 8 classes of contextual patches. 
From each class, 10 contextual patches are selected for feature 
extraction.   
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  If we use an ICA system (that is equal to TICA with the 1*1 neighbourhood), then we 
have to consider all low level features, individually, as our contextual features. The 
reason is that the components are supposed to be independent and there is not any 
kind of dependency or other relation between different components. Thus, for the case 
that we have 100 ICA basis components we have to consider 100 low level ICA 
features, as the descriptor of contextual patch.  However, for the TICA decomposition 
of an image patch, we are able to combine a number of components that are supposed 
to be mutually dependent in a group, in order to make a set of middle level features. 
So, we are able to reduce the number of contextual features.   
   Depending on dimensionality of neighbourhood, we may choose number of 
components which must be grouped together to produce one middle level feature. In 
our TICA system, the neighbourhood is 5*5. So it is reasonable to bring together every 

set of 5*5 components. We simply define one middle level feature ( mF ) by applying 

an average upon the 25 low level features related to the grouped component: 
 
 
 

 

   Here, the question is that the grouped components that produce one middle level 
feature must be selected from which part of topography. Other question is that how 
many middle level features are necessary to be extracted. The important point is that 
each low level feature must be contributed for producing at least one middle level 
feature. In addition, it is desired to define the minimum number of features for one 
contextual patch. We performed some experiments to estimate the optimum number 
of middle level features. Initially, we defined the minimum possible number of middle 
level features. We chose 4 regions at 4 corners of the topography for defining 4 middle 
level features. These regions cover entire surface of the topography. Then, step by step, 
we increased the number of features and evaluated the results of clustering based on 
these features. This clustering is explained in next sub-chapter. Our experiments 
showed that if we extract 9 middle level features as it is illustrated in Figure 8.4 then 
the capability of the middle level features set obviously grows up. So, our feature 
vector will be defined with 9 middle level features.  

  Figure 8.5 demonstrates sets of 9 middle level TICA features produced for 10 first 
contextual patches of each class of test set (see Figure 3.2). Although we reduced the 
number of features comparing with the ICA source based features explained in 
chapter 7, we visually may detect even more capabilities to separate different features.  
This can be concluded from the obvious differences between the feature vectors of 
different classes. This is validated also by results of clustering which is explained in 
next sub-chapter. 

 
 

8.4 Simple clustering for evaluation  
 
  To evaluate our features we performed the same clustering which is explained in sub-
chapter 7.3 but with the new middle level TICA features. The results of such clustering 
are summarized in Table 8.1. 

(8.7) 
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8.5 Conclusions 
 
   In this chapter we explained the approach for extracting TICA middle level features 
from contextual patches. We initially generated a set of TICA basis vectors then we 
obtained low level features similarly to the approach explained in sub-chapter 7.2.  
Finally we combined groups of low level features into 9 middle level features. We also 
verified the feature vector through a simple clustering method.  The results show the 
significant improvement in comparison with the ordinary ICA features. In fact, here 
we benefit a set of 100 basis vectors (instead of 25 basis vectors for the case of ordinary 
ICA) and in the same time we generate only 9 features (instead of 25 features for the 
case of ordinary ICA).  
   In terms of computation time, if we have already produced the set of TICA basis 
vectors, it averagely takes 0.21 sec to generate a feature vector for a contextual patch 
which is a little more than the case of ICA but it is still enough fast.   
 
  
 
 
 
 
 
 
 
 
 

 

Clusters  
  Class1       Class2       Class3       Class4     Class5     Class6      Class7     Class8       
  Factory      Farm         Village      City-1       Forest       City-2      Town        Sea 

1 

2 

3 

4 

5 

6 

7 

8 

    81.1       3.3          3.3        2.2       1.1        1.1        3.3         1.1           

     1.1       74.4         2.2        1.1       8.9         2.2         0          7.8            

     3.3          0          83.3       3.3       1.1         3.3        1.1         1.1            

     5.5          0           3.3       86.7        0          3.3         3.3        1.1            

      0          11.1        1.1        1.1       81.1        1.1        1.1        5.5            

     4.4         1.1         1.1        3.3          0         86.7       2.2        1.1            

     3.3         1.1         4.4        2.2         1.1         1.1       88.9        0            

     1.1         8.9         1.1          0          6.7         1.1          0        82.2          

 

 

                          

Table 8.1: Results of simple clustering. We used the mid level TICA feature 
vectors .  
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CHAPTER 9 
 
 

FEATURE EXTRACTION FROM ICA BASIS 
VECTORS: BAG OF WORDS MODEL 
 
 
 
   In chapters 7 and 8 we explained methods for extracting features from images using 
(Topographic) ICA sources. The other viewpoint for feature extraction is to consider 
the ICA basis vectors which are obtained for each image. Actually, we are going to 
work with the characteristics of basis vectors extracted from each image. This idea is 
explained in this chapter. 
   Firstly we illustrate the idea of obtaining basis vectors for one image. Then we 
propose an approach for extracting features from one image’s basis vectors.  This 
approach is based on the idea of Bag of Words model. In this approach we consider 
every contextual patch as a visual document and each basis vector as its word. Then 
we explain how to define features using the words of document.  
 

 
9.1 Basis vectors of a contextual patch carry its signature 
 
   In the literature, the usual approach is to apply ICA learning procedure for all 
images or a set of images which are in one class. This helps us to find a set of new basis 
vectors for our data. Using this new basis vectors we are able to represents images 
with a fewer number of coefficient. Although this is usually considered as the main 
goal of ICA, it is possible to find other applications for the basis vectors which are 
obtained through an ICA learning procedure.  
   Actually, there is some information extracted from initial images in the obtained 
basis vectors.  They tell us that in which directions the independent sources are 
distributed. That means if the set of basis vectors which are obtained for a set of 
images is given, then we could guess something about the structures of initial images. 
This is clearly observed in Figure 5.1 where the sets of obtained basis vectors for 
different classes are shown.  Each set of basis vectors has its own properties. We could 
express this fact as:  the signature of a class of images appears on its basis vectors.  
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Figure 9.1:  Obtaining the basis vectors for each contextual image 
patch, individually, instead of obtaining basis vectors for a set or a 
class of images. The basis vectors which are obtained from each 
image carry signatures of that image. Here, we selected 4 classes of 
landscapes and for each class we chose two contextual patches. 
Then we obtained 25 basis vectors with the size of 16*16 pixels for 
each 200*200 contextual patch. Notice that the basis vectors and the 
contextual patches are not presented with the same scale in the 
figure. As it is clear, the basis vectors of two contextual patches 
which are in one class have more similar characteristics comparing 
with the case that the two contextual patches come from different 
classes. 
 

Class6: City-2 Class3: Village 

Class5: Forest Class8: Sea 
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  If this class includes just one image instead of several images, then the basis vectors 
carry the signature of that image. This is the basic idea of this chapter. Figure 9.1 
shows the sets of basis vectors which are obtained for several contextual patches from 
different classes. We could see that when two contextual patches are in the same class, 
their basis vectors are more similar, comparing with the case that the two contextual 
patches are not in the same class. 
    
 

9.1.1 Learning procedure for one contextual patch  
 
  The procedure for obtaining basis vectors for one contextual patch is the same as the 
procedure which is performed to obtain basis vectors for a set of contextual patches.  
Figure 6.1 shows the necessary steps for obtaining the basis vectors for a set of images.  
Here, the only difference is that we gather our learning micro patches from one image. 
It would be very useful if we apply the pre-processing step of Gabor filters to select the 
best micro patches for learning. This step was explained in sub-chapter 6.4 
 
 

9.1.2 Choosing the dimensionality and the size of basis vectors 
 
   In Chapter 6 we studied the dimensionality and multi-scale behavior of an ICA 
system. We concluded that the basis vectors with the size of 16*16 and 32*32 pixels are 
more efficient according to their results and their computation times. In addition we 
mentioned that a reduction factor between 0.08 and 0.14 is suitable to determine the 
dimensionality of system. These conclusions are general facts when we apply ICA to 
VHR satellite images and can be used in this chapter because we are using an ICA 
system to extract features from a contextual patch.   
    Between the basis vectors with the size of 16*16 and 32*32, we expect that the second 
one gives more details about the characteristics of the contextual patch. However, here 
the time of learning is extremely important because we have to perform learning 
procedure for each contextual image patch. Table 9.1 shows the average computation 
times for obtaining a set of basis vectors for one contextual patch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
   The reduction factors for all cases are close to each other and in the normal range 

 

Size of 

 basis vectors 
  8*8               16*16              32*32 

Number of 

basis vectors  
     8                    25                  100          

Reduction 

factor 
  0.125               0.098             0.098       

Time (sec)   0. 39                 0.69                5.21       

 

 

                          

Table 9.1: Average times for obtaining a set of basis vectors for one 
contextual patch.  For all cases, number of learning micro patches is 
1000 and the number of iterations to learn is 100.  

 
 



115 

 

 

(0.085-0.14). Also, for all cases, the number of learning micro patches is equal to 1000 
and we perform the same number of learning iterations that is 100 learning iterations. 
  Actually, the computation time consists of two parts. The first part is related to the 
gathering micro patches, computing the covariance matrix and the PCA preprocessing. 
This part of time is a function of two factors, the number of learning micro patches and 
the size of micro patches. But, the second factor is more effective upon this part of the 
time, comparing with the second factor. The second part of computation time is related 
to the ICA learning procedure which is affected almost equally by the size and the 
number of learning micro patches.  
   Nevertheless, it is clear that between the basis vectors of the size of 16*16 and the size 
of 32*32, there is a big difference in their computation speeds. In fact, the first one is 
about 8 times faster than second one. But obtaining the basis vectors with the size of 
8*8 is only 2 times faster than the size of 16*16.  
  The last point for this part is that we have to take care about the ratio of the size of 
contextual image patches and the size of basis vectors. If the size of basis vectors is 
very large then we hardly could gather proper learning samples from the contextual 
patch. For example, consider the case that we have 200*200 contextual patches and 
64*64 basis vectors. We have to gather a large number of 64*64 learning micro patches 
from the 200*200 contextual patch. It seems that in this case many learning micro 
patches are the same or extremely similar to each other.    
   According to table 9.1, in this chapter we use a set of 25 basis vectors with the size of 
16*16 for each 200*200 contextual image patch.  
 
