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Résumé en français

L’enjeu de cette thèse porte sur le développement de méthodes de bio-informatique

appliquées à la prédiction des interactions protéine - ligand. Le chapitre 1 est

une courte introduction qui rappelle le rôle clé que jouent ces interactions dans le

fonctionnement de la cellule. Il présente également le plan de ce manuscrit.

Dans le chapitre 2, après avoir rappelé quelles sont les molécules clés du monde

vivant ainsi que les principes de l’interaction entre les protéines et les ligands, est

présenté l’état de l’art de l’étude de ces interactions, à la fois expérimentale et

in silico avec les méthodes basées sur l’étude des ligands (ligand-based) et celles

basées sur l’étude des protéines (protein-based). Enfin la méthode d’apprentissage

statistique des machines à vecteurs de support (SVM) appliquée au criblage virtuel

est présentée, car cet algorithme a été employé au cours de cette thèse pour dévelop-

per une méthode de prédiction appartenant aux approches dites de chémogénomique.

Dans un premier temps (chapitre 3), la thèse se concentre sur l’élaboration de cette

méthode de chémogénomique appliquée aux protéines de la famille des GPCRs.

Cette méthode est basée sur l’utilisation de machines à vecteurs de support pour

prédire l’interaction entre des GPCRs et leurs ligands. Cette approche suppose

l’emploi de descripteurs pour encoder les protéines et les ligands. Plusieurs types

de descripteurs ont été employés, afin de comparer leur pertinence dans le cadre

de la chémogénomique. Pour les ligands, des descripteurs correspondant à un en-

codage de la structure 2D ou de la structure 3D ont été testés. Dans l’approche 2D,

une molécule est décrites par un vecteur binaire dont les éléments sont déterminés

en fonction d’un graphe qui décrit sa structure chimique. La similarité entre

deux molécules est alors évaluée par un coéfficient de Tanimito. Dans le cas de

l’approche 3D, les molécules sont décrites par l’ensemble des triplets d’atomes

qui la composent, et des distances séparant ces atomes. La similarité entre deux

molécules est évaluées en comparant les ensembles de leurs triplets respectifs, en



utilisant un noyau appelé noyau pharmacophore 3D. Les protéines sont encodées

également de plusieurs façons: d’une part par leur position dans la hiérarchie des

GPCR telle que cette hiérarchie est définie dans la base de données GLIDA, d’autre

part par une courte séquence d’acides aminés correspondant aux acide aminées

composant la poche de fixation pour le ligand. Les similarités entre protéines

sont alors évaluées par plusieurs méthodes à noyaux. Tout d’abord, deux noy-

aux relativement basiques, n’employant pas ces encodages pour les protéines,

sont employées: le noyau Dirac, dans lequel la similarité entre deux protéines

différentes est égale à zéro, et le noyau Multitask, dans lequel toutes les protéines

sont ”également différentes”. Le premier correspond en réalité à une approche

classique par protéine: aucune information de ligand n’est partagée entre les protéines.

Le second noyau correspond à une sorte de base-line pour les méthodes de chémo-

génomique, dans laquelle l’information concernant les ligands est partagée de

manière uniforme entre toutes les protéines. Deux noyaux s’appuyant sur l’encodage

des protéines sont ensuite définis et employés: le noyau hiérarchique qui évalue

la similarité entre protéines en fonction de leur distance dans la hiérarchie des

GPCR, et le noyau ”binding pocket” qui évalue la similarité des acides aminés

formant les sites de fixation des ligands. Ce dernier consiste à aligner structurale-

ment les protéines de la famille des GPCRs dont la structure a été déterminée

expérimentalement (deux au moment de la publication) afin de répertorier les

acides aminés impliqués dans la fixation du ligand. Les séquences des autres

GPCRs ont ensuite été alignés à ces deux protéines et les acides aminés corre-

spondant au site de fixation ont été concaténés dans un vecteur qui a permis de

les comparer. L’espace chémogénomique est encodé par le produit tensoriel des

espaces des protéines et des ligands, et les distances entre les paires (protéine, lig-

and) dans cet espace est évalué par le produit des noyaux calculés sur les protéines

et sur les ligands. Toutes les combinaisons entre les noyaux pour protéines et

pour ligands ont été testées. La base de données d’interactions entre les GPCRs

et leurs ligands utilisée est la GLIDA. Dans cette base, 4051 interactions ont été

retenues pour évaluer la méthode. Deux types d’expériences ont été effectuées.

La première consiste, pour chaque GPCR, à diviser les interactions connues en

cinq parties. Le modèle est entraı̂né à l’aide de quatre des parties ainsi que des



données de l’ensemble des autres GPCRs puis il est testé sur la cinquième par-

tie. Dans la deuxième expérience, pour chaque GPCR l’ensemble de ses lig-

ands connus ont été ignorés et le modèle a été entraı̂né en utilisant seulement les

données d’interactions des autres GPCRs. Cette expérience revient à évaluer les

performances de la méthode dans le cas important mais difficile de GPCR orphe-

lines, pour lesquelles aucun ligand n’est connu. Les résultats ont montré d’une

part que la méthode 2D pour les ligands obtient systématiquement de meilleurs

résultats que la méthode 3D. D’autre part, la méthode utilisant la hiérarchie a

obtenu de meilleurs résultats pour la première expérience alors que la méthode

utilisant les vecteurs décrivant le site de fixation a obtenu les meilleurs résultats

dans la deuxième expérience. L’ensemble de ces résultats montre par ailleurs que

toutes les méthodes de chemogénomique, y compris les plus naı̈ves, présentent de

meilleurs performances de prédiction des interactions que les méthodes classiques

qui effectuent les prédictions par protéine, sans prendre en compte l’information

concernant les interactions connues pour d’autres protéines de la famille.

L’une des limites de la méthode de chémogénomique présentée au chapitre 3 est

qu’elle n’est applicable que pour des protéines apparentées, comme les protéines

de la famille des GPCR. Nous avons souhaité étendre l’application des méthodes

de chémogénomique à des protéines ne présentant aucune similarité de sequence

ou de structure. L’idée sous-jacente est qu’il serait intéressant de pouvoir partager

l’information sur les interactions protéine-ligand entre n’importe quelles protéines,

afin d’accroitre la taille de la base de connaissance utilisable pour prédire de nou-

velles interactions. Dans le chapitre 4, pour s’affranchir de l’approche par famille,

les méthodes proposées seront applicables pour prédire les interactions protéine-

ligand par une approche de chémogénomique, pour les protéines de structure 3D

connue. Ici, les protéines sont encodées par le nuage de points correspondant aux

atomes qui constituent sa poche de fixation pour le ligand. La similarité entre deux

protéines est alors évaluée par la similarité entre les nuages des atomes de leurs

poches de fixation pour les ligands. Cette méthode implique un alignement en 3D

des atomes formant les deux poches, par rotation et translation. Le meilleur aligne-

ment est obtenu en favorisant le regroupement d’atomes des deux poches ayant des

propriétés similaires dans des régions proches de l’espace. Cet alignement permet

ensuite de mesurer la similarité entre les poches, et définit la similarité entre les



protéines. Pour une poche donnée, la prédiction des ligands est effectuée en fonc-

tion des ligands connus pour les poches les plus similaires, par une métode de ”plus

proches voisins”. Plusieurs jeux de données ont été utilisés pour l’évaluation des

performances. Un premier jeu, issu de la littérature, est constitué d’un ensemble

de 100 protéines de familles différentes et dont les sites de fixation sont associés à

un ligand, parmi une liste de 10 ligands de taille différente. Une version étendue de

ce jeu de données a été créé et comporte 972 poches fixant l’un des 10 ligands. Un

troisième jeu comprenant également 100 sites de fixations et 10 ligands de taille

similaire a également été constitué et utilisé. La méthode développée ici a été

comparée à plusieurs méthodes issues de la littérature. Pour cela deux critères ont

été retenus : le score AUC (Air Under the ROC Curve) et l’erreur de classification.

Les résultats obtenus ont montrés que la méthode présentée ici obtient les meilleurs

résultats sur les deux jeux de données comprenant 100 poches, à la fois en terme

d’AUC et d’erreur de classification. D’autre part la version étendue du premier

jeu de données nous a permis de montrer que la méthode améliore ses prédictions

lorsque la quantité de données augmente. Nous avons montré que l’erreur de clas-

sification est un meilleur critère d’évaluation des performances de prédiction que

l’AUC qui est classiquement utilisé. Cette méthode possède l’avantage de pouvoir

comparer le site de fixation de n’importe quel couple de protéines, quelque soit

leurs familles et leurs similarités, à condition de posséder leurs structures 3D.

Enfin, le chapitre 5 discute les principales difficultés rencontrées dans les méthodes

de chémogénomique, comme l’encodage des espaces des ligands, des protéines, et

des paires (protéine, ligand), ainsi que la constitution des bases de données qui est

un élément crucial dans les méthodes d’apprentisage. Le chapitre 3 propose une

méthode de chémoénomique par famille de protéines, et le chapitre 4 propose une

méthode de mesure de similarité pour protéines de structure connue, permettant la

prédiction des interactions protéine-ligand par une méthode de plus proche voisin.

Cependant, si cette dernière constitue bien une méthode de chemogénomique, elle

ne permet pas l’emploi des SVM car la mesure de similarité définie sur les poches

ne possède pas les propriétés d’un noyau. Le chapitre 5 indique donc des pistes

d’exploration possible qui permettraient de ”transformer” cette mesure de simi-

larité en noyau, afin de disposer d’une méthode de chémogénomique bénéficiant

des performances et des caractéristiques des méthodes SVM à noyaux. Enfin, nous



évoquons comment les méthodes proposées dans cette thèse sont complémentaires

d’autres approches de biologie structurale comme la modélisation par homologie

ou le docking.
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1

Introduction

Identification of ligands for proteins is a major field of research, both at the fundamental level

and for many industrial applications. For example, it can help to decipher the function of a

protein known to be involved in a disease, and therefore lead to a better understanding of the

molecular disorder associated to this pathology. It can also help to discover new drugs for

diseases with uncovered needs.

Historically, experimental methods have been developed to identify protein-ligands inter-

actions, but since the last two decades, they have been supplemented with computational meth-

ods. These methods allow very fast and cheap screening of millions of molecules, in order to

reduce the number of actual experimental assays to be undertaken.

In chapter 2, we present the state-of-the art in experimental and in silico approaches to study

protein-ligand interactions. We will first remind the main molecules found in leaving cells, and

briefly review how protein-ligand interactions can be studied experimentally. We will give

a short overview of experimental High Throughput Screening (HTS) methods. We will also

recall the principles of the two main in silico strategies, namely ”ligand-based” and ”structure-

based” methods to predict protein- ligand interactions. Finally, we will shortly and intuitively

present statistical learning methods that can, very generally, be used to predict properties of

objects. We will show how these methods can be applied to the question of predicting protein-

ligand interactions.

The main contributions of this thesis belong to two different but however related fields:

encoding of proteins, and chemogenomics approaches for prediction of protein-ligand interac-

tions.

1



1. INTRODUCTION

Indeed, although encoding of small organic molecules has a long history in the field of

cheminformatics, in a form that can be used as input in any computational method, encoding

of proteins has been less studied. It has often been restricted to describing the protein by its

primary amino-acid sequence. This description is not fully suited to the problem of prediction

of protein-ligand interactions, because this description does not point at the protein function in a

direct manner. The question of protein encoding is closely related to that of predicting protein-

ligand interactions, since the encoded protein is used as input of computational method, and

sice the more relevant the encoding with respect to the functional properties of the protein, the

better the prediction.

In chapter 3, we propose to encode proteins by a short list of aminoacids expected to be

involved in the ligand-binding site of the protein. This method can be applied for proteins

within a given family, as long as at least one 3D structure is available in this family. As an

example of application, we show that this approach can be used to encode GPCR, a large

family of protein receptors of great interest for pharmaceutical industry.

Then, we show the recently introduced chemogenomic approaches, using this encoding of

proteins, outperform other state-of-the art ligand prediction methods for GPCR.

In chapter 4, for proteins of known 3D structures, we propose a representation based on

the cloud of atoms belonging to the ligand-binding pocket. We have developed a method that

allows to compare proteins based on the similarity of their binding pockets (as described by

clouds of atoms). We show that this similarity measure can in turn be used to predict ligands

for a new pocket, based on known ligands for similar pockets. This method allows to ”learn”

from any known protein-ligand complex, whatever its protein family, in order to predict new

ligands for any pocket or to propose ligands for ”orphan” pockets, as long as the 3D structures

are available.

In chapter 5, we will briefly show how the results obtained in chapter 4 could be generalized

and included in a chemogenomic framework similar to that presented in chapter 3.
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2

Background

2.1 Molecules of life

Understanding life requires knowing the players of the molecular mechanisms that regulate key

cellular functions. The main players are the DNA, RNA and proteins. A link exists between

these two types of macromolecules: in fact, DNA is the hereditary material of the cell, contain-

ing genes. The sequence of a gene encoding a particular protein. Each protein is the product of

gene expression, i.e. results from transcription of DNA into RNA, and translation into proteins.

Like ourselves, the individual cells that form our bodies can grow, reproduce, process in-

formation, respond to stimuli, and carry out an amazing array of chemical reactions. These

abilities define life. We and other multicellular organisms contain billions or trillions of cells

organized into complex structures, but many organisms consist of a single cell. Even simple

unicellular organisms exhibit all the properties of life, indicating that the cell is the fundamental

unit of life. We face an explosion of new data about the components of cells, what structures

they contain, how they touch and influence each other. Still, an immense amount remains to

be learned, particularly about how information flows through cells and how they decide on the

most appropriate ways to respond.

Molecular cell biologists explore how all the remarkable properties of the cell arise from

underlying molecular events: the assembly of large molecules, binding of large molecules to

each other, catalytic effects that promote particular chemical reactions, and the deployment of

information carried by giant molecules.

3



2. BACKGROUND

2.2 Proteins, machinery of life.

Proteins are an important class of biological molecules. They provide most of the cellular

functions. Proteins consist of 20 different natural amino acids, also known as residues. A

protein is generally capable of one or more specific tasks. These functions are possible through

the structure of the protein. It is therefore their structure that allows proteins to fulfill their

function, key residues occupying relative positions in space that allow molecular recognition

of the biological partners. Therefore, we understand the importance of studying the three

dimensional structure of proteins.

Indeed, proteins fold to form a stable structure, driven by a number of non-covalent inter-

actions such as hydrogen bonding, ionic interactions, ’ Van der Waals’ forces and hydrophobic

packing. These forces give to the protein the cohesion that is necessary to maintain its struc-

ture. Determining the 3D structure of proteins is the subject of structural biology, which uses

techniques such as X-ray crystallography, nuclear magnetic resonance (RMN) spectroscopy, or

electron microscopy.

All freely available 3D structures of proteins are deposited in the Protein Data Bank (PDB).

This database grows exponentially, because of the improvement of the technology and the

number of researchers involved in this field worldwide. Currently, there are more than 70,000

crystallographic or NMR structures of proteins or nuclear acids available in PDB.

Two main classes of proteins are important for the pharmaceutical industry : receptors and

enzymes. In the case of receptors, more than 50% of currently marketed drugs have as main

target a protein belonging to this family. For enzymes, although the rate is much lower, this

family of proteins will be increasingly targeted by new drugs (1).

2.2.1 Enzymes

An enzyme is a protein (if we exclude the special case of RNA ribozymes) which lowers the ac-

tivation energy of a reaction and speeds up millions of times chemical reactions of metabolism

occurring in the cellular or extracellular environment without changing the balance formed.

Enzymes act at low concentrations and they are found intact at the end of reaction: they are

biological catalysts (or biocatalysts). For example, glucose oxidase is an enzyme that catalyzes

the oxidation of glucose into gluconic acid.

An enzyme, like any protein, is synthesized by living cells from the information encoded

in DNA or RNA in the case of some viruses. There are over 3500 different enzymes listed.
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2.2.2 Receptors

A receptor is a protein from the cell, cytoplasm or nucleus membrane that binds to a specific

factor (a ligand such as a neurotransmitter, a hormone or other substances), inducing a cellular

response to this ligand. The behavioral changes of the receptor protein induced by the ligand

leads to physiological changes that constitute the ”biological effects” of the ligand. There are

different types of receptors depending on their ligands and their functions:

• Some receptor proteins are proteins of the outer part of the plasma membrane

• Many receptors for hormones and neurotransmitters are transmembrane proteins em-

bedded in the lipid bilayer of cell membranes. These receptors are coupled to either G

proteins or holders of an enzymatic activity, or ion channel allowing the activation of

metabolic pathways of signal transduction in response to ligand binding.

• The other major class of receptors consists of intracellular proteins such as steroid hor-

mone receptors. These receptors can sometimes enter the nucleus of the cell to modulate

the expression of specific genes in response to activation by the ligand.

2.3 Small molecules

Much of the cell’s content is a watery soup flavored with small molecules (e.g., simple sugars,

amino acids, vitamins) and ions (e.g., sodium, chloride, calcium ions). The locations and

concentrations of small molecules and ions within the cell are controlled by numerous proteins

inserted in cellular membranes. These pumps, transporters, and ion channels move nearly all

small molecules and ions into or out of the cell and its organelles.

One of the best-known small molecules is adenosine triphosphate (ATP) (Figure 2.1),

which stores readily available chemical energy in two of its phosphate chemical bonds. When

cells split apart these energy-rich bonds in ATP, the released energy can be harvessed to power

an energy-requiring process like muscle contraction or protein biosynthesis. To obtain energy

for making ATP, cells break down food molecules. For instance, when sugar is degraded to

carbon dioxide and water, the energy stored in the original chemical bonds is released and

much of it can be ”captured” in ATP. Bacterial, plant, and animal cells can all make ATP by

this process. In addition, plants and a few other organisms can harvest energy from sunlight to

form ATP using photosynthesis.
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Figure 2.1: representation of an ATP molecule

Other small molecules act as signals both within and between cells. Such signals direct

numerous cellular activities. For example, The powerful effect on our bodies of a frightening

event comes from the instantaneous flooding of the body with epinephrine, a small-molecule

hormone that mobilizes the ”fight or flight” response. The movements needed to fight or flee

are triggered by nerve impulses that flow from the brain to our muscles with the aid of neuro-

transmitters.

Certain small molecules (monomers) in the cellular soup can be joined to form polymers

through repetition of a single type of chemical-linkage reaction. Cells produce three types

of large polymers, commonly called macromolecules: polysaccharides, proteins, and nucleic

acids. Sugars, for example, are the monomers used to form polysaccharides. These macro-

molecules are critical structural components of plant cell walls and insect skeletons. A typical

polysaccharide is a linear or branched chain of repeating identical sugar units. Such a chain

carries information: the number of units. However, if the units are not identical, then the or-

der and type of units carry additional information. Some polysaccharides exhibit the greater

informational complexity associated with a linear code made up of different units assembled in

a particular order. This property, however, is most typical of the two other types of biological

macromolecules: proteins and nucleic acids.
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2.4 Interactions between proteins and small molecules

A ligand can be defined as a molecule binding to a biological receptor, which is most often a

protein (Figure 2.2). This binding generally triggers an effect: modulation of enzyme activity if

the receptor is an enzyme, cellular response in the case of a membrane receptor, a cytoplasmic

receptor or a nuclear receptor of a cell. Ligands include all small molecules of low molecular

weight, such as a metabolite, peptide, substrate, inhibitor or a small drug molecule and excludes

macromolecules such as proteins, lipids or nucleic acids sequences such as DNA and RNA,

which we would rather call biological partners.

Figure 2.2: 3D structure of a protein (DHFR) with its ligand (methotrexate)

Ligand binding to the protein occurs by intermolecular forces such as ionic bonds, hydro-

gen bonds and Van der Waals forces, and is usually reversible.

The interaction between proteins and small molecules is related to the presence, in the

protein structure, of a specific site called the active site. Broadly, it has the shape of a cavity

into which the substrates bond. Once bound, small molecules will react and turn into a product

in the case of an enzyme, or cause the activation or inhibition of a signaling pathway in the

case of a receptor.
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The first model of ligands binding to proteins was the ”lock and key” hypothesis (Figure

2.3). In this model, the affinity of a ligand for a protein is determined by the complementarity

between the shapes and the physico-chemical properties of the ligand and of the binding site.

Figure 2.3: The ”lock and key hypothesis”

But this model is not sufficient to describe the interaction. Indeed, proteins and ligands can

be very flexible. The model is rather a key capable of deforming the lock when it fits. This

phenomenon is called induced fit. The theory suggests that the protein changes its shape to

bind the molecule with the proper alignment. The overall effect would be a tighter binding for

the molecule and the binding site. Once bound, the molecule intereacts with the protein the

same as with the lock and key theory (2).

2.5 Experimental methods to study protein-ligand interactions

The study of protein-ligand interaction is crucial to understand the function of a protein. In fun-

damental studies, it allows to describe the biological pathways in which the protein is involved.

It is also a key step towards the design of modulator molecules that can interfere (positively or

negatively) with the function of a protein target, in the context of drug discovery. Indeed, re-

search and discovery of new molecules with activity against proteins has long been the goal of

the pharmaceutical industry. There are many experimental techniques to study the interactions

between a molecule and a protein. In the following, I will review the most popular methods,

distinguishing those that can provide structural information about the complex and the binding

mode of the small molecule to the protein, and those that cannot (non structural approaches).
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2.5.1 Non structural approaches

2.5.1.1 Spectroscopic methods (UV, fluorescence)

Spectroscopic methods are often used to highlight molecular interactions. The principle is

simple: it is based on the change of the absorbance of a molecule after interaction or rupture of

molecular interaction. For example, these methods are often used to monitor the evolution of

an enzymatic reaction. The simplicity of implementation, the high sensitivity and the low cost

in organic materials are the main advantages of these techniques. However, they can be applied

only if one of the molecules involved in a complex have spectral properties and if the specific

absorbance of the targeted group is affected by the interaction. In some cases, it is possible to

attach fluorescent groups to non fluorescent ligands, although this chemical modification might

modify the stability of the complex. Many biological assays involving therapeutic targets have

been developed that rely on such spectroscopic methods, as reviewed in (3) for fluorescence

and (4) for UV spectroscopy. These methods can be used to measure the complex association

constant, i.e. to characterize the strength of the interaction.

2.5.1.2 Isothermal Titration Calorimetry (ITC)

ITC is an analysis technique based on the measurement of heat changes induced during a titra-

tion. In practice, a macromolecule located in the measuring cell of a calorimeter is gradually

saturated at constant temperature by the injection of a ligand using a syringe. For each addi-

tion of ligand, there is a thermal exchange that is characteristic of the macromolecule-ligand

interactions. The amount of heat measured during the titration allows to obtain thermody-

namic parameters of interaction such as free energy changes (∆G), enthalpy (∆H) and en-

tropy (∆S). ITC therefore allows to highlight an interaction, to determine the dissociation

constant Kd and the stoichiometry of the system. Furthermore, the thermodynamic data de-

rived by microcalorimetry allow to know precisely the enthalpic and entropic contributions in

the interaction energy: we can thus specify the nature of the forces contributing to the forma-

tion of complexes (hydrophobic or electrostatic) (5). ITC can also be useful to study ionization

phenomena, or to highlight and quantify a competition between two ligands. A drawback of

this technique is its quite low sensitivity, requiring large amounts of proteins (in the milligram

range) to study the complex, which can be a strong limitation for proteins available only in

small quantities. In addition, the experiments are relatively lengthy and difficult to perform.

Howeveer, the ITC technique has been used in drug discovery applications thanks to a new
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miniaturized, ultrasensitive microcalorimeter. This new microcalorimetry system reduces the

quantity of protein (or other macromolecule sample) required to obtain a complete thermody-

namic profile by up to 7-fold. The reduction in required sample quantities allows ITC to be

effectively utilized at earlier stages of the drug discovery and development process (6).

2.5.1.3 Surface Plasmon Resonance (SPR)

The SPR technology is used to study molecular interactions in real time without labeling one

of the two interactants. Without going into many details, the device detects changes in mass

at the surface of a sensor chip on which one of the two interactants (for example the ligand)

is immobilized, covalently or not. The other interactant (for example the protein) is injected

through a microfluidic system in a continuous flow of buffer to the surface of the sensor chip.

If the protein and the ligand interact and bind to each other, the device detects an apparent

variation in mass for the immobilized molecule. Equilibrium binding constants, kinetic rate

constants and thermodynamic parameters are obtained from such study that helps to understand

the mechanism of the binding reactions. This information can be directly used to improve

binding properties of a drug candidate (see (7) for review).

2.5.2 Structural approaches

Structure based drug design is another method for identifying new drugs and seems to be

the most rational way of identifying potential agents. In this approach, the three-dimensional

structure of a drug target and its interaction with potential drug molecules is used to guide

drug discovery. This structural information can be obtained by various methods, such as X-ray

crystallography, NMR, and virtual approaches such as computational chemistry. In the next

paragraphs, we will shortly review the two former, which rely or experimental data. Then,

virtual approaches will be reviewed in more details, because this techniques are related to the

work presented in the following chapters of this manuscript.

2.5.2.1 X-ray diffraction

Crystallography uses X-ray diffraction by the electronic cloud of a molecule to deduce the po-

sitions of the atoms constituting the compound to be analyzed. In the case of biomolecules, it is

possible to crystallize a protein in complex with its ligand, and to deduce the three dimensional

structure of the complex. Such a structure allows to discover the active site of the protein, and
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to assess ligand binding modes. This information can be used to conceive optimized molecules

that improve their interactions with its target. Crystallography is the technique of choice used

in the stages of drug design where an active molecule has been selected and needs to be op-

timized to ensure high affinity and selectivity. For instance, the development of successful

HIV-1 protease (see (8) for review), reverse transcriptase (see (9) for review), or integrase (see

(10) for review) inhibitors was achieved through structure-based drug design using the crystal

structures of the corresponding enzymes. In the field of antibiotics, the translational apparatus

of the bacterial cell remains one of the principal targets of antibiotics for the clinical treatment

of infection worldwide. The high-resolution crystal structures of the bacterial ribosome identi-

fying the sites of antibiotic binding are now available, which is central to progress in this area.

Experimental assays, coupled with structural studies, have the potential not only to accelerate

the discovery of novel and effective antimicrobial agents, but also to refine our understanding

of the mechanisms of translation (see (11) for review).

2.5.2.2 Nuclear magnetic resonance (NMR)

Nuclear magnetic resonance is a spectroscopic technique based on the interaction between a

magnetic field and the spins of atomic nuclei. The study of protein / ligand interactions at the

atomic level by NMR has been made possible through the development of experiments based

on observation of the resonance signals of the protein or of the ligand, in presence of each other

(12; 13). NMR can provide much information to characterize the interaction between a protein

and a ligand. It allows to identify the site of interaction in the protein, i.e. the aminoacids

that are in contact with the ligand. It can also provide information about the conformation of

the ligand in the active site. NMR can play a critical role in structure determination of many

important protein targets such as GPCRs, when they fail to form the single crystals required

for X-ray diffraction. NMR can provide valuable dynamic information on proteins and their

drug complexes that cannot be easily obtained with X-ray crystallography. These advances

suggest that the future discovery and design of drugs might increasingly rely on protocols

using NMR approaches (14). However, this technique consumes large amounts of biological

material, milligrams per analysis, because of its low sensitivity. In addition, analysis of the

spectra is easier in the fast exchange regime, which corresponds to dissociation constant of

the protein-ligand complex in the range of millimolar or micromolar, which is not the required

range in the context of drug discovery.
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2.6 Experimental high throughput screening (HTS)

In many cases, the search of new drug candidates consists in the identification of molecules that

strongly and specifically bind to a therapeutic protein target. Therefore, all methods allowing

detection and characterization of protein-ligand interactions are of interest in the context of

drug research. Some of the above described experimental methods can be used in screening

tests on large scale, using robots, leading to the so called high throughput screening (HTS)

approaches (15). In the following, I will briefly review HTS.

The screening of chemical compounds for pharmacological activity has been ongoing in

various forms for at least 20 years. The screening paradigm says that when a compound inter-

acts with a target in a productive way, that compound then passes the first milestone on the way

to becoming a drug. Compounds that fail this initial screen go back into the library, perhaps to

be screened later against other targets.

Screening methodologies have improved with time, both in terms of throughput and the

amount of information to be derived from the screen. Advances in assay and instrument tech-

nologies have provided the means necessary to address these evolving needs.

Using robotics, data processing and control software, liquid handling devices, and sensitive

detectors, HTS allows a researcher to conduct biochemical or pharmacological tests. Through

this process, one can rapidly identify active compounds which modulate a particular biomolec-

ular pathway. The results of these experiments provide starting points for drug design and for

understanding the interaction or the role of a particular biochemical process in biology.

Many pharmaceutical companies are screening 100,000 to 300,000 or more compounds

per screen to produce approximately 100 to 300 hits. On average, one or two of these become

lead compound series. Larger screens of up to 1,000,000 compounds in several months may be

required to generate something closer to five leads. Improvements in lead generation can also

come from optimizing library diversity. Since its first advent in the early to mid 1990s, the field

of HTS has seen not only a continuous change in technology and processes, but also an adapta-

tion to various needs in lead discovery. HTS has now evolved into a mature discipline that is a

crucial source of chemical starting points for drug discovery. Whereas in previous years much

emphasis has been put on a steady increase in screening capacity (’quantitative increase’) via

automation and miniaturization, the past years have seen a much greater emphasis on content

and quality (’qualitative increase’). Today, many experts in the field see HTS at a crossroad

with the need to decide on either higher throughput/more experimentation or a greater focus
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on assays of greater physiological relevance, both of which may lead to higher productivity

in pharmaceutical R&D. There will be much more emphasis on rigorous assay and chemical

characterization, particularly considering that novel and more difficult target classes will be

pursued. In recent years, we have witnessed a clear trend in the drug discovery community

toward rigorous hit validation by the use of orthogonal readout technologies, label free and

biophysical methodologies. We also see a trend toward the use of focused screening and itera-

tive screening approaches. Hit finding strategy also tends to be much more project-related and

better integrated into the broader drug discovery efforts. Recently, fragment-based methods

have emerged as a new strategy for drug discovery (16). The main advantages are that useful

starting points for lead identification for most targets can be identified from a relatively small

(typically 1000-member) library of low molecular weight compounds. The main constraints

are the need for a method that can reliably detect weak binding and strategies for evolving the

fragments into larger lead compounds. The approach has been validated recently, as series of

compounds from various programs have entered clinical trials.

