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Introduction

According to the CISCO VNI report of June 2010 [1], the global IP traffic has grown by

45% in 2009 to reach a rate of 176 exabytes (EB). The traffic will be quadrupled in next

four years and represent 767 EB in 2014. This corresponds to a compound annual growth

rate of 34%. To support this massive need of resources, the global communication network

has to be continuously developed and improved. For instance, the capacity of the trans-

atlantic network is 53Tb/s (in 2010) but only 13Tb/s is actually lit. However at this traffic

growing rate, the limit capacity will be reached in 2014 [2].

Today, the vast majority of the communications (IP, voice. . .) are carried by optical trans-

missions. In particular, the transcontinental transmissions are quasi exclusively made on

optical fibers and spatial transmissions are now negligible. Indeed, optical fiber is a perfect

media for transmissions because of its very slow attenuation. Since the invention of optical

amplifiers in 1987, transmissions over very large distances (≥ 3000km) become possible.

Hence, underseas and terrestrial optical cables have been deployed all over the world to

ensure the huge data traffic between continents. This is called the long-haul core network.

The optical network is also composed by smaller scale networks connected to the core net-

work, that provide the data transport in a metropolitan or country area (100 − 1000km).

Recently the optical network has been extended to get closer the user and fibers are pro-

gressively replacing copper networks. Fiber technologies will soon directly interconnected

all the end-user applications (wireless network, storage network. . .) to the global network.

In the following years, the critical issue will be for the core network to support the traffic

growth. Actual deployed links have a maximum capacity of 0.5− 1Tb/s per fibers. These

rates are obtained by multiplexing 10 and 40Gb/s single carrier transmissions in a single

fiber. In practice, up to 100 channels can be multiplexed. This is known as wavelength

division multiplexing and has allowed to impressively expand the network capacity and

thus reduce the cost of these technologies. To cope with the demand of capacity, many

new underseas and terrestrial optical transmissions will be deployed in the following years.

However increasing the number of links can not be enough (but at an unacceptable cost)

if at the same time their capacities are not increased too.

In a short term, the capacity can be easily increased by upgrading the actual 10Gb/s and
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40Gb/s systems to the recently available 100Gb/s systems. The principal evolution in these

systems compared to the ones at 10Gb/s, is the major role of digital signal processing at

the reception. Indeed during the last decade, intense investigations have concerned digital

equalization in order to compensate optical impairments entirely in the electrical domain.

100Gb/s transmissions may also represent a transition between direct detection and co-

herent detection systems. Indeed coherent detection have made an outstanding come back

thanks to digital signal processing. In addition to the higher receiver sensitivity, it ease

the use of high spectral efficiency modulation formats and polarization multiplexing tech-

niques. The first 100Gb/s coherent system has been proposed by Alcatel in 2010 and it is

very likely that future generations of systems at 400Gb/s will all be based on this concept.

In a mid term, 400Gb/s systems are target. To reach these kind of bit-rates, a spectral

efficiency increase is necessary. If the use of multi-level modulation formats such as 16-

QAM is quite certain, orthogonal frequency division multiplexing may also be an interesting

alternative to single carrier transmission. In the next 1 − 10 years, the upgrade into

100−400Gb/s systems can be realized by only replacing the transmitters and the receivers

of actual systems. Indeed coherent detection, polarization multiplexing and orthogonal

frequency division multiplexing techniques are perfectly compatible with existing fiber

links.

Will these techniques be enough in 10 years to cope with the traffic demand? The answer

is certainly no. A major technical breakthrough, as optical amplifier was, as wavelength

division multiplexing was, is expected and required in order to keep increasing the capacity

of the global network.

A promising solution that has begun to focus lot of interests, is multi-mode fiber transmis-

sions. Indeed mode multiplexing can theoretically multiplied the capacity by the number

of transmitted modes and optical fibers can support the transmission of one to hundreds

modes simultaneously.

Motivations and contributions

The goal of this thesis is to propose innovative digital signal processing solutions to im-

prove actual and future generations of optical transmission systems. Our investigation has

focused particularly on forward error correction and space-time coding.

This thesis began in 2007 in the frame of the ANR (Agence Nationale pour la Recherche)

project TCHATER in collaboration with Alcatel-Lucent France, E2v, ARENAIRE, and

IRISA. The project goal was to develop a 40Gb/s coherent receiver on FPGAs. Our

contribution in this project concerns the study of the implementation of soft decision
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forward error correction.

Every optical systems use in practice a forward error correction (FEC) scheme in order to

correct the transmission errors at the receiver and improve the quality of the transmission.

However the FEC implemented in recent systems are far from being the state of the art.

Indeed, the modern FEC (low-density parity check code or Turbo code. . .) major drawback

is to have an excessively complex decoding. However with the development of high speed

electronics and the come back of coherent detection, modern FEC implementation becomes

conceivable.

The motivation of my work is to choose the most appropriate FEC for high bit-rate optical

systems. The selection is made based on the decoding complexity which is here the main

issue. We have proposed an original construction of low-density parity-check (LDPC) code

suitable for high bit-rate implementations and that have good performance compared to

the codes proposed in the literature

To improve the performances of the FEC, it is very important to consider the specificities

of the channel. In particular, coherent and direct detection systems both require differen-

tial modulation and this degrades the performance. We have proposed a new structured

interleaving of the FEC codewords with a corresponding decoding scheme, in order to re-

duce the penalties introduced by differential modulation. Moreover, the proposed scheme

allows decoding complexity reduction and redundancy decrease without any performance

loss.

Then, we have investigated the interest of space-time codes for optical transmission sys-

tems. They have been developed for MIMO wireless channels but can be employed in

polarization multiplexed optical systems. However their implementation requires the use

of optical orthogonal frequency multiplexing (OFDM). For the first time, we have shown

that space-time coding can efficiently mitigate polarization dependent loss impairments.

We have also shown that their performance is very different than in wireless transmission

and explained the reason.

Finally, we have studied multi-mode fiber transmissions. We have investigated how to

perform the equalization in such systems and unlike what is currently done in optical

systems, we have proposed an equalization based on the channel estimation. This part has

been realized in collaboration with R.J. Essiambre in the frame of a summer internship at

Alcatel-Lucent Bell Lab’s USA.

Thesis outline

Here is an brief overview of this thesis. In Chapter 1, we present an optical transmission

system and describe the different technologies used in actual 100Gb/s systems. We also
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discuss about the signal propagation in the fiber and the different impairments that occur.

Chapter 2 is dedicated to the forward error correction in optics. In a first part, the

principles of FEC are reminded and a brief history of FEC in optical transmission systems

is given. Then we investigate the decoding complexity of low-density parity-check codes and

product codes. Some constructions based on algebraic objects proposed in the literature

are presented before to introduce an original construction of LDPC codes.

In Chapter 3, we propose an original coding/decoding scheme to improve the performance

of FEC in the case of differential modulation. We first present the problem of differential

modulation and then describe our coding scheme called "structured symbol interleaving".

We show that it can improve the performance and that an appropriate decoding can reduce

the decoding complexity. In a last part, we show that the redundancy of the FEC can be

also reduced without any performance degradation

In Chapter 4, we focus on space-time coding in OFDM systems. We first describe optical

OFDM systems and then present the space-time coding principles. We discuss about the

performance criteria in wireless and in optical systems. Finally we evaluate the performance

of space-time code to combat polarization dependent loss.

Chapter 5 finally deals with the digital equalization in multi-mode fiber transmissions. We

introduce the concept of mode multiplexing and discuss about the equalization options.

We present the principle of equalization based on channel estimation and demonstrate its

performance in that systems. Finally, we show that using OFDM can be profitable in order

to reduce the decoding complexity
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Notations

Notation Definition

‖ · ‖ Frobenius norm

⌊·⌋ floor function

⌈·⌉ ceiling function

(·)T transpose conjugate

(·)∗ complex conjugate

(·)H Hermitian conjugate

E · Expectation

GF Galois field

ı
√
−1

Im(·) Imaginary part

lmc least common multiple

Pr{·} Probability

Pr{·|·} Conditional probability

Re(·) Real part

α Primitive element of a Galois field

αa Fiber loss coefficient Nepper/km

αdB Fiber loss coefficient dB/km

Aeff Fiber effective area m2

β(ω) Fiber propagation constant rad/m

β1 Fiber group velocity inverse ps/km

β2 Fiber group velocity dispersion ps2/km

Bref Reference spectral bandwidth nm

c speed of the light in vacuum m/s

C Channel capacity bit/s/Hz

C(n, k) Forward error correction

∆τ Differential group delay ps/
√

km

dmin minimal distance of a code
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Notation Definition

D Dispersion coefficient ps/nm/km

Eb Energy per information bit J

Es Energy per modulated symbol J

Es Signal field complex envelope

Ecm,vk Edge in the Tanner graph

F (x, y) Field distribution

~ Planck constant eV.s

γNL Nonlinearity coefficient km−1W−1

ΓdB Polarization dependent loss dB

H Parity-check matrix of a FEC

IQ,II quadrature and in-phase current A

kc Modulation spectral efficiency

χ(3) Silica 3rd order suceptibility

λc Laser wavelength m

L Fiber length m

L CIR length taps or Ts

Leff Effective length of the fiber m

M number of state in a constellation

ñ(ω) Linear fiber refractive index

n(ω) Fiber refractive index

n2 Nonlinear fiber refractive index m2/W

nsp Spontaneous emission factor W/Hz

NASE ASE spectral density W/Hz

N0 Noise spectral density W/Hz

ω Pulsation (angular frequency) rad/s

Φ Phase rad

P (t) Average power W

Pout Outage probability

r Photodiode responsivity A/W

r FEC rate

rov Sampling rate sample / s

rSTBC STBC rank

R Rotation Matrix

Rb Bit rate bit/s

Rs Symbol rate symbol/s
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Notation Definition

RSTBC STBC rate symb/cu

synd Syndrome

tmax error correction capability of a FEC

t time s

tmax FEC correction capability

Ts Symbol duration s

vg Group velocity km/ps

V0, V1,V2 Tension applied to the the MZM V

Vπ MZ extinction tension V
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Acronyms

Notation Definition

ASE Amplified spontaneous emission

BCH Bose Chaudhuri Hocquenghem

BER Bit error rate

BPSK Binary phase shift keying

CD Chromatic dispersion

CMA Constant modulus algorithm

CIDS Cyclic invariant difference set

CIR Channel impulse response

DGD Differential group delay

DMD Differential mode delay

DPSK Differential phase shift keying

DSP Digital signal processing

EDFA Erbium doped fiber amplifier

FEC Forward error correction

FFT/iFFT (inverse) fast Fourier transform

FIR Finite impulse response

FWM Four-wave mixing

LDPC Low-density parity-check

LLR Log likelihood ratio

LMS Least-mean square

LO Local oscillator

LSE Least square estimator

MGDM Mode group diversity multiplexing

MIMO Multiple input multiple output

MLSE Maximum likelihood sequence estimation

MMF Multi-mode fiber

MMSE Minimum mean square error
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Notation Definition

MSA Min-Sum algorithm

MZM Mack-Zender modulator

NRZ Non return to zero

OA Orthogonal array

OFDM Orthogonal frequency division multiplexing

OOK On-off keying

OSNR Optical signal to noise ratio

PDM Polarization division multiplexing

PDL Polarization dependent loss

PEG Progressive edge growth

PMD Polarization mode dispersion

PRBS Pseudo random binary sequence

PT Polarization-time

QAM Quadrature amplitude modulation

QPSK Quaternary phase shift keying

RS Reed-Solomon

RZ Return to zero

SMF Single-mode fiber

SNR Signal to noise ratio

SPA Sum-Product algorithm

SPM Self-phase modulation

SSI Structured symbol interleaving

ST Space-time

STBC Space-time block code

XPM Cross-phase modulation

XPolM Cross polarization modulatio

WDM Wavelength division multiplexing

ZF Zero-forcing
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Chapter 1

Principles of optical transmission

systems

In this chapter, a description of optical transmission systems is given. We will present the

different technologies used in the actual systems and focus more particularly on coherent

detection, polarization multiplexing and digital equalization as they correspond to the state

of the art of optical transmissions at 100Gb/s.

Introduction

In an optical transmission system the data is modulated and transmitted onto an optical

carrier, usually issued from a laser. The signal propagates in a transparent media and is

received and converted in the electrical domain by photodiodes. Depending on the appli-

cation, transmission can be either realized in free-space (spatial communication. . . ) or on

optical fibers (submarine communications, metro, access. . . ). The transmission distance

may vary from few meters in access network to thousands of kilometers in long-haul trans-

missions. In this thesis, we focus particularly on long-haul optical fiber communications.

Optical fiber is a very advantageous waveguide for transmissions because of its relatively

small attenuation compared to cables (∼ 0.2dB/km) and its very wide spectral bandwidth

(∼ 100THz). In order to take advantage of the whole bandwidth of the fiber, modulated

signals using different wavelengths are transmitted simultaneously. This technique is called

wavelength division multiplexing (WDM) and has been the key technology during the last

two decades to expand the network capacity and support the traffic growth. The other

promising technology that has been intensively (re)-investigated during the last years and

which has just been implemented in practical transmission system, is coherent detection.

Coherent detection has a better sensitivity compared to direct detection but the main ad-

vantage is the digital signal processing that allows high spectral modulation formats and

compensate more efficiently the transmission impairments. The come back of coherent
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detection happened with the development of high-speed electronics making digital equal-

ization an alternative to the optical phase-lock loop required in order to compensate the

phase shift between the local oscillator and the optical carrier.

Figure 1.1: Schematic architecture of an optical transmission system

A general scheme of an optical transmission system is presented in Fig. 1.1. The transmitter

is composed by an electrical driver and an optical modulator. The electrical driver input

is a data bit sequence issued from a forward error correction encoder. It generates a signal

that is converted in the optical domain by an electro-optical modulator. The signal is

transmitted in the optical fiber link where periodically optical amplifiers are inserted to

compensate the fiber attenuation. During the propagation, many transmission impairments

occur that degrade the performance. The optical signal is received by an optical receiver

whose structure depends on the modulation format and is converted back into the electrical

domain by one or many photodiodes. Finally, digital signal processing is performed to

compensate the transmission impairments and the estimated bit sequence is decoded by

the forward error correction decoder.

In the following, we will describe every elements of an optical transmission system. In

Sec. 1.1, we present the principle of the optical transmitter and the common modulation

formats. Sec. 1.2 deals with the optical fiber propagation and give an overview of the

different transmission impairments. Finally, in Sec. 1.3, we describe the structure of the

optical receiver and discuss about the digital signal processing techniques employed in

order to compensation the transmissions effects.

1.1 Optical Transmitter

The optical transmitter generates a modulated optical signal in function of an input bit se-

quence. The transmitter is composed of an electrical driver which converts the bit sequence

into an electrical signal and of an optical modulator which modulated the optical carrier in

function of the electrical driving signal. The transmitter output can have different states

(phase, amplitude. . . ), all associated to a certain number of input information bits.
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1.1.1 Optical modulator

The optical modulator modifies the optical carrier issued from the laser in order to generate

an output modulated signal:

Ec(t) = Ac(t) exp(ωct+Φc(t)) (1.1)

Ac is the amplitude related to the laser power, wc is the carrier pulsation and Φc is the

phase. It is more common to characterize the laser by its wavelength λc=2π/ωc. In optical

transmission systems, typical wavelengths are around 1.55µm.

We talk about amplitude modulation if the amplitude Ac(t) of the optical signal is modified

and phase modulation if it is the phase Φc(t). More advanced modulation formats such as

16-QAM, modulate at the same time amplitude and phase.

An optical modulator is characterized by:

• the electro-optical bandwidth corresponding to the limit frequency at which it keeps

responding to the electrical driving signal

• the extinction ratio defined as the ratio between the maximum and minimum power

it can deliver

• the insertion loss

Moreover it is expected not to be wavelength dependent and not to introduce frequency

chirps.

Optical modulation can be realized by various techniques such as directly modulated laser,

electro-absorption modulator and Mach-Zender modulator (MZM). MZM are the most

popular device for high-speed transmissions because of their large bandwidth (∼ 35GHz),

their small insertion loss (∼ 4dB) and their high extinction ratio (∼ 20dB). Moreover they

are weakly wavelength dependent and chirp free.

Mach-Zender modulator

The Mach-Zender modulator [3] is an interferometer composed by two 3dB couplers and

two waveguides made of lithium niobate (LiNbO3) crystal as shown in Fig. 1.2. This crystal

displays Pockels effect which means that its refractive index is linearly proportional to the

electric field. Hence, by applying a voltage tension on the crystal, it is possible to control

the phase of the light at the output of the waveguides and thus generate constructive or

destructive interferences. Fig. 1.3 represents the transmittance of the MZM in function of

the tension V0 = V1 − V2 between the arms. The transmittance is the ratio of transmitted

power and is characterized by:

Eout = Ein cos

(
π
V1 − V2

Vπ

)
(1.2)
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Figure 1.2: MZM
Figure 1.3: MZM transmittance

Vπ represents the tension to pass from the maximum to the minimum transmittance. If

V0 is a modulated signal with an average value in the linear part of the transmittance as

depicted in the figure, the electrical modulation is linearly transposed to the optical carrier.

With adequate electrical driving signal V0 it is possible to obtain amplitude or/and phase

modulation.

1.1.2 Modulation formats

A modulation format is a family of signal states (amplitude, phase, frequency. . . ). Each

combination of states, for example phase and amplitude, is called a symbol. The constel-

lation represents all the symbols that can be generated by the modulation format. Some

examples of constellation are presented in Fig. 1.4. The average power of the constellation

is noted Ps. In the case of a phase/amplitude modulation, the symbols can be noted:

Es = As exp (iΦs)

where As =
√
Ps is the amplitude of the signal and Φs is the phase of the symbol.

Figure 1.4: Constellations of (a) OOK, (b) BPSK, (c) QPSK, with average power Ps

A symbol is transmitted during a time Ts and the symbol rate is defined as Rs = 1/Ts

(symbol/s).

A distinct group of bits is associated to each symbol of the constellation. If the modu-

lation has M states, each symbol is associated to log2(M) bits. The spectral efficiency
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kc = log2(M) is defined as the number of bit transmitted by a symbol. Therefore, the

transmission bit-rate Rb is related to the symbol-rate Rs by:

Rb = kcRs (1.3)

1.1.2.1 On-off keying

On-off keying (OOK) is the most basic amplitude modulation but has been employed from

the first optical transmissions to the recent 40Gb/s systems. The principle is to turn the

light on to transmit the bit ′1′ and turn it off to transmit the bit ′0′. Hence, OOK spectral

efficiency is only one bit per symbol.

OOK modulation can be achieved with a single MZM by alternating constructive and

destructive interference. The driving signal V0 has an amplitude of Vπ around the quadra-

ture. Light is on (constructive interference) at the maximum transmittance and light is off

(destructive interference) at the minimum as shown in Fig. 1.5(a).

OOK format is very popular because of the simplicity of its transmitter and receiver. Indeed

a simple photodiode followed by a decision threshold is enough to get the bit sequence.

However, this format is sensitive to the nonlinearities induced by the power fluctuations.

The regular OOK format is named non-return to zero OOK (NRZ-OOK) as power does not

return to zero between two symbols. Other version of OOK formats have been developed

in order to improve the nonlinearity tolerance such as return to zero (RZ) OOK, chirped

RZ-OOK or carrier suppressed RZ-OOK.

1.1.2.2 Binary phase shift keying

Binary phase shift keying (BPSK) is a binary phase modulation format where the bit ′0′

is associated to the phase Φs = 0 and the bit ′1′ to the phase Φs = π. As OOK, BPSK

transmits only one bit per symbol. However BPSK has a better tolerance to nonlinearities

because symbols have a constant energy |Es|2 and there are less power fluctuations. More-

over, it is less sensible to the noise and signal distortion because the distance between the

symbols of the constellation is larger as depicted in Fig. 1.4.

The better performance of BPSK has the cost of a more complex implementation. The

transmitter has the same architecture than that of OOK. To produce π phase shifts, V0

has an amplitude of 2Vπ as represented in Fig. 1.5(b). It is twice the amplitude required

for the OOK format. The driving signal can not shift instantaneously from its maximum

to its minimum value and thus passes by the minimum value of the transmittance and this

causes a small fluctuation of the output power.

BPSK has also a more complex receiver than OOK scheme. Indeed a photodiode is

quadratic receiver and the phase of the signal is lost by the conversion in the electri-

cal domain. The solution is either to optically demodulate before the photodiode or to use
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Figure 1.5: MZM driving sequence for (a) OOK (b) BPSK

coherent detection.

1.1.2.3 Quadrature phase shift keying

OOK and BPSK formats both have a spectral efficiency of one bit per symbol. This

is an important limitation for the implementation of high bit-rate transmissions because

the electronics devices (so the MZM driving signal) must have the same frequency as the

modulation rate Rs. Therefore optical transmission bit-rates are limited by the maximum

bit-rate in electronics. To overcome this problem, high spectral efficiency modulation

formats have been investigated. Their constellation have more than two states in order to

transmit more than one bit per symbol.

Quadrature phase shift keying (QPSK) is a modulation format where the symbols can have

four distinct phases Φs: π/4, 3π/4, 5π/4 or 7π/4 as shown in Fig. 1.4(c). The spectral

efficiency is two bits per symbol which is twice as many as in OOK or BPSK formats.

Hence the symbol rate is half the bit-rate.

QPSK is less sensitive to nonlinearities than OOK because there is no power fluctuations

and is less sensitive to dispersion effects (chromatic dispersion, polarization mode disper-

sion) than BPSK because it works at half of its rate. Note that QPSK format has actually

the same noise sensitivity than BPSK [4]. Indeed although the distance between neighbor

symbols is 1/
√
2 smaller, the spectral efficiency is the double.

A QPSK signal can be created from two BPSK signals, one ’in phase’ and one on ’quadra-

ture’. The transmitter is composed of two MZM arranged in a super MZ structure as shown

in Fig. 1.7. In the same way, the QPSK receiver is composed by two BPSK receivers in

order to detect the signal in phase and in quadrature.
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1.1.3 Polarization multiplexing

The light propagating in a fiber is an electromagnetic wave having its electric field in the

transverse plane orthogonal to the direction of propagation. The field can be decomposed

in an orthogonal basis of the transverse plane and this can be interpreted as the two

orthogonal polarizations of the light. The optical signal can be described by a 2× 1 vector

as: [
Es,1

Es,2

]
=

[ √
Ps,1 exp (iωct+Φs,1)√
Ps,2 exp (iωct+Φs,2)

]
(1.4)

The two polarizations can be modulated independently and this is called polarization

division multiplexing (PDM). Hence, twice as much information is transmitted and the

spectral efficiency is doubled.

Polarization multiplexing is realized by combining two optical modulated signal with a

polarization beam splitter (PBS). Therefore one optical transmitter is required for each

polarization but both share the same laser.

At the receiver, the signal is split in two with a PBS and then detected by two independent

optical receivers. However, due to the birefringence and other polarization mixing effects

in the fiber, the states of polarization at the reception are unknown. The polarization

de-multiplexing can be done optically by carefully controlling the polarization states of the

received signal using a polarization controller before the PBS. However, the most efficient

solution is to realize this operation in the electrical domain. PDM is often combined with

coherent detection in order to ease the digital de-multiplexing.

1.2 Optical fiber propagation

The optical field propagating on one polarization in a single-mode fiber can be expressed

as [5]:

Es(x, y, z, ω) = F (x, y)Es(z, ω) exp(ıβz) (1.5)

where z is the distance of propagation, ω is the angular frequency (or pulsation), F (x, y)

is the field distribution which can be approximated as frequency independent, Es(z, ω) is

the field complex envelope and β = n(ω)ω
c

is the propagation constant with n(ω) being the

refractive index and c being the light velocity. As the spectral components of the signal

are all close to the optical carrier ωc, β(ω) can be developed in a Taylor series:

β(ω) ≈ β0 + β1(ω − ωc) +
1

2
β2(ω − ωc)

2 + . . . (1.6)

where βi is the ith derivative of β with respect to ω. By expressing the pulse envelope in

the time domain,

Es(z, t) =
1

2π

∫
Es(z, ω) exp(−ı(ω − ωc)t)dω (1.7)
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the basic propagation equation can be derived [5]:

∂Es(z, t)

∂z
= −β1

∂Es(z, t)

∂t
+

1

2
ıβ2

∂Es(z, t)

∂t2
+ . . . (1.8)

where β1 = 1/vg can be seen as the group velocity vg inverse and β2 as the group velocity

dispersion (GVD).

1.2.1 Transmission loss

Transmission loss corresponds to the optical signal power attenuation during the propaga-

tion in the fiber. Optical fiber is a silica waveguide and the attenuation depends on the

wavelength of the signal. Within the telecommunication bandwidth (∼ 1.2µm−∼ 1.7µm),

the main sources of attenuation are Rayleigh scattering due to the molecular level irregu-

larity of the silica and residual material absorption (OH− and SIO2). Rayleigh scattering

loss decreases in 1/λ4
c so attenuates more shorter wavelengths whereas OH− peaks of ab-

sorption are around 1.24µm and 1.39µm. Transmission loss is minimal around 1.55µm in

standard SMF (wavelengths commonly used in telecommunication) and approximatively

equal to 0.2dB/km. Wavelengths around 1.3µm are also sometimes used as they corre-

spond at the same time to a second minimum of the transmission loss and the minimum

of the chromatic dispersion.

We call Pin the power of the optical signal at the input of a fiber of length L and Pout

the output power. The transmission loss coefficient αa that includes all the sources of

attenuation is defined by:

Pout = Pin exp (−αaL) (1.9)

Usually transmission loss is expressed in dB/km by αdB=10log10(e)αa.

1.2.2 Chromatic dispersion

Chromatic dispersion is due to the frequency dependance of the refractive index n(ω)

of the fiber which makes the spectral components of the signal not travel at the same

velocities and leads to pulse broadening.

Eq. 1.8 can be rewritten by choosing a reference moving with the pulse (t′ = t− β1z) as:

∂Es(z, t
′)

∂z
= −ı1

2
β2

∂2Es(z, t
′)

∂t′2
(1.10)

The dispersion D expresses the variation of the group velocity in function of the wavelength

λ= 2πc
ω .

D =
d
dλ

(
1

vg

)
= −2πc

λ2

d
dω

(
1

vg

)
= −2πc

λ2
β2 (1.11)

Therefore the propagation equation becomes:

∂Es(z, t)

∂z
= ı

Dλ2

4πc

∂2Es(z, t)

∂t2
(1.12)
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where λ is the wavelength and D expressed in ps/nm/km is the dispersion coefficient of

the fiber. The transfer function express the relation between an input and output field.

By solving the previous equation, the frequency domain transfer function of chromatic

dispersion is obtained [6]:

HCD(z, ω) = exp(−ı Dλ2z

4πc
ω2) (1.13)

The typical value of dispersion in standard single mode fiber is 17ps/nm/km.

1.2.3 Polarization mode dispersion

In an ideal fiber, both polarizations have the same group velocity vg. However in practice,

there are some material imperfections such as local stress which result in a birefringence

∆n. Therefore the refractive index experienced by the two components of the electrical

field is different. Hence, polarizations do not travel at the same velocities and after the

propagation there is a differential group delay (DGD) ∆τ . As the local birefringence is a

stochastic process, the DGD has a statistical distribution. Polarization mode dispersion

(PMD) is expressed in ps and defined as the average DGD E∆τ .