 

 9.1.3 Number of learning micro patches 
  
  An important technical point for obtaining a contextual patch’s basis vectors is the 
number of learning micro patches which must be gathered. The number of learning 
micro patches should be enough large so that the basis vectors will be obtained 
correctly.  Actually the task of basis vectors is to represent the directions in which the 
independent sources’ variations happen. If the number of micro patches which are 
gathered for learning procedure is not enough then the resulted basis vectors don’t 
represent the correct directions for independent components’ variations.  
  From the other side we have to take care about the time of obtaining the basis vectors, 
because we know that the learning procedure should be performed for every 
contextual patches and this can make the procedure of feature extraction very long.  
    Figure 9.2 gives an example of obtaining basis vectors for a contextual patch with 
different number of learning samples. For 100 or 250 learning micro patches, the basis 
vectors don’t seem to be normal. For the case of 600 learning samples, the basis vectors 
are on the boundary of correct situation but still not reliable. Differences between the 
cases of 1000, 2000 and 4000 learning samples are very small but the time for the case 
of 1000 learning samples is about one third of the time for the case of 4000 learning 
samples. All of these lead us to choose the number of learning micro patches for 
obtaining basis vectors of one contextual patch as 1000 samples.  
   Of course, choosing the size and dimensionality of basis vectors and also the number 
of learning micro patches, is dependent on the user and the application, but here we 
chose the parameters such that they are suitable for a general purpose. 
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   In this chapter, up to know we have shown that we are able to obtain the basis 
vectors for one contextual image patch instead of for a set of images. Also we have 
explained that these basis vectors carry the signatures of that contextual image patch. 
However, we may not able to take the set of basis vectors as the vector of features. The 
vector of features is a vector of numbers that each of them describes one characteristic 
of image. So we are supposed to extract features from the set of basis vectors which, 
themselves, carry the signatures of the contextual image patch.  
   In this chapter and next chapter we propose two approaches to extract features from 

Number of learning samples = 100 

Time (sec) = 0.21 

Contextual patch 

Number of learning samples = 1000 

Time (sec) = 0.71 

Number of learning samples = 250 

Time (sec) = 0.34 
Number of learning samples = 600 

Time (sec) = 0.52 

Number of learning samples = 2000 

Time (sec) = 1.23 

Number of learning samples = 4000 

Time (sec) = 2.12 

Figure 9.2:  Obtaining the basis vectors for one contextual image 
with different number of learning micro patches. For all cases the 
number of obtained basis vectors is 25 (reduction factor = 0.098). 
The size of contextual patch is 200*200 and the size of basis vectors 
is 16*16 . 
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the basis vectors which are obtained from one contextual patch. One of these 
approaches is based on the Bag of Words model which is explained in this chapter and 
the other is based on detecting lines in basis vectors and characteristics of their lines 
which is outlined in next chapter. 
 
 

9.2 Bag of words model 
 
    In text retrieval approaches,  the Bag of Words (BoW) is a model for representing the 
documents as a set of words in which the arrangement of words is not important. 
Actually, in a BoW model a dictionary of all possible words is defined and each 
document is considered as a bag which contains a set of dictionary words. From a 
statistical point of view; each document is modeled as a vector which represents the 
occurrence histogram along the dictionary words. Here, we give an example to 

illustrate the BoW model. Suppose that we have a dictionary with 10 words: {w1, w2, 
w3,…,w10 }. Also suppose that we have a document (or text) as w5 w2 w3 w2 w7 

w2 w3 w8.  This document can be represented by the vector: [0 3 2 0 1 0 1 1 0 0]. In 

other words, we count the number of repeats of every dictionary word in our 
document.   
    Recently the idea of BoW has been used for satellite images. See for example [14]. 
For using the BoW idea to characterize the images, the basic problem is to define an 
analogy between texts and images, i.e. defining visual words, documents and 
vocabulary. Our first goal in this part is to introduce an analogy between texts and 
images using ICA. This Bag of Words model for images is supposed to explain about: 
 

 Definition of a visual document 

 Definition of visual words for each document 

 Definition of visual vocabulary 

 Labeling each word of document by dictionary words 

  Features definition  
 
In the following we explain each part separately 
 

 

9.2.1 Visual documents  
 
  Defining visual documents is not a critical step of our model. We can simply define 

visual documents as l*l images. However, it is important to choose the size of visual 

documents (l) regarding to the size of visual words. In sub-chapter 9.2.2 it is explained 

how to extract visual words from each visual document using an ICA procedure. We 
have to choose a suitable size for visual documents so that visual words can be 
properly obtained for each visual document. If we take visual words with the size of 

n*n pixels, we experimentally found that a minimum value for l for providing 

sufficient number of proper learning micro patches for ICA procedure is about 5n. 
Here, our contextual image patches with the size of 200*200 are considered as the 
visual documents. 
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9.2.2 Visual words for each document 
 
  Defining visual words for each document is one of the most important steps for 
introducing an analogy between text and image. Many methods propose that we 
simply gather some small micro patches from the visual document. See for example 
[14]. Here, we propose to obtain the basis vectors for a visual document (Here, a 
contextual patch) through an ICA learning procedure and consider them as the visual 
words of the document. We produce 25 basis vectors with the size of 16*16 for each 
contextual patch. Thus each visual document has 25 words.  
 
 

9.2.3 Dictionary 
 
   Dictionary or vocabulary is known as the set of all possible visual words. Usually we 
have a lot of visual documents to be processed and the number of visual words 
extracted from the documents is enormous. Avoiding the computational problems, we 
have to limit the number of all possible words. For example, if we consider our test set 
of contextual patches, (see Figure 3.2) which contains 800 images, there will be totally 
800*25=20000 visual words (basis vectors) which are extracted from all contextual 
images.  
   Number of dictionary words is dependent on the application. Dictionary is supposed 
to cover all possible forms of words, so we should take care about the number of 
dictionary words. Usually, number of dictionary words is determined experimentally. 
In our work we experimentally found out that if the number of words in the dictionary 

is about 60 ( %20 ), it is enough to describe all possible forms of visual words.   
    Here, we propose two approaches for defining dictionary. The first approach is 
based on performing a clustering among the visual words and the other is based on 
obtaining basis vectors for each class.   
 
 

9.2.3.1 Obtaining the Dictionary from clustering  
 
   In the literature, the usual way for defining the dictionary is to perform a clustering 
on all words which are extracted from training documents. We collect all words from 
all training documents, and then a clustering method is applied to put a group of 
similar words in a cluster. For each cluster of words, one word which represents all 
words of this cluster (usually the center of the cluster), is introduced as a word of 
dictionary.  
    Here, from the test set of contextual patches which is explained in sub-chapter 3.4, 
we selected the first 10 contextual patches from each class as the training documents. 
That is, totally, 80 contextual patches are selected for defining dictionary. Then, a 
simple K-means clustering is applied on all the visual words which are extracted from 
80 training contextual patches to place the 2000 visual words (25 words from each 
document) into 64 clusters. Finally, The 64 centers of clusters are considered as the 
words of our dictionary. The procedure of obtaining dictionary through a clustering 
on the visual words and the resulted dictionary, here called Dictionary1, are shown in 
Figure 9.3. 
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9.2.3.2 Obtaining the Dictionary from the basis vectors of classes 
 
  The other idea for defining the dictionary is explained in Figure 9.4. That is, for all of 
documents in each class we apply an ICA procedure and obtain basis vectors related 
to this class. 

Figure 9.3:  Producing the Dictionary1 through a clustering on all the 
basis vectors which are obtained for the set of 80 contextual patches. 
From each class we selected 10 contextual patches for producing the 
dictionary. The 64 centers of clusters are considered as the words of 
our dictionary.

 

Document 1 Document 2 Document 80 

 W1,25 

 W1,1  W2,1  W80,1 

 W2,25  W80,25 

 D1 

 D64 

K-means clustering 

 
Dictionary-1 



120 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    As it is shown above, from each class we select the first 10 contextual patches as the 
training documents and through an ICA learning procedure we obtain 8 basis vectors 
for these 10 contextual patches. Therefore, totally we will have 64=8*8 basis vectors for 
all classes. 
 Dictionary2 is defined by bringing all of these basis vectors together. This method for 
defining the dictionary is dependent on our primary knowledge about the of classes of 
images and also we are supposed to have some training samples from each class. This 
may limit us for using this kind of dictionary but on the other side could improve the 
results as we will see later.  

Class 1: Factory Class 2: Farm 

ICA learning 

Procedure 

 

Dictionary-2 

ICA learning 

Procedure 

 

 D1 

 D64 

ICA learning 

Procedure 

 

Class 8: Sea 

Figure 9.4:  Producing the Dictionary2 through obtaining basis 
vectors for all training documents in each class. For every class we 
selected 10 training visual documents and obtain 8 basis vectors 
using an ICA learning procedure. Dictionary is defined by bringing 
all of these basis vectors together.  
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9.2.4 Labeling each word of document by dictionary words 
 
   The normal approach in a Bag of Words model is to label each word of document by 
one dictionary word which is the most similar to the document word. The question 
here is how to find the most similar dictionary word. In other word, what is our 
criterion to measure the similarity between two words? 
   A variety of methods could be considered to measure this similarity. To avoid 
complexity in computation, we choose correlation as a simple criterion for similarity 
between two words:   
                                                           

                                              
21

21

21

ww

ww
)w,C(w  

 

  In which, W1 and W2 are two arbitrary words and C, as their normalized correlation, 
measure the similarity between two words. For each word of document, we compute 
correlation between this word and all of dictionary words. Then we select the 
dictionary word which maximizes this correlation. When we label all words of a 
document using vocabulary words we can obtain histogram of a documents which 
shows the number of repeats for each dictionary word in the document. An example of 
labeling is shown in figure 9.5.  
   The histogram which is obtained for each visual document (contextual patch) can be 
considered as its vector of features. 
 
 

9.2.5 Bayesian approach for classification 
 
    When we use the Bag of Words model, the approaches for classifying the documents 
is usually related to the Bayesian methods which are based on the probability of 
existence of a word in a document. Here we explain a simple Bayesian approach for 
classification of documents.  
  In this approach we calculate the posterior probability for existing of a document in 
one class, based on its primary probability and the probabilities of the words of 
documents.   