However, HTS workflow is hampered by several drawbacks. One can only sample a

tiny proportion of the drug-like chemical space. The screening procedure relies on expen-

sive robotic equipment, and although many progresses in miniaturization have been made that

allow reduction of the experimental volumes, the tests require to consume expensive biological

and chemical consumables. The rates of false-positive and false-negative are relatively high

owing to the contribution of various factors such as nonspecific hydrophobic binding, poor sol-

ubility leading to protein or substrate precipitation, aggregation, presence of reactive functional

groups, low purity, incorrect structural assignment or compound concentration, interference of

the compounds with the assay or its read-out etc... (17).

In parallel of the HTS approaches, virtual screening strategies have developed rapidly both

in academic and industrial research. In particular in silico methods remain an attractive option

for prioritizing structures for focussed screening (18). However, it may also be interesting to

perform experimental and virtual screens in parallel, on the same chemical databanks, since

comparative studies have shown that these two approaches can lead to identification of differ-

ent active compounds (19). Today, most pharmaceutical companies have substantial groups

devoted to virtual screening approaches (20). In the following, I will briefly review the main

topics in the domain of virtual screening.
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2.7 Virtual screening

The main aim of these approaches is to quickly and cheaply select a restricted number of

molecules expected to bind to the protein target, from large chemical libraries. This smaller

set of molecules (typically 5 percent of the original chemical library) are then experimentally

tested. Many methods are available, with different ranges of applications, but they can be

classified into two classes: structure-based approaches, and ligand-based approaches. In both

cases, they require the choice of a molecule library that will be used in the virtual screen.

2.7.1 The molecule library

A molecule library is a set of molecules, whose sizes may vary from a few hundreds to hun-

dreds of thousands of grams per mol, that have been synthesized in large quantities and stored

in order to be rapidly available for large scale screening. Chemical libraries can be confi-

dential, like those owns by pharmaceutical industries, composed of synthesized or extracted

natural molecules. They can also be commercial libraries. Chemdiv, Chembridge or Asinex

are examples of some of the most commonly used molecule libraries. The choice of a molecule

library is critical in a virtual screen (also in an experimental screen). The content, design and

scale of a molecule library needs to be directly related to the purpose of the screen. Because

the goal of the screening evolves during the drug discovery process, the design of the libraries

to be screened must be related to the advancement of the project. In order to maximize the

probability of identifying structurally different hits, early screening assays must involve di-

verse libraries giving a broad coverage of the chemical space (21). On the contrary, in the

later ”hits to lead” step, targeted libraries made of molecules structurally similar to the identi-

fied hits must be designed (22). Because of the development of virtual approaches, molecular

libraries are now also provided as virtual libraries, in which molecules are represented in differ-

ent formats such as smiles, sdf or mol2, and that encode for their chemical structures. Virtual

screening methods will use these molecular descriptions, or other descriptions derived from

these standard formats, in order to encode molecules and to manipulate them through various

algorithms.

2.7.2 Structure-based methods

Structure-based methods, also called docking, cover a range of approaches that exploit the 3D

structure of the protein of interest, to predict its potential ligands. The growing numbers of
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genomic targets of therapeutic interest (23) and macromolecules (proteins, nucleic acids) for

which a three-dimensional structure (3D) is available (24) makes docking increasingly attrac-

tive for the identification of bioactive molecules (25; 26).

The role of molecular docking is to predict the active conformation and relative orientation

of each molecule of the chemical library within the binding site of the protein of interest. In

other words, docking tries to propose a model for the protein-ligand complex, and to evaluate

the stability of this complex. Very generally, the search of possible positions of the ligand

in the protein structure focuses on a defined protein pocket that has been experimentally de-

termined (for example by directed mutagenesis). These methods use the principle of steric

complementarity (Dock, Fred) or of molecular interactions (AutoDock, FlexX, Glide, Gold,

ICM, LigandFit, Surflex), to place a ligand in the protein pocket. In most cases, the protein

is considered as rigid, although some programs handle flexibility for aminoacid side chains or

from small local rearrangements of the backbone. In contrast, ligand flexibility is fully taken

into account. Three principles are generally used for the treatment of the flexibility of the

ligand:

• a set of conformations of the ligand is calculated beforehand and they are docked to the

rigid way the site (eg Fred),

• the ligand is incrementally constructed fragment after fragmentation (eg Dock, FlexX,

Glide, Surflex)

• A more or less complete conformational analysis is conducted on the ligand to generate

conformations that are most favorable to docking. (eg ICM, Gold, LigandFit).

Typically, several poses for the ligand are generated and ranked by decreasing probability

according to a scoring function that tries to estimate the protein-ligand interaction energy. In

a docking screen against a protein target, all molecules of a chemical library will be ranked

according to their scores, and the 5-10 % molecules of the initial set with the best scores will

be viewed as the best molecules for experimental evaluation. In other words, docking can be

used as a tool to reduce the size of the molecule library to be experimentally screened, based

on the assumption that the best ranked molecules are enriched in true ligands. Docking is an

active field of research, because although many programs are available today, there is still a

need to improve the methods used to take protein and/or ligand flexibility into account, or to

improve the scoring functions. Today, no program has been identified as ”the best” program,

and one needs to evaluate the best docking conditions for each project in an ”ad hoc” manner.
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2.7.3 Ligand-based approaches

Ligand-based methods exploit prior knowledge of ligands, and non ligands, for a protein of

interest, to predict new or better ligands for this protein. Therefore, they cannot be used in early

studies, when no ligands have been identified. However, these methods are quite powerful in

later stages of drug development, when optimization of lead compounds is searched. Most

ligand-based screening methods rely on the comparison of molecules, with the underlying

assumption that similar molecules will have similar behaviors: a molecule that is similar to

a known ligand will be predicted to bind to the protein target, which is not expected for random

compounds. However, the comparison of molecules is not trivial: it relies on how molecules

are encoded, and on the method used to measure the similarity. A large variety of tools have

been developed to perform these tasks.

2.7.3.1 Descriptors

Descriptors can be used to encode molecules. They are usually calculated from the molec-

ular structure (atoms, bonds, configuration, conformation) or molecular properties (physical,

chemical, biological) (27; 28). The descriptors may include atoms and bonds, or the presence

or absence of fragments, or other 1D or 2D features. Descriptors may also relate to the 3D

arrangement of atoms, when 3D conformation information is taken into account. Ideally, the

descriptors should be readily calculable and easily interpretable by computers and by users.

They should represent the actual chemical system and take the structure of chemical space into

account (29).

1D descriptors are derived from the empirical formula of the molecule (eg C6H6O for phe-

nol). They correspond typically to global molecular properties, such as the molecular weight,

hydrophobicity, or general physicochemical properties of the molecule, such as the number of

atoms of particular types or hydrogen bond donors and acceptors, solubility (logP). These de-

scriptors bear little information about the structure of the molecule and are essentially used to

derive filters such as the Lipinski’s rule of five (30), or in combination with other descriptors.

It must be noted that these descriptors cannot usually distinguish isomers. The 1D encoding

of molecules often take the form of a vector whose elements correspond to these molecular

properties used as descriptors (Figure 2.4A). In such vectorial description, similarity between

molecules can then be measured according to a Tanimoto coefficient calculated from the ele-

ments of these two vectors.
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The Tanimoto coefficient is defined as the ratio :

T (A, B) =
�M

i=1 A(i)B(i)
�M

i=1 A(i) +
�M

i=1 B(i)−
�M

i=1 A(i)B(i)

with A (i) and B (i) are equal to 1 if the i-th descriptor is found in molecule A and B

respectively, and 0 if it is absent. M is the total number of descriptors taken into consideration.

2D descriptors are derived from the 2D structure of the molecule, which can also be viewed

as a graph. A first class of 2D descriptors consists of general topological indices, related to the

notion of graph invariant in graph theory. Seminal examples include the Wiener and Randic

connectivity indices, defined respectively from the length of the shortest path between pairs

of atoms, and their degrees in the molecular graph (31). In a related approach, topological

autocorrelation vectors measure the autocorrelation of atomic physicochemical properties, such

as partial charges or polarity, from pairs of atoms separated by a given topological distance,

expressed as the length of the shortest path connecting atoms in the molecular graph (32).

A second class of descriptors represents a molecule by a vector indexed by a set of structural

features, and relies on the extraction of substructures from the molecular graph. This process

defines a molecular fingerprint, and in practice, two different approaches can be adopted.

The first approach considers a limited set of informative predefined substructures to char-

acterize the molecule. Each substructure is mapped to a bit of the fingerprint, which either

accounts for the presence or absence of the substructure in the molecule. A typical implemen-

tation is a bistring indexed by 166 predefined substructures known as the MDL MACCS keys

(33). This type of encoding is illustrated in (Figure 2.4B). Among the advantages offered by

the structural keys is the expressiveness of the features, and the interpretability retained in the

representation, because of the one-to-one correspondence between the bins of the vector and

the structural features. However, choosing the features to be included in the substructure rep-

resentation may be challenging in practice. While chemical intuition can be helpful for that

purpose (34), this task is more generally related to the problem of graph mining that consists in

the automatic identification of interesting structural features within a set of graphs. For chem-

ical applications, such interesting patterns are typically defined as non correlated structures

frequently appearing in active compounds, and rarely in inactive compounds (35; 36; 37).

In the alternative approach, molecules are represented by simple structural features called

linear molecular fragments, defined as successions of covalently bonded atoms. In this case,

typical fingerprints, such as the Daylight fingerprints, characterize a molecule by its exhaustive

list of fragments made of up to seven or eight atoms.
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In summary, 2D descriptors are calculated from the 2D formula of the molecule, and they

provide information about its size, its overall shape and its ramifications. In the case classical

of 1D or 2D descriptors encoded in vector representation of molecules, an explicit ”chemical

space” is defined in which each molecule is represented by a finite-dimensional vector. These

vector representations can be used as such to define similarity measures between molecules

such as Tanimoto coefficients.
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Figure 2.4: Example of descriptors that may be used to encode molecules. (A) Example of 1D
descriptors based on physicochemical properties. (B) example of 2D descriptors encoding for
presence or absence of predefined chemical fragments.

3D descriptors are derived from the 3D structure of the molecules. A first class of three

dimensional descriptors requires a preliminary step of molecular alignment, consisting in plac-

ing the molecules in a common orientation in the 3D space through operations of rotations and

translations. The quality of the alignment is quantified by a scoring function, and the molecules

are said to be aligned when it is maximized. Typical scoring functions consider the number of
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identical atoms superimposed under a skeleton representation (38), or the overlap of the elec-

tron clouds surrounding the molecules (39). In order to handle conformational analysis, the

alignment can be flexible, in which case additional degrees of freedom are introduced to han-

dle rotational bonds, or rigid and based on the optimal alignment of pairs of multi-conformers.

Aligning molecules can be a quite complex process, and we refer to Lemmen and Lengauer

(40) for a review of the existing techniques. Once the molecules are aligned, 3D descriptors

can for instance be defined by sampling molecular surfaces according to rays emanating from

the center of mass of the aligned molecules (41; 42), or, in the Comparative Molecular Field

Analysis (CoMFA) methodology, by measuring the interaction between the molecules and an

atomic probe (e.g., a charged or lipophilic atom) at each point of a discrete box enclosing the

molecules (43)

An opposite approach consists in extracting descriptors independent of the molecular orien-

tation. Apart from global shape descriptors, such as the Van der Waals volume of the molecule

or molecular surfaces areas, most alignment independent descriptors are based on distances

between atoms. For example, an early study proposed to characterize a molecule by its matrix

of inter-atomic distances (44). While the authors propose several methods to compare such

matrices, this approach is not convenient because it does not lead to a fixed size representa-

tion of the molecules. Standard vectorial representations can be derived by considering pairs

of atoms of the molecule. Topological autocorrelation vectors can for instance be extended to

3D autocorrelation vectors, computing the autocorrelation of atomic properties from pairs of

atoms within a specified Euclidean distance range, instead of a given topological distance on

the molecular graph (45). Other representations are based on counting the number of times

pairs of atoms of particular types are found within predefined distance ranges in the 3D struc-

ture of the molecule (46; 47; 48). Considering molecular features based on triplets or larger

sets of atoms leads to the notion of pharmacophore. A pharmacophore is usually defined as a

three-dimensional arrangement of atoms - or groups of atoms - responsible for the biological

activity of a drug molecule (49). Typical pharmacophoric features of interest are atoms hav-

ing particular properties (e.g., positive and negative charges or high hydrophobicity), hydrogen

donors and acceptors and aromatic rings centroids (50). In this context, pharmacophore finger-

prints were proposed as the three-dimensional counterpart of molecular fragment fingerprints.

Pharmacophore fingerprints represent a molecule by a bitstring encoding its pharmacophoric

content, usually defined as the exhaustive list of triplets of pharmacophoric features found
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within a set of predefined distances ranges in its 3D structure (51; 52). Strictly speaking, phar-

macophore fingerprints encode putative pharmacophores of the molecules, and because the

number of potential pharmacophores can be very large, they are usually compressed (53; 54).

In chapter 3, we will present and use 2D and 3D pharmacophore representations for molecules

that were developed in our laboratory (55) and that we used in this thesis in a chemogenomics

framework.

A vast amount of descriptors has therefore been proposed in the literature. The above pre-

sentation if far from being exhaustive, and we refer interested readers to the textbooks for a

detailed presentation (31; 56). Choosing ”good” descriptors for the task to be performed re-

mains nevertheless an open question. For instance, even though the molecular mechanisms

responsible for the binding of a ligand to a target are known to strongly depend on their 3D

complementarity, different studies account for the superiority of 2D fingerprints over pharma-

cophore fingerprints in this context (34; 52; 55). This observation suggests that 2D fingerprints

might encode to some extent three-dimensional information (27), and in many cases, they actu-

ally constitute the ”gold-standard” representation of chemical structures. Another explanation

is that 3D approaches require to know the 3D geometry of the molecule in its ”active” confor-

mation, which is not always available. In such cases, the choice of other conformations such

as the most free-state conformation might degrade the performance of 3D approaches.

2.7.3.2 Principle of ligand-based approaches

Many ”rational” drug design efforts are based on a principle which states that structurally

similar compounds are more likely to exhibit similar properties. Indeed, the observation that

common substructural fragments lead to similar biological activities can be quantified from

database analysis. A variety of methods, known collectively as Quantitative Structure Activity

Relationship (QSAR) have been developed, essentially for the search for similarities between

molecules in large databases of existing molecules whose properties are known. The discovery

of such a relationship allow to predict the physical and chemical properties of biologically

active compounds, and to develop new theories or to understand the phenomena observed.

Once a QSAR model has been built to encode this relationship between the chemical space and

a given biological activity, this can guide the synthesis of new molecules, limiting the number

of compounds to synthesize and test.

The relationship between the structures of molecules and their properties or activities are

usually established using methods of statistical learning. The usual techniques are based on
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the characterization of molecules through a set of 1D, 2D or 3D descriptors. A model is estab-

lished, that relates the descriptors that encode the molecule, to its biological activity, based on

a learning dataset of molecules for which this activity is known. It is then possible to use this

model to predict the activity of a new molecule. Numerous studies show that it is impossible

to predict accurately the affinity of chemically diverse ligands (57). It is reasonable to hope to

discriminate affinity of ligands in the range of nanomolar, micromolar and millimolar.

Decades of research in the fields of statistics and machine learning have provided a pro-

fusion of methods for that purpose. Their detailed presentation is far beyond the scope of

this section, and we invite interested readers to refer to the classical textbooks (58; 59) for

a thorough introduction. In this section we just give general methodological and historical

considerations about their application in chemoinformatics.

Models can be grouped into two main categories depending on the nature of the property

to be predicted. Models predicting quantitative properties, such as for instance the degree of

binding to a target, are known as regression models. On the other hand, classification models

predict qualitative properties. In SAR analysis, most of the properties considered are in essence

quantitative, but the prediction problem is often cast into the binary classification framework

by the introduction of a threshold above which the molecules are said to be globally active, and

under which globally inactive. In the following, the term classification implicitly stands for

such binary classification.

In order to build the model, the pool of molecules with known activity is usually split into

a training set and a test set. The training set is used to learn the model. The learning problem

consists in constructing a model that is able to predict the biological property on the molecules

of the training set, but without over-learning on it. This overfitting phenomenon can for instance

be controlled using cross-validation techniques, that quantify the ability of the model to predict

a subset of the training set that was left out during the learning phase. The test set is used

to evaluate the generalization properties of the learned model, corresponding to its ability to

make correct prediction on a set of unseen molecules. Different criteria can be used for this

evaluation. In regression, it is typically quantified by the correlation between the predicted and

the true activity values. In the classification framework, a standard criterion is the accuracy

of the classifier, expressed as the fraction of correctly classified compounds. However, if one

of the two classes is over-represented in the training set, and/or the cost of misclassification

are different, it might be safer to consider the true and false positive and negative rates of

classification. The true positive (resp. negative) rate account for the fraction of compounds
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of the positive (resp. negative) class that are correctly predicted, and the false positive (resp.

negative) rate accounts for the fraction of compounds of the negative (resp. positive) class that

are misclassified. In virtual screening applications for instance, where we typically do not want

to misclassify a potentially active compound, models with low false negative rates are favored,

even it they come at the expense of an increased false positive rate.

Because they usually require a limited set of uncorrelated variables as input, applying these

models to chemoinformatics requires to summarize the information about the molecules into a

limited set of features, which may not a trivial task due to the vast amount of possible molec-

ular descriptors. A popular way to address this problem in chemoinformatics is to rely on

principal component analysis (PCA), that defines a limited set of uncorrelated variables from

linear combinations of the initial pool of features, in a way to account for most of their in-

formative content. Alternatively, feature selection methods can be used to identify among an

initial pool of features a subset of features relevant with the property to be predicted. Because

molecular descriptors are sometimes costly to define, a potential advantage of feature selection

methods, over PCA-based approaches, is the fact that they reduce the number of descriptors to

be computed for the prediction of new compounds.

Let us now introduce different methods that have been applied to model SAR. The first SAR

model was developed in 1964 by Hansch and coworkers who applied a multiple linear regres-

sion (MLR) analysis to correlate the biological activity of a molecule with a pair of descriptors

related to its electronic structure and hydrophobicity (60). MLR models are still widely ap-

plied to model SAR. PCA is commonly used as inputs, in the so-called PC- regression models

(61). Moreover, genetic algorithms have been introduced to perform feature selection as an

alternative to standard forward selection or backward elimination approaches (62). Related

linear approaches can be applied to the classification framework with discriminant analysis al-

gorithms (63). However, because this class of models is limited to encode linear relationships,

they can be too restrictive to efficiently predict biological properties. While the models can

be enriched with the application of nonlinear transformations of the input variables (64), SAR

analysis greatly benefited from the development of nonlinear methods, and in particular artifi-

cial neural networks (ANN). Early applications of back-propagation ANN accounted for their

predictive superiority over standard linear regression techniques. Many studies have demon-

strated the strength of ANN to predict biological properties, and they are now a standard tool

to model SAR (65; 66).
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Despite their predictive efficiency, a major criticism to ANN is their lack of interpretability,

which can be of great importance in chemistry in order to understand the biological mecha-

nisms responsible for the activity. An alternative class of models builds a classifier expressed

as a set of rules relating the molecular structure and the biological activity. Such models have

been derived for instance using decision trees algorithms (67). From the practical viewpoint,

another criticism that can be made to ANN is the fact that they require some expertise, con-

cerning for instance the choice of an architecture, in order to be knowledgeably deployed.

Moreover, they are known to be prone to overfitting and are hard to reproduce, because of

their random initialization and possible convergence to local minima (68). These theoretical

issues are to some extent addressed by the support vector machine (SVM) algorithm, known

in particular to avoid the problem of local minima, to prevent overfitting, and to offer a better

control of the generalization error (69). Moreover, although its good parametrization remains a

crucial point, this algorithm requires less amount of expertise to be deployed. The introduction

of SVM in SAR analysis was pioneered by Burbidge and co-workers (68). In this study, the

SVM algorithm outperforms several ANN architectures for a particular classification task, re-

lated to the ability of molecules to inhibit a biological target. Over the last few years, SVM was

shown to be a powerful tool for SAR analysis, often outperforming ANN in classification and

regression frameworks. We give in the next section a brief introduction to the SVM algorithm,

because we used this algorithm in the chemogenomic approach presented in chapter 3.

2.7.4 Introduction to SVM in virtual screening

One important contribution of this thesis is to explore the use of machine learning algorithms

within the newly introduced chemogenomic framework, in order to predict protein-ligand inter-

actions. The principle of chemogenomic approaches will be presented in chapter 3. Although

this principle is quite simple (i.e. similar proteins are expected to bind similar ligands), to our

knowledge, only a very limited number of studies propose computational methods able to han-

dle chemogenomic data and to perform predictions. The main reasons are that these data are

not trivial to generate, to manipulate, and to be used as input in computational methods in a

relevant manner in order to make predictions.

We have proposed to use kernel methods in the the context of Support Vector Machine

(SVM) methods, because, as it will be explained in chapter 3, they allow easy manipulation

and calculation in the chemogenomic space (i.e. the chemical space of small molecules joined

to the biological space of proteins). Presenting the full mathematical framework of SVM and
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kernel methods is out of the scope of this thesis. However, in this section, we will briefly

introduce kernel methods in the context of Support Vector Machine (SVM), because we have

proposed to use this type of algorithm to implement a computational method able to handle the

chemogenomic data.

The support vector machine algorithm was initially introduced in 1992 by Vapnik and co-

workers in the binary classification framework (70), (69). Over the last decade this method

has been gaining considerable attention in the machine learning community, which led to the

emergence of a whole family of statistical learning algorithm called kernel methods (71), (72).

SVM has been successfully aplied in many real world applications, including, for instance,

optical character recognition (73), text-mining (74) or bioinformatics (75), often outperforming

state-of-the-art approaches.

In the recent years, support vector machines and kernel methods have gained considerable

attention in cheminformatics. They offer generally good performance for problems of super-

vised classification, and provide a flexible and computationally efficient framework to include

relevant information and prior knowledge about the data and about the problems to be handled.

We start this section by a brief introduction to SVM in the binary classification framework,

and, in a second step, we highlight the particular role played by kernel functions in the learning

algorithm.

Let us introduce SVM on the example of predicting ligands for a protein, although all the

following discussion has a more general application. We consider the case of a protein for

which a learning database is available, that consists in two lists of molecules: a list of ligands,

and a list of non ligands (Figure 2.5).

Each molecule can be represented by a set of descriptors, as explained in section 2.7.3.1.

These molecules can thus be seen as points in a multidimensional space where each dimension

corresponds to one of the descriptors. The idea of SVM is to find a linear separation between

these two sets of points in the space defined by the descriptors. For example, in the case of two

descriptors, Figure 2.6 illustrates a possible hyperplane that separates the active and inactive

molecules represented by black and white dots. Once such a linear separation is found, we can

predict the activity of a new molecule by mapping it to the space of descriptors and checking

on which side of the hyperplane it falls.

A dataset is called linearly separable if it is possible to find a linear separation between

the two classes of points (as in Figure 2.6). In such a case, however, there may be many
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Figure 2.5: active and inactive molecules for a given target

hyperplane that can separate the two sets of points, and the question is how the ”best” separator

can be defined (Figure 2.7).

Figure 2.6: Diagram of a hyperplane that separates the two sets of points

SVM implements a particular strategy to define the ”best” separating hyperplane: it chooses

the one that correctly separates the data (all points of the same class are on the same side of

the separator), while maximizing its distance to the closest points of each class (Figure 2.8).
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Figure 2.7: The diagram shows that with an optimal hyperplane H (in red), new examples (A and
B) are correctly classified although it falls within the margin while with other hyperplanes (H2 and
H3) new examples (A and B) may be misclassified.

This distance is called the ”margin”, and SVM are therefore often referred to as large margin

classifiers. Intuitively, the margin is related to the confidence we make in the separation. The

nearest points to the hyperplane are called support vectors and have given their name to the

method.

The above discussion relies on the hypothesis that it is possible to separate the training

data using a linear classifier. This is unfortunately not true in most real-life applications, e.g.,

because of noise in the input data or label errors. SVM implement a slightly different strategy

in that case: it searches the hyperplane of largest margin while tolerating a few errors on

the training data. Note that larger margin usually leads to more errors, and a trade-off must

therefore be set between these two opposite objectives. This trade-off is controlled by a user-

defined parameter, usually called C in the case of SVM: larger C correspond to fewer errors

but smaller margins, while smaller C correspond to larger margin but more errors. The choice

of the optimal value for C is typically determined by cross-validation.

Learning linear classifier is however not well adapted in cases where data are intrinsically

non-linearly separable, as illustrated in Figure 2.9. In such cases, it would be beneficial to

directly learn a non-linear function to separate positive and negative examples. An intuitive
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Figure 2.8: Support vectors used to determine the hyperplane

way to tackle this problem is to remember that the positions in space of the data points are

tightly linked to the method used to encode the data (for example to encode molecules). In

other words, there could exist some other representation of molecules (i.e. in another space

called the feature space), in which the images of the data might become linearly separable.

SVM implement this idea by finding a new representation of the classification problem which

can be solved by a linear classifier, as illustrated in Figure 2.10

In practice, SVM do not explicitly perform a non-linear transformation of the input points

to make them linearly separable: instead, they perform this non-linear embedding implicitly,

thanks to so-called positive definite kernels. We will not present here the full mathematical

basis of kernels and SVM with kernels, but we will only recall, and admit, the most impor-

tant definitions and properties of these methods, and underline their interest for our prediction

problem.

A kernel is a real-valued function K(x, x
�) that, intuitively, measures the similarity between

any two data points x and x
�. In our case, x and x

� are two molecules. In addition, the kernels

that can be used by SVM must fulfill two mathematical conditions: they must be symmetric,
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Figure 2.9: The right diagram shows an example of a separable case.The left diagram shows an
example of a nonlinearly separable case

Figure 2.10: Left:nonlinear separation problem in the input space. Right: linear separation prob-
lem in the feature space

28



2.7 Virtual screening

in the sense that for any two data x and x
�,

K(x, x
�) = K(x�, x),

and in addition they must be positive definite in the sense that for any N data (x1, x2, . . . , xN )

and any N real numbers (a1, a2, . . . , aN ) ∈ RN the following holds:

N�

i=1

N�

j=1

aiajK(xi, xj) ≥ 0.

A fundamental result states that each positive definite kernel is associated to an embedding

of the input data into a feature space. More precisely, the value of the kernel K(x, x
�) between

to data x and x
� is exactly the inner product between the two data mapped to the feature space.

Note that the embedding may be linear or nonlinear. In other words, defining a positive defi-

nite kernel is equivalent to implicitly define a feature space to map data, instead of explicitly

computing descriptors in this sapce.

SVM can be used to estimate a linear classifier in the feature space associated to positive

definite kernels. The beauty of this approach is that finding the optimal separating hyperplane in

the feature space can be done without computing explicitly the descriptors: instead, it suffices

to be able to compute inner product between any two points in the feature space to train a SVM.

Since by definition the inner product between two data x and x
� in the feature space is equal to

the kernel K(x, x
�), SVM classifiers can be learned using only the kernel to represent the input

points.

More precisely, for a given training set of points x1, . . . , xn, it can be shown that the equa-

tion of the SVM hyperplane in the feature space admits a representation of the form:

∀x ∈ X, f(x) =
n�

i=1

αiK(x, xi) .

The (αi)1,...,n are found by solving a convex optimization problem. This solution hyperplane

separates the feature space into two subspaces. Images of positive examples (i.e. ligands

for a protein) are situated in the half-space of points for which f(x) is positive while images

of negative examples (non-ligands) are situated in the half-space of points for which f(x) is

negative. Therefore, to predict the class of a new molecule x, one needs to calculate the value

f(x) =
�n

i=1 αiK(x, xi) and assign the class corresponding to the sign of f(x).

Using SVM to predict the binding of ligands to a target therefore requires to define a ker-

nel (i.e., a similarity measure) between molecules. Relevant kernels should implicitly encode
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biochemical characteristics of molecules that are relevant with respect to the protein - ligand

interaction mechanism.

In the case where molecules are encoded as vectors using classical molecular descriptors,

there exists several families of kernel functions including polynomial, Gaussian, Laplacian

and sigmoid, that can be tested for the problem of interest. This is relevant to infer nonlinear

functions of existing descriptors.

Alternatively, one may go beyond existing descriptors and directly develop kernel func-

tions to compare molecules. For example, new kernels were developed in the recent years

based on direct comparison of the 2D or 3D structures of molecules. Indeed, molecules can be

encoded by vectors, but they can also be encoded by other representations such as their atom

coordinates in the 3D space. If a similarity measure K between molecules can be defined on

such a representation, it can be used directly with a SVM. Examples of such original kernels

for molecules developed in our laboratory are given and used in the next chapter.

30



3

Virtual screening of GPCRs: an in

silico chemogenomic approach

In this chapter, we will present a chemogenomic approach that allows to predict protein-ligand

interaction, by learning from known interactions not only for the protein of interest, but also

from other proteins belonging to the same family. We will show that such sharing of infor-

mation between proteins improves the prediction performances with respect to the classical

approach that makes predictions for proteins independently, i.e. one by one. We will take the

example of the GPCR family of proteins, because this important family is one of the target of

many drugs. We will also show that the chemogenomic approach allows to perform predictions

in the difficult case of orphan receptor, a case that cannot be handled by classical approaches.