In the first order approximation, DGD can be considered wavelength independent. The

fiber is often modeled as a concatenation of equally distributed fiber sections in which the

polarizations are randomly rotated. In that case, the DGD has a Maxwellian distribution

[7]. The transfer function matrix of the PMD corresponds to a concatenation of random

rotation matrices and birefringent matrices [8]:

HPMD(ω) =
∏

m

RmDm (1.14)

Dm =




exp

(
ı
ω∆τ

2

)
0

0 exp

(
−ıω∆τ

2

)




The rotation matrix Rm depends on two random angles θm and ϕm describing the local

orientation mismatch between the axes of the fiber and the polarizations of the signal.

1.2.4 Polarization dependent loss

Polarization dependent loss (PDL) describes the fact that signals with distinct polarization

states are not attenuated in the same way during their propagation through an optical

component (isolators, couplers, amplifiers. . .). Although optical devices are designed to

introduce only a small amount of PDL, long-haul optical transmission systems include a

large number of in-line optical components that make the total PDL after transmission

be significant. In polarization multiplexed systems, PDL induces a fluctuation of the

polarization power levels during the transmission that change the OSNR and lead to BER

degradation at the receiver.
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PDL depends on the polarization states of the signal and thus is a stochastic process. We

consider the model used in [9]:

HPDL = R1

[ √
1− γ 0

0
√
1 + γ

]
R2 (1.15)

R1 and R2 are random rotation matrices representing the orientation mismatch between

the polarization states and the axes of the optical component having PDL. The attenuation

γ is related to the PDL noted ΓdB by:

ΓdB = 10 log10
1 + γ

1− γ
(1.16)

This model of PDL has been chosen for its simplicity however, more detailed models of

PDL exist in the literature and we suggest to refer to the work of M. Shtaif et al as for

example in [10].

Figure 1.6: Principle of PDL when the axes of the optical element are parallel to the

polarizations of the input signal

1.2.5 Erbium doped fiber amplifier

Despite the low transmission loss of the optical fiber, the signal has to be re-amplified in

order to achieve long-haul transmission. Therefore, optical amplifiers are inserted peri-

odically along the propagation, typically every 40-120km. Erbium doped fiber amplifier

(EDFA) is the most popular optical amplifier as its amplification window coincides with

the minimum transmission loss of the silica fiber (∼ 1.55µm) and can amplify evenly the

whole WDM spectrum. EDFA was first demonstrated in 1987 by Mears [11] and Desurvire

[12] and has turned to be a revolution in the domain of telecommunications.

Erbium doped fiber amplifier consists in a single mode fiber of few meters doped with

Erbium ions (Er3+) in which the signal co-propagates with the light issued from one or

more pump lasers. The dopant ions are excited onto a high energy level by the pump lasers

and relax to the lower energy level either by stimulated emission with the optical signal or

by spontaneous emission.
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The stimulated emission results to the creation of a photon with the same properties

(direction, frequency. . . ) than the signal and this photon is going to generate at its turn

new photons and so on. This leads to the input signal amplification. To enable stimulated

emission the ions have to be at an energy level corresponding to the wavelength (energy)

of the input signal. Note that due to the nature of the silica, the ions are actually exited

on a band of energies and this allows stimulated emission, thus amplification, of input

signals with wavelengths around 1.55µm. Excitation to high energy band level is realized

by pumping with a laser at 1.48µm or at 0.98µm. In the later case, the ions are transferred

to the 1.48µm energy level by a non radiative relaxation. Typically, EDFA gain can be up

to 40dB and the maximum output power is ∼ 23dBm (dBm is the power referenced to one

mW).

On the other hand, the Er3+ ions can also decay spontaneously emitting photons in all

directions. However a part of these photons are guided by the fiber in the propagation

direction and added to the signal behaving as noise. Moreover they also interact with the

ions by stimulated emission, generating new photons and thus, amplifying the noise. This

process is referred as amplified spontaneous emission (ASE) and is the main limitation of

optical transmission systems.

In [13], it is shown that ASE has the statistical property of additive gaussian noise. An

EDFA that compensate the loss after a propagation into a fiber of length L, introduces

some ASE with a power spectral density [14]:

NASE =
(
eαaL − 1

)
~ωsnsp (1.17)

where ~ is the Planck constant and nsp is the spontaneous emission factor.

The optical signal to noise ratio (OSNR) is defined as the power ratio between the optical

signal and the ASE spectral density within a reference spectral bandwidth Bref of 0.1nm:

OSNR =
Ps

2NASEBref
(1.18)

where Ps is the average optical signal power. The factor 2 at the denominator corresponds

to the ASE on the two polarizations.

In digital communications, the signal to noise ratio (SNR) is derived from the capacity of

the additive white gaussian noise channel (AWGN) and defined by:

SNR =
Eb

N0
(1.19)

where N0 is the noise spectral density and Eb is the energy per information bit which is

related to the energy per modulated symbol by:

Eb =
Es

kc
(1.20)
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kc being the modulation spectral efficiency. The relation between OSNR and SNR is given

by [14]:

OSNR =
Rb

2Bref
SNR (1.21)

where Rb is the transmission information bit-rate.

1.2.6 Nonlinear effects

Nonlinear effects in optical fibers come from the significant value of the third-order suscep-

tibility χ(3) of the silica. This results in the intensity dependence of the refractive index

which is known as optical Kerr effect [15]:

ñ(ω) = n(ω) + n2(χ
(3))|Es|2/Aeff (1.22)

where n2(χ
(3)) is the nonlinear refractive index and Aeff is the effective area.

Eq. 1.8 can be rewritten in order to take into account fiber nonlinearities and the trans-

mission loss:
∂Es(z, t

′)
∂z

= −α

2
Es(z, t

′) + ıγNL|Es(z, t
′)|2Es(z, t

′) (1.23)

γNL = ωn2/Aeff is called the nonlinearity coefficient. Note that chromatic dispersion has

been omitted for a better understanding. The analytical solution is obtained by:

E(z, t′) = E(0, t′)e−
αz
2 e−ıΦNL(z) (1.24)

where ΦNL is the nonlinear phase and can be expressed as:

ΦNL(z) = γNL|E(0, t′)|2Leff (z) (1.25)

Because of the transmission loss, nonlinear effects only occur in the first part of the trans-

mission when the optical power is still high. Leff corresponds to the effective length of

fiber where the nonlinear effects happen and is estimated by [15]:

Leff (z) =
1− e−αaz

αa
(1.26)

This nonlinear phase shift induced by the optical signal power fluctuations is known as self-

phase modulation (SPM). The combined effect of SPM and chromatic dispersion causes

amplitude distortion but if the value of dispersion is well chosen, the induced nonlinear

dispersion can compensate partially or totally the chromatic dispersion. The later case is

known as soliton propagation.

Cross-polarization modulation (XPolM) and cross-phase modulation (XPM) are two non-

linear impairments both based on the same principle as SPM. The only difference is that

the refractive index fluctuations are induced not by the signal itself but respectively by

the power fluctuations of a signal on another polarization and by power fluctuations of a
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signal at another wavelength. XPolM occurs particularly in polarization multiplexed trans-

missions and results in nonlinear crosstalk between polarizations. XPM is on the other

hand one of the major impairment in WDM systems, especially when intensity modulated

signals co-propagate with phase modulated signals. Another kind of nonlinear impairment

occurring in WDM transmissions, is four-wave mixing (FWM) which generates cross-talk

between the WDM channels by creating from two co-propagating signals at ω1 and ω2,

two new components at ω3 = 2ω1− ω2 and ω4 = 2ω2−ω1. SPM, XPM and FWM are the

dominant nonlinear effects in 10Gb/s systems. At 40 and 100Gb/s, the main impairments

are due to intra-channel XPM and intra-channel FWM where the power fluctuation is in-

duced by neighbor pulses at the same wavelength that have been broadened by chromatic

dispersion.

Raman scattering is another nonlinear effect caused by the interaction between optical

signal and the silica molecules of the fiber. A photon is absorbed by the material and excites

an electron to a higher energy level. This electron returns to an intermediary energy level

by emitting a new photon with an energy smaller than the initial photon. Raman scattering

effect is accentuated by stimulated emission in presence of co-propagating signals with the

same wavelength than the scattered photon. Instead of being an impairment, this effect is

used to generate continuous Raman amplification [16] which is an interesting alternative

to EDFA.

1.3 Optical receiver

1.3.1 Direct detection

Direct detection is widely used in practical transmission systems at 10Gb/s and 40Gb/s

in order to detect OOK or BPSK signals.

The signal is received on a pass filter characterized by its responsivity r corresponding

to the efficiency of the diode to convert the optical signal in current. Direct detection is

particularly well adapted for amplitude modulation formats such as OOK. On the contrary,

as photodiode is a quadratic receiver, the phase of the signal is discarded and direct phase

modulation is impossible. However, by using a delay interferometer before the photodiodes

as depicted in Fig. 1.7, the amplitude of the input signal become function of the phase shift

between the modulated symbols. Hence, the modulation has to be realized differentially, by

encoding the information on the phase shifts. This is known as differential modulation or

differential encoding and will be discussed in Chapter 3. BPSK and QPSK with differential

modulation are referred to DPSK and DQPSK.

In the receiver structure, a balanced detection between the two arms of the interferometers

is realized in order to obtained a 3dB OSNR improvement compared to OOK. However

the performance is very sensitive to the receiver imperfections such as time and amplitude

imbalance between the photodiodes and/or between the different interferometers (in the
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case of QPSK) [17].

Figure 1.7: Optical transmitters and receivers

1.3.2 Coherent detection

Coherent detection corresponds to the mixing between the received signal and a local

oscillator laser (LO). Coherent detection was first investigated in the 80’s for its supe-

rior receiver sensitivity compared to direct detection. However, the invention of EDFA

allowing pre-amplification, made this advantage less significant. Moreover, the high imple-

mentation complexity of coherent detection caused by the need of phase locking makes it

uncompetitive compared to direct detection..

The revival of the coherent detection comes with the development of high speed electronic

devices. Digital signal processing has become a good solution to mitigate transmission

impairments. Indeed, the coherent receiver linearly transposed the received signal in the

electrical domain and thus, amplitude and phase are preserved. Moreover, phase lock is

no more necessary as LO phase shift can also be treated in the electrical domain by DSP.

Coherent receiver are usually intradyne receivers which means that the LO frequency is

very close to the carrier frequency.

In Fig. 1.7, a 90◦-hybrid phase diversity coherent receiver is depicted. The receiver outputs

are photocurrents corresponding to the component in phase and in quadrature of the
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received signal and can be expressed as [15]:

IQ(t) = r

√
Ps(t)PLO(t) cos(Φs(t)−ΦLO(t)) (1.27)

II(t) = r

√
Ps(t)PLO(t) sin(Φs(t)− ΦLO(t)) (1.28)

where Ps(t), PLO(t), Φs(t) and ΦLO(t) are the powers and the phases of the received signal

and of the local oscillator. r is the photodiode responsivity.

PDM receiver

Coherent detection is particularly adapted with polarization multiplexing because the po-

larization component can be transposed in the electrical domain by using a polarization

diversity receiver.

The received signal is separated in two by a PBS and each polarization is mixed with the

output of the LO in a 90◦-hybrid phase diversity receivers. However, if the polarization

states are not controlled before the PBS, the polarizations are mixed between the two

received signals and digital processing is necessary to de-multiplexed the signals.

1.4 Digital equalization

Digital signal processing has been the major evolution of optical transmission systems dur-

ing the last decade. By pre- or post-processing the signal in the electrical domain, it is

possible to compensate signal distortion in a very efficient manner. In practical systems,

optical compensation of transmission impairments is mainly restricted to chromatic disper-

sion compensation. However digital compensation can also deal with PMD, phase noise,

frequency offset and de-multiplexing issues. Moreover it has made possible the use of high

spectral efficiency modulation formats and multiplexing techniques such as polarization

multiplexing or orthogonal frequency division multiplexing.

1.4.1 DSP with direct detection

Direct detection restricts the potential of DSP because only the amplitude of the signal is

converted in the electrical domain. However it still demonstrates very good performance

against chromatic dispersion or PMD [18].

Pre-distortion has been proposed to compensate chromatic dispersion in 10Gb/s system

[19]. As it is a deterministic effect, it is possible to fully compensate it a priori. However,

CD is also a limiting factor of nonlinear effects and thus pre-distortion of the signal reduces

the nonlinearity tolerance.

Realizing the digital equalization only at the receiver has shown more potential. For

instance, feed-forward and decision-feedback equalizers have been proposed [20] to com-

pensate chromatic dispersion in a simple way. However, the discard of phase information
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by the photodiodes induces a performance limitations, as high signal distortions can’t be

supported.

The more robust solution is the maximum likelihood sequence estimator (MLSE) which

is based on the Viterbi algorithm [21]. It has very good performance against chromatic

dispersion and PMD [22], but is more complex than linear equalizers. The principle is to

search among all the possible emitted sequences, the one minimizing the probability to

obtain the received sequence. Hence, it requires the probability density function of the

transition probabilities. It corresponds to the probability that an emitted sequence of bits

have been received changed into another sequence. These probability density function have

to be estimated a priori by a training sequence. MLSE is very efficient with OOK format

but it is ineffective with DPSK and DQPK [23] because of the balanced detection. Joint

decision MLSE, partial DPSK and joint symbol MLSE have been proposed as solutions.

1.4.2 DSP with coherent detection

With coherent detection, the received signal can be entirely rebuilt in the electrical domain.

Therefore, we have access to the amplitude, the phase, the frequency and the polarization

states of the signal in order to compensate the transmission impairments.

The inputs of the coherent digital equalizer are the photocurrents issued from the optical

detectors. Each of them is transmitted into an analog-to-digital converter (ADC) working

at a given sampling rate. The sampling rate rov may have to be superior to 1 samples per

symbol in order to satisfy Nyquist theorem. Indeed due to the various transmission effects

and filtering, a spectrum broadening occurs. If the sampling rate is not an integer number

of samples per symbol duration, a re-sampling can be performed.

Afterward, the received signal is recovered using the ADC ouputs corresponding to the

in-phase and the quadrature signals:

y(k) , y(k
Ts

rov
) = IQ + ıII (1.29)

Then this signal is digitally processed in order to compensate every transmission im-

pairments. First chromatic dispersion is removed and polarization tributaries are de-

multiplexed by compensating fiber birefringence and polarization mode dispersion. Finally,

frequency offset is removed and the carrier phase is recovered. The scheme of the DSP in

a polarization multiplexed coherent system is depicted in Fig. 1.8.

1.4.2.1 CD compensation

Chromatic dispersion is a deterministic phenomenon only depending on the fiber length

and dispersion coefficient D. Usually, CD is compensated in-line with the introduction of
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Figure 1.8: Digital signal processing of polarization diversity coherent receivers

compensating fiber with negative dispersion coefficient. In that case, CD equalization has

only to compensate the residual dispersion which is relatively small. This is achieved by a

finite impulse response (FIR) filter with a small number of taps. The structure of a FIR

filter is represented in Fig. 1.9 and the outputs y(k) can be expressed by:

y(k) = h ∗ x
= h(L).x(k−(L−1)) + h(L−1).x(k−(L−2)) . . . h(1).x(k) (1.30)

where L is the number of taps of the filter, h = [h(1) . . . h(L)] are the coefficients of the

filter and x = [x(k−(N−1)) . . . x(k)] are the filter inputs.

Figure 1.9: FIR filter

Figure 1.10: butterfly FIR structure

Chromatic dispersion is a polarization independent effect and can be compensated before

polarization de-multiplexing. CD is modeled by the frequency domain transfer matrix

function in Eq. 1.13. The dispersion compensating filter is the inverse of the CD transfer
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function:

GCD(z, ω) = exp(ı
Dλ2

cz

4πc
ω2
c ) (1.31)

which corresponds to filter taps in the time domain given by [24]:

g(m) =

√
ıcT 2

s

rovDλ2z
exp

(
−ı πcT 2

s

4rovDλ2z
m2

)
(1.32)

with ⌊−N/2⌋≤m≤⌊N/2⌋, N=⌊ rov|D|λ2

2cT 2
s
⌋ being the total number of tap of the filter. Ts/rov

corresponds to the sampling period.

Note that fibers with negative dispersion usually have a large nonlinearity coefficient and

CD in-line compensation results in lower nonlinearity tolerance. Therefore it can be more

interesting to compensate the CD entirely in the electrical domain [25]. The difficulty of

doing this, comes from the large number of taps required to compensate the dispersion

accumulated during a long-haul transmission[26]. Another solution is to realize this equal-

ization in the frequency domain where only 1-tap FIR filters are needed. In that case the

complexity comes from the FFT/iFFT operations that convert the signal from the time

domain to the frequency domain.

1.4.2.2 Polarization de-multiplexing

In the case of polarization multiplexed transmissions, the transmitted signals are randomly

mixed on the two polarizations because of fiber birefringence and delayed by PMD which

creates inter-symbol interferences. The equalizer has the butterfly FIR structure depicted

in Fig. 1.10 and the output can be expressed by:

yj(k) =

2∑

i=1

L∑

l=1

hij(l)xi(k − l + 1) (1.33)

where the FIR filter between the ith input and the jth output is noted hi,j = [hij(1) . . . hij(L)].

Unlike CD, PMD and the birefringence are random effects depending on the polarization

states of the signal and so, vary in time. Hence, the coefficients of the filters are not constant

and have to be estimated and updated periodically. In PDM-QPSK transmission, the most

popular equalizer is the constant modulus algorithm (CMA).

CMA is a blind adaptive equalizer based on the least-mean square (LMS) algorithm. As

QPSK constellation has a constant modulus, CMA intends to find the optimum equalizer

coefficients in order to minimize the distance between its output absolute values and a

given radius rCMA. This corresponds to minimizing the error functions ǫj (j=1, 2):

ǫj = r2CMA − |yj|2 (1.34)
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The optimum coefficients are searched following the stochastic gradient descent. This

method is adaptive so the coefficients are updated at each new input symbol.

hi,j(k) = hi,j(k − 1)− µ ǫi yjx
H
i (1.35)

where yj = [yj(k) . . . yj(k−L+1)] and xi = [xi(k) . . . xi(k−L+1)] and hi,j(k) is the FIR

filter coefficients at the instant kTs/rov .

1.4.2.3 Frequency offset compensation

Due to the frequency offset between the signal carrier and the local oscillator, the received

signal is affected by a phase shift φf :

arg (xi(k)) = φs(k) + φ0 + kφf (1.36)

where φs is the modulation phase and φ0 a phase offset. To estimate the phase shift, these

two phase shifts have first to be eliminated by computing
(
xi(k) xi(k−1)H

)4
[27]. Then

the phase shift is averaged on a bloc of n symbols.

φ̂f (k) =
1

4
arg




n/2∑

m=−n/2+1

(
xi(k+m) xHi (k+i−1)

)4

 (1.37)

1.4.2.4 Carrier phase estimation

Once the frequency offset has been removed, the carrier phase can be estimated and a

common way to do it is by the Viterbi-Viterbi algorithm [28]. To estimate the phase, the

contribution of the modulation has to be removed by taking the fourth power of the signal

and then averaging:

φ̂0(k) =
1

4
arg




n/2∑

m=−n/2+1

xi(k +m)4


 (1.38)

Note that removing the contribution of the modulation by taking the fourth power of the

symbols leads to a phase ambiguity of k′ π2 . However, as this phase ambiguity concern

all the symbols, the phase difference between two successive symbols remains. Therefore

the encoding has to be realized on the phase shift between the symbols. This is called

differential encoding.

1.4.2.5 Demodulation

We have plotted in Fig. 1.11, the QPSK constellation received, de-multiplexed and equal-

ized. After the carrier phase recovery, the symbols are only impaired by ASE and are

located in one of the four quadrants. The demodulation is realized by associating to the

symbols, the bits corresponding their quadrant. This is called hard decision because a

threshold decision is realized. For instance, if the equalized QPSK symbol has both posi-

tive real and imaginary values (first quadrant), it will be associated to the bits [0 0].
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Figure 1.11: Equalization of a polarization multiplexed QPSK signal with OSNR=17.6dB:

(a) Received signal (b) Demultiplexed signal (after CMA) (c) Equalized signal (after phase

recovery)

On the other hand, the symbols can be directly transmitted to the FEC without taking

any decisions. Hence, the FEC inputs are not bits but soft-values quantified over many

levels. The soft-decision values are usually converted into log likelihood ratio (LLR) that

expresses the probability of a bit to be 0 or 1 depending on the received symbols.

1.5 Forward error correction

The quality requirement of optical long-haul transmission systems is very high as an output

BER of only 10−12−10−15 is expected. Achieving such a BER would require a very high

SNR, so a large number of optical amplifiers and a perfect compensation of transmission

impairments. In such conditions transmissions over long distance are quite difficult.

Forward error correction (FEC) has been adopted very early in optical transmission systems

in order to correct digitally the transmission errors and reduce the output BER. It relaxes

the quality requirement and enable transmissions over larger distances, at higher bit-rates

and with fewer optical amplifiers. For a given BER, we quantify the gain obtained by the

FEC as the difference of SNR between the coded (with FEC) and uncoded (without FEC)

cases. This gain is called "coding gain" and is expressed in dB.

An FEC introduces some redundancy to the data in order to protect the information.

At the reception, the FEC decoding is able to correct a certain number of transmissions

errors. The rate r of an FEC is the ratio between the number of information bits (the

data) and the number of bits actually transmitted. Equivalently, the FEC overhead (or

redundancy) corresponds to the percentage of redundancy bits introduced. Because of the

redundancy, one modulated symbol corresponds to less information bits thus, Eq. 1.20

should be modified into:

Eb =
Es

kcr
(1.39)
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Summary

In this chapter , we have presented an overview of an optical fiber transmission scheme.

An optical fiber transmission system is composed by a transmitter, a fiber link and a re-

ceiver. The key element of the transmitter is the electro-optical modulator that modulates

the optical carrier phase and/or amplitude in function of a driving tension. We have pre-

sented the structure of the optical transmitter for OOK, BPSK and PDM-QPSK which are

the common modulation formats in practical systems respectively at 10, 40 and 100Gb/s.

During the propagating in the fiber, the signal is impaired by linear dispersion causing

inter symbol interference and nonlinear effects occurring at high power and causing signal

distortion. Moreover, the optical amplifiers introduced to compensate the fiber loss add

some noise which degrade the performance.

The optical signal can be received by direct detection or coherent detection. Direct detec-

tion is preferred for its implementation simplicity in the case of OOK and BPSK. However

coherent detection becomes more advantageous for high spectral efficiency formats and

allows polarization multiplexing and efficient digital signal processing. Finally we have

described the different steps of the DSP that are implemented in actual 100Gb/s coherent

polarization multiplexed systems.

PDM-coherent transmissions and the DSP described in this chapter correspond to the state

of the art of deployed optical transmission systems.
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Chapter 2

Forward error correction in optical

transmission systems

Introduction

Forward error correction (FEC) has been employed in optical transmission systems for

more than 20 years. In the same way as optical amplifier, it has been a major contributor

to the increase of transmission distances and bit-rates. There are been two generations of

FEC implemented in practical systems, the linear block codes and the concatenated FEC.

Today lot of investigation is done to implement a third generation, the soft decoding FEC.

Figure 2.1: System model

In this chapter, we give an overview of the FEC in optical transmission systems. It will

be separated in two parts. The first part is dedicated to the state of the art of FEC.

In Sec. 2.1, we remind the FEC principles and present the different families of FEC that

have been implemented optics. In Sec. 2.2, a brief review of the history of FEC in optical

transmission systems is proposed.

The second part focuses on the soft-decoding FEC implementation in high bit-rate optical

systems. In Sec. 2.3, a comparative study between LDPC and Product codes is realized in

order to evaluate the most appropriate code. Finally Sec. 2.4 focuses on the construction of

LDPC codes. In this last section an original construction is presented, performing better

than most LDPC codes proposed in the literature and being very suitable for optical

transmissions.
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Part I : State of the art of FEC in optical transmission systems

2.1 Forward error correction

The principle of forward error correction is to introduce redundancy to the transmitted

information (encoding) following a coding rule known at the transmitter and at the receiver.

The redundancy bits protect the information and let the receiver correct some of the

transmission errors. Linear block codes are a family of FEC where the information bits

are encoded by blocks. It associates to k information bits, n coded bits. Hence the rate of

the code is:

r =
k

n
(2.1)

The code C(n, k) is said systematic if the coded sequence is composed of k information bits

and n−k redundancy bits as depicted in Fig. 2.1.

Figure 2.2: FEC encoding

The information bits can been seen as a vector of the finite field GF (2)k and the encoding

operation corresponds to a linear matrix multiplication:

c = mG

where c ∈ GF (2)n is the coded bit sequence called codeword, m ∈ GF (2)k is the informa-

tion bits vector and G is the FEC generator matrix. The set of codewords forms a vector

subspace of GF (2)n and the lines of the matrix G represent a basis of this subspace. Let

H denote the basis of the dual subspace, it satisfies:

cHt = 0 (2.2)

H is called the parity-check matrix of the code.

Let us assume that a codeword c ∈ C is transmitted and the vector r is received. Some

errors may have occurred during the transmission so r = c+ e where e is the error vector

having a 1 at the positions of each error. The syndrome is defined as:

synd = rHt (2.3)

synd = cHt + eHt

synd = eHt
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If the syndrome is null, the received vector is a codeword. Therefore the syndrome com-

putation tells us if the received message is a valid codeword.

The minimal distance dmin of a code is defined as the minimal number of different bits

between two codewords. A linear block code is usually noted C(n, k, dmin). The mini-

mal distance is related to the code performance. When FEC are employed, we have two

strategies:

− Error detection: we can detect errors only if the received vector is not a codeword

(Eq. 2.2 is not satisfied). This is always possible when the number of error t is less than

dmin.

− Error correction: in order to correct the errors, one has to find the most likelihood

codeword. If the number of error is superior to dmin/2, the most likelihood codeword

is not the emitted codeword. Hence the maximum number of errors tmax that a code

C(n, k, dmin) is able to correct is:

tmax =

⌊
dmin − 1

2

⌋
(2.4)

2.1.1 Hamming code

Hamming code is a family of linear block codes defined by C(2m−1, 2m−m−1, 3) with

m>2. It can detect up to 2 errors or correct 1 error. The parity-check matrix corresponds

to the bit representation of the integers between 1 and 2m−1. In general, Hamming codes

are decoded by syndrome decoding.

Syndrome decoding

Syndrome decoding is a decoding algorithm adapted for FEC with a low correction capa-

bility, typically tmax = {1, 2}.
The syndrome eHt is equal to the sum of the columns of H corresponding to the error

positions. Hence, it gives an indication on the location of the errors. It can be shown

that if t≤tmax the syndrome is unique and thus, determines precisely the error positions.

Therefore a look-up table including the values of all the syndromes and the corresponding

error configurations can be created.

When a vector is received, its syndrome is computed and we search in the table which is

the corresponding error configuration.

In the case of the Hamming code, if an unique error occurred, the syndrome is equal to

one of the column and gives directly the error position. If there are more than one error,

the syndrome is the sum of many columns which is always equal to another column of H.