    Initially, for each word of dictionary, Dk, using the histograms of training 

documents, we calculate the probability of occurrence of Dk in class m : 
 

                       

k

k

k

k

)(Dnum

)(Dnum
_D

_m

_m

)P( m

class

class
class          

 

  In which, )(Dnum k_mclass  is the number of repeats of dictionary word Dk in the 

histograms of all training documents of class m and 
k

k )(Dnum _mclass  is the 

number of repeats of all dictionary words in the same documents. 

(9.1) 

(9.2) 
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Figure 9.5:  Normal labeling. For each word of document, we 
compute correlation between this word and all of dictionary words 
and select the dictionary word which maximizes this correlation. 
Then we can obtain the histogram 

Document i 

Labeling by Dictionary-1 
 D1 

 D64 

  Histogram 

Wi,1 

Wi,25 
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  Then we use the Bayesian theorem to calculate the posterior probability of existence 

of an arbitrary document i in class m if we know that the dictionary word Dk exists in 

the document i: 
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   In which )_ m(Pi,1 class  is the primary probability of existence of the document i 

in class m. Since here we don’t have any knowledge about the primary probabilities, 

we suppose that for all classes (for all m), )_ m(Pi,1 class  are the same. So the 

equation (9.3) can be changed to: 
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  Finally we calculate the probability of existence of the document i in class m by 
adding all of these partial probabilities: 
 

              
k

pclassclass )()(P)(P kikii DDmm __                       

 

   In which )( ki Dp  is the probability of existence of dictionary word Dk in the 

document i and is obtained from the histogram of the document i with the following 
equation: 
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     In which )(Dnum kdoc_i  is the number of repeats of dictionary word Dk in the 

histogram of document i and 
k

k )(Dnum doc_i  is the total number of words in the 

document that here is equal to 25. 
     Using this approach we are able to put an arbitrary document in a class that gives 
the maximum probability in equation (9.5).  We performed such a classification for the 
test set of contextual patches . The first 10 images from each class are considered as the 
training samples to obtain the dictionaries and also to calculate the 

probabilities )P( m_Dk class . Thus 720 images remain to be classified.   

(9.3) 

(9.4) 

(9.5) 

(9.6) 



124 

 

 

 
   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clusters  
  Class1      Class2       Class3      Class4      Class5       Class6       Class7      Class8       
  Factory     Farm         Village      City-1       Forest         City-2       Town         Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  68.9        5.5         4.4         3.3        4.4         7.8           0          1.1            

   3.3         53.3       8.9         2.2        5.5         6.7         7.8        12.2           

   5.5          5.5         70         3.3        3.3         1.1          6.7         1.1            

    4.4         2.2           0         76.7        0           7.8         3.3         6.7            

    2.2        13.3         2.2          0        77.8        1.1          2.2        4.4           

    8.8          4.4         6.7        3.3        2.2        68.9         4.4          0            

    6.6          6.7         7.8        5.5        1.1         1.1         75.6        1.1           

     0            8.8           0         5.5        5.5         5.5           0         73.3           

 

 

                          

 

Clusters  
  Class1        Class2      Class3      Class4      Class5      Class6       Class7      Class8       
  Factory       Farm       Village      City-1       Forest        City-2       Town          Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  71.1         6.6         5.5         4.4        5.5        6.7        3.3          0            

    3.3        56.7         10         1.1        4.4        3.3         8.9        6.6            

    4.4          5.5         70         1.1         3.3        3.3        4.4         5.5            

    4.4          1.1         1.1       78.9        2.2        7.8         2.2        4.4           

    2.2         11.1        1.1        1.1        75.6        2.2        3.3        2.2            

    5.5          5.5         4.4        2.2         3.3        72.2       3.3         2.2            

    7.8          6.7         5.5        4.4           0          1.1        73.3       1.1            

    1.1          6.7          2.2       6.7         5.5         3.3         1.1        77.8           

 

 

                          

Table 9.2: Results of classification. We used the BoW model with the Dictionary-1 
and a normal labeling. Then we applied our Bayesian approach for classification.  

Table 9.3: Results of classification. We used the BoW model with the Dictionary-2 
and a normal labeling. Then we applied our Bayesian approach for classification.  
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   According to the results of classifications in tables 9.2 and 9.3 we could say that there 
is a little improvement when we use Dictionary-2 instead of Dictionary-1. We 
experimentally found that when we are defining our dictionary by obtaining a set of 
basis vectors for each class (the case of Dictionary-2), if the number of basis vectors for 
each class is close to the number of visual words for each document (here 25), then we 
will have better results. In recent experiment, we chose the number of dictionary 
words as 64 and we had 8 classes, so the number of basis vectors for each class was 
selected as eight. If for example we had 4 classes instead of 8 classes then the number 
of basis vectors for each class would be 16 which is closer to the number of visual 
words for each document (25). Nevertheless, we chose the number of dictionary words 
as 64 in order to keep the similar conditions for the two dictionaries.  

   

 

9.2.6 Improved labeling and features  
    
    As it was mentioned in sub chapter 9.2.4, the normal approach in a Bag of Words 
model is to label each word of document by only one dictionary word which is the 
most similar to the document word. Then, obtained histogram for each document 
could be considered as the feature vector of the document. An example of such feature 
vector is shown in Figure 9.5. As we see, the length of feature vector is the same as the 
number of dictionary words (here 64) and many of the features are zero because 
usually the number of words for each document (here 25) is less than the number of 
words in the dictionary. This fact that many of features are zero may leads us to make 
a conclusion, that is, the number of features is more than what is needed. On the other 
hand, we are not able to reduce the number of features because for each dictionary 
word we need one feature.  However, maybe we can change the labeling and feature 
definition so that the vector of features would be more reach and efficient.  
    The idea is to measure the total similarity between one dictionary word with all of 
words which are extracted from an arbitrary document.  In other words, if we have an 

arbitrary document i, then for each dictionary word Dk, we can define a feature fi,k 

with the equation (9.7):  
 

                                            )w,(C )(D ji,k
j

, meanf ki  

   

  In which  Wi,j  is the visual word number j of document i and )(D ji,k w,C  that 

measure the similarity between dictionary word Dk and document word Wi,j  is 

calculated from equation (9.1). In fact, fi,k expresses how much the dictionary word Dk  
is similar to the words of document . This is a kind of labeling because it is a criterion 

for the level of existence of dictionary word Dk in document i .  
   Figure 9.6 shows the improved features which are obtained for 10 first contextual 
patches of each class of the test set (see Figure 3.2). In this case we used Dictionary-1 in 
our BoW model. Figure 9.7 shows the extracted features when we use Dictionary-2 in 
our BoW model. As we see the feature vectors is completely different with the case 
that we use normal labeling (see Figure 9.5 for comparison) and we rarely find zeros in 
the feature vectors.  

(9.7) 
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Class1: Factory   Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town Class8: Sea  

Figure 9.6: Improved BoW features. These features are obtained for 
10 first contextual patches from each class of the test set. In this case 
we used Dictionary-1 in our BoW model. 
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Class1: Factory   Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town Class8: Sea  

Figure 9.7: Improved BoW features. These features are obtained for 
10 first contextual patches from each class of the test set. In this case 
we used Dictionary-2 in our BoW model. 
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Clusters  
  Class1        Class2      Class3      Class4       Class5       Class6        Class7        Class8       
  Factory       Farm        Village     City-1         Forest        City-2       Town             Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  71.1         6.7         2.2         3.3         4.4         7.7          3.3          1.1            

   4.4         55.6         10         1.1         5.5          3.3          10          6.7            

   5.5          6.7        71.1        2.2         4.4          4.4          4.4         5.5            

   3.3          1.1         2.2        77.8         1.1         6.6          2.2         3.3            

   5.5           10         3.3         2.2         76.7        1.1          2.2          2.2            

   5.5          7.8         4.4         3.3          3.3        72.2         4.4          2.2            

   4.4          6.7          5.5        4.4          1.1         2.2         72.2          0            

     0           5.5          1.1        5.5          3.3          2.2         1.1        78.9           

 

 

                          

 

Clusters  
  Class1      Class2      Class3      Class4      Class5      Class6       Class7       Class8       
  Factory      Farm       Village      City-1       Forest       City-2        Town           Sea 

1 

2 

3 

4 

5 

6 

7 

8 

 74.4        5.5         2.2         3.3         2.2        5.5         3.3           0            

  2.2        58.9        7.8         1.1         4.4        4.4         5.5         8.9           

  3.3         7.8        75.6        2.2         5.5         3.3         3.3         3.3            

  5.5         1.1          1.1       81.1        1.1         4.4         4.4         5.5            

  3.3         5.5          3.3          0         78.9          0          2.2          2.2            

  5.5         3.3          4.4         3.3         2.2         77.8      4.2          2.2            

  4.4         7.8          5.5         4.4         1.1          2.2      75.6         1.1            

  1.1          10            0          4.4         4.4          2.2        1.1        76.7           

 

 

                          

Table 9.4: Results of clustering. We used the BoW model with the Dictionary-1 and 
improved labelling and features. Then we applied a simple clustering on the features   

Table 9.5: Results of clustering. We used the BoW model with the Dictionary-2 and 
improved labelling and features. Then we applied a simple clustering on the features   
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9.2.7 Simple clustering for evaluation  
 
  To evaluate the improved BoW features we performed the same clustering which is 
explained in sub-chapter 7.3 but with the improved BoW features. The results are 
summarized in table 9.4 for the case that we use Dictionary-1 in our BoW model and 
also in table 9.5 for the case that we use Dictionary-2 in our BoW model. We can see a 
little improvement when we use Dictionary-2 instead of Dictionary-1. Moreover, the 
results show that the new features are more effective comparing with the case that we 
use normal labeling and Bayesian approach for classification. 
 