3.1 Introduction to GPCRs

G-protein-coupled receptors (GPCRs) form one of the largest and most diverse family of pro-

teins. Their main role is the signal transduction from outside to inside the cell, in response to

stimuli. In mammals, this family of proteins is particularly important.

In humans, the GPCR superfamily is comprised of an estimated 600-1,000 members and is

the largest known class of molecular targets with proven therapeutic value. They are ubiquitous

in our body, being involved in regulation of every major mammalian physiological system (76),

and play a role in a wide range of disorders including allergies, cardiovascular dysfunction,

depression, obesity, cancer, pain, diabetes, and a variety of central nervous system disorders

(77; 78; 79).
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Their location on the cell surface gives them an important role in chemical sensing, essen-

tial for communication between cells. This location makes them readily accessible to drugs,

and 30 GPCRs are the targets for the majority of best-selling drugs, representing about 40% of

all prescription pharmaceuticals on the market (80). Besides, the human genome contains sev-

eral hundreds unique GPCRs which have yet to be assigned a clear cellular function, suggesting

that they are likely to remain an important target class for new drugs in the future (81).

The ligands that bind and activate these receptors include light, neurotransmitters, odorants,

biogenic amines, lipids, proteins, amino acids, hormones, nucleotides, chemokines and many

others. (82) They vary in size from small molecules to peptides and to large proteins.

GPCRs can be grouped into 6 classes based on sequence homology and functional similar-

ity (83):

• Class A (or 1) (Rhodopsin-like)

• Class B (or 2) (Secretin receptor family)

• Class C (or 3) (Metabotropic glutamate/pheromone)

• Class D (or 4) (Fungal mating pheromone receptors)

• Class E (or 5) (Cyclic AMP receptors)

• Class F (or 6) (Frizzled/Smoothened)

Family A is by far the largest group, and includes the receptors for light (rhodopsin) and

adrenaline (adrenergic receptors) and, indeed, most other GPCR receptor types, including the

olfactory subgroup. The olfactory receptors constitute most of these sequences, but nearly

200 non-olfactory GPCRs that recognize over 80 distinct ligands have also been functionally

characterized.

Family B contains the receptors for the gastrointestinal peptide hormone family (secretin,

glucagon, vasoactive intestinal peptide (VIP) and growth-hormone-releasing hormone), corticotropin-

releasing hormone, calcitonin and parathyroid hormone.

Family C is also relatively small, and contains the metabotropic glutamate receptor family,

the GABAB receptor, and the calcium-sensing receptor, as well as some taste receptors. All

family C members have a very large extracellular amino terminus that is crucial for ligand

binding and activation.
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Family D, containing the mating factor receptors, STE2 and STE3, are integral membrane

proteins that may be involved in the response to mating factors on the yeast cell membrane (84).

The amino acid sequences of both receptors contain high proportions of hydrophobic residues

grouped into 7 domains, in a manner reminiscent of the rhodopsins and other receptors believed

to interact with G-proteins. (85)

Family E consists of Cyclic AMP receptors and is a distinct family of G-protein coupled

receptors. The cyclic AMP receptors coordinate aggregation of individual cells into a multi-

cellular organism, and regulate the expression of a large number of developmentally-regulated

genes (86). The amino acid sequence of these receptors contain high proportions of hydropho-

bic residues grouped into 7 domains, as in rhodopsins. However, while a similar 3D framework

has been proposed to account for this, there is no significant sequence similarity between these

families: the cAMP receptors thus bear their own unique signature.

Family F contains in particular the frizzled family of GPCR proteins (87). The group

frizzled appears to be the most ancestral form of GPCRs. GPCRs from family F serve as

receptors in the Wnt signaling pathway. Some Wnt proteins inhibit the degradation of beta-

catenin, which can regulate transcription of specific genes. Other Wnt exert their influences in

other ways, such as increasing intracellular concentrations of Ca2+ and decreasing intracellular

concentrations of cyclic guanosine monophosphate (cGMP) (88).

3.2 GPCRs and signal transduction

On the basis of homology with rhodopsin, GPCR are predicted to be integral membrane pro-

teins sharing a common global topology that consists of seven transmembrane alpha helices,

an intracellular C-terminal, an extracellular N-terminal, three intracellular loops and three ex-

tracellular loops. The GPCR arranges itself into a tertiary structure resembling a barrel, with

the seven transmembrane helices forming a cavity within the plasma membrane which serves a

ligand-binding domain that is often covered by EL-2. This gives rise to their other names, the

7-TM receptors or the heptahelical receptors (Figure 3.1).

GPCRs transduce extracellular stimuli to give intracellular signals through interaction of

their intracellular domains with heterotrimeric G proteins. (82) The transduction of the signal

through the membrane by the receptor is not completely understood. It is known that the

inactive G protein is bound to the receptor in its inactive state. Once the ligand is recognized,

the receptor shifts conformation and, thus, mechanically activates the G protein, which detaches
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Figure 3.1: Scheme of a gpcr

from the receptor. The receptor can now either activate another G protein or switch back to its

inactive state. Traditionally, the GPCRs are expected to exhibit specificity for the transmitters

(Goldstein, 1974). This specificity results from evolutionary processes that aim at diversifying

the intercellular interactions.

A ligand (i.e. a transmitter molecule) may bind to more than one GPCR, and in such

cases, these GPCRs usually share high degree of similarity and belong to the same subfam-

ily. Reciprocally, a given GPCR may bind more than one transmitter molecule, but then, these

transmitters usually share structural similarities and are often part of the same synthesis path-

way, as in the case of the neuropeptides synthesized from the same precursor (Douglass et al.,

1984). A classical example for structurally similar ligands binding to related receptors are the

opioid receptors and the natural opioid peptides, respectively (89).

Ligand binding is followed by a change in the conformation of the receptor that may involve

disruption of a strong ionic interaction between the third and sixth transmembrane helices

(90; 91), which facilitates activation of the G-protein heterotrimer. Depending on the type

of G protein to which the receptor is coupled, a variety of downstream signaling pathways

can be activated (reviewed by (92; 93)). Signaling is then attenuated (desensitized) by GPCR

internalization, which is facilitated by arrestin binding (94). Signaling, desensitization and

potential resensitization are regulated by complex interactions of various intracellular domains

of the GPCRs with numerous intracellular proteins (95; 96).
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3.3 Targeting GPCRs

In silico prediction of interactions between small molecules and GPCRs is not only of particular

interest for the drug industry, but also a useful step for the elucidation of many biological

process. First, it may help to decipher the function of so-called orphan GPCRs (89), for which

no natural ligand is known. Second, once a particular GPCR is selected as a target, it may help

in the selection of promising molecule candidates to be screened in vitro against the target for

lead identification.

Virtual screening of GPCRs is however a daunting task, both for receptor-based approaches

(i.e. docking) and for ligand-based approaches. The former relies on the prior knowledge of the

3D structure of the protein, in a context where only two GPCR structures (for bovine rhodopsin

and for human β2-adrenergic receptor) were known when the present work was undertaken. In-

deed, GPCRs, like other membrane proteins, are notoriously difficult to crystallize. As a result,

docking strategies for screening small molecules against GPCRs are often limited by the diffi-

culty to correctly model the 3D structure of the target. To circumvent the lack of experimental

structures, various studies have used 3D structural models of GPCRs built by homology mod-

eling using bovine rhodopsin as a template structure. Docking a library of molecules into these

modeled structures allowed the recovery of known ligands (97; 98; 99; 100), and even identi-

fication of new ligands (101; 102). However, docking methods still suffer from docking and

scoring inaccuracies, and homology models are not always reliable-enough to be employed in

structure-based virtual screening. Methods have been proposed to enhance the quality of the

models for docking studies by global optimization and flexible docking (98), or by using dif-

ferent sets of receptor models (100). Nevertheless, these methods have been applied only to

class A receptors and they are expected to show limited performances for GPCRs sharing lower

sequence similarity with rhodopsin, especially in the case of receptors belonging to classes B,

C and D.

Alternatively, ligand-based strategies, in particular quantitative structure-activity relation-

ship (QSAR), attempt to predict new ligands from previously known ligands, often using statis-

tical or machine learning approaches. Ligand-based approaches are interesting because they do

not require the knowledge of the target 3D structure and can benefit from the discovery of new

ligands. However, their accuracy is fundamentally limited by the amount of known ligands,

and degrades when few ligands are known. Although these methods were successfully used to

retrieve strong GPCR binders (103), they are efficient for lead optimization within a previously
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identified molecular scaffold, but are not appropriate to identify new families of ligands for a

target. At the extreme, they cannot be pursued for the screening of orphan GPCRs.

3.4 Introduction to in silico chemogenomic approach

Instead of focusing on each individual target independently from other proteins, a recent trend

in the pharmaceutical industry, often referred to as chemogenomics, is to screen molecules

against several targets of the same family simultaneously (104; 105).

In this chapter we will discuss this type of approach which consists in making interaction

predictions between a ligand and a GPCR using all information available on the entire family

of GPCRs, i.e. all known interactions between GPCRs and ligands.

The underlying paradigm in chemogenomics is that ”similar receptors bind similar ligands”

(106). Or in other words, for a given receptor, known ligands for similar receptors, may serve

as a starting point to predict potential ligands.

The systematic screening of interactions performed by chemogenomics between the chem-

ical space of small molecules and the biological space of protein targets, can be thought of as

an attempt to fill a large 2D interaction matrix, where columns correspond to targets, rows to

small molecules, and the (i, j)-th entry of the matrix indicates whether the j-th molecule can

bind the i-th target (Figure 3.2).

While in general the matrix may contain some description of the strength of the interac-

tion, such as the association constant of the complex, we focussed on a simplified description

that only differentiates binding from non-binding molecules, which results in a binary matrix

of target-molecule pairs. This matrix is already sparsely filled with our current knowledge

of protein-ligand interactions, and chemogenomics attempts to fill the holes. While classical

docking or ligand-based virtual screening strategies focus on each single column independently

from the others in this matrix, i.e. treat each target independently from the others, the chemoge-

nomic approach is motivated by the observation that similar molecules can bind similar pro-

teins. Therefore, information about a known interaction between a ligand and a GPCR could

be a useful hint to predict interaction between similar molecules and similar GPCRs. This can

be of particular interest when, for example, a particular target has few or no known ligands, but

similar proteins have many. In that case, it is tempting to use the information about the known

ligands of similar proteins for a ligand-based virtual screening of the target of interest.
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Figure 3.2: Example of matrix of known interactions between molecules and targets. Red squares
correspond to known interactions, green squares correspond to unknown interactions
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In this context, we can formally define in silico chemogenomics as the problem of predict-

ing interactions between a molecule and a ligand (i.e. a hole in the matrix) from the knowledge

of all other known interactions or non-interactions (i.e. the known entries of the matrix).

This intuitive concept however raises many questions. How are described molecules and

targets ? And how can receptor or ligand similarity be defined ?

Chemogenomics is an interdisciplinary field that attempts to answer these questions and

exploit the answers for the accelerated discovery of novel chemical starting points or lead

series (104; 107). One of the underlying questions is that chemogenomics require to propose

description of the protein space, i.e. a method to encode proteins, and also a method to measure

similarities between these objects. Similarly, one needs to encode the chemical space, in order

to describe molecules, and define a method to measure similarities between molecules.

As an illustration of protein encoding, a classical and widely used description for proteins

is the amino acid sequence, the similarity between proteins being then measured according to

their sequence similarity, as evaluated using for example a BLAST score

A variety of methods have been proposed in QSAR approaches to encode a molecule by a

multidimensional vector whose elements bear various physical or chemical properties of this

molecule, such as its molecular weight, solubility, or presence or absence of various chemical

groups, as seen in chapter 2. Classically, similarity between molecules is then measured ac-

cording to a Tanimoto coefficient calculated from the elements of these two vectors (see section

2.7.3.1)

In chemogenomics, we do not only need to tackle the problem of encoding proteins and

molecules, and to define their associated similarity measures. In fact, we consider the space

of target - molecule pairs (t, m) and we attempt to predict new (t, m) pairs based on their

similarity (in the space of pairs) to other pairs known to interact or not. This raises the question

of how the space of (target-molecules) pairs is encoded, and how similarities between pairs can

be defined.

A simple idea is to use a vector corresponding to the concatenation of the vectors that

represent the protein target and of the vector that represents the molecule.

For example, if m(a1, ..., an) is a vector that describes a ligand and t(b1, ..., bp) a vector

that describes a protein target, a couple is then defined by (t, m) = (a1, ..., an, b1, ..., bn). This

corresponds to encoding the chemogenomics space of (t, m) pairs by joining the biological

space and the chemical space.

38



3.4 Introduction to in silico chemogenomic approach

This strategy was pioneered by (108). (109) predicted ligands of orphan GPCR. They

merged descriptors of ligands and targets to describe putative ligand-receptor complexes, and

used Support Vector Machine (SVM) to discriminate real complexes from ligand-receptors

pairs that do not form complexes.

(110) proposed to encode the chemogenomic space by the tensor product of the biologi-

cal space and the chemical space. In this case, the vector representing a protein-ligand pair

corresponds to the tensor product of the vectors encoding the protein and that encoding the

ligand.

For example, if m(a1, ..., an) is a vector describing a ligand and t(b1, ..., bp) a vector de-

scribing a protein, a couple is then defined as (t, m) = (a1b1, ..., aibj , ..., anbp) with i and j

varying from 1 to n and from 1 to p respectively.

Therefore, the dimension of the chemogenomic space encoded as the tensor product space

is n× p, whereas it is n + p in the case of the joined space.

(110) introduced for the first time the use of the tensor product space to encode protein -

ligand pairs. They applied this representation to the case of GPCRs and their ligands. They

encoded proteins and ligands in their respective biological and chemical spaces. In both spaces,

they defined a similarity measure using positive definite kernels (see section 2.7.4 for definition

of kernels). In this case, they showed that one could define a similarity measure (or kernel)

in the chemogenomic space of (t, m) pairs by the product of the similarity measures in the

biological and chemical spaces :

Kpair
�
(t, m), (t�, m�)

�
= Ktarget(t, t�)×Kmolec(m, m

�). (3.1)

where Ktarget(t, t�) is the similarity measure between the two proteins and Kmolec(m, m
�)

is the similarity measure between the two ligands.

In this framework, the computational time required to measure the similarity in the chemoge-

nomic space described as a tensor product space is equal to that required by a description in a

joined space (i.e. increasing as n + p and not n ∗ p).

However, (110) was not able to show significant benefits of this chemogenomic approach

with respect to the individual approach that learns a separate classifier for each GPCR, except in

the case of orphan GPCRs for which their approach performed better than the baseline random

classifier (as already mentioned, the individual approach cannot make predictions for orphan

receptors).
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One possible explanation could be that the way proteins and ligands were encoded in this

study, and the way similarity measures were defined, were not well suited to the problem. This

underlines the importance of how the chemogenomic space is encoded, and how similarity

measure is defines in this space because this has a strong impact on the prediction performance.

In a preliminary study (111) performed in our laboratory , we used a chemogenomics ap-

proach to predict interaction between various potential targets including GPCRs, enzymes and

ion channels. Using descriptors for targets based on their sequences or based on the classifica-

tion of proteins families, we obtained predictors that were more accurate than state-of-the-art

individual methods both for the orphan targets and for the targets for which some ligands were

already known.

This illustrates the general importance of choosing relevant descriptors for proteins and

ligands, which is true not only in chemogenomic approach, but also in any in silico virtual

screening projects.

In this chapter, we went one step further in this direction and present an in silico chemoge-

nomic approach specifically tailored for the screening of GPCRs although the method could in

principle be adapted to other classes of therapeutic targets.

We tested 2D and 3D descriptors to describe molecules, and five ways to describe GPCRs,

including a description of their relative positions in current hierarchical classifications of the

GPCR superfamily, and information about key residues likely to be in contact with the ligand.

We evaluated the performance of all combinations of these descriptions on the data of the

GLIDA database (112), which contains 34686 reported interactions between human GPCRs

and small molecules, and observed that the choice of the descriptors has a significant impact

on the accuracy of the models. However, in all cases, we obtained significant improvements of

the prediction accuracy with respect to the individual learning setting.

We will also show that the method can be applied to predict ligands for orphan GPCRs

In the following sections, we will present the mathematical formalism of the methods pro-

posed by (109; 110) for in silico chemogenomics with SVM, and briefly introduced above (2).

Then we will present the descriptors we propose to use for molecules and GPCRs within this

framework.
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3.5 Methods

3.5.1 Encoding the chemogenomic space within the SVM framework

We consider the problem of predicting interactions between GPCRs and small molecules. For

this purpose, we assume that a list of target/small molecule pairs {(t1, m1), . . . , (tn, mn)} (t

corresponds to protein targets and m to molecules), known to interact or not, is given. This can

be viewed as the learning dataset. Such information is often available as a result of systematic

screening campaigns in the pharmaceutical industry, or on dedicated databases. In our case,

we used the GLIDA database as presented below.

Our goal is then to create a model to predict, for any new candidate pair (t, m), whether

the small molecule m is likely to bind the GPCR t.

A general method to create the predictive model is to follow these four steps:

1. Choose ntar descriptors to represent each GPCR target t in the biological space by a

ntar-dimensional vector Φtar(t) = ( Φ1
tar(t), . . . ,Φ

ntar
tar (t));

2. In parallel, choose nmol descriptors to represent each molecule m in the chemical space

by a nmol-dimensional vector Φmol(m) = ( Φ1
mol(m), . . . ,Φnmol

mol (m));

3. Derive a vector representation of a candidate target/molecule complex Φpair(t, m) from

the representations of the target Φtar(t) and of the molecule Φmol(m);

4. Use a statistical or machine learning method to train a classifier able to discriminate

between binding and non-binding pairs, using the training set of binding and non-binding

pairs {Φpair(t1, m1), . . . ,Φpair(tn, mn)}.

While the first two steps (selection of descriptors) may be specific to each particular chemoge-

nomic problem (for example, in our case predicting ligands for GPCRs), the last two steps

define the strategy we used for in silico chemogenomics, whatever the underlying biological

question might be, as long as vector representation can be defined.

As mentioned above, (109; 113) proposed to concatenate the vectors Φtar(t) and Φmol(m)

to obtain a (ntar+nmol)-dimensional vector representation of the ligand-target complex Φpair(t, m),

which corresponds to working in the joined space.

(110) followed a slightly different strategy for the third step, by forming descriptors for the

pair (t, m) as tensor product of small molecule and target descriptors. More precisely, given a
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molecule m described by a vector Φmol(m) and a GPCR t described by a vector Φtar(t), the

pair (t, m) is represented by the tensor product:

Φpair(t, m) = Φtar(t)⊗ Φmol(m) , (3.2)

that is, a (ntar × nmol)-dimensional vector whose entries are products of the form Φi
tar(t) ×

Φj
mol(m), for 1 ≤ i ≤ ntar and 1 ≤ j ≤ nmol.

In principle, both in the case of the tensor product space and of the joined space, a SVM

can be trained to estimate a linear function f(t, m) in the space of target/molecule pairs, that

takes positive values for interacting pairs and negative values for non-interacting ones. This

function is then used to predict whether a new (t, m) pair interact or not.

A potential issue with the tensor product approach, however, is that the size of the vector

representation ntar × nmol for a pair may be prohibitively large for practical computation and

manipulation.

For example, using a vector of molecular descriptors of size 1024 for molecules, and rep-

resenting a protein by the vector of counts of all 20 amino-acids in its sequence results in more

than 20k dimensions for the representation of a pair.

As pointed out by (110), a classical property of tensor products is that the inner product

between two tensor products Φpair(t, m) and Φpair(t�, m�) is the product of the inner product

between Φtar(t) and Φtar(t�), on the one hand, and the inner product between Φmol(m) and

Φmol(m�), on the other hand. More formally, this property can be written as follows:

(Φtar(t)⊗ Φmol(m))� .
�
Φtar(t�)⊗ Φmol(m�)

�
= Φtar(t)�.Φtar(t�)×Φmol(m)�.Φmol(m�) ,

(3.3)

where u
�
v = u1v1 + . . .+udvd denotes the inner product between two d-dimensional vectors

u and v.

These kernels then allow to use SVM to train a linear classifier which permits to predict

interacting and non-interacting pairs.

In the presented framework, the SVM does not need to compute the ntar×nmol products to

calculate the vector that describes each pair (t, m) in the tensor product space. It only computes

the respective inner products in the target and ligand spaces, before taking the product of both

numbers, which corresponds to (ntar + nmol + 1) products.
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Finally any measure of similarity in the two spaces (proteins and ligands) which leads

to a positive definite matrix can be used in the SVM. This offers a way to use SVM in a

chemogenomic approach with a versatile and computationally efficient method.

This flexibility to manipulate molecule and target descriptors separately can moreover be

combined with other tricks that sometimes allow to compute efficiently the inner products in

the target and ligand spaces, respectively. Many such inner products, i.e. kernels, have been

developed recently both in computational biology (75) and chemistry (114; 115; 116), and

can be easily combined within the chemogenomics framework as follows: if two kernels for

molecules and targets are given as:

Kmol(m, m
�) = Φmol(m)�Φmol(m�), Ktar(t, t�) = Φtar(t)�Φtar(t�), (3.4)

then we obtain the inner product between tensor products, i.e. the kernel between pairs, by:

K
�
(t, m), (t�, m�)

�
= Ktar(t, t�)×Kmol(m, m

�). (3.5)

In summary, as soon as two vectors of descriptors and kernels Kmol and Ktar are chosen,

we can solve the in silico chemogenomics problem with an SVM using the product kernel

between pairs. Ideally, the particular descriptors and kernels used should ideally encode prop-

erties related to the ability of similar molecules to bind similar targets.

Note that when the chemogenomic space is described by the joined biological and chemical

spaces, protein ligand pairs are encoded by a vector which is a concatenation of the two spaces.

In this case, similarity measures can only be defined on combined descriptions of proteins

and ligands. If various descriptions and similarity measures have been proposed in these two

spaces, their effect on the prediction performance cannot be explored independently. On the

contrary, the use of tensor product space allows to combine any pairs of kernel in the chemical

and biological spaces.

In the next two subsections, we present different possible choices of descriptors – or kernels

– for small molecules and GPCRs, respectively.

3.5.2 Descriptors and similarity measures for small molecules

The problem of explicitly representing and storing small molecules as finite-dimensional vec-

tors has a long history in chemoinformatics, and a multitude of 1D, 2D or 3D molecular de-

scriptors have been proposed (28), as presented in chapter 2.
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In this study, we chose to select two existing kernels, that were developed in our laboratory,

encoding respectively 2D and 3D structural information of the small molecules. (116) (55)

We used the freely and publicly available ChemCPP1 software to compute the 2D and 3D

pharmacophore kernel, as detailed below.

• The 2D Tanimoto kernel.

Our first set of descriptors characterizes the 2D structure of the molecules. For a small

molecule m, we define the vector Φmol(m) as the binary vector whose bits indicate the

presence or absence of all linear graphs of length u or less, as subgraphs of the 2D

structure of m. We chose u = 8 in our experiment, i.e. characterize the molecules by the

occurrences of linear subgraphs of length 8 or less, a value that we previously observed

to give good results in several virtual screening tasks (116).

This vector description of the 2D structure of the molecules allowed to define a kernel

based on Tanimoto coefficient (55).

We used as a similarity measure corresponding to the Tanimoto kernel:

Kligand(m, m
�) =

Φlig(m)�Φlig(m�)
Φlig(m)�Φlig(m) + Φlig(m�)�Φlig(m�)− Φlig(m)�Φlig(m�)

,

(3.6)

which was proven to be a valid inner product, giving very competitive results on a variety

of QSAR or toxicity prediction experiments (117).

• 3D pharmacophore kernel.

While 2D structures are known to be very competitive in ligand-based virtual screening

for identification of molecules presenting some given chemical, physical or biological

properties (118), we reasoned that the protein-ligand recognition process takes place in

the 3D space.

Thus, we decided to test descriptors implicitly encoding for the 3D conformation of the

molecules. To perform this task, we used a 3D pharmacophore kernel proposed in our

group (55).

1Available at http://chemcpp.sourceforge.net.
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This kernel relies on a 3D pharmacophore representation of the molecule. A pharma-

cophore is usually defined as a three-dimensional arrangement of atoms - or groups of

atoms - responsible for the biological activity of a drug molecule (49).

In the present approach, a molecule is defined by a set of triplets of atoms with their

coordinates in 3D space. Comparing two molecules can be based on the comparison of

triplets of atoms found in their structures (Figure 3.3).

A triplet of atoms constitutes a triangle whose vertices are atoms and edges are inter-

atomic distances. Two triplets from two different molecules can be considered to be

similar if the edges and vertices of their corresponding triangles are pairwise similar. In

the case of vertices, the similarity might include comparison of the nature of the corre-

sponding atoms (i.e. carbon atoms are similar to any other carbon atom), but it might

also include other physicochemical characteristics such as the atom partial charges.

Figure 3.3: Left: A three-point pharmacophore made of one hydrogen-bond acceptor (top-most
sphere) and two aromatic rings, with distances d1, d2, and d3 between the features. Middle: The
molecule of flavone. Right: Match between flavone and the pharmacophore.

The three-points pharmacophore kernel compares molecules according to their similarity

in their 3D pharmacophore representations. Let us present this kernel.

The 3D structure of a molecule is represented as a set of points in R3. These points

correspond to the 3D coordinates of the atoms of the molecule (for a given arbitrary

basis of the 3D Euclidean space), and they are labeled with some information related to

the atoms. More formally, we define a molecule m as:

m = {(xi, li) ∈ R3 ×L }i=1,...,| m | (3.7)

where |m| is the number of atoms that composes the molecule and L denotes the set of

atom labels. The label should contain the relevant information to characterize a pharma-
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cophore based on atoms. It might for instance be defined by the type of atoms (C, N, O,

...) or various physicochemical atomic properties (e.g., partial charge). The three-point

pharmacophores correspond to triplets of distinct atoms of the molecules. The set of

pharmacophores of the molecule m can therefore be formally defined as:

P(m) = {(p1, p2, p3) ∈ m
3
, p1 �= p2, p1 �= p3, p2 �= p3} (3.8)

where p1, p2, and p3 represent atoms of the molecule.

More generally, the set of all possible pharmacophores is defined as P = (R3 ×L )3,

to ensure the inclusion P(m) ⊂ P .

For any positive definite kernel for pharmacophores KP : P ×P �→ R, we define a

corresponding pharmacophore kernel for any pair of molecules m and m
� by:

K(m, m
�) =

�

p∈P(m)

�

p�∈P(m�)

KP(p, p
�) (3.9)

with the convention that K(m, m) = 0 if either P(m) or P(m) is empty. In other

words, the problem of constructing a pharmacophore kernel for molecules therefore boils

down to the simpler problem of defining a kernel between pharmacophores.

A chemically relevant measure of similarity between pharmacophores should obviously

quantify at least two features: first, similar pharmacophores should be made of similar

atoms, where the notion of similarity can for instance be based on atom types or proper-

ties such as partial charges, and second, the atoms should have similar relative positions

in the 3D space (i.e. the triangles should have similar edges). It is therefore natural to

study kernels for pharmacophores that decompose as follows:

KP(p, p
�) = KI(p, p

�)×KS(p, p
�) (3.10)

where KI is a kernel function that measures similarity of the triplets of atoms based on

their labels (atom types or atom charges for example), and KS is a kernel introduced to

quantify their spatial similarity (i.e. similarity of the triangles formed by the triplet of

atoms)
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For any pair of pharmacophores p = [(x1, l1), (x2, l2), (x3, l3)] and

p
� = [(x�1, l�1), (x�2, l�2), (x�3, l�3)], this suggests the definition of kernels as follows:

KI(p, p
�) =

3�

I=1

KFeat(li, l�i) (3.11)

KS(p, p
�) =

3�

I=1

KDist(||xi − xi+1||, ||x�i − x
�
i+1||) (3.12)

where || · || denotes the Euclidean distance, the index i+1 is taken modulo 3, and KF eat

and KDist are kernel functions introduced to compare pairs of labels from L and pairs

of distances, respectively.

The kernel we used for KDist is the Gaussian radial basis function (RBF) kernel defined

by:

K
RBF
Dist (x, y) = exp

�
− ||x− y||2

2σ2

�
(3.13)

where σ > 0 is the bandwidth parameter that is optimized as part of the training of the

classifier.

We used atom types for atom labels (C, N, O, ...). Therefore, we used the following

Dirac kernel as a natural default choice to compare a pair of atom labels l, l
� ∈ L :

K
Dirac
Feat (l, l�) =

�
1 if l = l

�

0 otherwise (3.14)

This approach requires the choice of a 3D conformer for each molecule, in a context

where there exists a large number of methods for exploring the conformation space, and

where we lack significant data for bound ligands in GPCR structures. Therefore, we

chose to build a 3D version of the ligand database in which molecules are represented

in the conformation proposed by the Omega program (OpenEye Scientific Software),

because it performs rapid systematic conformer search, and has been showed to present

good performances for retrieving bioactive conformations (119). For each of the 2446

retained ligands, the conformer was generated using the standard Omega parameters,

except for a 1Å RMSD clustering of the conformers, instead of the 0.8 default value.

Partial charges were calculated for all atoms using the Molcharge program (OpenEye
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Scientific Software) with standard parameters. This ligand database was then used to

calculate a 3D pharmacophore kernel for molecules (55).

3.5.3 Descriptors and similarity measures for GPCRs

SVM and kernel methods are also widely used in bioinformatics (75), and a variety of ap-

proaches have been proposed to design kernels between proteins, ranging from kernels based

on the amino-acid sequence of a protein (120; 121; 122; 123; 124; 125; 126) to kernels based

on the 3D structures of proteins (127; 128; 129). These kernels have been used in conjunction

with SVM for various tasks related to structural or functional classification of proteins. While

any of these kernels can theoretically be used as a GPCR kernel in (3.5), we investigated in this

work a few kernels described below, aimed at illustrating the flexibility of our framework and

test various hypothesis.