So the decoding fails and creates a new error.
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2.1.2 Bose-Chaudhuri-Hocquenghem codes

BCH codes have been discovered by Bose, Chaudhuri and Hocquenghem in 1959 [29][30].

They are a sub-family of linear block codes constructed using algebraic tools on finite fields

in order to correct up to tmax errors.

BCH codes are usually described by using a polynomial representation of the bit vectors.

To b=[b1 b2 . . . bq], we associate the polynomial:

b(x) =

q∑

i=1

bix
i−1 (2.5)

Let c(x) and m(x) be respectively the polynomial representation of a codeword and an

information vector. The encoding is performed by:

c(x) = m(x)g(x) (2.6)

where g(x) is called the generator polynomial and is defined in GF (2)[X]. c(x) and m(x)

have respectively a degree n=2m−1 (c has a length n) and k=n−deg(g(x)).

The generator polynomial g(x) ∈ GF (2)[X] is chosen in order to correct tmax errors. Let

α be the primitive element of GF (2m) so α,α2, α3 . . . αn−1 are the roots of Xn−1, where

n=2m−1. g(x) is constructed in order to have αk, αk+1 . . . αk+2tmax−1, with 1≤k ≤n−1
being its roots. If we note fαk(x)∈GF (2)[X] is the minimal polynomial of αk, the generator

polynomial of a BCH code is defined as:

g(x) = lcm [fαk(x), fαk+1(x) . . . fαk+2tmax−1(x)] (2.7)

The decoding of BCH codes is realized in three steps:

1. Syndrome calculation

2. Computation of the error locator polynomial using Peterson-Gorenstein-Zierler algo-

rithm [31] or Berlekamp-Massey algorithm [32].

3. Factorization of the error locator polynomial by Chien search [33] in order to deter-

mine the errors positions

This decoding will be referred in Chapter 3 as the "algebraic" decoding of BCH codes.

2.1.3 Reed-Solomon codes

Reed-Solomon (RS) codes are a sub-family of BCH codes but have the particularity of

coding blocks of bytes instead of blocks of bits. We call byte a group of bits.

The generator polynomial g(x) belongs to GF (2m)[X] and is defined as:

g(x) = (x− α)(x− α2) . . . (x− α2tmax)
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where α is the primitive element of GF (2m). Note that as g(x) ∈ GF (2m)[X], c(x) and

m(x) are also in GF (2m)[X]. It means that the entries are no more binary input {0, 1}
but belong to a larger alphabet {α1 . . . α2m−1} where each αi represents a byte.

A RS code can correct tmax erroneous bytes. Therefore they are particularly well adapted

to correct burst of errors. For instance RS(255, 239) is constructed over GF (28) and is able

to correct 8 bytes of 8 bits each. Note that RS codes are optimal in the sense that they

have the largest possible dmin and thus introduce the fewest redundancy n−k=2tmax

The decoding of RS codes follows the same steps as the BCH decoding. However, as errors

occur on bytes, a final step is necessary to find the values of the errors. We add for that a

fourth step to the algebraic decoding:

4. Computation of the error values using Forney algorithm [34].

2.1.4 Low-Density Parity-Check codes

Low-density parity-check codes (LPDC) have been invented in 1962 by Gallager [35]. For

long time forgotten, they have been re-discovered by Mackay and Neal in 1996 [36].

LDPC are linear block codes characterized by a sparse parity-check matrix. It means that

there are very few entries at 1 in the parity-check matrix. A regular LDPC C(n, l, c) has l

one on each line of H and c one on each column. The codeword size is n and the rate of

the code is:

r =
n− rank(H)

n
(2.8)

The parity-check matrix can be represented by a bipartite graph called Tanner graph having

two kind of nodes: the check nodes corresponding to the parity-check equations and the

variable nodes corresponding to the bits. There is an edge Ecm,vk between the check node

cm and variable node vk if the kth bit is involved in the mth parity-check equation.

Ecm,vk ←→ H(m,k) = 1 (2.9)

Each node is connected to a set of neighbor nodes noted Sc if it is a check node and Sv if

it is a variable node. The size of this set is called the node degree.

Fig. 2.3 represents the parity-check matrix of the Hamming code C(7, 4) and the corre-

sponding Tanner graph representation. The neighbor set of c1 are the variable nodes

Sc1 = {v1, v2, v3, v5}.

In the Tanner graph we define a cycle as a path starting and ending at the same node

and passing by each edge only once. The length of the cycle is the number of edges in the

path. As a Tanner graph is a bipartite graph, the cycle size are even and superior or equal

to 4. The size of the shortest cycle is called the girth. For instance, the colored edges

[Ec1,v1 Ev1,c3 Ec2,v3 Ev3,c1 ] form as cycle of length 4.
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Figure 2.3: Tanner graph representation of the Hamming code C(7, 4)

Short cycles degrades the performance of the FEC. Hence LDPC are constructed in order

to have large girths. In Sec. 2.4, some constructions proposed in the literature will be

presented. Now let us present the classical decoding algorithms of LDPC codes.

2.1.4.1 Belief Propagation Algorithm

The belief propagation algorithm is an iterative soft-input decoding which corresponds to

the maximum a posteriori decoding if Tanner graph is cycle-free. When cycles are present,

especially short ones, the performance is degraded and it results to an error floor. The

error floor level depends on the girth and on the number of short cycles.

The algorithm consists on a two-step exchange of information between the two sides of the

graph and the exchanged messages are usually log-likelihood ratio (LLR).

Let us consider that a codeword X = [x1, x2 . . . xn] has been transmitted over a memoryless

channel and that Y = [y1, y2 . . . yn] is the received vector. We associate to each received

symbol yi, a soft-input value called log-likelihood ratio and defined as:

Lch(yi) = log
Pr{xi = 0|yi}
Pr{xi = 1|yi}

(2.10)

The LLR expressed the reliability of the received bits to be 1 or 0. The larger the LLR is,

the more reliable the bit is. If the LLR is positive, the probability to be a 0 is larger and

if the LLR is negative the probability to be a 1 is larger.

We note µcm,vk the message passing from the check node cm to the variable node vk and

µvk,cm the other way.

• Initialization: The messages from variable nodes to check nodes are initialized by:

µvk ,cm = Lch(yk) (2.11)

• Check node step: Each check node receives messages from its neighbor variable nodes

and computes the output messages:

µcm,vk = 2 tanh−1


 ∏

i∈Scm\vl

tanh
(µi,cm

2

)

 (2.12)
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• Variable node step: Each variable node receives messages from its neighbor check

nodes and computes the output messages:

µvk ,cm = Lch(yk) +
∑

i∈Svk
\cm

µi,cm (2.13)

Finally the LLR of the estimated bits are obtained by:

L(x̂k) = Lch(yk) +
∑

i∈Svk

µi,cm (2.14)

If X̂ = [x̂1x̂2 . . . x̂n] is a codeword (the syndrome is null) the procedure stops, else a new

iteration can be performed.

The output LLR are obtained by successive sum and product operations therefore, this

algorithm is usually referred as the Sum-Product Algorithm (SPA).

2.1.4.2 Min-Sum Algorithm (MSA)

In Eq. 2.12, the operations tanh and tanh−1 bring a significant complexity to the SPA

algorithm. Therefore one can simplify the check node step doing [37]:

• Check node step:

µcm,vk =
∏

i∈Scm\vk

sgn(µi,cm)× min
i∈Scm\vk

|µi,cm | (2.15)

This approximation leads to performance degradation compared to the SPA. An offset fac-

tor βoff and/or a scaling factor αsca can be introduced to get closer to the SPA performance

[38]:

µ′
cm,vk

= max (αscaµcm,vk − βoff , 0) (2.16)

Note that αsca and βoff are usually found empirically and may change at each iteration.

Offset-MSA performs close to SPA but has a reduced decoding complexity.

2.1.5 Concatenated codes

Concatenated codes consist of serially concatenating FEC as illustrated in Fig. 2.4. They

have been first proposed by D. Forney in 1966 [39]. Between the two encoders, the bits are

interleaved in order to spread the bursts of errors over many codewords. The first FEC is

called outer code and the second one is called inner code. The idea is to use two FEC with

different properties, for example a BCH for the inner code and a RS code for the outer

code.

Let us consider the concatenation of C1(n1, k1) and C2(n2, k2), the concatenated code ob-

tained is C(n1+n2−k2, k1). For cxample, the code BCH(239, 233) + BCH(255, 239) has a

rate 223/255 and a codeword length of 225 bits.

The decoder is a mirror scheme of the encoder. The inner FEC decodes first, then the bits

are de-interleaved and finally the outer FEC finishes the decoding.
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Figure 2.4: Concatenated codes

2.1.6 Product codes

Product codes are a particular case of concatenated codes where the interleaving is per-

formed over k2 codewords of C1 in a way that the ith input vector of the second encoder

is formed by the ith bits of each codewords from C1. Fig. 2.5 shows that information bits

can be seen k1×k2 matrix being a vertical concatenation of information vectors. The lines

are first encoded by FEC 1 and then the columns are encoded by FEC 2. The product of

C1(n1, k1) and C2(n2, k2) results in the code C(n2 × n1, k2 × k1).

Figure 2.5: Product codes

The decoding of Product codes is realized iteratively. At each iteration, FEC 1 decoding

is realized (horizontal decoding) and then FEC 2 decoding is realized (vertical decoding).

This can be performed many times. The decoding of the codewords can be done in a soft

or a hard way. The soft decoding is usually performed by the ChaseII algorithm [40].

2.1.6.1 ChaseII algorithm

Let Y = [y1, y2 . . .] denote the received symbols. We first compute the LLR Lch(yi) as in

Eq. 2.10. The hard decision vector is noted Ȳ = [ȳ1, ȳ2 . . . ȳn] and obtained from the the

LLR signs. ChaseII algorithm follows:

1. Find the positions of the p least reliable bits.

We note i1 . . . ip the positions of the p smallest LLR values in Lch(Y )

2. Create a pattern of 2p possible vectors Ȳ (j) = [ȳ
(j)
1 , ȳ

(j)
2 . . . ȳ

(j)
n ] with j ∈ [0 . . . 2p−1].

A pattern of binary vectors is created by flipping the bits of Ȳ at the least reliable

positions in all possible ways. Let us call binp(j) the binary representation on p bits

of the integer j ∈ [0 . . . 2p−1]. For instance: bin4(3)=[0 0 1 1]. Then Ȳ (j) are created
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such as:

Ȳ
(j)
i =





[ȳ
(j)
i1

. . . ȳ
(j)
ip

] = [yi1 . . . yip] + binp(j)

y
(j)
i = yi For i /∈ [i1 . . . ip]

(2.17)

3. Decode each vector of the pattern.

The decoding is usually performed by a syndrome decoding and the decoded pattern

C(j) is obtained

4. Compute the reliability of each valid codeword.

Pr{C(j)|Y } =
n∏

i=1

Pr{xi = c
(j)
i |yi} (2.18)

Note that:

Pr{xi = 0|yi} =
exp(Lch(yi))

1− exp(Lch(yi))

Pr{xi = 1|yi} =
1

1− exp(Lch(yi))

5. Compute the reliability of each bit.

We call S1i the set of codewords in the pattern having the bit c
(j)
i = 1 and S0i the

set of codewords having the bit c
(j)
i = 0. Finally the LLR of the estimated bits are

obtained by:

L(x̂i) = log

∑

C(j)∈S0i

Pr{C(j)|Y }

∑

C(j)∈S1i

Pr{C(j)|Y }
(2.19)

2.1.6.2 Min-ChaseII algorithm

At high SNR, Eq. 2.19 can be simplified into [41]:

Li ≈ max
C(j)∈S0i

(logPr{C(j)|Y })− max
C(j)∈S1i

(logPr{C(j)|Y }) (2.20)

On the AWGN channel logPr{C(j)|Y }) depends on the Hamming distance between the

received codeword Ȳ and C(j). So the last two steps of ChaseII algorithm can be modified

into:
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4. Compute the weight of each valid codeword.

m(j) = −
n∑

k=1

ȳk ⊕ c
(j)
k |yk| (2.21)

5. Compute the reliability of each bit.

Li ≈ max
C(j)∈S0i

(m(j))− max
C(j)∈S1i

(m(j)) (2.22)

In the case of product code decoding, a scaling factor αsca can be applied between each

horizontal/vertical decoding to compensate the approximation made in Eq. 2.20.

2.2 FEC in optical fiber transmission systems

In Fig. 2.6, we summarize the implementation of the different FEC generations in optical

transmission system.

2.2.1 1st generation: Hamming, BCH and Reed-Solomon

One of the first implementation of a FEC in an optical fiber transmission system was real-

ized by Grover in 1988 [42]. Hamming code C(224, 216) has been employed in a 565 Mb/s

transmission system providing a 2.5 dB coding gain at BER= 10−13. With the improve-

ment of electronic equipments, more powerful codes such as BCH and Reed-Solomon codes

started to be considered. In 1991, the BCH(167, 151) was used in the Italian submarine

system FESTONI offering a 2.5 dB gain at 10−10 [43]. The following year, Gabla realized

a 622 Mb/s transmission over 401 km using the RS(142, 126) and a 5 dB coding gain was

obtained [44]. The same code is used by Pamart for a 5 Gb/s (7× 622 Mb/s) transoceanic

transmission over 6400km [45]. In the following years, Reed-Solomon codes become com-

monly used in optical transmissions and the RS(255, 239) is specified in the norm ITU-T

G975 [46].

2.2.2 2nd generation: concatenated codes

With the development of 10 Gb/s WDM systems, RS codes are still used [47] but more

efficient codes are needed to face the new types of fiber impairments such as XPM and

PMD which decrease the performance and reduce the achievable transmission distances.

To outperform the RS(255, 239), concatenated schemes were investigated. These new codes

could be easily implemented as they are based on the same linear block codes used in the

first generation of FEC.

In 1999, O. Ait Sab proposed for the first time a concatenated code with 22% overhead

performing 1.9 dB better than RS(255, 239) [48]. Concatenated codes are then imple-

mented in real WDM systems and experimental demonstration are made at 2.5 Gb/s [49],
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10 Gb/s [50], 25 Gb/s [51] and 40 Gb/s [52]. Many combination of RS codes have been

proposed with performance approximatively 2 dB better than that of RS(255, 239). In

general overheads were chosen between 7% [50][52] and 23%[51][53].
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Figure 2.6: FEC implementations in optical fiber transmission systems

2.2.3 Modern coding

Since 2004, first 40 Gb/s systems are investigated and face severe impairments due to

PMD. More powerful FECs were soon required and research focused on FECs with soft-

input decoding algorithm. Two families of FEC are investigated: the Product codes an

the LDPC codes.

In 2006, K. Ouchi et. al present the first demonstration of a Product code [54]. BCH(144, 128)×
BCH(256, 239) has been implemented in a 10 Gb/s system bringing a 10.1 dB coding gain.

This is 2 dB better than concatenated schemes. However this code as most of product

codes, suffers from large overhead (23%) and large codeword length (37376 bits) which are

not compatible with high bit-rate optical transmissions.

Djordjevic et.al have done a significant work on LDPC codes for optical transmissions.

They have proposed many combinatorial constructions of LDPC codes [55][56][57] and

validate them by simulation in various kind of optical systems. For instance, LDPC have

shown their efficiency on a 40 Gb/s OOK transmission [58], a 100 Gb/s coherent trans-

mission [59] and a 100 Gb/s OFDM transmission [60]. The proposed LDPC codes have a

reduced overhead (< 20%) and small codeword length (< 10000) and outperforms Product

codes.
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One of the major problem of LDPC code is their error floors. Indeed they appear around

BER= 10−10 for LDPC code having a girth 8 [61] whereas target BER are below 10−12.

To increase the girth and thus, reduce the error floor level, long codeword length and

large overhead have to be considered. However this is not acceptable in high bit-rate

transmissions. The proposed solution for practical implementation is to concatenate the

LDPC code with a linear block code in order to remove the error floor. Mizuochi et.al

have experimentally demonstrated for the first time a concatenation LDPC(9216, 7936) +

RS(992, 956) at 31.3 Gb/s [62]. The observed coding gain is 9dB with 4 decoding iterations.

This is 3.2dB better than RS(255, 239).

Part II : Soft decoding FEC in optical transmission systems

Recently major efforts have been made to implement the new generation of FEC in

40G/100G transmission systems. The main difficulty comes from the very high complex-

ity of their soft-input decoding. These FEC have been developed for wireless or wireline

transmissions where bit-rates are lower and the transmission quality requirement is very dif-

ferent. For example, overhead of 50% can be considered in wireless transmissions whereas

in optical systems, 7% has been for a long time the maximum admitted value. Moreover,

target BER in optics are far smaller (i.e BER=10−12) and at such low values, soft decoding

FEC may present some error floors.

The goal of this part is to propose a soft decoding FEC for optical transmissions systems.

Product codes and LDPC codes are the two candidates for the future generation of FEC.

Practical realizations have demonstrated a coding of about 2dB compared to concatenated

schemes. However performance is not the unique criterion to base a choice between these

two families. Indeed as high bit-rates optical transmission have limited resources, complex-

ity is a main issue. Therefore we will first compare the decoding complexity of Product

codes and LDPC codes.

In the following of this chapter, the simulations are realized considering a coherent polar-

ization multiplexed transmission. We neglect the transmission nonlinearities and assume

that digital signal processing perfectly compensate the signal distortion. Hence, the dom-

inant source of noise at the FEC input is the ASE which can be modeled as an additive



2.3. LDPC Vs Product code 45

gaussian noise. The noise is actually colored by bandpass filtering in our simulations, but

in a matter of simplicity, the channel is modeled as an AWGN channel. This assumption is

often realized in the literature [63] [64]. Indeed, with coherent detection, the optical noise

is clearly transposed in the electrical domain and with direct detection, ASE noise results

in a χ2 distribution but can be approximated by a Gaussian distribution for typical FEC

input BER (10−1-10−3).

2.3 LDPC Vs Product code

In this section, we evaluate the complexity of the soft input decoding algorithms of LDPC

and Product codes presented in Sec. 2.1.4.2 and 2.1.6.2. The complexity will be evaluated

by the number of logical operation required to decode a codeword. We note ⊕ and ⊗
respectively the binary addition and multiplication. In Tab. 2.1 and Tab. 2.2, we have

summarized the XOR and AND logical operations. When soft inputs are considered, the

received symbol is quantified on q bits . We note < the comparison operation and + the

additive operation between quantified values.

Table 2.1: XOR
0 0 0

1 0 1

0 1 1

1 1 0

Table 2.2: AND
0 0 0

1 0 0

0 1 0

1 1 1

2.3.1 LDPC decoding complexity

Let us consider a regular LDPC code C(n, l, c). We note nv the number of columns (the

number of variable nodes) and nc the number of lines (the number of check nodes) of the

parity-check matrix.

The MSA is a soft input iterative decoding and each iteration occurs in two steps. The

check node step is given by equation Eq. 2.15. The output messages µcm,vk are function

of the sign product
∏

i∈Scm\vk sgn(µi,cm) and function of the minimum LLR. Instead of

looking for the minimum input LLR at each time an output is computed (this would mean

searching l times the minimum), one would rather compute only once the two minimal

inputs |µmin1| and |µmin2| (with |µmin1|≤ |µmin2|). This requires 2l − 3 comparisons. We

note vmin the variable node corresponding to the minimum input LLR. On the other hand,

the sign products can be easily obtained from πvk the product of all input signs. Indeed

∏

i∈Scm\vk

sgn(µi,cm) =
∏

i∈Scm

sgn(µi,cm)× sgn(µvk ,cm) (2.23)
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Therefore the output message can be efficiently evaluated by:

πvk =
∏

i∈Scm

sgn(µi,cm) (2.24)

µcm,vk =





πvk × sgn(µvk ,cm)× µmin1 If vk 6= vmin

πvk × sgn(µvk ,cm)× µmin2 If vk = vmin

(2.25)

Sign products are done by ⊕ operations on the sign bits. Therefore we need l − 1 ⊕ to

have πvl and l ⊕ to obtain every outputs.

The variable node step is expressed in Eq. 2.13 and Eq. 2.14. The LLR of the estimated bits

L(x̂i) are obtained by the addition of the c input messages and the channel LLR Lch(x̂i).

To compute the output messages we can just subtract from L(x̂i) the corresponding input

message:

µvl,ck = L(x̂l)− µck,vl (2.26)

We need c−1 + operations to get L(x̂l) and then c + operations to obtain the output.

We have evaluated the number of operations at each check and variable node thus in

order to obtain the total complexity of an iteration, we have to multiply it by the number

check and variable nodes. The total number of operations required for one iteration of the

Min-Sum algorithm is summarized on Tab. 2.3.

Table 2.3: Decoding complexity of one iteration of the MSA
operators MSA

< nc.(2l − 3)

⊕ nc.(2l − 1)

+ nv.(2c − 1)

2.3.2 Product code decoding complexity

Let us evaluate the decoding complexity of the min-ChaseII algorithm for a single codeword

decoding. We consider a block linear code C(n, k) which is able to correct tmax errors on

a codeword. The inputs of the decoder are LLR derived from the received vector Y .

First we obtain the hard decision vector Ȳ by checking the sign of Lch(yi). It requires

n comparisons. Then the p least reliable bits are chosen with p.n comparisons and the

pattern of 2p vector is created with 2p.p2 ⊕ operations. We consider a decoding of the

pattern by syndrome decoding (see Section. 2.1.1). This is possible for small values of tmax,

typically tmax≤ 2. 2p.n.(n − k) ⊗ operations and 2p.tmax ⊕ are necessary to compute

the syndromes and correct the pattern vectors. Then the weights of the valid codewords

are computed following Eq. 2.21 which requires 2p.n + operations. Finally the reliabilities

are obtained by Eq. 2.22. We need 2p.n comparisons for the two max functions and n +
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operations for the subtractions. Note that in the normalized version of the algorithm,

a scaling factor is applied on the extrinsic information thus n × operations and n +

operations have to be added. The total number of operations in a ChaseII algorithm is

presented on Tab. 2.4.

Table 2.4: Decoding complexity of min-ChaseII algorithm
operators min-ChaseII

< n.(2p + p+ 1)

⊕ 2p.(p2 + tmax)

⊗ n.(n− k).2p

+ n.(2p + 1)

The number of operations required for the soft decoding of a BCH(255, 239) is presented

on Tab. 2.5 for two values of p (2 different pattern sizes).

Table 2.5: min-ChaseII on BCH(255, 239)

operators p = 3 p = 5

< 3 060 9 690

⊕ 28 144

⊗ 32 640 130 560

+ 2 295 8 415

It has been seen in Sec. 2.1.6, that one iteration of the decoding of Product codes occurs

in two steps. First the decoding of n2 codewords by the inner FEC and then the decoding

of n1 codewords by the outer FEC. For a soft version of the decoding, each codeword is

decoded using the min-ChaseII algorithm. The operations involved for one iteration of

the soft decoding of Product codes C1(n1, k1, tmax,1)×C2(n2, k2, tmax,2) are summarized on

Tab. 2.6.

Table 2.6: Decoding complexity of one iteration of C ∈ C1(n1, k1, tmax,1)×C2(n2, k2, tmax,2)

with min-ChaseII algorithm
operators Product code soft decoding

< n2.(n1.(2
p + p+ 1)) + n1.(n2.(2

p + p+ 1))

⊕ n2.(2
p.(p2 + tmax,1)) + n1.(2

p.(p2 + tmax,2))

⊗ n2.(n1.(n1 − k1).2
p) + n1.(n2.(n2 − k2).2

p)

+ n2.(n1.(2
p + 1)) + n1.(n2.(2

p + 1))

2.3.3 LDPC and Product codes decoding complexity comparison

In order to compare Product and LDPC codes decoding complexity, we chose codes with

equivalent codeword length n and rate r. The complexity is evaluated for different values
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of p in the case of Product codes and for different couples (l, c) in the case of LDPC. We

denote by C1(n1, k1, tmax,1)×C2(n2, k2, tmax,2) the product codes and by (nv, nc, l, c), the

LDPC codes.

Table 2.7: n = 36720, r = 0.83

BCH(255, 239) × BCH(144, 128) LDPC (36720, 6120, l, c)

p = 3 p = 5 l=18, c=3 l=60, c=10

< 881 280 2 790 720 201 960 716 040

⊕ 11 172 57 456 214 200 728 280

⊗ 9 400 320 37 601 280 0 0

+ 660 960 2 423 520 183 600 697 680

Table 2.8: n ≈ 11400, r = 0.87

BCH(107, 100)2 LDPC (11472, 1434, l, c)

p = 3 p = 5 l=24, c=3 l=48, c=6

< 274 776 870 124 64 530 133 362

⊕ 4 280 23 968 67 398 136 230

⊗ 1 282 288 5 129 152 0 0

+ 206 082 755 634 57 360 126 192

Table 2.9: n ≈ 4800, r = 0.79

BCH(64, 57)2 LDPC (4788, 1024, l, c)

p = 3 p = 5 l=14, c=3 l=82, c=18

< 98 304 331 296 25 650 165 186

⊕ 2 560 14 336 27 702 167 238

⊗ 458 752 1 835 008 0 0

+ 73 728 270 336 23 940 167 580

We present in Tab. 2.7, Tab. 2.8 and Tab. 2.9, the number of operation ⊕, ⊗, +, < for the

decoding of one iteration of both kind of codes. In Tab. 2.7, we consider codes with size

n=36720 and rate 0.83. In Tab. 2.8, we consider codes with size n=11400 and rate 0.87.

In Tab. 2.7, we consider codes with size n=4800 and rate 0.79.

We can see that for Product code the choice of the parameter p has a strong influence on

the complexity. For instance, there is about four times more + operations with p=5 than

with p = 3. Indeed the size of the pattern increases exponentially with p and syndrome

computation and reliabilities have to be computed for each valid codeword of the pattern.

Therefore there is a tradeoff to make between performance and complexity.
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For LDPC, we have compared two codes having the same size and the same rate but with

different sparseness. The sparseness is defined as the number of one in the parity-check

matrix:

spar =
lc

ncnv
(2.27)

From Tab. 2.3 we know that the number of operation increases linearly with c and l. For

example, in Tab. 2.8, we have compared two LDPC codes with c = 3 and c = 6 and there

is a ratio of 2 between the number of operations + of each code. Note that sparseness is

related to code performance as it can result to less cycles in the Tanner graph. So choosing

sparse code can improve the performance and reduce the decoding complexity at the same

time.

We can see through this comparison that MSA has a lower complexity than min-ChaseII

algorithm. We notice that min-ChaseII requires a large number of ⊗ operations for the

syndrome decoding of the pattern whereas MSA does not require any. Tab. 2.8 shows that

even with a LDPC with low sparseness, the number of operations ⊗, ⊕ and + required for

the MSA remains smaller than that of the min-Chase with p = 3.
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Figure 2.7: Performance comparison between LDPC and Product codes
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To complete the comparison, we present in Fig. 2.7, the performance between LDPC codes

and Product codes having the same rate and codeword length. The up triangle markers

represent codes with n≈4800 and rate 0.79 whereas the down triangle markers represent

codes with n≈11400 and rate 0.87.

We observe that LDPC codes with the MSA decoding perform better than the Product

codes with min-ChaseII algorithm. LDPC (4788, 1024, 14, 3) outperforms BCH(64, 57)2 by

1dB and LDPC (11472, 1434, 24, 3) outperforms BCH(107, 100)2 by 1.5dB at a BER≈10−5.