 

9.3 Conclusions 
 
   In this chapter we proposed a Bag of words model to extract features from the basis 
vectors which are obtained for each contextual patch.  
  The comparison of the tables 9.4 and 9.5 with the tables 9.3 and 9.2 shows that the 
improved BoW features are more effective comparing with the case that we use 
normal labeling and Bayesian approach for classification.  
  For comparison with the features which are obtained from ICA sources we have to 
compare tables 9.4 and 9.5 with the table 7.2 . This comparison leads us to conclude 
that the BoW model is more efficient comparing the models which generate the 
features on the base of ICA sources. But we have to take care about the time of 
obtaining the features for each contextual image. The average time for obtaining the 
BoW features for a contextual patch is about 0.82sec and for the features based on ICA 
sources this time is about 0.15 seconds. Thus the BoW model is about 8 times slower. If 
we compare tables 9.4 and 9.5 with the results of mid-level TICA features in table 8.1 
we can conclude that the mid-level TICA model is generally more effective in 
comparison with the BoW model. Moreover, we know that mid-level TICA model is 
absolutely faster than BoW model.  
   Another point is the length of feature vector that can represent the complexity of 
model. The BoW model generates the feature vectors which are longer than feature 
vectors based on ICA sources and the feature vectors based on TICA model. So, we 
could say that the BoW model is generally more complex comparing with two 
previous models.   
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CHAPTER 10 

 

FEATURE EXTRACTION FROM ICA BASIS 
VECTORS: LINE AND GRADIENT FEATURES 
 
 
 
   In chapter 9 we explained that one viewpoint for feature extraction is to consider the 
ICA basis vectors which are obtained for each image. In addition, we proposed the Bag 
of Words model to define features from the basis vectors of one contextual patch.  
   In this chapter we are going to propose another approach for extracting features 
from the basis vectors of one contextual image patch.  This approach is based on 
detecting lines in the basis vectors and extracting features from the characteristics of 
these lines.  
 
   

10.1 Lines and gradient as basic characteristics of basis vectors 
 
   As it was mentioned in chapter 9, the basis vectors which are obtained for one 
contextual image patch carry its signatures. In other words, the basis vectors of a 
contextual patch have some characteristics which may differ from the other contextual 
patch. In this chapter we aim to investigate about the most important characteristics in 
the basis vectors which can lead us to identify the original image’s properties.  
   We are going to demonstrate that it is possible to estimate the structures on the basis 
vectors by some lines and extract features from these lines. We emphasize on the lines 
because as it was mentioned in previous chapters, our goal in the thesis is to define 
some descriptors for VHR satellite images especially for those who contain the 
geometrical objects. Naturally, lines play important roles for modeling the geometrical 
objects so the characteristics of lines (such as their lengths, their gradients and their 
angles) in the basis vectors could help us to characterize the initial image.  
    Figure 10.1 shows two examples of contextual patch and their basis vectors. As we 
see, in each basis vector we could find some structures which can be modeled by 
different lines. These lines are different from many points of view.  Particularly, in the 
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basis vectors of one image (right) we see some lines which are mostly long, and intense 
from gradient point of view. Moreover, their angles are distributed in two narrow 
intervals around 45° and 135°. However, the other image has some basis vectors that 
present lines which are not very long and also not very strong from gradient point of 
view. In addition, the line angles are distributed differently. Most of them are 
distributed around 0° and 90°.  This could make an idea for extracting features from 
the basis vectors of one image.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
       Our goal in this chapter is to extract features from the characteristics of lines which 
are found on the basis vectors of one contextual image. Thus, the first step is to 

Figure 10.1: Basis vectors could be modelled by lines. The basis 
vectors of right image contain some lines which are mostly long and 
intense from gradient point of view. However, the basis vectors of 
left image have some lines which are shorter and weaker from 
gradient point of view. Moreover, the distributions of lines angles in 
two sets of basis vectors are different. This can be an idea for 
extracting features from the basis vectors of one image.  
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estimate lines on the basis vectors. In the literature, this is usually performed in two 
essential steps: 
 

 Edge detection from the original images (here, basis vectors)  

 Line estimation from the produced edges 
 

    In the following we explain the basic concepts of edge detection and line detection 
and introduce our methods for each of them. 
 
 

10.2 Edge detection 
 
   The goal of edge detection is to find the boundaries of objects or segments in the 
images.  Edge detection methods usually use a first order or second order derivation to 
measure the strength of an edge, then they compare it with a threshold to decide if it 
can be detected as an edge (thresholding), finally they edit the resulted edges to obtain 
one pixel thick edge elements (edge thinning).  Different methods of edge detection 
exist.  D. Ziou and S. Tabbone [51] presented a study about a number of different edge 
detection techniques.  
  The Canny edge detector [52]  is known as one of the most effective methods for edge 
detection in the literature.  The only disadvantage of Canny method is that it is not as 
fast as some other edge detectors such as Sobel edge detector. Since in our work the 
time of feature extraction is an important parameter, we preferred to use Sobel edge 
detector instead of Canny method. Sobel can be categorized as the first-order gradient 
method which is explained below.  
 

 
10.2.1 Edge strength estimation based on first-order gradient  
   
   Gradient amplitude could be a criterion for the edge strength in the image. Actually, 
it can show the level of change between the neighbor pixels. For using the first-order 
gradient as a criterion for edge detection, we have to apply an operator to estimate the 
gradient function for a digital image. The easiest way is to use central differences to 
estimate the gradient: 
 
 

             
             
  
 
   
 
 

In which, I(x,y) is the gray scale level of original image at the point of (x,y) and Gx 

and Gy are the gradient in the x and y directions. The equations (10.1) and (10.2) can 

be written as : 
 

(10.1) 

(10.2) 

http://en.wikipedia.org/wiki/Edge_detection#cite_note-5
http://en.wikipedia.org/wiki/Canny_edge_detector
http://en.wikipedia.org/wiki/Edge_detection#cite_note-7
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   The two matrix Lx and Ly (here vectors) are called the gradient operators. Here, each of 

gradient operators considers only two pixels in the neighborhood of corresponding 
pixel (left and right or up and down).  If we consider other pixels which are in oriented 
neighborhoods of corresponding pixel, we expect that the resulted gradients would be 
more reliable. For example, the well-known  Sobel operator is based on the following 
filters: 
 

               

101

202
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xL           
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Given such estimates of first-order derivatives, we are able to obtain the gradient 
magnitude and the angle of gradient for each point. The magnitude of gradient can be 
computed as: 
 

                  
22

yx GGG   

 
 While the gradient orientation can be estimated as 
 

                 )arctan(
x

y

G

G
 

   
 

10.2.2 Thresholding and edge thinning 

 
  After computing the gradient estimation, we have to apply a threshold, to decide if it 
is enough strong to be considered as an edge.  If we take a low value for threshold, 
more edges will be detected. Simultaneously, the result will be sensitive to the noise. 
On the other side a high threshold may lose some edges. The usual approach is to 
consider the hysteresis thresholding. That is, using multiple thresholds to find edges. 
   Next step after thresholding is edge thinning which is a technique used to remove 
the unwanted points on the edges and, if it is necessary, add some points so that we 
will have one pixel thick edges.  

(10.3) 

(10.4) 

(10.6) 

(10.5) 

(10.7) 

http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Image_noise
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   The rules of a thinning procedure are dependent to the needed accuracy and the 
forms of edges which are expected. However, if the thinning is applied carefully, it 
removes all the unwanted points and normally results in one pixel thick edge 
elements. So, we will have sharp and thin edges that lead to greater efficiency in line 
detection algorithms. 
  Usually a thinning method is performed based on the number of neighborhoods of 
each pixel in the edge. It also verifies if the pixel can be considered as the connection of 
two or more different edges or not. In the thinning procedure sometimes we add one 
pixel and sometimes we replace one pixel to its neighborhoods to fill the gaps inside 
the edges. The complicated cases are when we have a pixel in the edge with more than 
two pixels in its neighborhood. We have to determine if this pixel is a linking point of 
two or more different edges or it should be eliminated from the set of edge pixels. 
    
 

10.3 Line estimation 

 
  After detecting edges in one image, we are going to estimate them with lines. The 
result of edge detection is a Binary Matrix (BM) that contains only ones for the pixels 
which are detected as the edge pixels and zeros for the pixels which are not detected as 
the edge pixels. In the literature there are methods for detecting lines from the binary 
matrix. For example, Hough is a very well known approach which detects all the 
possible lines inside the image [50]. However, most of these methods, including 
Hough, are not suitable for our purpose. Their results usually contain many unwanted 
lines because they are designed to detect all the possible lines. So, some pixels may 
belong to several lines.    
   Here, we propose our own approach for line detection which is more efficient than 
Hough method. This approach starts with detecting the 3-pexel lines as the primary 
kernel of the lines. Then we enlarge each 3-pixel lines by adding the pixels from two 
sides until the direction of line does not change. Below, we explain this approach of 
line detection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.2: Twelve possible forms for a 3-pixel line. These are 
possible forms if we suppose that in edge thinning step, we 
removed all unwanted pixels and we have one pixel thick edge 
pieces.
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Is there exactly 2 
pixels equal to one 

in the 
neighborhood? 