• A baseline method: the Dirac kernel. The Dirac kernel between two targets t, t
� is

defined as:

KDirac(t, t�) =

�
1 if t = t

�
,

0 otherwise.
(3.15)

This basic kernel simply represents different targets as orthonormal vectors. In other

words, using Dirac kernel for proteins amounts to performing classical learning inde-

pendently for each target. This kernel will be used in our work as a reference baseline

approach to which chemogenomic methods (that, on the contrary, aim at sharing infor-

mation between targets) will be compared.

From equation (3.5), we see that orthogonality between two proteins t and t
� implies

orthogonality between all pairs (l, t) and (l�, t�) for any two small molecules l and l
�.

This means that a linear classifier for pairs (l, t) will be trained without sharing any

information of known ligands between different targets.

• The multitask kernel : uniform sharing of ligand information.

The multitask kernel between two targets t, t
� is defined as:

Kmultitask(t, t�) = 1 + KDirac(t, t�) .

or :

KMultitask(t, t�) =

�
2 if t = t

�
,

1 otherwise.
(3.16)
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This kernel was originally proposed in the context of multitask learning (130). Multitask

learning is an approach to machine learning, that learns a problem together with other

related problems at the same time, using a shared representation. This often leads to

a better model for the main task, because it allows the learner to use the commonality

among the tasks.

Unlike the dirac kernel, this kernel is never equal to zero even when t and t
� are different.

It takes the constant value of 1 when t and t’ are different, which allows sharing of in-

formation uniformly between proteins, regardless of their similarity. In other words, this

means that ligand information known for any GPCR will be taken into account uniformly

to predict ligands for a given GPCR. This kernel takes the value of 2 for identical pro-

teins. This means that ligand information known for the protein under study will have

a double weight for prediction of new ligands for this protein, with respect to ligand

information arising from other proteins.

The next two kernels allow to share information between proteins based on otherwise

known biological information. With this kernel, the amount of information shared be-

tween proteins depends on their similarity according to some relevant biological char-

acteristics. This is not the case of the multitask kernel which propagates information

between proteins uniformly.

• The hierarchy kernel. Proteins have often been classified according to their sequence, or

to some physical or biological property (for example, the type of reaction they catalyze,

in the case of enzyme), defining families and superfamilies or proteins. For example,

the SCOP, or the KEGG databases classify proteins according to their overall fold or

enzymatic properties, respectively. These classifications can be used to define hierarchies

that, in turn, can be used to define kernels. Let us explain this principle in the case of

GPCRs.

In the GLIDA database, GPCRs are grouped into 7 classes based on sequence homology

and functional similarity: the rhodopsin family (class A), the secretin family (class B),

the metabotropic family (class C) and some smaller classes containing other GPCRs

(see Figure 3.4). The GLIDA database further subdivides each class of targets by type

of ligands, for example amine or peptide receptors or more specific families of ligands.

This defined a natural hierarchy in the GLIDA database that can be used to compare

GPCRs.
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Figure 3.4: Hierarchy used in the hierarchy kernel
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We used the underlying idea that, the more two proteins are close in the hierarchy, the

more common ancestors they have, leading to high similarity that can be taken into

account in a hierarchy kernel.

Suppose that the hierarchy contains n nodes (taking leaves into account). A protein t can

be encoded as a binary vector Φh(t) of length n. Element i of the vector is equal to 1

if node i is present in the hierarchy of t, and 0 otherwise. This allow to define a scalar

product between proteins.

The similarity between two proteins t and t’ can be measured by the scalar product be-

tween their feature vectors Φh(t) and Φh(t�).

Quite intuitively, the hierarchy kernel between two GPCRs was therefore defined as the

number of common ancestors in the corresponding hierarchy :

Khierarchy(t, t�) = �Φh(t),Φh(t�)�,

Note that this kernel is never equal to zero because all proteins shared at least the root of

the tree which corresponds to the common protein ancestor in this family. The underlying

idea in the hierarchy kernel is that, the more proteins are close in the hierarchy (i.e. the

more they share common ancestor nodes), the more they are considered to be similar, the

more they are expected to share similar ligands.

• The binding pocket kernel. Here, the underlying idea is that the protein-ligand recog-

nition process occurs in 3D space in a pocket involving a limited number of residues.

Therefore, proteins displaying similar binding pockets are expected to bind similar lig-

ands. The questions are how to extract and encode the pocket, and how similarity is

measured between pockets. We tried to describe the GPCR space using a representation

of this pocket. An additional difficulty resides in the fact that although the GPCR se-

quences are known, the residues forming this pocket are a priori unknown. However,

mutagenesis data showed that the transmembrane binding site is situated in a similar

region for all GPCRs (131), and this information was confirmed by the two available

X-ray structures available at the time we started this project. In order to identify residues

potentially involved in the binding pocket of GPCRs of unknown structure studied in this

work, we proceeded in several steps, somewhat similarly to (132).
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(a) The two known structures (at the time of this study), PDB entries 1U19 and 2RH1

(133; 134), were superimposed using the STAMP algorithm (135). Although retinal is

an inverse agonist and forms a covalent bond with Rhodopsin, while carazolol is an ago-

nist and binds non-covalently, root mean square deviation between these two complexed

structures is only of 1.6Å in the transmembrane helices (136). In the superimposed struc-

tures, the retinal and 3-(isopropylamino)propan-2-ol ligands are localized in the same

region of the transmembrane space, which is in agreement with global conservation of

binding pockets, as shown on Figure 3.5.

Figure 3.5: Binding pocket. Representation of the binding pocket of β2-adrenergic receptor (in
red) and bovine Rhodopsin (in black) viewed from the extracellular surface. On the center of the
pocket, 3-(isopropylamino)propan-2-ol and cis-retinal have been represented to show the size and
the position of the pocket around each ligand. Figure drawn with VMD (137)

(b) The structural alignment of bovine rhodopsin and of human β2-adrenergic receptor

was used to generate a sequence alignment of these two proteins.

(c) For both structures, in order to identify residues potentially involved in stabilizing

interactions with the ligand (i.e. residues defining the pocket), we selected residues that

presented at least one atom situated at less than 6Å from at least one atom of the ligand.

Figure 3.6 shows that these two pockets clearly overlap, as expected.

(d) Residues of the two pockets (as defined in c) were labeled in the structural sequence

alignment performed in (b). These residues were found to form small sequence clusters
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Figure 3.6: 3-(isopropylamino)propan-2-ol and the protein environment of β2-adrenergic recep-
tor as viewed from the extracellular surface. 3-(isopropylamino)propan-2-ol and the protein en-
vironment of β1-adrenergic receptor as viewed from the extracellular surface. Amino acid side
chains are represented for 6 of the 31 residues (in cyan, blue and red) of the binding pocket motif.
Transmembrane helix and 3-(isopropylamino)propan-2-ol are colored in black and red respectively.
Figure drawn with VMD (137)
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that were in correspondence in this alignment. These clusters were situated mainly in

the apical region of transmembrane segments and included a few extracellular residues.

This is consistent with the fact that it has been previously demonstrated that extracellular

loops can play a role in ligand binding together with transmembrane regions (138).

(e) All studied GPCR sequences, including bovine rhodopsin and human β2-adrenergic

receptor were aligned using CLUSTALW (139) with Blossum matrices (140). Sequences

which could not be correctly aligned (e.g. with important gaps in the transmembrane

regions) were discarded in order to only keep comparable sequences. We have then

checked that conserved residues of the transmembrane helices were correctly aligned,

according to (141), and local misalignments were corrected. In addition, the structural

alignment of bovine rhodopsin and human β2-adrenergic receptor, and known conserved

positions were used to locally correct misalignments. For each protein, residues in cor-

respondence in this alignment with a residue of the binding pocket (as defined above) of

either bovine rhodopsin or human β2-adrenergic receptor were retained. This lead to a

different number of residues per protein, because of sequence variability. For example,

in extracellular regions, some residues from bovine rhodopsin or human β2-adrenergic

receptor had a corresponding residue in some sequences but not in others. In order to

provide a homogeneous description of the binding pocket for all GPCRs, in the list of

residues initially retained for each protein, only residues situated at positions where no

gaps were found in any of the GPCRs were kept.

(f) Each protein was then encoded by a vector whose elements corresponded to the

aminoacids potentially involved in the binding of the ligand, as defined in (e). This

description of each protein by a vector of size 31 filled with amino acid residues, as

illustrated in Table 3.1, implicitly codes for a 3D information on the receptor pocket.

These amino acid vectors were then used to build a kernel that allows comparison of

binding pockets. In this representation, the inner product between two proteins (i.e. two

binding pocket motifs) is simply the number of residues they have in common at the

same positions:

Kpb(x, x
�) =

l�

i=1

δ(x[i], x�[i]),
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Table 3.1: Aligned receptor pocket residues. Residues of 5-hydroxytryptamine 5A receptor,
Adenosine A2b receptor, Gamma-aminobutyric acid type B receptor and Relaxin 3 receptor 2
(shown as examples) aligned with β2-adrenergic receptor binding site amino acids. The binding
pocket motif of β2-adrenergic receptor has been used as reference to determine the positions in
the protein sequence of the residues involved in the formation of the binding site of the 79 other
GPCRs.
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where l is the length of the binding pocket motifs (31 in our case), x[i] is the i-th residue

in x and δ(x[i], x�[i]) is 1 if x[i] = x
�[i], 0 otherwise. This kernel defines what we call

the baseline binding pocket kernel. We also tested a polynomial kernel of degree p over

the baseline kernel:

Kppb(x, x
�) =

�
Kpb(x, x

�) + 1
�p

.

We only used a degree of p = 2. However, it could be interesting in future studies to test

wether other values of this parameter could further improve the performances.

To summarize, in the binding pocket kernel, proteins are encoded by subsequences of

aminoacids representing the ligand binding pocket and are compared according to their subse-

quences similarity.

3.5.4 Data description

3.5.4.1 Filtering the GLIDA database

We used the GLIDA GPCR-ligand database (112) which includes 22964 known ligands for

3738 GPCRs from human, rat and mouse.

The ligand database contains highly diverse molecules, from ions and very small molecules

up to peptides, and a significant number of duplicates. These redundancies were eliminated.

Elimination of duplicates present in the GLIDA database was important here, because it could

have led to over-optimistic evaluation in the cross-validation procedure described below. The

remaining molecules were filtered in order to satisfy two constraints.

Indeed, since the long term goal is to identify drug candidates targeting GPCRs, it was

important to retain only drug-like compounds, i.e. molecules having the adequate physico-

chemical characteristics to be potential drugs candidates satisfying ADME criteria (142).

Therefore, to only keep drug-like compounds, we filtered the GLIDA database using the

Filter program (OpenEye Scientific Software) with standard parameters, which removes molecules

according to calculated properties such as molecular weight, hydrogen bond donor and accep-

tor count, number of rotatable bonds, ring size and number etc... as discussed in (30; 143; 144;

145).

For example, only molecules of molecular weights ranging from 150 Da to 450 Da were

kept (the classically accepted range for drugs), since the aim was to evaluate if statistical learn-

ing was possible on drug-like compounds. Another example was the elimination of molecules
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with more than 10 rotatable bonds (although most of them being already filtered out on the

molecular weight criterion). Indeed, they correspond to very flexible molecules that are not

suitable for the use of 3D descriptors. Overall these filters retained 2446 molecules, avail-

able under a 2D description file in the GLIDA data bank, and giving 4051 interactions with

the human GPCRs. The number of molecules retained is only a small fraction of the GLIDA

database, but it corresponds to all drug-like compounds of this database.

We also filtered proteins from the GLIDA database: we loaded the sequences of all GPCRs

that are able to bind any of these ligands, which resulted in 80 sequences, all corresponding

to human GPCRs. The retained GPCRs were significantly diverse in sequence, most of them

sharing 15% to 50% pairwise sequence similarities. Furthermore, they belonged to various

families, according to the GLIDA classification. They are found in several subfamilies of class

A (rhodopsin-like receptors), classes B (secretin family) and C (metabotropic family). In the

GLIDA database, GPCRs are classified in hierarchy (as mentioned above) which was used in

the hierarchy kernel.

3.5.4.2 Buliding of the learning dataset

Statistical learning methods required to build a learning dataset containing positive and negative

example of the considered property. In our case, this property correspond to the ability of a

given protein t and a given ligand lto form an interaction.

The GLIDA database provided positive examples corresponding to known interactions in-

volving any GPCR and any of the filtered molecules. For each of these positive interactions,

we generated a negative interaction involving the same receptor and one of the ligands of the

database not known to interact with this receptor. We are aware that this may have generated

a few false negative points in our benchmark. One possible improvement would be to use

experimentally tested negative interactions.

However, the mean similarity between the different ligands in the database using the 2D

Tanimoto kernel (see section 3.5.2), which is later used in our method, is quite low (0.13).

Besides, only 6.7% of the ligands have a mean similarity of more than 0.2 to the other ligands.

This suggests that even if false negatives have to be expected, the method used here to generate

negative interaction is reasonable.

Let us now present how the performance of the studied protein and ligand kernels were

evaluated in a chemogenomic study.
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3.6 Results

We ran two different sets of experiments in order to illustrate two important points.

In a first set of experiments, for each GPCR, we divided the known interactions for this

GPCR (i.e. the line of the interaction matrix corresponding to this GPCR) into 5 folds (Figure

3.7A). The classifier was trained with four folds of this GPCR and the whole data from the

other GPCRs (i.e. all other lines of the interaction matrix).

Figure 3.7: representation of the data as an interaction matrix between GPCRs and ligands. (A)
corresponds to the classifier trained with four folds of this GPCR and the whole data from the other
GPCRs. (B) corresponds to the classifier trained on the whole data from the other GPCRs, and
tested on the data of the considered GPCR .

The prediction accuracy for the GPCR under study was then tested on the remaining fold.

The goal of these first experiments was to evaluate if using data from other GPCRs improved

the prediction accuracy for a given GPCR, as compared to the classical approach where only

the data for the studied GPCR are taken into account.

In a second set of experiments, for each GPCR we ignored all ligand data available for this

particular GPCR. We trained a classifier on the whole data from the other GPCRs, and tested

on the data of the considered GPCR (Figure 3.7B). The goal was to assess how efficient our

chemogenomic approach would be to predict the ligands of orphan GPCRs.

Without going into mathematical details, in both experiments, the C parameter appearing

in the SVM method (cf section 2.7.4 ) was selected by internal cross validation on the training

set among values equal to 2i
, i ∈{− 8,−7, . . . , 5, 6} as recommended by (146).
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Table 3.2 shows the results of the first experiments with all the ligand and GPCR kernel

combinations.

Ktar\Klig 2D Tanimoto 3D pharmacophore
Dirac 86.2 ± 1.9 84.4 ± 2.0
multitask 88.8 ± 1.9 85.0 ± 2.3
hierarchy 93.1 ± 1.3 88.5 ± 2.0
binding pocket 90.3 ± 1.9 87.1 ± 2.3
poly binding pocket 92.1 ± 1.5 87.4 ± 2.2

Table 3.2: Prediction accuracy for the first experiment with various ligand and target kernels

3.6.1 Performance of protein kernels

For both ligand kernels, we observe an improvement between the individual approach (Dirac

kernel, 86.2%) and the baseline multitask approach (multitask kernel, 88.8%). The latter kernel

is merely modeling the fact that each GPCR is uniformly similar to all other GPCRs, and twice

more similar to itself. It does not use any prior information on the GPCRs, and yet, using it

improves the global performance with respect to individual learning. This result illustrates the

interest of chemogenomic approaches: sharing information between proteins, even in a very

naive manner, improves prediction performance.

Other kernels allowing to share information between GPCR using more biologically rele-

vant information (hierarchy and binding pocket kernels) further improved the prediction accu-

racy. In particular, the hierarchy kernel add more than 4.5% of precision with respect to naive

multitask approach. All the other informative GPCR kernels also improve the performance.

The polynomial binding pocket kernel is almost as efficient as the hierarchy kernel, which is

an interesting result.

Indeed, one could fear that using the hierarchy kernel, for the construction of which some

knowledge about the ligands may have been used, could have introduced bias in the results.

Such bias is certainly absent in the binding pocket kernel. The fact that almost the same perfor-

mance can be reached with kernels based on the mere sequence of GPCRs’ pockets is therefore

an important result. Figure 3.8 shows three of the GPCR kernels. The baseline multitask is

shown as a comparison. Interestingly, many of the subgroups defined in the hierarchy can be
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found in the binding pocket kernel, that is, they are retrieved from the simple information of

the binding pocket sequence.

Figure 3.8: GPCR kernel Gram matrices. The above square matrices correspond to the pairwise
similarity measures between the GPCR of the studied dataset based on 3 considered kernels: mul-
titask (A), hierarchy (B) and binding pocket (C) kernels.

3.6.2 Performance of ligand kernels

For all protein kernels, Table 3.2 show that the 3D kernel for the ligands, did not perform as

well as the 2D kernel. This may be explained by the fact the pharmacophore kernel is not suited

to this problem. However, another point should be discussed. In the case of the 3D approach,

molecular encoding and similarity measure is highly dependent on the conformers chosen in

3D space. Choosing the relevant conformer for a ligand, i.e; its active conformation in which

it can bind to its target, is not a trivial task. The way conformers were chosen probably had an

impact on the performance of the 3D approach. This point is discussed below, in section 3.7.

3.6.3 Impact of the number of training point on the prediction performance

Figure 3.9 illustrates how the improvement brought by the chemogenomics approach varies

with the number of available training points (i.e the number of known GPCR - ligand couples).

As one could have expected, the strongest improvement is observed for the GPCRs with few

(less than 20) training points (i.e. less than 10 known ligands since for each known ligand
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an artificial non-ligand was generated). When more training points become available, the im-

provement is less important, and sharing the information across the GPCRs can even degrade

the performances.

Figure 3.9: Improvement of the chemogenomics approach. Improvement (as a performance ratio)
of the hierarchy GPCR kernel against the Dirac GPCR kernel as a function of the number of training
samples available. Restricted to [2− 200] samples for the sake of readability.

This is an important result, first because, as showed on Figure 3.10, many GPCRs have few

known ligands (in particular, 11 of them have only two training points), and second because it

shows that when enough training points are available, individual learning will probably perform

as well as or better than our chemogenomics approach.

3.6.4 Prediction performance of the chemogenomic approach on orphan GPCR

Our second experiment (described above) intends to assess how our chemogenomic approach

can perform when predicting ligands for orphan GPCRs, i.e. with no training data available
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Figure 3.10: Distribution of the number of GPCR proteins having a given number of training
points (number of ligands). Restricted to [2− 200] samples for the sake of readability.
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for the GPCR of interest. Table 3.3 shows that the dirac kernel, equivalent to individual learn-

ing performs random prediction as one could expect for orphans receptors. Naive multitask

approach provides modest improvement of the performance. Note that kernels baring more bi-

ological information such as hierarchical and binding pocket kernels achieve 77.4% and 78.1%

of precision respectively, that is almost 30% better than the random approach one would get

when no data are available. Here again, the fact that the binding pocket kernel which only uses

the sequence of the receptor pocket performs as well as the hierarchy-based kernel is encourag-

ing. It suggests that given a orphan receptor for which only its sequence is known, it is possible

to make reasonable ligand predictions.

Ktar\Klig 2D Tanimoto 3D pharmacophore
Dirac 50.0 ± 0.0 50.0 ± 0.0
multitask 56.8 ± 2.5 58.2 ± 2.2
hierarchy 77.4 ± 2.4 76.2 ± 2.2
binding pocket 78.1 ± 2.3 76.6 ± 2.2
poly binding pocket 76.4 ± 2.4 74.9 ± 2.3

Table 3.3: Prediction accuracy for the second experiment with various ligand and target kernels

3.7 Discussion

Our results demonstrate that chemogenomic approaches outperform individual approach, in

particular in cases where very limited or no ligand information is available, as shown in Table

3.3 and Figure 3.9. In the case of well studied GPCRs, more classical ligand-based methods

(QSAR) may be better suited to predict new strong binders from a large number of known

ligands, as shown in Figure 3.9. Consistent with this observation, Tables 3.4 and 3.5 show that

in the two types of experiments, the improvement is observed for all subfamilies of GPCRs

retained in this study. This is an interesting result since most of published virtual screening

studies on GPCRs were applied to class A GPCRs.

Since our chemogenomic approach is a ligand-based approach, it would probably be inter-

esting to use it in combination with docking. Indeed, although prior known ligands can help

tuning docking procedures to the receptor under study, it can in principle be used with little or

no ligand information. When more experimental 3D structures become available for GPCRs
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Family \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 73.7 80.0 85.8 83.8 83.7
Rhodopsin amine receptors (35) 91.1 92.1 94.0 93.9 94.1
Rhodospin other receptors (17) 83.6 88.0 95.7 95.9 95.9
Metabotropic glutamate family (9) 73.1 93.5 98.9 83.3 93.3
Secretin family (1) 50.0 100.0 100.0 50.0 100.0

Table 3.4: Prediction accuracy by GPCR family for the first experiment. Mean prediction accuracy
for each GPCR family for the first experiment with the 2D Tanimoto ligand kernel and various
target kernels. The numbers in bracket are the numbers of receptors considered in the experiment
for each family. BP is the binding pocket kernel and PBP the poly binding pocket kernel

Family \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 50.0 50.6 66.7 74.0 65.3
Rhodopsin amine receptors (35) 50.0 56.0 73.7 74.0 73.1
Rhodospin other receptors (17) 50.0 50.2 86.5 87.6 85.5
Metabotropic glutamate family (9) 50.0 79.7 93.9 87.2 91.3
Secretin family (1) 50.0 100.0 100.0 50.0 100.0

Table 3.5: Prediction accuracy by GPCR family for the second experiment. Mean prediction
accuracy for each GPCR family for the second experiment with the 2D Tanimoto ligand kernel
and various target kernels. The numbers in bracket are the numbers of receptors considered in
the experiment for each family. BP is the binding pocket kernel and PBP the poly binding pocket
kernel.
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in the future, this will help building reliable models for a wider range of GPCRs that would

be suitable for docking studies. Joint use of ligand-based chemogenomic and docking would

certainly improve predictions.

We chose to use a binary descriptor for the receptor-ligand interaction, while QSAR or

docking methods usually try to rank molecules according to their predicted affinity for the

receptor. However, affinity prediction is still a subject of research at the level of a single recep-

tor, at least when using methods whose calculation times are compatible with the screening of

large molecular databanks. In this context, we feel that in chemogenomic approaches, where

information is shared between different proteins, such quantitative prediction is even more chal-

lenging. This led us to retain the binary binding and non-binding descriptors, although it would

formally have been straightforward to use a regression algorithm instead of a classification one

to make quantitative predictions.

It is not always easy to compare the performances of a new method to other existing meth-

ods, and particularly in the case of GPCRs. Indeed, at least to our knowledge, there is up to

now no public data from previous screening studies available as a benchmark to compare dif-

ferent screening methods on the same data. This urged us to give public access to the ligand

and receptor databases used in this study, to the detailed experimental protocol of the study,

and to the predictions made by our chemogenomic approach for each GPCR (see additional

files sections 4.3 and 4.4).

This provides a benchmark which we hope will contribute to a fair evaluation of different

methods and trigger new developments. This benchmark could be used to compare predictions

made by other methods.

Our approach boils down to the application of well-known machine learning methods in

the constructed chemogenomic space. We used a systematic way to build such a space by com-

bining a given representation of the ligands with a given representation of the GPCRs into a

binding-prediction-oriented GPCR-ligand couple representation. This allows to use any ligand

or GPCR descriptor or kernel existing in the cheminformatics or bioinformatics literature, or

new ones containing other prior information. Our experiments showed that the choice of the

descriptors was crucial for the prediction, and more sophisticated features for either the lig-

ands or the GPCRs could probably further improve the performances. Among these features,

improvements in the 3D ligand descriptors could probably be obtained. Indeed, 3D pharma-

cophore kernels did not always reach the performance of 2D kernels for the ligands. This is
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apparently in contradiction with the idea that protein-ligand interaction is a process occurring

in the 3D space, and with previous work in our group (55).

Different explanations can be proposed. First, it is possible that the bioactive conformation

was not correctly predicted for all molecules used in this study. For the two ligands for which it

was known, i.e. retinal and 3-(isopropylamino)propan-2-ol from PDB entries 1U19 and 2RH1

respectively, we found that the predicted conformation, using the same method as for all other

molecules, was very close to the experimental conformation, with RMSD values of less than

1Å. However, in absence of any other information on other bound ligand conformations, it is

not possible to rule out the possibility that for other molecules, the prediction was not correct.

Although more complete conformational space exploration for all ligands was out of the

scope of our experiments and would be a study by itself, work in this direction could improve

the method. In particular, since 2D ligand-based methods are not easily suitable to make predic-

tions outside of the molecular scaffolds for which information is known, ligand-based methods

using 3D description are of particular interest, because they are expected to allow better predic-

tions on molecules presenting diverse molecular patterns. However, conformer generation and

selection is a major drawback of using 3D descriptors, especially in the case of large ligands

with many free torsion angles. Synergy between our method and docking would provide a

means for the choice of a conformer. The principle could be to build homology models for the

GPCRs, dock the molecular database in the modeled binding pockets, and derive a 3D database

using, for each molecule, the conformer associated to the best docking solution.

Various evidence suggest that, within a common global architecture, a generic binding

pocket mainly involving transmembrane regions hosts agonists, antagonists and allosteric mod-

ulators. In order to identify this pocket automatically, other studies report the use of sequence

alignment and the prediction of transmembrane helices. (131) detected hypervariable positions

in transmembrane helices for identification of residues forming the binding pocket, although

some positions were more conserved. Indeed, conserved residues are probably important for

structural stabilization of the pocket, while variable positions are involved in ligand binding, in

order to accommodate the wide spectrum of molecules that are GPCR ligands. Analyzing the

positions of variable positions, these authors proposed potential binding pockets for GPCRs,

and found that the corresponding residues were frequently in the GRAP mutant database for

GPCRs (147). Interestingly, they pointed that residues at hypervariable positions were found

within a distance of 6Å from retinal in the rhodopsin X-Ray structure, which is also a classical

distance cutoff above which it is admitted that protein-ligand interactions become negligible.
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The simple and automatic method used in the present work for extracting GPCRs potential

binding pockets, and are in good agreement with this study. It is also important to note that

GPCRs are known to exist in dynamic equilibrium between inactive- and several active-state

conformations (148), and different ligands sometimes trigger distinct conformational changes

and stabilize different receptor conformations (149).

Taking into account receptor plasticity constitutes in itself a research domain in docking.

Its use is of particular interest for screening GPCR homology models since residue positions

are not exactly known. Therefore flexible docking procedures have been proposed and applied

on GPCR proteins (98; 150). Moreover, a modeling method has been proposed to get insights

on transmembrane bundle plasticity (151).

In our case, receptor flexibility might influence the definition of the binding pocket, since

it initially relies on the identification of residues in the two reference structures (1U19 and

2RH1) that present at least one atom situated at less than 6Å of the ligand. Therefore, we made

the implicit hypothesis that receptor conformational changes upon ligand binding does not

drastically affect this list of residues. When more structures become available in this family of

proteins, a better appreciation of such conformational rearrangements will be possible, which

could be taken into account in the binding pocket definition and could help to improve the

method.

(147) found that hierarchical tree representations of GPCR subfamilies calculated with full-

length GPCR sequences or with only binding pocket residues were similar, and that locally, the

latter was in better agreement with functional data, although their binding pocket included

only 31 residues. This result is also in good agreement with our finding that the hierarchy

kernel based (among other information) on full length sequence (from GLIDA) and the kernel

based on the binding pocket provided very similar performances. As mentioned in the Results

section, it is however important to note that the kernels based on the binding pocket were built

without any ligand information that could lead to some bias and artificially better performance.

3.8 Conclusion

We showed how sharing information across the GPCRs by considering a chemogenomic space

of the GPCR-ligand interaction pairs could improve the prediction performances, with respect

to the single receptor approach. In addition, we showed that using such a representation, it was

possible to make reasonable predictions even when all known ligands were ignored for a given
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GPCR, that is, to predict ligands for orphan GPCRs. Our results demonstrate that chemoge-

nomic approaches is particularly suited to cases where very limited or no ligand information is

available, as shown in Table 3.3.

This chemogenomics approach is related to ligand-based approaches. However, sharing

information among different GPCRs allows, in this case, to perform prediction on orphan

GPCRs, which is also possible using target-based methods. Nevertheless, the latter are lim-

ited by the number of known receptor structures and the difficulty to apply such methods on

homology models.

Interesting developments of this method could include application to other important drug

target families, like enzymes or ion channels (23), for which most of the descriptors used for

the GPCRs in this work could directly be transposed, and other, more specific ones could be

designed.