2.4 LDPC constructions

From the study made in the previous section, it seems that LDPC are the most appropriate

candidates for the next FEC generation in optical communications. They perform better

than Product code and their decoding complexity is smaller. In this section we focus on the

construction of LDPC codes adapted for high bit-rate transmissions. Indeed, in order to

make easier the encoding and the decoding, it is important to have structured LDPC. For

example, if the parity-check matrix is quasi-cyclic (QC), the encoding can be implemented

with shift-registers and the decoding with parallel circulant architectures.

We are going to present some LDPC constructions proposed in the literature. All are

based on algebraic constructions and result to structured parity-check matrix. However

their performance is limited due to the construction constraints. We propose at the end of

this section, an original random construction of LDPC having the triple advantages to be

very flexible, to create QC parity-check matrix and to outperform algebraic constructions.

2.4.1 Algebraic constructions

Most of the codes proposed for optical communications systems are structured codes. Their

constructions are based on algebraic objects such as cycle invariant difference set (CIDS),

orthogonal arrays (OA) or balanced incomplete block design (BIBD). Combinatorial con-

structions usually ensure a girth of at least 6. However, these constructions are in general

not very flexible and impose some constraints on the design parameters of the code.

2.4.1.1 OA-LDPC

OA-LDPC have been introduced by Djordjevic et. al [65] and are based on orthogonal

arrays. An orthogonal array of size n, with m constraints, q levels, strength t, and index λ

is denoted λ-OA(n,m, q, t). It is defined as a m× n matrix A with entries from a set of q

elements such that in any t×n sub-matrix of A, every t× 1 column vectors are contained

λ times.

OA-LDPC construction is based on 1-OA(q2, q+1, q, 2) in order to be free of size-4 cycles.

First all the polynomials Pk ∈ GF (q)[X] of degree ≤ 1 are determined. There are q2
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polynomials (1≤k≤q2). Let α be the primitive element of GF (q) hence a1=0, a2=1, a3=

α . . . aq=αq−2 are all the elements of GF (q). The orthogonal array A is constructed such

as A(i, j) = Pj(ai). Finally a last line is added to the matrix in which each entry A(q+1, j)

is equal to the major coefficient of Pj .

Let us call p(1)ak,i
. . . p

(q)
ak ,i

positions of the element ak in the ith line of A. The set Bak ,i is

defined by associating to every positions p
(x)
ak,i

a pair {A(k−1, p(x)ak ,i
),A(k, p

(x)
ak ,i

)}:

Bak ,i =
{(

A(k−1, p(1)ak ,i
),A(k, p

(1)
ak ,i

)
)
. . .
(
A(k−1, p(q)ak ,i

),A(k, p
(q)
ak ,i

)
)}

(2.28)

Each pair can be transformed by a linear operation {au, av} → l = v + (u − 1)q and it

results to the new set B̃ak ,i:

B̃ak,i =
[
l
(1)
ak ,i

, l
(2)
ak ,i

. . . l
(q)
ak ,i

]
(2.29)

With 1≤ l
(x)
ak ,i
≤q2. The set B̃ak ,i is called block and defines the position of the 1 in one line

of the parity-check matrix. As we keep the two last lines of A as index, i can be chosen

from 1 to q−1, moreover there are q elements in GF (q) so q.(k−1) blocks can be created.

Hence, H is at maximum a q.(k − 1)× q2 matrix. An example of OA-LDPC construction

is given in Appendix. A

OA-LDPC have quasi-cyclic parity-check matrix. Moreover, this construction can easily

produce codes with high rates and good performance. To obtain a larger range of design

parameters, Djordjevic proposed in [66] to combine two orthogonal arrays.

2.4.1.2 Array LDPC

In the following we will consider quasi-cyclic parity-check matrix having a block -circulant

structure.

H =




Pi1,1 Pi2,1 . . . Pinbc,1

Pi1,2 Pi2,2
...

...
. . .

...

Pi1,nbl Pi2,nbl . . . Pinbc,nbl




(2.30)

where Pi are p×p circulant permutation matrices. For example P can be the permutation

of the identity matrix.

P =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0




(2.31)

The code is noted (p, nbc, nbl) where nbc, nbl are respectively the number of block-columns

and block-lines. The codeword length is n=p×nbc and the rate is r ≈ 1−nbl/nbc.
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A cycle of size 2g exists in the parity-check matrix if there is a set of index ick,vm ∈ {1 . . . p}
such as [67]:

ic1,v1 + ic2,v2 + . . . + icg ,vg = ic2,v1 + ic3,v2 + . . .+ ic1,vg (2.32)

where ck ∈ {1 . . . nbl} and vm ∈ {1 . . . nbc}.
For instance, a cycle of size 4 exists if there are two pairs of indexes which have the same

difference:

ic1,v1 − ic2,v1 = ic1,v2 − ic2,v2 (2.33)

2.4.1.3 CIDS-LDPC

CIDS-LDPC have been introduced by Milenkovic et. al [57]. The construction is based on

algebraic objects called cycle invariant difference sets (CIDS).

A general difference set S(p, k, λ) over an additive Abelian group P of order p, is a set

S = {s1, s2 . . . sk} of distinct elements from P, such that each nonzero element can be

represented as si1 = si2 − si3 in at most λ ways. If λ=1, each element is represented as

the difference of two other elements in only 1 way and thus according to Eq. 2.33, there

are no cycles of size 4.

Let S be a difference set over ZN , arranged in order. We note Ci the operator that

cyclically shift a sequence of i positions. If Ωi = CiS − S mod N are difference sets for

i ∈ {1 . . . m}, S is a (m+1)-fold cyclic invariant difference set.

Let α be the primitive element of GF (q4) where q is an odd prime. A q-fold CIDS(q2−1, q, 1)
can be constructed as:

S =
{
a | 0 ≤ a ≤ q4 − 1, αa − α ∈ GF (q)

}
(2.34)

However this results to very large number a, even with small value of q. Therefore it has

been proposed to construct the set:

S̃ =
{
a | 0 ≤ a ≤ q2 − 1, αa − α ∈ GF (q)

}
(2.35)

where α is the primitive element of GF (q2). S̃ is not a CIDS but by permuting and erasing

the appropriate elements, a CIDS can be obtained. This later construction results in a

larger set of cardinality than that of Eq. 2.34.

CIDS-LDPC have a (m+1).p × sk.p parity-check matrix defined by:

P =




Pi1 Pi2 . . . . . . Pisk

Pisk Pi1
...

...
. . .

...

Pisk−m+1 . . . . . . . . . Pisk−m




where P is a p× p circulant permutation matrix and the exponent i1, i2 . . . isk belong to a

(m+1)-fold CIDS (p, k, λ).
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Figure 2.8: Rectangle grid Figure 2.9: Block construction

CIDS-LDPC have usually very good performance. Their parity-check matrix is very sparse,

which means that there are few cycles of size 6 compared to the other constructions. The

main drawback of this construction is the very limited choice of q. Indeed it has to be an

odd prime and the size of the sets GF (q2) or GF (q4) grow exponentially. Hence, we can

only construct a limited number of codes and it is not possible to choose freely their design

parameters (codeword length, code rate. . .).

2.4.1.4 Lattice LDPC

Lattice LDPC are constructed from balanced incomplete block design (BIBD) obtained

from a lattice of points [68]. A BIBD is a pair (V,B) where V is a set of elements called

points and B is a collection of subsets of V called blocks. Each block has k points. We

note v the size of the set V . t and λ are defined such that every subsets of t points from

V appear in exactly λ blocks.

A block corresponds to the positions of the 1 in one column of the parity-check matrix

therefore we want t=2 and λ=1 in order to avoid cycles of size 4.

A BIBD is obtained from a rectangle grid of size m × k as in Fig. 2.8. The points of

coordinates (x, y) with 0≤x≤m−1 and 0≤ y≤k−1 are mapped to the element of V by

(x, y) −→ y+1+m.(x−1). We have v=m× k. The blocks of B are obtained considering

the lines of the grid. Every lines are passing through k points and correspond to blocks as

in Fig. 2.9. Lines can have slopes from 0 to m−1 and in total m2 blocks can be created,

each one having k elements of V . Therefore H is a (k.m)×m2 matrix. Moreover if there

is no integer i ≤ k being a factor of m, we have t=2 and λ=1.
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2.4.2 LDPC based on Quasi-cyclic PEG

Combinatorial constructions like the ones presented in the previous sections have been

proposed for optical transmissions because they produce regular structured parity-check

matrix. However their construction criterion does not intend to optimize the performance.

Indeed, performance is closely related to the size and number of short-cycles in the Tanner

graph but these combinatorial constructions only guarantee size-4 cycle free graph.

By relaxing the constraints (structured parity-check matrix, regular code), codes perform-

ing very close to the channel limit have been obtained [69]. They are usually designed

based on random constructions with the aim to avoid short-cycles. Let us now present one

example of such LDPC.

2.4.2.1 Progressive edge growth algorithm

The progressive edge growth algorithm (PEG) [70] is a random construction of parity-check

matrix based on the Tanned graph representation. The idea is to construct the edges (the

1 in the matrix) one by one, in order to avoid short cycles.

We define {v1, v2 . . . vnc} the set of variable nodes, {c1, c2 . . . cnl
} the set of check nodes.

Svk is the set of check nodes connected to the variable node vk and S̄vk the set of check

nodes not connected to vk. We have {v1 . . . vnc} = Svk ∪ S̄vk .

A given variable node is initially connected to none of the check nodes (Svk = ∅). Then dv

edges are created one by one in order to connect vk to some of the check nodes. It means

that these check nodes are added to the set until |Svk | = dv. Introducing a check node cm

in the set corresponds to the creation of an edge Ecm,vk .

Check nodes are chosen in S̄vk . However some of them lead to the creation of cycles.

Therefore, we have to find the ones not creating cycles, or else, the ones introducing the

largest cycles. Note that the first check node introduced in Svk can not create a cycle and

thus, can be chosen randomly in S̄vk .

In order to find the most appropriate check nodes, we expand the tree graph from vk. The

idea is to find which are the check nodes already connected to vk and at which distance

they are. The check nodes directly connected to vk are at a depth 1, then the following

one are at the depth 3 etc. We say that cm is at a depth d if there are d distinct edges

between it and vk. Therefore if an edge Ecm,vk is built, this will create a cycle of size d+1.

In Fig. 2.11, an example of the tree expansion of a node from Fig. 2.10 is given.

Before the tree expansion we initialize a set A(0)
vk = S̄vk corresponding to all the check nodes

candidates. The expansion is performed by steps and at a step l, it goes to a depth 2l− 1.

We denote Dd the set of check nodes at the depth d from vk. The set A(l)
vk = A(l−1)

vk \D2l−1

is created. It means that if a check node from A(l)
vk is chosen, there will be no cycle of size

2l. The tree expansion stops when A(l)
vk = ∅ (there is no check node further than d = 2l+1)
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Figure 2.10: Example of Tanner graph

Figure 2.11: Tree expansion

or A(l)
vk = A(l−1)

vk (all the check nodes connected to vk have been found) and cm is finally

chosen in A(l−1)
vk . In order to have an uniform check node degree distribution, the check

node having the lowest degree is selected.

Note that PEG algorithm do not always ensure a constant check node degree and thus the

parity-check matrix may be irregular. PEG algorithm can be summarized in Algorithm. B.

2.4.2.2 Quasi-cyclic LDPC construction based on PEG algorithm

We propose to modify the PEG algorithm in order to obtain an array LDPC. It means

that the parity-check matrix should have the form of Eq. 2.30. PEG is based on a graph

structure so we need to introduce the notion of labeled Tanner graph of an array code.

We define it as the bipartite graph with nbl block check nodes and nbc block variable

nodes where vk and cm are connected if there is a permutation matrix Pi in the kth block

column and mth block line of the parity-check matrix. Moreover, every edges have a

metric corresponding to the exponent of the associated permutation matrix. An example

of labelled Tanner graph is presented in Fig. 2.12.

If there is no null matrix in the parity-check matrix, every variable nodes are connected to

every check nodes. Hence, there are a lot of cycles in the labeled Tanner graph but they

result in cycles in the regular Tanner graph only if the metrics satisfy Eq. 2.32. Note that

if P are p× p matrices, a cycle in the labelled Tanner graph corresponds to p cycles in the

classic Tanner graph .

PEG algorithm is performed on the labeled graph. For a given variable node vk, an edge
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Figure 2.12: Example of labeled Tanner graph

Figure 2.13: Example of Tanner graph

is created with one of the available check node cm and a metric x is associated. x can be

chosen in [1 . . . p] but some of these values may lead to the creation of short cycles (if there

is a cycle of metrics satisfying Eq. 2.32).

A tree expansion is realized in order to find the metric x leading to the largest cycles. The

principle is depicted in Fig. 2.13 where the tree expansion of v3 is realized in order to find

the metric of the edge Ec2,v3 . In the same way as in the previous section, we define a set

M(l)
vk of the metric which does not create cycles of size 2l. Initially M(0)

vk = [1 . . . p]. At

each new step l of the expansion, the tree is expanded until the depth 2l and the cumulated

metrics are computed for every paths. Unlike the regular PEG, we here expand the tree

until variable nodes. But as the edge Ecm,vk has been already created, several paths may

arrived to vk passing by Ecm,vk . These paths have cumulated metrics depending on x. M(l)
vk
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is obtained by removing fromM(l−1)
vk , the values of x that make the cumulated metric being

equal to zero (that produce cycles of size 2l). The procedure stops if the tree can not be

expanded anymore or if M(l)
vk = ∅ and finally im,k is chosen inM(l−1)

vk .

Quasi-cyclic PEG construction is summarized by Algorithm. B. In Fig. 2.13 the tree-graph

has been expanded until a depth 4 (l = 2). There are size-4 cycles if x= i3,1−i2,1+i2,2 or x=

i3,1−i1,1+i1,2. The current subset is defined asM(2)
v3 =M(1)

v3 \{i3,1−i2,1+i2,2, i3,1−i1,1+i1,2}.

2.4.2.3 QC-PEG LDPC performance

The QC-PEG algorithm is very flexible and we can chose the design parameters of the code

with no constraints but a rate relation. Indeed to have a LDPC code with a codeword

length n and a redundancy r, we are free to choose nbl and p such as: r×n=nbl×p.
In Fig. 2.14, we plot the performance in terms of BER of some LDPC codes proposed

in optical communications (dashed lines) and QC-PEG LDPC codes (solid lines). CIDS-

LDPC and lattice-based LDPC are both array codes therefore the comparison is made using

the same parameters p , nbc and nbl. For OA-LDPC and EG-LDPC [71] the comparison is

made choosing equivalent codeword length and redundancy. For every codes, the decoding

is performed using the Min-Sum algorithm with 15 iterations.

QC-PEG construction perform better or at least as good as all the algebraic constructions.

In our simulations, we observe that a QC-PEG LDPC outperform the CIDS(4608,3477)

by 0.5dB, the lattice(3890,2989) by 0.2dB, the OA(8232,7560) by 1dB, the OA(4096,3510)

by 1.4dB and the EG(2,25) by 1dB at a BER of 10−6.

This is explained by the fact that our codes have either higher girth or smaller number of

short cycles. For instance, our construction achieves a girth-8 when CIDS(4608,3477) and

lattice(3890,2989) only have a girth-6. OA(8232,7560) and QC-PEG(243,34,2) both have

a girth 6 but the OA-LDPC has one thousand time more size-6 cycles than our code and

performs 1 dB worse at 10−6.

The CIDS(4320,3242)* [57] and CIDS(16845,13476)* [72] were obtained from the opti-

mization of CIDS codes. A particular sequence has been extracted from the set of index

obtained by the CIDS construction. The QC-PEG performs the same as these two codes

until 10−6 but it has slightly less short-cycles.

As girth and number of short cycle are the main performance criteria, we represent them in

Fig. 2.15 for several QC-PEG code having different redundancies. We construct QC-PEG

codes with n ≈ 4000 and nbl = 3 for redundancies from 6% to 50% and we have counted the

number of shortest cycles in their Tanner graph. With these parameters, our construction

achieves girth at least 8 for redundancies > 15%. With combinatorial constructions, it is

very difficult to obtain such a small girth with these rates.

In Fig. 2.16 we plot the number of shortest cycle of lattice and CIDS LDPC. Lattice

construction is flexible and codes with various redundancies can be easily created. In the

case of CIDS codes, it is more difficult to construct codes with various redundancies for
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Figure 2.14: Performance comparison between some LDPC codes and the equivalent QC-

PEG codes.

given parameters n and r. Here only 3 codes could be constructed based on the CIDS

(q2−1, q, 1) with q = {17, 19, 23}. From these sets, a first version of CIDS codes have been

obtained using the parity-check matrix shape presented in section. 2.4.1.3.

We observe that indeed, algebraic constructions lead to girths equal to 6 (square markers).

However higher girths are never obtained even for large redundancies. A second version of
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CIDS parity-check matrix has been proposed in [72] having girth equal to 8 (down triangle

marker) with our design parameters. In the figure, the black lines represent the QC-PEG

codes. We observe that the girth of our codes are usually higher than that of algebraic

constructions. Otherwise the number of short cycles is far smaller in QC-PEG LDPC

codes.
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Figure 2.15: Number of cycles of QC-PEG codes for n ≈ 4000 and

nbl = 3.
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Figure 2.16: Number of cycles of Lattice and CIDS LDPC codes for

n ≈ 4000 and nbl = 3.
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Conclusion

Forward error correction is a major component of every optical transmissions. However

the FEC used in practical systems are not the ones having the best performances. In wire-

less transmissions, LDPC and Turbo codes are now commonly used (in UMTS, WiMAX,

LTE) because of their very good performance. However in optical communication their

implementation is a real challenge because of the complexity of their soft-input decoding.

We have shown in this chapter that LDPC codes are the most appropriate codes for high

bit-rate optical transmissions because of their lower decoding complexity and their better

performance compared to Product codes. We have presented some combinatorial construc-

tions of LDPC codes issued from the literature. These codes have structured parity-check

matrices which make the encoding/decoding implementation easier. However their perfor-

mance is not optimal and it is not always possible to choose freely the design parameters

of the codes. Therefore, we have proposed a new construction of LDPC code based on the

PEG algorithm but leading to a quasi-cyclic parity-check matrix and outperforming the

combinatorial constructions.

The implementation of LDPC codes in 100Gb/s systems can highly improve the transmis-

sion quality. The expected coding gain is above 10dB. Moreover, such powerful codes may

become a necessity for the development of 400Gb/s transmissions
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Chapter 3

Structured Symbol Interleaving

Introduction

Phase-shift keying (PSK) is a very efficient modulation format for high bit-rate optical

transmission systems, it improves the OSNR by 3dB and thus dramatically increases the

transmission distances compared to OOK systems [73][74].

PSK format can be employed in coherent and direct detection systems and both case

require a differential encoding of the information. In direct detection systems, due to the

lack of absolute phase reference, the phase of the previous modulated symbol is used as a

relative phase reference (see Sec. 1.3.1). In coherent detection systems, the carrier phase

recovery algorithms such as Viterbi-Viterbi Algorithm [28] introduce a phase ambiguity

and differential encoding is necessary to overcome this problem (see Sec. 1.4.2.4).

The FEC techniques have been initially introduced to increase system margins of optical

transmission, i.e. to combat optical impairments such as ASE and more recently polar-

ization mode dispersion or nonlinear effects [75]. The FEC initially developed for OOK

systems have been directly transposed to phase modulation systems without any adap-

tation to the differential encoding scheme [76]. Note that differential encoding leads to

higher BER [77] which affects the FEC performance.

It is common to use bit interleaving to avoid the burst of errors. However, when differential

encoding is considered, classical bit interleaving may efficiently corrects the penalties but

not in an optimal way.

In this chapter a FEC codeword construction based on a structured symbol interleaving

(SSI) of two or more codewords and the corresponding decoding algorithm is presented .



62 3. Structured Symbol Interleaving

This coding/decoding scheme corrects the penalties introduced by differential encoding. It

also leads to a FEC decoding complexity decrease and a significant redundancy reduction.

We here focus on QPSK format but the proposed schemes can be applied for any mod-

ulation format using differential encoding. All the ideas presented here are available for

direct detection systems and coherent systems.

We first recall in Sec. 3.1 the principles of differential encoding and present an error con-

figurations analysis. We present in Sec. 3.2 the Structured Symbol Interleaving scheme

and its performance is compared with the classical interleavers. In Sec. 3.3 we describe the

corresponding decoding algorithm and analyze its complexity. Finally we shows in Sec. 3.4

that this coding/decoding scheme let us reduce the redundancy of the FEC codewords.

3.1 Differential encoding

With differential encoding, the information is coded on the transition between two modu-

lated symbols of a constellation. For example, with QPSK modulation, instead of encoding

the information on the signal phase, Fig. 3.1(a), the information is encoded on the phase

shift between two symbols, Fig. 3.1(b). We call "data symbol" the two bits encoding a

phase transition ("00","01") and "QPSK symbol" the modulated symbol belonging to the

QPSK constellation (α1, α2. . . ).

For example, let us consider that the last emitted QPSK symbol was α2 = e
3iπ
4 and that

the next two bits are "11". The data symbol "11" corresponds to a 2 quadrant transition

which means a π phase shift. The following emitted QPSK symbol is: e
3iπ
4

+iπ=e
7iπ
4 =α4.

Figure 3.1: (a) Regular encoding of a QPSK modulation with Gray mapping. (b) Differ-

ential encoding of a QPSK modulation with Gray mapping.

A "transmission error" is a wrong decision made at the reception of a QPSK symbol. Gray

mapping is generally employed to minimize the number of errors. It ensures that only one

bit changes between two transitions to consecutive quadrants. As most of the errors are
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due to a one quadrant shift at high OSNR, Gray mapping reduces the total number of bit

errors.

3.1.1 Error configurations

Figure 3.2: Error configuration on the data bits due to a transmission error.

The major problem of the differential encoding is that there are at least twice as many

errors than with a normal encoding. Indeed, as can be seen in Fig. 3.2, one transmission

error on a QPSK symbol corrupts two data symbols corresponding to:

• the phase shift between the previous QPSK symbol and the wrong symbol

• the phase shift between the wrong symbol and the next QPSK symbol

Each corrupted data symbol has two bits, so it leads to two or four erroneous bits. Let us

assume that an error occurs on a QPSK symbol and that Gray mapping is applied. If the

erroneous QPSK symbol belongs to an adjacent quadrant of the emitted symbol quadrant,

there will be only two erroneous bits (one per erroneous data symbol). If the erroneous

symbol belongs to the opposite quadrant of the emitted symbol quadrant, there will be

four erroneous bits (two per erroneous data symbol). At high OSNR, differential encoding

produces twice as many errors as classical encoding.

A transmission error corrupts two consecutive data symbols. For instance in Fig. 3.2,

the first error changed the transition "11" (+2 quadrants) into "01" (+1 quadrant), it

means that the number of quadrant of the transition has been decreased by one quadrant.

As a consequence, the transition corresponding to the neighbor erroneous data symbol is

increased by one quadrant from "00" (0 quadrant) to "01" (+1 quadrant). The first error is

a −1 quadrant error and the second one is a +1 quadrant error. In general, ne consecutive

transmission errors affect ne + 1 data symbols. The corresponding errors Nerri expressed

in quadrant, follow:

ne+1∑

i=1

Nerri (mod M) = 0 (3.1)

where M is the constellation size (M = 4 for a QPSK constellation). Table 3.1 lists all

the quadrant error configurations for one or two consecutive QPSK symbol errors. For a

single transmission error (ne = 1), if one of the Nerri is known, the value of the second

one can be deduced from Eq. 3.1. For example, if Nerr2 = +1, Nerr1 has to be equal
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ne Nerr1 Nerr2 Nerr3

1

+1 −1
−1 +1

+2 +2

2

+1 +1 +2

+2 +1 +1

−1 −1 +2

+2 −1 −1
+1 +2 −1
−1 +2 +1

+2 0 +2

+1 0 −1
−1 0 +1

Table 3.1: Errors configuration for QPSK system with differential encoding

to −1. For ne consecutive transmission errors, there are some configurations in which the

transmission errors can correct themselves and corrupt less than ne + 1 data symbols as

can be seen in the last lines of Table. 3.1.

3.2 Structured Symbol Interleaving (SSI)

With a differential encoding scheme, the FEC receives twice as many errors and the de-

coding is less efficient. However, these errors are not just randomly distributed along the

codewords. Indeed, they come by pairs and this is very important knowledge that has to

be taken into account.

One can first consider the consecutive errors as a burst of error and use a classical interleav-

ing technique to overcome this problem. Randomly mixing the bits of different codewords

so that consecutive bits do not belong to the same codewords is well-known and already

applied in deployed long-haul high bit-rate optical transmission systems. However, this

technique is not optimal for the differential encoding scheme.

3.2.1 Principle of SSI

The proposed construction does not try to de-correlate the consecutive bits, but on the

contrary, to create a certain structure between the codewords. Since a transmission error

produces a pair of consecutive erroneous data symbols on a codeword, our idea is to put the

two corrupted data symbols on separated codewords. The interleaving is performed after

the FEC encoding of the information. The bits of the FEC codewords are the data symbols

transmitted by the modulated symbol transitions. Therefore, we propose to interleave the

data symbols instead of the bits. Moreover, the interleaving is not random as in the classical
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way but is performed alternating the data symbols from different codewords one after the

other. We call this construction "structured symbol interleaving" (SSI). For simplicity, we

will present the SSI method for the case of a 2 codewords interleaving. The generalization

to more codewords is easy to deduce.

Figure 3.3: Principle of SSI of two FEC codewords

Pairs of codewords are serially mixed alternating two bits (one data symbol for QPSK

modulation) of each one. Then, the resulting sequence is differentially modulated into a

QPSK signal (see Fig. 3.3). This construction ensures that two adjacent data symbols

belong to two different codewords. So if an error happens during the transmission, after

the de-interleaving there will be only one erroneous data symbol on each codeword instead

of two on a unique codeword (see Fig. 3.4). The proposed scheme is optimal to combat

differential encoding pairs of error.

Figure 3.4: Example of error configuration after FEC symbol interleaving

Note that the proposed construction can be applied to any kind of constellation using

differential encoding. For instance, differential binary phase shift keying (DPSK) has been

demonstrated particularly well-adapted for non coherent optical long haul transmission

systems. It is a two state constellation and each state is coded by one bit. So the corre-

sponding construction for a DPSK scheme is a bit interleaving between two codewords.
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3.2.2 SSI differential encoding impairment mitigation

Let us consider a FEC of length n with n−k redundancy bits and which can correct t errors.