Select the point 
P0=(x0,y0) on 

the matrix BM 

 450V  

 

No line is 
detected 

P1=(x1,y1)  
P2=(x2,y2)  

 

V1=P0-P1 

V2=P2-P0 
V0=V2-V1  

 

A 3-pixels line is 
detected: 

Endpoint1=P1; 
Endpoint2=P2; 

Vector of line= P2- P1; 
 
 
 

Figure 10.3: Algorithm of 3-pixel lines detection. The input is one 
pixel on the binary matrix which specifies the edges. If a 3-pixel line 
is detected, the output is the 2 endpoints and the vector which 
shows the direction of the line.
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10.3.1 Three-pixel line detection 

 
   The first step of our line detection approach is to detect 3-pixel lines. We suppose 
that in edge thinning step, we removed all unwanted pixels and we have one pixel 
thick edge pieces. So, all the possible forms for 3-pixel lines are 12 forms which are 
illustrated in Figure 10.2.   
     Given a pixel on the binary matrix, resulted from edge detection, the objective of a 
3-pixel line detector is to verify if this pixel with two other pixels in its neighborhood 
could from a 3-pixel line as the 12 possible forms shown in Figure 10.2. This can be 
performed with the algorithm shown in Figure 10.3.   
  As we see the 3-pixel lines detector as a function, gets a pixel on the BM, the binary 
matrix, which is resulted from the edge detection. This matrix contains only ones for 
the pixels which are detected as the points of edges and zeros for the pixels which are 
not detected as the points of edges. Then, the function verifies if there are exactly two 
pixels equal to one in the neighbourhood of selected pixel. If so, it obtains the two 
vectors corresponding to the selected pixel and its 2 neighbour pixels and verifies if 
the difference between 2 vectors is not greater than 45°. If so, a 3-pixel line is detected 
and the output of detector is the two endpoints of the line and the line’s vector which 
is obtained from the difference of two endpoints. This vector shows the direction of 
detected line. Using this algorithm we are able to detect all the 12 possible forms for 3-
pixel line which are shown in Figure 10.2 
 
 

10.3.2 Enlarging the three-pixel lines 

 
   Once a 3-pixel line is detected, we can enlarge it from its two sides until the direction 
of line does not change significantly. We designed an algorithm for enlarging a 3-pixel 
line. The idea is to add one pixel to the end of the line if it does not change the 
direction of the line. Actually, for each added pixel to one end of the line we could 
detect a 3-pixel line that terminates with the added pixel. We accept the added pixel as 
new point of the line if the vector of this 3-pixel line does not differ significantly from 
the initial 3-pixel line, which is the kernel of corresponding line. Otherwise the line is 
terminated from the corresponding side. Our criterion for difference between the 
directions of two lines is defined based on the interior product of their vectors: 
 
                                      
  
    
   
   
   

  In which, Vi and Vj are the vectors of two lines which are obtained by subtracting the 

initial point of the line from the its end point. d is zero if the two lines are orthogonal 
and increases to one if the directions of two lines are exactly the same. In the following 
we explain the details of our algorithm for enlarging the 3-pixel lines: 

 

(10.8) 
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1- If there are pixels that don’t belong to one line, select one of them: P0  

  

2- Apply 3-pixels line detection to verify if P0 is the central point of a 3-pixel line. If 

the answer is no go to the step 1 and if the answer is yes, for this line (L0) find 

the two endpoints (Endpoint1=P1, Endpoint2=P2) and the line-vector (V0 ) 

 

3-  If Endpoint1 is already selected for another line, from the side of Endpoint1 

the line cannot be enlarged. So go to the step 6. If Endpoint1 is not yet 

selected for another line, go to the step 4. 

 

4- Apply 3-pixels line detection to verify if Endpoint1 is the central point of a 3-

pixels line. If the answer is no the line cannot be enlarged from the side of 

Endpoint1. So, go to the step 6.  If yes, for this line (L1) find the two endpoints 

and the line-vector (V1 ).  

 

5- One of the endpoints of L1 must be already a pixel of the line. We take the 

other endpoint as P3. Verify If 
8.0

01

01

vv

vv  and P3 is not yet selected as a 

point of another line. If the two conditions are satisfied, take P3 as the new 

pixel of the line and change the endpoint of the line to P3 (Endpoint1=P3) and 

go back to the step 4. If one of two conditions is not satisfied, the line cannot be 

enlarged from the side of Endpoint1. So, go directly to the step 6. 

 

6- If Endpoint2 is already selected for another line, from the side of Endpoint2 

the line cannot be enlarged. So go to the step 1. If Endpoint2 is not yet 

selected for another line, go to the step 7. 

 

7- Apply 3-pixels line detection to verify if Endpoint2 is the central point of a 3-

pixels line. If the answer is no the line cannot be enlarged from the side of 

Endpoint2. So, go to the step 1.  If yes, for this line (L2) find the two endpoints 

and the line-vector (V2).  

 

8- One of the endpoints of L2 must be already a pixel of the line. We take the 

other endpoint as P4. Verify If 
8.0

02

02

vv

vv  and P4  is not yet selected as a 

point of another line. If the two conditions are satisfied, take P4 as the new 

pixel of the line and change the endpoint of the line to P4 (Endpoint2=P4) and 

go back to the step 7. If one of two conditions is not satisfied, the line cannot be 

enlarged from the side of Endpoint2. So, go to the step 1. 
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  As we see, before accepting a pixel as the new point of a line, we always verify if it is 
not yet selected for another line. Therefore, each pixel can belong only to one line. This 
approach has strong links with the Piecewise Linear Approximation (PLA) methods. 
The purpose of PLA is to approximate digitized curves (edges) using consecutive line 
segments. The advantage of our approach is that we could have more control for 
detecting each line individually. For example, it is possible to add an option to change 
the criterion for the direction of line when the line is getting larger. However, in PLA 
usually the goal is to minimize a total error for all parts of curves (edges) and we do 
not have access to each line separately.     
 
 

10.4 Feature extraction from basis vectors using lines properties  
 
    We are going to extract features from the characteristics of lines which are found on 
the basis vectors of one contextual image. The procedure of feature extraction starts 
with finding lines inside the basis vectors. Then, we compute three characteristics of 
each line: the length, the angle and the average of gradient of the line. For each 
characteristic we divide its entire possible interval to some smaller intervals which are 
called bins and put every characteristic of a line in its corresponding bin. The number 
of elements which are placed in a bin can be considered as a feature.  Below we explain 
the details of feature extraction.     
 
 

10.4.1 Finding lines inside the basis vectors 

 
    After obtaining the basis vectors for a contextual patch, next step of feature 
extraction is to find the possible lines inside the basis vectors. This is performed using 
the edge detection and line estimation algorithms which are explained in sub chapters 
10.2 and 10.3. We use the Sobel method for computing the gradient in our edge 
detector. There is a parameter that adjusts the threshold of gradient magnitude for the 
edges to be detected. We have to adjust this parameter such that we detect all 
necessary edges and avoid unwanted edges. 
  In addition in our line estimator we are able to determine the minimum length of 
lines which must be detected. We decided to detect the lines which are longer than 4 
pixels. Figure 10.4 shows the results of edge detector (Binary Matrix) and line 
estimators which are applied for the basis vectors of a contextual patch.  
 
 

10.4.2 Length, Gradient and angle as the important line properties  
 
   The length, the average of gradient magnitudes and the angle of a line is considered 
as its most important characteristics. The length of the line is the total number of its 
pixels. The angle of line is computed based on the vector which connects the first pixel 
and last pixel of the line. The average of gradient magnitudes of all pixels on detected 
line indicates the intensity of change which is represented by detected line.  
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Figure 10.4: Feature extraction from basis vectors of a contextual 
image patch, using their lines properties. There are several steps,   
such as obtaining basis vectors, edge detections and line 
approximation. Finally, for each line, we put each of its 
characteristics (length, average of gradient magnitude and angle) 
into the corresponding bin. 

 

Obtaining Basis Vectors 

Edge detection 

Line approximation 

Length, Gradient, Angle  
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10.4.3 Number of elements in a bin as feature 

 
   For each characteristic we divide its entire possible interval to some smaller intervals 
which are called bins. Consider the length of a line for example. We suppose that this 
line may be short or medium or long or very long. These are labels of bins for the length 
of the line whose intervals must be defined. For this case, we define short line as the 
line whose length is between 4 to 6 pixels, medium line as the line whose length is 
between 7 to 10 pixels, long line as the line whose length is between 11 to 13 pixels and 
very long line as the line whose length is greater than 14  pixels. For the average of 
gradient magnitude we define 3 intervals for week, strong and very strong lines. 
  Also, for the angle of lines we define 4 intervals for the lines whose angles are around 

0°, 45°, 90° or 135°. In fact, our 4 intervals for the angle are defined as 


22.50 , 


22.545 , 


22.590  and 


22.5135 .  
Consequently, here we have a total number of 11 bins for the length (4 bins), the 
average of gradient magnitude (3 bins) and the angle (4 bins).  For each line, we put 
each of its characteristics (length, average of gradient magnitude and angle) into the 
corresponding bin. 
   The number of elements in each bin could be considered as a feature of our 
contextual patch. So we have a feature vector with 11 features whose first 4 features 
correspond to the length, the next 3 features correspond to the average of gradient 
magnitude and the last 4 features correspond to the angel.  For example, the first 
feature of a contextual patch indicates the number of short lines in its basis vectors, the 
sixth feature indicates the number of lines in the basis vectors that are strong from the 
gradient point of view and the eleventh feature indicates the number of lines in the 
basis vectors that are around 135°. In the following, Table 10.1 contains the 
descriptions and the intervals for each feature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
  
       

 

Feature     1                2                 3                   4                    5                    6                     7 

Description Short,          Medium,            Long,              Very Long              Weak                  Strong           Very Strong  

Interval 
6L4  ,    10L7 ,      13L11          L14 ,        0.11G      0.14G11.0      0.14G    

 

 

                          
 

Feature           8                   9                 10                      11 

Description  Horizontal           Oblique1                  Vertical                 Oblique2   

Interval    
22.50      


22.545      


22.590     

22.5135  

 

 

                          

Table 10.1: Features, their description and their intervals 
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Class1: Factory Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town Class8: Sea  

Figure 10.5: Feature vectors which are obtained from the 
characteristics of lines detected on the basis vectors of contextual 
patches. These features are obtained for 10 first contextual patches 
from each class of the test set.  
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  Figure 10.5 shows examples of these feature vectors which are obtained for 10 first 
contextual patches from each class of the test set. We could see that the differences 
between the features which are obtained for different classes are clearer comparing 
with previous feature vectors which are defined in previous chapters. Specially, the 
group of classes that contain geometrical objects (class1, class3, class4, class6, class7) 
could be easily separated from the other group of classes that mostly contain natural 
landscapes (class2, class5, class8).   