3.9 Additional files
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GPCR \Ktar Dirac multitask hierarchy BP PBP

Rhodopsin peptide receptors
AG2R(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CCKAR(6) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CML2(1) 50.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0 50.0 ± 35.4 50.0 ± 35.4
CXCR3(1) 50.0 ± 35.4 0.0 ± 0.0 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
EDNRA(50) 100.0 ± 0.0 99.0 ± 0.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
EDNRB(48) 96.9 ± 1.1 91.8 ± 3.4 98.0 ± 1.1 99.0 ± 0.9 99.0 ± 0.9
GASR(2) 100.0 ± 0.0 75.0 ± 21.7 75.0 ± 21.7 75.0 ± 21.7 75.0 ± 21.7
GPR7(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
LSHR(4) 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0
NK1R(24) 92.0 ± 4.4 82.0 ± 5.2 86.0 ± 5.4 88.0 ± 3.3 86.0 ± 3.6
NK2R(1) 50.0 ± 35.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
NK3R(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
OPRD(27) 92.3 ± 1.7 86.7 ± 4.4 90.3 ± 4.9 90.3 ± 2.8 90.3 ± 2.8
OPRK(24) 96.0 ± 3.6 98.0 ± 1.8 98.0 ± 1.8 98.0 ± 1.8 98.0 ± 1.8
OPRM(21) 100.0 ± 0.0 97.5 ± 2.2 97.5 ± 2.2 97.5 ± 2.2 97.5 ± 2.2
OXYR(3) 90.0 ± 8.9 100.0 ± 0.0 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0
SSR1(3) 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9
CCR3(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4

Rhodopsin amine receptors
5HT1A(196) 91.6 ± 1.3 90.1 ± 2.2 88.8 ± 0.8 91.8 ± 1.5 90.8 ± 1.7
5HT1B(28) 82.7 ± 3.0 96.0 ± 3.6 98.0 ± 1.8 100.0 ± 0.0 100.0 ± 0.0
5HT1D(172) 93.3 ± 1.0 92.4 ± 0.9 92.7 ± 0.9 94.8 ± 0.7 94.8 ± 0.7
5HT1E(16) 87.5 ± 5.5 90.8 ± 3.4 96.7 ± 3.0 90.8 ± 3.4 90.8 ± 3.4
5HT1F(49) 86.7 ± 1.2 90.9 ± 0.8 88.8 ± 1.7 92.9 ± 1.1 91.7 ± 2.1
5HT2A(79) 94.9 ± 1.4 95.6 ± 1.4 93.0 ± 1.7 94.3 ± 1.7 94.9 ± 1.4
5HT2B(72) 81.2 ± 3.3 78.3 ± 2.9 83.9 ± 1.8 83.2 ± 2.0 83.2 ± 2.0
5HT2C(198) 88.6 ± 1.2 86.8 ± 1.2 89.4 ± 1.4 89.6 ± 0.8 90.1 ± 1.3
5HT4R(87) 92.5 ± 2.0 86.7 ± 2.5 85.7 ± 2.0 87.9 ± 2.1 89.0 ± 2.0
5HT5A(7) 80.0 ± 8.4 75.0 ± 10.0 75.0 ± 10.0 75.0 ± 10.0 75.0 ± 10.0
5HT6R(13) 95.0 ± 4.5 96.7 ± 3.0 91.7 ± 4.7 95.0 ± 4.5 100.0 ± 0.0
5HT7R(15) 90.0 ± 6.0 90.0 ± 3.7 96.7 ± 3.0 93.3 ± 3.7 93.3 ± 3.7
ACM1(527) 96.7 ± 0.6 94.3 ± 0.9 95.5 ± 1.0 96.1 ± 0.7 96.1 ± 0.8
ACM2(24) 82.0 ± 5.2 90.0 ± 2.8 92.0 ± 3.3 94.0 ± 3.6 92.0 ± 3.3
ACM3(58) 93.2 ± 2.6 90.5 ± 0.7 91.3 ± 1.3 96.4 ± 1.5 95.6 ± 1.3
ACM4(21) 90.0 ± 5.5 95.0 ± 2.7 95.0 ± 2.7 92.5 ± 2.7 95.0 ± 2.7
ACM5(16) 94.2 ± 3.2 94.2 ± 3.2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

69



3. VIRTUAL SCREENING OF GPCRS: AN IN SILICO CHEMOGENOMIC
APPROACH

GPCR \Ktar Dirac multitask hierarchy BP PBP

ADA1A(80) 93.1 ± 2.1 98.8 ± 0.7 99.4 ± 0.6 98.1 ± 0.7 98.8 ± 0.7
ADA1B(67) 90.5 ± 3.7 95.7 ± 1.9 98.6 ± 0.8 97.0 ± 0.7 97.0 ± 0.7
ADA1D(73) 90.4 ± 2.4 96.0 ± 1.1 98.7 ± 0.7 98.0 ± 0.7 98.0 ± 0.7
ADA2A(234) 95.7 ± 0.5 96.8 ± 0.3 98.5 ± 0.2 98.5 ± 0.2 98.5 ± 0.2
ADA2B(224) 95.1 ± 1.2 95.5 ± 1.3 98.2 ± 0.7 98.2 ± 0.7 98.0 ± 0.7
ADA2C(225) 95.3 ± 0.4 96.4 ± 0.4 97.6 ± 0.4 97.6 ± 0.4 97.8 ± 0.3
ADRB1(50) 98.0 ± 1.1 97.0 ± 1.8 99.0 ± 0.9 99.0 ± 0.9 99.0 ± 0.9
ADRB2(48) 92.8 ± 1.9 95.9 ± 0.9 96.9 ± 1.1 98.0 ± 1.1 98.0 ± 1.1
ADRB3(57) 98.2 ± 1.0 95.5 ± 2.2 97.3 ± 1.6 97.3 ± 1.6 97.3 ± 1.6
DRD1(100) 93.5 ± 1.8 94.5 ± 1.5 95.0 ± 1.4 94.5 ± 1.3 94.5 ± 1.3
DRD2(106) 93.4 ± 0.8 92.9 ± 1.8 92.4 ± 1.6 91.5 ± 1.7 91.9 ± 1.9
DRD3(41) 86.7 ± 2.6 89.2 ± 3.1 89.3 ± 3.8 90.4 ± 3.2 91.5 ± 2.8
DRD4(143) 92.3 ± 0.8 92.7 ± 1.1 93.7 ± 1.3 93.7 ± 1.4 94.1 ± 1.3
DRD5(7) 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HRH1(19) 89.2 ± 4.3 92.5 ± 2.7 86.7 ± 0.7 92.5 ± 2.7 92.5 ± 2.7
HRH2(22) 91.0 ± 3.5 93.5 ± 3.7 96.0 ± 3.6 96.0 ± 3.6 96.0 ± 3.6
HRH3(88) 97.2 ± 0.8 96.1 ± 1.3 97.7 ± 0.9 97.7 ± 0.5 97.7 ± 0.5
HRH4(5) 80.0 ± 11.0 70.0 ± 17.9 100.0 ± 0.0 80.0 ± 11.0 80.0 ± 11.0

Rhodopsin other receptors
AA1R(56) 96.4 ± 1.5 96.4 ± 0.8 96.4 ± 1.5 97.3 ± 1.0 97.3 ± 1.0
AA2AR(73) 96.0 ± 1.7 97.3 ± 1.1 98.6 ± 0.8 98.0 ± 1.2 98.0 ± 1.2
AA2BR(83) 97.6 ± 1.0 98.2 ± 0.7 99.4 ± 0.6 99.4 ± 0.6 99.4 ± 0.6
AA3R(17) 97.5 ± 2.2 82.5 ± 1.8 94.2 ± 3.2 95.0 ± 4.5 95.0 ± 4.5
CLTR1(18) 89.2 ± 2.5 84.2 ± 4.1 89.2 ± 4.3 91.7 ± 3.1 91.7 ± 3.1
LT4R1(2) 50.0 ± 25.0 50.0 ± 25.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
LT4R2(2) 50.0 ± 25.0 50.0 ± 25.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MTR1A(91) 97.3 ± 1.1 96.8 ± 1.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MTR1B(90) 97.8 ± 0.9 97.8 ± 0.9 99.4 ± 0.5 99.4 ± 0.5 99.4 ± 0.5
MTR1L(75) 98.7 ± 0.7 99.3 ± 0.6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PAFR(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
PE2R1(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R2(7) 100.0 ± 0.0 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R3(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R4(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
R3R2(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
TA2R(63) 100.0 ± 0.0 99.2 ± 0.7 99.2 ± 0.7 100.0 ± 0.0 100.0 ± 0.0
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3.9 Additional files

GPCR \Ktar Dirac multitask hierarchy BP PBP

Metabotropic glutamate family
GABR1(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0
GABR2(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 50.0 ± 35.4
MGR1(34) 98.3 ± 1.5 91.4 ± 4.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR2(6) 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR3(5) 100.0 ± 0.0 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR5(5) 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR6(5) 100.0 ± 0.0 90.0 ± 8.9 90.0 ± 8.9 100.0 ± 0.0 90.0 ± 8.9
MGR7(6) 95.0 ± 4.5 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR8(3) 80.0 ± 17.9 80.0 ± 17.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Secretin family
VIPR1(1) 50.0 ± 35.4 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0

Table 3.6: Prediction accuracy by GPCR for the first experiment. Mean prediction accuracy for
each GPCR for the first experiment with the 2D Tanimoto ligand kernel and various target kernels.
The GPCR identifiers are the GLIDA references. The numbers in bracket are the numbers ligands
considered in the experiment for each GPCR. BP is the binding pocket kernel and PBP the poly
binding pocket kernel.
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3. VIRTUAL SCREENING OF GPCRS: AN IN SILICO CHEMOGENOMIC
APPROACH

Family Dirac multitask hierarchy BP PBP

Rhodopsin peptide receptors
AG2R(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CCKAR(6) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
CML2(1) 50.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0 50.0 ± 35.4 50.0 ± 35.4
CXCR3(1) 50.0 ± 35.4 0.0 ± 0.0 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
EDNRA(50) 100.0 ± 0.0 99.0 ± 0.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
EDNRB(48) 96.9 ± 1.1 91.8 ± 3.4 98.0 ± 1.1 99.0 ± 0.9 99.0 ± 0.9
GASR(2) 100.0 ± 0.0 75.0 ± 21.7 75.0 ± 21.7 75.0 ± 21.7 75.0 ± 21.7
GPR7(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
LSHR(4) 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0 70.0 ± 11.0
NK1R(24) 92.0 ± 4.4 82.0 ± 5.2 86.0 ± 5.4 88.0 ± 3.3 86.0 ± 3.6
NK2R(1) 50.0 ± 35.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
NK3R(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
OPRD(27) 92.3 ± 1.7 86.7 ± 4.4 90.3 ± 4.9 90.3 ± 2.8 90.3 ± 2.8
OPRK(24) 96.0 ± 3.6 98.0 ± 1.8 98.0 ± 1.8 98.0 ± 1.8 98.0 ± 1.8
OPRM(21) 100.0 ± 0.0 97.5 ± 2.2 97.5 ± 2.2 97.5 ± 2.2 97.5 ± 2.2
OXYR(3) 90.0 ± 8.9 100.0 ± 0.0 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0
SSR1(3) 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9 90.0 ± 8.9
CCR3(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4

Rhodopsin amine receptors
5HT1A(196) 91.6 ± 1.3 90.1 ± 2.2 88.8 ± 0.8 91.8 ± 1.5 90.8 ± 1.7
5HT1B(28) 82.7 ± 3.0 96.0 ± 3.6 98.0 ± 1.8 100.0 ± 0.0 100.0 ± 0.0
5HT1D(172) 93.3 ± 1.0 92.4 ± 0.9 92.7 ± 0.9 94.8 ± 0.7 94.8 ± 0.7
5HT1E(16) 87.5 ± 5.5 90.8 ± 3.4 96.7 ± 3.0 90.8 ± 3.4 90.8 ± 3.4
5HT1F(49) 86.7 ± 1.2 90.9 ± 0.8 88.8 ± 1.7 92.9 ± 1.1 91.7 ± 2.1
5HT2A(79) 94.9 ± 1.4 95.6 ± 1.4 93.0 ± 1.7 94.3 ± 1.7 94.9 ± 1.4
5HT2B(72) 81.2 ± 3.3 78.3 ± 2.9 83.9 ± 1.8 83.2 ± 2.0 83.2 ± 2.0
5HT2C(198) 88.6 ± 1.2 86.8 ± 1.2 89.4 ± 1.4 89.6 ± 0.8 90.1 ± 1.3
5HT4R(87) 92.5 ± 2.0 86.7 ± 2.5 85.7 ± 2.0 87.9 ± 2.1 89.0 ± 2.0
5HT5A(7) 80.0 ± 8.4 75.0 ± 10.0 75.0 ± 10.0 75.0 ± 10.0 75.0 ± 10.0
5HT6R(13) 95.0 ± 4.5 96.7 ± 3.0 91.7 ± 4.7 95.0 ± 4.5 100.0 ± 0.0
5HT7R(15) 90.0 ± 6.0 90.0 ± 3.7 96.7 ± 3.0 93.3 ± 3.7 93.3 ± 3.7
ACM1(527) 96.7 ± 0.6 94.3 ± 0.9 95.5 ± 1.0 96.1 ± 0.7 96.1 ± 0.8
ACM2(24) 82.0 ± 5.2 90.0 ± 2.8 92.0 ± 3.3 94.0 ± 3.6 92.0 ± 3.3
ACM3(58) 93.2 ± 2.6 90.5 ± 0.7 91.3 ± 1.3 96.4 ± 1.5 95.6 ± 1.3
ACM4(21) 90.0 ± 5.5 95.0 ± 2.7 95.0 ± 2.7 92.5 ± 2.7 95.0 ± 2.7
ACM5(16) 94.2 ± 3.2 94.2 ± 3.2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
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3.9 Additional files

Family Dirac multitask hierarchy BP PBP

ADA1A(80) 93.1 ± 2.1 98.8 ± 0.7 99.4 ± 0.6 98.1 ± 0.7 98.8 ± 0.7
ADA1B(67) 90.5 ± 3.7 95.7 ± 1.9 98.6 ± 0.8 97.0 ± 0.7 97.0 ± 0.7
ADA1D(73) 90.4 ± 2.4 96.0 ± 1.1 98.7 ± 0.7 98.0 ± 0.7 98.0 ± 0.7
ADA2A(234) 95.7 ± 0.5 96.8 ± 0.3 98.5 ± 0.2 98.5 ± 0.2 98.5 ± 0.2
ADA2B(224) 95.1 ± 1.2 95.5 ± 1.3 98.2 ± 0.7 98.2 ± 0.7 98.0 ± 0.7
ADA2C(225) 95.3 ± 0.4 96.4 ± 0.4 97.6 ± 0.4 97.6 ± 0.4 97.8 ± 0.3
ADRB1(50) 98.0 ± 1.1 97.0 ± 1.8 99.0 ± 0.9 99.0 ± 0.9 99.0 ± 0.9
ADRB2(48) 92.8 ± 1.9 95.9 ± 0.9 96.9 ± 1.1 98.0 ± 1.1 98.0 ± 1.1
ADRB3(57) 98.2 ± 1.0 95.5 ± 2.2 97.3 ± 1.6 97.3 ± 1.6 97.3 ± 1.6
DRD1(100) 93.5 ± 1.8 94.5 ± 1.5 95.0 ± 1.4 94.5 ± 1.3 94.5 ± 1.3
DRD2(106) 93.4 ± 0.8 92.9 ± 1.8 92.4 ± 1.6 91.5 ± 1.7 91.9 ± 1.9
DRD3(41) 86.7 ± 2.6 89.2 ± 3.1 89.3 ± 3.8 90.4 ± 3.2 91.5 ± 2.8
DRD4(143) 92.3 ± 0.8 92.7 ± 1.1 93.7 ± 1.3 93.7 ± 1.4 94.1 ± 1.3
DRD5(7) 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HRH1(19) 89.2 ± 4.3 92.5 ± 2.7 86.7 ± 0.7 92.5 ± 2.7 92.5 ± 2.7
HRH2(22) 91.0 ± 3.5 93.5 ± 3.7 96.0 ± 3.6 96.0 ± 3.6 96.0 ± 3.6
HRH3(88) 97.2 ± 0.8 96.1 ± 1.3 97.7 ± 0.9 97.7 ± 0.5 97.7 ± 0.5
HRH4(5) 80.0 ± 11.0 70.0 ± 17.9 100.0 ± 0.0 80.0 ± 11.0 80.0 ± 11.0

Rhodopsin other receptors
AA1R(56) 96.4 ± 1.5 96.4 ± 0.8 96.4 ± 1.5 97.3 ± 1.0 97.3 ± 1.0
AA2AR(73) 96.0 ± 1.7 97.3 ± 1.1 98.6 ± 0.8 98.0 ± 1.2 98.0 ± 1.2
AA2BR(83) 97.6 ± 1.0 98.2 ± 0.7 99.4 ± 0.6 99.4 ± 0.6 99.4 ± 0.6
AA3R(17) 97.5 ± 2.2 82.5 ± 1.8 94.2 ± 3.2 95.0 ± 4.5 95.0 ± 4.5
CLTR1(18) 89.2 ± 2.5 84.2 ± 4.1 89.2 ± 4.3 91.7 ± 3.1 91.7 ± 3.1
LT4R1(2) 50.0 ± 25.0 50.0 ± 25.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
LT4R2(2) 50.0 ± 25.0 50.0 ± 25.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MTR1A(91) 97.3 ± 1.1 96.8 ± 1.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MTR1B(90) 97.8 ± 0.9 97.8 ± 0.9 99.4 ± 0.5 99.4 ± 0.5 99.4 ± 0.5
MTR1L(75) 98.7 ± 0.7 99.3 ± 0.6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PAFR(1) 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4 50.0 ± 35.4
PE2R1(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R2(7) 100.0 ± 0.0 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R3(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
PE2R4(5) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
R3R2(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
TA2R(63) 100.0 ± 0.0 99.2 ± 0.7 99.2 ± 0.7 100.0 ± 0.0 100.0 ± 0.0
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3. VIRTUAL SCREENING OF GPCRS: AN IN SILICO CHEMOGENOMIC
APPROACH

Family Dirac multitask hierarchy BP PBP

Metabotropic glutamate family:
GABR1(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0
GABR2(1) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 50.0 ± 35.4
MGR1(34) 98.3 ± 1.5 91.4 ± 4.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR2(6) 95.0 ± 4.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR3(5) 100.0 ± 0.0 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR5(5) 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR6(5) 100.0 ± 0.0 90.0 ± 8.9 90.0 ± 8.9 100.0 ± 0.0 90.0 ± 8.9
MGR7(6) 95.0 ± 4.5 90.0 ± 8.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MGR8(3) 80.0 ± 17.9 80.0 ± 17.9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Secretin family:
VIPR1(1) 50.0 ± 35.4 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 35.4 100.0 ± 0.0

Table 3.7: Prediction accuracy by GPCR for the second experiment. Mean prediction accuracy
for each GPCR for the second experiment with the 2D Tanimoto ligand kernel and various target
kernels. The GPCR identifiers are the GLIDA references. The numbers in bracket are the numbers
ligands considered in the experiment for each GPCR. BP is the binding pocket kernel and PBP the
poly binding pocket kernel.
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4

Protein binding pocket similarity
measure based on comparison of
clouds of atoms in 3D

The chemogenomic approach presented in chapter 3 allows to predict ligands for proteins be-

longing to the same family or superfamily, because the similarity measures used imply that the

proteins can be aligned (at least locally, in the case of the binding pocket approach). For pro-

teins belonging to unrelated families, such sequence alignment is not relevant. However, the

advantage of this approach was that it did not rely on prior knowledge of 3D structure for all

the considered proteins (for the hierarchy kernel), or it required only one known 3D structure

in the family (for the binding pocket kernel).

In this chapter, we will present a chemogenomic approach which is applicable to proteins

belonging to totally different families, as long as their 3D structures are available. In other

words, this method allows to share ligand information between proteins to imrpove perfor-

mance in prediction of protein-ligand interaction, under the restriction that 3D structures need

to be known.

4.1 Background

Predicting which molecules can bind to a given binding site of a protein with known 3D struc-

ture is important to decipher the protein function, and useful in drug design to identify drug

precursors or predict potential side effects if a drug candidate is predicted to bind to many pro-
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4. PROTEIN BINDING POCKET SIMILARITY MEASURE BASED ON
COMPARISON OF CLOUDS OF ATOMS IN 3D

tein pockets. A classical assumption in structural biology is that the 3D structure of a protein

is related to its molecular function, i.e., the nature of its partner molecules. Most available

programs for structure visualization provide tools for 3D structure superposition and compari-

son, which may help to predict the nature of a protein ligand from those of other proteins with

overall similar 3D structure (155).

However, proteins that do not display any overall sequence or structure similarity may

present similar binding sites, and consequently also share similar ligands. Therefore, compar-

ison of binding pockets is a more appropriate approach in order to predict if two proteins bind

similar ligands (156), and many ligand prediction methods rely on local 3D comparisons at the

level of the binding site; whether or not the overall 3D structures overlap.

For example, (157) compared pockets described with real spherical harmonic expansion

coefficients. These coefficients are used to describe the shape of a binding pocket. (158) used a

specialized geometric hashing procedure as the core of the SitesBase web server. (159) devel-

oped a method that detects multiple common sets of points. An approach proposed by (160) is

based on the representation of binding pockets by triangle-discretized spheres. (161) and (162)

considered graph-based representations of binding pockets and applied graph matching algo-

rithms. Finally, (163; 164) combines the identification of a binding site on a whole protein 3D

structure and its comparison to a reference binding site, using a geometric hashing procedure.

Our contribution in this chapter is twofold.

First, we propose a new similarity measure to compare binding pockets of proteins. For

that purpose, we represent a binding pocket by a cloud of atoms in the 3D space, potentially

baring labels such as partial charges or atom types. The method relies on the representation of

local protein structures are rigid bodies, and we therefore represent a protein pocket as a cloud

of points with fixed relative positions. The method performs a superposition of two pockets

even if their corresponding proteins present no overall sequence or 3D structure similarity.

Then, a pocket similarity is measured based on a convolution kernel between clouds of points.

One important difference between this approach and most existing methods is that it does

not require any pairwise matching of atoms (or superatoms), or residues, in order to compare

protein binding pockets. Instead, we attempt to capture the similarity of atom densities in the

3D space. This confers smoothness properties to the proposed similarity measure.

Second, we propose to use a classification method to predict ligands for target pockets,

according to their similarity scores with a set of pockets with known ligands. This approach

is able to handle the difficult case where different families of pockets binding the same ligand
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4.2 Methods

are present. This may be observed when the ligand is flexible and can be bound in various

conformations by pockets displaying different topologies, as shown in the case of ATP in the

result section.

An important question that we will debate is how to compare the quality of similarity

measures. Although the area under ROC curves (AUC scores) are commonly used (156), we

show that classification-based scores better compare the performances of similarity measures

for ligand prediction. We underline that it is not possible to define an intrinsic quality for

a similarity measure, because there is no absolute reference. Similarity measures can only

be compared according to the question of interest. Here, we evaluate quality of similarity

measures with respect to their ability to predict a ligand for a pocket.

We test our method on a benchmark proposed by other authors, in order to compare our

new method to other published algorithms. We also test the methods on a new benchmark

containing non redundant protein pockets binding ligands of similar sizes, typical of that of

drug molecules, corresponding to a more realistic problem. We provided this new dataset as a

publicly available benchmark.

In the following, we will first present methods used to encode, superpose and compare

pockets. We will briefly review other related methods used in this study as baseline methods to

which we will compare our new methods. We present the performance criterion used to eval-

uate methods. Then the benchmark datasets used in this study are presented before presenting

the results.

4.2 Methods

4.2.1 Convolution kernel between clouds of atoms

In our model, a binding pocket is described by a set of atoms in the 3D space. Our objective

is to construct a similarity measure between pockets, which may be used to identify pockets

binding the same ligand.

Let P = (xi, li)N
i=1 denote a binding pocket consisting of N atoms, where xi ∈ R3 is a

3D vector representing atom coordinates, and li is a label (discrete or real valued) that may be

used to store additional information on the atoms (for example, atom type, atom partial charge,

or amino acid type).
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A classical approach for pocket comparison is to iteratively align two pockets and further

count the number of overlapping atoms, usually within a tolerance in the range of 1Å. Dif-

ferent implementations of this principle can be found in such methods as the Tanimoto index

(165), the SitesBase algorithm (Poisson index, (166)) , or the MultiBind algorithm (159). The

alignment is made to maximize the number of overlapping atoms, which is generally a good

indicator of pocket similarity.

However, atoms may have different positions but play equivalent roles in ligand binding

(for example, the side chain of a basic residue may bind a phosphate group of an ATP molecule

from different positions), and the role of one atom in one pocket may be played by a group

of atoms in another one. These observations suggest the idea of an alternative smooth score

which would not count the number of overlapping atoms, but rather use a weighted number of

atoms having similar positions. We first consider the case where labels are ignored, and only

atom coordinates are used to measure the similarity between pockets. Then, we explain how

the information on atom labels may be introduced in the new similarity measure.

Given two pockets P1 and P2 the similarity measure K(P1, P2), we used the similarity

measure is defined as follows

K(P1, P2) =
�

xi∈P1

�

yj∈P2

e

−||xi−yj ||2

2σ2 . (4.1)

This similarity measure corresponds to a classically used positive definite gaussian kernel.

Parameter sigma can be view as a smoothing parameter allowing comparison of density of

points instead of pairwise comparison between atom pairs belonging to pocket P1 and P2.

In addition, it may be considered as a true scalar product on atom clouds that represent

binding pockets (75).

Consequently, as for all scalar product, it can define a distance :

D(P1, P2) =
�

K(P1, P1) + K(P2, P2)− 2K(P1, P2) . (4.2)

This distance defines a distance between pockets.

The parameter σ characterizes the sensitivity of the similarity measure (formula 4.1) to

points relative displacements. When σ is small, only atoms which are close to each other

significantly contribute to K(P1, P2). On the contrary, when σ is large, almost all pairs of

atoms contribute to K(P1, P2).
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However, formula (4.1) is not fully appropriate in practice, because the proposed measure

is not invariant upon rotations and translations of the binding pockets.

Indeed, suppose that two identical pockets are placed in two different coordinate systems,

which is the case for most protein structures deposited at the PDB. The similarity measure

between these two identical pockets will not be equal to one because the distance between each

corresponding atoms of the two pockets is not equal to zero.

Therefore, to overcome this problem we define a similarity measure sup-CK as the maxi-

mum of (4.1) over all possible rotations and translations of one of the two pockets:

sup-CK(P1, P2) = max
R,yt

�

xi∈P1,yj∈P2

e

−||xi−(Ryj+yt)||2

2σ2 (4.3)

Where R is an orthonormal rotation matrix and yt is a translation vector. This transforma-

tion aims to bring the two pockets in the same coordinate system, and find the best possible

superposition of the two pockets by rotation or translation of one pocket over the other.

The problem we encounter now is that to evaluate sup-CK, we now need to maximize

a non-concave function over the set of rotations and translations, which may have many local

maxima. Sup-CK is not a positive definite measure anymore, but can still be used as a similarity

score. Exact maximization of this non-concave function is a hard optimization problem. An

approximate solution can be estimated by running a gradient ascent algorithm, starting from

many different initial points, and taking the best local maximum. Choosing initial points near

the global optimal can then help find a better solution and accelerate the optimization. In the

case of binding pockets, we found experimentally that, rather than starting from random initial

points, a good approximation of the optimal translation vector yt is the vector which translates

the geometric center of P2 into the geometric center of P1:

yt =
1

N1

�

xi∈P1

xi −
1

N2

�

yi∈P2

yi

Similarly, an approximation of the optimal rotation matrix R is the rotation that superposes

the first principal axis of P2 with the first principal axis of P1, the second one with the second

one, and the third one with the third one.

Once this starting point as been found, a gradient ascent method can be used to find the

maximum. This requires to calculate the gradient of the function in (see formula 4.3) with

respect to R and yt.
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This optimization step will not be detailed here, but it defines the best pocket superposition,

according to the sup-CK similarity measure.

As mentioned above, it may be interesting to use additional information on binding pocket

atoms, such as atom types or charges. Let us suppose that this information is represented by

labels li (which may be discrete or real variables, or multidimensional vectors) and that it is

associated to a similarity measure. For example, to measure the similarity between categorical

labels like atom types, one can use the Dirac function 1li=lj . In our experiments, we used atom

partial charges as atom labels, with a Gaussian kernel KL(li, lj) = e
−

(li−lj)2

λ . Of course, other

similarity measures may be employed.

These atom labels can be used to re-weight the contribution of two atoms xi and yj by

KL(li, lj) in (4.3):

sup-CKL(P1, P2) = max
R,yt

�

xi∈P1
yj∈P2

e
−

(li−lj)2

λ e

−||xi−(Ryj+yt)||2

2σ2 (4.4)

where parameter λ controls the sensitivity of our measure to atom labels, for example to partial

charges. When λ is large, the impact of labels is negligible, which corresponds to a purely

geometrical approach. When λ is close to zero, only pairs of atoms which have the same

partial charge contribute to our measure. In general, the smaller λ, the greater the contribution

of the atom labels to the binding pocket similarity measure. Since the function KL does not

depend on R and yt in (4.4), the same optimization procedure for pockets superposition can be

used to optimize (4.3) or (4.4).

Finally, it is important to notice that the sup-CK measure of similarity can be used to com-

pare any set of atoms in 3D. As mentioned in the introduction section, the superposition method

and the similarity measure may be applied to superpose and compare pockets, even when they

belong to proteins displaying no sequence and no overall structure similarity. This point will

be illustrated in Results on the example of two unrelated ATP binding proteins.

4.2.2 Related methods

In the following, we briefly recall the principals of a few other methods proposed to measure

similarity between pockets, because we compare them to the sup-CK method defined in the

present study.

Spherical harmonic decomposition (SHD). (157) proposed to model pockets by star-shapes

built using the SURFNET program. The star-shape representation is defined by a function of
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spherical coordinates f(θ,φ ), representing the distance from the pocket center to the pocket

surface for a given (θ,φ). To measure the similarity of binding pockets P1 and P2, the corre-

sponding functions f1 and f2 are first decomposed into spherical harmonics, and the pocket

similarity is then computed as the standard Euclidean metric between vectors of decompo-

sition coefficients. They transform the binding pocket to a standard frame of reference and

compute the real spherical harmonic expansion coefficients that best approximate the shape of

the pocket.

(156) presented three different variants of SHD, using only the shapes or the sizes of the

binding pockets (keeping only the zero-th order in the spherical harmonics expansion), and

their combination. As the zeroth order of the spherical harmonic coefficients reflects the general

size of a shape, the division of all coefficients by the zeroth order coefficient, places the shapes

on the same scale and thereby removes the influence of different sized objects.