With a differential encoding scheme, a FEC C(n, k, t) with SSI has the same performance

as the code C(2n, 2k, 2t) without interleaving. Fig. 3.5 and Fig. 3.6 present the coding gain

resulting from the symbol interleaving of two codewords for different families of FECs. As

in Chapter 2, the simulations have been realized assuming an AWGN channel.
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Figure 3.5: Performances comparison of hard decoding FECs with and without SSI

The BCH(255,239) is a binary FEC and the coding gain obtained with the SSI is 0.5dB at

a BER=10−6. Note that the performance of the BCH (255,239,t=2) with SSI is exactly

the same as that of the BCH(511,475,t=4) without SSI. However, it is more advantageous

to use a smaller code combine with the SSI because the encoding and decoding complexity

of a small code is lower. A gain of 0.5 dB is also obtained for the BCH(1023,883,t =14)

with SSI. The product code BCH(255,239)×BCH(144,128) with a hard decoding [48] is

more robust to burst of errors thanks to its product constructions, therefore the coding

gain is 0.2dB. With non binary FEC such as Reed-Solomon (RS), the efficiency of our

construction is reduced. Indeed, these codes are by nature less sensitive to burst of errors

and therefore less sensitive to differential encoding impairments. In Fig. 3.6, we plot the

performance of Lattice LDPC codes with and without SSI. The coding gains are about 0.1

and 0.2dB at a BER of 10−6.
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Figure 3.6: Performances comparison of LDPC with and without SSI

3.2.3 SSI Vs classical interleaving

Let us now compare the efficiency of the SSI compare to a classical interleaver. A classical

interleaver consists to a random bit mixing of several codeword. Unlike the SSI, the

interleaving is realized on the bits and has no structure.

The depth of an interleaver is the number of bits that are mixed. Our SSI scheme has

a depth of two codewords, so 2n bits. In Fig. 3.7, we compare the performances of the

proposed SSI scheme with the classical interleaver scheme with a 2 and 100 codeword depth

(2n and 200n bits). For a 2 codeword depth the classical interleaver is outperformed by

the SSI. In order to obtain the same performance the classical interleaving requires a large

depth such as 100 codewords, which induces high implementation complexity. We can

easily conclude that the SSI is more adapted to the differential encoding than the classical

interleaving.

3.3 Complexity reduction of the FEC decoding

We have seen that errors come in pairs of erroneous data symbols, each one belonging

to different codewords (see Fig. 3.3). To recover the data, algebraic decoding of each

codeword is performed after the de-interleaving. We call "algebraic decoding" the regular

way to decode FEC (see Sec.2.1.2 for BCH and Sec. 2.1.4.2 for LDPC). In this section, we

present a reduced complexity decoding algorithm.
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Figure 3.7: Comparison between the proposed SSI and the classical random interleaver

3.3.1 Principles of the decoding complexity reduction

We propose now to reduce the decoding complexity by performing the algebraic decoding

on only one of the two codewords and to deduce the decoding of the second one. Indeed, the

algebraic decoding gives us the position and the value of the error of one of the erroneous

data symbol. As errors come in pairs, we know that the other erroneous data symbol is one

of its direct neighbors. Moreover, as explained in Sec. 3.1 in Table 3.1 if we know the error

value of the first error we can deduce the correction for the second one. The remaining

question is: which neighbor is the erroneous one?

For instance, in Fig. 3.8, the algebraic decoding has corrected an error on the first code-

word (in yellow). The correction has changed a "11" transition into a "10" transition: it

corresponds to a +1 quadrant correction. From Table. 3.1, we know that the correction of

the other erroneous data symbol has to be a −1 quadrant correction (under the assumption

of a single transmission error). The last step is to determine if the second erroneous data

symbol is the left or the right neighbor.

We can correct alternatively both of the neighbors and decide afterwards which one corre-

sponds to the right correction. A pattern of all possible corrections for the second codeword

is created. For example, in Fig. 3.8, the pattern has two entries: a codeword corresponding

to the correction of the right neighbor and a codeword corresponding to the correction of

the left neighbor. This is illustrated in Fig. 3.9). In the pattern, only one of the two cor-

rections can lead to a valid codeword. In one case the erroneous data symbol is corrected
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Figure 3.8: The error on the first codeword is detected and corrected using algebraic

decoding. The position of the error on the second codeword is one of the neighbors and

the correction to apply is known

whereas in the other case, the other neighbor is corrupted and both neighbors are then

erroneous.

The right correction is the one giving a valid codeword of the FEC. We can check which

one is giving a valid codeword of the FEC by computing the syndrome synd as in Eq. 2.3.

If the syndrome is null, the codeword is valid.

Figure 3.9: decoding of SSI scheme using a pattern

If many errors have been corrected by the algebraic decoding, all the configurations have

to be checked. Therefore, the size of the pattern grows exponentially with the number

of corrected errors on the first codeword. If there is no valid correction in the pattern,

algebraic decoding of the second codeword has to be performed. The decoding algorithm

is summarized in Algorithm. 1.

Note that the pattern can consider consecutive error cases, however the size of the pattern

increases. The corrections are based on the error configurations listed in Table. 3.1 for

ne > 1. For example, if the first decoding corrected a single error on the kth symbol, this

can come from an error on one or both of its neighbors (the k − 1th and/or the k+1th
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Algorithm 1 SSI decoding algorithm
1: Algebraic decoding of the first codeword

2: if the second codeword is valid then

3: End

4: else

5: Creation of a correction pattern

6: if there is one valid codeword then

7: End

8: else

9: Algebraic decoding of the second codeword

10: end if

11: end if

symbol). Let us consider the case where the correction was a +1 correction. To consider

the single error configuration, we will make a −1 quadrant correction on the k−1th and

then a −1 quadrant correction on the k+1th symbol. To consider the two consecutive

errors configuration, we will make a +2 quadrant correction on the k−1th symbol and a

+1 quadrant correction on the k+1th symbol (line 5 of Table. 3.1) and the opposite (line

4 of Table. 3.1). So, the pattern would be twice as big.

3.3.2 Evaluation of the decoding complexity

In our algorithm the first codeword is always decoded algebraically and the complexity

reduction depends on the second codeword decoding. Syndrome computation represents

the most complex operation, as it has to be repeated for all the codeword corrections of

the pattern. As the size of the pattern grows exponentially with the number of detected

errors, the decoding can become prohibitively complex with powerful FECs. For instance,

if the FEC can detect and correct 20 errors, the pattern size may reach 220.

The size of the correction pattern can be reduced by eliminating some cases. Instead

of applying a correction on both neighbor data symbols, only the least reliable one is

considered. The least reliable data symbol is the one corresponding to the least reliable

QPSK symbol. The reliability of the QPSK symbols can be obtained computing their

LLR:

L (xi) = log
Pr {xi = αyi |yi}
Pr {xi 6= αyi |yi}

(3.2)

where xi is the transmitted QPSK symbol, yi the received QPSK symbol and αyi is its

state in the constellation.

The QPSK symbol having the smallest absolute value of LLR is the least reliable. We

assume that it is the erroneous one and we only correct the corresponding data symbol.

Therefore, the pattern is now reduced to only one codeword and there is only one syndrome
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computation to perform. The complexity of this operation can be considered negligible

in comparison to an algebraic decoding. Thus, we can decode two codewords with the

complexity of a single algebraic decoding.

Sometimes, the most reliable correction is not a valid codeword (the syndrome is not null).

Therefore as our correction is wrong, the algebraic decoding of the second codeword has

also to be performed. In that case, no complexity gain is obtained. The total decoding

complexity of our algorithm depends on the size of the pattern and on how often the

decoding of the second codeword is realized.

Let us now present the decoding complexity of the BCH(1023, 883) (which is able to correct

up to 14 errors) with our decoding scheme. We compare the cases when all the error

configurations are considered (full pattern) and when only the most reliable correction is

chosen in the pattern.

In Fig. 3.10, we plot the average number of syndrome computation. It corresponds to

the average size of the pattern. We notice that when the full pattern is considered, the

number of syndrome computation can be very large. However when only the most reliable

correction (corresponding to every least reliable neighbor data symbols) is considered, only

one syndrome computation has to be done.

In Fig. 3.11, we plot the probability of that no valid codeword is found in the pattern and

consequently that the decoding of the second codeword has to be performed. It can be

seen as the average number of algebraic decoding realized for the second codeword. Notice

that it decreases exponentially with the SNR which means that at high SNR the correction

chosen in the pattern is almost always the right one.
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Figure 3.10: Average number of syndrome computation required for the decoding of the

second codeword
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Figure 3.11: Average number of algebraic decoding required for the decoding of the second

codeword

The complexity of our algorithm is evaluated by the average number of FEC decoding

performed to decode both codewords. We define the total complexity reduction as the

ratio between this number and the regular case where both codewords are always decoded.

In Fig. 3.12 and Fig. 3.13, the complexity reduction is plotted over the output BER of the

FEC. A 50% decoding complexity reduction is reached with the BCH(1022,882) code which

means that decoding one codeword is most of the time enough to deduce the correction

for the second one. Indeed, the input BER needed to achieve an error free transmission

(BER< 10−12) with this FEC is high enough to ensure that the probability of having

consecutive errors and/or making a mistake on the reliability of the QPSK symbols, is

very small. The product code BCH(255,239)×BCH(144,128) with hard decoding, is a

more powerful FEC (Fig. 3.5) and works at lower SNR. So, it is more probable that the

correction of the second codeword fails and that the algebraic decoding has to be done.

As probability of decoding the second codeword is higher, the total reduction reaches

45%. The SSI decoding is also very efficient with the LDPC codes and we observe a 40%

reduction with the lattice LDPC (173, 60, 8).

The coding gain resulting from the SSI scheme is the same using the proposed decoding.

Hence, we have a complexity gain without any performance loss.

3.4 Redundancy reduction

The previous section has shown how the decoding of the first codeword can lead to the

decoding of the second codeword with little effort. As the error correction capability of

the second codeword is not really used, it is not necessary to encode it in the same way as

the first codeword.
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Figure 3.12: Percentage of complexity reduction for BCH and Product codes
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We propose to encode the data by two different FECs before the SSI. A FEC with low

correction capability, hence low redundancy, is chosen to encode the second codeword.

With this configuration the total redundancy is decreased compared to the case using

similar FECs. Let us consider two FECs: C1 (n1, k) and C2 (n2, k) with n2 < n1. Both

FECs here use the same number of information bits k, but different constructions can be

imagined in order to be more efficient. The resulted redundancy is:

ρ =
(n1 + n2)− 2k

(n1 + n2)
(3.3)

ρ is less than 1− k
n1

(the total redundancy when the same FEC is used).

The problem of using a less efficient FEC for the second codeword arises when algebraic

decoding has to be performed. Indeed, the number of errors on each codeword is the same

but the second FEC is not able to correct as many errors as the first one. It means that

the second decoding will often fail and this could lead to an error floor on the performance.

Algebraic decoding of the second codeword happens when our algorithm proposes a wrong

correction. However, although the correction is not valid, it is close to the right one. Most

of the errors have already been removed and the algebraic decoding has only to deal with

the remaining errors. Therefore, a less efficient FEC can be used for the second codeword

if the number of remaining errors is not too large.
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Figure 3.14: Performance of various combinations of FEC with different redundancies

In Fig. 3.14, we plot the performance of some combinations of FECs offering different

redundancy reductions. The codes are decoded as described in the previous section.

BCH(1022, 882) is used as the FEC of the first codeword. When the same FEC is used
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for the second codeword, the total redundancy is 14% (rate r=0.86). However if we use

a BCH(962, 882) or a BCH(942, 882) to encode the second codeword, leading respectively

to a total redundancy of 11% (rate r = 0.89) and 10% (rate r = 0.90), no performance

degradations are observed until BER= 10−6. However the BCH(902, 882) is not able to

correct all the errors left by the first step of the algorithm and its performance is decreased.

For the FEC combinations presenting an error floor, a concatenated scheme can be em-

ployed where the inner code uses the redundancy reduction proposed technique and the

outer codes removes the error floor. In the case of LDPC codes, concatenated schemes

are required anyway to remove the decoding error floor. Hence if our scheme is used for

LDPC, the outer code would remove at the same time the decoding error floor and the

redundancy scheme error floor.

It can be observed in the figure, that FEC with small redundancies perform slightly better.

The energy per information bit is equal to Eb=
Es

kcr
where Es is the energy per modulated

symbol, kc =2 is the modulation rate and r is the FEC rate. Therefore FEC with small

redundancies, thus high rates correspond to smaller SNR. In Fig. 8, the FEC combinations

corresponding to the rates 0.86, 0.89 and 0.90 have the same correction capability on the

coded bits however the one with small redundancies correspond to more information bits

and so perform better.

In our simulations, we observed no performance degradation using as the FEC of the

second codeword, the BCH(942, 882) instead of BCH(1022, 882). Moreover the number of

redundancy bits is reduced from 280 (140 redundancy bits on each codeword) to 200 (140

on the first codeword and 60 on the second) which means that the redundancy is reduced

by 29%.

Conclusion

We have proposed a coding scheme based on a structured symbol interleaving of the FEC

codewords in order to mitigate the differential encoding penalties. We have obtained a

significant coding gain for binary FECs. An original decoding of the SSI construction has

also been proposed, working with any FEC and offering decoding complexity reduction

which can reach 50% without performance degradations. Finally, we have shown that

according to the SSI coding/decoding scheme we can chose FEC with smaller redundancy.

In our simulations, the rate has been increased from 0.86 to 0.9 with no penalties by

choosing a FEC with 29% less redundancy bits.

In Chapter 2, we have seen that the implementation of the new generation of FEC (LDPC)

in actual and future high bit-rate optical transmission systems is a major issue. The main

challenge is to cope with their very high decoding complexity. Moreover these codes require

a significant overhead (∼ 20%) in order to have good performance and show an interest

compared to hard decision schemes. Therefore, the proposed SSI coding /decoding scheme

can be very profitable to these FEC.
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Chapter 4

Polarization-Time coding

Introduction

With polarization multiplexing, the transmission spectral efficiency is doubled by emitting

the data simultaneously on two orthogonal polarizations. This technique is very interesting

to achieve high bit-rate and is now employed in current 40Gb/s and 100Gb/s optical

transmission systems.

Polarization multiplexed transmissions can be seen as a 2 × 2 multiple-input multiple-

output (MIMO) systems. The signals multiplexed on the 2 polarizations at the emission

corresponds to multiple inputs, and the signals received on the 2 polarizations corresponds

to multiple outputs.

Space-Time (ST) codes have been introduced in wireless communications to exploit all the

degrees of freedom of the MIMO channel. In particular, they are very efficient in random

fading environments. Space-Time codes can be adapted in optical transmissions and have

been referred in the literature as Polarization-Time (PT) codes [78]. The decoding of

ST code requires the channel knowledge. Hence, the channel impulse response has to

be estimated first by a training sequence. The ST decoding is based on the maximum

likelihood criterion which results in a complexity increasing exponentially with the size of

the channel impulse response. The single carrier optical transmission described in Chapter

1, is a very dispersive channel due to the multiple dispersion effects occurring in the fiber

(CD, PMD). Therefore, the implementation of PT codes on such a channel is impossible

However by using orthogonal frequency division multiplexing (OFDM), the inter-symbol

interference can be totally compensated in the frequency domain. Therefore the channel

impulse response is minimal and PT coding can be employed.

In wireless transmission, ST codes are effective in a fading environment. However polar-

ization multiplexed transmissions are impaired mainly by PMD which is one of the major

source of degradation in high bit-rate systems [79]. PDL is another source of impairments
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introduced by all the in-line optical elements of the systems which attenuates in a different

manner the two polarization components of the signal. PDL induces polarization depen-

dent optical power fluctuations resulting in unequal optical signal-to-noise ratio on the two

components. Note that PDL can be seen as a fading and can not be efficiently mitigated

by digital equalization techniques.

In this chapter we investigate the interest of polarization-time coding in optical OFDM

transmissions systems. In Sec. 4.1, we describe the optical OFDM systems. In Sec. 4.2

the principles of space-time codes are presented. We discuss about their constructions and

their decoding and describe some famous codes in wireless communications. Finally in

Sec. 4.3, we focus on polarization-time coding and investigate its performance to combat

PDL.

Figure 4.1: Optical OFDM transmission with Polarization-Time coding

4.1 Optical OFDM

Orthogonal frequency division multiplexing is a popular multiplexing technique in digital

communication (DSL, LTE, WiMAX ) because of its high robustness and its low equaliza-

tion complexity in frequency selective channels.

The first optical OFDM systems have been realized recently [80]. The interest of this

technique in optical fiber transmissions is mainly due to the low equalization complexity

of dispersive effects. Indeed optical fiber is not a frequency selective fading media but it is

a very dispersive channel where CD and PMD after a long-haul transmission may be very

large.

In single carrier transmissions, the complexity of the equalization depends on the amount

of dispersion and thus can be a real challenge. Hence, OFDM represents an efficient

alternative and is a serious candidate for the future generations of 400Gb/s systems

4.1.1 Principle

The idea of frequency domain multiplexing is to transmit the data over a large number of

sub-carriers at low rates. The interest of using low-rate modulations is the better tolerance

against inter-symbol interference. Indeed, as the symbol duration is long, the dispersion

only affects a small part of the symbol. Therefore a guard interval is generally inserted

between the OFDM symbols to suppress the ISI.



4.1. Optical OFDM 79

In OFDM, the sub-carriers are orthogonal which means that their spectrum can overlap

without interfering with each others. Note that the orthogonality increases the spectral

efficiency and reduce the complexity of the receiver as separate filters for each sub-carriers

are not required. An efficient way to obtain orthogonal subcarriers is to perform the

multiplexing by an inverse fast Fourier transform (iFFT). Hence, at the reception because

of their orthogonality, subcarriers can be demultiplexed easily, without using any filters,

by a FFT.

However, because of dispersive effects, subcarriers orthogonality can be lost at the re-

ception. Therefore, the FFT demultiplexing creates inter carrier interferences (ICI). An

elegant solution to this problem is the insertion of a cyclic prefix (CP) at the beginning of

the symbol which is a copy of the last part of the symbol. The cyclic prefix acts as a guard

interval and prevents ISI. Moreover, it keeps the subcarrier orthogonality (suppresses ICI)

by maintaining the periodicity of the OFDM symbol over an extended symbol duration.

4.1.2 Optical OFDM transmitter

The inputs of the OFDM transmitter is a block of N modulated symbols x = [x1, x2 . . . xN ]

where xk corresponds to the data transmitted by the kth subcarrier. The vector is trans-

formed in the time domain by an iFFT:

x̃m =
1√
N

N∑

k=1

xk exp

(
2ıπkm

N

)
(4.1)

The cyclic prefix is added and the output vector is obtained:

x̃ = [x̃N−∆G+1 . . . x̃N , x̃1 . . . x̃N ] (4.2)

∆G is the cyclic prefix length, it depends on the dispersion amount. To avoid ISI and ICI,

the cyclic prefix length must be larger than the total amount of dispersion (due to CD and

PMD)[81]:
c

f2
c

· |DCD| ·Nsc ·∆fs +DGDmax ≤ ∆G (4.3)

where fc is the optical carrier frequency, c the light speed, DCD the total accumulated

chromatic dispersion in ps/km, Nsc the number of subcarriers, ∆fs the subcarrier channel

spacing and DGDmax the maximum budgeted DGD.

Note that training sequence and pilot subcarriers are usually introduced for the channel

estimation and the phase recovery. Fig. 4.2 shows an OFDM transmitter.

In a radio frequency (RF) OFDM system, the data is converted by digital to analog con-

vertors (DAC) and then mixed with an RF carrier using an electrical I/Q modulator to

obtain the OFDM signal. In optical OFDM, this signal has to be modulated onto an optical

carrier. A straight solution is to convert the RF-OFDM signal using a conventional single-

ended Mach-Zender modulator as represented in Fig. 4.3(a). However, a mirror image band

is created and an additional filtering is required to remove it. To avoid the generation of
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Figure 4.2: OFDM transmitter

the image band we can use an optical I/Q modulator as depicted in Fig. 4.3(b) which

corresponds to a super MZ structure (see QPSK transmitter in Fig. 1.7) and to set half

of the iFFT entries to zero [82]. Both methods result in a linear relationship between the

optical field and the OFDM signal.

Figure 4.3: Single band ODFM transmitter based on (a) electrical I/Q modulator (b)

optical I/Q modulator

In direct detection (DD) optical OFDM [83] the optical carrier is transmitted with the

signal whereas in coherent (CO) OFDM [80] the carrier is filtered before the transmission

and generated back at the reception by a local oscillator.

Polarization division multiplexing is compatible with OFDM systems. Two independent

optical OFDM signals are generated and combined in the fiber by a polarization beam

splitter. With polarization multiplexing, the data symbol X= [X1 . . .XN ] can be repre-

sented as a 2×N matrix where xk=[x
(1)
k , x

(2)
k ]T are the two modulated symbols transmitted

on both polarizations on the kth subcarrier.

The use of PDM in CO-OFDM is straightforward and some practical demonstration can

be found in [84] [85]. In DD-OFDM, an optical carrier is transmitted on each polarization
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thus, the received components contain a mix of the two original carriers. Hence, they are

not perfectly orthogonal to the OFDM data band which causes destructive interferences.

A frequency shift of one of the signals can be made in order to avoid polarization mixing

between the two carriers [86][87]. This is illustrated in Fig. 4.4.

At the reception, polarization are separated by a PBS and detected by in two separated

OFDM receivers. However a joint MIMO processing is required between the receivers to

estimate the channel and recover the data.

Figure 4.4: frequency shift of OFDM carrier in polarization multiplexed DD-OFDM

4.1.3 Optical OFDM receiver

DD-OFDM receiver is composed of an unique photodiode as a local oscillator is not required

(Fig. 4.5 (a)). However a guard interval has to be inserted between the optical carrier and

the OFDM band in the spectrum in order to avoid unwanted mixing products from the

quadratic receiver. On the other side, CO-OFDM receiver has a local oscillator and thus,

is more sensitive to frequency offset and phase noise and may require narrow linewidth

laser. In Fig. 4.5 (b) and Fig. 4.5 (c), the coherent receiver for both electrical and optical

I/Q demodulator configuration are represented.

At the reception, the signal is mixed with an optical carrier (from the transmitted signal

or from the local oscillator) and the mixing product "carrier×signal" is detected. Once

converted in the electrical domain, the signal is processed in an OFDM receiver as the one

represented in Fig. 4.6.

Before any processing in the frequency domain, we have to make a time and frequency

synchronization. Indeed, an OFDM system is very sensitive to time and frequency offsets

as it cause the subcarrier orthogonality loss. Various algorithms have been proposed to

realize these operations in the time domain [88][89][90]. These methods are based on the

autocorrelation with a training sequence

Afterwards, the cyclic prefix is removed and the FFT is performed. As orthogonality has

been maintained and the dispersion effects compensated thanks to the cyclic prefix, for

each subcarrier there is a linear relationship between the iFFT input xk and the FFT
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Figure 4.5: Single band receiver for (a) DD-OFDM (b) CO-OFDM with electrical I/Q

modulator (c) CO-OFDM with optical I/Q modulator

Figure 4.6: PDM-OFDM receiver

output yk [91]:

yk = eıΦHkxk + nk 1 ≤ k ≤ n (4.4)

where Hk is the transfer matrix of the channel for the kth subcarrier and eiΦ represents the

a phase shift caused by the local oscillator that has to be compensated with a carrier phase

recovery processing. Phase estimation is usually realized using some pilot subcarriers. In

[81], a carrier phase estimation is proposed based on the pilot subcarrier channel estimation

and the averaging of the phase over all the pilots. Then, in Eq. 4.4 the phase shift term

can be removed and we obtain the relation:

yk = Hkxk + nk (4.5)
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4.1.3.1 Channel estimation

Channel can be estimated using a training sequence Sk. The channel transfer matrix is a

2 × 2 matrix thus we need Sk to be also a 2 × 2 matrix in order to be able to determine

all the coefficients of Hk. The training symbols are sent on both polarizations and during

two time slots (two OFDM symbols). For a simple implementation it has been proposed

[92] to choose the training sequence Sk such as:

Sk =

[
s
(1)
k (t1) 0

0 s
(2)
k (t2)

]
(4.6)

A known symbol is first sent on a polarization during the time slot t1 (on a first OFDM

symbol) and then a second symbol on the other polarization during a second time slot t2

(on a second OFDM symbol). Note that this training sequence is not optimal as only two

different symbols are used. In Chapter 5, we discuss about channel estimation by training

sequence in the time domain which can also be applied for OFDM systems.

Several estimation algorithms exist in the literature, the simpliest one is based on the least

square estimation (LSE) criterion (see Appendix D) which is generally used in practical

implementation [85]. From Eq. 4.5 we can easily obtain the estimated transfer matrix Ĥk:

Ĥk = Yk

(
SH
k

(
SkS

H
k

)−1
)

(4.7)

To attenuate the noise effect, many training symbols can be sent and the estimated transfer

matrix is obtained by averaging.

4.1.3.2 Symbol detection

All the dispersion has been suppressed thank to the cyclic prefix. Therefore we only have

to demultiplex the two polarizations and this operation is realized using a 1-tap butterfly

FIR equalizer (see Fig. 1.10 for a multi-tap example). This corresponds to a simple matrix

multiplication:

x̂k = Wkyk (4.8)

where Wk is a 2×2 matrix corresponding to the equalizer of the kth sub-carrier.

for practical implementation simplicity, a zero-forcing (ZF) equalizer can be used:

Wk =
(
ĤH

k Ĥk

)−1
ĤH

k (4.9)

In wireless environment, ZF decoding has poor performances because it results in the noise

amplification when fading occurs. However, optical fiber channel the fading are caused by

PDL and are not as severe.
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4.1.4 Optical OFDM channel capacity

The channel capacity is defined as the maximum transmission rate for an arbitrary small

error probability. Shannon capacity corresponds to the maximum mutual information

between the input and the output of the channel and is expressed in bit/s/Hz. For a

channel is varying in the time, we define the ergodic capacity as the mean capacity over

the channel realization.

in OFDM, the total capacity is the sum of channel capacity of each sub-carrier. In a

polarization multiplexed OFDM transmission, each subcarrier corresponds to a 2×2 MIMO

flat channel and its ergodic capacity is equal to [93]:

Ck = EHk

{
log2

(
det
[
I+

ρ

2
HkH

H
k

])}
(4.10)

After a singular value decomposition of the matrix Hk , it leads to:

Ck =
2∑

i=1

EHk

{
log2

(
1 +

ρ

2
λ2
i

)}
(4.11)

where ρ = kcSNR (see Sec. 1.2.5) is the signal to noise ratio per symbol on the sub-carrier

and λi are the singular values of HkH
H
k . A 2×2 MIMO channel can be seen as 2 parallel

AWGN channels.

Note that we have neglected the nonlinear effects which actually result in a capacity de-

crease at high SNR (high signal power) [14].

4.2 Space-Time coding

In this section, we introduce the principle of space-time codes. This coding technique has

been developed for wireless communication in order to take benefit of all the degrees of

freedom of MIMO channel. We will recall construction criterion of these codes and present

some of the most popular codes. The construction criterion presented in this section

have been derived for wireless transmissions, hence they are no longer available for optical

transmissions as the nature of the channel is different.

4.2.1 MIMO channels in wireless transmissions

In wireless communication, multi-antenna transmissions is the main example of MIMO

systems. The interest on MIMO systems comes from the early works of Foschini [93] and

Telatar [94] which have demonstrated that the channel capacity increases as the number

of antenna in the system increases.

MIMO systems offer at the same time, spatial multiplexing (data rate increase) and spa-

tial diversity (performance improvement) which has brought lot of interest on them. In
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particular, space-time coding techniques have been developed to enhance the performance

of MIMO systems.