 

 

10.5 Simple clustering for evaluation  
 
  To evaluate our features we performed the same clustering which is explained in sub-
chapter 7.3 but with the new features. The results of such clustering are summarized in 
Table 10.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10.6 Conclusions 
 
   In this chapter we proposed an approach for defining features from the properties of 
line (length, average of gradient magnitude, angle) which are detected inside the basis 
vectors of a contextual patch. For this goal, we introduced a new method for line 
estimation in the images.    
  According to Table 10.2, we see an obvious improvement in the results comparing 
with all previous methods, except the TICA features. Even if we compare these results 
with the results of TICA features, somewhere we see a little improvement. Specially, 

 

Clusters  
  Class1         Class2      Class3      Class4      Class5       Class6       Class7       Class8       
  Factory        Farm       Village      City-1       Forest        City-2        Town          Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  83.3         3.3         5.5         2.2         1.1         1.1         2.2          0            

     0         73.3           0          1.1          10         1.1          0           8.9            

   3.3            0         85.6        3.3           0          3.3         4.4           0            

   6.6           1.1         3.3        84.4         0          5.5         3.3           0           

     0          12.2         1.1           0         81.1         0            0          7.8           

   4.4           1.1         2.2         5.5          0         87.8         3.3          0           

   2.2            0           2.2         3.3          0          1.1         86.7         0            

     0             8             0           0            7            0            0          83.3          

 

 

                          

Table 10.2: Results of simple clustering. We used the feature vectors which are 
defined from the properties of lines in the basis vectors of a contextual patch.  
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here we could see a particular property. That is, the group of classes that contain 
geometrical objects (class1, class3, class4, class6, class7) could be easily separated from 
the other group of classes that mostly contain natural landscapes (class2, class5, 
class8). However, we could say that generally the results of this method are in the 
same level or a little bit better than the results of TICA approach.  
   But we should take care about the time of computation. In recent method, the 
average time for obtaining features for a contextual patch is 0.96  sec that is about 8-9 
times more than the time which is needed for extracting TICA features.    
   The last point is the length of feature vector that can represent the complexity of 
model.  We have a vector of 11 features which is less than all previous method except 
the TICA approach.  
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CHAPTER 11 
 
 

IMAGE DESCRIPTOR BASED ON LINE   
SEGMENTS 
 
 
   In chapter 10 we explained the idea of extracting features from the characteristics of 
line which are detected inside the basis vectors of one contextual image. In this 
chapter, we are going to use a similar idea for the lines existing inside the contextual 
image patches.  We use the principal idea of ICA basis vectors to develop our feature 
extraction approach.  
   
 

11.1 Motivation 
 
  In previous chapters we explain that ICA basis vectors provide a new space to 
represent the images. Every window with the size of basis vectors on a contextual 
image patch could be decomposed onto the set of basis vectors. This is shown in 
Figure 11.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.1: The windows with the size of basis vectors on the 
contextual patch could be considered as the linear combination of 
basis vectors whose important parts could be modeled by different 
types of lines.  
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   This means that every window on the contextual patch could be considered as a 
linear combination of basis vectors. In chapter 10 we showed that the most important 
part of each basis vector could be modeled by different types of lines. Actually, in most 
of basis vectors, one or several lines compose the principal structure on the basis 
vector and their other parts don’t present important information.  
 
    
 
 
 
 
 
 
 
 
 
 
 
   
 
We know that the basis vectors, normally, have the square shapes. This means that for 

representing a line with the length of n pixels we need a basis vector of the size of n*n 
pixels, approximately. However, this line could be represented by a segment of n*d 
pixels. In which d is usually between 3 and 5 depending on the width of the line. This 
means that many pixels in the basis vector that present such a line are not necessary. 
This is shown in Figure 11.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
   
    
   This could lead us to an idea for extracting features from satellite images. This idea is 

Figure 11.2: Many pixels in a square basis vector that presents a line 
are not necessary. We are able to represent this line by a smaller 
segment. 

 

+
 . . . +

 
+

 
+

 

f1*(short line) + ...+ fk*(long line) + ...+ 
 fj*(weak line) + ...+ fi*(strong line) + ...+ 
fm*(horizontal line) + ...+ fn*(vertical line) + ... 

 

. . . 

Figure 11.3: The idea for extracting features from satellite images 
which is extracted from our experiences about ICA. The idea is to 
detect lines directly in the contextual image patch and extract 
features from their characteristics
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based on our experiences obtained from using ICA for satellite images. According to 
the previous chapters we can model our contextual image patch, using ICA basis 
vectors. Moreover, we know that every basis vector usually presents a kind of 
structure which can be modeled by few lines. These lines, themselves, could be 
represented by smaller segments. On the other hand, in chapter 10 we demonstrated 
that how we can extract features from the characteristics of lines inside the basis 
vectors.  
   The idea is to detect lines directly inside the contextual patch and extract features 
form the characteristics of lines. In fact, each line and the pixels around it could be 
considered as an important component of a contextual image patch. We only need the 
pixels around the line which are necessary to compute the gradient for the pixels of 
line. So we will have narrow segments which contain lines instead of square windows. 
This is shown in Figure 11.3. In other words, the narrow segments which contain the 
lines play a role that is similar to the role of basis vectors. There are advantages for this 
idea in comparison with the ICA basis vectors: 
 

1- If we use this idea we don’t need to perform a learning procedure to obtain the 
basis vectors 

 
2- The length of the line could be different and is not limited with the size of ICA 

basis vectors. Specially, we could have very long lines comparing with normal 
size of ICA basis vectors.  
 

3- If a line is represented by an ICA basis vector, many of pixels around the line 

don’t present important information. This means that we have a type of 

redundancy in the case of ICA basis vectors. This redundancy is eliminated 

using the new idea.  

 

11.2 Lines properties of contextual patch as features 

 
    The procedure of feature extraction is similar to the procedure which was explained 
in chapter 10. However, here we don’t need to initially obtain the basis vectors from 
the contextual patch. Actually, we directly go to the steps of edge detection and line 
approximation. Then, we estimate a narrow segment around each line and compute 
three characteristics of it: the length, the angle and the average of gradient of the line. 
For each characteristic we divide its entire possible interval to some smaller intervals. 
Below we explain the details of feature extraction.     
 
 

11.2.1 Finding lines inside the contextual patch 

 
    The first step of feature extraction is to find the possible lines inside the contextual 
patch. This is performed using the edge detection and line estimation algorithms 
which are explained in sub chapters 10.2 and 10.3. We use the Sobel method for 
computing the gradient in our edge detector. We adjust the parameter of thresholding 
in edge detector such that we detect all necessary edges and avoid unwanted edges. 
  In addition in our line estimator we are able to determine the minimum length of 
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lines which must be detected. We decided to detect the lines which are longer than 8 
pixels. Figure 11.3 shows the results of edge detector (Binary Matrix) and line 
estimators which are applied for the contextual patch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11.2.2 Length, Gradient and Angle as the important line properties  
 
   As it was mentioned, we consider line and the pixels around it as the components 
which play a role similar to the role of basis vectors. In chapter 10 we demonstrated 
that the most important characteristic of basis vectors could be modeled by the 

Figure 11.4: Feature extraction from a contextual image patch, using 
its lines properties. There are several steps such as edge detection 
and line approximation. Finally, for each line, we consider a narrow 
segment around it and put each of its characteristics (length, 
average of gradient magnitude and angle) into the corresponding 
bin. 

 

Edge detection 

Line approximation 

Length, Gradient, Angle  
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properties of its lines. Here, just like in chapter 10, the length, the average of gradient 
magnitudes and the angle of a line are considered as its most important characteristics.  
 
 

11.2.3 Number of elements in a bin as feature 

 
   Similarly to what we did in chapter 10, we consider 4 bins for the length, 3 bins for 
the average of gradient magnitude and 4 bins for the angle. But the boundaries of 
intervals are defined differently. 
For the length, we define short line as the line whose length is between 8 to 12 pixels, 
medium line as the line whose length is between 13 to 15 pixels, long line as the line 
whose length is between 16 to 20 pixels and very long line as the line whose length is 
greater than 20 pixels.  
  For the average of gradient magnitude we define 3 intervals for week, strong and very 
strong lines but we shift the boundaries of intervals to higher levels.  The reason is that 
the range of variation in the basis vectors is limited because of initial whitening in the 
beginning of learning procedure. For the angle of lines we define 4 intervals for the 
lines whose angles are around 0°, 45°, 90° or 135°. In fact, our 4 intervals for the angle 

are defined as 


22.50 , 


22.545 , 


22.590  and 


22.5135 . These are the same 
intervals for the angle in previous chapter.  
  The number of elements in each bin could be considered as a feature of our 
contextual patch. Consequently, here we have a feature vector with 11 features whose 
first 4 features correspond to the length, the next 3 features correspond to the average 
of gradient magnitude and the last 4 features correspond to the angel.  Table 11.1 
contains the descriptions and the intervals for the features.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
  Figure 11.5 shows examples of these feature vectors which are obtained for 10 first 
contextual patches from each class of the test set. 
 
 

 

Feature     1                2                   3                   4                    5                    6                     7 

Description Short,              Medium,            Long,              Very Long           Weak                  Strong           Very Strong  

Interval 
12L8    15L13     20L16            L21          42G       60G42         60G    

 

 

                          
 

Feature           8                   9                 10                      11 

Description  Horizontal           Oblique1                  Vertical                 Oblique2   

Interval    
22.50      

22.545      
22.590     

22.5135  

 

 

                          

Table 11.1: Features, their description and their intervals 
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Class1: Factory Class2: Farm   

Class3: village   Class4: City-1   

Class5: Forest  Class6: City-2  

Class7: Town Class8: Sea  

Figure 11.5: Feature vectors which are obtained from the 
characteristics of lines detected on the contextual patches. These 
features are obtained for 10 first contextual patches from each class 
of the test set.  
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11.3 Simple clustering for evaluation  
 
  To evaluate our features we performed the same clustering which is explained in sub-
chapter 7.3 but with the new features. The results of such clustering are summarized in 
Table 11.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.4 Conclusions 
 
   In this chapter we proposed an approach for defining features from the properties of 
line (length, average of gradient magnitude, angle) which are detected inside a 
contextual patch. We took the idea of feature extraction from the idea of ICA basis 
vectors.   
  According to Table 11.2, the results are approximately in the same level as the results 
of previous chapter. This is not strange because we used similar approach to extract 
features. In other words, both methods are based on the characteristics of lines.  
Specially, Here we see  the same property that exists in the features which are obtained 
from the lines inside the basis vectors, that is, the group of classes that contain 
geometrical objects (class1, class3, class4, class6, class7) could be easily separated from 
the other group of classes that mostly contain natural landscapes (class2, class5, 
class8).   
   This method is a little faster than the method presented in previous chapter. Here, 
the average computation time for extracting features from a contextual patch is 0.59sec 