Poisson index (sup-PI). As mentioned in the Background section 4.1 of this chapter, many

binding pockets similarity measures are based on pocket alignment with further counting of

overlapping atoms. This kind of approach is used in the Poisson index model (166). More

precisely, the Poisson index model is based on a normalized number of overlapping atoms

PI(P1, P2) = L
#P1+#P2−L , where L is the number of overlapping atoms, and #P1 and #P2

are the numbers of atoms in P1 and P2, respectively. The PI score may be computed for any

pocket superposition method. While (166) used the geometric hashing algorithm to perform

superposition, we used the superposition made by the sup-CK method.

Multibind. (159) represents pockets by pseudo-atoms labeled with physicochemical proper-

ties. Pockets are aligned using a geometric hashing technique. This algorithm was mainly

designed for multiple alignment of binding sites, but it may be used for pairwise alignment of

pockets, as performed in this study.

Other simple methods. We also considered two simple methods based on the comparison of

simple binding pockets characteristics. These methods represent each pocket by an ellipsoid

constructed on the basis of the pocket’s principal axis. The first one, referred to as Vol, estimates

the similarity between pockets P1 and P2 by the absolute value of the difference between the

volumes of their corresponding ellipsoids: V ol(P1, P2) = |V ol(P1) − V ol(P2)|. The second

one, called Princ-Axis, estimates the similarity score between pockets by
�3

i=1(λ
P1
i − λ

P2
i )2,

where λ
P1
i and λ

P2
i are the lengths of the three principle axis of pockets P1 and P2, respectively.

Combination of sup-CK and Vol. Since volume information was found to be important by

(156), we also tested a linear combination of the sup-CK and Vol methods, called sup-CK-Vol,
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where the coefficient of linear combination is learned as other model parameters (σ, λ, or the

distance cutoff R discussed in the Datasets section) in the double cross validation scheme. This

linear combination takes advantage of the Vol method to separate pockets binding ligands of

very different sizes like PO4 and NAD, and of the sup-CK algorithm to allow finer discrimina-

tion.

Sequence. To compare our method based on local 3D similarity to a simple and classical

approach based on sequence comparison, we conducted a pairwise alignment of all protein

sequences for the different datasets, in order to build a matrix of distance between proteins

based on sequence similarity. This matrix was built with the algorithm of Needleman and

Wunsch, using the default settings (167; 168).

4.2.3 Performance criteria

There are various ways to measure the similarity between binding pockets, and some of them

were discussed in the previous section. To evaluate the quality of a given similarity measure,

one may compare it to some ”ideal” similarity measure, but the problem is that such measure

does not exist. As an example, if two alternative similarity measures SM1 and SM2 compare

two pockets P1 and P2 so that SM1(P1, P2) = 0.3 and SM2(P1, P2) = 0.4, there is no way to

decide which one is the best, because we do not have any absolute reference. The choice of the

optimal measure, thus, depends on the problem of interest. In the context of ligand prediction,

the quality of a similarity measure can be evaluated according to its ability to cluster together

pockets that bind the same ligand. This can then help to predict ligands for previously unseen

pockets. To evaluate this clustering ability, we considered two different scores.

AUC score. (156) used the AUC score which is computed as follows. Let us consider a

set of pockets (P1, . . . , PN ) and a similarity measure SM . To estimate the AUC score of a

given pocket P∗, we rank all other pockets according to their similarity to P∗, SM(Pi, P∗)

(descending order), and we plot the ROC curve, i.e., the number of pockets binding the same

ligand versus the number of pockets binding a different ligand among the top n pockets, when

n varies from 0 to N . The quality of SM is measured by the surface of the area under the ROC

curve, which defines the AUC score. An ”ideal” SM function will rank all pockets binding the

same ligand as P∗ on the top of the list, leading to an AUC score equal to 1.0. On the contrary,

if these pockets have random positions in the ranked list, the AUC score will be equal to 0.5

(worst possible case). Finally, the overall AUC score of a method equals its mean value over

all pockets.

82



4.2 Methods

While the AUC score represents an intuitive and classical way to evaluate the quality of

similarity measures, it may fail in some situations. Consider the case of a dataset containing

two types of pockets L1 and L2 (i.e. binding two different ligands), and a similarity measure

that correctly clusters pockets according to their type. If clusters are close to each other (see

blue squares in Figure 4.1), the AUC score of pockets situated near the border (pockets p1 and

p2 in Figure 4.1) will be low. The situation becomes even worse if pockets binding ligand L1

form several clusters, as shown in Figure 4.1, leading to low AUC scores for almost all pockets

binding ligand L1. This similarity measure will have an overall poor AUC score on this dataset,

although it produces perfect separation of pocket types. This may happen when the database

contains proteins that underwent convergent evolution, or that bind the same ligand under very

different conformations. Therefore, a poor AUC score does not necessarily correspond to a

poor pocket separation, and AUC scores may not be suited to evaluate the quality of similarity

measures with respect to the question of ligand prediction.

Classification error. These remarks lead us to employ another quality score based on a classi-

fication error. To estimate the quality of the similarity measure SM , we try to predict a ligand

(i.e. a class) for each pocket from that of its neighbors. The smaller the classification error

(proportion of bad predictions), the better the similarity measure.

L1L1

L2

p2

p1

Figure 4.1: AUC score versus classification error as an evaluation of binding pocket simi-
larity measure. Red circles represents pockets fixing ligand L1, blue squares represents pockets
fixing ligand L2. The AUC score does not reflect the fact of good pocket clusterization, while the
classification error does.

In this work, we used a K nearest neighbors (KNN) classifier. A KNN is a method for

classifying objects based on closest training examples. An object is classified by a majority
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vote of its neighbors, with the object being assigned to the most common class amongst its K

nearest neighbors (K is a positive integer, typically small). If K = 1, then the object is simply

assigned to the class of its nearest neighbor.

To evaluate the classification error, we applied a leave-one-out double cross validation

methodology. Namely, each pocket P from the dataset is considered one by one, and all other

pockets are used as the training set. Parameters of the model (K number of neighbors, σ and

λ in the case of the sup-CK method) are estimated on the training set via cross-validation tech-

nique, and the class (i.e. the ligand) of the pocket P under consideration is predicted using

the training set and the estimated parameters of the model. More precisely, in the case of a

dataset containing 100 proteins, double cross validation is performed according to the follow-

ing scheme: each of the 100 pockets is extracted in turn from the dataset in a leave one out

procedure. Then, each of the other 99 pockets is selected in turn and its class is predicted from

the 98 remaining pockets. This operation is repeated for different values of σ and λ, and the

σ
∗ and λ

∗ values providing the highest number of well predicted pockets (over 99) are retained

and used to predict a class for the initially extracted pocket.

Note, that all datasets contained proteins that presented less than 30% global sequence

identity (167), to ensure that there were no duplicates or very close elements in the datasets.

This allowed to use a leave-one-out scheme without risk of bias.

4.2.4 Data

For all protein structures, binding pockets were extracted as follows: protein atoms situated at

less than R Åof one of the ligand atoms were selected, where R is a parameter of the model

(as the number of neighbors k, or the σ and λ parameters), and is also learned in the double

cross-validation scheme. In most cases, the optimal value of R was found to equal to 5.3 Å, a

value which was retained in this study.

Note that this value of R is in the range of the distance separating atoms over which most

physical interactions are considered to become negligible.

However, experiments where R is varied are also presented in the discussion section. Fi-

nally, pockets are represented by 3D clouds of atoms labeled by their partial charge, attributed

according to the GROMACS (FFG43a1) force field (169). Atom partial charges were assigned

according to the protein structure alone, in absence of the ligand. However, the presence of

a ligand would potentially modify these calculated charges, but this could not be taken into

account since the method aimed at predicting the ligand. In addition, other labels representing
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chemical properties such as amino-acid type, hydrogen donor or acceptor, or hydrophobic atom

could in principle be included, but was not considered in this study.

We considered three benchmark datasets. The first one, proposed by (156) and referred

to as the Kahraman dataset, comprises 100 protein crystal structures in complex with one of

ten ligands (AMP, ATP, PO4, GLC, FAD, HEM, FMN, EST, AND, NAD). The second one

is an extended version of the Kahraman dataset (called extended Kahraman Dataset below),

in which we added protein structures in complex with one of the same ten ligands, leading

to a total of 972 crystal structures (see Additional file 4.4). The added proteins presented

pairwise sequence identities less or equal to 30%, to avoid potential bias by inclusion of close

homologues.

ligand atoms count
molecular

weight

hydrogen-
bond

acceptors

hydrogen-
bond

donors

rotatable
bonds

AMP 23 345.21 9 4 4
ATP 31 503.15 13 4 8
PO4 5 95.98 3 1 0
GLC 12 180.16 6 5 1
FAD 53 785.55 15 10 13
HEM 43 616.49 4 2 8
FMN 31 456.34 8 6 7
EST 20 272.38 1 2 0
AND 21 288.42 2 1 0
NAD 44 663.43 14 9 11

Average 28.3±15.0 420.7± 222.8 7.5±5.1 4.4±3.2 5.2±4.9

Table 4.1: Ligands descriptors for the Kahraman dataset. AMP: adenosine monophos-
phate, ATP: adenosine-5’-triphosphate FAD, flavin-adenine dinucleotide, FMN: flavin mononu-
cleotide, GLC: alpha-D-glucose, HEM: protoporphyrin containing Fe, NAD: nicotinamide-
adenine-dinucleotide, PO4: phosphate ion, AND: 3-beta-hydroxy-5-androsten-17-one, EST: estra-
diol.

The Kahraman dataset comprises ligands of very different sizes and chemical natures, as

shown in Table 4.1. However, the real challenge is to test methods on pockets that bind ligands

of similar sizes. Therefore, we created a third dataset comprising 100 structures of proteins in

complex with ten ligands of similar size (ten pockets per ligand), see Table 4.2.
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ligand atom count
molecular

weight

hydrogen-
bond

acceptors

hydrogen-
bond

donors

rotatable
bonds

PMP 16 247.17 4 4 4
SUC 23 342.3 11 8 5
LLP 24 361.33 5 6 11
LDA 16 229.4 1 0 11
BOG 20 292.37 6 4 9
PLM 18 255.42 2 0 14
SAM 27 399.45 8 7 7
U5P 21 322.17 8 3 4
GSH 20 306.32 6 6 11
1PE 14 208.25 5 1 11

Average 19.9± 4.0 296.4±61.5 5.6±3.0 3.9±2.9 8.7±3.5

Table 4.2: Ligands descriptors for the homogeneous dataset PMP: 4’-deoxy-4’-
aminopyridoxal-5’-phosphate, SUC: sucrose, LLP: 2-lysine(3-hydroxy-2-methyl-5-
phosphonooxymethyl- pyridin-4-ylmethane), LDA: lauryl dimethylamine-N-oxide, BOG:
b-octylglucoside, PLM: palmitic acid, SAM: S-adenosylmethionine, U5P: uridine-5’-
monophosphate, GSH: glutathione, 1PE: pentaethylene glycol.
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When comparing the standard deviation of the mean values of the two tables ( 4.1. and

4.2), one can see that the molecules of the second set of data values are more homogeneous,

mainly as regards the number of heteroatoms and the molecular weight.

This dataset will be referred to as the Homogeneous Dataset (HD) (see Additional file 4.4).

The results presented below on this dataset may constitute a new benchmark for future

work in the same area.

4.3 Results

All methods were tested on three datasets described in the Data section. The performance of all

methods is evaluated on the basis of the AUC score and of the classification error (see section

4.3.2, Performance criteria). The sup-CK method is compared to sup-PI, SHD, Vol, Princ-Axis

and MultiBind algorithms (see section 4.2.2, Related methods). Among the pocket extraction

methods used in the SHD approach, we considered the results corresponding to the Interact

Cleft Model (156)), which is similar to our pocket extraction method, and allows to compare

the sup-CK and SHD approaches.

Algorithms, benchmark datasets and distance matrices for the SupCK method are available

at http://cbio.ensmp.fr/paris/.

4.3.1 Kahraman Dataset

Results of all methods on the Kahraman Dataset are presented in Table 4.2. According to the

AUC score, all methods improve the baseline value of 0.5 corresponding to a random ranking,

and simple methods like Vol and Princ-Axis give surprisingly good results. For example, there

is no significant difference between the AUC score of Vol and the AUC score of the best per-

forming method sup-CKL-Vol. The same effect was observed by (156) when they used simple

measures based on comparison of pockets sizes on this benchmark.

As expected, the score obtained using the sequence alignment is close to the baseline value,

indicating that this approach is not suitable to the problem of predicting ligand when sequences

are very different.

The AUC scores of sup-CK-Vol (with or without partial charges) are better than those of all

other methods, except for Vol, according to the Wilcoxon signed-rank test, involving compar-

isons of differences between measurements (see Figure 4.3a). The best results are obtained by

the sup-CK-Vol algorithm, which seems to benefit from the association of volume information
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Method AUC CE
sup-CK 0.858±0.14 0.36
sup-CKL 0.861±0.13 0.27
sup-CK-Vol 0.889±0.14 0.34
sup-CKL-Vol 0.895±0.12 0.26
Vol 0.875±0.14 0.39
Princ-Axis 0.853±0.13 0.35
sup-PI 0.815±0.13 0.42
SHD 0.770 0.39
MultiBind 0.715 ±0.17 0.42
Sequence 0.55±0.08 0.8

Figure 4.2: Performance on the Kahraman benchmark Performance for each algorithm is eval-
uated by its mean AUC score and by its classification error (CE), averaged over all pockets. (AUC
score for SHD are taken directly from (156), CE scores are estimated from data provided by authors

and of more subtle geometric details provided by the sup-CK algorithm. Another observation,

is that information on atom partial charges does not significantly improve the AUC score of the

sup-CK methods.

To evaluate the classification error, we tried to predict a ligand (a class) for each pocket

using the k-nearest neighbors classifier (see section Performance criteria). Note that in a ten

class (10 ligands) classification problem, a random classifier would have an error of 0.9, which

represents baseline performance for all classifiers (the smaller the error, the better the classifi-

cation).

Table 4.2 shows that methods with higher AUC scores tend to have smaller classification

errors, but this correlation is not strict. For example, the SHD and Vol methods have the same

classification error, although the latter displayed a better AUC score than the former. Con-

versely, the sup-CK and sup-CKL-Vol methods had similar AUC scores, but the latter performs

much better than the former in terms of classification error. This indicates that the AUC score

is not appropriate to compare the quality of similarity measures with respect to the problem of

ligand identification, and underlines the interest of the classification approach.

The sup-CK and sup-CK-Vol algorithms have lower classification errors than other meth-

ods, which means that they are well suited to the problem of ligand prediction. Interestingly,

atom partial charges information significantly reduces classification errors of both methods,
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Figure 4.3: Relationship between AUC performances of the methods tested. (a) On the Kahra-
man dataset (b) On the Homogenous dataset. Each node corresponds to a particular method, parent
nodes perform significantly better than child nodes according to the Wilcoxon signed-rank test.

89



4. PROTEIN BINDING POCKET SIMILARITY MEASURE BASED ON
COMPARISON OF CLOUDS OF ATOMS IN 3D

which was not the case for AUC scores. The use of additional atom labels such as amino-

acid type, hydrogen donor or acceptor, or hydrophobic atom may again improve the quality of

ligand prediction.

No method reaches the AUC score of 1.0, corresponding to perfectly predicts the ligands.

Several remarks might explain this fact. First, pockets have to be extracted from the protein

structure. Whatever the employed method might be, it is difficult to extract all atoms interacting

with the ligand, and only these atoms. In particular, atoms that do not interact with the ligand

might have been included in the pockets, which could reduce the observed similarity between

pockets that bind this ligand.

Second, ligands are flexible molecules that can adopt different conformations. Therefore,

protein pockets that bind the same ligand may display various shapes. In such situations, correct

prediction is still possible if the learning dataset contains pockets in which the ligand confor-

mations correctly samples its accessible conformational space. The present dataset contains

only 10 pockets per ligand, which might be too small for the most flexible ligands.

When analyzing results in Table 4.2, one must remember that the Vol and Princ-Axis meth-

ods do not require pockets superposition, while all other methods do. The superposition algo-

rithms in these other methods are different, and the way pockets are superposed as an impact on

the observed scores. However, the sup-PI and sup-CK methods only differ by their similarity

measures. After superposition, sup-PI requires to determine the number of overlapping atoms,

while sup-CK relies on a weighted number of atoms having close positions. This seems to

confer some smoothness properties to the latter, and robustness with respect to variations ob-

served between pockets binding the same ligand leading to better performances of the supCK

algorithm.

An important point mentioned in Background is that pocket superposition with sup-CK

does not require any sequence or structure similarities between the corresponding proteins. To

illustrate this property, we analyzed in more details the results for ATP-binding proteins of

this dataset. For example, the biotin carboxylase from E. coli (452 residues in PDB:1DV2),

and the phosphoinositide 3-kinase (961 residues in PDB:1E8X) are unrelated proteins. They

present no sequence similarity (they cannot be aligned), and their overall structures are totally

different, as shown in Figure 4.4A. However, they bind ATP in similar conformations. When

these two pockets are aligned with the sup-CK algorithm, their corresponding ATP molecules

are found correctly superposed, as shown in Figure 4.4B, although the sup-CK algorithm only

uses protein atoms.
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Figure 4.4: Superposition of the binding pockets of two structurally different proteins bind-
ing ATP. A) overall structures of pdb:PDB:1E8X in grey and PDB:1DV2 in red superposed accord-
ing to their binding sites using Sup-CK. ATP molecules are represented in blue. B) Superposition
of the ATP molecules from PDB:1DV2 and PDB:1E8X when their binding sites are superposed. C)
Positively charged protein regions around ATP molecules of PDB:1E8X in grey and PDB:1DV2 in
red. D) Protein hydrophobic patches around ATP molecules of PDB:1E8X in grey and PDB:1DV2
in red.
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Moreover, similar residues, playing equivalent roles in ATP binding, are found in equiv-

alent positions in the superposed structures. In particular, N951 and K807 interact with the

γ phosphate of ATP in PDB:1E8X and are found close respectively to K288 and H236 that

play the same role in PDB:1DV2. We also observe that, K833 interacting with the β and α

phosphates of ATP in PDB:1E8X, is found close to K116 in PDB:1DV2 after pockets super-

position. These residues form equivalent positively charged regions, as shown in Figure 4.4C.

Similarly, the hydrophobic region interacting with the adenine ring of ATP in PDB:1E8X and

involving residues W812, I831, I879, I881, V882, A885, M953, F961, and I963 is equivalent

to the hydrophobic region involving residues V131, V156, I157, L204, L278, I287, I437 in the

superposed PDB:1DV2 structure. These hydrophobic patches overlap after pockets superposi-

tion, as shown in Figure 4.4D. Overall, these observations indicate that the sup-CK algorithm

proposed a relevant superposition for these two unrelated ATP-binding pockets.

Figure 4.7 shows the alignment of the two pockets, extracted from PDB:1E8X and PDB:1DV2

as clouds of atoms, and superposed by sup-CK. Note, that sup-CK did not try to superpose in-

dividual atoms, but rather superposes atom sets.

Figure 4.5: Alignment two ATP binding pockets. Alignment of two ATP pockets made by sup-
CK, atoms of each pockets are represented by blue and red points, two ATP ligands are traced in
licorice.

Extension of Kahraman dataset.
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To evaluate the ability of the sup-CK method to improve its performance when trained on

a larger dataset, we considered an extension of Kahraman dataset consisting of 972 of non

redundant pockets that bind one of the 10 ligands of the original dataset (see Data). Therefore,

the new dataset consists of 100 Kahraman pockets and 872 new pockets from the PDB.

Table 4.6 presents the classification errors observed on this dataset for different algorithms.

Note that in the case of the sup-CK methods, the parameters were optimized on the original

Kahraman dataset of 100 proteins. Column A presents the classification errors when all 972

pockets are used in the leave-one-out procedure. It shows that all methods improve when

the dataset is larger. However, sup-CKL provides the best performance. The quality of its

predictions might again improve by including more structures available at the PDB. Column

B presents the results on the 100 original pockets extracted from those presented in column

A. It shows that 79% of the binding pockets of the original Kahraman dataset were correctly

classified by sup-CKL, compared to 73% when they were classified using only the original

dataset (a classification error of 0.27 in Table 4.2). This shows that when the learning dataset

increases, the sup-CKL method is able to learn more and to make better predictions. Finally,

column C shows the prediction errors for the 872 new pockets when the 100 original pockets

are not used in the leave one out procedure. The scores in this column may be seen as a test

on an external independent dataset (as mentioned above, the optimal parameters σ and λ used

here were those learned only on the 100 original pockets). It shows that the performance of

the sup-CK methods does not degrade on the 872 new pockets, and remains above those of the

other methods.

It is also interesting to study the structure of the dataset according to the metric associ-

ated to the sup-CK method. We performed principal component analysis (170) on the pockets

similarity matrix of the sup-CK method. Figure 4.7 represents the projection of 972 binding

pockets on the first two principal components.

Overall, we observe a clustering of binding pockets according to their ligands, which illus-

trates the good performance of this method for ligand prediction. Looking into more details,

we notice that the clusters of pockets that bind ATP, AMP or PO4 overlap. Indeed, proteins that

bind ATP usually also bind AMP or PO4, although with different affinities. Furthermore, some

pockets (for example pockets that bind GLC or FAD) are found far from their main cluster,

or form secondary clusters, which illustrates that pockets having different geometrical charac-

teristics may bind the same ligand. In the classification approach employed here, prediction
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Method A B C
sup-CKL 0.19 0.21 0.18

sup-CKL-Vol 0.18 0.19 0.18
Vol 0.32 0.39 0.31

Princ-Axis 0.22 0.27 0.21
sup-PI 0.24 0.33 0.23

Figure 4.6: Classification error on the extended Kahraman benchmark Classification error for
all algorithms on the extended Kahraman dataset. Column A - classification error evaluated on
all 972 pockets. Column B - Proportion of wrong predictions among the original 100 Kahraman
pockets extracted from column A, i.e. classification error evaluated on 100 Kahraman pockets
when all 972 pockets are used in the leave-one-out procedure. Column C - classification error
evaluated on the 872 new pockets, when the 100 Kahraman pockets are not used in the leave-one-
out procedure.

of a ligand for a given pocket uses the classes of its neighbors, which allows to better predict

ligands for pockets belonging to such secondary clusters.

4.3.2 Homogeneous dataset (HD)

The Kahraman dataset contains ligands of very different sizes, which might not be typical of

real problems. Therefore, we built the Homogeneous dataset because it was important to test

methods on a benchmark containing pockets binding ligands of more similar sizes.

Table 4.8 shows that the performances of all algorithms are lower than on the Kahraman

dataset, which illustrates that the Homogeneous dataset is a more difficult benchmark. Vol

and Princ-Axis display stronger degradation of performances, with AUC scores of 0.65, and

classification errors of 89% and 71%, respectively. The latter must be compared to the baseline

value of 90% error for a random classifier for ten classes (ten ligands). This illustrates that

size information is less discriminative on this dataset, as expected. All other methods display

a stronger improvement with respect to the baseline. Interestingly, although the AUC scores of

the simple Vol and Princ-Axis methods are only 5 to 10% lower than those of all other methods,

their classification error is much worse, and Vol does not behave better than a random classifier.

This again underlines the interest of the classification error score to compare the performances

of similarity measures for ligand prediction.

The best AUC score is obtained by the sup-CKL-Vol algorithm. The AUC scores of all
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Figure 4.7: Projection of the ext-KD dataset on the first two kernel principal components de-
fined by the similarity measure sup-CK Clustering of binding pockets according to their ligands,
which illustrates the performance of this method for ligand prediction.
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Method AUC CE
sup-CK 0.710±0.19 0.47
sup-CKL 0.752±0.16 0.38
sup-CK-Vol 0.722±0.18 0.46
sup-CKL-Vol 0.766±0.17 0.38
Vol 0.648±0.15 0.89
Princ-Axis 0.650±0.18 0.71
sup-PI 0.702±0.19 0.47
MultiBind 0.69± 0.14 0.48
Sequence 0.577±0.09 0.83

Figure 4.8: Performance on the HD benchmark Performance for each algorithm is evaluated by
its mean AUC score and by its classification error (CE), averaged over all pockets.

other methods are significantly lower according to the Wilcoxon signed-rank test (see Figure

4.3b), except sup-CKL. Indeed, volume information only provides a slight improvement of 1%,

compared to 3% on the Kahraman dataset. On the contrary, information on partial charges leads

to an improvement of 4% for the sup-CK and sup-CK-Vol algorithms, which was not observed

on the Kahraman dataset. This shows that addition of physico-chemical information is critical

to better compare pockets of similar sizes. The lowest classification errors are obtained by

the sup-CKL and sup-CKL-Vol algorithms, which again shows that volume information is not

critical on this benchmark. On the contrary, partial charge information leads to an improvement

of 9% between sup-CK and sup-CKL, and of 8% between sup-CK-Vol and sup-CKL-Vol.

4.4 Discussion

Choice of optimal parameters. An important characteristic of the sup-CK algorithm is its

ability to adapt to the variability potentially observed between pockets binding the same ligand.

The sup-CK algorithm presents two parameters, σ and λ. Parameter σ controls the sensitivity

of the similarity measure to atoms relative displacements. The larger the variability of pockets

binding the same ligand, the greater the value of σ should be.

Figure 4.9a shows how the mean (over all pockets) AUC score and classification error vary

with σ on the Homogeneous dataset. In both cases, the optimum is reached when σ is equal to

1. Note that we did not use the same value of σ estimated from all pockets. For each pocket,
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the optimal value was estimated on the basis of the remaining 99 pockets used for training,

in a double cross validation scheme, to avoid overfitting to the data. However, we observed

that, in most cases (90%), σ = 1 was chosen. When information on atom partial charges is

used, parameter λ (4.4) conditions the sensitivity of the method to atoms charges. Figures 4.9b

and 4.9c present the mean AUC score and the classification error as functions of σ and λ. We

observe that for the AUC score, the optimum is reached when σ equals 2 and λ equals 0.25,

while for the classification error the optimal value of σ is equal to 4.

Figure 4.9: Performance on the HD dataset. (a) Mean AUC score and prediction error as func-
tions of σ in the sup-CK method (pure geometrical version, λ = ∞), (b) mean AUC score and (c)
classification error as functions of σ and λ when information on atoms partial charges is used.

While in general we suggest to learn these two parameters of the sup-CK algorithm on the

dataset of interest, we observed that some default values provide good performance in many

cases, and that they could be used in dry-runs on new datasets. For example, a good default

value for σ is 1. This value was optimal for the HD dataset when we used the pure geometrical
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approach, and it also gave good results on the Kahraman and extended Kahraman datasets.

When partial charges are used, i.e. with the sup-CKL algorithm, larger default values for σ are

recommended (between 2 and 4), and a good default value for λ is around 0.25.

The radius R of the extracted pocket is a parameter of the extraction pocket procedure.

Figures 4.10a and 4.10b present the classification errors of sup-CK as a function of σ and R,

respectively for the Kahraman and the HD datasets. We observe that in both cases, the optimal

value of R is around 5.3 Å, which corresponds to a good default value. However, Figures

4.10a and 4.10b show that the performance of the method is still interesting for values varying

between 4.5 and 8 Å. Importantly, they also show that the optimal value of σ does not depend

on R. Finally, K is a parameter of the K nearest neighbors classifier (KNN classifier). Ideally,

it should also be learned, but values of K between 3 and 5 usually work well.

Robustness of the method with respect to pockets definition. It is important to discuss

the impact of using the R parameter, a cutoff distance used for pocket definition. This could

lead to situations where an atom is excluded from the pocket in one protein, when a similar

atom is included in the pocket of another protein to which it is compared. However, as briefly

mentioned in the background section, the principle of the method is to compare pockets based

on the optimal superposition of their clouds of atoms. The method does not define or use

pairwise matching of atoms of the two pockets, as most other available methods do. Figure

4.7 illustrates this point: the method did not lead to local pairwise superposition of blue and

red points, but rather proposed a global superposition of the red and blue atoms densities.

Therefore, the method is expected to be robust with respect to potential inclusion or exclusion

of a small number of atoms in one of the pockets. As mentioned in the above paragraph, the

fact that the performance of the method remains interesting when R varies between 4.5 and 8

Åis also an indirect illustration of this idea. One could wonder if the use of atom labels such as

partial charges would decrease the robustness of the method with respect to pockets definition

using R. Indeed, a cutoff distance could split a strong dipole in one of the proteins, and not in

the other (for example an N-H group). However, the addition of atom labels like partial charges

is only one option of the method. Results using only atom positions (corresponding to a pure

geometrical approach) already show good performances. Addition of partial charges labels still

improves the results, despite the risk that strong dipoles might have been cut. This can probably

be explained by the facts that such events are rare, and that the method searches an overall

best superposition of atoms densities, despite possible local mismatches in atoms positions or
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Figure 4.10: Classification error of the sup-CKL algorithm as a function of R and σ (λ = 0.25)
(a) Kahraman dataset, (b) HD dataset.
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labels. Nevertheless, it would be interesting to explore other cutoff criteria taking atom labels

into account (including other types of labels such as hydrogen bond acceptor, donor, ...), in

future developments of the method.

Pocket extraction. We did not tackle the problem of pocket detection, which relies on totally

different algorithms than those discussed here, and which was out of the scope of this work.

However, the similarity measured between two pockets strongly depends on pocket definition.

We extracted pockets as the set of all protein atoms within about 6Åof the bound ligand. Similar

approaches were used by (156) (Interacted Cleft Model), and similar pockets may also be

retrieved by methods like Q-SiteFinder (171) without any information on ligand coordinates.