4.2.1.1 MIMO system model

We consider a MIMO system with nt transmit antennas and nr receive antennas. The

channel is supposed to be a block fading Rayleigh channel which means that it remains

constant for the duration of T symbols. Modulated symbols are transmitted by nt antennas

and can be represented by a complex matrix X of size nt×T . The received signal is

represented by a nr×T complex matrix Y corresponding to the signals received on each

receive antenna during each time symbol. The channel is represented by a nr×nt complex

matrix H where h(i, j) is the fading coefficient of the path between the ith transmit antenna

and the jth receive antenna. The paths are spatially decorrelated and Rayleigh channel

model is assumed, so the coefficients are independent and identically distributed (iid)

complex gaussian random variables with zero mean and unit variance (h(i, j) ∼ N (0, 1)).

The received symbols can be expressed as:

Y = HX+N (4.12)

where N is the additive white gaussian noise.

4.2.1.2 Derivation of the error probability

We supposed perfect channel state information (CSI) at the receiver side. We note C the

set of all possible transmit matrices X. According to the channel model of Eq. 4.12, a

maximum likelihood decoder (ML) estimates X̂ as:

X̂ = argmin
X∈C

‖Y −HX‖2 (4.13)

The error probability can be defined as:

Pe = Pr{X̂ 6= X} (4.14)

=
∑

X∈C
Pr{X} · Pr{X̂ 6= X|X} (4.15)

Using the union bound and assuming that the symbols are equiprobable we obtain:

Pe =
1

|C|
∑

X∈C

∑

X̂∈C,X̂6=X

Pr{X̂ −→ X} (4.16)

where Pr{X −→ X̂} is the pairwise error probability and can be expressed by [95]:

Pr{X −→ X̂} = Pr{‖Y −HX̂‖2 ≤ ‖Y −HX‖2 | X,H} (4.17)

= Pr{‖H(X̂ −X) +N‖2 ≤ ‖N‖2 | X,H} (4.18)

= Pr{‖H(X̂ −X)‖2 + 〈H(X̂−X),N〉 ≤ 0 | X,H} (4.19)
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V = ‖H(X̂ − X)‖2 + 〈H(X̂ − X),N〉 is a Gaussian random variable with mean mV =

‖H(X̂ − X)‖2 and variance σ2
V = 4σ2

N‖H(X̂ − X)‖2. So, pairewise error probability is

expressed by:

Pr{X −→ X̂} = Q
(
mV

σV

)
(4.20)

= Q
(
‖H(X̂−X)‖

2σN

)
(4.21)

where Q is the Gaussian tail function. By averaging over H, it can be upper bounded by:

Pr{X −→ X̂} ≤ EH

[
exp

(
−‖H(X̂−X)‖2

8σ2
N

)]
(4.22)

As the coefficients of H are Gaussian random variables, by averaging over H, the previous

expression can be simplified.

Let us first note A = (X̂ − X)(X̂ − X)H . By a singular value decomposition of A, we

obtain two unitary matrices U and V and a diagonal matrix D, such as A = VDUH . We

note λi the diagonal elements of D, they are the singular values of A. rX is the rank of

A thus there are rX non zero singular values λ1 . . . λr. The Pairewise error probability at

high SNR can be bounded [96]:

Pr{X −→ X̂} ≤
(

rX∏

i=1

λi

)−nr (
SNR
4

)−rX·nr

(4.23)

4.2.2 Space-Time code construction criteria on Rayleigh fading channel

In Eq. 4.23 it can be seen that MIMO transmission error probability depends on three

parameters: rX, nr and λi. nr is a given parameter but rX and λi depend on the transmit

matrix X. Therefore we have to find the most adapted transmit matrix X that minimizes

the error probability. These matrices belong to a set C that we construct and call the code

and X are the codewords. The codewords are constructed from the modulated symbols

and x(i, j) are functions of one or many modulated symbols si.

X =




f1(s1, s2 . . .) f2(s1, s2 . . .) . . .

f3(s1, s2 . . .) f4(s1, s2 . . .)
...


 (4.24)

The error probability decreases exponentially function of the SNR and r · nr determines

how fast is the decrease. In a semi logarithmic plot, it represents the asymptotic slope

of the error probability function of the SNR. The diversity order of the MIMO system

is defined as the power of 1
SNR

and is equal to rX · nr. A is a nt×nt matrix and thus

1≤rX≤nt. The code has to be designed in order to achieve the full (maximum) diversity
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nt · nr which means having a matrix A with a full rank rX = nt. This is called the rank

criterion.

When spatial multiplexing is realized, independent modulated symbols are transmitted on

each antenna. The codewords are nt×1 vectors X = [s1, s2 . . . snt ]
t. It is obvious that

rX = 1 which is not optimal as the maximum rank is rX = nt.

However if X is a nt × T matrix, with T ≥ nt, we have rX ≤ nt which gives us a chance

to reach the full rank and thus, reduce the error probability. Note that T = nt is enough

to obtain a full rank and thus full diversity. A codeword X is a particular construction of

transmit symbols sent on nt antennas and during T symbol times. Therefore the code C
is called a Space-Time code (STC).

In Eq. 4.23, the pairewise error probability also depends on the product of singular values

of A, so its determinant. The term corresponds to a coding gain. The error probability

is upperbound by the sum of pairewise error probabilities and thus, dominated by the

one corresponding to the smallest determinant. Therefore, the space-time code has to be

constructed in order to maximize the minimum determinant ∆min:

∆min = min
X6=X̂

rX∏

i=1

λi = min
X6=X̂

detA = min
X6=X̂

det |(X− X̂)|2 (4.25)

This is called: determinant criterion

Eq. 4.11 shows that the MIMO channel can be seen as min(nt, nr) parallel AWGN chan-

nels. So in a nt × nr MIMO transmission system, min(nt, nr) modulated symbols can be

transmitted at each symbol time. A Space-Time has a full rate if min(nt, nr) · T modu-

lated symbols are transmitted during T symbol times so if its rate is rSTC = min(nt, nr)

symbols per channel use .

We have presented three major design issue for space-time codes in block Rayleigh fading

channel: a rate criterion, a rank criterion and a determinant criterion. However in the

literature, many others relevant criteria can be found, for example based on the mutual

information [97] or the diversity-multiplexing tradeoff [98].

4.2.3 Space-Times block codes

A Space-Time block code (STBC) codewords are nt×T matrices X functions of Ns modu-

lated symbols s1, s2 . . . sNs . T is the number of symbol time Ts during which a ST codeword

is transmitted. Note that Ts will be called in the following a channel use (cu). The rate of

an STBC is expressed in symbol per channel use and defined as:

RSTBC =
Ns

T
(symb/cu) (4.26)
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The codeword matrix represents the symbols transmitted on each antenna ai and during

each symbol time tj. Here is an example of a codeword transmitted over two symbol times

in a 2× 2 MIMO system:

X =

[
xa1(t1) xa1(t2)

xa2(t1) xa2(t2)

]
(4.27)

=

[
f1(s1 . . . sNs) f3(s1 . . . sNs)

f2(s1 . . . sNs) f4(s1 . . . sNs)

]

A STBC is said to be complex linear if the functions fi are linear. If we can define a

complex matrix GC called generator matrix of the code, such as:

vecC(X) = GCS (4.28)



xa1(t1)

xa2(t1)
...

xant
(tT )




= GC




s1

s2
...

sNs




where vecC(X) is the vectorization of the matrix X into a nt · T × 1 complex vector.

A STBC is said to be real linear if it has a real (2nt ·T )× (2Ns) generator matrix GR such

as:

vecR(X) = GRSR (4.29)


Re (xa1(t1))

Re (xa2(t1))
...

Im (xa1(t1))

Im (xa2(t1))
...




= GR




Re(s1)

Re(s2)
...

Im(s1)

Im(s2)
...




vecR(X)= [Im (vecC(X)) Im (vecC(X))]t. If the modulated symbols belong to a QAM or

a PSK constellation, SR = SZ ∈ Z
Ns .

4.2.3.1 Alamouti code

Alamouti code was designed in order to bring spatial diversity in 2×1 MIMO system. The

inputs are blocks of two modulated symbols S = [s1 s2]
T . During a first time, they are

transmitted each one on an antenna. The Alamouti codeword matrix is written as:

XA =

[
s1 −s∗2
s2 s∗1

]
(4.30)

The codeword matrix is orthogonal (XAXH
A =(|s(1)|2+|s(1)|2)I), so the Alamouti code is

said an orthogonal code
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The received signal is:

[y1(t1) y1(t2)] = [h(1) h(2)]

[
s1 −s∗2
s2 s∗1

]
+ [n(1) n(2)] (4.31)

which can be rewritten as:
[

y1(t1)

y1(t2)
∗

]
=

[
h(1) h(2)

h(2)∗ −h(1)∗

][
s1

s2

]
+

[
n(1)

n(2)∗

]
(4.32)

We have an equivalent channel model Ỹ = H̃S + n where H̃ is orthogonal and has the

same structure as the Alamouti codewords. This can be simplified into:

H̃HỸ = ‖H‖2S+N (4.33)

And so, the maximum likelihood decoding rule expressed in Eq. 4.13 is obtained by a

simple threshold decision (ZF decoding).

Alamouti code is very famous for the low complexity of its decoding. ML performance is

obtained by linear processing. Moreover this code is optimal in 2× 1 MIMO systems as it

achieves full diversity and full rate.

However in a 2× 2 MIMO scheme, Alamouti code does not achieve the full rate anymore.

Indeed the rate of the code is RA = 1 symb/cu whereas the possible maximum rate is

min(nt=2, nr=2)=2 symb/cu.

4.2.3.2 Golden code

The Golden code [99] is the best 2× 2 STBC for Rayleigh fading channels. It has various

properties as for instance, being full diversity (rG = nt), full rate (RG = min(nt, nr)) or

having an uniform average energy per antenna.

The Golden codeword matrix is:

XG =
1√
5

[
α (s1 + θs2) α (s3 + θs4)

iα
(
s3 + θs4

)
α
(
s1 + θs2

)
]

(4.34)

where θ = 1+
√
5

2 , θ = 1−
√
5

2 , α = 1 + i − iθ, α = 1 + i − iθ and s1, s2, s3, s4 are four

modulated symbols. The Golden code generator matrix is:

GC, G =
1√
5




α αθ 0 0

0 0 iα iαθ

0 0 α αθ

α αθ 0 0




(4.35)

The minimum determinant of the Golden code, so the coding gain, is equal to 1
5 which is

the largest possible value among all 2× 2 STBC.



90 4. Polarization-Time coding

4.2.3.3 Silver code

The Silver code is the name given to the code proposed in [100] because its performance is

slightly smaller than that of Golden code. The author construction is based on a layered

structure of two alamouti codes. Silver code satisfies the rank and the rate criteria.

The Silver codeword matrix is:

XS = XA(s1, s2) +T XA(z1, z2) (4.36)

=

[
s1 −s∗2
s2 s∗1

]
+

[
1 0

0 −1

][
z1 −z∗2
z2 z∗1

]
(4.37)

where z1 and z2 are obtained by:

[
z1

z2

]
=

1√
7

[
1 + i −1 + 2i

1 + 2i 1− i

] [
s3

s4

]

Silver code is a real linear STBC and its generator matrix can be found in [101].

The minimal determinant of the Silver code is equal to 1
7 which is slightly inferior to that

of the Golden code. In Fig. 4.7, we plot the performance of the Silver and the Golden

code. We can observe that Golden code performs better than the Silver code. However

because of its particular structure, its decoding complexity is smaller than the Golden code

when exhaustive search is realized. The Sezginer-Sari (SS) code [102] construction is based

on the same structure as the Silver code. In Fig. 4.8, we represent the codeword symbol

constellation of four STBC.

4.2.4 Space-Time block code decoding

In Sec. 4.2.1.2 , we have derived the error probability of a MIMO transmission on a flat

Rayleigh fading channel under the assumption of a ML decoding. In particular, we have

outlined a spatial diversity coding gain in Eq. 4.23 which is only obtained when a ML

decoding is performed. For example, ZF decoding (Sec. 4.1.3.2) only achieves an order of

diversity of nt−nr+1 for nr≥nt.

ML decoding can be realized by an exhaustive search. In that case, the norm ‖Y −HX‖2

has to be computed for all possible codewords. The number of computations depends

the constellation size M . If the code is full rate, nt · nr symbols are transmitted in each

codeword and thus an exhaustive search requires Mnt·nr norm computations. This can

become prohibitively high for large number of antennas or/and high spectral efficiency

modulations.

Lattice decoder

By considering the linear property of real linear STBC, the decoding can be realized using

the lattice decoding presented in [103], with less complexity than the exhaustive search.
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Figure 4.7: Golden, Silver and Sari-Sezginer code performance on Rayleigh fading channel

with ML decoding

Figure 4.8: Constellations of STBC: (a) Alamouti code, (b) Golden code, (c) Silver code,

(d) Sezginer-Sari code

A lattice Λ in R
n is a discrete subgroup of Rn which spans the real vector space R

n:

Λ =

{
n∑

i=1

aivi | ai ∈ Z

}

where v1, v2 . . . vn is a base of Rn. Thus, using a matrix form we have Λ = {Va}, where

V = [v1 . . . vn] and a=[a1 . . . an]
T ∈ Z

n.

By vectorizing the vectors in R and using the generator matrix representation of real linear
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STBC, Eq. 4.12 can be rewritten:

Y = HX+N

vecC(Y) =

[
H 0

0 H

]
vecC(X) + vecC(N) (4.38)

vecR(Y) =




Re(H) 0 −Im(H) 0

0 Re(H) 0 −Im(H)

Im(H) 0 Re(H) 0

0 Im(H) 0 Re(H)




vecR(X) + vecR(N) (4.39)

YR = HRGRSR +NR (4.40)

YR = MRSZ +NR (4.41)

The last equation is obtained by assuming that the modulation format is a QAM (i.e SZ).

If the Space-Time code is full rank, GR is a base of Rn with n = 2ntT . As the coefficients of

HR are all independent, its lines can not be dependent and thus the matrix MR = HRGR

forms also a base of Rn. Therefore Λ = {MRSZ} is a lattice.

The ML decoding rule (Eq. 4.13) can be reinterpreted as a lattice closest point search:

Ŝ = argmin
S∈Zn

‖YR −MRSZ‖2 (4.42)

ÛΛ = argmin
U∈Λ

‖YR −UΛ‖2 (4.43)

The received point YR is not a lattice point as it has been transmitted over a noisy channel.

Lattice decoding consists of looking for the closest point to YR in a finite region centered

on the received point. The search region could be a sphere. The decoder looks for all lattice

points inside this sphere and select the closest one. As the number of considered lattice

point is limited, the decoding complexity is reduced. The Schnorr-Euchner decoder [104]

and the Sphere decoder [105] are two lattice search algorithms searching the closest point

inside the sphere. They follow different strategies but result in equivalent performance and

decoding complexity. In Appendix. C, we briefly describe the Sphere decoder presented in

[105] [95].

4.3 Polarization-Time coding

In Sec. 4.1.2, we have seen that polarization multiplexed optical OFDM system can be

considered as linear 2 × 2 MIMO system. The equivalent transmission model for each
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subcarrier is expressed by Eq. 4.5. Then in Sec. 4.2.2, we have shown that Space-Time

code can bring both coding and diversity gain in MIMO Rayleigh fading channels. The

straightforward idea is to apply space-time coding techniques to polarization multiplexed

optical transmissions. Here the polarizations have the same role as the antennas in wireless

communications. So this technique has been referred as polarization-time (PT) coding in

the literature.

However, optical fiber channel is not a Rayleigh fading channel and advantages of Space-

Time coding may not be the same in the context of optical fiber transmissions. For

example, spatial (or polarization) diversity derived from the error probability expression

have no obvious definition here.

Originally, PT coding has been proposed to mitigate polarization scattering induced by

XPM in WDM systems [78]. Alamouti code was used and it was observed that PT coding

significantly reduces the impact of the neighbor channels. However many details were

untold as for example the channel model or how the decoding was performed.

In [106] Alamouti code has been also proposed but in order to mitigate PMD in coherent

optical OFDM. PT-OFDM scheme seems to perform better than for example, turbo equal-

ization or regular polarization diversity OFDM. However authors have observed that when

combined with FEC, the advantages of polarization-time coding compared to the regular

scheme, is lost.

Alamouti code has been proposed against PMD also in DD-OFDM systems in [107]. PMD

induced a power fading at the reception that PT coding can mitigate. However no details

are given about the fading channel model.

4.3.1 PT coding against PMD

Many questions arise about the real efficiency of PT coding to mitigate PMD in OFDM

systems. First, PMD can be very easily removed in the frequency domain by OFDM (with

direct or coherent detection), when cyclic prefix is used. Without cyclic prefix, the channel

impulse response in Eq. 4.5 is not large and Space-Time decoding can not be performed

with a reasonable complexity. Moreover, PMD as CD, are dispersion effects and can not

be considered as fadings.

We consider an optical transmission scheme considering only PMD effects. The channel

transfer matrix has the form of Eq. 1.14. We have not taken into account the chromatic

dispersion as it is a deterministic effect and can be easily managed by OFDM cyclic prefix.

We can notice that the transfer matrix of the PMD is unitary (HkHH
k = I) which means

that it does not introduce any fading. The channel capacity expressed by Eq. 4.10 can be
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rewritten:

Ck =

2∑

i=1

EHPMD

{
log2

(
1 +

ρ

2
λ2
i

)}

Ck = 2 log2

(
1 +

ρ

2

)
(4.44)

Although PMD can be a very limiting impairment for transmissions, it does not reduce the

capacity of the channel. Indeed the capacity corresponds to two parallel gaussian channels

(Y=X+N). On such non fading channels, space-time coding technique brings no benefits

hence PT coding is useless against PMD in optical OFDM systems.

4.3.2 PT coding against PDL

Polarization dependent loss is a fading effect introduced by the in-line components of the

transmission. The channel transfer matrix of a component with PDL is given in Eq. 1.15.

We can see that the attenuation concerns only one of the channels but none of them can be

in fading at the same time (due to the optical amplifiers). The coefficient of the matrix are

not independent and identically distributed gaussian variables as in the case of a Rayleigh

fading channel. As ST codes are designed for Rayleigh fading channels, their performance

may be very different in an optical fiber transmission. Nevertheless we will show that they

are still very efficient in order to mitigate PDL fading effects.

4.3.2.1 A simple model of PDL

We consider an optical OFDM transmission scheme including only PDL effects.

Y = HPDLX+ N (4.45)

where HPDL corresponds to the transfer matrix expressed in Eq. 1.15:

HPDL = R1

[ √
1− γ 0

0
√
1 + γ

]

︸ ︷︷ ︸
D

R2

The channel transfer function depends on two random rotation matrices corresponding to

the angles ϕ1, ϕ2 and on the PDL value ΓdB . ϕ1 and ϕ2 are chosen uniformly in [0 2π].

ΓdB has a deterministic value expressed in dB.

Unlike PMD, PDL does reduce the channel capacity:

Ck = log2

(
1 +

ρ

2

√
1− γ

)
+ log2

(
1 +

ρ

2

√
1 + γ

)
(4.46)

where γ corresponds to the PDL attenuation expressed in Eq. 1.16. This can be seen

as the capacity of two parallel AWGN channels with their own SNR ρ1 = ρ
√
1− γ and

ρ2=ρ
√
1 + γ which are function of the PDL fading.
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Figure 4.9: (a) Ergodic channel capacity, (b) BER

In Fig. 4.9 (a), we represent the channel ergodic capacity for one subcarrier function of

the SNR for different values of PDL. In Fig. 4.9 (b), we plot the BER of one subcarrier

for 5 PDL values. We observed that PDL reduces the channel capacity and increases the

BER. For instance for a PDL of 6dB, there is a 2.2dB penalty at a BER of 10−3 compared

to the case without PDL. We can also remark that even in presence of PDL, the BER

follows a Q-function of the SNR. This has been demonstrated in [10]. Therefore the error

probability can be expressed as:

Pe ∼ Q
(‖HPDL (X1 −X2)‖

2N0

)
(4.47)

Note that this case is totally different from the Rayleigh fading channel where BER has

an asymptotic behavior and spatial diversity is defined as its slope. Here, talking about

polarization diversity in the same way that we defined the spatial diversity, has no sense.

4.3.2.2 Design criterion of PT codes

Considering an optical transmission scheme without PDL effects, we have a gaussian chan-

nel model (Y=X+ N). Minimizing the error probability is equivalent to maximizing the

minimal distance of the constellation. However Eq. 4.47 shows that in presence of PDL,

the BER also depends on the minimal distance:

dmin = min
X1,X2∈C

(‖HPDL (X1 −X2)‖) (4.48)

As outlined in [10], dmin corresponds to the smallest distance between a pair of constellation

points in the re-normalized space (re-normalized by PDL). The PT code having the best

performance on the optical fiber channel is the one having the highest minimum distance

dmin. For each PDL value, the transfer matrix HPDL is function of the random angles

ϕ1 and ϕ2 thus, the minimum distance of the code is only function of ϕ2. Indeed the

re-normalized space corresponds to a rotation of ϕ2 of the QAM constellation followed by



96 4. Polarization-Time coding

an attenuation that reduce the minimal distance. Hence the last rotation of ϕ1 has not

effect.
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Figure 4.10: Minimal distance between pair of codewords of Golden code, Silver code and

Sezginer-Sari code.

In Fig. 4.10, the minimal distance dmin of the Golden code, the Silver code and the Sezginer-

Sari [102] code are represented in function of the rotation angle ϕ2. QPSK modulation has

been considered.

We can observe that for PDL = 3dB, that the minimal distance of the Silver and the
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Sezginer Sari code is constant which is not the case of the dmin of the Golden code. When

PDL is increased to 6dB, Sezginer-Sari code becomes dependent of the angled and has its

minimal distance reduced for some rotations. However Silver code is still quite insensitive

to the rotation angle variation.

For these three PT codes, dmin shows a π
2 periodicity. As the rotation matrix angle is

uniformly distributed over [0, 2π], we can deduce the average minimum distance of each

code by averaging dmin on
[
0, π2

]
.

EH [dmin] (4.49)

In Fig. 4.11, we can see the decrease of the average minimal distance of the three PT codes

in function of the PDL. A very interesting result appears in this figure. Indeed the average

dmin of the Golden code is smaller than the one of Silver and Sezginer-Sari code. The

average minimal distance can not be directly related to the error probability but it gives a

good idea of the behavior of the codes.

The error probability depends on dmin, so according to Fig. 4.11, Silver and Sezginer-Sari

codes must outperform the Golden code. Note that both are quasi orthogonal Alamouti

layer structure codes their average minimal distance remains constant for small values of

PDL.

Unlike in 2×2 MIMO Rayleigh fading channel, here the Silver code is the best PT code.
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Figure 4.11: Average minimal distance of Golden code, Silver code and Sezginer-Sari code.
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Let us now find an expression for d2min.

‖HPDL (X1 −X2)‖2 =
∥∥HPDLX̄

∥∥2 (4.50)

=
∥∥R1DR2X̄

∥∥2 = ‖DR2X̄︸ ︷︷ ︸
U

‖2 (4.51)

we note ui,j the coefficients of the matrix U and vi = [ui,1 ui,2].

DU =

[ √
1− γu1,1

√
1− γu1,2√

1 + γu2,1
√
1 + γu2,2

]
(4.52)

‖DU‖2 = (1− γ)(‖u1,1‖2 + ‖u1,2‖2) + (1 + γ)(‖u2,1‖2 + ‖u2,2‖2) (4.53)

= ‖v1‖2 + ‖v2‖2 + γ
(
‖v1‖2 − ‖v2‖2

)
(4.54)

We note that a code with ‖v1‖2 = ‖v2‖2 for every pairs of points {X1, X2} ∈ C, is

insensitive to the PDL. For instance the Alamouti code satisfies this property. Let us note

the difference between two pairs of Alamouti codewords:

X̄A = X2,A −X1,A =

[
s̄1 −s̄∗2
s̄2 s̄∗1

]
(4.55)

We can show that:

‖DUA‖2 = 2
(
|s̄1|2 + |s̄2|2

)
(4.56)

which means that the minimal distance is independent of the PDL.

4.3.2.3 PDL mitigation with PT coding

Let us now evaluate the performance of PT code against PDL. We consider the system

presented in Fig. 4.1 where a QPSK modulation is used. Fig. 4.12 shows the BER in

function of the SNR for a PDL of 6dB.

We can clearly see the efficiency of PT coding against PDL. Without PT codes, the SNR

degradation induced by PDL is about 3dB at BER= 10−5 but using PT codes, the SNR

penalties are only 1dB with the worst code. We can even see that the Silver code almost

totally mitigate the PDL impairments and has its BER very close to the case without

PDL. Note that with no PDL, these codes do not introduce any penalties as they are by

construction redundancy free. Therefore, the use of a Polarization-Time code is always

profitable

These simulation results are in agreement with the previous section analysis. Indeed the

Silver and Sezginer-Sari codes perform better than the Golden code. This result is very

interesting because on Rayleigh fading channel, it is the opposite and Golden code has

the best performance (see Fig. 4.7). We deduce that space-time code performance and

polarization-time code performance are not based on the same criteria. For example, it is

obvious that the determinant criteria is not valid here and that dmin defined in the previous
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Figure 4.12: Performance of PT codes.

section is the relevant criterion. For practical values of PDL, Silver has its average minimal

distance constant which explains why its performance is so close and almost equal to the

PDL free error probability.

In optical transmission systems, the FEC requirement is to provide an output BER <

10−12 for an input BER > 10−3. The SNR penalties at BER = 10−3 are evaluated for

different PDL values on Fig. 4.13. There is a penalty about 1dB for a PDL of 3.5dB. This

is approximatively the order of degradation observed experimentally by [108] in a OOK

transmission. With a PDL of 6dB, the SNR penalty reaches 2.3dB. With the use of Silver

code the penalties are reduced to only 0.05dB for a PDL of 3dB and 0.3dB for a PDL of

6dB. It corresponds to a reduction of about 90% of the SNR penalties.

In Fig. 4.14, PT coding is combined with FEC. We use a lattice LDPC code C(349, 30, 4).
In the figure, the solid lines correspond to the use of the FEC and the triangle markers

correspond to the use of the Silver code. There is coding gain of ∼ 7dB at a BER of 10−5

using a FEC and a Silver compared to the case with no coding. The FEC brings 4.5dB

and the PT code, 2.3dB. There is less than 1dB of difference between the case with and

without PDL when FEC and PT coding are employed.

The Alamouti code presented in Sec. 4.2.3.1 has not been considered because of its low

rate. However, it has been shown in [109] that for very large values of PDL, Alamouti code

performs better than Golden and Silver codes.
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Figure 4.13: SNR penalties introduced by PDL at BER = 10−3 with and without PT

coding.
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Figure 4.14: Performance of PT codes with FEC.
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Alamouti symbol rate is half the symbol rate of the Silver and the Golden code. Hence,

the comparison between theses codes can be realized only at an equivalent symbol rate

Rs. As QPSK modulation is used for the full-rate codes (Rs = 4), hence a 16QAM has to

be considered to obtain the same symbol rate with the Alamouti code. Using a 16QAM

results in higher BER. For instance, in a AWGN channel, there is about a 4dB penalty at

10−5 between QPSK and 16QAM formats.

However, Alamouti code have the interesting property to have its minimal distance (defined

in the previous section) being constant for every values of PDL (according to our model).

So it is insensitive to PDL which confirms the conclusion in [109]. Therefore for very high

PDL values, Golden and Silver code can result in more than 4dB of penalty and thus have

lower performance than the Alamouti code. This observation confirms that the minimal

distance is a key criterion of the performance of PT coding in optical fiber transmissions.