 

Clusters  
  Class1      Class2      Class3     Class4      Class5      Class6        Class7       Class8       
  Factory      Farm       Village     City-1       Forest       City-2         Town          Sea 

1 

2 

3 

4 

5 

6 

7 

8 

  84.4        2.2        3.3        2.2        1.1        4.4          2.2           0            

     0         71.1         0         1.1       11.1         0            0            10            

   4.4           0        88.9       2.2           0         3.3          3.3          0             

   5.5          1.1        1.1       86.7         0         4.4          4.4          0            

     0          13.3       1.1         0           80          0             0          6.7            

   3.3          1.1         0          5.5          0         86.7         2.2          0           

   2.2           0          5.5        2.2          0          1.1         87.8         0           

     0          11.1         0           0          6.7          0            0         83.3          

 

 

                          

Table 11.2: Results of simple clustering. We used the feature vectors which are 
defined from the properties of lines inside a contextual patch.  
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but the computation time in previous chapter was 0.96sec. However, the computation 
time is strongly depended on the scene presented by image. If the scene includes a lot 
of lines to be approximated, just like the case that the scene is a piece of urban area, the 
computation time rapidly increases. We can also guess that if we increase the size of 
contextual patches, then the recent method gets slower comparing with the method 
explained in chapter 10. The reason is that the number of lines will grow up. 
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CHAPTER 12 

 

EVALUATION 
 
 
 
 In previous chapters several approaches were presented to extract features from the 
contextual image patches. In this chapter, we are going to compare the proposed 
methods through a supervised classification. This supervised classification is based on 
the Super Vector Machine (SVM).  
 
 

12.1 Super Vector Machine 
 

  Recently, many studies have demonstrated the important potential of SVM-based 
approaches for classification tasks. See [56] for example.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.1: An illustration of SVM classification. The solid line 
corresponds to the hyperplane ( 0. bxw ) and the dashed   lines 
corresponds to binderies of the margin: 1. bxw . Samples on the 
margin are called the support vectors. 
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   SVM classifiers could operate more effectively in comparison with many other types 

of classifier. The idea of SVM is to fit a separating hyperplane between two classes 

such that the training samples that are located at the boundaries of two classes (called 

the support vectors) will be as far as possible. In other words, it maximizes the margin 

between positive two groups of samples. 

  Basics of SVM classification for two classes are illustrated in Figure12.1. We assume 

that there are some given data points that each of them belongs to one of two classes, 

and the goal is to put a new sample in one of two classes. The data points are 

considered as n dimensional vectors and we want to know whether we can separate 

such points with a (n − 1) dimensional hyperplane. 

   In other words, it is assumed that we have two different classes and a set of training 

samples of the form ( ii yx , ) , in which ix are the n dimensional vectors and iy are 

their labels ( 1,1 ) which indicates to which class the samples belongs. Theoretically, 

we have two classes which are represented by 1 and −1 but in practice, we usually 

have just one class and we are going to separate the samples which do belong to this 

class ( 1iy ) from the other samples which do not belong to it ( 1iy ). The 

objective is to find the maximum-margin hyperplane that separates the points 

having 1iy  from those having 1iy . Any hyperplane can be written as the set 

of points satisfying: 

 

                                                     0. bxw  
 

    The vector w is a normal vector which is perpendicular to the hyperplane and b is 

the bias. The term xw. is the inner product of w and x . A separating hyperplane is 

supposed to separate the two classes as: 1bwxi  (for the class 1iy  ) and 

1bwxi  (for the class 1iy ). These two equations could be combined as: 

 

                                                   1).( bxwy ii                                   

 

   The support vectors of the two classes are the samples that lie on two hyperplanes, 

which themselves are parallel to the optimal hyperplane and are defined by 

1. bxw . The margin between these planes is w/2  and we aim to maximize 

this margin through minimizing the w .  

(12.1) 

(12.2) 

http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Surface_normal
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   This optimization is usually difficult to solve because it depends on the norm of w , 

which involves a square root. Thus, usually, we change the optimization by 

substituting w with 
2

2

1
w : 

2

2

1
min w  

   

 When the classes are not linearly separable, some extra variables ( i ) are defined to 

compensate the error of samples which are not classified exactly by linear 
hyperplanes. Equation (12.2) may be rewritten as: 
 

iii bxwy 1).(  

   
   And the optimization problem changes to  
     

i
i

w

2

2

min  

 
 The first part of equation (12.5) aims to maximize the margin between the classes and 
the second part aims to compensate the error of classification. 
 

 

12.2 Supervised classification based on SVM 

 

 Our objective in this chapter is to compare the methods which are introduced in 
previous chapter through a supervised classification based on SVM. For this purpose 
we prepared a relevance feedback tool and a database of contextual patches. Then for 
each contextual patch and for each method we prepared a feature vector.  

 

 

12.2.1 Relevance feedback tool  
 

 Our supervised classifier is a visual tool which contains a SVM engine and allows the 
user to select the desired class during several iterations. In every iteration, we are able 
to observe a number of classified and unclassified samples (contextual patches) which 
are placed on the SVM surfaces and we can determine positive and negative samples. 
Then the SVM engine uses the feature vectors of these positive and negative samples 
to improve the classification for the next iteration. In our experiments we adjust the 
parameters of our tool to show 20 positive samples and 20 negative samples in the 
surfaces of SVM. Figure 12.2 shows a schema of the relevance feedback tool. 

(12.3) 

(12.4) 

(12.5) 
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12.2.2 Contextual patch database 
   
  A data base of 20000 contextual image patches is provided to be used in classification. 
We randomly gathered these contextual patches from the initial satellite images 
similar to those which are shown in Figure 3.1. The provided contextual patches 
contain a variety of man-made and natural landscapes.    
 

 

12.2.3 Feature extraction  
  
   We compare 5 kinds of descriptor which are presented in previous chapters 
 

 Normal ICA (25 features) 

 Topographic ICA (9 features) 

 Bag of words (64 features) 

 Lines inside basis vectors (11 features) 

 Lines inside the image (11 features) 
    
 As it is mentioned in previous chapters, for most of feature extraction methods 
relating to ICA, we transform the image such that its mean value is equal to zero and 
its norm is equal to one.  So, we lose two important characteristics of image. Here, we 
add these two features to the end of different image descriptors. For each kind of 
descriptor we normalize the mean value and the norm of image regarding to the 

Figure 12.2: relevance feedback tool. Positive samples are green and 
negative sample are red.  
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variance of all features existing in the descriptor. The goal is that the variations ranges 
of these two features would not be very far from other features.  
  In addition, it is interesting to compare the proposed method with Gabor wavelet 
features. The motivation is that Gabor wavelet is the most similar method to the ICA 
in terms of using a set of filters and also in terms of the shape of filters. In Chapter 2, 
we explained the Gabor features as one of the textural features. In chapter 7 we used a 
set of 25 ICA filters (basis vectors) for feature extraction. Here, to keep the similar 
conditions we use a set of 25 Gabor filter (5 scales in θ angle and 5 scales in λ) for 
extracting the Gabor features.   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  Extracting features from a contextual image patch using a set of Gabor filters is 
absolutely similar to feature extraction using a set of ICA basis vectors which is 
explained in chapter 7. That is, we gather a sufficient number of samples from initial 
image and decompose them into the set of filters. Then, using a root square average 
upon all coefficients that correspond to one filter we obtain the feature which is related 
to that filter. Finally, we add the mean value and variance of the contextual image 
patch to the descriptor.  
 
 

12.2.4 Class detection   
    
   Now we are ready to detect the classes using different descriptors of contextual 
patches. We choose one kind of different descriptors and try to detect the classes 
among the contextual patches. Detecting one class is done during about 7-15 training 
iterations depending on the user which determines the boundaries of class and also to 
the method by which the descriptors are defined. We stop the training when the 
classified and unclassified samples which are shown by our visual tool stay in a stable 
situation.  Then we repeat the procedure, 2-4 times, for the same class, to verify if the 
result of classification for that class stays approximately at the same level. Result of 
classification for one class is expressed as its related precision and recall. Precision can 
be seen as a measure of exactness or fidelity, whereas recall is a measure of 
completeness. 
 

Figure 12.3: set of 25 Gabor filter (5 scales in θ angle and 5 scales in λ ) 



157 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.4:  20 extracted classes which are obtained from a supervised classification.  

Class1  

Class2   

Class3 

Class4 

Class5 

Class6 

Class7 

Class8 

Class11 

Class12   

Class13 

Class14 

Class15 

Class16 

Class17 

Class18 

Class9 

Class10   

Class19 

Class20   
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Figure 12.5:  Precision and recall obtained for 20 classes shown in 
Figure 12.4 for different kinds of descriptors. Red curves are 
precisions and the blues are recalls. 

 

 

Gabor wavelet  

TICA  Bag of Words 

Lines inside basis vectors 

ICA  

Lines inside the image 
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  For each class which is obtained through a classification, precision is defined as 
the number of relevant samples retrieved by classification divided by the total number 
of samples retrieved by that classification, and recall is defined as the number of 
relevant samples retrieved by classification divided by the total number of existing 
relevant samples (which should have been retrieved). To compute the precision and 
recall for each class, we built a visual tool to observe all the classified non-classified 
samples, so the user can detect the false positive and false negative samples. 
  Depending on the boundaries of classes, it is possible to extract different numbers of 
classes. If we choose very specialized classes, it is possible to increase the number of 
extracted classes. We extracted 20 classes from different man-made and natural 
landscapes. Some samples of these 20 classes are shown in Figure 12.4. Extracted 
classes contain different number of samples from about 120 samples to 1500 samples.  
   After obtaining precision and recall for all classes using one kind of descriptors, we 
do the same procedure to extract the same 20 classes using other kinds of descriptors.  
 Results of classification are summarized in Figure 12.5.  
 