Another alternative could be to employ one the the various programs that have been developed

to locate depressions on protein surfaces, particularly in the case where no holo structure is

available (172), or in the case of orphan proteins for which the ligand and the binding site is

unknown. However, existing pocket extraction algorithms have difficulty to define the rim of a

binding pocket, and tend to extract protein cavities that are larger than the binding pocket itself,

as defined by the ensemble of residues involved in ligand binding. Although we observed that

our method had some robustness with respect to the definition of the binding pocket, global

similarity measures like those proposed here may loose some performance on automatically

extracted pockets.

Protein functions. The problem of ligand prediction for proteins is related to the problem

of predicting the protein molecular function. We analyzed the repartition of the ATP binding

pockets generated by the sup-CK similarity measure on the extended Kahraman dataset. Figure

4.11 presents the projection of ATP pockets annotated as transferases or ligases, on the first two

principal components of the similarity matrix associated to sup-CK. We observed that these two

families of enzymes are essentially separated. Although these are very preliminary results, they

show that sup-CK method may be a useful tool, in conjunction with other approaches, for the

prediction of protein molecular functions.

In the Result Section, we showed the example of the PDB:1E8X and PDB:1DV2 unrelated

structures, binding ATP in similar conformations, and whose pockets were correctly super-

posed by the sup-CK method. In the case of even more dissimilar pockets, binding ATP in dif-

ferent conformations, sup-CK still allows superposition of the pockets so that similar regions

overlap. For example, biotin carboxylase (452 residues in PDB:1DV2) and phosphoinositide
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Figure 4.11: Projection of ATP binding pockets on the two first kernel principal components
of sup-CK. Repartition of the ATP binding pockets generated by the sup-CK similarity measure
on the extended Kahraman dataset. Red squares represent ligases, blue stars represent transferases.

3-kinase (961 residues in PDB:1E8X) of the Kahraman dataset have no sequence or structures

homologies, and bind ATP in different conformations as shown in Figure 4.12A. Indeed, 1DV2

is mainly constituted of α-helices whereas 1DV2 is mainly constituted of β-strands. However,

according to the sup-CK superposition of these two pockets, shown in Figure 4.12B, the two

ATP binding sites and the two ATP molecules are found to overlap. Note that these two pockets

where correctly classified by sup-CK (an ATP ligand was correctly predicted), on the basis of

other similar pockets present in the dataset. The SupCK methods proposed a relevant pocket su-

perposition for these highly different proteins with significant pockets deviations, since regions

of these two pockets with similar physicochemical properties are found globally superposed.

Apo structures. The sup-CK algorithm had a good performance in ligand prediction for holo

structures. It also showed robustness with respect to atom displacements. This is an important

characteristic for future application of the method to real case studies where the ligand is un-

known, and one must extract pockets from apo structures. Local structural rearrangements are

frequent upon ligand binding, and methods displaying some smoothness with respect to atoms

positions are required when working with apo structures. This would also be necessary for
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Figure 4.12: Superposition of the binding pockets of two structurally different proteins bind-
ing ATP. (A) Left: Proteins structures of phosphoinositide 3-kinase (PDB:1E8X), right: Proteins
structures of biotin carboxylase (PDB:1DV2). The two ATP molecules are represented in red. (B)
Superposition of the two ATP binding sites are found to overlap.
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proteins with no available experimental structure but for which a homology model can be con-

structed, since the modeled pocket may somewhat differ from the true, but unknown, pocket.

We expected that, for large flexible ligands, the performance of the sup-CK method might de-

crease, but this was not observed for the two datasets that we used (Kahraman dataset and

Homogeneous dataset). However, we cannot rule out the possibility that this could be observed

if the method is trained on other small training datasets.

Computational issues. The running time of the sup-CK method depends on the value of

the stopping criterion used in the gradient ascent method, and on the number of atoms. In

our experiments, the algorithm running time varied between 0.2 and 1.3 seconds (2.5 GHz

CPU) per pockets pair. This running time is already quite reasonable to process large protein

databanks. The method is presented on datasets of moderate sizes because our aim was to

validate the methodology. However, it can be applied on ligand prediction problems, where

the number of pockets (and ligands) included in the learning dataset needs to be larger. For

future applications in the domain of screening using all ligands available in the Protein Data

Bank, a pre-filtering on the basis of simple pocket descriptors (like volume or size) could

further accelerate the sup-CK method. Future application of the method proposed could include

identification of new ligands for protein pockets according to those known for the most similar

pockets. This is of interest in the context of identification of drug precursors or of side effects

prediction.

4.5 Conclusion

We have developed a new method to measure the similarity between protein binding sites. In

this method, binding pockets are described as clouds of points in the 3D space, each point

corresponding to an atom. These points may bare additional labels representing various char-

acteristics such as atom partial charges, atom types, or other atomic features. The proposed

method showed good performance in the classification of binding pockets according to their

respective ligands. It relies on the search for the best global superposition of clouds of atoms,

which confers robustness with respect to binding site definition or variations in ligand confor-

mation. This method may be used to compare any type of binding sites in the 3D space, even

in absence of overall sequence or structure similarity between their corresponding proteins.
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4.6 additional files

pdb ligand pdb ligand pdb ligand pdb ligand
12as AMP 1anf GLC 1ecy GLC 1jgl EST
1a0i ATP 1ank AMP 1ee9 NAD 1jhg PO4
1a49 ATP 1aop PO4 1efp FAD 1ji0 ATP
1a6q PO4 1aqa HEM 1egy HEM 1jju HEM
1amu AMP 1aqe HEM 1eje FMN 1jjv ATP
1ayl ATP 1aqz PO4 1el7 FAD 1jni HEM
1b8a ATP 1arz NAD 1elj GLC 1jo9 HEM
1b8o PO4 1as2 PO4 1ep1 FAD 1js1 PO4
1bdg GLC 1ash HEM 1etp HEM 1jsc FAD
1brw PO4 1ass PO4 1eu1 GLC 1jsw GLC
1c0a AMP 1atj HEM 1eu3 PO4 1ju2 FAD
1cq1 GLC 1atn ATP 1ew6 HEM 1jwb AMP
1cqj PO4 1atr PO4 1ex2 PO4 1jwh PO4
1cqx FAD 1avq PO4 1eyj AMP 1jxz PO4
1ct9 AMP 1awk ATP 1eyv PO4 1jzn GLC
1d0c HEM 1b0b HEM 1ezv HEM 1k0g PO4
1d1q PO4 1b0u ATP 1f0i PO4 1k27 PO4
1d7c HEM 1b12 PO4 1f0x FAD 1k28 PO4
1dak PO4 1b14 NAD 1f0y NAD 1k39 PO4
1dk0 HEM 1b1y GLC 1f1g PO4 1k3i GLC
1dnl FMN 1b2y GLC 1f2f PO4 1k3s PO4
1dv2 ATP 1b37 FAD 1f3p FAD 1k4m NAD
1dy3 ATP 1b3r NAD 1f4t HEM 1k6x NAD
1e2q ATP 1b49 PO4 1f8r FAD 1k7v GLC
1e3r AND 1b4s PO4 1f9d GLC 1k9s PO4
1e8g FAD 1b5t FAD 1fb8 PO4 1k9y AMP
1e8x ATP 1b76 ATP 1fcd FAD 1kae NAD
1e9g PO4 1b7v HEM 1fft HEM 1kbi FMN
1ej2 NAD 1b8u NAD 1fgj HEM 1kfr HEM
1ejd PO4 1bag GLC 1fik PO4 1kj8 ATP
1eqg HEM 1bbh HEM 1fk8 NAD 1kmn ATP
1esq ATP 1bcf HEM 1fla FMN 1ko5 ATP
1euc PO4 1bcp ATP 1fmw ATP 1kol NAD
1evi FAD 1bd3 PO4 1foh FAD 1kp2 ATP
1ew0 HEM 1bdb NAD 1fpp PO4 1kp8 ATP
1ew2 PO4 1bf3 FAD 1fs7 HEM 1kpf AMP
1f5v FMN 1bff PO4 1fsw PO4 1kqf HEM
1fbt PO4 1bg9 GLC 1ft9 HEM 1kqn NAD
1fds EST 1bih PO4 1fvi AMP 1kr7 HEM

Continued on next page
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pdb ligand pdb ligand pdb ligand pdb ligand
1gn8 ATP 1bin HEM 1fwn PO4 1krh FAD
1gwe HEM 1bjw PO4 1fxx PO4 1ktg AMP
1gyp PO4 1bpd PO4 1fyd AMP 1kus PO4
1h69 FAD 1bpi PO4 1g19 PO4 1kv8 PO4
1h6l PO4 1brl PO4 1g21 ATP 1kv9 HEM
1hex NAD 1brr GLC 1g28 FMN 1kwf GLC
1ho5 PO4 1bsj PO4 1g31 PO4 1kxj PO4
1hsk FAD 1bvb HEM 1g5t ATP 1kyq NAD
1ib0 NAD 1bvr NAD 1g63 FMN 1kyv PO4
1iqc HEM 1bw9 NAD 1ga2 GLC 1l3p PO4
1j99 AND 1bwk FMN 1geg GLC 1l8o PO4
1ja1 FMN 1bxi PO4 1giq NAD 1lc0 PO4
1jp4 AMP 1bxk NAD 1gk0 PO4 1lfk HEM
1jq5 NAD 1bzq PO4 1glf PO4 1lhr ATP
1jqi FAD 1c0i FAD 1go7 PO4 1lj8 NAD
1jr8 FAD 1c1l GLC 1gos FAD 1llu NAD

1k1w GLC 1c1s PO4 1gpm PO4 1lm3 HEM
1k87 FAD 1c52 HEM 1gpw PO4 1lqk PO4
1kht AMP 1c53 HEM 1gr0 NAD 1lss NAD
1kvk ATP 1c6o HEM 1gs4 PO4 1lvl FAD
1l5w PO4 1c8x PO4 1gt8 FAD 1lw3 PO4
1l7m PO4 1c8z PO4 1gts AMP 1lw7 NAD
1lby PO4 1c9k PO4 1gv4 FAD 1m1f PO4
1lhu EST 1cbf PO4 1gwm GLC 1m32 PO4
1lyv PO4 1cbq PO4 1gww GLC 1m83 ATP

1mew NAD 1cc5 HEM 1gzf NAD 1maa PO4
1mi3 NAD 1cch HEM 1h2e PO4 1mb9 AMP
1mvl FMN 1cdd PO4 1h2h NAD 1mbb FAD
1naz HEM 1cdt PO4 1h3e ATP 1md9 AMP
1nf5 GLC 1cel GLC 1h53 PO4 1mec PO4
1np4 HEM 1cen GLC 1h54 PO4 1mg2 HEM
1o04 NAD 1cf3 FAD 1h7b PO4 1mh9 PO4
1o9t ATP 1cfm HEM 1h9j PO4 1miw ATP
1og3 NAD 1cgn HEM 1hbg HEM 1mjh ATP
1p4c FMN 1cja AMP 1hbi HEM 1mky PO4
1p4m FMN 1cl6 HEM 1hdi AMP 1mmu GLC
1po5 HEM 1cle PO4 1he4 FMN 1mo9 FAD
1pox FAD 1cmb PO4 1hgy GLC 1mpu PO4
1pp9 HEM 1cme NAD 1hi1 ATP 1mq4 PO4
1qax NAD 1cpq HEM 1hkq PO4 1muu NAD
1qb8 AMP 1cpt HEM 1hlb HEM 1muy GLC
1qf5 PO4 1crk PO4 1hn5 ATP 1mx3 NAD

Continued on next page
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pdb ligand pdb ligand pdb ligand pdb ligand
1qhu HEM 1crx PO4 1hn9 PO4 1mxd GLC
1qkt EST 1cu1 PO4 1ho4 PO4 1mz4 HEM
1qla HEM 1cwu NAD 1hq0 PO4 1mzh PO4
1qpa HEM 1cy1 PO4 1hq3 PO4 1n40 HEM
1rdq ATP 1d0i PO4 1hru PO4 1n5i ATP
1rlz NAD 1d0s PO4 1hsz NAD 1n5w FAD
1s7g NAD 1d3g FMN 1hto AMP 1n97 HEM
1sox HEM 1d4c FAD 1hwy NAD 1nd6 PO4
1t2d NAD 1d9v PO4 1i0r FMN 1nel PO4
1tb7 AMP 1del AMP 1i19 FAD 1nep PO4
1tco PO4 1dgr PO4 1i77 HEM 1nfb NAD
1tid ATP 1dgs AMP 1i7l ATP 1nfp FMN
1tox NAD 1dhr NAD 1i82 GLC 1ng4 FAD
2a5f NAD 1di0 PO4 1i8t FAD 1ngk HEM
2cpo HEM 1dk4 PO4 1ia1 PO4 1nir PO4
2gbp GLC 1dks PO4 1idr HEM 1nni FMN
2npx NAD 1dld NAD 1ie7 PO4 1nox FMN
3grs FAD 1dli NAD 1ieq GLC 1npi PO4
8gpb AMP 1dm1 HEM 1igs PO4 1npl PO4
117e PO4 1do8 NAD 1ii0 ATP 1nrh NAD
1914 PO4 1dor FMN 1ii7 PO4 1nrw PO4
19hc HEM 1dpg PO4 1imd PO4 1nsf ATP
1a2y PO4 1ds7 FMN 1iqr FAD 1nsj PO4
1a40 PO4 1dse HEM 1is2 FAD 1ntf HEM
1a47 GLC 1dve HEM 1itc GLC 1nvm NAD
1a65 GLC 1dw0 HEM 1ith HEM 1nx6 PO4
1a7v HEM 1dxe PO4 1iug PO4 1nxg NAD
1a8p FAD 1e04 PO4 1iw0 HEM 1ny5 PO4
1a9x PO4 1e1q PO4 1izo HEM 1o2b FAD
1a9y NAD 1e24 ATP 1j09 ATP 1o58 PO4
1ad3 NAD 1e3j PO4 1j0i GLC 1o83 PO4
1aer AMP 1e3z GLC 1j20 AMP 1o9b NAD
1af6 GLC 1e4g ATP 1j70 PO4 1o9x HEM
1ag1 PO4 1e55 GLC 1j77 HEM 1obb NAD
1ag9 FMN 1e5d FMN 1j7k ATP 1obd AMP
1aj9 HEM 1e6c PO4 1j8r GLC 1ofc GLC
1aka PO4 1e9x HEM 1jcm PO4 1ogo GLC
1akd HEM 1ea0 FMN 1jdc GLC 1oj6 HEM
1alh PO4 1ebf NAD 1jds PO4 1ojr PO4
1an5 PO4 1eca HEM 1jft PO4 1omo NAD
1ece GLC 1ecj AMP 1jg9 GLC 1ooy PO4
1or4 HEM 2cz8 FAD 1vqv PO4 2hia PO4

Continued on next page
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pdb ligand pdb ligand pdb ligand pdb ligand
1ore AMP 2czc NAD 1w9w GLC 2hld PO4
1orr NAD 2d0d PO4 1wa6 PO4 2hmu ATP
1oz0 PO4 2d0t HEM 1wbh PO4 2hnh PO4
1ozf PO4 2d1q AMP 1wcf PO4 2ho4 PO4
1p0k PO4 2d2m HEM 1wdk NAD 2hoy PO4
1p1j PO4 2d37 FMN 1woq GLC 2hq9 FAD
1p35 PO4 2d3q HEM 1wvq PO4 2hqj PO4
1p3y FAD 2d5m FMN 1ww4 GLC 2hrl GLC
1p49 PO4 2d8a NAD 1wxx PO4 2hry PO4
1p9l NAD 2dc6 PO4 1wzc PO4 2hse PO4
1pie PO4 2dcl AMP 1x01 ATP 2hsh PO4
1pj5 FAD 2ddo ATP 1x77 FMN 2hti FAD
1pjc NAD 2dfz GLC 1x86 PO4 2huw PO4
1pjs NAD 2dj5 PO4 1xjo PO4 2hxp PO4
1pkf HEM 2dkc PO4 1y30 FMN 2hy1 PO4
1ps9 FAD 2dql PO4 1y56 FAD 2hyr GLC
1pt7 PO4 2dsd AMP 1y89 PO4 2hzm PO4
1ptm PO4 2dv1 HEM 1yb0 PO4 2i02 FMN
1pvw PO4 2dwj GLC 1yqz FAD 2i0z FAD
1pwb GLC 2dxq PO4 1yr9 PO4 2i1o PO4
1q08 PO4 2e2o GLC 1yrh FMN 2i3c PO4
1q16 HEM 2e5f PO4 1yrr PO4 2i51 FMN
1q33 GLC 2e5y ATP 1yw1 GLC 2i58 GLC
1q3f PO4 2ead GLC 1ywf PO4 2i6j PO4
1q97 ATP 2efb HEM 1z0z NAD 2i7h FMN
1qf6 AMP 2egk PO4 1z5g PO4 2i9a PO4
1qfc PO4 2ehh PO4 1z6a PO4 2i9p NAD
1qhb PO4 2esr GLC 1z6l FAD 2iag HEM
1qhg ATP 2ets PO4 1z7m PO4 2ib5 PO4
1qhx ATP 2evs GLC 1z84 AMP 2ibg PO4
1qlm PO4 2eww ATP 1z9n HEM 2ifa FMN
1qrr NAD 2exr FAD 1zbu AMP 2ig3 HEM
1qwt PO4 2ez2 PO4 1zc0 PO4 2ig6 FMN
1qz4 PO4 2f10 PO4 1zcn PO4 2iiz HEM
1r0x ATP 2f17 AMP 1zm1 GLC 2ily ATP
1r2j FAD 2f2e GLC 1zui PO4 2im8 PO4
1r37 NAD 2f5v FAD 1zwk PO4 2imd PO4
1r5i PO4 2f6d PO4 1zwx PO4 2iml FMN
1r72 NAD 2f6s PO4 2a0z GLC 2in3 PO4
1rer PO4 2f7m PO4 2a19 PO4 2inw PO4
1rfm NAD 2f7o PO4 2a3l PO4 2iof PO4
1rkd PO4 2f84 PO4 2a5y ATP 2ipi FAD

Continued on next page
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4. PROTEIN BINDING POCKET SIMILARITY MEASURE BASED ON
COMPARISON OF CLOUDS OF ATOMS IN 3D

pdb ligand pdb ligand pdb ligand pdb ligand
1rkv PO4 2f8m PO4 2a7x AMP 2irv PO4
1rkx NAD 2faq ATP 2a96 PO4 2isi PO4
1rli PO4 2fb1 PO4 2acx PO4 2isj FMN
1rlj FMN 2ffi PO4 2aep GLC 2iss PO4

1rmg GLC 2fg9 FAD 2aiu HEM 2isy PO4
1rn4 PO4 2fh6 GLC 2aml PO4 2itf HEM
1rp4 FAD 2fhd PO4 2an4 PO4 2iuc PO4
1rv3 PO4 2fjb AMP 2aqx ATP 2ivd FAD
1rw9 PO4 2fkn NAD 2ark PO4 2ivf HEM
1rwj HEM 2fmy HEM 2art AMP 2ivt AMP
1rxc PO4 2fn0 PO4 2au5 PO4 2iw0 PO4
1ry2 AMP 2fn6 PO4 2avn PO4 2ixa NAD
1ryr ATP 2for PO4 2axr FAD 2ixe ATP
1rz1 FAD 2fr7 HEM 2b3b GLC 2iyg FMN
1s20 NAD 2fre FMN 2b3d FAD 2izz NAD
1s5l HEM 2fsg ATP 2b3n PO4 2j0p HEM

1s5m GLC 2fug FMN 2b44 PO4 2j0x PO4
1s68 AMP 2fuq PO4 2b67 FMN 2j1d PO4
1s96 PO4 2fw5 HEM 2b69 NAD 2j3m ATP
1sb7 PO4 2fwr PO4 2b9w FAD 2j44 GLC
1sb8 NAD 2fyq PO4 2bhy GLC 2j6r PO4
1ses AMP 2g09 PO4 2bis GLC 2j84 AMP
1sez FAD 2g0t PO4 2bra FAD 2j9d AMP
1sf3 PO4 2g1u AMP 2bs5 GLC 2j9l ATP
1sfs PO4 2g25 PO4 2bu2 ATP 2j9r PO4
1su2 ATP 2g37 FAD 2bvf FAD 2jae FAD
1t0i FMN 2g5c NAD 2bvl GLC 2jbh PO4
1t53 ATP 2g5g HEM 2bwa GLC 2jbo PO4
1t57 FMN 2g8s PO4 2c0k HEM 2jbs FMN
1t5b FMN 2gag FAD 2c0u FAD 2jcb PO4
1t6y FMN 2gax PO4 2c1w PO4 2je2 PO4
1tg7 PO4 2gbl ATP 2c30 PO4 2jen GLC
1to3 PO4 2gd9 PO4 2c38 AMP 2jfr PO4
1tqa HEM 2gdv GLC 2c4n PO4 2jfu PO4
1tqn HEM 2gdz NAD 2c54 NAD 2jgd AMP
1tyw GLC 2gfh PO4 2c5s AMP 2nad NAD
1u2s GLC 2gj3 FAD 2c6p PO4 2nn8 GLC
1u9z AMP 2gjl FMN 2c91 PO4 2nnc PO4
1uam PO4 2gju PO4 2cap PO4 2nox HEM
1udn PO4 2gk6 PO4 2ccl PO4 2npi ATP
1uev ATP 2gm3 AMP 2cfa FAD 2ns2 PO4
1uf9 ATP 2gm7 PO4 2cfm AMP 2ns9 PO4

Continued on next page
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pdb ligand pdb ligand pdb ligand pdb ligand
1ukz AMP 2gmh FAD 2cg9 ATP 2nt1 PO4
1ulc GLC 2gmk AMP 2ch6 GLC 2nt8 ATP

1um0 FMN 2gpj FAD 2chp PO4 2nvu ATP
1uoz GLC 2gqf FAD 2cja ATP 2nwb HEM
1usc FMN 2gru NAD 2ck3 PO4 2nxf PO4
1uu0 PO4 2grx PO4 2cm6 PO4 2nyj ATP
1uw3 PO4 2gsu AMP 2cmw PO4 2nzc PO4
1uwg PO4 2gte PO4 2cn3 GLC 2o08 PO4
1uwv PO4 2gtl HEM 2cns PO4 2o09 HEM
1v04 PO4 2gv8 FAD 2cul FAD 2o0h ATP
1v1b ATP 2gvg PO4 2cvj FAD 2o0m PO4
1v26 AMP 2gvy GLC 2cx7 PO4 2o16 PO4
1v2b GLC 2gwl NAD 2cxn PO4 2o4c NAD
1v2i PO4 2gxq AMP 2cy3 HEM 2o4v PO4
1v2x PO4 2h0u FMN 2o6p HEM 2pbl PO4
1v33 PO4 2h5f PO4 2o9z PO4 2pbz ATP
1v9f PO4 2h8x FMN 2oaf PO4 2pce PO4
1v9y HEM 2hae NAD 2oaq PO4 2ph5 NAD
1vdr PO4 2hbl AMP 2ob1 PO4 2pi8 PO4
1vhn FMN 2hcr AMP 2obn PO4 2pia FMN
1vj5 PO4 2hdo PO4 2oej PO4 2pla NAD
1vjp NAD 2hek PO4 2ofx PO4 2pmb PO4
1vkf PO4 2hfn FMN 2ogx ATP 2pnk PO4
1vkk PO4 2hhc PO4 2oh5 ATP 2ppq PO4
1vl8 PO4 2hhg PO4 2ohh FMN 2ppv PO4
1vlp PO4 2hhz PO4 2oiv PO4 2pq7 PO4
1vlv PO4 2hi4 HEM 2ojw PO4 2pqv PO4
2oys FMN 2qgz PO4 2ok7 FAD 2ptf FMN
2oyy HEM 2qjc PO4 2onk PO4 2ptq AMP
2ozt PO4 2uuu FAD 2oov PO4 2pup PO4
2p09 ATP 2uv8 FMN 2oox AMP 2pv7 NAD
2p0e PO4 3ck9 GLC 2osx GLC 2q0v PO4
2p0f PO4 3pfk PO4 2otd PO4 2q3e NAD
2p0k PO4 3sil PO4 2ou5 FMN 2q7g ATP
2p6u PO4 4kbp PO4 2oun AMP 2qck PO4
2p8i PO4 5cro PO4 2p9e PO4 2pb9 PO4

Table 4.3: Pdf file containing a table describing all proteins used in the Homogeneous dataset.
(PDB name, EC number, ID Uniprot, protein classification, chain, Ligand)
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4. PROTEIN BINDING POCKET SIMILARITY MEASURE BASED ON
COMPARISON OF CLOUDS OF ATOMS IN 3D

pdb name EC number ID Uniprot protein classification protein chain ligand

1A0G 2.6.1.2 P19938 transferase A PMP

1A0T — P22340 outer membrane protein P SUC

1A8I 2.4.1.1 P00489 glycogen phosphorylase A LLP

1AIA 2.6.1.1 P00509 transferase(aminotransferase) A PMP

1AIJ — P0C0Y9 photosynthetic reaction center M LDA

1AR1 1.9.3.1 P01636 complex (oxidoreductase/antibody) B LDA

1AUA — P24280 phospholipid-binding protein A BOG

1AX4 4.1.99.- P28796 tryptophan biosynthesis A LLP

1B4W 3.1.1.4 O42187 hydrolase A BOG

1B56 — Q01469 lipid-binding A PLM

1BJW 2.6.1.1 Q56232 aminotransferase B LLP

1BW0 2.6.1.5 P33447 transferase A LLP

1C8U 3.1.2.- P0AGG2 hydrolase A LDA

1CL1 4.4.1.8 P06721 methionine biosynthesis A LLP

1CMC — P0A8U6 dna-binding regulatory protein B SAM

1CS1 4.2.99. P00935 lyase A LLP

1D7K 4.1.1.1 P11926 lyase A LLP

1DBT 4.1.1.2 P25971 lyase A U5P

1DUG 2.5.1.1 P08515 blood clotting B GSH

1DXR — P06010 photosynthetic reaction center M LDA

1EEM — P78417 transferase A GSH

1EH5 3.1.2.2 P45478 hydrolase A PLM

1EIZ 2.1.1.- P0C0R7 transferase A SAM

1F7S — Q39250 plant protein A LDA

1FG7 2.6.1.9 P06986 transferase A PMP

1FGX 2.4.1.3 P08037 transferase B U5P

1FW1 2.5.1.1 O43708 isomerase/transferase A GSH

1FX8 — P0AER0 membrane protein A BOG

1G8I — P62166 metal binding protein A 1PE

1G8O 2.4.1.1 P14769 transferase A U5P

1HMY 2.1.1.3 P05102 transferase(methyltransferase) A SAM

1I5E 2.4.2.9 P70881 transferase A U5P

1I78 3.4.21. P09169 hydrolase B BOG

1I9G — O33253 transferase A SAM

1IUG — Q5SKR1 transferase A LLP

1IYH 5.3.99. O60760 isomerase A GSH

1J04 2.6.1.4 P21549 transferase A LLP

1JG8 4.1.2.5 Q9X266 lyase A LLP

1JGI 2.4.1.4 Q9ZEU2 transferase A SUC

1JJ0 3.2.1.1 P00698 hydrolase A SUC

1JLV 2.5.1.1 Q7KIF2 transferase A GSH

Continued on next page
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pdb name EC number ID Uniprot protein classification protein chain ligand

1K87 1.5.99. P09546 oxidoreductase A 1PE

1K8Q 3.1.1.3 P80035 hydrolase A BOG

1KMO — P13036 membrane protein A LDA

1KTA 2.6.1.4 O15382 transferase A PMP

1L0G 3.5.2.6 P00811 hydrolase A SUC

1M66 1.1.1.8 P90551 oxidoreductase A PLM

1M98 — P83689 unknown function A SUC

1MDO — Q8ZNF3 transferase A PMP

1MGP — Q9X1H9 lipid binding protein A PLM

1MSK 2.1.1.1 P13009 methyltransferase A SAM

1NT2 — O28191 rna binding protein A SAM

1NW3 — Q8TEK3 transferase A SAM

1O57 — P37551 dna binding protein C 1PE

1O6U — O76054 transferase A PLM

1OJD 1.4.3.4 P27338 oxidoreductase A LDA

1P91 2.1.1.5 P36999 transferase A SAM

1PQ2 1.14.14 P10632 oxidoreductase B PLM

1PT2 2.4.1.1 P05655 transferase A SUC

1Q0R — Q54528 hydrolase A 1PE

1QZZ — Q54527 transferase A SAM

1R30 2.8.1.6 P12996 transferase A SAM

1R4W 2.5.1.1 P24473 transferase A GSH

1S7G 3.5.1.- O30124 transcription A 1PE

1SZ7 — O43617 transport protein A PLM

1THQ — P37001 transferase A LDA

1TJ4 3.1.3.2 P74325 hydrolase A SUC

1UC2 — O59245 unknown function A SUC

1UMX — P0C0Y9 photosynthetic reaction center H LDA

1UU1 2.6.1.9 Q9X0D0 transferase A PMP

1W2T 3.2.1.2 O33833 hydrolase A SUC

1WLJ 3.1.-.- Q96AZ6 hydrolase A U5P

1XKW — P42512 membrane protein A LDA

1Y10 4.6.1.1 Q11055 lyase B 1PE

1Y1A — Q99828 metal binding protein B GSH

1YLJ 3.5.2.6 Q9L5C8 hydrolase A SUC

1ZC9 4.1.1.6 P16932 lyase A PMP

1ZX8 — Q9X187 unknown function C 1PE

2B56 — Q86MV5 transferase/rna binding protein A U5P

2BLN 2.1.1.2 P77398 transferase A U5P

2BMU 2.7.4.- Q8U122 transferase A U5P

2BYN — Q8WSF8 receptor B 1PE

2C37 3.1.13. Q9UXC2 hydrolase A U5P

Continued on next page
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4. PROTEIN BINDING POCKET SIMILARITY MEASURE BASED ON
COMPARISON OF CLOUDS OF ATOMS IN 3D

pdb name EC number ID Uniprot protein classification protein chain ligand

2C81 2.6.1.- Q8G8Y2 transferase A PMP

2CJG — P63509 transferase A PMP

2CZV 3.1.26. O59150 hydrolase C BOG

2E7U 5.4.3.8 Q5SJS4 isomerase A PMP

2FIK — P11609 immune system A PLM

2FLS — Q9NS18 oxidoreductase A GSH

2HAW 3.6.1.1 P37487 hydrolase B 1PE

2HD0 3.4.22. Q9ELS8 hydrolase E BOG

2IDB 4.1.1.- P0AAB4 lyase A 1PE

2IMD 2.5.1.1 Q51948 transferase A GSH

2IU8 2.3.1.- O84245 transferase B PLM

2J4J 2.7.4.2 Q97ZE2 transferase A U5P

2NWL — O59010 transport protein A PLM

2P4B — P0AFX9 signaling protein B BOG

2PBJ 5.3.99.- Q9N0A4 lyase A GSH

2Z73 — P31356 membrane protein A BOG

3B6H 5.3.99.- Q16647 isomerase A BOG

Table 4.4: Pdf file containing a table describing all proteins used in the Homogeneous dataset.
(PDB name, EC number, ID Uniprot, protein classification, chain, Ligand)
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5

Discussion and Perspectives

5.1 Description of the chemogenomic space

In chemogenomics, compound libraries are combined with protein information, and the ulti-

mate goal is to identify all possible interactions between ligands and proteins of the proteome.