In Fig. 4.15, the performance of the Alamouti code are plotted and compared with that

of the Silver code. Unlike the Silver, there is no performance degradation caused by

the increase of the PDL. However, as a 16-QAM is considered for the Alamouti code, it

performs about 3.5dB less than the Silver code.
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Figure 4.15: Performance of the Alamouti code (16QAM)

4.3.2.4 A second PDL model

In [110] authors have shown that PDL is a stochastic process following a Gaussian dis-

tribution. We propose a second model for the channel matrix where ΓdB is a gaussian

∼ N (0,PDL). R1 and R2 are still rotation matrices with uniformly distributed angles.

This model is quite different compared to the the previous one. Indeed fading are not
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Figure 4.16: (a) Outage probability (b) BER

constant anymore but random variables.

As the channel is random, we have to use the outage probability instead of the ergodic

capacity to describe the channel. The system is said to be in outage if the ergodic capacity

C is less than a given spectral efficiency Rs bit/cu. When this event happens, it becomes

impossible to decode correctly the information. The outage probability corresponds to the

probability that the system is in outage.

Pout = Pr{C(HPDL) ≤ Rs} (4.57)

The outage probability is often represented in function of the SNR for a given rate Rs.

Without PDL, the system is either always on outage (Pout = 1) or never on outage (Pout =

0). Indeed, capacity is a constant value and at a certain SNR, it becomes higher than the

target rate Rs. However, with PDL, the capacity is stochastic and the outage probability

decreases in function of the SNR.

In Fig. 4.16(a), the outage probability is represented for a rate Rs = 4 which corresponds

to a PDM-QPSK format. In the figure, we can clearly see three regions. For small SNR,

the system is always in outage, so Pout = 1. For high value of PDL, the system is never in

outage and Pout = 0. However there is an intermediary region where the outage probability

decreases in function of the SNR. The value of the PDL just determines how fast is the

decrease. Note that the behavior is very different than in Rayleigh fading fading where

there is always a possibility (even very small) to be in outage. Here, the system can be

seen as two parallel channels having there own fading, however, unlike the Rayleigh fading

case, these fading are correlated. Indeed, if one channel is under fading, the other is not

and both channel can not be under total fading at the same time. So for high SNR values,

the capacity of the single channel not under fading can be enough to reach the target rate

Rs and the system will never be in outage.

In Fig. 4.16(b) the error probability is represented in function of the SNR. It can be seen
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that unlike the previous model, the slope of the curves are functions of the PDL. Hence, this

model of PDL is more severe as it results in a SNR penalty and a smaller error probability

decrease.

Fig. 4.17 shows the performance of PT coding with this second PDL model. We can

observe that the slopes of the error probability with and without PT coding are different.

With PT coding, PDL causes only a small SNR degradation but the BER decrease is the

same as without PDL. Once again, Silver outperforms Golden code and the BER with

and without PDL are almost identical. The performance of PT coding is summarized in

Fig. 4.18. With this model of PDL, we observe a penalty of 3.8dB for a PDL of 6dB. Using

the Golden or the Silver code, the penalties are reduced to only 1dB which corresponds to

a 3dB coding gain.

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
10

−6

10
−5

10
−4

10
−3

SNR

BER

 

 

 PDL = 3dB  no coding
     "         Golden code
     "         Silver code
 PDL = 0dB

Figure 4.17: BER with and without PT coding.

Conclusion

In this chapter, we have introduced Polarization-Time coding to mitigate polarization

dependent loss in optical fiber transmissions. This technique requires optical OFDM (with

direct or coherent detection) in order to make the coding/decoding in the frequency domain.

The proposed polarization-time codes have been selected among the ones designed in wire-

less communication and we have considered three famous full-rate codes: the Golden code,

the Silver code and the Sezginer-Sari code. In Rayleigh fading channel, the code having

the best performance is the Golden code. However we have proved that the performance in
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Figure 4.18: SNR penalties introduced by PDL at BER = 10−3 with and without PT

coding.

optical fiber transmissions are quite different. Indeed the relevant criterion is the minimal

distance between pair of received codeword. Silver code and Sezginer-Sari code have higher

minimal distances than the Golden code and we have observed by simulations that they

both outperform the Golden code.

PT coding appears to be a very efficient technique to mitigate PDL impairments. In

particular the Silver code can remove quasi entirely the effect of PDL. Silver code has its

average minimal distance being constant for practical values of PDL and dmin starts to

decrease for PDL values higher than 6dB. This property is due to its quasi-orthogonal

layered structured. Indeed the Sezginer-Sari code shows the same behavior but dmin is

constant only until PDL= 3dB.

Moreover, We have shown that PT coding can be very efficiently combined with FEC.

We observed that the FEC coding gain is added to PT coding gain. Therefore the FEC

and the SSI scheme proposed in Chapter 2 and Chapter 3 and PT coding techniques are

compatible.

Polarization-time coding represents a very interesting solution for future generation of

transmissions systems. By mitigating the PDL, the quality of the transmission can be

improved and distances increased.
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Chapter 5

Equalization in multi-mode fiber

transmissions

introduction

The optical fiber is a waveguide that allows the propagation of multiple modes. A mode

is a certain spatial distribution of the electrical field in the transversal plane. Each mode

corresponds to a solution of the wave equation and depends on the refractive index profile

of the fiber. Hence, each mode propagates at its own velocity which can causes interferences

between the different modes.

Single mode fibers (SMF) are designed in order to let the propagation of only one mode,

called the fundamental mode. All the energy is focused in the core of the fiber. This kind

of fiber is usually chosen for long haul transmissions. SMF are characterized by a smaller

optical aperture (compared to multi-mode fibers) which makes the assembly cost higher.

Therefore multi-mode fibers (MMF) have been widely adopted in access networks where

the costs are a main issue [111].

Recently, MMF have attracted a lot of attention because of its multiplexing potential.

Indeed, it is possible to excite different modes separately and thus multiplex the data over

multiple modes. This technique is called mode group diversity multiplexing (MGDM) and

demonstration at 6Gb/s [112] and 10.7Gb/s [112] have been realized over few meters. The

main challenge of this kind of transmissions is to deal with the coupling between modes and

the large differential mode delay (DMD). Therefore an application in long transmissions

over hundreds or thousands of kilometers is only possible if these two impairments are

compensated.

Efficient MIMO equalization techniques already exist in optics to deal with PMD and bire-

fringence in polarization multiplexed systems. However, in MGDM systems, the DMD can

be particularly severe and causes interference between hundreds of symbols. Moreover mul-

tiplexing of tens of modes should be considered which makes the equalization complexity,
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one of the main issue.

In this chapter we will discuss about the MIMO equalization in multi-mode fiber trans-

missions. After presenting the MMF channel model in Sec. 5.1, we will investigate the

possible methods of equalization. We will present the principle of equalization based on

the channel estimation and show its performance in MMF systems in Sec. 5.2. Finally, in

Sec. 5.3 we will introduce OFDM as a solution to reduce the equalization complexity.

5.1 MMF channel model

Multi-core fibers are a new design of optical fibers having multiple core waveguides as

depicted in Fig. 5.1. They are a particular case of multi-mode fibers as having the energy

propagating in one of the core corresponds to a specific field spatial distribution and thus

a mode. In these kind of fibers, MGDM corresponds to a spatial multiplexing. Indeed a

signal can be transmitted in each core. However because of the coupling, a part of the

signal transmitted in one core is transferred on the others ones. Moreover depending on the

fiber design, the propagation velocity can be different from a core to another and results

in a differential mode delay. One of the advantage of multi-core fiber compared to regular

multi-mode fibers is the control of the fiber design that helps to know and choose the

amount of DMD and coupling between the modes.

The DMD can vary from few to hundreds of symbols. Note that we prefer to express the

delay in symbols rather than in seconds as we are concerned by the ISI. The optical channel

variation is very slow compared to the symbol duration, typically around 10kHz (100µs).

At 100Gb/s (50Gsymb/s with QPSK modulation), the channel is constant over 5000000

symbols. Hence, optical channel is considered as a quasi-static channel.

Transmission on a MMF fiber can be seen as a MIMO systems as represented in Fig. 5.2.

If there are Nmode transmitted modes the channel is equivalent to a N×N MIMO channel.

If polarization multiplexing is realized on each mode, we have so N = 2Nmode otherwise

N =Nmode. In the following we will consider N =6, which corresponds to either 6 modes

or 3 modes with polarization multiplexing. We note Ts the symbol duration on a mode.

For example, in a 100Gb/s QPSK transmission over 6 channels, the mode symbol rate is
100
26 Gb/s which corresponds to Ts=120ps.

In order to model the optical channel, we only consider the effects of the coupling and the

DMD. We extend the PMD transfer matrix function given in Eq. 1.14 to a N×N matrix.
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Figure 5.1: Multi-core fiber

Figure 5.2: MIMO representation of a MMF

transmission

For instance in the case of N=6 we use the following transfer function:

HDMD(ω) = R1




exp(
ıωa1τ

2
) 0 0 0 0 0

0 exp(
ıωa2τ

2
) 0 0 0 0

0 0 exp(
ıωa3τ

2
) 0 0 0

0 0 0 exp(
−ıωa4τ

2
) 0 0

0 0 0 0 exp(
−ıωa5τ

2
) 0

0 0 0 0 0 exp(
−ıωa6τ

2
)



R2 (5.1)

R1 and R2 are two N×N random unitary matrices corresponding to the coupling between

modes. τ is the maximum delay between the modes and ai are uniformly distributed values

over [−1 1]. DMD is a deterministic delay and depends on the fiber design. However in

our model we have considered random delays (ai random) as we do not have an accurate

knowledge of the fiber design and thus of the DMD.

If polarization multiplexing is considered, the lines have to be taken by pair and a2i+1 =

a2i+2 in absence of PMD. In order to take into account the effect of PMD, the transfer

function should be multiplied by a diagonal bloc matrix where each block is a 2×2 matrix

having the form of Eq. 1.14.

H = HDMD




HPMD 0 0

0 HPMD 0

0 0 HPMD


 (5.2)

The transfer matrix H is defined in the frequency domain. A frequency domain multi-

plication corresponds to a convolution product in the time domain and can be modeled

by a FIR filter (see Fig. 1.9). Therefore a N × N MIMO channel can be represented by
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N2 L-tap filters hi,j = [hi,j(1) hi,j(2) . . . hi,j(L)]
T corresponding to the channel impulse

response (CIR) in the time domain between the ith and the jth modes (see Fig. 5.3).

We note xi(k) and yi(k) respectively the transmitted and received symbols on the ith

channel at the time kTs. The received symbols can be expressed by:

yj(k) =

N∑

i=1

L∑

l=1

hij(l)xi(k − l + 1) + nj (5.3)

This equation can be rewritten into a linear system:

Y = HX+ n




y(k)
y(k−1)
y(k−2)

...


 =




H1 H2 ... HL 0 0 ...
0 H1 H2 ... HL 0 0 ...
0 0 H1 H2 ... HL 0 0 ...

. . .







x(k)
x(k−1)
x(k−2)

...


+ n (5.4)

where y(k) = [y1(k) y2(k) . . . yN (k)]T , x(k) = [x1(k) x2(k) . . . xN (k)]T . Each sub-matrix

Hi represents the ith taps of every channels:

Hi =




h1,1(i) h2,1(i) ... hN,1(i)

h1,2(i) h2,2(i)
...

...
. ..

h1,N (i) ... hN,N (i)


 (5.5)

If we assume that the signal and the noise energies are equal on each channel, their auto

covariance matrices can be expressed by:

Rx = σ2
xIN (5.6)

Rn = σ2
nIN (5.7)

where σ2
x and σ2

n are the respectively the modulated symbol energy and the noise variance.

In the following we suppose that noise and signal are uncorrelated (Exn = 0).

5.1.1 Fractionally spaced equalization

Until now we have assumed that the signal is sampled at 1 sample per Ts which is theo-

retically accurate but practically difficult to realize as the signal bandwidth is often larger

than fs = 1/Ts. Therefore sampling at fs is not enough to satisfy Nyquist theorem and

oversampling is necessary. In general the oversampling factor rov is chosen as an integer

in order to ease the implementation. So rov samples of the signal are taken every Ts. The

equalizer has to deal with a larger number of sample which increases the complexity.

The channel and the equivalent discrete channel model are represented on Fig.5.4(a) and

(b). The ith channel outputs after oversampling are yi(k
Ts

rov
) and we note the samples
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Figure 5.3: FIR channel model of a MMF transmission

yi(k) for clarity. The modulated symbols ui(k
′Ts) (noted ui(k

′)) are sent at each Ts so we

consider as zeros all the samples between.

xi(k) =

{
ui(

k
rov

) if k = 0 mod rov

0 else
(5.8)

where k is the index of the oversampling rate and k′ of the symbol rate. As in Eq.5.3 the

outputs can be expressed by:

yj(k) =

N∑

i=1

rovL∑

l=1

hij(l)xi(k − l + 1) + nj (5.9)

The outputs can be grouped by sampling time p:

yj(k
Ts

rov
)=yj(k

′Ts+p
Ts

rov
)=yj(rovk

′ Ts
rov

+p
Ts

rov
)

k′ ∈ N

0 ≤ p ≤ (nov − 1)

If we drop once again the notation Ts
rov

, we can rewrite the previous expressions as:

yj(rovk
′+p) =

N∑

i=1

rovL∑

l=1

hij(l)xi(rovk
′+p−l+1) + nj

yj(rovk
′+p) =

N∑

i=1

L−1∑

l′=1

hij(rovl
′+p+1)xi(rov(k

′−l′)) + nj (5.10)

This shows that the received samples only depend on a fraction of the CIR coefficients.

Therefore the system can be seen as rov parallel MIMO channels as depicted on Fig.5.4(c).



110 5. Equalization in multi-mode fiber transmissions

For instance, in the case of an oversampling of 2 samples per Ts, the even received samples

y0j (k
′)=y(2k′) only depend on the odd channel taps h1ij(l

′)=hij(2l
′+1) and the other way

around.

At the reception, the samples are grouped by sampling time p. Then the channel estimation

is realized independently for each group in order to estimate Hp, the CIR experienced by

the samples ypj (k
′) = yj(k

′Ts+p Ts
nov

). Each equalizers has to correct only a fraction of

the CIR so equalization of an oversampled signal is often referred as fractionally spaced

equalization (FSE).

Figure 5.4: a) Transmission channel with oversampling b) Discrete channel model c) Par-

allel discrete channel model

Eq. 5.10 can be rewritten in a matrix representation as:

YFSE = HFSEX+ n




y0(k)

y0(k−1)

y0(k−2)

...
yp(k)

yp(k−1)
yp(k−2)

...




=




H0
1 H0

2 ... H0
L 0 0 ...

0 H0
1 H0

2 ... H0
L 0 0 ...

0 0 H0
1 H0

2 ... H0
L

0 0 ...

. . .

H
p
1 H

p
2 ... H

p
L

0 0 ...

0 H
p
1 H

p
2 ... H

p
L

0 0 ...

0 0 H
p
1 H

p
2 ... H

p
L

0 0 ...

. . .







x(k)
x(k−1)
x(k−2)

...


+ n (5.11)

where yp(k)=[yp1(k) . . . y
p
N (k)]T .

In the following, we are going to focus on the channel estimation and equalization principles.

In a matter of clarity, they will be presented in the case of no oversampling. However in
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our numerical simulation, an oversampling factor of 2 has been used.

5.2 Equalization by channel estimation

It exists two main equalization methods:

1. Blind adaptive equalizer such as CMA or DD-LMS which are currently used in po-

larization multiplexed systems. However for a large number of channels (N ≥ 4) the

convergence of such techniques may be slow or problematic.

2. Channel estimation with a training sequence before to realize the equalization. This

reduces the transmission effective bit-rate due to the introduction of an overhead

but it does not suffers of convergence problems. Note that as the channel is varying

very slowly, there is no need to update the equalizer very often. Hence the intro-

duced overhead is very limited and the complexity is smaller than with adaptive

equalization.

According to the property of the MMF channel (slow variation, large number of modes),

we will focus in this chapter on the equalization by channel estimation. Note that as the

channel is estimated, the equalization can be seen as a decoding.

Figure 5.5: Equalization principle

We consider the optical transmission channel represented in 5.5. x(k), y(k) are respectively,

the transmitted and received symbols at the sampling rate kTs/rov . The discrete channel

takes into account the pulse shaping filter, the DMD and the matched filter at the reception.

In our numerical simulations, we uses a raised cosine pulse shaping [4]:

p(t) = sin c(t/Ts)
cos (πρoff t/Ts)

1− 4ρ2off t
2/T 2

(5.12)

where ρoff ∈ [0 1] is the roll-off factor that characterize the pulse decay. A large value

for ρoff results in a fast decay and thus a short pulse which reduces the ISI caused by

sampling timing error. However it leads to larger spectrum bandwidth.

The equalizations is realized based on the channel knowledge therefore the first step is the

estimation of the discrete channel.
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5.2.1 MIMO channel estimation

The principle of channel estimation is to transmit periodically a training sequence known

at the transmitter and the receiver in order to estimate the channel impulse response.

When the channel is slowly varying, training sequences are usually sent by block before

the data. In Sec. 5.1, it has been seen that the channel can be interpreted as FIR filters.

The channel estimation corresponds to the computation of these filter taps.

We first rewrite the channel model of Eq. 5.4 into a new form. si(k) denotes the training

symbol emitted on the ith mode. Ns is the number of training symbols per mode and L is

the length of the CIR. Let us define:

hi = [hT
1,i hT

2,i . . . hT
N,i]

T (5.13)

Si =




si(L) si(L−1) ... si(1)
si(L+1) si(L) ... si(2)

. . .
si(Ns) ... ... si(Ns−L+1)


 (5.14)

Eq. 5.4 can be rewritten into an equivalent linear channel model:

yi = S hi + n (5.15)

where S = [S1 S2 . . .SN], n is the noise vector and yi = [yi(L) . . . yi(Ns)]
T are the

symbols received on the ith mode.

The channel estimation is based on the least-square error (LSE) criterion presented in

Appendix D. Indeed, although mean-square error (MSE) criterion is more accurate, it

requires the knowledge of the channel statistic which is not always available at the receiver.

Hence we search the optimal value of ĥi that minimizes ‖yi−Sĥi‖2. The solution is given

by Eq. D.7:

ĥi = (SHS)−1SH yi 1 ≤ i ≤ N (5.16)

ĥi has NL coefficients (N L-tap FIR filter in parallel as depicted in Fig. 5.3). How-

ever we can see it as an unique L-tap filter where a tap is the N coefficients ĥi(k) =

[ĥ1,i(k) . . . ĥN,i(k)] (see Fig. 5.6).

In Fig. 5.7, we represent the channel estimation mean square error defined as:

MSE = ‖h1:N − ĥ1:N‖2 (5.17)

In function of the SNR. The MSE describes the accuracy of the channel estimation. In our

simulations, the DMD is 600ps so 5Ts at 100Gb/s. The pulse shape is a raised cosine with

a roll-off factor ρoff =0.2 in (a) and ρoff =0.5 in (b).

The training sequence length is defined in number of symbols per estimated taps (noted

symb/tap). We use in our numerical simulation a training sequence of 100 symbols per
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Figure 5.6: Channel model

estimated taps, which means that if the channel is estimated over 11 taps, there are 1100

training symbols transmitted on each modes. There are 6 modes so the total training

sequence length is 6600 symbols. Note that as we use an oversampling factor of 2, one tap

of the filter represents only half a symbol duration. Therefore if the ISI occur among 5

symbols, at least 10 taps are necessary (5 taps for the odd samples and 5 taps for the even

samples).

In Fig. 5.7, we have represented the Cramer-Rao lower bound (CRB) [113] which is a

general bound on the minimum MSE estimation of a random parameter. It depends on

the size of the training sequence. The LSE estimator reaches this bound. However we

observe that the MSE tends to this bound when the number of estimated taps increases.

Indeed, because of the pulse shape and the DMD there are some ISI and the CIR is large.

Consequently, the estimation has to be realized over a number of taps larger than the

discrete CIR in order to reach the CRB.
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Figure 5.7: MSE function of the SNR for various number of estimated taps and a training

sequence of 100 symb/tap. The pulse shape is a raised cosine with: (a) ρoff = 0.2 (b)

ρoff =0.5
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The raised cosine has an infinite response but if the roll off factor is large enough, the

response decreases very fast and introduces some significant ISI only over a limited number

of symbols. The discrete channel impulse response is actually larger than just the dispersion

delay and strongly depends on the pulse shape. In Fig. 5.7 (a), a raised cosine with a roll-

off factor ρoff = 0.2 is employed and estimating the channel on 13 taps is not enough.

On the other hand, with a roll-off factor ρoff =0.5 the discrete CIR is about 9 taps long.

Therefore a shorter pulse shape results in a shorter discrete channel and thus less taps to

estimate.

Fig. 5.8 shows the decrease of the MSE when the number of training symbols increases.

The MSE has been estimated for a SNR of 20dB and a training sequence of 100 symb/tap.
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Figure 5.8: MSE function of the training sequence size. The CIR is estimated over 2× 11

taps.

5.2.2 Finite-length MIMO MMSE equalizer

A N × N MIMO equalizer is a bench of N2 NW -tap FIR filters as depicted in Fig. 5.9.

wi,j(k) corresponds to the kth tap of the FIR filter between the ith input channel and the

jth output channel. The equalizer can be seen as a NW -tap filter W = [W1 . . .WNW
]

with:

Wk =




w1,1(k) w2,1(k) ... wN,1(k)

w1,2(k) w2,2(k)

...
. . .

w1,N (k) ... w1,N (k)


 (5.18)
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Figure 5.9: MIMO FIR equalizer

The equalizer estimates x(k) or a delayed version of it, x(k −∆) as:

x̂(k −∆) = W Yk:k−NW+1 (5.19)

= [W1 W2 . . .WNW
]




y(k)
y(k−1)
y(k−2)

...
y(k−NW+1)




where y(k) = [y1(k) y2(k) . . . yNW
(k)] and ∆ is the delay .

Finding the linear equalizer (or estimator) minimizing the mean square error (MMSE)

E‖x̂(k−∆)−x(k−∆)‖2 corresponds to the problem defined by Eq. D.2 and the optimal

solution is given by Eq. D.4:

WMMSE = Rx(k−∆)Y R−1
Y (5.20)

From Eq. 5.4, we have Y= ĤX+n with X= [x(k) . . . x(k−L−NW +2)]T and Ĥ is the

channel transfer matrix whose coefficient have been estimated by the channel estimation.
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Hence, the auto-covariance matrices can be computed as follows:

Rx(k−∆)Y = E x(k −∆)YH

= E

[
x(k −∆)XH ĤH

]

= E

[
x(k −∆)[x(k)H . . .x(k − L+NW )H ] ĤH

]

= [0 . . . 0︸ ︷︷ ︸
∆

Rx 0 . . .] ĤH (5.21)

RY = E YYH

= ĤRxĤ
H +Rn (5.22)

Finally the MMSE filter is expressed by:

WMMSE = σ2
xΦ∆ĤH

(
σ2

xĤĤH + σ2
nI
)−1

(5.23)

with Φ∆ = [0 0 . . . 0 I 0 . . .] being a N×N(NW + L − 1) zeros bloc matrix with the

identity at the position ∆+1.

Fig. 5.10 presents the performance of the MMSE equalizer for different filter length Nini.

We can see that the performance converges when the training sequence length increases.

However it does not converge to the optimal performance (represented in black in the plot

and corresponding to the maximum likelihood detection). Indeed the filter has only 2×7
taps which is smaller than the discrete CIR. Therefore, by estimating the channel with

more taps, we obtain better performance.

In Fig. 5.11, we represent the BER function of the training sequence length at a SNR of

10dB. The equalizer length (thus the estimation) corresponds to 2×7, 2×11 and 2×19 taps.

A larger filter performs closer to the optimal performance. We observe that performance

converges when the training sequence length increases. A length of 100 or 200 samp/tap

are enough to ensure near convergence performance.

5.2.3 Experimental data analysis

In this section, we evaluate the performance of the channel estimation and the MMSE

equalization on experimental data coming from a polarization multiplexed transmission.

The transmitter scheme is represented on Fig. 5.12. The data are generated by 4 pseudo-

random binary sequences (PRBS) at 7Gb/s. The length of each PRBS is 215−1 bits.

The data are then multiplexed into a single bit sequence at 28Gb/s corresponding to the

in-phase signal. The quadrature signal is obtained by cyclically shift the in-phase signal by

50 bits. The I/Q components are transformed into an optical QPSK signal by the optical

I/Q modulator. The bits zero are converted into a negative amplitude and the bits one
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Figure 5.10: Performance of MMSE equalizer in the case of 6Ts DMD, ρoff = 0.2 and a

2×7-taps filter
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Figure 5.11: BER at SNR=10dB in function of the equalizer length

into a positive amplitude. For instance ‘01‘ is transformed into the QPSK symbol−1+ı.

The optical signal is separated in two by a 3dB coupler, then one branch is delayed by a

certain number of symbol duration and finally the two optical signals are combined by a

polarization beam splitter.

The signal is received by an optical coherent receiver and digitalized by four ADC corre-
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Figure 5.12: transmitter experimental setup

sponding to the in-phase and quadrature components of each polarization. The sampling

rate of the ADC is 50GHz, which corresponds approximatively to 1.7 samples per symbol

duration.

To ease the equalization, the signal is resampled into an integer number of samples per

symbol duration. This can be performed either in the time domain or in the frequency

domain as depicted in Fig. 5.13. Sampling at 1.7 samp/Ts is enough to satisfy Nyquist

theorem which means that the analog signal can be perfectly reconstructed from the sam-

ples. Therefore the samples corresponding to 2 samp/Ts sampling can all be computed

using the time convolution by a sinc function. However, re-sampling can be achieved in a

more efficient manner in the frequency domain. The sampled signal spectrum is computed

by an FFT and corresponds to the optical signal spectrum periodically repeated with a

1.7/Ts spacing. Zeros are then added in order to increase the distance until having a 2/Ts

spacing between the spectrums. Finally, the re-sampled signal is obtained by an iFFT.

Figure 5.13: Re-sampling principle: (left) in the time domain, (right) in the frequency

domain

In order to realize the channel estimation, the knowledge of the training sequence is re-

quired. We assume that first received symbols corresponds to the training sequence. How-

ever in practice, we do not know which part of the PRBS sequence, the first received

symbols are. Therefore we have to synchronize the received signal with the PRBS. This is

realized by searching in transmitted sequence which part corresponds to the first received



5.2. Equalization by channel estimation 119

symbols. Each time, we compute ĥ using Eq. 5.16 and synchronization corresponds to the

minimal value of ‖y−Sĥ‖.

Note that the channel estimation presented in Sec. 5.2.1 supposes that the channel is

constant during the transmission of the training sequence. However due to the frequency

offset of the laser, there is a phase shift which makes the estimation impossible if the offset

is not compensated before. As presented in [114], a joint channel and frequency offset

estimation can be performed based on training sequences. However in our simulations

the initial frequency offset has been obtained by first performing the CMA (which is not

sensitive to phase shifts) and then evaluating the offset on the equalized data as in [27].