 

12.3 Conclusion 

 
  Looking to the different diagrams in Figure 12.5 we are able to compare the 
capabilities of different methods. As the first conclusion we could say that the methods 
“TICA”, “Lines inside the basis vectors” and “lines inside the images” have the best 
results and Gabor features don’t present a suitable result. The results of ICA features 
are less than TICA features but higher than Gabor features. The bag of words model is 
placed between the ICA features and the three best methods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
Average of precision 

and recall 

Average of time for 

obtaining features 

Length of 

feature vector 

Gabor features 
P=64.14% 

R=59.41% 
0.15 sec 27 

ICA features 
P=75.79% 

R=72.29% 
0.15 sec 27 

TICA features 
P=91.39% 

R=86.57% 
0.21 sec 11 

Bag of words 

features 

P=81.01% 

R=73.68% 
0.82 sec 66 

Lines inside 

basis vectors  

P=94.87% 

R=87.54% 
0.96 sec 13 

Lines inside 

images 

P=93.37% 

R=88.63% 
0.59 sec 13 

 

 

                          

Table 12.1:  Comparison of methods 
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 The important point is observed in the results of natural landscapes (classes 5-8-13-16-
17). We see that Gabor features work with an acceptable accuracy for such classes. But 
when our class contains the geometrical objects, their results are not so good. This is 
normal because Gabor features are used to model the textures and we know that the 
natural landscapes can be usually described by texture like features. However, other 
methods present approximately the same level of quality for natural landscapes and 
man-made classes. This shows the capability of presented descriptors for 
characterisation of geometrical structures comparing with Gabor features.  
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CHAPTER 13 
 

CONCLUSIONS AND PERSPECTIVES  
 
 
 
 In this chapter, based on our work in the thesis some conclusions are presented. In 
addition, the perspectives of thesis including the probable future works and different 
directions in which this research can be developed are demonstrated.  
 

 

13.1 Conclusions  
 

  In this thesis we tried to present a methodology to study the statistical nature of 
satellite images and to extract their statistical signatures. The satellite images are 
considered as some multi-variable random signals such that each pixel could be an 
individual random variable and the objective is to investigate the statistical 
dependencies between this random variable (pixel) and the other random variables 
(pixels). Independent Component Analysis was used as the theoretical core of the 
thesis to study the statistical dependencies inside the satellite images.  
  In Figure 13.1 we see a graphical schema of the main thesis contributions. The first 
contribution of the thesis was a study about the scale and dimensionality behavior of 
an ICA system when it is used for satellite image characterization. We found that the 
optimum dimensionality of such ICA system corresponds to a reduction factor of 
about 0.1. Also, we chose the size of 16*16 pixels as the optimum size for ICA basis 
vectors.  This study helped us to choose the framework of ICA systems for the goal of 
feature extraction from satellite images.  
   Feature extraction methods presented in this thesis can be divided into two main 
groups: methods that use the ICA sources to define features and methods who extract 
features from ICA basis vectors.  First, we proposed an approach in which different 
samples of ICA sources related to one satellite image patch are integrated to a feature 
vector. This feature vector could be considered as the signature of the image. In this 
part, we also proposed an approach to improve the set of ICA basis vectors which 
leads to a better descriptor for the case that objective is to  separatr two different 
classes.  
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  We developed the initial ICA approach through a Topographic ICA system to obtain 
Mid-level TICA features that are combined from some low level features and work 
absolutely more effective with respect to the initial low level features. 
  On the other side, we developed two methods that use characteristics of ICA basis 
vectors to define features. Using the Bag of Words model we produced some 
descriptors that shows the level of similarity between dictionary words and the ICA 
basis vectors related to each document.  Also, we proposed another approach who 
extracts the features from the line properties of ICA basis vectors related to each image 
patch. Based on our experiences about using ICA for satellite images, we found that 
there is some strong links between ICA and gradient properties of the image. So, we 
proposed another method which detects the lines directly inside a satellite image and 
define features from gradient and line properties inside it.  
   The objective of the thesis is to present descriptors for high resolution satellite 
images that are more precise than textural features and simpler with respect to the 
local descriptors. Presented descriptor are placed somewhere between textural and 
local approaches. From one side, they give a global interpretation of the scene and 
don’t present details of objects inside the image patch. But from the other side they 

Figure 13.1: Graphical schema of the thesis contributions. 
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deal with the edge and gradient properties that are important in the structures of 
geometrical objects. 
  The descriptors presented in the thesis were verified through a supervised 
classification method based on Super Vector Machine (SVM). The classification was 
performed on a database of 20000 satellite image patch with a resolution of about one 
meter. Results of classification were presented in the form of precisions and recalls 
obtained for 20 different detected classes of landscapes.  Based on these results we can 
conclude that presented descriptors are suitable for describing a variety of landscapes 
especially those who contain geometrical structures.  
   We compared all presented methods in terms of the average of precision and recall, 
computational time and the length of the feature vector.  A feature vector based on 
Gabor-wavelet filters (as a typical textural approach) was also compared with our 
presented approaches.  In terms of precision and recall, we showed that “TICA”, 
“Lines inside the basis vectors” and “lines inside the images” are the most accurate 
approaches. The “Gabor” approach does not present an accurate result but it works 
with an acceptable accuracy for natural classes. In terms of computational time, we 
found that “Gabor “, “normal ICA” and “TICA” are faster than other methods. Finally, 
in terms of length of feature vector, we showed that “TICA”, “Lines inside the basis 
vectors” and “lines inside the images” present shorter feature vectors. Generally, 
regarding to all of these criteria we can conclude that among all presented methods, 
“TICA” is the most efficient one.  
   
  

13.2  Perspectives  
 

    Presented approaches for defining descriptors are some global approaches. In other 
words, they are not dependent to the content, resolution and type of image. However, 
we used them for the high resolution satellite images. Features extraction algorithms 
presented during the thesis can be verified with the satellite images from other sensors 
and with other resolutions. This could be one of the future works predicted for this 
thesis. They also can be verified with other types of images such as medical images, 
natural images, images in the field of astronomy, etc.  
   Presented descriptors can be developed and can be combined with each other and 
also with other features extracted from other methods to improve the efficiency of the 
descriptors. In the thesis we added mean value and variance of the image patches to 
the feature vectors to improve their efficiencies. They also can be combined with some 
of well-known textural or local features.   
    We proposed a supervised classification to evaluate the features. Supervised 
classifiers have some advantages. For example, they let us to detect samples 
corresponding to a desired class. In other words, we can detect one class among a lot 
of relevant or non-relevant samples. But they also have some disadvantages. For 
example they are strongly dependent to the user’s point of view and the number of 
training iterations for detecting one class. Thus, one of perspective of the thesis could 
be providing a standard framework for the evaluation of the descriptors in order to 
reduce effects of other parameters such as user’s point of view. As a proposed 
solution, the experiments can be performed by a number of users and the final results 
can be obtained through averaging the results of different users.  
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 Different descriptors presented in the thesis can be used for Image Information 
Mining methods, classification algorithms and segmentation methods. They also can 
be used for a variety of applications such as urban area detection, Geographic 
Information System, image search engines, etc. Generally, any application that needs a 
description or interpretation of high resolution satellite images can befits these 
descriptors.  
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Modélisation et Extraction des Descripteurs Intrinsèques des Images 

Satellite à Haute  Résolution: Approches Fondées sur l'Analyse en 

Composantes Indépendantes 

RESUME : Les images satellites haute résolution contiennent des informations très détaillées 

comme la forme des bâtiments, les zones industrielles, etc. Leur contenu d'information est 

hyper riche et très compliqué a extraire. Parmi les paysages différents, les zones urbaines et 

des structures géométriques sont les paysages plus compliques  pour les différant domaines de 

recherches. Nous allons extraire les indices intrinsèques des images satellite et proposer les 

descripteurs robustes. En utilisant ces descripteurs,  nous serions capables de reconnaitre une 

variété des paysages, en particulier, les structures géométriques au sein des images satellite. 

L’analyse en composantes indépendantes (l’ACI) est la base théorique de cette thèse.  La 

première contribution de thèse est une investigation sur l’effet de la taille de l’échelle et la 

dimension d’un système de l’ACI qui est utilisé pour caractérisation des images satellite. Cela 

nous aide à choisir le framework de notre modèle de l’ACI pour extraire des caractéristiques. 

On propose deux groupes des descripteurs pour les images satellites haute résolution. Le 

premier groupe contient deux types des descripteurs qui sont basés sur les coefficients (les 

sources) de l’ACI ordinaire ou l’ACI topographique et le deuxième contient deux types des 

descripteurs qui sont basés sur les propriétés des vecteurs de base de l’ACI. En se basant sur 

notre expérience en l’ACI nous proposons un autre descripteur qui extrait les caractéristiques 

des lignes dans les images satellites. Finalement, les capacités des descripteurs proposés sont 

comparés grâce a une classification supervisée basée sur la machine à vecteurs de support.      

Mots clés : Image Satellite, Descripteur,  l'Analyse en Composantes Indépendantes 

 

 Modeling, Extracting and Description of Intrinsic Cues of High Resolution 

Satellite Images: Independent Component Analysis Based Approaches 

ABSTRACT : Sub-meter resolution satellite images, capture very detailed information, as for 

example, shape of buildings, roads, etc. The main purpose of the thesis is to propose descriptors 
for sub-meter resolution satellite images especially for those who contain geometrical or man-
made structures. Independent component analysis (ICA) is a good candidate for this purpose, 
since previous studies demonstrated that the resulted basis vectors contain some small lines and 
edges, the important elements in the characterization of geometrical structures. As a basic 
analysis, a study about the effects of scale size and dimensionality of ICA system on indexing of 
satellite images is presented and the optimum dimensionality and scale size are found. There are 
two view points for feature extraction based on ICA. The usual idea is to use the ICA coefficients 
(ICA sources) and the other is to use the ICA basis vectors related to every image. Based on the 
first point of view, an ordinary ICA source based approach is proposed for feature extraction. This 
approach is developed and modified through a topographic ICA system to extract middle level 
features which leads to a significant improvement in results. Based on the other point of view, two 
methods are proposed. One of them uses the bag of words idea which considers the basis 
vectors as visual words. Second method uses the lines properties inside the basis vectors to 
extract features. Also, using the lines properties idea, another method is developed which directly 
detects the line segments in the images. Finally, the capabilities of proposed descriptors are 
compared through a supervised classification based on support vector machine (SVM). 

 

Keywords : Satellite Images, Descriptor, Independent Component Analysis 

 

 