However, the size of the protein-ligand space makes any systematic experimental characteriza-

tion impossible. Indeed, the number of molecules with drug-like molecular weight (up to about

600 Da) is very large. Moreover, the human genome project has identified and characterized

more than 25000 genes in the human DNA (173), leading to an even larger number of proteins

due to alternative splicing and post-translational modifications. Adding a biological dimen-

sion to high-throughput screening means that, even with the impressive technological advances

made, current capacities are no longer sufficient to tackle the experimental testing of tens of

thousands of compounds against thousands of targets. The chemogenomic matrix is thus very

sparse since experimental data, in the form of binding affinity values such as inhibition con-

stants (Ki) and inhibitory concentrations (IC50), is available only for a very limited number

of protein-ligand complexes. Chemogenomic approaches therefore tried to fill this matrix by

prediction of protein-ligand interactions. However, as presented in chapter 3, these approaches

have to face two main problems: how to encode and compare molecules, how to encode and

compare proteins.

The protein and ligand spaces have traditionally been studied as separate entities. Since

conventional drug discovery is focused on ligand optimization, the chemical space has been a

well studied research topic (174).
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5.1.1 Description of the chemical space

The chemical space of small molecules has been extensively studied in chemoinfomatic re-

search. As shortly reviewed in chapter 2, large number of ligand descriptors has been used in

drug discovery. Ligand descriptors are typically classified by the dimensionality of the repre-

sentation of the compound (175). One-dimensional (1D) descriptors are computed from the

atomic composition of the molecule. They correspond typically to global molecular prop-

erties, such as the molecular weight and hydrophobicity, the number of atoms of particular

types or hydrogen bond donors and acceptors. 2D descriptors are derived from the graphi-

cal representation of a chemical structure, and include 2D binary fingerprints. Finally, three-

dimensional (3D) descriptors are generated from 3D representation of the molecules, although

3D approaches suffer from the limitation that the active 3D conformer might not be known.

Based on these various descriptions, numerous methods were proposed to quantify molecular

similarity. Today, a large panoply of approaches is available to handle the chemical space in

chemogenomic approaches.

5.1.2 Description of the biological space

The field of describing the biological space, i.e. encoding and comparing proteins, has been

less studied, and constitutes the main bottleneck for development of large-scale chemogenomic

approaches. We will shortly review the main strategies that have been developed to encode and

compare proteins. Proteins are commonly represented according to their sequence or their 3D

structure, which has lead to two main types of approaches: sequence-based and structure-based

approaches. The full amino-acid sequence is the most straightforward information, and enables

a relevant clustering of proteins into families such as ”GPCRs” or ”kinases”. Similarly, analysis

of global 3D topologies of proteins has lead to structural classification of proteins, as illustrated

by the SCOP database.

5.1.2.1 Sequence-based approaches

The sequence representation allows comparison of two proteins using sequence alignment al-

gorithms such as BLAST (176). The alignment score can then be used to derive a distance

measure between these two proteins. In particular, kernels methods developed for protein se-

quences (177) could in principle be used in the SVM framework for chemogenomics presented

in chapter 3. However, this would require that a sequence alignment is reachable, which is
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possible only for proteins belonging to the same family, as already pointed. As a consequence,

chemogenomic approaches in which the biological space is encoded on the basis of protein

sequences is limited to proteins belonging to the same family. However, to our knowledge,

full-length sequence similarity measures have never been implemented in SVM for chemoge-

nomics. Chemogenomic approaches based on protein sequences have compared and classified

proteins based on ligand-binding sites by using sequence motifs. For example, in the case

of GPCR, a study focussed on residues known from molecular recognition studies such as

site-directed mutagenesis to be important for binding of the ligand (178; 179). However, com-

parison of such binding site sequences was used to derive GPCR classifications, but was not

implemented in a chemogenomic approach to predict ligands for GPCRs. As presented in

chapter 3, another approach consists in aligning all GPCRs sequences, extracting key residues

supposed to map the ligand binding site and concatenating these key residues into an un-gapped

sequence which can be later used to derive a distance matrix based on sequence identity (132),

sequence similarity (131) or physicochemical properties (180). An exhaustive cavity-based

clustering of 372 human GPCRs has been proposed using such a strategy (132). Interestingly,

it reproduces the full sequence-based tree suggesting that only a few residues are really im-

portant when comparing targets across a family. This simplification enables a much simpler

analysis of features (binding site regions), which are responsible for selective or permissive lig-

and binding by simply looking at residue conservation. Previous studies based on comparison

of extracted sub-sequences of residues involved in the ligand-binding site have not been used

to predict ligands, and the SVM-based approach presented in chapter 3 is the first published

method to achieve this goal. However, the main limitation of the proposed method, common

to all sequence-based approaches (whether they are based on the full protein sequence or on a

sub-sequence), is that they can only be applied to proteins belonging to the same family.

5.1.2.2 Structure-based approaches

An alternative strategy, which could provide a means to overcome this limitation, is to encode

and compare proteins based on their 3D structure, when they are available. For example, one

could measure the structural similarity between two proteins based on their overall 3D structure

similarity using a structural alignment algorithm such as MAMMOTH (181). Kernel methods

have been proposed based on structure similarity according to MAMMOTH (182), and used

for the prediction of enzyme functions or SCOP class. In principle, they could also be used in

chemogenomics in order to predict ligands. However, as in the case of sequences, approaches
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based on comparison of overall 3D structures can only be performed on proteins of similar

fold, i.e. proteins belonging to the same structural family.

Another family of structure-based encoding of proteins consists in focussing on the ligand-

binding site. One can start from a structural alignment of two proteins, and then describe

them by computed molecular interaction fields derived from the cavities. These fields can

then be used in vectors that encode for the proteins, allowing comparison of binding sites.

Again, this approach can only be applied to proteins of similar structural families. However,

its has been successfully applied to protein kinases (183), serine proteases and GPCRs (184),

or matrix metallo-proteinases (185). These studies aimed at explaining pockets selectivity,

and thus guiding the design of compound libraries towards the desirable selectivity pattern.

However, they could be used as such for ligand prediction, using a chemogenomic approach

similar to that presented in chapter 3.

Other structure-based approaches are better suited to compare proteins with different over-

all 3D structures, describing proteins by physicochemical properties. The molecular surface

of a binding pocket can be discretized in either chemically labelled points (186) or graphs

(187) and then aligned to maximize overlap with any reference. A database of protein sur-

faces (eF-site) has been browsed to predict the function of a hypothetical archaeon protein

(MJ0226) by detection of a mononucleotide binding site (187). Surface-based comparisons

are, however, relatively slow and thus incompatible with large-scale comparison of binding

pockets. Faster methods have been developed (163; 188; 189; 190; 191). They all have in

common to represent an active site of interest by pseudocenters (dummy atoms located close

to every side chain of interest) encoding physicochemical properties (H-bonding capacity, aro-

maticity, hydrophobicity, charge) of their cognate residues, pseudocenters being linked together

by edges and thus defining a molecular graph. Alignment is operated for example by detec-

tion of maximal common subgraphs (clique detection) (192). A nice example of binding site

similarities for distant proteins has been exemplified by Weber et al. (193), who detected

cross-reactivity of arylsulfonamide-based COX-2 inhibitors with human carbonic anhydrase

(HCA) based on the similarity of COX-2 and HCA binding pockets. A problem with these

matching techniques is that the computed similarity score (usually dependent on the number of

atom/pseudocenter/triangle matches) is not always easy to interpret, notably for active sites of

different dimensions, because large actives sites will have a tendency to present more matches

than small ones even if the latter are more similar. Therefore, normalized distance metrics sim-

ilar to those used for comparing ligands are needed. An alternative approach is to evaluate the
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similarity of potential ligand binding envelopes for known X-ray structure of apo or holopro-

teins (194). A first draft of the human pocketome, a collection of all possible ligand binding

envelopes for a set of 943 crystallized human proteins, has been proposed (An et al., 2005) and

clustered by envelope similarity. Interestingly, the ligand envelope-based tree only partially

matches alternative trees based on the amino-acid sequence of the target proteins or on bound-

ligand similarities (194). However, note that all these structure-based methods have been used

to compare proteins, cluster and classify them, or detect potential ligand cross-reactivity, but

they have not been used to make large-scale ligand prediction, as chemogenomics methods

intend to perform.

5.2 Extension of the proposed methods to SVM-based Chemoge-
nomics methods

As mentioned above, we have proposed in chapter 3 a sequence-based chemogenomic method

within the SVM framework. It is able to make ligand predictions on large-scale in the chemical

space (i.e. predict ligands within large and chemically diverse chemical databanks) for proteins

belonging to a given family. The method has been applied to the case of GPCRs, although in

principle, it can be applied to other families of proteins such as kinases or proteases. In the

above paragraph, we have recalled that structure-based description of proteins at the level of

binding pockets can be used to handle the case of proteins belonging different families. Let

us discuss how these methods could help to extend the SVM-based chemogenomic approaches

for large-scale prediction in the biological space, i.e. predict ligands for large and biologically

diverse protein datasets. In chapter 4, we presented a method that encodes proteins by an ex-

plicit cloud of points in 3D space, corresponding to the protein atoms belonging to the binding

pocket. The method defines a similarity measure to compare any pair of proteins of known

3D structures, even if they present totally different overall 3D structures. It was not applied

for large-scale comparison of proteins, because the aim was first to evaluate its performance

on a limited benchmark, which however contained very different protein structures. Only ten

different ligands where included for the proteins of this benchmark. In a cross validation study,

we showed that the similarity measure proposed in this thesis (supCK) presented good perfor-

mance to predict the ligand of a given pocket, among these ten possible ligands. Let us discuss

how this method could be extended in order to be implemented in a SVM-based chemogenomic

approach for larger scale predictions.
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As we mentioned in chapter 4, the supCK function defines a ”good” similarity measure,

but unfortunately, it is not a kernel function. This means that the similarity matrix that is built

when comparing an ensemble of proteins is not definite positive, i.e. its eigenvalues are not all

positive. This is a typical situation arising when designing a kernel in computational biology,

as well as in other fields. For example, let us consider a finite set of proteins, and s a measure of

similarity between these proteins, leading to a similarity matrix S that is not definite positive.

How can we make a symmetric positive definite kernel matrix out of a pair-wise similarity

matrix ? There is no single answer to this problem, but mainly three types of approaches that

have been proposed to derive a kernel from such similarity score matrices.

• The first way to convert s into a valid kernel is called empirical kernel map. One replaces

the similarity matrix S of this set of proteins by K, whose eigenvalues are equal to the

square of those of S. They are therefore all positive, and K is now a definite positive

matrix. Liao and Noble successfully applied this technique to transform an alignment

score between protein sequences into a powerful kernel for remote homology detection:

a protein is represented as a vector of log E-values from a pair-wise sequence comparison

algorithm (195). It was also used in our group to convert structure-based similarity

matrices generated by the MAMMOTH algorithm, using the log of the E-value returned

by MAMMOTH. The resulting MAMMOTH-derived kernel was used to predict enzyme

functions and Gene Ontology (129).

• One can add to the diagonal training matrix S a non-negative constant large enough

to make it positive definite. This is equivalent to adding a constant to all eigenvalues in

order to make them all positive. This approach was also used by Liao and Noble to detect

protein sequence homology, with performance comparable to that of the first method.

• Another way is to perform eigenvalue decomposition of the similarity matrix, and to

remove all negative eigenvalues. It was pointed out that this method preserves clusters in

data, and showed promising experimental results in classifying protein sequences based

on the FASTA scores (196). In this case, one uses the decomposition of the similarity

matrix where n
2 is the size of S (S is a square matrix, and n corresponds to the number

of proteins in the training set), and represent the column vectors of the diagonalization

matrix for S. Then, one can define a kernel by keeping only positives eigenvalues.
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5.3 Other structure-based kernels for proteins.

The three types of approaches were found to display similar performance of test studies

(124).

A future development of the work presented in this thesis would be to employ one these

three types of approaches to convert supCK similarity matrices presented in chapter 4 into

definite positive matrices. These matrices could then be used in SVM-based chemogenomic

approaches in order to predict ligands on large protein datasets containing evolutionary unre-

lated proteins of known 3D structures.

5.3 Other structure-based kernels for proteins.

In chapter 4, we encode proteins by a cloud of points in 3D space, corresponding to the atoms

defining the ligand-binding pocket. To compare two protein pockets, the similarity measure

supCK requires to best superpose the two corresponding clouds of points. Although the method

was found to present good performances, a drawback is that the results depend on this super-

position step, and that this step is computationally costly. Therefore, an interesting research

axis would be to test other structure-based similarity methods that do not require pocket super-

position, and to derive new protein kernels that would be used in SVM chemogenomics. The

methods described in the previous paragraph to build definite positive matrices from similar-

ity matrices can be used for any protein pocket similarity measures that are independent from

protein superposition. One such example is the similarity measure developed by Kahraman,

to which the supCK method was compared in chapter 4 (156). However, most of the methods

that are independent from protein superposition do not encode binding pockets explicitly by

its cloud of atoms. They are therefore highly simplified representations of the pockets, which

might lead to decreased performances with respect to supCK. Therefore, a methodological im-

provement could be to test other kernels based on explicit atom representations, but for kernels

independent of any prior pocket superposition. In chapter 3, we used a 3D pharmacophore

kernel developed for small molecules in order to predict ligands for GPCRs. This kernel only

uses as input atom coordinates, and possibly various atom labels such as atom type or partial

charge. It was developed in our group and is publicly available in the ChemCPP software. This

kernel could be applied to the atoms of the cloud of atoms that define the protein pockets in a

straightforward manner, without requiring any pocket superposition. This 3D pharmacophore

kernel could be used as such in the SVM chemogenomic scheme similar to that presented in

chapter 3. This would allow extend the presented chemogenomic SVM-based method for the
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prediction of ligands, to the case of large datasets containing proteins that do not belong to the

same family, as long as their 3D structures are known.

5.4 The learning database

All prediction methods rely on prior knowledge, i.e. a learning dataset. In order to predict

protein-ligand interactions, the learning dataset must contain a list of known interactions which

are used to start filling the chemogenomic matrix. However, chemogenomic studies have to

deal with the paucity of protein-ligand interaction data, that usually cover only a small part of

the protein-ligand space, particularly in the protein space. Therefore, most papers in chemoge-

nomics report building of a specific dataset prior to the testing of methods. The question of

how to build this learning dataset has not been discussed in detail in this thesis, although it is a

crucial question in bioinformatics, often representing the limiting step.

For chemogenomic studies in which the biological space is encoded in a sequence-based

approach, as we did in chapter 3, various databases are available, usually devoted to specific

families of proteins. We used the GLIDA database that gathers known protein-ligand inter-

actions for GPCRs. The IUPHAR database could also be interesting, since it contains known

interactions for GPCRs, ion channels, and nuclear receptors, three major classes of drug targets

(197).

Other databases contain interaction information for more diverse families of proteins such

as ChemBank which stores raw data from screening assays (198), and DrugBank which con-

tains information on drugs and their known targets(199). However, as mentioned earlier,

sequence-based chemogenomic approach cannot handle protein diversity and are restrained

make to predictions in a given family of proteins, based on a knowledge database of protein-

ligand interactions within this family.

In the structure-based approaches presented in chapter 4, which encode the ligand-binding

site, chemogenomic methods can learn from datasets containing very diverse proteins and/or

protein structures, and the Protein Data Bank (PDB) constitutes the natural source of informa-

tion. However, because membrane associated proteins are very difficult to crystallize, the main

drawback of PDB is that it contains very few structures of protein receptors or channel ions. In

the process of drug discovery, this database is very helpful for structure-based rational design

by exploiting protein-bound conformations of known ligands, depicting their environment and

the local flexibility of well-identified protein binding sites. However, described ligands are
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5.5 Extension to proteins of unknown structures by homology modeling

considered from a structural point of view. This means that no difference is implied between a

compound known to activate/inhibit the corresponding target and a molecule (e.g., solvent, de-

tergent, and metal ion) devoid of pharmacological effect on that target. Carlson’s group linked

experimental binding data to 3-D structures from the PDB in the Binding MOAD database

(200). The selection procedure combined with the bibliographic search ensured the choice of

the appropriate ligand within biologically relevant complexes. This database resource covers

about 10.000 ligand-protein complexes, including about 6000 different ligands. This outstand-

ing collection of data greatly benefits the characterization of molecular recognition as well

as the development of structure-based drug discovery techniques. However, a chemogenomic

approach based on the encoding of the protein pocket as a cloud of points would require a

well-defined collection of suitable binding sites including exact 3-D coordinates that are not

available in any of the above-mentioned databases. The group of Rognan has created such a

specialized database by parsing PDB files called sc-PDB (201). Selection was based on ligand

properties, and a unique drugable cavity was assigned to each complex. The binding site was

defined by all the protein residues with at least one atom within 6.5Å of any ligand atom. The

sc-PDB contains 2721 unique ligands within the 6415 complexes for which the binding site is

stored in PDB format. This database could be of great interest to train SVM-based chemoge-

nomic methods using kernels for binding sites such as the pharmacophore 3D kernel, or kernels

derived from supCK similarity matrices.

5.5 Extension to proteins of unknown structures by homology mod-
eling

Unlike sequence-based chemogenomics, structure-based chemogenomics allows to learn from

protein-ligand available information across different families of proteins. However, its main

limitation is the number of structures of protein-ligand complexes available at the PDB, in or-

der to build learning datasets. Indeed, there are many more known protein-ligand interactions,

than protein-ligand structures available at the PDB. Despite structural genomics efforts, it is

unlikely that the three-dimensional structures of the entire human proteome will be available

soon. One possible way to overcome this limitation is to use homology modeling to derive

3D models for proteins of unknown structures. These modeled structures could be used either

to enrich the learning dataset, but also to extend the number of proteins for which prediction

of interactions could be done. For example, the growing number of GPCR structures allows
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to undertake homology modeling for GPCR proteins belonging to the family A (202). From

these models, one could extract structures of protein binding pockets such as those used in

chapter 4: sequence alignment of GPCRs from family A with the two GPCRs of known struc-

tures used in chapter 3 allows to identify key residues for ligand binding. The corresponding

binding pocket in 3D would then be extracted from the corresponding GPCR model. Another

approach would be to perform direct structural alignment of the models with the known struc-

tures using structural alignment algorithms such as STAMP in order to extract the binding

pockets. The important family of kinases, involved in major human diseases like cancer, have

also been modeled at the human kinome level (203). These modeled structures could be used

in chemogenomic studies, together with the large number of data available about kinases in-

hibitors (see for example: (204)). We have shown that the sup-CK method presents smoothness

properties for the comparison of cloud of atoms. This could be an interesting advantage when

applied on homology models that may suffer from atom position inaccuracies, particularly for

side-chain atoms.

5.6 Relation with docking

Docking programs can search for the best fit between two or more molecules by considering

several parameters obtained from receptor and ligand atomic coordinates, such as geometrical

complementarity, atomic VDW radius, charge, torsion angles, intermolecular hydrogen bonds,

and hydrophobic contacts. Docking is therefore intended to model accurately the physical

phenomenon of the binding of a molecule at the surface of a protein. As a result, docking

applications return the predicted orientations (poses) of a ligand in the targets binding site.

The posing process usually returns numerous possible conformations and several positions

for a molecule. Scoring functions, which are able to evaluate intermolecular binding affinity or

binding free energy, are employed to optimize and rank the results to obtain the best orientation

after the docking procedure and selecting the best pose (205).

However, before performing the docking, it is necessary to perform a number of steps

that cannot be easily automated. For example, docking conditions are usually tuned when

redocking a ligand for which the structure of the protein-ligand complex is known. The docking

conditions best reproducing the known complex are then used for large-scale docking against

the studied receptor. Such tuning, for each receptor, makes it difficult to use when studying

many proteins at once. In other words, docking approaches are well suited to large scale studies
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in the ligand space, but are not easily applicable to large scale studies in the protein space. One

advantage of chemogenomic approaches is that they do not require such tuning, and therefore,

are applicable for large scale studies both in the protein and ligand spaces.

Another difference lies in the fact that docking is not a method that can ”learn” in a direct

manner. In other words, knowing the best pose and affinity value of a ligand for a given

protein might help to better dock other molecules in this protein. However, it will not help to

better find the best docked pose and docking score of this ligand for another protein. On the

contrary, in chemogenomic approach, any new information about protein-ligand interaction

that becomes available in the learning database will potentially improve prediction of protein-

ligand interactions.

However, docking could be very helpful to enlarge the learning dataset in the case of

structure-based chemogenomics. Indeed, among the known protein-ligand interactions, many

arise from in vitro affinity or enzymatic tests. Yet, there is no crystallographic complex for

all these interactions, but in some cases, the corresponding proteins have a known structure in

the PDB. In such cases, docking could be used to predict the structure of the protein-ligand

complex, and extract atoms of the protein pocket (i.e. atoms in contact with the ligand). These

predicted pockets would be added to the learning dataset, which would in turn improve future

chemogenomics predictions. In other words, docking could help to enlarge available learning

datasets.

Similarly, docking could be used in the case of homology models of proteins, further en-

riching the data that can be used by in chemogenomics.

The main limitation of chemogenomics with respect to docking, is that chemogenomics

predict protein-ligand interactions, but do not provide the position of the ligand in the pocket:

the geometry of the protein-ligand complex remains unknown. Therefore, further analysis

such as ligand optimization to enhance protein-ligand affinity, as can be done in classical drug

design approaches based on docking, is not easy. At this point, docking would be useful to

model interactions predicted by chemogenomics.

5.7 From prediction of protein-ligand interactions to prediction of
biological effects

Currently, the average time needed to develop a new drug takes between ten and twelve years,

and the cost is estimated at several hundreds of millions of euros. Most drugs are small com-
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pounds that interact with their targeted proteins. Drugs failure in clinical trials is mainly due

to unexpected side-effects caused by interactions with proteins that are not the main target. In

other words, the beneficial and unwanted effects of drugs are due to the overall spectrum of

interaction of the drug against the human proteome. This underscores the need of large-scale

approaches in the protein space, for predicting drug-protein interactions.

Indeed, the discovery of secondary targets in the final stages of a drug development is an

important and recurring problem in the pharmaceutical industry. This problem has so far not

been resolved, and the development of method that would help to predict potential off-targets

at early stages of drug development would be of great interest for pharmaceutical industry.

Chemogenomics may provide an early answer to this question of specificity, since this method

can list potential secondary targets.

As the number of interactions data increases, and of 3D structures of complexes in the

PDB increases, the quality of the predictions of chemogenomics and the number of proteins

for which it is possible to make predictions will increase. This feature is encouraging because

it allows to consider a consistent prediction of side effects in the medium term.
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Conclusion

In conclusion, this thesis has shown that the use of machine learning methods is effective for

predicting protein ligand (PL) interactions. This approach, as the name suggests, ”learns” from

examples to recognize experimentally validated PL couples that could exist or not. To show the

relevance of this method, a data set has been designed and made available to the community.

For ligands, we used descriptors corresponding to an encoding of the 2D or 3D structure.

In the 2D approach, a molecule is described by a binary vector whose elements are determined

by a graph that describes its chemical structure. In the 3D approach, molecules are described

by the set of triplets of atoms that compose it, and the distances between these atoms. For pro-

teins, two kernels have been designed. The hierarchical kernel evaluates the similarity between

proteins based on their distance in the hierarchy of GPCRs, and the binding pocket kernel

that assesses the similarity of the amino acids forming the binding sites of ligands. In the latter,

the proteins of the GPCR family whose structure has been experimentally determined are struc-

turally align in order to identify amino acids involved in ligand binding. The sequences of other

GPCRs were then aligned with these two proteins and amino acids corresponding to the bind-

ing site were concatenated into a vector that allowed their comparison. Chemogenomics space

is encoded by the tensor product of proteins and ligands spaces, and the distances between the

pairs (protein, ligand) in this space is estimated by the product of the kernels calculated on

the proteins and ligands. This method is only able to predict new interactions within a protein

family whose members have a sequence and a shape globally similar enough to be compared.

With the idea of expanding the learning database and knowing that proteins with various

shapes and sequences may bind to the same kind of ligands, we developed a similarity mea-

sure which is able to compare binding sites of proteins. For this, we used 3D structures of
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proteins from the PDB. The binding sites, extracted from the ligands environment, are rep-

resented by clouds of atoms. The similarity between two proteins is then evaluated by the

similarity between the clouds of atoms of their ligand binding pockets. This method involves a

3D alignment of the atoms forming the two pockets, by rotation and translation. The alignment

is achieved by promoting the regrouping of atoms from the two pockets with similar properties

in nearby regions of space. Using a data set from the literature and two others created for this

purpose and made public, we have shown that the similarity measure is able to recognize pock-

ets binding the same ligand. We also showed that the classification error is a better measure

of prediction performance than the AUC which is conventionally used. This method has the

advantage of comparing the binding sites of any two proteins, regardless of their similarities

and their families, as long as 3D structures are available.

Finally, we have indicated possible ways of exploration to transform the similarity measure

in a kernel, in order to provide a chemogenomics method which benefits from performances

and characteristics of the SVM kernel methods.
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Développement d’approches de chémogénomique pour la prédiction des
interactions protéine - ligand

Résumé : Cette thèse porte sur le développement de méthodes bioinformatiques permettant la pré-

diction d’interactions protéine - ligand. L’approche employée est d’utiliser le partage entre protéines

des informations connues, à la fois sur les protéines et sur les ligands, afin d’améliorer la prédiction de

ces interactions. Les méthodes proposées appartiennent aux méthodes dites de chémogénomique.

La première contribution de cette thèse est le développement d’une méthode d’apprentissage statis-

tique pour la prédiction des interactions protéines - ligands par famille. Elle est illustrée dans le cas

des GPCRs. Cette méthode comprend la proposition de noyaux pour les protéines qui permettent de

prendre en compte la similarité globale des GPCRs par l’utilisation de la hiérarchie issue de l’aligne-

ment des séquences de cette famille, et la similarité locale au niveau des sites de fixation des ligands

de ces GPCRs grâce à l’utilisation des structures 3D connues des membres de cette famille. Pour cela

un jeu de données a été créé afin d’évaluer la capacité de cette méthode à prédire correctement les

interactions connues. La deuxième contribution est le développement d’une mesure de similarité entre

deux sites de fixation de ligands provenant de deux protéines différentes représentés par des nuages

d’atomes en 3D. Cette mesure implique la superposition des poches par rotation et la translation, avec

pour but la recherche du meilleur alignement possible en maximisant le regroupement d’atomes ayant

des propriétés similaires dans des régions proches de l’espace. Les performances de cette méthode

ont été mesurées à l’aide d’un premier jeu de données provenant de la littérature et de deux autres

qui ont été créés à cet effet.

L’ensemble des résultats de cette thèse montre que les approches de chémogénomique présentent

de meilleures performances de prédiction que les approches classique par protéine.

Mots clés : Chémogénomique, bioinformatique, criblage virtuel, apprentissage statistique, SVM,

noyaux, mesure de similarité, structure 3D, interactions protéines ligands.

Development of chemogenomic approaches for prediction of protein-ligand
interactions

Abstract: This thesis focuses on the development of bioinformatics methods for the prediction of

protein-ligand interactions. The approach used throughout this thesis is to share the known informa-

tion, both on proteins and on ligands to improve the performance of predictions. The first contribution

is the development of a statistical learning method for the prediction of protein - ligands interactions

within a family, and is illustrated in then case of GPCRs. This method involves the proposal of new

kernels for proteins which take into account the overall similarity of GPCRs based on a sequenced-

based hierarchy, and the local similarity of the ligand binding sites of GPCRs based on known 3D

structures of known members of this family. A dataset was created to assess the ability of this method

to correctly predict the known interactions. The second contribution is the development of a similar-

ity measure between two ligands binding sites from two different (and potentially unrelated) proteins

represented by clouds of atoms in 3D. This measure requires pockets alignment using rotations and

translations, with the aim of finding the best possible alignment by maximizing the gathering of atoms

with similar properties in the nearby regions of space. The performance of this method were measured

using a first dataset described in the literature and two others that were created for this purpose.

Overall, the results show that chemogenomic approaches display better prediction performances

than classical approaches.

Keywords: Chemogenomics, bioinformatics, virtual screening, machine learning, SVM, kernel, sim-

ilarity measure, 3D structure, protein ligand interactions.