After the channel estimation, MMSE equalization is performed. The PMD and the birefrin-

gence can be compensated by the equalizer because they are varying very slowly however

the phase shift due to the frequency jitter and the phase noise can not. Therefore, the car-

rier phase has to be recovered and tracked using for instance the Viterbi-Viterbi algorithm

and the frequency offset compensated as discussed in [115].

Fig. 5.14 represents the MMSE equalizer performance compared to the CMA performance.

The training sequence length is 100 symbols per taps and the equalizer length is 2×7

taps. Note that as it is a back-to-back experiment (no DMD) and as NRZ pulse shape is

employed (no ISI), a shorter equalizer may have been chosen. We can see the the MMSE

equalizer slightly outperforms the CMA.
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Figure 5.14: Performance of MMSE equalization on a PDM-QPSK transmission
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We use the back-to-back experimental data as input signals of a MMF transmission sim-

ulation (see Fig. 5.15). In order to generate the signals on other modes, the experimental

data have been delayed by 144 and 341 Ts. As we consider a polarization multiplexing,

three modes correspond to a 6×6 MIMO system.

In the simulation the equalizer length is 2× 7 taps. We can see in Fig. 5.16 that for

small values of DMD, the equalizer performs very close to the back-to-back performance

which means that the ISI is almost perfectly compensated. However, for DMD≥5.5Ts the

performance is degradated.

Figure 5.15: Simulation of an MMF transmission based on experimental back-to-back data
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Figure 5.16: Performance of MMSE equalization in a MMF transmission based on experi-

mental data
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5.2.4 Complexity and overhead

The equalization complexity includes the CIR estimation (Eq. 5.16) and the equalizer

coefficient computation(Eq. 5.23).

In Fig. 5.10 we have observed that a training sequence with 120 symbols per taps gives

enough accuracy to the channel estimation. However a tap actually corresponds to N =6

FIR coefficients. Therefore we define ktr = 20, the number of training symbols per FIR

coefficient. The total number of training symbols is equal to ktrN
2L.

The channel estimation is a matrix multiplication between A = (SHS)−1SH and the

received symbols yi. A is a (NL)× (ktrNL−L+1) matrix and is perfectly known at

the receiver (it only depends on the training sequence). Therefore the channel estimation

complexity (in multiplication number) is:

∼ O
(
k2trL

3N4
)

(5.24)

At 100Gb/s, the channel is considered constant over 5000000 symbols. Some of the symbols

belong to the training sequence, thus are not data, and introduce an overhead. Fig. 5.17

shows the overhead introduced by the training sequence and the complexity of the channel

estimation function of the CIR length and the number of channels.

For a N = 14 (14 modes or 7 polarization multiplexed modes) and a training sequence

length of 200 symb/taps, the overhead is about 15% whereas with N=6 it corresponds to

only 3%. In the same way, we observe that the channel estimation complexity can be very

large for large values of N.
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Figure 5.17: (a) Overhead introduced by training sequence at 100Gb/s, (b) CIR compu-

tation complexity

The FIR equalizer coefficients are computed following Eq. 5.23. H is a (NNW )×(N(NW+

L−1)) matrix thus, the complexity is ∼ O
(
N3N3

W +N2
WL
)

for HHH , ∼ O
(
N3N3

W

)
for

the matrix inversion and ∼ O
(
N3N2

W

)
for the Φ∆HH multiplication.
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The size of the equalizer has to be at least as large as the CIR length so, NW =rovL. The

total complexity of the MMSE filter coefficient computation is equal to:

∼ O
(
N3
[
(2f3

ov + f2
ov)L

3 + f2
ovL

2
])

(5.25)

and is represented in Fig. 5.18 for fov=2.
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Figure 5.18: MMSE filter coefficient computation complexity

Once the filter coefficients found, the modulated symbols can be estimated as presented in

Fig. 5.9 which requires NL multiplications for each output.

5.3 Optical MMF OFDM

Realizing the equalization in the time domain can result in a high complexity when mode

dispersion is large and when many modes are employed. Using OFDM can reduce the

complexity because only 1-tap equalizers are necessary in the frequency domain. Therefore,

the computation of the equalizer coefficients is reduced. However, OFDM introduces a

cyclic prefix that increases the overhead. A description of optical OFDM system has been

given in Sec. 4.1.

5.3.1 OFDM equalization complexity

We denote NFFT the size of the FFT and the cyclic prefix length is assumed to be superior

to the discrete CIR. Channel estimation is realized in the time domain and then converted

in the frequency domain by:

h̃i,j = Fhi,j (5.26)

where F is a NFFT×L Fourier transform unitary matrix and h̃i,j=[h̃i,j(1) . . . h̃i,j(NFFT)]
T .

So converting the N2 CIR in the frequency domain requires ∼ O
(
N2NFFTL

)
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Once the channels for each sub-carrier are known, we have to compute the MMSE equalizer

coefficients using Eq. 5.23:

Wi = σ2
xH̃

H
i

(
σ2

xH̃iH̃
H
i + σ2

nI
)−1

i = 1 . . . NFFT (5.27)

where H̃i is now a N×N matrix:

H̃i =




h̃1,1(i) h̃2,1(i) ... h̃N,1(i)

h̃1,2(i) h̃2,2(i)
...

...
. ..

h̃1,N (i) ... h̃N,N (i)


 (5.28)

Therefore, computing all the filters requires ∼ O
(
3NFFTN

3
)
. Fig. 5.19 shows the com-

plexity of the filter coefficient computation in an OFDM system with NFFT = 1024. We

have introduced the complexity of performing the FFT (to convert the CSI in the frequency

domain) which explains the dependence to the CIR length. In light grey, the complexity

of the MMSE equalizer coefficient computation in the time domain is represented. We can

observe that OFDM technique results in a lowest computation complexity. For instance,

with N=3 and 200 symb/tap, OFDM requires 1000 times less multiplications.
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Figure 5.19: MMSE filter coefficient computation complexity

Finally the estimated symbols are obtained by a simple matrix multiplication, giving N

symbols by N2 multiplications thus each one at the cost of only N multiplications. Note

that in the time domain NL operations were required.

5.3.2 OFDM with large dispersion

An OFDM symbol length corresponds to the size of the FFT plus the cyclic prefix. The

size of the cyclic prefix has to be at least as long as the dispersion delay in order to keep
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the orthogonality between the subcarriers. Therefore if the dispersion is large, the CP

introduces a significant redundancy.

For example, let us consider a FFT over 512 symbols. We know that mode dispersion can

be more than 100 symbols which means that the cyclic prefix would introduce at least 20%

of redundancy. This may not be suitable for all kinds of applications.

On the other hand, the cyclic prefix can be set to a given size. If the dispersion delay is

larger, it results to inter-carrier and inter-symbol interferences. A solution to this problem

is called channel shortening, also known as time-domain equalizer (TEQ). It consists in a

receiver front-end FIR filter which reduces the channel impulse response experienced by

the receiver [116][117]. Thus, the received signal is first equalized in the time domain in

order to partially reduce the CIR to a length smaller than the cyclic prefix. Then, the CP

is removed and FFT is applied to convert it in the frequency domain (see Fig. 5.20).

Figure 5.20: Channel shortening before the OFDM receiver

The introduction of a multi-tap filter increases the complexity of the equalization but as

the CP still removes a part of the dispersion, the equalizers only deals with a fraction of

the total dispersion and thus the filter size is smaller than in single carrier transmissions.

Therefore, optical OFDM, even for large delay transmissions has a lower receiver complexity

compared to the single carrier case.

5.3.2.1 Maximum shortening signal to noise ratio (MMSNR)

MMSNR channel shortening was originally proposed by Melsa et. al in [117]. The original

idea was to minimize the energy of the CIR outside a window of length ν + 1, with ν

corresponding to the size of the cyclic prefix. However this may lead to a complicated

solving problem thus alternatively, it has been proposed to maximize the energy inside the

window [118].

We consider the shortener filter W = [W1 . . .WNW
]. We want the equivalent channel Heq
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to have an impulse response called target impulse response (TIR), of length ν + 1 thus:

Heq = W H

= [W1 . . .WNW
]




H1 H2 ... HL 0 0 ...
0 H1 H2 ... HL 0 0 ...

. . .
0 0 H1 H2 ... HL


 (5.29)

= [ 0 . . . 0︸ ︷︷ ︸
∆

Heq
1 . . .H

eq
ν+1 0 . . .]

The ∆ front zeros N ×N matrices correspond to the delay of the shortener equalizer. We

can define Hwin as the block columns of H corresponding to the window and Hwall the

other ones. This can be written as:

Hwin = H G∆ (5.30)

Hwall = H G∆ (5.31)

with G = diag([0∆N I(ν+1)N 0(NW+L−∆−ν)N ]) and G∆ = I−G∆.

The expression of the energy inside and outside the window can be written as:

εwin = trace{W HwinH
H
win︸ ︷︷ ︸

B

WH} (5.32)

εwall = trace{W HwallH
H
wall︸ ︷︷ ︸

A

WH} (5.33)

The problem of maximizing the energy inside the window and keep the energy outside

contained can be formulated by:

Wopt = argmax
W

trace
{
W B WH

}
subject to W A WH = I (5.34)

MMSNR method does not take into account the noise but it can be extended to the noisy

case [119] by redefining the problem with A = HwallH
H
wall + σ2

nI.

As presented in [118], the solution to the problem is given by:

Wopt = L−1 U (5.35)

where L is obtained by the Cholesky decomposition of the matrix A, A=LH L and U are

the N eignvectors corresponding to the N largest eignvalues of the matrix (LH)−1 HHH L−1.

Fig. 5.21 presents an example of channel shortening. The CIR was originally 11taps long

and after the filter it has been reduced to only 5 taps. Therefore a CP corresponding to

5Ts would be enough to ensure no interference in the frequency domain.
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Figure 5.21: CIR and TIR

5.3.2.2 Minimum mean-square error (MMSE)

MMSE channel shortening is a second method to reduce the CIR. We keep calling Hwin

the target impulse channel and W the shortening filter. The MMSE shortening equalizer

intends to minimize the mean square error between the output of W and the output of

the virtual short channel (with a delay ∆). This scheme is represented in Fig. 5.22 where

X∆ = [x(k−∆)T . . .x(k−∆−Nwin+1)]T , X = [x(k)T . . .x(k−L−NW+2)]T and the error

can be expressed as:

ε = HwinX∆ −WY (5.36)

Figure 5.22: Scheme of the MMSE shortener equalizer

We note β = HwinX∆. The auto covariance matrix and the covariance matrix between β
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and Y can be written as:

Rβ = Hwin σ2
xINwin︸ ︷︷ ︸
Rx

HH
win (5.37)

RβY = EβYH

= E HwinX∆X
HHH

= Hwin σ
2
xΦ∆H

H

︸ ︷︷ ︸
Rxy

(5.38)

where Φ∆ = [0 . . . 0 I 0 . . .] has ∆ leading zero matrices.

The problem now corresponds the the minimization of E|ε|2 with W being an estimator

of HwinX. The optimal value Wopt and the corresponding error auto covariance are given

by Eq. D.4 and Eq. D.5:

Wopt = RβYR−1
Y

= Hwinσ
2
xΦ∆H

H
(
σ2
xHHH + σ2

nI
)−1

(5.39)

Re = Rβ −RβYR−1
Y RYβ

= Hwin

(
Rx −RxyR

−1
Y Rxy

)
︸ ︷︷ ︸

R

HH
win (5.40)

We are in front of an optimization problem with two parameters Hwin and W. Wopt has

been expressed in function of Hwin by following the MMSE criterion. Therefore we now

have to find the optimal expression of the shorten channel Hwin in order to minimize the

error auto covariance trace. We can add some constraints to the TIR. As proposed in

[116], we impose to the TIR to have an unit norm (HwinH
H
win = I) and thus the problem

becomes:

H
opt
win = argmin

R

trace
{
W R WH

}
subject to Hwin HH

win = I (5.41)

The optimal solution is obtained with H
opt
win being the eigenvectors corresponding to the

N minimal eigenvalues of R [120].

Conclusion

In this chapter, we have investigated the issue of digital equalization in multi-mode fiber

transmissions. Mode group diversity multiplexing in MMF presents a great potential to

increase the capacity of future generation of optical systems. Indeed, several streams of

data can be simultaneously transmitted on the different modes supported by the fiber.



128 5. Equalization in multi-mode fiber transmissions

However, the main challenge is to deal the severe inter-symbol interferences caused by the

coupling between the modes and the large differential propagation delay.

Digital signal processing is already efficiently employed in polarization multiplexed system

to mitigate polarization impairments. Unlike PDM systems, we propose to realized the

equalization based on the channel estimation. Training sequence are transmitted before

the data in order to estimate the channel and the equalizer coefficients are computed

afterward. We have shown that this technique has very good performance compared to

CMA and does not have convergence problem. Moreover as the optical channel varies very

slowly, it doesn’t introduce too much overhead.

When the DMD is large, the complexity of equalization in the time domain can be very high

and consequently, OFDM becomes an interesting alternative. We have shown that OFDM

results in a lower equalization complexity but introduces an extra overhead. Therefore, we

have presented two methods of pre-filtering in order to reduce the channel impulse response

and thus, allows smaller cyclic prefix length.
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Conclusions & Perspectives

In this work, we have proposed new digital signal processing techniques in order to improve

the quality of actual and future generations of optical transmission systems. By "quality",

we mean several criteria such as the performances (SNR improvement) of the transmission,

the complexity of the receiver or the transmission bit-rate.

With the come-back of coherent detection and the development of high-speed electronics,

soft-decision FEC have appeared to be a promising solution to improve the performance

of optical systems. More than 2 dB coding gain could be obtained compared to the

concatenated FEC schemes currently used. However, their implementation at very high

bit-rates is a very challenging issue.

LDPC codes and product codes are the two candidate families of soft decoding FEC.

We have investigated their decoding algorithms and show that LDPC codes is the most

appropriate family in terms of both performance and decoding complexity. The FEC are

expected to have high rates (≥ 0.85), good performance (∼ 10dB coding gain, low error

floor) and to ease the practical implementation (short codeword length, structured parity-

check matrix). To satisfy these criteria, most of the LDPC proposed in the literature are

based on combinatorial constructions which result in quasi-cyclic codes. However, due to

construction constraints, the performance are not optimal and the design parameters (rate,

codeword length, sparseness of the parity-check matrix) can not be chosen freely.

We have proposed an original construction of QC-PEG LDPC codes based on the progres-

sive edge growth algorithm. The construction intends to minimize the number of short

cycles in the parity-check matrix thus improve the performance and reduce the error floor

level. In order to obtain a quasi-cyclic structure, we have introduced and based our algo-

rithm on the labeled Tanner graph. Moreover, the design parameters can be chosen with

no constraint. QC-PEG LDPC performs better than algebraic constructions and results

in codes having higher girth and less short cycles.

Powerful FEC are necessary to deal with the SNR degradation caused by the transmission

impairments, especially at high bit-rates. Another source of degradation comes from the

differential encoding of the information. However, this type of encoding is necessary due to

the lack of phase reference in direct detection systems and to the phase ambiguity caused
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by the phase recovery in coherent detection systems. In order to mitigate this impairment,

we have proposed an original coding/decoding scheme named structure symbol interleav-

ing. By interleaving codewords by blocs of bits, we have demonstrated a performance

improvement. This codeword structure also leads to a very reduced decoding complexity.

The complexity reduction can reach 50%. Moreover we have shown that by using two

different FEC, the total complexity can be reduced with no performance degradation.

Our coding/decoding scheme can be very profitable for the use of LDPC in optics. Indeed

LDPC are characterized by a high decoding complexity and large redundancies and both

could be reduced by the SSI scheme.

Then, we have investigated the use of space-time coding in optical transmissions. They are

used in polarization multiplexed systems by modulating jointly the two polarizations. If

the advantages of these techniques are now obvious in wireless transmissions, it was not the

case for optical transmissions. We have demonstrated for the first time that ST coding can

very efficiently mitigate polarization dependent loss. However, they can not be employed in

single carrier transmissions due to an excessive decoding complexity and OFDM is required.

We have analyzed the performance of several ST codes and show that they differ from the

wireless case. In particular, we have observed that the determinant construction criterion

is not relevant and outline a new criterion based on the minimal distance. The numerical

simulations confirm this analysis and show that Silver code performs better than Golden

code against PDL.

ST coding is the only solution that can really deal with PDL. We have observed that Silver

code can compensate almost 90% of the PDL impairments. Therefore the implementation

of ST code in future 100-400Gb/s OFDM systems can be very profitable.

Finally, we have studied MIMO equalization in multi-mode fiber transmission. MMF

transmissions are very promising because mode multiplexing can be realized in order to

increase the channel capacity compared to classical transmissions on SMF. However, due

to the large number of modes and the severe ISI, the equalization is very challenging.

We have proposed to estimate the channel by a training sequence before to compute the

MMSE equalizer. We observed by numerical simulations that the ISI can be very efficiently

mitigated when the channel has been well estimated.

When the CIR is very large, we have proposed to realize the equalization in the frequency

domain, by using OFDM, in order to decrease the complexity. To avoid excessively long

cyclic prefix, we have also presented channel shortening techniques.

Perspectives

The principal perspectives of this work are:

• The experimental validation of the concepts presented in the thesis.
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- We are interested in evaluating the performance of the SSI scheme in a real

long-haul transmissions systems and we want to observe the influence of the

linear and nonlinear impairments on the results. We would like to propose a

specific coding scheme based on the QC-PEG LDPC presented in the chapter

2 and taking advantages of the complexity and the redundancy reduction.

- An analysis of the QC-PEG LDPC error floor level can be realized in order to

compare with the other LDPC codes proposed in the literature, in particular

the CIDS-LDPC.

- We have started a collaboration with Karlsruhe Institute of Technology (KIT) in

the frame of the project EUROFOS in order to realize a PDM-OFDM transmis-

sion using polarization-time coding. We want to validate the results obtained by

numerical simulations and compare the performance of Silver code with other

codes.

• The continuation of the work about space-time coding techniques in optical trans-

mission systems

- In Chapter 4, we have observed that space-time codes are a very efficient so-

lution to mitigate PDL in optical OFDM systems. We have shown that their

performance is very different than in wireless systems and derived a construction

criterion based on the minimal distance.

In a future work, we want to design new polarization-time codes adapted to

optical systems that are PDL insensitive and hence performing better that the

Silver code.

- Space-time code can be employed not only in polarization multiplexed trans-

mission but in all kinds of optical MIMO systems. A WDM transmission can

be seen as a MIMO system where the transmitted wavelength are the outputs

and the received wavelength are the outputs. Due to the transmission impair-

ments, mainly nonlinear effects, the wavelength interact and can be received

with unequal SNR. For instance, a QPSK channel can be impaired due to the

co-propagation with a neighbor OOK channel. Therefore using space-time cod-

ing techniques may improve the performance of WDM systems.
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Appendix A

OA-LDPC construction

Let us build an OA-LDPC based on the 1-OA(42, 4 + 1, 4, 2). We note α the primitive

element of GF (4) and its primitive polynomial is X2 +X +1. The elements of GF (4) are

[a1=0 a2=1 a3=α a4=α2].

We determine all the polynomials of GF (4)[X] with degree up to 1:

P1=0 P2=1 P3=α P4=α2

P5=X+0 P6=X+1 P7=X+α P8=X+α2

P9=αX+0 P10=αX+1 P11=αX+α P12=αX+α2

P13=α2X+0 P14=α2X+1 P15=α2X+α P16=α2X+α2

We create the orthogonal array such that A(i, j) = Pj(ai). A fifth line is added corre-

sponding to the major coefficient of Pj

A =




0 1 α α2 0 1 α α2 0 1 α α2 0 1 α α2

0 1 α α2 1 0 α2 α α α2 0 1 α2 α 1 0

0 1 α α2 α α2 0 1 α2 α 1 0 1 0 α2 α

0 1 α α2 α2 α 1 0 1 0 α2 α α α2 1 0

0 0 0 0 1 1 1 1 α α α α α2 α2 α2 α2




Then we compute the blocks Bak,i:

Ba1,1 = {(0, 0), (α2 , 1), (1, α), (α,α2)}
Ba2,1 = {(1, 0), (α, 1), (0, α), (α2 , α2)}
Ba3,1 = {(α, 0), (1, 1), (α2 , α), (1, α2)}
Ba4,1 = {(α2, 0), (0, 1), (α,α), (0, α2 )}

...
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These block are converted into positions by transforming the pairs as: (au, av) → l =

v + (u− 1)q

B̃a1,1 = {1, 8, 10, 15}
B̃a2,1 = {2, 7, 9, 16}
B̃a3,1 = {3, 6, 12, 14}
B̃a4,1 = {4, 5, 11, 13}

...

Finally each block determines the positions of the 1 in the lines of H:

H =




1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0
...



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Appendix B

PEG & QC-PEG algorithms

Algorithm 2 PEG algorithm
for k = 1 to nc do

for m = 1 to nl do

if m=0 then

• c is randomly chosen in S̄vk among the check nodes having the smallest

degrees

• S̄vk = S̄vk\c, Svk = Svk ∪ c

else

• A(0)
vk = S̄vk , l = 1

while A(l)
vk 6= ∅ and A(l)

vk 6= A
(l−1)
vk do

• Expand the tree until a depth 2l − 1

• A(l)
vk = A(l−1)

vk \D2l−1

• l = l + 1

end while

• c is chosen among the check nodes of A(l−1)
vk having the smallest degrees

• S̄vk = S̄vk\c, Svk = Svk ∪ c

end if

end for

end for
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Algorithm 3 QC-PEG algorithm
1: for k = 1 to nbc do

2: for m = 1 to nbl do

3: • Svk = Svk ∪ cm, S̄vk = S̄vk\cm
4: • Set icm,vk = x

5: • M(0)
vk = [1, 2, . . . p], l = 1

6: while Sl
x 6= ∅ do

7: • Expand the tree-graph from vm to depth of 2l

8: • Compute the cumulated metrics of each paths

9: • Find the values x1, x2 . . . that make the metrics depending of x equal to

zero.

10: • M(l)
vk =M(l−1)

vk \{x1, x2 . . .}
11: • l = l + 1

12: end while

13: • Select icm,vk inM(l−1)
vk

14: end for

15: end for
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Appendix C

Sphere decoder

We consider the lattice Λ = {MRSZ} and we note UΛ the lattice points. SZ = [s1 . . . sn]

are QAM symbols. For simplicity, we drop the index R,Z,Λ.

We look for the lattice points U inside the n-sphere of radius
√
ρsph centered on the received

symbol Y. Hence the coordinates ui of U are bounded by the dimension of the sphere

and so are the coordinates si. As U is inside the sphere, the distance d(Y,U) between the

lattice point and Y is inferior to
√
ρsph.

d(Y,U)2 ≤ ρsph (C.1)

The distance can be expressed as:

d(Y,U)2 = ‖Y −U‖2

= ‖YT −UT ‖2

= ‖zTMT − STMT ‖2

= ‖(zT − ST )MT ‖2

= (zT − ST )MTM(z− S) (C.2)

where z,M−1Y is called the ZF point. M is a square integer matrix so it can be rewritten

using the QR decomposition into M = QR where Q is an orthogonal matrix and R an

upper triangular matrix.

d(Y,U)2 = (zT − ST )RTR(z− S)

= ‖R (z− S)‖2

=
n∑

i=1


Rii(zi − si) +

n∑

j=i+1

Rij(zj − sj)




2

if we note qii = Rii, i = 1 . . . n and qij = Rij/Rii, Eq. C.1 can be expressed as:

n∑

i=1

qii


(ρi − si) +

n∑

j=i+1

qij(ρj − sj)




2

≤ ρsph (C.3)
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We can observe that the bounds on a coordinate si depend on the values of sj>i. From

Eq. C.3; we can be bound each coordinate si, i = 1 . . . n:

⌈
−
√

Θi

qii
+Ωi

⌉
≤ si ≤

⌊√
Θi

qii
+Ωi

⌋
(C.4)

where Θi and Ωi correspond to:

Ωi = zi +

n∑

j=i+1

qij(zj − sj) (C.5)

Θn = ρsph (C.6)

Θi−1 = Θi − qij (Ωi − si)
2 (C.7)

we note bi = [binfi bsupi ] the upper and lower bound of si.

The sphere decoder searches the vectors S satisfying these bounds for each of its coordinate.

It starts by the nth coordinate whose value is chosen inside the range determined by the

bounds binfn ≤ sn ≤ bsupn . Then the bounds and the value of the n−1th coordinate are

computed. We chose in the same way all si until s1 and so having the n coordinates of a

lattice point inside the sphere. The distance of this point from the center of the sphere is

equal to:

d(Y,U)2 = ρsph − T1 + q11 (Ω1 − s1)
2 (C.8)

When a lattice point inside the sphere is found, the sphere radius is adjusted ρsph =

d(Y,U)2 and the procedure is repeated in order to find a new lattice point inside this

smaller sphere.

All the points of the lattice are not inside the sphere so it means that at a certain step i

the bounds can give no choice (binfi > bsupi ). Therefore we have to go up to the step i− 1

and change the values of si−1 if it is possible, in order to have the new bounds at the ith

level such that binfi ≤ bsupi . Note that the lattice point search can be seen as a search in a

tree graph of depth n.

The decoding complexity of the Sphere decoder has been evaluated to [105]:

O
(
n2 ×

(
1 +

n− 1

4λminρsph

)4λminρsph
)

(C.9)

where λmin is the minimum singular value of the matrix MMT .
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Appendix D

Linear estimators

We consider two random complex vectors x = [x(1) x(2) . . .]T and y = [y(1) y(2) . . .]T

with zero mean values (Ex = Ey = 0) and we note:

Rx = ExxH

Ry = EyyH

Rxy = RH
yx = ExyH

The general problem is to find an unbiased linear estimator K giving an approximation of

x:

x̂ = K y (D.1)

D.1 Mean-square-error criterion

The MSE estimator Ko minimizes the mean quadratic error between x and its estimate x̂

thus:

Ko = argmin
K

E ‖x̂− x‖2 (D.2)

Let us define the mean square error auto-covariance:

J(K) = E ‖x− x̂‖2 (D.3)

= E (x− x̂)(x − x̂)H

= ExxH − ExyHKH −KEyxH + EKyHyKH

= Rx −RxyK
H −KRyx +KRyK

H

The minimum of J(K) can be found by differentiation with respect to K:

∇KJ(K) = −Ryx +RyK
H
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Finally, the estimator minimizing the mean square error is given by:

KH
o = R−1

y Ryx

Ko = Rxy R−1
y (D.4)

The minimal value of the error auto-covariance is expressed by:

J(Ko) = Rx −RxyR
−1
y Ryx −RxyR

−1
y Ryx +RxyR

−1
y Ryx

J(Ko) = Rx −RxyR
−1
y Ryx (D.5)

D.2 Least-square-error criterion

Let us now redefine the estimator as x̂ = y K. The LSE estimator Ko minimizes the

quadratic error between x and its estimate x̂ thus:

Ko = min
K

‖x− x̂‖2 (D.6)

Let J(K) denote the cost function:

J(K) = ‖x− x̂‖2

= (x− yK)H(x− yK)

= xHx− kHyHx− xyK +KHyHyK

By differentiation with respect to KH we obtain:

∇KHJ(K) = −yHx+ yHyK

which is null, thus minimizing the cost function for:

Ko = (yHy)−1yHx (D.7)
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